
THE UNIVERSITY OF HULL 

Finite Element Analysis of Conformal Contacts in Water Hydraulic 
Axial Piston Pumps incorporating Advanced Ceramic Materials. 

being a Thesis submitted for the Degree of 

Doctor of Philosophy 

in the University of Hull 

by 

Jennifer McConnachie, BEng (Sheffield), MSc (Strathc1yde) 

December, 1995 



... 
". 

ABSTRACT 

The use of water as a hydraulic fluid in a pump necessitates the use of conformal 

contacts to reduce the high rates of wear and leakage losses that result from the low 

viscosity and lubricity of water. Swashplate type axial piston pumps are ideal in this 

respect because they incorporate such conformal contacts. Furthermore, the 

development of such a pump for use with water, especially sea-water, critically relies 

on the correct selection and application of materials. 

The purpose of this research work is firstly to examine the contact conditions 

within an axial piston pump for a range of sleeved and lined components 

manufactured from a variety of different materials. The use of finite element analysis 

with gap elements is a useful way of determining the contact pressure distribution 

between conformally contacting components. It is shown that this method gives 

excellent agreement with available analytical methods for the two-dimensional 

cylindrical and axisymmetric spherical cases, and thus can be extended to layered 

components. Extension to three dimensions, when the contact cannot be accounted 

for by plane strain or plane stress conditions, is also possible, allowing a much more 

representative analysis of the contact conditions within an axial piston pump. No 

single combination of materials is identified as being the most suitable, rather, the 

method enables the consequences of choosing materials for their tribological 

characteristics to be examined. 

Once the contact conditions are known within the pump it is then possible to 

more accurately design the pump components. However, conventional deterministic 

methods are not appropriate for designing ceramic components, due to the inherent 

scatter of limiting defects, and statistical methods are necessary. Thus the second part 

of this research work is aimed at reviewing and examining the different probabilistic 

design methods with the long-term view of determining which, if any, are best suited 

to the design of ceramic components in this particular application. It is conduded 

that no single method adequately predicts the probability of failure of ceramic 

specimens with more complex stress distributions than four-point flexure bars. 
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CHAPTER! 

INTRODUCTION 

1.0 INTRODUCTION 

This chapter describes the background to the work contained in this thesis: the 

development of water hydraulics, the advantages and disadvantages of using water as 

a hydraulic fluid and the Water Hydraulics project at the University of Hull. It 

concludes by outlining the objectives of the research which is concentrated on 

conformal contact analysis and ceramic component design, and its relationship to the 

Water Hydraulics project. The scope of work, including conformal contact analysis 

and ceramic component design, is outlined. 

The development of analytical and numerical solutions to the problem of 

conformal contact are reviewed in the following chapter. Particular reference is made 

to the more recent developments of finite element analysis in contact problems and 

the analysis of layered components. The problems of designing with ceramic 

materials are then discussed along with a review of the solutions to those problems 

reached by various authors. 

The reviews are followed by two- and three-dimensional finite element 

analyses of cylindrical and spherical components in conformal contact. This is to 

allow verification of the method against known solutions and to assess the effects on 

the contact pressure distribution of using sleeve and liner materials of different 

properties and thicknesses. 

The contact pressure distributions from the above analyses are then used as 

loading on finite element models of the cylinder block, pistons and slippers of axial 

piston pumps. Separating the contact analysis from the component models allows 

more complex models to be created than would otherwise be the case. 

The statistical analyses required to design ceramic components demand a 

knowledge of the stress distribution in the entire component and that the component 

is discretised into elements of known volume or area. Finite element analysis is 

ideally suited to this purpose and is applied to a number of ceramic specimens and 

components allowing a prediction of their probability of failure using a variety of 

failure criteria and flaw shapes. 
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The results of all the above analyses are discussed with particular reference to 

designing components for use in water hydraulic axial piston pumps. Conclusions are 

drawn and suggestions made for further work which would be useful in these areas. 

1.1 THE DEVELOPMENT OF WATER HYDRAULICS 

The word hydraulic is itself derived from Latin, where hydro=water and aulos=pipe. 

In 1876 the first UK public water-based hydraulic power system was installed in Hull 

and in the late 1800s, Armstrong undertook pioneering work using water for power 

transmission and developed water powered cranes, lock gates and swing bridges 

(Routledge, 1876). 

However, the pressures used in early water hydraulic systems were relatively 

low and the size of the equipment usually large. The emergence of the mineral oil 

industry in the 1900s provided hydraulic fluids with much better characteristics than 

water. In particular, they offered better lubrication and higher viscosity which meant 

lower leakage rates and higher allowable contact loads. The risk of fire in high 

pressure oil systems led to the introduction of water/oil mixtures in the 1940s, 

allowing existing equipment to be used with minimum modification. Initially these 

were 40/60 water/oil mixtures, but they have gradually been improved to the 95/5 

mixes which are available today. These high water-based fluids (HWBF) contain 

additives to minimise wear that would otherwise occur but equipment using these 

fluids must still operate at a reduced level of performance compared to equivalent oil 

based systems. 

The current interest in using raw water as a hydraulic fluid results from its 

low cost, plentiful supply, low pumping viscosity and numerous safety advantages. 

However, early experience with high water-based fluids showed that replacing 

mineral oil with pure water would not be a trivial task. Knowledge of material 

science and the development of new engineering materials, especially non-metallic 

materials, has increased significantly over recent decades. In particular, a greater 

understanding of the tribological properties and performances of the different 

materials combined with more information on the contact characteristics of different 

component geometries now means that it is possible to design practical hydraulic 

systems to accommodate the low viscosity and poor lubricity of water. 

1.1.1 Mining 

One of the prime movers in the development of water hydraulics was the mining 

sector, because of the risk of fire with mineral oil-based hydraulics. In addition, some 

mines have the advantage of abundant natural sources of water at pressures and 
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flowrates suitable for a wide range of hydraulic power systems. For example, the 

natural head at the bottom of a coal mine can be 150 bar in some of the deeper UK 

mines and nearly 400 bar in the deepest South African gold and diamond mines, 

completely removing the need for hydraulic power pumps. 

Wymer (1979) described a variety of prototype machines which were 

operating on fluids with a high water content in South African gold mines. He 

recognised that increasing use of mine service water as a hydraulic fluid should be 

made but reported that, at that time, neither dilute oil-in-water emulsions nor water 

itself were suitable for use with the majority of conventional hydraulic components. 

He outlined many of the disadvantages of using water including corrosion, cavitation 

and wear problems. He recommended the use of hard-on-hard materials to avoid 

erosion problems and reduce compressibility losses. To reduce cavitation he 

suggested two approaches: careful design of geometry and appropriate material 

selection. Wymer said that axial piston pumps had emerged as the most encouraging 

type for use with dilute emulsions but that they had little chance of operating 

satisfactorily on water, leaving low speed plunger pumps as the only alternative. 

Knight (1977) reported on the potential of using water-based hydraulic 

systems in the UK coal mining industry where fire risks limit the use of flammable 

hydraulic fluids. He also emphasised the corrosiveness of water, particularly with 

ferrous materials and recognised that surface finish and conformity are critical. 

1.1.2 Offshore applications 

Water hydraulics does not solely include the use of fresh (e.g. tap-, river- or mine-) 

water but also sea-water. The use of sea-water hydraulics can provide many 

advantages over conventional oil-based systems in a number of offshore applications, 

both on surface vessels and platforms and subsea. Oil-based subsea hydraulics can be 

complex because the viscosity of oil varies with temperature and pressure (i.e. depth 

subsea), as does the bulk modulus; thus the characteristics of the oil and hence the 

equipment can vary significantly. In addition, pressure compensation is usually 

required for all but shallow depths to balance the normal hydrostatic pressure. The 

use of a sea-water hydraulic system could provide subsea tools for divers or for 

remote robotic manipulator systems, without the need for hydraulic tanks and 

umbilicals. There would also be no pressure losses associated with hoses from the 

surface, no risk of contamination and improved handling by elimination of the return 

line. Similar sea-water applications under consideration include integrated tool and 

propulsion systems on submersibles. 

Terada et al (1984) reported on the development of a high pressure sea-water 

pump for use as the power source for an underwater machine system. The study was 
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undertaken for the Ship Building Research Association of Japan and subsidised by 

the Japan Foundation for Ship Building Advancement. They employed an axial 

plunger type of pump with ceramic materials for the cylinders and plungers to 

'minimise wear and corrosion caused by silt-contaminated sea-water and to enable 

high speed pumping with close clearance sealing'. Since the plungers slid at high 

speed a high wear resistance was required for the materials, as well as corrosion 

resistance in sea-water, hence the choice of ceramics. They reported that high 

precision finishing was needed and thus the ceramics were assessed for ease of 

finishing as well as wear resistance and anti-corrosion characteristics. They chose 

alumina for the cylinder and alumina-titania for the plunger. Natural sea-water was 

used for the testing but the pump contained some oil lubricated parts. 

Yoshinada et al (1991) reported on a large scale Research and Development 

project at Komatsu called 'Advanced Robot Technology in the Hazardous 

Environment', part of which included a sea-water hydraulic actuator system 

consisting of sea-water hydraulic instruments for a subsea manipulator. The 

manipulator consisted of a sea-water pump, a joint actuator and a servo valve. They 

reported that a sea-water hydraulic system cut the size and weight of a subsea robot 

because the hydraulic tank, drainage pipes and pressurising chambers were 

eliminated. The pump was tested on raw water and artificial sea-water to a pressure 

of 200 bar, with the bearings and frictional parts composed of carbon fibre reinforced 

polymer (CFRP) and ceramics. 

Another most promising offshore application is an autonomous subsea control 

system. Instead of using conventional hydraulics to operate a remote well-head, by 

pumping hydraulic fluid several kilometres under the sea through an umbilical, a 

power source and pump could be positioned at the well head to operate on sea-water. 

There would be no need for the flow and return of the hydraulic fluid, and possibly 

no need for the umbilical at all if the system were controlled remotely. Loth and 

Walker (1993) reported that the financial benefits of such a system would be 

significant, and the exploitation of marginal fields would become attractive. 

For surface vessels, and oil and gas process platforms, the introduction of raw 

sea-water hydraulics has the potential to improve operational safety, with the fluid 

power system integrating with the high pressure water cleaning system and possibly 

parts of the fire control system. 

1.1.3 Fire and rescue 

The use of water hydraulics for fire and rescue systems on land was one of the 

earliest successful commercial applications of water hydraulics. A high pressure 

water curtain is used to extinguish the fire and then appropriate water-powered 
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cutting and spreading tools are attached to the power unit as required. With such a 

tool the fire service can quickly cut through the roof and door pillars of a car for 

example and release its occupants (Usher, 1994). 

The FirespearTM system has also been developed where a water motor is used 

to drive a cutter which can penetrate an aircraft's fuselage and then discharge high 

pressure water inside the cabin. The water is used to power a cutting head which cuts 

through the skin or windows of the aircraft (in typically 10 seconds); having pierced 

the skin, water is then sprayed from the tip of the tool in a fine spray to prevent fire 

from spreading and to suppress the smoke without the additional hazard of oil-based 

equipment. 

1.1.4 Others 
Other potential applications of water hydraulic technology include robots in the 

nuclear industry, food processing machinery, chemical and drug manufacture, the 

water supply industry, steel and glass production, injection moulding and die casting. 

However, at the present time, when the costs of water hydraulic systems are still 

relatively high and components are not so readily available as those of oil hydraulic 

systems, water hydraulics are generally only considered when there are 

environmental, safety or contamination risks, or where of course they are expected to 

outperform oil-based systems. 

1.1.5 Axial piston pumps and motors 

It has become established that piston type pumps and motors are preferred for water 

hydraulic systems because of the requirements of high power density and simple 

symmetric component shapes based on conformal contact. Such a pump is the focus 

of the work contained in this thesis. The basic geometry of an axial piston pump is 

shown in figure 1.1.1. A cylinder block containing a number of bores is coupled to a 

drive shaft with each bore containing a piston supported by a slipper bearing on a 

swashplate. The swashplate is inclined at an angle relative to the shaft, and as the 

shaft is turned the slipper slides on the swashplate causing the piston to reciprocate in 

the bore. As the piston moves out of the bore, fluid is drawn in though the cylinder 

port from the inlet slot of the port-plate. The situation is reversed as the piston moves 

in to the bore, and the fluid is forced out of the cylinder port through the outlet slot of 

the port-plate. A continuous pumping action is established when all the pistons 

follow this cycle causing pressure to be raised as the outlet line is subjected to 

restriction. If the action is reversed and water forced into the unit, then it operates as 

a motor. 
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liner slipper seat slipper pad 

port plate ---r-r--v 
casing 

cylinder block slipper swashplate 

FIgure 1.1.1 Schematic layout of an axial piston pump. 

1.2 WATER AS A HYDRAULIC FLUID 

This section considers the basic physical properties of water and compares them to 

those of mineral oil. Table 1.1.1 summarises the resulting advantages and 

disadvantages of raw water used as a hydraulic fluid. 

Advantages Disadvantages 

low viscosity 
low viscosity 

plentiful supply 

non-flammable 
poor lubricity 

low cost 
narrow temperature range 

incompressible 
heavy 

fi re resistant 
cavitation 

contamination tolerance 
bacterial contamination 

non-polluting 
corrosive 

good heat transfer properties 

Table 1.1 .1 Advantages and disadvantages of water as a hydraulic fluid. 
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1.2.1 Viscosity 

The low viscosity of water compared to that of oil can be considered an advantage 

and a disadvantage. Figure 1.2.1 shows the variation of the viscosity of water and a 

typical hydraulic oil with temperature and pressure. The low viscosity of water leads 

to a sizeable reduction in friction and energy losses in pipes and hoses, but in contrast 

a higher rate of leakage through a given opening. 

The viscous losses in pipes and hoses together with the shear losses in 

bearings represent a significant proportion of the energy lost in hydrostatic 

transmissions. Thus, energy losses in pipes might be up to 50% less with water than a 

comparable oil system, because of the decrease in viscous forces. 

Increased internal leakage resulting from the low viscosity leads to a reduced 

total flow and therefore reduced volumetric efficiency. To minimise the leakage, 

leakage paths should have minimum cross-sectional areas but maximum leakage 

lengths. In addition, accurate manufacturing tolerances must be maintained under all 

operating conditions if the clearances are to remain small. This is best achieved by 

conformal geometries which allow for minimum clearances and minimise the relative 

movement and change in shape of the contacting surfaces. Using these techniques 

volumetric efficiencies of water pumps and motors of more than 95% can be 

achieved and with the plentiful supply, low cost and non-polluting nature of raw 

water, reduced efficiency is not the problem it would be with oil-based systems. 

Low viscosity also increases the difficulty of developing hydrodynamic films 

between moving components, particularly at low speeds. Oil has a positive pressure­

viscosity coefficient and therefore an increase in its viscosity is seen when it 

experiences the high pressures generated in non-conformal contacts, such as in gears, 

cams and rolling element bearings, and this is vital in keeping the contacting surfaces 

100 15 
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til typical oil 

til 
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0 ~ 
u :> 
til .~ ;> 
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water 

0.1 0 
20 40 60 80 100 120 0 50 100 150 

Temperature, C Pressure, MPa 

Figure 1.2.1 Effect of temperature and pressure on the viscosity of water and oil. 
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apart. The negligible pressure-viscosity coefficient of water means that such 

elastohydrodynamic lubrication is unlikely to occur, especially with hard materials. 

The different viscosity also directly affects the operating characteristics. For 

example, the viscosity of the fluid effects the pressure overshoot and undershoot 

during the opening and closing of the cylinders of axial piston pumps. A 20% 

reduction in such pressure fluctuations was reported by Edge and Darling (1989) 

when the viscosity of the fluid was decreased from 100 cSt to 20 cSt. A low viscosity 

fluid is advantageous however from the point of view of quick response times of the 

equipment, the necessary pressures are attained significantly faster with systems 

using water than those using oil-based fluids. 

1.2.2 Bulk modulus 
Figure 1.2.2 shows that the bulk 

modulus of water is higher than that of 

a typical mineral oil, but they both 

increase marginally with pressure. The 

higher stiffness of water means that a 

reduction in the compressibility losses 

in piston pumps can be expected when 

water is used, and since much of the 

total efficiency losses in axial piston 

pumps is due to the compressibility of 

the fluid, this effect may be 

significant. Ifield (1974) reported a 

reduction in compressibility losses by 

typically 25% when changing from oil 

to water. 

3 
'2 water Q.,. 

0 

~ 
'-' 

2 ~ 
"S 
'Q 
0 
El 1 
~ ::s 
I=Q 

0 
0 25 50 75 100 

Pressure, MPa 

Figure 1.2.2 Effect of pressure on the 
bulk modulus of water and oil. 

The stiffness of the fluid also effects the pressure overshoot and undershoot as 

the cylinders of axial piston units are opened and closed. For example, a phosphate­

ester based fluid with a bulk modulus and density similar to that of water was 

predicted by Edge and Darling (1993) to lead to an increase in these pressure 

fluctuations of approximately 25% compared to oil but a reduction in the flow ripple 

of 15%. A related effect is seen when the flow is completely interrupted in water­

based systems. A high pressure ripple is experienced which can cause adverse 

problems for relief valves and seals, and ideally some form of pulsation damping is 

required. 
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1.2.3 Lubrication 

The poor lubricity of water is clearly one of its major drawbacks, and will lead to 

increased contact, friction and wear of contacting components. Mineral oils contain 

additives which aid in the boundary lubrication of contacting surfaces permitting 

metal-on-metal contact without large amounts of surface damage or wear. Raw water 

contains no such additives and is very poor in boundary lubrication, so that any 

metal-on-metal sliding will result in high friction and wear. 

Wymer (1979) and other early users of water-based fluids in axial piston 

pumps reported wear as one of the greatest problems. More recently, this has been 

overcome for clean raw water systems by careful design and selection of materials 

but it is still a problem for applications wishing to use 'dirty' water, for example 

mine-water or sea-water. Carbon fibre reinforced polymers have been used 

successfully against steel or ceramic materials in raw water provided surface finishes 

are tightly controlled to reduce contact friction. The polymer-on-ceramic combination 

has been used with some success in sea-water and it is possible that ceramic-on­

ceramic contact may prove to overcome wear and erosion problems in this more 

aggressive environment. 

1.2.4 Thermal properties 
The heat generated in water-based hydraulic fluids is significantly less than that 

generated in oil hydraulic fluid because of the reduction in viscous friction and 

compressibility losses. In addition, the higher density and specific heat of water 

compared to oil means that it is more efficient at removing heat from components. 

These are important considerations if materials with low thermal conductivities such 

as polymers and ceramics are used to accommodate the poor lubricity of water. 

Water has a relatively narrow operating temperature range and this could be a 

problem in certain applications. The problem of freezing of the water can be 

overcome by using anti-freeze, but that contradicts one of the primary aims of water 

hydraulics, i.e. to use raw water without additives. Alternatively, those applications 

which might experience freezing could use low energy trace heating as required to 

maintain a minimum temperature, or they could be kept operational at those times 

when freezing was likely to occur. 

1.2.5 Cavitation 

Water has a relatively high vapour pressure compared to oil, and cavitation is likely 

to occur somewhere in a water hydraulic system. Also, because water has a low 

viscosity and a relatively high bulk modulus, it is particularly prone to cause 

cavitation erosion damage. The vapour pressure of mineral oils is negligible, and 
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consequently cavitation damage is not a significant consideration in the design of oil­

based systems, and thus oil systems converted to use water often fail prematurely due 

to cavitation. 

Cavitation can be minimised by the use of appropriate materials and suitable 

geometric design to eliminate bends and sharp comers in the design of components. 

Using a boost pressure should prevent its occurrence at the port-plate and rear face of 

the cylinder block of axial piston pumps but this may not be desirable in many 

operational situations and increases the complexities of the units. 

1.2.6 General considerations 
In water hydraulic units, individual component parts will perform either a structural 

or contact function, or quite often a combination of both. From the point of view of 

manufacture and assembly of the units, the fewer the number of components and the 

simpler their configuration, the cheaper the units will be. Thus if a material can 

satisfy both functions, it appears very attractive in the selection process. Of course, 

those materials required for contact functions cannot be considered in isolation, it is 

the performance of the material pair that is important and the geometry of the 

contacting surfaces is critical in determining the contact loads. 

1.3 WATER HYDRAULICS AT THE UNIVERSITY OF HULL 

This section describes the more immediate background to the water hydraulics 

project at the University of Hull of which the work contained in this thesis forms a 

part. A large number of papers and reports have resulted from the work and are listed 

in Appendix I. Consequently this section summarises the background to the Water 

Hydraulics project and the principal results which were not central to the research 

described in this thesis. 

1.3.1 Background 
Some fifteen years ago the Department of Trade and Industry (DTI) supported a 

programme of work at the National Engineering Laboratory (NEL) on the 

introduction of new materials and surface treatments in power transmission systems. 

The programme of work was oriented towards incorporating plastics in pumps and 

motors, pumping low lubricity (water) type fluids. The test vehicle used to evaluate 

suitable candidate material combinations was an adaptation of a conventional nine 

cylinder axial piston swash plate pump. All moving interfaces were combinations of 

plastic to either treated or untreated stainless steel. 
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Shell and Esso then placed a substantial contract with the NEL to develop a 

range of subsea tools and a subsea power pack, using the technology available. The 

first tool chosen was a fairly traditional grinding tool with the hydraulic motor 

integrated into the body of the tool. It was accepted that the motor should work 

entirely on sea-water, with no oil interface. As the programme developed Shell and 

Esso extended it to produce a tool that would stretch the current 'state of the art'. An 

Industrial Exchange Group, consisting of six British companies, was established to 

advise on details of the programme. J H Fenner pIc were one of the companies and 

after a period of negotiation and assessment, they acquired the rights to both the NEL 

and Shell technology. In order to transfer the technology to the market place, Scot­

Tech, a wholly owned Fenner subsidiary, was set up. Scot-Tech subsequently became 

Fenner Water Hydraulics. 

In 1989, the DTI funded a collaborative project under their Support for 

Innovation (SFI) involving J H Fenner and the Department of Engineering Design 

and Manufacture at the University of Hull. The latter was given the particular aim of 

demonstrating the advantages of using advanced engineering ceramics in water 

powered pumps and motors for use with plain tap-water and sea-water. 

The work at the University was focused in three main areas - the selection and 

testing of materials and material combinations suitable for use with water, the design 

and analysis of the pump and components, and pump testing. 

1.3.2 :Material selection and screening 

Selection of the right materials was seen as vital to the development of a successful 

water hydraulic pump, hence a programme of tests was carried out on specially 

designed equipment. Existing proprietary tribological equipment was considered but 

it was eventually decided to design and build testing facilities capable of providing 

conditions of operation closer to the high speeds and loads in the pump itself. 

A series of cavitation erosion resistance tests was conducted on potentially 

useful metallic, ceramic and polymeric materials with an ultrasonic vibratory device. 

A chart of the results is shown in figure 1.3.1. Apart from alumina, the ceramic 

materials tested all exhibited good resistance to erosion and there was no significant 

difference in the erosion resistance of the ferritic or the martensitic stainless steels. 

Of the polymers tested, polyether-ether-ketone (PEEK) with 30% carbon fibres 

(FC30 grade) behaved best. Throughout the rest of this thesis this material will be 

referred to simply as PEEK. 

A pad-on-plate test rig as shown in figure l.3.2a was designed to examine the 

wear rate of potential slipper pad/swash-plate material combinations under realistic 

conditions of speed, load and geometry. Actual pump components were used in the 
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Figure 1.3.1 Cavitation erosion test results. 

testing programme with the piston/slipper assembly loaded hydrostatically against the 

rotating swash plate. It was established that PEEK slippers against a PSZ swash plate 

gave comparable wear performance to that of PEEK on stainless steel under clean 

fresh-water operating conditions (Brookes et ai, 1995). 

The pad-on-plate rig design was subsequently modified (figure 1.3.2b) to 

assess the compatibility and wear rates of ceramic pairs. Specimens were in the form 

of 10 mm diameter pins with hemispherical ends loaded against a rotating disc 

submerged in water. Preliminary tests produced several promising pairs (Brookes et 

ai, 1995). 

shaft speed 
1500 rev/min 

a) pad-on-plate test rig 

piston 

shaft speed 
1500 rev/min 

b) hi-pod test rig 

Figure 1.3.2 Material pair screening test rigs. 
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1.3.3 Pump testing 
A pump with ceramic pistons and swashplate was developed and tested on a closed­

circuit tap-water rig boosted by a centrifugal pump with filtration at 25 Jlm 

(nominal). On-line performance was monitored using a programmable logic 

controller and a logging computer that recorded all the operational parameters such 

as pressure, temperature, leakage and volumetric efficiency. The pump was run 

successfully for a total of over 700 hours (over 60 million cycles) on tap-water of 

which 530 hours were over 100 bar 

and 260 hours over 140 bar. The rig 

was then modified to run on untreated 

sea-water to progressively increase the 

aggressive nature of the operating 

environment. The pump ran for over 

100 hours at 140 bar with 40 Jlm 

filtration and underwent stop:start 

tests at maximum speed with no 

significant degradation of the ceramic 

and polymeric components. After the 

filtration was increased to 120 Jlm a 

catastrophic failure was observed, 

precipitated by failure of the modified 

stainless steel cylinder block. 

However, the ceramic pistons 

completed over 107 cycles with no 

evidence of degradation. 

1.4 DESIGN AND ANALYSIS 

The complexity of the pump and the 

many interactions between the 

different components led to the 

decision to develop computer models 

of the pump to allow an evaluation of 

the effects of any design changes or 

material substitutions to be made. The 

design and an~lysis is undertaken in 

five stages as illustrated in figure 

1.4.1. 
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1.4.1 Geometry designer 

The geometry designer is the first in 

the series of programs. It is used 

primarily to allow the rapid 

development of geometric information 

that is required for input to the timing 

analysis and force analysis. Initially 

the program was used to avoid 

erroneous input to the force analysis 

but it became obvious that whilst basic 

error checking was valuable the 

method could be extended to include 

more sophisticated rules to aid the 

designer (Radcliffe et ai, 1993). 

The rules are based on a 

standard parametric design of axial 

piston pump, and although each rule is 

Figure 1.4.2 Cylinder block bores on 
pitch circle diameter. 

simple, when many are used together they provide a powerful method of design 

optimisation. When the data is input the program constrains the values within a given 

range by rules which prevent dimensions being specified which may cause 

component interference. For example, consider n bores placed around a pitch circle 

diameter of a cylinder block as in figure 1.4.2. Neglecting the curvature of d I' 

d2n <nd l 

otherwise the bores will overlap. The wall thickness, t, between the bores is given by 

dIn - d2n 
t= 

n 

If the wall thickness around a bore is assumed to be constant then the outside 

diameter and a maximum inner diameter of the cylinder block can then be calculated 

as follows 

d3 = d l +d 2 +2t 

The geometric information generated is used as input to the timing analysis 

and subsequent force analysis. 
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1.4.2 Timing analysis 
The timing of an axial piston pump 

controls the transition of cylinder 

pressure between delivery and boost 

pressure. The design of the port plate 

(see for example figure 1.4.3) has a 

major effect on the pressure cycle of a 

cylinder. An incorrectly 'timed' pump 

can lead to large pressure overshoots 

on the delivery stroke and pressure 

undershoots, resulting in cavitation on 

the suction stroke (Edge and Darling, 

1986; Martin and Taylor, 1978; 

Helgestad et aI, 1974). 

Geometric information from 

the geometry designer is input directly 

to the timing analysis program, which 

Figure 1.4.3 Port plate. 

silencing 
groove 

lraPl?ing 
regIOn 

uses theoretical considerations and measured leakage to calculate bore pressure 

against rotation angle for various port plate geometries and operating parameters 

(Radcl iffe, 1992). 

Figure 1.4.4 shows a graph of cylinder bore pressure versus rotation angle for 

two designs of port plate. The dotted line shows an ideally timed port plate, where 

the pressure rises and falls to the required high and low pressure values without any 

undershoot or overshoot. When the silencing grooves are omitted, a pressure 

undershoot and overshoot occurs as illustrated by the solid line. Cavitation damage 

may occur on the cylinder block or port plate as a result of the undershoot, whi le the 

overshoot will lead to unexpectedly high stresses and possible premature failure of 

the pump's components. 

,....... ... 
'" .0 
'-"' 
d) ... 
::s 
v> 
til 
d) ... 
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, 
120 ' ideaf timing-.! , 
80 

, , , , , , 
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0 
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rotation angle, a (degrees) 

Figure 1.4.4 . Bore pressu~e ~ersus rotation angle 
predicted by the IlTrung analysis. 
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1.4.3 Force analysis 
The force analysis uses input from the geometry designer and timing analysis and 

creates a parametric mathematical model of the key axial piston pump components. 

All contacts within the pump are assumed to be mechanical except for the port 

plate/cylinder block interface. These loads are calculated from a knowledge of the 

pressure distributions on the lands, which are then summed over the area to give a 

resultant force (Saitchenko, 1963; Shute and Turnbull, 1963a1b). 

The force analysis thus predicts the internal reactions for all the components 

and calculates the position vectors of the components and forces and reactions by 

considering the equilibrium of each component. The driving forces for the model are 

the pressure in the bores above the pistons and the inertia forces due to the 

reciprocating and rotating parts. The bore pressure is determined in the timing 

analysis program whilst the inertia forces are calculated using the masses of the 

moving parts and the velocities of the components. For example, figure 1.4.5 shows 

the loading and reaction forces on the cylinder block. Considering force equilibrium: 

LE161 + LEJ7 I + LE201 + L E 31 + LE101 + L E 9h + E37 + E38 + fi42 + fi 46 + E.99 = 0 

and moment equilibrium: 

L(!21 Xfi I6/ )+ L(!51 Xfi J7/ )+ L<!m Xfi 9h )+(!31 Xfi 37 )+(!32 Xfi3S )+(!36 Xfi 42 )+ 

L(!171 x E 201 )+(!38 X E 46 ) + L(!181 X E 3/ ) + 2:(!181 x fiJO/) +(!99 X E 99 ) = 0 

The above force and moment equations are solved for 8.37 ' 8.38 ' &2 and 8.20!, 

1.4.4 Finite element analysis and ceramic design analysis 

This part of the Design and Analysis program is the core of the research work 

described in this thesis. The main objectives of the research are outlined in the 

following section. 
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1.5 PROJECT OBJECTIVES 

The use of water as a hydraulic fluid in a pump or motor necessitates the use of 

conformal contacts to reduce the high rates of wear and leakage losses that would 

otherwise result from the low viscosity and lubricity of water. Swashplate type axial 

piston pumps and motors are ideal in this respect because they only incorporate such 

conformal contacts. Furthermore, the development of such a pump for use with 

water, especially sea-water, critically relies on the correct selection and application of 

materials. At the present time, ceramics and polymers have been identified as the 

most promising materials. 

Therefore, the purpose of this current research work is firstly to examine the 

contact conditions within an axial piston pump for a range of sleeved and lined 

components manufactured from a variety of different materials, which involves a 

fundamental study of the contact of conformally contacting layered surfaces. 

Once the contact conditions are known within the pump it is then possible to 

more accurately design the pump components. However, conventional deterministic 

methods are not appropriate for designing ceramic components, due to the inherent 

scatter of limiting defects, and statistical methods are necessary. A number of such 

probabilistic methods are proposed in the literature, but a definitive design procedure 

is not yet available and much work needs to be done to relate the basic mechanical 

properties of ceramic materials to their structural performance. Thus part of this 

research work is aimed at reviewing and examining the different probabilistic design 

methods with the long-term view of determining which, if any, are best suited to the 

design of ceramic components in this particular application. 

Hence, the main objectives of this work can be summarised as follows: 

1. To use two- and three-dimensional finite element analysis to determine the 

contact pressure distribution between cylindrical and spherical conformally 

contacting layered components. 

2. To determine the stress distribution in layered, conformally contacting, axial 

piston pump components using the contact pressure distributions determined 

above as loading. 

3. To determine the most appropriate statistical method for calculating the 

probability of failure of PSZ ceramic axial piston pump components from 

specimen strength data using finite element stress and volume data 

determined above. 

- 18 -



CHAPTER 2 

CONFORMAL CONTACT ANALYSIS 

2.0 INTRODUCTION 

This chapter considers the development of analytical and numerical solutions to the 

problem of conformal contact beginning with the introduction of contact mechanics. 

It reviews the more recent development of the use of finite element analysis in 

contact problems and considers the analysis of layered components. The literature 

provides numerous examples of papers relating to all aspects of contact problems but 

this review will be confined primarily to linear elastic, frictionless, static contact. 

2.1 DEVELOPMENT OF CONTACT MECHANICS 

Love (1952) presented the classical approach to finding the stresses and 

displacements in an elastic half-space subjected to surface tractions. These were due 

to Boussinesq (1885) and Cerruti (1882) who used the theory of potential to obtain 

equations for the stresses and displacements at any point in the half-space. 

For a concentrated force, P, on an elastic half-space bounded by the plane z = 
0, as shown in figure 2.l.1, the resultant stress perpendicular to the z-axis at a point 

A is given by 

3F cos2 
() 

a = 2n R2 (2.1) 

Thus, for each point on the surface of a sphere of diameter d the resultant stress is 

constant and equal to 3F I 2nd
2

• As R ~ ° 
the resultant stress becomes infinite, a 

situation which clearly cannot occur in 

practice. 

The problem of a concentrated line 

load, Flunit length, on the surface of a half­

space was first solved by Flamant (1892). 

For a point A beneath the surface 

2F cos£} 
a =----

R n R 
(2.2) 
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a ='l' =0 I I (2.3) 

a r thus has a constant magnitude -2F/lCd on a circle of diameter d which passes 

throught the origin. Again as R -+ 0 the stress becomes infinite. 

Using the principle of superposition and Hooke's law the above expressions 

can be used to find the stresses and displacements due to distributed pressures on a 

half-space. The subject of contact mechanics itself is often said to have started with 

the publication by Hertz (1882) of his paper "On the contact of elastic solids". Hertz 

developed his theory whilst studying interference fringes between glass lenses in 

contact. His work produced mathematical relationships between the distributed 

surface pressure and applied load for elastic, frictionless contact of bodies with 

quadratic surfaces and for small contact areas, an approach which is still used in a 

great number of contact problems today. However, elastic contact stress problems 

can really only be classified as Hertzian if they satisfy the following conditions: 

a) The bodies obey the linear theory of elasticity. 

b) The dimensions of the deformed contact area remain small compared with the 

principal radii of the undeformed surfaces. 

c) The contacting surfaces are continuous and may be represented by second 

degree polynomials (quadratic surfaces) before deformation. 

d) The deformations are related to the stresses in the contact zones as predicted 

by Boussinesq's influence functions for half-spaces. 

e) The contacting surfaces are frictionless. 

Bodies whose surfaces satisfy these conditions touch first at a point or along a line 

and, even under load, the dimensions of the contact area remain small compared with 

the dimensions of the bodies themselves. 

2.1.1 Spherical contact 
For a sphere in a spherical cavity, as shown in figure 2.1.2a, the radius of the contact 

circle is given by 

a = (
3FR

e J
1

/

3 

4Ee 

where F is the load and Ee and Re are calculated from 

_1_ = ( 1 - v: + 1- v; J 
Ee EI E2 

(2.4) 

(2.5) 

(2.6) 

where EI' E
2

, VI and v2 are the Young's moduli and Poisson's ratios of the bodies. 
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Figure 2.1 .2 Hertzian contact for a sphere in a spherical cavity . 

The contact pressure between the sphere and cavity is given by 

3F (2 2 )1/2 
p(r)=--3 a -r . 

2na 
(2.7) 

This results in a hemispherical profile (figure 2.1.2b) with a maximum at r = 0 given 

by 

3F 6FE2 

( )

1/3 

Prnax = 2na2 = n 3 R~ (2.8) 

2.1.2 Cylindrical contact 

For a cylinder in a cylindrical cavity, as in figure 2.1.3a, Hertzian theory gives a 

contact half-width of 

a = ( 4FR
e )1/2 (2.9) 

nEe 

and contact pressure between cylinder and cavity of 

2F (2 2)1/2 
P(x)=- a -x 

na2 (2 . 10) 

resulting in the profile shown in figure 2.1.3b. The maximum pressure occurs at x = 0 

and is therefore 

Pm" ~ ~~ ~(:!: r (2.11 ) 

where E and R are the same as for the spherical case. e e 

- 21 -



F 

a) b) 

Figure 2.1 .3 Hertzian contact for a cylinder in a cylindrical cavity . 

The stresses In the bodies due to the contact comprise a local stress 

concentration that can be considered independently of the stresses in the bulk of the 

two bodies. These stresses were given by Johnson (1985) for the axis under the 

centre of contact for both the cylindrical and spherical case and these are shown in 

figure 2.1.4. Morton and Crose (1922) calculated the stresses elsewhere in the bodies. 

As can be seen the maximum shear stress occurs beneath the surface: at a depth of 

0.78a for cylindrical contact and OA8a for spherical contact when v = 0.3. 

-1 .0 -0.75 -0.5 -0.25 

ax Ip max 

va 
a) cylindrical 

o -0.25 -0.5 -0.75 -1.0 
alp rna. 

I 
-- 1.5! 

! 

, , , , 

a, Ip max 

= aelpmax I <,/p-
a, Ip max 

b) spherical (v = 0.3) 

Figure 2.1.4 Hertzian stresses along the axis under the centre of contact. 
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2.2 CONFORMAL CONTACT 

When the contact surfaces are curved 

and closely conforming, having contact 

dimensions nearly equal to their radii as 

in figure 2.2.1, the Hertzian analysis is 

no longer valid. The surfaces make 

contact over an area whose size is 

comparable with the significant 

dimensions of the two bodies, the 

contact stresses then become part of the 

general stress distribution throughout 

the bodies and cannot be separated from 

it. Therefore, some of the assumptions 

made in Hertzian analysis are no longer 

valid and alternative solutions must be 

found. 

2.2.1 Conformal cylindrical contact 

Figure 2.2.1 Conformal contact. 

The solution to the problem of the conformal contact of a long elastic cylinder 

contacting a cylindrical seat was first attempted by Steuermann (1939). He 

represented the gap between the cylinder and cylindrical seat by a power series and 

formulated the displacements in terms of integrals of the line influence functions. He 

used finite difference methods to solve the integral equation for the contact pressure 

distribution and the result, though better than that of Hertz by the inclusion of higher 

order terms in the description of the profile, is still in error through his assumption 

that both solids can be regarded as elastic half spaces. The initial separation is 

represented by 

(2.12) 

where A are constants. This results in a contact half-width of 
11 

( )

1/211 
2x4x ... 2n F 

a = Ix3x ... (2n-l) rmAIIEe 
(2.13) 

and a pressure distribution of 

( ) = EA 211-2 ~ +_ x + Ix3x ... (2n-3) ( 2 _ 2) 1/2 
{( )

211-2 1 ( ) 211-4 } 
PII X n e lla ... + a x 

a 2 a 2x4x . .. (2n-2) 

(2.14 ) 
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The profiles assumed in Hertz theory correspond to 11 = I, in which case 

equation (2.14) reduces to equation (2.10). However, for higher values of 11 the 

maximum pressure does not occur at the centre of contact. 

The widely 

accepted standard for the 

analytical study of 

conformal contact of 

cylindrical bodies was 

conducted by Persson 

(1964) in Gothenburg. 

Persson derived an 

identical contact criterion 

to Steuermann but 

proceeded to solve the 

equation in a different 

Figure 2.2.2 Persson's cylindrical contact region. 

way. He assumed that the contact surface was cylindrical and formulated the contact 

criterion as an integro-differential equation from which he determined the analytical 

contact pressure distribution for a plane stress model. i.e. the analysis pertains to a 

circular disc in a circular hole in an infinite (thin) plate. 

Persson calculated the pressure distribution for the case where the elastic 

constants of the contacting materials are the same: 

2F(C2_q2)1/2 F(c2+1rl {(C2+1)1f2+(C2_q2)1/2} 

p(1)) = nR(1+q2)(c2+1)1/2+ 2nRc2 In (c2+1)1f2_(c2_q2)1f2 
(2.15) 

where c = tan( ~). q = tan( ~) and a, 1>, Rand F are as shown in figure 2.2.2. 

Figure 2.2.3 shows the pressure profiles thus predicted compared with those from 

Hertzian analysis. As can be seen, as the contact angle increases the Hertzian analysis 

results in a higher pressure near the centre of contact, falling off more rapidly at the 

edges. Persson also determined an expression relating the load, F, radial difference, 

CL, Young's modulus, E, and contact angle, a which gives 

E *CL 21-c2 I 
F = n ----;;r-- n 2c2(c2 + I) (2.16) 

c f(c,t) 
where 1= f 2 dt 

- c 1 +t 
and (2.17) 

Equation (2.16) is plotted in figure 2.2.4 with the equivalent curve from Hertz theory. 

This illustrates more markedly the difference between the two methods as the contact 
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Figure 2.2.3 Cylindrical contact pressure profiles as predicted by Persson and Hertz. 

angle increases and the assumption of small contact size in Hertzian analysis is 

violated. Persson also plotted the expression in equation 2.16 versus the normalised 

maximum pressure at the centre of contact which is given by 

R 2c In[(c2 + lY/2 +c] 
Pmax _ + ---'=------:----:--~ 
F - n{c2 + 1)1/2 nc2{c 2 + 1) 

(2.18) 

This is shown in figure 2.2.5 again with the curve from Hertzian analysis for 

comparison. Persson plotted radial and tangential stresses in the plate at the contact 

interface and Tresca and von Mises equivalent stresses along the symmetry axis for 
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both plane stress and plane strain. However, he did not give expressions for these. 

The graphs show that for plane stress the maximum equivalent stress occurs at the 

contact surface but for plane strain it is below the surface, its position being 

dependent on the contact angle, a. 
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2.2.2 Conformal spherical contact 

Johnson (1985) gave equivalent expressions for spherical contact to Steuermann's 

equations (2. 12) to (2.14). These are 

A 2 L1 4 A 2n h= Ir +.{'2 r + ... + nr , (2.19) 

a= 2n+l Ix3x ... (2n-l) and 
( 

F 
)

1/(2n+1l 

2n 2x4x ... 2n 2AnEe 
(2.20) 

E 2n-2 { 2 }2 _ nAn ea x4x ... 2n 
p,,(r)- 14 (2 1) n x x... n-

(2 .21 ) 

{( )

2n-2 ()211-4 } r I r lx3x ... (2n - 3) (2 2 )1/2 - +- - + .. . + a -r 
a 2 a 2x4x ... (2n-2) 

Goodman and Keer (1965) presented an extension to the Hertz theory for the 

solution of an elastic sphere indenting an elastic seat with no friction. The half-space 

restriction was removed by the inclusion of higher order terms in the formulation, 

appropriate to spherical geometry. They assumed that points on both bodies which 

were initially equidistant from the axis of symmetry came into contact after 

deformation. The analysis remained within the linear theory of elasticity and it was 
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assumed that the elastic properties of the sphere and cavity were the same. Moreover, 

by a further assumption which substantially reduced the complexity of the 

calculation, Poisson's ratio was constrained to be 0.25. Goodman and Keer derived an 

integral equation from boundary displacement requirements which they solved by 

expanding the unknown normal stress distribution into a series representation. The 

choice of expansion assumed a continuous stress over the entire surface of the sphere 

and that the pressure is a maximum at the centre of contact diminishing to zero at the 

edge. Experimental work using Duralumin (v = 0.33) was in closer agreement with 

Goodman and Keer's solution than Hertz theory. However, the assumption that points 

of equal radius before deformation come into contact is not true for angles of contact 

substantially greater than the maximum of 25° which they considered. 

2.3 NUMERICAL METHODS 

With the exception of Hertz analysis the above methods, to a greater or lesser extent, 

involved some form of numerical calculation to solve the equations. The continuous 

pressure distribution was represented by an infinite series of known functions which 

was truncated to obtain the solution. The methods reviewed below depend more 

fundamentally on numerical methods. The continuous pressure distribution is 

replaced by a discrete set of pressures and the solution obtained at a discrete set of 

points. Two different approaches have developed to obtain the solution: the direct, or 

matrix inversion, method and the variational method which aims to minimise an 

appropriate energy function. 

Singh and Paul (1974) developed a general method for the numerical analysis 

of three-dimensional frictionless, nonconformable contact of bodies with arbitrary 

profiles where the contact region is not known in advance. They introduced an 

interpenetration curve as the first approximation to the boundary of the contact region 

and attempted to find the pressure distribution, load and approach. They used the 

simply discretised method to solve the resulting singular integral equation and 

described two techniques for overcoming the inherent sensitivity of the manner of 

discretisation, namely the method of redundant field points (RFP) and the method of 

functional regularisation (PR). The former method assumes that the errors associated 

with each of the discretisation or field points are random in nature and hence, instead 

of solving n equations in n unknowns, m additional field points are generated. The 

least-squares error criterion is then used to find the solution which best satisfies the 

(m+n) equations. The FR method aims to keep point-to point differences in pressure 

small at the same time as minimising an auxiliary function which is zero when the 

pressures in all the elements of the discretised mesh are equal. They tested both 

methods against known Hertzian solutions and obtained good results provided the 
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problems were within a particular range of applicability. The RFP method was found 

to give good convergence to the Hertzian solution for contacting cylinders at right 

angles providing the aspect ratio of the contact ellipse was less than 10. 

Later Woodward and Paul (1976) extended the simply discretised method 

above to the case of conformal contact. Singh and Paul had approximated the 

contacting surfaces by half-spaces and used the Boussinesq displacement function for 

a point load on a plane as well as neglecting tangential displacements of the surfaces. 

Woodward and Paul initially 

assumed that points at equal 

distance around the undeformed 

curves from the first point of 

contact, 0, merged after 

deformation. See figure 2.3.1 

where the arcs SI and S2 are the 

same length. A point-mating 

procedure was used to iteratively 

identify mating points from the 

initial assumption considering 

deformations normal and 

Figure 2.3 .1 Woodward and Paul 's 
conformal contact. 

tangential to the surface. They also assumed, for ease of computation, that the 

resultant load passes through O. The influence functions relating the pressure 

distribution to the displacements were found numerically. The report restricted the 

applicability to cylinders indenting cylindrical seats and spheres indenting spherical 

seats. The cylindrical results are in agreement with Persson's analytical solution and 

agree well with photoelasticity experiments conducted by the authors. The spherical 

results agree well with experimental data and are more accurate than those of 

Goodman and Keer as contacting points are not constrained to be initially on the 

same cylindrical radius. 

Paul and Hashemi (1977) developed a modification to the simply discretised 

method in which the approach is guessed at, initially for counterformal problems and 

later (Paul and Hashemi, 1980) for conformal problems with general geometries. 

They included methods for automatic mesh generation such that the mesh does not 

have to be uniform and also for contact area boundary determination. They used the 

method to solve the problem of rail and wheel contact at the flange throat using 

Boussinesq's influence function. 

Hartnett (1978) analysed the axisymmetric contact problem of an elastic 

sphere indenting an elastic cavity for frictionless and frictional contact. He solved the 

integral equation by expanding the unknown normal stress into a Fourier-Legendre 
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series, and employed the method of collocation to form a system of linear algebraic 

equations. A numerical method, utilising the Gram-Schmidt orthogonalisation 

principle, was introduced to invert the large scale matrix and minimise computer 

round-off errors. A prior knowledge of the shape of the contact stress distribution 

was not required, therefore the influence of surface tractions and geometric 

distortions upon the distributed stress could be produced more readily. 

Chen and Marshek (1986) presented a numerical solution using a modified 

Boussinesq influence function in conjunction with the discretisation of the integral 

equation to analyse the effect of clearance on closely conforming misaligned and 

aligned journal bearings. The former results in an axial pressure distribution which is 

dependent on the angle of misalignment as well as applied load and clearance. At the 

centre of the aligned bearing length the results agree closely with those of Persson 

but at the edge there is a high stress concentration as expected. 

Chen and Marshek (1988) used the line influence function in conjunction 

with the method above to solve for the two-dimensional contact of a long cylinder 

and a closely conforming cylindrical seat. An automatic mesh generation scheme was 

described to redefine the pressure area boundary and a relative approach was again 

guessed at, rather than attempting to solve for the approach as with Woodward's 

solution. This was with the aim of avoiding the ill-conditioning of the system, as the 

matrix for the discretised integral equation became diagonally dominant and 

symmetriC. The effects of clearance and material properties on the contact pressure 

distribution and contact area were examined. The results were compared extensively 

and favourably with those of Persson's including cases where the contacting materials 

were dissimilar when it was found that a hard cylinder contacting a soft cylindrical 

seat will give a higher contact angle than a soft cylinder contacting a hard cylindrical 

seat. 

2.3.1 Finite element analysis of contact 

Analysing contact between bodies using the finite element method (FEM) has been a 

comparatively recent development which has received considerable attention over the 

past 15-20 years. In early implementations of the finite element method the problems 

of determining the region of contact between meshes representing the two bodies 

precluded its use for elastic contact problems. However, more recently there has been 

a large number of numerical approaches to the problem of applying the correct 

boundary conditions. The majority allow frictional effects to be considered, making 

use of either Lagrange multipliers or penalty function methods to impose the 

displacement constraints at the surface between contacting meshes. Francavilla and 

Zienkiewicz (1975) were among the first to provide a contact algorithm that became 
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widely installed in finite element programs. However, this algorithm had the 

disadvantage of requiring a flexibility, rather than a stiffness, approach. 

A significant advance was made by Hughes et al (1976) who used Lagrange 

multipliers, a method that could be used in finite element displacement solution 

routines. Node-on-node contact was necessary in the contact zone and much of their 

work was directed to contact-impact problems. Guerra and Browning (1983) used an 

incremental loading scheme and showed that displacement constraints could be 

applied by either Lagrange multipliers or penalty functions and that node-on-node 

contact was unnecessary. 

All methods based on so-called gap elements are based on penalty functions 

where the gap element stiffness is the penalty number. A gap element which included 

friction was described by Mazurkiewicz and Ostachowicz (1983). A tangential 

stiffness was introduced, given by the product of the normal gap stiffness and the 

coefficient of friction. It is this method which is used in some of the popular general 

purpose finite element packages including the one used for the work described here. 

A general two-dimensional algorithm not requiring node-on-node contact was 

developed by Bathe and Chaudhary (1985), using linear elements in the contact zone 

and allowing frictional contact. Linear interpolation formulae were used between the 

nodes to determine the displacement constraints and contact forces. In a further paper 

(Chaudhary and Bathe, 1986) the work was extended to allow the solution of three 

dimensional problems and dynamic- contact. 

Pascoe and Mottershead (1988) extended the work of Bathe and Chaudhary to 

include eight-node isoparametric elements using the shape functions to determine 

displacement constraints and forces in the contact zone. An approach was used 

whereby the full loads were initially applied. If a change in the contact boundary 

condition occurred, then scaling of loads and displacements was undertaken until the 

first new boundary constraint became just operative again. The remainder of the load 

was then applied with a modified stiffness matrix and the process repeated until the 

mesh was fully loaded and the contact boundary conditions satisfied. The formulation 

applied to linear elastic contact but the authors stated that the method could be 

adapted to deal with material and geometric non-linearities. They compared their 

(plane strain) results with those of Persson for the analysis of a pin in a hole and 

obtained a good comparison. However, the method is not restricted to conformal 

contact. 
Pascoe and Mottershead (1989) subsequently provided two further algorithms 

for frictional contact overcoming the necessity of having a non-symmetric stiffness 

matrix due to the frictional constraints. Later, Mottershead et al (1992) described the 
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implementation of further algorithms which could be implemented using either the 

Lagrange multiplier or penalty function method. 

Vijayakar et al (1989) presented a specialised finite element formulation 

designed to deal with the frictional contact problem in three dimensional conformal 

contact. They performed three-dimensional analyses of gears and found that because 

one of the principal relative curvatures is close to zero the contact load distribution is 

very sensitive to the accuracy of the geometric representation of the surfaces in 

contact. They stated that the error in the representation must be much smaller than 

the deformations and that conventional PEA, using linear, quadratic or cubic 

surfaces, is not adequate unless an inordinately large number of elements is used. 

They also claimed that a very large number of degrees of freedom of deformation is 

required in the region of contact if the contact load distribution is to be accurately 

determined without ill-conditioning of the contact equations. These restrictions do 

not appear to be valid for conformal cylindrical or spherical contact where adequate 

results are produced using gap elements available in general purpose commercial FE 

programs. 

An example of the use of FEA to study the effect of the diametral gap 

between conforming concentric cylindrical components was undertaken by Harrigan 

and Harris (1991) who used the method to study an uncemented femoral total hip 

component and a femur. The contact algorithm used was the one described above by 

Chaudhary and Bathe (1986) assuming no friction. 

2.3.2 Boundary element analysis of contact 

The boundary element method (BEM) is a more recent technique than the finite 

element method and it has also been used to analyse contacting bodies numerically. It 

will only briefly be considered here. In the BEM only the surfaces (boundaries) are 

modelled rather than entire volumes. Andersson et al (1980) reported on the BEM 

applied to two-dimensional frictionless contact problems. Becker and Plant (1987) 

analysed a sphere in a spherical seat using axisymmetric boundary elements and 

obtained a good agreement with Hertz' solution for the small contact angles which 

they considered. 

2.4 ANALYSIS OF LAYERED COMPONENTS 

The analysis of the contact of bodies consisting of layered materials, by analytical or 

numerical methods, is usually confined to the field of surface coatings where the 

layer is very thin compared to the dimensions of the bodies. This permits a half-space 

assumption to be used. Another simplification often made is to assume that the 
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substrate or indenter are rigid. This is justified as a first approximation if, as in the 

case of coated rollers, the surface layer is much more compliant than the rollers. 

Chen and Engel (1972) considered the indentation of a medium consisting of 

one or two parallel layers perfectly bonded to an elastic half-space for various 

combinations of material properties, layer thicknesses and number of layers. They 

obtained the stress distributions, contact forces and penetrations for rigid, flat ended 

and parabolic punches which compared well with experiments. The authors said that 

it would be an easy matter to implement changes in the numerical approximation to 

take account of the elasticity of the punches but they do not do this themselves. 

Gupta and Walowit (1974) obtained a numerical plane strain solution to the 

problem of a layered elastic solid and a cylindrical elastic indenter for frictionless 

contact when the elastic moduli of the indenter and substrate were the same. They 

plotted graphs for a wide range of layer thickness and moduli ratio and found that 

when the layer was softer than the substrate and indenter the pressure distribution 

could be approximated from a weighted sum of parabolic and elliptic functions thus 

p(~)= 3n [(an -~J(I- x
2 

)1/2 +(Po _ ao )(1-£)] 
a 3n -8 a 3npo a2 a a2 (2.22) 

where a is the contact half-width, 
ao is the Hertzian contact half-width, 

Pm is the maximum pressure and 

Po is the Hertzian maximum pressure. 

However, when the layer was stiffer than the substrate and indenter it was not 

possible to determine an equivalent equation for the pressure distribution. 

Leveson (1974) obtained approximate analytical solutions to cylindrical and 

spherical bodies when one is coated with a solid film of lower stiffness, assuming a 

half-space representation. They compared their results with those of Gupta and 

Walowit (1974) for the cylindrical case but assumed an elliptic distribution with no 

parabolic contribution. 

An analytical solution for the contact pressure, area, approach and sub-surface 

stresses was determined for a layered elastic half-space subjected to a uniform 

distributed pressure over a rectangular area by Chiu and Hartnett (1983). They 

obtained numerical results for the specific case simulating the contact of a steel 

rolling element with a steel bearing ring supported by an aluminium housing showing 

an increase in deformation and a decrease in maximum contact pressure due to the 

softer substrate. 

Solecki and Ohgushi (1984) studied the contact of two layered elastic 

cylinders taking into account the local curvature of the surfaces. They reduced the 

integral equation to an infinite system of linear algebraic equations using Fourier 
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transformation which they solved to obtain the pressure distribution and approach for 

an assumed contact width. For the fully elastic case they presented only two 

examples shown in figure 2.4.1. As can be seen the results apply to very light loading 

and, as expected, the cylinder with the stiff layer resulted in a smaller contact angle 

for the same load. No attempt was made to determine the stresses in the cylinders or 

layers. 
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Figure 2.4.1 Solecki and Ohgushi' s prediction of load versus contact angle 
for layered elastic cylinders. 

Tangena and Wijnhoven (1988) used finite element analysi s with gap 

elements to attempt to obtain a correlation between the stresses and wear in a multi­

layered system. However, the layers were only several micrometres thick, simulating 

films of noble metals in non-permanent electrical contacts, and they assumed a rigid 

indenter despite using gap elements in the model. 

No references have been found in the literature to analytical, numerical or 

finite element analysis of conformal layered contact. 
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CHAPTER 3 

ANALYSIS OF CERAMIC MATERIALS 

3.0 INTRODUCTION 

As interest in engineering ceramics has grown over the last two decades there has 

been a growing awareness that it is not appropriate to apply the same design rules to 

ceramic components as for those made of metals. This chapter discusses the reasons 

for these differences due to the inherent structural differences of the materials, the 

problems associated with design using ceramics and the solutions to those problems 

reached by various authors. 

Although ceramics have been produced in various forms for hundreds of years 

only relatively recently have they been used for structural applications. Initial reports 

of advanced ceramic components revolutionising engine development have not been 

borne out. Hartsock and McLean (1984) reported that this was due to the poor 

understanding of ceramic design methodology and the inability to consistently make 

a homogeneous high strength material. This view was reinforced by Birkby and 

Hodgson (1991) in their report on zirconia. They highlighted two fundamental 

reasons for the lack of market penetration of zirconia. Firstly, the expectations that 

the benefits of insulation and wear resistance would increase engine performance 

foundered due to the immaturity of the material, the arduous nature of the application 

and the lack of tribological data; secondly, ceramics saw low utilisation due to the 

limited design knowledge and experience of engineers, as it quickly became evident 

that metal design methods were not appropriate to advanced ceramic materials. 

3.1 ADVANCED TECHNICAL CERAMICS 

Advanced technical ceramics do not constitute a homogeneous materials group or a 

single product class, since variations in fabrication and processing techniques result 

in different properties. However, they do have some characteristics that allow them to 

be separated from other groups of materials. 

Currently, there is no accepted classification system for advanced ceramics, 

although there is a general consensus throughout the industry that there is a need for a 

broad-based, multipurpose classification system (Schneider, 1993). In 1988 the 

Versailles Project on Advanced Materials and Standards (VAMAS) initiated an effort 
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to classify advanced ceramics, considering the two basic problems of such a 

classification system. They saw the first problem as the need to accomodate all the 

requirements of industry and special national areas of activity; the second as the 

difficulty of defining a minimum set of information that identifies one material as 

different from another, while anticipating future developments in this particular 

group of materials. The additional problems of using computers to store and retrieve 

appropriate materials property data were considered and reported by Reynard (1993). 

Morrell (1993) reported on the terminolgy requirements of the V AMAS 

initiative. He recommended the use of the term "advanced technical ceramics", in 

English, as a compromise between the multitude of other terms; such as fine, 

engineering, structural, technical, high-performance, high technology or special 

ceramics; all of which are in usage in various parts of the world or by different user 

groups. The recommended definition of advanced technical ceramics resulting from 

the initial stages of this work (V AMAS, 1993) was "an inorganic, non-metallic 

(ceramic) basically crystalline, material of rigorously controlled composition and 

manufactured with detailed regulation from highly refined and/or characterised raw 

materials giving precisely specified attributes". 

Advanced technical ceramics usually possess high temperature strength, 

thermal shock and fatigue resistance, erosion-corrosion resistance, low density and 

low thermal conductivity, resulting in their use where metals or polymers would not 

be suitable. However, the properties responsible for these advantages are also 

responsible for their disadvantages. Most advanced technical ceramics show 

negligible plastic strain before failure due to the strong bonds between the atoms 

which make dislocation movement difficult. Local high stress concentrations 

therefore cannot be dissipated and reduction of peak stresses by plastic deformation 

is not possible. Figure 3.1.1 shows typical stress-strain curves for a ceramic and a 

strain 

a) ceramic 

CIl 
CIl 

~ 
CIl 

strain 

b) metal 

Figure 3.1.1 Stress/strain curves for a typical ceramic and metal. 
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Si---l-+t. 

c-----+ 

a) ionic bonding of zirconia b) covalent bonding of silicon carbide 

Figure 3.1.2 Ceramic crystal structures. 

metal. The strong covalent and/or ionic bonding and crystalline structure control the 

intrinsic properties of ceramic materials (figure 3.1.2) whereas the extrinsic or actual 

properties are controlled by such factors as structural defects, impurities and 

fabrication flaws (figure 3.1.3). Failure in a ceramic usually occurs by the 

catastrophic propagation of a crack-like defect, which may be on the surface or in the 

bulk of the material, when subjected to a sufficiently high stress. The critical defect 

will vary from specimen to specimen or component to component and, consequently, 

the strengths of nominally identical specimens or components will vary. This results 

in a statistical variation in strength assuming a statistical distribution of strength 

limiting defects. The strength is also sensitive to the size, shape and surface finish of 

the material. 

grain ~ 
boundary 

pores 

/"'o. ....... -+---+-- microcracks 

impurities --IL-.:I,------* 

Figure 3.1 .3 Structural defects, impurities 
and fabrication flaws in a ceramic. 
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3.2 DEVELOPMENT OF ADVANCED CERAMIC COMPONENTS 

Advanced ceramic component development began in the USA and Japan with gas 

turbines in the early 1970s in an attempt to reduce weight and increase operating 

temperatures. In 1971 the Advanced Research Projects Agency (ARPA) in the USA 

sponsored programmes to show the feasibility of small and large gas turbines 

operating with ceramic components. Wills (1977) reported that studies by both 

ARPA and the Admiralty Materials Laboratory in the UK identified silicon carbide 

and silicon nitride as having the best properties for ceramic gas turbine components 

at that time. Wallace et al (1978) reported on progress made by the ceramic gas 

turbine engine program on ceramic component design under the ARPAlNavy 

programme. Tree and Kington (1978) also reported on the design logic, goals and 

methodology of the same program from the viewpoint of co-sponsors, AiResearch 

Manufacturing. 
Devendra & Syers (1990) outlined the experience of Rolls-Royce in the 

development of advanced ceramic components. This began with small components 

for helicopter engines using monolithic ceramics such as silicon nitride and silicon 

carbide and progressed to toughened and fibre reinforced ceramics for larger 

components. The majority of Rolls-Royce experience of ceramic engine components 

at that time was in a version of the Gem gas turbine used as an advanced mechanical 

engineering demonstrator. All the ceramic components in that engine were based on 

silicon nitride. 
Dworak and Fingerle (1987) reported that in Europe and the USA ceramic 

component development was almost all restricted to replacing existing components 

in conventional engines while in Japan research was also being directed towards a 

ceramic engine with little in common with existing engines. They outlined the 

advantages and limitations of various advanced engineering ceramics, including 

alumina, transformation toughened alumina, zirconia, silicon nitride and silicon 

carbide, in their use for a variety of components. 

Building on the developments with gas turbines, the investigation of ceramic 

components for use in reciprocating engines has been under way all over the world 

since the early 1980s. The Ceramics Applications for Reciprocating Engines (CARE) 

programme was launched in the UK with the aim of increasing the potential for 

manufacture and use of ceramic engine components. 

Matsui (1993) outlined the development of components for ceramic engines, 

gas turbines and turbochargers made in Japan at NGK. At that time ceramic 

turbocharger rotors, ceramic swirl chambers, ceramic rocker arm tips, ceramic ball 

bearings and ceramic cutting tools were all commercially available in Japan. Parts for 

ceramic gas turbines and ceramic engines were under development. 
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3.3 MANUFACTURE OF CERAMICS 

The small size of the strength-limiting defects in advanced technical ceramics means 

they are often difficult to detect and control and, hence, one way to increase 

component reliability is to eliminate flaws as much as possible at the manufacturing 

stage. 

The manufacture of ceramic components can be divided into five steps -

powder production and preparation, pre-consolidation, forming, densification and 

finishing as shown in figure 3.3.1. Kerber and Hoffmann (1993) recognised that each 

POWDER Hj Comminution I 
PRODUCTION 

and 
I PREPARATION Coarsening 

rl Mixing I I additives I 
PRE- J Granulation I CONSOLIDATION I 

uniaxial I y Spray drying I 

rl Pressing 
isostatic I 

--l slip casting I H I Casting 

FORMING - --1 soluble mould casting I 
H Plastic forming 

--l injection moulding I y I Green machining 
I extrusion I r1 I I 

Sintering 

H Hot pressing I 
Y compression moulding I 

DENSIFICATION I Hot isostatic pressing I L 

11 Reaction sintering I 
Reaction bonding I 

r1 Grinding I 
FINISHING I Lapping I 

Y Polishing I 

Figure 3.3.1 Steps in ceramic processing. 
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of the manufacturing steps can lead to different flaw populations which have 

consequences for the final properties of the material. Schwartz (1992) identified the 

potential flaws during the first four stages and these are listed in table 3.3.1. He said 

that the goal in powder production is to achieve the highest degree of intimate 

mixing; in powder conditioning, to avoid the formation of hard agglomerates; in 

shaping, to avoid porosity; and in densification, to avoid the formation of glassy 

phases at grain boundaries. The following sections consider each of the 

manufacturing steps in more detail. 

MANUFACTURING STAGE POTENTIAL FLAW 

Powder production unfavourable particle size, shape and distribution 
off composition 
foreign inclusions 
hard agglomerates 

Powder conditioning unfavourable agglomerate size distribution 

(pre-consolidation) hard agglomerates 
varying agglomerate density distribution 
insufficient binder 
organic fibre inclusions 

Powder shaping porosity, voids and cracks 

(forming) varying density 
non-uniform binder and additive distribution 
segregation 
residual binder 
organic inclusions 

Densification porosity, micropore clusters, voids and cracks 
non-uniform grain size and growth 
harmful grain boundary phases (glassy phases) 
inclusions 
rough surface 

Table 3.3.1 Potential flaws during ceramic manufacture. 

3.3.1 Powder production and preparation 

The production of a ceramic powder depends on the ceramic involved. Aluminium 

oxide powder occurs naturally as the mineral corundum or can be produced in large 

quantities from bauxite by the Bayer process. Silicon carbide does not occur 

naturally, except in meteoric iron, but can be synthesised by the Acheson process. 

Silicon nitride also does not occur naturally and can be synthesised by one of several 

different processes, resulting in powders of various sizes and purity (Richerson, 

1982). 
The selection criteria for ceramic starting powders is dependent on the 

properties required in the finished component. The purity, particle size distribution, 

reactivity and polymorphic form of the powder can all affect the final properties of 
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the component material and must therefore be considered. The effect of an impurity 

on the finished material is dependent on the chemistry and relative stiffnesses of the 

bulk powder and the impurity and on its distribution. Impurities present as inclusions 

can cause stress concentrations and therefore a decrease in tensile strength. To 

achieve maximum particle packing during forming a range of particle sizes is 

required, the particle size distribution being dependent on which method of forming 

is used. Clearly it is important that the optimum particle size distribution is 

controlled and reproducible in order to achieve consistent material properties. The 

reactivity of the powder is important during the densification process, with very small 

particles with high surface area having high surface free energy and thus bonding 

together readily. Many ceramics occur in different polymorphic forms and for most 

applications one polymorph is prefered over another. 

Raw materials are usually not available with the optimum particle size 

distribution and hence must be further processed to the required specifications. The 

powder can be separated into particles of a particular size or range of sizes by a 

process such as screening, air classification or elutriation. Often a particle size 

reduction step is required or, less often, a coursening step. 

Kerber and Hoffmann (1993) showed examples of the possibility of reducing 

the defect sizes in silicon carbide, zirconia and alumina ceramics by optimising the 

powder production and preparation processes, thus increasing the reliability of the 

finished product. 

3.3.2 Pre-consolidation 

Before the sized powders are formed into the desired shapes they usually require 

special treatment or processing to achieve the required uniformity. The treatment 

required will depend on the method of forming used. 

Additives are added to the powder for a wide variety of reasons, and can 

include binders, lubricants, plasticisers, deflocculants, wetting agents, water retention 

agents, antistatic agents, antifoam agents, foam stabilisers, che1ating or sequestering 

agents, fungicides, bactericides and sintering aids. 

Spray drying can be used to achieve a uniform free-flowing powder 

containing the appropriate additives, and results in a powder in which all the particles 

have a spherical shape, improving the flow characteristics. An alternative to spray 

drying is granulation resulting in harder, more dense agglomerates which are 

irregular in shape but with better packing properties. 
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3.3.3 Forming 
The properly sized and pre-consolidated powders can be formed into the required 

shapes using one or a combination of several approaches. 

Pressing is accomplished by placing the powder into a die and applying 

pressure to achieve compaction. Uniaxial pressing involves the compaction of 

powder into a rigid die by applying pressure along a single axial direction through a 

rigid punch, plunger or piston. Isostatic pressing involves the application of pressure 

equally to the powder from all sides. 

The casting of ceramics is done at room temperature in an operation in which 

ceramic particles suspended in a liquid are cast into a porous mould which removes 

the liquid and leaves a particulate compact in the mould. There are a number of 

variations, the most common being slip casting in which the ceramic particles are 

suspended in water and cast into porous plaster moulds. Readey (1992) used the slip­

casting of zirconia as an example of optimising the processing conditions using 

statistical reduction of data in a graphical format. Soluble mould casting is based on 

the technology of investment casting and can be used for more complex shapes. 

Plastic forming involves producing a shape from a mixture of powder and 

additives that is deformable under pressure. About 25 to 50% volume of organic 

additive is required to achieve adequate plasticity for forming, and heat is usually 

applied in addition to pressure. The most common methods of plastic forming are 

injection moulding and extrusion, with the former being used for low-cost, high 

volume applications. The feed material is forced into a shaped tool cavity until the 

cavity is full and the material has knit or fused together under pressure and 

temperature to produce a homogeneous part. Extrusion is used extensively for 

elongated shapes having a constant cross-section. 

Green machining can be done as an additional forming process to those 

previously mentioned and refers to the machining of a ceramic part prior to final 

densification by turning, milling, drilling or grinding. The material is much softer at 

this stage and can be machined much more economically. However, as the material is 

relatively fragile great care must be taken to avoid overstressing or damaging the 

material. 

3.3.4 Densiflcation 
The densification of the formed ceramic part results in the removal of the pores 

between the starting particles, combined with growth together and strong bonding 

between adjacent particles. For densification to occur a mechanism for material 

transport must be present along with a source of energy to activate and sustain the 

material transport. The primary transport mechanisms are diffusion and viscous flow, 
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with heat the primary source of energy, in conjunction with energy gradients due to 

particle contact and surface tension. Richerson (1982) considered the theory and 

application of sintering to ceramic component manufacture. 

Hot pressing uses heat and pressure, providing several processing and 

property advantages. The application of pressure in addition to heat results in reduced 

densification time, reduced densification temperature, minimised porosity and hence 

higher material strength. 

Silicon nitride and silicon carbide can be fabricated by a process known as 

reaction sintering or reaction bonding. 

3.3.5 Finishing 
Once a ceramic material has undergone densification one or more of the surfaces will 

often require finishing by machining, lapping or polishing to meet dimensional 

tolerances, achieve improved surface finish or remove surface flaws. Ceramic 

materials are difficult and expensive to machine due to their high hardness and brittle 

nature. 

3.4 FRACTURE MECHANICS OF CERAMICS 

The quantitative relationships for determining the behaviour of cracked solids were 

initially stated by Griffith (1920) who noted that when a crack is introduced into a 

material a balance must be struck between the decrease in potential energy and the 

increase in surface energy due to the presence of the crack. Thus 

"=C:~' r (3.1) 

for plane stress and 

2Eys 
" = ( "I( I - .2 ) J

1/2 

(3.2) 

for plane strain where 

a is the applied stress, 

E is the Young's modulus, 

Y., is the specific surface energy of the crack and 

I is half the crack length. 

Equations (3.1) and (3.2) assume that the material is elastic and contains a very sharp 

crack. Irwin (1949) showed that 

a = (!~r2 (3.3) 
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Model Mode II Mode III 

Figure 3.4.1 Modes of cracking. 

where G is the strain energy release rate. At the point of instability G reaches a 

critical value, Gc, and fracture occurs. 

Irwin (1958) later published solutions for crack-tip stress distributions 

associated with the three modes of loading shown in figure 3.4.1. Mode I is an 

opening or tensile mode, Mode II a sliding or in-plane mode and Mode lIT a tearing 

or antiplane shear mode. Mode I loading is encountered in the majority of 

engineering situations and hence most attention has been given to analytical and 

experimental methods to quantify stresslcrack length relations for this mode. These 

have the form 

K = Yo (nl)1/2 
Ic f (3.4) 

where K,c is known as the critical stress intensity factor for Mode I and is a measure 

of the material's toughness, 

Y is a dimensionless parameter dependent on the flaw shape and test 

geometry, 

a f is the fracture strength and 

I is the flaw length for a surface flaw or half length for an internal flaw. 

From equation (3.4) it can be seen that small flaw sizes and large fracture toughness 

values give high material strengths. 

The fracture origin can be characterised by a flat region called the fracture 

mirror (Hertzberg, 1989). A general relationship between the fracture stress and 

mirror radius, r, has been found and is given by 

a rl/2 = A 
f 

where A is a constant. Combining equations (3.4) and (3.5) gives 

) 1/2 / Y(r/l = A Klc ' 
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Wills (1977) reported that the ratio AI K[c has a value of 2.35 and is 

independent of the material, making Y(r/l)1f2 material independent also. He said that 

this is important in the fracture analysis of components where conditions responsible 

for failure may be known but the stress is not. K[c is a material constant, measured 

using fracture mechanics tests, Y calculated from a knowledge of the flaw position 

and shape and r determined from inspection. However, when designing with ceramic 

materials the fracture mechanics approach is often impractical due to the difficulty of 

determining or measuring the critical defect or flaw. 

3.5 STATISTICAL METHODS 

Statistical or probabilistic methods of failure analysis attempt to account for the 

scatter in strength data due to the distribution of defects on the surface or in the bulk 

of a ceramic material. An attempt is also made to relate the data obtained from the 

simple geometries and uniaxial stress states of test pieces to the more complex 

situation in real components. This section outlines the main statistical approaches 

currently being used. 

3.5.1 Wei bull statistics 
The Weibull statistical model (Weibull, 1951) is the most commonly used approach 

for the analysis of ceramic materials. It is based on the weakest link theory which 

assumes that there is a local strength associated with each element of volume or 

surface in a body and that failure will therefore occur at the element with the lowest 

strength. For a given volume or surface of a ceramic material under uniform stress, 

failure will occur at the weakest flaw. 

Weibull proposed the following distribution function to give the probability 

of failure, PI' of a volume or surface element of material as 

PI = l-exp[ -( a::, J] (3.7) 

where a is the applied stress, 

a /J the threshold stress below which the probability of failure is zero, 

a 0 is the characteristic strength of a unit volume or surface of material and 

m is the Weibull modulus. 

The Weibull modulus gives an indication of the consistency of the strength data. A 

high value of m indicates a narrow range of strength values and hence a more reliable 

material. The Weibull modulus is not a fundamental material property as it depends 

on such factors as the size and configuration of the test samples. 
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Equation (3.7) is known as the three-parameter Weibull equation but for most 

practical analyses a", the threshold stress, is taken as zero and equation (3.7) is 

simplified to 

(3.8) 

This is known as the two-parameter form of the Weibull equation. Using the two­

parameter equation gives more conservative results than the three-parameter equation 

as failure is assumed to be possible at any stress. Equation (3.8) results in a curve as 

shown in figure 3.5.1 a. AI temati vely. plotti ng 1 n ( In [ 1 ~ Pi ]) versus In (a) results in 

a straight line of slope m as shown in figure 3.5.1 b. The characteristic strength then 

corresponds to In ( In [ 1 ~ Pi ]) = 0 and is the stress at which 63.2% of the samples 

fail. 
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Figure 3.5.1 Two-parameter Weibull curves. 
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In( cr) 

(b) 
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Weibull curves can be plotted from experimental data, usually using the 

flexural strength for a, as in figure 3.5.2. Bergman (1986) considered four methods of 

obtaining the Weibull modulus from the data and concluded that nonlinear least 

squares analysis was the most appropriate with 

(i-0.5) 
PI = 

Ns 

where i is the rank of the sample when they are placed in strength order and 

Ns is the total number of samples. 

- 45 -

(3.9) 



x 
x 

x 
x 

In(o) 

Figure 3.5.2 Experimental flexural strength data plotted on a Weibull curve 

The Weibull modulus from the two-parameter form of the equation is the value most 

often quoted by the ceramic material producer or supplier. However, to use this for 

design purposes some correlation must be made between the stress state and size of 

the test piece to that of the component. A larger specimen or component will be more 

likely to fail than a smaller one as there will be a higher probability of a critical flaw. 

Bush (1993) considered how to perform a Weibull analysis from a set of flexural 

strength values, how to compare data from different test configurations and how to 

relate these results to real components. He emphasised that unless the number of 

specimens tested and the size of the test specimens are known then the quoted values 

of Weibull modulus and flexural strength cannot be used directly in a design 

evaluation or for comparison of materials. 

Bush (1993) related the characteristic strength, a 0' to the arithmetic mean of 

the strength, a J' of a number of test samples using the gamma function, first used in 

this way by Stanley et al (1973), 

a f = a or( ~ + I) (3.10) 

where r(~ + I) is the gamma function, also written as (~!} Bush related the 

dimensions of the samples and test configuration using the relationship outlined by 

Hartsock and McLean (1984) to obtain a generalised characteristic strength 

_ (bd)I//1I[~ +m~ ]1/111 
aa -ao 2 (m+02 

where a a is the generalised characteristic strength and 

b, d, ~ and ~ are as shown in figure 3.5.3. 
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Figure 3.5.3 Three- and four-point flexure tests. 

For a three point bending test Lz is zero. 

Rufin et al (1984) compared the mean uniaxial strengths, a I and a 2' of sets of 

specimens of the same material but different volumes, 

relationship 

( )

I/m 

;~ = ~ 
which does not, of course, take account of the test method. 

v; and V2 , using the 

(3.12) 

Equation (3.8) relates to a unit volume or surface of material. To obtain the 

probability of failure for a component this must be integrated over the volume or 

surface such that 

(3.13) 

where my is the Wei bull modulus for specimens failing from volume flaws and m A 

that for surface flaws. In general mv ::f. m A as a different flaw population will control 

failure in each case. The integral term 1. ( :, )"' dV is often referred to as the risk of 

rupture denoted by By. 

Hartsock and McLean (1984) said that in general the exponent should include 

both the volume and surface integral. Only the volume integral will be considered 

here but the same procedures apply to the surface form. 

For uniform uniaxial tension and considering volume flaws, equation (3.13) 

can be written as 

(3.14) 
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where V is the volume of material. 

Equations (3.13) and (3.14) assume that the failure stress is the same in 

tension and compression which is usually not the case for ceramic materials. Bush 

(1993) stated that elements in compression should be excluded from any calculation 

as only elements under tensile stress will contribute to the failure of the component. 

However, Stanley et al (1973) introduced the Heaviside function, I/(a), a step 

function whose value is determined by the sign of the stress under consideration, to 

take account of failure under compressive stress. Thus, 

P = 1-eXP[-(.!!....Jm V(_1 )m] 
f a o H(a) 

(3.15) 

where H(a) is unity for tensile values of a and -a for compressive values of a and 

a is the ratio of mean failure stress of unit volume in uniaxial 

compression to that for uniaxial tension. 

For ceramics a is usually significantly greater than unity. However, Rufin et al 

(1984) pointed out that in predominantly compressive stress states crack growth may 

not be an unstable phenomenon, therefore propagation of a single crack does not 

necessarily cause catastrophic failure, thus refuting one of the main assumptions of 

the Weibull weakest link theory. 

3.5.2 Principle of independent action 

The stresses in a real component will not generally be uniaxial but multiaxial, and 

can be characterised by three principal stresses. Stanley et al (1973) utilised a failure 

criterion, the principle of independent action (PIA), which assumed that the failure 

probability of an element due to one principal stress is independent of the other 

principal stresses. Therefore, equation (3.13) becomes 

Pfr = t-exp[ -!{ (;:J +( :: J +( :: J}v] (3.16) 

where a I' a 2 and a 3 are the principal stresses. This further assumed that the material 

was isotropic. The authors modified the above equation to obtain a combination of 

non-dimensional factors such that 

Pfr = t-expH a;~ r VI] (3.17) 

L= J ~ +..!!.L +.!!L dV {( J
m ( Jm ( Jm } 

v a nom an{)m a nom V 
(3.18) 
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where a nom is a nominal stress proportional to the load on the component and 

l: is known as the stress-volume integral. 

They said that the stress-volume integral characterises the shape of the component 

and the type of loading but that it is independent of the size of the component and 

magnitude of the load. 

3.5.3 Normal stress averaging 
Multiaxial stresses can also be considered using the Wei bull normal tensile stress 

averaging (NSA) method which can be calculated from 

f amvdA 

where a:v = A fA ~ 

(3.19) 

(3.20) 

The area integration is performed for principal stresses over the surface, A, of a 

sphere of small radius for regions where an is tensile. The relationship between a 01' 

and a 0 is found by equating the failure probability for uniaxial loading to that 

obtained for the multiaxial stress state when the latter is reduced to a uniaxial 

condition. Therefore, according to Batdorf (1977), 

1 
amy = amy (3.21) 

01' 2m + 1 0 v 

3.5.4 Flaw density (BatdorO approach 
One of the criticisms of the Weibull approach to predicting the failure of ceramic 

materials is that it is a wholly statistical approach and takes no account of the actual 

distribution of flaws within a material. Batdorf and Crose (1974) proposed a 

physically-based statistical theory which describes the material strength in terms of a 

flaw density function. They defined both a flaw geometry and distribution. Flaws are 

assumed to be flat cracks uniformly distributed in position and orientation; thus 

implying that flaws have associated strengths that depend on their orientations 

relative to the applied stresses. A crack is assumed to propagate and, hence, failure 

occurs when a specific stress, a e' exceeds a critical value, a cr' associated with that 

particular crack. a e is a function of the chosen crack configuration. 

For surface distributed cracks the probability of failure of area, A, is given by 

PI = l-ex~ -U:'(:),::, da"dA] (3.22) 

where a 1 is the maximum principal stress acting in A, 
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(J) is the angular range in which v e ~ Vcr and 

N is the density of cracks having a critical stress =:; vcr' the crack density 

function. 

For volume distributed cracks 

PI = 1-exp[ - fvJ:' (:! ) :" do "dV ] (3.23) 

where Q is the solid angle containing the normals to all orientations for which 

Ve >vcr ' 

Q depends on the fracture criterion selected, the assumed crack configuration and the 

applied stress state. Batdorf and Crose (1974) derived closed form expressions for Q 

for analytically simple fracture criteria in uniaxial and equi-biaxial stress states. They 

proposed a Taylor series expression for N and later Batdorf and Heinisch (1978) 

proposed an expression in a simpler form as a power function of Gcr ' 

(3.24) 

where k and m are flaw distribution parameters determined from experimental data, 

assuming that failure data can be expressed as the two-parameter Weibull 

distribution. 

3.5.5 Elemental strength approach 
A multiaxial elemental strength approach was proposed by Evans (1978) based on 

work by Matthews et al (1976). This approach used concepts of non-coplanar crack 

extension related to strain energy release rates in fracture mechanics. In this approach 

the probability of failure is calculated using the following equation 

PI = 1-exp[ -(Jv dV fo~(S)dS) ] (3.25) 

where V is the volume, 

S is the observed strength and 

g(S) is the number of flaws with strength between Sand S+dS. 

g(S) characterises the distribution of flaws within the material. It is derived from 

strength data from specimens with well-defined geometries and stress states and 

applied to components of the same material. Figure 3.5.4 shows the steps in 

determining g(S) and the probability of failure using this approach. The local stresses 

acting on the flaws are determined from the principal stresses, v I' a 2 and a 3' in 

termS of a normal tensile stress, a, and a shear component, T. The response of the 

flaws to the mixed-mode conditions induced by the local stress field is based on the 

maximum strain energy release rate, Gmax , in the direction of crack propagation, 

given by 
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l 

G - (1 + v)(1 + x) [K4 6K2 K2 K4 ]1/2 
max - 4£ [+ [ll + II (3.26) 

where E is the Young's modulus, 

X = (3-4v) for plane strain conditions and (3-v)( 1 +v) for plane stress and 

K[ and Kll are the mode I and mode II stress intensity factors, respectively. 

The fracture criterion uses the equivalent stress, a E' as a combination of the local 

stresses, a and T, expressed by 

(3.27) 

The equivalent stress is then expressed as a function of the principal stresses. Failure 

is assumed to occur when a E reaches a critical value S E dictated by Gmnx • The flaw 

density function, g(S), and the failure probability are derived from the distribution of 

the equivalent strength, SE. Lamon and Evans (1983) described this process in 

greater detail. 

Lamon (1988) claimed that the 

elemental strength approach more 

accurately predicted the biaxial 

strength of an alumina ceramic based 

on uniaxial strength data than either 

the WeibulllPIA approach or Batdorf 

flaw density approach. His main 

criticisms of the latter approach were 

its complexity and that it failed to 

take account of multiple flaw 

populations. However, Chao and 

Shetty (1990) refuted these 

conclusions and showed that the flaw 

density approach and the elemental 

strength approach give identical 

predictions of failure despite some 

fundamental differences In 

methodology. 

3.5.6 Matsuo's approach 
Uchimura et al (1992) reported on the 

comparison of several fracture criteria 

for multiaxial stress states using 

Matsuo's multiaxial fracture 

I PRINCIPAL STRESS FIELD (ai' a2 • ( 3) 
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probability distribution function (Matsuo, 1980, in Japanese). Matsuo's function is a 

modification of the Weibull approach taking the direction of a crack into account and 

allows different fracture criteria to be used. They considered both surface and volume 

flaws in silicon nitride tensile-torsional specimens but admitted that for many 

specimens the fracture origin was difficult to detect. 

3.5.7 Assumptions inherent in statistical methods 
In principle, the statistical methods described above allow extrapolation of data 

obtained from test pieces to the calculation of failure probabilities of loaded 

components of different volumes and areas. Several assumptions are made when 

using these approaches. All of the methods, with the possible exception of Matsuo's, 

assume that the strength distribution of the samples can be described by the two 

parameter Weibull function (equation (3.8». Other assumptions are that: 

i) the material is isotropic and homogeneous, 

ii) the defects are randomly distributed, 

iii) 

iv) 

v) 

vi) 

vii) 

viii) 

ix) 

x) 

the defects are small relative to the specimen or component size, 

there is a statistically significant number of defects within the specimen or 

component, 

an initiated crack will propagate without further increase in load, 

flaws do not interact, 

the defect populations do not vary with time, 

the component exhibits the same flaw size distribution as the test bars, 

the component possesses the same mechanical properties as the test bars, 

the stress distribution in the entire component is known, 

3.6 MECHANICAL PROPERTY DATA 

All methods of ceramic component analysis rely on data from test specimens to 

determine mechanical property data. As a result of the statistical variation of flaws 

within a ceramic material a large number of strength tests needs to be conducted to 

obtain statistically valid data. At present the available data on engineering ceramics 

are generally of inadequate quantity and quality to allow a proper evaluation or 

comparison between materials. They are generated from a variety of test methods, 

usually without sufficient supporting information. 

3.6.1 Uniaxial testing methods 
Flexure testing is the most usual method of measuring the strength of an advanced 

engineering ceramic. A beam specimen is placed in either a three- or four-point 
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loading fixture and loaded to fracture. See figure 3.5.3. The maximum stress in the 

specimen is calculated from simple beam theory assuming linear elastic material 

properties. For a three-point flexure test the maximum stress in the specimen is given 

by 

3 FL. 
(J =--­

max 2 bd2 

and for a four-point test by 

3 F(L. -LJ 
(Jmax = 2 bd2 

where L),~, b, d and F are as shown in figure 3.5.3. 

(3.28) 

(3.29) 

Specimen cross-sections differ in size and shape, they are usually rectangular 

or square, occasionally circular and sometimes trapezoidal or triangular. Quinn and 

MorreIl (1991) reviewed the development of standard test methods which have 

evolved in different countries for measuring the flexure strength of engineering 

ceramics. The principal features of the various standards are shown in table 3.6.1. 

There are many similarities between the standards: the specimen and fixture sizes are 

quite comparable and many tolerances and specifications are identical. However, 

there are several important differences and all have the restriction of being applicable 

only to linearly elastic materials. 

The three-point configuration results in higher strength values than the four­

point test. Figure 3.6.1 shows the approximate stress distribution on the tensile 

surface in each case and, as can be seen, a greater amount of material is at the 

maximum stress in the four-point test and hence the specimen is more likely to fail 

from a critical flaw. A larger specimen is also more likely to contain a critical flaw 

than a smaller one. Richerson (1982) compared the results from flexure tests on 

identical specimens of silicon nitride and reported an average strength of 930 MPa 

from three-point tests and 724 MPa from four-point tests: an apparent reduction of 

22%. Quinn and Morrell (1991) reported that some manufacturers use very small 

Figure 3.6.1 Stress distribution in three- and four-point flexure tests. 
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~ 

Title (year) 

Fixture 

Spans (4 point) 

Fixture 

Fixture load pins 

Specimen sizes 

Specimen 
chamfers 

Specimen 
preparation 

Number of 
specimens 
(minimum) 

Loading rate 
---

, . 

United States Japan Germany 

MIL-SID 1942 (1983) 
JIS R 1601 (1981) DIN 51 llO Part 1 (1989) 

ASTM C ll61 (1990) 

3 or 4 point 3 or 4 point 4 point 

10 x 20 mm 
20x40mm 

lOx 30 mm 20x40mm 
40x80mm 

0.75 x 1.5 in* 

Semi articulating or 
Fixed Fully articulating 

fully articulating 

Rotating Fixed Rotating 

1.5 x 2 x 25 mm 
3 x4x45 mm 3 x4x35 mm 
6x 8x85 mm 

3 x4x45 mm 

0.13 x 0.25 x 2 in 

up to 0.15 mm up to 0.3 mm up to 0.3 mm 

a) as fIred 
a) as fIred 

b) application matched a) as fIred 
b) three steps prescribed 

c) three steps prescribed b) polished 
(wheels, grits, rates etc) 

d) other 

10 for mean, 
30 for Weibull analysis 

10 15, preferably 30 

0.5 mm1min 0.5 mmlmin 5 - 10 s 

Table 3.6.1 Flexure testing standards 

France 

AFNOR B41-104 
(1989, tentative) 

3 or4 point 
• 

10 x 20 mm 
20x40mm 

Fully articulating 

Rotating 

2x4x25mm 
3 x4x 35 mm 

up to 0.3 mm 

a) polish, deeply tensile face 
b) grinding optional 

c) other 

10 

0.2mm1min 
0.5 mm1min (or higher) 



specimens in three-point loading to give very high strengths for their materials. It is 

therefore important that until standard testing methods are more widely used 

manufacturers give details of the specimens and test configurations relevant to their 

strength data. Bell (1988) reported that of the many published papers giving results 

from flexural tests of ceramics very few give details of the test apparatus used. 

One reason for the popularity of the flexure test method is the difficulty of 

conducting direct tensile tests on advanced ceramic materials. Tensile specimens are 

more complex in shape and therefore more difficult and expensive to produce (see 

figure 3.6.2a). In addition, the test apparatus must be very precisely aligned so as not 

to introduce any bending stresses into the specimen. However, the specimen 

experiences a uniform maximum stress throughout the volume and hence is more 

likely to fail. At present there are no standards for ceramic tensile tests. 

Sheshadri and Srinivasan (1981) developed an analytical procedure to 

determine the Weibull parameters using the expanded ring flexure test shown in 

figure 3.6.2b. They assumed that the non-uniform circumferential tensile stress 

b) expanded ring flexure 

a) unifonn tension 

c) C-ring d) theta 

Figure 3.6.2 Uniaxial methods of strength testing. 
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distribution controlled failure and considered both volume and surface flaw 

populations. They did not assume that the threshold stress, a /J' in the Weibull 

distribution (equation 3.7) was always zero. They showed that this test more closely 

simulates tensile strengths compared to three- and four- point flexure tests but did not 

consider how to conduct the tests in practice. 

Ferber et al (1986) considered the c-ring specimen configuration shown in 

figure 3.6.2c. Two different approaches were used to calculate the stress distribution 

in the c-ring both of which gave very similar results. The tangential component of 

stress was shown to be dominant, failure occuring approximately 90° from the load 

points. They compared results from four-point bend bars and c-rings for silicon 

nitride and found that different flaw popUlations controlled failure in each case. 

Other methods of measuring the uniaxial tensile strength of advanced 

engineering ceramics reported in the literature include a hydrostatic test and the theta 

test (figure 3.6.2d). The former consists of a thin-walled cylinder with a hydrostatic 

load applied to the inside; the latter of a specimen as shown. When a compressive 

load is applied to the arches the crossbeam is put in uniaxial tension. However, very 

little testing has been conducted with these configurations, largely due to the 

difficulty of making the specimens. 

3.6.2 BiaxiaVmultiaxial tests 

At present very little data is available for biaxial testing of ceramics. This data is 

required if confidence in the use of statistical methods is to be increased. The most 

popular method appears to be biaxial flexure which has the advantage that edge 

effects are not significant. 

Giovan and Sines (1979) tested the uniaxial and equi-biaxial tensile strengths 

of alumina in order to compare the validity of various fracture theories. They used 

four-point line loaded plates for the uniaxial tension specimens and concentric ring­

on-ring loading to obtain equi-biaxial tension (figure 3.6.3c). Plates were used rather 

than bars so that both sets of specimens had the same volume, surface area and stress 

gradient. The maximum equi-biaxial stress inside the inner load ring is given by 

3F [ ) R; - R? R; ( ) Rr] a =-2 (I-v 2 '-2 + l+v In-' (3.30) 
max 21ft 2 Rs R R[ 

where Rs is the radius of the support ring, 

R[ is the radius of the load ring, 

R is the radius of the specimen and 

t is the thickness of the specimen. 
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They found that the principle of independent action over-estimated the biaxial 

strength, the Weibull normal stress averaging method under-estimated it but that the 

Batdorf flaw density approach gave the best agreement with the experimental data. 

Shetty et al (1980) compared three loading schemes that produce biax ial 

tension in flat plate specimens. These were: ball-on-ring, piston-on-3-ball and ring­

on-ring tests (see figure 3.6.3). In all the tests incorporating a ring a circular ball 

bearing race with freely moving balls was used to minimise frictional effects . For the 

ball-on-ring test the maximum equi-biaxial stress occurs at the centre. Shetty et al 

quoted it as 

[ { -2} 2] 3F R\ (I-v) R[ Rr 
a =-- 1+2In-=-+ 1-- - ' 

max 4m2 R (1 + v) 2R; R2 
(3.31) 

where R is the radius of uniform loading at the centre. In practice the ball does not 

produce a uniform load but a Hertzian distribution where the pressure is a maximum 

at the centre and decreases to zero at the edge. They suggested calculating R from 

the Hertzian contact radius, a, using the relationship given by Roark and Young 

(1975) as 

(3.32) 

The ball-on-ring test can be thought of as being equivalent to three-point 

loading and the ring-on-ring as equivalent to four-point loading in the uniaxial case. 

This would appear to suggest that the ring-an-ring test would be the better test as a 

greater amount of material experiences the maximum stress. However, Shetty et al 

(1980) reported that a stress magnification effect occurs in the annular region under 

the loading ring which is in the region of 20% and therefore the area of the specimen 

I _~_ I 

a) ball-an-ring b) piston-an-ring c) ring-an-ring 

Figure 3.6.3 Biaxial flexure test loading configurations. 
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experiencing the maximum stress is not as great as would appear from equation 

(3.30) and, more importantly, the maximum stress is impossible to determine 

analytically. A similar criticism was aimed at the piston-on-3-ball test: the initial 

uniform load under the piston becomes annular as the plate deflects. They therefore 

concluded that the ball-on-ring configuration gave the most satisfactory results due to 

the uncertainties in determining the fracture stresses in the other cases. 

Godfrey (1986) used ring-on-ring tests to measure the biaxial strengths of 

silicon nitride, alumina and zirconia. He compared the experimental results with 

predictions from three-point bend specimen data and the stress volume integral 

approach of Stanley et al (1973), using PEA to determine the stress volume integrals. 

He obtained a poor prediction of biaxial flexure strength concluding that this was due 

to the weakening effect of biaxial stressing. However, the principle of independent 

action is inherent in this approach, the results confirming those of Giovan and Sines 

(1979), that it does not adequately predict failure in biaxial stress states. 

Morrell (1989) reported on several other configurations for biaxial bend tests, 

including a three ball support with a single, flattened ball load and a uniform 

pressurised loading with ring support. However, he concluded that the variety of 

biaxial flexure tests needs to be restricted to one or two which are convenient to use 

and have well-defined stress fields. 

Figure 3.6.4 shows a 

disc specimen loaded 111 

diametral compression, the so­

called Brazilian disc test. In 

this specimen a flaw will be 

exposed to a combination of 

tensile and compressive 

stresses and therefore the 

strength may be more 

representative of that of a real 

component. The stresses along 

the diameter between the load 

points are given by Johnson 

(1985) as 

F 

F 

Figure 3.6.4 Brazilian disc test. 

F[I 2(a
2

+2z2 ) 4Z] 
ax =- R- 2( 2 2 )1/2 +-2 and 

nt a a +z a 
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where a is the Hertzian contact half-width and 

z is the distance into the disc. 

Other reported biaxial tests include combined tension/torsion and 

compression/torsion tests on cylindrical silicon nitride specimens by Kokaji et al 

(1992) and a combined tension/torsion test on thin-walled alumina tubes by Kim and 

Suh (1992). Impact testing of ceramics has also been reported but is not considered 

here. 

3.6.3 Fatigue testing 
Many ceramic components, for example pistons, valves, turbine blades, are subjected 

to cyclic loading. The relevant design data for numerous metals has existed for many 

years. However, as with other material properties, there is very little usable fatigue 

data for ceramic materials as the results are controlled by process route as well as 

environment and surface condition. Until relatively recently it was generally assumed 

that ceramic materials were not subject to cyclic damage. However, in the last few 

years several studies have shown that fatigue damage does occur. See for example 

Guiu et al (1991), Liu and Chen (1991), Suresh (1991) and Yanagi et al (1992). 

Buxbaum et al (1994) investigated the fatigue behaviour of several alumina and 

silicon nitride ceramics and, in common with other authors, their tests resulted in 

extremely flat S-N curves without apparently reaching an endurance limit. 

3.7 DESIGN OF CERAMIC COMPONENTS 

Experience gained during the development of advanced ceramic components has 

highlighted the need for different design approaches compared to those of other, 

more traditional materials. A precise determination of the stress-state in a component 

and a statistical analysis is required to compute probabilities of survival or failure. 

The use of Weibull (or other) statistics to characterise ceramic material 

behaviour introduces a problem highlighted in a report from the National Materials 

Advisory Board in 1980. Namely that the ceramic strength data must be essentially 

free from experimental error. If data reflect experimental error as well as flaw 

variability, the resulting statistical description of the ceramic will be incorrect and 

any stressed component designed on the basis of the description will perform 

unreliably. 
Quinn and Morrell (1991) considered a number of examples of good 

correlation between flexure test results and component results. They said that these 

successful studies often were rigorously conducted since they were part of studies to 

validate brittle material design methodology. The investigations were cognizant of 
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the limitations of using flexure data for design, and they took precautions to avoid the 

pitfalls. Fractography was almost always a key ingredient in these studies. The 

research and development programs attempting to incorporate engineering ceramics 

into heat engines have gained much useful experience. One of the conclusions of the 

Ceramic Applications in Turbines (CATE) program was that successful ceramic 

components for an engine must be designed based upon realistic material properties 

determined from actual components not solely determined from test bars. Quinn and 

Morrell (1991) reported that the German advanced ceramics for gas-turbine engines 

program reached a similar conclusion. 

In a failure criterion for ceramics the difference between large uniaxial 

compressive strengths and relatively low uniaxial tensile strengths must be taken into 

account. For this reason Sinnema (1989) suggested the use of the failure criterion of 

Drtiker and Prager that has its origin in soil mechanics in place of the more common 

von-Mises criterion used in metal design. The yield criterion is given by 

a [I { 2 ( 2 2 }J1/2 adP=3"(al+a2+a3)+ 2 (al-a2) + a2-a3) +(a3-al) (3.35) 

where aI' a 2 and a 3 are the principal stresses and 

a is a factor based on the relative tensile and compressive stresses. 

For biaxial stress the material will survive if the stress state is inside the boundary in 

figure 3.7.1. For comparison the von-Mises criterion will result in the ellipse as 

shown or, for triaxial stress, a cylinder inclined to the ai' a 2 plane . 

............. / 

Figure 3.7.1 DrUker-Prager and von Mises failure criteria. 

3.7.1 Application of statistical methods 
The literature provides a number of examples where uniaxial test specimen data is 

compared with the results from one or more of the statistical methods for more 

complex test specimens or real components. Finite element analysis (FEA) provides 
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the ideal method to obtain the stress distribution in a ceramic specimen or 

component, the material is already discretised into elements of known volume (or 

area) and stress and several authors have reported on computer programs which 

perform one or more of the above statistical analyses using the output from PEA as 

input. 
Rufin et al (1984) compared the WeibulllPIA and Batdorf models with 

experimental data for volume distributed flaws in alumina discs subjected to a 

uniform pressure and mounted on a ring support. They used the relationship 

P
t 

= i/{n + 1) to rank the samples and output from finite element analysis as input to 

the analytical models. They concluded that the Batdorf model produced significantly 

more accurate results than the WeibulllPIA model for the particular material under 

the specified state of stress. They said that this confirmed the results of Giovan and 

Sines (1979) for alumina discs tested in ring-on-ring formation. The WeibuIlIPIA 

model produces non-conservative results, probably due to the fact that it neglects 

shear stresses and combined effects of the principal stresses. 

An investigation to compare the results from three-point bend tests and 

alumina ring specimens of two sizes with predictions using the WeibuIlIPIA 

approach was reported by Rolf and Weyand (1985). They obtained a very good 

agreement for the smaller specimens and good agreement for the larger specimens. 

Kawamoto et al (1986) reported on flexural, tensile and torsional tests applied 

to silicon nitride, giving the configurations of the specimens used. They also tested 

ring and flexure specimens cut from silicon nitride swirl chambers in order to 

compare degradation of strength during service but no attempt was made to correlate 

the data from the different tests. 

Kleer et al (1986) performed strength tests on small 4-point bend specimens 

and larger, tubular components tested in uniaxial tension in an attempt to check the 

validity of the size effect. All the specimens were of extruded silicon carbide. They 

found that the fracture strength of the tubes predicted from the bend test specimens 

was considerably higher than that measured and concluded that different flaw 

distributions lead to failure in each case. 

Analytical failure probability studies for an anisotropic cylinder subjected to 

internal pressure and a radial temperature gradient were presented by Stanley (1986). 

In the same paper he combined the failure probabilities from a surface area strength 

formulation and a volume strength formulation using the following equation 

PIc = 1-(l-PtJ(l-PjV) (3.36) 

where PtA and P jV are the cumulative probabilities of failure from surface and 

volume flaws respectively. He presented results from an experiment to determine ~A 

and PjV using graphite. 
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Shetty (1987) reviewed several mixed-mode fracture criteria used in 

reliability analyses of alumina and concluded that no single criterion could 

adequately account for all experimental results. He conducted tests in an inert N2 

environment and water and found the failure criteria to be conservative in the former 

case but less clear in the latter, probably due to subcritical crack growth in water. 

More recently Chao and Shetty (1991) used the uniform-pressure-on-ring 

configuration to compare results from uniaxial (three and four point bending) and 

biaxial flexure tests on aluminium and silicon nitride with predictions using the flaw 

density approach. They obtained good agreement between experiment and prediction 

but used a different fracture criterion and flaw shape for each material concluding 

that one method is not applicable to all materials as different flaw popUlations control 

failure. 
StUrmer et al (1990) reported on the development of the computer code 

CERITS for the reliability analysis of ceramic components. The code used the 

Batdorf flaw density approach for volume flaws and was used to calculate the 

reliability of a silicon carbide flame tube segment. 

A further problem was encountered by Thiemeier et al (1991) when they 

compared the results of several different failure criteria for aluminium nitride four 

point bend tests and concentric ring-on-ring specimens for surface flaws. They 

concluded that the selection of a unique fracture criterion for multimodal loading 

proved to be difficult as the difference between the various fracture criteria was small 

compared to the statistical uncertainty of the Wei bull parameters. They suggest that 

the use of a test such as the Brazilian disc test, in which one of the principal stresses 

is negative, may prove to be more useful as the criteria become more discriminative 

with mixed tension and compression. 
Bush (1993) used finite element analysis to calculate the stresses in a valve 

seat ring and a computer program to calculate the probability of failure. He then 

compared two candidate materials their suitability. However, he does not say which 

stress he used for a and his example calculations contain several numerical errors. 

Andreasen (1994) reviewed the Batdorf approach and the elemental strength 

model and compared them with the two-parameter Weibull model which included 

multi-axial stress states and concluded that the methods are equivalent. He used the 

results from FEA to obtain the probability of fracture for a component of arbitrary 

shape and loading but concluded that proof-testing components is the best method of 

obtaining strength data. 
Nemeth et al (1989) reported on a public domain computer program 

developed at the NASA-Lewis Research Centre with the acronym CARES (Ceramics 

Analysis and Reliability Evaluation of Structures). The program predicts the failure 
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probability of isotropic ceramic components using test specimen data and finite 

element analysis output. The three sections of the program consist of: a statistical 

analysis of the data from the fracture of simple uniaxial or flexural specimens, an 

estimation of the Weibull and Batdorf (flaw density) parameters from this data and a 

reliability analysis of the component knowing the stress distribution. The latter uses 

FEA output from the MSCINASTRAN or ANSYS programs. The elemental strength 

approach is not included. 

Figure 3.7.2 shows the stages in a typical reliability analysis. Figure 3.7.3 

shows the fracture criteria and crack geometries available for surface and volume 

flaws though the authors recommended the use of the Batdorf method as it combines 

the use of linear elastic fracture mechanics with the Weibull weakest link theory. 

COMPONENT GEOMETRY, LOADING 
AND MATERIAL PROPERTIES 

I 
r FINITE ELEMENT MODEL I 

I 

HEAT TRANSFER ANALYSIS 
I 

[ NODAL TEMPERATURE I 
I 

ELASTIC STRESS ANALYSIS -- --NODAL ELEMENT VOLUME 
STRESSES OR SURFACE AREA 

FLAW TYPES 
FRACTURE AND 
STRENGTH FRACTURE 

DATA CRITERIA 

CARES 

I 
WEIBULL PARAMETERS AND 
CRACK DENSITY FUNCTIONS 

I r RISK OF RUPTURE OF EACH ELEMENT I -- --SURFACE VOLUME 
RELIABILITY RELIABILITY 

---- ---FAST FRACTURE FAILURE 
PROBABILITY OF MODEL 

Figure 3.7.2 Steps in using CARES. 
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Figure 3.7.3 Failure criteria and crack shapes available in CARES. 
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Salem et al (1991) described all the steps in calculating the reliability of a 

silicon nitride combustor in a ceramic gas turbine engine including materials 

processing, mechanical property determination, FEA and the use of CARES with 

various fast fracture criteria. They concluded that censoring of volume and surface 

flaws was essential but that bend tests did not provide sufficient volume fracture data 

for the analysis and that tensile testing would therefore be required. 

3.7.2 Component testing 
Currently the only way to ensure the quality of a component is to actually test it. 

Until a material has developed a reputation or history of consistency it is necessary to 

test components, either to failure to verify the design analysis or in a proof-testing 

mode to assure an operational capability. Several authors have included proof testing 

as part of their development program. It is essential to load the components in the 

same mode as they will experience in service but this will not always be feasible. 

Thermal or vibrational stresses are difficult to simulate. It is hoped that non­

destructive evaluation can ultimately playa strong role. 

3.8 TOUGHENED CERAMICS 

Much of the research concerning advanced technical ceramics is concerned with the 

improvement of reliability. There are two main approaches to this. The first seeks to 

control and therefore minimise processing flaws, as described in Section 3.3, and the 

second to increase the toughness of the material by creating a microstructure with 

sufficient fracture resistance that the strength is insensitive to the size of the flaws. 

The latter approach has the advantage that appreciable processing and postprocessing 

damage can be tolerated without compromising structural reliability. In most cases, 

toughening results in resistance curve characteristics where the fracture resistance 

increases with crack extension as shown in figure 3.8.1. The increase in toughness 

with crack extension causes an increase 

in crack resistance. This 'resistance 

curve' or 'R-curve' behaviour 

profoundly affects the strength of 

components made from such ceramics 

and also has consequences for the 

analysis of such components as non­

linear approaches are required to 

characterise the material behaviour 

(Evans, 1990). Toughening 

crack length 

Figure 3.8.1 Resistance curve behaviour. 
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mechanisms include transformations, microcracking, twinning, ductile 

reinforcements, fibre/whisker reinforcements and grain bridging. Evans (1990) 

considers each of these mechanisms in some detail. 

Heuer et al (1988) said that transformation plasticity, being basically 

irreversible, might be expected to lead to severe fatigue effects and that this has been 

found to be the case. The ramifications of transformation toughening, in fact of all 

resistance curve behaviour, on Weibull statistics are as yet unresolved. Only 

transformation toughening will be considered here. 

3.8.1 Tranformation toughening. 

Transformation toughening can be regarded as a process dominated by a volume 

increase. Its principle rests on the process of dispersing superfine particles that are 

able to undergo a stress-induced energy-consuming phase-transformation into a 

ceramic matrix. 
Claussen et al (1976) were the first to investigate on a scientific basis the 

transformation-toughening of oxide ceramics as a brittleness-reducing principle. 

Work by Dworak et al (1977, 1978) was the first to document a simultaneous 

increase in strength and reduction in brittleness while avoiding microcracks by 

dispersing fine particles of zirconia in alumina. Birkby and Hodgson (1991) 

described transformation toughening in magnesia-partialIy-stabilised zirconia (MgO-
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Figure 3.S.2 Phase diagrams for magnesia- and yttria-stabilised zirconia. 
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PSZ) and yttria stabilised tetragonal zirconia polycrystals (Y-TZP). The high strength 

and toughness results from the stress-induced martensitic transformation of 

tetragonal zirconia (t-Zr02) precipitates to monoclinic symmetry in the cubic zirconia 

(C-Zr02) matrix (see figure 3.8.2). Heuer et al (1988) described how the high 

toughness derives from the 'wake' of transformed particles adjacent to crack surfaces. 

As the crack penetrates the matrix containing transformed particles, the 

transformation is induced by the high stresses ahead of the crack tip. This wake of 

transformed particles can extend to a distance of 1-2 mm in the toughest samples and 

exerts compressive transactions on the crack surface thus shielding the crack from the 

applied stresses. 

3.9 NONDESTRUCTIVE EVALUATION 

Nondestructive evaluation (NDE) includes all physical testing methods for detecting 

defects in a material or component without in any way damaging it. The aim of NDE 

is to detect defects. Whether the defect is defined as a flaw, creating a substatntial 

risk of failure, is determined by its nature and size. 

The applicability of non-destructive tests to ceramic components can be 

assessed on the basis of four criteria: the nature and size of the defect, the properties 

of the ceramic material, the type of ceramic component and the test conditions 

(laboratory or production line). Edwards (1989) considered various conventional and 

new NDE methods and their applicability in the detection of flaws in ceramic 

materials. He concludes that neither conventional NDE methods nor the new test 

methods meet all the requirements for quality control of ceramic components. 

Conventional NDE methods cannot provide the level of sensitivity required without 

considerable refinement - he does consider several refinements - while the new 

methods need to be more practial to meet the needs found in an industrial 

environment. 

X-ray radiography can detect differences in density or thickness of a 

component or specimen including voids and inclusions. It provides a quick, 

convenient and cost-effective way of detecting internal flaws in components and can 

be used to examine complex shapes. The size of defect that can be detected by x-ray 

radiography depends of various factors such as the thickness of the part, its x-ray 

absorption, size of flaw compared to the thickness of the part, the relative absorption 

of the flaw and part and the orientation of the flaw. 

Ultrasonic NDE is another technique for detecting subsurface flaws in 

ceramic materials. It is most easily conducted on material having a smooth, flat 

surface and a constant cross-section. Penetrant dyes can be used to detect surface 

flaws. The part is first soaked in a fluorescent dye, dried or cleaned in a controlled 
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way to remove dye from the surface and then the part is examined under ultraviolet 

light. Penetrant dyes have different sensitivities and are not suitable for ceramics with 

open porosity. 

Richerson (1982) outlined several other methods of NDE suitable for use with 

ceramics. These include laser holographic interferometry, acoustic holography, high 

frequency ultrasonics, microwaves, x-ray tomography and acoustic emissions. 

The NDE of ceramic components is as yet poorly developed. The results of 

NDE cannot simulate service conditions as can (some) mechanical testing. However, 

the structural integrity of every component can be examined. Edwards (1989) 

suggested that the conditions for selecting a new test method may include the 

following: relevance, precision, reproducibility, accuracy and reliability, practicality 

and cost-effectiveness. 

3.10 FAILURE ANALYSIS 

Failure analysis is especially important when considering ceramic materials as it is 

the only means of isolating the failure causing problem. Failure analysis helps 

determine whether failure or damage occured due to a design or material deficiency. 

Fracture analysis or fractography, an examination of the fractured parts, can 

be used to reconstruct the sequence and cause of fracture. The path a crack follows as 

it propogates through a component provides substantial information about the stress 

distribution at the time of failure. Features on the fracture surfaces provide further 

information such as the fracture origin, cause of fracture initiation (impact, tensile 

overload, thermal shock, material flaw etc) and the approximate local stress causing 

fracture. 
Richerson (1982) outlined the expected fracture surface features associated 

with the different causes/modes of failure and the techniques available to interpret 

them. Quinn and Morrell (1991) concluded that fractography to characterise fracture 

origins is essential and they strongly recommended 100% fractography of test 

specimens as well as failed components. However, due to the large numbers of test 

specimens required to obtain statistically reliable data and the small size of failure 

causing defects this is not always practicable. 
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CHAPTER 4 

FINITE ELEMENT ANALYSES - CONTACT 

4.0 INTRODUCTION 

This chapter describes the finite element models and analyses which were undertaken 

in two- and three-dimensions to obtain a representation of the conformal contact 

pressure and distribution between cylindrical and spherical bodies. Two-dimensional 

and axisymmetric models were used to allow verification of the method against 

known numerical and analytical solutions for a cylinder contacting a semi-infinite 

cylindrical cavity and a sphere in a semi-infinite spherical cavity, gap elements being 

used to model the interface between the bodies. Two- and three-dimensional and 

axisymmetric analyses were then conducted using models with dimensions 

appropriate to pump components to assess the effects on the contact pressure 

distribution of using sleeve and liner materials with different properties and 

thicknesses. 
The contact pressure distributions from the above models were used as 

loading on models of the cylinder blocks, pistons and slippers with the appropriate 

sleeve or liner materials as described in Chapter 5. Separating the contact distribution 

analysis from the component models allowed more complex component models to be 

created than would otherwise have been the case. Figure 4.0.1 shows the relationship 

between the contact models and the component models, and indicates how the results 

from the different analyses were used as input to the next stage of analysis. 

Due to the number and complexity of the different finite element models, the 

results of the analyses and some discussion are included with the model details rather 

than in a separate chapter, giving a more coherent layout. Specific aspects of the 

results relating to the performance of the axial piston pump are then included in 

Chapter 7, the general discussion. 

4.0.1 Model parameterisation and convergence 

In each case the model was parameterised to allow all input such as dimensions, 

material properties, loading, mesh density and element type to be varied with the 

minimum of additional work. The DISPLAY ill pre-processor was used to create the 

models with session file input, the session file containing the appropriate parameters, 

and the NISA II finite element package was used to run the analyses. 
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Model convergence was tested by systematically increasing the mesh density 

and plotting sample output. The models were assumed to have converged when an 

increase in mesh density did not result in an appreciable change in the output or the 

result was acceptably close to a known analytical value. Convergence curves are 

shown for some of the models in the appropriate sections. 

4.1 TWO-DIMENSIONAL VERIFICATION ANALYSIS 

The two-dimensional verification plane stress and plane strain models were created 

to verify the method against known solutions, such as those of Persson ( 1964) and 

Hertz, before using it to obtain an estimate of the contact pressure di stribution 

between the piston and cylinder block in an axial piston pump. 
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4.1.1 Models 
Figure 4.1.1 shows an outline of the two-dimensional verification model used to 

compare the method and results against known solutions. It is a quarter 

representation of a cylinder inside a semi-infinite cylindrical cavity, taking account of 

symmetry and neglecting the non-contacting half. The model was meshed using first 

order plane strain or plane stress elements having two degrees of freedom at each 

node. Gap elements connect nodes across the interface between cylinder and cavity 

and a force, F, is applied to the model at the centre of the cylinder. Nodes along the 

symmetry plane are constrained from moving in the y-direction and the nodes along 

the right hand edge of the cavity are constrained from moving in the x-direction as 

indicated by uy = 0 and ux = O. The figure is not drawn to scale: the dimension X I is 

approximately 1000 times dimension R 1, in order to simulate an infinitely large 

cylindrical cavity, and Mn and Zn indicate the mesh densities and biases respectively. 

4.1.2 Convergence 
Figure 4.1.2 shows graphs of contact angle, maximum pressure and displacement in 

the cylindrical seat at the centre of contact for various values of mesh density. The 

rest of the mesh was varied in the same proportion as MIas far as possible. The 

contact angle can be compared with the analytical result from Persson (1964) for the 

same parameters and this is shown as a dashed line on the first graph . The contact 

angle was calculated as described in the results section below. The maximum 

pressure and displacement converged with a difference of 0.2% and 0.1 % 

respectively between the last two meshes. For this reason the mesh with M I = 36 was 

chosen for the rest of the analyses. 
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4.1.3 Analyses 
Several series of finite element analyses were undertaken in plane strain and plane 

stress to establish the effects of load, F, material properties, Eland E2, and gap 

width, CL, on the contact size and the forces transmitted between the components 

and to verify the results against known analytical solutions. Poisson's ratio was 0.3 in 

all cases. Table 4.1.1 shows the values of F, E and CL for the analyses where the 

cylinder and cavity are composed of the same material, ie. E 1 = E2 = E; and table 

4.1.2 when the cylinder and cavity materials are dissimilar (E 1 :;t; E2). 

CL(mm) 
Young's modulus, E (OPa) 

.......... 10 50 100 200 300 500 

0.1 0.1 0.1 0.1 0.1 0.1 

10 0.01 0.01 om om om 0.01 0.001 
0.001 0.001 0.001 0.0 0.001 0.001 

0.1 0.1 0.1 0.1 0.1 0.1 

100 0.01 0.01 0.01 
0.01 om 0.01 0.001 

,,-.. 0.001 0.001 0.001 0.0 0.001 0.001 

b 0.1 0.1 0.1 0.1 0.1 0.1 
~ 500 0.01 0.01 0.01 

0.01 0.01 0.01 
-d' 0.001 

C'.:I 0.001 0.001 0.001 0.0 0.001 0.001 
0 

.....l 0.1 0.1 0.1 0.1 0.1 0.1 

1000 0.01 0.01 om 0.01 om 0.01 0.001 
0.001 0.001 0.001 0.0 0.001 0.001 

0.1 0.1 0.1 0.1 0.1 0.1 

5000 0.01 0.01 0.01 
0.01 om 0.01 0.001 

0.001 0.001 0.001 0.0 0.001 0.001 

Table 4.1.1 Two-dimensional verification analyses. 

4.1.4 Results and discussion 

Figure 4.1.3 shows graphs of load against contact angle for various values of Young's 

modulus and radial clearance for the finite element analyses undertaken using two­

dimensional plane stress and gap elements. The contact angle, a, is half the total 

angle of contact as indicated in figure 2.2.2 and was taken as the mean angle between 

the last closed gap element and the first open gap element. From 0° to 45° the gap 

elements were at intervals of 1.25° and from 45° to 90° at intervals of 2.5°. Hence, if 

6 gap elements closed the contact angle was taken as 6.875° although it could be 

anywhere between 6.25° and 7.5° and this range is indicated on the graphs by 

confidence bands. Curves were fitted between the points as shown to indicate trends. 

The graphs show that for increased load, a softer material and a smaller radial 

clearance, the contact angle is increased. 

-73 -



Young's moduli (OPa) 

CL(mm) E1 E2 EI E2 EI E2 EI E2 E1 E2 E1 E2 

"'" 100 300 300 100 200 100 100 200 500 100 100 500 

0.1 0.1 

10 0.01 0.01 0.1 0.1 0.1 0.1 
0.001 0.001 

0.1 0.1 

100 0.01 0.01 0.1 0.1 0.1 0.1 
0.001 0.001 

0.1 0.1 - 0.01 0.01 e 500 

~ 
0.001 0.001 

.g- 0.1 0.1 
0 

1000 0.01 0.01 0.1 0.1 0.1 0.1 ~ 
0.001 0.001 

0.1 0.1 

5000 0.01 0.01 
0.001 0.001 

10000 0.1 0.1 0.1 0.1 

100000 0.1 0.1 

Table 4.1.2 Two-dimensional verification analyses for dissimilar materials. 

The results from the three graphs can be combined by dividing the load, F, by 

the clearance, CL, as shown in figure 4.1.4. As the ratio of load/clearance increases 

the contact angle increases. Figure 4.1.5 shows the results combined further by 

plotting the non-dimensionalised quantity C:* E against contact angle. This is 

compared with the same quantity as determined analytically by Persson (1964) and, 

as can be seen, the finite element analysis gives a good estimate of contact angle for 

given values of load, clearance and Young's modulus. 

However, the pressure distribution around the interface and the stresses in the 

components are undoubtedly of greater interest than the contact angle. Figure 4.1.6 
. . l' d d"b' Rp(ct» . shows the non-dlmenslona Ise pressure Istn utlOn, -p-' obtamed from three of 

the finite element analyses, where p(<P) is the pressure at angle <p, R is the radius of 

the cylinder and F the load. Each closed gap element had an associated load factor 

which was the force transmitted by the gap element. These forces act at discrete 

intervals around the contact region and were converted to pressures by assuming that 

they act over half the area of the adjacent elements as shown in Appendix I. As 

expected, for a smaller contact area the maximum pressure was greater for a given 

radius and load. This implies a harder material or a larger radial 

clearance. 
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Figure 4.1.3 Graphs of load versus contact angle for the 
two-dimensional verification analysis in plane stress. 
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Figure 4.1.4 Graph of load/clearance versus contact angle 
for the two-dimensional verification analysis in plane stress. 
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Figure 4. 1.5 Graph of contact angle versus load/(c1earance*Young's modulus) 
for the two-dimensional verification analysis in plane stress. 

Figure 4.1.7 shows the non-dimensionalised maximum pressure plotted against the 

quantity _ F_. This appears to show a different relationship between the variables 
CL*E 

in different regions of the graph and an empirical equation could be determined for, 
F 

say --~ 0.1. 
, CL * E 
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Figure 4.1.7 Graph of maximum pressure versus load/(cIearance*Young's modulus) 
for the two-dimensional verification analysis. 

Figure 4.1.8 shows the stress in the cylindrical cavity along the axis of 

symmetry this time for plane strain. Persson plots these results for both plane stress 

and plane strain and found that for the former the maximum stress occurs at the 

surface. For plane strain the maximum stress occurs at a point inside the cylindrical 

cavity as was also found by Persson. The dashed lines shown are an estimate of the 
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Figure 4.1.8 Graph of von Mises stress versus distance along the symmetry axis in plane strain . 

actual situation. It would appear that for small contact angles the mesh density needs 

to be finer to determine the magnitude and position of the maximum stress with 

greater accuracy. However, for this application it is the pressure distribution which is 

required and this method gives a close agreement with Persson's analytical analysis 

for contact pressure and size. 
Figure 4.1.9 shows plots of the normalised von Mises stress contours (a e lF ) 

for two sample finite element analyses, 4.1.9a has a contact angle of 9.375° and 

4.1.9b a contact angle of 51.25°. 

So far the results have assumed that the cylinder and cavity are composed of 

the same material. Figure 4.1.lO shows the graph of F against contact angle for 
CL*E , 

dissimilar materials, the ratio n being the Young's modulus of the cylinder to the 

Young's modulus of the cavity. This confirms the results of both Persson and Chen 

and Marshek (1988) who found that a hard cylinder contacting a soft cylindrical 

cavity, i.e. n > 1, results in a higher contact angle than a soft cylinder contacting a 

hard cylindrical cavity (n < 1). The former situation also results in a greater 

difference from the case where the materials are the same than the latter. 
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Figure 4.1.9 Stress contours in the two-dimensional verification model . 
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Figure 4.1.10 Graph of contact angle versus CL~E I for the two-dimensional verification 

analysis for dissimilar materials. 

4.2 TWO-DIMENSIONAL COMPONENT-SIZED ANALYSIS 

The two-dimensional component-sized models were created to obtain the contact 

pressure distribution between a piston and the cylinder block of an axial piston pump. 

The verification models proved that using plane strain or stress and gap elements to 

model contacting concentric components gave a close agreement with the analytical 

method of Persson (1964) for a cylinder in an infinite cylindrical cavity. Hence, the 

same method and elements were used, with dimensions and loading appropriate to 

pump components, to model a cross-section of the conformal contact between a 

piston and the cylinder block of an axial piston pump. 

4.2.1 Models and analyses 
Figure 4.2.1 shows an outline of the two-dimensional component-sized contact 

model. It was essentially the same as the two-dimensional verification contact model, 

the addition of two further regions enabling the effects of varying the piston sleeve or 

bore lining material properties and thickness to be assessed. The loading was 

representative of that in an axial piston pump assuming a unit thickness slice through 

the piston and cylinder block at the top of the piston. 
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The model was meshed using plane strain and gap elements using the same 

cylindrical mesh density as was used for the 2D verification models, i.e. MI = 36 and 

M2 = 18. Again, several series of finite element analyses were undertaken to 

establish the effects of load, material properties and clearance on the contact size and 

the forces transmitted between the components and these are summarised in table 

4.2.1. For each combination in the table four load cases were analysed, corresponding 

to bore pressures of 5 bar (boost pressure), tOO bar, 140 bar (2000 psi) and 210 bar 

(3000 psi) bar. 
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all materials 
the same 

different 
sleeve 

materials 

diffferent 
liner 

material 

different 
sleeve 

thickness 

different 
liner 

thickness 

different 
radial 

clearance 

EI 
(GPa) 

200 
210 
70 

310 
200 
200 
200 
200 
210 
200 
200 
200 
200 
210 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 

vi E2 
(GPa) 

0.3 200 
0.25 210 

0.3 70 
0.28 310 
0.3 210 
0.3 70 
0.3 310 
0.3 10 

0.25 IO 

0.3 200 
0.3 200 
0.3 200 
0.3 200 

0.25 210 
0.3 IO 

0.3 10 
0.3 10 
0.3 10 
0.3 10 
0.3 10 
0.3 200 
0.3 200 
0.3 200 
0.3 200 
0.3 200 
0.3 200 

0.3 200 
0.3 200 
0.3 200 
0.3 200 

v2 E3 
(GPa) 

0.3 200 
0.25 210 
0.3 70 
0.28 310 
0.25 200 
0.3 200 
0.28 200 
0.4 200 
0.4 210 
0.3 210 
0.3 70 
0.3 310 
0.3 10 
0.25 10 
0.4 200 
0.4 200 
0.4 200 
0.4 200 
0.4 200 
0.4 200 
0.3 10 
0.3 10 
0.3 10 

0.3 10 

0.3 10 

0.3 200 
0.3 200 
0.3 200 
0.3 200 
0.3 200 

v3 E4 v4 CL THS 
(GPa) (mm) (mm) 

0.3 200 0.3 0.0125 1.0 
0.25 210 0.25 0.0125 1.0 
0.3 70 0.3 0.0125 1.0 
0.28 310 0.28 0.0125 1.0 
0.3 200 0.3 0.0125 1.0 
0.3 200 0.3 0.0125 1.0 
0.3 200 0.3 0.0125 1.0 
0.3 200 0.3 0.0125 1.0 
0.25 210 0.25 0.0125 1.0 
0.25 200 0.3 0.0125 1.0 
0.3 200 0.3 0.0125 1.0 
0.28 200 0.3 0.0125 1.0 
0.4 200 0.3 0.0125 1.0 
0.4 200 0.3 0.0125 1.0 
0.3 200 0.3 0.0125 0.5 
0.3 200 0.3 0.0125 1.5 
0.3 200 0.3 0.0125 2.0 
0.3 200 0.3 0.0125 3.0 
0.3 200 0.3 0.0125 4.0 
0.3 200 0.3 0.0125 5.0 
0.4 200 0.3 0.0125 1.0 
0.4 200 0.3 0.0125 1.0 
0.4 200 0.3 0.0125 1.0 
0.4 200 0.3 0.0125 1.0 
0.4 200 0.3 0.0125 1.0 
0.3 200 0.3 0.001 1.0 
0.3 200 0.3 0.01 1.0 
0.3 200 0.3 0.Q15 1.0 
0.3 200 0.3 0.02 1.0 
0.3 200 0.3 0.025 1.0 

Table 4.2.1 Parameter combinations for the two-dimensional 
component-sized models. 

4.2.2 Results and discussion 

THL 
(mm) 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

0.25 
0.5 
0.75 
1.25 
1.5 
1.0 
1.0 
1.0 
1.0 
1.0 

Figure 4.2.2 shows a graph of non-dimensionalised maximum contact pressure 

versus bore pressure for I mm piston sleeves and bore liners of different stiffnesses. 

In each case the other three material areas had identical properties and the ratio n 

refers to the Young's modulus of the sleeve or liner to the Young's modulus of the 

rest of the material. The graphs indicate that a 1 mm liner or sleeve of the stiffness of 

silicon nitride does not markedly affect the maximum contact pressure of a stainless 

steel piston in a stainless steel cylinder block. However, a more compliant liner or 

sleeve, for example, of a polymer, will result in a reduced maximum contact pressure 

from, of course, an increased contact angle. 
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Figure 4.2.2 Graph of contact pressure versus bore pressure for the two-dimensional 

component-sized analysis with sleeve and liner materials of different stiffness. 

Figure 4.2.3 shows the same quantities as above plotted for sleeves and liners 

of different thicknesses (see table 4.2.1). The sleeve thickness varied between 0.5 

mm and 4.0 mm and that of the liner between 0.25 mm and 1.5 mm. The size of the 

latter was restricted by the size of the inter-bore width of the cylinder block. The 

graphs show that, for a sleeve or liner of a more compliant material than the piston 

and cylinder block, an increased thickness results in a reduced maximum contact 

pressure. The opposite could be expected to be the case for a stiffer liner or sleeve. 

The effect of varying the radial clearance between the piston and cylinder 

block is shown in figure 4.2.4. As with the verification model, a smaller radial 

clearance results in a reduced maximum contact pressure and vice versa. As can be 

seen from table 4.2.1, one analysis was conducted on a model with three different 

material properties corresponding to a PSZ piston in a I mm PEEK-lined, steel 

cylinder block. Figure 4.2.5 shows the stress contours in the model, the load 

corresponding to a bore pressure of 140 bar. 
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Figure 4.2.3 Graphs of contact pressure versus bore pressure for the two-dimensional 
component-sized analysis with sleeve and liner materials of different thickness. 
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component-sized analysis with different radial clearances. 
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Figure 4.2.5 Stress contours in the model representing a PEEK-sleeved steel piston 
in a ceramic cylinder block at a bore pressure of 140 bar. 
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4.3 AXISYMMETRIC VERIFICATION ANALYSIS 

Axisymmetric models representing a sphere in an infinite spherical cavity were 

created to verify the method against known solutions before using it to obtain the 

contact pressure distribution between the piston ball and slipper seat in an axial 

piston pump, in the same way as was done for the cy lindrical case above. 

4.3.1 Models and analyses 

Figure 4.3.1 shows an axisymmetric representation of a sphere in a spherical cavity. 

The model was meshed using first order axisymmetric elements with gap elements 

connecting the nodes between the components. A force was applied to the model at 

the centre of the sphere. Nodes along the axisymmetric axis were constrained from 

moving in the x-direction and the nodes along the top edge of the cavity were 

constrained from moving in the y-direction as indicated. Again, the figure is not 

drawn to scale: the dimension Xl is approximately 1000 times dimension Rl to 

------~~ 
" 
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Figure 4.3.1 Ou~line of axisymmetric verification model 
showmg parameterised quantities. 
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simulate an infinitely large spherical cavity. Once again several series of analyses 

were undertaken to establish the effects of load, F, material properties, Eland E2 and 

clearance, CL on the contact size and pressure distribution between the sphere and 

cavity and these are shown in table 4.3.1. 

CL(mm) 
Young's modulus, E (GPa) 

""'- 10 50 100 200 300 500 

0.1 0.1 0.1 0.1 0.1 0.1 

5 am 0.01 0.01 0.01 0.01 0.01 
0.001 0.001 0.001 0.001 0.001 0.001 

0.1 0.1 0.1 0.1 0.1 0.1 
50 am 0.01 0.01 am 0.01 0.01 

-.. 0.001 0.001 0.001 0.001 0.001 0.001 
Z 0.1 0.1 0.1 0.1 0.1 0.1 '-" 
~ 

250 0.01 0.01 0.01 0.01 0.01 0.01 
-d' 
~ 0.001 0.001 0.001 0.001 0.001 0.001 
0 

.....J 0.1 0.1 0.1 0.1 0.1 0.1 

500 am 0.01 0.01 0.01 0.01 0.01 
0.001 0.001 0.001 0.001 0.001 0.001 

0.1 0.1 0.1 0.1 0.1 0.1 

2500 am 0.01 0.01 0.01 0.Ql 0.01 
0.001 0.001 0.001 0.001 0.001 0.001 

Table 4.3.1 Axisymmetric verification analyses. 

4.3.2 Results and discussion 

Figure 4.3.2 shows graphs of load against contact angle for various values of Young's 

modulus and clearance size for the finite element analyses undertaken using 

axisymmetric solid and gap elements. The contact angle, a, was taken as the mean 

angle between the last closed gap element and the first open gap element. The mesh 

density was the same as for the two-dimensional verification contact models 

described in Section 4.1. Hence, from 0° to 45° the gap elements were at intervals of 

1.25° and from 45° to 90° at intervals of 2.5°. Curves are fitted between the points on 

the graphs as shown to indicate trends. As the load increases the contact angle 

increases, for a given value of Young's modulus, E, and clearance, CL. Likewise, a 

more compliant material and a smaller radial clearance results in an increased contact 

angle. 
Figure 4.3.3 shows combined results from the graphs in figure 4.3.2, obtained 

by plotting the dimensionless quantity P against contact angle. The symbols 
R*CL*E 

and dashed line indicate results from the finite element analyses and the solid line 

results using Hertz theory. The finite element analysis results agree with the Hertz 
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Figure 4.3.2 Graphs of load versus contact angle for the 
axisymmetric verification analysis. 
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theory for angles less than 20° but depart from it for substantially greater angles, as 

expected. 
Again, the pressure distribution around the interface and the stresses in the 

components are of greater interest. Figure 4.3.4 shows the non-dimensionalised 

pressure distribution obtained from the finite element analysis for various angles of 

contact. For a smaller contact angle the maximum pressure is increased. The contact 

forces from the gap elements were converted to pressures in a similar way to the 

cylindrical case, as shown in Appendix II. Figure 4.3.5 shows the maximum pressure 

plotted against P for the finite element analysis and as predicted by Hertz. 
R*CL*E 
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Figure 4.3.4 Graph of pressure versus angular position 
for the axisymmetric verification analysis. 
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10 

The finite element analysis departs from Hertzian analysis for lower maximum 

pressure, as expected. However, it also departs from the prediction for higher 

maximum pressures which probably would be improved with a finer mesh density in 

this region. Figure 4.3.6 shows von Mises equivalent stress in the spherical cavity 

along the axis of symmetry. Dashed lines are fitted between the points and, as with 

the cylindrical case, the mesh density needs to be finer to predict the position of 

0.40 

0.35 

ol~ 
0.30 

en 0.25 en 
d) 

!:l 
en 

0.20 en 
d) 
en 

~ 0.15 
r:: 
~ 0.10 

0.05 

1.1 1.2 1.3 1.4 

Distance along symmetry axis, x 
R 

a (degrees) 

-- . -. 5.625 
- - 0- - - 6.875 
- - +- - - 9.375 
--4-- - 10.625 

18.125 

36.875 

1.5 

Figure 4.3.6 Graph of von Mises stress versus distance 
along the symmetry axis for the spherical cavity. 
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maximum stress with more confidence for smaller contact angles. 

Figure 4.3 .7 shows plots of non-dimensionalised von Mises stress contours 

for two sample finite element analyses, 4.3.7a has a contact angle of 10.625° and 

4.3.7b a contact angle of 36.875°. 

a) ex = 10.625 ° 

.. _ ~J.~( .. ~ 

I -:':~ t., . 

.. ..... 
1If1ll1J, 
mllliilili, 

b) ex = 36.875° 

CL*E*cre 

F 
o 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

Figure 4.3.7 Stress contours in the axisymmetric verification model. 
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4.4 AXISYMMETRIC COMPONENT-SIZED ANALYSIS 

The results from the axisymmetric verification contact models showed that the finite 

element method using gap elements to model the interface between the components 

gave a good prediction of the contact angle and pressure distribution when compared 

with available analytical methods. The same method was thus used for the 

component sized models with the addition of a material area to allow the effects of 

using a lining, or seat, material in the slipper. 

4.4.1 Models and analyses 

As with the cylindrical case once the method was verified by comparison with known 

solutions, it was used to determine the contact size and pressure distribution between 

components of an axial piston pump, namely the piston ball and slipper seat. Figure 

4.4.1 shows an outline of the model. The addition of the slipper seat region to the 

model allows the effects of changing the material properties and thickness of this 

F 

slipper 

M31ZZ3 

RI 

uy=O 

M2fZZl. 

M41ZZ4 

~I 
H 

Xl 

gap 
elements 

M51ZZS 

Figure 4.4.1 Outlin.e of axisymmetric component-sized 
model showmg parameterised quantities. 
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different 
seat 

materials 

different 
seat 

thickness 

different 
radial 

clearance 

EI vI E2 v2 E3 v3 CL 
(GPa) (GPa) (GPa) (mm) 

200 0.3 200 0.3 200 0.3 0.0065 
200 0.3 210 0.25 200 0.3 0.0065 
200 0.3 70 0.3 200 0.3 0.0065 
200 0.3 310 0.28 200 0.3 0.0065 
200 0.3 10 0.4 200 0.3 0.0065 
200 0.3 10 0.4 200 0.3 0.0065 
200 0.3 10 0.4 200 0.3 0.0065 
200 0.3 10 0.4 200 0.3 0.0065 
200 0.3 10 0.4 200 0.3 0.0065 
200 0.3 10 0.4 200 0.3 0.01 
200 0.3 10 0.4 200 0.3 0.003 
200 0.3 10 0.4 200 0.3 0.001 

200 0.3 10 0.4 200 0.3 0.0001 

200 0.3 10 0.4 200 0.3 0.0 

Table 4.4.1 Parameter combinations for the 
axisymmetric component-sized models. 

THS 
(mm) 

1.725 
1.725 
1.725 
1.725 
1.725 
2.0 
1.5 

1.0 
0.5 
1.0 
1.0 
1.0 
1.0 
1.0 

component to be assessed. Again several series of analyses were undertaken and 

these are summarised in table 4.4.1. 

4.4.2 Results and discussion 
Figure 4.4.2 shows graphs of bore pressure versus non-dimensionalised maximum 

contact pressure for seats of different stiffness and thickness and for different radial 

clearances. For seats of different stiffness the ratio n refers to the Young's modulus of 

the seat to the Young's modulus of the piston ball and slipper. As the seat material 

became stiffer the maximum contact pressure increased. Compliant slipper seats 

between 0.5 mm and 2.0 mm thick were considered and as expected as the thickness 

increased the maximum contact pressure became less indicating a greater contact 

angle. However, for loading equivalent to bore pressures over 100 bar there was little 

difference between a 1.5 mm thick seat and one of 2 mm. Again, as the clearance 

between the components increased the maximum contact pressure increased. 

In addition to the analyses above, models with three different material 

properties were considered, for example, modelling a ceramic piston ball in a PEEK­

lined steel slipper. Figure 4.4.3 shows the von-Mises stress contours for such an 

example at 140 bar. The contact angle between the components was 78.75°. 
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Figure 4.4.3 Stress contours in the axisymmetric component-sized model 

representing a ceramic piston in a PEEK-seated steel slipper. 

4.5 AXISYMMETRIC COMPONENT·SHAPED ANALYSIS 

(MPa) 

70.0 

60.0 

50.0 

40.0 

30.0 

20.0 

10.0 

0.0 

Unlike the contact of the piston barrel in the 

cylinder block the contact of the piston ball in 

the slipper seat is broken. The central hole 

down the centre of the piston and slipper 

results in an incomplete contact. Figure 4.5.1 

shows a cross-section through a piston ball 

and slipper. Hence, axisymmetric models were 

created to assess the effect of the central hole 

in the slipper and piston. Figure 4.5.1 Piston ball in slipper seat. 

4.5.1 Models and analyses 
Figure 4.5.2 shows outlines of two models which are more accurate axisymmetric 

representations of a slipper ball in a slipper seat. The minor differences in the hole 

configuration correspond to two different designs of slipper. Several runs were 

undertaken to assess the effect of the incomplete contact on the contact size and 

resulting pressure distribution. 
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4.5.2 Results and discussion 

Figure 4.5.3 shows a graph of the non-dimensionalised contact pressure versus 

angular position around the interface between the piston ball and slipper seat for the 

two component-shaped axisymmetric models and the equivalent component-sized 

model analysed in Section 4.4. As can be seen the central holes result in a high 

pressure at the edge of contact but away from this region the contact pressure is not 

affected greatly, indeed the same number of gap elements closed in each case for the 

same materials, load and clearance. The slight difference in the contact pressure 

distribution compared to the equivalent component-sized model is due to the central 

hole and also to the fact that the load is not applied along the central axis. 

Figure 4.5.4 shows the stress contours for the same material, force and 

clearance as in figure 4.4.3, that is, for a ceramic piston in a PEEK-seated steel piston 

at a bore pressure of 140 bar. Away from the flat region on the end of the piston ball 

the stress distribution in the models are very similar. 
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Figure 4.5.3 Graph of non-dimensionalised contact pressure versus 
angular position for the component-shaped axisymmetric analysis. 
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4.6 THREE-DIMENSIONAL ANALYSIS 

The three-dimensional model was conducted to determine the contact pressure 

distribution between a piston and cylinder block bore allowing for the tilting of the 

piston inside the bore. 

4.6.1 Models and analyses 

Figure 4.6.1 shows an outline of the three-dimensional contact model and boundary 

conditions. It is a representation of half a sleeved piston inside a lined cylinder block, 

taking account of symmetry. It consists of five areas, namely the cylinder block, 

cylinder block liner, interface, piston sleeve and piston, and is meshed using three­

dimensional solid elements and gap elements with no friction. The block and liner 

are constrained from moving in aJl three co-ordinate directions at the end furthest 

removed from the piston, i.e. the swash plate end of the cylinder block. Balanced 

pressures, PI and P2, are applied to each end of the piston along its axis and a force, 

F, in the negative x-direction causes the piston to tilt within the bore. PI is the bore 

pressure, determined in the timing analysis, P2 and F are calculated from a 

liner 

P2 

gap 
elements 

Figure 4.6.1 Outline of three-dimensional contact model showing boundary conditions. 
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knowledge of the geometry. 'A' and 'B' indicate the areas where the components are 

expected to contact. Figure 4.6.2 shows the parameters used in the creation of the 

models. Several analyses were run to assess the effects of changing the bore pressure, 

material properties, sleeve and liner thickness and clearance size on the contact 

pressure distribution and size between the components and these are summarised in 

table 4.6.1. Four load cases were run in each case, corresponding to bore pressures of 

100, 140, 180 and 210 bar. 

all materials 
the same 

different 
sleeve 

materials 

diffferent 
liner 

material 

different sleeve 
thickness 

different liner 
thickness 

different 
radial 

clearance 

EI 
(OPa) 

200 
100 
70 

300 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
210 

vi 

0.3 
0.3 
0.3 

0.28 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
OJ 
0.3 
OJ 
0.3 

0.25 

E2 v2 E3 
(OPa) (OPa) 

200 0.3 200 
100 0.3 100 
70 0.3 70 
300 0.28 300 
10 0.4 200 
70 0.3 200 
310 0.28 200 
10 0.4 200 

200 0.3 10 
200 0.3 70 
200 0.3 310 
10 0.4 200 

IO 0.4 200 
200 0.3 10 
200 0.3 10 
200 0.3 200 
200 0.3 200 
200 0.3 200 
210 0.25 10 

v3 E4 v4 CL THS THL 
(OPa) (mm) (mm) (mm) 

0.3 200 0.3 0.025 2.5 1.0 
0.3 100 0.3 0.025 2.5 1.0 
0.3 70 0.3 0.025 2.5 1.0 
0.28 300 0.28 0.025 2.5 1.0 
0.3 200 0.3 0.025 2.5 1.0 
0.3 200 0.3 0.025 2.5 1.0 
0.3 200 0.3 0.025 2.5 1.0 
0.3 200 0.3 0.0125 2.5 1.0 
0.4 200 0.3 0.025 2.5 1.0 
0.3 200 0.3 0.025 2.5 1.0 
0.28 200 0.3 0.025 2.5 1.0 
0.3 200 0.3 0.025 1.0 1.0 
0.3 200 0.3 0.025 4.0 1.0 
0.4 200 0.3 0.025 1.0 0.5 
0.4 200 0.3 0.025 1.0 1.5 
0.3 200 OJ 0.001 1.0 1.0 
0.3 200 0.3 0.005 1.0 1.0 

0.3 200 0.3 0.0125 1.0 1.0 
0.4 200 0.3 0.0125 2.5 1.0 

Table 4.6.1 Parameter combinations for the three-dimensional models. 

4.6.2 Results and discussion 
Figure 4.6.3 shows sample three-dimensional plots of contact pressure, p(y,CP), versus 

angular position, cp, versus axial distance, y, for position 'A' between the piston and 

cylinder bore. The pressures were calculated from the gap element forces as shown in 

Appendix IV. The plots correspond to a) a PEEK-sleeved steel piston in a steel 

cylinder block and b) a ceramic piston in a PEEK-lined steel cylinder block, all other 

dimensions and properties being the same. This would appear to contradict the results 

from the two-dimensional analysis where a cylinder with a compliant sleeve 

contacting an unlined cavity results in a smaller contact angle and higher maximum 

pressure than an unsleeved cylinder in a compliantly-lined cavity. However, in this 
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Figure 4.6.2 Outline of three-dimensional contact model showing parameterised quantities. 



case the sleeve thickness is much greater than the liner thickness and therefore the 

results are not directly comparable. 

Figure 4.6.4 shows graphs of maximum pressure over bore pressure, Prnax / P , 

versus bore pressure, P, at positions 'A' and 'B' for various values of Young's 

modulus, E, assuming all four material areas consist of the same material. A more 

compliant material results in a lower maximum pressure than a stiffer material. 

Figures 4.6.5 and 4.6.6 show the same quantities plotted for sleeve and liner 

materials of different stiffness. As expected, a more compliant sleeve or liner 

increases the contact angle resulting in a lower maximum pressure. Figures 4.6.7 and 

4.6.8 show the maximum pressure versus bore pressure plotted for sleeve and liner 

100 

p(y,q,) 50 
(MPa) 

a) PEEK-sleeved steel 
piston in steel cylinder block 

100 

p(y,q,) 50 
(MPa) 

b) ceramic piston in 
PEEK-lined steel cylinder block 

2.6 

Figure 4.6.3 Three-dimensional graphs of pressure versus 
angular position versus axial distance for position 'A'. 
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materials of different thickness assuming the sleeve or liner is more compliant than 

the piston of cylinder block. In this case as the thickness of the liner or sleeve 

increases the maximum contact pressure is reduced. However, if the sleeve or liner 

was stiffer the situation would be reversed. Figure 4.6.9 again shows the same 

quantities, this time for different radial clearance. As the radial clearance becomes 

smaller the contact angle increases thus reducing the maximum contact pressure. 
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Figure 4.6.4 Graph of maximum pressure versus bore pressure for the 
three-dimensional model for various values of Young's modulus. 
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Figure 4.6.5 Graph of maximum pressure versus bore pressure 
for the three-dimensional model for different sleeve stiffness. 
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Figure 4.6.6 Graph of maximum pressure versus bore pressure 
for the three-dimensional model for different liner stiffness. 
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Figure 4.6.7 Graph of maximum pressure versus bore pressure 
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Figure 4.6.9 Graph of maximum pressure versus bore pressure for the 
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Figure 4.6.10 shows sample plots of the von Mises stress contours around the 

interface at position B between the two components. The plots correspond to a) a 

PEEK-sleeved steel piston in a steel cylinder block and b) a ceramic piston in a 

PEEK-lined steel cylinder block, all other dimensions and properties being the same. 

The former has a greater contact area and hence a lower contact pressure than the 

latter. 

45 
I 

-3.36 

-to.50 

a) PEEK-sleeved steel piston 
in steel cylinder block 

(Jrnax = 52 MPa 

45 22.5 0 

I I <l>~ 'B' TO 
Y 

- 3.36 

L-_________ _ ---' - to.50 

b) ceramic piston in 
PEEK-lined steel cylinder block 

(Jmax = 76 MPa 

(Je 

Figure 4.6. to Vo~ Mises stre~s contours at. the i~terface between 
piston and cyhnder block In the three-dImenSIOnal model. 

- 109-

(MPa) 

76 

30 

25 

20 

15 

to 

5 

0 



\ 

CHAPTERS 

FINITE ELEMENT ANALYSES - COMPONENTS 

5.0 INTRODUCTION 

This chapter describes the finite element models and analyses undertaken to obtain a 

representation of the entire stress distribution in certain key components of an axial 

piston pump. Most of the analyses were undertaken using component configurations 

relevant to the Water Hydraulics project at the University of Hull. The contact 

pressure distributions from the analyses described in Chapter 4 were used as loading 

on models of the cylinder block, pistons and slippers of the appropriate configuration, 

i.e. with the same size, materials and clearance. Figure 5.0.1 shows the relationship 

between the contact models and component models. Separating the contact 

distribution analysis from the component analysis allowed more complex models to 

be created than would otherwise have been the case. 

Sample results from the analyses are presented in this chapter and a general 

discussion of the results in Chapter 7. 

5.0.1 Model parameterisation and convergence 

In each case the model was parameterised to allow all input such as dimensions, 

material properties, loading, mesh density and element type to be varied with the 

minimum of additional work. The DISPLA Y ill pre-processor was used to create the 

models with session file input, the session file containing the appropriate parameters, 

and the NISA II finite element package was used to run the analyses. 

Model convergence was tested by systematically increasing the mesh density 

and plotting sample output. The models were assumed to have converged when an 

increase in mesh density did not result in an appreciable change in the output or the 

result was acceptably close to a known analytical value. Convergence curves are 

shown for the models in the appropriate sections. 
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5.1 TWO-DIMENSIONAL CYLINDER BLOCK ANALYSIS 

The two-dimensional cylinder block model was created to determine the stress 

distribution in cross-sections of the cylinder block and to examine the effects on the 

stress distribution of lining the bores with a variety of materials of different 

thicknesses. Contact pressure loading from the pistons was determined from the 

appropriate two-dimensional component-sized model. 

5.1.1 Model 
Figure 5.1.1 shows the outline of the model which was used to analyse cross-sections 

of the cylinder block. The model consists of nine lined bores and as can be seen has 

rotational symmetry. Each of the nine segments also has planar symmetry and figure 

5.1.2 shows the parameterised quantities used in the creation of the model which was 

meshed using second order plane strain elements. The loading consists of a uniform 

pressure and contact pressures from the pistons as indicated in the figure 5.1.1. The 

uniform pressure and contact pressures are related but the latter also depend on the 

cylinder 
block 

Figure 5.1.1 Two-dimensional cylinder block model. 
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material properties, clearance and sleeve or liner thickness. 

Figure 5.1.3 shows a graph of pressure versus rotation angle predicted by a 

timing analysis written as part of the Water Hydraulics project at the University of 

Hull (Radcliffe et aI, 1991). The pressure refers to the uniform pressure in each bore 

and the rotation angle the angular position of the cylinder block as it rotates. Each 

bore therefore experiences a low boost pressure and a higher delivery pressure on 

each rotation. At any given time there are four or five bores at delivery and five or 

four bores at boost pressure. The contact pressures from the pistons always act in the 

same direction relative to the pump and these will therefore impinge in a different 

position on the cylinder block as it rotates. 

160 delivery pressure 

~ 
120 

.D 
-....; 

(I) 80 ... 
::I 

'" '" C!) 

~ 40 
boost pressure 

0 
0 60 120 180 240 300 360 

Rotation angle, a (degrees) 

Figure 5.1.3 Bore pressure versus rotation angle predicted by the timing analysis. 

5.1.2 Convergence 
Figure 5.1.4 shows graphs of maximum von Mises stress and displacement in a 

section of the two-dimensional cylinder block model experiencing uniform pressure 

loading only for a variety of mesh densities, M. The value of M refers to M 1, the rest 

of the mesh being varied in the same proportion as far as possible. The stress in the 

last four meshes varied by only 0.15% and, hence, the mesh with Ml = 6 was chosen 

for the rest of the analyses. 

5.1.3 Analyses 
A number of cylinder blocks of various materials and with liners of different 

thickness and materials were analysed for the axial piston pump operating at a variety 

of pressures. However, the remainder of this section will be concerned with the 

analysis of a polymer-lined stainless steel cylinder block with ceramic pistons 
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Figure 5.1.4 Convergence curves for the two-dimensional cylinder block model. 

operating at 140 bar delivery pressure. In this case the boost pressure was assumed to 

be zero. 

From the two-dimensional contact analysis the contact angle for this 

configuration was shown to be 43.125° with a maximum contact pressure of 64.5 

MPa. This was applied to the model as element pressures which are uniform over the 

face of each element. For the mesh density chosen each bore covers 5° and figure 

5.1.5 illustrates how the contact pressure calculated from the gap element forces were 

approximated by the step-wise element pressures. Several load cases were run 

corresponding to different angular positions of the cylinder block. 
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Figure 5.1.5 Contact pressure and element pressures. 
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5.1.4 Results and discussion 

Figure 5.1.6 shows a typical graph of the maximum von Mises stress versus rotation 

angle occurring in the cylinder block during the high pressure side of the cycle. The 

position of the maximum stress varies as well as its magnitude, depending on the 

rotation angle. Of greater use for design purposes is the variation of stress at a 

particular point in the cylinder block. Figure 5.1.7 is a graph of stress versus angular 

rotation for three different positions. Position I corresponds to the peak in figure 

5.1.6, position 2 to the second maximum in that graph and position 3 to the point of 

maximum stress when the bores are subjected to a uniform pressure only. This point 

is on the narrowest section between the bores and the stress is indicated by the 

horizontal dashed line on the graph. 
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Figure 5.1.6 Graph of maximum von Mises stress versus rotation angle 
predicted by the two-dimensional cylinder block model. 

Figure 5.1.8 shows details of von-Mises stress contours a) due to the 140 bar 

delivery pressure and b) in a cross-section corresponding to 97.5° rotation, i.e. the 

position of maximum von Mises stress. 
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Figure 5.1.7 Graph of von Mises slress versus rolation angle for various posilions 
in the lwo-dimensional cylinder block model. 

5.2 THREE-DIMENSIONAL CYLINDER BLOCK ANALYSIS 

The three-dimensional cylinder block model was created to determine the stress 

distribution in the cylinder block and to examine the effects on the stress distribution 

of increasing the bore diameter to accept liners or of using pistons of various 

configurations. 

5.2.1 Models 
Figure 5.2.1 shows an outline of the three-dimensional cylinder block model with the 

loading and constraints which were applied. It takes account of rotational symmetry, 

consisting of two half bores of the cylinder block, and is meshed using second order 

solid elements. The snout bearing area was constrained from moving in the radial 

direction and the back face of the block from moving in the z-direction. 

A uniform bore pressure, calculated in the timing analysis, was applied to the 

shaded area shown and contact forces from the pistons were determined using the 

three-dimensional contact model for the relevant loading and materials. The piston 

contact pressures were approximated from the contact model results by being applied 

as uniform pressures over the relevant faces of whole elements as was done for the 
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Figure 5.1.8 Stress contours in the two-dimensional cylinder block. 
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Figure 5.2.1 Outline of three-dimensional cylinder block model 
showing pressure loading. 

two-dimensional cylinder block model. The spring pressure was determined in the 

force analysis program (Radcliffe et al 1991). Figure 5.2.2 shows the parameters used 

in the creation of the model. 

5.2.2 Convergence 
Figure 5.2.3 shows graphs of von Mises stress and displacement in an unlined three­

dimensional cylinder block model for a variety of mesh densities, M. The stress in 

the last two meshes varied by 0.03% and, hence, the mesh corresponding to M = 6 

was chosen for the rest of the analyses as this allowed more sensitivity in the 

application of the contact stresses. 
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Figure 5.2.3 Convergence curves for the three-dimensional cylinder block model. 

5.2.3 Analyses 
Cylinder blocks of various materials with liners of different thickness and containing 

pistons of various configurations were analysed for the axial piston pump operating 

at a variety of pressures. The contact pressures were applied assuming that the 

cylinder block was at the angular position corresponding to the position of maximum 

stress as found in the two-dimensional cylinder block analysis. 

5.2.4 Results 
Figure 5.2.4 shows contour plots of the von-Mises stresses in a cross-section through 

the three-dimensional cylinder block models including the kidney ports. The plots 

correspond to models of a) a stainless steel cylinder block contacted by a PEEK­

sleeved steel piston and b) a PEEK-lined stainless steel cylinder block and ceramic 

pistons. In the latter case the cylinder block bore diameters were increased to allow 

inclusion of the PEEK liners thus retaining the original bore size. However, this 

resulted in the wall thickness between the bores being reduced. The figure shows the 

steel portion of the component only. 

5.3 PISTON ANALYSIS 

The axial piston pumps under consideration contain pistons of various configurations 

and hence four three-dimensional models were created as shown in figure 5.3. I. 

piston 'a' represents a ceramic piston and hence consists of only one material; pistons 

'b' to 'd' are PEEK-sleeved steel pistons, the shaded sections in the figure representing 

the PEEK. The piston geometry is axisymmetric but the loading is not and hence 

three-dimensional models were created. However, planar symmetry does allow half 

models to be used. Contact pressure information from the appropriate axisymmetric 

spherical and three-dimensional cylindrical models were applied to the piston 

models. 
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Figure 5.3.1 Piston models. 

5.3.1 Models 
Figure 5.3.2 shows the parameterised quantities relevant to each of the four piston 

models, each with a different sleeve configuration. The models were meshed using 

second order solid elements and figure 5.3.3 illustrates the pressure loading and 

displacement constraints for a typical piston. As with the three-dimensional cylinder 

block the contact forces were approximated by being applied over the relevant faces 

of whole elements. The end of the piston furthest from the ball was constrained from 

moving in the x-direction and nodes along the axis y = 0 at the same end from 

moving in the y-direction. 

5.3.2 Convergence 

Figure 5.3.4 shows a graph of the von Mises stress at the neck of a typical piston. The 

value of M refers to the mesh density at the neck of the piston and the rest of the 

mesh is varied in the same proportion as far as possible. 

5.3.3 Analyses 
Each of the piston configurations was analysed for a variety of material properties, 

contacting cylinder blocks with or without liners and, with the exception of piston 'a', 

for different sleeve thicknesses. Contact pressures, determined from the three­

dimensional and axisymmetric contact models, were applied for a variety of bore 

pressures. 
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Figure 5.3.2 Parameterised quantities for piston models. 
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Figure 5.3.4 Stress convergence curve 
for the piston models. 

5.3.4 Results 
Figure 5.3.5 shows the von Mises stress contours at the neck of each of the pistons 

for a bore pressure of 140 bar and the piston ball contacting a PEEK-seated slipper. 

piston 'a' is in a PEEK-lined steel cylinder block whilst pistons 'b' to 'd' are in an 

unlined steel cylinder block. 
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Figure 5.3 .5 Stress contours in the neck region of the piston models . 
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5.4 AXISYMMETRIC SLIPPER ANALYSIS 

The axisymmetric slipper models were created to determine the stress distribution in 

slippers in an axial piston pump and the consequences on the distribution of changing 

various parameters. Two designs of slipper were considered, sketches of which are 

shown in figure 5.4.1, and contact pressure loading from the piston ball applied as 

determined from the appropriate axisymmetric component-shaped analysis. 

steel --+-+-+ steel 

PEEK ----++-f--+ 
PEEK 

PEEK --->'~ slipper 'a slipper 'b' 

Figure 5.4.1 Cross-sections of slippers. 

5.4.1 Models 
Figure 5.4.2 shows outlines of the two designs of slipper with dimensional 

parameters. The models are meshed using second order axisymmetric elements and 

are constrained from moving in the y-direction on the bottom of the lands. 

5.4.2 Convergence 

Figure 5.4.3 shows stress convergence curves for the slippers. There is a 1.0% and 

0.8% difference between the maximum stress in the last two meshes for slipper a and 

slipper b respectively and hence a mesh density of 12 was chosen for the remainder 

of the analyses. These meshes are shown in figure 5.4.4. The grey and white areas 

represent the different materials, PEEK and steel respectively. 

5.4.3 Analyses 
Pressure loading was applied to elements in the seat area of the slippers as 

determined in the axisymmetric component-shaped contact model for the same 

materials, radius, radial clearance and bore pressure. Analyses were conducted to 

determine the effects on the maximum stress of changing the loading and various 

parameters such as the radius R2, the wall thickness in slipper 'a' (R9-R8) and the 

moulded seat depth in slipper 'b' (Y3-Y2). 
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Figure 5.4.3 Stress convergence curves for the axisymmetric slipper models. 

5.4.4 Results and discussion 
Figure 5.4.5 shows von Mises stress contours in the two designs of slipper for the 

same loading, materials and clearance size, namely a pump operating at 140 bar with 

ceramic pistons, PEEK-seated steel slippers and with a clearance of 0.0065 mm. It 

can be seen that the stresses in slipper 'a' are much higher for the same nominal 

loading. The stress at the outer radius (R2) in slipper 'a' is 267 MPa whilst in slipper 

'b' at the same position it is 169 MPa. Slipper 'a' also has high stress regions in the 

thin section containing the slipper pad, in the vertical section above the pad and at the 

corner at the bottom of the seat. In practice this latter position will have a radius thus 

reducing the stress. However, the overall level of stress would suggest that slipper 'b' 

is the preferred design. 

Figure 5.4.6 shows a 

graph of the von Mises stress 

at the radius R2 versus radius 

for slipper 'a'. This shows that 

increasing the radius reduces 

the maximum stress in the 

slipper. However, it is not 

possible to increase this 

dimension to the full outer 

diameter as the slippers are 

held in position by a retaining 

ring which impinges on the flat 

surface at height Y5. 
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CHAPTER 6 

ANALYSIS OF CERAMIC COMPONENTS 

6.0 INTRODUCTION 

This chapter describes some of the work undertaken to analyse specimens and 

components made from advanced ceramic materials. It aims to find the most 

appropriate statistical analysis method to use when designing components made from 

partially stabilised zirconia (PSZ) ceramic. The CARES (Ceramic Analysis 

Reliability Evaluation of Structures) program, as described in Chapter 3, was used for 

the statistical analyses. The specimens and components were modelled using the 

ANSYS finite element analysis program and the element volumes and stresses 

translated to a form suitable for CARES by using the ANSCARES program. The 

ceramic specimens were tested at the British Gas facilities in Loughborough and 

Killingworth. 

Four-point bend, or flexure, testing provides a relatively easy and inexpensive 

way of testing the large number of specimens required for a statistical analysis. It is 

generally proposed that material data derived from these simple, uniaxial tests can be 

applied in the design of complex three-dimensional components. This research 

examines the viability of that approach by analysing and predicting the probability of 

failure of a number of specimens with more complex geometries and stress states 

than the simple flexure bars. All the available analysis methods and flaw shapes are 

being considered and compared for both volume and surface flaws. The long term 

aim of the work is to allow the accurate and reliable design of complex components, 

such as the ceramic pistons and cylinder block. 

6.1 SPECIMEN ANALYSIS 

Several specimen configurations with a variety of expected stress distributions were 

tested to failure to provide data for the ceramic reliability analysis. All the specimens 

were made from yttria-stabilised zirconia and are shown in figure 6.1.1. Figures 6.1.2 

and 6.1.3 show sketches of the specimens with outlines of the finite element models. 
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a) flexure bar b) grooved bar c) grooved rod 

d) Brazilian disc 

Figure 6.1.1 Photographs of ceramic specimens. 
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Figure 6.1 .2 Ceramic specimens. 
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Figure 6.1.3 Brazilian disc specimen. 

6.1.1 Four-point flexure bars 

symmetry 
boundaries 

Three sets of four-point flexure specimens were tested in order to obtain Weibull 

modulus, m, and characteristic strength, ao, data for use in determining the 

probability of failure of the other specimens and the components. The specimens 

consisted of 50 iso-pressed bars, 50 die-pressed bars and a total of 41 bars cut from a 

ceramic cylinder block. m and a o were obtained by plotting In In(_ I_ J versus 
I-PI 

In( a I) and obtaining the best-fit line as described in Chapter 3. The results of this 

are shown in figure 6.1.4 for the iso-pressed and die-pressed specimens. As can be 

seen the iso-pressed specimens have a lower Weibull modulus but a higher 

characteristic strength than the die-pressed specimens. 

Figure 6.1.5 shows the positions of the specimens cut from the cylinder block. 

These specimens were tested in an attempt to determine if material at different 

positions within the cylinder block behaved in a different way. Figure 6.1.6 shows 

the failure data from the cylinder block specimens plotted according to radial 

position. Weibull moduli and characteristic strength data was determined for these 

specimens as shown in table 6.1.1. It would appear that the original radial position of 

the specimen does make a difference to the reliability and strength. In addition it can 

be seen that the strength values are much lower than for either the die-pressed or iso­

pressed specimens. There are several possible reasons for this and these will be 

discussed in Chapter 7. 
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Figure 6.1.4 Fracture data from iso-pressed and 
die-pressed zirconia four-point bend specimens . 

Figure 6.1.5 Positions of specimens cut 
from the ceramic cylinder block. 

6.1.2 Other specimens 

Figure 6.1.7 shows the fai lure data for the grooved bar, grooved rod and Brazilian 

disc specimens. The grooved bars and rods were tested in the same test rig as the 

four-point flexure bars and the Brazilian discs in diametral compression using flat 

hardened steel plattens as shown in figure 3.6.4. 
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6.2 FAILURE PROBABILITY OF SPECIMENS 

Convergent finite element models were created for each specimen configuration 

using the same procedure as described in Chapters 4 and 5. All of the specimens were 

analysed using the CARES program using the different fracture criteria as described 

below. 

Figure 6.2.1 shows the predicted probability of failure, Pf , of the flexure bar 

specimens calculated in CARES using the different fracture criteria for surface and 

volume flaws. As can be seen the predicted probability of failure does not vary 

substantially for any of the failure criteria. This is to be expected for the flexure bar 
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Figure 6.2.1 Probability of failure of flexure bars 

.. 
Griffith 
crack 

using the fracture criteria and flaw shapes available in CARES. 

- 138 -

~ 

penny-
shaped 
crack 



specimens as the statistical parameters are based on the failure of these specimens. 

Figure 6.2.2 shows graphs of maximum stress versus probability of failure for the 

iso-pressed and die-pressed specimens and as predicted by CARES for surface and 

volume flaws. The latter prediction more closely matches the failure of the 

specimens. 

Figure 6.2.3 shows the predicted probability of failure, Pj , of the grooved 

bars calculated in CARES using the different fracture criteria and flaw shapes for 

surface and volume defects. In each case the maximum stress in the bar predicted by 

the finite element analysis is 1027 MPa and occurs at the base of the groove. The 

Weibull modulus and characteristic strength from the iso-pressed four point bend 

specimens were used as input. As can be seen Pj varies between 0.56 and 0.72 for 
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Figure 6.2.2 Stress versus probability of failure of iso-pressed and 
die-pressed flexure bar specimens and as predicted by CARES. 
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surface flaws and 0.01003 and 0.01995 for volume flaws. Figure 6.2.4 shows a plot 

of Pf versus maximum stress for the grooved bar specimens and as predicted by 

CARES using the normal stress averaging method (NSA), Shetty's method with 

semi-circular cracks and with Griffith cracks for surface flaws and the NSA method 

and Shetty's method with penny-shaped cracks. 
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Figure 6.2.3 Probability of failure of grooved bars 
using the fracture criteria and flaw shapes available in CARES. 
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Figures 6.2.5 and 6.2.6 show the same quantities as above for the grooved rod 

specimens, again using the Weibull modulus and characteristic strength from the iso­

pressed specimens. For figure 6.2.5 the maximum stress in the specimens predicted 

by the finite element analysis was 1118 MPa, again at the base of the groove, and the 

probability of failure varied between 0.52 and 0.74 for surface flaws and 0.0054 and 

0.0112 for volume flaws. 

Figure 6.2.7 shows the probability of failure of the Brazilian disc specimens 

as predicted by CARES using the different fracture criteria. As can be seen, for 

surface flaws, Shetty's semi-empirical formula gives much more conservative results 

than the other methods. Shetty's method with Griffith cracks gives a probability of 

failure of 0.6227 compared with 0.1238 for the normal stress averaging (NSA) 

method. It would have been expected that the results from the Batdorf method would 

approach those of Shetty rather than approach the shear-insensitive NSA and 

principle of independent action (PIA) methods. The difference between the methods 

is even more marked for the prediction of failure due to volume flaws when Shetty's 

method with penny-shaped cracks gives a probability of failure of 0.9922 and the 

NSA method only 0.0047. 

Figure 6.2.8 shows graphs of maximum pressure versus probability of failure 

for the Brazilian disc specimens and as predicted by CARES for volume and surface 

flaws. It appears that none of the failure criteria adequately predict the probability of 

failure of all of the Brazilian disc specimens. 
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6.3 FAILURE PROBABILITY OF COMPONENTS 

Ceramic components, namely a piston and cylinder block of an axial piston pump, 

were analysed in the same way as for the ceramic specimens in an attempt to predict 

the probability of failure under normal operation. 

6.3.1 Piston 

The outline of the finite element model was the same as for piston 'a' in Section 5.3, 

with contact loads appropriate to a PEEK-lined steel cylinder block and a PEEK­

seated steel slipper applied to the piston barrel and ball respectively. A photograph of 

such pistons is shown in figure 6.3.1. 

When contact pressures corresponding to a delivery pressure of 140 bar were 

applied none of the failure criteria available in the CARES program predicted that the 

piston would fail. The applied loading was therefore increased until a probability of 

failure was predicted. Figure 6.3 .2 shows the probability of failure for the various 

fracture criteria and flaw shapes for surface and volume flaws. 

Figure 6.3.1 Zirconia pistons. 
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6.3.2 Cylinder block 

Figure 6.3.3 shows a photograph of a ceramic cylinder block wi th PEEK-s leeved 

ceramic pistons. The outline of the finite element model was the arne as fo r the 

three-dimensional cylinder block in Section 5.2, i.e. it consisted of two half bores of 

the block and was loaded with appropriate contact pressures. As with the piston 

model, when contact pressures appropriate to 140 bar where applied none of the 

failure criteria predicted that the cylinder block would fai l. The loading was increased 

to 1475 bar, corresponding to a maximum stress of 730 MPa, and probabilities of 

failure were predicted. Figure 6.3.4 shows the probabi li ties of fa ilure pred icted by the 

various fracture criteria for volume flaws. 

Figure 6.3.3 Ceramic cylinder block (with PEEK-sleeved ceramic pis tons and sli ppers). 
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CHAPTER 7 

DISCUSSION 

7.0 INTRODUCTION 

This chapter discusses the results obtained in Chapters 4, 5 and 6 and considers their 

implications to the objectives of the project as outlined in Chapter 1. 

The use of water as a hydraulic fluid in a pump or motor necessitates the use 

of conformal contacts and a knowledge of the conformal contact pressure distribution 

is therefore essential in order to determine the stress distribution in a component. 

Analytical procedures are not available to do this as the components are often 

layered, having sleeve or liner materials chosen for their tribological performance. 

Hence, two- and three-dimensional finite element analyses are used to determine the 

contact pressure distribution between cylindrical and spherical conformally 

contacting layered components. Some preliminary discussion of these results was 

conducted in Chapter 4, in particular, with respect to verification of the models with 

known analytical solutions, and thus will only be summarised here. 

The stress distribution in layered, conformally contacting, axial piston pump 

components was then determined in Chapter 5, using the contact pressure 

distributions from the previous two- and three-dimensional contact analyses as 

loading. Althought the results have not been proven by strain gauging specimens they 

have been proven by comparison with other published results, extensive convergence 

checking and some comparison with actual failed components. 

Advanced engineering ceramics have been employed in the adaptation of a 

pump for use with sea-water. Several statistical methods have emerged which attempt 

to determine a probability of failure of a ceramic component from a knowledge of the 

strengths of samples of the same material. The results from the above finite element 

analyses provided a convenient way of determining the stress distribution in the 

entire component as required by the statistical methods. Chapter 6 described the use 

of the computer program CARES (Ceramic Analysis and Reliability Evaluation of 

Structures) which was used in an attempt to determine the most appropriate statistical 

method for calculating the probability of failure of PSZ components from specimen 

strength data. A discussion of the results of this is also undertaken in this chapter. 
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7.1 CONTACT ANALYSIS 

The finite element method, using gap elements, has proved to be a useful way of 

determining the contact size and pressure distribution between conformally 

contacting components. When layers of material, having different stiffnesses, are 

used in such components there are no analytical methods available and finite element 

analysis proves even more useful. Two- and three-dimensional cylindrical and 

axisymmetric analyses have been conducted and the whilst some of the results may 

appear to be obvious in a qualitative sense, this approach has allowed the effects to 

be quantified and this will be discussed below. 

7.1.1 Cylindrical contact 

In two dimensions comparisons are made between the analytical results of Persson 

(1964), who analysed the problem of a circular disc contacting an infinite cylindrical 

cavity, and Hertz whose results are valid for small contact angles only, due to the 

assumptions made in his analysis. 

Numerous finite element analyses were conducted to assess the effects of 

load, F, Young's modulus, E, and clearance between the cylinder and cavity, CL. The 

results closely match those predicted by Persson despite the step-wise nature of the 

contact angle in the finite element analysis. As expected, the results compare well 

with Hertzian analysis for contact angles less than about 12° but above this they 

diverge markedly. Figure 4.1.3 showed the separate effects of F, E and CL on the 

contact angle. Increasing the force, reducing the stiffness and reducing the radial 

clearance all result in a greater contact angle. It can also be concluded from these 

graphs that at relatively small loads, of for example 10 N, a change in the stiffness of 

the material has a greater effect on the contact angle the smaller the clearance, but 

that at much higher loads, say 5000 N, the opposite is the case. 

As previously stated the pressure distribution around the contact interface is 

of greater interest than the contact angle alone and it has also been shown, in figure 

4.1. 7, that an excellent agreement is obtained between that predicted by finite 

element analysis and Persson's analytical model. This graph shows a different 

relationship between the variables in different regions, approaching that of Hertz for 

values of ~ ~ 0.1. However, for values of _F_ ~ 5 the non-dimensionalised 
CL*E CL*E 

maximum pressure, Rpmax , approaches a constant value of 0.6. 
F 

For dissimilar materials, that is, when the cylinder and cavity are composed of 

different materials the results from the finite element analysis agree with those of 

Persson and Chen and Marshek (1988). In this case it is found that a hard cylinder 
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contacting a soft cylindrical cavity results in a higher contact angle than a soft 

cylinder contacting a hard cavity. 

When considering components which have sleeve or liner materials of 

different stiffness to the bulk materials analytical methods are inappropriate. Finite 

element analyses were therefore undertaken to assess the effects on the contact angle 

and hence, the contact pressures, of using different sleeve or liner materials and of 

changing the clearance between the components. The above was done with 

dimensions and material properties appropriate to those which might be used in the 

axial piston pumps under consideration. 

It was shown in figure 4.2.2 that using a sleeve or liner of a stiffer material 

does not affect the contact angle to nearly the same degree as using a more compliant 

sleeve or liner material. The contact angle was shown to increase as the sleeve or 

liner thickness increased provided the material was more compliant. The opposite 

effect would be observed for a stiff liner or sleeve material. 

The contact between a piston and cylinder block in an axial piston pump is 

further complicated by the tilting of the piston in the bore. For that reason a three­

dimensional model was created to assess the effects of material properties, sleeve and 

liner thickness, radial clearance and load on the contact pressure distributions in both 

the radial and axial directions. The limitations on model size did not allow as fine a 

mesh to be used as for the two-dimensional case. However, by biasing the mesh such 

that the mesh density was greater in the regions of contact, convergent results were 

obtained. 

Comparing the results from the two- and three-dimensional analyses it can be 

seen that the general trends, as expected, are the same. Table 7.1.1 shows a 

comparison of the results from two specific cases, namely a PEEK-sleeved steel 

piston in a steel cylinder block and a ceramic piston in a PEEK-lined steel block. 

Three-dimensional plots for these cases were shown in figure 4.6.3. As can be seen 

reasonably good agreement is obtained between the radial contact angle, a, and the 

maximum pressure, Pmax' especially for the first case. The coarser mesh density of the 

2D 

3D 

PEEK-sleeved steel piston in ceramic piston in PEEK-lined 
steel cylinder block steel cylinder block 

a Pmax a Pmnx 

53.75° 58.5MPa 40.625° 67.6 MPa 

45.0° - 56.2° 54.1 MPa 45.0°_ 56.2° 79.1 MPa 

Table 7.1.1 Comparison of sample results from 
two- and three-dimensional contact analyses. 
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three-dimensional models did not allow the contact angles to be determined with 

great accuracy. However, the maximum contact pressure was determined with more 

confidence as illustrated. In addition, the contact pressure distribution in the axial 

direction is determined by using the three-dimensional model, allowing a much more 

accurate representation of the contact due to the tilting of the pistons within the 

bores. 

7.1.2 Spherical contact 
For the case of a sphere conformally contacting a spherical seat the analytical 

methods available are more limited than the equivalent expressions for the cylindrical 

case. For small contact angles, below about 25°, the contact angles predicted by the 

finite element analysis agrees closely with Hertzian analysis as shown in figure 4.3.3. 

However, for angles below a few degrees the prediction of the maximum pressure 

departs from that predicted by Hertz. This is probably due to the fact that for smalI 

contact angles the mesh needs to be finer in the contact region. For the application 

being considered here this is not a problem as much greater contact angles than this 

are experienced between the piston ball and slipper seat in an axial piston pump. 

As with the cylindrical case, analyses were conducted using materials and 

dimensions appropriate to the pumps under consideration, including the effects of 

using different seat materials. As with the equivalent cylindrical case, i.e. that of 

using different liner materials, as the seat thickness increases the contact angle 

increases, provided the seat material is more compliant than that of the slipper. This 

effect increases the more compliant the seat and the smaller the clearance between 

the components. 

In addition, an attempt was made to determine the contact pressure 

distribution for discontinuous contact as both the piston ball and slipper seat have a 

central hole. The results of this showed that a high pressure is found at the edge of 

contact, quickly approaching that found for unbroken contact. This effect was found 

for the cylindrical case by Chen and Marshek (1986) who analysed surface 

depressions on the conformal contact of bearings. 

7.2 CYLINDER BLOCK ANALYSIS 

Two- and three-dimensional analyses were conducted of the cylinder block of an 

axial piston pump in order to determine the stress distribution during normal 

operation. The primary concerns are the maximum stress, the effects on the stresses 

of using liners of different, usually polymeric, materials and, for the ceramic cylinder 

block, the stress distribution in the whole block. The two-dimensional model 
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analysed a cross-section through all nine bores of the cylinder block using contact 

pressure loading from the appropriate two-dimensional component-sized contact 

model as loading and allowed a detailed study of the variation of the stress as the 

cylinder block rotates and the pistons reciprocate within the bores, as shown in 

figures 5.1.6 and 5.1.7. The latter figure shows the large fluctuations in stress 

experienced by three different positions in the inter-bore region, thus predisposing 

the cylinder block to fatigue failure. 

The three-dimensional model consisted of two half bores of the cylinder block 

and used contact pressure loading from the appropriate three-dimensional contact 

analyses. It can be seen from the three-dimensional stress contour plots in figure 5.2.4 

that the highest stress occurs at the kidney ports and that when the bore diameters are 

increased to allow the inclusion of PEEK liners then the inter-bore stress approaches 

the kidney port stress. 

Comparing the results from the two- and three-dimensional analyses it can be 

seen that the stress predicted by the two-dimensional model is greater than that 

predicted by the three-dimensional model. This is probably due in a great part to the 

stiffening effect of the material closing the bore ends (i.e. at the porting). In addition, 

the two-dimensional model assumes that the same load is applied along the whole 

length of the bore. In the three-dimensional model the maximum delivery pressure is 

assumed to act only between the porting and the pistons; and the contact pressures 

from the pistons over a limited axial distance. Hence, the stress levels in the three­

dimensional are more representative whilst the two-dimensional model is important 

in giving a better indication of the fluctuation of stress. 

To date, two cylinder blocks have failed: an unlined aluminium alloy block 

with an anodised coating, and a polymer-lined stainless steel block, providing 

valuable data to validate the finite element analysis results. 

7.2.1 Aluminium cylinder block 
Figure 7.2.1 shows the stress contours predicted by the finite element analysis for the 

unlined aluminium alloy (6082 TF) cylinder block operating with PEEK-sleeved steel 

pistons. No attempt was made to model the coating which was typically 50 Jlm thick. 

The pump unit was operated at pressures up to 100 bar and failure occurred at 

approximately 18.5 x 106 cycles. 

Detailed examination of the failed cylinder block revealed that the coating 

treatment had completely worn through at the top-dead-centre of piston travel in a 

number of bores, exposing the relatively soft aluminium substrate underneath. The 

aluminium itself was then worn to a depth of some 70 Jlm. Microscopic analysis of 

the fracture surfaces revealed that a crack originated from the point of maximum 
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Figure 7.2.1 Von Mises stress contours in a detail of the aluminium cylinder block model. 

stress in the inter-bore area and rapidly spread up to the kidney port causmg 

catastrophic failure. Figure 7.2.2 shows a photograph of the failed cylinder block 

with the external cracks clearly visible. The finite element analysis predicts a 

maximum stress in the inter-bore region of 34.6 MPa for a delivery pressure of 100 

bar and contact from PEEK-sleeved pistons. The fatigue strength for uncoated 6082 

aluminium alloy is l70 MPa at 50 x 106 cycles (Waterman and Ashby, 1991) which 

is clearly greater than that predicted. However, the wear step will clearly have 

introduced a substantial stress concentration which, when combined with the 

corrosion effects of the water, will greatly increase the likelihood of fatigue failure. 

7.2.2 PEEK-lined stainless steel cylinder block 

An axial piston pump with ceramic pistons running in a polymer-lined stainless steel 

cylinder block was developed as part of the Water Hydraul ics project as an 

intermediate step to producing a sea-water pump. The pump was tested for more than 

60 x 106 cycles (700 hours) at pressures up to 140 bar on tap water in the laboratory, 

and then for nearly 15 x 106 cycles at similar pressures on sea-water before fa ilure of 

the block occurred. When removed from the casing, cracks were visible, as shown in 

figure 7.2.3. 
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Figure 7.2.2 Failed aluminium cylinder block. 

A detailed microscopic examination of the fracture surfaces revealed fatigue 

cracks originating from the kidney ports of two bores. Subsequently, these two 

individual cracks linked and it is considered most likely that this lead to the 

formation and propagation of a major longitudinal crack in one of these bores. 

The stresses predicted by finite element analysis of a cylinder block of this 

configuration were plotted in figure 5.2.4b and showed a maximum stres of 72 MPa 

in the kidney port area. This stress is significantly lower than the 250 MPa limiting 

fatigue design stress normally expected of 431 stainless steel. This observation , 

together with multiple initiation of other fatigue cracks, branching, and corrosion 

product on the fracture surfaces, is consistent with the conclusion that corrosion 

fatigue was the primary cause of failure of this cylinder block. 
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Figure 7.2.2 Failed PEEK-lined stainless steel cylinder block. 
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7.3 PISTON ANALYSIS 

The stresses in the necks of the pistons are relatively high (figure 5.3.5) and might be 

expected to lead to a fatigue failure, especially in the corrosive environment of water. 

However, in practice none of the PEEK-sleeved steel pistons failed. 

Two failures of ceramic pistons have occured during testing although neither 

happened during normal operation of the pumps. One piston seized in the bore due to 

overheating, became overloaded and failed at the critical section of the neck 

identified by the finite element analysis . The other piston fai led as a consequence of 

the fatigue of the PEEK-lined stainless steel cylinder block described in the previous 

section, again at the neck region. Further, probabilistic analysis of the ceramic pistons 

is described in Section 7.5 . 

7.4 SLIPPER ANALYSIS 

Section 5.4 considered the analysis of two designs of slipper used in the ax ial piston 

pumps. An early version of slipper design 'a' with a thinner wall section failed after 

running for 117 hours at a pressure of 140 bar. Figure 7.4.1 shows the stress contours 
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Figure 7.4. 1 Von Mises stress contours in the 'thin-walled slipper model. 
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in the slipper assembly predicted by finite element analysis and figure 7.4.2 the 

fractured slipper with the PEEK seat removed. 

Inspection of the slipper revealed a fatigue fracture with the original crack 

propogation site at the radius at the bottom of the seat. No beach marking w re 

evident indicating uninterupted crack growth and radial chevrons indicated the route 

as being from the inside to the outside radius. No obvious internal material defects 

Figure 7.4.2 Failed slipper with PEEK seal removed. 
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were found. Further investigation revealed that the inner radius was well below 

specification. The slipper experienced lOx 106 cycles at a maximum stress of 403 

MPa. Subsequent to this failure the wall thickness of the slippers was increased from 

1 mm to 2 mm and no more failures were experienced. Figure 5.4.5 showed the 

stress contours in the slipper after the increase in wall thickness. It can be seen that 

this resulted in a reduction of the maximum stress from 403 MPa to 267 MPa which 

is still close to the fatigue strength. It is anticipated that an increase in delivery 

pressure above 140 bar would lead to more failures and, in this case, it is 

recommended that slippers of design 'b' be used. These slippers have a greater bulk of 

steel and the maximum stress is predicted to be 169 MPa at 140 bar bore pressure. 

However, care must be taken to maintain the depth of the PEEK seat. A model was 

made with a much thinner seat, predicting a high stress below the edge of contact 

with the piston ball. A slipper of this configuration failed at this position in service. 

7.5 CERAMIC COMPONENT ANALYSIS 

This section discusses the results of the statistical analyses undertaken to determine 

the probability of failure of ceramic specimens and components. Quite a number of 

papers have been published on isolated work done on the theory of individual 

methods for the testing and analysis of ceramic specimens, but there has been limited 

collation and integration of the results. In particular, there is little work on the 

application and comparison of the different methods to the design of actual 

engineering components. 

7.5.1 Flexure bar specimens 

Two sets of flexure bar specimens were tested and subsequently analysed using the 

fracture criteria and flaw shapes available in the CARES (Ceramic Analysis 

Reliability Evaluation of Structures) program. As the Weibull modulus and 

characteristic strength data used in the statistical analysis was obtained from the 

failure of these specimens it would be expected that the CARES program would 

reliably predict their probability of failure. Figure 6.2.1 showed that, for the flexure 

bars, the failure probability was essentially the same regardless of the failure criterion 

or crack shape selected. The probability of failure versus stress was shown in figure 

6.2.2 for both sets of specimens and as predicted for both volume and surface flaws. 

The failure of the iso-pressed specimens is reliably predicted if it is assumed that they 

fail from volume flaws. However, it is usually assumed that four-point bend 

specimens fail from flaws on, or just beneath, the tensile surface. 
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The failure of the die-pressed specimens does not appear to be quite so 

reliably predicted if it assumed that they fail from volume flaws. 

An important point for ceramic manufacturers which arises from the failure of 

the iso-pressed and die-pressed specimens are the values of the Weibull modulus, m, 

and characteristic strength, a o. A high Weibull modulus indicates a low scatter of 

strength data of the four-point bend specimens and is taken as resulting in a more 

reliable material and, therefore, component. However, in this case the higher Weibull 

modulus of the die-pressed specimens is accompanied by a lower characteristic 

strength. The higher strength of the iso-pressed bars is a result of the better 

compaction afforded by the multi-directional iso-pressing compared with the uni­

directional die-pressing. For a given application the question must be asked as to 

whether a higher Weibull modulus 

or higher characteristic strength is 

required. Figure 7.5 .1 shows two 

probability of failure curves, one 

with a Weibull modulus of 30 and 

characteristic strength of 750, the 

other with a Weibull modulus of 10 

and characteristic strength of 800. 

At stresses over 720 the latter 

material would appear to be the 

more reliable but below 720 the 

former material is less likely to fail. 
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A further set of flexure bar specimens was cut from a ceramic cylinder block 

and tested to failure. This was to assess the effect of position within the component 

on the material strength and reliability. Figure 6.1.6 showed the fracture data plotted 

according to radial position and there does appear to be a difference between the 

specimens cut from the different positions. The Weibull modulus varied between 7.1 

and 18.6 with an overall value for all the specimens of 10.5. However, the value did 

not increase or decrease with radius and no further conclusions could be drawn. The 

characteristic strength varied between 603.4 and 721.0 and, apart from positions A 

and B, increased towards the centre of the cylinder block. This could be due to an 

increase in the density of the material as the ceramic is pressed from the outside 

towards a central mandrel. An attempt to scan the cylinder block using x-ray 

tomography provided no useful results. 

The strengths of the specimens cut from the cylinder block were much lower 

than either the iso-pressed or die-pressed specimens. This could be due to one of 

several reasons. The material of the cylinder block could be less well compacted than 
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the relatively small, uniformly-shaped flexure bars; the green machining procedures 

could introduce flaws or residual stresses and cutting the specimens from the block 

itself could result in damage. The cylinder block specimens were polished prior to 

testing but this might not have removed all the cutting defects. For the statistical 

analysis to be valid the flexure bars must exhibit the same size flaw population and 

mechanical properties as the component, as outlined in Section 3.5, which might not 

be true for the reasons given above. 

100% fractography of ceramic test specimens, as recommended by Quinn and 

Morrell (1991), did not prove to be useful in this case. Yttria-stabilised zirconia has a 

very fine grain structure and examination of the fracture surfaces in a scanning 

electron microscope, except in a very few cases, did not, reveal any visible defects. In 

some of the specimens which failed at low loads flaws such as agglomerates, pores 

and impurities were observed. These are shown in figure 7.5.2. 

7.5.2 Grooved bar and grooved rod specimens 

The grooved bar and grooved rod specimens were tested in the same rig as the four­

point flexure bars. Figures 6.2.3 and 6.2.5 show the failure probability predicted by 

CARES for each of the fracture criteria and flaw shapes for surface and volume 

flaws. For surface flaws the normal stress averaging (NSA) method is the most 

conservative and Shetty's semi-empirical criterion with Griffith cracks the least. For 

volume flaws the NSA method is again the most conservative and Shetty's criterion 

with penny-shaped cracks the least. The effects of this are shown in figures 6.2.4 and 

6.2.6 where the maximum stress is plotted versus the probability of failure for the 

specimens and as predicted by CARES. The failure of the weakest seven of the 

grooved rod specimens appears to be well predicted by assuming they fail from 

surface flaws, the strongest four approach the probability of failure due to volume 

flaws with the remainder lying somewhere between. However, examination of the 

fracture surfaces using scanning electron microscopy did not reveal any apparent 

flaws. The grooved bars all failed at stress levels between those predicted for surface 

and volume flaws and again no defects were detected using scanning electron 

microscopy. 

Figure 7.5.3 shows photographs of the fracture surfaces of a typical grooved 

bar and grooved rod specimen. In each case machining grooves are apparent and it is 

probably these grooves which act as fracture initiation sites. The localised stress 

concentrations which these grooves cause are not modelled by the finite element 

analysis and therefore not accounted for in the statistical analysis. 

Comparing the failure of the iso-pressed flexure bars with the grooved bars it 

can be seen that the grooved bars appear to be stronger than the flexure bars. This is 
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a) agglomerates (iso-pressed zirconia) 

b) pore (die-pressed zirconia) 

c) impurity (iso-pressed zirconi a) 

Figure 7.5.2 Flaws in nexurc bar specimens. 
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a) grooved bar 

b) grooved rod 

Figure 7.5.3 Fracture surfaces in typical grooved bar and rod specimens. 
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obviously not the case: the grooved specimens failed at lower loads than the flexure 

bars. The maximum tensile stress in the grooved bars occurs at the base of the groove 

but the volume of material experiencing this stress is much smaller than the volume 

of material experiencing the maximum stress in the flexure bars. This is the same 

effect as is observed when using three-point versus four-point flexure testing. 

7.5.3 Brazilian disc specimens 
The predicted failure of the Brazilian disc specimens was much more dependent on 

the failure criterion and crack shape chosen, especially for volume flaws. It can be 

seen in figure 6.2.7 that the predicted probability of failure varies between 0.05 and 

0.99 for volume flaws. However, even this range of values fails to predict the failure 

of almost half of the specimens and it would appear that none of the failure criteria 

accurately predicts the failure of components experienceing predominantly 

compressive stresses. 

7.5.4 Failure analysis of components 

Tha failure analysis of the piston and cylinder block predicted that they will not fail 

from fast fracture at the stress levels experienced during normal operation at 140 bar. 

However, increasing the loading allowed comparisons to be made between the 

different fracture criteria and flaw shapes. 

For the piston model it can be seen that for surface flaws the prediction of the 

probability of failure follows the same pattern as the grooved bar and rod specimens. 

The normal stress averaging (NSA) method is the most conservative and SheUy's 

criterion with Griffith cracks the least. For volume flaws the same pattern is not 

followed and Shetty's criterion with penny-shaped cracks is the most conservative 

and the maximum tensile stress (MTS) method with Griffith cracks the least. 

The probability of failure of the cylinder block did not follow the same pattern 

as any of the specimens tested. The NSA method proved to be the most conservative 

and the Batdorf method with Griffith cracks the least. The stress levels to cause 

failure are less than for any of the specimens which can be accounted for by the size 

effect, i.e. it is more likely that a strength limiting defect is found in a greater volume 

of material. 

British Gas have modified the ceramic cylinder block to use a temporary 

metal shaft insert. This cylinder block, operating at relatively low pressures, was 

tested with 1000 /-lm filtration on sea-water for 100 hours. It is now being tested with 

a silicon carbide port plate after excessive wear of the PEEK-coated steel port plate 

was observed. However, this configuration has not been examined here. 
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CHAPTERS 

CONCLUSIONS 

8.0 INTRODUCTION 

This chapter summarises the main conclusions of the work, the objectives of which were 

outlined in Chapter 1, and makes suggestions for further useful work in these areas. 

8.1 CONCLUSIONS 

The use of finite element analysis with gap elements is a useful way of determining the 

contact pressure distribution between conformally contacting components. It was shown 

that this method gives excellent agreement with available analytical methods for the 

two-dimensional cylindrical and axisymmetric spherical cases, and thus was extended to 

components constructed of layered materials. Extension to three dimensions, when the 

contact cannot be accounted for by plane strain or plane stress conditions, was also 

undertaken. This allowed a much more representative analysis of the contact conditions 

within an axial piston pump to be made for a variety of sleeved or lined components. No 

single combination of materials is identified as being the most suitable, rather, the 

method enables the consequences of choosing materials for their tribological 

characteristics to be examined. For example, choosing a compliant liner material results 

in a lower maximum contact pressure than the equivalent sleeved combination. 

However, in this application, cylinder block liner wear will always occur in the same 

position whereas piston sleeve wear will be distributed around the circumference of the 

piston. 

The above study allowed the stress distribution in layered, conformally 

contacting components to be determined by using the resulting contact pressure 

distributions as loading. Separating the contact analyses from the component analyses 

allowed more complex component models to be created than would otherwise have been 

the case. 

The final part of the work examined the different probabilistic methods currently 

available for designing ceramic components in this application. A knowledge of the 

entire stress distribution in these components is essential and finite element analysis 

provides the most convenient way to do this. The first part of this work enabled this to 

be done with confidence as conformal contact pressures cannot be removed from the 
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stress distribution in the bulk of the component as with point contacts. It can be 

concluded that no single method adequately predicts the probability of failure of ceramic 

specimens with more complex stress distributions than four-point flexure bars and that 

surface finishing methods are as important as the ceramic materials themselves . 

8.2 SUGGESTIONS FOR FURTHER WORK 

There are several areas of this work where more study would be interesting. Further 

analysis of the effects of having layered components would prove useful, in particular at 

the interface between the bulk and layered material. This study has assumed that the 

layers are always perfectly bonded but this will not always be the case in practice. 

More detailed examination of three-dimensional contact would prove useful for 

a variety of applications including the effects of misaligned components. A single piston 

test rig is being developed to examine just such effects. 

Much more analysis of the structural behaviour of ceramic materials needs to be 

done before they can be used with the same confidence as metals in situations where 

their properties can be exploited to the full. 
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APPENDIX II 

CALCULATION OF CYLINDRICAL CONTACT PRESSURES 

The contact pressures, pn, for the cylindrical contact analysis are calculated from the 

gap element forces, Fn, as follows: 

()I 
A2 = 2nR ()2 ()3 

AI =2nR-, A3=2.nR -
360 360' 360 

1_ 2Ft 
P - AI' 

2- 2F2 
P - AI+A2' 

3- 2F3 
P - A2+A3 

where An, ()n and R are as shown in figure A.I . 

p2 

rAIIA2l 
, , , 
! 
! 

! 
A3 

Figure A.I Calculation of cylindrical contact 
pressures from gap element forces . 
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APPENDIX III 

CALCULATION OF SPHERICAL CONTACT PRESSURES 

The calculation of the contact pressures, pn, from the gap element forces, Fn, for the 

spherical contact analysis was done as follows: 

Al =2,nR2 (I-cos8I), 

A2 = 2,nR 2 (cos81-cos82), 

A3 = 2,nR 2 (cos 82 - cos (3) etc. 

)_ 2FI 
P - AI' 

2- 2F2 
P - AI+A2' 

3- 2F3 
P - A2+A3 

where An, 8n and R are as shown in figure A.2. 

pI p2 

I Al lA2l 
· · · · · · · · · 
i 
f 

A3 

p4 

- .- -l' .... -. _. _. - . _. - . -. _. - ._. _. _. _. _. _. _._. _. _. _. _. _. _._ .-.- . _ .. 

Figure A.2 Calculation of spherical contact 
pressures from gap element forces. 
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APPENDIX IV 

CALCULATION OF THREE-DIMENSIONAL CONTACT 
PRESSURES 

The contact pressures, pnm, for the three-dimensional contact analysis are calculated 

from the gap element forces, Fnm, as follows: 

81 82 03 
All = 2nRzl-, AI2=2nRzl-, AI3 = 2nRzl-

360 360 360 

81 82 83 
A21 = 2nRz2- , A22 = 2nRz2-, A23 = 2nRz2-

360 360 360 

11= 4FII 
PAil' 

12 = 4FI2 
P AII+A12' 

13 = 4FI3 
P A12+A13 

2 4F21 p 1-
- AII+A21' 

31 = 4F31 
P A21+A31' 

etc. 

4F22 
p22= , 

AII+AI2+A21+A22 

4F23 
p23=--------------­

AI2+AI3+A22+A23 ' 

where Anm, zn, 8m and R are as shown in figure A.3. 

Figure A.3 Calculation of contact pressures from 
gap element forces for three-dimensional analysis. 
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