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Abstract

The thermal infrared portion of the electromagnetic spectrum has consid-

erable potential for mineral and lithological mapping of the most abundant

rock-forming silicates that do not display diagnostic features at visible and

shortwave infrared wavelengths. Lithological mapping using visible and short-

wave infrared hyperspectral data is well developed and established processing

chains are available; however, there is a paucity of such methodologies for

hyperspectral thermal infrared data. Here, a new fully automated processing

chain for deriving lithological maps from hyperspectral thermal infrared data

is presented; the processing chain is developed through testing of existing

algorithms on synthetic hyperspectral data. The processing chain is then

applied to the first ever airborne hyperspectral thermal data collected in the

Antarctic. A combined airborne hyperspectral survey, targeted geological

field mapping campaign and detailed mineralogical and geochemical datasets

are applied to a small test site in West Antarctica where the geological relation-

ships are typical of continental margin arcs. The challenging environmental

conditions and cold temperatures in the Antarctic meant that the data have a

significantly lower signal to noise ratio than is usually attained from airborne

hyperspectral sensors. Preprocessing techniques were applied to improve

the signal to noise ratio and convert the radiance images to ground leaving

emissivity. Following preprocessing, the fully automated processing chain

was applied to the hyperspectral imagery to generate a lithological map. The

results show that the image processing chain was successful, despite the low

signal to noise ratio of the imagery; the results are encouraging with the

thermal imagery allowing clear distinction between granitoid types.
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1 Introduction

Remote sensing in the solar reflective spectral range has been widely demon-

strated to be an invaluable methodology to assist geological analysis (van der

Meer et al., 2012). Hyperspectral data collected at visible and near infrared

(VNIR; 0.4–1 µm) and shortwave infrared (SWIR; 1–2.5 µm) wavelengths

has been widely reported in the literature for mapping mineral absorption

features occurring within transition metals (i.e. Fe, Mn, Cu, Ni, Cr etc.),

alteration minerals that display absorption features associated with Mg-OH

and Al-OH bonds, as well as carbonates, sulphates, oxides and hydroxides

(e.g. Abrams et al., 1977; Kruse et al., 1990; Hook and Rast, 1990; Hook et al.,

1991; Clark et al., 1993a; Kruse et al., 1993; Abrams and Hook, 1995; Clark

and Swayze, 1996; Resmini et al., 1997; Rowan et al., 2003).

Although these reflectance-based datasets have been successful for mapping

of minerals associated with alteration, from a geological mapping perspective,

mapping of rock forming silicates is critical; particularly relevant to this study

which considers igneous lithologies. When considering only VNIR/SWIR

data there are significant limitations in the range and quality of the geological

parameters that can be retrieved, as many important rock-forming minerals

do not display diagnostic absorption features at VNIR/SWIR wavelengths

(e.g. Drury, 2001; Gupta, 2003; van der Meer et al., 2012).

The longwave or thermal infrared (TIR; 8–14 µm) wavelength range has the

capability of retrieving additional physical parameters and more accurately

resolving the composition (e.g. minerals and their abundance) and physi-

cal condition (e.g. particle size, sorting) of a material than solar reflected

radiation (Hook et al., 1998, 2005; Hecker et al., 2012). Many common

rock-forming minerals such as quartz, feldspars, olivines, pyroxenes, micas

and clay minerals have clearer spectral features in the 8-14 µm wavelength

region (van der Meer et al., 2012). The majority of geological mapping studies

using thermal infrared remote sensing data have utilised multispectral data;

multispectral sensors measure a small number (< 20) of broadly spaced, often

non-contiguous bands (Kramer, 2002). The Advanced Spaceborne Thermal
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Emission and Reflection Radiometer (ASTER) and the Thermal Infrared

Multispectral Scanner (TIMS) sensors have demonstrated the utility of TIR

data to discriminate a wide range of minerals, especially silicates, as well as

proving useful for lithological mapping (e.g. Rowan and Mars, 2003; Chen

et al., 2007; Rogge et al., 2009; Haselwimmer et al., 2010, 2011; Salvatore et al.,

2014); however, these satellite platforms are limited by their coarse spatial

and spectral resolution.

The development of airborne hyperspectral TIR sensors producing images

with tens to hundreds of contiguous spectral channels provided the potential

for a step-change in the range of mineralogical information and accuracy avail-

able from the surface. Currently, there are a number of operational airborne

hyperspectral TIR instruments, including the Spatially Enhanced Broadband

Array Spectrograph System (SEBASS), the Airborne Hyperspectral Scanner

(AHS), the ITRES Thermal Airborne Spectrographic Imager (TASI), and the

Specim AisaOWL (van der Meer et al., 2012). Previous studies using airborne

hyperspectral TIR data have illustrated the exceptional potential of these

types of sensors for mapping silicates, carbonates, sulphates, and clays (e.g.

Hewson et al., 2000; Cudahy et al., 2001; Calvin et al., 2001; Vaughan et al.,

2003b, 2005; Aslett et al., 2008; Riley and Hecker, 2013).

However, a number of issues relating to processing of the imagery remain,

which significantly affects the accuracy of the temperature-emissivity sepa-

ration and subsequently the quality of the interpretation of the generated

mineralogical and lithological maps. These issues include the coarser spectral

resolution and poorer spectral calibration of currently available instruments

(compared to VNIR/SWIR instruments), inaccurate correction of the effects

of the atmosphere, low signal to noise ratios and a lack of understanding of

the influence of a wide range of compositional, morphological, topographical

and environmental factors on the spectral emissivity signal received at-sensor

(Salvaggio and Miller, 2001; Shimoni et al., 2007; Feng et al., 2012). The

complexity of the processing chain (atmospheric correction and the underde-

termined nature of temperature emissivity separation; Gillespie et al., 1998)

and lack of defined methodologies for processing of hyperspectral airborne
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TIR datasets relative to the processing of VNIR and SWIR hyperspectral

datasets is an additional factor in limiting the usefulness of the data and the

quality of geological interpretation (van der Meer et al., 2012).

The main aim of this study was to develop a fully automated processing chain,

robust to noise, in order to produce a lithological map from airborne hyper-

spectral TIR data. The processing chain, with minimal inputs and parameters,

is designed to assist geologists in processing, analysing and interpreting hyper-

spectral TIR datasets; established techniques which are routinely applied to

VNIR/SWIR datasets are integrated into a fully automated processing chain

applied to hyperspectral TIR data. The automated processing chain could

specifically benefit geologists working in the Antarctic where remote sensing

data is increasingly becoming an important tool for planning and conducting

preliminary analysis to aid in targeting key areas to visit in the field.

Additionally, this thesis also presents the first known analysis of airborne

hyperspectral TIR data from the Antarctic. The significant challenges pre-

sented by the extreme environment in the Antarctic which produced a dataset

with a very low signal to noise ratio are tackled. The results are validated and

interpreted in the context of the study area in conjunction with a full suite of

ancillary data: detailed high quality ground reference spectral data collected

using a new, high resolution field portable spectrometer, thin section and

scanning electron microscope analysis, electron microprobe analysis, whole

rock geochemical data and mineral modal analysis.
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1.1 Aims

The research aims to:

Develop an automated and repeatable processing chain to produce a

lithological map using airborne hyperspectral thermal infrared data

Understand the potential of airborne hyperspectral thermal infrared

data for characterising igneous lithologies

Both aims are tackled in the context of the Antarctic environment; a uniquely

challenging environment which has not previously been studied using air-

borne hyperspectral data for lithological mapping purposes. Detailed reasons

for these aims are given in Chapter 2 with respect to the published literature

and the current research gaps.

1.2 Thesis structure

This thesis is broken down into seven chapters, including this introduction.

Chapter 2 presents the background to the research including the physical

principles, an explanation of thermal hyperspectral remote sensing, the spec-

tral properties of rocks and minerals, a review of existing and state-of-the-art

methods for geological mapping using TIR data and a review of geological

remote sensing in the polar regions. Chapter 3 describes the study area

(Anchorage Island) that forms the basis for this research, including the air-

borne data acquisition as well as the field campaign. Chapter 4 sets out the

methodology, describing: 1) the theoretical basis, 2) the use of synthetic hy-

perspectral data, 3) the investigation of processing techniques and algorithms

applied to synthetic data, and 4) the geochemical analysis followed by the

development of an automated processing chain to produce a lithological map

(utilising the Anchorage Island hyperspectral data). Chapter 5 presents the

results of processing of the synthetic data and the real hyperspectral data

from Anchorage Island along with the produced lithological map. Chapter 6

contains a discussion of the findings and recommendations for future studies.

Chapter 7 provides concluding remarks for the thesis.
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1.3 Context

This research was carried out in the context of the Geology and Geophysics

team and the Mapping and Geographic Information Centre at the British

Antarctic Survey (BAS). The hyperspectral data was collected during an

airborne survey funded by the UK Foreign and Commonwealth Office (FCO)

and conducted by the British Antarctic Survey, ITRES Research Ltd. and

Defence Research & Development (DRDC) Suffield, Canada in February

2011.

This PhD was funded by a NERC PhD studentship in conjunction with BAS

and the University of Hull (NERC Grant: NE/K50094X/1). Fieldwork in

the 2014 austral summer was supported through a BAS Antarctic Funding Ini-

tiative (AFI) Collaborative Gearing Scheme Grant (CGS-86) and supported

by a NERC FSF spectrometer loan (No. 675.0613). A full spectrum reflec-

tometer was kindly provided during the field campaign through collaborators

Eldon Puckrin (DRDC) and Stephen Achal (ITRES).

1.4 Publications

A number of papers were produced as part of this research and are included

in Appendix A. The main findings of the thesis and development of the

automated processing chain and its applicability in the Antarctic are presented

in:

Black, M., Riley, T., Ferrier, G., Fleming, A., Fretwell, P. (2016). Au-

tomated lithological mapping using airborne hyperspectral thermal

infrared data: A case study from Anchorage Island, Antarctica. Remote

Sensing of Environment, 176, 225-241. doi: 10.1016/j.rse.2016.01.022.

Early work on the atmospheric correction investigation and the use of radia-

tive transfer models to produce surface reflectance imagery using VNIR and

SWIR data are presented in:

Black, M., Fleming, A., Riley, T., Ferrier, G., Fretwell, P., McFee,

J., Achal, S., Diaz, A. U. (2014). On the Atmospheric Correction of
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Antarctic Airborne Hyperspectral Data. Remote Sensing, 6(5), 4498-

4514. doi: 10.3390/rs6054498

The VNIR/SWIR data was also investigated for mapping of lichen through

collaboration with a visiting researcher Paula Casanovas. I was heavily in-

volved in the development of a new technique for mapping lichen coverage

using the hyperspectral data. The technique was subsequently modified for

application to satellite data and applied to produce a new map of lichen cov-

erage for the whole of the Antarctic Peninsula; findings are presented in two

papers:

Black, M., Casanovas, P., Convey, P., Fretwell, P. (2015) High reso-

lution mapping of Antarctic vegetation communities using airborne

hyperspectral data. Proceedings of Remote Sensing and Photogrammetry

Society Annual Conference, Aberystwyth, Wales, UK. September 3-5.

doi: 10.13140/2.1.5189.6648

Casanovas, P., Black, M., Convey, P., Fretwell, P. (2015) Mapping

lichen distribution on the Antarctic Peninsula using remote sensing,

lichen spectra and photographic documentation by citizen scientists.

Polar Research, 34, 25633. doi: 10.3402/polar.v34.25633

A detailed laboratory spectral investigation into rare earth element (REE)

deposits was carried out and yielded promising results. I was involved to

help understand the feasibility of remote sensing for detecting REEs through

investigations to understand the signal-to-noise ratio, atmospheric conditions

and sensor characteristics; the results are presented in:

Neave, D.A., Black, M., Riley, T.R., Gibson, S.A., Ferrier, G., Wall,

F., Broom-Fendley, S. (2016). On the feasibility of imaging carbonatite-

hosted rare earth element (REE) deposits using remote sensing.

Economic Geology, 111(3), 641-665. doi 10.2113/econgeo.111.3.641

I collaborated with Dr. Alex Burton-Johnson to aid in the planning of field-

work in the Antarctic. Initial analysis using satellite data led to the develop-

ment of a new technique for extracting rock outcrop. I aided in expanding the

study by applying the technique automatically to a large number of Landsat
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tiles covering the entire continent. We produced a new rock outcrop extent

dataset for the whole continent and revised the estimate of total exposed rock

to 0.18%, half of the previous estimate. The results are presented in:

Burton-Johnson, A., Black, M., Fretwell, P., Kaluza-Gilbert, J. (2015).

A fully automated methodology for differentiating rock and ice in

Antarctica from Landsat imagery: A new rock outcrop map and area

estimation for the entire Antarctic continent.

The Cyrosphere Discuss., 2016, 1-16. doi: 10.5194/tc-2016-56.
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2 Background and review

2.1 Introduction

Remote Sensing is a general term for the science of obtaining information

about an object or area though analysis of data collected by a sensor that is not

in direct contact with the object or area of investigation (Lillesand et al., 2004).

Here optical remote sensing is considered, using sensors which form images of

the Earth’s surface by measuring the solar radiation reflected or emitted from

the ground. Specifically this thesis focuses on the thermal infrared domain

(TIR; 8 – 14 µm) and considers surface emitted radiance; however, the solar

spectral region which includes the visible near-infrared (VNIR; 0.4 – 1.0 µm)

and short wave infrared (SWIR; 1.0 – 2.5 µm) domains which utilise surface

reflected radiance, is also briefly discussed. Optical remote sensing is a form

of passive remote sensing as the sensors are using external energy generated

by the Sun (in the form of electromagnetic radiation) in contrast to active

sensors which provide their own energy source (e.g. techniques such LiDAR

and radar; Campbell and Wynne, 2012).

Passive optical remote sensing is based on the interaction of electromagnetic

radiation as it travels from the Sun, through the Earth’s atmosphere, interacts

with the ground surface and is subsequently measured by a sensor (from an

airborne or spaceborne platform). The compositional variations and changes

in physical properties of surface materials leads to emission minima and

maxima (spectral features) in the retrieved electromagnetic at-sensor signal;

these spectral features can be interpreted to analyse surface materials. Sensors

which are used to measure this signal across the electromagnetic spectrum

are either multispectral or hyperspectral sensors. Here hyperspectral sensors

are considered and are defined by their high number of narrow, contiguous

spectral bands where for each picture element (pixel) a continuous spectrum

over the sensor’s defined wavelength interval is measured (Goetz et al., 1985);

this is in comparison to multispectral sensors which measure fewer (< 20),

broadly spaced, non-contiguous bands (Kramer, 2002).
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Hyperspectral sensors were initially developed at the National Aeronautics

and Space Administration (NASA) Jet Propulsion Laboratory (JPL) in the

early 1980s, with a primary focus on geological applications (Goetz et al.,

1985) and have since been widely demonstrated to be an invaluable tool to

assist geological analysis (van der Meer et al., 2012). The solar range (VNIR

and SWIR) has been widely reported in the literature for mapping mineral

absorption features occurring within transition metals and alteration minerals.

However, for geologists the TIR domain has great potential; many common

rock-forming minerals such as quartz, feldspars, olivines, pyroxenes, micas

and clay minerals have spectral features in the TIR wavelength region (van der

Meer et al., 2012).

Comprehensive reviews of the principles and applications of remote sensing

have been presented (e.g. Lillesand et al., 2004; Sabins, 2007; Rees, 2012)

along with applied works on applications as diverse as forestry (Wulder and

Franklin, 2003), urban studies (Weng and Quattrochi, 2006) and the ocean

(Martin, 2014). With specific relevance to this thesis, the interested reader is

referred to reviews of polar remote sensing (Maslanik and Barry, 1990; Rees,

2005; Lubin and Massom, 2006; Massom and Lubin, 2006) and geological

remote sensing (Rencz, 1999; Drury, 2001; Gupta, 2003; van der Meer et al.,

2012).

This section presents an overview of the physical principles of electromagnetic

radiation and its interaction with the Earth’s surface and atmosphere in the

TIR domain, followed by the properties of minerals which give the signal its

spectral features. This is followed by a discussion on geological remote sensing

and review of case studies from both the Antarctic and the Arctic regions.

Whilst a discussion on the engineering principles behind hyperspectral sensors

is briefly outlined in Section 2.3, a comprehensive review is beyond the scope

of this thesis and the interested reader is referred to reviews given by others

(e.g. Kramer, 2002; Borengasser et al., 2007; Ben-Dor et al., 2013).
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2.2 Physical principles

Any object which has a kinetic temperature above absolute zero (0 K,−273◦C)

will emit electromagnetic radiation. The Earth absorbs incoming solar radia-

tion and a proportion is re-emitted at longer wavelengths. Sensors can detect

this emitted radiance in the TIR domain and form images of the thermal

radiance emitted by the Earth’s surface.

Planck’s blackbody radiation law describes the electromagnetic radiance

emitted by a blackbody at a given wavelength as a function of the blackbody’s

temperature; a blackbody is an idealised (or perfect) emitter where the spectral

radiance, Lb b (W s r−1 m−2 m) is related to its kinetic temperature, T (K)

and wavelength, λ (µm) through

Lb b (λ,T ) =
2hc2

λ5

�

1

e
hc
λbT − 1

�

(1)

where h is Planck’s constant (6.626 ×10−34 J s), b is Boltzmann’s constant

(1.3806×10−23 J K−1) and c is the speed of light in a vacuum (2.9979246×108

ms−1). The total amount of energy radiated by a blackbody and the wave-

length of maximum emittance depends on the temperature of the blackbody

and can be described by the Stefan-Boltzmann law and Wien’s law (Figure

2.1).

The Stefan-Boltzmann law describes the total amount of emitted electro-

magnetic radiation by a blackbody as a function of its absolute temperature,

where the emitted radiation corresponds to the integral of the radiation curve,

through

Trad = σT 4 (2)

where Trad is the radiant flux of a blackbody (W m−2), T is the kinetic

temperature (K) and σ is the Stefan-Boltzmann constant (5.6697 ×10−8 W

m−2 K−4). Equation 2 shows that higher temperature blackbodies will emit a

larger total amount of radiation, however the relation is proportional to the

fourth power of the blackbody’s temperature (Figure 2.1).
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Wein’s law describes the wavelength at which the maximum spectral exitance

occurs

λmax =
A
T

(3)

where λmax is the wavelength of maximum spectral exitance (µm), A is Wein’s

constant (2897.8 µm K), and T is kinetic temperature (K). Wein’s law explains

that, as an objects temperature increases, the wavelength of its maximum

exitance shifts to shorter wavelengths (compare Figure 2.1). The average

temperature of the sun is ∼5800 K and its peak emission is in the visible

domain at approximate 0.55 µm, while a much colder object, such as the

Earth, at approximately 293 K has its maximum emission in the TIR at

around 9.7 µm.

Figure 2.1: Blackbody radiation curves at different temperatures, as derived from Equation
1. The laws of Planck (black curves) and Wien (red line) are depicted in this figure.
The area under a particular curve indicates the Stefan-Boltzmann law. The bold
lines at 5800 K and 293 K indicate the electromagnetic curves of the Sun and Earth
respectively. The blue box indicates the region of visible light (the solar spectral
domain). Abbreviated terms: UV, ultraviolet; IR, infrared. Modified after Kuenzer
and Dech (2013).
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Whilst Planck’s law defines blackbody radiation (where a blockbody is a

perfect emitter of radiance), in reality very few objects are blackbodies as

they emit less than their predicted radiation. This is taken into account

through the emissivity coefficient (ε); ε is the radiant flux of an object at

given temperature, calculated through the ratio of thermal radiation from the

object to the radiation from a blackbody of the same temperature (as given

by the Stefan-Boltzmann law). Kirchoff’s law states that for a material in

thermal equilibrium, all absorbed energy, α, is re-emitted, ε, as a function of

wavelength, λ, as

ε= α (4)

Following from this, the material specific spectral properties of transmittance,

τ, absorption, α and reflectance, ρ are the ratio of incoming and outgoing

radiance of each process; as governed by the law of energy conservation, their

relation as a function of wavelength, λ, is given by

τ+α+ρ= 1 (5)

where the macroscale transmittance, τ, is assumed to be negligible for suffi-

ciently thick and dense materials, such as rock surfaces. Following Kirchoff’s

law the conversion between reflectance and emissivity as a function of wave-

length, λ, is given as

ε= 1−ρ (6)

Emissivity varies depending on surface material and wavelength but is not

temperature dependent (Flynn et al., 2001). For passive optical remote sensing

there are two domains of interest; in the solar domain (VNIR and SWIR),

the Sun illuminates the Earth (neglecting solar atmospheric effects) with an

intensity spectrum of approximately 5800 K, whilst in the thermal domain

(TIR) the Earth’s surface emits long wave electromagnetic radiation with an

intensity spectrum of around 293 K. The radiative distributions of the solar

and thermal domains show little overlap, hence they can be used indepen-

dently to derive complementary information on surface features (c.f. Figure

2.1 and Section 2.4).
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2.3 Thermal hyperspectral remote sensing

When acquiring hyperspectral imagery there are three important ‘resolutions’

to consider; spatial, spectral, and radiometric. Brief definitions for these are

outlined below.

Spatial: the size of the smallest resolvable detail. Established primarily

by the sensor aperture and the flying height. Commonly the spatial

size of pixels (pixel resolution) is quoted, but the smallest resolvable

detail may less than this value (i.e. subpixel).

Spectral: two factors make up spectral resolution; the number of spectral

bands and the width of the spectral bands. Hyperspectral sensors are

commonly referred to as high spectral resolution due to their large

number of narrow width spectral bands.

Radiometric: the sensitivity at which differences in radiation intensity

can be resolved; finer radiometric resolution increases the ability to

detect small changes in radiation intensity.

A related concept to consider, but perhaps slightly less important for litho-

logical mapping, is that of temporal resolution. Temporal resolution is the

process of collecting multiple images of the same scene separated in time and

Figure 2.2: (a) Geometry of a push-broom hyperspectral imaging system. The area coverage rate
is the swatch width times the platform ground velocity v. The area of one pixel
on the ground is the square of the ground sample distance (GSD). (b) Schematic of
an imaging spectrometer which disperses light onto a 2D array of detectors with
ny elements in the cross-track (spatial) dimension and K elements in the spectral
dimension for a total of N =K × ny detectors. From Shaw and Burke (2003).
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Figure 2.3: Structure of the hyperspectral data cube. (a) A push-broom sensor on an airborne
or spaceborne platform collects spectral information for a one-dimensional row
of cross-track pixels, called a scan line. (b) Successive scan lines comprised of the
spectra for each row of cross-track pixels are stacked to obtain a three-dimensional
hyperspectral data cube. In this illustration the spatial information of a scene is
represented by the x and y dimensions of the cube, while the amplitude spectra of
the pixels are projected into the z dimension. (c) The assembled three-dimensional
hyperspectral data cube can be treated as a stack of two-dimensional spatial images,
each corresponding to a particular narrow waveband. A hyperspectral data cube
typically consists of hundreds of such stacked images. (d) Alternately, the spectral
samples can be plotted for each pixel or for each class of material in the hyperspectral
image. Distinguishing features in the spectra provide the primary mechanism for
detection and classification of materials in a scene. From Shaw and Burke (2003).
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is important for studying change over time (Shaw and Burke, 2003). These

resolutions are involved in the acquisition of spectral image data. A common

format for hyperspectral data collection involves the use of a ‘push-broom’

sensor. A cross-track line of spatial pixels is decomposed into K spectral

bands, often through the use of a dispersing element or diffraction grating

(Shaw and Burke, 2003); these concepts are illustrated in detail in Figures 2.2

and 2.3.

The overall concept of hyperspectral imagery (or imaging spectroscopy) is

shown in Figure 2.4. Following the removal of atmospheric effects (Section

2.3.1), each pixel contains a complete reflectance (in the solar domain) or emit-

tance (in the thermal domain) spectrum of the underlying material(s) within

the pixel. It is then desirable to interpret these features (usually in a quantita-

tive manner) with respect to the spectral characteristics of the materials of

interest to the end-user (e.g. Section 2.4). However, the unique characteristics

of a hyperspectral dataset present a number of processing problems (Chang,

2003) which must be considered when carrying out image analysis using

techniques such as classification, segmentation or spectral mixture analysis

(Landgrebe, 2005).

15 of 266



Airborne hyperspectral
sensor

Along-track
dimension

Spectral
dimension

Swath
width

Hundreds of
spectral images

are taken
simultaneously

Each pixel contains
a sampled spectrum

that is used to
identify the materials

present in the pixel by
their reflectance

Wavelength

Reflectance

Figure 2.4: The concept of imaging spectroscopy. An airborne imaging spectrometer simultane-
ously samples spectral wavebands over a large area, producing a hyperspectral image.
After appropriate processing, reflectance spectra from the image can be interpreted
to identify materials present in the scene; examples show the spectral variations of
different surface materials. Adapted from Shaw and Burke (2003).
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2.3.1 Atmospheric influence

The electromagnetic radiation is modified through interactions with gaseous,

liquid or solid constituents in the Earth’s atmosphere. The main processes

are (a) selective and non-selective scattering by aerosols and dust, (b) selective

absorption by water vapour (H2O), carbon dioxide (CO2), ozone (O3) and

other gases, and (c) atmospheric emission due to the thermal state and water

vapour content in the atmosphere itself (Gupta, 2003). For these reasons,

the Earth’s atmosphere has a number of ‘atmospheric windows’, areas of

high transmissivity and low emissivity, with the solar and thermal domains

positioned within these atmospheric windows.

Despite passive optical remote sensing techniques operating within atmo-

spheric windows, there is still atmospheric influence which needs to be

compensated for, especially for quantitative applications (Liang et al., 2002).

Illumination angle
of the sun

Secondary
illumination from
nearby objects

Image pixel projection
on the ground

Upwelling
radiance

Atmospheric
absorption and
scattering by

gases and aerosols

Spatial resolution and
viewing angle of the sensor

Figure 2.5: Atmospheric and scene-related factors that can contribute to degradations in the
imaging process. The spatial resolution of the sensor and the degree of atmospheric
scattering and absorption are the most significant contributors to diminished image
quality. Adapted from Shaw and Burke (2003).
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Whilst sensors measure the ‘radiance’ spectrum (the total amount of energy

radiated from the ground, including atmospheric effects), it is desirable to

recover the surface reflectance or emittance spectrum (the proportion of

incoming radiance reflected from the ground) as this affords the best opportu-

nity to identify the surface materials because it is, in theory, independent of

the illumination and atmospheric parameters (Shaw and Burke, 2003; Black

et al., 2014b). In principle, the reflectance or emittance spectrum can be

recovered from the observed radiance spectrum over regions in which the

illumination is non-zero (Shaw and Burke, 2003). The reflectance/emittance

spectrum provides the best opportunity to identify materials by compari-

son to reference libraries (Shaw and Burke, 2003), laboratory measurements

or field measurements (Rogge et al., 2009). There are numerous practical

considerations (Figure 2.5) when analysing hyperspectral data; perhaps the

most important of which is the degree of scattering and absorption due to

atmospheric effects. These atmospheric effects complicate the process of con-

volving reflectance/emittance spectra from the measured radiance; therefore

atmospheric correction such as radiative transfer models are required (Shaw

and Burke, 2003).

The electromagnetic radiation emitted by the Earth’s surface in the TIR

domain undergoes a single pass through the Earth’s atmosphere. The basic

radiative transfer equation in the TIR domain as given by Dash et al. (2002) is

(where each term is a function of wavelength, λ, omitted for clarity)

Le
as = Le

pat h +τ · L
e
a g +τ · [1− ε] ·

F
π

(7)

where Le
as is the total thermal radiance received at-sensor, Le

pat h the thermal

path radiance emitted by the atmosphere between the ground and the sensor,

τ the ground-to-sensor transmittance, Le
a g the ground emitted radiance, ε

the ground surface emissivity and F the downwelling thermal sky flux at

the ground (Richter and Coll, 2002). This basic radiative transfer equation

assumes that the Earth’s surface is a Lambertian reflector and that the local

atmosphere is in thermal equilibrium with no scattering. The thermal path

radiance, Lp is highly dependant on the temperature and water vapour profile
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of the atmosphere, whilst the ground-to-sensor transmittance, τ, is least

affected, as the ground surface is warmer than the atmosphere. The reflected

downwelling radiance, F , is typically small due to the high (0.95 – 0.99)

emissivity, ε, of natural materials. The TIR emitted radiance signal is subject

to selective absorption due to particular atomic processes (e.g. rotational and

vibrational modes) which characterise the material the signal interacts with

(Gupta, 2003).

To remove the effect of the single atmospheric pass on the thermal emitted

signal from the Earth’s surface, the atmospheric influence can be calculated

using the the radiative transfer model as given in Equation 7, which yields the

ground emitted radiance, Le
a g . Methods which apply the radiative transfer

model approach require measurements of atmospheric parameters where

the most important parameters are temperature and water vapour content

(Wan and Li, 1997; Sobrino et al., 1993). There can be provided by a con-

temporaneous launch of a radiosonde, however this is often not available

to most studies. Therefore, assumptions are made about the atmospheric

conditions at the time of data acquisition, with standard climatologically

developed atmospheric profiles provided in radiative transfer models often

used instead.

A number of approaches have been developed to convert at-sensor measured

radiance to ground emitted radiance, the most notable of which are the

Emissive Empirical Line Method (EELM; Distasio Jr. and Resmini, 2010), In-

Scene Atmospheric Compensation (ISAC; Young et al., 2002), Autonomous

Atmospheric Compensation (AAC; Gu et al., 2000) and radiative transfer

look-up-tables (LUTs; e.g. Richter and Schläpfer, 2002, 2014).

The EELM and ISAC approaches require the presence of reference pixels

within the scene and from these pixels a solution is generated to scale the

remaining pixels in the scene; these techniques hold the radiative transfer

parameters constant for the whole scene and neglect the effects of sensor

view angle and topography, which can lead to unfeasible measures of surface

emittance. The performance of the AAC approach is strongly dependant

on the spectral and spatial resolution of the sensor along with requiring
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robust calibration of the sensor. AAC requires narrow spectral bandwidth as

the approach derives the radiative transfer parameters from the ratio of two

bands, one within an atmospheric absorption band and one outside of the

atmospheric absorption band, where the recommended band is around 11.7

µm (Gu et al., 2000). Despite some shortcomings, these techniques offer a

number of key advantages. They are computationally easy to implement and

can be rapidly applied to the whole scene, they require no assumptions about

the scene or atmospheric content and require limited ancillary data input.

The radiative transfer LUTs approach of Richter and Schläpfer (2002, 2014)

interpolates the required atmospheric parameters from each pixel based on

their individual viewing geometry, using few inputs (visibility and total wa-

ter vapour) to select the radiative transfer parameters from the LUTs; this

approach still assumes an atmosphere which approximates the actual in-situ

conditions and residual atmospheric effects may remain. This approach was

successfully applied to VNIR and SWIR data in the Antarctic, through the

application of the the ATCOR radiative transfer model (Black et al., 2014b;

Appendix A).

2.3.2 Temperature emissivity separation

Following the calculation of ground leaving emitted radiance, Lg , isolation

of the surface emissivity spectrum, ε, (and also surface kinetic temperature,

T ) can be derived through

Lg (λ) = ε(λ) · Lb b (λ,T ) (8)

however the blackbody radiance, Lb b , is spatially and temporally variable

and the surface’s actual energy budget as given by the kinetic temperature,

T , is governed by a variety of environmental factors including heat capacity,

heat conductance, evaporation and so on. This therefore leads to an underde-

termined problem, where for each n measurement of surface radiance, there

are n+ 1 unknowns (spectral emissivity and temperature).
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A number of algorithms have been presented in the literature for temperature

emissivity separation, including the reference channel method (Kahle et al.,

1980), normalised emissivity method (Gillespie, 1985), alpha residuals (Kealy

and Gabell, 1990), thermal spectral indices (Becker and Li, 1990), spectral ratio

(Watson, 1992), temperature–emissivity separation (TES) using the maximum-

minimum difference of emissivity (Gillespie et al., 1998), and iterative spectral

smooth temperature and emissivity separation (Borel, 1998, 2008). The wide

variety of algorithm development stems from the underdetermined nature of

TES (n knowns, and n+ 1 unknowns). Comprehensive reviews are given by

Dash et al. (2002) and Quattrochi and Luvall (2004), and comparison studies

between TES methods by others (Hook et al., 1992; Kealy and Hook, 1993;

Li et al., 1999); a brief outline of common TES approaches follows.

The simplest approach to TES is to assume that emissivity is equal to that of

a blackbody at one or more wavelengths within the measured TIR spectrum.

The wavelength itself can be decided during the analysis or can be determined

by the highest temperature when the measured spectral radiance is used in the

inverse of Equation 1. The sample radiance and its emissivity are then known

and the surface kinetic temperature and emissivity spectrum are calculated.

This method can also be modified so that maximum assumed emissivity can

be less than unity (Kahle et al., 1980).

The normalised emissivity method (NEM) calculates the surface temperature

for all channels with a constant user-defined emissivity, and for each pixel,

the channel with the highest temperature is selected and emissivity values esti-

mated (Gillespie, 1985). The alpha residual method (Kealy and Gabell, 1990)

utilises an empirical relationship between the standard deviation and mean

emissivity to restore amplitude to the alpha-residual spectrum, thereby recov-

ering the surface temperature. The alpha-residual method relies on Wien’s

approximation which introduces slope errors into the spectrum (Gillespie

et al., 1998).

The iterative spectral smooth temperature and emissivity separation (Borel,

1998, 2008) approach is based on a revised version of the ISAC algorithm for

atmospheric correction, which seeks to minimise the residuals by using a LUT
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of atmospheres and determines temperature and emissivity automatically.

However, the technique is dependant on a large database of atmospheric

LUTs and begins to breakdown as atmospheric water vapour values exceed 3

g cm2 (Borel, 2008).

The maximum-minimum difference (MMD) of emissivity method (Gillespie

et al., 1998) calculates relative emissivity based on a regression of labora-

tory emissivity values onto the maximum-minimum apparent emissivity

difference, similar to the alpha residuals method. However, it avoids Wien’s

approximation and therefore has lesser slope errors (Gillespie et al., 1998). The

MMD method was also combined with the NEM technique to develop a TES

algorithm suitable for TIR sensors with many bands, originally developed

for the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) (Gillespie et al., 1998). The MMD technique has been widely ap-

plied in the published literature and due to its development for sensors with

many bands, it is ideally suited for performing TES using hyperspectral TIR

data.

2.4 Spectral properties of rocks and minerals

The spectral properties of rocks represent the composite spectral response

of the minerals of which they are composed (Drury, 2001). Mineral spec-

tral reflectance and emission properties are a function of their chemistry

and structure and record the interaction of photons with the particles and

chemical bonds within a mineral. Wavelength-specific spectral (absorption

or emission) features represent particular photon-mineral interactions that

can be electronic or vibrational in nature (Clark, 1999).

Electronic processes occur when isolated atoms or ions absorb photons re-

sulting in a change from one energy state to another and encompass crystal

field effects, charge transfer absorptions, conduction-bands, and colour centre

effects. Electronic processes occur at VNIR wavelengths due primarily to

transition metals (i.e. Fe, Mn, Cu, Ni, Cr etc.) of which the most important

is iron (Gupta, 2003). Iron-bearing minerals display spectral features at wave-
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lengths less than ∼0.55 µm associated with Fe-O charge transfer and between

0.85 and 0.92 µm associated with crystal field effects.

The vibrational energy state, which yields specific features at TIR and SWIR

wavelengths is the primary focus here. The atomic-molecular vibrational

processes are the result of bending and stretching molecular motions where

the fundamental tones occur in the TIR, and overtones and combinations

in the SWIR. In the SWIR domain mineral spectral features are associated

with the presence of hydroxyl (OH−) ions or water molecules (Drury, 2001).

Water bound in minerals produces diagnostic spectral features associated

with overtones and their combinations at 1.9, 1.4, 1.14, and 0.94 µm. These

spectral features are only useful in a laboratory setting as in remotely sensed

spectra they are swamped by the identical effects of atmospheric water absorp-

tion. Minerals containing OH− ions, including many silicates and alteration

minerals, display important spectral features associated with Mg-OH and

Al-OH bonds near 2.3 and 2.2 µm. These features are prominent in micas,

clays, and magnesium bearing hydroxylated minerals such as chlorite and am-

phibole and provide an important basis for the discrimination of chemically

different rocks (Drury, 2001). In the SWIR region vibrational transitions

and their overtones are also associated with carbonate minerals of which the

most important is that located ∼2.3 µm.

The TIR domain has the capability of retrieving additional physical param-

eters (e.g. mineral abundance) and resolving significantly more accurately

the composition and physical condition (e.g. particle size, weathering) of a

material than solar reflected radiation at VNIR/SWIR wavelengths (Hook

et al., 1998, 2005; Hecker et al., 2012). Many common rock-forming minerals

such as quartz, feldspars, olivines, pyroxenes, micas and clay minerals have

spectral features in the 8-14 µm wavelength region (Figure 2.6; van der Meer

et al., 2012). Physical properties such as particle size and packing can pro-

duce changes in the emission spectra in terms of relative depth of spectral

features or ‘smoothing’ spectral features, though the position of features is

not changed (Gupta, 2003). In the TIR, the spectra of minerals are additive

in nature; therefore rock spectra in the TIR region are readily interpretable
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in terms of relative mineral abundances (Gupta, 2003). However, in the

VNIR/SWIR, processes such as volume scattering, (intimate) mixing of con-

stituent minerals and textural properties (grain size, packing) can complicate

mineral identification (Gupta, 2003).

For silicate minerals, a pronounced emittance minimum cause by fundamen-

tal Si-O stretching vibrations occurs near 10 µm (Hunt and Salisbury, 1975;

Salisbury, 1991). The vibrational frequency, and thus the wavelength of the

minimum, depends on the degree of coordination among the silicon-oxygen

tetrahedral in the crystal lattice. The framework silicates, quartz and feldspar,

have emittance minima at shorter wavelengths (9.3 and 10 µm, respectively)

than sheet silicates such as muscovite (10.3 µm) and chain silicates such as

the amphibole minerals (10.7 µm) (Hunt, 1980). Emission Fourier transform

infrared (FTIR) spectroscopy has been successfully used to predict feldspar

amounts and their mineralogical composition in igneous rocks (Hecker et al.,

2010). Carbonates have strong absorption features associated with CO3 inter-

nal vibrations both in the 6-8 µm region (Adler and Kerr, 1963; Hunt and

Salisbury, 1975) and also at 11.4 and 14.3 µm due to C-O bending modes.

Sulphate minerals have an intense feature near 8.7 µm caused by fundamental

stretching motions (van der Meer, 1995; Lane and Christensen, 1997).

From a geological mapping perspective, mapping of rock forming silicates

is critical. When considering only VNIR/SWIR data there are significant

limitations in the range and quality of the geological parameters that can be

retrieved, as many important rock forming minerals do not display diagnostic

absorption features at VNIR/SWIR wavelengths (van der Meer et al., 2012).

Hence, the TIR domain offers huge potential for geological mapping (see also

Section 2.5).
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Figure 2.6: Laboratory emissivity spectra of important rock forming minerals; adapted from
Rowan and Mars (2003); hornblende is a generic type of amphibole and microcline
is a type of feldspar.
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2.5 Geological remote sensing using thermal infrared data

Remote sensing in the solar reflective spectral range has been widely demon-

strated to be an invaluable methodology to assist geological analysis (van der

Meer et al., 2012). Hyperspectral data collected at VNIR/SWIR wavelengths

has been widely reported in the literature for mapping mineral absorption

features occurring within transition metals and alteration minerals. Whilst

VNIR/SWIR data have been successful for mapping of minerals associated

with alteration, from a geological mapping perspective, mapping of rock

forming silicates is critical. When considering only VNIR/SWIR data there

are significant limitations, as many important rock forming minerals do not

display diagnostic absorption features at VNIR/SWIR wavelengths, thus the

TIR domain has great potential for geological studies (Section 2.4; van der

Meer et al., 2012).

Previous studies using airborne hyperspectral TIR data have illustrated the ex-

ceptional potential of these types of sensors for mapping silicates, carbonates,

sulphates, and clays (Section 2.5.4). A brief discussion follows on the data

analysis techniques commonly used in the processing of (hyper)spectral data

followed by a review of thermal remote sensing case studies in the proceeding

sections.

2.5.1 Overview and concepts

The overall concept of hyperspectral imagery (or imaging spectroscopy) was

explained in Section 2.3 and illustrated in Figure 2.4 (page 16). Following

the removal of atmospheric effects (Section 2.3.1), each pixel contains a com-

plete reflectance (in the solar domain) or emittance (in the thermal domain)

spectrum of the underlying material(s) within the pixel. It is then desirable

to interpret these features (usually in a quantitative manner) with respect to

the spectral characteristics of the materials of interest to the end-user (e.g.

Section 2.4). The basic task when analysing hyperspectral data is to identify

the material(s) present (in a pixel) from its reflectance/emittance spectrum. It

is often helpful to consider the concept of a spectral signature which uniquely
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Figure 2.7: Example of variability in reflectance spectra measured over multiple instances of a
given material (in this case, vehicle paint) in a scene. The shapes of the spectra are
fairly consistent, but the amplitudes vary considerably over the scene. To exploit this
spectral shape invariance, some detection algorithms give more weight to the spectral
shape than to the spectral amplitude in determining whether a given material is
present in a pixel. The gaps correspond to water-vapour absorption bands where the
data are unreliable and are discarded. From Shaw and Burke (2003).

characterises a material; however, in reality this is often not the case as, even

under laboratory conditions, repeated spectra of the same material can show

significant variance due to variations in the material’s surface (Figure 2.7;

Manolakis and Shaw, 2002).

When considering a remotely sensed hyperspectral dataset, the variability is

even more profound due to multiple factors such as the sensor noise, material

composition, surrounding materials, variation in illumination conditions

and changing atmospheric conditions (Manolakis and Shaw, 2002; Shaw and

Burke, 2003). However, despite this, numerous remote sensing studies still

use the spectral signature approach (assuming one spectrum exactly represents

a material) and many well developed spectral libraries exist for carrying out

analysis with this approach (e.g. Baldridge et al., 2009). Perhaps the most

challenging issue when analysing hyperspectral data is a result of spectral

mixing, which leads to the two concepts of pure and mixed pixels.

The spectrum of each image pixel is the combined reflectance of the surface

components within the sensors field of view (FOV), therefore, unless individ-

ual materials cover an area larger than the pixel size (or spatial resolution),

the concept of mixed pixels arises (Figure 2.8). Mixed pixels can also occur
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“Pure” pixels

“Mixed” pixels

Image

Figure 2.8: The concept of mixed pixels within an image, where a specific material (grey) will
only occupy a limited number of complete pixels (pure pixels) and the remaining
pixels are mixed.

independently of the spatial resolution of the sensor, as distinct materials can

be combined into a homogeneous mixture resulting in a spectrum which is a

composite of the individual spectra of the distinct materials (Plaza et al., 2011).

Hyperspectral imagery often contains few pixels which are considered pure,

meaning that mixed pixels represent an additional challenge when processing

hyperspectral data because their signals do not correspond to any single, well

defined material (Rogge et al., 2009; Manolakis and Shaw, 2002). Processing

of the spectral signature variability and composition within mixed pixels

remains one of the most challenging problems, practically and theoretically

(Manolakis and Shaw, 2002).

In a geological context, the composition of materials within individual pixels

is of interest, therefore, the processing applied differs from techniques such

as target detection and classification. Target detection is useful for locating

specific materials through diagnostic features in the spectra; it is often of

particular interest in military applications for detecting military vehicles or

objects, where target spectra are known a priori; a comprehensive view of

target detection is given by Manolakis et al. (2003). Classification is similar to

target detection, however, instead of detecting the presence of single features,

classification aims to apply discrete ‘labels’ to pixels within a hyperspectral

image. This classification then allows the end-user to characterise and identify

these labels into meaningful land cover types within a scene (e.g. roads, forest,

grassland and so on). A comprehensive review of hyperspectral classification

is given by Camps-Valls et al. (2014).
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The geological problem is posed somewhat differently from that considered

in target detection and classification; using a priori spectra to find specific

targets is not necessarily appropriate, as it is unlikely that all target spectra

will be known in advance (though this technique can be applied in a geological

context, e.g. Clark et al., 2003). Classification is not effective as geological

targets rarely, if ever, form distinct homogeneous regions which can be dis-

cretely labelled through classification techniques. Instead geological mapping

(or bedrock mapping) considers the pixel spectrum in reference to the known

reflectance of the mineral assemblages that make up individual rock units

(Harris et al., 2005; Rogge et al., 2009). Units are mapped based on spatial

continuity of surface composition and abundance using techniques such as

endmember extraction and spectral mixture analysis (Rogge et al., 2009),

rather than using target detection or classification using individual minerals.

In a geological context, the hyperspectral processing chain (e.g. Rogge et al.,

2009; Plaza et al., 2012) is as follows: (1) identify the number of endmembers

to extract, (2) extract endmembers using an endmember extraction algorithm

(EEA), (3) perform spectral mixture analysis (SMA) using the extracted end-

members to unmix the remaining pixels and (4) interpret endmembers and

abundance images to produce geological maps. Step 3 follows the assumption

that each pixel vector in the hyperspectral scene measures the response of

multiple materials (Adams et al., 1986) (i.e. each pixel in the image is formed

from an arbitrary mixture of the extracted endmembers). This processing

chain, also known as spectral unmixing, represents the state of the art in

hyperspectral remote sensing; however, for completeness, a brief review of

commonly applied spectral matching techniques is given in Section 2.5.2

followed by a review of the state of the art techniques of spectral unmixing

in Section 2.5.3.
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2.5.2 Spectral matching

Spectral matching techniques were developed in the pioneering days of hy-

perspectral image analysis in the 1980s (Gupta, 2003); the general approach

involves the characterisation of absorption features, comparison to spectral

libraries for identification and subsequent mapping. The most commonly

applied techniques in this category of analysis are absorption band characteri-

sation, spectral feature fitting and spectral angle mapping.

2.5.2.1 Absorption band characterisation This technique is based on

quantifying the characteristics of an absorption band, such as the wavelength

position, shape and strength (or depth) of a particular feature and was pio-

neered in the early days of hyperspectral data analysis (Kruse et al., 1988, 1993).

A comprehensive outline of the technique is given by van der Meer (2004).

This technique is commonly achieved through fitting a continuum or hull

(Figure 2.9), and following this, the normalised spectrum can be characterised

by a number of features and compared to laboratory or field measurements

(Kruse et al., 1993). This technique is useful for rapidly analysing the large

amounts of data in a hyperspectral scene by condensing the image spectral

data into a small number of variables. However, the technique is limited

by sensitivity to noise, the presence of mixing and subpixel mixtures, and

ambiguity of defining (broad) absorption features (Gupta, 2003); nonetheless

it performs well for materials with sharp, narrow absorption features.
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Figure 2.9: Definition of the continuum and continuum removal and subsequent definition of
absorption feature characteristics. From van der Meer (2004).

2.5.2.2 Spectral feature fitting This technique involves matching the

complete shape of a spectral feature and is a more rigorous approach than

absorption band characterisation (Gupta, 2003). It is commonly achieved

through the matching of image spectra to a reference (laboratory or field)

spectra where an algorithm is applied to compute the degree of similarity

between the two sets of spectra (Clark et al., 1990). This technique requires a

priori knowledge of specific minerals or objects in the scene, where spectral

ranges which encompass known absorption features are defined (Gupta, 2003).

The image and reference spectral data are continuum removed and a least-

squares fit is calculated between the two, where the root mean square error

(RMSE) of the fit gives the overall ‘goodness-of-fit’ and the band depth can

indicate the abundance of a mineral (Gupta, 2003). The result is a ‘spectral

similarity map’ which indicates both the distribution and relative abundance

of mineral(s). However, this technique shares the limitations of absorption

band characterisation, along with requiring a well developed reference library

and knowledge of the imperfections in the data.
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2.5.2.3 Spectral angle mapping Similar to spectral feature fitting, spec-

tral angle mapping (SAM; Kruse et al., 1993) is a technique which generates

a spectral similarity map. The algorithm determines the spectral similarity

of two spectra by calculating the angle between the spectra, treating them

as vectors in a space with n dimensions (where n is the number of spectral

bands). SAM is calculated using the image spectra and the reference spectra

through the application of

SAM= cos−1

�

~t · ~r
‖~t ‖ · ‖~r ‖

�

(9)

where t represents the spectrum of the target (endmember), r represents

the spectrum of the reference spectrum and SAM is the spectral angle (in

radians; 0 to 2π). This technique to determine similarity is insensitive to

gain factors as the angle between two vectors is invariant with respect to

the lengths of the vectors and allows for laboratory spectra to be directly

compared to remotely sensed spectra (Kruse et al., 1993). This technique is

straightforward and can be quickly applied to an entire hyperspectral scene;

often the entire wavelength range is utilised, though, in practice, it could be

restricted to specific absorption features similar to the spectral feature fitting

technique (Gupta, 2003). As well as sharing some of the same limitations as

the spectral feature fitting technique, the technique also suppresses the lengths

of vectors, which therefore removes or de-emphasises the effects of albedo

(Gupta, 2003); this can be advantageous for identifying materials based solely

on spectral shape (or spectral features) as illumination variations are removed.

2.5.3 Spectral unmixing

In almost all cases, the pixels in a hyperspectral scene are composed of mixed

objects (Section 2.5.1; Gupta, 2003); each pixel in a scene is made up of a

mixture of these spectrally diverse objects, or endmembers, and it is the col-

lective response of the endmembers and their proportions that are measured

at the sensor. It is therefore desirable to be able to ‘unmix’ these endmember

spectra and their abundances (or proportions) to aid in their (geological) iden-
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tification and subsequent mapping; this category of processing techniques are

commonly known as spectral unmixing and offer advantages over the simple

spectral matching techniques. We will review the state of the art techniques

used for spectral unmixing of hyperspectral data in following sections.

2.5.3.1 Endmember: a brief definition Before continuing, it is neces-

sary to outline exactly what is meant by the term endmember. As introduced

in Section 2.5.1, a spectral signature is considered a unique representation of an

individual material (Manolakis and Shaw, 2002). It is these spectral signatures

which make up the well known ‘spectral libraries’ (e.g. Baldridge et al., 2009),

and these spectral signatures which are often used for techniques such as target

detection (Clark et al., 2003).

The notion of an endmember is not too dissimilar to that of a spectral signa-

ture. Here an endmember is defined as a unique spectrum derived from the

hyperspectral scene itself. Endmembers are found directly from the image,

regardless of the composition of materials (within individual pixels or within

the scene itself) or imperfections in the dataset (e.g. sensor noise, atmospheric

influence and so on) (Winter, 1999).

As a result of the mathematical complexity of finding endmembers (see Sec-

tion 2.5.3.3), the imperfections found in real data and the high spatial and

spectral resolution of hyperspectral imagery, it may be the case that not all

endmembers are recognisable spectra (for example some may be related to sen-

sor noise, or contain residual atmospheric effects). Additionally, it is almost

certainly the case that not all endmembers can be identified a priori in real

hyperspectral data (Chang and Du, 2004). However, it is through the careful

interpretation of endmembers in reference to the local geological context,

ancillary data (e.g. geochemical analysis) and knowledge of the imperfections

within the data, that those endmembers which are recognisable are identified

and used to produce useful abundance maps (Winter, 1999; Rogge et al., 2009),

which can be subsequently interpreted in a geological context.
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2.5.3.2 Determining the number of endmembers Let us define the in-

trinsic dimensionality (ID) as the minimum number of parameters required

to account for the observed properties of the data. In multivariate data, such

as hyperspectral data, the ID cannot simply be determined by the number

of components (the component dimensionality; e.g. the number of spectral

bands). In very high dimensional data, such as hyperspectral data, the ID

is expected to be much lower than the component dimensionality, as the

data tend be distributed in a lower dimensional space (Chang and Du, 2004).

For example, techniques such as Principal Component Analysis (PCA) and

their eigenvalue distribution have been used to establish the ID (Richards,

2012), however, directly applying these techniques to hyerspectral imagery is

difficult and may not be effective, even if applied (Chang and Du, 2004).

The ID of a hyperspectral image is considerably smaller than the component

dimensionality, and accurately determining the ID is crucial for the success of

endmember extraction and spectral mixture analysis (Chang and Du, 2004).

The high spatial and spectral resolution of hyperspectral imagery means that

the sensor is capable of uncovering many unknown endmembers (Section

2.5.3.1), which cannot be identified by visual inspection or known a priori

(Chang and Du, 2004). In order to determine the number of endmembers

(or signal sources, i.e. the intrinsic dimensionality) in a hyperspectral signal,

a number of automated repeatable approaches based on mathematical and

statistical analysis of the hyperspectral scene have been proposed; the two

most popular methods are Virtual Dimensionality (VD) method (Chang and

Du, 2004) and the Hyperspectral Signal Identification by Minimum Error

(HySime) method (Bioucas-Dias and Nascimento, 2008).

The VD concept formulates the issue of whether a distinct signature is present

or not in each of the spectral bands as a binary hypothesis testing problem,

where a Neyman–Pearson detector is generated to serve as a decision-maker

based on a prescribed false alarm probability (Chang and Du, 2004; Plaza et al.,

2011). The HySime uses a minimum mean squared error-based approach to

determine the signal subspace in hyperspectral imagery (Bioucas-Dias and

Nascimento, 2008). Studies have shown that both VD and HySime produce
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the same estimated number of endmembers from a given hyperspectral scene

(Plaza et al., 2012). A brief explanation of each algorithm follows.

2.5.3.2.1 Virtual Dimensionality Virtual Dimensionality, or more specif-

ically, Virtual Dimensionality using the Harsanyi–Farrand–Chang (VD-HFC)

method, derived from the early works on hyperspectral data by Harsanyi

et al. (1993), is briefly explained as follows (following Chang and Du, 2004). A

correlation matrix and a covariance matrix are calculated from the hyperspec-

tral data; the correlation and covariance eigenvalues provide an indication of

the significance of each component, in terms of energy or variance. If there

is no signal source contained in a particular component, the correspondent

correlation eigenvalue and covariance eigenvalue are equal. Due to this, a

binary composite hypothesis testing problem can be formulated using the dif-

ference between the correlation eigenvalue and its corresponding covariance

eigenvalue. The null hypothesis represents the case of the zero difference,

while the alternative hypothesis indicates the case that the difference is greater

than zero. When the Neyman–Pearson test (Poor, 1994) is applied to each

pair of correlation eigenvalue and its corresponding covariance eigenvalue,

the number of times the test fails indicates how many signal sources are

present in the image. In other words, a failure of the Neyman–Pearson test

in a component indicates a truth of the alternative hypothesis, which implies

that there is a signal source in this particular component.

2.5.3.2.2 HySime Following Bioucas-Dias and Nascimento (2008), the

Hyperspectral Signal Identification by Minimum Error (HySime) technique

starts by estimating the signal and the noise correlation matrices, using mul-

tiple regression. A subset of eigenvectors of the signal correlation matrix

is then used to represent the signal subspace. This subspace is inferred by

minimizing the sum of the projection error power with the noise power,

which are, respectively, decreasing and increasing functions of the subspace

dimension. Therefore, if the subspace dimension is overestimated, the noise

power term is dominant, whereas if the subspace dimension is underesti-
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mated, the projection error power term is the dominant. The overall scheme

is computationally efficient, unsupervised, and fully automatic in the sense

that it does not depend on any tuning parameters, whilst yielding comparable

results to other techniques, such as VD-HFC (Bioucas-Dias and Nascimento,

2008).

2.5.3.3 Endmember extraction algorithms For successful SMA the ex-

traction of spectral endmembers from an image is commonly preferred over

the use of field or laboratory spectra for two main reasons; (1) library and

field spectra may not represent all relevant endmember spectra of the surface

components or are inadequate representations, and (2) image endmembers

have the advantage of directly sampling surfaces in the scene (collected under

the same conditions as the sensor) (Rogge et al., 2009). The extraction of

endmembers from hyperspectral imagery has undergone a large amount of

research and numerous algorithms have been proposed in the literature (Du

et al., 2008). These can be broadly categorised into pure pixel and mixed

pixel approaches (Figure 2.8), which are briefly outlined below. Reviews of

endmember extraction techniques are given by some (Martínez et al., 2006;

Li et al., 2007; Veganzones and Grana, 2008).

Due to the large number of endmember extraction algorithms in the pub-

lished literature, the Remote Sensing end-user will often apply those algo-

rithms which are widely available in commercial off-the-shelf software (e.g.

the Environment for Visualising Images; ENVI, 2014) or open source al-

gorithms (e.g. Endmember Induction Algorithms Toolbox; EIA, 2014), as

many of the published techniques are difficult to implement due to their

mathematical and computational complexity.

2.5.3.3.1 Pure pixel EEA Pure pixel approaches assume that the image

contains pixels which are pure, or relatively pure spectra, meaning that little

or no mixing with other endmembers has occurred within such a pixel. Pure

pixel techniques have been widely used and a wealth of algorithms have been

proposed in the literature (e.g. Boardman, 1993; Palmadesso et al., 1995; Bate-
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son and Curtiss, 1996; Winter, 1999; Ifarraguerri and Chang, 1999; Neville

et al., 1999; Ren and Chang, 2003; Gruninger et al., 2004; Nascimento and

Bioucas-Dias, 2005; Chang and Plaza, 2006; Chan et al., 2011, 2012). These al-

gorithms are based on the assumption that endmembers form a linear mixture

model and can be extracted by exploiting the geometry, where endmembers

are indentified by the vertices of a simplex, as illustrated in Figure 2.10. Per-

haps the most widely used technique is the Pixel Purity Index (PPI; Boardman,

1993); this technique, whilst very widely used does suffer from a number

of limitations (Chaudhry et al., 2006). The PPI has two highly sensitive

parameters, uses a randomised set of initial skewers, requires human inter-

vention to manually select the final set of endmembers via an n-dimensional

visualisation tool and is not an iterative process, therefore does not guarantee

that the PPI-found endmembers are actually true endmembers (Chaudhry

et al., 2006). A number of automated and repeatable approaches have been im-

plemented to overcome these limitations (e.g. Chaudhry et al., 2006; Chang

and Plaza, 2006), including techniques such as N-FINDR (Winter, 1999) and

more recently, alternative techniques such as Vertex Component Analysis

(VCA; Nascimento and Bioucas-Dias, 2005).

Additionally, a number of algorithms which consider the spatial distribution

of endmembers (still under the pure pixel assumption) have been developed,

in two main categories: (1) techniques which are applied prior to applying

an endmember extraction technique such as Spatial–Spectral Preprocessing

(SSPP; Zortea and Plaza, 2009) and superpixel segmentation (Thompson

et al., 2010), and (2) techniques which use spatial information and extract

endmembers simultaneously, such as automated morphological endmem-

ber extraction (AMEE; Plaza et al., 2002) and spatial–spectral endmember

extraction (SSEE; Rogge et al., 2007).

In the former category, the techniques have the advantage that any number of

a wealth of existing EEAs can be applied but the endmembers will still have a

spatial weighting. The SSPP technique requires an image to be classified prior

to processing using the SSPP algorithm, where a k-means classification is often

applied (Zortea and Plaza, 2009), though applying this classification step to
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Figure 2.10: An illustration of the linear mixture model and endmember identification from
the simplex formed by Bands i and j . From Martínez et al. (2006).

high-dimensional data can be prohibitively slow. The SSPP then weights

pixels in the image based on their spectral importance in terms of its spatial

context (Zortea and Plaza, 2009). The superpixel segmentation algorithm

averages image spectra from homogeneous regions comprised of several pixels

having similar values by intentional over-segmentation of the image which

aggregates scene features into segments called superpixels (Thompson et al.,

2010; Gilmore et al., 2011). The superpixel approach has been shown to be

beneficial on low SNR datasets and can aid in deriving endmembers that more

closely resemble manually derived endmembers (Thompson et al., 2010). This

is due to averaging several pixel spectra within a single superpixel and thus

the technique reduces the noise variance proportionally to the superpixel

area. However the technique can act to degrade spectral purity by aggregating

multiple spectrally variable pixels and can suppress subtle spectral features

(Thompson et al., 2010).

Techniques in the latter category extract endmembers whilst considering the

spatial component. For the AMEE approach, a computationally complex

processing chain is applied where a morphological eccentricity index (MEI)
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is defined by applying morphological image dilation and erosion techniques

(Plaza et al., 2002), though its performance on large datasets is very slow. The

SSEE technique has number of tunable inputs and performs a singular value

decomposition to determine spectral variance but imposes a spatial constraint

when extracting endmembers (Rogge et al., 2007).

In most cases spatial algorithms are much slower to process due to their

increased computational complexity and non-vectorised implementation,

along with the addition of a number of tunable parameters (e.g. window size).

However, the superpixel endmember extraction technique includes a data

reduction step by agglomerating neighbouring pixels into averaged spectral

regions which is beneficial for low signal to noise ratio datasets and acts to

speed up processing times (Thompson et al., 2010).

2.5.3.3.2 Mixed pixel EEA The pure pixel approach has been quite suc-

cessful when images contain pure pixels; however, given the presence of the

mixing at different scales (even at microscopic levels), the pure pixel assump-

tion is not always true, as some images may only contain pixels which are

completely mixed (Plaza et al., 2012).

The complexity of the problem is increased in a mixed pixel scenario, since

the endmembers, or at least some of them, are not in the dataset (Bioucas-

Dias, 2009). Techniques in this category follow from the seminal ideas of

Craig (1994), based on the minimum volume transform (MVT). Other algo-

rithms building from this work include the minimum volume constrained

non-negative matrix factorization method (MVC-NMF; Miao and Qi, 2007),

the minimum volume simplex analysis (MVSA) algorithm (Li and Staunton,

2008), the convex analysis-based minimum volume enclosing simplex algo-

rithm (MVES; Chan et al., 2009), the simplex identification via split aug-

mented Lagrangian (SISAL) algorithm (Bioucas-Dias, 2009), and iterated

constrained endmembers (ICE; Berman et al., 2004).

Whilst these approaches can yield state of the art results, their major short-

coming is the time they take to process, as they are highly computationally

complex to implement and run (Bioucas-Dias, 2009).
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2.5.3.4 Spectral mixture analysis Spectral mixture analysis (SMA), also

referred to as spectral unmixing, has been a goal from the pioneering days

of hyperspectral imaging (Goetz et al., 1985) and continues be of great im-

portance in the study of hyperspectral image processing (Schaepman et al.,

2009). It is almost inevitable, regardless of the spatial resolution of the sensor,

that a hyperspectral spectrum collected in the natural environment will be

a mixture of the spectra of the various materials found within the spatial

extent of the image (Adams et al., 1986; Plaza et al., 2011). The availability

of hyperspectral sensors with a number of spectral bands that exceeds the

number of spectral mixture components (Green et al., 1998) has led to an

over-determined system of equations where, given a set of endmembers (Sec-

tion 2.5.3.1) unmixing through SMA to determine apparent pixel abundance

fractions can be defined in terms of a numerical inversion process (Plaza et al.,

2011). There are two main approaches for SMA; linear and non-linear SMA.

Linear SMA assumes that the measured spectra at the sensor can be expressed

as a linear combination of endmembers, weighted by their abundances (Ke-

shava and Mustard, 2002). The linear SMA approach negates the potential

effects of scattering or secondary reflections during the data acquisition, and

hence, the measured spectrum can be expressed as a linear combination of

the endmember spectral signatures to produce the relative abundances of the

materials represented in the mixed pixel (Figure 2.11a).

Figure 2.11: Graphical interpretation of the linear SMA (a) versus the non-linear SMA (b). From
Plaza et al. (2011).
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Although the linear model has practical advantages such as ease of implemen-

tation and flexibility in different applications (Chang, 2003), non-linear SMA

may best characterize the resultant mixed spectra for certain endmember dis-

tributions, such as those in which the endmember components are randomly

distributed throughout the field of view of the instrument (Guilfoyle et al.,

2001; Plaza et al., 2009a). In those cases, the mixed spectra collected at the

imaging instrument are better described by assuming that part of the source

radiation has undergone multiple scattering prior to being measured at the

sensor (Figure 2.11b).

In order to be able to correctly apply SMA to a hyperspectral dataset two

requirements need to be fulfilled (Plaza et al., 2011); (1) estimation of the num-

ber of endmembers present in the hyperspectral scene (see Section 2.5.3.2)

and (2) correct extraction (or determination) of a set of endmembers (see

Section 2.5.3.3), after which SMA can be applied to establish the correspon-

dent abundance fractions of each endmember for each pixel. SMA techniques

can be categorised into either linear or non–linear SMA, as explained in the

following paragraphs.

2.5.3.4.1 Linear SMA Applying linear SMA to a given mixture requires

that endmembers occur as spatially segregated patterns (Keshava and Mustard,

2002), which can be used to deconvolve a spectrum into abundances of its

constituent endmember spectra using a least squares approach, given as (Rogge

et al., 2009)

Rb =
n
∑

i=1

Fi Si b + Eb (10)

where Rb is the fractional abundance of the pixel at band b , Fi is the fractional

abundance of endmember i , Si b describes the reflectance of endmember i

at band b , n is the number of endmembers and Eb is the error of the fit at

band b . Equation 10 can produce fractional endmembers which are math-

ematically correct, but physically unreasonable (e.g. negative endmember

contributions). Equation 10 is therefore solved subject to the constraints that

fractional abudances sum-to-one (ASC; abundances sum-to-one constraint)
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and fractional abundances are non-negative (ANC; abundance non-negative

constraint) (Rogge et al., 2009).

Fully constrained linear spectral unmixing (FCLSU), through the implemen-

tation of ASC and ANC is usually recommended to produce physically real-

istic fractional abundances (Heinz and Chang, 2001). However, abundances

predicted using linear SMA are most accurate when only the endmembers that

comprise a given pixel are used, with larger errors occurring when too few or

too many endmembers are used (Heinz and Chang, 2001; Rogge et al., 2009).

A large number of studies have applied linear SMA (e.g. Small, 2001; Sabol

et al., 2002; Neville et al., 2003; Lu et al., 2004; Yang et al., 2014; Magendran

and Sanjeevi, 2014, amongst others).

2.5.3.4.2 Non–linear SMA In a non–linear model, the interaction be-

tween the endmembers and their fractional abundance is given by a non–

linear function, which is not known a priori. Various techniques have been

proposed in the field of machine learning, with neural networks some of the

first non–linear SMA approaches proposed (Benediktsson et al., 1990). Neu-

ral networks have demonstrated great potential to decompose mixed pixels

due to their inherent capacity to approximate complex functions (Bishop,

2007). Although many neural network architectures exist for decomposition

of mixed pixels in terms of non–linear relationships, mostly feed-forward

networks of various layers, such as the multilayer perceptron (MLP), have

been used (Plaza et al., 2009b; Plaza and Plaza, 2010; Baraldi et al., 2001). It

has been shown in the literature that MLP-based neural models, when trained

accordingly, generally outperform other non–linear models such as regression

trees or fuzzy classifiers (Liu and Wu, 2005).

In addition to neural networks, other techniques such as Support Vector

Machines (SVM) have also been used (Camps-Valls and Bruzzone, 2005; Plaza

et al., 2011) and have shown promise due to their higher classification accuracy

with smaller training sets (Plaza et al., 2011). SVMs can be used with a variety

of kernels which can vastly increase their flexibility for non–linear SMA; the

most commonly used kernels are the polynomial kernel, the Gaussian kernel
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or the spectral angle mapper (SAM) kernel (Plaza et al., 2009a, 2011). Other

techniques including Bayesian statistical and bilinear models (Halimi et al.,

2011) and unmixing using a combined linear – non–linear fluctuation model

have been proposed (Chen et al., 2013). A comprehensive review of spectral

unmixing was given in the seminal paper by Keshava and Mustard (2002);

other reviews include Keshava (2003) and more recently, a paper by Dobigeon

et al. (2014) summarising the cutting edge advances in this discipline.

The majority of non–linear SMA approaches evolved in the computer science

and signal processing disciplines and often are not widely available to users

in the Remote Sensing community. In addition, many of the techniques

are often tested on small, synthetic datasets, hence their performance on

large, real-world hyperspectral data is currently limited by the computational

complexity of the techniques; however, recent advances have aimed to take

advantage of parallel processing techniques to reduce computational time

(Plaza et al., 2008).
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2.5.4 Thermal remote sensing case studies

The majority of geological mapping studies using thermal infrared remote

sensing data have utilised multispectral infrared data. The ASTER and the

TIMS sensors have demonstrated the utility of TIR data to discriminate a

wide range of minerals, especially silicates, as well as proving useful for litho-

logical mapping (Rowan and Mars, 2003; Chen et al., 2007; Rogge et al., 2009;

Haselwimmer et al., 2010, 2011; Salvatore et al., 2014). Relevant examples

using satellite data, including VNIR/SWIR and TIR data from the Polar

regions are described in Section 2.6.

The development of airborne hyperspectral TIR sensors producing images

with hundreds of contiguous spectral channels provides the potential for

a step-change in the range and accuracy of compositional information re-

trievable remotely. Currently, there are a number of operational airborne

hyperspectral TIR instruments, including the SEBASS, the AHS, TASI, and

the OWL (van der Meer et al., 2012). Previous studies using airborne hyper-

spectral TIR data have illustrated the exceptional potential of these types of

sensors for mapping silicates, carbonates, sulphates, and clays (Hewson et al.,

2000; Cudahy et al., 2001; Calvin et al., 2001; Vaughan et al., 2003b, 2005;

Aslett et al., 2008; Riley and Hecker, 2013; Kruse and McDowell, 2015). A

number of key studies are briefly reviewed.

There are only a handful of studies which present geological mapping using

airborne hyperspectral TIR data, the majority of which utilise the SEBASS

sensor. SEBASS is a push broom scanner developed by Aerospace Corpo-

ration, consisting of an array of 128 × 128 Helium cooled SiAs detectors

recording thermal data from 7.4 to 13.4 µm for a 128 pixel-wide swath at an

instantaneous field of view (IFOV) of 1 milliradian.

In a technical report, Hewson et al. (2000) demonstrated the potential of

SEBASS for mapping an epithermal-altered Tertiary volcanic complex con-

taining areas of pervasive argillic, propylitic and silicic alteration in Oatman,

Arizona. A detailed preprocessing chain was applied to the SEBASS data,

including atmospheric correction, TES, noise removal using the minimum
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noise fraction (MNF; Boardman and Kruse, 1994; Green et al., 1998) and

removal of bands at the extremes of the sensors wavelength range. Following

this, spectral unmixing and feature fitting techniques were applied: the pure

pixel model was assumed with endmembers extracted manually using the

pixel purity index; mapping of endmembers was carried out using a matched

filter (MF; Boardman et al., 1995), a type of target detection algorithm, and

spectral library measurements were used to identify and interpreted the ex-

tracted endmembers. The study showed that hyperspectral TIR imagery can

successfully map areas of silicification, quartz-calcite veining, kaolinite-rich

areas of alteration and/or weathering, and possibly alunite alteration, as well

as discriminate different carbonates and identify grain size effects; however,

mapping of phyllosillicates remained ambiguous (Hewson et al., 2000).

The first peer-reviewed study utilising airborne hyperspectral TIR data was

by Kirkland et al. (2002) who utilised SEBASS data for mapping carbonates

at Mormon Mesa, Nevada, USA. Their study demonstrated that microscopic

surface roughness, not readily apparent to the eye, introduced a cavity effect

and volume scattering which reduced spectral contrast between geological

units and placed a higher signal-to-noise (SNR) ratio requirement on air-

borne data; with a SNR of ∼3000:1, SEBASS was able to detect and identify

spectrally subtle materials through manual interpretations of airborne data

with respect to high quality laboratory data and supporting geochemical and

petrographic analyses (Kirkland et al., 2002).

Vaughan et al. (2003b) utilised a series of SEBASS flightlines collected over

Virginia City and Steamboat Springs, Nevada, USA at a spatial resolution

of 2 m. The airborne data was atmospherically corrected using the in-scene

atmospheric correction (ISAC) technique, followed by TES using the NEM

method. Noise was removed from the SEBASS data using MNF prior to

spectral unmixing; PPI was used to manually derive endmembers which were

subsequently unmixed and classified using a mixture-tuned matched filter

(Vaughan et al., 2003b). The data were used to map silicate and sulphate min-

erals with agreement to laboratory and field spectroscopy, though the authors

noted improvements in instrument calibration, atmospheric correction, and
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information extraction techniques could yield improvements in mapping.

The hyperspectral TIR data “nevertheless show[ed] significant advancement

over multispectral thermal images” in their ability to map subtle spectral

differences in mineralogy (Vaughan et al., 2003b).

Vaughan et al. (2005) also performed a similar study at Steamboat Springs,

Nevada, USA, to map minerals associated with an active geothermal and hot

spring system using SEBASS imagery and field and laboratory spectroscopy,

also employing the PPI to perform spectral unmixing. The utility of hyper-

specral TIR for mapping rock forming minerals and alteration minerals at the

well-known Cuprite mining site, Nevada, has also been demonstrated (Riley

and Hecker, 2013). Using SEBASS data and a spectral feature fitting approach

(due to the well exposed and vegetation free outcrops at Cuprite) Riley and

Hecker (2013) were able to accurately map rock forming minerals associated

with unaltered rocks as well as alteration minerals, validated using spectral

library data and corroborated by comparison with VNIR/SWIR mapping.
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2.6 Geological remote sensing in the Polar regions

2.6.1 Antarctic case studies

Prior to this research, no studies had been published on the use of airborne

hyperspectral data for the purposes of lithological mapping in the Antarctic.

There are a limited number of studies relating to the use of multispectral data

for lithological mapping. Only one study has taken place on the Antarctic

Peninsula; Haselwimmer et al. (2010) investigated the potential of multispec-

tral Advanced Spacebourne Thermal Emission and Reflectance Radiometer

(ASTER) for lithological mapping. For Antarctica as a whole there are very

few published studies, with two studies undertaken in Northern Victoria

Land, East Antarctica and one in the McMurdo Dry Valleys, West Antarctica.

In a study from the Tarn Flat region of Terra Nova Bay, Casacchia et al. (1999)

analyzed Landsat Thematic Mapper (TM) and SPOT-XS data with reference

to field multispectral reflectance measurements of rock samples acquired using

an EXOTECH radiometer (with four broad bands in the VNIR region). Rock

spectra of granite, glacial drift, detritus and mafic intrusive rocks displayed

varying albedo in the VNIR region providing a basis for their discrimination

at the wavelengths of the TM sensor. Satellite image processing included

pan-sharpening the results of selective PCA (Crosta method) as applied to the

Landsat TM data using the higher spatial resolution SPOT-XS image (using a

RGB-IHS transformation). A mininum-distance supervised classification was

applied to the output of this procedure using training areas defined for snow,

ice and the different rock units. The classification effectively discriminated

granite, detritus, and a mixed class of glacial drift/mafic intrusive rocks with

results that were in close agreement with field observations.

Favretto and Geletti (2004) analysed ASTER VNIR/SWIR bands with the

aim of discriminating granite and gabbro exposures over part of the Prince

Albert mountain chain, Victoria Land. Image processing was undertaken

with the Constrained Energy Minimization (CEM; Harsanyi, 1993) spec-

tral mapping (target detection) algorithm using mineral library spectra as

reference endmembers: biotite and serpentinite reference spectra were used
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for the analysis as these reflect the composition of the granites and altered

gabbros in the study area. The distribution of biotite and serpentinite in the

ASTER processing results showed some agreement with field observations

of the distribution of granite and gabbro (Favretto and Geletti, 2004). How-

ever, they made no attempt to mask snow, ice or shadowed rock from the

ASTER data prior to their analysis, which caused significant misclassification

in the mapping results (i.e. snow mapped as either biotite or serpentinite).

The fact that the ASTER scene was acquired in early November suggests

that shadowing and seasonal snow cover may have also been a particular

problem for their analysis. Other criticisms of the study include the use

of non-atmospherically corrected ASTER data and the somewhat arbitary

choice of reference endmembers.

Haselwimmer et al. (2010) used ASTER VNIR/SWIR and TIR data from

several sites from the Wright Peninsula region of Adelaide Island. To comple-

ment the satellite based ASTER data, reflectance spectra of approximately 50

weathered and fresh surface samples was collected under laboratory condi-

tions. Prior to image analysis, the spectra of the samples was investigated to

assess its potential for discrimination at ASTER wavelengths. Samples were

convolved to ASTER bands and a limited set of lithological groups (rhyolitic

volanic rocks and granitoids) displayed unique albedo and absorption features

which showed potential for discrimination at ASTER wavelengths.

A combination of qualitative and quantitative image processing techniques

were applied to the ASTER data to generate lithological information. Band

ratios and PCA were used to produce RGB composite images which were

effective at discriminating minerals that displayed AlOH and FeOH/MgOH

absorption features in the VNIR/SWIR and features associated with quart-

zose, felsic and mafic lithologies in the TIR. The ASTER surface reflectance

and thermal emission data was classified into distinct spectral classes broadly

corresponding to different mineral assemblages and bulk rock compositions

through a Matched Filter (MF) applied to image derived endmembers. Hasel-

wimmer et al. (2010) concluded that ASTER data allowed for broad discrimi-

nation of the main rock types, with most success in discriminating granites to
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those of intermediate composition (granodiorites) and difficulty in discrimi-

nating specific felsic intrusive lithologies (e.g. tonalite, quartz monzonite),

due to their lack of distinctive features in the VNIR/SWIR and similarity

at TIR wavelengths. They demonstrated that ASTER data are limited in

their ability to discriminate uniquely different lithologies but do provide a

range of lithologic information which can be used to assist field based map-

ping techniques, or used to refine or validate localised/inferred geological

mapping.

Additionally, they noted that the influence of rock encrusting lichens caused

“significant problems for lithological mapping using the VNIR/SWIR region”

on the islands in the Ryder Bay region (Léonie, Anchorage and Lagoon

Islands). Although sparsely developed, lichen cover does significantly impact

the geological mapping approach; a finding supported by the ASTER results

and the field observations, which suggested that the lichen cover has the

greatest effect (Haselwimmer et al., 2010).

More recently, Salvatore et al. (2014) used a combination of satellite remote

sensing and laboratory spectroscopy to identify geochemical variations within

the Ferrar Dolerite exposed in the McMurdo Dry Valleys. Dolerite units were

analysed with the Advanced Land Imager (ALI) and ASTER thermal emission

data. Using spectral unmixing techniques focusing on the VNIR and TIR

regions, they were able to identify meso- and macro- scale alteration of dolerite

sills, which had previously only been identified through laboratory and field

analysis. Through linear unmixing of ASTER TIR data using laboratory data,

they were able to identify spectrally pure outcrops of Dolerite; TIR data was

used as deconvolving mixtures in the VNIR was more complex due to the

significant contribution of volume scattered rays which refract into and out

of individual mineral grains (Salvatore et al., 2014). Laboratory data revealed a

link between alteration and VNIR absorption features and TIR signatures of

altered dolerites were identified, though only in fine grained dolerites exposed

in the Beacon Valley. They note that addition of hyperspectral datasets could

provide critical information on the presence, nature and distribution of

alteration minerals in the McMurdo Dry Valleys; they particularly note
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the absence of SWIR data which could have aided in the identification of

phyllosilicates, sulphates and carbonates (Salvatore et al., 2014, p. 18).

2.6.2 Arctic case studies

In comparison to the Antarctic there is significantly more published research

on the use of remote sensing for lithological mapping in Arctic regions. These

studies provide relevant analogues for this research given the paucity of case

studies from the Antarctic. However, it is recognized that the physiography

of the Antarctic Peninsula is different to the study areas discussed in this

review. In particular, the peninsula is more extensively glaciated and rocks

are less well exposed when compared to the Arctic study areas.

Most published studies from the Arctic have been from Greenland (Birnie

et al., 1989; Rivard and Arvidson, 1992; Thomassen et al., 2002; Tukiainen

and Thorning, 2005; Bedini, 2009) and northern Canada (An et al., 1996;

Wickert and Budkewitsch, 2004; Harris et al., 2005; Rogge et al., 2009) with

some published work from the Svalbard archipelago (Lyberis et al., 1990) and

Russian Arctic islands (Lorenz, 2004). The older studies broadly encompass

lithological mapping using multispectral satellite data, with more recent

studies focusing on the analysis of airborne hyperspectral data for mineral

mapping (Rogge et al., 2009). A selection of these papers are discussed as part

of this review.

Birnie et al. (1989) analyzed Landsat TM data in conjunction with broadband

rock spectra with the aim of mapping the tertiary gabbroic rocks of East

Greenland that included the Skaergaard intrusion. Remote sensing was con-

sidered suited to this task as the region was thought to be poorly vegetated

and is almost impossible to access directly. Image processing of the TM data

included the use of PCA and a supervised classification using training areas

for the different lithological units (gneiss country rock and lithological units

within the Skaergaard intrusion). The results enabled the delineation of the

gabbroic intrusions from Precambrian gneissic country rocks but were not

able to discriminate lithological units within the intrusions themselves, owing
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to the subtle differences in reflectance of these rocks. They found a number

of specific problems in the Greenland context of this work that reduced the

ability to discriminate subtle differences in rock reflectance: (1) the TM data

included seasonal snow cover with many mixed rock/snow pixels as well as

perennial snow fields where no lithological information could be extracted;

(2) lichens and mosses were actually better developed than previously thought

and had a strong effect on rock reflectance; (3) melt water on southeast facing

dip slopes and glacier-polished surfaces caused significant specular reflection

from rocks; and (4) the region is heavily glaciated with significant recent

glacial deposits (moraine and glacial flour) that directly obscure underlying

bed rock or contribute to the reflectance of rock outcrops at the sub-pixel

scale.

Rivard and Arvidson (1992) used Landsat TM data and field reflectance spec-

tra to assess the potential of imaging spectroscopy to undertake lithological

mapping of the Archean terranes of south west Greenland. The work anal-

ysed TM data for a portion of the island of Storo, southwestern Greenland

and field reflectance spectra acquired from rocks and vegetation samples. The

Arctic terrain in this part of Greenland includes abundant tundra vegetation

and lichens that cause problems for the use of multispectral remote sensing.

They aimed to establish if imaging spectroscopy could provide additional

information for lithological discrimination. Their results of analysing the

TM data confirmed that tundra completely obscures rock exposures and

ubiquitous lichen cover does cause significant problems for lithological dis-

crimination of the amphibolite, anorthosite, gneiss and granite outcrops on

the island. The field reflectance spectra demonstrated that at the outcrop

scale mineral absorption features are still retained from areas of mixed rock

and lichens that could be used to discriminate different rocks. These results

imply that hyperspectral imagery could be used for lithological mapping of

lichen covered rock exposures, but would require unmixing techniques using

rock and lichen endmembers (Rivard and Arvidson, 1992).

Various studies from northern Canada have been undertaken to assess the

potential for using remote sensing to assist geological mapping. Wickert and
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Budkewitsch (2004) investigated the effectiveness of lithological mapping

using ASTER data of a folded sequence of shallow to deep marine sediments,

and basalts exposed on Belcher Islands in Canada’s Hudson Bay. The study

area was selected as it had good bedrock exposure, little vegetation, low relief

and existing high quality geological mapping. They analysed the reflective

bands of a snow-free ASTER scene that was atmospherically corrected and

orthorectified using a Shuttle Radar Topography Mission (SRTM) Digital

Elevation Model (DEM). Spectral analysis of the calibrated ASTER reflectance

data was achieved using qualitative and spectral mapping methods (Matched

Filter, Spectral Angle Mapper). The results of ASTER data analysis were

compared against the existing reliable field mapping, that indicated broad

discrimination of lithologies exposed on Belcher Island was possible; the

results presented in the paper suggest that only some of the 16 distinct units

that had been previously mapped directly were discriminated using ASTER.

Harris et al. (2005) used airborne PROBE hyperspectral data to undertake

lithological mapping of an area of southern Baffin Island, Canada. They

applied spectral analysis to an atmospherically corrected and snow/ice/water-

masked dataset, using the MNF transform to define image reference endmem-

bers, which were then mapped using supervised classification and matched

filtering procedures. The rock image endmembers displayed quite similar

spectra owing to the effects of lichens but displayed enough variability as a

function of the different rock mineralogies to enable lithological mapping. As

a result two major lithological groups (metatonalites and metagabbros, using

vegetation as a proxy) and three compositional units (psammites, quartzites,

and monzogranites) were mapped; these results showed good general agree-

ment with the existing published geological map and demonstrate the benefits

of high spectral/spatial resolution data for lithological mapping in areas with

significant lichens developed.

Other regions of the Arctic have received comparatively little attention as

regards the use of remote sensing for lithological mapping. Lorenz (2004)

fused Landsat TM data with high-resolution panchromatic Corona imagery

(3m pixel size) in order to undertake geological mapping of October Revolu-
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tion Island in the Severnaya Zemla archipelago, Russian Arctic. Good rock

exposure and the relatively flat lying topography enabled a full structural in-

terpretation of the study area. They also undertook simple qualitative image

processing to discriminate different lithologies; this was assisted by mask-

ing areas of soil. Lyberis et al. (1990) attempted to use SPOT multispectral

data coupled with rock reflectance measurements to discriminate different

lithologies for part of the island of Spitsbergen in the Svalbard archipelago.

Perhaps the best analogue for hyperspectral remote sensing for geological

mapping is the recent work of Rogge et al. (2009). Following from the earlier

works by Harris et al. (2005), Rogge et al. (2009) utilised a hyperspectral dataset

from Baffin Island, Canada. They applied multiple endmember extraction

techniques in conjunction with linear SMA to produce a predictive geological

map of a diverse assemblage of lithologic units that are part of the northeastern

segment of the Paleoproterozoic Trans-Hudson orogen (Rogge et al., 2009).

The number of endmembers was arbitrarily chosen and endmembers were

extracted and interpreted in context of spectra collected in the field and

complementary geochemical analysis. The endmembers were then used to

interpret fractional abundance images to produce a predictive lithological

map; though the authors noted the significant influence of lichen in the study

area and their endmember set included both lichen and rock/lichen mixture

endmembers (Rogge et al., 2009).

2.6.2.1 Influence of lichen There have been a number of studies into

the optical properties of lichens to aid in the analysis of multispectral and

hyperspectral imagery. Bechtel et al. (2002) determined that light transmission

through lichens in the VNIR and SWIR was less than 3%, meaning that lichens

can completely obscure light reflected from the underlying rock substrate.

They also determined the spectral similarity of multiple lichen species in the

SWIR, supporting earlier observations (Rivard and Arvidson, 1992). Zhang

et al. (2004) demonstrated that there is linear mixing of lichen-rock spectral

signatures, with spectral unmixing results showing high correlation (R2 >0.9).

Feng et al. (2013) recently expanded from the solar domain by considering
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the spectral properties of rock encrusting lichens in the midwave infrared

(MIR; 3 to 5 µm) and TIR domains. Feng et al. (2013) determined that lichens

display low reflectance and spectral contrast in the TIR, but could be used

to mask pixels in imagery that encompass the greatest abundance of rock

encrusting lichens to facilitate geological mapping.

The polar regions could be seen as ideal test sites for geological remote sensing

studies, as they have extensive bedrock exposure and limited development of

surface vegetation (Feng et al., 2013) compared to more temperate environ-

ments. However, in these regions, lichens are typically the first colonisers on

rock surfaces (Kiang et al., 2007) and their presence can inhibit geological map-

ping by obscuring spectral features useful for mineral identification at solar

wavelengths (Rivard and Arvidson, 1992; Bechtel et al., 2002; Haselwimmer

et al., 2010; Feng et al., 2013).
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2.7 Summary

Hyperspectral imagery was originally developed for mineral exploration

purposes and has proven one of the most useful contributions in the field of

geological remote sensing, due to its ability aid in the mapping of lithological

units or mineral assemblages (Goetz et al., 1985). The TIR domain has great

potential for investigating rock forming minerals and the potential to offer

significant improvements over VNIR/SWIR data alone (van der Meer et al.,

2012).

In polar regions, the application of remote sensing data is particularly advan-

tageous; from a geological mapping perspective there are still significant gaps

in coverage (in Antarctica) owing to the difficulties of undertaking traditional

field mapping techniques in such a harsh environment, especially in areas

where topography can often restrict access completely; hence, geological

remote sensing could offer significant advantages.

We note two key gaps in the present literature, which this study aims to

address:

1. There is a paucity of studies utilising hyperspectral TIR data. Of the

available published studies, the analytical approaches have not currently

utilised the state of the art, automated and repeatable processing tech-

niques, but instead focused on simpler spectral matching techniques, or

utilised manually derived endmembers in spectral unmixing techniques.

2. There are no published studies using hyperspectral TIR in either (a)

Antarctica or (b) a continental margin arc setting. The range of ig-

neous rocks emplaced in continental margin arcs informs us about the

tectonic history of the margin and even relatively subtle difference

between granitoid types (e.g. tonalite, diorite, granodiorite, granite)

are significant as they record variations in melting depths and the stress

regime in the lithosphere. The TIR domain has potential for investi-

gating key granitoid rock forming minerals, therefore there is scope

to reveal new insights in to the Antarctic continental margin arc, if

discrimination of granitoid types is possible.
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3 Study area and datasets

3.1 Introduction

An airborne hyperspectral survey was conducted in Antarctica in February

2011. The British Antarctic Survey collaborated with ITRES Research Ltd.

(ITRES) and Defence Research and Development Canada (DRDC, Suffield).

DRDC’s three hyperspectral sensors, the CASI-1500, SASI-600, and TASI-600,

acquired approximately 1000 km2 of airborne hyperspectral data covering

parts of the VNIR, SWIR, and TIR regions of the electromagnetic spectrum

from seven areas (Figure 3.1; Table 3.1).

The original planning and motivation for the hyperspectral data acquisition

was to establish a high-resolution baseline vegetation survey. The Antarctic

Peninsula (AP) has seen an increase in mean annual air temperature of ∼3◦C

in the last 50 years (Vaughan et al., 2003a), making it one of the most rapidly

changing areas on the planet. The changing climate - a result of rising temper-

atures - has led to higher summer-growing season temperatures (Convey and

Smith, 2006) and local glacial retreat (Pritchard and Vaughan, 2007). This

has exposed new rock outcrops and areas of scree and soil for colonisation

by terrestrial biota (Walther et al., 2002; Convey and Smith, 2006). Due to

the exceptional rates of change, the AP has been highlighted as a globally

important barometer for identifying the biological consequences of climate

change (Convey, 2003). To monitor and assess changes of AP vegetation, a

robust, quantitative assessment of vegetation is required (Fretwell et al., 2011).

Field based techniques in the Antarctic face significant logistical challenges

as a result of the climate and topography in addition to the limited spatial

coverage and invasive nature of the work. A non-invasive, remote sensing

approach provides many advantages over field based techniques. Work on the

hyperspectral data for vegetation mapping is on-going (e.g. Black et al., 2014a;

Casanovas et al., 2015; Appendix A); however, as hyperspectral imagery was

originally developed for geological applications (Goetz et al., 1985), this study

was carried out to investigate the dataset for geological purposes.
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Figure 3.1: Location map context of the Antarctic Peninsula within Antarctica (A), and
the location of the seven sites of hyperspectral data acquisition on the Antarctica
Peninsula (B and C).

The seven survey areas were selected with a view to vegetation investigations,

hence a number of sites were not suited to geological investigations. The

decision not to pursue investigations in a number of areas was motivated by

the following reasons: areas which were inaccessible in the field, areas which

had strong influence of man-made features; and areas with near-homogenous

lithologies (or in some cases, a combination of these) were not investigated

further. This initially excluded the inaccessible areas of Ablation Point,

Avian Island and Lagotellerie Island; the nature of the investigation into the

hyperspectral data requires that ground truth samples and surveys be used to

fully understand and interpret the hyperspectral data hence these areas were

excluded.

This left the remaining areas close to the BAS main research station (Rothera)

including the Ryder Bay islands (Anchorage Island, Lagoon and Kirsty Island),

Rothera Point, Léonie Island and McCallum Pass. Rothera Point was excluded
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due to the large presence and influence of man-made features, such as the

airstrip, hangar and various buildings, as well as being composed entirely of

granodiorite. Lagoon and Kirsty Island, Léonie Island and McCallum Pass

were not investigated due to their near-homogeneous lithologies, which did

not allow for investigating the potential of the data for discriminating different

lithologies. Anchorage Island was selected as the study site; Anchorage Island

has a range of lithologies, representative of a continental margin arc setting,

the island has limited influence from man-made features, and its proximity to

Rothera Point meant a field survey could be carried out.

The following sections review the Anchorage Island study area and its geolog-

ical setting, the airborne hyperspectral data acquisition and the field spectral

survey.
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3.2 Study area and geological context

The Antarctic Peninsula is part of the proto-Pacific continental margin arc

that was magmatically active at least from the Permain through to ∼20 Ma.

Continental margin arcs are the primary sites for the generation of new con-

tinental crust on Earth. Long lived continental margin arcs record multiple

episodes of increased magmatism, cessation of magmatism, periods of ex-

tension and compression, and switching between dominantly volcanic or

plutonic regimes (Burton-Johnson and Riley, 2015). The range of igneous

rocks emplaced in continental margin arcs informs us about the tectonic

history of the margin, and even relatively subtle difference between grani-
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Figure 3.2: Location maps showing the context within Antarctica (A), the location of Adelaide
Island within the Antarctic Peninsula (B) and the location of Anchorage Island
in the context of Ryder Bay (C; labelled). (D) shows a true colour composite of
Anchorage Island with field localities (labelled red circles).
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toid types (e.g. tonalite, diorite, granodiorite, granite) are significant as they

record variations in melting depths and the stress regime in the lithosphere

(Burton-Johnson and Riley, 2015).

Anchorage Island is located in Ryder Bay to the south of the larger Adelaide

Island, on the Antarctic Peninsula. The British Antarctic Survey (BAS) main

research station is located close by on Rothera Point, Adelaide Island (Figure

3.2C). Anchorage Island was surveyed as part of a hyperspectral airborne

campaign in February 2011 and visited for follow-up ground truth fieldwork

in January/February 2014 (Figure 3.2D).

During the Middle-Late Jurassic, Adelaide Island was located on the western

edge of the continental margin in a probable fore-arc position. Magmatism

continued until at least 20 Ma with the emplacement of late-stage tonalite-

granodiorite plutons and related silicic ignimbrites (Riley et al., 2012).

A local-scale geological map of the study area, based on previous geological

mapping updated with recent field observations, is shown in Figure 3.3. The

main geologic unit on Anchorage Island is the Adelaide Island Intrusive Suite

(AIIS). The AIIS is dominated by granodiorites, tonalites and gabbroic rocks;

granodiorite and hybrid gabbro/granodiorite plutons are the most abundant.

The granodiorite is leucocratic and is dominated by plagioclase (∼50–60 %),

which often weathers orange/brown; quartz typically accounts for ∼10 %

of the rock and K–feldspar ∼5 %. Mafic minerals are common (25 %), with

green/brown amphibole abundant, along with minor amounts of biotite

and epidote. The plutonic rocks are cut by dolerite and intermediate-felsic

composition dykes, which are typically < 1 m thick, dip steeply (> 75◦ to

the southeast) and strike in the range 210–230◦.
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Typically granodiorite – gabbro hybrid plutons which outcrop widely on the Wright Peninsula.
Increasingly silicic further north with quartz monzonite and tonalite more abundant.
An emplacement age of 45 – 52 Ma (U-Pb, fission track). 
Associated with relatively minor dolerite dyke intrusion.

Two-feldspar ‘pink granite’ (G).
Isolated, possibly stoped blocks of granite

Medium crystalline granodiorite (Gd)

Fine - medium crystalline diorite (D).
Probably gradational with granodiorite.
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Figure 3.3: Local scale geological map of Anchorage Island.
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3.3 Airborne hyperspectral data acquisition

The Anchorage Island airborne hyperspectral survey was conducted on 3rd

February 2011. The three sensors, CASI, SASI, and TASI, acquired simultane-

ous hyperspectral data covering parts of the VNIR, SWIR, and TIR regions of

the electromagnetic spectrum (Table 3.1). The acquisition system hardware

and other equipment (inertial measurement unit and instrument control

units) were installed on a single mounting plate in a BAS DeHavilland Twin

Otter aircraft and flown unpressurised (Figure 3.4). Radiometric correction

and geometric correction were carried out by ITRES Research. A total of

17 flight lines were orthorectified and a mosaicked image in calibrated at-

sensor radiance units (Level 1B; Table 3.2) was delivered, at a ground spatial

resolution of 0.5 m for CASI and 1 m for SASI and TASI.

Figure 3.4: The sensor installation in the BAS Twin Otter aircraft (ITRES, 2012); Abbreviations
are as follows: ICU, instrument control unit; IMU, inertial measurement unit.
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Data Level Description

Level 0 Reconstructed, unprocessed instrument and payload data at
full resolution, with any and all communications artifacts
(e.g., synchronization frames, communications headers, du-
plicate data) removed.

Level 1A Reconstructed, unprocessed instrument data at full reso-
lution, time-referenced, and annotated with ancillary in-
formation, including radiometric and geometric calibra-
tion coefficients and georeferencing parameters (e.g., plat-
form ephemeris) computed and appended but not applied
to Level 0 data.

Level 1B Level 1A data that have been processed to sensor units (not
all instruments have Level 1B source data).

Level 2 Derived geophysical variables at the same resolution and
location as Level 1 source data.

Level 3 Variables mapped on uniform space-time grid scales, usually
with some completeness and consistency.

Level 4 Model output or results from analyses of lower-level data
(e.g., variables derived from multiple measurements).

Table 3.2: NASA’s standard data processing levels.
From: http://science.nasa.gov/earth-science/earth-science-data/
data-processing-levels-for-eosdis-data-products.
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3.4 Field reflectance and emission spectral survey

As part of this study, in February 2014, myself and colleagues at the British

Antarctic Survey, ITRES Research and Defence Research and Development

Canada (DRDC) collaborated to carry out a field campaign in the Ryder Bay

area acquiring TIR emissivity spectra. A total of eight field localities were sur-

veyed on Anchorage Island (Figure 3.2D) encompassing a northeast-southwest

transect, though specific localities were selected due to their accessibility. At

each locality, between 3 and 5 hand specimens were collected from representa-

tive lithological units, mafic enclaves and mineral viens (e.g. epidote, quartz)

within close proximity (<10 m) of each field locality. Hand specimens were

collected from weathered, nadir facing rock surfaces. Although varying levels

of lichen cover were present, samples were measured from lichen-free (or min-

imal lichen covered) areas on each sample. Hand specimens were measured

using an ABB (ABB, Affolternstrasse 44, CH-8050, Zurich, Switzerland) full

spectrum reflectometer (FSR) to gather measurements of spectral reflectivity

and emissivity. The FSR is a Fourier Transform Infrared (FTIR) spectrometer

with a contact probe which uses a Michelson interferometer (MB-3000) with

mercury cadmium telluride (MCT) and indium arsenide (InAs) detectors.

Sources Interferometer  Focusing 
optics  

Interferogram  

or  Reference Sample 

Collecting 
optics  Detector  

Figure 3.5: Flowchart describing the operational process applied by the FSR instrument to derive
interferograms which are subsequently Fourier transformed to produce spectral
reflectance measurements.
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The FSR has a wavelength range from 0.7–14 µm, a spectral resolution of

<1 nm and a spot size of ∼4 mm. The FSR was developed by ABB for

DRDC. The FSR represents a significant improvement over existing field

FTIR spectrometers; the FSR is compact and portable, has a high signal to

noise ratio due do its cooled MCT and InAs detectors, as well as covering a

large spectral range from the visible all the way to the TIR. The FSR is also a

contact probe instrument, similar to spectral radiometers conventionally use

for VNIR/SWIR spectroscopy.

The spectral resolution of the FSR was set to 0.1 nm and the FSR was set up

such that each spectrum produced by the instrument represented the average

of 128 individual spectral measurements. A calibrated gold panel is built into

the FSR allowing for the calculation of emissivity; the gold panel was used to

recalibrate the FSR at the start of each batch of measurements at each field

locality. Figures 3.5 and 3.6 show details and operational use of the FSR.

Figure 3.6: Images showing practical use of the FSR in field and laboratory conditions.
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4 Methodology

4.1 Introduction

Geological remote sensing using optical data and spectral techniques have had

a long history of research and development; the ability to derive ‘laboratory-

like’ spectral data from airborne and spaceborne platforms allows for the

direct identification of surface materials and lithologies (Goetz et al., 1985).

Spectral remote sensing has yielded unprecedented geological and lithological

mapping capabilities, however other remote sensing technologies also offer

utility for geological mapping (Gupta, 2003).

The microwave region of the electromagnetic spectrum, from 1 mm to 1 m,

is a large atmospheric window suitable for remote sensing. From a geological

perspective, techniques such as synthetic aperture radar (SAR) have been use-

ful due to their ability to map geomorphological characteristics, terrain, relief,

sub-surface structures and ground deformation, though lithological identifi-

cation is not currently possible (Gupta, 2003). Additionally, active remote

sensing technologies, such as LiDAR offer utility for geological mapping.

High resolution DEMs, acquired by LiDAR, can be used to map geological

structures through interpretation of terrain characteristics (e.g. Webster et al.,

2006) though again, lithological identification is not currently possible.

The afore mentioned techniques are complimentary to spectral techniques

operating in the optical region of the electromagnetic spectrum, but are

not considered in this study. Here, the optical domain is the focus, for

several reasons: there has been no previous work utilising hyperspectral data

in the Antarctic, there is a general paucity of studies and lack of defined

methods for lithological mapping using hyperspectral TIR data, and a lack

of hyperspectral TIR studies in a continental margin arc setting (Section

2). This thesis focuses on developing techniques relevant to hyperspectral

(TIR) data in the polar context of the research, though it is anticipated that

complimentary information could be provided through combination with

other remote sensing technologies.
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4.1.1 Preliminary analysis of visible and shortwave data

Whilst the VNIR/SWIR spectral range has been widely exploited for litho-

logical mapping purposes, in the context of the Anchorage Island study area

(Section 3.2), the use of VNIR/SWIR data is not advantageous. The igneous

lithological units do not have distinguishing features at VNIR/SWIR wave-

lengths and any analysis will be complicated by the strong surficial coating of

rock-encrusting lichens as demonstrated by previous studies (Haselwimmer

et al., 2010; Section 2.6.2).

The hyperspectral VNIR/SWIR data was subject to some preliminary analysis

which revealed a number of issues that were compounded during the atmo-

spheric correction process (Black et al., 2014b; Appendix A) and subsequent

derivation of surface reflectance data, outlined briefly as follows.

The spectral range of the CASI and SASI data (Table 3.1; page 59) has an

approximate 100 nm overlap, between 950 nm and 1055.5 nm. Analysis

revealed an offset in radiance values within this overlap range (Figure 4.1).

In the overlap range CASI radiance values were found to be larger than the

corresponding SASI radiance, with a trend of increasing radiance offset with

increasing wavelength. This radiance offset is present in the radiometrically

calibrated data and atmospherically corrected data. Several factors are likely

to have produced the radiance offset.
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Figure 4.1: Results from atmospheric correction of CASI (blue) and SASI data (red) compared to
laboratory measurements (black) from a calibrated target within the scene. Label (A)
highlights the overlapping spectral range of the two sensors as well as the systematic
spike in CASI reflectance. From Black et al. (2014b).
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The first and most probable contributing factor is 2nd order light contribu-

tions. The CASI sensor’s diffraction grating produces a 2nd order diffraction

spectrum, whose blue end overlaps with the red-near infrared (NIR) end of

the 1st order spectrum. Illumination conditions at the time of acquisition

may have allowed this effect to lead to additive background signal at the red-

NIR end. The second contributing factor could be the reduced calibration

accuracy in the NIR end of the spectrum, as the CASI sensor is less sensitive

at the longest wavelengths (S. Achal, personal comm.).

Thirdly, preliminary investigations also revealed a systematic underestimation

of radiance values in the SWIR (from the SASI instrument). This is attributed

to the conditions during acquisition. The instruments were operating in an

unpressurised aircraft, with temperatures significantly outside the normal

operational range; the SASI instrument was as much as 20◦ C (68◦ F) outside

its normal operating range. These conditions meant there was a noticeable

degradation in the response of the sensor, and hence the measured at-sensor

radiance was lower in the SWIR data (Figure 4.2).

During the acquisition of hyperspectral data over Anchorage Island, the chang-

Figure 4.2: (A) shows CASI true colour, atmospherically corrected image of Anchorage Island
(R: 640.6 nm, G: 554.6 nm, B: 458.8 nm). (B) shows a SASI colour composite,
atmospherically corrected image of Anchorage Island (R: 1557.5 nm, G: 1602.5 nm,
B: 2202.5 nm).
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ing atmospheric conditions caused significant flight line illumination varia-

tions which could not be adequately compensated during the atmospheric

correction process (Figure 4.2). A non-uniformly illuminated mosaic could

cause significant problems in deriving appropriate geological endmembers;

the imperfections in the data would lead to extracted endmembers which

are not geologically interpretable, as a result of the sensor noise, residual

atmospheric effects and illumination variations (Winter, 1999).

These reasons contributed to the decision not to pursue the analysis of the

VNIR/SWIR data for geological purposes. However, the data provided useful

insights into the ability to map and identify vegetation and lichen cover in a

polar environment; further analysis was carried out using both satellite data

and the hyperspectral VNIR/SWIR data to produce a new methodology for

mapping of lichens on the Antarctic Peninsula (Black et al., 2014a; Casanovas

et al., 2015; Appendix A).

4.1.2 Theoretical basis

To produce a lithological map using hyperspectral data the primary interest is

the differentiation of distinct lithologies and mineralogical differences within

individual pixels; therefore, the processing applied differs from techniques

such as target detection, classification or spectral matching (Rogge et al., 2009;

Section 2.5). Here, state of the art spectral unmixing techniques were applied,

in an automated manner, moving away from simpler spectral matching tech-

niques or manual processes. The three steps required for the successful use of

spectral unmixing techniques have been previously defined (Section 2.5.3): (1)

identify the number of endmembers to extract from the hyperspectral image,

(2) extract endmembers from the image using an endmember extraction algo-

rithm (EEA) and (3) perform spectral mixture analysis (SMA) to determine

the abundances of each endmember. During this process, the endmembers

can be identified, either manually by an expert user with prior knowledge of

the local geology, or through comparison to known reflectance/emittance

of the likely mineral assemblages that make up individual rock units using
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either spectral libraries or field spectral measurements (Harris et al., 2005;

Rogge et al., 2009). A lithological map is then produced as the output of the

automated processing chain.

Due to the high spatial resolution (1 m) of the hyperspectral data, a pure pixel

scenario is assumed; this is consistent with other studies, where the pure pixel

scenario has been successful with ground resolutions of up to tens of metres

(Rogge et al., 2009; Plaza et al., 2011). The two major steps required for the

success of the processing chain are (1) accurately determining the number of

endmembers and (2) extraction of the endmembers from the image using an

EEA (Section 2.5.3). In order to investigate the efficacy of these methods at a

variety of signal to noise ratios, synthetically generated hyperspectral data was

used. The use of synthetic data means that the endmembers are known in ad-

vance and the data mixed with differing noise levels allows a robust assessment

of algorithms; both the inputs and outputs are known and can be measured

(unlike with real hyperspectral data), therefore a straightforward accuracy

assessment can be performed. The use of synthetic hyperspectral data for

algorithm development and investigation has been widely demonstrated (e.g.

Plaza et al., 2002; Chang and Du, 2004; Nascimento and Bioucas-Dias, 2005;

Rogge and Rivard, 2006; Bioucas-Dias and Nascimento, 2008; Bioucas-Dias,

2009).

A limitation of the use of synthetic hyperspectral data is that it does not allow

for investigation of the spatial component. The inclusion of spatial weighting

within the endmember extraction has been investigated by a number of studies

that consider the spatial distribution of pixels when carrying out endmember

extraction; techniques such as Spatial–Spectral Preprocessing (SSPP; Zortea

and Plaza, 2009), Automated morphological endmember extraction (AMEE;

Plaza et al., 2002), spatial–spectral endmember extraction (SSEE; Rogge et al.,

2007) and superpixel endmember extraction (Thompson et al., 2010). Here

the synthetic data was randomly mixed and the ‘pixels’ randomly distributed,

hence there was no spatial pattern to the synthetic ‘image’; therefore, spatial

techniques were not investigated when considering the on synthetic data

(though they were applied when considering the real hyperspectral data).
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The methodology is therefore split into two sections. Firstly, Section 4.2

focuses on the use of synthetic hyperspectral data generated from the mea-

sured field spectra. Using this synthetic data the two major steps required

for the success of the processing chain are investigated: (1) determining the

number of endmembers and (2) extracting the endmembers. Algorithms

are compared for each of the two steps using synthetic data at various noise

levels and the results validated. Following this, in Section 4.3, the challenge

of processing real hyperspectral data is tackled. The ancillary geochemical

and petrographic analyses of samples from Anchorage Island are presented,

followed by the preprocessing, and finally the automated lithological mapping

processing chain. The automated processing chain was developed with input

from the synthetic data investigations as well as consideration of other algo-

rithms which have proven performance on low SNR data and those which

also consider the spatial component during processing.
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4.2 Synthetic hyperspectral data

4.2.1 Spectral resampling

Field emissivity spectra collected by the FSR were convolved to the spectral

response functions of the TASI sensor through

Li =

∫

Ls (λ)ri (λ)δλ
∫

ri (λ)δλ
(11)

where Li is convolved emissivity, Ls (λ) is the sample’s reflectance at band i and

wavelength λ, ri (λ) is the spectral response function of band i at wavelength

λ j , over the wavelength interval of the sample δλ.

4.2.2 Synthetic data generation

The synthetic hyperspectral data set comprises 10,000 random mixtures gen-

erated from 3 rock spectra measured in the field (granite, granodiorite and

dolerite), along with a spectral library measurement of sea water. Each rock

spectrum collected by the FSR was resampled to the spectral response func-

tion of the TASI sensor (Equation 11) resulting in a spectrum containing 32

bands spanning 8 to 11.5 µm with a spectral resolution of 109.5 nm (Figure

4.3).

The synthetic hyperspectral data was generated by mixing of the 4 spectra

using a Dirichlet distribution (as defined in Lillesand et al., 2004) to give

the abundances of each mixture (e.g. Bioucas-Dias and Nascimento, 2008;

Bioucas-Dias, 2009) where 5000 ‘pixels’ were generated. During the gener-

ation of the synthetic data, zero-mean white additive Gaussian noise was

included to simulate signal to noise ratios (SNR) ranging from 10:1 to 100:1

(e.g. Nascimento and Bioucas-Dias, 2005). The pure pixel assumption was

implicit in the generation of the synthetic data, as no maximum purity level

was specified during the synthetic mixing process; thus, one ‘pixel’ could

contain 100% of a single spectrum (Nascimento and Bioucas-Dias, 2005).
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Figure 4.3: Spectral profiles convolved to TASI wavelengths which were utilised in the generation
of the synthetic hyperspectral data.

4.2.3 Processing chain

4.2.3.1 Step 1: Determining the number of endmembers The first

step is to determine the number of endmembers. For the investigation of

this step, the two most popular techniques, VD-HFC1 and HySime2 were

used, implemented in MATLAB (MathWorks, 2011). A detailed description

of the implementation of the VD-HFC algorithm is described in Chang and

Du (2004) and full details of the HySime algorithm are given by Bioucas-Dias

and Nascimento (2008), as well as a summary presented in Section 2.5.3.2.

In order to assess the robustness of the algorithms in spite of noise, the signal

to noise ratio (SNR) of the spectra in the synthetic data was varied from 10:1

to 100:1 in steps of 10. For each SNR value, the synthetic data was generated

with 5000 ‘pixels’ and the endmember extraction algorithms were applied

to the synthetic data. To achieve a reliable result, this process was repeated

10,000 times for each SNR value. For each of the 10,000 runs the number of

endmembers was calculated using the VD-HFC and HySime algorithms.
1VD-HFC: http://www.ehu.eus/ccwintco/uploads/f/f8/EIA_Toolbox_reduced_v04.zip
2HySime: http://www.lx.it.pt/∼bioucas/code/demo_HySime.zip
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4.2.3.2 Step 2: Endmember extraction In the second step, the endmem-

bers are extracted. Here the pure pixel algorithms, N-FINDR3 and VCA4

were applied, again due to their implementation in the MATLAB environ-

ment, along with their relatively quick processing times and proven success at

extracting endmembers (Winter, 1999; Nascimento and Bioucas-Dias, 2005;

Chang and Plaza, 2006; Plaza et al., 2012). These techniques are fully auto-

mated with their only inputs being the number of endmembers to extract

and the image itself (in this case, fixed to 4). A detailed description of the

implementation of the N-FINDR algorithm is described in Winter (1999) and

full details of the VCA algorithm is given by Nascimento and Bioucas-Dias

(2005).

For the endmember extraction, a similar approach to Step 1 was used. Again,

the effectiveness of the algorithms under a range of signal to noise ratios

was investigated. The same randomised initialisation process was used; 5000

‘pixels’ of synthetic data were generated at a range of SNR values from 10:1 to

100:1 in steps of 10, and each ran 10,000 times. For each run the endmembers

were extracted and compared to input spectra, with the root mean square

error (RMSE) calculated through

RMSE=
1
n

n
∑

i=1

(Ŷi −Yi )
2 (12)

where Ŷi represents the ith predicted reflectance value (of the extracted

endmember) and Yi represents the i th reflectance value of the library input

spectra, and n represents the number of endmembers (4 in this case). The

RMSE value was calculated with respect to each endmember and library

spectra combination and the lowest value selected (i.e. the closest match).

This yielded n RMSE values for each run which were then averaged to give

an overall RMSE value.

3N-FINDR: http://sourceforge.net/projects/matlabhyperspec
4VCA: http://www.lx.it.pt/∼bioucas/code/demo_vca.zip
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4.3 Real hyperspectral data: Anchorage Island

4.3.1 Geochemical and petrographic analyses

Four samples representative of the main lithological units (granite, granodior-

ite and dolerite) were further investigated to understand their geochemistry;

two granodiorite samples (J13.19.10 and J13.22.5), one granite (J13.21.10)

and one dolerite sample (J13.22.10). Thin sections were examined using a

petrological microscope, a FEI Quanta 650F QEMSCAN scanning electron

microscope and a Cameca SX-100 electron microprobe. Backscattered elec-

tron (BSE) images were collected on the QEMSCAN using an accelerating

voltage of 20 kV and a working distance of∼ 13 mm. Point samples (∼ 5 µm)

were analysed using the electron microprobe (EPMA) to determine major

element geochemistry and identify minerals and mineral phases from grains

within thin sections. Point counting (Galehouse, 1971) was used to determine

mineral composition; 500 points were counted in thin section on each of the

four samples.

The samples were also analysed by X-ray fluorescence spectrometry (XRF) to

determine whole-rock major and trace elements using a PANalytical Axios-

Advanced XRF spectrometer at the University of Leicester. Powders from

whole-rock samples were obtained through crushing in a steel jaw crusher and

powdering in an agate ball mill. Major elements were determined from fused

glass discs and trace elements from powder pellets. Loss on ignition (LOI)

values were calculated by igniting ∼3 g of each sample in ceramic crucibles

at 950 ◦C. Glass discs were prepared from 0.6 g of non-ignited powder and

3 g of lithium metaborate flux, melted in a Pt-Au crucible over a Spartan

burner then cast into a Pt-Au mould. Powder pellets of 32 mm diameter were

produced from mixing 7 g of fine ground sample powder with 12-15 drops of

a 7% polyvinyl alcohol (PVA) solution (Moviol 8-88) and pressed at 10 tons

per square inch.
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4.3.2 Hyperspectral data preprocessing

Figure 4.4 shows a flowchart of the preprocessing steps. Radiometric correc-

tion and geometric correction were carried out by ITRES Research Ltd. using

their propriety tools. In the first step, radiometric and spectral calibration

coefficients were applied to convert the raw digital numbers into spectral radi-

ance values. In the second step, the ITRES proprietary geometric correction

software utilised the navigation solution, bundle adjustment parameters, and

digital elevation models (DEMs) to produce georeferenced radiance image

files for each flight line. In addition, flight lines were combined into an image

mosaic of the area. The nearest neighbour algorithm was used to populate

the image pixels so that radiometric integrity of the pixels could be preserved.

At the image mosaicking stage, a minimised nadir angle approach was imple-

mented such that the spectra of the pixel with the smallest off-nadir angle

from overlapping adjacent flight lines was written to the final mosaic image.

Whilst the TIR domain is an atmospheric window, there is atmospheric

influence which needs to be compensated for, especially for quantitative

applications (Liang et al., 2002). Here atmospheric correction was performed

through the inversion of radiative transfer modelling, following a similar

approach to our corrections of VNIR/SWIR Antarctic hyperspectral data

(Black et al., 2014b); simple in-scene based techniques (e.g. ISAC, AAC) were

omitted due to their limitations as previously discussed (Section 2.3.1).

The basic radiative transfer equation in the TIR domain as given by Dash

et al. (2002) is (where each term is a function of wavelength, λ, omitted for

clarity)

Ls = Lp +τ · Lg +τ · [1− ε] ·
F
π

(13)

where Ls is the total thermal radiance received at-sensor, Lp the thermal path

radiance emitted by the atmosphere between the ground and the sensor, τ

the ground-to-sensor transmittance, Lg the ground emitted radiance, ε the

ground surface emissivity and F the downwelling thermal sky flux at the
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Figure 4.4: Flow chart summarising the preprocessing of the hyperspectral imagery. Inputs and
parameters are shown in the left column (light grey boxes). Abbreviated processing
steps are as follows: MNF, minimum noise fraction.
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ground (Richter and Coll, 2002). The ATCOR-4 (Richter and Schläpfer, 2002,

2014) package was used, which applies Equation 13. The two inputs required

by ATCOR-4 to approximate the atmospheric conditions are the visibility

and column water vapour amount. Visibility data is continually measured at

the nearby Rothera research station using an automated BIRAL HSS VPF-730

Combined Visibility & Present Weather Sensor. The water vapour value was

derived using an assumed value of 2.0 g c m−3 by comparison to radiosonde

data. The mosaicked images were processed one flight line at a time to convert

the at-sensor radiance into ground-leaving radiance. Following this, TES was

performed using the maximum-minimum difference of emissivity technique

(Gillespie et al., 1998), selected due to its improvements over other TES

techniques and its development for TIR data with many bands (Section 2.3.2).

Investigation of the emissivity imagery following atmospheric correction

and TES showed lower than expected emissivity values at the lowest wave-

lengths (< 8.5 µm) and higher than expected emissivity values for remain-

ing wavelengths (> 8.5 µm), along with residual atmospheric absorptions

causing emissivity features (which could be misinterpreted in a geological

context). This was likely due to the challenging acquisition conditions and

poor calibration of the instrument, along with inadequate representation of

the atmosphere due to approximations in the atmospheric correction process

(Black et al., 2014b). An empirical correction, through the EELM was applied.

The EELM generates scalar multiplicative values for each band of the image

through regression of the target image pixel spectra to the assumed “reference”

spectra - this approach is comparable to the use of pseudo invariant features

(PIFs; Freemantle et al., 1992; Philpot and Ansty, 2011) and the empirical

line method (ELM; Smith and Milton, 1999) which is commonly applied

to VNIR/SWIR data (e.g. Tuominen and Lipping, 2011). Here EELM was

applied utilising target pixels selected from granite, dolerite, snow and sea

water (to cover a range of emissivity values); reference spectra were selected

from spectral library measurements (snow and sea water from Baldridge et al.,

2009) and convolved field spectra (granite and dolerite).
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High levels of salt and pepper noise along with within-in track striping and

flight line illumination differences were still apparent in emissivity imagery

so a final processing step was applied to perform noise reduction. To improve

the signal to noise ratio (SNR), the minimum noise fraction (MNF; Boardman

and Kruse, 1994; Green et al., 1998) was applied, where its inverse transform

using the channels with the least amount of noise were used create the final

noise-reduced dataset. The first four channels of the MNF image (bands 1 to

4) were then used in the inverse MNF to produce the noise-reduced emissivity

image. A median filter with a radius of 2 was applied to reduce noise in the

spectral domain (e.g. Gilmore et al., 2011).

The signal to noise ratio (SNR) of the imagery before and after preprocessing

was investigated by utilising an area of sea water in the image and calculating

the SNR through

SNR=
µi j

σi j

(14)

where i and j are the rows and columns of the image, µi j is the mean of the

pixels and σi j is the standard deviation of the pixels. The signal to noise ratio

is often reported using the logarithmic decibel (dB) scale; the SNR in dB is

defined through

SNRdB = 10 log10(SNR2) = 20 log10(SNR) (15)

Finally, prior to processing, the image was masked to remove snow/ice and

sea water; a mask was generated from the temperature image where pixels <

5 ◦C were removed.

4.3.3 Image processing and lithological mapping

In order to produce a lithological map, a six step processing chain was applied,

shown in Figure 4.5. The processing chain is fully automated, with only

a small number of inputs/parameters; algorithms were selected from the

existing literature based on their ability to cope with the low SNR datasets.

The six steps are: (1) superpixel segmentation; (2) identify the number of
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endmembers to extract from the suerpixels; (3) extract endmembers from the

image using an endmember extraction algorithm (EEA); (4) perform spectral

mixture analysis (SMA; also known as spectral unmixing) to determine the

fractional abundances each endmember; (5) produce a predictive classification

map from endmember fractional abundances; (6) identify endmembers and

label the predictive map classes to produce a lithological map.

These steps are fully automated in a MATLAB environment (MathWorks,

2011) and do not require any user interaction. Steps 1 to 5 require the hy-

perspectral scene and very few inputs. In this study, step 6 is also performed

automatically with the additional input of the field spectral data (convolved

to TASI spectral response functions; Equation 11) which are used to label

the predictive map classes. In the absence of field spectral data, step 6 could

be performed by an expert user with manual interpretation of endmembers

(or comparison to spectral libraries) to label the predictive map classes. The

following sections describe each step of the processing chain.

4.3.3.1 Step 1: Superpixel segmentation Firstly, superpixel segmenta-

tion which adds a spatial component to endmember extraction, was applied.

This technique was selected due to its proven success on low SNR datasets,

its highly optimised implementation (fast processing times) along with its

noise reduction and data reduction ability (Section 2.5.3.3). Superpixels are

homogeneous image regions comprised of several pixels having similar values

and are generated by intentional over-segmentation of the emissivity image

which aggregates scene features into smaller segments (Thompson et al., 2010;

Gilmore et al., 2011).

Briefly, the superpixel segmentation uses graph based image segmentation

(Felzenszwalb and Huttenlocher, 2004), where the pixel grid is shattered

into an 8-connected graph with nodes connected by arcs representing the

Euclidean spectral distance and the nodes are then iteratively joined using an

agglomerative clustering algorithm (Felzenszwalb and Huttenlocher, 2004;

Thompson et al., 2010, 2013). A stable bias parameter, k controls the size of

the superpixels, along with enforcing a minimum superpixel size and in a final

81 of 266



Step 1

Superpixel
segmentation

VD

Number of
endmembers

EEA (VCA)

Endmember
fractional abundances

Predictive
classification map

Lithologic map

Fully automated lithological mapping

Step 2

Step 3

Step 4

Step 5

Bias parameter

Minimum
segment size

Abundance
threshold

Step 6
Spectral angle
matching and
class labellingField spectral

data

Extracted
endmembers

Surface emissivity

Fully constrained
linear spectral unmixing

Figure 4.5: Flow chart summarising the methods of the fully automated lithological mapping
process. Inputs and parameters are shown in light grey boxes. Abbreviated processing
steps are as follows: VD, virtual dimensionality; EEA, endmember extraction
algorithm; VCA, vertex component analysis.
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step smaller regions are merged to their nearest adjacent clusters (Felzenszwalb

and Huttenlocher, 2004; Thompson et al., 2010). The superpixel approach

has been shown to be beneficial on low SNR datasets and can aid in deriving

endmembers which more closely resemble manually derived endmembers

(Thompson et al., 2010).

For the superpixel segmentation, the bias parameter k, which controls the size

of the superpixels, was set to 0.1 and the minimum superpixel region size was

set to 30 pixels using the Euclidean spectral distance as the divergence measure.

These parameters were determined quantitatively to by investigating the

sensitivity of the segmentation to small features, such as the stoped granite

block in the North East of Anchorage Island (Figure 3.3). This step also

serves as an image reduction step, thereby speeding up processing times; the

raw image contains over 7.6 million pixels (3062 × 2489) and the superpixel

segmentation reduces this to 9810 superpixels.

4.3.3.2 Step 2: Estimating the number of endmembers Following the

generation of superpixels, Virtual Dimensionality (VD; Chang and Du, 2004)

was used to determine the number of endmembers (n); the VD concept for-

mulates the issue of whether a distinct signature is present or not in each of

the spectral bands as a binary hypothesis testing problem, where a Newman-

Pearson detector is generated to serve as a decision-maker based on a pre-

scribed false alarm probability Pfa (Chang and Du, 2004; Plaza et al., 2011). In

preliminary investigations, the Pfa was varied from 10−3 to 10−6 however the

estimated number of endmembers did not change; therefore the Pfa was fixed

at 10−4 in line with previous studies (Chang and Du, 2004; Plaza et al., 2011).

4.3.3.3 Step 3: Endmember extraction Vertex Component Analysis

(VCA; Nascimento and Bioucas-Dias, 2005) was applied to extract n endmem-

bers from the superpixels. VCA exploits the fact that endmembers occupy the

vertices of a simplex and assumes the presence of pure pixels in the data. The

algorithm iteratively projects data onto a direction orthogonal to the subspace

spanned by the endmembers already determined and the new endmember
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signature corresponds to the extreme of the projection. The algorithm iter-

ates until the number of endmembers is exhausted. VCA has been shown to

be comparable to state of the art endmember extraction algorithms, such as

N-FINDR (Winter, 1999) and outperforms manual techniques such as the

Pixel Purity Index (PPI; Boardman, 1993). VCA is an order of magnitude less

computationally complex than other state of the art endmember extraction

algorithms which results in significantly decreased processing times for large

datasets (Nascimento and Bioucas-Dias, 2005).

4.3.3.4 Step 4: Spectral mixture analysis The endmembers derived

from the VCA algorithm were used as input to step (4) where linear SMA

is used to produce fractional abundances of the n endmembers using the

original image. Due to its ease of implementation, fully constrained linear

spectral unmixing (FCLSU; Heinz and Chang, 2001) was applied to derive

fractional abundances of each endmember, given as

Rb =
n
∑

i=1

Fi Si b (16)

where Rb is the fractional abundance of the pixel at band b , Fi is the fractional

abundance of endmember i , Si b describes the emissivity of endmember i at

band b , and n is the number of endmembers. Equation 16 was solved subject

to the constraints that fractional abundances sum-to-one (ASC; abundances

sum-to-one constraint) and fractional abundances are non-negative (ANC;

abundance non-negative constraint) (Rogge et al., 2009). These algorithms

were selected due to their availability and implementation in the MATLAB

environment (MathWorks, 2011), along with their relatively quick processing

times and proven success at extracting endmembers under moderate to high

noise conditions (Nascimento and Bioucas-Dias, 2005; Chang and Plaza, 2006;

Plaza et al., 2012).
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4.3.3.5 Step 5: Predictive map classification Utilising the abundance

images a predictive classification map was generated following a similar ap-

proach to Rogge et al. (2009). The map was generated by determining the

endmember with the maximum fractional abundance for each pixel and as-

signing that pixel to the given endmember class. For a pixel to be assigned

to a particular class, the endmember abundance must be above a minimum

fractional abundance threshold (or confidence level), otherwise a null class

was assigned. The minimum fractional abundance was set to the intermediate

value of 0.5 for practical purposes, however this value could be increased to

identify spectrally purer regions (Rogge et al., 2009).

4.3.3.6 Step 6: Class labelling The interpretation step was carried out

to produce geological labels which were automatically applied to the classifi-

cation map generated from step 5. The image derived endmember spectra

were compared to field emissivity spectra (e.g. Harris et al., 2005; Rogge

et al., 2009) through calculation of spectral angle (SA), also known as Spectral

Angle Mapper (SAM; Kruse et al., 1993). SA was calculating in reference to

the image derived endmember spectra and the spectra collected in the field

through the application of

SA= cos−1

�

~t · ~r
‖~t ‖ · ‖~r ‖

�

(17)

where t represents the spectrum of the target (endmember), r represents the

spectrum of the reference (field spectra) and SA is the spectral angle (in radians;

0 to 2π). This technique to determine similarity is insensitive to gain factors

as the angle between two vectors is invariant with respect to the lengths of the

vectors, and allows for laboratory spectra to be directly compared to remotely

sensed spectra (Kruse et al., 1993). Predictive map classes were automatically

labelled by their closest match from the field spectral data (e.g. Rivard et al.,

2009) to produce a lithological map.

85 of 266



4.3.4 Image processing validation

In order to validate the findings, the root mean square error metric (RMSE)

was used for assessment (e.g. Plaza et al., 2012). The reconstructed hyperspec-

tral image is defined as ŷi j , following

ŷi j =
n
∑

n=1

(Mn × Sn) (18)

where i and j are the rows and columns of the image, n is the number of

endmembers, Mn denotes the endmember spectrum of n and Sn denotes the

fractional abundance of endmember n. Following this reconstruction the

RMSE between the original hyperspectral image, y and the reconstructed

hyperspectral image, ŷ is calculated using

RMSE(y, ŷ) =

 

1
B

B
∑

j=1

[yi j − ŷi j ]
2

!
1
2

(19)

where B is the number of spectral bands and ŷi j and yi j are pixels of the

original hyperspectral image and the pixels of the reconstructed hyperspectral

image respectively. Summary statistics were calculated from RMSE pixels of

each endmember class as well as the whole RMSE image. The RMSE metric

is based on the assumption that a set of high quality endmembers may allow

reconstruction of the original image with higher precision than a set of low

quality endmembers, regardless of the presence of such endmembers in the

original scene (Plaza et al., 2012).

Additionally, spectra were extracted and compared from the original image

and the reconstructed image (calculated from the endmembers and their

fractional abundances) for granite and granodiorite from pixels of high purity

(0.9 fractional abundance), medium purity (0.75 fractional abundance) and

low purity (0.5 fractional abundance), including the RMSE metric, to validate

the findings in a spectral context.
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5 Results

5.1 Introduction

This chapter presents the results, split into two main sections. Firstly, in

Section 5.2 the results from the synthetic data investigation are presented.

Synthetic data was generated using field spectral data of the main represen-

tative lithological units from the study with a range of SNRs. Algorithms

were compared for two processing steps: (1) determining the number of end-

members and (2) extracting endmembers. The synthetic data investigations

allowed for an investigation of algorithm performance at different SNR values

and informed the algorithm choice for the image processing chain which was

applied in real hyperspectral data. Secondly, in Section 5.3 the results of the

real hyperspectral data from Anchorage Island are presented, including the

field data, image processing, lithological mapping and interpretation, and the

validation of the results.

5.2 Synthetic data

5.2.1 Step 1: Determining the number of endmembers

Figure 5.1 shows a histogram comparing the results of the two methods for

determining the number of endmembers, at different SNR and using different

numbers of endmembers. Table 5.1 shows summary statistics.

The VD-HFC method performs consistently at all SNRs above 30:1. It out-

performs the HySime technique for SNRs¶ 40:1, where HySime incorrectly

estimates the number of endmembers. At the SNR of 20:1, VD-HFC shows

some variety in the number of endmembers, though for 9525 out of 10000

runs (95%), it correctly estimates 4 endmembers. Only at the lowest SNR

(10:1) does VD-HFC fail where it incorrectly determines there are 3 endmem-

bers. HySime yields consistently accurate results at SNRs of¾ 50:1, correctly

predicting 4 endmembers. At SNRs of 40:1 to 20:1, HySime incorrectly deter-
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mines 3 endmembers, and at the lowest SNR of 10:1, incorrectly determines

2 endmembers. HySime does display consistency at all noise levels with a

standard deviation of 0.

Overall, these results suggest that VD-HFC marginally outperforms HySime,

but its performance could be compromised if the SNR is extremely low

(10:1). However, even with low SNR values (20:1) this shortcoming is largely

overcome and near 100% accuracy can be achieved. At all SNRs above 30:1,

VD-HFC achieves 100% accuracy, whereas HySime only achieves this above

50:1.
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(a) VD-HFC results

(b) HySime results

Figure 5.1: Histograms for (a) VD-HFC and (b) HySime results for determining the number of
endmembers (n = 4) at varying signal to noise ratio (annotated in the top right of
each histogram).
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VD-HFC HySime
SNR Mean StDev Mean StDev

10 3 0 2 0
20 3.95 0.21 3 0
30 4 0 3 0
40 4 0 3 0
50 4 0 4 0
60 4 0 4 0
70 4 0 4 0
80 4 0 4 0
90 4 0 4 0

100 4 0 4 0

Table 5.1: Summary statistics of VD-HFC and HySime for determining the number of end-
members at a different signal to noise ratio (SNR). StDev, standard deviation.
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5.2.2 Step 2: Endmember extraction

Figure 5.2 shows RMSE values for the two methods for extracting endmem-

bers at different SNR. Table 5.2 shows summary statistics.

Figure 5.2: Root Mean Square Error [%] values for the two different endmember extraction
techniques at increasing signal to noise ratio (SNR).

N-FINDR VCA
SNR Mean StDev Mean StDev

10 10.10 0.94 6.38 0.59
20 6.98 1.11 3.78 0.82
30 6.09 1.20 2.70 0.97
40 5.70 1.25 1.95 0.97
50 5.48 1.30 1.39 0.83
60 5.35 1.31 1.03 0.65
70 5.25 1.30 0.80 0.47
80 5.22 1.33 0.66 0.34
90 5.20 1.36 0.57 0.27

100 5.15 1.34 0.51 0.24

Table 5.2: Summary statistics of VCA and N-FINDR for extracting endmembers at a different
signal to noise ratio (SNR). Values quoted are Root Mean Square Error (RMSE, %);
StDev, standard deviation.
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For both N-FINDR and VCA, RMSE is reduced with increasing SNR. On the

whole, N-FINDR does not perform as well as VCA, at all SNRs. Above SNRs

of 50:1, N-FINDR plateaus with RMSE values at ∼ 5%. VCA consistently

yields lower RMSE values than N-FINDR by a factor of almost 2. At higher

SNRs, VCA’s RMSE continues to decrease, though it begins to plateau at

around 0.5% for SNRs above 80:1.

5.2.3 Summary

The synthetic data investigations revealed two algorithms which perform

consistently well at low SNRs. To determine the number of endmembers,

VD-HFC was selected due to its ability to accurately determine the number

of endmembers at low SNRs and better performance than the HySime al-

gorithm. For extracting endmembers, VCA outperformed N-FINDR by a

factor of almost 2 and yielded low RMSE values even at low SNRs. These

algorithms were therefore incorporated in the processing chain for real hy-

perspectral data, as described in the following sections.
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5.3 Anchorage Island lithological mapping

5.3.1 Field spectral data

Table 5.3 shows whole-rock major and trace element data from XRF spec-

troscopy. Table 5.4 shows the modal abundances of minerals as determined

from point counting. Spectral data collected from in situ samples are dis-

played in Figure 5.3. EPMA was used to identify minerals (Appendix B).

The majority of Anchorage Island is composed of weathered granodiorite,

however some areas contain amphibole rich granodiorites (J13.24, J13.25 and

J13.26) and areas in the southwest of the island (J13.19 and J13.20) display

strongly weathered and altered granodiorites.

The spectral variability of the granidiorites is shown in Figure 5.3A. Numer-

ous dolorite dykes cut the granodiorite unit; a spectral measurement from

a dolerite dyke in the northwest of Anchorage Island is shown in Figure

5.3B. The field spectra for dolerite and granodiorite show similar spectral
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Figure 5.3: Spectral emissivity measured in the field using a Fourier Transform Infrared Spec-
trometer (FTIR) of relevant lithological units from Anchorage Island. (A) shows
granodiorite spectra (B) shows granite and dolerite spectra.
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Sample J13.22.10 J13.19.10 J13.22.5 J13.21.10
Unit Dolerite Granodiorite Granite

Major elements (%)
SiO2 54.40 55.19 59.59 78.29
TiO2 1.02 0.94 0.87 0.20

Al2O3 16.62 18.18 16.35 11.64
Fe2O3† 8.66 8.55 6.67 0.86

MnO 0.12 0.11 0.15 0.01
MgO 3.96 3.29 3.52 0.16
CaO 8.57 7.49 6.16 0.53

Na2O 3.14 4.04 3.51 2.74
K2O 0.96 1.07 2.12 5.61
P2O5 0.24 0.18 0.19 0.02
SO3 0.17 0.01 < 0.003 < 0.003
LOI 2.05 0.88 0.97 0.31

Total 99.92 99.93 100.09 100.38

Trace elements (ppm)
As 6.7 8.4 5.1 4.4
Ba 365 432 698 476
Ce 44.2 27.9 48.4 11.4
Co 25.7 18.3 21.6 < 1.1
Cr 112 6 37 < 1
Cu 111 20 32 4
Ga 18.2 21.2 17.8 9.9
La 20.0 13.7 21.3 7.9

Mo 3.9 2.3 3.3 0.9
Nb 4.8 4.4 6.8 4.7
Nd 23.6 16.7 25.2 7.7
Ni 13 < 1 19 < 1
Pb 8.2 9.7 7.5 9.7
Rb 15.6 36.7 55.6 140.3
Sc 30.6 34.1 23.1 3.3
Sr 458 481 416 111

Th 6.9 3.5 10.2 17.3
U 2.6 1.3 1.4 2.5
V 229.0 267.8 159.2 10.9
Y 31 27 30 21

Zn 49 71 72 15
Zr 179 43 231 98

Table 5.3: Geochemical analyses of Anchorage Island samples from XRF spectroscopy.
† total iron (FeO and Fe2O3).

94 of 266



Sample J13.22.5 J13.22.10 J13.21.10
Unit Granodiorite Dolerite Granite

Point Count (%)
Biotite 1.2
Chlorite 8.8
Clinopyroxene 33
Hornblende 12.6
K-Feldspar 27.8
Muscovite 1.4
Opaques 1 4.6 1
Plagioclase 44.8 61 35
Quartz 32.8 35

Table 5.4: Results from point counting, where mineral counts are given as percentages. A total of
500 points were counted on each sample (n=500). Opaques likely indicate Magnetite.

features; a small relative increase in emissivity at 8.6 µm and 9.5 µm, and

two broad flat absorption features centred around 9 µm and 10 µm. The

whole-rock XRF data shown in Table 5.3 supports the spectral similarity

of the dolerite and granodiorite samples - there is very little difference in

the chemical composition of these samples, hence the similar spectra of the

samples. The amphibole rich granodiorite spectra display an additional weak

feature at 10 µm with reduced magnitude of the emissivity maximum at 8.6

µm. The strongly weathered (and altered) granodiorite spectra are signifi-

cantly different to weathered/amphibole rich granodiorite spectra, displaying

a broad deep absorption at 9 µm and a smooth spectrum above 9.8 µm. We at-

tribute the broad deep absorption centred around 9 µm to feldspar alteration

(into clay minerals, e.g. sericite).

The spectrum of granite is dominated by a quartz signal which leads to an

emissivity maximum at 8.7 µm and a deep feature with an emissivity minima

at 9.4 µm (Figure 5.3B). Although similar spectral features to granodirote are

present in the granites, the overall magnitude of the absorption features is

much larger in the granite than in any of the granodiorite or dolerite spectra.
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5.3.2 Data preprocessing

Figure 5.4 shows the first 10 bands of the MNF transform. As higher MNF

components are considered, the levels of noise dramatically increase (Figure

5.4G-J). The MNF images also clearly highlight the differences between flight

lines which cause ‘striping‘ in the images (e.g. Figure 5.4E and F). The first

four of these MNF components (Figure 5.4A-D) were retained (i.e. those with

minimal striping effects) and processed through an inverse MNF transform

prior to input in the superpixel and endmember extraction algorithms.

Figure 5.5 shows the SNR for the image after atmospheric correction and

TES compared to the SNR for the final image after all preprocessing (atmo-

spheric correction, TES, EELM and MNF noise reduction). Overall the

SNR is increased from a mean value of 60:1 (35.6 dB) to 92:1 (39.3 dB) after

preprocessing. With the exception of one band at∼ 9 µm, the SNR increased

for all wavelengths, with significant increases seen at the higher wavelengths

(> 10.5 µm). Whilst increases in SNR are seen after preprocessing, on the

whole SNR values are relatively low and far lower than that which are reg-

ularly reported by others using airborne hyperspectral TIR sensors such as

SEBASS; for example Vaughan et al. (2003b) report SNR values of 2000:1 (66

dB) using SEBASS data in Nevada. The low SNR values reported here are

Figure 5.4: Images for the first 10 components of the Minimum Noise Fraction (MNF) transform
(A-J). Components 1 to 4 (A to D) were utilised in the inverse MNF procedure.
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likely a direct result of the challenging operating conditions in the Antarctic;

the instruments were flown in an unpressurised aircraft, operating at temper-

atures which were up to 20 ◦C outside of the instrument’s normal operating

range, as well as being subject to repeated heating/cooling during storage and

operation (Black et al., 2014b).

Figure 5.6 shows a comparison of emissivity spectra following each step of

preprocessing for spectra of snow and sea water. There is a clear improvement

in the TASI emissivity spectra after all preprocessing, as residual atmospheric

features (e.g. centred at 9.5 µm) has been removed and the TASI spectra very

closely resemble the spectral library measures of snow and sea water.
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Figure 5.5: Signal to noise ratio (SNR) calculated from the image after atmospheric correction
and temperature emissivity separation (TES; grey line) compared to the SNR for the
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line correction and minimum noise fraction for noise reduction) (black line). Mean
values are shown in the annotations.
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5.3.3 Lithological mapping and interpretations

A total of 9810 superpixels (Figure 5.7) were input into the VD algorithm

which determined there were 5 endmembers. The endmembers were ex-

tracted using the VCA algorithm and are shown in Figure 5.8. Endmember

abundances were determined using FCLSU; the abundances images were

utilised to generate a classified map, where classes were assigned to the pre-

dominant endmember if the abundance was greater than 0.5.

The classes were subsequently labelled by automatic matching to the field

spectral data; the closest match (in terms of spectral angle; Equation 17) was

applied to label the endmembers (Figure 5.8) and their respective class in the

predictive classification map (Figure 5.9). The results were validated through

visual inspection of the classification map with respect to the local geological

map (Figure 3.3), comparison of the endmember spectra and the ancillary

data (Sections 3.4 and 4.3.1), as well as using the RMSE metric (Section 4.3.4

100 m

Figure 5.7: Superpixel segmentation as applied to Anchorage Island. Inset, top left, shows the
extent of the frame. Superpixel segments are outlined in red.
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Figure 5.8: Four extracted endmembers (thick line) and their closest match from the field spectral
data (thin line). The spectral angle (SA), in radians, is shown in each figure legend.

and Section 5.3.4). Endmember-4 was excluded as it represented sea water

from pixels which were not captured at the masking step and is not discussed

further. The final lithological map is shown in Figure 5.9.

For the four identified endmembers, a match was determined from the field

spectra where the SA was ¶ 0.03 radians; confident matches for granite, two

types of weathered granodiorite and lichen coated granodiorite were found.

The endmember spectra display absorption features consistent with the field

measured spectra (Figure 5.3) and their mapped distributions (Figure 5.9) are

largely in agreement with the generalised geological map (Figure 3.3).

The granite endmember (Endmember-1; Figure 5.8A) displays good agree-

ment with the field spectral data and its distribution on the predictive map

100 of 266



(Figure 5.9A and B). We accurately delineate the stoped granite block in the

northeast of Anchorage Island, along with the larger outcrops south of the

granite block and along the northeast coast. The predictive map indicates the

likelihood of additional outcrops of granite occurring predominantly in the

northeast of Anchorage Island (Figure 5.9B).

Two of the endmembers (Endmember-2 and Endmember-3; Figure 5.8B

and C) show good matches to granodiorite spectra measured in the field;

both are measured from weathered granodiorite, however Endmember-3 is

from yellow/orange weathered granodiorite. The spatial distribution of this

endmember is largely limited to low lying coastal regions, perhaps indicating

recent weathering due to coastal processes, which distinguishes it from the

remaining granodiorite (Endmember-2). Endmember-3 also shows a higher

abundance in the extreme southwest of Anchorage Island, corresponding to

the diorite outcrop (c.f. Figure 3.3), though does not allow for distinguishing

the diorite as a separate unit; this is likely as the diorite and granodiorite units

would have a similar chemical composition and thus would be difficult to

differentiate spectrally.

None of the endmembers correspond to the dolerite, most likely due to the

chemical and spectral similarity to the granodiorite unit (Table 5.3; Figure

5.3). The granodiorite and dolerite were distinguished in the field due to

the differences in their grain size; however, the spectral features present in

the imagery do not allow for a distinction to be made. Even in the field

spectra, there is little difference between the granodiorite and dolerite (Figure

5.3), hence there are no endmembers extracted that match dolerite. In this

instance, other complimentary remote sensing techniques such as LiDAR

(and derived products such as surface texture) could aid in the identification

of the dolerite (Section 4.1).

At the wavelengths considered by the TASI sensor (8 to 11.5 µm), the pro-

cessing chain has been able to differentiate granite and granodiorite, though

struggled to find a clear distinction between the relatively similar chemical

composition of the country rock (granodiorite) and the dolerite dykes on

Anchorage Island. The ability to more accurately discriminate potassium
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Typically granodiorite – gabbro hybrid plutons which outcrop widely on the Wright Peninsula.
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Figure 5.10: Local scale geological map of Anchorage Island.
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and plagioclase feldspar(s) could be aided if data were available at wavelengths

where additional features could aid in feldspar identification (e.g. 12-14 µm;

Hecker et al., 2012).

Specifically on Anchorage Island, the lithological mapping results presented

in Figure 5.9, have yielded a new high resolution insight into small scale

lithological variations present on the island. Prior to this study, the presence

of stoped granite blocks on the island was not known, nor had the presence

of granite been explicitly mapped. Only with the use of high resolution TIR

hyperspectral data have such units been directly mapped (and subsequently

validated during the field campaign).

The occurrence of granite senso stricto in continental margin arcs is rare,

typically accounting for 1-2% of the total volume of granitoid rocks exposed at

the surface (Waight et al., 1998). Granites exposed at the surface on the western

margin of the Antarctic Peninsula are rare and not previously identified at

all from Adelaide Island (or the Ryder Bay islands, including Anchorage

Island, prior to mapping carried out in this study). The identification of

stoped blocks of granite within a granodiorite pluton indicates the presence

of granite at relatively shallow depths (Waight et al., 1998).

The lithological map presented here represents the first known lithological

map derived in a completely automated manner, from the first ever airborne

hyperspectral TIR dataset collected in the Antarctic. The geological insights

gained from Anchorage Island are not ground breaking in the larger context

of the Antarctic Peninsula, however the strong agreement with previous field

geological mapping highlights the potential of these data for mapping igneous

lithologies in a continental margin arc setting.

5.3.4 Validation of image processing

Figure 5.11 shows the RMSE histogram and image calculated through Equa-

tion 19. Summary statistics calculated for each of the predicated class pixels

(Figure 5.9) within the RMSE image are shown in Table 5.5.
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as the predominant distribution of RMSE values is below this threshold.
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Endmembers 1, 2 and 5 produce RMSE values of <0.5%, with standard devi-

ations of ∼ 0.45% and a maximum RMSE of 7.83% (Endmember-1). These

values indicate that the unmixing procedure with just 5 endmember spec-

tra yielded a high quality reconstruction of the original image spectra for

these classes. Endmember-3 has a mean RMSE significantly higher at 0.94%

with an increased standard deviation of 1.25% and a maximum error of 23%;

this indicates pixels which are classed as Endmember-3 have higher overall

and specific reconstruction errors, likely a result of incorrect or inadequate

endmember spectra for these pixels and hence higher errors. The spatial

distribution of Endmember-3 is coincident with the previously mapped dior-

ite unit on Anchorage Island, hence the higher RMSE values could indicate

misclassification as there was no diorite spectral measurement present in the

field spectral data.

On the whole, the average RMSE for the image is 0.58%; this figure is sig-

nificantly higher than the RMSE values that are routinely achieved using

VCA (e.g. RMSE of 0.1% in Plaza et al., 2012), however this is likely a direct

result of the low SNR of the imagery (Figure 5.5). As the SNR is reduced

(below 1000:1, 60 dB) the performance of endmember extraction algorithms

begins to degrade significantly and RMSE values increase (Plaza et al., 2012).

Conversely, with larger SNRs, the RMSE error will decrease and the per-

formance of endmember extraction algorithms will improve (Nascimento

and Bioucas-Dias, 2005; Plaza et al., 2012). Other factors may also affect

the RMSE values, including the pure pixel assumption and spectral mixture

analysis techniques, as discussed in Section 6.4.2. However, these errors did

RMSE (%) Mean Max StDev

Endmember-1 0.498 7.830 0.464
Endmember-2 0.473 3.447 0.439
Endmember-3 0.939 23.223 1.246
Endmember-5 0.425 5.952 0.451

All Endmembers 0.584 23.223 0.650

Table 5.5: Root Mean Square Error statistics for each endmember class. StDev, standard devia-
tion. All values shown are %.
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not inhibit the success of the processing chain.

Figure 5.12 shows the spectra of pixels from high, medium and low purity

pixels, comparing the original image spectra with the reconstructed image

spectra (from endmembers and their fractional abundances), for granite, gra-

nodiorite and altered granodiorite. In all cases the RMSE is¶ 2 %, indicating

a good fit between the original and reconstructed spectra. The high purity

pixels (Figure 5.12A) more closely resemble the original endmembers and

their equivalent field spectra (c.f. Figure 5.8), indicating a good degree of

reconstruction of the original spectra and that endmember lithologies are

accurately represented. When considering the medium and low purity spectra

(Figure 5.12B and C), the RMSE values are still low, indicating a high degree

of fit between the original and reconstructed spectra; however, as the mixing

of endmembers is increased, the pixel spectra begin to converge and become

increasingly similar (especially at low purities, Figure 5.12C). This indicates

that as pixels become increasingly mixed (lower fractional abundances) the

pixel spectra are increasingly similar yielding lower confidence in assigning a

distinct lithology for low purity pixels. In this study the abundance thresh-

old was set to 0.5, however with careful examination of reconstructed and

original image spectra, this threshold value could be increased to yield greater

confidence in lithological units as pixel spectra would more closely resemble

endmember spectra.
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6 Discussion

6.1 Automated lithological mapping

An automated lithological processing chain has been developed and applied to

hyperspectral data from the Antarctic. The automated processing chain was

effective despite the very low SNR of the Antarctic data; the low SNR was a

result of the challenging conditions during data acquisition and inadequate

calibration of the TASI sensor. A number of preprocessing techniques were

applied to improve the SNR; these no-doubt played a role in the efficacy of

the automated processing chain and lithological map production, though

almost all studies apply similar techniques for noise removal so this is not a

surprising finding (Section 6.3.3). Additionally, during the processing chain

algorithms were applied which have been shown to be effective even with

low SNR data. Superpixel segmentation yielded endmembers which were all

identifiable through comparison to field spectral measurements (e.g. Harris

et al., 2005). The findings of Thompson et al. (2010) and Gilmore et al. (2011)

are confirmed here; superpixel segmentation aids in the determination of

recognisable endmembers which are interpretable in a geological context,

despite low SNR values.

The processing chain uses spectral unmixing techniques which are automated

with few number of inputs and does not rely on manual endmember identifi-

cation or random initialisation, hence the results are completely repeatable,

unlike studies which rely on subject manual endmember techniques, such

as the PPI (Chaudhry et al., 2006). This is the first such development of an

automated processing chain for hyperspectral TIR data analysis and offers

alternatives compared to previous studies, which used manually involved

techniques or simpler spectral matching techniques (e.g. Vaughan et al., 2003b,

2005).

The incorporation of a whole suite of remote sensing tools in combination

with field mapping could yield the greatest geological information; an au-

tomatic processing chain for lithological mapping would be a valuable part
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of the whole suite of remote sensing technologies. A combination of air-

borne geophysics (radar, gravity and magnetics) to provide regional scale

crustal information with local scale remote sensing techniques such as SAR

and LiDAR used to understand geomorphological characteristics, terrain,

relief, sub-surface structures, ground deformation and geological structures,

along with the direct lithological identification made possible using spectral

remote sensing (VNIR/SWIR and TIR) would provide this full suite of geo-

logical remote sensing tools. With targeted field campaigns, remote sensing

data could be validated by field observations, geochemical and spectral data,

and thus offer unprecedented information at much higher resolution than

could be obtained by traditional field mapping alone. Such combinations of

remote sensing technologies are often practically difficult due to the multi

disciplinary nature of the work and the complex and manually involved

processing required by different remote sensing technologies (van der Meer

et al., 2012); though the development of automated techniques, such as that

presented here, can aid in bridging the gap between the remote sensing and ge-

ology and directly addresses the current paucity of automated and repeatable

approaches to produce lithological maps using hyperspectral data (van der

Meer et al., 2012).

The ability to automatically produce lithological maps from remote sensing

data offers a number of key benefits, especially in the Polar regions (see Section

6.2). However, whilst automated processing chains offer great utility, they

are nevertheless dependant on calibration and/or validation using ground

measurements or observations. As such, the processing chain presented here is

a complementary tool for the geologist and it is unlikely that such processing

chains would ever supplant the role of the geologist, or negate the need for

field observations.

In the following sections, the main outcomes of the research are discussed

(Section 6.2), followed by the data, acquisition and quality (Section 6.3). In

Section 6.4 the limitations of the technique, consideration of the algorithms

applied, and a discussion on the future applicability of the processing chain

are presented. Finally, some recommendations are presented in Section 6.5.
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6.2 Outcomes of the research

6.2.1 Utility in the Antarctic

Field geological mapping on the Antarctic Peninsula has been regularly un-

dertaken for more than 50 years; however, the harsh environment, severe

terrain, and large size of the peninsula (around 522,000 km2, about twice the

size of the UK) still provide major constraints on geological mapping and

coverage. Traditional field geological mapping on the Antarctic Peninsula

involves campaigns lasting several months during the austral summer, with

travel over glaciated terrain to accessible rock exposures such as nunataks,

using snowmobiles and on foot/ski. Snowmobiles allow efficient travel over

the ice and significant distances to be covered (∼100 km/day) but are lim-

ited in their ability to travel over steep or crevassed terrain where access to

rock outcrop must be undertaken on foot or ski; this can involve significant

time and effort given the conditions, distances involved and need for safe

travel procedures in crevassed areas. As a result, traditional field mapping

techniques are severely limited in the amount of coverage in any one field

season. Although rock exposure varies across the peninsula, it is generally

limited (∼10% of the land surface), which provides a significant barrier to

compiling regional geological maps. In particular, the sparse distribution

and limited extent of rock restricts the correlation of lithostratigraphic units

and geological lineaments making it difficult to compile detailed local scale

geological maps (Haselwimmer, 2010).

A variety of remote sensing methods have been used to support geological

mapping and overcome some of the limitations of traditional field mapping,

namely: aerial photography and satellite imagery are used to assist fieldwork

by providing base-maps for planning fieldwork and safe travel routes. Air-

borne geophysics (radar, gravity and magnetics) have been used to provide

regional scale crustal information that provides a framework for understand-

ing the results of more local-scale geological mapping. Multispectral remote

sensing (e.g. Haselwimmer et al., 2010, 2011) and, now, hyperspectral remote

sensing have been utilised for regional and local scale lithological mapping on
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the Antarctic Peninsula. The results presented here show that hyperspectral

TIR data has proven useful for granitoid discrimination at a local scale which

could have implications for mapping continental margin arcs (Section 6.2.2).

The results also show that the hyperspectral TIR data are a significant im-

provement compared with Antarctic lithological mapping using multispectral

TIR data, which was not able to discriminate subtle differences in granitoids

(Haselwimmer et al., 2010, 2011).

The development of an automated processing chain is also advantageous; in

the future, hyperspectral datasets simply serve as an input to the automated

processing chain and lithological maps are produced which can complement

or aid in targeting traditional field geological mapping. However, aside from

the practical considerations of collecting hyperspectral data from an area as

large as the Antarctic, a number of other challenging issues remain: there is

a need for calibration/validation data and field observations to corroborate

remote sensing results, there is limited rock exposure in the Antarctic from

which hyperspectral imagery could be collected, the image preprocessing re-

quires good knowledge and/or in situ data on the atmospheric conditions, and

the cold polar environment makes it challenging to achieve high SNRs. These

issues must be considered when acquiring data and applying the processing

chain in the future, especially in the Antarctic (see also Section 6.4.3).

6.2.2 Utility in a continental margin arc setting

The petrogenetic relationships between different granitoid rock types in conti-

nental margin settings remain poorly understood (Waight et al., 1998). Subtle

differences in mineralogy between granitoid rock types, e.g. granodiorite,

quartz diorite, tonalite and so on, can reflect a fundamental difference in

petrogenesis, in turn reflecting differing sources, crustal contributions, depth

of melting, direct melting of the subducted slab or remelting of a mixed source

(Waight et al., 1998). This information can then be used to infer the tectonic

setting and likely position of the arc front and slab angle.

Accurately mapping the subtle differences in mineralogy over a large area, on
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the scale of a continental margin, is close to impossible using traditional field

techniques, however spectral remote sensing could prove useful for such a task.

This study has demonstrated that spectral unmixing techniques have been

able to accurately discriminate granitoid types with an automated processing

chain able to differentiate granodiorite and granite. However, it is noted

that the technique did act to suppress the subtle spectral differences between

granodiorite and dolerite, probably due to their geochemical similarity and

the superpixel segmentation technique which can inhibit the identification

of subtle endmember sets. In the future, data acquired from a larger range

of granitoids would be useful to determine the ability of the automated

processing chain to distinguish a whole suite of granitoid rock types and

thus its ability to provide new insights in the petrogenetic relationships of

continental margin arcs.

6.3 Data, acquisition, and preprocessing

6.3.1 Sensor and data acquisition

The TASI sensor is one of very few commercially available pushbroom hy-

perspectral thermal sensor systems designed specifically for airborne use.

The acquisition of TASI data in the Antarctic was a collaborative effort be-

tween BAS, ITRES Research Ltd. and DRDC. The TASI sensor had not

previously been flown in the polar regions, or in a cold unpressurised air-

craft. The noise equivalent delta temperature (NE∆T; i.e. the temperature

difference which would produce a signal equal to the sensor’s temporal noise)

for TASI is quoted as 0.2◦ at 300 K however the operational conditions in

the Antarctic meant this figure was not representative for quantifying the

actual SNR achieved during the campaign. The calibration conditions of the

sensor under laboratory conditions were significantly different, hence there

was a high degree of noise in the images (salt-and-pepper and shot noise), as

well as line-to-line illumination differences. Aside from the signal to noise

ratio, the TASI sensor’s optics performed well, despite the repeated heating

and cooling cycles between storage and use in the aircraft. The images are
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crisp in focus where the diffraction limited optics mean that there is little

to no pixel smearing. Additionally the geometric preprocessing carried out

by ITRES produced high spatial accuracy and good orthorectified mosaic

images. The high quality DEMs, derived from photogrammetry using very

high resolution imagery, aided in the orthorectification.

Other commercially available sensors such as the Specim AisaOWL may

provide an advantage over the TASI sensor. The OWL includes dual cali-

brated blackbodies on-board the sensor which allows for in-situ calibration

and perhaps could yield greater SNR in the cold Antarctic environment.

Additionally, the OWL has a greater number of bands (96) covering a larger

spectral range (7.7 - 12.3 µm) which could aid in spectral identification.

Whilst the original motivation of the hyperspectral study was to investigate

vegetation, a number of areas close to the survey region would have been

interesting geological targets (c.f Figure 6.1). For example, Reptile Ridge,

which is proximal to the runway at Rothera point contains the Reptile Ridge

Formation composed of ryholitic ignimbrites and tuffs which could have

been investigated using the (VNIR/SWIR and) TIR data (e.g. Brandmeier

et al., 2013). Additionally areas towards the southern end of Adelaide Island

and Jenny Island, where outcrops of the Adelaide Island Intrusive Suite,

Milestone Bluff Formation and the Mount Liotard Formation occur, would

have allowed for a more detailed investigation of the ability to discriminate

lithological units of varying ages and compositions.

In terms of the data acquisition itself, flight lines were flown parallel with

an approximately 50-60% overlap; this was to minimise the topographical

effects and pixel-smear at the highly off-nadir angles at swath edges and allow

for the creation of a mosaic with those effects reduced. However, the SNR of

the data remained an issue and a number of flight line-to-line illumination

differences and artefacts were present in the final mosaics which required

additional preprocessing (e.g. Section 4.1.1; Section 4.3.2 and Figure 5.4).

Under the challenging conditions and with time pressures during the data

acquisition campaign in the Antarctic, some data was collected under marginal

conditions, or using non-optimal flight plans (e.g. solar geometry), hence the

114 of 266



Figure 6.1: Extract from the Adelaide Island Geological map showing the Marguerite Bay area.
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Figure 6.2: Extract from the USGS Afghanistan hyperspectral survey showing cross-cutting
calibration lines (white) over parallel flight lines (yellow) From Kokaly et al. (2008).

low SNR values and lack of uniformity between neighbouring flight lines.

These issues could be negated in future campaigns with appropriate planning

and mitigation strategies. Additionally, limited ground targets prevented

a robust calibration/validation of the atmospherically corrected and TES

imagery (see Section 6.3.2). In other studies with limited calibration and

ground targets, cross-cutting calibration lines have been flown perpendicular

to the primary orientation of flight lines (e.g. Kokaly et al., 2008; Figure 6.2).

These cross-cutting calibration lines were later used to normalise illumination

variation between flight lines to aid in generating seamless and normalised

image mosaics, as well as to include data from limited ground calibration sites

(Kokaly et al., 2008). In the Antarctic, cross-cutting calibration lines would

have been advantageous to aid in the normalisation of neighbouring flight

lines and generation of mosaics as well as allowing for calibration if ground

targets were deployed on cross-calibration flight lines.

6.3.2 Atmospheric correction and temperature emissivity separation

The atmospheric correction processing chain and results presented here repre-

sent the first known acquisition and subsequent processing of hyperspectral

data in Antarctica. The presence of ground targets along with concurrent

ground and atmospheric measurements in this study is typical of most hy-

perspectral campaigns; often there are not sufficient measurements to fully

develop atmospheric profiles and aerosol models (to use as inputs to radiative

transfer models), hence estimates are made and often standard atmospheric

profiles and aerosol profiles are selected based on qualitative assessment of
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environmental conditions. Additionally, there is not always a large enough

number of ground based targets with the relevant concurrent spectral data to

be used for both calibration and validation. The MODTRAN-5 LUTs used

by ATCOR-4 were intended to be flexible enough to cover a wide variety

of environments, sensor configurations, water vapour contents and flight

parameters but have not been previously tested for airborne hyperspectral

data in the Antarctic region.

Following the application of the atmospheric correction, results showed that

workable emissivity data is obtainable. This is obtainable in spite of limited

concurrent atmospheric and aerosol measurements, which is an often typical

scenario. As there are no aerosol measurements collected near Anchorage

Island, the maritime aerosol model (Shettle and Fenn, 1979) was selected based

on the qualitative assessment of the atmospheric conditions and the assump-

tion of a dominance of sea-salt aerosols in the coastal Antarctic environment

(e.g. Rankin and Wolff, 2003). A detailed analysis of the performance of the

atmospheric correction for VNIR/SWIR wavelengths is presented in Black

et al. (2014b) (Appendix A). For the atmospheric correction of the hyperspec-

tral TIR data, there were no calibrated ground targets present to perform

a robust calibration/validation and accuracy assessment; hence, the quality

of the atmospheric correction (and subsequent TES) was assessed through

investigation of the SNR ratio and by comparison of image emissivity spectra

to spectral library measurements (Section 5.3.2).

After atmospheric correction and TES, residual noise manifested emissivity

features were present, most likely due to the unavailability of an Antarctic-

specific atmospheric profile and aerosol model and the lack of adequate in-situ

measurements to adequately recreate such inputs. This led to additional em-

pirical corrections being performed (EELM) as the remnant atmospheric

features could have been misinterpreted in a geological context, even though

they may not have represented geological features. This approach has been

recommended when considering VNIR/SWIR atmospheric corrections; in

situations where there is a limited number of spectral ground truth measure-

ments, a hybrid approach (radiative transfer and empirical corrections) can
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improve atmospheric correction accuracy over the whole acquisition area

(Tuominen and Lipping, 2011). The EELM was performed using pixels from

snow, sea water, granite and dolerite; these targets were selected to cover a

range of emissivity values (e.g. as in VNIR/SWIR approaches where dark

and light targets are used; Smith and Milton, 1999) and were selected as they

were easily identifiable in the imagery to generate target/reference spectra.

However, the use of calibrated targets, such as controlled temperature pools

and blackbody-like targets of constant emissivity (e.g. aluminium targets)

would be preferred in future studies to provide a more robust set of ground

targets specifically suitable for EELM (e.g. Distasio Jr. and Resmini, 2010).

These results suggest that commercially available atmospheric correction

and TES algorithms are flexible enough to produce working emissivity data

in Antarctica. However, residual atmospheric features remain and required

additional empirical corrections to remove. It is recommended that, given

the availability of a greater number of ground targets (> 3), a similar hybrid

approach of radiative transfer modelling and TES followed by empirical cor-

rections, as applied here, would yield better results than radiative transfer

modelling alone (a finding echoed by VNIR/SWIR studies, e.g. Smith and

Milton, 1999; Tuominen and Lipping, 2011). Therefore, this study supports

the conclusions of Tuominen and Lipping (2011) that, even in complex atmo-

spheres where model based correction methods may struggle, more accurate

results can be produced using combined correction methods compared to

model based methods alone. It must also be noted that sensor calibration still

remains challenging in this environment and these issues are manifested in

the subsequent atmospheric correction and TES process.

Future studies should consider the influence of standard atmospheric profiles

(McClatchey et al., 1972) and aerosol models (Shettle and Fenn, 1979) with a

view to measuring in situ atmospheric data while simultaneously acquiring

hyperspectral data; this would aid in the generation of atmospheric profiles

and aerosol models which serve as inputs during the atmospheric correction

process and could reduce the level of uncertainty compared to using standard

profiles. Such atmospheric data could also lead to the development of a
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generic ‘Antarctic’ atmospheric profile and aerosol model, which may prove

useful for future data acquisition (if in situ atmospheric data is not available).

6.3.3 Noise reduction

A number of steps were preformed to reduce the noise of the imagery and

suppress the flight line illumination differences (Section 4.3.2), including the

MNF transform and a median filter to remove residual shot noise as well as

further EELM corrections to reduce atmospheric features in the emissivity

spectrum. These preprocessing techniques and very common in almost all

studies utilising hyperspectral data, where preprocessing techniques such as

MNF are used to perform either dimensionality reduction or noise removal

(e.g. Rowan and Mars, 2003; Vaughan et al., 2003b, 2005; Harris et al., 2005,

2006, 2010; Aslett et al., 2008; Brandmeier, 2010; Thompson et al., 2010, 2013;

Gilmore et al., 2011; Brandmeier et al., 2013). The MNF is a proven technique

as demonstrated by its wide use in a number of studies and this study further

confirms its effectiveness.

Whilst these preprocessing techniques increased the SNR of the imagery, the

significant flight line-to-line illumination differences significantly affected

the VNIR/SWIR data (Section 4.1.1) and were also present in the TIR data

(though not as prohibitive as VNIR/SWIR striping). As well as flying cross-

calibration lines, a number of algorithms have been proposed in the literature

for the reduction of line-to-line differences and cross-track correction to

produce seamless mosaics which could be useful for future studies, if applied

to the raw flightlines prior to producing image mosaics (e.g. Taylor, 2001;

Palubinskas et al., 2003; Zhao et al., 2005; Asmat et al., 2011; Rogge et al.,

2012).
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6.4 Processing chain considerations

6.4.1 Limitations of the processing chain

Whilst the processing chain allowed for the distinction of various weathered

granodiorites and granite, it was noted that it could not identify endmembers

which corresponded to either the diorite or dolerite lithologic units on An-

chorage Island. The geochemical similarity of these units would likely lead to

subtle spectral differences and indicate this as a likely reason for the inability

to discriminate these units (Section 5.3.3). However, this is a limitation of

the processing chain. In continental margin arc settings, the discrimination

of granitoids is important for establishing petrogenetic relationships (Section

6.2.2), meaning that a processing chain which can discriminate subtle litholog-

ical units, such as granite, granodiorite, dolerite, tonalite, quartz diorite and

so on would be advantageous. These lithologies would inevitably have subtle

spectral variations due to their chemical compositions, so sensor technologies

and processing chains would need to be able to detect these subtle differences.

It is noted that greater spectral information and more robust calibration could

lead to increased SNR which would be advantageous (Section 6.3), along with

combination with other remote sensing technologies to aid in lithological

discrimination (e.g. Section 6.1).

During the development of the automated processing chain, algorithms were

selected with two requirements in mind: (1) algorithms with proven success

on low SNR data, and (2) algorithms which included a spatial component.

As the dolerite dykes form linear features, algorithms which considered the

spatial component should have been more readily able to delineate features

such as dykes. However, the superpixel segmentation algorithm, whilst

providing the benefit of decreasing noise, aggregates neighbouring pixels and

therefore reduces or removes subtle spectral variance. This ultimately means

that subtle spectral features may not be present in the superpixels, and thus

not present in the extracted endmembers after applying an EEA; however,

it should be noted that the detection of subtle spectral features is inevitably

linked to the SNR of the data. In the future, if the operational SNR of TIR
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data is increased (in the Antarctic), other EEAs could be considered as the

first requirement (algorithms with proven success on low SNR data) could be

reduced and other spatial EEAs could be considered (e.g. Plaza et al., 2002;

Rogge et al., 2007; Zortea and Plaza, 2009).

During validation, the reconstructed image spectra (determined from the

endmembers and their fractional abundances) were compared to the original

image spectra. The fractional abundance threshold level used to assign pixels

to a lithological unit (set to 0.5) is a parameter that controls the ‘purity’ of each

endmember within a particular pixel, and thus the confidence is assigning

a pixel to a lithological unit. As noted in Section 5.3.4, it was determined

that as fractional abundances reduce, pixels are increasingly mixed and the

confidence in assigning a distinct lithology is reduced. In future studies,

the abundance level be increased to a higher value (e.g. 0.7) to increase the

confidence in assigning lithological units. However, as a result the number

of classified pixels will be reduced, so other techniques to classify null pixels,

such as the moving window approach of Rogge et al. (2009) could be applied

to refine the coverage of higher purity lithologies.

6.4.2 Algorithm considerations

Here a pure pixel scenario was considered – the assumption that at least one

‘pixel’ contains a pure endmember – due to the long history of research into

pure pixel techniques for each step of the processing chain along with the

optimised implementation and proven success of published algorithms (Sec-

tion 2.5.3). The pure pixel approach has been successful when images contain

pure pixels (Plaza et al., 2012); however, given the presence of the mixing at

different scales (even at microscopic levels), the pure pixel assumption is not

always true, as some images may only contain pixels which are completely

mixed (Plaza et al., 2012).

The complexity of the problem is increased in a mixed pixel scenario, since

the endmembers, or at least some of them, are not in the dataset (Bioucas-

Dias, 2009). We note a point for future research into techniques in the mixed
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pixel category, which follow from the seminal ideas of Craig (1994) based

on the minimum volume transform, with a number of recently published

algorithms building from this work (Berman et al., 2004; Miao and Qi, 2007;

Li and Staunton, 2008; Chan et al., 2009; Bioucas-Dias, 2009). Currently, the

major shortcoming of mixed-pixel techniques is long processing times due to

their computational complexity (Bioucas-Dias, 2009). However mixed pixel

techniques are an active area of research and as the algorithms mature they

should be integrated into future studies. Additionally, the long established

pure pixel methods should not yet be discounted; technological advances

such as miniaturisation of sensors will inevitably lead to very high spatial

resolution and reduced mixing as sensors are deployed from platforms such

as Unmanned Aerial Vehicles (UAVs).

For spectral mixture analysis (SMA), also known as spectral unmixing, the

fully constrained linear model was considered, due to its ease of implemen-

tation and flexibility in different applications (Chang, 2003). We have not

considered linear unmixing using iterative spectral mixture analysis (ISMA;

Rogge and Rivard, 2006), which seeks to minimise the error by unmixing

on a per pixel basis using optimised endmember sets. Alternatively, non-

linear SMA may best characterize the resultant mixed spectra for certain

endmember distributions, such as those in which the endmember compo-

nents are randomly distributed throughout the field of view of the instrument

(Guilfoyle et al., 2001; Plaza et al., 2009a). In those cases, the mixed spectra

collected at the imaging instrument are better described by assuming that

part of the source radiation has undergone multiple scattering prior to being

measured at the sensor.

In a non-linear model, the interaction between the endmembers and their

fractional abundance is given by a non-linear function, which is not known

a priori. Various techniques have been proposed in the field of machine

learning, with neural networks some of first non-linear SMA approaches

proposed (Benediktsson et al., 1990). The performance of non-linear SMA

algorithms on large, real-world hyperspectral data is currently limited by

the computational complexity of the techniques; however, recent advances
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have aimed to take advantage of parallel processing techniques to reduce

computational time (e.g. Plaza et al., 2008) and such algorithms remain an

area for future research as their implementations become publicly available.

6.4.3 Future applicability of the processing chain

The processing chain presented here is fully automated and repeatable; after

preprocessing, the six step processing chain is fully unsupervised, using few

inputs and parameters, followed by predictive map generation and automatic

class labelling using the field spectral data. The generic version of the pro-

cessing chain is presented in Figure 6.3. This is a direct attempt to address

the current paucity of such automated approaches in the geological remote

sensing community (van der Meer et al., 2012), and represents the first such

approach presented for hyperspectral TIR data. We anticipate the technique

could be applied by geologists without the need for ‘expert’ remote sensing

knowledge or complicated image processing techniques / software packages,

and the processing chain is more automated and less manually involved than

traditional techniques. The automated workflow could be packaged in a ‘wiz-

ard’ style interface, similar to workflows developed for VNIR/SWIR data

and currently available in commercial off-the-shelf software packages (e.g.

ENVI), which could increase the uptake by geologists with guidance through

the otherwise potentially complex workflow processing steps are parameter

decisions. Indeed, this processing chain is particularly advantageous in the

polar regions where higher detail lithological mapping can be obtained using

remote sensing than compared with traditional field mapping.

The main parameters which affect the lithological mapping processing chain

are the superpixel bias parameter and minimum size segment size. The pa-

rameters are discussed and explained in detail by Thompson et al. (2010). The

bias and minimum segment size parameters control the size of the superpixels

and should be scaled appropriately depending on the features of interest in

each particular scene. The parameters used in this study were quantitatively

determined by inspecting the superpixel segmentation image and considering
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the scale of the geological areas of interest (e.g. dykes), however these param-

eters would require local tuning for other study areas, and particularly for

other scales and image resolution (such as coarser resolution satellite imagery).

The abundance threshold can be tuned to extract purer regions. However,

this study has demonstrated the results obtained using a moderate threshold

of 0.5; increasing this threshold to higher values would yield spectrally purer

regions (e.g. Rogge et al., 2009).

We have achieved the results presented here in spite of what might be de-

scribed as ‘extremely high noise conditions’ (SNR¶ 40 dB; Plaza et al., 2012),

thereby serving as a validation of the processing chain and its ability to oper-

ate effectively at low SNR values. We confirm the findings of the Thompson

et al. (2010) and Gilmore et al. (2011) that superpixel segmentation aids in

the determination of recognisable endmembers which are interpretable in

a geological context despite low SNR values. Such a finding is crucial for

future studies in the Antarctic where the environmental conditions mean

that achieving high SNR values is much more challenging compared with

temperate parts of the world. Indeed, this finding is also advantageous for

many studies, not just the Antarctic, where challenging conditions can yield

lower than expected SNRs; hence, it is advantageous that the processing chain

can yield successful results even at low SNRs.

It is an important point to note for future applications that prior knowledge of

the local geology (and/or vegetation) is required for the successful application

of the processing chain. The identification of the image derived endmembers

(step 6) was successful here, in large part due to availability of high quality

field spectral measurements to allow for comparison along with ancillary

data (geochemical analysis). However, in lieu of field spectral measurements,

a user could produce geological interpretations with knowledge of the local

geological context, an understanding of the imperfections in the hyperspectral

imagery (e.g. residual noise due to inadequate atmospheric compensation)

and the identification of endmembers could be aided through comparison to

spectral libraries (e.g. Clark et al., 1993b; Christensen et al., 2000; Baldridge

et al., 2009).
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Figure 6.3: A generic adaptation of the preprocessing steps and the subsequent lithological
mapping processing chain; see also Figures 4.4 and 4.5.
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The techniques presented here could be easily transferred to other TIR data (or

even VNIR/SWIR data), including currently available satellite data, such as

ASTER, or even planned future satellite TIR data; for example, the HyspIRI

satellite has a planned TIR instrument which includes 7 bands in the 7-13

µm spectral range (Hulley et al., 2012). The coarser spatial and spectral

resolution of this data would yield difficulties in the exact identification of

minerals, though previous TIR data, such as ASTER, has been used to reliably

discriminate a wide range of minerals, especially silicates, as well as proving

useful for lithological mapping (e.g. Rowan and Mars, 2003; Chen et al.,

2007; Rogge et al., 2009; Haselwimmer et al., 2010, 2011; Salvatore et al.,

2014). Additionally, technological advances and increasing miniaturisation

will eventually lead to the availability of UAV-deployable research grade

hyperspectral sensors which could be used operationally by field geologists

as a tool to compliment traditional field mapping techniques. The use of an

automated processing chain in such a situation would be highly advantageous

in delivering fast, automated and repeatable lithological mapping results

which could aid and inform traditional mapping approaches operationally in

the field.

6.4.4 Generic example: Lithological mapping at Cuprite

To demonstrate the generic applicability of the processing chain (both at

another geographic location and using solar reflectance data) a brief example

is presented for the well-known geological test site at Cuprite, USA. Cuprite

is located in west-central Nevada where large areas of exposed Cambrian

sediments and Tertiary volcanics were intensively altered in the mid- to late-

Miocene (Abrams et al., 1977). Imagery for this site has been extensively

investigated and reported in the remote sensing literature because of mini-

mal vegetation cover and the presence of large outcrops exposing a suite of

spectrally distinct alteration minerals (e.g. Abrams et al., 1977; Kruse et al.,

1990; Hook and Rast, 1990; Hook et al., 1991; Clark et al., 1993a; Kruse et al.,

1993; Abrams and Hook, 1995; Clark and Swayze, 1996; Resmini et al., 1997;

Rowan et al., 2003). The data has also been used as a test example in many
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papers developing algorithms for each of the processing steps (e.g. Winter,

1999; Plaza et al., 2002; Nascimento and Bioucas-Dias, 2005; Chang and Plaza,

2006; Zhang et al., 2008; Bioucas-Dias and Nascimento, 2008; Bioucas-Dias,

2009).

A hyperspectral data cube collected from Cuprite mining district in July 1995

using the Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) as part

of an AVIRIS Group Shoot and is distributed as a tutorial dataset with the

ENVI software (ENVI, 2014). The hyperspectral data is 400× 350 pixels (8×
7 km) with 50 bands of SWIR data (from 2 to 2.5 µm). The spatial and spectral

resolutions are 20 m and 10 nm respectively. The data are supplied having

been corrected to reflectance using the ATmospheric REMoval (ATREM;

Gao et al., 1993) and having residual noise minimized using the Empirical

Flat Field Optimized Reflectance Transform (EFFORT; Boardman, 1998).

The generic processing chain, as outlined in Figure 6.3 (page 125) was applied.

The preprocessing steps were not required as the data are available following

atmospheric correction and EFFORT noise removal; the data has a high SNR

(> 500:1) hence no further noise reduction techniques were applied. As with

the Anchorage Island dataset the superpixel segmentation bias parameter k,

was set to 0.1 and the minimum superpixel region size was set to 30 pixels using

the Euclidean spectral distance as the divergence measure. The abundance

threshold was fixed at 0.5 and in lieu of field spectral measurements, the

United States Geological Survey (USGS) mineral spectral library (Clark et al.,

1993b) was used to automatically identify and label endmembers.

The processing chain identified and extracted 7 endmembers (other studies

also identify 7 endmembers from the same dataset, e.g. Zhang et al., 2008); the

endmembers and lithological map are presented in Figure 6.4. For qualitative

validation the results are presented alongside ‘expert’ mapping of the region

also using AVIRIS data by Swayze et al. (2014) (Figure 6.5). Of the 7 extracted

endmembers, only 6 could be reliably identified from the USGS spectral

library. All of the endmembers have higher SA values than seen with the

Anchorage Island data. This is likely result of having in situ field spectral data

available for Anchorage Island and using library data for Cuprite; this high-
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lights the differences between using library and field data as lower SA matches

are seen with library data. The resulting lithological map (Figure 6.4B) agrees

well with the results from Swayze et al. (2014) (Figure 6.5). The lithological

map shows a similar pattern of alteration minerals and their distinct regions

in the east (chert/chalcedony + alunite) and west (alunite + kaolinite) of

the Cuprite image, however reduced spectral contrast in the endmember

set (Figure 6.4A) does not allow for subtle spectral identification in areas

such as the Alunite Hill or Buddingtonite Hill (compare Figure 6.5). This

result echoes the findings of the Anchorage Island study area; the superpixel

segmentation reduces the spectral contrast and can prevent the detection

of subtle spectral features. This perhaps suggests that if appropriately high

SNRs are achieved during data acquisition, the superpixel segmentation may

act to inhibit the identification of spectrally subtle endmembers (Thomp-

son et al., 2010). However, this remains a point for future research and is

inevitably a trade-off between SNR, data quality, and the ability to derive

subtle lithological information from hyperspectral data.

Nevertheless, this brief example illustrates the future applicability of the

processing chain at other study areas as well as using the solar reflective

region.
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rived from the 2 µm vibrational region mineral map centered on the hydrothermal
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6.5 Recommendations for future work

A number of key suggestions and recommendations are noted below; these

include recommendations for (Antarctic) remote sensing in support of litho-

logical mapping, and recommendations and lines of future research for the

processing of hyperspectral data to produce lithological maps. To aid in

calibration/validation and production of seamless image mosaics from hyper-

spectral imagery a number of points should be considered:

A number of large, well distributed ground targets (those of known

reflectance or emissivity, of a constant temperature or blackbody-like

targets) to serve as calibration and validation targets for atmospheric

correction and temperature emissivity separation

Measurements of in situ atmospheric constituents (aerosols, ozone,

water vapour) to constrain atmospheric parameters for radiative transfer

modelling and possible generation of standard ‘Antarctic’ atmospheric

profiles and aerosol models for future studies

Overlapping flightlines as well as cross-cutting calibration lines to allow

for flight-line levelling, cross-track correction and minimisation of

illumination differences between neighbouring flight lines to produce

seamless mosaics

For thermal sensors on-board blackbodies may improve calibration;

alternatively the calibration of instruments should occur under similar

conditions to data acquisition which may improve the SNR

Whilst the processing chain was effective, there are still some possible lines

for future research and algorithm development which could be considered,

namely:

Investigate the use of mixed pixel endmember extraction techniques as

opposed to assuming the pure pixel scenario

Non-linear spectral unmixing techniques, as these may best reflect the

intimate mixing of materials within an individual pixel hence these

techniques could yield more accurate fractional abundances
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A robust assessment of the large number of EEA algorithms, including

a robust assessment of spatial EEAs using synthetic and real hyper-

spectral data; as code becomes publicly available and computational

power increases (or with access to high performance computing or

use of graphical processing units) a larger number of EEAs could be

investigated using synthetic data to determine the optimal algorithm

for identification of specific endmembers

Additionally, if future satellite launches with thermal sensors such as HyspIRI

(Hulley et al., 2012) are successful in may be possible to investigate techniques

such as thermal inertia (TI) for lithological discrimination. Thermal inertia –

that is, the ability of a material to withstand changes in temperature through a

diurnal cycle – is a physically important property of a material which can help

identify its characteristics (Gupta, 2003). TI, calculated from remote sensing

data, has been used to aid geological mapping and lithological discrimination

(Kahle et al., 1976; Pratt and Ellyett, 1978; Gillespie, 1985; Cracknell and Xue,

1996; Majumdar, 2003; Nasipuri et al., 2005, 2006; Ramakrishnan et al., 2013).

Additionally, since the launch of the Mars Global Surveyor (MGS), with

it’s Thermal Emission Spectrometer, several studies have utilised thermal

inertia to aid in the mapping of features on the Martian surface (Sefton-Nash

et al., 2012; Ody et al., 2013; Audouard et al., 2014). Such techniques could

be applied in the Antarctic, through satellite measurements either at the start

or towards the end of the austral summer when a distinct day-night cycle is

present in the Antarctic.
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7 Conclusion

A fully automated processing chain to produce lithological maps using air-

borne hyperspectral thermal infrared data has been developed for data of a

low signal to noise ratio; the first known development of such a processing

chain. An airborne hyperspectral TIR dataset, collected for the first time

from Antarctica, was used with the processing chain to accurately discrim-

inate grantoids. The challenging conditions and cold temperatures in the

Antarctic yielded data with a significantly lower SNR compared with data

collected in more temperate environments. As a result, several preprocessing

steps were employed to refine the imagery prior to analysis; atmospheric

correction and temperature emissivity separation were applied, followed by

further empirical corrections and noise removal through the minimum noise

fraction technique. Areas of snow and sea water were subsequently masked

using the temperature image.

The processing chain was established and applied to the preprocessed imagery.

Firstly, superpixel segmentation was applied to aggregate homogeneous image

regions comprised of several pixels having similar values into larger segments

(superpixels). The superpixels were input into the VD algorithm to determine

the number of endmembers, which were subsequently extracted using VCA

and unmixed using FCLSU to generate abundances of each endmember. A

predictive classification map was created where endmember fractions were

thresholded (> 0.5). The endmembers extracted were automatically matched

to their closest spectrum from the field spectral data, and the observations

made in the field from these measurements were used to label the predictive

map classes and generate a lithological map.

The fully automated processing chain was successful in identifying 4 geologi-

cally interpretable endmembers from the study area. Reconstruction of the

hyperspectral image from the endmembers and their fractional abundances

yielded a root mean square error (RMSE) of 0.58%. The RMSE value, almost

twice as large as previous studies, is likely a result of the low SNR of the

Antarctic data; nonetheless the processing chain was still able to accurately
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discriminate the majority of lithological units with strong agreement to ex-

isting geological maps. The results were validated and interpreted in the

context of the study area in conjunction with a full suite of ancillary data:

detailed high quality ground reference spectral data collected using a field

portable FTIR spectrometer, thin section and scanning electron microscope

analysis, electron microprobe analysis, whole rock geochemical data and

mineral modal analysis. The results are promising, with the thermal imagery

allowing clear distinction between granitoid types. However, the distinction

of fine grained, intermediate composition dykes is not possible, due to the

close spectral similarity with the country rock (granodiorite). Nonetheless,

the results show an improvement over previous lithological mapping using

multispectral TIR data in the Antarctic and highlight the improved discrimi-

nation of subtle granitoids made possible through the use of hyperspectral

TIR data.

The processing chain developed here is the first automated and repeatable

processing chain developed for producing a lithological map from airborne

hyperspectral thermal infrared data. It has the advantage of being effective

at producing lithological maps from data of a low signal to noise ratio and

offers improvements and repeatability compared to previously published tech-

niques, which are based on simpler spectral matching techniques or involved

manually derived endmembers. However, it is noted that the superpixel

segmentation could inhibit the identification of spectrally subtle endmem-

bers. The processing chain was also briefly demonstrated using SWIR data at

Cuprite, Nevada; this highlights the transferability of the technique to other

study areas, other spectral ranges and other sensors. Secondly, this study has

tackled the challenges of processing of the first ever airborne hyperspectral

data collected in the Antarctic and offers important recommendations for

future hyperspectral campaigns in the region. This study could have impli-

cations in the future with the launch of spaceborne hyperspectral sensors

which will yield repeated hyperspectral imagery of the polar regions, as well

as with the development of UAV-borne hyperspectral remote sensing where

an automated methodology for lithological mapping could be advantageous.
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The thermal infrared portion of the electromagnetic spectrum has considerable potential for mineral and
lithologicalmapping of themost abundant rock-forming silicates that do not display diagnostic features at visible
and shortwave infrared wavelengths. Lithological mapping using visible and shortwave infrared hyperspectral
data is well developed and established processing chains are available, however there is a paucity of suchmeth-
odologies for hyperspectral thermal infrared data. Here we present a new fully automated processing chain for
deriving lithological maps from hyperspectral thermal infrared data and test its applicability using the first
ever airborne hyperspectral thermal data collected in the Antarctic. A combined airborne hyperspectral survey,
targeted geological field mapping campaign and detailed mineralogical and geochemical datasets are applied
to small test site in West Antarctica where the geological relationships are representative of continental margin
arcs. The challenging environmental conditions and cold temperatures in the Antarctic meant that the data have
a significantly lower signal to noise ratio than is usually attained fromairborne hyperspectral sensors.We applied
preprocessing techniques to improve the signal to noise ratio and convert the radiance images to ground leaving
emissivity. Following preprocessing we developed and applied a fully automated processing chain to the
hyperspectral imagery, which consists of the following six steps: (1) superpixel segmentation, (2) determine
the number of endmembers, (3) extract endmembers from superpixels, (4) apply fully constrained linear
unmixing, (5) generate a predictive classification map, and (6) automatically label the predictive classes to
generate a lithological map. The results show that the image processing chain was successful, despite the low
signal to noise ratio of the imagery; reconstruction of the hyperspectral image from the endmembers and their
fractional abundances yielded a rootmean square error of 0.58%. The results are encouragingwith the thermal im-
agery allowing clear distinction between granitoid types. However, the distinction of fine grained, intermediate
composition dykes is not possible due to the close geochemical similarity with the country rock.

© 2016 Elsevier Inc. All rights reserved.

Keywords:
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Automated
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1. Introduction

Remote sensing in the solar reflective spectral range has beenwidely
demonstrated to be an invaluablemethodology to assist geological anal-
ysis (van der Meer et al., 2012). Hyperspectral data collected at visible
and near infrared (VNIR; 0.4–1 μm) and shortwave infrared (SWIR;
1–2.5 μm) wavelengths have been widely reported in the literature for
mappingmineral absorption features occurringwithin transitionmetals
(i.e. Fe, Mn, Cu, Ni, Cr etc.) and alteration minerals that display
absorption features associated with Mg-OH and Al-OH bonds (e.g.
Abrams, Ashley, Rowan, Goetz, & Kahle, 1977; Abrams & Hook, 1995;
Clark & Swayze, 1996; Clark, Swayze, & Gallagher, 1993; Hook, Elvidge,

Rast, & Watanabe, 1991; Hook & Rast, 1990; Kruse, Kierein-Young, &
Boardman, 1990; Kruse, Lefkoff, & Dietz, 1993b; Resmini, Kappus, Aldrich,
Harsanyi, & Anderson, 1997; Rowan, Hook, Abrams, & Mars, 2003).

Although these reflectance-based datasets have been successful for
mapping of minerals associated with alteration, from a geological per-
spective, mapping of rock-forming silicates is critical.When considering
only VNIR/SWIR data there are significant limitations in the range and
quality of the geological parameters that can be retrieved, as many im-
portant rock-formingminerals do not display diagnostic absorption fea-
tures at VNIR/SWIR wavelengths (e.g. Drury, 2001; Gupta, 2003; van
der Meer et al., 2012).

The longwave or thermal infrared (TIR; 8–14 μm)wavelength range
has the capability of retrieving additional physical parameters andmore
accurately resolving the composition and physical condition of a mate-
rial than solar reflected radiation (Hecker, Dilles, van der Meijde, & van
der Meer, 2012; Hook, Cudahy, Kahle, & Whitbourn, 1998; Hook et al.,
2005). Many common rock-forming minerals such as quartz, feldspars,
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olivines, pyroxenes, micas and clay minerals have spectral features in
the 8–14 μmwavelength region (van der Meer et al., 2012). For silicate
minerals, a pronounced emittance minimum caused by fundamental
Si-O stretching vibrations occurs near 10 μm (Hunt & Salisbury, 1975;
Salisbury, 1991). The vibrational frequency, and thus the wavelength
of the minimum, depends on the degree of coordination among the
silicon-oxygen tetrahedra in the crystal lattice. Framework silicates,
such as quartz and feldspar, have emittance minima at shorter wave-
lengths (9.3 and 10 μm, respectively) than do sheet silicates such as
muscovite (10.3 μm) and chain silicates such as the amphiboleminerals
(10.7 μm) (Hunt, 1980). Emission Fourier transform infrared (FTIR)
spectroscopy has been successfully used to predict modal mineralogy
of rock-forming minerals such as feldspars, pyroxene, and quartz and
their composition in igneous and metamorphic rocks (e.g. Feely &
Christensen, 1999; Hamilton & Christensen, 2000; Hecker, van der
Meijde, & van der Meer, 2010; Milam, McSween, Hamilton, Moersch,
& Christensen, 2004). Carbonates have features associated with CO3

internal vibrations both in the 6–8 μm region (Adler & Kerr, 1963;
Hunt& Salisbury, 1975) and also at 11.4 and 14.3 μmdue to C-O bending
modes. Sulphateminerals have an intense feature near 8.7 μmcaused by
fundamental stretching motions (Lane & Christensen, 1997; van der
Meer, 1995).

The majority of geological mapping studies using thermal infrared
remote sensing data have utilised multispectral data; multispectral
sensors measure a small number of (b20) broadly spaced, often
non-contiguous bands (Kramer, 2002). The Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) and the
Thermal Infrared Multispectral Scanner (TIMS) sensors have demon-
strated the utility of TIR data to discriminate a wide range of
minerals, especially silicates, as well as proving useful for lithological
mapping (e.g. Chen, Warner, & Campagna, 2007; Haselwimmer, Riley,
& Liu, 2010, 2011; Rogge, Rivard, Harris, & Zhang, 2009; Rowan &
Mars, 2003; Salvatore, Mustard, Head, Marchant, & Wyatt, 2014);
however, these satellite platforms are limited by their coarse spatial
and spectral resolution.

The development of airborne hyperspectral TIR sensors producing
images with tens to hundreds of contiguous spectral channels provided
thepotential for a step-change in the range ofmineralogical information
and accuracy of surface composition retrievable remotely. Currently,
there are a number of operational airborne hyperspectral TIR instru-
ments, including the Spatially Enhanced Broadband Array Spectrograph
System (SEBASS), the Airborne Hyperspectral Scanner (AHS), the ITRES
Thermal Airborne Spectrographic Imagery (TASI), and the Specim
AisaOWL (van der Meer et al., 2012). Previous studies using airborne
hyperspectral TIR data have illustrated the exceptional potential of
these types of sensors for mapping silicates, carbonates, sulphates, and
clays (e.g. Aslett, Taranik, & Riley, 2008; Calvin, Vaughan, Taranik, &
Smailbegovic, 2001; Cudahy et al., 2001; Hewson et al., 2000; Kruse &
McDowell, 2015; Riley & Hecker, 2013; Vaughan, Calvin, & Taranik,
2003; Vaughan, Hook, Calvin, & Taranik, 2005).

However, a number of issues relating to processing of the imagery
remain, which significantly affects the accuracy of the temperature-
emissivity separation and subsequently the quality of the interpretation
of the generated mineralogical and lithological maps. These issues in-
clude the coarser spectral resolution and poorer spectral calibration of
currently available instruments (compared to VNIR/SWIR instruments),
inaccurate correction of the effects of the atmosphere, low signal-to-
noise ratios and a lack of understanding of the influence of a wide
range of compositional, morphological, topographical and environmen-
tal factors on the spectral emissivity signal received at-sensor (Feng,
Rivard, Rogge, & Grant, 2012; Salvaggio & Miller, 2001; Shimoni,
van der Meer, & Acheroy, 2007). The complexity of the processing
chain (atmospheric correction and the underdetermined nature of
temperature emissivity separation; Gillespie et al., 1998) and lack of
defined methodologies for processing of hyperspectral airborne TIR
datasets relative to the processing of VNIR and SWIR hyperspectral

datasets is an additional factor in limiting the usefulness of the data
and the quality of geological interpretation (van der Meer et al.,
2012).

A key objective of this study was to develop a fully automated
processing chain, robust to noise, in order to produce a lithological
map from airborne hyperspectral TIR data. The processing chain, with
minimal inputs and parameters, is designed to assist geologists in pro-
cessing, analysing and interpreting hyperspectral TIR datasets; we use
established techniques which are routinely applied to VNIR/SWIR
datasets and integrate them into a fully automated processing chain
applied to hyperspectral TIR data.

Additionally, this paper also presents the first known analysis of
airborne hyperspectral TIR data from theAntarctic.We tackle the signif-
icant challenges presented by the extreme environment in the Antarc-
tic, which produced a dataset with a very low signal to noise ratio. The
results are validated and interpreted in the context of the study area
in conjunction with a full suite of ancillary data: detailed high quality
ground reference spectral data collected using a new, high resolution
field portable FTIR spectrometer, thin section and scanning electron
microscope analysis, electron microprobe analysis, whole rock geo-
chemical data and mineral modal analysis.

2. Study area and datasets

2.1. Study area and geological context

The Antarctic Peninsula is part of the proto-Pacific continental mar-
gin arc that was magmatically active at least from the Permain through
to ~20 Ma. The range of igneous rocks emplaced in continental margin
arcs informs us about the tectonic history of the margin, and even rela-
tively subtle difference between granitoid types (e.g. tonalite, diorite,
granodiorite, granite) are significant as they record variations inmelting
depths and the stress regime in the lithosphere.

Anchorage Island is located in Ryder Bay to the south of the
larger Adelaide Island, on the Antarctic Peninsula. The British
Antarctic Survey (BAS) main research station is located close by
on Rothera Point, Adelaide Island (Fig. 1C). Anchorage Island was
surveyed as part of a hyperspectral airborne campaign in February
2011 and visited for follow-up ground truth fieldwork in January/
February 2014 (Fig. 1D).

A local-scale geological map of the study area, based on previous
geological mapping updated with recent field observations, is shown
in Fig. 2. The main geologic unit on Anchorage Island is the Adelaide Is-
land Intrusive Suite (AIIS). The AIIS is dominated by granodiorites,
tonalites and gabbroic rocks; granodiorite and hybrid gabbro/granodio-
rite plutons are the most abundant. The granodiorite is leucocratic and
is dominated by plagioclase (~ 50–60%), which often weathers orange/
brown; quartz typically accounts for ~10% of the rock and K–feldspar
~5%. Mafic minerals are common (25%), with green/brown amphibole
abundant, alongwithminor amounts of biotite and epidote. The pluton-
ic rocks are cut by dolerite and intermediate-felsic composition dykes,
which are typically b1 m thick, dip steeply (N75 ∘ to the southeast)
and strike in the range 210–230°.

2.2. Airborne hyperspectral data

Airborne hyperspectral TIR imagerywas acquired on the 3rd February
2011 by the ITRES TASI sensor with 32 spectral bands from 8 to 11.4 μm
at a full-width half-maximum (FWHM) of 109.5 nm. The acquisition sys-
tem hardware and other equipment (inertial measurement unit and in-
strument control units) were installed into a De Havilland Twin Otter
aircraft and flown unpressurised. Radiometric correction and geometric
correction were carried out by ITRES Research Ltd., where a total of 17
flight lines were orthorectified and a mosaicked image in calibrated at-
sensor radiance units (Level 1B) at a ground spatial resolution of 1 m
was delivered. The full preprocessing of the hyperspectral imagery is
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described in Section 3.3 and the automated lithological mapping in
Section 3.4.

2.3. Field reflectance and emission spectral survey

Ground TIR emissivity spectra were acquired from the survey region
during a field campaign in February 2014. A total of eight field localities
were surveyed (Fig. 1D) encompassing a northeast-southwest transect
across Anchorage Island, though specific localities were selected due
to their accessibility. At each locality, between 3 and 5 hand specimens
were collected from representative lithological units, mafic enclaves
and mineral viens (e.g. quartz) within close proximity (b10 m) of
each field locality. Hand specimens were collected from weathered,
nadir facing rock surfaces. Although varying levels of lichen cover
were present, samples were measured from lichen-free (or minimal
lichen covered) areas on each sample. Hand specimens were measured
using an ABB full spectrum reflectometer (FSR) to gathermeasurements
of spectral reflectivity and emissivity.

The FSR is a FTIR spectrometer which uses a Michelson interferome-
ter (MB-3000) with mercury cadmium telluride (MCT) and indium
arsenide (InAs) detectors. It has a wavelength range from 0.7–14 μm,
a spectral resolution of b1 nmand a spot size of ~4mm. The FSRwas de-
veloped by ABB for the Canadian Department for Research and Defence
(DRDC). It represents a significant improvement over existing field FTIR
spectrometers; it is compact and portable, has a high signal to noise

ratio due do its cooled MCT and InAs detectors, as well as covering a
large spectral range from the VNIR to TIR. The FSR is also a contact
probe instrument, similar to spectral radiometers conventionally used
for VNIR/SWIR spectroscopy. The spectral resolution was set to 0.1 nm
and the instrument was set up such that each spectrum represented
the average of 128 individual spectral measurements. A calibrated
gold panel is built into the FSR allowing for the calculation of emissivity;
the gold panelwas used to recalibrate the instrument at the start of each
batch ofmeasurements at each field locality. Fig. 3 shows 18 spectra col-
lected from exposed nadir facing samples (excluding samples from en-
claves or vein material).

3. Methodology

The processing of the airborne hyperspectral TIR imagery was split
into two main phases; (1) data preprocessing and (2) fully automat-
ed image processing and lithological mapping. To assist in the analy-
sis of the results from the airborne remote sensing study a
comprehensive field mapping survey was carried out supported by
field reflectance and emission spectroscopy (Section 2.3). The field
spectral data underwent spectral resampling (Section 3.1). Laboratory
geochemical and petrographic analyses were carried out to determine
mineralogical information and aid in interpretation of field spectral
data (Section 3.2).

Fig. 1. Locationmaps showing the context of the study areawithin Antarctica (A), the location of Adelaide Islandwithin the Antarctic Peninsula (B) and the location of Anchorage Island in
the context of Ryder Bay (C; labelled). (D) shows a true colour composite of Anchorage Island with field localities labelled.
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Fig. 2. Local scale geological map of Anchorage Island.
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3.1. Spectral resampling

All of the emissivity spectra collected in the field (Fig. 3) using FSR
were convolved to the spectral response functions of the TASI sensor
through

εi ¼

Z
εs λð Þri λð ÞδλZ

ri λð Þδλ
ð1Þ

where εi is convolved emissivity, εs(λ) is the sample's emissivity at band
i and wavelength λ, ri(λ) is the spectral response function of band i at
wavelength λi, over the wavelength interval of the sample δλ.

3.2. Geochemical and petrographic analyses

Four samples representative of the main lithological units (granite,
granodiorite and dolerite) were further investigated to understand
their geochemistry; two granodiorite samples (J13.19.10 and
J13.22.5), one granite (J13.21.10) and one dolerite sample (J13.22.10)
were chosen. These samples were selected to ensure that each of the
geological units on Anchorage Island were investigated; as weathered
granodiorite represents themajor lithological unit on Anchorage Island,
two weathered granodiorite samples were chosen to determine their
homogeneity. Thin sections were examined using a petrological micro-
scope, a FEI Quanta 650F QEMSCAN scanning electronmicroscope and a
Cameca SX-100 electron microprobe. Backscattered electron (BSE) im-
ages were collected on the QEMSCAN using an accelerating voltage of
20 kV and a working distance of ~13 mm. Major element geochemistry
and the identification of minerals and mineral phases was carried out
through electron microprobe analysis (EPMA) of points (~5) from
grains within thin sections. Point counting (Galehouse, 1971) was
used to determine mineral composition; 500 points were counted in
thin section on each of the four samples.

The samples were also analysed by X-ray fluorescence spectrometry
(XRF) to determine whole-rock major and trace elements using a
PANalytical Axios-Advanced XRF spectrometer at the University of
Leicester. Powders from whole-rock samples were obtained through

crushing in a steel jaw crusher and powdering in an agate ball mill.
Major elements were determined from fused glass discs and trace ele-
ments from powder pellets. Loss on ignition (LOI) values were calculat-
ed by igniting ~3 g of each sample in ceramic crucibles at 950 °C. Glass
discswere prepared from 0.6 g of non-ignited powder and 3 g of lithium
metaborate flux, melted in a Pt–Au crucible over a Spartan burner then
cast into a Pt–Au mould. Powder pellets of 32 mm diameter were pro-
duced from mixing 7 g of fine ground sample powder with 12–15
drops of a 7% polyvinyl alcohol (PVA) solution (Moviol 8–88) and
pressed at 10 tons per square inch.

3.3. Hyperspectral data preprocessing

Fig. 4 shows a flowchart of the preprocessing steps. Radiometric cor-
rection and geometric correction were carried out by ITRES Research
Ltd. using their proprietary tools. In the first step, radiometric and
spectral calibration coefficients were applied to convert the raw digital
numbers into spectral radiance values. In the second step, the ITRES pro-
prietary geometric correction software utilised the navigation solution,
bundle adjustment parameters, and digital elevation models (DEMs) to
produce georeferenced radiance image files for each flight line. In addi-
tion, flight lines were combined into an image mosaic of the area. The
nearest neighbour algorithm was used to populate the image pixels so
that radiometric integrity of the pixels could be preserved. Where the
pixels of adjacent flight lines overlapped the pixel with the smallest
off-nadir angle was written to the final mosaic image.

Whilst the TIR domain is an atmospheric window, there is atmo-
spheric influence which needs to be compensated for, especially for
quantitative applications (Liang et al., 2002). Here we performed atmo-
spheric correction through the inversion of radiative transfermodelling,
following a similar approach to our corrections of VNIR/SWIR Antarctic
hyperspectral data (Black et al., 2014).

The basic radiative transfer equation in the TIR domain as given by
(Dash, Göttsche, Olesen, & Fischer, 2002) is (where each term is a func-
tion of wavelength, λ, omitted for clarity)

Ls ¼ Lp þ τ � Lg þ τ � 1−ε½ � � F
π

ð2Þ

Fig. 3. Spectral emissivitymeasured in thefield using a Fourier Transform Infrared Spectrometer (FTIR) of relevant lithological units fromAnchorage Island. (A) shows granodiorite spectra
(B) shows granite and dolerite spectra.
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where Ls is the total thermal radiance received at-sensor, Lp the thermal
path radiance emitted by the atmosphere between the ground and the
sensor, τ the ground-to-sensor transmittance, Lg the ground emitted ra-
diance, ε the ground surface emissivity and F the downwelling thermal
sky flux at the ground (Richter & Coll, 2002). We utilised ATCOR-4
(Richter & Schläpfer, 2002, 2014) to perform atmospheric correction;
ATCOR-4 applies Eq. (2) by interpolating the required atmospheric pa-
rameters for each pixel based on their individual viewing geometry
where the radiative transfer parameters are selected from a database
of MODTRAN-5 (Berk et al., 2005) simulations. The two inputs required
by ATCOR-4 to approximate the atmospheric conditions are the visibil-
ity and column water vapour amount. Visibility data is continually
measured at the nearby Rothera research station using an automated
BIRAL HSS VPF-730 Combined Visibility & Present Weather Sensor.
The water vapour value was derived using an assumed value of
2.0 gcm−3 by comparison to radiosonde data. The mosaicked image
was processed one flight line at a time to convert the at-sensor non-
atmospherically corrected radiance into ground-leaving radiance.
Temperature and emissivity separation (TES) was performed following

atmospheric correction using the maximum-minimum difference of
emissivity technique, which is commonly applied to ASTER TIR data
(Gillespie et al., 1998).

Investigation of the emissivity imagery following atmospheric cor-
rection and TES showed lower than expected emissivity values, along
with residual atmospheric absorptions. This was likely due to the chal-
lenging acquisition conditions and calibration conditions of the instru-
ment, along with inadequate representation of the atmosphere due to
the approximations in the atmospheric correction process (Black et al.,
2014). An empirical correction, through the Emissive Empirical Line
Method (EELM; Distasio & Resmini, 2010) was applied. The EELM gen-
erates scalar multiplicative values for each band of the image through
regression of image pixel spectra to the assumed “target” spectra - this
approach is comparable to the use of pseudo invariant features (PIFs;
Freemantle, Pu, &Miller, 1992; Philpot & Ansty, 2011) and the empirical
linemethod (ELM; Smith&Milton, 1999)which is commonly applied to
VNIR/SWIR data (e.g. Tuominen & Lipping, 2011). Here we applied
EELM utilising pixels selected from homogeneous regions of granite,
dolerite, snow and sea water.

High levels of salt and pepper noise along with within-in track
striping and flight line illumination differences were still apparent in
emissivity imagery so an additional processing step was applied to im-
prove the signal-to-noise ratio (SNR). The minimum noise fraction
(MNF; Boardman & Kruse, 1994; Green et al., 1998) was applied. The
MNF involves two cascaded principal component (PC) transformations;
the first transformation, based on an estimated noise covariancematrix,
decorrelates and rescales the noise in the data. The second step is a
standard PC transformation of the noise-reduced data. The MNF is an
effective technique for reducing a large hyperspectral dataset into
fewer components which contain the majority of information (spectral
variance) in a small number of components. Unlike a PC transform, the
resulting axes (components) from MNF are not orthogonal (as in PC
analysis) but are ordered by decreasing signal to noise ratio (Keshava
& Mustard, 2002). After the MNF was applied, the first four MNF
bands were then used in the inverse MNF to produce the noise-
reduced emissivity image. Additionally a median filter with a radius of
2 was applied in the spectral domain to remove shot noise which was
not addressed by the MNF noise reduction step (e.g. Gilmore et al.,
2011).

We investigated the SNR of the image before and after preprocessing
by utilising an area of sea water in the image and calculating the SNR
through

SNR ¼ μ ij

σ ij
ð3Þ

where i and j are the rows and columns of the image, μ ij is the mean of
the pixels and σij is the standard deviation of the pixels. The signal to
noise ratio is often reported using the logarithmic decibel (dB) scale;
we can express the SNR in dB through

SNRdB ¼ 20 log10 SNRð Þ: ð4Þ

Finally, prior to processing, the image wasmasked to remove snow/
ice and seawater. Themaskwas generated from the temperature image
where pixels b5 °C were removed.

3.4. Image processing and lithological mapping

In order to produce a lithological map, we applied a six step process-
ing chain, shown in Fig. 5. The processing chain is fully automated,
with only a small number of inputs/parameters; algorithmswere select-
ed from the existing literature based on their ability to cope with
low SNR datasets. The six steps are: (1) superpixel segmentation;

Fig. 4. Flow chart summarising the preprocessing of the hyperspectral imagery. Inputs and
parameters are shown in light grey boxes. Abbreviated processing steps are as follows:
MNF, minimum noise fraction.
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(2) identify thenumber of endmembers to extract from the superpixels;
(3) extract endmembers from the image using an endmember extrac-
tion algorithm (EEA); (4) perform spectral mixture analysis (SMA;
also known as spectral unmixing) to determine the fractional abun-
dances each endmember; (5) produce a predictive classification map
from endmember fractional abundances; (6) identify endmembers
and label the predictive map classes to produce a lithological map.

Here we consider an endmember to be a unique spectrum derived
from the hyperspectral scene itself. Endmembers are found directly
from the image, regardless of the composition of materials (within indi-
vidual pixels or within the scene itself) or any imperfections in the
dataset (e.g. sensor noise, atmospheric influence and so on) (Winter,
1999). Through the careful interpretation of endmembers in reference
to the local geological context, ancillary data (e.g. geochemical analysis)
and knowledge of the imperfections within the data, endmembers
which are recognisable are determined and interpreted in a geological
context (Rogge et al., 2009; Winter, 1999).

These steps are fully automated in a MATLAB environment
(MathWorks, 2011) and do not require any user interaction. Steps 1 to
5 require the hyperspectral scene and few parameters as input. In this
study, we also perform step 6 automatically with the additional input

of thefield spectral data (convolved to TASI spectral response functions;
Eq. (1)), which are used to automatically label the predictive map clas-
ses. In the absence of field spectral data, step 6 could be performed
through manual interpretation of endmembers and subsequent label-
ling of the predictivemap classes by an expert user. Due to the automat-
ed nature of the processing chain, the results are also completely
repeatable unlike approacheswhich rely onmanual endmember identi-
fication. The following sections describe each step of the processing
chain.

3.4.1. Step 1: superpixel segmentation
Firstly, we apply superpixel segmentation, which adds a spatial

component to endmember extraction. Superpixels are homogeneous
image regions comprised of several pixels having similar values and
are generated by intentional over-segmentation of the emissivity
image which aggregates scene features into segments (Gilmore et al.,
2011; Thompson, Mandrake, Gilmore, & Castano, 2010); the spectra of
each of the original image pixels within a superpixel segment are
averaged to produce the superpixel's spectrum.

Briefly, the superpixel segmentation uses graph-based image seg-
mentation (Felzenszwalb & Huttenlocher, 2004), where the pixel grid
is shattered into an 8-connected graph with nodes connected by
arcs representing the Euclidean spectral distance and the nodes
are then iteratively joined using an agglomerative clustering algorithm
(Felzenszwalb & Huttenlocher, 2004; Thompson et al., 2010;
Thompson et al., 2013). A stable bias parameter, k controls the size of
the superpixels, a minimum superpixel size is enforced, and in a final
step smaller regions are merged to their nearest adjacent clusters
(Felzenszwalb & Huttenlocher, 2004; Thompson et al., 2010). The
superpixel approach has been shown to be beneficial on low SNR
datasets and can aid in deriving endmembers that more closely resem-
ble manually derived endmembers (Thompson et al., 2010). This is due
to averaging several pixel spectra within a single superpixel and
thus the technique reduces the noise variance proportionally to the
superpixel area. However the technique can act to degrade spectral
purity by aggregating multiple pixels and can suppress subtle spectral
features (Thompson et al., 2010).

For the superpixel segmentation we set the bias parameter k to 0.1
and the minimum superpixel region size to 30 pixels using the
Euclidean spectral distance as the divergence measure. These parame-
ters were determined quantitatively by investigating the sensitivity of
the segmentation to small features, such as the stoped granite block in
the northeast of Anchorage Island (Fig. 2). These parameters are deter-
mined based on the scale of features present in the scene and the spatial
resolution of the imagery, thus may require local tuning on other imag-
ery collected at different resolutions or where geological features occur
at different scales. The superpixel segmentation step also serves as an
image reduction step, thereby speeding up processing times; the raw
image contains over 7.6million pixels (3062× 2489) and the superpixel
segmentation reduces this to 9810 superpixels.

3.4.2. Step 2: estimating the number of endmembers
Following the generation of superpixels, Virtual Dimensionality (VD;

Chang & Du, 2004) was used to determine the number of endmembers
(n). The number of endmembers, or the intrinsic dimensionality (ID) of
a hyperspectral image is considerably smaller than the component di-
mensionality (number of bands), and accurately determining the ID is
crucial for the success of endmember extraction and spectral mixture
analysis (Chang & Du, 2004). The high spatial and spectral resolution
of hyperspectral imagerymeans that the sensor is capable of uncovering
many unknown endmembers, which cannot be identified by visual in-
spection or known a priori (Chang & Du, 2004). In order to determine
the number of endmembers (or signal sources, i.e. the intrinsic dimen-
sionality) we applied the VD algorithm, prior to endmember extraction.
The VD concept formulates the issue of whether a distinct signature is
present or not in each of the spectral bands as a binary hypothesis

Fig. 5. Flow chart summarising the methods of the fully automated lithological mapping
process. Input parameters are shown in light grey boxes. Abbreviated processing steps
are as follows: VD, virtual dimensionality; EEA, endmember extraction algorithm; VCA,
Vertex Component Analysis.
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testing problem, where a Newman-Pearson detector is generated to
serve as a decision-maker based on a prescribed false alarm probability
Pfa (Chang & Du, 2004; Plaza, Plaza, Martnez, & Sanchez, 2011). In our
preliminary investigations, we varied the Pfa from 10-3 to 10-6, however,
the estimated number of endmembers did not change; we therefore
fixed the Pfa value to 10-4 in line with previous studies (Chang & Du,
2004; Plaza et al., 2011).

3.4.3. Step 3: endmember extraction
In step (3)we applied Vertex Component Analysis (VCA; Nascimento

& Bioucas-Dias, 2005), to extract n endmembers from the superpixels.
Vertex Component Analysis exploits the fact that endmembers occupy
the vertices of a simplex and assumes the presence of pure pixels in
the data. The algorithm iteratively projects data onto a direction orthog-
onal to the subspace spanned by the endmembers already determined
and the new endmember signature corresponds to the extreme of the
projection; iteration continues until the number of endmembers is
exhausted. The algorithm has been shown to be comparable to state of
the art endmember extraction algorithms, such as N-FINDR (Winter,
1999) and outperforms manual techniques such as the Pixel Purity
Index (PPI; Boardman, 1993). It is an order of magnitude less computa-
tionally complex than other state of the art endmember extraction
algorithms which yields significantly faster processing times for large
datasets (Nascimento & Bioucas-Dias, 2005).

3.4.4. Step 4: spectral mixture analysis
The endmembers derived from the VCA algorithm were used as

input to step (4) where linear SMA is used to produce fractional
abundances of the n endmembers using the original image (without
superpixel segmentation). Due to its ease of implementation, we ap-
plied fully constrained linear spectral unmixing (FCLSU; Heinz &
Chang, 2001) to derive fractional abundances of each endmember,
given as

Rb ¼
Xn
i¼1

FiSib ð5Þ

where Rb is the fractional abundance of the pixel at band b, Fi is the frac-
tional abundance of endmember i, Sib describes the emissivity of
endmember i at band b, and n is the number of endmembers. Eq. (5)
was solved subject to the constraints that fractional abundances
sum-to-one (ASC; abundances sum-to-one constraint) and fractional
abundances are non-negative (ANC; abundance non-negative
constraint) (e.g. Rogge et al., 2009). This step results in fractional abun-
dance images, where, for each pixel in the image, the abundance of each
endmember is determined. The algorithms used at this and the preced-
ing processing steps were selected due to their availability and imple-
mentation in the MATLAB environment (MathWorks, 2011), along
with their relatively quick processing times and proven success at
extracting endmembers under moderate to high noise conditions
(Chang & Plaza, 2006; Nascimento & Bioucas-Dias, 2005; Plaza, Hendrix,
Garca, Martn, & Plaza, 2012).

3.4.5. Step 5: predictive map classification
Utilising the abundance images a predictive classification map was

generated following a similar approach to Rogge et al. (2009). The
map was generated by determining the endmember with the maxi-
mum fractional abundance for each pixel and assigning that pixel to
the given endmember class. For a pixel to be assigned to a particular
class, the endmember abundance must be above a minimum fraction-
al abundance threshold (or confidence level), otherwise a null class
was assigned. The minimum fractional abundance was set to the in-
termediate value of 0.5 for practical purposes, however this value

could be increased to identify spectrally purer regions (Rogge et al.,
2009).

3.4.6. Step 6: class labelling
The interpretation (class labelling) step was carried out to produce

geological labels which were automatically applied to the classification
map generated from step (5). The image derived endmember spectra
were compared to field emissivity spectra (e.g. Harris, Rogge,
Hitchcock, Ijewlie, & Wright, 2005; Rogge et al., 2009) through calcula-
tion of spectral angle (SA), also known as Spectral Angle Mapper (SAM;
Kruse et al., 1993a) through the application of

SA ¼ cos−1 t
!� r!

t
!���
��� � t

!���
���

0
B@

1
CA ð6Þ

where t represents the spectrum of the target (endmember), r repre-
sents the spectrum of the reference (field spectra) and SA is the spectral
angle (in radians; 0 to 2π). This technique to determine similarity is in-
sensitive to gain factors as the angle between two vectors is invariant
with respect to the lengths of the vectors, and allows for laboratory
spectra to be directly compared to remotely sensed spectra (Kruse
et al., 1993a). Predictive map classes were automatically labelled using
their closest match from the field spectral data (e.g. Rivard, Zhang,
Feng, & Sanchez-Azofeifa, 2009).

3.5. Image processing validation

In order to validate our findings, we use the root mean square error
metric (RMSE) for assessment (e.g. Plaza et al., 2012). We define ŷij as
the reconstructed hyperspectral image, following

ŷij ¼
Xn
n¼1

Mn � Snð Þ ð7Þ

where i and j are the rows and columns of the image, n is the number of
endmembers,Mn denotes the endmember spectrum of n and Sn denotes
the fractional abundance of endmember n. Following this reconstruc-
tion we calculate the RMSE between the original hyperspectral image,
y and the reconstructed hyperspectral image, ŷ as

RMSE y; ŷð Þ ¼ 1
B

XB
j¼1

yij−ŷij
h i20

@
1
A

1
2

ð8Þ

where B is the number of spectral bands and ŷij and yij are pixels of the
original hyperspectral image and the pixels of the reconstructed
hyperspectral image respectively. Summary statistics were calculated
from the RMSE of the pixels of each endmember class as well as the
whole RMSE image.

Additionally, we also extract the original image spectra and the re-
constructed image spectra (calculated from the endmembers and their
fractional abundances). Using areas of granite and granodiorite we
extract spectra from pixels of high purity (0.9 fractional abundance),
medium purity (0.75 fractional abundance) and low purity (0.5
fractional abundance) and compare the spectra, their fractional abun-
dances, and the RMSE values to validate the findings in a spectral context.

4. Results and discussion

4.1. Field data

Table 1 shows whole-rock major and trace element data from XRF
spectroscopy. Table 2 shows the abundances of minerals as determined
from point counting. Spectral data collected from in situ samples is
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displayed in Fig. 3. The majority of Anchorage Island is composed of
weathered granodiorite, however some areas contain amphibole rich
granodiorites (J13.24, J13.25 and J13.26), and areas in the southwest
of the island display strongly weathered and altered granodiorites
(J13.19 and J13.20).

The spectral variability of the granidiorites is shown in Fig. 3A.
Numerous dolorite dykes cut the granodiorite unit; a spectral measure-
ment from a dolerite dyke in the northwest of Anchorage Island is
shown in Fig. 3B. The field spectra for dolerite and granodiorite show
similar spectral features; a small relative increase in emissivity at 8.6
and 9.5, and two broad flat absorption features centred around 9 and
10. The whole-rock XRF data shown in Table 1 support the spectral

similarity of the dolerite and granodiorite samples — there is very little
difference in the chemical composition of these samples, hence the sim-
ilar spectra of the samples. The amphibole rich granodiorite spectra dis-
play an additional weak feature at 10 with reduced magnitude of the
emissivity maximum at 8.6 μm. The strongly weathered (and altered)
granodiorite spectra are significantly different to weathered/amphibole
rich granodiorite spectra, displaying a broad deep feature at 9 μm and a
smooth spectrum above 9.8 μm.We attribute the broad deep absorption
centred around 9 μm to high temperature feldspar alteration into clay
minerals (e.g. sericite).

The spectrum of granite is dominated by a quartz signal which leads
to an emissivitymaximumat 8.7 μmand a deep featurewith anemissiv-
ity minimum at 9.4 μm (Fig. 3B). Although similar spectral features to
granodiorite are present in the granites, the overall magnitude of the
absorption features in much larger in the granite than in any of the
granodiorite or dolerite spectra.

4.2. TIR data preprocessing results

Fig. 6 shows the first 10 bands of theMNF transform. As higher MNF
components are considered, the levels of noise dramatically increase
(Fig. 6G–J). The MNF images also clearly highlight the differences be-
tween flight lines which cause ‘striping‘in the images (e.g. Fig. 6E and
F). The first four of these MNF components (Fig. 6A–D) were retained
and processed through an inverse MNF transform prior to input in the
superpixel and endmember extraction algorithms.

Fig. 7 shows the SNR for the image after atmospheric correction and
TES compared to the SNR for the final image after all preprocessing
(atmospheric correction, TES, EELM and MNF noise reduction). Overall
the SNR is increased from a mean value of 60:1 (35.6 dB) to 92:1
(39.3 dB) after preprocessing. With the exception of one band at
~9 μm, the SNR increased for all wavelengths, with significant increases
seen at the higher wavelengths (N10.5 μm).Whilst increases in SNR are
seen after preprocessing, onwhole SNR values are relatively low and far
lower than that which are regularly reported by others using airborne
hyperspectral TIR sensors such as SEBASS; for example Vaughan et al.
(2003) report SNR values of 2000:1 (66 dB) using SEBASS data in
Nevada.

The low SNR values reported here are likely a direct result of the
challenging operating conditions in the Antarctic; the instruments
were flown in an unpressurised aircraft, operating at extreme tempera-
tures whichwere up to 20 °C (68 °F) outside of the instrument's normal
operating range, as well as being subject to repeated heating and
cooling cycles during storage and operation (Black et al., 2014).

4.3. Predictive map generation and geological interpretations

A total of 9810 superpixels were input into the VD algorithmwhich
determined there were 5 endmembers. The endmembers were extract-
ed using the VCA algorithm and are shown in Fig. 8. Endmember abun-
dances were determined using FCLSU; the abundances images were
utilised to generate a classified map, where classes were assigned to
the predominant endmember if the abundance was greater than 0.5.

The classes were subsequently labelled by automatic matching to
the field spectral data; the closest match (in terms of spectral angle;
(Eq. (6)) was applied to label the endmembers (Fig. 8) and their respec-
tive class in the predictive classification map (Fig. 9). The results were
validated through visual inspection of the classification map with re-
spect to the local geologicalmap (Fig. 2), comparison of the endmember
spectra and the ancillary data (Sections 2.3 and 3.2), aswell as using the
RMSE metric (Sections 3.5 and 4.4). Endmember-4 was excluded as it
represented sea water from pixels which were not captured at the
masking step and is not discussed further. The resulting lithological
map is shown in Fig. 9.

For each endmember, a match was determined from the field spectra
where the SAwas ≤0.03 radians; we found confidentmatches for granite,

Table 1
Geochemical analyses of Anchorage Island samples from XRF spectroscopy.

Sample J13.22.10 J13.19.10 J13.22.5 J13.21.10

Unit Dolerite Granodiorite Granite

Major elements (%)
SiO 2 54.40 55.19 59.59 78.29
TiO2 1.02 0.94 0.87 0.20
Al2O3 16.62 18.18 16.35 11.64
Fe2O3

† 8.66 8.55 6.67 0.86
MnO 0.124 0.112 0.147 0.013
MgO 3.96 3.29 3.52 0.16
CaO 8.57 7.49 6.16 0.53
Na2O 3.14 4.04 3.51 2.74
K2O 0.958 1.066 2.115 5.610
P2O5 0.241 0.176 0.185 0.018
SO3 0.170 0.009 b0.003 b0.003
LOI 2.05 0.88 0.97 0.31
Total 99.92 99.93 100.09 100.38

Trace elements (ppm)
As 6.7 8.4 5.1 4.4
Ba 365.0 432.2 698.4 475.5
Ce 44.2 27.9 48.4 11.4
Co 25.7 18.3 21.6 b1.1
Cr 112.0 6.4 37.0 b0.6
Cu 110.8 19.9 32.8 3.5
Ga 18.2 21.2 17.8 9.9
La 20.0 13.7 21.3 7.9
Mo 3.9 2.3 3.3 0.9
Nb 4.8 4.4 6.8 4.7
Nd 23.6 16.7 25.2 7.7
Ni 12.8 b0.7 18.7 b0.5
Pb 8.2 9.7 7.5 9.7
Rb 15.6 36.7 55.6 140.3
Sc 30.6 34.1 23.1 3.3
Sr 458.2 481.4 415.7 111.2
Th 6.9 3.5 10.2 17.3
U 2.6 1.3 1.4 2.5
V 229.0 267.8 159.2 10.9
Y 30.8 27.1 29.6 20.7
Zn 48.8 71.2 72.4 14.8
Zr 179.1 43.3 230.9 98.2

† Total iron (FeO and Fe2O3).

Table 2
Results from point counting,wheremineral counts are given as percentages. A total of 500
points were counted on each sample (n = 500).

Sample J13.22.5 J13.22.10 J13.21.10

Unit Granodiorite Dolerite Granite

Point count (%)
Biotite 1.2
Chlorite 8.8
Clinopyroxene 33
Hornblende 12.6
K-Feldspar 27.8
Muscovite 1.4
Opaques 1 4.6 1
Plagioclase 44.8 61 35
Quartz 32.8 35
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two types of weathered granodiorite and altered granodiorite. The
endmember spectra display absorption features consistent with the
field measured spectra (Fig. 3) and their mapped distributions (Fig. 9)
are largely in agreement with the generalised geological map (Fig. 2).

The granite endmember (Endmember-1; Fig. 8A) displays good
agreementwith thefield spectral data and its distribution on the predic-
tive map (Fig. 9A and B). We accurately delineate the stoped granite
block in the northeast of Anchorage Island, along with the larger
outcrops south of the granite block and along the northeast coast. The
predictive map indicates the likelihood of additional outcrops of granite
occurring predominantly in the northeast of Anchorage Island (Fig. 9B).

The occurrence of granite senso stricto in continental margin arcs is
rare, typically accounting for 1–2% of the total volume of granitoid
rocks exposed at the surface. Granites exposed at the surface on the
western margin of the Antarctic Peninsula are rare and not previously

identified at all fromAdelaide Island (or the Ryder Bay islands, including
Anchorage Island, prior to mapping carried out in this study). The
identification of stoped blocks of granite within a granodiorite pluton
indicates the presence of granite at relatively shallow depths.

Two of the endmembers (Endmember-2 and Endmember-3; Fig. 8B
and C) show good matches to granodiorite spectra measured in the
field; both are measured from weathered granodiorite, however
Endmember-3 is from yellow/orange weathered granodiorite. The spa-
tial distribution of this endmember is largely limited to low lying coastal
regions, perhaps indicating recent weathering due to coastal processes,
which distinguishes it from the remaining granodiorite (Endmember-
2). Endmember-3 also shows a higher abundance in the extreme south-
west of Anchorage Island, corresponding to the diorite outcrop (c.f.
Fig. 2), though does not allow for distinguishing the diorite as a separate
unit; this is likely as the diorite and granodiorite units would have a

Fig. 6. Images for the first 10 components of the minimum noise fraction (MNF) transform (A-J). Components 1 to 4 (A to D) were utilised in the inverse MNF procedure.

Fig. 7. Signal to noise ratio (SNR) calculated from the image after atmospheric correction and temperature emissivity separation (TES; grey line) compared to the SNR for the final image
after all preprocessing (atmospheric correction, TES, emissive empirical line correction and minimum noise fraction for noise reduction) (black line). Mean values are shown in the
annotations.
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Fig. 8. Four extracted endmembers (thick line) and their closest match from the field spectral data (thin line). The spectral angle (SA), in radians, is shown in each figure legend.

Fig. 9. Lithological map generated from the automated processing chain. (A) shows thewhole of Anchorage Island and inset (B) shows an area of interest around a stoped granite block in
the North East of Anchorage Isalnd. Compare Fig. 2 for geological boundaries.
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similar chemical composition and thus would be difficult to differenti-
ate spectrally. Endmember-5 shows a good agreementwith ameasured
spectrum from the strongly altered granodiorite (Fig. 8D), with a deep
emissivity feature centred at 9, however there are additional features
located at 10 and 11 which are not seen in the field spectrum.
Endmember-5 is largely distributed proximal to, or within the larger
spatial lithological unit of the granodiorite (Endmember-2) and is
distinct from the granite unit (Endmember-1). The yellow/orange

weathered and altered grandiorites (Endmember-3 and Endmember-5
respectively) have their greatest abundance in the central southwest
region of the Island (concurring with the field observations; Section 4.1).

None of the endmembers correspond to the dolerite, most likely due
to the chemical and spectral similarity to the granodiorite unit (Table 1;
Fig. 3). The granodiorite and dolerite were distinguished in the field due
to the differences in their grain size; however, the spectral features pres-
ent in the imagery do not allow for a distinction to be made. Even in the

Fig. 10. (A) histogram of Root Mean Square Error (RMSE; %) values; note the log scale. (B) shows the RMSE image of Anchorage Island. Note: the color bar is capped at 1.5% as the
predominant distribution of RMSE values is below this threshold.
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field spectra, there is little difference between the granodiorite and doler-
ite (Fig. 3), hence there are no endmembers extracted thatmatch dolerite.

At thewavelengths considered by the TASI sensor (8 to 11.5 μm),we
have been able to differentiate granite and granodiorite, whilst strug-
gled to find a clear distinction between the relatively similar chemical
composition of the country rock (granodiorite) and the dolerite dykes
on Anchorage Island. The ability to more accurately discriminate
potassium and plagioclase feldspar(s) could be possible if data were
available at wavelengths where additional features could aid in feldspar
discrimination (e.g. 12–14 μm; Hecker et al., 2012).

4.4. Validation of image processing

Fig. 10 shows the RMSE histogram and image calculated through
Eq. (8). Summary statistics calculated for each of the predicated class
pixels (Fig. 9) within the RMSE image are shown in Table 3.

Endmembers 1, 2 and 5 produce RMSE values of b0.5%,with standard
deviations of ~0.45% and a maximum RMSE of 7.83% (Endmember-1).
These values indicate that the unmixing procedure with just 5
endmember spectra yielded a high quality reconstruction of the original
image spectra for these classes. Endmember-3 has ameanRMSEwhich is
significantly higher at 0.94% with an increased standard deviation of
1.25% and a maximum error of 23%; this indicates pixels which are
classed as Endmember-3 have higher overall and specific reconstruction
errors, likely a result of incorrect or inadequate endmember spectra for
these pixels and hence higher errors.

On thewhole, the average RMSE for the image is 0.58%; this figure is
significantly higher than the RMSE values that are routinely achieved
using VCA (e.g. RMSE of 0.1% in Plaza et al., 2012), however this is likely
a direct result of the low SNR of the imagery (Fig. 7). As the SNR is
reduced (below 1000:1, 60 dB) the performance of endmember extrac-
tion algorithms begins to degrade significantly and RMSE values
increase (Plaza et al., 2012). Conversely, with larger SNRs, the RMSE
error will decrease and the performance of endmember extraction
algorithms will improve (Nascimento & Bioucas-Dias, 2005; Plaza
et al., 2012). Other factors may also affect the RMSE values, including
the pure pixel assumption and spectral mixture analysis techniques,
as discussed in Section 4.5. However, these errors did not inhibit the
success of the processing chain.

Fig. 11 shows the spectra of pixels fromhigh,mediumand lowpurity
pixels, comparing the original image spectra with the reconstructed
image spectra (from endmembers and their fractional abundances),
for granite, granodiorite and altered granodiorite. In all cases the
RMSE is ≤2%, indicating a good fit between the original and reconstruct-
ed spectra. The high purity pixels (Fig. 11A) more closely resemble the
original endmembers and their equivalent field spectra (c.f. Fig. 8), indi-
cating a good degree of reconstruction of the original spectra and that
endmember lithologies are accurately represented. When considering
the medium and low purity spectra (Fig. 11B and C), the RMSE values
are still low, indicating a high degree of fit between the original and
reconstructed spectra; however, as the mixing of endmembers is
increased, the pixel spectra begin converge and become increasingly
similar (especially at low purities, Fig. 11C). This indicates that as pixels
become increasingly mixed (lower fractional abundances) the pixel
spectra are similar yielding lower confidence in assigning a distinct lithology for low purity pixels. In this study we defined our abundance

threshold at 0.5, however with careful examination of reconstructed
and original image spectra, this threshold value could be increased to
yield greater confidence in lithological units (as pixel spectra would
more closely resemble endmember spectra).

4.5. Processing chain and algorithm considerations

Here we considered a pure pixel scenario, the assumption that at
least one ‘pixel’ contains a pure endmember spectrum. We note that a
pure endmember spectrum represents an independent signal source

Table 3
Root mean square error statistics.

RMSE (%) Mean Max StDev

Endmember-1 0.498 7.830 0.464
Endmember-2 0.473 3.447 0.439
Endmember-3 0.939 23.223 1.246
Endmember-5 0.425 5.952 0.451
All Endmembers 0.584 23.223 0.650

Fig. 11. Original image spectra (bold line) and their reconstructed spectra (thin line;
calculated using the endmember spectra and the fractional abundances). Figure
annotations are as follows: RMSE; root mean square error, %; E1 to E5; fractional
abundances of endmember-1 to endmember-5. (A) high purity (0.9 fractional abundance)
spectra, (B) medium purity (0.75 fractional abundance) spectra and (C) low purity (0.5
fractional abundance) spectra.
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in the image and in some cases is not necessarily a geologically mean-
ingful (or interpretable) spectrum; for example some endmember spec-
tra could be related to image noise or atmospheric effects (Winter,
1999). However, processing hyperspectral imagery assuming a pure
pixel scenario has been widely researched, with a variety of pure pixel
techniques for each step of the processing chain along with the
optimised implementation and proven success of published algorithms.
The pure pixel approach has been successful when images contain pure
pixels (Plaza et al., 2012); however, given the presence of themixing at
different scales (even at microscopic levels), the pure pixel assumption
is not always true, as some images may only contain pixels which are
completely mixed (Plaza et al., 2012).

The complexity of endmember extraction from hyperspectral imag-
ery is increased in a mixed pixel scenario, since the endmembers, or at
least some of them, are not in the image (Bioucas-Dias, 2009). We
note a point for future research intomixed pixel endmember extraction
techniques which follow from the seminal ideas of (Craig, 1994), based
on the minimum volume transform, with a number of recently pub-
lished algorithms building from this work (Berman et al., 2004;
Bioucas-Dias, 2009; Chan, Chi, Huang, & Ma, 2009; Li & Bioucas-Dias,
2008; Miao & Qi, 2007). Currently, the major shortcoming of mixed-
pixel techniques is long processing times due to their computational
complexity (Bioucas-Dias, 2009). However mixed pixel techniques are
an active area of research and as the algorithms mature they should
be integrated into future studies. Additionally, the long established
pure pixel methods should not yet be discounted; technological
advances such as miniaturisation of sensors will inevitably lead to
very high spatial resolution as sensors are deployed from platforms
such as Unmanned Aerial Vehicles (UAVs).

For SMA, also known as spectral unmixing, we considered the fully
constrained linearmodel due to its ease of implementation and flexibil-
ity in different applications (Chang, 2003). We have not considered lin-
ear unmixing using iterative spectral mixture analysis (ISMA; Rogge &
Rivard, 2006), which seeks to minimise the error by unmixing on a
per pixel basis using optimised endmember sets. Alternatively, non-
linear SMAmay best characterise the resultantmixed spectra for certain
endmember distributions, such as those in which the endmember com-
ponents are intimatelymixed (Guilfoyle, Althouse, & Chang, 2001; Plaza
et al., 2009). In those cases, the mixed spectra collected at the imaging
instrument are better described by assuming that part of the source
radiation has undergone multiple scattering prior to being measured
at the sensor.

In a non-linearmodel, the interaction between the endmembers and
their fractional abundance is given by a non-linear function, which is
not known a priori. Various techniques have been proposed in the
field of machine learning, with neural networks some of first non-
linear SMA approaches proposed (Benediktsson, Swain, & Ersoy,
1990). The performance of non-linear SMA algorithms on large, real-
world hyperspectral data is currently limited by the computational
complexity of the techniques; however, recent advances have aimed
to take advantage of parallel processing techniques to reduce computa-
tional time (e.g. Plaza, Plaza, Perez, & Martinez, 2008) and such algo-
rithms remain an area for future research as their implementations
become publicly available.

4.6. Future applicability of the processing chain

The processing chain presented here is fully automated and repeat-
able; after preprocessing, the six step processing chain is fully automat-
ed, using few inputs and parameters, followed by predictive map
generation and automatic class labelling using the field spectral data.
This is a direct attempt to address the current paucity of such automated
approaches in the geological remote sensing community (van der Meer
et al., 2012).We anticipate the technique could be applied by geologists
without the need for ‘expert’ remote sensing knowledge or complicated
image processing techniques/software packages, and the processing

chain is more automated and less manually involved than traditional
techniques. Indeed, this processing chain is particularly advantageous
in the polar regions where higher detail lithological mapping can be
obtained using remote sensing than compared with traditional field
mapping.

The main parameters which affect the lithological mapping process-
ing chain are the superpixel bias parameter and minimum size segment
size. The parameters are discussed and explained in detail by (Thompson
et al., 2010). The bias and minimum size segment size parameters
control the size of the superpixels and should be scaled appropriately
depending on the features of interest in each particular scene. The
parameters used in this study were quantitatively determined by
inspecting the superpixel segmentation image and considering the
scale of the geological areas of interest (e.g. dykes), however these pa-
rameterswould require local tuning for other study areas, and particular-
ly for other scales and image resolution (such as coarser resolution
satellite imagery). The abundance threshold can be tuned to extract
purer regions, however we demonstrate the results here using a
moderate threshold of 0.5; higher values would yield spectrally purer
regions (e.g. Rogge et al., 2009).

We have achieved the results presented here in spite of what might
be described as ‘extremely high noise conditions’ (SNR ≤ 40 dB; Plaza
et al., 2012), thereby serving as a validation of the processing chain
and its ability to operate effectively at low SNR values. We confirm the
findings of the Thompson et al. (2010) and Gilmore et al. (2011), such
that superpixel segmentation aids in the determination of recognisable
endmembers which are interpretable in a geological context despite
low SNR values. Such a finding is crucial for future studies in the Antarc-
tic where the environmental conditions mean that achieving high SNR
values is much more challenging compared with temperate parts of
the world. Indeed, this finding is also advantageous for many studies,
not just the Antarctic, where challenging conditions can yield lower
than expected SNRs; hence, it is advantageous that the processing
chain can yield successful results even at low SNRs.

It is an important point to note for future applications that prior
knowledge of the local geology (and/or vegetation) is required for the
successful application of the processing chain. The identification of the
image derived endmembers (step 6) was successful here, in large part
due to availability of high quality field spectral measurements to allow
for comparison along with ancillary data (geochemical analysis).
However, in lieu of field spectral measurements, a user could produce
geological interpretations with knowledge of the local geological con-
text, an understanding of the imperfections in the hyperspectral imag-
ery (e.g. residual noise due to inadequate atmospheric compensation)
and the identification of endmembers could be aided through compar-
ison to spectral libraries (e.g. Christensen et al., 2000).

The techniques presented here could be easily transferred to other
TIR data (or even VNIR/SWIR data), including currently available
satellite data, such as ASTER, or even planned future satellite TIR data;
for example, the HyspIRI satellite has a planned TIR instrument which
includes 7 bands in the 7–13 μm spectral range (Hulley, Realmuto,
Hook, & Ramsey, 2012). The coarser spatial and spectral resolution of
this data would yield difficulties in the exact identification of minerals,
though previous TIR data, such as ASTER, has been used to reliably
discriminate a wide range of minerals, especially silicates, as well as
proving useful for lithological mapping (e.g. Chen et al., 2007;
Haselwimmer et al., 2010, 2011; Rogge et al., 2009; Rowan & Mars,
2003; Salvatore et al., 2014). Additionally, technological advances and
increasing miniaturisation will eventually lead to the availability of
UAV-deployable research grade hyperspectral sensors which could be
used operationally byfield geologists as a tool to compliment traditional
field mapping techniques. The use of an automated processing chain in
such a situation would be highly advantageous in delivering fast,
automated and repeatable lithological mapping results which could
aid and inform traditional mapping approaches operationally in the
field.
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5. Conclusion

We have presented a fully automated processing chain to produce
lithological maps using airborne hyperspectral thermal infrared data in
spite of low signal to noise ratios. We utilised an airborne hyperspectral
TIR dataset, collected for the first time from Antarctica, to accurately dis-
criminate grantoids. The challenging conditions and cold temperatures
in the Antarctic yielded data with a significantly lower SNR compared
with data collected inmore temperate environments. As a result, several
preprocessing steps were employed to refine the imagery prior to analy-
sis; atmospheric correction and temperature emissivity separation were
applied, followed by further empirical corrections and noise removal
through the minimum noise fraction technique. Areas of snow and sea
water were subsequently masked using the temperature image.

The processing chainwas established and applied to the preprocessed
imagery. Firstly, superpixel segmentation was applied to aggregate ho-
mogeneous image regions comprised of several pixels having similar
values into larger segments (superpixels). The superpixels were input
into the VD algorithm to determine the number of endmembers, which
were subsequently extractedusingVCAandunmixedusing FCLSU to gen-
erate abundances of each endmember. A predictive classification map
was created where endmember fractions were thresholded (N0.5). The
endmembers extracted were automatically matched to their closest
spectrum from the field spectral data, and the observations made in the
field from these measurements were used to label the predictive map
classes and generate a lithological map.

The fully automated processing chain was successful in identifying 4
geologically interpretable endmembers from the study area. Recon-
struction of the hyperspectral image from the endmembers and their
fractional abundances yielded a RMSE of 0.58%. The RMSE value, almost
twice as large as previous studies, is likely a result of the low SNR of the
Antarctica data; nonetheless the processing chain was still able to accu-
rately discriminate the majority of lithological units with strong agree-
ment to existing geological maps.

The results were validated and interpreted in the context of the
study area in conjunction with a full suite of ancillary data: detailed
high quality ground reference spectral data collected using a field porta-
ble Fourier transform infrared spectrometer, thin section and scanning
electron microscope analysis, electron microprobe analysis, whole
rock geochemical data and mineral modal analysis. The results are
promising,with the thermal imagery allowing clear distinction between
granitoid types. However, the distinction of fine grained, intermediate
composition dykes is not possible due to the close spectral similarity
with the country rock (granodiorite).
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Abstract: The first airborne hyperspectral campaign in the Antarctic Peninsula region was
carried out by the British Antarctic Survey and partners in February 2011. This paper
presents an insight into the applicability of currently available radiative transfer modelling
and atmospheric correction techniques for processing airborne hyperspectral data in this
unique coastal Antarctic environment. Results from the Atmospheric and Topographic
Correction version 4 (ATCOR-4) package reveal absolute reflectance values somewhat in
line with laboratory measured spectra, with Root Mean Square Error (RMSE) values of 5%
in the visible near infrared (0.4–1 µm) and 8% in the shortwave infrared (1–2.5 µm). Residual
noise remains present due to the absorption by atmospheric gases and aerosols, but certain
parts of the spectrum match laboratory measured features very well. This study demonstrates
that commercially available packages for carrying out atmospheric correction are capable of
correcting airborne hyperspectral data in the challenging environment present in Antarctica.
However, it is anticipated that future results from atmospheric correction could be improved
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by measuring in situ atmospheric data to generate atmospheric profiles and aerosol models,
or with the use of multiple ground targets for calibration and validation.

Keywords: airborne hyperspectral data; atmospheric correction; Antarctica; radiative
transfer modelling; MODTRAN; ATCOR

1. Introduction

Antarctica is a unique and geographically remote environment. Field campaigns in the region
encounter numerous challenges including the harsh polar climate, steep topography, and high
infrastructure costs. Additionally, field campaigns are often limited in terms of spatial and temporal
resolution, and particularly, the topographical challenges presented in the Antarctic mean that many areas
remain inaccessible. For example, despite more than 50 years of geological mapping on the Antarctic
Peninsula, there are still large gaps in coverage, owing to the difficulties in undertaking geological
mapping in such an environment [1]. Hyperspectral imaging may provide a solution to overcome the
difficulties associated with field mapping in the Antarctic.

Hyperspectral sensors acquire data from a contiguous spectrum over a defined wavelength interval,
which makes it possible to identify surface materials by their characteristic reflectance or emittance
spectrum, and can yield information on features such as abundance and composition, including ion
substitution in minerals [2,3]. It is possible to produce maps of mineral composition and abundance
from hyperspectral imagery without rigorous ground truth measurements, due to the development of
spectral reflectance libraries (e.g., [4]). A variety of software packages are capable of applying advanced
image processing algorithms to hyperspectral imagery using such spectral reflectance libraries, and thus
allowing the end-user to produce mineral maps with relative ease. A comprehensive review of geologic
remote sensing, including the use of hyperspectral data, is given by van der Meer et al. [5].

The reflectance spectrum of a material can, in principle, be recovered from the observed radiance
spectrum over regions in which the illumination is non-zero [6]. The reflectance spectrum is independent
of the illumination and provides the best opportunity to identify materials by comparison with reference
libraries [6]. In the case of solar illumination (i.e., irradiance from the sun), many environmental
and atmospheric effects complicate the process of deconvolving reflectance spectra from the measured
radiance, and complex radiative transfer models are required [6]. These models usually simulate the
incoming solar irradiance, subsequent atmospheric effects and the final at-sensor radiance; the effects
of the intervening atmosphere on the solar irradiation can then be accounted for and reflectance spectra
derived. The accurate removal of atmospheric absorption and scattering is required to produce measures
of surface reflectance; a process known as atmospheric correction [7]. Atmospheric correction is a
common preprocessing step and use of an appropriate, thorough correction is of great significance
for interpretation of hyperspectral imagery and any subsequent processing such as classification [8].
A variety of tools exist to perform atmospheric correction with radiative transfer models now mature
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enough to be used as a routine part of hyperspectral image processing; a comprehensive review of
atmospheric correction techniques, including techniques based on radiative transfer, is presented in [7].

In the early 1990s, the Atmosphere Removal Algorithm (ATREM) [9] was developed to employ
radiative transfer equations and produce atmospherically corrected spectral data. Since the development
of ATREM, several packages have also been developed for atmospherically correcting multi- and
hyperspectral data, including High-accuracy ATmospheric Correction for Hyperspectral Data
(HATCH) [10], Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) [11,12]
and a series of Atmospheric and Topographic Correction (ATCOR) codes [13,14].

The series of ATCOR codes have been continually updated and developed throughout the 1990s
and 2000s, with the latest ATCOR-4 release using a large database containing results of radiative
transfer calculations based on the MODTRAN-5 [15] radiative transfer model. Additional techniques for
correcting adjacency effects, 3D code for correction of topographic effects and bi-direction reflectance
distribution function (BDRF) in addition to haze and low cirrus cloud removal are included [14].

The unique atmospheric conditions present in Antarctica combined with the first known hyperspectral
data acquisition afford the opportunity to assess the applicability of standard radiative transfer modelling
and atmospheric correction techniques for deriving surface reflectance. Previous studies that have
carried out atmospheric correction in Antarctica have used multispectral airborne [16] and multispectral
satellite data [1] applying radiative transfer modelling techniques to produce reflectance data. However,
atmospheric correction of airborne hyperspectral data has not been investigated (due to the previous
unavailability of airborne hyperspectral data). This study presents initial results from an investigation
into the applicability of the MODTRAN-5 [15] radiative transfer model and the ATCOR-4 atmospheric
correction package [14] for producing atmospherically corrected airborne hyperspectral data in the
unique Antarctic environment.

2. Study Area

Rothera Point (Figure 1) was surveyed in February 2011, using the ITRES (ITRES Research Ltd., 110,
3553-31st Street NW, Calgary, AB, T2L 2K7, Canada) CASI-1500 and SASI-600 instruments acquiring
data in the visible near-infrared (VNIR; 0.4–1.0 µm) and shortwave infrared (SWIR; 1–2.5 µm) portions
of the electromagnetic spectrum. Sensor information is presented in Table 1. The acquisition system
hardware and other equipment were installed into a British Antarctic Survey (BAS) DeHavilland Twin
Otter aircraft. The imagers were installed onto a single mounting plate for concurrent imaging. This
arrangement allowed for uniform recording of all aspects of aircraft motion relative to the two imagers
with respect to the Inertial Measurement Unit (IMU). The Instrument Control Units (ICUs) were installed
at the fore section of the aircraft. Six flight lines were required to acquire hyperspectral data of the study
area, and during the acquisition of the imagery, three large (6 m × 6 m) calibration targets were placed
within the study area; white, grey and black targets, provided by the Natural Environment Research
Council (NERC) Field Spectroscopy Facility [17].
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Figure 1. Location maps showing the context within Antarctica (A); the location of
Adelaide Island within the Antarctic Peninsula (B) and the location of Rothera Point in the
context of Adelaide Island (C; black dot).
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Table 1. Sensor acquisition information.

Instrument Specification

CASI-1500

1500 across-track imaging pixels
72 spectral bands in 367.6–1055.5 nm
Spectral bandwidth of 9.6 nm
40◦ field of view
0.5 m ground resolution

SASI-600

600 across-track imaging pixels
100 spectral bands in 950–2450 nm
Spectral bandwidth of 15 nm
40◦ field of view
1 m ground resolution

Applanix POS/AV 510

3-axis SAGEM IMU
Integrated dual frequency Trimble GPS receiver
Real-time roll absolute accuracy (RMS): 0.008◦

Real-time pitch absolute accuracy (RMS): 0.008◦

Real-time heading absolute accuracy (RMS): 0.04◦
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Figure 2. CASI colour composite image mosaic of Rothera Point following radiometric and
geometric correction, with inset showing the three calibration targets. Bands shown: Red:
650.2 nm, Green: 554.6 nm, Blue: 439.6 nm.

The spectral reflectance measurements of these calibration targets were acquired using an Analytical
Spectral Devices (ASD) FieldSpec® Pro, which records continuous spectra across the 350–2500 nm
wavelength region; the spectral resolution of the instrument was 3 nm at 700 nm, 10 nm at 1400 nm,
and 12 nm at 2100 nm. Reflectance spectra were acquired in “White Reference” mode using a white
Spectralon® panel as the reference target, measured at a nadir viewing angle with illumination provided
by a tungsten halogen lamp at a 45◦ angle. Figure 2 shows a colour composite image of Rothera point
showing the calibration targets.

3. Methods

3.1. Data Preprocessing

Standard preprocessing of hyperspectral data was carried out by ITRES to produce georeferenced and
radiometrically corrected imagery. There are two major steps: Radiometric Correction and Geometric
Correction, which were both carried out by ITRES’ propriety tools. In the first step, radiometric and
spectral calibration coefficients are applied to convert the raw digital numbers into spectral radiance
values. Geometric correction utilizes measurements from the IMU and GPS to create a georeferenced
mosaic image.
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3.1.1. Radiometric Correction

The raw data are digitized at 14-bit resolution and are recorded as digital numbers (DN). The
radiometric processing converted these digital numbers into spectral radiance values based upon
calibration coefficient files, which were generated during laboratory calibration of the sensors. Due to the
extreme operating conditions during acquisition (very cold temperatures), the image sensors were pushed
to their limits and some anomalies were apparent in the image data, particularly in the SASI images.
The SASI instrument’s operating conditions were significantly different to the calibration conditions in
the laboratory, hence scaling and spectral resampling adjustments, ranging from −5% to +10%, were
made to the calibration files to compensate for these environment effects and minimise the anomalies
introduced as a result of the operating conditions.

3.1.2. Geometric Correction

After radiometric correction, the data was geometrically calibrated. The ITRES proprietary geometric
correction software utilised the navigation solution, bundle adjustment parameters and Digital Elevation
Models (DEMs) to produce georeferenced radiance image files for each flight line. In addition, flight
lines were combined into an image mosaic of the area. The nearest neighbour algorithm was used
to populate the image pixels so that radiometric integrity of the pixels could be preserved. At the
image mosaicking stage, a minimised nadir angle approach was implemented such that the spectra of
the pixel with the smallest off-nadir angle from overlapping adjacent flight lines was written to the final
mosaic image.

3.1.3. Radiance Offset

The spectral range of the CASI and SASI data (Table 1) has an approximate 100 nm overlap, between
950 nm and 1055.5 nm. Preliminary investigations revealed an offset in radiance values within this
overlap range. In the overlap range, CASI radiance values were found to be larger than the corresponding
SASI radiance, with a trend of increasing radiance offset with increasing wavelength. This radiance
offset is present in the radiometrically calibrated data. Several factors are likely to have produced
the radiance offset.

The first and most probable contributing factor is second order light contributions. The CASI sensor’s
diffraction grating produces a second order diffraction spectrum, whose blue end overlaps with the
red- near infrared (NIR) end of the first order spectrum. Illumination conditions at the time of acquisition
may have allowed this effect to lead to additive background signal at the red-NIR end. The second
contributing factor could be the reduced calibration accuracy in the NIR end of the spectrum, as the
CASI sensor is less sensitive at the longest wavelengths.

Thirdly, preliminary investigations also revealed a systematic underestimation of radiance values in
the SWIR (from the SASI instrument). This is attributed to the conditions during acquisition. The
instruments were operating in an unpressurised aircraft, with temperatures significantly outside the
normal operational range; the SASI instrument was as much as 20 ◦C (68 ◦F) outside its normal operating
range. These conditions meant there was a noticeable degradation in the response of the sensor, and
hence the measured at-sensor radiance was lower in the SWIR data.
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3.2. Atmospheric Correction

The Antarctic has a distinct atmosphere, dominated by cold temperatures and unusual light
conditions [18]. The atmosphere has stable stratification in the boundary layer, and is pristine, dry
and isolated from the rest of the world’s atmosphere by the polar vortex and the Southern Ocean [18].
To produce atmospherically corrected data, ATCOR-4 was used.

The at-sensor signal consists of three main components, as shown in Figure 3: scattered or path
radiance L1, reflectance radiance from the pixel under consideration L2, and radiation reflected from
the neighbourhood into the viewing direction (adjacency effect) L3. Component L2 is the only
component that contains information on the surface properties of the pixel under consideration, therefore
atmospheric correction aims to remove the L1 and L3 components. The atmospheric correction
has to be performed iteratively to derive surface reflectance, ρ, for each pixel in the image data.
The implementation is described in detail in Chapters 2 and 10 of [19] and in [14].

Figure 3. Schematic of the three solar radiation components in flat terrain and the pixel
under consideration (ρ). Scattered or path radiance L1, reflected radiance L2, and radiation
reflected from the local neighbourhood (adjacency effect) L3.

The MODTRAN-5 [15] radiative transfer model is used to generate Look-Up Tables (LUTs) that are
used by ATCOR-4 to aid in the calculation of the Ln terms and the subsequent derivation of surface
reflectance, ρ. The LUTs utilised by ATCOR-4 require significant computational effort to compute and
are based on the “Mid-Latitude Summer” (MLS) profile [20]. LUTs are calculated using MODTRAN-5
with the scaled discrete ordinate radiance transfer (DISORT) option in regions where scattering is
dominant and the more accurate correlated-k option in regions where absorption is dominant ([19],
p. 154). ATCOR-4’s LUTs were generated using the MLS profile and fixed water vapour contents of
0.4, 1, 2, 2.9, and 4 g/cm2 (rather than the water vapour defined in the standard MLS model [20]). Water
vapour is the main parameter that produces differences in radiance values and the other parameters are
mostly stable [21]. This can be confirmed by simulating radiance values with each of the atmospheric
profiles from [20] and fixed water vapour values in MODTRAN (cf. Figure 4). Full details of the
algorithms applied by ATCOR-4 are detailed in [14,19]. The major processing phases of ATCOR-4 are
outlined in Figure 5, “Preprocessing” and “Atmospheric Correction”.
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Figure 4. Radiance simulations using MODTRAN-5 with constant water vapour values and
different atmospheric profiles.
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Figure 5. Overview of the major processing phases of ATCOR-4.
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Standard input parameters (location, date and time) were used (Table 2). The other user-selectable
parameters are the visibility, choice of aerosol model and choice of water vapour LUT. The visibility is
measured hourly by the meteorologists at Rothera Point and the observation closest to data acquisition
time was used. The maritime aerosol, interpolated to the flying height, was selected. Coincident
meteorology data measured from a radiosonde launch at Rothera Point is shown in Figure 6 indicating the
atmospheric conditions close to the time of image acquisition. Additionally, as implied by the measured
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visibility (60 km), the operators’ notes indicated that the “flight conditions were clear and calm, with
blue skies and a few scattered clouds”. With regards to water vapour, the LUT with a water vapour value
of 2.0 g/cm2 was selected. However, the choice of water vapour value is not significant because during
processing water vapour is recalculated per-pixel; both the CASI-1500 and SASI-600 sensors have bands
that lie within water vapour regions and thus the water vapour can be calculated from the image data (see
Chapter 10.4.3 in [19] for further details on the water vapour retrieval algorithm).

Table 2. Geometry, flight and model parameters (AGL; Above Ground Level).

Parameter Value

Date (DD/MM/YYYY) 07/02/2011
Time (HH:MM) 15:28 UTC

Solar Zenith (degrees) 53.8
Solar Azimuth (degrees) 23.6

Flight Heading (degrees) 76.1
Flight Altitude (m · AGL) 596.9

Visibility (km) 60
Atmospheric profile MLS (2.0 g/cm2)

Aerosol model Maritime (597 m) [22]

Figure 6. Radiosonde data from 7 February 2011, launched at 11:38 UTC.
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4. Results

The atmospheric correction results for each of the calibrated targets are presented in Figure 7. For
the CASI data, there is a systematic overestimation in reflectance data for the grey and black targets.
Between ∼0.86 µm and 1.1 µm there is a noticeable increase in reflectance (A) for the CASI data.
This significant increase at the red–NIR end of the spectral range is likely a result of the second order
light contribution from the blue end of the spectrum, resulting in additive background signal in the
red–NIR end, therefore causing an increase in reflectance values. The SASI data shows a large systematic
underestimation for the white target, but less so for the grey and black targets where results are close to
or within the ±2% error margins.

Figure 7. Atmospheric correction results for the VNIR (CASI; blue) and SWIR (SASI;
red) data (±2% error estimates are shaded grey) and laboratory spectra (LAB; black), for the
three calibrated targets; white (1); grey (2); and black (3). Labels are discussed in the text.
Root Mean Square Error (RMSE) values are shown for each target.
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Numerous artefacts remain in the CASI and SASI data, most likely as a result of atmospheric gases
and aerosols. The residual effects of water vapour (H2O) are most noticeable; interpolation is carried
out during the ATCOR-4 processing chain across areas of H2O absorption from 1.0 µm to 1.2 µm (B),
leaving a peak at 1.25 µm (C) and a secondary area of interpolation from ∼1.3 µm to 1.5 µm (D).
A double peak is present at 1.6 µm due to CO2 absorption (E). The absence of data between 1.7 µm and
2.1 µm (G) is due to the absorption by H2O and CO2, which reduces radiance transmission to almost
zero in this portion of the spectrum. There are also some other minor artefacts, such as a double peak at
0.5 µm as a result of O3 and a small peak at ∼0.85 µm likely a result of O2.

In spite of these imperfections, two closely matched absorption features in the targets are found, the
first at ∼1.65 µm (F) and the second at ∼2.2 µm (H).

5. Accuracies, Errors and Uncertainties

As discussed in Section 2, the instruments used for data acquisition were flown in an unpressurised
BAS DeHavilland Twin Otter aircraft. This meant the instruments were subject to extreme changes in
temperature between data acquisition and storage of the instruments in between flights, along with very
cold operating conditions during data acquisition itself (up to 20 ◦C (68 ◦F) outside of the instrument’s
normal operating range). It was identified during the preprocessing of the data (Section 3.1) that the
SASI instrument particularly suffered as a result of the heating and cooling cycles and the cold operating
conditions it underwent during the data collection campaign in the Antarctic. As a result, during the
radiometric correction of the SASI data (Section 3.1.1.) larger adjustments were made to the calibration
parameters to correct for the operating conditions in the Antarctic. This introduced some uncertainty
in the data, which was observed in the raw data (Section 3.1.3.) and is manifested in the atmospheric
correction results (Section 4 and Figure 7) where the SASI data shows a systematic underestimation in
reflectance values.

Following atmospheric correction, Root Mean Square Error (RMSE) values were calculated and are
annotated on Figure 7. RMSE values were calculated from the ATCOR-4 results with respect to the
laboratory measured spectra using Equation (1):

RMSE =
1

n

n∑

i=1

(Ŷi − Yi)
2 (1)

where Ŷi represents the ith predicted reflectance value (as calculated by ATCOR-4) and Yi represents
the ith laboratory measured reflectance value, where n = 72 for CASI and n = 71 for SASI. Whilst
the SASI sensor measures 100 bands (Table 1), the actual number of usable bands is reduced to 71
(and hence n = 71), following the removal of the severely affected bands between between 1.7 µm and
2.1 µm (G), which are severely affected due to the absorption by H2O and CO2.

The atmospheric correction approach presented here is subject to uncertainties introduced through
the application of the MODTRAN-5 standard atmospheric profiles and aerosol models [20,22]. Namely,
these climatologically developed profiles are assumed to represent the true atmospheric conditions at the
time of data acquisition. Radiosonde measurements were acquired from the same day (Figure 6), but
there was a 4 hour difference between the radiosonde launch (11:38 UTC) and data acquisition (∼15:30
UTC). The variability and local scale differences in the atmosphere (e.g., [23]) mean that, even over this
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relatively short time scale, applying the measured atmospheric parameters from the radiosonde launch
would not necessarily be any more valid than applying the atmospheric profile from the MODTRAN-5
model; both methods are applying a profile with the assumption that it represents the true atmosphere at
the time of data acquisition, thereby introducing uncertainty in the results.

These uncertainties could be removed by measuring the actual in situ atmospheric conditions using
other instruments simultaneously whilst acquiring the image data. However, in this study, as is the
case in most other studies applying similar techniques, simultaneous atmospheric measurements are
unavailable. Despite making assumptions about atmospheric profiles and introducing uncertainties, the
radiative transfer model and atmospheric correction approach has been applied successfully. As long
as appropriate error metrics are calculated (e.g., RMSE) and the data is carefully applied in additional
processing (e.g., spectral mapping) then these uncertainties can be managed and minimised throughout
the entire processing chain.

6. Discussion

The atmospheric correction processing chain and results presented here represent the first known
acquisition and subsequent processing of hyperspectral data in Antarctica. The presence of ground
targets along with concurrent ground and atmospheric measurements in this study is typical of most
hyperspectral campaigns; often there are not sufficient measurements to fully develop atmospheric
profiles and aerosol models (to use as inputs to radiative transfer models), hence estimates are made
and often standard atmospheric profiles and aerosol profiles are selected based on qualitative assessment
of environmental conditions. Additionally, there are not always a large enough number of ground-based
targets with the relevant concurrent spectral data to be used for both calibration and validation. The
MODTRAN-5 LUTs used by ATCOR-4 were intended to be flexible enough to cover a wide variety
of environments, sensor configurations, water vapour contents and flight parameters but have not been
previously tested for airborne hyperspectral data in the Antarctic region.

Following the application of the atmospheric correction processing chain, the results showed that
workable reflectance data is obtainable. This is obtainable in spite of limited concurrent atmospheric
and aerosol measurements combined with assumptions about aerosol model parameters (for example, the
maritime aerosol model was selected based on qualitative interpretations of the Antarctic environment),
which is an often typical scenario. As there are no aerosol measurements collected at Rothera, the
maritime aerosol model [22] was selected based on the qualitative assessment of the atmospheric
conditions and the assumption of a dominance of sea salt aerosols in the coastal Antarctic environment
(e.g., compare [24]). For the lower reflectance targets (<20%), the results from the both VNIR
(CASI-1500) and SWIR (SASI-600) sensors fell within the expected ±2% margins; however, this
is likely an artefact of the low signal-to-noise ratio (<15:1) for low reflectance targets. The higher
reflectance target (the white target) shows clear discrepancies, with absolute reflectance values differing
by as much as 30%. The white target is perhaps more representative of the overall performance of the
atmospheric correction due to its higher signal-to-noise ratio.

Despite the discrepancies between absolute reflectance values, absorption features for the white target
(e.g., 1.65 µm and 2.25 µm) are clearly discerned; similar absorption features in the lower reflectance
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(grey and black) targets also correlate well between the laboratory-measured and atmospherically
corrected reflectance data. There is still residual noise manifested as small peaks and spikes in the
reflectance data, which could complicate post-processing procedures, particularly those that rely on
relative differences between peaks and troughs in spectra. The residual noise manifested in peaks and
spikes are most likely due to the unavailability of an Antarctic-specific atmospheric profile and aerosol
model, due the lack of adequate in situ measurements. Additionally, portions of the spectrum that are
strongly affected by water vapour (e.g., the interpolation from 1.3 µm to 1.5 µm, and the lack of data
between 1.7 µm and 2.1 µm) prove difficult to characterise; a finding that supports the conclusions of
Zibordi and Maracci [16] who noted that uncertainties in calculating water vapour optical thickness could
lead to “very significant error” ([16], p. 20).

These results suggest that commercially available atmospheric correction packages are flexible
enough to produce working reflectance data in Antarctica. Performance is poorer with higher reflectance
targets, though results fall within the expected error margins for lower reflectance targets. The
ability to discriminate absorption features suggests that the atmospheric correction process would
produce reflectance data capable of being applied in mapping techniques using absorption features
(e.g., continuum removal). Particular care would have to be given when working with absolute
reflectance values.

It is recommended that, given the availability of a greater number of ground targets (>3), a hybrid
approach of radiative transfer modelling followed by the Empirical Line Method (ELM) [25] be applied
for potentially improved results; for example Tuominen and Lipping [26] reported a reduction in Root
Mean Square Error (RMSE) from 6.8% to 1.8% when combining the hybrid approach of radiative
transfer modelling through ATCOR-4 and the ELM, compared with radiative transfer modelling alone.
Therefore, following the conclusions of Tuominen and Lipping [26], it can be seen that even in
complex atmospheres where model-based correction methods may struggle, more accurate results can
be produced using combined correction methods compared with model- or empirical-based methods
alone. It was also noted that even in situations when there is a limited number of spectral ground
truth measurements, a hybrid approach can improve atmospheric correction accuracy over the whole
acquisition area [26].

This approach was successfully applied to Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) VNIR/SWIR data by Haselwimmer et al. [1], who utilised the hybrid
approach combining the FLAASH radiative transfer model [11,12] and an empirical correction.
Haselwimmer et al. [1] utilised spectral measurements of the runway at Rothera Point assuming that
the runway is a Pseudo-Invariant Feature (PIF) [27,28]. PIFs are large uniform targets whose spectral
reflectance is assumed not to have changed over time [28]. In cases where appropriate PIFs have been
identified and measured, they can provide a suitable ground truth feature for calibration or validation.
PIFs can be used either as a substitute for or in conjunction with calibrated targets (such as those used
in this study) to provide enough targets (>3) for the hybrid approach of radiative transfer modelling
followed by empirical line correction. The identification of suitable PIFs in the Antarctic generally,
and particularly in the regions where the airborne hyperspectral data was acquired, remains an area of
on-going investigation. If a suitable number of targets are identified, the need for deploying calibrated
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targets during image acquisition may be negated, as PIFs may allow for both calibration and validation
of atmospheric correction methods.

It must also be noted that sensor calibration still remains challenging in this environment and these
issues are manifested in the subsequent atmospheric correction process. Particularly notable effects of
this can be observed in Figure 7, such as the offset between VNIR and SWIR (CASI and SASI) sensor
values in the overlapping region (0.95 µm to 1.05 µm), as well as the significant underestimation of
reflectance for the white target for the SWIR (SASI) data.

Future studies should consider the influence of radiative transfer models’ standard atmospheric
profiles [20] and aerosol model types [22] with a view to measuring in situ atmospheric data while
simultaneously acquiring hyperspectral data; this would aid in the generation of atmospheric profiles
and aerosol models that serve as inputs during the atmospheric correction process and reduce the level of
uncertainty when assumed profiles are used. Such atmospheric data could also lead to the development
of a generic “Antarctic” atmospheric profile and aerosol model, which may prove useful for future data
acquisition (where measuring in situ atmospheric data is not possible).

7. Conclusions

This study has presented results from atmospheric correction of airborne hyperspectral data in
Antarctica. The findings are significant as they represent (a) the first known acquisition and
preprocessing of airborne hyperspectral data in Antarctica, and (b) the first assessment of atmospheric
correction techniques applied to airborne hyperspectral data in Antarctica. The atmospheric correction
technique utilised a radiative transfer model (MODTRAN-5) [15] in the Atmospheric and Topographic
Correction version 4 package (ATCOR-4) [14].

Two sensors, imaging the visible near-infrared (VNIR; 0.4–1.0 µm) and shortwave infrared (SWIR;
1–2.5 µm), were deployed during the data acquisition. During the radiometric correction (preprocessing)
of the data it was found that, as a result of the extreme temperature variations during the data collection,
the SWIR sensor had decreased sensitivity, resulting in lower measured radiance values and systematic
underestimation in reflectance values following atmospheric correction. The results from atmospheric
correction revealed that obtaining surface reflectance of airborne hyperspectral data in the Antarctic is
possible without in situ measurements of atmospheric parameters; reflectance data had maximal Root
Mean Square Error (RMSE) values of 5% in the VNIR and 8% in the SWIR. However, residual noise
remains present in the reflectance data as a result of using standard atmospheric profiles and aerosol
models during the atmospheric correction process.

For future campaigns in Antarctica, it is recommended that instruments be sufficiently tested and
calibrated to operate successfully in cold environments, with particular attention given to imagers
operating in the SWIR. During acquisition it is recommended that (a) in situ atmospheric data be
measured simultaneously whilst acquiring hyperspectral data to produce robust atmospheric and aerosol
profiles that can be applied during the atmospheric correction process, and (b) ground truth data, such as
calibrated targets or pseudo-invariant features, be present to allow for the validation of atmospheric
correction results, as well as calibration of reflectance data using empirical correction techniques
(if a sufficient number of ground targets allow, i.e., >3).

196 of 266



Remote Sens. 2014, 6 4512

Acknowledgements

The Hyperspectral Data used was collected during an airborne survey funded by the UK Foreign
and Commonwealth Office (FCO) and conducted by the British Antarctic Survey, ITRES Research Ltd.
and Defence Research & Development Suffield, Canada in February 2011. Loans for the calibrated
targets and associated laboratory spectra were provided by the Natural Environment Research Council
(NERC) Field Spectroscopy Facility. MB is funded by a Natural Environment Research Council (NERC)
PhD studentship in conjunction with the British Antarctic Survey and the University of Hull (NERC
Grant: NE/K50094X/1). Anonymous reviewers are thanked for their comments on earlier versions of
the manuscript.

Author Contributions

Martin Black is the main author who performed the atmospheric correction and wrote the draft
version of the manuscript. Andrew Fleming, Stephen Achal and John McFee were involved in the data
acquisition. Stephen Achal and Alejendra Umana Diaz were responsible for the data preprocessing.
Andrew Fleming, Peter Fretwell, Graham Ferrier and Teal Riley supervised and participated with
the work throughout all phases. All authors provided assistance in writing, editing and organising
the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Haselwimmer, C.E.; Riley, T.R.; Liu, J.G. Assessing the potential of multispectral remote sensing
for lithological mapping on the Antarctic Peninsula: Case study from eastern Adelaide Island,
Graham Land. Antarct. Sci. 2010, 22, 299–318.

2. Clark, R.N. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy;
In Manual of Remote Sensing; Rencz, A.N., Ed.; John Wiley and Sons: New York, NY, USA,
1999; pp. 3–58.

3. Drury, S.A. Image Interpretation in Geology; Blackwell Science: Oxford, UK, 2001; p. 209.
4. Baldridge, A.; Hook, S.; Grove, C.; Rivera, G. The ASTER spectral library version 2.0. Remote

Sens. Environ. 2009, 113, 711–715.
5. Van der Meer, F.D.; van der Werff, H.M.; van Ruitenbeek, F.J.; Hecker, C.A.; Bakker, W.H.;

Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and
hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinfor. 2012, 14,
112–128.

6. Shaw, G.A.; Burke, H.H.K. Spectral imaging for remote sensing. Linc. Lab. J. 2003, 14, 3–28.
7. Gao, B.C.; Montes, M.J.; Davis, C.O.; Goetz, A.F. Atmospheric correction algorithms for

hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 2009,
doi:10.1016/j.rse.2007.12.015.

197 of 266



Remote Sens. 2014, 6 4513

8. Mahiny, A.S.; Turner, B.J. A comparison of four common atmospheric correction methods.
Photogramm. Eng. Remote Sens. 2007, 73, 361–368.

9. Gao, B.C.; Heidebrecht, K.B.; Goetz, A.F. Derivation of scaled surface reflectances from AVIRIS
data. Remote Sens. Environ. 1993, 44, 165–178.

10. Qu, Z.; Kindel, B.; Goetz, A.F.H. The High Accuracy Atmospheric Correction for Hyperspectral
Data (HATCH) model. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1223–1231.

11. Matthew, M.; Adler-Golden, S.; Berk, A.; Felde, G.; Anderson, G.; Gorodetzky, D.; Paswaters, S.;
Shippert, M. Atmospheric Correction of Spectral Imagery: Evaluation of the FLAASH Algorithm
with AVIRIS Data. In Proceedings of the 31st Applied Imagery Pattern Recognition Workshop,
Washington, DC, USA, 16–18 October 2002; pp. 157–163.

12. Alder-Golden, S.; Berk, A.; Bernstein, L.S.; Richtsmeier, S.; Acharya, P.K.; Matthew, M.W.;
Anderson, G.P.; Allred, C.L.; Jeong, L.S.; Chetwynd, J. H. FLAASH, a MODTRAN4 Atmospheric
Correction Package for Hyperspectral Data Retrievals and Simulations. In Proceedings of the 7th
JPL AVIRIS Airborne Earth Science Workshop, Pasadena, CA, USA, 11–12 January 1998; p. 6.
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Summary 
The Antarctic Peninsula (AP) is one of the most rapidly changing environments on the planet; 

mean annual air temperatures have increased by ~3 ºC in the last 50 years. This climatic 

change has led to longer summers and higher summer-growing season temperatures and, 

coupled with local glacial retreat, new bare-ground is exposed for colonisation by pioneering 

vegetation communities. Due to the exceptional rates of environmental change the AP has 

been considered globally important in identifying the biological consequences of climate 

change. To monitor and assess changes of AP vegetation, a robust, quantitative assessment of 

vegetation is required. Previous studies have applied standard techniques, such as the 

Normalised Difference Vegetation Index (NDVI) to satellite data from the AP. Because the 

reflectance spectra of lichens, the dominant and most diverse component of the AP flora, 

differs from vascular plants in both the visible and near infra-red portion of the spectrum, any 

work using NDVI for the detection of vegetation might overlook the presence of lichens. This 

study presents a new spectral filtering technique which was applied to an airborne 

hyperspectral dataset to produce a high resolution map of vegetated areas from a test site on 

the AP.  

1 Introduction  
The Antarctic Peninsula (AP) has seen an increase in mean annual air temperature of ~3ºC in 

the last 50 years (Vaughan et al., 2003), making it one of the most rapidly changing areas on 

the planet. The changing climate as a result of rising temperatures, has led to higher summer-

growing season temperatures (Convey and Smith, 2006) and as a result of local glacial retreat 

(Pritchard and Vaughan, 2007) new rock outcrops and areas of scree and soil are exposed for 

colonisation by terrestrial biota (Walther et al., 2002; Convey and Smith, 2006). Due to these 

exceptional rates of change the AP has been highlighted as a globally important barometer for 

identifying the biological consequences of climate change (Convey, 2003). To monitor and 

assess changes of AP vegetation, a robust, quantitative assessment of vegetation is required 

(Fretwell et al., 2011). Field based techniques in the Antarctic incur significant logistical 

challenges as a result of the climate and topography in addition to the limited spatial coverage 

and invasive nature of the work. A non-invasive, remote sensing approach provides many 

advantages over field based techniques. Previous work using satellite remote sensing has 

shown that traditional approaches such as the Normalised Difference Vegetation Index 

(NDVI; Rouse et al., 1974) are difficult to apply in the Antarctic (Fretwell et al., 2011). It has 

already been recognized that any work using NDVI for the detection of vegetation might 
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overlook the presence of lichens even if their land cover is extensive (Petzold and Goward, 

1988). The reflectance spectra of lichens and vascular plants are different in both, the visible 

near infrared (VNIR; 0.4 - 1 µm) and shortwave infrared (SWIR; 1 - 2.5µm) portion of the 

solar spectrum; in particular the depth of the visible – near-infrared step is characteristically 

smaller in lichens (Petzold and Goward, 1988; Haselwimmer and Fretwell, 2009). In the AP, 

where lichen contribution to vegetation diversity and extent increases in importance, NDVI 

would show decreasing spectral vegetation values, and areas completely covered with lichens 

could be erroneously classified as having sparse cover of vascular plants (Petzold and 

Goward, 1988). 

High resolution airborne hyperspectral imagery has been widely used for a variety of 

applications, including vegetation monitoring, but has not yet been assessed in the Antarctic. 

The British Antarctic Survey and partners collected the first known airborne hyperspectral 

dataset over the Antarctic in February 2011. The simultaneous deployment of commercially 

available VNIR and SWIR spectrometers generated a dataset covering the 0.35 to 2.5 µm 

spectral range at a spectral resolution of 9.6-14 nm. This study presents results from high 

resolution mapping of Antarctic vegetation communities using this unique airborne 

hyperspectral dataset from a study area on the AP. Results from a new lichen matched filter 

technique are compared to the traditional NDVI approach. 

2 Study Area 
Lagoon and Kirsty Island (67

o
 35' S, 68

o
 16' W; Figure 1), in the Ryder Bay area of 

Antarctica, were surveyed in February 2011 acquiring hyperspectral imagery from multiple 

imaging spectrometers supplied by ITRES Research Ltd. (ITRES Research Ltd., 110, 3553-

31st Street NW, Calgary, AB, T2L 2K7, Canada)  

 

Figure 1. (A) the context of Adelaide Island within Antarctica; (B) The context of the Ryder Bay area within the 

Antarctic Peninsula; (C) the Ryder Bay area (with a Landsat colour image) showing extent of the hyperspectral 

area (Box labelled D); (D) hyperspectral colour composite image of Kirsty Island (Left) and Lagoon Island 

(Right) with areas visited during the field campaign shown in red squares. 
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3 Methodology 
3.1 Data 

Airborne hyperspectral data were collected from the ITRES Research Ltd. CASI-1500 and 

SASI-600 imaging spectrometers, with a total of 172 bands imaging from 0.4 to 2.5 µm. The 

imagery was geometrically and radiometrically corrected, followed by atmospheric correction 

using a radiative transfer modelling approach (see Black et al., 2014 for full details). The 

imagery was masked to removed surface and sea water along with snow/ice areas following 

the steps outlined by Harris and Rogge (2005). 

The collection of lichen spectra from Lagoon and Kirsty Island was carried out using an 

Analytical Spectral Devices (ASD) FieldSpec Pro 3® spectrometer during a field campaign in 

January 2014. The ASD spectrometer
 
records continuous spectra across the 0.3 to 2.5 µm 

spectral range. A total of 19 field stations were sampled (Figure 1), with spectral 

measurements derived from a 10 m
2
 region. The presence of vegetation was confirmed at 17 

of the 19 field stations. 

3.2 Image Processing 

Normalised Difference Vegetation Index (NDVI) was calculated using equation (1) (after 

Rouse et al., 1974) 

 

(1) 

where NIR and VIS represent the spectral reflectance measurements acquired in the visible 

(~0.6 µm) and near-infrared (~0.8 µm) regions, respectively. The narrow spectral bands from 

the hyperspectral CASI imagery at 0.67 µm (VIS) and 0.8 µm (NIR) were used to calculate the 

NDVI (Haboudane et al., 2004).  

We performed matched filtering (c.f. Harris and Rogge, 2005) using the lichen spectra of 

Buellia sp. collected in the field. It has been shown that a single lichen endmember can 

account for lichen contribution if normalisation is applied (Zhang et al., 2005). As ground 

truthing, we used 17 of the 19 sites (10 x 10 m each) for which the presence of lichens was 

confirmed in the field (Figure 2). We compared the areas where the lichen filter showed 

presence of lichens and areas where NDVI values were greater than 0.2 (indicating that the 

presence of vegetation is almost certain; Fretwell et al., 2011). 
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4 Results 
The matched filter successfully detected the presence of lichens at 95% of the field sites (16 

of 17), whereas the NDVI only detected vegetation at 53% (9 of 17) of the sites. 

 

Figure 3. (A) Lagoon and Kirsty Island image with results from the matched filter (yellow) and NDVI (green) 

overlain; (B) inset showing a close up of Kirsty Island, where the white box indicates a field site without lichen 

presence; (C) inset showing a close up of western Lagoon island with field sites with confirmed lichen presence 

shown in white squares. 

5 Discussion and Conclusions 
Our data confirm that the use of a matched filtering technique allows for the detection of 

lichen flora in the Antarctic Peninsula, showing a considerable improvement over NDVI for 

the mapping of flora in this area. Our results highlight the importance of using techniques 

other than NDVI thresholds for the detection and mapping of vegetation in areas where 

lichens (and likely other non-vascular plants) are the main component of the communities; as 

is typical in high latitudes and high altitude environments. It has been proposed that NDVI 

thresholds are not the best technique for mapping distribution of lichens from remote sensing 

imagery (Petzold and Goward 1988, Haselwimmer and Fretwell 2009). However, this is the 

first study to compare NDVI threshold detection with an alternative technique for lichens in 

the Antarctic, and proposes a new methodology for mapping lichen distribution in the AP. 

The results presented here suggest that studies based on the spectrum of only one species of 

lichen might be sufficient for the accurate mapping of lichen habitats in this environment, 

consistent with Petzold and Goward’s (1988) study. The same technique proposed here could 

be applied in the future to intermediate spectral and spatial resolution imagery. Images of 

intermediate spectral and spatial resolution will be available in the future from planned 

satellite launches (e.g. WorldView-3, HyspIRI, Sentinel-2, EnMAP), and they will be of great 

importance in the study of vegetation in Polar Regions. 
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Abstract

On the Antarctic Peninsula, lichens are the most diverse botanical component of

the terrestrial ecosystem. However, detailed information on the distribution of

lichens on the Antarctic Peninsula region is scarce, and the data available exhibit

significant heterogeneity in sampling frequency and effort. Satellite remote

sensing, in particular the use of the Normalized Difference Vegetation Index

(NDVI), has facilitated determination of vegetation richness and cover distribu-

tion in some remote and otherwise inaccessible environments. However, it is

known that using NDVI for the detection of vegetation can overlook the presence

of lichens even if their land cover is extensive. We tested the use of known spectra

of lichens in a matched filtering technique for the detection and mapping of

lichen-covered land from remote sensing imagery on the Antarctic Peninsula,

using data on lichen presence collected by citizen scientists and other non-

specialists as ground truthing. Our results confirm that the use of this approach

allows for the detection of lichen flora on the Antarctic Peninsula, showing an

improvement over the use of NDVI alone for the mapping of flora in this area.

To access the supplementary material for this article, please see supplementary

files under Article Tools online.

On the Antarctic Peninsula, lichens and bryophytes are

the major botanical component of the terrestrial ecosys-

tem (Smith 1984; Øvstedal & Smith 2001; Convey 2013).

There are 404 described species of lichen documented in

Antarctica, with 264 of these solely on the Antarctic

Peninsula (Øvstedal & Smith 2001, 2009). Crustose,

fruticose and foliose lichens are important or dominant

elements in the extensive cryptogamic communities that

form the typical vegetation of the Antarctic Peninsula

region, especially along coasts (Øvstedal & Smith 2001;

Convey 2013). However, even though the overall diver-

sity of the Antarctic Peninsula flora is well known, most

studies have focused on a limited number of locations.

Detailed information on the distribution of lichens in the

Antarctic Peninsula region is scarce, and the data avail-

able exhibit significant heterogeneity in sampling fre-

quency and effort (Casanovas, Lynch & Fagan 2013),

as is typical of existing biological data across the Antarctic

terrestrial biome (Adams et al. 2006; Chown & Convey

2007; Terauds et al. 2012).

The relative paucity of botanists working in Antarctica,

combined with logistic limitations, makes traditional

methods for studying biodiversity at a large scale im-

practical (Chown & Convey 2007; Terauds et al. 2012;

Casanovas, Lynch & Fagan 2013). With deglaciation

exposing new habitat (Cook et al. 2005; Clarke et al.

2007; Convey 2011) and the increase in both tourism

and national research operations in the area (Tin et al.

2009; Liggett et al. 2011), cost-effective and pragmatic

but reliable wide-scale survey methods are needed to

accelerate assessments of biodiversity (Wall et al. 2011).

Satellite remote sensing has facilitated determination of

vegetation richness and cover distribution and can be used

where field access is difficult (e.g., Stow et al. 2004; Waser
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et al. 2004; Johansen & Karlsen 2005; Laidler et al. 2008;

Tommervik et al. 2012). Most studies which consider

vegetation, including lichens, are based on the analysis of

the Normalized Difference Vegetation Index (NDVI; Rouse

et al. 1974). NDVI is based on the ratio of visible red light

and near-infrared (Gates 2003) and has been used as a

proxy to indicate the presence of chlorophyll in an imaged

land area. On the Antarctic Peninsula region, Fretwell et al.

(2011) presented the first small-scale map of vegetation

generated using NDVI. However, with ground truthing for

the classification of the imagery based on only two islands,

they recognized the need for further work spanning a

wider range of sites and habitats. Also, it has been

recognized that work using NDVI to detect vegetation

might overlook the presence of lichens even if their land

cover is extensive (Petzold & Goward 1988). The reflec-

tance spectra of lichens and vascular plants are different in

both the visible and the infrared portions of the solar

spectrum (0.4�1 mm); in particular, the depth of the visible

to near-infrared step (0.6�0.7 mm) is characteristically

smaller in lichens (Petzold & Goward 1988; Haselwimmer

& Fretwell 2009). Therefore, at high latitudes, where

lichen contribution to vegetation diversity and extent

increases in importance, NDVI would show decreasing

spectral vegetation values, and areas completely covered

with lichens can be erroneously classified as having

sparse cover of vascular plants (Petzold & Goward 1988).

An alternative technique for detecting vegetation from

satellite images is image classification (supervised or

unsupervised). This classifies an entire pixel into a discrete

land cover type, needing the land cover type not only to be

of sufficient extent to completely dominate a pixel, but to

dominate several pixels in the area of interest as samples

for training and validation. As the vegetation communities

on the Antarctic Peninsula are typically mixed as well as

including neighbouring rocks, soil and/or snow at the

scale of mid-resolution satellite images, these techniques

are inappropriate.

Here, because of the good development of lichen-

dominated communities in the Antarctic Peninsula region

(Øvstedal & Smith 2001), we trial the potential of mapping

their distribution directly by matching image pixel spectra

with the reference spectra of lichens using a matched

filtering algorithm (Harsanyi & Chang 1994) applied to

mid-resolution (30 m) satellite imagery. This is a more

appropriate technique, as partial unmixing can detect

the presence of a given material (in our case lichens) at a

sub-pixel scale. Such techniques have been widely used in

lithological studies (e.g., Rowan & Mars 2003; Harris et al.

2005; Bedini 2011; Grebby et al. 2011) and have been

recently applied for the mapping of lichens using very

high-resolution imagery (Black et al. 2014; Rouse et al.

1974). The widely available mid-resolution satellite ima-

gery, from satellite platforms such as Landsat, has been

used for the study of vegetation in remote areas including

work in the Arctic (e.g., Johansen & Karlsen 2005) and

Antarctic (Fretwell et al. 2011). However, matched filter-

ing techniques have not been applied using this mid-

resolution satellite imagery. If successful, this approach

will give much improved information on sub-pixel vegeta-

tion cover, community extent and composition.

Furthermore, citizen science approaches provide a

practicable and useful tool for surveying areas where

specialist expertise is unavailable (Krell 2004; Casanovas

et al. 2014), providing a means of enhancing available

biodiversity data. Data on lichen presence for visitor sites

collected by means of photographic documentation by

citizen scientists and other non-specialists are available for

a number of visitor sites on the Antarctic Peninsula

(Casanovas, Lynch, Fagan & Naveen 2013), and these data

can be used for ground truthing in remote sensing studies.

Here, we test the use of known spectra of lichens for the

detection and mapping of lichen-covered land from

remote sensing imagery on the Antarctic Peninsula, using

the data on lichen presence mentioned above as ground

truthing. We also compare distribution maps generated

using matched filtering of lichen spectra with those

derived using NDVI. Our data demonstrate the potential

for a more comprehensive and accurately differentiated

description of the extent of the different major types of

terrestrial vegetation on the Antarctic Peninsula region

than is currently available. Such an output also has

particular importance in enhancing the ability of the

Antarctic Treaty Parties to assess remotely the evidence

of cumulative impacts at locations under particularly

intense pressure from human activity, such as popular

visitor sites and areas that are the focus of research activity

or other operations.

Methods

Lichen spectra

The lichen spectra used in this study correspond to Buellia

sp., Usnea sp. and Caloplaca sp. These genera of lichen are

very common and well represented in maritime Antarctic

terrestrial ecosystems. Communities where Buellia and

Caloplaca (two of several nitrophilous taxa present in the

region) are abundant cover large expanses of coastal

areas that are influenced by nutrients derived from

seabird colonies and other vertebrate-derived nutrient

sources (Øvstedal & Smith 2001). Usnea is one of the

main components of another prominent coastal lichen

community, with several species often covering from a
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few to several hundred square metres of coastal areas

(Øvstedal & Smith 2001). The spectra of these three genera

were collected on Lagoon Island (67835? S, 68816? W),

Ryder Bay, off the west coast of the Antarctic Peninsula,

where they are abundant.

Lichen spectra were collected using an Analytical

Spectral Device (ASD; Boulder, CO, USA) FieldSpec Pro 3†

spectrometer during a field campaign in January 2014.

The ASD spectrometer records continuous spectra across

the 350�2500 nm spectral range, with a spectral resolu-

tion of 3 nm at 700 nm, 10 nm at 1400 nm, and 12 nm at

2100 nm. The ASD spectrometer was configured to acquire

spectral reflectance measurements in ‘‘white reference’’

mode, where a white Spectralon† panel (Labsphere,

North Sutton, NH, USA) was used as the reference target;

relative reflectance spectra of the materials under inves-

tigation are calculated by the instrument by dividing the

measured white reference radiance by the measured

target radiance. The ASD spectrometer was configured so

that each spectrum collected represented the average of 50

individual spectral measurements. Re-calibration with the

white reference panel was undertaken before collection of

each spectrum to ensure the spectra were not affected by

instrument drift. Spectral measurements were collected

from exposed surfaces of the target, using a contact

reflectance probe (which includes its own calibrated light

source) with a target region of approximately 1 cm2. The

source spectra for the three species of lichen used in this

study are shown in Fig. 1.

Landsat imagery analysis

This study was based on Landsat 8 and Landsat 7

Enhanced Thematic Mapper satellite imagery, which

have a spatial resolution of 30 m in the multispectral

bands (Supplementary Table S1). For each scene we

converted the Landsat digital number values to surface

reflectance values using published post-launch gains

and offsets, correcting the scene for varying illumina-

tion (www.landsat.usgs.gov/Landsat8_Using_Product.php).

Snow was masked on each scene using the Normalized

Difference Snow Index (NDSI), selecting pixels with a

NDSI greater than 0.4 (Dozier 1989; Klein et al. 1998).

This method generates a normalized index using a green

band and a short wavelength infrared band, as the higher

reflectance of snow in the visible band and contrasting

lower reflectance in the short wavelength infrared band

permits separation of snow from other covers (Dozier

1989).

For each scene, we performed a matched filtering using

the lichen spectra collected in the field to estimate the

abundance of lichens using partial unmixing. This tech-

nique suppresses the response of a composite unknown

background while maximizing the response of a known

spectral signal of pure material or endmember (Harsanyi &

Chang 1994). The scores for the matched filtering results

are derived for each pixel by projecting the data onto a

matched filter vector, which is the result of transforming

the target spectrum onto the input data space. The

resulting scores are normally distributed and have a

mean of zero; values greater than zero show that a fraction

of the target component (lichens in the case of this study) is

present in a given pixel. The mathematical definition of

the matched filter vector is given by Mundt et al. (2007),

who also comprehensively describe the method.

It has been shown that the spectrum from a single

species of lichen can be used to account for all lichen con-

tributions in a given observed mixture, if normalization is
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Fig. 1 Spectra of the three lichen genera used in this study.
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applied to the lichen reflectance spectra from 2000 to

2400 nm (see Zhang et al. 2005). This is because the spectra

of different species of lichens share a similar shape and

brightness in the shortwave infrared region (Fig. 1; Zhang

et al. 2005). We used three lichen endmembers for this

analysis, as explained above, applying the normalization

to the lichen reflectance spectra as suggested by Zhang

et al. (2005), and tested whether their observation holds

true for Antarctic lichens. We used a matched filtering

threshold of 0.2 for all the scenes and all the lichen

endmembers.

We also calculated NDVI values for each image. NDVI

is based on the ratio of visible red light and near-infrared

(Rouse et al. 1974; Gates 2003), and it is used to indicate

the presence of chlorophyll in a land area represented by

a pixel (values varying between �1.0 and �1.0, where

values near �1 are pixels with very high chlorophyll

content). We calculated NDVI for all the scenes using the

Landsat 7 and 8 bands 3�4 and 4�5, respectively.

‘‘Citizen science’’ ground-truthing data

As ground truthing, we used a database of lichen richness

on the Antarctic Peninsula which combines a photo-

graphic ‘‘citizen science’’ approach for data collection

with the use of parataxonomic units for the estimation of

lichen presence (Casanovas, Lynch, Fagan & Naveen

2013; www.ipt.biodiversity.aq/resource.do?r�antarctic_

peninsula_lichens). This database compiles lichen occur-

rence for sites that are frequently visited by tourists.

Twenty-nine sites were photographically surveyed by

researchers and tourists between 2009/10 and 2011/12

on the Antarctic Peninsula region. In general, the area

allowed for free walking for visitors is smaller than 500 m

around the centre of a given visiting site (when limited

by cliffs or glaciers, or on very small islands, the area can

be smaller). Even though the lichen cover is intermixed

with rock, soil and snow, it is an important component of

the overall surface cover in most sites studied. Supple-

mentary Fig. S1 shows an example of the extent and

form of the vegetated areas in the sites studied. Photo-

graphers were asked to take pictures of lichens within the

target area. A test of identifications from the photographs

using a reference data set of Antarctic lichen images from

the US National Herbarium showed that all species used

in the test can be detected and, for 74% of the images,

the genus of the lichen was identified correctly by three

independent classifiers. The observed richness by site

varied, with a mean of 18 parataxonomic species and 11

parataxonomic genera (for further information, see

Casanovas, Lynch, Fagan & Naveen 2013). In this study,

we used 22 of the sites from this database (Supplementary

Table S2; Fig. 2). Buellia sp. and Caloplaca sp. have been

recorded in most sites, while Usnea sp. has been recorded

in more than half the sites studied here (Supplementary

Table S2).

Comparison analysis

We counted the number of pixels for which the matched

filter showed lichen presence, and the number of pixels for

which the different NDVI thresholds showed vegetation

(0.05, 0.1 and 0.2) in a buffer of 500 m around the centre

of the visiting area at each site. Fretwell et al. (2011)

proposed three different thresholds for NDVI based on

different probabilities of vegetation cover (higher than

0.05 is ‘‘probably’’ vegetated, higher than 0.1 is ‘‘very

probable’’ and higher than 0.2 is ‘‘almost certain’’). We

recognize that there are several years’ temporal difference

between the vegetation surveys and the remotely sensed

data. However, even though it has been demonstrated that

lichens in parts of the Antarctic Peninsula region can grow

as fast as elsewhere in the world, they only reach a

maximum extension rate of 0.5�2.0 mm/year in the

South Shetland Islands (Sancho & Pintado 2004). There-

fore, we considered that this difference in time would

introduce a very small source of error, if any.

We compared the number of sites where the lichen

filter showed presence of lichens and those where NDVI

values were greater than 0.2, 0.1 or 0.05, and both with

the assessments of the ground-truthing sites, in order to

Fig. 2 (a) Location of the ground-truthing sites (open circles) along the

Antarctic Peninsula, where the large black squares indicate the extent of

the Landsat 7 tiles and the large grey squares indicate the extent of the

Landsat 8 tiles. (b) The South Shetland Islands (Fig. 3) and (c) the Danco

Coast area (close to Anvers Island). The projection of the maps is

Lambert Azimuthal Equal Area.
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evaluate the accuracy of the detection capabilities of the

lichen filter and NDVI. For the Landsat 8 imagery, we also

compared the total area for which the lichen filter

showed presence of lichens with the area for which the

different NDVI thresholds showed presence of vegetation.

These analyses used ENVI version 5.1 (Exelis Visual

Information Solutions, Boulder, CO) and ArcGIS 10

(ESRI 2011, ArcGIS Desktop: Release 10, Redlands, CA:

Environmental Systems Research Institute).

Results

We compared the sites where citizen science confirmed

the presence of lichens to the remote sensing analysis

(Supplementary Table S2, 22 and 15 sites for the Landsat

7 and 8 set of images, respectively). In the Landsat

7 imagery analysis, the matched filtering failed to detect

the presence of lichens in only one (6.6%) of the sites

studied (mean number of pixels from the three species

of lichens studied), while at 46.6% of the sites the NDVI

with a threshold of 0.2 did not detect the presence of

any vegetation. In the Landsat 8 imagery analysis, at

three (13.6%) of the sites the matched filtering failed to

detect lichens, with positive detection at 86% of the sites,

while at 59% of the sites the NDVI (0.2 threshold) did not

detect any vegetation. However, an NDVI threshold of

0.05 detected vegetation as frequently as the matched

filter in both set of images (Landsat 7 and 8). Figure 3

shows a comparison of the matched filter and NDVI

results for two sites in the South Shetland Islands.

Comparisons of the matched filtering and the three

different thresholds for the NDVI data for both sets of

images are given in Supplementary Table S3. Supplemen-

tary Figs. S2 and S3 show the results of the matched

filtering results for the entire area studied for all Landsat 7

and 8 images.

Comparing analyses of the areas detected using the

matched filtering by different species of lichens, the total

area detected as being covered by lichens by the filter

varied slightly when using the different species’ spectra.

When using the spectra from Buellia sp., the total area

detected was greater than when using the other two

species’ spectra. However, the area detected using the

latter fell almost completely within that detected using

the other two species: 81.0% of the area detected by

Caloplaca sp. and 97.9% of the area detected by Usnea sp.

spectra was inside that detected using the Buellia sp.

spectra; further, 83.2% of the area detected by the Usnea

sp. spectra fell inside that detected using Caloplaca sp.

spectra. The area identified as having NDVI values greater

than 0.2, 0.1 or 0.05 overlapped by 46.2, 61.7 or 52.3%,

respectively, with that detected by the lichen matched

filter (Table 1). However, when comparing the detection

of lichens at each site studied in each set of imagery

(Landsat 7 and 8), the results varied depending on the

species spectrum used (Supplementary Table S3), with

the Buellia sp. spectrum giving the most detections on the

Landsat 8 images and the Usnea sp. spectrum the most

detections on the Landsat 7 images.

Fig. 3 (a) Normalized Difference Vegetation Index (NDVI; �0.2) analysis

for north-west Deception Island and (c) Half Moon Island, South Shetland

Islands (see Fig. 2), using Landsat 8 imagery. (b) Matched filtering

analysis for north-west Deception Island and (d) Half Moon Island, using

Landsat 7 imagery. (See Supplementary Table S1 for details on the

Landsat scenes.) The projection of the maps is Lambert Azimuthal Equal

Area.

Table 1 Areas covered by the pixels detected as lichen-covered by the

matched filtering analysis and Normalized Difference Vegetation Index

(NDVI), and the percentages of overlap between them

Type of endmember and NDVI Area (pixels) % Overlap

Buellia sp. 72 133 �
Caloplaca sp. 28 926 �
Usnea sp. 27 605 �
NDVI (0.05) 34 148 �
NDVI (0.1) 20 386 �
NDVI (0.2) 11 351 �
Buellia sp. over Caloplaca sp. 23 484 81.0

Buellia sp. over Usnea sp. 27 047 97.9

Usnea sp. over Caloplaca sp. 22 985 83.2

Buellia sp. over NDVI (0.06) 17 864 52.3

Buellia sp. over NDVI (0.1) 12 588 61.7

Buellia sp. over NDVI (0.2) 5251 46.2
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Discussion

The use of a matched filtering technique for lichens

allowed for the detection of lichen flora on the Antarctic

Peninsula using mid-resolution satellite imagery, showing

a significant improvement over NDVI for the mapping of

flora in this area when using an NDVI threshold of 0.2

[conventionally taken to indicate the almost certain

presence of vegetation (Fretwell et al. 2011)]. More re-

search would be needed to establish if this technique

overestimates the presence of lichens, as the citizen

science database used for ground truthing does not have

information on sites where lichens are known to be

absent. Even though a lower NDVI threshold of 0.05

appeared to perform as well as the mean of the three

species of lichen spectra in detecting the presence of

lichens at a given site, the poor overlap between areas

detected using the two approaches suggests that they are

not identifying the same features. Our results highlight the

importance of using techniques other than NDVI thresh-

olds for supplementing detection and mapping of vegeta-

tion in areas where lichens are an important community

component. While it has previously been noted that NDVI

thresholds are not the best technique for mapping dis-

tribution of lichens (Petzold & Goward 1988; Haselwimmer

& Fretwell 2009), the current study is the first to compare

NDVI threshold detection with an alternative technique

for lichens in the Antarctic. Here we present the first map

of lichen cover for parts of the Antarctic Peninsula based

on matched filtering detection of lichen spectra. This is a

first step in developing more detailed studies of vegetation

in this region using remote sensing, and more detailed

ground-truthing field surveys including percentage cover

of different types of vegetation, and areas with confirmed

absence of specific vegetation types, are recommended for

the future.

The results presented here suggest that studies based on

the spectrum of only one species of lichen will be sufficient

for mapping lichen habitats in this environment, consis-

tent with the conclusion of Zhang et al. (2005). However,

results obtained using Buellia sp. and Usnea sp. spectra

identified lichen presence in a greater area than those

using the Caloplaca sp. spectrum. More detailed field

survey data are required to assess the accuracy of using

different species spectra at different spatial scales, and

future work should address the possibility of mapping

different types of vegetation using their specific spectra. It

has been shown that it is possible to differentiate lichen

species using their spectra in the visible part of the

spectrum (Bechtel et al. 2002) and it might, therefore, be

possible to map lichen richness from high- and medium-

resolution imagery.

The same technique as used here could be applied in

the future to intermediate spectral and spatial resolution

imagery. At present, we could not use other commercial

imagery of medium resolution because of their lack of

data in the short wavelength infrared region in which the

lichen spectral signature is most characteristic (2000�
2400 nm; Petzold & Goward 1988). Images of intermedi-

ate spectral and spatial resolution will become available

from planned satellite launches (e.g., WorldView-3

and Sentinel2 satellites) and will be of great importance

in the study of vegetation in the polar regions in the

future.

As glaciers retreat on the Antarctic Peninsula region,

lichens play an important role in the colonization and

primary succession of newly exposed terrestrial habitat

(Favero-Longo et al. 2012). Mapping lichen presence will

greatly assist in documenting this process. Also, this

technique could assist in the study of areas disturbed by

the increasing regional fur seal population on the

Antarctic Peninsula (Favero-Longo et al. 2011). Lichens

can be used as indicators of long-term change trends in

habitat distributions (irrespective of other human im-

pacts, such as direct disturbance).

It has been shown that lichen cover, Usnea spp. forma-

tions in particular, can be used as a proxy for estimating

areas with less snow during the cold season in the

Antarctic (Vieira et al. 2014). This application is of impor-

tance on the Antarctic Peninsula, where snow mapping is

difficult. On the other hand, lichen cover can also com-

promise geological mapping, as it can completely mask the

spectra of underlying lithologies (Rowan & Mars 2003;

Harris et al. 2005).

Shaw et al. (2014) recently argued that Antarctic

biodiversity is poorly protected, with only 1.5% of the

continent’s ice-free area formally designated as Antarctic

Specially Protected Areas, while Hughes et al. (2015) have

calculated that across the entire Antarctic continent only

7 km2 of ‘‘vegetated’’ land comes under this protection.

Visitor Site Guidelines developed by the Antarctic Treaty

Parties take into account the vegetation of some landing

sites (e.g., Barrientos Island), because trampling and

damage of vegetation is a potential human impact at

popular tourist areas (Tejedo et al. 2009; Tejedo et al.

2012). However, the identification of appropriate areas for

the conservation of vegetation, in particular lichens, is

extremely difficult as field data on lichen cover are not

available for most of Antarctica. The approach for mapping

lichen cover on the Antarctic Peninsula proposed here

is an important step forward in the understanding of

lichen distribution and can assist in identifying areas for

conservation.
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On the Feasibility of Imaging Carbonatite-Hosted Rare Earth Element Deposits  
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1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
2 British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom

3 Department of Geography, Environment and Earth Sciences, University of Hull, Hull HU6 7RX, United Kingdom
4 Camborne School of Mines, College of Engineering, Mathematical and Physical Sciences, University of Exeter,  

Penryn Campus, Cornwall TR10 9FE, United Kingdom

Abstract
Rare earth elements (REEs) generate characteristic absorption features in visible to shortwave infrared (VNIR-
SWIR) reflectance spectra. Neodymium (Nd) has among the most prominent absorption features of the REEs 
and thus represents a key pathfinder element for the REEs as a whole. Given that the world’s largest REE 
deposits are associated with carbonatites, we present spectral, petrographic, and geochemical data from a 
predominantly carbonatitic suite of rocks that we use to assess the feasibility of imaging REE deposits using 
remote sensing. Samples were selected to cover a wide range of extents and styles of REE mineralization, and 
encompass calcio-, ferro- and magnesio-carbonatites. REE ores from the Bayan Obo (China) and Mountain 
Pass (United States) mines, as well as REE-rich alkaline rocks from the Motzfeldt and Ilímaussaq intrusions 
in Greenland, were also included in the sample suite. The depth and area of Nd absorption features in spectra 
collected under laboratory conditions correlate positively with the Nd content of whole-rock samples. The 
wavelength of Nd absorption features is predominantly independent of sample lithology and mineralogy. Cor-
relations are most reliable for the two absorption features centered at ~744 and ~802 nm that can be observed 
in samples containing as little as ~1,000 ppm Nd. By convolving laboratory spectra to the spectral response 
functions of a variety of remote sensing instruments we demonstrate that hyperspectral instruments with capa-
bilities equivalent to the operational Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and planned 
Environmental Mapping and Analysis Program (EnMAP) systems have the spectral resolutions necessary to 
detect Nd absorption features, especially in high-grade samples with economically relevant REE accumulations 
(Nd > 30,000 ppm). Adding synthetic noise to convolved spectra indicates that correlations between Nd absorp-
tion area and whole-rock Nd content only remain robust when spectra have signal-to-noise ratios in excess of 
~250:1. Although atmospheric interferences are modest across the wavelength intervals relevant for Nd detec-
tion, most REE-rich outcrops are too small to be detectable using satellite-based platforms with >30-m spatial 
resolutions. However, our results indicate that Nd absorption features should be identifiable in high-quality, 
airborne, hyperspectral datasets collected at meter-scale spatial resolutions. Future deployment of hyperspec-
tral instruments on unmanned aerial vehicles could enable REE grade to be mapped at the centimeter scale 
across whole deposits.

Introduction

Rare earth element deposits and reflectance spectroscopy

Carbonatites, classified as rocks with >50% primary magmatic 
carbonate (Le Maître, 2002), and the alkaline igneous rocks 
with which they are often associated are the primary source of 
rare earth elements (REEs), and will remain so for the fore-
seeable future (Wall, 2014). With notable exceptions, such as 
the relatively extensive Bayan Obo and Mountain Pass depos-
its in China and the United States, respectively (Drew et al., 
1990; Castor, 2008; Yang et al., 2011; Smith et al., 2015), car-
bonatite-hosted REE deposits are often small in areal extent 

but high in grade, i.e., have a total rare earth oxide content 
(ΣREO) >1 wt % (Chakhmouradian and Zaitsev, 2012; Wall, 
2014). This enrichment is largely the result of late-stage, fluid-
dominated, carbothermal processes that concentrate REEs in 
dikes and veins on the meter to tens-of-meter scale during the 
last stages of emplacement and cooling (Wall and Mariano, 
1996; Wall and Zaitsev, 2004; Mitchell, 2005). Conversely, 
while major alkaline igneous rock-hosted REE deposits, such 
as Khibiny (also spelled Khibina in the geologic literature) 
and Lovozero in Russia, can be large in size, they are gener-
ally lower grade than their carbonatite counterparts (ΣREO 
<1 wt %; Wall, 2014). The high concentration of REEs in car-
bonatites makes them well suited for developing exploration 
and mapping strategies that exploit diagnostic features in the 
reflectance spectra of REE-rich materials (e.g., Rowan et al., 
1986). In this contribution, we discuss the feasibility of imag-
ing primarily carbonatite-hosted REE deposits by hyperspec-
tral remote sensing at visible and near- to shortwave infrared 
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(VNIR-SWIR) wavelengths (λ = 400–2,500 nm), using both 
airborne- and satellite-based platforms.

It is well established that a number of lanthanide elements 
exhibit strong, narrow absorption features in their reflectance 
spectra (Adams, 1965). Investigating the mechanisms by 
which spectral absorption features are generated is beyond 
the scope of this study and detailed discussions of REE spec-
troscopy are best found in the physical and chemical literature 
(e.g., Dieke, 1970; Görller-Walrand and Binnemans, 1998). In 
summary, absorptions characteristic of lanthanide elements 
are thought to arise from 4f-4f intraconfigurational electron 
transitions that result from the 4f shell (radius ~0.3 Å) being 
partially shielded by the 5s and 5p shells (radius ~2 and 1 Å, 
respectively) and thus largely nonparticipatory in bonding 
(Liu, 2005). REE absorption features are therefore elemental 
in nature rather than vibrational; they depend on the abso-
lute concentration of REE atoms rather than on their bonding 
environments (Clark, 1995). While the identification of REEs 
in mineral and rock spectra is theoretically straightforward, 
with the notable exceptions of monazite-(Ce), bastnäsite-
(Ce), parisite-(Ce,) and synchysite-(Ce), there are few pub-
lished REE-rich reference spectra currently available to the 
remote sensing community (Fig. 1; Clark et al., 2007; Turner 
et al., 2014). The most complete presentation of REE-bearing 
rock spectra remains that of Rowan et al. (1986), who pro-
vided VNIR-SWIR spectra from four carbonatite-alkaline 
complexes in North America (Mountain Pass, Oka, Iron Hill, 
and Gem Hill), albeit in nondigital form.

As reviewed by Turner et al. (2014), a number of REE-
rich carbonatite and alkaline centers have been successfully 
imaged using both space- and airborne reflectance spectros-
copy. For example, lithologic maps of Mountain Pass in the 
United States and Khanneshin in Afghanistan have been pro-
duced using multispectral Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) instrument 
(Rowan and Mars, 2003; Mars and Rowan, 2011). However, 
the coarse spatial and spectral resolutions of satellite-based 
multispectral instruments severely limit their ability to detect 
REE absorption features: the only potential identification of 
REE-rich material from satellite data published to date was 
at Mountain Pass (Rowan and Mars, 2003). Mapping REE-
rich rocks at finer spatial and spectral resolutions has also 
been carried out using airborne hyperspectral instruments. 
Examples include mapping the Iron Hill carbonatite-alkaline 
complex in the United States with the hyperspectral Airborne 
Visible-Infrared Imaging Spectrometer (AVIRIS) instrument 
(Rowan et al., 1995) and the Sarfartoq carbonatite complex in 
Greenland with the HyMap® system (Bedini, 2009). Despite 
the presence of characteristic REE absorption features in the 
reflectance spectra of field samples, no REE absorptions were 
reported from either of these AVIRIS and HyMap® datasets 
(Rowan et al., 1995; Bedini, 2009). Nevertheless, Nd and Sm 
absorptions have been reported in AVIRIS spectra collected 
over the Sulphide Queen area of Mountain Pass, thereby 
demonstrating the potential role of hyperspectral remote 
sensing in imaging REE deposits (Rowan and Mars, 2003). 
Furthermore, Boesche et al. (2015) successfully delimited 
high Nd occurrences in a monazite-mineralized outcrop of 
the Fen complex in Norway using a ground-based HySpex 
hyperspectral imaging system.

As hyperspectral mapping capabilities and image process-
ing techniques continue to improve, characterizing mineral 
deposits using reflectance spectroscopy will become an ever-
more robust method. For example, the next generation of 
remote sensing satellites such as the Environmental Mapping 
Program (EnMAP) will carry spaceborne Earth observation 
fully into the hyperspectral era (Stuffler et al., 2007; Guanter 
et al., 2015). However, many questions relating to the iden-
tification of REE deposits by remote sensing remain largely 
unanswered. First, what are the detection limits for identify-
ing REEs in carbonatites and alkaline igneous rocks by reflec-
tance spectroscopy under ideal conditions, i.e., how well do 
spectral properties correlate with REE grade? Second, do 
deposit lithology and mineralogy affect the ability to resolve 
REEs? Third, under what conditions might REE absorption 
features be resolvable by various classes of remote sensing 
instrument?
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Fig. 1.  Reference VNIR-SWIR spectra from common minerals found in 
REE-rich carbonatites. All spectra are sourced from the USGS spectral 
library (Clark et al., 2007), apart from the spectrum for bastnäsite that is from 
Turner et al. (2014). Note the complexity of bastnäsite-(Ce), monazite-(Ce), 
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val. Absolute reflectance values are shown at 400 nm.
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Approach and scope

Igneous rocks classified as carbonatites can be generated by a 
range of petrologic processes (Mitchell, 2005): by low-degree 
melting of a mantle source (Wallace and Green, 1988; Harmer 
and Gittins, 1998); by extensive fractional crystallization of 
carbonated alkaline magmas (Gittins, 1989); and by liquid 
immiscibility between carbonate and silicate melts (Freestone 
and Hamilton, 1980; Brooker and Kjarsgaard, 2011). The pet-
rogenesis of alkaline rocks can be equally diverse (Fitton and 
Upton, 1987) and is often closely linked with the generation 
of carbonatites (Woolley and Kjarsgaard, 2008). Carbonatites 
and alkaline igneous rocks are often compositionally variable 
both within and between magmatic centers and are frequently 
associated with extensive fenites and contact aureoles. The 
crystallization of REE minerals generally occurs late in the 
emplacement history of carbonatites and is largely secondary in 
nature (Wall and Mariano, 1996). Notable exceptions include 
the growth of primary bastnäsite-(Ce) at Mountain Pass (Mari-
ano, 1989) and burbankite at Khibina (Zaitsev et al., 2002).

We present reflectance spectra collected from a range of 
well-characterized carbonatites and carbonatite-related REE 
ores, as well as from two alkaline igneous centers in Green-
land: Motzfeldt and Ilímaussaq. Our sample suite includes 
samples from currently active REE mines (Bayan Obo in 
China, Mountain Pass in the United States, and Mount Weld 
in Australia), as well as samples from exploration projects with 
significant future mining potential (Ilímaussaq in Greenland). 
The reflectance spectra presented here significantly expand 
the spectral library of REE-rich reference material available 
to the remote sensing community from mineral spectra to 
spectra on the whole-rock scale (cf. Rowan et al., 1986; Clark 
et al., 2007; Turner et al., 2014). Furthermore, we use petro-
graphic, geochemical, and spectral information from the same 
hand specimens to investigate relationships between spectral 
features, REE grade, and mineral assemblage. Nevertheless, 
our new spectra are presented with two important caveats. 
First, although analytical strategies were designed to mitigate 
the effects of sample heterogeneity at the hand specimen 
scale, the extreme petrologic variability present within car-
bonatite and alkaline complexes means that the spectral prop-
erties we measure cannot simply be expanded from single 
samples to the outcrop scale; individual hand specimens are 
not perfectly representative of their host complexes. Second, 
the petrographic and geochemical data we present have been 
collected primarily to contextualize spectral data: placing our 
samples within a detailed petrogenetic framework for each 
magmatic system is beyond the scope of this study.

Sample Sources
Carbonatites and REE ores from the following locations were 
sourced from the Natural History Museum in London: Bayan 
Obo in China, Uyaynah in the United Arab Emirates, and 
Fort Portal in Uganda. Carbonatites from the following loca-
tions were sourced from collections at Camborne School of 
Mines, University of Exeter: Oka and St. Honoré in Canada, 
Kangankunde, Tundulu, and Songwe in Malawi, Fen in Nor-
way, Jacupiranga in Brazil, Kaiserstuhl in Germany, Mount 
Weld in Australia, and Phalaborwa in South Africa. Carbon-
atites from Tororo and Sukulu in Uganda, Chilwa Island and 

Kangankunde in Malawi, Mountain Pass in the United States, 
Panda Hill in Tanzania, and Sokli in Finland were sourced 
from the Harker Collection at the University of Cambridge. 
Carbonatites and alkaline rocks from Qeqertaasaq, Tikiusaaq, 
and Ilímaussaq in Greenland were obtained from collections 
at the University of St Andrews. Alkaline igneous rocks from 
Motzfeldt in Greenland were supplied by SRK Consulting 
(UK) Ltd. The geographic distribution of these samples is 
summarized in Figure 2.

Analytical Methods
VNIR-SWIR reflectance spectra were collected from a total 
of 42 hand specimens during the course of this study. On the 
basis of sample availability and VNIR-SWIR REE absorption 
strengths, different combinations of analyses were carried out 
on different samples (Tables 1–5 document which analyses were 
performed on each sample). Thermal infrared (thermal IR; λ = 
8–15 μm) reflectance spectra were also collected for a subset of 
20 samples; absorptions at thermal IR wavelengths can be used 
to characterize and map the presence of different rock-forming 
mineral groups such as silicates, carbonates, and phosphates 
and can thus play a role in delimiting carbonatite complexes 
(Christensen et al., 2000; Ninomiya et al., 2005; Mars and 
Rowan, 2011). Whole-rock compositions of 13 samples were 
collated from published datasets (Woolley et al., 1991; Eby et 
al., 2009) collated from previously collected but unpublished 
datasets or supplied by industrial collaborators (SRK Con-
sulting (UK) Ltd.). New whole-rock data were acquired for a 
additional 18 samples that span much of the petrologic vari-
ability present within our sample suite. Mineral assemblages 
were determined using optical and electron microscopy, except 
where supplied by collaborators or available in the literature.

Petrography and microscopy

Thin sections were investigated using a petrographic micro-
scope and an FEI Quanta 650F QEMSCAN in the Depart-
ment of Earth Sciences at the University of Cambridge. 
Backscattered electron (BSE) images were collected on the 
QEMSCAN, using an accelerating voltage of 20 kV and a 
working distance of 13 mm. Optical phase identification was 
assisted by using the Bruker XFlash electron dispersive X-ray 
(EDX) spectroscopy system integrated into the QEMSCAN, 
with counting times of 15 to 30 s on both spectrometers. Par-
ticular care was taken during sample preparation to ensure 
that chips taken for thin section production were representa-
tive of the surfaces analyzed spectroscopically.

X-ray fluorescence spectroscopy

A total of 18 whole-rock samples were analyzed by X-ray fluo-
rescence spectrometry (XRF) for major and trace elements. 
Samples were cut into 10- to 15-cm3 blocks, washed in dis-
tilled water, and dried prior to crushing in a steel jaw crusher 
and powdering in an agate ball mill in the Department of 
Earth Sciences at the University of Cambridge. Fused glass 
disks and pressed powder pellets were prepared for major and 
trace element analyses on a PANalytical Axios-Advanced XRF 
spectrometer in the Department of Geology at the University 
of Leicester.

Fused glass disks were prepared at the University of Leices-
ter using sample powders that had been dried overnight in 
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order to remove adsorbed water. Loss on ignition (LOI) val-
ues were calculated by igniting ~3 g of each sample in ceramic 
crucibles at 950°C, apart from the kakortokite sample from 
Ilímaussaq that was ignited in a disposable LECO crucible 
at 750°C because of its low solidus temperature. Fusion 
disks of carbonate-rich samples with high LOI values (LOI 
= 10–40 wt %) were then prepared from 0.6 g of nonignited 
powder and 3 g of lithium tetraborate flux that were melted in 
a Pt-Au crucible over a Spartan burner and cast into a Pt-Au 
mold. Carbonate-poor samples with low LOI values (LOI 
<10 wt %) were prepared from 0.6 g of ignited powder and 
3 g of lithium metaborate flux.

Powder pellets were prepared at the University of Cam-
bridge by mixing 10 g of each sample powder with approxi-
mately 20 drops of binding agent (2% polyvinyl alcohol 
solution) in a clean glass beaker. This mixture was then placed 
in a die and subjected to a pressure of 15 t/in2 to form smooth, 
well-compacted pellets for analysis.

VNIR-SWIR reflectance spectroscopy

VNIR-SWIR (λ = 400–2,500 nm) reflectance spectra were 
collected using an Analytical Spectral Device (ASD)’s Field-
Spec Pro FR spectroradiometer at the Natural Environ-
ment Research Council Field Spectroscopy Facility at the 
University of Edinburgh. The ASD spectroradiometer has 
a spectral range of 350 to 2,500 nm, although data from the 
shortest wavelengths (350–400 nm) were found to be noisy 
over the integration times used (25 cycles of 17 ms per mea-
surement). Spectra were collected at sampling intervals of 
1.4 nm at 350 to 1,000 nm and 2 nm at 1,000 to 2,500 nm 
with the following full width at half maximum (FWHM) 

spectral resolutions: 5.6 nm at ~435 nm, 3.5 nm at ~700 nm, 
and 4.9 nm at ~910 nm at VNIR wavelengths (determined by 
measurement of an Hr-Ar lamp at the Natural Environment 
Research Council Field Spectroscopy Facility) and ~11 nm 
at SWIR wavelengths (determined by the U.S. Geological  
Survey Spectroscopy Lab using the same class of ASD; http://
speclab.cr.usgs.gov/spectral.lib06/ds231/index.html). Absolute 
reflectance values were calculated by calibrating each batch 
of ~20 repeat measurements against a Spectralon white refer-
ence panel that was also measured at the end of each batch 
to monitor for instrumental drift. Individual measurements 
sample an ellipse approximately 10 × 5 mm in size.

In order to maximize the quality of VIS-SWIR spectra, 
~50- × 50-mm flat surfaces were cut into the samples and 
polished coarsely to ensure good optical coupling with the 
ASD contact probe. The effect of compositional heterogene-
ity on sample spectra was mitigated by averaging over up to 94 
evenly spaced repeat measurements taken from across sample 
surfaces. The typical 1s precision of individual spectra esti-
mated from repeat measurements of an identical field of view 
is <0.5% relative.

Thermal IR thermal emission spectroscopy

Thermal IR (λ = 8–15 μm) reflectance spectra of 20 samples 
were calculated from thermal emission spectra measured 
using a Midac M4410-S Fourier transform infrared field 
spectrometer equipped with a ZnSe beam-splitter and Stir-
ling pump-cooled MCT detector at the Natural Environment 
Research Council Field Spectroscopy Facility, using Kirch-
hoff’s law (Nicodemus, 1965): e = 1 – r, where r = reflectance 
and e = emissivity. Although the full spectral range of the 
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217 of 266



 IMAGING CARBONATITE-HOSTED REE DEPOSITS USING REMOTE SENSING 645

spectrometer is 1.5 to 15.4 μm (7,800–650 cm–1), reflectance 
was only calculated at thermal IR wavelengths where analyti-
cal noise was sufficiently low to resolve emissivity values (8–15 
μm). Spectra were collected with a spectral resolution of 0.5 
cm–1 and at a constant working distance of 75 mm. This work-
ing distance results in a field of view of ~40 × 40 mm, which 
is approximately equivalent to sample area integrated over 
multiple ASD measurements.

Sample radiance was determined using a two-temperature 
black body calibration method where black body tempera-
tures of 45° and 80°C were selected to bracket sample tem-
peratures of 50° to 70°C (e.g., Hook and Kahle, 1996; Korb 
et al., 1996). In order to overcome the substantial errors in 
thermal emission spectra introduced from uncertainties in 
measuring the temperature of  samples, calculations were 
performed using temperatures determined from an algorithm 
that assumes a maximum emissivity of 0.98 within the 8- to 
13-μm window (Kahle and Alley, 1992). Emissivity was subse-
quently calculated from radiance by subtracting downwelling 
radiance (DWR) measurements collected using an Infra-
Gold® plate (e <0.06). Thermal IR spectra presented in this 
contribution are thus subject to a number of assumptions and 
should only be considered as guideline values. The typical 1s 
precision of thermal emission spectra within 8 to 15 μm esti-
mated from repeat measurements is 2% relative.

Geologic Contexts and Mineral Assemblages

Bayan Obo (China), Mountain Pass (United States),  
and Mount Weld (Australia)

The Bayan Obo Fe-REE-Nb deposit in China, which cur-
rently dominates global REE supply (Wall, 2014), experienced 
a convoluted and potentially unique petrogenetic history that 
has been reviewed comprehensively by Smith et al. (2014). 
Major REE minerals include bastnäsite-(Ce), monazite-(Ce), 
parisite-(Ce), and huanghoite-(Ce) (Fig. 3A). Apatite is also 
present but contains significantly lower concentrations of 
REEs than the REE minerals (Campbell and Henderson, 
1997). The samples used in our study were described in detail 
by Smith et al. (2000), and span four paragenetic groups: Dis-
seminated Monazite stage, Banded Ore, Fluorite stage, and 
Barite stage (Table 1).

Prior to the onset of mining at Bayan Obo in China, the 
Sulphide Queen carbonatite at Mountain Pass in the United 
States was the world’s largest light (L)REE source (Castor, 
2008). Active mining restarted in 2010. Mountain Pass is par-
ticularly noteworthy for the great abundance of bastnäsite-
(Ce) (Table 1; Fig. 3B; Olson et al., 1954), which is thought, 
almost uniquely, to have crystallized directly from a carbon-
atite melt (Mariano, 1989).

Mount Weld in Western Australia started processing ore in 
2011 and is one of the main LREE mines outside of China. 
Lottermoser (1990) provided a detailed petrologic description 
of this highly weathered complex. The primary REE-bearing 
minerals present in the ankeritic carbonatite investigated in this 
study are apatite, monazite-(Ce) and synchysite-(Ce) (Table 1).

East and South Africa

Kangankunde, Tundulu, Songwe, and Chilwa Island are 
located within the Chilwa alkaline province of Malawi (Garson, 
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1965). While igneous rocks from these complexes are highly 
variable, Fe-rich compositions dominated by ankerite and 
magnetite are the most common (Table 2). Wall and Mariano 
(1996) provided a detailed discussion of REE mineralization 
in Kangankunde, where REE mineralogy is dominated by 
monazite-(Ce) and bastnäsite-(Ce) (Fig. 3C). The REE fluor-
carbonate synchysite-(Ce) is present in samples from Tundulu 
and Songwe, with florencite and apatite also hosting minor 
REE components (Broom-Fendley et al., 2016). Apatite and 
pyrochlore are the major REE-bearing phases at Chilwa 
Island, though bastnäsite and florencite can also be present 
(Simonetti and Bell, 1994).

Tororo and Sukulu in Uganda lie within the same domi-
nantly calciocarbonatitic igneous complex (Williams, 1952; 

McCormick and Le Bas, 1996). Apatite is the major REE 
host in these centers (Table 2) and has been the subject of 
fluid inclusion studies interrogating the origins of carbonate-
rich liquids (Rankin, 1977; Ting et al., 1994). The REE-poor 
Fort Portal extrusive carbonatite, also located in Uganda, is 
described in detail by Eby et al. (2009).

Although the Panda Hill complex of Tanzania is a largely 
calciocarbonatitic in nature, magnesiocarbonatite and ferro-
carbonatite are also present (Basu and Mayila, 1986). REEs 
are primarily hosted in apatite and pyrochlore (Table 2), with 
the latter being sufficiently abundant to represent a potential 
Nb resource (Mitchell, 2015).

The Proterozoic Phalaborwa (Palabora) complex of South 
Africa is unusually Cu rich (Eriksson, 1989), with apatite 

100 μm 400 μm
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St
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Fig. 3.  Backscattered electron (BSE) and optical photomicrographs of key REE-rich samples. A. BSE image of the Banded 
Ore from Bayan Obo, China (CR-02). B. BSE image of a sample from Mountain Pass, United States (CR-36). C. BSE image 
of a sample from Kangankunde, Malawi (CR-16). D. Photomicrograph with plane polars of kakortokite from Ilímaussaq, 
Greenland (CR-46). E. BSE image of a sample from St. Honoré, Canada (CR-15). F. Photomicrograph with crossed polars of 
Fen, Norway (CR-17). Mineral labels are as follows: Ab = albite, Aeg = aegirine, Alk Amph = alkali amphibole, Ap = apatite, 
Bast = bastnäsite, Bt = barite, Carb = calcite-dolomite-ankerite mix, Carb* = calcite-dolomite-ankerite-Mn carbonate, Cal = 
calcite, Eud = eudialyte, Fe Ox = Fe oxides, Fl = fluorite, Mz = monazite, Phl = phlogopite, Pyr = pyrochlore, Qz = quartz, 
and St = strontianite.
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crystals from the central transgressive carbonatite containing 
appreciable quantities of REEs (Ce ~3,000 ppm; Dawson and 
Hinton, 2003).

Greenland and Canada

The Jurassic Tikiusaaq and Qeqertaasaq carbonatites of west 
Greenland are likely to be associated with the incipient rifting 
of the Labrador sea (Tappe et al., 2007). While exploration of 
these complexes is ongoing, Tappe et al. (2009) discussed the 
petrology of Tikiusaaq in relationship to possible kimberlite-
carbonatite associations. Ancylite-(Ce) is the dominant REE 
phase in these carbonatites alongside parisite-(Ce), though 
small quantities of the HREE mineral churchite-(Y) have 
been reported from Tikiusaaq (Table 3).

Both the Motzfeldt and Ilímaussaq alkaline igneous intru-
sions are located within the Proterozoic (1300–1140 Ma) 
Gardar province of southwest Greenland. Jones and Larsen 
(1985) provided a geochemical framework for the Motzfeldt 
intrusion as well as documenting the occurrence of REE-rich 
phases such as apatite and eudialyte. McCreath et al. (2013) 
discussed the chemistry of REE-bearing pyrochlore miner-
als from within the Peralkaline Microsyenite Suite of the 
Motzfeldt Sø formation that have been analyzed in this study 
(Table 3). Given the petrologic heterogeneity of the domi-
nantly peralkaline Ilímaussaq intrusion (Ferguson, 1970; Bai-
ley et al., 2001), we have only investigated the properties of 
a eudialyte-rich kakortokite (albite + eudialyte + amphibole; 
Fig. 3D) that may represent a future REE resource (Fergu-
son, 1970; Wall, 2014).

Oka and St. Honoré are located within the Ontario carbon-
atite province of Ontario and western Quebec (Erdosh, 1979). 
Apatite and pyrochlore represent the main REE-bearing 
phases in these complexes (Table 3; Fig. 3E). St. Honoré is 
the largest current source of Nb outside of Brazil (Mitchell, 
2015).

Scandinavia and Germany

The Sokli complex of Finland lies at the western limit of 
the Kola alkaline province and has been described in detail 
by Vartiainen and Paarma (1979). Apatite is present at high 
modal proportions within carbonatite and phoscorite portions 
of the complex and is the major REE hosting mineral (Table 
4). REEs are particularly abundant in weathered apatite-rich 
material at the surface.

Apatite is also the main host of REEs in samples from Fen 
in Norway and Kaiserstuhl in Germany (Andersen, 1988; 
Hornig-Kjarsgaard, 1998; Table 4; Fig. 3F), though accumula-
tions of monazite within the Fen complex have been mapped 
recently by Boesche et al. (2015).

Other locations

The extrusive carbonatite samples from Uyaynah in the 
United Arab Emirates were collected from a tectonic window 
through the Semail Ophiolite Complex and are described in 
detail by Woolley et al. (1991). REEs are primarily hosted in 
allanite and apatite at Uyaynah (Table 5).

Huang et al. (1995) provided a geochemical overview of the 
Jacupiranga carbonatite of Brazil that is especially rich in apa-
tite (Table 5), with further whole-rock analyses provided by 
Hornig-Kjarsgaard (1998).
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Whole-Rock Geochemistry

Major element compositions

With the exception of lavas from Uyaynah and Fort Portal 
(CR-05–CR-10), all samples in this study are intrusive rocks. 
Most samples are carbonate rich and have compositions that 
can be summarized using the ternary classification diagram 
of Woolley and Kempe (1989; Fig. 4). Full major element 
compositions are provided in the supplementary material. 
While most carbonatites form a single array from calciocar-
bonatite to ferrocarbonatite compositions, three compositions 
lie toward the center of the diagram: CR-15 from St. Honoré 
lies on the tie line between magnesio- and ferrocarbonatites 
but is strongly affected by magnetite accumulation; CR-16 
from Kangankunde lies within the ferrocarbonatite field; and 
CR-33 from Chilwa Island lies within the magnesiocarbon-
atite field. Despite its high REE content, CR-36 from Moun-
tain Pass is one of the purest calciocarbonatites investigated.

Samples CR-01 to CR-04 from Bayan Obo cannot be readily 
classified based on their major element chemistry. Neverthe-
less, the high MgO content of CR-01 from the Disseminated 
Monazite is consistent with its original petrogenesis as a dolo-
mitic marble (Smith et al., 2015). All samples from Bayan 
Obo also have appreciable Fe2O3 contents reflecting the high 
degree of Fe mineralization across the complex.

Although no major element data are available for sam-
ples CR-11 to CR-13 from the silicate Motzfeldt intrusion, 
Bradshaw (1988) reported peralkaline syenite compositions 
(atomic (Na + K)/Al) >1) from the same rock unit, the Peral-
kaline Microsyenite Formation. Sample CR-46, a kakortokite 
from the Ilímaussaq intrusion, is rich in alkalis and can be 
classified as a nepheline syenite (Le Bas et al., 1986). A low 
total of 90.1 wt % reflects the sample’s high Zr, Nb, REE, F, 
and Cl contents. When Zr, Nb, and REEs are recalculated as 
oxides, a total of 103.0 wt % is obtained.

REE- and Nb-poor samples (such as CR-33 and CR-42 from 
Chilwa Island and Sokli, respectively) have major element Ta

bl
e 

3.
  S

am
pl

es
 fr

om
 G

re
en

la
nd

 a
nd

 C
an

ad
a

 
 

C
ol

le
ct

io
n

Sa
m

pl
e 

no
. 

C
ol

le
ct

io
n1

 
sa

m
pl

e 
no

. 
B

ri
ef

 d
es

cr
ip

tio
n 

L
oc

al
ity

 
C

ou
nt

ry
 

M
in

er
al

og
y2

 
R

E
E

 m
in

er
al

og
y2

 
A

SD
 

F
T

IR
 

W
ho

le
-r

oc
k

C
R

-1
1 

SR
K

 
10

51
7 

M
ic

ro
sy

en
tit

e 
M

ot
zf

el
dt

 
G

re
en

la
nd

 
K

sp
, A

rf
v,

 A
eg

, F
l 

Py
r 

Y 
Y 

Y 
(s

up
pl

ie
d)

C
R

-1
2 

SR
K

 
10

51
8 

M
ic

ro
sy

en
tit

e 
M

ot
zf

el
dt

 
G

re
en

la
nd

 
K

sp
, A

rf
v,

 A
eg

, F
l 

Py
r 

Y 
 

Y 
(s

up
pl

ie
d)

C
R

-1
3 

SR
K

 
10

51
9 

M
ic

ro
sy

en
tit

e 
M

ot
zf

el
dt

 
G

re
en

la
nd

 
K

sp
, A

rf
v,

 A
eg

, F
l 

Py
r 

Y 
Y 

Y 
(s

up
pl

ie
d)

C
R

-1
4 

C
SM

 
O

K
A

-1
 

B
io

tit
e-

ri
ch

 c
al

ci
te

 c
ar

bo
na

tit
e 

O
ka

 
C

an
ad

a 
C

al
, M

ag
, M

on
t 

A
p,

 P
yr

 
Y 

Y 
Y

C
R

-1
5 

C
SM

 
St

H
-1

 
B

io
tit

e-
ri

ch
 c

ar
bo

na
tit

e 
St

 H
on

or
é 

C
an

ad
a 

C
al

, B
i, 

M
ag

 
A

p,
 P

yr
 

Y 
Y 

Y
C

R
-4

6 
St

. A
nd

re
w

s 
 

K
ak

or
to

ki
te

 (n
ep

he
lin

e 
sy

en
ite

) 
Il

ím
au

ss
aq

 
G

re
en

la
nd

 
A

b,
 A

rf
v 

E
ud

 
Y 

 
Y

C
R

-4
7 

St
. A

nd
re

w
s 

 
C

ar
bo

na
tit

e 
Ti

ki
us

aa
q 

G
re

en
la

nd
 

C
al

 
A

nc
y,

 C
hu

 
Y

C
R

-4
8 

St
. A

nd
re

w
s 

 
C

ar
bo

na
tit

e 
Q

eq
er

ta
as

aq
  

G
re

en
la

nd
 

C
al

 
A

nc
y,

 P
ar

 
Y

C
R

-4
9 

St
. A

nd
re

w
s 

 
C

ar
bo

na
tit

e 
Q

eq
er

ta
as

aq
  

G
re

en
la

nd
 

C
al

 
A

nc
y,

 P
ar

 
Y

1 
C

ol
le

ct
io

n 
ab

br
ev

ia
tio

ns
: S

R
K

 =
 S

R
K

 C
on

su
lti

ng
 (U

K
) L

td
., 

C
SM

 =
 C

am
bo

rn
e 

Sc
ho

ol
 o

f M
in

es
2 
M

in
er

al
og

ic
al

 a
bb

re
vi

at
io

ns
: A

b 
= 

al
bi

te
, A

eg
 =

 a
eg

er
in

e,
 A

nc
y 

= 
an

cy
lit

e,
 A

p 
= 

ap
at

ite
, A

rf
v 

= 
ar

fv
ed

so
ni

te
, B

i =
 b

io
tit

e,
 C

al
 =

 c
al

ci
te

, C
hu

 =
 c

hu
rc

hi
te

, E
ud

 =
 e

ud
ia

ly
te

, F
l =

 fl
uo

ri
te

, M
ag

 =
 m

ag
ne

t-
ite

, M
on

t =
 m

on
tic

el
lit

e,
 P

ar
 =

 p
ar

as
ite

, P
yr

 =
 p

yr
oc

hl
or

e

MgO

CaO

FeO + Fe2O3 + MnO

CR-15 St. Honoré CR-16 Kangankunde
CR-17 Fen CR-36 Mountain Pass
CR-42 & CR-43 Sokli Other carbonatites
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(including LOI) totals that approach 100%. However, a num-
ber of samples initially appear to have unacceptably low totals 
(~50 wt % including LOI). Although analytical accuracy and 
precision are affected by the extreme and variable composi-
tions of these samples, such low totals result primarily from 
the high concentration of elements that typically occur in 
trace quantities in most other igneous rocks. If Ce, La, Nb, 
Nd, Sr, Y, and Zr are recalculated as oxides, then most sam-
ples have totals that lie between 97 and 103 wt %. Remaining 
exceptions include F-rich samples, such as fluorite-bearing 
CR-03 from Bayan Obo, and Ba-rich samples, such as CR-02 
from Bayan Obo and CR-36 from Mountain Pass. However, 
recalculating Ba as BaO results in the overestimation of totals 
(supplementary material), indicating that Ba was poorly quan-
tified in these samples.

REE contents

Sample REE systematics are summarized in Figure 5 and 
Nd contents are provided in Table 6. Full trace element 
compositions are provided in the supplementary material. 
Trace element concentrations in many samples lie above the 
range of XRF calibration possible with the standards avail-
able (~2,000 ppm for most elements and ~2,800 ppm in the 
case of Nd), and the resulting analyses must be treated as 

semiquantitative. Trace element quantification by XRF is fur-
ther hampered by complex X-ray interferences resulting from 
extreme and variable matrix effects. While achieving full quan-
tification is beyond the resources of this exploratory study, rel-
ative errors in whole-rock trace element contents are unlikely 
to exceed 20% except in the case of Ba. Encouragingly, REE 
contents of samples CR-02 and CR-36 are of the same order 
as values reported from Bayan Obo and Mountain Pass ores 
by Smith et al. (2014) and Castor (2008), respectively.

Measured REE abundances vary by more than three 
orders of magnitude, with Nd contents varying from ~140 
to ~43,300 ppm (Fig. 5). Most samples show enrichments in 
LREEs, with chondrite-normalized concentrations ordered 
as follows La > Ce > Nd > Y. The highest Nd concentrations 
are found in CR-02 from Bayan Obo (~38,600 ppm), CR-16 
from Kangankunde (~43,300 ppm) and CR-36 from Moun-
tain Pass (~30,800 ppm). Thin sections of these samples show 
evidence of extensive REE mineralization: CR-02 contains 
abundant fibrous bastnäsite-(Ce) as well as monazite-(Ce) 
(Fig. 3A); CR-16 contains abundant monazite-(Ce) (Fig. 
3C); and CR-36 contains euhedral bastnäsite-(Ce) (Fig. 3B). 
Apatite- and pyrochlore-bearing samples have lower Nd con-
tents (<1,000 ppm), with the following exceptions: CR-13 
from Motzfeldt, CR-21 from Tundulu, and CR-22–24 from 

Table 4.  Samples from Scandinavia and Germany

  Collection     REE
Sample no. Collection1 sample no. Brief description Locality Country Mineralogy3 mineralogy3 ASD FTIR Whole-rock

CR-17 CSM Fen202/76 Calcite carbonatite Fen Norway Cal, Bi Ap Y Y Y
CR-19 CSM Intrusive Calcite carbonatite Kaiserstuhl Germany Cal, Mag, Ol Ap Y  Y
CR-42 Harker 1176762 Phyrochlore sovite Sokli Finland Cal, Mag Ap Y Y Y
CR-43 Harker 1176772 Coarse sovite Sokli Finland Cal, Mag Ap Y  Y

1 Collection abbreviations: CSM = Camborne School of Mines, Harker = Harker Collection at the University of Cambridge
2 Harker Collection no.
3 Mineralogical abbreviations: Ap = apatite, Bi = biotite, Cal = calcite, Fl = fluorite, Mag = magnetite. Ol = olivine
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CR-46 Ilímausaaq Other carbonatites

Fig. 5.  Plots summarizing sample REE systematics. A. La/Nd vs. Nd. B. La/Y vs. Nd.
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Songwe. Eudialyte-bearing CR-46 from Ilímaussaq contains 
~3,200 ppm Nd (Fig. 3F).

Reflectance Spectra

VNIR-SWIR reflectance spectra

The diverse nature of reflectance spectra collected in this 
study reflects the substantial geochemical, mineralogical, and 
textural variability within our sample suite. Nevertheless, it 
is possible to divide the sample suite into six groups based 
on the minerals that dominate each spectrum. All measured 
spectra are provided in the supplementary material.

Magnetite-dominated spectra: Samples from the Bayan 
Obo Fluorite stage (CR-03), Uyaynah (CR-05–CR-09), and 
Fort Portal (CR-10) have low absolute reflectance (≤15%) 
at VNIR-SWIR wavelengths (Fig. 6) that reflect abundant 
magnetite in the case of the Bayan Obo sample and dissemi-
nated, fine-grained magnetite in the cases of the Uyaynah 
and Fort Portal samples (Smith et al., 1985; Clark, 1995). A 
number of samples show weak absorptions at ~2,300 nm that 
indicate the presence of CO3 groups. Reflectance maxima at 
500 to 700 nm in samples CR-08 and CR-10 from Uyaynah 
and Fort Portal are indicative of Fe-rich carbonate (Gaffey, 
1985; Woolley et al., 1991). Weak absorption features at ~744 
and ~802 nm in spectra from the Bayan Obo Fluorite stage 
(CR-03) are consistent with the presence of bastnäsite-(Ce) 
and parisite-(Ce)-hosted Nd, but are significantly damped by 
magnetite (Figs. 1, A1A). Although CR-15 from St. Honoré 
has a CO3 absorption feature centered at ~2,300 nm corre-
sponding to the presence of calcite (Gaffey, 1985), other spec-
tral features are difficult to resolve because the low overall 
reflectance of this pyrochlore-rich sample (Fig. 3E).

Fe-poor carbonate-dominated spectra: Samples from Oka 
(CR-14), Jacupiranga (CR-18), Mountain Pass (CR-36), Sokli 
(CR-42, CR-43), and Qeqertaasaq (CR-48, CR-49) exhibit 
largely flat spectra of generally high absolute reflectance 
(up to ~55%) onto which narrow absorption features are 
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superimposed (Fig. 7). Deep absorption features at ~2,300 
nm without a broad absorption feature centered on ~1,200 
nm are characteristic of Fe-poor calcite and dolomite (Figs. 
1, A1B, A2A; Gaffey, 1985). Broad absorption features at 
~1,900 nm related to H2O may represent either hydrated 
minerals (e.g., ancylite-(Ce)), fluid inclusions, or adsorbed 
water (Gaffey, 1985; Rowan et al., 1986). However, assign-
ing H2O (and OH−) features to specific minerals is of lim-
ited use in a remote sensing context: this information is lost 
in air- and spaceborne datasets because of atmospheric H2O 
(see later). Sharp drops in reflectance below 500 nm in most 
samples probably reflect the presence of Mn within calcite 
(Gaffey, 1985). The steep drop in reflectance below 600 nm 
in the Mountain Pass sample (CR-36) is consistent with the 
presence of barite (Figs. A1B, A2B; Clark et al., 2007; Castor, 
2008).

Narrow absorption features at ~583, ~744, ~802, and 
~871  nm in samples from Jacupiranga (CR-18), Mountain 
Pass (CR-36), and Qeqertaasaq (CR-48, CR-49) can be attrib-
uted to Nd hosted primarily within apatite, bastnäsite-(Ce) 
and ancylite-(Ce), respectively (Rowan et al., 1986). Minor 
absorption features at ~583, ~744, and ~802 nm in samples 
from Oka (CR-14) and Sokli (CR-42, CR-43) correspond to 
the presence of Nd at lower concentrations; the high overall 
reflectance of these samples makes these small spectral fea-
tures resolvable. Absorption features associated with other 
REEs are difficult to assign unambiguously; while complex 
absorption features at ~1,550 and ~1,970 nm are likely to 

have Pr and Sm components, they also encompass OH−, H2O, 
and Nd features (Turner et al., 2014). Furthermore, contribu-
tions from HREEs are difficult to assess because currently 
published spectral libraries include only LREE-rich minerals 
(e.g., Clark et al., 2007; Turner et al., 2014).

Fe-rich carbonate-dominated spectra: Samples from the 
Bayan Obo Disseminated Monazite stage (CR-01), Fen (CR-
17), Mount Weld (CR-25), Phalaborwa (CR-26), Tororo (CR-
29), Sukulu (CR-31), and Panda Hill (CR-37) have distinctive 
“M”-shaped reflectance spectra (Fig. 8). Broad absorption 
features centered at ~1,200 nm are consistent with Fe-bear-
ing calcite, dolomite, and ankerite (Figs. 1, A1C; Gaffey, 1985; 
Mars and Rowan, 2011). CO3 absorption features centered 
at ~2,300 nm are prominent in all spectra. Additional CO3 
absorptions at ~1,880, ~2,000, and ~2,160 nm are visible in 
most samples, apart from those from Bayan Obo. H2O absorp-
tion features are also present, and OH− features at ~1,400 nm 
are clear in samples from Tororo (CR-29) and Panda Hill 
(CR-37).

The strongest Nd absorption features within this group 
occur in apatite-bearing samples from Fen (CR-17) and Phal-
aborwa (CR-26), and monazite-(Ce)-bearing samples from 
the Bayan Obo Disseminated Monazite stage (CR-01). Apa-
tite- and pyrochlore-bearing samples from Tororo (CR-29), 
Sukulu (CR-31), and Panda Hill (CR-37) show only weak Nd 
absorptions despite having a higher overall reflectance than 
CR-01, which is consistent with the low REE content of min-
erals in these samples (Fig. A1C). Furthermore, no features 
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associated with Pr or Sm can be identified in these spectra. 
Sample CR-25 has a low overall reflectance, which impedes 
the identification REE absorptions.

Fe oxide-carbonate mixed spectra: Samples from Kan-
gankunde (CR-16, CR-35), Kaiserstuhl (CR-19), Songwe 
(CR-22–CR-24), Chilwa Island (CR-33), Panda Hill (CR-38), 
and Tikiusaaq (CR-47) have sloping spectra with reflectance 
values that generally increase from 400 to 1,800 nm (Fig. 
9). Absorptions at ~2,300 nm reflect the presence of CO3 in 
all of these samples, though magnetite is also an important 
constituent of many of these samples (Figs. 1, A1D). Broad 
absorption features centered at 950 to 1,000 nm present to 
varying degrees within this group of spectra are characteristic 
of goethite that probably formed by the alteration of primary 
magnetite or by exsolution from Fe-rich carbonates (Fig. 
A2C; Clark et al., 2007).

Strong Nd, Pr, and Sm absorption features in samples 
from Kangankunde (CR-16, CR-35) can be attributed to the 
high modal abundance of moderately coarse monazite-(Ce) 
(~500  μm) in these samples (Figs. 1, 3C), though smaller 
quantities of bastnäsite-(Ce) and other REE-rich phases such 
strontianite may also contribute (Fig. A1D; Wall and Mari-
ano, 1996). Prominent Nd absorption features in CR-47 from 
Tikiusaaq can be accounted for by the presence of significant 
quantities of ancylite-(Ce). Unfortunately, no published spec-
tra of ancylite-(Ce) that would enable us to confirm this asso-
ciation are known to the authors.

REE-dominated spectra: Samples from the Bayan Obo 
Banded Ore (CR-02) and Barite stage (CR-04) have largely 
flat reflectance spectra, onto which numerous complex 
absorption features are superimposed (Fig. 10). These sam-
ples contain abundant colorless aegirine with largely feature-
less reflectance spectra at 500 to 800 nm (Ribeiro Da Costa 
et al., 2013). Most prominent absorptions in these spectra 
from Bayan Obo can be attributed to Pr, Sm, and Nd (Fig. 
1). In addition to bastnäsite-(Ce), monazite-(Ce) and parisite-
(Ce) occur in the Banded Ore (Fig. A1E). Huanghoite-(Ce) is 
present also alongside other REE fluorcarbonates in the Bar-
ite stage (Smith et al., 2000). The depth of REE absorptions 
are possibly enhanced by the unusually coarse grain size of 
REE minerals in these samples (~1 mm; Smith et al., 2014).

Alkaline igneous rock spectra: Samples from Motzfeldt 
(CR-11–CR-13, CR-45) and Ilímaussaq (CR-46) are variably 
altered silicate rocks and contain no carbonate (Fig. 10). All 
four Motzfeldt samples have a similar spectra that are best 
attributed to the presence of hematite (Fig. A2D; Clark et al., 
2007): reflectance increases steeply between 600 and 700 nm 
before decreasing across smooth absorption features centered 
at ~860 nm. Absorption features at ~1,400 and ~1,900 nm 
in samples from Motzfeldt probably correspond to the pres-
ence of OH−-bearing alteration materials rather than primary 
hydrous minerals.

Sample CR-46 from Ilímaussaq is significantly less altered 
than samples from Motzfeldt and is composed of albite, 
eudialyte, and interstitial alkali amphibole. Given that albite 
has a largely featureless reflectance spectrum at VNIR-SWIR 
wavelengths, and that reflectance generally increases as a 
function of wavelength in amphiboles (Clark et al., 2007), we 
attribute most spectral features in CR-46 to eudialyte (Fig. 
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A1F). Eudialyte thus appears to be characterized by paired 
reflectance maxima at ~480 and ~680 nm in line with previ-
ous measurements of eudialyte-bearing samples from the Red 
Wine Intrusive Suite (Kerr et al., 2011). Small absorption fea-
tures centered at ~744 and ~802 nm reflect the presence of 
Nd within the eudialyte.

Thermal IR reflectance spectra

A selection of representative thermal IR reflectance spectra 
are presented in Figure 11. Although absorption features 
associated with REEs are primarily located at VNIR-SWIR 
wavelengths, thermal IR spectra contain information crucial 
for lithologic mapping (Hook et al., 1994; Ninomiya et al., 
2005). Thermal IR datasets can thus play important roles in 
identifying and delimiting carbonatite and alkaline complexes 
(Oppenheimer, 1998; Mars and Rowan, 2011). Reference 
thermal IR spectra for common rock-forming minerals are 
provided by Christensen et al. (2000) and Clark et al. (2007).

Carbonatite thermal IR spectra are readily distinguished 
from other igneous rock spectra by a prominent CO3 peak 
at ~11.3 μm (Christensen et al., 2000). Carbonate peaks are 
readily clearly visible in samples from Oka (CR-14), St. Hon-
oré (CR-15), Tororo (CR-29), Kangankunde (CR-35), and 
Sokli (CR-42; Fig. 11). The only other significant features in 
these carbonate-dominated spectra are pairs of peaks cen-
tered at ~9.0 and ~9.5 μm separated by an absorption feature 

at ~9.2 μm that are best accounted for by the presence of 
phosphates, i.e., apatite (Christensen et al., 2000). A simi-
larly positioned feature in sample CR-35 from Kangankunde 
REE-rich probably corresponds to the presence of the REE 
phosphate monazite-(Ce). Although a modest carbonate peak 
is observed in sample CR-36 from Mountain Pass, barite 
appears to have a stronger effect on the thermal IR spectrum: 
barite generates the small and large peaks centered at ~8.4 
and ~9.1 μm, respectively (Clark et al., 2007).

Samples CR-02 and CR-11 from the Bayan Obo Banded 
Ore and Motzfeldt Peralkaline Microsyenite Suite contain 
little or no carbonate material and have thermal IR spectra 
dominated by silicate minerals (Christensen et al., 2000). 
Although relationships between silicate mineralogy and 
reflectance are complex, the broad series of peaks at 8.1 to 
10.5 μm in CR-11 can be ascribed to alkali feldspar and it 
its breakdown products. The slightly narrower peak at 8.6 to 
10.6 μm in CR-02 can be attributed to aegirine, though some 
fine features may relate to the presence of apatite (~9.2 μm) 
or even Sm (~10 μm; Clark et al., 2007).

Spectral Features as Proxies for REE Mineralogy  
and Grade

Although it is possible to resolve Pr and Sm absorption features 
in some REE-rich samples, features associated with Nd are both 
more prevalent and more prominent. Given that REEs have 
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very similar physicochemical properties and partitioning behav-
iors, Nd represents an ideal pathfinder element for much of the 
REE spectrum. While identifying heavy (H)REE absorption, 
features associated with Ho, Dy, and Er could enable relative 
abundances of LREE and HREE to be assessed, no features 
associated unambiguously with HREEs such as Ho, Dy and Er 
absorptions at ~640, ~1,193, and ~650 nm were observed (e.g., 
Adams, 1965; Antonovich et al., 2007). Subsequent discussions 
thus focus on four prominent Nd absorptions centered at ~583, 
~744, ~802, and ~871 nm that do not overlap significantly with 
other absorptions (Clark, 1995; Turner et al., 2014).

In order to relate properties of Nd absorption features to 
sample mineralogies and REE grades, background features 
relating to the main rock-forming mineralogy must first be 
removed. Simple ratios between the reflectance at absorp-
tion wavelengths and the reflectance at reference wavelengths 
cannot be used because of the highly nonunique shapes of the 
background spectra. Nd absorption features in all samples were 
therefore isolated using a continuum removal approach (Clark 
and Roush, 1984), where background spectra were estimated 
by fitting a third-order polynomial to spectra either side of the 
absorption features. The following continuum end points were 
used to isolate the ~583, ~744, ~802, and ~871  nm absorp-
tions from the combined effects of other spectral components 
respectively: 550 and 610, 710 and 770, 760 and 850, and 850 
and 910 nm. The following properties were then estimated 
by fitting Gaussian curves to each background-subtracted 
Nd absorption feature: the central position of the absorption 
feature, i.e., peak position; full-width half at maximum; and 
absorption depth, i.e., peak height. Although Gaussian curves 
are unlikely to represent the true form of absorption features, 
they render fitting procedures internally consistent and repro-
ducible (Clark and Roush, 1984). The area of each absorption 
feature was also calculated by subtracting areas under mea-
sured spectra from areas under background spectra. Finally, 
in order compare absorption feature areas between different 
samples, all Nd absorption areas were normalized to the mean 
reflectance within each wavelength interval.

The effect of REE mineralogy on spectral properties

Nd absorption features are located at the same wavelengths in 
samples with different REE mineralogies (Table 6). The mean 
central positions of absorption features within the four wave-
length intervals investigated are as follows: 550 to 610 nm (n = 
23), 583.0 ± 1.2 (1s) nm; 710 to 780 nm (n = 22), 744.4 ± 1.3 
(1s) nm; 770 to 850 nm (n = 32), 801.8 ± 1.4 (1s) nm; and 850 
to 900 nm (n = 17), 870.9± 2.7 (1s) nm. Deviation of absorp-
tion positions from mean absorption positions within each 
wavelength interval generally increase with decreased absorp-
tion depth, indicating that variability in calculated absorption 
locations is primarily related to analytical and processing 
errors and not to sample mineralogy. Our findings are thus 
consistent with previous studies that attribute Nd absorption 
features to mineral-independent electronic processes (Clark, 
1995; Turner et al., 2014). However, subtle changes in the 
structure of Nd absorption features between different sample 
mineralogies may nevertheless reflect changes in bonding 
environments that relate to REE mineralogy.

Ancylite-bearing samples appear to show prominent shoul-
ders on either side of absorption maxima at 583 to 584 nm, 

which are also located at higher wavelengths than in bast-
näsite- and monazite-dominated samples (581–582 nm; 
Table 6). Absorptions in apatite-dominated sample CR-18 are 
shifted to slightly higher wavelengths with respect to the other 
samples considered in this section; this trend does not appear 
to be reproduced in other apatite-dominated samples. The 
dominance of a single absorption centered at 870 to 871 nm 
rather than a doublet with absorptions centered on ~864 and 
~871 to 874 nm may distinguish apatite from other key REE-
bearing minerals, though the unambiguous detection of phos-
phates (i.e., apatite and monazite) is best achieved at thermal 
IR wavelengths (e.g., CR-15, Fig. 11). While representing 
potentially useful discriminators of mineralogy, fine structures 
of REE absorption features are likely to only be reproducible 
in REE-rich samples measured under laboratory conditions; 
these spectral minutiae are extremely difficult to resolve using 
remote sensing.

The effect of REE grade on spectral properties

Nd concentration correlates positively with Nd absorption 
depth across most samples (Fig. 12; Table 6). However, high 
abundances of magnetite mask Nd absorption features in some 
cases (e.g., CR-06 and CR-08). For absorptions centered at 
~583, ~744, ~802, and ~871 nm r2 values are as follows: 0.492, 
0.674, 0.721 and 0.867. Sample CR-04 (Bayan Obo, Barite 
stage) is excluded from these fits because the surface from 
which spectroscopic data were collected is not representative 
of the bulk mineralogy. However, correlations between Nd 
concentration and Nd absorption area are generally stronger 
than those with Nd absorption depth: r2 = 0.718, 0.733, 0.744, 
and 0.805 for absorptions centered at ~583, ~744, ~802, and 
~871 nm, respectively (Fig. 12; Table 6).

Although the correlation between Nd concentration and 
absorption area is strongest for the ~871-nm absorption (r2 
= 0.805), few significant absorptions were identified at this 
wavelength, and the best fit line is very strongly weighted by 
the three high Nd samples. Nd absorption areas for absorp-
tions centered at ~744 and ~802 nm are therefore the most 
robust spectral proxies for Nd content. Using absorption 
areas rather than absorption depths as a measure of sample 
Nd content has the advantage of bypassing the addition of 
further errors during Gaussian peak fitting. Relationships 
between REE grade and spectral features are neverthe-
less subject to substantial uncertainty that is reflected in the 
scatter around best fit lines (Fig. 12). Causes for this scat-
ter are difficult to isolate and may incorporate the following: 
sample heterogeneity, errors in whole-rock analyses, errors 
in spectroscopic analyses, and errors in continuum removal 
procedures. Furthermore, we do not account for grain size 
despite the strong effect it has on both the absolute reflec-
tance of materials and the depth of absorption bands (Clark, 
1995). Grain size can vary by orders of magnitude within the 
field of view of single ASD measurements (e.g., Fig. 3A) and 
the effects of grain size and composition cannot be sepa-
rated with the current dataset. Nevertheless, Nd absorption 
features are readily identifiable in the samples from Bayan 
Obo (CR-02), Kangankunde (CR-16), and Mountain Pass 
(CR-36) that have the highest Nd concentrations measured 
in this study (Nd >30,000 ppm; Table 6). These represent 
high-grade REE deposits.

228 of 266



656 NEAVE ET AL.

Detecting REEs Using Remote Sensing

Spectral convolution: REE detectability by multispectral  
and hyperspectral sensors

Laboratory spectroscopy has a high spectral resolution at 
wavelengths relevant for detecting Nd (500–900 nm). In 
order to determine whether REE absorption features could 
be detected by remote sensing, laboratory spectra were 
spectrally convolved (i.e., resampled) in order to simulate 
acquisition by a number of different multispectral and 
hyperspectral instruments. Multispectral sensors measure 
relatively few (<20), broadly spaced, discontinuous spectral 
bands (Kramer, 2002), whereas hyperspectral sensors are 
defined by their high number (>100) of narrow, contigu-
ous bands that generate continuous spectra (Goetz et al., 
1985). Four sensors were selected to encompass a range of 
well-known current and planned space- and airborne plat-
forms: ASTER, Landsat-8 Operational Land Imager (OLI), 
EnMAP, and AVIRIS.

The multispectral ASTER instrument onboard Terra, 
the flagship satellite of the Earth Observing System (EOS) 

launched in 1999 and operated by the National Aeronautics 
and Space Administration (NASA), is the most widely used sat-
ellite for geologic mapping. ASTER operates in three bands at 
VNIR wavelengths with a ground resolution of 15 m, six bands 
at SWIR wavelengths with a ground resolution of 30 m, as well 
as in five bands at thermal IR wavelengths with a ground reso-
lution of 90 m. The spectral response functions of the ASTER 
instrument at VNIR-SWIR are provided at http://asterweb.jpl.
nasa.gov/characteristics.asp. The multispectral Landsat-8 OLI 
platform, which is part of the Landsat Program that is jointly 
managed by NASA and the U.S. Geological Survey, images 
eight bands at VNIR-SWIR wavelengths, with a ground reso-
lution of 15 m. The spectral response functions for Landsat-8 
OLI are provided at http://landsat.gsfc.nasa.gov/?p=5779.

The launch of the German EnMAP hyperspectral satel-
lite is planned for 2018 (Stuffler et al., 2007). EnMAP will 
carry two sensors capable of detecting 244 bands with a spec-
tral resolution of 5 nm at VNIR wavelengths and 12 nm at 
SWIR wavelengths (Guanter et al., 2015). The ground resolu-
tion will be 30 m. Measured spectral response functions are 
not yet available for EnMAP, so synthetic spectral response 
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Fig. 12.  Plots showing correlations between whole-rock Nd content and Nd absorption areas for four prominent Nd features 
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functions were approximated from expected band centers 
and FWHM provided on the project website (www.enmap.
org/sites/default/files/pdf/Table_EnMAP_Specs.pdf). AVIRIS 
is an airborne hyperspectral instrument developed by NASA’s 
Jet Propulsion Laboratory (JPL) that has 224 contiguous spec-
tral bands with wavelengths from 400 to 2,500 nm and a spa-
tial resolution ranging from 4 to 18 m, depending on which 
aircraft it is flown. Spectral response functions for AVIRIS 
are provided at https://directory.eoportal.org/web/eoportal/
airborne-sensors/aviris. AVIRIS is taken to be representa-
tive of typical airborne hyperspectral sensors, sharing similar 
characteristics with other systems such as HyMap®, though 
we note that some systems such as CASI can achieve higher 
spatial resolutions (Black et al., 2014).

Convolved reflectance values L at a given band i using the 
following equation:

                      ∫Ls(λ)ri(λ)δλ Li = —————–,

                        ∫ri(λ)δλ

where Ls(λ) is the reflectance at band i and wavelength λ, ri(λ) 
is the spectral response functions of band i and wavelength λ, 
over the wavelength interval of the sample δλ.

Convolved spectra from sample CR-35, which shows appre-
ciable Nd absorption features, indicate that neither ASTER 
nor Landsat-8 OLI have sufficient spectral resolutions to dis-
tinguish narrow REE features, despite the location of bands 
at relevant VNIR wavelengths (Fig. 13A). In contrast with 
the observations of Rowan and Mars (2003) from Mountain 
Pass, the depression in average reflectance at 700 to 900 nm 
is insufficient to discern the presence of REEs. Furthermore, 
the background spectra of many samples in this region are 
also strongly affected by Fe absorptions at these wavelengths. 
Nevertheless, a significant advantage of ASTER for geologic 
mapping over the Landsat-8 OLI platform is the location of 
bands at >2,200 nm that enable the CO3 absorption feature 
centered at ~2,300 nm to be discerned. Data from some 
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Fig. 13.  A. Plot showing the effect of convolving (i.e., resampling) an ASD spectrum to the spectral response functions of 
a range of multispectral (ASTER and Landsat-8 OLI) and hyperspectral (EnMAP and AVIRIS) instruments. While most 
spectral information is lost in the convolved ASTER and Landsat-8 OLI spectra, much information is retained in the con-
volved EnMAP and AVIRIS spectra. B. Zoomed in region of plot (A), showing how the coarse structure of the four largest Nd 
absorption features is retained following spectral convolution. Fine features, such as the multiple absorptions within the main 
absorptions centered at ~744 nm, ~802 nm, and ~871 nm are not retained in the convolved data. C. and D. Plots showing the 
correlations between Nd absorption area in spectra convolved to the AVIRIS spectral response function and whole-rock Nd 
content for absorptions centered at (C) ~744 nm and (D) ~802 nm.
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multispectral instruments are thus capable of identifying and 
delimiting carbonatites but are unable to provide useful infor-
mation about their REE contents (Rowan and Mars, 2003; 
Mars and Rowan, 2011).

In contrast, the spectral resolutions of AVIRIS and EnMAP 
are sufficient to resolve four prominent Nd absorptions 
between 550 and 900 nm (Fig. 13A, B). Although the coarser 
spectral resolution of remote sensing instruments with respect 
to the ASD (~7 vs. 3–6 nm) results in smoothing of absorp-
tions, individual absorption features remain clear and distinct. 
However, the spectral resolution of convolved data is insuf-
ficient to fit Gaussian curves to background-subtracted Nd 
features in a consistent manner. Nevertheless, relationships 
between the area of Nd absorption features centered at both 
~744 and ~802 nm, and REE grade remain strong (Fig. 13C, 
D). EnMAP and AVIRIS thus have the necessary characteris-
tics to detect Nd at economically relevant grades in range of 
geologic samples.

REE detectability as a function of signal-to-noise ratio

While EnMAP and AVIRIS have sufficient spectral resolu-
tions to detect Nd in REE-rich samples, it is important to 
assess whether the Nd absorptions are detectable at realis-
tically attainable signal-to-noise ratios. EnMAP spectra are 
expected to reach signal-to-noise ratios of ~500:1 at 495 nm 
and ~150:1 at 2,200 nm (www.enmap.org/sites/default/files/
pdf/Table_EnMAP_Specs.pdf), though signal-to-noise ratios 
could be significantly lower during routine operations. Signal-
to-noise ratios of AVIRIS spectra have improved significantly 
since the system’s introduction in 1989, and can now reach 
in excess of 1000:1 at VNIR wavelengths and 500:1 at SWIR 
wavelengths under optimum conditions (Green et al., 1998; 
Veraverbeke et al., 2014). In order to investigate the relation-
ship between Nd detectability and spectral signal-to-noise 
ratios, varying amounts of noise were added to convolved 
spectra using the method of Bioucas-Dias and Nascimento 
(2008) in order to generate a suite of spectra with signal-to-
noise ratios spanning the range 10 to 500:1.

The effects of adding synthetic noise to convolved spectra 
are summarized in Figure 14, illustrating how the areas of Nd 
absorptions centered on ~744 and ~802 nm deviate from the 
areas calculated for convolved ASD when various amounts of 
synthetic noise are added. Data are shown for samples CR-16 
and CR-49 that are moderately and highly enriched in REEs, 
respectively. On average, differences in Nd absorption area 
between ASD and synthetic noisy spectra (Δ) increase as 
signal-to-noise ratio decreases: below a signal-to-noise ratio 
of ~250:1, Δ increases at an increasing rate with decreasing 
signal-to-noise ratio.

At a signal-to-noise ratio of 250:1, Δ values for absorptions 
centered at ~744 and ~802 nm are ~20% for CR-16 and 
~10% for CR-49. The lower Δ values for CR-49 are consistent 
with the greater abundance of REE minerals in this sample. 
The Δ  values for spectra convolved to the AVIRIS spectral 
response functions are generally slightly lower than Δ values 
for spectra convolved to the EnMAP spectral response func-
tions because of the higher spectral resolution of the AVIRIS 
system. Relative errors in Nd absorption areas are thus likely 
to be 10 to 20% at signal-to-noise ratios of ~250:1 when imag-
ing REE-rich materials (Nd >30,000 ppm).

As the signal-to-noise ratio of convolved spectra decreases 
below ~250:1, the strength of correlations between Nd absorp-
tion area and Nd content decreases for absorptions centered 
at both ~744 and ~802 nm (Fig. 14C, D). REE detection will 
thus be most robust in datasets with signal-to-noise ratios in 
excess of ~250:1, though detection at lower signal-to-noise 
ratios may be possible.

Atmospheric inferences

While multispectral imaging bands are generally placed at 
wavelengths that avoid atmospheric absorption features (i.e., 
within “atmospheric windows”), hyperspectral instruments 
collect continuous spectra that encompass numerous atmo-
spheric absorptions (Goetz, 2009). Hyperspectral datasets 
therefore require careful correction for atmospheric absorp-
tion effects generated by the presence of various species, 
including H2O, O3, CO2, O2 and CH4, before they can be 
interpreted (e.g., Gao et al., 1993, 2009). In order to assess 
the likely impact of atmospheric interferences on the imaging 
of REE deposits, we used the MODTRAN® radiative trans-
fer model. This simulates atmospheric conditions relevant 
to hyperspectral remote sensing along the coastal strips of 
Greenland, a likely target for remote sensing campaigns (Berk 
et al., 1998, 2005). The model was parameterized to simulate 
a 50° solar elevation angle, a sensor with nadir viewing of a 
target at sea level and a subarctic atmospheric profile with 
a maritime atmospheric profile. The results of MODTRAN® 
simulations are shown in Figure 15, where atmospheric trans-
mission is plotted as a function of wavelength in order to illus-
trate absorption features generated by a number of important 
atmospheric gases and aerosols.

The largest atmospheric features are ~200-nm-wide H2O 
absorptions centered at ~1,400 and ~1,900 nm that block all 
transmission at these wavelengths; no geologic information 
can be recovered at ~1,300 to 1,500 or ~1,800 to 2,000 nm. 
Substantial H2O absorptions (transmission >0.4) also occur 
at 950, 1,150, and 2,500 nm that degrade geologic interpre-
tations (Fig. 15). Although the major atmospheric absorp-
tions occur at wavelengths greater than main Nd absorptions, 
smaller atmospheric features occur within 580- to 870-nm 
range. Specifically, modest H2O absorptions centered at ~720 
and 820 nm have the potential to complicate the identifica-
tion of Nd absorption features centered at ~744 and ~802 nm. 
A narrow but deep O3 absorption feature 770 nm may also 
interfere with the identification of absorptions at ~744 and 
~802  nm, and a broad O3 absorption centered at ~590  nm 
may affect the ability to resolve absorptions centered at ~583 
nm. Even though the precise nature of atmospheric cor-
rections required will vary from campaign to campaign this 
simplistic treatment demonstrates that there is significant 
atmospheric transmission at the wavelengths relevant to the 
identification of Nd. Thus, if high-quality atmospheric correc-
tions are applied to datasets with high signal-to-noise ratios, 
Nd features should remain detectable, though ground cali-
bration may also be required to sufficiently reduce radiative 
transfer atmospheric residuals.

Spatial resolution: Outcrop versus pixel sizes

Having established that Nd should be detectable at high grades 
by hyperspectral instruments under optimal conditions, it is 
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important to assess whether their spatial resolution is suf-
ficient to detect zones of REE mineralization. Although 
some REE deposits, such as the Sulphide Queen Orebody at 
Mountain Pass and Bayan Obo outcrop on hundreds of meter 
length scales (Castor, 2008; Smith et al., 2015), most REE 
occurrences are meter-scale dikes and veins (Mitchell, 2005). 
It is therefore likely that the outcropping portions of most 
REE deposits will be too small to be detected using satellite-
based platforms: EnMAP is expected to have a spatial resolu-
tion of 30 m at VNIR wavelengths. Airborne platforms can 
achieve the meter-scale spatial resolutions required: up to ~4 
and ~0.5 m for AVIRIS and CASI, respectively (Kruse, 2012; 
Black et al., 2014), and hence represent a much better tool 
for REE mapping. Perhaps the greatest opportunity for REE 
remote sensing would involve the deployment of hyperspec-
tral instruments on unmanned aerial vehicles. While still at 
early stages of development, unmanned aerial vehicles could 

enable hyperspectral mapping to be carried out at the centi-
meter scale (Hugenholtz, 2012; Colomina and Molina, 2014), 
making it possible to map Nd grade across whole deposits. 
Indeed, the feasibility of such fine-scale mapping has already 
been demonstrated using ground-based hyperspectral imag-
ing of monazite enrichments in the Fen complex (Boesche et 
al., 2015).

Applications

Our results indicate that direct detection of REEs by hyper-
spectral imaging will be best suited to high-grade deposits, 
such as carbonatites that contain discrete REE minerals. It 
would also be applicable to other high-grade igneous and 
metamorphic (Steenkampskraal-type monazite) and hydro-
thermal deposits. However, given the general relationship 
between Nd absorption depth and abundance (Fig. 12), it will 
be more difficult to make the technique sufficiently robust for 
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Fig. 14.  A. and B. Plots showing how the area of absorption features in convolved spectra diverge from the area of absorption 
features measured by ASD as varying amounts of synthetic noise are added. The absolute difference between noisy convolved 
spectra and ASD spectra is expressed in % and given the notation Δnoisy-ASD. The effects of adding noise are shown for a mod-
erately REE rich sample (CR-16) and a very REE rich sample (CR-49). The relationship between spectra signal-to-noise ratio 
and Δnoisy-ASD are shown for the ~744 nm and ~802 nm absorptions in (A) and (B), respectively. Solid and dashed lines show 
the smoothed variation of Δnoisy-ASD with signal-to-noise ratio for data convolved to the AVIRIS and EnMAP spectral response 
functions, respectively. C. and D. Plots illustrating how adding varying amounts of synthetic noise to spectra convolved to the 
AVIRIS spectral response function degrades correlations between Nd absorption area and whole-rock Nd content for absorp-
tions centered at (C) ~744 nm and (D) ~802 nm.
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identifying lower grade REE deposits, such as those currently 
of interest for their higher proportions of mid and heavy 
REEs, in either carbonatitic or silicate systems. Although the 
technique could detect Nd in the eudialyte-bearing kakorto-
kite tested here, further development is necessary to corre-
late Nd absorption features with the lower Nd concentrations 
characteristic of nepheline syenites (Wall, 2014). The same 
holds true for apatite-bearing deposits where whole-rock 
REE concentrations will be below levels where correlations 
between spectral properties and Nd content become clear: 
apatite typically contains only up to 1 or 2 wt % ΣREO.

Nevertheless, hyperspectral remote sensing is potentially 
superior to radiometric surveys, a traditional REE exploration 
tool in which radioactivity from U and Th serve as pathfinders 
to REE-rich rocks. However, U and Th are penalty elements 
and an ideal REE deposit has high REE but low U and Th. 
Hyperspectral imaging can target REEs directly and help find 
deposits low in radioactive elements.

Nd is a LREE, and the main driver for the REE market 
owing to its use in high-strength permanent magnets, but 
there is also a current need to find new sources of HREEs 
(Hatch, 2012): using Nd as a pathfinder element unfortu-
nately makes the technique inapplicable to xenotime-(Y) 
deposits, such as Lofdal (Namibia) and Browns Range (Aus-
tralia) because xenotime-(Y) contains very low Nd contents. 
At Lofdal, however, there are also LREE minerals in addition 
to xenotime-(Y), so direct hyperspectral imaging of LREEs 
might be a guide to HREE-rich dikes and surrounding min-
eralization. Hyperspectral imaging has been applied to explo-
ration at Lofdal but only for the detection of carbonate, not 

as a direct indicator of REE content (Swinden and Siegfried, 
2011; Do Cabo, 2014). Nepheline syenite deposits are also 
often cited as HREE deposits. While alkaline rocks tend to 
contain minerals with higher HREE/LREE ratios than typi-
cal carbonatite deposits (e.g., eudialyte), HREE minerals are 
generally scarce and whole-rock Nd concentrations remain 
appreciable with respect to HREE concentrations. Nd could 
thus still be used in the exploration of these deposits if prob-
lems associated with of detecting low Nd concentrations can 
be overcome. While there is potential for detecting HREEs 
by reflectance spectroscopy (e.g., Dy, Ho, and Er; Adams, 
1965; Antonovich et al., 2007), we did not identify these ele-
ments in our LREE-dominated samples. In any case, pub-
lished reference spectra for HREE-rich materials are sparse 
and obtaining such spectra thus represents a key future objec-
tive in the development of REE remote sensing.

Conclusions
Nd absorption features, which are the strongest LREE 
absorption features at VNIR-SWIR wavelengths, have been 
identified in reflectance spectra collected from a suite of pre-
dominantly carbonatitic samples with variable REE contents. 
Absorption features centered at wavelengths of ~583, ~744, 
~802, and ~871 nm were detected by laboratory reflectance 
spectroscopy in samples with Nd concentrations >1,000 ppm. 
Nd absorption features are dominantly elemental in nature 
and do not change significantly as a function of host miner-
alogy at the FWHM of an ASD spectroradiometer. Contin-
uum removal was performed using a third-order polynomial 
fit around the wavelength brackets of each Nd absorption 
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Fig. 15.  Plot summarizing the transmission of major atmospheric gases and aerosols at VNIR-SWIR wavelengths simulated, 
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feature; this allowed for the subtraction of the background 
spectrum which isolated the Nd absorption feature(s) and 
suppressed the spectral variability associated with changes 
in sample composition and mineralogy. Nd absorption fea-
tures depth and area correlate positively with whole-rock Nd 
content, though correlations between Nd concentration and 
Nd absorption area are generally more robust. Absorptions 
centered at wavelengths of ~744 and ~802 nm give the most 
reliable fits (r2 ~0.7). Nd absorption features in VNIR reflec-
tance spectra thus represent a crude proxy for whole-rock Nd 
content under laboratory conditions.

Convolving laboratory reflectance spectra to the spectral 
response functions of various remote sensing instruments 
demonstrates that, while multispectral platforms lack the 
spectral resolution to resolve Nd absorption features at 
geologically relevant concentrations, hyperspectral plat-
forms such as AVIRIS and EnMAP have the spectral resolu-
tion needed to detect narrow Nd absorptions. Correlations 
between whole-rock Nd content and Nd absorption areas are 
moderately strong following spectral convolution (r2 ~0.6). 
The addition of synthetic noise to convolved spectra indi-
cates that spectral signal-to-noise ratios of at least ~250:1 
are required for relationships between Nd grade and spec-
tral properties to remain robust, i.e., Nd features will only 
be resolvable in high-quality datasets. Fortunately, the results 
of simple atmospheric modeling confirm that atmospheric 
transmission mostly remains above 0.8 within the crucial 
500- to 900-nm wavelength interval within which Nd may be 
detected. A final consideration of the spatial resolution of dif-
ferent hyperspectral systems shows that, while satellite-based 
instruments currently lack the spatial resolution to detect 
the meter-scale REE enrichments that occur within car-
bonatites, many airborne platforms will not suffer from the 
same limitations. With high-quality datasets (signal-to-noise 
>250:1) and well-constrained atmospheric models it should 
be possible to image Nd in high-grade, carbonatite-hosted 
REE deposits (Nd ~30,000 ppm) regardless of REE host 
mineralogy using currently available technology. While our 
proposed technique is dependent on the presence of Nd, and 
may be unsuitable for detecting some HREE-rich deposits, 
it offers a key advantage over radiometric surveys allowing 
the detection of REEs to be isolated from the detection of 
radioactive penalty elements. Mounting hyperspectral sen-
sors on unmanned aerial vehicles offers the exiting possibility 
of being able to map REE grade across whole deposits at 
resolutions as fine as a few centimeters in the near future.
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APPENDIX

Fig. A1.  Characteristic energy dispersive X-ray (EDX) spectra collected from a range of rock-forming and REE minerals. 
Peaks used for mineral identification are labeled according to element.
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Fig. A2.  A. Normalized continuum-removed spectra of CO3 absorptions in a range of carbonate-rich samples compared with 
a calcite reference spectrum (Clark et al., 2007). All spectra show reflectance minima at ~2,330 nm. B. Normalized spectra 
of barite-rich, calcite-bearing CR-36 from Mountain Pass compared with barite and calcite reference spectra (Clark et al., 
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not calcite. A small additional absorption at ~583 nm can be attributed to Nd. C. Normalized continuum-removed spectra 
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compared with a reference hematite spectrum (Clark et al., 2007).
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Abstract. Differentiating exposed rock from snow and ice is a particular problem in Antarctica where extensive cloud cover 

and widespread shaded regions lead to classification errors. The existing rock outcrop dataset has significant georeferencing 10 

issues including overestimation and generalisation of rock exposure areas. The most commonly used method for automated 

rock and snow differentiation, the Normalised Difference Snow Index (NDSI), has difficulty differentiating rock and snow in 

Antarctica due to misclassification of shaded pixels and cannot differentiate illuminated rock from clouds. This study presents 

a new method for identifying rock exposures using Landsat 8 data. This is the first fully automated methodology for snow and 

rock differentiation that excludes areas of snow (both illuminated and shaded), clouds and liquid water whilst identifying both 15 

sunlit and shaded rock, achieving higher and more consistent accuracies than alternative data and methods such as the NDSI. 

The new methodology has been applied to the whole Antarctic continent (north of 82°40’ S) using Landsat 8 data to produce 

a new rock outcrop dataset for Antarctica. The new data (merged with existing data south of 82°40’ S) reveals that exposed 

rock forms 0.18% of the total land area of Antarctica; half of previous estimates. 

1 Introduction 20 

Differentiating areas of snow and exposed rock in Antarctica is important in a variety of contexts, including mapping, 

navigation, glaciological, geological and geomorphological research, and monitoring changes in the ice sheet and its response 

to climate change. The only existing continent-wide geospatial dataset for exposed rock in Antarctica is available from the 

Scientific Committee on Antarctic Research (SCAR) Antarctic Digital Database (ADD) website, www.add.scar.org. This data 

(the ADD rock outcrop dataset) has been derived through manual identification and digitization of published topographic 25 

maps. This data comes from a variety of sources and variety of scales and accuracies, so the quality of the dataset is regionally 

inconsistent and has no quality assessment associated with it (in contrast to the automated identification method presented here 

for which accuracies and error sources have been determined). Although extensively used (over 2500 downloads of the rock 

dataset in the last 3 years) the data suffers from poor georeferencing, frequent misclassification of shaded snow as rock, as 
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well as overestimating and generalising areas of rock exposure. Additionally as satellite derived coastlines and digital elevation 

models become available, the inconsistency and inaccuracy of the present cartographically derived ADD rock outcrop dataset 

becomes difficult to resolve with these new data sources. There is therefore an urgent need to improve the consistency 

georeferencing and accuracy of rock outcrop data for Antarctica. 

In several temperate regions methods have been formulated to automatically identify exposed rock outcrop from satellite 5 

imagery (e.g. Racoviteanu et al. 2010, Dozier 1989, Hall et al. 1995, Paul et al. 2002, Paul et al. 2009, Bolch et al. 2010, Zhu 

& Woodcock 2012, Zhu et al. 2015), but the methods have never been applied to Antarctica. The most commonly used existing 

method for delineating snow cover and rock outcrop is the Normalised Difference Snow Index (NDSI, Hall et al. 1995, Dozier 

1989). The NDSI was developed following other indices, such as the Normalised Difference Vegetation Index (NDVI, Tucker 

1986, Tucker 1979), initially for application to MODIS and Landsat satellite imagery. The NDSI is calculated according to 10 

equation (1) (modified for Landsat 8 data) where Landsat 8 band 3 equates to spectral wavelengths of 0.53 to 0.59 μm (the 

green band) and Landsat 8 band 6 equates to spectral wavelengths of 1.57 to 1.65 μm (the short wavelength infrared band, 

SWIR 1): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 8 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿 3−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 8 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿 6
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 8 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿 3+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 8 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿 6

         (1) 

Equation (1) works on the basis that snow reflects visible wavelengths more strongly than middle-infrared wavelengths whilst 15 

rock displays a slightly higher reflectance for middle infrared wavelengths than visible wavelengths (Fig. 1) and so a threshold 

value can be determined for the NDSI of an image differentiating pixels of snow and rock (typically in the range 0.25 to 0.45 

- Hall et al., 1995). One problem for application of the thresholded NDSI technique to automated snow and rock differentiation 

is that the optimal threshold value must be determined for each individual image being analysed or even within the same image 

due to changes in illumination or fresh snow cover across the image’s area (Burns and Nolin, 2014). It is often the case that 20 

the optimal threshold is manually determined on each scene by comparison to reference data, however this becomes a problem 

when large numbers of images need to be analysed or reference data is not available. 

Although the application of the NDSI has been successful at lower latitudes (e.g. Burns & Nolin 2014) where vertically 

illuminated imagery is available, high solar elevation angles in Antarctica lead to exclusion of shaded rock.  This issue of 

shaded rock is greater in Antarctica where unavoidably low sun angle results in large percentages of the outcrop being in 25 

shadow. The problem has been addressed for glacier mapping at lower latitudes by thresholding the Landsat blue band (in 

addition to an NDSI or alternative band ratio threshold) due to the higher reflectance of shaded snow than shaded rock in blue 

wavelengths (Arendt et al., 2012; Bishop et al., 2004; Paul et al., 2007; Paul and Kääb, 2005). 

Unavoidable cloud cover in some Antarctic images, especially on the Antarctic Peninsula, leads to the classification of clouds 

as rock exposure by the NDSI technique (Fig. 2) as the two are indiscernible using this methodology. Any effective dataset of 30 

rock outcrop in Antarctica would have to ensure that clouds are not misrepresented. 

A further problem for automated rock identification at lower latitudes is debris cover on glaciers which is indiscernible in 

multispectral imagery from exposed rock (Paul et al., 2004). This is accentuated by the melting and ablation  of low latitude 
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glaciers (Stokes et al., 2007) and is intensified by large amount of debris from frost shattering and freeze thaw activity (Fig. 

3a and 3b). However Antarctic glaciers are rarely debris covered due the prevailing climatic conditions where constant sub-

freezing conditions result in a lack of ablation (Fig. 3c and 3d) . The limited number of positive degree days and the lack of a 

day/night cycle at polar latitudes reduces freeze thaw activity meaning that less frost shattering takes place. Most Antarctic 

glaciers and ice streams are marine terminating and relatively few have active ablation zones (with the exception of a small 5 

percentage on the northern and eastern Antarctic Peninsula. The result is that most Antarctic glaciers are largely debris-free, 

removing this limitation from our study. 

Here we present a new technique for fully automated rock outcrop identification using freely available Landsat satellite data. 

The method is a composite technique combining separate algorithms that divide the image into cloud, liquid water, shaded 

snow and sunlit snow and shaded and sunlit rock exposures. We test the method against manually digitised polygons, the 10 

existing ADD rock outcrop dataset and the NDSI to validate and compare its accuracy. 

We apply the new methodology to the entire landmass of Antarctica, (>12,000,000 km2) using Landsat 8 data over all regions 

of the continent that contain rock outcrop. The resulting dataset represents an improvement over the previous dataset (ADD), 

providing consistent and accurate estimation of the amount and location of rock outcrop in Antarctica. 

2. New Methodology 15 

2.1 Input data 

To produce a rock outcrop map for the entire Antarctic continent requires a freely available georeferenced multiband dataset. 

The dataset must cover high latitudes; be recently acquired; be of a high enough resolution to identify individual outcrops and 

geomorphological features; and individual images must have a large enough extent for manual selection of suitable tiles for 

the entire continent. On this basis, the Landsat 8 multispectral satellite data was chosen for analysis. Landsat 8 is the latest and 20 

continuing satellite mission for multispectral global data acquisition launched by NASA and the United States Geological 

Survey (Roy et al., 2014). The satellite’s sensors record 8 electromagnetic bands (0.43 to 2.29 μm wavelengths) at 30m 

resolution, plus a panchromatic band (0.50 to 0.68 μm) at 15m resolution and two thermal infrared bands (TIRS 1 and 2, 10.60 

to 12.51 μm) acquired at 100m resolution and resampled to 30m. 

For the production of an Antarctic-wide rock outcrop map, tiles were selected that were acquired during the Austral summer 25 

and display strong illumination and minimal cloud cover. Of particular importance was to exclude tiles with extensive cumulus 

or stratocumulus cloud where shadows within and below the cloud layer can be indiscernible from illuminated rock exposure. 

A total of 249 Landsat 8 tiles meeting these requirements were identified using the USGS Earth Explorer website 

(earthexplorer.usgs.gov). Details of the tiles used are provided as supplementary material. 

In addition to the raw data, pre-processed tiles (170 km North-South by 183 km East-West) corrected for top of atmosphere 30 

reflectance, surface reflectance and brightness temperature are freely available for download (espa.cr.usgs.gov). However, the 

calculation of surface reflectance values in Antarctica is problematic due to a lack of adequate atmospheric correction models 
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for the continent, limited in situ atmospheric data and inadequate quality elevation data (Black et al., 2014). This renders the 

surface reflectance corrected data unsuitable and so top of atmosphere reflectance and brightness temperature corrected 

products were used instead for this study. 

2.2 Methodology 

The new methodology identifies areas of sunlit and shaded rock through two separate workflows and then merges both outputs 5 

to produce the final dataset. Within both procedures a series of masks are produced to identify areas of exposed outcrop and 

to exclude areas of snow, cloud and liquid water. At each stage band ratios were used in preference to threshold values for 

individual bands to allow application of a single set of threshold values to a large dataset.  These two procedures are detailed 

below and a flowchart for executing this process shown in Fig. 4. The complete methodology was automated within ArcPy 

(Zandbergen, 2013). The script is included in the supplementary material. 10 

Procedure A. Sunlit Rock: 

A.1. Sunlit rock identification: the NDSI 

Although the NDSI is unable to identify shaded rock and often misclassifies clouds as rock outcrop, it remains the best method 

for identifying regions of exposed sunlit rock. Consequently, it is the primary input for this methodology with a threshold 

value of <0.75 being used to identify pixels of sunlit rock outcrop and confidently exclude pixels of snow (Fig. 5a). 15 

A.2. Cloud mask: TIRS / Blue and TIRS1 Threshold 

One of the main problems of rock outcrop identification in Antarctica is that sunlit rock and clouds are indiscernible using the 

NDSI alone (Fig. 5a). Consequently we have derived a mask for sunlit snow and clouds using the thermal infrared band 

(TIRS1, 10.60 to 11.19 μm) and the blue band. Using a ratio of these bands, clouds and sunlit snow give low values as they 

are cold but have high blue reflectance (Fig. 5b). In contrast, pixels of sunlit and shaded rock are warmer when associated with 20 

high blue reflectance or colder when associated with low blue reflectance, resulting in high to moderate ratio values. However, 

shaded snow and liquid water also give high to moderate values. A TIRS/blue threshold value of >0.4 is most effective in 

selecting cloud free pixels and excluding pixels of sunlit snow and cloud to produce an accurate final product, although some 

sunlit rock pixels are also discarded (Fig. 5b). To aid this cloud masking further an absolute TIRS1 threshold of >2550 is also 

applied as <1% of sunlit rock pixels have lower TIRS1 values whilst 10% of cloud pixels and 5% of sunlit and shaded snow 25 

pixels do have lower values (Fig. 5c). 

A.3. Liquid water mask: NDWI and coastline 

The most widely applied approach for the identification of liquid water in multispectral imagery is the Normalised Difference 

Water Index (NDWI, McFeeters 1996). Modified for Landsat 8 data with Landsat 8 band 3 equating to spectral wavelengths 
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of 0.53 to 0.59 μm  (the green band) and Landsat 8 band 5 equating to spectral wavelengths of 0.85 to 0.88 μm  (the near 

infrared band, NIR) the NDWI is calculated using equation (2): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 8 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿 3−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 8 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿 5
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 8 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿 3+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 8 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿 5

         (2) 

A liquid water mask is applied to both the sunlit and shaded rock identification procedures, and so the same threshold value of 

<0.45 is used for both (Fig. 5d). Unfortunately, due to the presence of calved ice and suspended glacial debris in Antarctic 5 

coastal seawater, a large overlap in NDWI values exists between pixels of sea and shaded rock exposure (Fig. 5d). To aid this 

step the manually derived coastline of Antarctica (available from www.add.scar.org) was also used as a mask for excluding 

liquid water and sea ice. 

Procedure B. Shaded Rock: 

B.1. Shaded rock identification: Blue threshold 10 

Even in the shade, snow is more reflective at blue wavelengths than shaded rock. Consequently by determining the blue 

intensity values for a pixels representing rock and snow a threshold value of <2500 was found to successfully identify pixels 

containing shaded rock exposure. 

B.2. Liquid water mask: NDWI and coastline 

Although a blue wavelength threshold successfully differentiates shaded snow and rock, liquid water is also misclassified as 15 

rock. Thus, the NDWI and coastline mask applied to the sunlit rock data are also applied to the shaded rock data (again using 

the NDWI threshold value of <0.45, Fig. 5d). This step also aids exclusion of shaded snow pixels as 25% of their values are 

discarded by the NDWI threshold (Fig. 5d). 

Procedure C. Applying the masks and merging the datasets 

Pixels that were identified as rock by the NDSI mask and not identified as cloud or water represent sunlit rock outcrops. 20 

Similarly, pixels with blue band intensities below the threshold for shaded rock that aren’t subsequently identified as liquid 

water by the NDWI threshold represent shaded rock exposures. Merging these two outputs produced the rock outcrop map for 

each tile. The output of each tile was then reprojected to the same coordinate system and the results of all tiles mosaicked 

together for the entire continent. As most areas were covered by multiple Landsat tiles, any pixels identified as rock exposure 

by any of the overlying tiles was included as exposed rock in the final dataset. Finally, this dataset was merged with the existing 25 

ADD rock outcrop dataset for areas not covered by the LANDSAT 8 imagery (Fig. 6). 
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3. Results 

3.1 Accuracy Assessment 

To quantify the accuracy of the new methodology and its limitations, the extent of rock exposure was manually delineated 

using ten 10x10 km images (110,889 pixels each, Fig. 7). Images were selected from distal locations across the continent (Fig. 

8), covering a range in geology, geomorphology and latitude. Areas of rock outcrop were manually identified by three 5 

operators. One tile (Ryder Bay, Fig. 7a) was traced by all operators; operator variability for pixel identification (rock or non-

rock) was ±0.27% (one standard deviation). 

The manually derived land cover was compared with the existing ADD rock outcrop dataset, the new automated method and 

the optimum NDSI-determined output for each image. Optimum NDSI threshold values (maximum values for pixels identified 

as rock) were taken as those with the lowest total quantity disagreement (abundance accuracy) and allocation disagreement 10 

(location accuracy) (Pontius Jr&Millones 2011). As shown by Fig. 9, optimum NDSI threshold values are highly variable. For 

well illuminated images without any cloud cover (Fig. 7b to 7f), NDSI threshold values of 0.6 or 0.7 are optimal. Images of 

extensive shade achieve more accurate results at higher NDSI threshold values (0.8, Fig. 7g) allowing identification of shaded 

rock. In contrast, images with extensive cloud require lower values (0.3 to 0.5, Fig. 7a, h and i) so as not to include the cloud 

as misidentified rock outcrop pixels. For mixed images (Fig. 7j) with shaded and illuminated rock with minor cloud cover, 0.7 15 

remained the optimal threshold value. 

Well illuminated, cloud free images produce similar accuracies for the NDSI techniques and the new method (Fig. 7b to 7f), 

with low commission or omission disagreements (Fig. 10a). However, the required determination of an optimal NDSI threshold 

value renders this alternative methodology more involved than that used for our new dataset;, when using the optimal threshold 

value the NDSI technique omits areas of rock in shaded images as well as both shaded or sunlit rock in cloudy images, leading 20 

to high and variable omission disagreements (Fig. 10b). 

The ADD rock outcrop dataset produces variable accuracies. In Ryder Bay (Fig. 7a) the map has been recently been updated 

using manual delineation from very high resolution aerial photography and so has high accuracy with low omission and 

commission disagreement, similar to the new dataset. However, it is important to stress that areas of high resolution delineation 

are limited in the ADD rock outcrop dataset. The ADD rock outcrop dataset is more accurate than the NDSI technique in 25 

shaded images (Fig. 7g and 7j), but highly generalised and poorly georeferenced outcrop extents in other tiles (Fig. 7e and 7h) 

produce high and highly variable disagreements (Fig. 10), particularly in commission. 

The new methodology performed poorest in images with limited areas of rock outcrop (e.g. Fig. 7h, 0.1% rock), although 

shade, clouds and mixed pixels of snow and rock in Fig. 7h make even manual pixel identification difficult. There are omission 

disagreements in shaded images (Fig. 7g and 7j) although these are much lower than for the alternative techniques (a mean of 30 

15% for all images compared to 38% for the NDSI technique and 30 % for the ADD rock outcrop dataset, Fig. 10b). Clouds 

were successfully masked and do not contribute to the commission disagreement (Fig. 7h, i and j). The quality assessment 

shows higher accuracies for the new method (a mean of 85 ±8% of identified rock pixels being correct for all ten images 
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compared with 62 ±32% or 70 ±14% for the NDSI technique and ADD rock outcrop dataset respectively) with lower and 

much more consistent commission and omission disagreements than the alternative NDSI or ADD rock outcrop datasets (Fig. 

10b). 

4. Discussion 

This is the first fully automated methodology for the differentiation of snow and rock in Antarctica, from which a new outcrop 5 

map of the entire Antarctic continent has been produced at higher and more consistent accuracies than existing data and 

techniques (85 ±8% mean correct pixel identification for the new method compared to 62 ±32% or 70 ±14% for the NDSI and 

ADD data respectively, Fig. 10). The new dataset is available online via the SCAR ADD website (www.add.scar.org) and 

from this article’s supplementary material. 

Despite the poorer accuracy of the ADD rock outcrop dataset (70% mean for correct pixel identification compared to 85% for 10 

the new dataset), due to the methodology by which it was derived, certain features are better represented. This includes South 

Georgia and the South Orkney Islands where a lack of cloud-free imagery in the late Austral summer (when the outcrops aren’t 

covered by snow) prevents automated outcrop identification. Consequently, rock outcrop extents in these areas are derived 

from the existing ADD dataset rather than remotes sensing imagery in addition to outcrops south of 82°40’ S (Fig. 6). 

It is important when using the new Landsat 8 rock outcrop map to consider seasonal variability in snow cover and that most 15 

outcrops were derived from multiple tiles from different years and different months of the Austral summer. Consequently, the 

map may not be representative of current conditions and may not consistently represent maximum outcrop extent across the 

continent.  

4.1 Limitations 

Using the new methodology we have produced a revised map of rock outcrops in Antarctica. Landsat 8 does not provide 20 

coverage south of 82°40’ S so the existing ADD rock outcrop dataset was clipped to latitudes greater than this and merged 

with the new automatically derived data to produce the final dataset. There are two further limitations to the new methodology: 

1. Because an overlap exists between the NDWI values of shaded rock and liquid water (Fig. 5d), some pixels of coastal 

seawater not masked by the ADD coastline have been misidentified as exposed rock. This is particularly problematic for pixels 

adjacent to seawater rich in calved ice and glacial debris (Fig. 11a). These pixels are spectrally identical to shaded rock and 25 

thus cannot be excluded automatically from the data. Consequently they were manually removed from the final dataset, 

although some of these misidentified pixels may still be present. 

2. Even though spectral properties have been chosen that distinguish rock pixels from those of snow, clouds or sea, some 

overlap exists where pixels remain ambiguous (Fig. 5). Consequently, to allow automated analysis over such a large area 

mildly conservative threshold values were chosen. For example, the NDSI threshold for sunlit rock set at the 95th percentile 30 

rather than the complete range exhibited by sunlit outcrops as this excludes any overlap with the range of NDSI values for 
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sunlit snow (Fig. 5a). This results in the exclusion of some pixels of exposed rock that are spectrally similar to clouds and 

snow (e.g. Fig. 11b). 

3. Due to the 100m spatial resolution of the TIRS band, small outcrops around the continent (especially those less than 60m 

or 2 pixels across) are often excluded by the new technique and may be better represented in the ADD rock outcrop dataset. 

4.2 Total outcrop area 5 

We calculate (using an Equal Area projection) that the existing ADD rock outcrop dataset has 44,900 km2 area of rock outcrop, 

equivalent to 0.37% of the total land area of Antarctica (12,188,650 km2). In contrast the new data has a 21,745 km2total area 

of rock outcrop, equivalent to 0.18% of the continent’s land area and 48% of the previous estimate. This is a significant 

decrease and highlights an overestimation in the current predictions of rock outcrop extent in Antarctica. 

4.3 Applications and future developments 10 

The new Landsat 8 rock outcrop map will provide a revised and accurate base dataset for future topographical, glaciological, 

geological and geomorphological mapping. A number of satellite programs collecting new high resolution colour images are 

currently under development or planned for launch, including Digitalglobe’s Worldview-3 satellite, NASA’s HyspIRI satellite, 

European Space Agency’s Sentinel program and the continuing Landsat data acquisition; these new datasets will allow further 

application of this technique at higher resolutions and consequently higher accuracies, allowing future improvement of the 15 

datasets broader applications. Application of the new technique to these alternative datasets would however require 

modification of the threshold values for each mask in the procedure. 

5. Conclusions 

A new map of exposed rock outcrop has been developed for the Antarctic continent. The new map was achieved via a fully 

automated methodology employing Landsat 8 multispectral imagery. The new methodology uses the NDSI technique to 20 

identify sunlit rock exposure and low blue intensities for shaded rock, and then applies separate masks to remove incorrectly 

classified pixels of cloud, snow and liquid water. This is the first automated methodology for rock outcrop identification in 

Antarctica, and achieves higher and more consistent accuracies than the existing dataset or what can be achieved using the 

alternative automated technique (the NDSI). Assessing the accuracy of these alternative techniques and datasets across a range 

of images gives a mean value for correct pixel identification of 85 ±8% for the new method compared to 62 ±32% or 70 ±14% 25 

for the NDSI technique and existing ADD rock outcrop dataset respectively, The new map, supplemented by existing data for 

latitudes south of 82°40’ S (the limit of Landsat 8 coverage), reveals that rock outcrop forms 0.18% of the total land area of 

Antarctica, 48% of the previous estimate. 
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Fig. 1. Spectral reflectance data for snow and rock (granite, basalt and sandstone) from the ASTER Spectral Library v1.2 
(Baldridge et al., 2009). Designations of spectral regions as defined by the Landsat 8 bands: Blue – Band 2, 0.45 – 0.51 μm; Green 
– Band 3, 0.53 – 0.59 μm; Red – Band 4, 0.64 – 0.67 μm; NIR, Near Infrared – Band 5, 0.85 – 0.88 μm; SWIR 1, Short Wave Infrared 
– Band 6, 1.57 – 1.65 μm. 5 

 

 
Fig. 2. Illustration of the misclassification of cloud cover as rock pixels when using the NDSI technique. An NDSI threshold of 0.6 
was used to identify the rock outcrops, but at this threshold much of the cloud cover is also included.  
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Fig. 3. Comparison of debris cover for glaciers at low latitudes (3a, Karakoram Range (35°N), and 3b, Jungfrau Range, Alps (46°N)) 
with those of Antarctica (3c, Antarctic Peninsula (66°S), and 3d, Transantarctic Mountains (72°S)). Note the lack of surface moraine 
and the deep shadows in 3e and 3d, typical of Antarctic glaciers where a lack of day-night cycle and year-round low temperatures 
restricts freeze thaw action and the permanently low sun angles result in deep shadows in remotely sensed imagery. 5 

 

 
Fig. 4. Flowchart for the automated identification of rock outcrops in Antarctica using the new methodology. 
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Fig. 5. Box plots of extracted pixel values from three Landsat 8 tiles illustrating the different spectral properties of clouds (n = 871), 
sea (n = 3277), sunlit rock (n = 1158), shaded rock (n = 1224), sunlit snow (n = 1293) and shaded snow (n = 918). Boxes indicate the 
2nd and 3rd quartiles and median values. Whiskers indicate the 5th and 95th percentile. Dashed lines indicate the chosen threshold 
values for the automated rock outcrop extraction and the values to be selected or discarded. 5 

 

 
Fig. 6. Rock exposure map of Antarctica showing the data sources for the new dataset. Outcrops shown in red were derived using 
the new remote sensing methodology and outcrops in blue were derived from the existing ADD rock outcrop dataset to supplement 
areas south of 82°40’ S (not covered by Landsat 8) or islands lacking suitable cloud free images. Areas of rock exposure are 10 
exaggerated for illustration. 
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Fig. 7. Images used for the quality assessment overlain by the tree alternative methodologies and datasets: Pixels extracted using 
optimum NDSI thresholds for each image; pixels extracted using the new methodology presented here; and the extents of the current 
ADD rock outcrop map. 
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Fig. 8. Locations of the 249 Landsat 8 tiles (blue squares) used to identify rock outcrop in Antarctica and the locations (a to j) of the 
10x10 km images used for the quality assessment in Fig. 5. 5 

 

 
Fig. 9. Total quantity and allocation disagreement values (Pontius Jr and Millones, 2011) for pixels extracted from the images in 
Fig. 5 using the NDSI threshold technique. 

 10 
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Fig. 10. (a) 100% normalised accuracy assessment data for correctly classified pixels and pixels of omission and commission 
disagreements for the images in Fig. 5. Optimal NDSI values used are shown in brackets. (b) Overall accuracy assessment data for 
the three alternative datasets. Error bars shown at 1SD. 

 5 

 
Fig. 11. Limitations of the new methodology. (a) Seawater near calving ice classified as rock (later removed manually). (b) An 
illustration of conservative outcrop extent estimation using the new technique. 
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Appendix B: Electron microprobe analysis

Sample J13.19.10

Electron microprobe analysis (EMPA) points for sample J13.19.10.
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ID SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Total mineral id
amph1_a 55.75 0.19 1.02 8.18 0.24 19.35 12.43 0.21 0.09 0.01 0.19 97.73 amphibole actinolite
amph1_b 54.79 0.31 1.57 8.63 0.40 18.83 12.03 0.25 0.11 0.00 0.11 97.05 amphibole actinolite
amph1_c 54.35 0.43 2.13 8.73 0.37 18.92 11.69 0.35 0.16 0.02 0.30 97.46 amphibole actinolite
amph1_d 54.49 0.26 2.05 9.31 0.58 18.94 10.60 0.42 0.09 0.02 0.15 96.98 amphibole actinolite
amph2_a 52.70 0.18 3.00 15.02 0.45 13.94 12.22 0.35 0.10 0.01 0.00 97.95 amphibole actinolite
amph2_b 52.64 0.18 3.35 12.25 0.57 15.82 12.40 0.37 0.10 0.01 0.02 97.71 amphibole actinolite
amph2_c 53.14 0.15 3.02 11.55 0.35 16.10 12.54 0.27 0.11 0.02 0.00 97.36 amphibole actinolite
amph2_d 55.10 0.16 1.73 10.81 0.89 17.22 10.97 0.34 0.03 0.02 0.01 97.35 amphibole actinolite
chl1_a 28.27 0.02 18.28 21.37 0.39 18.43 0.07 0.03 0.04 0.00 0.08 86.97 Mg-Fe chlorite
chl1_b 27.17 0.03 19.24 20.77 0.40 19.06 0.06 0.00 0.00 0.08 0.03 86.86 Mg-Fe chlorite
chl1_c 27.49 0.05 18.91 20.70 0.35 18.86 0.14 0.03 0.02 0.03 0.00 86.59 Mg-Fe chlorite
hl2 27 75 0 01 18 41 22 43 0 30 18 00 0 28 0 03 0 03 0 03 0 04 87 32 M F hl itchl2_a 27.75 0.01 18.41 22.43 0.30 18.00 0.28 0.03 0.03 0.03 0.04 87.32 Mg-Fe chlorite

chl2_b 26.63 0.01 19.06 21.81 0.35 19.05 0.07 0.02 0.00 0.02 0.06 87.09 Mg-Fe chlorite
chl2_c 27.07 0.00 18.55 22.57 0.28 17.88 0.09 0.02 0.03 0.04 0.01 86.53 Mg-Fe chlorite
chl3_a 27.64 0.06 19.09 20.99 0.36 18.80 0.07 0.03 0.03 0.05 0.06 87.18 Mg-Fe chlorite
chl3_b 28.00 0.02 18.83 21.64 0.37 18.40 0.19 0.05 0.04 0.05 0.11 87.70 Mg-Fe chlorite
chl3_c 29.10 0.03 18.25 20.59 0.31 18.59 0.59 0.04 0.05 0.05 0.00 87.59 Mg-Fe chlorite
chl3_d 27.68 0.06 18.93 21.20 0.36 18.28 0.10 0.02 0.02 0.05 0.06 86.76 Mg-Fe chlorite
chl4_a 27.92 0.00 18.16 21.84 0.29 17.88 0.12 0.03 0.02 0.08 0.00 86.35 Mg-Fe chlorite
chl4_b 28.02 0.01 18.59 21.46 0.43 18.00 0.09 0.00 0.02 0.04 0.00 86.66 Mg-Fe chlorite
chl4_c 27.80 0.04 18.88 21.14 0.30 18.24 0.09 0.03 0.02 0.05 0.00 86.58 Mg-Fe chlorite
fsp1_a 62.85 0.02 22.87 0.17 0.00 4.55 8.87 0.27 99.60 plagioclase oligoclase
fsp1_b 61.25 0.01 23.68 0.09 0.02 5.23 8.28 0.29 98.84 plagioclase oligoclase
fsp1_c 62.44 0.02 23.21 0.21 0.00 4.88 8.66 0.13 99.55 plagioclase oligoclase
fsp2_a 57.80 0.01 26.12 0.20 0.00 8.31 6.78 0.14 99.35 plagioclase labradorite
fsp2_b 58.25 0.00 26.03 0.18 0.00 8.25 6.79 0.26 99.78 plagioclase labradorite
fsp2 c 59.47 0.03 25.10 0.16 0.01 7.03 7.51 0.39 99.70 plagioclase labradoritefsp2_c 59.47 0.03 25.10 0.16 0.01 7.03 7.51 0.39 99.70 plagioclase labradorite
fsp2_d 58.58 0.01 25.60 0.28 0.00 7.57 7.14 0.23 99.41 plagioclase labradorite
fsp3_a 50.30 0.02 29.37 0.26 0.00 14.60 3.55 0.29 98.40 plagioclase bytownite
fsp3_b 47.53 0.02 32.86 0.30 0.00 16.20 2.18 0.08 99.17 plagioclase bytownite
fsp3_c 46.37 0.02 33.49 0.37 0.01 17.28 1.66 0.10 99.31 plagioclase bytownite
fsp3_d 57.99 0.02 26.43 0.13 0.01 8.55 6.62 0.12 99.87 plagioclase labradorite
fsp4_a 64.58 0.00 18.02 0.12 0.04 0.05 0.56 15.96 99.33 K-feldspar orthoclase
fsp4_b 64.89 0.00 18.21 0.16 0.00 0.02 0.65 15.95 99.89 K-feldspar orthoclase
fsp4_c 64.97 0.00 17.87 0.12 0.00 0.02 0.62 15.89 99.48 K-feldspar orthoclase
fsp5_a 43.59 0.05 23.09 1.36 0.00 26.61 0.05 0.01 94.76 ?plagioclase anorthite
fsp5_b 46.43 0.02 23.18 0.43 0.00 23.74 1.42 0.02 95.25 ?plagioclase anorthite
fsp5_c 44.69 0.03 23.45 0.40 0.00 25.58 0.46 0.01 94.62 ?plagioclase anorthite
fsp6_a 68.54 0.01 19.61 0.12 0.01 0.38 11.38 0.03 100.09 plagioclase albite
fsp6_b 67.24 0.00 20.01 0.07 0.03 1.07 10.87 0.06 99.35 plagioclase albite
fsp6_c 66.47 0.00 19.70 0.06 0.03 1.05 10.65 0.07 98.02 plagioclase albite
mag1_a 0.03 0.47 91.97 0.00 0.00 92.51 magnetite

1 b 0 02 0 44 92 56 0 04 0 00 93 11 titmag1_b 0.02 0.44 92.56 0.04 0.00 93.11 magnetite
mag1_c 0.02 0.58 92.17 0.00 0.00 92.77 magnetite
mag1_d 0.08 0.28 91.84 0.03 0.00 92.25 magnetite
mag1_e 0.00 0.43 92.53 0.04 0.01 93.07 magnetite
ox1_a 0.02 0.04 92.46 0.01 0.01 92.57 magnetite
ox1_b 0.01 0.06 93.62 0.13 0.00 93.83 magnetite
ox1_c 0.03 0.07 93.43 0.00 0.02 93.56 magnetite
ox1_d 0.00 0.02 92.89 0.01 0.00 92.93 magnetite
ox2_a 0.01 0.06 92.48 0.07 0.03 92.67 magnetite
ox2_b 0.01 0.06 92.94 0.04 0.00 93.05 magnetite
ox2_c 0.01 0.04 92.78 0.01 0.00 92.84 magnetite
ox3_a 0.03 0.04 92.88 0.00 0.02 93.01 magnetite
ox3_b 0.01 0.04 92.33 0.00 0.00 92.40 magnetite
pxn1_a 53.28 0.04 0.25 8.96 0.79 12.86 23.66 0.19 0.00 0.02 100.07 pyroxene augite
pxn1_b 54.92 0.03 1.15 11.04 0.31 16.57 12.99 0.13 0.03 0.05 97.24 pyroxene pigeonite
pxn1 c 53 60 0 00 0 22 8 30 0 39 13 07 25 04 0 11 0 01 0 00 100 79 pyroxene augitepxn1_c 53.60 0.00 0.22 8.30 0.39 13.07 25.04 0.11 0.01 0.00 100.79 pyroxene augite
pxn2_a 53.61 0.08 0.34 6.18 0.30 15.50 23.26 0.28 0.01 0.01 99.59 pyroxene augite
pxn2_b 52.37 0.14 0.76 9.39 0.41 13.70 22.12 0.45 0.01 0.01 99.50 pyroxene augite
pxn2_c 52.66 0.05 0.77 8.98 0.58 13.98 22.26 0.41 0.00 0.00 99.84 pyroxene augite
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ID SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Total mineral id
qz1_a 100.52 0.07 0.04 0.10 0.01 0.03 0.00 0.01 100.78 quartz
qz1_b 100.48 0.04 0.03 0.07 0.00 0.06 0.00 0.01 100.69 quartz
qz1_c 100.11 0.05 0.12 0.08 0.01 0.05 0.00 0.01 100.44 quartz
timag1_a 0.01 49.68 44.65 5.97 0.21 100.60 ilmenite
timag1_b 0.00 43.05 49.29 5.27 0.21 97.84 ilmenite
timag1_c 0.01 50.04 44.87 5.64 0.18 100.80 ilmenite
timag1_d 0.01 50.99 44.41 5.21 0.14 100.76 ilmenite
titan1_a 28.49 38.77 0.92 3.30 0.32 0.00 26.22 0.00 0.00 0.10 0.14 98.27 titanite
titan1_b 29.79 38.42 0.98 2.10 0.13 0.00 27.28 0.01 0.00 0.04 0.09 98.83 titanite
titan1_c 21.52 42.68 0.69 14.04 1.54 0.06 18.67 0.00 0.00 0.04 0.00 99.24 titanite
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Sample J13.22.5

Electron microprobe analysis (EMPA) points for sample J13.22.5.
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ID SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Total mineral id
amph1_a 48.33 1.26 5.15 16.22 0.54 13.38 10.60 1.07 0.53 0.02 0.24 97.39 magnesio hornblende amphibole
amph1_b 49.86 0.99 4.43 15.32 0.53 14.05 10.77 0.94 0.39 0.00 0.25 97.56 magnesio hornblende amphibole
amph1_c 48.82 1.15 4.98 15.81 0.49 13.35 10.81 1.14 0.51 0.04 0.03 97.22 magnesio hornblende amphibole
amph2_a 52.77 0.26 2.51 15.26 0.95 15.54 10.08 0.34 0.16 0.02 0.00 97.95 magnesio hornblende amphibole
amph2_b 50.54 0.69 4.16 14.04 0.49 14.51 11.64 0.62 0.34 0.02 0.17 97.25 magnesio hornblende amphibole
amph2_c 49.01 1.02 5.19 15.53 0.43 13.91 10.74 1.05 0.47 0.00 0.23 97.56 magnesio hornblende amphibole
amph3_a 49.34 0.70 4.52 16.44 0.52 13.32 10.73 1.02 0.42 0.02 0.15 97.19 magnesio hornblende amphibole
amph3_b 49.26 0.96 4.69 16.01 0.55 13.38 11.18 0.87 0.45 0.00 0.14 97.60 magnesio hornblende amphibole
amph3_c 47.84 1.25 5.42 16.66 0.51 12.45 11.20 0.92 0.56 0.00 0.15 96.95 magnesio hornblende amphibole
amph4_a 36.43 0.41 17.95 17.45 0.14 22.21 0.00 0.00 94.60 mixed
amph4_b 36.61 1.93 16.52 17.38 0.28 22.34 0.05 0.01 95.12 mixed
amph5_a 48.83 0.97 4.83 15.76 0.47 13.79 10.83 1.16 0.44 0.00 0.24 97.38 magnesio hornblende amphibole
amph5_b 48.89 1.06 4.98 15.57 0.51 13.69 10.84 1.07 0.51 0.02 0.17 97.31 magnesio hornblende amphibole
amph5_c 47.98 1.20 5.62 15.94 0.38 13.07 10.83 1.21 0.61 0.01 0.12 97.04 magnesio hornblende amphibole
ap1_a 0.15 0.01 0.37 0.00 53.86 0.06 0.02 41.65 7.13 103.26 apatite
ap1_b 0.17 0.01 0.07 0.00 54.01 0.05 0.01 42.01 6.97 103.31 apatite
ap1_c 0.09 0.00 0.15 0.00 54.23 0.02 0.00 42.56 7.42 104.49 apatite
ap2_a 0.11 0.00 0.35 0.00 54.12 0.01 0.01 42.33 6.45 103.39 apatite
ap2_b 0.14 0.02 0.48 0.00 53.98 0.05 0.03 42.60 5.84 103.17 apatite
ap3_a 0.31 0.00 0.30 0.00 54.25 0.00 0.00 42.56 5.68 103.10 apatite
ap3_b 0.15 0.01 0.19 0.00 53.89 0.01 0.00 42.11 6.24 102.64 apatite
bi1_a 36.77 4.43 12.95 20.22 0.40 11.07 0.12 0.14 8.94 0.01 0.28 95.31 Ti-rich biotite
bi1_b 36.04 4.23 12.98 20.20 0.33 10.68 0.10 0.12 8.50 0.02 0.22 93.44 Ti-rich biotite
bi1_c 35.84 4.03 13.26 20.90 0.43 11.13 0.17 0.16 8.30 0.03 0.16 94.40 Ti-rich biotite
chl1_a 28.45 0.16 16.73 25.47 0.55 16.03 0.16 0.02 0.01 0.08 0.00 87.67 Mg-Fe chlorite
chl1_b 28.05 0.16 16.99 24.38 0.70 16.59 0.17 0.05 0.05 0.06 0.06 87.26 Mg-Fe chlorite
chl1_c 28.34 0.14 17.09 23.66 0.55 17.49 0.17 0.01 0.02 0.11 0.07 87.63 Mg-Fe chlorite
chl1_d 27.82 0.14 17.14 24.24 0.63 17.40 0.16 0.05 0.03 0.09 0.12 87.82 Mg-Fe chlorite
chl1_e 27.72 0.09 17.73 24.32 0.64 17.66 0.15 0.05 0.00 0.09 0.00 88.46 Mg-Fe chlorite
chl2_a 27.59 0.10 18.20 21.48 0.56 18.09 0.12 0.04 0.04 0.04 0.15 86.40 Mg-Fe chlorite
chl2_b 27.47 0.03 19.01 20.94 0.57 18.91 0.14 0.06 0.06 0.07 0.03 87.29 Mg-Fe chlorite
chl2_c 27.18 0.07 18.62 21.85 0.61 18.06 0.10 0.07 0.07 0.06 0.07 86.76 Mg-Fe chlorite
chl3_a 29.05 0.35 16.17 24.51 0.58 16.26 0.15 0.03 0.38 0.08 0.07 87.62 Mg-Fe chlorite
chl3_b 30.35 1.46 15.45 24.66 0.49 15.03 0.21 0.05 1.75 0.07 0.12 89.65 Mg-Fe chlorite
chl3_c 32.31 4.49 14.27 22.05 0.42 12.55 1.54 0.11 3.51 0.17 0.22 91.64 Mg-Fe chlorite
chl3_d 30.92 2.62 14.92 23.49 0.46 14.47 0.40 0.10 1.93 0.14 0.11 89.55 Mg-Fe chlorite
chl3 e 30.25 0.53 15.08 25.43 0.44 14.72 0.35 0.03 0.50 0.15 0.09 87.58 Mg-Fe chloritec 3_e 30 5 0 53 5 08 5 3 0 0 35 0 03 0 50 0 5 0 09 8 58 g e c o te
chl3_f 30.58 1.79 14.65 24.47 0.49 14.75 0.68 0.07 1.21 0.19 0.05 88.95 Mg-Fe chlorite
chl3_g 28.40 0.18 16.93 24.57 0.54 17.17 0.17 0.08 0.10 0.07 0.07 88.27 Mg-Fe chlorite
chl4_a 28.67 0.59 16.33 23.07 0.53 17.18 0.37 0.00 0.23 0.02 0.10 87.10 Mg-Fe chlorite
chl4_b 28.06 0.69 16.47 24.64 0.52 17.34 1.64 0.00 0.05 0.07 0.04 89.53 Mg-Fe chlorite
chl4_c 28.40 0.16 16.94 23.79 0.58 17.52 0.09 0.03 0.14 0.04 0.04 87.75 Mg-Fe chlorite
fsp1_a 59.93 0.02 25.04 0.16 0.00 6.89 7.64 0.31 99.99 plagioclase andesine
fsp1_b 60.52 0.02 24.80 0.21 0.00 6.59 7.59 0.32 100.04 plagioclase andesine
fsp1_c 57.84 0.03 26.49 0.16 0.00 8.48 6.60 0.19 99.79 plagioclase andesine
fsp2_a 56.57 0.03 26.79 0.11 0.00 9.05 6.30 0.14 98.99 plagioclase andesine
fsp2_b 58.45 0.02 25.60 0.17 0.00 7.65 7.18 0.26 99.32 plagioclase andesine
fsp2_c 58.56 0.03 25.79 0.22 0.00 7.94 6.97 0.21 99.72 plagioclase andesine
fsp3_a 54.66 0.04 28.16 0.21 0.00 10.60 5.27 0.14 99.07 plagioclase labradorite
fsp3_b 54.88 0.04 28.01 0.18 0.00 10.75 5.39 0.17 99.41 plagioclase labradorite
fsp3_c 54.93 0.04 28.10 0.22 0.01 10.41 5.50 0.14 99.35 plagioclase labradorite
fsp4_a 60.61 0.01 24.00 0.15 0.00 6.19 7.97 0.30 99.22 plagioclase andesine
fsp4_b 60.05 0.00 24.75 0.20 0.03 5.73 7.86 0.59 99.20 plagioclase andesine
fsp4_c 61.54 0.01 24.12 0.14 0.00 5.59 8.25 0.23 99.88 plagioclase andesine
fsp5_a 60.93 0.03 23.70 0.28 0.01 5.49 8.43 0.37 99.25 plagioclase andesine
fsp5_b 61.72 0.02 23.45 0.28 0.02 5.05 8.65 0.30 99.49 plagioclase andesine
fsp5_c 61.88 0.01 23.00 0.20 0.01 4.90 8.57 0.25 98.81 plagioclase andesine
fsp6_a 54.90 0.04 27.59 0.23 0.00 10.19 5.72 0.18 98.85 plagioclase labradorite
fsp6_b 53.65 0.06 28.46 0.29 0.00 11.37 5.01 0.14 98.97 plagioclase labradorite
fsp6_c 55.50 0.03 27.56 0.17 0.01 9.77 5.81 0.15 99.01 plagioclase labradorite
ox1_a etitengam15.3960.040.036.0957.099.1
ox1_b etitengam76.8855.010.036.7810.004.0
ox1_c etitengam48.2990.070.037.8873.125.2
ox2_a etitengam08.3910.070.066.2965.054.0
ox2_b etitengam99.2978.150.077.2891.290.6
ox2_c etitengam34.3951.010.050.1944.027.1
ox3_a elitur18.8900.025.036.5115.2830.0
ox3_b etinemli06.5980.037.040.0636.4370.0
ox3_c etitengam72.3920.056.045.0915.130.0
ox3_d etitengam74.3900.012.031.2917.020.0
ox4_a etitengam69.2940.091.009.1964.031.0
ox4_b etitengam62.3900.021.006.2922.040.0
ox4_c etitengam82.3900.090.016.2903.040.0
ox4_d etitengam14.3910.084.009.0996.130.0
ox5_a etitengam31.3910.030.054.2982.040.0
ox6_a etitengam51.3900.072.016.1989.030.0
ox6_b etitengam78.2900.070.019.9892.163.1
ox7_a etitengam81.3920.008.025.0954.120.0
ox8_a etitengam42.3910.011.040.2955.020.0
ox8_b etitengam97.2900.011.067.6804.530.0
qz1 a 100.18 0.05 0.02 0.02 0.01 0.00 0.02 0.00 100.30 quartz
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Sample J13.22.10

Electron microprobe analysis (EMPA) points for sample J13.22.10.
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ID SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Total mineral idID SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Total mineral id
fsp1_a 52.37 0.06 28.84 0.96 0.15 12.86 4.00 0.27 99.51 plagioclase labradorite
fsp1_b 52.97 0.07 28.80 0.95 0.13 12.27 4.21 0.38 99.77 plagioclase labradorite
fsp1_c 53.17 0.06 28.46 1.05 0.12 12.50 4.56 0.36 100.28 plagioclase labradorite
fsp2 a 52 45 0 05 28 36 1 03 0 08 12 02 4 23 0 44 98 66 plagioclase labradoritefsp2_a 52.45 0.05 28.36 1.03 0.08 12.02 4.23 0.44 98.66 plagioclase labradorite
fsp2_b 51.78 0.05 29.00 0.97 0.10 12.98 3.74 0.31 98.93 plagioclase labradorite
fsp2_c 51.72 0.06 29.09 0.92 0.12 13.06 3.77 0.21 98.96 plagioclase labradorite
fsp3_a 53.07 0.06 28.59 0.85 0.09 12.20 4.45 0.35 99.67 plagioclase labradorite
fsp3 b 53 01 0 09 28 31 0 91 0 12 12 11 4 45 0 34 99 35 plagioclase labradoritefsp3_b 53.01 0.09 28.31 0.91 0.12 12.11 4.45 0.34 99.35 plagioclase labradorite
fsp3_c 51.31 0.04 29.72 0.89 0.10 13.22 3.60 0.26 99.16 plagioclase labradorite
fsp3_d 52.03 0.06 29.16 0.82 0.17 12.90 3.97 0.32 99.43 plagioclase labradorite
fsp3_e 50.72 0.05 30.15 0.88 0.10 13.68 3.63 0.24 99.47 plagioclase labradorite
fsp4 a 52 34 0 06 28 54 0 83 0 16 12 10 4 43 0 36 98 82 plagioclase labradoritefsp4_a 52.34 0.06 28.54 0.83 0.16 12.10 4.43 0.36 98.82 plagioclase labradorite
fsp4_b 51.32 0.06 29.11 0.81 0.11 12.73 4.05 0.31 98.49 plagioclase labradorite
fsp4_c 49.02 0.04 30.52 0.90 0.12 14.58 2.84 0.21 98.24 plagioclase labradorite
fsp4_d 51.36 0.06 29.08 0.83 0.14 12.87 3.96 0.27 98.59 plagioclase labradorite
ol1 a 53 27 0 32 1 11 18 86 0 45 23 90 2 04 0 00 100 00 pyroxene pigeoniteol1_a 53.27 0.32 1.11 18.86 0.45 23.90 2.04 0.00 100.00 pyroxene pigeonite
ol1_b 53.60 0.31 1.05 18.94 0.50 23.84 2.09 0.00 100.44 pyroxene pigeonite
ol1_c 52.86 0.37 1.27 18.13 0.41 23.62 2.16 0.01 98.95 pyroxene pigeonite
ol2_a 53.11 0.38 1.34 18.80 0.51 24.20 2.22 0.01 100.65 pyroxene pigeonite

l2 b 52 94 0 34 1 34 18 53 0 57 23 70 2 11 0 01 99 69 i itol2_b 52.94 0.34 1.34 18.53 0.57 23.70 2.11 0.01 99.69 pyroxene pigeonite
ol2_c 53.18 0.38 1.28 18.49 0.54 23.66 2.10 0.00 99.81 pyroxene pigeonite
ox1_a 0.84 0.75 88.25 0.15 0.08 90.38 magnetite
ox1_b 0.86 0.63 89.38 0.16 0.06 91.37 magnetite

1 0 88 0 46 87 99 0 12 0 02 89 71 titox1_c 0.88 0.46 87.99 0.12 0.02 89.71 magnetite
ox2_a 0.84 1.00 87.64 0.25 0.03 90.14 magnetite
ox2_b 0.90 0.66 88.51 0.13 0.03 90.50 magnetite
ox3_a 0.12 13.15 74.24 0.87 0.10 89.09 titanomagnetite
ox3_b 0.10 13.39 74.00 0.38 0.11 88.97 titanomagnetite
ox3_c 0.12 12.81 74.48 0.44 0.11 88.64 titanomagnetite
pxn1_a 50.73 0.72 2.98 10.96 0.33 15.14 19.21 0.32 0.01 0.04 100.70 pyroxene augite
pxn1_b 50.67 0.74 2.42 10.84 0.33 14.49 18.91 0.32 0.00 0.04 98.99 pyroxene augite
pxn1_c 50.84 0.65 1.96 10.51 0.27 15.18 18.26 0.30 0.00 0.01 97.98 pyroxene augite
pxn2_a 50.88 0.72 2.05 10.85 0.44 15.07 18.79 0.29 0.00 0.00 99.17 pyroxene augite
pxn2_b 51.23 0.73 2.05 11.31 0.27 15.27 18.44 0.30 0.01 0.03 99.68 pyroxene augite
pxn2_c 50.82 0.73 2.00 11.05 0.47 15.32 18.68 0.26 0.00 0.00 99.34 pyroxene augite
pxn2_d 51.23 0.71 1.77 11.21 0.39 14.93 18.53 0.30 0.00 0.00 99.14 pyroxene augite
pxn3_a 51.19 0.74 2.04 11.09 0.39 15.34 18.50 0.27 0.02 0.06 99.64 pyroxene augite
pxn3_b 50.33 0.79 3.22 11.09 0.24 14.30 19.32 0.25 0.01 0.00 99.75 pyroxene augite
pxn3_c 51.48 0.64 1.99 11.26 0.26 15.03 18.48 0.25 0.00 0.00 99.43 pyroxene augitep _ py g
pxn3_d 50.79 0.54 1.85 11.12 0.33 15.39 18.47 0.31 0.00 0.01 98.93 pyroxene augite
pxn4_a 49.61 0.84 2.95 11.17 0.31 14.98 17.72 0.29 0.00 0.00 97.95 pyroxene augite
pxn4_b 50.21 0.72 2.80 12.78 0.42 15.88 16.10 0.30 0.01 0.00 99.35 pyroxene augite
pxn5 a 51.33 0.57 2.09 9.85 0.35 15.85 18.64 0.26 0.00 0.03 99.07 pyroxene augitep _ py g
pxn5_b 51.21 0.60 2.37 10.26 0.46 16.23 17.46 0.23 0.01 0.06 99.05 pyroxene augite
pxn5_c 50.73 0.62 2.49 10.12 0.25 15.75 18.72 0.21 0.00 0.00 99.05 pyroxene augite
pxn5_d 51.23 0.51 2.12 10.23 0.33 16.13 18.33 0.25 0.02 0.00 99.22 pyroxene augite
pxn5 e 50.97 0.57 1.88 11.71 0.30 15.12 18.20 0.27 0.01 0.00 99.14 pyroxene augitepxn5_e 50.97 0.57 1.88 11.71 0.30 15.12 18.20 0.27 0.01 0.00 99.14 pyroxene augite
pxn5_f 50.55 0.85 2.15 11.54 0.30 14.68 18.04 0.34 0.01 0.00 98.57 pyroxene augite
pxn5_g 50.23 0.82 2.47 12.26 0.45 14.97 17.85 0.25 0.01 0.05 99.44 pyroxene augite
pxn6_a 51.07 0.57 2.26 9.78 0.29 15.55 18.61 0.29 0.01 0.02 98.52 pyroxene augite
pxn6 b 51 21 0 58 2 14 9 92 0 27 15 65 18 45 0 26 0 00 0 00 98 74 pyroxene augitepxn6_b 51.21 0.58 2.14 9.92 0.27 15.65 18.45 0.26 0.00 0.00 98.74 pyroxene augite
pxn6_c 50.61 0.54 2.39 10.29 0.29 15.59 19.01 0.22 0.00 0.03 99.09 pyroxene augite
pxn6_d 51.15 0.55 1.91 10.01 0.44 16.08 18.37 0.25 0.00 0.03 98.84 pyroxene augite
serp1_a 3.75 0.16 0.29 2.24 0.49 1.47 51.40 0.01 0.00 0.02 0.13 59.96 calcite
serp1 b 10 38 0 00 3 92 8 67 0 32 5 26 36 83 0 03 0 10 0 01 0 00 65 53 calciteserp1_b 10.38 0.00 3.92 8.67 0.32 5.26 36.83 0.03 0.10 0.01 0.00 65.53 calcite
serp1_c 0.60 0.00 0.24 2.88 0.25 0.18 54.19 0.01 0.00 0.03 0.08 58.47 calcite
serp1_d 1.52 0.16 0.16 1.49 1.94 1.61 51.69 0.08 0.02 0.05 0.09 58.80 calcite
serp2_a 5.06 0.02 2.03 4.77 2.97 45.45 0.03 0.02 60.35 calcite
serp2 b 4 59 0 03 0 79 2 84 2 05 48 82 0 00 0 02 59 16 calciteserp2_b 4.59 0.03 0.79 2.84 2.05 48.82 0.00 0.02 59.16 calcite
serp2_c 5.90 0.03 2.11 4.94 2.97 45.11 0.04 0.04 61.14 calcite
serp2_d 3.03 0.01 1.10 2.68 1.48 50.34 0.00 0.03 58.67 calcite
serp3_a 2.72 0.14 0.28 1.54 1.15 51.51 0.02 0.01 57.36 calcite
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serp3_b 13.82 0.04 4.89 10.84 6.88 31.31 0.12 0.14 68.03 calcite
serp3_c 1.24 0.00 0.33 1.17 0.69 53.36 0.00 0.01 56.79 calcite
serp3_d 0.98 0.00 0.25 0.84 0.35 54.21 0.00 0.00 56.64 calcite
serp4 a 2 80 0 06 0 36 1 81 1 32 1 74 49 94 0 00 0 00 0 03 0 00 58 07 calciteserp4_a 2.80 0.06 0.36 1.81 1.32 1.74 49.94 0.00 0.00 0.03 0.00 58.07 calcite
serp4_b 4.32 0.02 0.36 2.22 0.43 1.81 50.18 0.00 0.01 0.02 0.00 59.37 calcite
serp4_c 0.25 0.00 0.01 0.40 0.38 0.04 55.87 0.00 0.00 0.00 0.00 56.96 calcite
serp4_d 51.18 0.40 2.25 18.36 0.48 23.25 2.39 0.08 0.06 0.02 0.01 98.49 pyroxene pigeonite
serp4 e 3 01 0 12 0 66 2 16 0 72 1 33 49 81 0 04 0 01 0 01 0 00 57 87 calciteserp4_e 3.01 0.12 0.66 2.16 0.72 1.33 49.81 0.04 0.01 0.01 0.00 57.87 calcite
serp5_a 5.15 0.21 0.86 3.00 0.77 2.23 46.23 0.06 0.03 0.03 0.07 58.63 calcite
serp5_b 3.06 0.31 0.68 2.17 0.97 1.26 49.32 0.11 0.06 0.03 0.11 58.09 calcite
serp5_c 6.30 0.41 0.38 2.80 0.79 2.60 47.49 0.00 0.02 0.03 0.08 60.90 calcite
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Sample J13.21.10

Electron microprobe analysis (EMPA) points for sample J13.21.10.
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ID SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 F Total mineral_id
ap1_a 0.13 0.00 0.06 0.00 54.54 0.04 0.00 41.98 7.84 104.62 apatite
ap1_b 0.11 0.00 0.10 0.00 55.16 0.04 0.03 41.93 8.18 105.57 apatite
ap2_a 1.13 0.00 0.25 0.00 53.00 0.09 0.02 40.48 6.79 101.76 apatite
ap2_b 1.13 0.01 0.12 0.00 53.16 0.07 0.01 39.95 6.02 100.47 apatite
ap2_c 0.77 0.00 0.11 0.00 53.40 0.09 0.00 40.44 7.60 102.43 apatite
bi1_a 38.45 4.36 12.70 14.47 0.22 15.67 0.22 0.12 9.69 0.00 1.26 97.16 biotite
bi1_b 38.35 4.38 12.95 14.64 0.16 15.43 0.26 0.11 9.60 0.01 1.20 97.10 biotite
bi1_c 38.57 4.18 12.91 14.56 0.23 15.72 0.03 0.07 10.03 0.00 1.27 97.56 biotite
bi1_d 38.34 4.48 12.70 14.50 0.20 15.86 0.00 0.14 9.90 0.01 1.41 97.53 biotite
bi1_e 38.74 3.75 12.75 14.16 0.21 16.04 0.03 0.07 9.86 0.01 1.33 96.95 biotite
fsp1_a 70.15 0.00 15.57 0.06 0.01 0.07 1.67 12.21 99.74 mixed mineral
f 1 b 64 97 0 00 18 11 0 10 0 02 0 05 0 99 15 41 99 66 i li K f ldfsp1_b 64.97 0.00 18.11 0.10 0.02 0.05 0.99 15.41 99.66 microcline K-feldspar
fsp1_c 65.40 0.00 17.94 0.03 0.00 0.02 0.69 16.09 100.17 microcline K-feldspar
fsp1_d 64.21 0.02 17.94 0.38 0.00 0.01 0.37 16.53 99.45 microcline K-feldspar
fsp1_e 64.76 0.01 18.44 0.09 0.00 0.05 0.64 16.20 100.17 microcline K-feldspar
fsp2_a 64.90 0.00 17.99 0.15 0.00 0.01 0.86 15.98 99.89 orthoclase K-feldspar
fsp2_b 64.86 0.00 18.13 0.14 0.00 0.04 0.82 15.73 99.72 orthoclase K-feldspar
fsp2_c 64.97 0.00 18.00 0.08 0.03 0.07 1.79 14.58 99.52 orthoclase K-feldspar
fsp3_a 64.78 0.00 18.17 0.08 0.00 0.00 0.54 16.26 99.83 orthoclase K-feldspar
fsp3_b 65.27 0.01 18.43 0.15 0.00 0.04 1.09 15.65 100.63 orthoclase K-feldspar
fsp3_c 65.11 0.00 18.17 0.18 0.03 0.06 0.56 16.14 100.23 orthoclase K-feldspar
fsp4_a 68.38 0.00 19.34 0.00 0.00 0.34 11.21 0.03 99.30 plagioclase albite
fsp4_b 58.58 0.00 21.28 0.04 0.00 11.38 6.94 0.04 98.26 plagioclase andesine
fsp4_c 100.93 0.02 0.01 0.03 0.01 0.00 0.01 0.00 100.99 quartz
fsp4_d 100.61 0.02 0.01 0.00 0.00 0.02 0.02 0.01 100.68 quartz
fsp4_e 100.56 0.02 0.00 0.00 0.02 0.01 0.00 0.00 100.60 quartz
fsp5 a 100.99 0.01 0.01 0.00 0.01 0.02 0.03 0.00 101.07 quartzfsp5_a 100.99 0.01 0.01 0.00 0.01 0.02 0.03 0.00 101.07 quartz
fsp5_b 77.80 0.00 12.78 0.04 0.02 0.52 7.75 0.07 99.00 mixed mineral
fsp5_c 65.77 0.01 21.17 0.18 0.00 2.45 9.94 0.16 99.68 plagioclase albite
fsp5_d 66.19 0.00 20.36 0.07 0.00 1.60 10.55 0.09 98.86 plagioclase albite
fsp6_a 65.11 0.01 18.18 0.21 0.01 0.05 0.90 15.78 100.25 orthoclase K-feldspar
fsp6_b 65.60 0.00 18.58 0.21 0.00 0.03 2.20 13.76 100.38 K-feldspar
fsp6_c 65.63 0.00 18.28 0.16 0.00 0.03 2.10 14.19 100.41 K-feldspar
fsp6_d 65.67 0.01 18.46 0.12 0.00 0.09 2.23 13.82 100.40 K-feldspar
fsp7_a 64.83 0.00 18.20 0.03 0.03 0.04 0.53 16.38 100.05 orthoclase K-feldspar
fsp7_b 64.62 0.00 18.12 0.07 0.01 0.01 0.78 16.19 99.81 orthoclase K-feldspar
fsp7_c 65.04 0.00 18.40 0.40 0.00 0.26 4.83 10.10 99.04 K-feldspar
fsp8_a 64.77 0.00 18.08 0.09 0.00 0.02 0.52 16.52 100.00 orthoclase K-feldspar
fsp8_b 64.56 0.00 18.13 0.03 0.02 0.08 0.83 15.92 99.57 orthoclase K-feldspar
fsp8_c 64.58 0.00 18.28 0.03 0.02 0.05 0.42 16.64 100.00 orthoclase K-feldspar
fsp9_a 68.67 0.01 19.83 0.00 0.00 0.40 11.37 0.06 100.34 plagioclase albite
fsp9_b 61.69 0.00 23.87 0.46 0.08 0.30 8.44 3.41 98.26 sanidine
f 9 67 59 0 01 20 37 0 03 0 02 0 48 10 86 0 38 99 75 idifsp9_c 67.59 0.01 20.37 0.03 0.02 0.48 10.86 0.38 99.75 sanidine
ox1_a 0.02 0.07 93.12 0.18 0.02 93.47 magnetite
ox1_b 0.05 2.39 89.92 0.18 0.05 92.59 magnetite
ox1_c 0.01 0.11 93.00 0.18 0.01 93.35 magnetite
ox1_d 0.02 0.09 93.30 0.24 0.03 93.68 magnetite
ox1_e 0.05 3.80 89.06 0.11 0.02 93.10 magnetite
ox1_f 0.06 0.42 92.60 0.14 0.04 93.27 magnetite
ox2_a 0.00 0.07 93.37 0.07 0.02 93.62 magnetite
ox2_b 0.01 0.53 93.09 0.03 0.00 93.72 magnetite
ox2_c 0.02 0.17 93.22 0.03 0.01 93.47 magnetite
ox3_a 0.02 0.12 93.20 0.08 0.00 93.42 magnetite
ox3_b 0.03 0.11 93.67 0.00 0.00 93.82 magnetite
ox3_c 0.04 0.07 93.41 0.05 0.00 93.60 magnetite
qz1_a 100.81 0.01 0.05 0.14 0.00 0.01 0.00 0.00 101.03 quartz
qz1_b 100.97 0.02 0.01 0.05 0.03 0.00 0.03 0.00 101.11 quartz
qz1 c 101 00 0 01 0 00 0 17 0 01 0 00 0 00 0 00 101 19 quartzqz1_c 101.00 0.01 0.00 0.17 0.01 0.00 0.00 0.00 101.19 quartz
qz2_a 100.92 0.02 0.03 0.05 0.00 0.00 0.03 0.01 101.06 quartz
qz2_b 100.41 0.01 0.01 0.00 0.02 0.00 0.00 0.01 100.46 quartz
qz3_a 100.69 0.04 0.00 0.00 0.00 0.01 0.01 0.02 100.77 quartz
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qz3_b 100.69 0.00 0.02 0.00 0.02 0.02 0.00 0.01 100.77 quartz
qz3_c 100.51 0.01 0.01 0.04 0.00 0.01 0.00 0.00 100.58 quartz
un1_a 0.03 40.12 0.00 52.09 3.11 0.01 0.43 0.07 0.02 0.00 0.00 95.88 ulvospinel
un1_b 0.02 48.26 0.00 44.56 1.67 0.04 0.25 0.03 0.01 0.00 0.01 94.86 ulvospinel
un1_c 0.04 73.48 0.00 24.84 0.34 0.00 0.17 0.01 0.01 0.00 0.02 98.92 ulvospinel
un2_a 30.32 35.80 1.99 1.50 0.06 0.00 27.85 0.07 0.11 0.01 0.70 98.40 titanite
un2_b 30.32 34.79 3.37 1.13 0.02 0.00 28.42 0.02 0.05 0.23 0.67 99.02 titanite
un2_c 26.66 37.51 1.54 8.54 0.24 0.08 24.74 0.05 0.02 0.01 0.46 99.86 titanite
un3_a 0.03 59.01 0.00 34.88 5.36 0.09 0.14 0.00 0.01 0.00 0.00 99.53 ulvospinel
un3_b 0.01 47.60 0.00 42.79 9.95 0.13 0.19 0.03 0.02 0.00 0.03 100.74 ulvospinel
un3_c 11.03 45.51 0.52 26.39 7.48 0.09 9.45 0.03 0.01 0.15 0.20 100.87 titanite

3 d 1 22 12 82 0 72 81 47 0 33 0 83 0 08 0 01 0 00 0 00 0 00 97 48 tit titun3_d 1.22 12.82 0.72 81.47 0.33 0.83 0.08 0.01 0.00 0.00 0.00 97.48 titanomagnetite
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