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Abstract

The work described in this thesis, concerns developments to analytical microfluidic

Lab-On-Chip platform originally developed by Prof Pamme’s research group at the

University of Hull. This work aims to move away from traditional laboratory anal-

ysis system towards a more effective system design which is fully automated and

therefore potentially deployable in applications such as point of care medical diag-

nosis. The microfluidic chip platform comprises an external permanent magnet and

chip with multiple parallel reagent streams through which magnetic micro-particles

pass in sequence. These streams may include particles, analyte, fluorescent labels

and wash solutions; together they facilitate an on-chip multi-step analytical pro-

cedure. Analyte concentration is measured via florescent intensity of the exiting

micro-particles. This has previously been experimentally proven for more than one

analytical procedure. The work described here has addressed a couple of issues which

needed improvement, specifically optimizing the magnetic field and automating the

measurement process. These topics are related by the fact that an optimal field

will reduce anomalies such as aggregated particles which may degrade automated

measurements.

For this system, the optimal magnetic field is homogeneous gradient of sufficient

strength to pull the particles across the width of the device during fluid transit

of its length. To optimise the magnetic field, COMSOL (a Multiphysics simula-

tion program) was used to evaluate a number of multiple magnet configurations

and demonstrate an improved field profile. The simulation approach was validated

against experimental data for the original single-magnet design.
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To analyse the results automatically, a software tool has been developed using

C++ which takes image files generated during an experiment and outputs a calibra-

tion curve or specific measurement result. The process involves detection of the par-

ticles (using image segmentation) and object tracking. The intensity measurement

follows the same procedure as the original manual approach, facilitating comparison,

but also includes analysis of particle motion behaviour to allow automatic rejection

of data from anomalous particles (e.g. stuck particles). For image segmentation a

novel texture based technique called Temporal- Adaptive Median Binary Pattern

(T-AMBP) combining with Three Frame Difference method to model the back-

ground for representing the foreground was proposed. This proposed approached

is based on previously developed Adaptive Median Binary Pattern (AMBP) and

Gaussian Mixture Model (GMM) approach for image segmentation. The proposed

method successfully detects micro-particles even when they have very low fluores-

cent intensity, while most of the previous approaches failed and is more robust to

noise and artefacts. For tracking the micro-particles, we proposed a novel algorithm

called ”Hybrid Meanshift”, which combines Meanshift, Histogram of oriented gradi-

ents (HOG) matching and optical flow techniques. Kalman filter was also combined

with it to make the tracking robust.

The processing of an experimental data set for generating a calibration curve,

getting effectively the same results in less than 5 minutes was demonstrated, with-

out needing experimental experience, compared with at least 2 hours work by an

experienced experimenter using the manual approach.
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Bs Residual magnetic flux density

d Average diameter of the magnetic nanoparticles
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Um Magnetophoretic particle velocity
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Chapter 1

INTRODUCTION

Microfluidics is a relatively new scientific discipline involving manipulation of small

amounts of liquids for various analyses with a wide range of applications in medicine,

environmental monitoring and chemical analysis. Research on microfluidic devices

and their fabrication with micromechanics technologies has about five decades of

history [1]. From the early 1980s, research activities on microfluidics has expanded

considerably and it has become a very popular research topic [2]. However, there

are still many challenges to be addressed. This is a multidisciplinary field, requir-

ing input from many different scientific backgrounds. In order to make successful

progress within the field, a development team needs to have knowledge of mechani-

cal engineering, material science, surface chemistry and intermolecular interactions,

chemical and biochemical reactions and microelectronics.

Microfluidic techniques provide many different advantages for analytical appli-

cations, multivariate studies or studying processes at small scale. Moreover, it has

some other clear advantages such as small footprint, small volumes of reagents re-

quirement, potential lower reaction times, which are extremely valuable for any

analytical application. A typical microfluidic reactor might contain volumes as low

as a few micro-litres, nano-litres or lower (10−9 to 10−18 litres) [3], which obviously

reduces the reagent consumption. This can be of particular interest in biochemical

or medical applications, where it is difficult to obtain large amount of samples or

reagents are very expensive. An additional advantage for low volume reactors is low
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amount of waste. Together with small footprints, it is easier to contain and isolate

the reactants, making them safer even for application such as radiochemistry. Small

volumes also mean fewer requirements on storage, pumping. Moreover, it offers

the possibility of other types of liquid manipulation beyond traditional mechanical

pumping. Liquid could be transported in the device by syringe pumps, but also by

electro-kinetic processes.

Furthermore, miniaturisation offers the possibility of massively multiplex pro-

cesses, like DNA arrays or device used for sequencing. The key for providing results

in a short period of time is to collect signals from millions different sources and with

the aid of computer processing resolves such signals [4]. This is a considerable step

from traditional process, like use of 96-well plates. For these reasons, microfluidics

and microfluidic devices have had a great influence on many branches of chemical

and biological analysis, including optics and information technologies [3].

Stanford University, USA and IBM are considered as pioneers of the implemen-

tation different microfluidic devices. For example Stanford University used microflu-

idic chips for doing gas chromatography and IBM developed the nozzles of inkjet

printers in 1979 [5].

1.1 Lab on Chip

The small size of microfluidic devices allows easy integration with other components,

serving as sensors and actuators, resulting in a complex system capable of performing

various processes at the same time within one device. A typical example would be

the systems labelled as Lab-On-a-Chip or LOC. The aim of such devices is to include

processes such as sample preparation, any required reaction and detection on one

device. In such cases, the devices, which are predominantly aimed for medical

applications, could be deployed anywhere and remove necessities of sending samples

to specialised laboratories. The overall benefits offered by LOC include: reduced

amount of reagent which reduces the costs, elimination of labour intensive steps,

high purity and decreased processing time compared to conventional methods.
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In the early 1960s, when several research groups started working on miniaturized

silicon sensors, the idea for developing LOC devices first appeared. Research on

LOC techniques became more prominent when Defence Advanced Research Projects

Agency, USA (DARPA) invested in research in portable biochemical warfare agent

detection systems for the military. The first commercial use was for different life

science applications [6]. An example of the newest generation of LOC systems is a

miniaturized chip for isolating the rare circulating tumour cells in cancer patients

[7]. Initially glass and silicon were the most commonly used fabrication materials for

Lab-On-Chip devices, but the use of soft lithography techniques made it easier to use

various polymers like PolyDiMethylSiloxane (PDMS). Beside PDMS type polymers,

glass and silicon are still used for many systems where PDMS is not suitable due to

temperature or chemical in compatibility.

There are many of microchip fabrication process are available, but most com-

monly used are Photo lithography, UltraViolet (UV) laser photo ablation, Powder

blasting for glass substrates, sawing etc. After the introduction of photo-lithographic

techniques for the fabrication of chemical and biochemical micro devices [8], the

number of applications of using different microfluidic chip has increased exponen-

tially [9]. Each of the process contains more than one steps [10]. Depending on the

availability of resources and requirement(s) of the experiment, any of the process

needs to use for microchip fabrication.

An example of a typical LOC, a microfluidic chemostat (Chemical environment

is static) device with numerous pneumatic valves fabricated using PDMS is shown

in Figure 1.1:
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Figure 1.1: A microfluidic chemostat with pneumatic valve [3].

1.2 Magnetophoresis systems

Magnetophoresis is an important branch of LOC microfluidic experiments, where

magnetism and microfluidic are fused together for various applications. Separately

magnetism and microfluidics are not so new concepts, but they have been combined

together only for the last two decades and became a significant research area [1, 11].

For this purpose, a wide range of magnets from simple and cheap external permanent

magnets to sophisticated micro-electromagnets are now in use [5].

In numerous microfluidic applications, such as capillary electrophoretic sepa-

rations, electro-osmotic pumping and dielectrophoretic trapping, electric fields are

used [12]. For such experiments it has been proven that use of external permanent

magnets do not have any effect on surface charges, pH, ionic concentrations or tem-

perature, as these properties or outputs are generally not affected by magnetic fields

[13].

In microfluidic processes magnetic forces are mainly used for transporting and

sorting magnetic particles. In this way bio-molecules can be isolated from a sample

by attaching them to small magnetic particles, which also facilitates multistep reac-

tion within a very small microfluidic chip [13]. These experiments are widely known
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as magnetophoresis.

The work described in this thesis concerns developments and improvements to

magnetophoresis LOC devices and experiments based on works by Prof. Pamme

and her research group. Most of these magnetophoresis experiments employ multi

regent stream system analysis in which several lamina fluid streams are injected

into the microfluidic chip with different chemical properties. As magnetic particles

pass through the different streams reactions take place on the surface of the particle

in different stages. The following sections provide an overview of the operating

principles and structure of the LOC devices of interest in this work. This will be

followed by a discussion at the issues to be addressed.

Use of magnetic particles and an external magnetic field as a separation tech-

nique in a continuous flow microfluidic chip is now widely known as on-chip free-

flow magnetophoretic separation and was introduced by Prof. Pamme et al. in

2006 [14, 13]. A typical microfluidic chip, based on the free flow magnetophoretic

principle is shown in Figure 1.2. It was designed by Prof. Pamme (Department of

Chemistry, University of Hull, UK) [15]. The system consists of a microfluidic chip,

external permanent magnet, magnetic particles, fluorescent stream, buffer solution

and solution of the target particle. The chip may contain several inlets and outlets

depending on the application requirement. It is not necessary that the inlets and

outlets are equal in number or have the same shape, it can be designed any way

depending on the experimental requirements. The materials used for the device are

glass, silicon or polymer.
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Figure 1.2: Principle of free-flow Magnetophoresis system for magnetic separation. Magnetic particle mixture is

introduced into the microfluidic chamber and external magnetic field is applied perpendicular to the flow. For

constant flow rate, particles trajectory depends on their size and magnetic susceptibility, which allows different

particle types to exit the chip via different outlets. This way particles can be separated from each other [15].

One of the implementation of magnetophoresis principles on LOC experiment is

magnetic separation. According to basic principle of magnetic separation shown in

Figure 1.2 from the first inlet, a suspension of mixed particles is introduced into the

chamber and a permanent magnet is placed at the opposite side of the chamber.

Depending of the flow velocity, particle size, internal magnetic content of the particle,

magnetic properties of the magnet and media, the particles would then travel across

the chamber in both X and Y direction, where the Y axis is perpendicular to the

flow (X axis). In such motion, particles would migrate through the separate streams.

Using this technique, the magnetic and non-magnetic particles can be precisely

separated. This separation happens due to the deflection of the magnetic particles

from the direction of the laminar flow, depending on the magnetic susceptibility, size

and velocity of the particles and lamina flow. This technique is useful not only for

magnetic particle and non-magnetic particle separation, but also particle separation

depending on their magnetic properties.

An advantage of this set-up is the possibility to monitor the particles in real-

time, for example one could obtain data for kinetic studies in this manner. The

advantage is again the ease of use and speed of generating the data.
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In addition to magnetic separation, the set up shown in Figure 1.2 can be

used to send a set of uniform particles through a sequence of laminar fluid streams.

Due to the dimensions and flow velocities typically used in these chips, the flow is

laminar and there is relatively little mixing between the individual reagent streams.

Therefore, it can be assumed that all reagents are separate reaction media. This

can be used to perform a sequence of reactions on the surface of the particles easily

in continuous flow. Such procedure removes the necessity for manually transferring

the particles between various reaction vessels for example.

The previously described magnetophoresis experiments were developed further

by the research group of Prof. Pamme. Using the principle of magnetophoresis and

similar experimental setup, additional functionality was added (See Figure 1.3).

The inlets were divided into separate channel capable of delivering different reagents

into the chamber of the device. Magnetic particles were introduced from inlet at the

bottom of the chamber as before and deflected across the width of the chamber by a

permanent magnet positioned at the opposite side of the chamber. As the particles

travelled across the chamber, they moved through several different reagent streams,

which stayed relatively unmixed due to laminar flow regime. In such a way reaction

on the surface of the particles could be performed in continuous flow, in relatively

simple and rapid manner [16].

As a proof of principle, streptavidin modified particles were sent through a buffer

stream, a stream containing fluorescently labelled biotin and another buffer stream.

The motion of particles across these streams resulted in increase of fluorescence of the

particles, due to strong streptavidin-biotin interactions forming during the particles’

residence in the biotin stream. Thus analyte concentration can be measured by

detecting the level of fluorescence of the particles as they exit the chamber.

Later other reactions were employed such as DNA hybridisation [17] or antigen-

antibody binding [18]. Moreover, additional reaction can be added and thus perform

a 2-step reaction process in one continuous flow procedure.
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Figure 1.3: Principle of the multi-laminar flow platform. Alternating reagent and buffer streams are generated

across a microfluidic chamber and functionalised magnetic particles are deflected through each stream, allowing

multiple consecutive reactions to occur on the particle surfaces [16].

The chip shown in Figure 1.4 is an example microfluidic chip of a multi-laminar

flow experiments. It was fabricated using glass, but it is also possible to use PDMS

(PolyDiMethylSiloxane) instead of glass [19]. The reaction chamber of the microflu-

idic chip used during DNA hybridization in an experiment performed by Dr Martin

Vojtisek in Prof. Pamme’s research group was 22 µm in depth, 8 mm long, 3 mm

wide and rectangular in shape and supported by pillars [17]. It had five different

inlets supplying different solution into the chamber and two outlets to collect the

waste. These chips are constructed from two glass plates placed one on the top of

another and thermally bonded together - one of them contains the channels and

the chamber and the other part is a plane symmetrical plate without chamber and

channels.
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Figure 1.4: Microfluidic Chip designed by Prof. Pamme (NP59) in with 5 inlets and 2 outlets with 8 mm long

chamber [20].

The magnetic field throughout the chamber was not uniform, being higher near to

the place where the magnet is placed. Hydrodynamic flow also effects the movement

of the magnetic particles. So, the observed flow velocity vector of the magnetic

particles is the vector summation of magnetically induced flow vector and the applied

hydrodynamic flow vector due to the lamina flow. This can be expressed as Equation

(1.1).

−→
U obs =

−→
U hydr +

−→
U mag (1.1)

Considering all the conditions, the capillaries need to be connected to the chip

depending on the experimental requirements as shown in the Figure 1.5.
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Figure 1.5: Photograph of microfluidic chip connected with capillaries and holders.

In this example experiment, described previously as multi-laminar flow experi-

ments, all the inlet capillaries were connected to the gas-tight glass syringe (SGE,

Supelco, USA) and then all of the syringes were fitted to a multi-syringe pump to

pump by positive pressure. The capillaries from the outlets are then linked to the

glass vial of waste solutions. After assembling the microchip with all the capillaries

and holders placed on the stage of an inverted light and Nikon TE2000-U florescence

microscope which is shown in Figure 1.6.
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Figure 1.6: Typical experimental setup from Prof. Pamme’s research group showing fabricated glass chip connected

with tubing, microscope and image capturing camera.

Images and video sequences for the microfluidic experiments were recorded using

a Charge-Coupled Device (CCD) camera. These images collected from the CCD

camera are analysed to measure particle fluorescence and hence determine analyte

concentration. So, these microfluidic experiments are done in two parts on-chip

experiment and off-chip experiment. Data analysis of the experiment is known

as off-chip experiment. For the current off-chip data analysis, the particles are

manually detected and their fluorescence are measured mostly using ImageJ [21]

image analysis software. In many cases their grey values are measured to determine

the level of fluorescence. The issues to be considered

Particle intensity: Typical micro-particle itself does not have any significant in-

tensity property. However, if the particle surface has been chemically acti-

vated, it may produce light by florescence or chemiluminescence. In such

cases the light intensity from the micro-particle has a direct relationship with

the concentration of the analyte, i.e. the intensity of the micro-particle is pro-

portional to the concentration of the analyte. Low background fluorescence of

particles is desirable in order to achieve high sensitivity. Instrumental setup

could be further improved which would enable even lower detection limits.
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Magnetic Force on the particle(s): Magnetic micro particle moves across the

reaction chamber for the combinational effect of magnetic force and drag force

on it. Considering constant drag force from the fluid flow, the magnetic field

gradient is not equal over the whole reaction chamber. So different particles

experience different amounts of magnetic force depending on the distance of

the particle from the magnet.

Non-moving and stuck particle(s): Within the reaction chamber of the microflu-

idic chip there are several supporting pillar exits to keep the two parts of the

chamber separate from each other. Frequently micro-particle(s) hit those pil-

lars and become non-moving for next few frames or forever. Moreover, de-

pending on the effective force on the particle, particles may stick to each other

and act as one large particle.

Image Capture Tools: Cameras used for image capturing can be better. With

the current set up, it produces noise with the presence of any external light

and changes in any internal condition of the LOC experiments.

Diffusion: Despite maintaining laminar flow regime, diffusion between reagent

streams is unavoidable. This has to be accounted for when designing the

device. Moreover, diffusion in laminar flow also changes in image scenarios.

Occlusion and Clutter: There are several potential issues related to the nature of

the experiment, such as differences in starting positions of particles which can

result in dramatically different trajectories if the magnetic field is generated

by a simple permanent magnet. This is because such field does not provide

uniform and constant gradient of magnetic field.

1.3 Problems of the current system

There are several practical issues with this Lab-On-Chip systems and associated

experiments which will be discussed in the following sections:
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1.3.1 Temperature

The temperature of the system needs to be controlled accurately, because the re-

sulting magnetophoretic motion of particles depends on viscosity of the medium

considering that all other parameters being constant. Viscosity in turn can change

dramatically with temperature. Nevertheless, this problem can be circumvented by

using the devices in a regulated environment or using dedicated temperature regu-

lating systems for the experiments. In Figure 1.7, particle trajectory for 5oC, 20oC

and 50oC temperature inside the reaction chamber is shown in Figure 1.7a, 1.7b

and 1.7c respectively. Temperature control is relatively straightforward to achieve

and was not addressed as part of this work.

(a) At temperature 5oC. (b) At temperature 20oC. (c) At temperature 50oC.

Figure 1.7: Effect of Temperature of the magnetic particle flow [22].

1.3.2 Magnetic Field Profile

The principle of the magnetophoresis lies in characteristic motion of magnetic par-

ticles subjected to inhomogeneous magnetic field and other forces perpendicular to

the magnetic force. Placing a permanent magnet at the side of a chamber of a mi-

crofluidic chip generates magnetic gradient across the width of the chamber, however

the magnetic forces diminish rapidly with distance.

For practical reasons, the inlet where particles enter the chip is generally 200 -

300 µm wide. The magnetic force acting on particle therefore depends heavily where

exactly it enters the chip, as even such relatively small distance makes ultimately

large difference. Additionally, particles could be subjected to magnetic fields already
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in the inlet channels and being stuck against the walls of the inlets. In short, the

magnetic field should be designed so that it only provides magnetic forces in the

region of interest and ideally the forces are independent on the distance from the

magnet. Such magnetic field cannot however be obtained using regular shaped

commonly available permanent magnets. Modelling techniques can therefore be

employed in order to establish the required design of the magnet so that it can be

custom made for use with the magnetophoretic chips. Developing custom shaped

magnet for producing uniform magnetic field gradient over the microfluidic chip was

a considerable part for this project.

1.3.3 Microfluidic result analysis

Using ImageJ for manually detecting and analysing the particle is a time consuming

process and cannot be extended to process more samples. Furthermore, it is also

dependent on subjective interpretation by the individual experimenter. This may

make a difference to the results. As this current system is user dependent, the results

are not reproducible. Therefore, it was urgent to develop an automatically image

analysis software which could recognize and track the micro particles, analyse their

movement and measure their light intensity. So developing an algorithm to detect

the particles and analyse (including grey scale value, motion etc.) them was a part

of this work.

1.4 Aims and Objectives of the research

One of the main targets for this project was to develop a miniaturised system us-

ing comprehensive computer aided design tools to facilitate efficient development

of new Lab-On-a-Chip (LOC) systems. Beside this computational simulation for

LOC another task for this project was to develop a system to make the analysis of

the experiment faster and more reliable, efficient and reproducible. So the overall

goals of this PhD project from engineering view are 1) carrying out computational

simulation of the work to predict the optimized experimental conditions and 2)
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developing software to analysing the results from Lab-On-Chip experiment auto-

matically. These two goals are described in more detail in the following section, also

relevant background will be discussed in more detail in later chapters.

1.4.1 Lab On Chip simulation for magnetic field optimiza-

tion

In the LOC device(s) relevant to this study ( Figure 1.3) particles enter the chamber

at slightly different locations they may be anywhere within the cross-sectional area

of the inlet channel. This will apply to any similar devices using the same general

approach and is not unique to this design. Under these conditions, if the magnetic

field gradient is not uniform, then the particles will not follow perfectly parallel

paths. Therefore they may collide with one another. Furthermore, they may deviate

sufficiently from the optimal path to hit the micro-pillar support structures. This

may lead to the following problems:

1. Some particles might not reach the correct outlet/detector and be usable for

analysis.

2. Automatic tracking is more difficult due to the possibility of particles crossing

paths in close proximity and becoming indistinguishable after separation or

aggregating to form a single combined particle, which would not be usable for

analysis, but would have to be identified by the image processing as such.

3. Residence time in reagent streams may be variable, potentially introducing

errors.

The result of these issues is fewer ”good” particles available for result analysis

and greater potential for image processing difficulties, particularly at lower analyte

concentrations where particle intensity in low. Therefore, it was considered desirable

to optimise the magnetic field to provide the best conditions for automatic tracking

and measurement of the particles. A simulation approach was chosen because setting
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up large numbers of experiments with different magnets arrangements would be too

difficult and time consuming.

Computational simulation helps researchers to perform experiment with differ-

ent conditions and predict results, which enables the researchers for reducing the

numerical optimization steps [23]. Such simulation can be assisted by the use of

commercial multiphysics simulation tools. There are numbers of commercial and

open source computational software for microfluidics and magnetic field simula-

tion, such as Finite Element Method Magnetics (FEMM) (www.femm.info), Ansys

(www.ansys.com), COMSOL (uk.comsol.com), Electromagnetic Simulation(EMS)

(www.emworks.com), MagNet (www.infolytica.com) etc. COMSOL Multiphysics

allow users to perform microfluidics modelling and magnetic field simulation in three

dimensions.

As mentioned earlier, unequal magnetic field gradient over the microfluidic chip

makes the motion path of the micro particle differ from the desired one. Also mag-

netic field strength (i.e. field gradient) reduces sharply with the increase of distance

from the magnet. So it was required to have custom shaped magnet placed for

moving the particles from inlet to the desired outlet. To develop the custom shape

magnet, the only way was to use simulation tool (COMSOL). So using COMSOL

simulation tool to simulate magnetophoresis experiment with the influence of mag-

netic field from custom shaped magnet was one of the aims of this thesis.

1.4.2 Automatic particle measurement and tracking

It was required to develop an algorithm to detect micro-particle automatically. For

detecting micro-particle automatically, a novel algorithm was be developed which

can differentiate the micro-particles from the background and different noises. De-

veloping an algorithm for automatically detecting micro-particles and measuring

their light intensity associated with fluorescence or chemiluminescence was one of

the main aims of this project.

Automatic object tracking has been widely used in many critical tasks, such
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as surveillance systems including vehicle tracking [24], human recognition[25] etc.

As the result of high demand for object tracking, many algorithms has been devel-

oped to deal with tracking object (such as vehicle registration number plate, human

face, human body etc.) and tracking environment (such as dynamic background,

illumination changes, shadows, moving camera etc.). However, there is no ready

to use algorithm for tracking micro-particles used in microfluidic chip, which are

all of similar colour, similar shape and low contrast difference with environment.

Development of such algorithm will be a key part of this work.

1.5 Thesis Organization

This thesis was organised as follows:

Chapter 2 provides an overview of microfluidic flow and magnetic theories, which

will be required for modelling simulation and magnetic field optimization.

Chapter 3 presents the work on simulation and optimizing magnetic fields af-

fecting micro particle trajectories in the Lab-On-Chip devices.

Chapter 4 provides a comprehensive review for different background subtraction

image processing techniques. The basics of background subtractions, its process and

challenges will be introduced. Widely used background subtraction techniques and

their implementations and drawbacks will be presented and their applicability to

this work evaluated.

Chapter 5 provides brief description of proposed approach for detecting micro-

particles and compares the results with other existing techniques. This proposed

technique combines the newly developed texture segmentation technique with the

widely used background modelling techniques: Gaussian Mixture Model and three

frame difference. This will also provide an idea about the improvement achieved

for background modelling and subtraction, over the current available systems for

detecting micro-particles with very low concentration analyte.

Chapter 6 will present the principle of multiple object tracking. Challenges of

multiple object tracking, steps of doing it and widely used object tracking algorithms
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will be described here.

Chapter 7 will explain the proposed approach for micro-particle object tracking.

This proposed approach combines the modified Meanshift object tracking technique

with HOG, optical flow and Kalman filter for robust tracking. It will also demon-

strate the results of tracking for micro particles used in microfluidic chips.

Chapter 8 will show the performance of our approach for analysing data se-

quences from magnetophoresis experiment, this will include the process of generat-

ing Error bar and calibration curves for those experiments using automated data

analysis software. Also the time requirement and accuracy for this system will be

discussed here.

Chapter 9 will provide overall conclusion of this whole project and future plan

of this work.

1.6 Thesis Contribution

This thesis contributes a method for background modelling to detect micro-particles,

tracking them and measuring their intensity to find the concentration of an unknown

analyte. Also a simulation of a magnetophoresis experiment is represented here. All

these works in this thesis can be summarized using following four sections:

Detecting Moving Object: A novel technique is proposed for detecting mov-

ing object(s) called ”Texture based GMM combined with frame differencing”.

This object detector is able to detect object from a scenario where the objects

are barely visible. Moreover, this technique is robust to sudden changes in

lighting condition, as it uses texture for modelling the objects. This technique

is developed mainly to detect micro-particles from magnetophoresis experi-

ments, but it provides an efficient performance for detecting other moving

objects as well.

Tracking Multiple Objects: After a moving micro-particle is detected first time,

a foreground mask is generated for initiating tracking using proposed ”Hybrid
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Meanshift” combined with ”Kalman filter”. This proposed method is effi-

cient for tracking featureless multiple micro-particles even they are moving by

keeping very small distance with each other.

Measuring concentration of unknown analyte: The manual method for mea-

suring concentration for any unknown analyte is time consuming and the result

is not reproducible. An automated process has been developed, which can cal-

culate the concentration of an unknown analyte within a very short period of

time and the results are reproducible.

Simulating magnetophoresis and homogeneous magnetic field gradient: A

DNA hybridization magnetophoresis experiment was simulated using COM-

SOL Multiphysics. This experiment was previously done in the Chemistry

laboratory by Dr Martin Vojtisek. The magnetic flux distribution and field

gradient over the reaction chamber for rectangular shaped magnet and Hal-

bach array of magnet were investigated. Moreover, for generating homoge-

neous magnetic field gradient across the reaction chamber, combination of

two magnets was simulated.
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Chapter 2

MICROFLUIDIC THEORY FOR

SIMULATION USING COMSOL

MULTIPHYSICS

For simulating magnetophoresis microfluidic experiments with microfluidic devices

it is required to understand the relevant theories and characteristics of fluid flow,

magnetism and various forces on the micro particles. This chapter will describe the

relevant fluidic and magnetic theories. Also relevant forces on particles which lead

the particle to change the path of flow will be discussed here. Detailed explanations

of current microfluidic experiments and set-up will already have been provided in

previous chapter (Chapter 1) and later in the next chapter it will introduce the

implementation of COMSOL multiphysics for simulating microfluidic experiments.

Overall this chapter will provide a literature review and demonstrate different models

and applications relevant to this work.
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2.1 Microfluidics Theory

2.1.1 Fluid flow Theory

A fluid is a substance that continuously changes or deforms in response to any

applied force to its surface. Moreover, fluid behaviour also can change depending on

its molecular states, like gas, liquid and plasma states. So fluids can be characterized

by several properties like: density, specific weight, pressure, viscosity and surface

tension, which will be discussed in this section.

The density of a fluid represents its mass per volume and is expressed by a unit of

Kilograms per cubic metre (kgm−3). It can change depending on fluid’s temperature,

pressure and its state. Depending on the changing behaviour of density property of

fluid they can be divided into compressible and incompressible fluids. A fluid with a

constant density is an incompressible fluid and for compressible fluids densities vary

with changes in temperature and pressure. The density of a fluid relates to gravity

using specific weight of a fluid, which is the weight per unit volume of a fluid and

expressed by a unit of Newton per cubic metre (Nm−3).

Pressure is force per unit area and expressed by Newton per metre squared

(Nm−2). Pressure (hydrostatic) on static fluid at a given depth is the resultant

weight of the liquid acting on a unit area at that depth and any pressure acting on

the surface of the liquid. It does not vary horizontally within a fluid, but it does vary

vertically depending on fluid type. For incompressible fluid it varies linearly with

fluid’s depth, as incompressible fluid density is constant with change in location or

pressure or both.

Viscosity (η) is a property of fluid which provide resistance against its continuous

deformation. Its SI unit is Newton second per metre squared (Nsm−2). Though

there are two types of viscosities (dynamic and kinematic) exist, but all the discus-

sion in this chapter are on dynamic viscosity (absolute viscosity). A fluid within a

channel such as a microfluidic device shows a velocity gradient due to its deforma-

tion which is the result of frictional force (also known as shearing stress) between

fluid’s velocity and flow surface. Dynamic viscosity for a fluid can be shown using
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following Figure 2.1:

Figure 2.1: Dynamic viscosity of a fluid.

From Figure 2.1, a fluid with viscosity (η) and applied shearing stress (τ) can be

related to it’s velocity gradient through the relationship shown in Equation (2.1):

τ = η
∂u

∂y
(2.1)

Here, u is the velocity of the flow line which is parallel to the wall of the microflu-

idic chip (∂u
∂y

is the velocity gradient), y is the distance of the flow line from the wall.

The equation shown in Equation (2.1) relates to shear stress and viscosity of fluid

also known as Newton’s law of viscosity. Depending on the relationship between the

shearing stress and velocity gradient shown in Equation (2.1) fluids can be classified

into two ways Newtonian and non-Newtonian fluids. Newtonian fluids have a linear

relationship between the shearing stress (like water) and velocity gradient, when the

relationship is non-linear for non-Newtonian fluids (like blood). The fluids used for

LOC experiments are Newtonian fluids.

Moreover, when the boundary walls are stationary the fluid tends to stick to the

boundary of the channel and results in a no slip condition. On the other hand, when

both walls of the channel are stationary, this produces a parabolic velocity profile.
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2.1.2 Reynolds number and Flow Types

The Reynolds number is a dimensionless parameter used to define the flow regime

of the fluid. It was named after a British engineer and physicist Osbourne Reynolds

in 1883 [26, 27]. It is the ratio between kinetic energy to overcome inertia and the

energy produced by friction due to viscous forces, that is

Reynolds Number =
Inertial Force

Viscous Force
=

Velocity × Distance

Viscous Force

This is now widely used for predicting different flow types, such as laminar,

transitional or turbulent flow (shown in Figure 2.2). Reynolds number also relates

the fluid property to the geometric properties of a channel (pipe) as well. Thus the

Reynolds number can be expressed mathematically as Equation (2.2)

Re =
luρ

η
(2.2)

Here, l is a characteristic dimension (usually diameter for a flow in a pipe) of the

channel(m), u is magnitude of velocity (average velocity) of flow (ms−1), ρ is fluid

density (kg m−3), η is viscosity of fluid (Nsm−2). If the channels are non-circular,

then the characteristic dimension in Reynolds number can be expressed as Equation

(2.3):

l =
4A

P
(2.3)

Where A is the cross section of the channel and P is its wetted perimeter.
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Figure 2.2: General representation of three different types of flow depending on Reynolds number [28].

Depending on the value of Re, flow can be described as -

• If 1 < Re < 2000 then the viscous forces are dominant, meaning the flow

is smooth and constant (do not change over time), which means the flow is

laminar. The layers of fluid flow in laminar are in parallel to each other inside

the channel.

• If 2000 < Re < 4000, both the viscous and inertial forces are close to each

other. In this case the flow can be defined as transitional flow.

• If Re is greater than 4000 then the flow is dominated by inertial forces (pro-

ducing chaotic eddies, vortices and other flow instabilities), which means the

flow is turbulent flow and flow becomes unstable and results in eddies and

swirls fluid with time.

In microfluidics, the channel diameters and flow velocity are normally very small

(micrometre scale), which makes the value Re very small. Mostly observed microflu-

idic flow has Re < 10 and are dominated by viscous forces (in most cases inertial

forces become negligible). The flow thus results in smooth laminar flow without

turbulence [29, 30]. One of the benefits for having a very small value of Re is that

it makes easier for transporting sensitive materials on magnetic particles without

mixing inside LOC devices [26].
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2.1.3 Diffusion

In the multi stream lamina flow experiments described in Chapter 1, Section 1.2,

it is required to pass more than one layer of fluids through the microfluidic chip’s

channel and chamber with minimal intermixing. However, when multiple layers of

fluids are passing through the chip mixing between adjacent fluid flows occurs due

to diffusion. Diffusion takes place due to Brownian motion of molecules within the

flow. Mathematically diffusion can be expressed as Equation (2.4):

∂

∂t
c(r, t) = D∇2c(r, t) (2.4)

Here c is the concentration of the fluid, r is position vector, t is time for diffusion

and D is diffusion coefficient. A general view for the microfluidic flow with diffusion

inside an example reaction chamber is shown in Figure 2.3 1.

Figure 2.3: General Microfluidic flow with applied flow rate of 10 µLh−1 through four different inlets.

Diffusion occurs more between the laminar streams as they cross the reaction

chamber and the amount of diffusion depends on the time of travel and diffusion co-

efficient. For a distance of x for a lamina to cross with diffusion coefficient D, if the

required time is t, then it can be described by the Einstein-Smoluchowski (derived

1In this figure the diffusion is upward as the upper inlet has smaller width compared to other

inlet, resulting smaller fluid flow pressure compare to other inlets.
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by Albert Einstein and Polish physicist Marian Ritter von Smolan-Smoluchowski)

equation as Equation (2.5):

D =
x2

2t
(2.5)

In Equation (2.5), x
t
is mean speed of the particles and x their mean free path,

i.e., with the increase in free path, will result in increased diffusion. Diffusion also

depends on the molecules’ size. Small molecules diffuses more quicker compared with

larger particles, because small particles have bigger diffusion coefficient D compared

with larger particles [31]. For example at room temperature any aqueous solution

with spherical organic dye molecule (MW = 330 g mol−1) diffuses 10 µm in 0.2

second, but solution with larger particle of bacterium (0.5 µm diameter) require

about 200 second to diffuse 10 µm [32].

2.1.4 Flow profile

For any pressure driven microfluidics experiment (fluid is injected using pump or sy-

ringe), the profile of flow velocity across a channel has a parabolic shape (Figure 2.4),

which is known as Poiseuille flow.

Figure 2.4: Poiseuille flow of fluids across the microfluidic channel [33].

For any fully developed laminar flow (Poiseuille flow) in a circular cross sectioned

chamber the velocity profile can be obtained using Navier-stokes (N-S) equations,
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which is given by Equation (2.6)

v(x, y) =
∆p

4ηL
(d2 − y2 − z2) (2.6)

Here ∆p is the pressure difference inside the fluid across length of L, η is the

dynamic viscosity of the liquid, d is diameter of the channel and y, z are coordinates

of the Cartesian system. From the N-S equation (shown in Equation (2.6)) the

maximum velocity is found to be at the centre of the channel, which is vmax = ∆d2

4ηL

and the average velocity throughout the channel is vavg,x = vmax,x

2
.

In summary for the flow velocity, with a no-slip (having solid boundary) condition

and a channel with circular cross section, for any pressure driven flow get the highest

velocity at the middle of the channel and nearly zero velocity at the walls of the

channel.

The pressure across the channel starts to drop with the increase of the channel

length and hydrodynamic resistance from the flow of fluid. The pressure drop (∆p)

with flow rate of Q and hydrodynamic resistance (Rhyd) across the channel is given

by Equation (2.7):

∆p = RhydQ (2.7)

For a circular cross sectioned channel with length L and of radius a, hydrody-

namic resistance (Rhyd) is given by Equation (2.8)

Rhyd =
8ηL

ϕa4
(2.8)

But very commonly microfluidic chips contain channels with rectangular cross

section, so the hydrodynamic resistance (Rhyd) is given by Equation (2.9)

Rhyd≈
12ηL

1− 0.63( h
w
)

1

h3w
(2.9)

Here h and w are the height and width of the channel respectively.
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2.2 Magnetism Theory

Permanent magnet plays a very important rule in magnetophoresis experiments, as

the magnetic particles in these experiments move across the reaction chamber from

inlet to outlet due to the application of external magnetic field. But one of the

main problems for using conventional permanent magnets is they do not produce

homogeneous magnetic field gradients over the reaction chamber and it is one of the

issues for this PhD research. Before going further about this issue, related magnetic

field theories will be discussed in the following section.

2.2.1 Magnetic Field

A magnetic field (H) can be generated from any permanent magnet or conductive

coil carrying electrical current. A magnet has North and South poles and its strength

can be represented by magnetic field flux lines(φ). The density of magnetic field

flux lines (φ) indicates the strength of magnetic field, means with a high flux density

indicates a strong field. Magnetic flux lines are invisible and considered that they

run from North Pole of the magnet to the South Pole of it. Figure 2.5 shows the

magnetic field flux lines (φ) via attracting iron filings to a magnet.

Figure 2.5: The Magnetic Field of a Permanent Magnet as a Result of Loose Iron Filings.

A magnetic field is represented by two quantities, they are magnetic flux lines
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(φ) and magnetic flux density (B). The magnetic flux lines (φ) is a measurement

of the total magnetic field for a material and magnetic flux density (B) represents

the number of field lines present in per unit area. The unit of magnetic flux density

is Tesla (T ) and mathematically can be expressed as Equation (2.10):

B =
φ

A
(2.10)

Here A is the area over which the magnetic flux lines are distributed. In addi-

tion, the strength of the magnetic flux density (B) has an inverse relation with the

distance (d) from the magnet surface, i.e. with the increase of distance from the

magnet surface, the flux density decrease very quickly. This relation is shown in the

graph in Figure 2.6.

(a) The magnetic flux density (B)- in and

around the magnet.

(b) The decrease in B with increasing dis-

tance from the magnet surface in the x-

direction.

Figure 2.6: Characteristics of a typical rectangular magnet [13].

The magnetic flux density (B) is also directly related with magnetic field inten-

sity (H) as Equation (2.11):

B = µH (2.11)

Here µ = µ0µr is the magnetic permeability of the medium (in free space µ0 =

4π×10−7 Henry per metre (Hm−1), µr is the relative magnetic permeability) which

varies for different materials. Depending on material, µr can be either a constant

50



number or a function of H. If µr for a material is independent of H, the material is

magnetically linear, otherwise it is magnetically non-linear. Relative permeability

for some widely used materials can be found in Table 2.1.

Material Permeability (µr)

Supermalloy 1,000,000

Permalloy 70,000

Permendur 5,000

Iron 4,000

Manganese-zinc ferrite 750

Nickel-zinc ferrite 650

Cobalt 600

Manganese 1.001

Tungsten 1.00008

Air 1.00000037

Water 0.9999912

Table 2.1: A relative permeability of different magnetic material [34].

In most cases, when calculating magnetic properties and effects, a vector unit

called magnetic dipole with the unit of Am2 is used for presenting the magnetic

moment (permanent or induced) per unit volume in a magnetic material. If a

magnetic dipole is placed within a magnetic field H with magnetic induction B, the

induction will apply a torque (τ) to align the dipole in such way that the magnetic

moment (md) of the dipole is parallel to the induction as Equation (2.12):

τ = md×B (2.12)

For a magnetic dipole with length l, the moment md can be defined as Equation

(2.13):

md =
ϕl

µ0

(2.13)
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For expressing the effect of magnetic field on any magnetic material placed near

to magnet ’magnetization’ or ’magnetic polarization’ is used. Magnetization is cal-

culated on a magnetic dipole and it varies between different points inside the same

body of material. Mathematically magnetization M is the number of magnetic

dipole moment within per unit volume, which can be expressed as Equation (2.14):

M =
Nmd

V
=

B

µ0

(2.14)

Here V is the volume, N is number of magnetic moment inside the volume V .

Magnetization (M) also describes how a material responds to an applied magnetic

field. If a magnetic material is present within the range of a magnetic field, the

density of the magnetic field lines will change ( Figure 2.7).

Figure 2.7: The magnetic field line changed by the high magnetic permeability of one soft iron [13].

The magnetic induction field (B) inside a material situated in free space is due to

an applied field H generated by the source in the air (µ0H) and local induction due

to the magnetisation M of the medium (µ0M). This can be expressed as Equation

(2.15):

B = µ0H + µ0M = µ0(1 + χ)H (2.15)

Here χ(χ = M
H
) is the magnetic susceptibility of the material. Moreover, relative
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permeability related to susceptibility as Equation (2.16):

µr = 1 + χ (2.16)

Combining Equation (2.15) and (2.16), B can be expressed as Equation (2.17):

B = µ0µrH (2.17)

From Equation (2.13) and (2.15) it can be easily seen that induced magnetic field

inside the material depends on the relative permeability or magnetic susceptibility

of that material.

In microfluidics, permanent magnets are always preferable for their external

magnetic field properties to create magnetic field over the microfluidic chamber and

manipulate the magnetic material inside the chamber. Using some alloys such as

Neodymium Iron Boron (NdFeB), Samarium Cobalt (SmCo) etc., strongest mag-

netic fields can be achieved. There are some very significant reasons for using per-

manent magnets rather than electro magnets, though electromagnets are easy to

control. For example, when current passes through any wire it generates electro-

magnetic fields around the wire, also increases the temperature across the wire,

which may affects the insulation of the core and surface of the microfluidic chip

[13]. Increment in temperature surrounding the reaction chamber also can result in

changing the concentration and diffusion coefficient of the analyte(s) and buffer(s).

used for the experiment.

2.2.2 Magnetic materials

Exhibition of magnetic properties for any material depends on the orientation and

number of magnetic dipoles inside the material, i.e. magnetic susceptibility (Equa-

tion (2.13)) of the material. Materials with higher magnetic susceptibility show

stronger response to any applied magnetic field. So depending on the magnetic

susceptibility (χ) of materials, their behaviour can be classified into five broad

categories: Diamagnetism (Diamagnetic materials), Paramagnetism (Paramagnetic
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materials), Ferromagnetism (Ferromagnetic materials), Antiferromagnetic and Fer-

rimagnetic [13]. Magnetic susceptibility (χ) for any magnetic material also has

relation with the relative permeability (µr) (Equation (2.14)). Classifications of dif-

ferent materials according to their response to an applied magnetic field are given

in Table 2.2:

Classification

of materials

Susceptibility

(χ)

Magnetic characteristics

Diamagnetic Small negative

(χ < 0)

Atoms have

no magnetic

moments.

Paramagnetic Slightly posi-

tive (χ > 0)

Atoms have

randomly orien-

tated magnetic

moments.

Ferromagnetic Strong positive

(χ >> 0)

which is func-

tion of applied

field

Atoms have

parallel aligned

magnetic mo-

ments within

domains.

Antiferromagnetic Small positive

(χ > 0)

Atoms have an-

tiparallel aligned

moments.

Ferrimagnetic Strong positive

(χ >> 0),

which is func-

tion of applied

field

Mixed parallel

and antiparallel

moments that

do not totally

cancel.

Table 2.2: A classification of various types of magnetic materials depending on susceptibility (χ) value.
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Diamagnetic Materials

Diamagnetic materials such as water, glass, mercury, silver, copper, bismuth, car-

bon dioxide and gold etc., do not show the presence of any net magnetic dipole

moment in the absence of an external magnetic field. However, in the presence of

a magnetic field, diamagnetic materials will exhibit a small number of net nega-

tive magnetic dipoles [35]. Relative permeability (µr) for diamagnetic materials is

less than one and the magnetic susceptibility (χ) is negative, means diamagnetic

materials experience slight repulsive force with the presence of permanent magnets.

Paramagnetic material

In contrast to diamagnetic materials, paramagnetic materials do not show the pres-

ence of any net magnetic dipole in the absence of external magnetic field, however,

they show small net positive magnetic dipoles in the presence of an external magnetic

field. So, paramagnetic materials are slightly attracted by a permanent magnet. For

such material the relative permeability (µr) is slightly greater than one with posi-

tive susceptibility (χ). Air, tungsten, manganese, oxygen, sodium, aluminium etc.

exhibits the characteristic of paramagnetic materials.

Ferromagnetic Materials

Similar to paramagnetic material, ferromagnetic materials do not show any net

magnetic response in the absence of external magnetic field. When an external

magnetic field is applied, ferromagnetic materials will become a strong magnetic

material which is either reversible or irreversible depending on the strength of exter-

nal magnetic field. If the external magnetic field is not very strong, ferromagnetic

material will return to non-magnetic status when the external magnetic field is re-

moved, otherwise, it will stay in a magnetic state. Behaviour for magnetic domains

with respect to applied magnetic field is shown in Figure 2.8
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(a) Demagnetised State (b) Magnetised State.

Figure 2.8: a) Domains point in random directions in the demagnetised state of a ferromagnetic material, resulting

in no net magnetisation. b) When a magnetic field is applied, the domains align in the same direction, resulting a

net magnetisation that persists even after removal of the applied field [36].

The magnetization and demagnetization behaviour for a ferromagnetic material

can be described using a hysteresis loop (also known as a magnetisation curve)

produced as either M − H or B − H curves shown in Figure 2.9. According to

this curve if a ferromagnetic material’s magnetization starts in its demagnetised

i.e. with no net magnetisation state, then without any applied magnetic field the

magnetisation is also zero. Now if the applied magnetic field (H) increases, the

magnetisation (M) of the material also increases and aligns its magnetic domains

in the same direction with the applied field. If the strength of the applied magnetic

field keeps increasing, more domains will align to the direction of magnetic field

till all the domains are oriented towards the same direction as Figure 2.8. At this

point after all the domains are aligned towards the same direction, the material can

not be more magnetised, this situation is known as Magnetic saturation Ms. After

ferromagnetic material reaches its magnetic saturation, if the applied field is reduced

to zero, the magnetisation instead of going back to the origin it goes back to a value

known as magnetic remanence (Mr). With further increase applied magnetic field in

the opposite direction to original direction, after a certain increment the material’s

net magnetization becomes zero. The magnetic field required to achieve this is
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known as the coercivity, Hc. If this negative increment continues another point for

magnetisation saturation (opposite direction to the original Ms value) is found. The

field is then positively increased again for reaching M = 0, thus the hysteresis loop

of the M −H curve is finished.

Figure 2.9: Hysteresis loop observed in the M-H curve for a ferromagnetic material. The magnetisation (M) of

the material increases with the applied field (H), until it reaches saturation (Ms). As the field is reduced to zero,

the material remains magnetised to the value of its magnetic remanence. The field strength required to drive the

magnetisation back to zero is known as the coercivity. The positive and negative values of H and M correspond to

opposite directions, e.g. +M refers to the magnetisation in one direction while M refers to the magnetisation in

the opposite direction [37].

Ferromagnetic materials also possess a temperature, known as Curie temperature

(Tc) above which its permeability drops, magnetisation is destroyed and the magnetic

remanence and coercivity become zero. After this temperature a ferromagnetic

material starts to act as paramagnetic.

Antiferromagnetic Materials

Antiferromagnetic materials are similar to ferromagnetic materials in structure.

However, the alignment of adjacent magnetic dipoles are anti-parallel to the mag-

57



netic field, which leading to no net magnetic moment for such material and for Anti-

ferromagnetic materials the relative permeability (µr) is about 1 and have small but

positive susceptibility (χ). Chromium is an example of antiferromagnetic material.

Ferrimagnetic Materials

Like antiferromagnetic materials, ferrimagnetic materials also have the anti-parallel

dipole alignment for adjacent magnetic dipoles. But the magnetic moments are not

equal in magnitude, so they do not cancel each other. In this way a net positive

magnetic moment is produced for these materials. Manganese-zinc ferrite and nickel-

zinc ferrite are examples of these materials.

Superparamagnetic Materials

Superparamagnetic materials are composed from ferromagnetic or ferrimagnetic par-

ticles and covered by a dielectric medium. These are from nanometre to few mi-

crometres in sizes without having any magnetic memory. In the presence of external

magnetic field, superparamagnetic materials’ magnetic moments get aligned in the

same direction of the applied magnetic field and become magnetized. It also returns

back to the initial demagnetized state with the removal of external magnetic field

(Figure 2.10).

Figure 2.10: Superparamagnetic materials magnetization and demagnetization in magnetic fields [38].

It is found that the observed magnetisation M for superparamagnetic materials

58



is a function of applied magnetic field H. Iron oxide, commercial Dynabeads are

examples of commonly used superparamagnetic materials. The magnetic suscep-

tibility for these materials is very high, so the attraction toward the field is very

strong.

Superparamagnetic materials are widely used for magnetophoresis, trapping or

focusing microfluidics experiments and normally a coating of polystyrene materials

on its surrounding act as the dielectric medium. This polystyrene coating on su-

perparamagnetic materials allows covalent bonding to carboxyl or amino groups for

antibody attachment which is useful for different biological and chemical applica-

tions.

2.2.3 Magnetic Micro Particles

The performance of microfluidic experiments can be further improved by introducing

surface based reactions or specifically by the use of micro-particle, that provide a

larger surface area for the reaction. Performing reactions on the surface of moving

particles results in higher reaction rates due to higher surface density compared to

non-moving chemical reactants. Moving particles provide better sensitivity as well,

as it is possible to control the concentration of the sample(s) in different stages of

the reaction. One of the advantages of using such particles is the large availability of

materials and processes required for making those particles. Such particles are small

(diameter in the order of micrometres) spheres, fabricated from various materials

and with various surface properties. Such diversity of surface chemistries is crucial

for flexibility of the systems, as the materials for fabrication of microfluidic devices

are limited and their subsequent modification is often not straightforward or even

not available at all. The details magnetic properties of such materials and forces act

on them were described in Section 2.2 in this chapter. The widely used materials

for producing them are discussed in following paragraph. Also the use of magnetic

particles and their benefits of using them are already demonstrated by number of

publications from Prof Nicole Pamme [15, 20] and others.
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The radius for different magnetic particles can vary from few nm to several µm

depending on their uses [39]. Often these magnetic particles are not made from a

single component, most of them are complex alloys such as maghemite (γ−Fe2O3)

or more complex alloys MnFe2O4 or (MO)n.Fe2O3 (where γ, M and Mn stands for

some component like Co, Li, Zn, Ni etc.) [40]. Though these magnetic particles are

made from ferromagnetic materials, but in practice they show super paramagnetic

behaviour [41]. A sample of magnetic particle is shown in Figure 2.11.

(a) An iron oxide core is encased in a

polymer matrix

(b) Iron oxide nanoparticles are dispersed

throughout the polymer matrix, before be-

ing sealed inside with an extra layer of ma-

terial.

Figure 2.11: Cross-section of two types of superparamagnetic micro-particle.

Most of the commonly used magnetic particles are now produced commercially

and lots of research are going on for the development of new particles and surface

modifications [42, 43] . Carboxyl groups or amino groups of materials are nor-

mally used to cover the surface of super paramagnetic particles. Some well-known

producer and suppliers of magnetic particles are Estapor (www.estapor.com), Dy-

nal(www.dynalbiotech.com), Bangs Laboratories (www.bangslabs.com), Micromod

(www.micromod.de), Seradyn (www.seradyn.com), Polysciences (www.polysciences.

com) etc [13].
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2.3 Forces on the particles

2.3.1 Drag force on the particle

For passing micro-particles through a LOC chip, it is required that the particles are

evenly diluted in a buffer solution. It is considered that the fluidic property for mixer

of micro-particles plus buffer is same as the buffer alone and the friction between

the particles can be neglected. In this way, when no external force has been applied

all the particles have same average velocity due to the flow of the carrier liquid. But

if any external force(s) (like a magnetic field) are applied on the particles then a

dragging force acts on the particles. If any force is applied on the particle which is

perpendicular to the flow, then the drag force to balance a spherical particle is the

force shown in Equation (2.18):

Fdrag = −6πηmrpCwUeff (2.18)

Here rp is the radius of the particles, Ueff is the effective velocity of particles

(vector summation of velocity caused by an external force and velocity for the flow

of the medium) and Cw is the drag coefficient (resistance of an object in a fluid

environment). Cw is a dimensionless number and can be calculated if the dimensions

of a channel (depth and width) are comparable to the diameter of a particle. If

the ratio between dimensions of the channel and diameter of the particle are not

negligible then the drag coefficient can be expressed by [44] Equation (2.19):

Cw =
1[

1− 1.001
(

rp
hz

)
+ 0.418

(
rp
hz

)3
− 0.21

(
rp
hz

)4
− 0.169

(
rp
hz

)5] (2.19)

In the equation for drag co-efficient the position of the particle is assumed to

be in between two parallel planes and hz is the closest distance from the parallel

wall of the channel, which is also parallel to the flow direction. For a general micro

particle inside a channel, whose radius is comparable to the depth and width of the

channel, value for drag coefficient is 0.47.
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2.3.2 Magnetic Forces

The force acting on a magnetic particle due to the application of an external mag-

netic field of strength B depends on the volume (V ) of the magnetic component

inside the micro-particle and the effective magnetic susceptibility (χeff ). Mathe-

matically the force on a magnetic particle can be expressed as Equation (2.20):

Fmag =
V.χeff

µ0

(B.∇)B (2.20)

Effective magnetic susceptibility (χeff ) is the difference between magnetic sus-

ceptibilities of the particle (χp) and surrounding medium (χm). For diamagnetic

materials (χp < 0) in a diamagnetic medium (χm < 0), the term χeff can be pos-

itive or negative, i.e. the particle can be attracted or repelled by the magnetic

field. For a microfluidic experiment, where the magnetic particles are diluted in a

non-magnetic suspension like water then the effective magnetic susceptibility is less

than or equal to one (χeff ≤ 1) and in turn the relative permeability is very close

to one (µr ≈ 1). Normally, the range of applied forces on the magnetic particles

can be from a few pN to a few tens of pN [13]. Moreover, the buffer can act as a

paramagnetic substance after adding some positive ions like Mn2+ [45, 46], Gd3+

[47] in the buffer medium.

In practice it is not easy to determine the force on a magnetic particle (due to

having not exact information about magnetic volume inside the particle and some

other issues (like distance of the particle from magnet surface), so magnetic force

on a magnetic particle is expressed by replacing it with an equivalent point dipole

with a moment of md. So after mathematical manipulation of Equation (2.20) for

magnetic dipole, it can be rewritten as Equation (2.21):

Fmag = md.(∇B) (2.21)

So the magnetic field gradient (∇B) plays here the most significant role in at-

tracting the magnetic particles to the higher magnetic field regions. The higher

the value for ∇B, the higher the magnetic force on the particle. But the force on
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any magnetic particle is also affected by some short range forces like electric field,

though in microscale region magnetic force is strong enough to overcome other short

range forces [29].

2.3.3 Viscous Force

During the flow of diluted magnetic particles, the moving velocities of micro-particles

are not same as the input flow velocity at the inlet. This happens due to the viscous

forces on the particles. The viscous force acting on a particle can be expressed as

Equation (2.22) [48]:

Fd = 6πηa(uf − up) = 6πηa∆v (2.22)

In Equation (2.22), η is the viscosity of the fluid surrounding the magnetic par-

ticle, a is the radius of the particle and ∆v is the difference of velocities between the

surrounding fluid and the particles. The resultant force acting on the particle is the

difference between the magnetic force and viscous force acting on the particle. For

efficient detection and to drag the magnetic particles from inlet to the outlet along

a desired path, it is necessary that the resultant magnetic force on the particle must

be able to overcome such viscous force (also known as hydrodynamic force) that is

applied by the surrounding liquid to the magnetic particle.

2.3.4 Gravity

For a magnetic particle with massm, the gravity force acting on it can be determined

via the following Equation (2.23):

Fg = mg (2.23)

Here g is the acceleration of gravity. Gravity force has a very little effect on

the magnetic particle’s movement. As comparing to the Z-directional movement,

X-Y movement is much higher for the magnetic particles. For example, when a

magnetic particle with 1µm diameter is surrounded by a fluid with 0.00089 Pa −
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S and has the relative velocity of 1 mm/s, it has drag forces of approximately

8.4 pN and the gravitational force becomes approximately 0.004 pN (considering

particle density,ρp=1800 kg/m3 and fluid density,ρl=1000 kg m−3). Comparing to

the flowing velocity created by 8.4 pN drag force, the downward motion created by

0.004 pN gravity force is too small and thus can be negligible [49].

2.3.5 Diffusion Force

The normal diffusivity value for any molecules (Like ions) which are soluble in wa-

ter is around 10−9m2/s [50]. This value is smaller for larger particles. It was found

that for any microfluidics experiments with micro particles of 1-10 µm diameter the

diffusivity changes from 10−13 to 10−14m2/s [51, 52]. That means the diffusion of

the magnetic particles inside the chamber due to diffusivity property of the fluid is

not significant. For example, in widely used Nernst-Einstein relationship equation

for measuring particle mobility the diffusion constant for Potassium Chloride (KCl)

component in water was predicted as 1.78×10−9m2/s [53]. According to this pre-

diction the movement of the magnetic particle due to the magnetic flux is several

orders of magnitude higher than the mobility due to fluid diffusion [54].

2.4 Application of microfluidics flow and magnetic

theories in simulation and modelling

COMSOL Multiphysics software has become a common computer simulation tool

for modelling complicated microfluidics experiments, especially for simulating mag-

netophoresis microfluidic experiments. This software was designed with some cus-

tomization ability and friendly to use for many Multiphysics (includes chemistry and

many engineering application) applications without limiting into specific equations.

Therefore, users also can define their own equations for combining with experimen-

tal system design. There are also lots of predefined equations and functions for

different modules within COMSOL Multiphysics software. The first thing required
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when setting up COMSOL Multiphysics to work is to choose the model(s) which

contains predefined equations for solving a specific experiment. Therefore, before

performing the computational simulation work for any experiment, it is necessary

to understand the basic structures and conditions for that experiment. In addition,

all the specifications (dimensions and materials) of microfluidic chips and used ex-

perimental reagents’ properties are required for every design stage to ensure if the

design will correctly matches the practical experiment. After the first conceptual

model is correctly set-up, different parameters within the model can be changed to

perform the simulation for a variety of experimental conditions.

An understanding of all the equations and effects discussed in this chapter is

necessary for simulating microfluidics fluid flow using COMSOL Multiphysics, par-

ticularly for setting up boundary conditions and predicting the velocity and pressure

of fluid flow within the microfluidics chip. As many predefined equations in COM-

SOL model are not suitable for all kinds of microfluidics chips, especially those with

complex geometries. For example, the Navier-Stokes equations are valid when the

microchannel length (L) is much larger than the fluid molecules’ free path (λ), which

means the Knudsen number, (Kn = λ/L) is less than 0.01. When 0.01 < Kn < 0.1

special boundary conditions must be used with Navier-Stokes theorem, while fluid

with Kn > 0.1 cannot be solved with Navier-Stokes equations.

Therefore, during the simulation modelling, the Navier-Stokes equations can be

adjusted (simplified or additionally combined with other equations) depending on

the nature of the flow regime. For example, considering the velocity of lamina flow is

constant and very small, thus the N-S equation in microfluidics is reduced to a much

simpler equation. However, in the situation of flow driven by higher pressure at an

inlet compared with an outlet, it needs to be solved by balancing the pressure force

and viscous forces with N-S equations, which requires a Reynolds-Averaged Navier-

Stokes (RNAS) formulation instead of N-S Equations alone as Equation (2.24) and
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(2.25):

ρ(u.∇)u = ∇.

[
−pl + /mu

(
∇u+ (∇u)T

)
− 2

3
µ(∇.u)l

]
+ F (2.24)

∇.(ρu) = 0 (2.25)

Where u is the time-averaged velocity, p is the average pressure, µ stands for

turbulent viscosity and F stands for external force.

Moreover, before moving forwards for simulating experimental studies, COM-

SOL provides an excellent simulation practice starting point with its built-in model

libraries that model micro particle movement in fluid flow in the presence of a mag-

netic field. This helps users to understand the particles’ movement with effect of

external force.

2.5 Summary

This chapter has summarised the basics of the physics behind the magnetophoresis

microfluidic experiments, which induces properties of the materials inside micro-

particles, fluid flow characteristics, forces acting on the micro-particles to make it

move. It was required to understand those theories and characteristics, as without

them it was not possible to simulate a standard microfluidic experiment in COM-

SOL Multiphysics. In real-life experiments many factors affect the experimental

results. But it was not possible to consider all of those factors during the process

of magnetophoresis experimental simulation, that’s why they were not mentioned

here. The following chapter concerns the actual simulations performed as part of

this work and explains its links to image processing work described in the chapters

after that.
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Chapter 3

MAGNETOPHORESIS

SIMULATION

For the magnetophoresis experiments of interest it is required to have a magnetic

field gradient which is homogeneous [13], so that most of the magnetic particles

can reach the desired outlet. But one of the main problems for most of the mag-

netophoresis experiments is their magnetic field across the reaction chamber does

not decrease linearly, implying an inhomogeneous magnetic field gradient. This

non-linear change in magnetic field distribution results in many magnetic micro-

particles failing to reach the desired outlet. This also may result in aggregation of

micro-particles, if the flow rate is not controlled efficiently. Many literature sourcs

[55] proposed their way for achieving homogeneous magnetic field gradient. How-

ever, for most of the cases the approach was to develop a specially shaped magnet,

which could be easy to use for computer simulation purpose only. For real-life use

of such magnets are either expensive or difficult to produce or require special in-

strumental set-up to use them. In this situation, a way is to be found to use a

regular shaped magnet to produce a homogeneous magnetic field gradient. Keeping

in mind the target of using conventional permanent magnets and experimental set-

up several magnetic field simulations, including Halbach magnet arrays with many

different orientations were investigated.
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High levels of particle transport and aggregation issues may result in complete

failure of a magnetophoresis experiment. However, as will be seen in later discus-

sions, even moderate particle aggregation may cause problems for an automated

tracking and measurement system. It is therefore highly desirable to design a chip

and magnetics combination which provides the best possible magnetic field condi-

tions, particularly within the measurement region near the outlet. The ability to

accurately simulate the magnetic and fluidic forces on particles may also lead to

improvements in tracking capability based on a physical model, however this was

beyond the scope of this work.

3.1 Simulation procedure

In a basic LOC magnetophoresis experiment, the particles are usually assumed to

move along the direction of the vector combination of magnetic force and force

from fluid flow. In this chapter the aim is to represent by simulation the pro-

cess of LOC experiments considering the same parameters used in real-life exper-

iments. COMSOL Multiphysics (www.comsol.com/comsol-multiphysics) was used

for simulating these microfluidic experiment(s) including magnetophoresis experi-

ments. Using COMSOL simulation for magnetophoresis microfluidic experiments it

was possible to analyse the effect(s) of many different size and shaped magnets on

experimental result(s) placed in different positions with respect to reaction chamber.

Also effects of several magnetic orientations were also checked using COMSOL.

In the simulations the forces acting on the micro-particles were considered to

only be the magnetic force and the force from the fluid flow. There are other small

factors that also affect the motion - like gravity, but these effects were relatively

negligible.

A couple of microfluidic chip designs were simulated, but in this thesis only

the results using a LOC chip designed by Prof. Nicole Pamme (Department of

Chemistry, University of Hull) are presented. The code name for this chip is NP55

and the CAD diagram for NP55 microfluidic chip is shown in Figure 3.1:
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Figure 3.1: 2D CAD diagram for NP55 microfluidic chip designed by Prof. Nicole Pamme.

NP55 microfluidic chip contains five inlet and five outlet channels. The length of

these inlet and outlet channels are different, but the width and depth are the same.

The parameters for different simulations vary depending upon the requirement(s),

but other parameters are common for most of the cases, the common parameters

are listed in Table 3.1.

Parameter Description Value Unit

Diamagnetic par-

ticles

Rp Particle radius 1.4 (Dynabeads M-270

Streptavidin)

µm

Reaction Chamber

LRC Length of the Re-

action Chamber

8000 µm

WRC Width of the Re-

action Chamber

3000 µm

DRC Depth of the Re-

action Chamber

20 µm

Microchannel

Cw Channel width 200 µm

Cd Channel Depth 20 µm

Cl Channel Length Three different lengths µm

Vfl Volume flow rate 40 µL/hr

Table 3.1: List of the parameters used for making the analytical model. Some of the parameters are varied in the

experiment, and their specific values are referred in the text.
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Using the parameters from (Table 3.1) and the NP55 (Figure 3.1) microfluidic

chip a simulation of an experiment for the rapid detection of the inflammatory

biomarker (C-Reactive protein) was performed. The physical experiment was set

up by Dr Chayakom Phurimsak et al. (Chemistry lab, University of Hull, UK) [56].

For simulating this experiment, the approach can be divided into following three

steps:

1. Simulation for observing flow distribution and diffusion.

2. Simulation of magnetic field distribution over the reaction chamber using rect-

angular shaped permanent magnet (NdFeB).

3. Magnetic field simulations for achieving homogeneous magnetic field gradient.

Each of these steps is going to be discussed in the following sections with re-

spect to a known and experimentally verified chip and magnet configuration. Later

alternative magnetic designs using the same simulation procedure will be explored.

3.1.1 Fluid flow

For the typical fluid flow rates, flows within the LOC chip are laminar (as Reynolds

number, Re << 1), so mixing occurs due to diffusion only. For most of the mag-

netophoresis experiments, almost all the fluids used are similar in colour (without

fluorescence signal). So the diffusion is not easy to see with the naked eye. For

visualising the diffusion inside the chip a simple experiment was carried out by Dr

Martin Vojtek (Department of Chemistry, University of Hull, UK), where two differ-

ent coloured fluids (blue and yellow) were injected inside the microfluidic chamber

at a flow rate of 300 µLh−1. The experimental result for diffusion can be seen in

Figure 3.2.

70



Figure 3.2: Flow and diffusion with the microfluidic chip filled with blue and yellow coloured inks at flow rate of

300 µLh−1 (velocity 1.4 mm s−1).

From Figure 3.2 it can be seen that the stream’s flow path gets diffused but they

do not mix completely.

The NP55 microfluidic chip (which is used for simulation) contains channels

(both inlets and outlets) with same depth and width, but with different lengths.

The difference in length changes their fluid flow velocity within the reaction cham-

ber. This change in velocity inside reaction chamber effects the diffusion. For the

simulation of the diffusion of fluid flow using COMSOL Multiphysics the parameters

showed in Table 3.2 were used.

Parameter Description Value Unit

Fluid
Dc Diffusion co-efficient 1.554× 10−10 m2s−1

Vfl Volume flow rate (per channel) 40 µLhr−1

Table 3.2: Parameters used for simulating fluid flow diffusion.

In COMSOL Multiphysics the fluid flow was defined as an incompressible flow

following Navier-Stokes theorem. The flow rate was varied from 20 to 100 µLh−1

through each channel keeping all the other parameters same. After defining all the
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required boundary conditions, the simulations were done. Though the flow rate was

varied with small steps, in this thesis it was desired to compare the result with a

published research paper from Prof. Pamme’s research group [56]. According to

Pamme et al. [56], for their experiment done in the Chemistry lab the optimum

flow rate for most of the magnetic microparticles to cross the entire reaction was 40

µLh−1. So in this section only the results for an inflow rate of 40 µLh−1 per channel

are presented.

For simulating the diffusion of diluted species inside the NP55 chip for velocity of

fluid using COMSOL Multiphysics it was required to solve the Navier-Stokes equa-

tions for the laminar flow first. Laminar Flow under the CFD module in COMSOL

was used to do this simulation. In this way, for simulating the laminar flow due to

inflow pressure was calculated using Equations (2.24) and (2.25) in Chapter 2. For

ease of presentation we recall Equations (2.24) and (2.25) as Equations (3.1) and

(3.2) as follows:

ρ(u.∇)u = ∇.

[
−pl + /mu

(
∇u+ (∇u)T

)
− 2

3
µ(∇.u)l

]
+ F (3.1)

∇.(ρu) = 0 (3.2)

After getting the pressure distribution (via magnitude of velocity) across the re-

action chamber, the diffusion of the input stream (diluted species) can be measured.

In this situation the Laminar Flow module was coupled with Transport of Diluted

Species modules under the Chemical Reaction Engineering Module. This coupling

facilitates the simulation of concentration distribution for diluted species across the

reaction chamber. For simulating the concentration distribution (diffusion) the used

equations are shown as Equation (3.3) and (3.4).

∇.(Di∇ci) + u.∇ci = Ri (3.3)

Ni = −Di∇ci + uci (3.4)
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In Equation (3.3) and (3.4), c is the concentration of the species (molm−3), D is

the diffusion constant (m2s−1), u is the velocity of the flow, R is the quantity used

to describe if the chemical reaction is producing (R >0) or destroying (R < 0) more

of the species, ∇ is the gradient and (∇.) is the divergence. For magnetophoresis

LOC experiment R was set as zero, as no chemical reaction occurred to produce or

destroy species. In Equation (3.4), N is the molar flux (molm2s−1). In both these

equations i is representing different species. Equation (3.4) is also known as Ficks

first law of diffusion.

After defining all the required parameters in COMSOL Multiphysics for comput-

ing all the equations shown in Equation (3.1), (3.2), (3.3) and (3.4), the geometry

of NP55 chip was divided into small parts using ”triangular” meshing. Figure 3.3 is

showing the snap shot for structural mesh for the whole NP55 microfluidic chip.

Figure 3.3: Meshing of NP55 microfluidic chip.

Here within the Figure 3.3, the ”White” coloured rectangles are representing

the micropilers. For the meshing of the microchip, it was done with an adaptive

”triangular” size of the individual block.

By coupling the incompressible Navier-Stokes multiphysics from Laminar Flow

module with Transport of Diluted Species module the simulated velocity distribu-

tion and concentration of the diluted species is shown in Figure 3.4 and Figure 3.5
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respectively.

Figure 3.4: : Simulated velocity distribution for the flow rate of 40 µLh−1. In the right side of the image, the colour

range is showing the relation of the colour and velocity magnitude.

From Figure 3.4 it can be seen that the velocity of the flow is higher across the

inlets and outlets, but lower across the reaction chamber. The reason for the velocity

to be lower within the reaction chamber is reaction chamber has bigger area (also

volume) compare to the areas of the inlets and outlets. This relation between the

velocity and area can be shown as Equation (3.4)

Au = Constant (3.5)

Here, A is the area and u is the velocity.

After the fluid passes the reaction chamber and enter the outlet, the area for the

fluid to flow reduces. This reduction in area increases the velocity of the flow again.
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Figure 3.5: Simulated result for diluted species across the reaction chamber and channels with flow rate of 40 µLh−1.

In the right side of the image, the colour range is showing the relation of the colour and concentration.

Figure 3.5 is showing the concentration of the diluted species across the reaction

chamber including inlets and outlets. Here the concentration distribution also rep-

resents the diffusion of the species. Though this simulation was done using several

inflow velocities, the result shown here is only for an inflow velocity of 40 µLh−1.

For the same volume of the chip, it was found that after the inflow velocity reaches

8 µLh−1, there was no significant change in the diffusion.

Diffusion occurs due to the hydrodynamic resistance (act against the flow) and

the fluid’s diffusivity property. Fluid with lower velocity uses more (as a ratio, not

as a value) of its energy to overcome the resistance, which results in more diffusion.

But for higher flow rates the fluid uses less energy (as a ratio, not as a value)

to overcome the hydrodynamic resistance, which results in less diffusion. When the

inflow velocity reaches 8 µLh−1, hydrodynamic resistance does not make any further

change in diffusion and also for every fluid the diffusion property is constant. For

this reason, after the inflow velocity reaches 8 µLh−1 the diffusion of the inflow

species are similar for almost all the flow velocities.
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3.1.2 Magnetic Field simulation for known chip

In the second stage of simulating magnetophoresis experiment it was required to

compare the magnetic field distribution across the reaction chamber with that de-

scribed in [56]. In this article by Prof. Nicole Pamme’s research group, the magnet

was a permanent Neodymium-Iron-Boron (NdFeB) magnet of grade 50 (Code Name

N50) (www.magnetsales.com/Neo/Neoprops.htm). NdFeB is one of the most widely

used permanent magnets which was first developed in 1982 by General Motors and

Sumitomo Special Metals. The magnetic properties of NdFeB are described in [57].

According to [56], the magnet used was 4×4×5 mm3 in size and was placed near to

the reaction chamber as shown in Figure 3.6:

Figure 3.6: Photograph of NP55 microfluidic chip with a 4×4×5 mm3 NdFeB (N50) magnet placed on top of the

chip. The scales on the chip showing the position of the magnet [56].

From the Figure 3.6, an idea was generated about the position of the magnet

on the microfluidic chip, after that it was discussed with one of the experimenters

(Dr Chayakom Phurimsak) to get more detail about the magnet and its position.

According to the discussion the magnet set-up during the experiment and its pa-

rameters can be presented in Table 3.3:
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Parameter Description Value Unit

Magnet (Rectangular)

Ms Residual magnetization 1.1× 106 A/m

Hm Height 5000 µm

Wm Width 4000 µm

Dm Depth 4000 µm

∇L Distance between the

magnet edge and the

edge of reaction cham-

ber

500 µm

Microchannel

Cw Channel width 200 µm

Cd Channel Depth 20 µm

Cl Channel Length Three

different

lengths

µm

Vfl Volume flow rate 40 µL/hr

Table 3.3: Parameters used for simulating magnetic field distribution across the microfluidic chip.

The parameters shown in Table 3.3, were used for the simulation in COMSOL

Multiphysics. For simulating only magnetic field, COMSOL Multiphysics only re-

quires ”Magnetic Fields” module under ”AC/DC” section. However, it was required

to combine magnetic field simulation result with the results from ”fluid flow” and

”Transport of Diluted Species”. For this, both these modules were coupled so that,

the pressure acting on the fluid (in transport of diluted species module) comes from

the fluid flow (fluid module). Also the boundary for magnetic field distribution,

does not have any effect on the fluid flow or concentration of the species. Moreover,

to observe the magnetic field distribution across the reaction chamber from NdFeB

magnet, so the reaction chamber area and magnet as were selected as areas of in-

terest. Figure 3.7 is showing the position of the NdFeB magnet with respect to the

NP55 microfluidic chip.
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Figure 3.7: Position of NdFeB magnet with the NP55 microfluidic chip.

In this figure (Figure 3.7) the boundary conditions are not displayed. The bound-

ary is many times larger compared to the magnet and chip, so the display of bound-

ary will make the chip and magnet too small to see. According to [56], the magnet

was placed with the chip in such way that the magnetic flux comes out from the side

of the magnet, which is most close to the chip, that is the north pole of the magnet

was close to the reaction chamber. The magnetization process of the magnet during

the simulation is shown in Figure 3.8.
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Figure 3.8: Magnetization direction of the NdFeB magnet.

In Figure 3.8, the arrows are showing the direction of the magnetic flux. In this

figure it can be seen that the magnetic fluxes are coming out from the north pole

(near to the chip) of the magnet and after travelling through the chip and air they

are reaching to the south pole of the magnet. Here the lengths of the arrows are

proportional to the strength of the magnetic field on that position. However, the

main interest was to see the magnetic field distribution within the reaction chamber.

So, as an area of interest, reaction chamber was selected and shown in Figure 3.9:
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Figure 3.9: Magnetic field distribution across the LOC reaction chamber and channels.

From Figure 3.9, it can be seen that maximum value of magnetic flux across the

reaction chamber is 554 mT , which is very close to the experimental value of 561

mT [56]. As before the arrows are showing both the direction and magnitude of

magnetic flux distribution across the reaction chamber. For a better understanding

and presentation, the change in magnetic flux was calculated across vertical centre

of the reaction chamber. The position of the vertical line is shown in Figure 3.10
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Figure 3.10: Visualization of a vertical line across the centre of the reaction chamber.

The change is magnetic flux density across the central vertical line is shown in

Figure 3.11.

Figure 3.11: Magnetic flux density across the vertical line through the centre of the microfluidic chip.

Change in magnetic flux density across the vertical line through the centre of

the chip is shown in Figure 3.11. According to Miwa et al. [58], the strength of

magnetic field decreases rapidly, with increasing distance from the surface of a mag-

net. Figure 3.11 verifies that the magnetization process in our simulation follows all

the theory of magnetic field and experiment done by Prof. Nicole Pamme’s research
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group [56]. Moreover, according to Heinrich et al. [59], the specific magnetic field

gradient plays a very important role in determining the movement of the magnetic

nanoparticles from the inlet to outlet. Even after applying a sufficient inflow veloc-

ity and magnetic field, lots of particles get aggregated even with a small amount of

non-homogeneity in the magnetic field gradient.

Part of the purpose of the simulation work was to develop a magnet arrangements

which would provide a more homogeneous gradient. These simulations were used to

check that the results obtained with a known configuration matched experimental

reality. Figure 3.12 shows the change in magnetic field gradient with respect to

distance (across the centre of the reaction chamber shown in Figure 3.10).

Figure 3.12: Magnetic field gradient plot across the middle of the reaction chamber.

According to the simulation result the gradient value changes approximately from

210 mT/mm (near to the magnet) to 50 mT/mm (at the most distant point from

magnet in the reaction chamber). This result shows that magnetic field gradient

decreases by around 160 mT/mm . This non-homogeneous magnetic field gradient

is one of the main reasons for many magnetic microparticles not reaching the outlet.
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3.1.3 Design for homogeneous magnetic field gradient

The Halbach array provides a promising approach to the problem of creating a

homogeneous field gradient [60]. In a Halbach array, the directions of magnetization

for the various magnets are different. The number of magnets used in Halbach

array can be varied, but the shape of all the magnets used in a given Halbach array

is the same. For the experiment of interest, which concerned DNA hybridization

and determination of C-Reactive protein the dimension of the magnet used was

4 × 4 × 5 mm3 and the total effective length of the reaction chamber was 12 mm.

So for simulating Halbach array magnetization, it was not required to use more

than four magnets. Several COMSOL simulations were done on Halbach array

magnetic field by changing magnetization directions, but most result did not provide

magnetic fields that were suitable. However, one of the simulations showed a change

in magnetic field gradient which was smaller than the single magnet case. So in this

chapter only that simulated result is discussed. For this simulation the direction of

magnetization for the four magnets was set up as shown in Figure 3.13.

Figure 3.13: Magnetization direction for magnets in Halbach array.

For simulation purposes the magnetization value was kept the same as used in

previous section. The magnetic field distribution across the reaction chamber for

the combination shown in Figure 3.13, is shown in Figure 3.14.
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Figure 3.14: Magnetic field distribution and direction across the reaction chamber and surrounding.

In Figure 3.14, the arrows are showing the direction of the magnetic flux dis-

tribution and the length of the arrow is proportional to the magnetic flux density

at that point. As the magnetic field strength was much smaller within the reaction

chamber compared to the inside and edge of the magnets, so the flux lines are not

clearly differentiable in Figure 3.14. For this reason, the flux line distribution across

the reaction chamber is shown in Figure 3.15.

Figure 3.15: Magnetic flux line distribution across the reaction chamber only.

The magnetic field distribution through the central line of the reaction chamber

84



(shown in Figure 3.10) was considered and is shown in Figure 3.16.

Figure 3.16: Magnetic flux density across the central line of the reaction chamber.

From Figure 3.15, it can be easily seen that the maximum flux density in the

reaction chamber (near to the magnet’s edge) is 72 mT , which is much lower than

that shown in Figure 3.11. When using only one 4×4×5mm3 magnet the maximum

magnetic flux density across the reaction chamber is more than 500 mT . The mag-

netic field gradient across this central line (shown in Figure 3.10) was also calculated

and is shown in Figure 3.17:
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Figure 3.17: Magnetic field gradient across the central line of the reaction chamber.

In Figure 3.17 the field gradient has a negative value, this is due to the directions

of the orientation of the magnets in the Halbach array. Here the magnetic field gra-

dient change for Halbach magnetic array was much less (approximately 45 mT/mm

to 0 mT/mm) than compare with from 210 mT/mm to 160 mT/mm (Figure 3.12).

Use of Halbach magnet array reduced the change in field gradient, but it also

reduced the field strength within the reaction chamber. Reduced field strength will

not help the microparticles to reach the desired outlet. It means the use of such

magnet orientation cannot provide a suitable solution.

In this situation, after reviewing lots of literature [61, 62, 63] it was found that

it is possible to add magnetic flux at the far end of the reaction chamber, which is

in the same direction as the applied magnetic field. This is shown in Figure 3.7 and

Figure 3.8. This approach can reduce the rapid reduction in magnetic field gradient

across the reaction chamber. Considering this instead of using one permanent mag-

net, two regular shaped 4× 4× 5mm3 magnets were used for the new arrangement.

In this simulation, one of the magnets was placed on the top of the reaction cham-

ber and the other was place on the bottom. In both cases, the magnets were placed
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500 µm from the edge of the reaction chamber. The new set-up of the magnet and

reaction chamber is shown in Figure 3.18:

Figure 3.18: Two of 4×4×5mm3 permanent magnet placed in upper and lower part of the reaction chamber.

For this simulation only the magnetic field distribution was of interest. It was

required to do all the calculations in three dimensional space, so to reduce the

complexity the inlets and outlets form the reaction chamber were removed. The

Upper magnet was magnetized in the same direction as before, this is from North

to South pole direction. However, for the magnet in the lower part of the reaction

chamber the magnet was magnetized from South to North pole direction. Using

this letup, the magnetic field distribution across the reaction chamber is shown in

Figure 3.19.
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Figure 3.19: Magnetic flus distribution across the reaction chamber for using two permanent magnets.

Like previous simulations in Figure 3.19 the arrows are presenting the magni-

tude and direction of the magnetic flux line on the point. Now the magnetic field

distribution through the central line of the reaction chamber was considered and

shown in Figure 3.20:

Figure 3.20: Magnetic flux distribution across the reaction chamber for using two permanent magnets.

From Figure 3.20, it can be seen that the magnetic flux density reduced from

510 mT (approximately) to 410 mT (approximately) from the nearest point of the

magnet to the end point across the central line (shown in Figure 3.10). This re-
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duction is also linear. Here the magnetic field gradient for this set-up is shown in

Figure 3.21.

Figure 3.21: Magnetic flux density across the central line of the reaction chamber.

From Figure 3.21 it can be seen that the magnetic field gradient has a range

of 218 mT/mm to 181 mT/mm. Though this set-up did not provide a purely

homogeneous magnetic field gradient, the range of change is much less compared

to both the previous set-ups. Moreover, this experimental set-up is possible to

use in real-life magnetophoresis experiments, as both the magnets used are widely

available.

3.2 Summary

This chapter and the previous chapter were concentrated on the physics of the LOC

experimental set up of interest in this work. In this chapter we have demonstrated

that simulation can be used to optimise the physical design, in particular with

respect to the magnetic field configuration.

The magnetic field has a significant impact on the motion of the magnetic par-
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ticles and this movement or more specifically its automated tracking and the mea-

surement of the moving particles fluorescent intensity using image processing will

form the majority of the remainder of this thesis.

The topics are linked in two ways. Firstly, success of the measurement process

depends on the quality of movement of the particles. Problems such as particle

aggregation which may degrade tracking and measurement are more likely the less

homogeneous the field gradient. Secondly physics simulation may eventually be able

to assist with the tracking process.

In the next chapter the coverage of image processing is addressed by providing

background on the key issue of automatically detecting the presence of particles in

images of the chip.

90



Chapter 4

BACKGROUND

SUBTRACTION REVIEW

For every image (including single frame and sequence of frames), the pixel alignment

with object feature (s) can be characterised in two ways pixels corresponding with

interesting or significant visual information are regarded as ”Foreground (FG)” and

the rest of the image is ”Background (BG)”. Depending on the application, it is

possible to have more than one foreground for an image. But it is quite impossible

to provide any universal standard definition for foreground or background, so that

comparing with that standard any part of the image can be marked as foreground or

background. The definition of background and foreground will always be application

specific and user dependent [64].

For most motion detection and tracking applications (like human action recog-

nition [65], semantic indexing of video [66] , on-line discovering of unusual activities

[67] and many more), it is required to detect all moving objects from the entire video.

One of the most common approaches for such application(s) to understand the move-

ment and changes in object properties is to remove the non-moving/nonintersecting

part(s) from input image(s). To do so commonly used techniques are background

subtraction [25, 68], temporal frame differencing [69] and optical flow [70]. Out of all

these techniques Background subtraction is the most widely used approach for object
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detection and foreground segmentation from static scenes, due to its low computa-

tional cost [71] and easy to implement nature. Through Background Subtraction

it is possible to ”remove” the background from a monitored scene by describing a

suitable model for the background. This results in leaving only ”interesting objects

(foreground)” in the scene for tracking and further analysis [72].

A large body of literature exists for background subtraction. However, the effec-

tiveness of any given technique is dependent on image characteristics, so implemen-

tation is not straight forward. This chapter reviews the literature on background

subtraction and discusses the applicability of various techniques to the objective of

this work.

The most basic background subtraction technique is to subtract every current

frame from the previous one (subtraction of previous pixel value from current one

on the same position at two consecutive frames) and compare the result with a

predefined threshold. This basic background subtraction technique can be illustrated

using the following figure shown in Figure 4.1:
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Figure 4.1: Basic Background subtraction Technique.

If the absolute difference of a pixel value P (x, y) at (x, y) between the current

frame [I(x, y, t)] and a reference frame [B(x, y, t − 1)] is higher than the threshold

value (T ), then that pixel becomes a part of the foreground, otherwise it is considered

as background. So mathematically:

mask(x, y) =

foreground for difference ≥ threshold

background otherwise

Here ”mask” is the output segmented binary image [73] highlighted with the

foreground and dark background and ”difference” is the absolute pixel value differ-

ence between current frame and previous reference frame. But this method cannot

provide adequate results [74], because of the discontinuity produced at the edges of

complex objects (objects without having regular shape or not having the same illu-
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mination over the whole object or changes of illumination over the scene gradually).

Moreover, pixel by pixel subtraction also produces high noise (example shown in

Figure 4.2). It means for identifying or tracking any complex object(s), the pixel by

pixel subtraction approach is not a good choice.

Figure 4.2: Basic Background subtraction using frame difference. Subtracted output contains lots of noises and

discontinuities [75]. This discontinuities and noise made the situation impossible to detect any object or feature.

Background subtraction relates the positions of objects in different locations in

different frames and it is always wanted to achieve a great rate of movement detec-

tion with a very low false detection. Also the outputs from background subtraction

become an input for higher level processes (like tracking or recognition of people,

vehicles in automated video surveillance systems or molecules in the (bio)chemistry

laboratory). This means reliable and accurate background subtraction can affect

the output of next level of processing heavily [76]. So background subtraction needs

to be reliable and effective, which makes it possible to identify the non-moving

objects, stationary or non-stationary background and different patterns of object

motion accurately and efficiently [77]. The robustness, performance and accuracy of

background subtraction mainly depend on how the subtraction process was modelled

considering complex situations. So, rather than depending on a stable background

environment, a robust background modelling is required that is flexible enough to

handle all kinds of environmental changes including lighting changes, unwanted mov-

ing elements of the background scene, objects shadows, slow moving objects etc. For

this reason, many background subtraction techniques had been developed to identify
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the foreground and remove the background (including noise) in an effective way con-

sidering several complex situations. These techniques include several morphological

and mathematical operations, which are required to be performed before, after and

during the subtraction process. These types of background subtraction techniques

are also known as Hybrid Background Subtraction techniques. One simple example

of a Hybrid background subtraction technique is shown in Figure 4.3.

Figure 4.3: Background subtraction with application of several statistical and mathematical operations (Mixture

of Gaussian) on 112th frame of the PETS sequence. Comparing Figure 4.2 and Figure 4.3 it can be seen that

the amount of noise and discontinuity is less compared to the background subtraction using frame difference only

shown in Figure 4.2. But still many discontinuity and noise can be seen in Figure 4.3, which can lead to erroneous

detection (both positive and negative) of object(s).

To develop a system for automated micro particle detection and tracking for

analysing Lab On Chip (LOC) experimental results, background subtraction is the

first important approach, as subtracting background from each frame of the sequence

allows the micro-particles to be detected. The micro-particle itself does not have any

significant colour property, its grey scale value (widely called as particle intensity)

changes when it passes through the fluorescent stream (see Chapter 1, section 1.2)

for multi-laminar flow platform based LOC experiments. This grey scale value or

intensity of the micro particle also has a direct relationship with analyte concen-

tration. For analysing the captured images from experiments there was not much

colour difference between background and particles, so that the colour cannot be

used as a distinguishable property between foreground and background. The only

property that makes the micro-particles differ from the background is their small
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difference in grey scale value (intensity) between the particles and background. Also

any diffusion of the florescence stream can change background properties which may

lead to noise in subtracted image. Moreover, the ability of the user, the stability of

camera and camera focus produce an erroneous detection (both positive and nega-

tive). So the implementation of background subtraction is not straightforward and

lots of challenges are associated with it. Some difficulties and challenges related with

detecting micro particles from multi-laminar flow microfluidic LOC experiments are

discussed in the next section.

4.1 Problem Analysis and challenges

For a background subtraction algorithm to be robust and affective it is requiring to

cope with many challenges and difficulties, which can arise during the capture or

processing of input sequence(s). In general, three main assumptions were made for

developing any background subtraction technique for detecting micro particles from

florescence based magnetophoresis particle experiments, they are the capturing

camera is fixed, object value (illumination or colour or any considerable property)

is constant and the background is static (e.g., the pixel model distribution is the

same over the whole scene and no background object is changed, including insertion

or moving out of any object). In most of the cases these conditions do not remain

constant throughout the whole process, which makes the background subtraction dif-

ficult. Similar to many surveillances related approaches, images from multi-laminar

microfluidic flow produce many challenges, which are not effectively solved using

existing background subtraction algorithms. Before approaching any solution, it is

required to analyse these challenges. With reference to the classification produced

by Toyama et al. [78] and Bouwmans [79], challenges for subtracting background

for multi-laminar flow based microfluidic experimental images are discussed in the

following section:
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4.1.1 Noisy image

Noise can arise both during image capture (e.g. sensor noise) and image processing

(e.g. compression artefacts) which results in problems for object edge detection and

image segmentation. Camera set-up and quality can affect the amount of noise as

well.

One of the main focuses for this thesis is to detect objects in the image sequences

that are taken during multi-laminar flow microfluidic LOC experiments. During the

capture of these images some ideal conditions for production of high quality im-

ages are the capturing surroundings need to be dark (e.g., no external light should

be present), images should be taken from the part of the microfluidic chip where

diffusion does not make an effect and camera focus and position are constant. Un-

fortunately, due to other practical considerations most of the time it is not possible

to focus the camera on a position where diffusion do not occur and is not affected

by external light. Noise and other artefacts exist for most of the multi-laminar flow

platform LOC experimental results. Considering all such situations, one of the main

concerns for the introduced background subtraction algorithm during this research

was to deal with noises and artefacts.

4.1.2 Changes in illumination

The lighting environment of background can have gradual or sudden changes over

time. Outdoor light is an example for gradual illumination changes, which varies

during the day. Such gradual illumination change does not seriously affect back-

ground subtraction algorithms. However, sudden light changes (like lighting up a

scene using an external light source) can affect the background model strongly and

leads to false positive object detection [80].

During the multi-laminar flow experiment microparticles travel through various

lamina flows including florescent stream(s), so the background illumination of the

particles changes over time. Often these changes in illumination cause particles

to be detected as noise (discussed as particle intensity issue in Chapter 1, Section
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1.2). In this way changes in illumination make the detection of a particle complex.

Moreover, depending on the location of the captured image in the microfluidic chip

it is possible that the diffusion of a stream can affect the background illumination

by changing the lighting condition of the overall capture (the stream itself exhibits

florescence). Dealing with illumination effect(s) due to background illumination

change and removing effect of diffusion of flow during the background subtraction

was a challenging issue.

4.1.3 Bootstrapping

For modelling a background quickly and accurately, it is desired that the background

subtraction model is initialized when no foreground object is present on the reference

frame. But initial frame(s) without foreground objects are not available in many

cases, i.e. before the background modelling starts foreground object(s) already exist

in the reference frame. Hence, a bootstrapping strategy is often an important part

if a background subtraction system is to quickly initialize object tracking [81].

For the best and most efficient micro particle detection results from multi-laminar

flow experimental images, it is desired that during the capture of the images the

first few frames do not contain any micro particles. In this way during the modelling

of the background no foreground object will be included. But in typical situations

and depending on the experimenter’s experience in most of the cases it was found

that micro particle(s) were present at the very beginning of frame capture. This

made the modelling of the background during the training period challenging. So

bootstrapping was a significant issue for analysing these microfluidic experimental

results.

4.1.4 Camouflage

When a foreground object’s pixels have similar brightness to the background model,

it is difficult to differentiate them from background. In this situation camouflage

occurs during removal of background from the image sequence. Camouflage prob-
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lems can be divided into two types, they are- dark camouflage and light camouflage.

When foreground object’s pixels are darker than background model, then it is con-

sidered as dark camouflage. Otherwise, it is regarded as light camouflage [82].

When analyte concentration is low, the light from the particle may become

too low to be detected (discussed as particle intensity issue in Chapter 1, Section

1.2). In this way the particle may become invisible or part of background at that

time. This is a camouflage problem, which makes the particles absence from the

foreground. Moreover, the analysed images were taken from a narrow focal plane

close to the surface of the chamber, not throughout the depth of the chamber. This

way the vertical position of micro particle within the chamber can also produce

camouflage effects. Considering these situations, camouflage was a considerable

issue for analysing these experimental images.

4.1.5 Foreground aperture

If the object does not have significant difference to the background, it becomes

difficult to detect its movement, as the changes in pixel value become too small to be

detected. Therefore, the entire object or part of the object can appear as background

[78]. This problem can be overcome by using a background maintenance approach

(discussed in Section 4.2.3 in this chapter), like used in the Gaussian Mixture Model

(GMM) background subtraction algorithm [83].

Similar to the camouflage effect, foreground aperture also produces challenges for

analysing the images from multi-laminar flow experiments. This problem becomes

very challenging when the images were captured for an experiment with low analyte

concentration.

4.1.6 Sleeping foreground object(s)

One of the initial assumptions for an object to be a part of foreground is it should

keep moving. But in many cases an object which was initially part of foreground

(i.e. moving object) can stay on the same position for a few consecutive frames,
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or for all the rest of the frames. For such cases, many background models fail

to distinguish this object from background, which causes false negative detection of

objects. For such situations, these motionless foreground objects need to be handled

using a different approach, rather than considering only their motion [84].

During magnetophoresis experiments it is common for some particle to become

motionless typically sticking to the reaction chamber wall or a pillar etc (Discussed

in Chapter 1 Section 1.2). In this way when a particle does not move for couple

of frames it becomes a part of the background. Such a visible micro particle will

stay undetected when using many conventional algorithms for background subtrac-

tion. In this way for developing a robust technique for detecting micro particles

automatically, sleeping foreground object is a considerable issue.

4.1.7 Movement in background object(s)

An object which was initially considered as background can start moving during

the processing. This movement can be very small or considerable. For a robust

and effective background model this newly moved object would not be considered

as foreground. But for many background subtraction techniques both the initial

and new positions of the newly moved object(s) are detected separately as different

object, which produces false positive detection. Such false positives are one of the

big challenges for background modelling approaches. These types of detected objects

are also known as ”ghosts”.

For microfluidic experimental result analysis, colour properties of the reagent

stream are considered as part of the background and this can change with the change

in reagent property or velocity (i.e. diffusion). During the capture of the result

from multi-laminar flow based microfluidic experiments, the chemically activated

microparticles affect the stability of the background, which in turn makes a ”waiving

tree” effect on the background. So it was required to consider the problems caused

due to movement in background.
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4.1.8 Occlusion and Clutter

Occlusion (both partial and full) can provide both false positives and false negatives

observation, which can seriously affect the efficiency of detection capability of any

object detection technique. In real life, occlusion is very common and it can happen

at any number of frequencies.

Cluttered images or those images having too many foreground objects to detect

sometimes make the task of image segmentation difficult. In this way it becomes

challenging for a model to separate the foreground object from the background one.

Unequal forces to pull the magnetic particles toward a specific direction cause

each particle to move at different velocities (Discussed in Chapter 1 Section 1.2).

This difference in velocity is one of the main reasons for making clash between

particles. These clashed particles may remain together permanently till the end of

the process or may separate at a later time. Such a situation happens very frequently

during the experiment. In this way occlusions between particles are a very common

challenge for analysing and detecting images from LOC experiments.

4.2 Background subtraction steps (BG modelling

steps)

Many background subtraction techniques have been proposed for different computer

vision related applications. Most of these background subtraction techniques follow

four major steps- pre-processing, background modelling, background maintenance

and foreground detection [85]. Pre-processing consists of collecting the simple images

and processing them into a format which can be easily read and processed by the

subsequent steps. Background modelling then utilizes this new format input video

frame for statistically calculating and updating the entire background scene. Subse-

quently, foreground detection identifies the pixels which are not included within the

background scene and exports these pixels as a foreground mask. Background main-

tenance examines these foreground mask candidate pixels with the actual moving
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objects to eliminate the false detection of pixels [85]. These background subtraction

steps are shown using Figure 4.4.

Figure 4.4: An overview of background subtraction steps.

These four steps are a continuous and repetitive process and they depend on

each other. All these four major steps for background subtraction are discussed in

detail as follows:

4.2.1 Pre-processing

Pre-processing of the raw input frames is the first task for background subtraction.

During this step the image data format is converted or changed (like RGB to HSV or

RGB to Grey image etc) to a format, which is suitable for the particular background

subtraction technique. Pre-processing is an user dependent process, this means it

depends on the input image characteristics and desired target, pre-processing is

done. For most of the background subtraction algorithms, grey scale images are used

as input. Grey scale image provide a scalar value for each pixel, so it requires less

computational power for any approach to analyse them. Moreover different types of

image smoothing (temporal and/or spatial smoothing) and/or other mathematical

operations are also done on the image to reduce camera noise [85] at this stage.
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4.2.2 Background modelling

Background modelling is the most important step of background subtraction. This is

the algorithm or approach used for modelling and representing the background. This

model continuously decides how the background representation will adapt under

many complex conditions (described in the previous section of this chapter ”Problem

Analysis and challenges”, in Section 4.1 in this Chapter).

Stable and simple backgrounds can be represented by simple methods, like via an

average of pixels using grey scale or colour representation of the scene. However, for

most practical videos, the background scenes are not stable. They contain several

complexities like - waves, tree moving, light changes, busy roads etc.

Many studies have already been done related to background modelling for ob-

taining a robust method to deal with variety of complex environments, but not many

different fundamental background models (most of them are mainly a modification

or improvement or combination of fundamental models) has been developed. For

most of these approaches, at the beginning of the process the background model is

obtained by training it using a short sequence of frames which contain no foreground

objects. But in many practical situations it is quite impossible to obtain sequences

of frames without any foreground objects [78].

4.2.3 Background maintenance

Background subtractions are used for many long term observation applications. Dur-

ing this long term observation, the background can change (for example background

illumination can severely change), foreground object(s) can become a part of back-

ground, a background object can have movement [67, 78] etc. In these situations, if

the background model remains the same as the initial model, it will cause false pos-

itive or negative detection. Therefore, the background model needs to be updated

and to adapt over a long period of operation. This update in background model

for adapting with changes is known as background maintenance. Accurate and ef-

ficient background maintenance improves object tracking quality and reliability as
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well. There are a few different types of update mechanisms available for updating

background models with new frames, like conservative (selective) update [86], blind

update [87].

The conservative update mechanism never includes a sample which belongs to a

foreground region inside the background model. In this way a pixel sample can only

be included in the background model if it has not been classified as a foreground

sample. For this approach it is considered that background and foreground do not

have similarity in colour. The most useful outcome from conservative update mech-

anism is it provides a sharp detection of the moving objects. But if a background

sample is incorrectly classified as foreground, it prevents the background model from

updating the pixel model. In this way the background pixel model can stay with-

out being updated indefinitely and can cause a permanent misclassification. Many

practical applications lead to such situations. As an everyday example a car park

can be considered. If a parking location where a car was previously parked cannot

be included within the background model by using a purely conservative update

scheme. This update mechanism can lead to deadlock situations and everlasting

”ghosts”. But use of a separate update mechanism can handle such situations.

In the blind update mechanism pixel samples are added to the background model

even when they have not been classified as background [86]. So this mechanism is free

from pixel deadlocking problems. But the main problem for this update mechanism

is for slow moving target(s), where the detection rate is low. In this method a slow

moving target can be considered as background in the background model over a

period of time.

4.2.4 Foreground detection

Foreground detection is the final step of background subtraction, which compares

the input video frame with background model and identifies the foreground pixels.

The most commonly used algorithm of foreground detection is to use the difference

between the pixel values from the input video frame and the background model, as
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Equation (4.1):

|It(x, y)−Bt(x, y)| > T (4.1)

or the relative difference comparing input pixel and background model [88], as

Equation (4.2):

|It(x, y)−Bt(x, y)|
Bt(x, y)

> T (4.2)

or determining the foreground threshold as Equation (4.3):

|It(x, y)−Bt(x, y)− µd|
σd

> T (4.3)

Where It(x, y) and Bt(x, y) are the input and background pixel value respectively,

T is the threshold, µd is the mean of It(x, y)−Bt(x, y) and σd is standard deviation

of |It(x, y)−Bt(x, y)| [85].

In addition, some foreground detection methods introduce two thresholds [89,

90], one is the lower and the other is the upper threshold value. Two threshold

foreground detection is useful when the noise in the sequence is regular and the

objects contain very significant features.

4.3 Background Modelling Techniques

Out of several basic background subtraction techniques, Gaussian Mixture Model

(GMM) proposed by Stauffer and Grimson [68] and single Gaussian model are con-

sidered as two of the most widely used ones. Gaussian Mixture Model is a pixel-based

algorithm based on forming a statistical background model for each pixel separately.

This model is found to be robust against gradual changes in illumination and slow

movement in background regions. However, for any sudden illumination change in

background and if a foreground object remains static over a long period of time

this model fails. GMM also produces poor segmentation results for many complex
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real world conditions having camera noise, complex edges and high frequency back-

ground objects (like tree branches, sea wave etc). Moreover, implementation of a

fundamental GMM approach proposed by Stauffer and Grimson has a relatively

high computational cost.

For monitoring many simple scenes the single Gaussian models is used for fore-

ground segmentation. However, single Gaussian model is found effective when back-

ground is constant and no noise is available to consider. Also implementation of a

single Gaussian model requires very low computational processing. But this model

fails for any complex background model.

Two commonly used methods (i.e. single Gaussian model and Gaussian mixture

model) for background modelling are described in detail in the following section.

4.3.1 Single Gaussian Model

For an input scene with static background, single Gaussian method models the

changes of each pixel of a background scene independently by a single Gaussian

distribution. For modelling the background (B) for a pixel (xt) in a frame, this

model uses the previous n pixel values of the same pixel as samples for describing a

Gaussian probability density function using a mean (µ) and standard deviation (σ)

as Equation (4.4):

(xt|B) =
1

σ
√
2π

e
(xt−µ)2

2σ (4.4)

For producing Gaussian probability distribution for each pixel it is required to

store all n previous intensity values of them for every frame for calculating the

mean (µ) and standard deviation (σ), which requires large computational memory.

Requirement of large computational memory for single Gaussian model was later

solved by Wren et al. [25] by introducing a running average approach for finding

mean and standard deviation of the pixel intensities for adapting the background

changes which requires less computational memory. The running average approach
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for updating the background model can be described as follows Equation (4.5):

Bt = (1− α)Bt−1 + αIt (4.5)

Where t ≥ 1, α is the pre-determined learning rate, Bt is the background image

computed up to frame t, It is the current pixel intensity value and Bt−1 is the

previous running average for the computed background image.

The other parameter, i.e. standard deviation (σ) of the Gaussian model, can also

be updated in a similar way using the same learning rate α, as shown in Equation

(4.6):

σt = (1− α)σt−1 + α (It − µt)
2 (4.6)

Introduction of running average allows the model to compensate small changes in

lighting condition and object movement, as gradual light change has minimum effect

on the running average. Also with the use of running average approach, it requires

only one mean and one variance to be stored for each pixel of the background model,

which lead to lower memory requirement.

After modelling the background using Gaussian distribution, it requires a simple

thresholding to classify a pixel as foreground or background. The classified result is

then represented using a binary foreground mask FG(x, y) as:

FG(x, y) =

1 if |It −Bt| > kσt

0 otherwise

where k is a constant and usually it is 2.5 [91], It is the pixel intensity of the

current frame, Bt is the running average of the background image obtained using

Equation (4.5), and σt can be obtained from Equation (4.6).

The single Gaussian method provides a robust result against small or gradual

variations in the background dynamics of a scene, but this method fails when there

are large or sudden changes in the background illumination to make effect on the

running average.
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4.3.2 Gaussian Mixture Model (GMM) Background Mod-

elling

When there is large or sudden illumination changes in the background scene, a single

Gaussian model is not enough to describe the scene dynamics, it requires a multi-

model distribution to describe it. Stauffer and Grimson [92] proposed a Gaussian

mixture model (GMM) to address this problem, which represents a background

scene using multi-modal distributions. Multi-model distribution means multiple

Gaussian distribution. Gaussian mixture model (GMM) is one of the most widely

used and reliable basic background modelling techniques when input frames are from

a static or non-moving camera (i.e., this technique is suitable for modelling a static

background and gradual light change in background). Gaussian Mixture Model

(GMM) for background modelling is also widely known as Mixture of Gaussian

Models (MOG). This algorithm consists of three basic assumptions (1) foreground

is detected by excluding the background, not depending on foreground texture,

colour or edge model (2) per pixel based processing is required rather than using

region based processing and (3) the decision for background model comes from every

frame, without requiring any feedback or tracking information [93]. Moreover, in

this model it is considered that background is more visible than any foregrounds

and it has less frequent change in background.

Each pixel value on an image changes over time. So if a pixel X is a part of a

moving object (foreground) on an image at time t, it can be a part of shadow or

background on other frame at time (t + ∆t). This way for a pixel (X) located at

(x0, y0) can be considered as time series of pixel values, called ’Pixel Process’. So

for a pixel X at (x0, y0) the pixel value history over time t can be represented as

Equation (4.7):

{X1, X2, X3............Xt} = {I(x0, y0, i) : 1≤i≤t} (4.7)

Here I is the image sequence and i is representing time. Using this pixel history

from recent frames (training frame), the pixel features can be modelled by a mixture
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of K Gaussian distributions. In this way after modelling a mixture of K Gaussian

distributions, the probability (P (Xt)) of observing the current pixel value Xt is

Equation (4.8):

P (Xt) =
K∑
k=1

ωi,t ∗ (Xt, µi,t,Σi,t) (4.8)

Here, K is the number of the Gaussian distribution, ωi,t is an estimate of weight

(portion of the data is accounted for by its Gaussian) of ith Gaussian in mixture at

time t (Σωi,t = 1), µi,t is the mean value of the ith Gaussian in the mixture at time

t, Σi,t is a diagonal covariance matrix of the ith Gaussian in the mixture at time t,

η is a Gaussian probability density function as Equation (4.9):

η (Xt,µt,Σ) =
1

(2π)n/2|Σ|1/2
e−

1
2
(Xt−µt)Σ−1(Xt−µt) (4.9)

For making the computation easier it is considered that the pixel values are

independent and have same variance of σ. So with identity matrix I the covariance

matrix become as Equation (4.10):

Σi,t = σi,j
2I (4.10)

Using the above procedures each pixel is characterized by a mixture ofK number

Gaussians. An example of pixel characterization with K = 3 number of Gaussian

can be represented using Figure 4.5:
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Figure 4.5: The pixel value probability P (Xt) from Equation (4.9) is illustrated for 1D pixel values X ∈ 0,1,2,.255

with K=3.

In this stage it is required to initialize the parameters of the models, this means

for each of the number of Gaussians K, the weight ωi,t , the mean µi,t and covari-

ance matrix Σi,t. The value of K is chosen depending on the computer processing

power and memory, normally it is between 3 and 5 [92]. For initializing the other

values a computationally costly expectation maximization (EM) algorithm provides

a better result (as it does soft clustering assignment using Bayesian classifier prob-

abilities), but for real time implementation a K-mean algorithm (hard clustering

assignment) provides faster results [92]. The more the number of modes are, the

more the model performs well for detecting objects. With the increase in number

of modes the complexity and usability reduce, as the whole model requires higher

computational power. Also with a higher number of modes the process becomes

slower. After the initialization is done these Gaussians are ranked in order and

decided which Gaussian is belonging to foreground and which is background. For

this the Gaussians are sorted according to order of decreasing number from a ratio

rj =
ωj

σj
for j∈[1...K]. Each of these Gaussians are known as ’mode’. As it is already

mentioned in the assumption for GMM method that backgrounds are more frequent

than foreground, so a background pixel will have higher weight and lower variance.
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In this way higher importance goes to background components, which means back-

ground Gaussians will be on the top of the sequence. Now to decide which Gaussian

is belonging to foreground, a threshold TB is used. If a Gaussian Distribution B ex-

ceeds this threshold TB then these 1B Gaussian components belongs to background,

mathematically it can be expressed as Equation (4.11):

B = argminb

b∑
i=1

ωi,t > TB (4.11)

The rest of the distribution components (B + 1)K are considered foreground.

After the parameters are initialised and distributions are divided into foreground

and background categories, the first detection of foreground is made by comparing

a new pixel value (Xt) with the existing K Gaussian distributions. Normally it will

match with one of the major components of the mixture model. For finding this

match the absolute difference (known as Mahalanobis distance) between current

pixel value and initialized mean (µj) is compared with the predefined threshold

value (ς). This predefined threshold (ς) is 2.5 times of standard deviation [87],

means mathematically it can be shown as Equation (4.12):

||Xt − µj|| < 2.5 ∗ σj (4.12)

After this comparison the parameters for mixture of Gaussian are updated as in

the following Equations (4.13), (4.14) and (4.15)

ωi,t+1 = (1− α)ωi,t + αMk,t+1 (4.13)

µi,t+1 = (1− ρ)µi,t + ρXt+1 (4.14)

σi,t+1
2 = (1− ρ)σi,t

2 + ρ(Xt+1 − µi,t+1)(Xt+1 − µi,t+1)
T (4.15)

Here, α is a constant learning rate for mode’s weight and ρ is learning rate for
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the Mean, Variance and Prior estimates Equation (4.16),

ρ = αη (Xt|µk, σk) (4.16)

Here in Equation (4.13), Mk,t+1 is equal to 1 for matching component of j and

0 otherwise. If there is no matching found, the component with the lowest weight

ωk is re-initialized with ωk = ω0, µk = Xt+1 and δk = δ0.

Drawbacks

The implementation of the GMM by Stauffer and Grimson [92] was not efficient

enough to deal with many complex situations, which requires improvement. Before

any step(s) were taken for the improvement, it was necessary to understand the

drawbacks of the system by Stauffer and Grimson [92]. So analysing the Equations

(4.13), (4.14), (4.15) and (4.16) the observations can be summarised as follows:

1. The weights of the Gaussian modes change very slowly with time constant

(constant learning rate) and it is roughly ≈ 1
α
[93]. So the background modes

do not change rapidly, as the weights change slowly. This (very) slow change in

weights, lead the method proposed by Stauffer and Grimson to lack adaptation

to any fast changes in environment.

2. The mean and variance updates in Equation (4.14) and (4.15) are independent

of the weight values, so the changes in mean or variance do not make an effect

on weight of ’modes’.

For solving these issues, the first improvement was done by Lee. Instead of a

fixed learning factor, he introduced an adaptive update factor which can adapt with

change in situation quicker, when any new change appears [94]. This learning rate

can be shown as Equation (4.17).

ρ =
1− α

ck
+ α (4.17)
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Here, ck is a counter which is maintained independently for each mode. Its value

is initialized to 1 for a new mode and is incremented whenever a match with an

incoming pixel occurs.

Though there is an introduction of variable learning factor by Lee [94], but still

there were problems left. The GMM model modified by Lee is highly sensitive to the

environment change, as the adaptive learning factor Lee introduced was the same for

updating both the Mean (µk) and the Variance (σk
2) of the model. Here the Mean

value (µk) influences the sensitivity of detection and Variance (σk
2) significantly

influences the speed for the model to adapt with the change in environment. So

having the same learning factor for updating Mean (µk) and variance (σk
2) cannot

be efficient. So, it was required to find suitable learning factors for Mean (µk) and

variance (σk
2).

Before the proposed approach for improvement is discussed, it was required to

understand how this learning factor affect any system. For analysing the factors

affected from the learning rate, at first the minimum time (tmin) for a Gaussian

distribution from a part of K-number of Gaussian mixture to become a part of

the background model was found. From Equation (4.13) it can be seen that the

weight of any Gaussian changes depending on time and so for different times with

a constant posterior probability qk as it can be expressed as:

ωk(t) = (1− α)ωk(t− 1) + qt

ωk(t− 1) = (1− α)ωk(t− 2) + qt−1

ωk(t− 2) = (1− α)ωk(t− 3) + qt−2

....................................

ωk(1) = (1− α)ωk(0) + q1

Using the above expressions, we can express ωk(t) from Equation (4.13) as a

function of ωk(0) and for simplicity the new Equation (4.18), was written without

the subscript k:

ω(t) = (ω(0)− q)(1− α)t + q (4.18)
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where ω(0) is the initial value of ω(t). If time tmin is the minimum time required

for ω(t) to reach or exceed a particular value ωmin, then Equation (4.18) can be

expressed as inequality shown in Equation (4.19):

ω(t) = (ω(0)− q)(1− α)tmin + q≥ωmin (4.19)

Let’s consider a mixture of K Gaussians, with KB Gaussians belonging to the

background. Also assuming that their respective weights are ordered, i.e., ω1 ≥

ω2 ≥......≥ωKB
......≥ωk. If the weight ωKB

=ωmin is the minimum weight of the

Gaussian components for belonging to the background. Then, using the definition

of a Background Gaussian shown in Equation (4.20):

KB∑
i=1

ωi < TB ⇒
K∑
i=1

ωi −
K∑

i=KB+1

ωi<TB (4.20)

Since,
∑K

i=1 ωi = 1, so Equation (4.20) can be written as Equation (4.21)

K∑
i=KB+1

ωi≥1− TB (4.21)

Minimizing the weight ωKB
imposes that ωKB

= ωi ,∀i ≥ KB. Therefore,

K∑
i=KB+1

ωi = (K −KB)ωKB
≥1− TB (4.22)

Now if ωKB
= ωmin, then, Equation (4.22) become:

ωmin = ωKB
≥ 1− TB

K −KB

(4.23)

Solving the inequality in Equation (4.19) yields

tmin≥
1

ln(1− α)
ln

[
ωmin − q

ω0 − q

]
(4.24)

Now replacing the value of ωmin in Equation (4.24) from equation (4.23), we get,

tmin≥
1

ln(1− α)
ln

[
(1− qK)− TB + qKB

(ω0 − q)(K −KB)

]
(4.25)
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For the Equation (4.25) assuming ω0 have very small weight (ω0 = α), for an ex-

actly matched Gaussian q = 1 and bi-modal background KB = 2 then the Equation

(4.25) become:

tmin≥
1

ln(1− α)
ln

[
K + TB − 3

(K − 2)(1− α)

]
(4.26)

So, the minimum time required for any model to become part of background can

be expressed by Equation (4.26).

Using the equation (4.26), it can be found that for a constant value of TB equal

to 0.7, learning rate α = 0.005 and K = 3 (mixture of 3 Gaussian) the background

will adapt after 70 frames. For K = 5, the same background will adapt after 31

frames. The change in learning rate makes a lot of difference to the model to adapt

with the change in background. If the learning rate is changed to 0.003, then for

the same TB it will take 117 and 34 frames to adapt for K = 3 and 5 respectively.

From the above discussions it can be clearly seen how the learning rate effect the

total adaption process.

4.3.3 Frame difference

For the conventional two frame differencing background subtraction method, the

method calculates the differences of two adjacent frames f(k − 1)(x, y) and fk(x, y)

for getting the region of moving object(s). This process can be shown using the

Equation (4.27):

Dk(x, y) = |fk(x, y)− fk−1(x, y)| (4.27)

After getting the absolute differences between two adjacent frames, it is required

to set a threshold value (T ) for getting a binary image (Bk(x, y)) from the difference

image (Dk(x, y)). When pixel values of the difference images are more than the

predefined threshold value, the pixel is considered as a possible part of the object

pixels; otherwise as a background pixel.
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Bk(x, y) =

1 Dk(x, y)≥T

0 Dk(x, y) < T

This two frame difference moving object detection method can be shown using

the following Figure 4.6.

Figure 4.6: Two frame Difference background subtraction method.

At this point it is required to remove some object(s) smaller than the real ob-

ject(s). It is done by checking the pixel connectivity on the binary image Bk(x, y)

and setting a threshold size for the object(s). While the size of the connected pixel

area is more than the given threshold size, it is considered as a moving area for the

object; otherwise it becomes a background area.

There are many disadvantages for this method, for example I) for an object

moving at extremely low speed this method fails to detect it, II) if the inner grey

part of the object is relatively homogeneous, then this method can not detect the

overlapping part and this overlapping part in the moving object become an ”empty”

hole [95], III) the resultant difference image can show the range of movement due

to the movement of objects in adjacent images, but it’s movement extraction area

is bigger than the actual movement and often can be ”double” the real movement

[96].

116



For real life applications, scholars improved the two-frame difference method.

Instead of using two adjacent frames for detecting the object movement, they used

three adjacent images for differencing and then making several logical and morpho-

logical operation(s) [97]. Also some scholars proposed taking an image block as unit

of difference and many more approaches [98] for optimizing the results of detecting

moving object.

4.4 Summary

Background subtraction is one of the main initial approaches for developing an au-

tomated microparticle detection, tracking and intensity measurement system. Back-

ground subtraction provides the information about the particle’s position and other

movement characteristics which helps the tracker to relate their current position with

the previous one. For developing a robust system to detect the objects accurately,

several challenges are associated from the input images from the LOC experiments.

These challenges were discussed in this chapter. Moreover, lots of approaches have

already been made for developing robust background modelling techniques. A few

of the basic techniques for background modelling which are related with this project

were discussed in this chapter. The following chapter will provide a brief description

of the improved combined implementation of these techniques.

117



Chapter 5

PROPOSED BACKGROUND

MODELLING APPROACH

Background subtraction is one of the most widely used methods for detecting mov-

ing objects. The main target for background subtraction is to detect foreground

objects by subtracting the background from every current frame. This way it is

possible to find the target object(s). When a reference background frame without

any moving objects is available, it is easy to subtract the background from the cur-

rent frame comparing it with the reference frame. However, in practice, in many

cases it is not possible to obtain a pure background image. So the basic models

for background subtraction discussed in Chapter 4 cannot be implemented for most

practical scenarios. A few of the most widely used viable background-modelling

techniques (Single Gaussian Model, Gaussian Mixture Model, Frame Difference)

and some very common challenges related to background subtraction have already

been discussed in Chapter 4.

Gaussian Mixture model (GMM) first proposed by Stauffer and Grimson in 1999

[92] uses K-number of Gaussians for modelling each pixel. The basic GMM can cope

with some variation in image background caused by movement of background objects

and gradual changes in background illumination [92]. However in order to adapt

to such changes GMM requires a long period of time for updating the background
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(i.e. GMMs do not get updated frequently), which is one of the major challenges

for any background subtraction method [99]. For solving the update rate problem

for background models an improved Gaussian Mixture model was proposed by Lee

[94]. However, this improvement requires large computational power for complex

scenarios, as a significant amount of calculation is required to initialize K (3 to 5)

Gaussian for each pixel. Also for any scene containing slow moving objects, it was

found that GMM improved by Lee also fails to differentiate such objects from the

background. Moreover, for any object detection situation having camouflage and

bootstrapping effects, GMM fails to detect the objects successfully.

The experimenter uses tiff or seq format for saving their experimental results from

the LOC magnetophoresis experiments, which produces more information to process

compared to widely used avi or mpeg files. Moreover, when the concentration of the

analyte is low, the microparticles used in magnetophoresis experiments do not show

much colour difference from the background. This mades it quite difficult to use

a threshold value to detect any object within the frame, as an inappropriately low

threshold can produce high noise and an inappropriately high threshold will cause

the object to be detected as background.

The objects detected during magnetophoresis are chemically activated to produce

light proportional to analyte concentration, so a moving lighted objects are generally

elliptical in shape (due to motion) and becomes circular when not moving. Moving

bright objects produces higher intensity light at the centre of the object and reducing

in an area surrounding the object. These light intensity changes produce a gradient

in grey scale value changes at the edge of the object, which cannot be considered as

shadow but which produce a secondary illuminated object layer.

The magnetic particles may adhere temporarily or permanently to the internal

surface of the LOC device. Particles may collide and become stuck together. Such

joined particles may also become stationary. The analysis systems should be able to

identify situations where particles are joined or have become stuck as these may pro-

vide misleading results if measured. Large numbers of stuck particles may indicate

a system malfunction. Using the conventional GMM method it was not possible to
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deal with such non-moving particles. So it was required to have a method which

can deal with the problem related to non-moving particles.

In this section, an overview and details of the proposed method for detecting

micro particles in the LOC experiments will be provided. The image sequence

obtained from the LOC experiments has micro particles as objects that are required

to be tracked. They however are very similar in colour to the background, which

make the separation of foreground object from background more difficult. The

results of object detection of micro particles in the input sequence obtained from

LOC experiment will be presented using the proposed methods. Also the results

using the proposed methods will be compared with other standard techniques of

object detection in terms of object detection accuracy, noise effects and robustness.

5.1 Algorithm Overview

The process of object detection and background subtraction is performed in several

steps, specifically there are four major steps I) pre-processing, II) background mod-

elling, III) extracting foreground object features and IV) object detection. Each of

these steps also contains several sub-steps. The overview of the proposed algorithm

is shown in Figure 5.1.
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Figure 5.1: Proposed algorithm for foreground object detection.

Out of these four major steps the most significant and important step is back-

ground modelling, which in this case is a combination of two different very widely

used techniques Gaussian Mixture Model (GMM) and Frame Differencing. In-

dividually each of these techniques have drawbacks, like inability to observe slow

moving object(s), finding a whole object without any discontinuity either on the

edge or inside the object, adaption with changes in the environment etc. For these

reasons, to overcome many of these problems, more than one technique was used in

combination to produce a robust background modelling and foreground detection
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technique. The following sections will discuss in more detail each of the steps and

their outcomes.

5.1.1 Pre-processing

Foreground detection from any input sequence starts with pre-processing or prepar-

ing the input frames ready for further processing. Pre-processing is a user dependent

step for any background subtraction technique, i.e., the specific process depends on

the properties of the input sequence and requirements. As the main target for the

background modelling in this thesis is to analyse the images from magnetophore-

sis experiments, so it was found that three step pre-processing was required for

analysing those results. These steps are - image conversion, image intensity normal-

ization and removal of noise generated due to image intensity normalization. These

pre-processing steps are discussed in details in following sections:

Convert image to Suitable grey scale

The original input image sequences obtained from different chemistry experiments

are RGB colour images. Colour image means each pixel of the image contains more

than one value (values for red, green and blue). However, colour provides lots of

information which is not necessary for detecting the object movement. Moreover, it

requires large memory capacity for storing this information and it also requires more

processing resources. In this way colour images are not suitable for fast processing.

So the first step for this proposed algorithm was to convert the input images to grey

scale. In a greyscale image, each pixel contains a single value only and this value

contains the information about the brightness of the pixel and no colour information

is available. Grey images are composed with shades of gray, varying from black at

the weakest intensity to white at the strongest. These shades of gray or brightness

of the pixel are usually divided into 256 (0-255) parts, where 0 represents the dark-

est (black), 255 is for the brightest (white) intensity. As for a grey scale images

there is only one value to consider for each pixel, so it was found much easier and
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computationally less expensive to manipulate them.

There are a couple of mathematical expressions available to convert RGB input

images to grey scale ones. The weighted average method is the most commonly used

one for grey image conversion. The weighted average method gives ’Red’, ’Green’

and ’Blue’ different weights according to their importance. This weighted average

method for calculating Grey value for any pixel can be formulated as Equation (5.1):

Grey(x,y) = wr×R(x,y) + wg×G(x,y) + wb×B(x,y) (5.1)

Here, wr, wg and wb are the weight of ’Red ’, ’Green’ and ’Blue’ component of the

pixel respectively. Experimentally it was found that human eye is highly sensitive

to green, then red and finally by the blue component. The same consideration

was found for widely known image processing tools like Photoshop, ImageJ etc.

Moreover, for this project lots of functions were used from a widely used image

processing library called ’OpenCV’. In this library, the values for wr, wg and wb

were used as wr = 0.2989, wg = 0.5870, wb = 0.1140 and so for this project as well.

Image quality identification

Chemically activated micro-particles get its fluorescent intensity depending on the

concentration of analyte and is proportional to the concentrations. As many mag-

netophoresis LOC experiments were carried out with very low concentration of an-

alyte, so the micro-particles used in those experiments have very low contrast with

the background (Figure 5.2).
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Figure 5.2: Histogram of image with poor contrast. This image frame was taken from one of the DNA Hybridisation

experiment done by Dr Martin Vojtek using zero concentration of Analyte (0nM).

Under these conditions it is required to increase the grey scale difference between

the foreground (objects) and background. Out of the several methods available such

as controlled pixel value multiplier, image linear and non linear histogram normal-

ization, image entropy calculation etc, the most efficient one found was linear image

histogram normalisation. Linear image histogram normalization was computation-

ally less expensive and also was easy to use. But normalising the image histogram

produces salt and pepper noise, which was then removed using a Gaussian filter.

Both these pre-processing processes (histogram normalization and Gaussian fil-

ter) make the background modelling computationally expensive. So these two steps

are only implemented when essential, i.e., for magnetophoresis LOC experiments

with lower concentration. For determining the requirements of pre-processing, it

is assumed that there are some microfluidic particles (objects) available within the

first three frames (chosen as the number of training frame). Then the grey scale

value differences between the pixels were determined. Using experimental result

from DNA Hybridization done by Dr Martin Vojtisek [17], it was found that if there

is a minimum grey scale value difference of 20 (τmin = 20) between the objects and

background then the objects were possible to be detected without pre-processing.

Preprocessing requirement =

1 pixel value difference,τ≥20

0 pixel value difference,τ < 20

In Figure 5.3, the input sequence (first three frame) from experimental result
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with 0nM analyte concentration and their 2-D grayscale histogram is shown.

Figure 5.3: The left side images are showing the first three frames from experiment with 0 nM concentration and

the corresponding 2D grey scale histograms are shown in the right side graphs respectively.

In Figure 5.3 the objects has very low grey scale value and it is very close to

the background pixel’s value. After measuring grey values for each pixel in these

frames it was found that, most of these pixels’ values were varied from 4 to 14. For

input frames with such histogram distributions pre-processing steps, like histogram

normalization and Gaussian filtering are required.

On the other hand, for the same experiment done with higher concentration of
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20nM of analyte (DNA), the grey scale value distribution is shown in Figure 5.4.

Figure 5.4: The left side images are showing the first three frames from experiment with 20 nM concentration and

the corresponding 2D grey scale histograms are shown in the right side graphs respectively. Objects were found in

1st frame.

In Figure 5.4 it can be seen in the histogram distribution, that the object in-

tensities are higher than background and this difference between them is more than

”20”. Also the objects in this case are more easily visible than those in Figure 5.3.

For the input sequence shown in Figure 5.4, the objects are easily discriminable, so

it does not require pre-processing. The process of pre-processing can be described

using the flow chart shown in Figure 5.5.
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Figure 5.5: Requirement checking process for pre-processing.

Histogram Normalization

Histogram normalization on any image is done when it is required to change the pixel

intensity range. Often it is helpful to normalize the image histogram for improving

the object and background grey scale value difference(s). Histogram normalization

helps improve images with poor contrast.

For LOC experimental result images, foreground object pixels have compar-

atively higher intensity than the background. Increasing the contrast difference

between background and foreground object was helpful for later background sub-

traction and object detection. Linear histogram normalization was performed on the

experimental result images in the pre-processing stage. Through histogram normal-

ization an n-dimensional grayscale image I : {X⊆Rn}→{Min...Max} with intensity

value of range (Min,Max) is transformed to Inew : {X⊆Rn}→{newMin...newMax}

with intensity value of range (newMin, newMax), using the following Equation

(5.2):

INew = (I −Min)
newMax− newMin

Max−Min
+ newMin (5.2)

Here, INew is the new pixel value after normalization. I is the current pixel

value, Min and Max are current minimum and maximum pixel values. newMin

and newMax are minimum and maximum pixel values for the new image.
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Figure 5.6: Normalised histogram image for the same image in Figure 5.3 with clear object and histogram distribu-

tion.

From a poor contrast image (shown in Figure 5.3), it was not possible to iden-

tify any object, while, an image with normalised histogram (shown in Figure 5.6)

contains obvious objects. After normalization, poor contrast images obtain more

contrast and pixel intensity difference is enhanced. But it was useful to check the

effect of histogram normalization on an image which was wrongly identified as an im-

age requiring normalization. For this reason, a manual histogram normalization was

applied to an image sequence captured from DNA hybridization experiment with

analyte concentration of 40nM , 80nM and 100nM . Figure 5.7 shows the effect of
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histogram normalization on an image, where objects were clearly visible.

Figure 5.7: Normalization applied to input sequence image from experiment with concentration of 40 nM, 80 nM

and 100 nM respectively. Here the left side images are showing the original input and the right sides are normalized

images of them.

From Figure 5.7 it can be clearly seen that after applying histogram normaliza-

tion on an image with clearly visible objects, it did not have any negative effect on

it. The images can be used for object detection but effort is wasted pre-processing

these images. It should be noted that normalization introduces noise to the image,

especially for the poor quality images. This noise issue will be solved in a later

stage.

129



Normalization was also applied in other complex situations (daily life situations,

like car movement, human walking) to check whether it caused any negative effect on

detecting objects or not. It can be seen in Appendix 1 that after normalization there

were no significant problems which affected object detection. Thus we can conclude

that normalization was suitable to use in our results to obtain better contrast for

later analysis.

Gaussian filter Kernel

Images with normalized histogram typically exhibit high levels of noise, especially

for original images with poor contrast ratio. This noise can be categorised as salt

and paper noise. Therefore, it is required to filter it to smooth the images for the

purpose of avoiding erroneous detection. It was found that implementation of a

Gaussian filter is one of the ways to remove most of this noise and smooth the

image. Though mean filter was another option for doing so, but the Gaussian filter

[100] was used as a filter for the subsequent detection process for its efficiency.

The Gaussian filter operates as follows - if a (2m+1)×(2m+1) mask is defined

with a centre of (0, 0) and other (x, y) ranges are from (−m,−m) to (m,m), the

2-D Gaussian filter function element for this mask can be defined as Equation (5.3):

(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (5.3)

where x, y = −m, ..., 0, ...m and σ is the standard deviation of the Gaussian

distribution with mean is zero. For larger value of σ, the details of the input image

get reduced. Moreover, Gaussian blur with a large σ can introduce artifacts to the

resultant image. As for the implementation used, it was required to keep most of

the detail from the input image, so a small value for σ was chosen. Also a larger

mask size for the Gaussian filter makes the process computationally expensive, but

a small mask size did not remove most of the noise. So a mask size of (5×5) was

chosen. If v is the intensity of the noisy input, then the resultant image (GR(x, y))
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after the Gaussian filter can be shown as Equation (5.4):

GR(x, y) = G(x, y) ∗ v (5.4)

Here, ∗ denotes the convolution operation.

After the Gaussian filter was applied on the noisy input image from histogram

normalization step, the blurred image acts as the input image for foreground detec-

tion. An example image after applying Gaussian filter is shown Figure 5.8.

Figure 5.8: Gaussian filter of 5×5 mask was applied.

5.1.2 Background modelling and foreground detection

After the pre-processing is done, the image frames are considered ready to be pro-

cessed via two individual and separate background modelling techniques (Texture

based BGModel and improved frame difference). Here each of these process is im-

plemented on every input frame separately and in parallel, at the end the output of

these parallel processes are combined together using several logical operations. In

the following sections, each of these model improvements with their individual out-

puts will be discussed first, which will be followed by an explanation and examples

of the output from their logical and manual combinations.
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Three frame difference

Three frame difference method for detecting moving objects is developed on the

basis of the conventional two frame differencing (Discussed in Chapter 4). It takes

the three adjacent image frames for detecting the shape of the moving object(s)

contours.

Considering three consecutive image frames fk−1(x, y), fk(x, y) and fk+1(x, y),

the differences between the current frame and both the previous and next frames

is found. These two subtractions produce two grey scale images Sk,k−1(x, y) and

Sk+1,k(x, y). In both the cases the absolute difference is considered. These two

subtraction processes can be expressed as follows in Equation (5.5) and (5.6):

Sk,k−1(x, y) = |Ik(x, y)− Ik−1(x, y)| (5.5)

Sk+1,k(x, y) = |Ik+1(x, y)− Ik(x, y)| (5.6)

As the image frames have been subtracted, so some information about the moving

objects has been lost or added. Hence the union of the two subtracted grey images is

used to obtain a resultant grey-scale image (R(x, y) to recover some lost information

to help the detection process. This combination is defined by Equation (5.7):

R(x, y) = Sk,k−1(x, y) + Sk+1,k(x, y) (5.7)

As long as there is any moving object in both of the subtracted images, then it

is considered that there is a possible object in the combined image R(x, y). This

situation can be mathematically expressed using an ”AND” operation giving a

function for the possible existence of an object within the combined frame R(x, y)

is shown as.

Possible Object =

1 Sk,k−1 ∩ Sk+1,k = 1

0 Sk,k−1 ∩ Sk+1,k ̸=1
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At this point it is required to select a threshold value for getting a binary image

from R(x, y). The choice of threshold has a large effect on the performance of the

final detection, so it is important to choose the correct one. There are two types

of thresholding available - one applying the same threshold to the whole image

and the other uses local threshold values at different locations in the image (also

known as adaptive thresholding). For our approach, it was found that use of local

threshold values for doing the image segmentation provided the best results. There

are three primary algorithms for finding these local threshold values for adaptive

thresholding, they are - I) finding the best value, II) calculating the biggest entropy

and III) finding biggest square variance using inter-classes algorithm [101]. Moments

automatic thresholding - based on finding the best value method, provided the

best result for segmenting the resultant grey scale image ((R(x, y)). Moreover, the

implementation of ”moments automatic thresholding” approach is comparatively

simple. Comparison of the combined frame differences image ((R(x, y)) with the

adaptive threshold (TA) can be expressed using the following Equation 5.10:

B(x, y) =

1 R(x, y)≥TA

0 R(x, y) < TA

The resultant binary image (B(x, y)) contains noise and holes in the identified

objects, so it is required to remove them. This can be done by implementing several

morphological filtering operations on it, like ’opening’ and ’closing’ operations, also

known as ’Erosion’ and ’Dilation’ respectively. So the overall process of this three

frame differencing technique is shown in Figure 5.9.
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Figure 5.9: The principle for detecting new moving target algorithm using three frame difference.

Morphological operation ’opening’ (Erosion) can eliminate very small objects,

separate fine joints between objects and smooth the boundary of large objects within

a binary image. On the other hand, ’closing’ morphological operation (Dilation) is

able to fill very small gaps and clearances between objects and smooth boundaries of

small objects. Therefore, after these morphological operations on the binary image,

small noise dots and regions are eliminated, including the filling of small gaps and

clearances. In the proposed algorithm an ’opening’ operation is performed to remove

different small noises. Then a ’closing’ operation is performed to fill different ’holes’

inside the objects. So if B(x, y) is the image and O is the structural element for

the ’opening’ and ’closing’ operation, then the whole operation can be expressed as
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Equation (5.8):

(B◦O)�O = {[(B⊖O)⊕O]⊕O}⊖O (5.8)

In the expression shown in Equation (5.8), ”⊕” is Dilation operator, ”⊖” is

Erosion operator ”◦” is Opening operator and ”�” is Closing operator. Here the

structural element ”O” is a 3×3 matrix and can be expressed as

O =


1 1 1

1 0 1

1 1 1


After performing both ’opening’ and ’closing’ morphological operations it is

found that some small white region which do not relate to object occur in the

resultant binary image. For eliminating these errors, the areas of all the connected

white pixels regions are computed and compared with a given threshold area. If a

white region is larger than this threshold, then it is considered as a moving object.
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Figure 5.10: Three frame difference algorithm is applied on image sequence from 20 nM analyte concentration

experiment (61st, 62nd and 63rd frame).

Implementation of this three frame difference technique provides information

of non-moving (previously moving) or slowly moving object (s), which is relevant

for location analysis. Many micro-particles get stuck for several frames and also in

many cases their motion is too slow to be detected via GMM. So for our purpose the

three frame difference was only used to identify the non-moving and slowly moving

object(s), which was later reinserted using data from a previous frame within the

detected foreground object(s) via GMM.

Improved GMM

For any background subtraction model to be considered as robust one of the main

criteria is that- it must be able to adapt to environmental changes quickly. This can

not be achieved using same the learning factor for updating Mean (µk) and variance

(σk
2) used in the basic model GMM. To solve this problem, one approach is to use

two different learning factors (β1 and β2) for updating the Mean and Variance [102].
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With two learning factors Equations (4.14) and (4.15) can be adapted as shown in

Equation (5.9) and (5.10):

µi,t+1 = (1− β1)µi,t + β1Xt+1 (5.9)

σi,t+1
2 = (1− β2)σi,t

2 + β2(Xt+1 − µi,t+1)(Xt+1 − µi,t+1)
T (5.10)

In which β1 > β2, here larger β1 is required to improve the detection sensitivity

and smaller β2 is required to prevent the model from detecting an object as a part

of background. However, use of two constant values for β1 and β2 over the whole

process of background modelling was not a viable solution, as it was found that

a constant learning rate would not be able to fully solve the problem of adapting

with environment change. For this reason, it was required to find a mathematical

expression for both these values (β1 and β2). Various publications (for example

[93, 103, 104, 105]) showed several approaches for finding a relational equation(s)

for finding adaptive values for β1 and β2, but most authors indicate that they have

found them experimentally. β1 and β2 experimental values are quite difficult to

prove mathematically. Some authors found the values of β1 and β2 using several

statistical methods, they are also difficult to understand and implement, as these

approaches are very much situation dependent, so these values are only applicable

for certain environment(s).

In this situation, an approach using texture based segmentation for further im-

proving the GMM background modelling technique was used. For texture based

segmentation a newly developed technique called ”Temporal Adaptive Median Bi-

nary Patterns (T-AMBP)” was used used for updating the weights of background

models. For implementing T-AMBP with GMM, the GMM originally developed by

Stauffer and Grimson [68] was not used, its improved version by Lee [94] was used.

The implementation of T-AMBP with GMM is described in a later section (Under

Section 5.1.2), but the description of T-AMBP is described first in following section.
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Temporal- Adaptive Median Binary Pattern (T-AMBP)

Texture provides information about spatial arrangement of pixels grey levels or in-

tensities in an image, which can be used as important characteristics to segment

images into areas of interest, to classify and identify objects or regions [106]. Tex-

ture could give more information about an image compared to its histogram. For

example, an image having a histogram with 50% white and 50% black pixels can

have different textures as shown in Figure 5.11.

Figure 5.11: Three images with different texture characteristics and same distribution of histogram [100].

Many techniques have been developed for identifying objects based on recogniz-

ing different texture features, such as local binary pattern (LBP) [107] and median

binary pattern (MBP) [108]. Texture can also be used for capturing background

statistics. Recently Adaptive Median Binary Pattern (AMBP) [109] showed some

excellent performance for many different texture segmentation applications which

makes it suitable to use in background modelling. Moreover, one of the most impor-

tant properties of the AMBP operator is its tolerance of sudden illumination changes

in the background. In order to make AMBP more suitable to use with an input se-

quence and for other datasets, a modification to the AMBP operator was proposed,

which can be called Temporal Adaptive Median Binary Pattern (T-AMBP).

Before the T-AMBP is discussed it was required to understand the initial ap-

proaches for developing T-AMBP, specially LBP and MBP. For this reason, the

following sections are going to describe the basics of LBP and MBP.

138



Local Binary Pattern (LBP)

LBP is considered as one of the best texture descriptors. It describes textures or ele-

mentary structures of the local region and enhances the local properties by analysing

the spatial distribution within the same area [107]. The basic LBP compares the

neighbourhood pixel to the central pixels in a 3×3 block and transforms to an 8-bit

binary number. Within this 8-bit binary number ’1’ is for intensity of the neigh-

bourhood pixel over or equal to the central pixel value and 0 for otherwise. This

resultant 8-bit binary pattern represents one of the 256 (0 to 255) distinct known

patterns. The process of getting 8-bit binary pattern from a 3×3 block can be shown

using Figure 5.12.

Figure 5.12: LBP technique performed a 3×3 neighbourhood pixel into an 8-bit binary. The central pixel 26 is used

as threshold and ignored in the output for LBP.

In Figure 5.12, the right side of the figure is showing the binary pattern for the

left side 3×3 block. Here all the neighbour pixels were compared with the central

pixel value (26). So the resultant local binary pattern is 01000101, which is 69

(within 0 to 255). This means the texture value for the central pixel within this

3×3 block is 69.

The LBP operator can be expanded to use a larger neighbourhood and a different

number of sampling points (??). However, the generic formulation of LBP operator

can be presented without limitations to the neighbourhood size or sampling points

[100]. So, in a (P,R) neighbourhood, where P is the number of sampling points and
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R is the radius of the circle, the value of LBP with respect to a pixel (xc, yc) can be

found using Equation (5.11):

LBPP,R =
P−1∑
p=0

s(gp − gc)2
p; s(x) =

1 if x≥0

0 otherwise

(5.11)

In Equation (5.11), gp denotes the gray level pixel value of all of the neighbour-

hood sampling points (indexed from 0 to (P − 1)) used in LBP operator and gc

denotes the grey level of the pixel value in the centre.

LBP is very effective with a noiseless image, but it becomes difficult for LBP to

segment the textures when there is any impulse noise within the image. To increase

the robustness of this technique, Hafiane et al. replaced the threshold value using

the median approach and developed Median Binary Pattern (MBP) operator [108].

Median Binary Pattern (MBP) and Adaptive Median Binary Pattern

(AMBP)

Instead of comparing with the central pixel value, Median Binary Pattern (MBP)

takes the median among the entire neighbourhood of the sampled point as the

threshold value, and then produces a 9-bit binary pattern after comparing with this

median value (Figure 5.13).
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Figure 5.13: MBP technique performed a 3×3 neighbourhood pixel into an 9-bit binary. The median 25 is used as

threshold and central pixel is also compared with median and output as one of the binary results.

Then using MBP operator, Equation (5.11) can be rewritten as Equation (5.12)

MBPP,R =
P−1∑
p=0

s(x)2p; s(x) =

1 if x≥Med

0 otherwise

(5.12)

MBP has shown to be a better non-parametric texture pattern operator com-

pared with LBP [110], it also decreases the effect of impulse noise. But Hafiane et

al. recently improved MBP technique further by combing LBP and MBP together

[109]. This improvement is called as Adaptive Median Binary Pattern (AMBP).

AMBP algorithm is an adaptive median filter, modified from improving Median

Binary Pattern. The basic idea of AMBP is to expand the search window for finding

the median. The AMBP approach can be achieved within two steps. In a grey scale

image with maximum analysis window kmax, assuming that S is the square region

around a given pixel I(i, j), whose size can be changed, so AMBP can be described

as:

First step

For given k = 1 initially, then the pixel values within S block will be

S = I(i− k : i+ k, j − k : j + k) = I(i− 1 : i+ 1, j − 1 : j + 1)

Which is actually the 3×3 neighbourhood with its centre at I(i, j). Now from

the S region it is required to find the values of maximum(Smax), minimum(Smin)
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and median (Smed). In this situation it is required to check if these values fol-

low the relation shown in Equation (5.13):

Smin < Smed < Smax (5.13)

If the squared window satisfies the relation shown in Equation (5.13), it is

required to check another relation as Equation (5.14):

Smin < I(x, y) < Smax (5.14)

If the pixels within the squared region follows the relation shown in Equation

(5.14) as well, then the threshold can be expressed as, τ = I(i, j) and the

whole process act as LBP. If the squared region follows the relation in Equation

(5.14), but not the relation in Equation 5.18 then the threshold τ = Smed and

in this case the whole process act as MBP.

Second step

If within the 3×3 neighbourhood, Smin < Smed < Smax cannot be satisfies,

then the size of square region S will increase by 1 and becomes

S = I(i− (k + 1) : i+ k + 1, j − (k + 1) : j + k + 1)

Then the new Smax, Smin and Smed are found. This process is repeated until

the relation shown in Equation (5.13) is satisfied. Thus the value of k will

increase until maximum analysis window kmax is reached, as long as a square

window S can be found. After the window satisfying the Equation (5.13) is

found then the process of finding the threshold follows as in step 1. After

reaching k = kmax Equation (5.13) is not satisfied, then the threshold will be

τ = Smed for the smallest 3×3 block.

The process of AMBP is shown in Figure 5.14 which demonstrates changing

the block size of the Adaptive Median Binary Pattern operator.
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Figure 5.14: Demonstration of changing the block size for Adaptive Median Binary Pattern operator.

AMBP generates more binary information and shows better classification ac-

curacy comparing with LBP and MBP. AMBP performs well for texture clas-

sification, but for using this technique with background modelling and sub-

traction it is required to have temporal knowledge about the pixel. So this

improved AMBP includes knowledge about temporal information and is called

Temporal-Adaptive Median Binary Pattern (T-AMBP).

Temporal-Adaptive Median Binary Pattern (T-AMBP)

This operator combines AMBP information from current frame and pixel infor-

mation from the previous frames. The T-AMBP operator can be expressed using

Equation (5.15):

T − AMBP =

(
P−1∑
p=0

s(gp − τ) +Gt(p(i, j, t)− µH,k(t− 1)

)
2P (5.15)
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Here

Gt(x) =

0 for p(i, j, t)− µH,k(t− 1) < 2.5 ∗ σ2
H,k,t−1 k = 1, 2...k

1 otherwise

Where τ is threshold as defined the AMBP operator, µH,k(t− 1) and σ2
H,k,t−1 are

the mean value and standard deviation respectively for each group of histogram at

time point (t− 1).

Using this T-AMBP operator, it is possible to increase the intensity of the

brighter texture more brighter compare to the background.

T-AMBP with GMM

The objects to be detected from Lab On Chip experiments are microparticles and

they differ from the background through their intensity level only, that is there

are grey-level differences between the objects and background. The background is

also subject to intensity gradients due to the nature of the lighting present. This

non-uniformity in grey scale values within the frame of the LOC video sequences

can be represented as texture features for the background. In the approach pro-

posed T-AMBP operator is used for describing texture information for modelling

the background. Using the texture information measured by T-AMBP instead of

using pixel value directly for modelling background is more robust, adaptive and

effective against noise.

In the following section the procedure for background modelling, updating and

foreground detection based on T-AMBP and GMM is explained. T-AMBP method

was used here as a feature vector for modelling background. For estimating the

Mean(µk) and Variance(σk
2) of the pixel model, the improved GMM method pro-

posed by Lee [94] shown in Equations (5.16) and (5.17) was used.

µi,t+1 = (1− ρ)µi,t + ρXt+1 (5.16)

σi,t+1
2 = (1− ρ)σi,t

2 + ρ(Xt+1 − µi,t+1).(Xt+1 − µi,t+1)
T (5.17)
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Where ρ = 1−α
ck

+ α

In the first step, the T-AMBP histogram was used to model background by

computing the binary value for each pixel within a square region of window size

N×N , where the initial value of N is equal to 3, but the size is adjusted according

to the situation (Figure 5.14). K histogram groups {−→m0,
−→m1,

−→m2......
−→mK−1} are used

for representing background models, where K is a user defined number (different

from the number of Gaussians in GMM). According to the background types, K is

usually set between 2 and 5 [111]. Bigger K will provide more detailed information,

however the process will be slower. Each of these histograms has a weight between

0 and 1, the summation of all these weights is 1. So, if the weight of kth histogram

can be represented as ωk, then

K−1∑
k=0

ωk = 1 (5.18)

Now if the histograms are sorted in a descending order according to their weight

(ωk) and considering the first B histogram models as the background histograms,

then we get:

ω1 + ω2 + .......+ ω1 > TB (5.19)

Here, TB is a user defined threshold and its value can vary from 0 to 1 depending

on the background scene and closely related with K.

Now if
−→
h is the current T-AMBP histogram for a given pixel in the new in-

put frame for the video sequence, then it is first compared with the existing K

model histograms using a proximity measure. This proximity measure histogram

intersection was used according to Heikkila and Pietikainen [76], as it was easier to

implement and has very low complexity. Also it has the advantage that it neglects

features which occur only once in one of the histograms. So according to Heikkila

and Pietikainen [76] if
−→
he and

−→
hc are the existing and current histograms respec-

tively, N is the number of histogram bins then the histogram intersection between
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−→
he and

−→
hc histogram is given by Equation (5.20):

∩

(
N−1∑
k=0

min(hek, hck)

)
(5.20)

Here k is the histogram bin index.

A similarity threshold Ts is chosen in this stage and all the histogram intersection

results are compared with Ts. The value of Ts is user defined and has been found

that it’s value between 0.6 and 0.7 generate good results [111]. If the similarity is

lower than Ts for all histogram models, then the pixel is considering as foreground

and the model histogram with the lowest weight is replaced with current histogram
−→
h . Also a low initial weight (user defined) is assigned to it and no further processing

is done.

On the other hand, if the similarity is higher than the threshold Ts for at least one

histogram model, then the pixel is labelled as background. In this case the model

histogram is updated with the highest proximity value. If the best matching model

histogram is denoted by −→mk, then it is adapted with the new data by updating its

bins according to Equation (5.21):

−→mk(t) = (1− αb)
−→mk(t− 1) + αb

−→
h (5.21)

where αb is a user-settable learning rate. At the same time, the weights of all

model histograms are also updated according to the rules of basic GMM, which can

be expressed as Equation (5.22):

ωk(t) = (1− αω)ωk(t− 1) + αωMk(t) (5.22)

where Mk is 1 for the best matching histogram and 0 for the others and αw is

another user defined learning rate. For both the learning rates (αb and αw) the value

must be within 0 and 1. The bigger the learning rate, the faster the adaption.
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Combining Three frame differencing with output from GMM

Before the process of combining these widely used techniques is discussed, the reason

for combining them together must first be discussed. First consider the characteris-

tics of the captured image sequences:

1. The objects to be detected for this project are chemically activated micropar-

ticles, whose intensity is related to the concentration of the analyte.

2. The micro-particle are circular in shape, but due to their velocity and their

relatively long time exposure looks oval in shape on the image. These ovals

have a brightest point at their centre (almost) and with the intensity being

lowest in both sides of their tail.

3. Another characteristic of these micro-particles is their motions are not uniform,

specially some particles stick or more very slowly.

4. Each of the image sequences from the experiments contains around 100 frames.

5. Depending upon the experience of the experimenter the background condition

of the sequence can change dramatically (if the flow rate is not controlled

properly).

Now considering the above situations, it was found that the use of only Gaussian

Mixture Model (GMM) resulted in losing the non-moving or slow moving objects.

It also takes quite a large number of frames for GMM to adapt to any change in

the background, it was not possible with the input sequence(s) available to allow

such a number of frames for adapting to the change. So it was decided that the

combination of improved GMM with the three frame difference approach would be

used. Here, three-frame differencing is used to identify the slow moving or non-

moving objects. Then the output from the improved GMM is compared with the

image output from three frame difference (TFD(x, y)) as following expression for

identifying the foreground object(s):
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Rfore(x, y) =

1 IGMM(x, y) ∩ TFD(x, y) = 1

1 IGMM(x, y) ∩ TFD(x, y)̸=1

The combination of these method resulted in detected objects, both moving and

non-moving. But still the output contains some noises, like salt and paper noise and

random noise. This noise was then removed in the post processing stage.

5.1.3 Post Processing: Median

The combined binary output from the background model results contain some un-

avoidable isolated points which are not actually objects. It is necessary to filter

these points, as they may interfere with the later object tracking process. For re-

moving these isolated points the method of median filtering [112] was used. The

median filter is a nonlinear smoothing technology. The basic idea of this technique

is to replace the grey value of the current pixel with the median grey value of the

neighbouring pixels. Considering a neighbourhood of S, the median filtering can be

expressed using Equation (5.23):

g(x, y) = medf(i, j); (i.j)∈S (5.23)

Here g(x, y) is the new pixel value, f(i, j) is the pixel value in (i, j) position.

For implementing this filtering, it is required to consider a moving window with

N×N points for scanning the image. Each pixel is then replaced by a pixel value

equal to the median value of the pixels within the window.

For doing this the pixels in the window are sorted according to their grey value

(highest to lowest). If N×N is an odd number, then middle (central) value is used;

otherwise the average of the two middle values is used to replace the current value

of the pixel.

It is always required to use an optimum size for the moving window. The bigger

the window is the greater the loss of information. Moreover larger windows require

more computational power. So considering both the situations, a 3×3 sized moving

148



window was used as a median filter. After this the result shows that the isolated

points were reduced with little smoothing effect on the output image, which can be

seen in Figure 5.15

Figure 5.15: Application of 3x3 nonlinear median filter on the binary output image.

5.2 Results

In this section results after using proposed approach are presented. All the required

programs were written using the C++ programming language (it was tested using

python as well) with the Opencv 2.4.10 image processing library (www.opencv.

org). Opencv supported this work with many basic functions like erosion, dilation,

median etc. As input sequence, most of the analysis was done using magnetophoresis

experimental results from DNA hybridization carried out by Dr Martin Vojtisek.

Also for checking the usability in different scenarios, three benchmark data sets were

used. The performance of the approach mainly depends on number of Gaussian (K)

and which was chosen K = 3.

Here the improvements of the approach can be divided into four parts, 1) robust-

ness to low illumination object detection, 2) robustness to non-moving (which was

previously moving) object, 3) Robustness to noise and 4) robustness to shadow for

general benchmark inputs. So the results are divided into four sections. For com-

parison, the results will be compared with four widely known methods - Gaussian

Mixture Model (GMM) [92], Vibe [73], KDE [87] and Adaptive Background subtrac-
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tion learning [113]. For comparing the approach with those methods (except Vibe),

codes from the widely used bgslibrary coded by Andrews Sobral (www.github.com/

andrewssobral) was used. For the Vibe method the code was provided by O. Barnich

and M. Van Droogenbroeck (www.telecom.ulg.ac.be/research/vibe/doc/).

5.2.1 Improvement for detecting low illumination object

This improvement was one of the key requirements, as in the magnetophoresis exper-

iment it is required to detect objects from very low concentration analytes, meaning

the objects have very low intensity. For demonstrating the results for improvement

in detecting very low illumination objects, we have chosen input sequences from 0

nM and 20 nM concentration of analyte. The result can be seen in Figure 5.16 and

Figure 5.17.

Figure 5.16: In this figure is for result image with input sequence achieved from 00 nM analyte concentration (also

known as blank). In this figure the first image is the input from 00 nM image sequence and 14th frame, the others

are output from detected objects using Vibe, GMM, KDE, Adaptive Background Learning and proposed method

respectively.

Micro-particles are present within these image sequences, regardless of the an-

alyte concentration. But they are not detectable using the human eye in many
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cases. From Figure 5.16 for which the analyte concentration is zero, it can be seen

that while all four well established method failed to detect any object, the proposed

method detected all the three objects.

Figure 5.17 shows results with concentration of 20 nM analyte. In this image

sequence, though the microparticles are not clearly visible, with high attention they

could be seen in the input data.

Figure 5.17: Object detection result for input sequence from magnetophoresis experiment with analyte concentration

of 20 nM. The first image is the input from 20 nM image sequence and 78th frame, the others are output from

detected objects using Vibe, GMM, KDE, Adaptive Background Learning and the proposed method respectively.

In Figure 5.17, ’Red’ circles in the first image are showing the actual positions

of the objects within the frame. Similar to the result in Figure 5.16, vibe was

not able to detect any objects, GMM detected 5 objects out of 6, KDE detected

all the objects, and the adaptive background learning method detected 5 objects.

Though GMM detected 5 objects in this case, the object shape was not captured

correctly. This is also true for adaptive Background learning method. So for this

case, out of all the four established methods, KDE performed the best. Therefore,

only objects having high contrast with background could be detected by most of

the methods in the test system. But when considering the objects shape,it can be
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clearly seen that the proposed method provided better representation of the micro-

particles. Even for the objects which were very close to each other (marked by

red rectangle for both KDE and proposed method) the proposed method detected

both the objects separately with a good represented shape and with much clearer

view. One very important thing to be mentioned here is that GMM and Adaptive

Background learning required a minimum of 20 frames for detecting these objects,

KDE required a minimum 10 frames, whereas our method only required the first

3 frames to start the detection process. Also the objects detected by KDE had

discontinuities at the middle of the objects.

So the proposed method successfully detects particles from input sequence from

analyte concentration of 0nM, where others failed. Also it performed well over other

methods for the input sequence from analyte concentration of 20nM. The problem

of detecting object with extremely low contrast was solved. Thus this system can

be implemented into many other fields where object signal is extremely faint or low

contrast comparing with background.

5.2.2 Detecting Non-moving (previously moving) Objects

One of the very common problems that the experimenter in Chemistry Department

faced was many micro-particles which were moving previously suddenly stopped

moving either for a few frames or for the rest of the experiments. It was very

important to detect these objects (stopped moving), as it was found that non-moving

objects produce much higher intensity compared to a moving object potentially

leading to erroneous results. So such objects are required not to be considered for the

calculations related to finding analyte concentration. In this case the requirement

was to detect such non-moving objects and keep a record of them during the whole

tracking process. In the case of many other methods, where they detect foreground

object(s) via subtracting the current pixel value from the previous one, they failed

for detecting suddenly stopped objects, because when a moving object suddenly

stopped in one frame, the pixel value of the object position in all the frames while
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the object is non-moving are same. Therefore, there will be no difference in pixel

value between the two consecutive frames in the object’s stuck position. However,

GMM and other methods derived using statistical approach, subtract the current

pixel value with the previous background model’s mean instead of individual pixel.

In this way there will be difference between the suddenly stopped object’s pixel value

and background model. Thus it is recognised as a foreground object. Therefore, this

suddenly stopped object will take a while to be part of the background model. But

the main difference between these statistical approaches is how long a model takes

to convert a non-moving object to background. Comparative results for keeping a

record of non-moving objects are shown in Figure 5.18.

Figure 5.18: Most left side images in every row is showing the input frame. Other five rows of images are the

detected object by from Vibe, GMM, KDE, Adaptive Background Learning and proposed method respectively.

’Red’ circle is showing the position of the interested object location. The sequence used here from experiment with

analyte concentration of 100 nM.

From Figure 5.18 it can be seen that all of the test methods including the pro-

posed method could deal with the situation of suddenly stopped objects. In com-

parison, GMM, Adaptive Background learning and Vibe turn the stopped object

to background faster than KDE and the proposed method, which can be seen in

Figure 5.18 frame 82. From this test it was found that it took about 25 frames for

GMM and Vibe, 27 frames for Adaptive background learning method and about 30

153



frames for KDE, and about 50 frames for the proposed method before the object

was classed as part of the background. The reason for the proposed method keeping

a record of a non-moving objects longer than other is- because a histogram based

model to compare the binary value of the pixel with background model was used.

The binary value of the pixel is derived using T-AMBP, which includes temporal and

spatial information of the pixel and enhanced the signal of the foreground object.

As the proposed method always uses enhanced signal to compare, so it takes longer

(about 50 frames) to detect a non-moving (previously) object as background.

5.2.3 Robustness to Noise and Artefact

In addition to the noise, the image from the magnetophoresis experiments contain

artefacts, which include air bubble(s) and non-moving particles (within capturing

period). Also it was found several existing background models require lots of frames

to remove the effect of any (background) object which was available during the train-

ing period. Figure 5.19 shows the results of a comparison of how various algorithm

handle such an artefact.

Figure 5.19: The top left image is showing the input frame from experiment by 40 nM concentration of analyte.

The Red triangle shows an object which never moved in the input frame. Other images are showing the detected

objects form Vibe, GMM, KDE, Adaptive background Learning and proposed method respectively. Yellow triangles

are artefacts, but detected as object.

154



In Figure 5.19 it can be seen that the objects are falsely detected by GMM and

the adaptive background learning method as indicated by the ’Yellow’ triangles in

the result images. The object marked by ’Red’ triangle is an object which exists

in the input frame from the beginning of the process and it never moved. All

these methods including our proposed method detected it as background. Also the

size of the detected moving objects by KDE were larger than the real size of the

objects (checked by counting number of pixel manually within the input object and

detected object) by 3 to 5%, on the other hand, our method provided result by

detecting objects about 0.5 % to 1% smaller than the real size of it.

5.2.4 Robustness to general benchmark inputs

Machine vision developments are often target oriented, so that most cases when

an approach is suitable for specific type of task, it may will not provide similar

performance for other type of condition. For example, considering Vibe method,

it usually provides good performance for human and vehicle detection tasks. But

for input images from microfluidic experiment results, it provided the worst results

amongst the methods evaluated.

Though the main target was to develop an approach which could detect and

measure micro-particles over a wide range of analyte concentrations, it was always

desirable to develop an object detection technique which can perform in other sit-

uations. For this reason, the proposed approach was checked for detecting humans

and cars from the PETS’09 data set images. The comparison results can be seen in

Figure 5.20 and Figure 5.21.
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Figure 5.20: The images in the first row is showing the input frames from PETS’09 dataset for detecting human.

Here the second row is showing the images for ground truth. Other rows of images are showing the detected human

form Vibe, GMM, KDE, Adaptive background Learning and proposed method respectively.
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Figure 5.21: The images in the first row is showing the input frames from PETS’09 dataset for detecting car. Here

the second row is showing the images for ground truth. Other rows of images are showing the detected car form

Vibe, GMM, KDE, Adaptive background Learning and proposed method respectively..
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By analysing the images in Figure 5.20 and Figure 5.21, improvement for the

proposed method over other methods in terms of the detected shape of the objects

and noise can be seen. For the shape of the object, the proposed method detected

both the human and car as its full shape without having any discontinuity within

the objects. Moreover, in Figure 5.20 it can be seen that when other methods

had difficulties of detecting an object (human) far from the camera, the proposed

approach detected the object as a whole body. On the other hand, in the same figure,

it also can be seen that an object with is barely visible comparing with background,

can be detected (red circle) as an object without noise.

For the detected objects (cars) in Figure 5.21, the objects are clearly visible

without any discontinuity. But comparing Figure 5.20 and Figure 5.21, it can be seen

that the shadow for the detected objects in Figure 5.21 is much obvious then that of

Figure 5.20. This is because that the difference between object colour components

and shadow components is different in two images (Figure 5.20 and Figure 5.21).

5.3 Evaluation Metric

In this section, the proposed approach is compared with several well-established al-

gorithms like GMM [92] , ViBE [73] , KDE [87] and Codebook [114]. For comparing

the performance, image sequences from benchmark datasets ”Li” and ”wallflower”

were used. Five videos were taken with different settings. These videos have sev-

eral challenging features like moving leaves and waves, moving objects becoming

stationary for a long duration etc. For the evaluation metric, the widely used and

well-defined formula called F −Measure [115] was used, which considers precision

and recall factors.

In the following TP and FP denote correctly and incorrectly classified fore-

ground pixels respectively, FN denotes foreground pixels that are incorrectly clas-

sified as background pixels. The Precision and Recall are defined as:

Precision = TP
TP+FP

, Recall = TP
TP+FN
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For the input videos from the standard benchmark data set, videos having 300

to 1500 frames in length were used, though the widths and heights of the input

frames were not same. The F-measure indicates the accuracy [116] of the image

segmentation, the higher the F-measure is the better the approach is. The result

metric is shown in Table 5.1. It was not possible to calculate the F-measure for

LOC experimental data, as no ground truth was available.

Input Data Vibe GMM Codebook PKDE(Siltp) Proposed

Method

Li Dataset (Lobby) 72.63 68.42 63.38 78.80 86.87

Li Dataset (Camou-

flage)

47.79 67.07 63.38 71.92 85.32

Wallflower dataset

(Waving Trees)

54.33 60.54 47.27 64.28 72.58

Wallflower dataset

(Time of day)

39.67 40.01 51.32 73.67 83.18

Table 5.1: F-measure comparison between various existing algorithms on Li and wallflower dataset. Here the

results for Li and wallflower dataset using Vibe, GMM, Codebook, PKDE were reported by [116], [117] and [113]

respectively. The other results were calculated.

5.4 Summary

The proposed approach to background modelling and subtraction overcomes the

problem of detecting slow moving objects and objects which were moving initially

and then stopped, it is also able to handle objects which are barely visible and

cope with sudden illumination changes. In most cases when GMM, Vibe, KDE,

Adaptive background learning etc failed to detect micro-particles from results with

low concentration (specially 0 nM and 20 nM), proposed approach performed very

well.

The results in Figure 5.16, Figure 5.17, Figure 5.18, Figure 5.19, Figure 5.20

and Table 5.1 showed the performance of the proposed method over others for
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more general image processing benchmarks. Though the images from microfluidic

experiments do not have shadows, it was possible to reduce the effect of shadow to

some extend for the benchmark input sequences. Moreover, the proposed approach

was able to better detect objects which are far from the camera.

The work in this chapter enables the automated data analysis process to locate

the micro-particles in the experiments throughout the required analyte concentration

range. It also enables stuck particles to be identified. This is potentially useful

beyond simply identifying the correct particles for analysis; if particle behaviour

becomes abnormal (e.g. a much greater level of ”stucking” than usual) it may be

possible to detect faults with the system. The identified ”good” particles are passed

to a tracking algorithm which will follow their path through the video sequence to

further facilitate selection of the best data set from which to extract measurements.

The following chapter reviews relevant published material on object tracking on

which our object tracking will be developed.
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Chapter 6

OBJECT TRACKING REVIEW

Object tracking or visual tracking is a repeated estimation process of the current and

future state (position) of an object by comparing with the previous state from any

given scene. Object tracking is already being used for many different applications

like surveillance, medical imaging etc. Depending on the application, tracking sys-

tems can be manual, autonomous (fully) and semi/partially autonomous. For this

project the objects, which needed to be detected and tracked automatically were

micro particles from multi-laminar flow microfluidic LOC experiments. Automatic

object tracking is one of the main tasks for this thesis.

Automatic object tracking is considered as very important and critical task for

many computer vision systems, as implementation of automatic object detection

and tracking systems could monitor complex activities and prevent many potential

problems. So it has been applied in many surveillance systems for automatically

understanding the tracked objects’ activities, movement and behaviour, such as hu-

man identification [25], traffic monitoring [118] and environment surveillance [119].

Advanced object tracking analysis systems require robust technique(s) which can

identify and detect the objects taking into account complex environmental changes,

differentiate them from multiple other objects and define the tracks for individual

object.

Automatic object tracking can be divided in three steps: 1) representing the

object with distinguishable feature(s), 2) detecting the object(s) and 3) tracking
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the detected object(s) through a sequence of image frames (also includes analysing

the objects tracks to understand its movement). Object features includes colour,

edge/shape, optical flow, texture etc. Object representation may be based on object

shape (geometric shapes, silhouette and contour, articulated shape, object skeleton)

or object appearances (such as probability object density, trained templates, active

appearance models etc). Background subtraction (described in Chapter 4) is the

main approach used for detecting the objects of interest, as background subtrac-

tion differentiates the wanted object. There is a very strong relationship between

object representation, identification and tracking. As tracking is performed on dif-

ferentiable features and data for the objects provided by first two tasks, robust and

efficient tracking is highly depending on the performance of object representation

and detection.

Lots of approaches were already being proposed for robust and efficient tracking.

Each of them has their own advantages and limitations and not all the approaches

are suitable for every tracking application. Tracking approaches can be divided with

respect to two points of considerations. Firstly considering the input sources and

secondly depending on the use of search windows and object matching strategies.

In terms of input sources, object tracking can be divided into on-line and off-line

tracking. On-line tracking techniques are also known as real-time tracking. In some

cases, real time tracking and real time object detection are considered as similar

approaches, but in real time object detection the object(s) is continuously detected

without keeping any record of its trace, whereas for real-time object tracking the ob-

jects are detected continuously and their traces are also kept on record. In terms of

the search window and object matching strategies used, tracking approaches can be

classified into two main types deterministic and probabilistic tracking. The follow-

ing part of this chapter will mainly review widely used object tracking techniques.
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6.1 Object Detection vs Object Tracking

Object detection and recognition is the step prior to tracking, but sometimes object

detection and recognition works closely and in such a similar way to tracking, thus

tracking and object detection seem to be the same process. However, tracking is a

totally different process compared with detection and recognition. For any object

detection, the location and configuration of some classified object is required to be

found, such as face detection, vehicle detection etc. For detection, the relationships

of the detected objects within different video frames are not defined, also the identity

of the detected object(s) is not maintained. Moreover, object recognition is the task

of identifying or classifying objects according to a given set of known object(s)

(like car, human, micro-particle etc). For object detection and recognition it is

not necessary to find the location from the corresponding object(s) in a subsequent

frame with the same identity. For example, for identifying vehicle registration plate

location and recognition the registration number recognizing process takes place,

but no tracking is required.

6.2 Object tracking challenges for LOC experi-

ments

Object (multiple) tracking is a visual tracking process where the tracker dynamically

configures the tracking process for one or more objects for each frame of a video

sequence. Through this dynamic configuration, the tracker identifies each object

separately and recognises the same object with the same ID over the whole sequence.

For making the tracking process successful, ideally three main assumptions are made

(1) object(s) change their position(s) in a regular pattern and speed, (2) the shape

and features of the object do not change dramatically within consecutive frames

and (3) the objects move slowly [120] so that there is minimum overlap between the

areas occupied by object in the current frame and previous frame.

Unfortunately, these assumptions do not always occur in practice. In many cases
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object(s) stop moving and changes in formation and shape occur. Also, depending

on the camera quality and set-up (including user’s experience), in many cases the

capture of object movement is not uniform and the areas occupied by an object

in two consecutive frames do not have any overlap or has a very small overlap.

Both these situations were found to be very common during the analysis of LOC

microfluidic experimental data (see Figure 6.1).

Figure 6.1: Micro-particle’s position changes over the frames without overlapping with previous position. Images

from experiment with analyte concentration of 100 nM and frame numbers are 7th and 8th respectively.

For robust tracking in some cases more than one camera is used, but before those

images are processed these multiple video inputs need to be combined to fuse the
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information from multiple sources [68, 121, 122, 123]. But for the Lab On a Chip

experiment we were restricted to video from a single source only.

For the best object tracking result, it is required that the objects’ properties are

different from the background. But for analysing LOC experimental data it was

found that for the experiments with low concentration reagent, the object does not

differ much from the background. Moreover, due to several experimental conditions

it is found that previously detected objects can become invisible to a detector or

tracker. To solve such problems, it seems that the application of a Kalman filter

(Discussed in section 6.4.2) approach could provide the future position of any lost

object for continuous tracking. But there are several limitations for the implemen-

tation of those approaches, in particular if many particles are close to the predicted

position to be, it is difficult for Kalman filter and Particle filter to find the correct

object. It was found very common in LOC images that many objects stay close to

each and also they follow similar path(s).

6.3 Tracking Steps

Lots of approaches and algorithms have been published for tracking multiple objects

and almost all of them consist of four major phases: 1) data acquisition, 2) processing

(object detection and analysis), 3) motion analysis and 4) tracking.

In the first phase, data acquisition, the camera collects the sequence of data

(video) and passes it to the second phase for processing and modelling. The pro-

cessing phase includes data pre-processing, objects detection and recognition, where

Background (BG) modelling or Foreground (FG) detection, noise removal, some

morphological operations are done. In general, object detection is the way to dif-

ferentiate the target object(s) from the whole input scenario. Object detection is

implemented continuously on every frame for finding the new position of old objects

and also for detecting new object(s). Details of these steps were discussed in Section

4.2 in Chapter 4.

Output(s) from the processing step are then used for analysing motion. In this
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phase some tasks from the processing phase, with some new strategies, are required

for detecting and understanding the movement and other activities (such as shape

deformation, angular movement etc). After analysing the behaviour and activities

of the detected object, the tracker tracks them using different strategies. Mul-

tiple object tracking keeps repeating the tasks of object modelling, environment

modelling and searching. Appearance changes, variation in illumination, differen-

tiating multiple objects from each other, finding new object etc are considered in

object modelling. This object modelling is performed using some unique features

of the objects like shape, colour, motion, background, orientation etc. Sometimes a

combination of two or more distinguishable features, possibly with some statistical

approach, is considered for object modelling.

Next, in the tracking phase, the input environment is modelled first, that is the

point and direction of object entry and exit from the frame etc. This environment

modelling is necessary to provide the tracker with the advantage of having prior

knowledge about the search window for tracking.

6.4 Widely Used Basic Tracking Algorithms

6.4.1 MeanShift Tracking

Meanshift (MS) [124] is a non-parametric (not based on initial parameter to create

probability distribution, the parameters are generated from training) approach for

tracking, based on region matching. Therefore, it does not require declaring any

fixed parameter (like any initial value, mean etc) for starting the tracking. It is an

iterative procedure of modelling object based on kernel weighted colour histograms

[125]. Object tracking by meanshift is very efficient for tracking objects, which are

suitable for expressing by their histogram and not limited to any individual colour.

The objects (micro-particles) imaged in the microfluidic experiments are not

rigid, although the particles (e.g. magnetic micro-particles) themselves may be rigid,

this is not always the case in LOC based imaging (e.g. bubbles, which may deform).
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Furthermore, in this case the captured image is subject to motion blur resulting in

object shapes which are dependent on their velocity and the frame capture rate.

This variability means the development of a 2D parametric model was not possible.

Therefore, Meanshift, with some modifications, and combined with other models

was identified as a suitable approach.

According to the basic Meanshift algorithm, after detecting an object for the

first time, the total area of the object is defined using a rectangular bounding box

(this rectangle covers most of the object whilst covering the lowest amount of back-

ground). Then the histogram of the object within the bounded rectangle is found.

Later attempts are made to match the histogram of the target object from the cur-

rent frame with the histogram of candidate regions from the successive frame until

a sufficiently good match is found. In this way the histograms of the target and

candidate models are compared. In many cases it is not possible to match the whole

histogram for an object within a bounded rectangle (as the object or background

surrounding the object within the bounded rectangle get changed). In this situation,

maximum correlation between the histogram of the object from previous frame and

current frame is calculated using Bhattacharyya coefficient [126]. If the comparison

(Bhattacharyya coefficient) has a value less than a threshold, then it is considered

that it is the same object.

Figure 6.2 shows the basic approach for Meanshift tracking:
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Figure 6.2: Generalized block-diagram of standard mean shift tracking algorithm. The MS-tracking-algorithm

requires a histogram object model. Commonly colour intensities are used as input for the histogram modelling, but

also more powerful features can be used. The feature extraction block can also be combined with the histogram

model blocks, to reduce the number of features that are calculated [125].

The basic mean shift operation iteratively moves the centre of the region of

interest to the centre of mass of that region, until the centre of the region of interest

is sufficiently close to the centre of mass. This whole process of matching the centres

can be shown using a flow diagram shown in Figure 6.3
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Figure 6.3: Matching of the objects during comparing the target and candidate region in Meanshift.

Meanshift uses a ”density gradient estimator” iteratively for computing the local

maximum for achieving the most similarity (using Bhattacharyya coefficient) to the

sample distribution. This iterative process can be divided into four basic steps as

shown in Figure 6.4. In Step 1, the area under the Blue circle is the region of

interest with A as centre of the region and B is the mass centre. According to the

Meanshift, the regional centre A will move toward B to match both centres (Step

2). Then B becomes the new centre for the region of interest (Step 3). The new

region of interest will then have C as mass centre (Step 3). Then the centre for the

region interest will move from B to C. Finally, C will be the point of both region

interest and mass centre (Step 4).
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Figure 6.4: Steps for Meanshift to match the centre of mass and centre for region of interest [127].

Therefore, if m(x) is the center of mass and x is the regional centre, then math-

ematically mean shift (M(x)) can be expressed as Equation (6.1):

M(x) = m(x)− x (6.1)

There are two factors, which are required for the correct movement of the centre

of the region of interest: 1) the average distance between centres (x) for region of

interest and mass centre (m(x)) and 2) the movement direction.

For within a region of interest containing n data points (xi, i = 1, 2, 3n) within

a d-dimensional Euclidean space (Rd), the basic average distance with respect to a

point x is shown using Equation (6.2):

m(x) =
1

n

∑
xi∈Sh

(xi − x) (6.2)
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Where the region Sh is a hypersphere of radius h, centred on x and containing

n data points (Figure 6.5).

Figure 6.5: Illustration of the meanshift movement possible directions [128].

In Equation (6.2), (xi − x) provides the distance of xi from x and mean gives

the average of those distances for n samples within the Sh sphere.

From the basic equation of mean and mean shift, it is easy to get the average

(mean) of the distances between sample point xi and center x. However, for finding

the direction for the movement of centre, it requires application of a Kernel estima-

tion function. It (Kernel estimation function) considers different sample points with

different weights, the specific weighting depending on the Kernel used.

Now multivariate Kernel density estimator (f̂k(x)) with kernel profile K(x) for n

data points (xi, i = 1, 2, 3........n) within a d- dimensional Euclidean space(Rd) can

be defined as Equation (6.3):

f̂k(x) =
1

n

n∑
i=1

K(x− xi) (6.3)

In this equation the kernel K gives more weight to pixels whose locations xi are

closer to the centre of the target. As the considered sphere (Sh) has radius h and it

is situated within d- dimensional space, using these considerations, Equation (6.3)
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can be expressed as Equation (6.4):

f̂k(x) =
1

nhd

n∑
i=1

K

(
x− xi

h

)
(6.4)

In Equation (6.4), K(x) is a radially symmetric kernel satisfying Equation (6.5):

K(x) = k
(
||x||2

)
(6.5)

Here, k(x) is the profile of the kernel, which is

1. non-increasing k(a)≥k(b) for a < b) and

2. is piecewise continuous
∫∞
0

k(r)dr < ∞

Out of several known kernel profile (like Flat kernel, Gaussian kernel), the

Epanechnikov kernel profile is the most commonly used in the mean-shift tracker.

It can be expressed as:

k(x) =


3
4
(1− x2) if |u|≤1

0 otherwise

Graphically the Epanechnikov kernel profile can be represented using Figure 6.6.

Figure 6.6: Profile for the Epanechnikov kernel (left) and its corresponding three-dimensional spatial representation

for a circular image region (right). This Epanechnikov kernel mask is for a 100 × 80 image [129].
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Combining Equation (6.4) with Equation (6.5), it (Equation (6.4)) can be rewrit-

ten as Equation (6.6):

f̂k(x) =
1

nhd

n∑
i=1

K

∣∣∣∣∣∣∣∣x− xi

h

∣∣∣∣∣∣∣∣2 (6.6)

The use of a differentiable kernel allows us to define the estimate of the density

gradient as the gradient of the kernel density estimate. So after differentiating

Equation (6.6), it comes:

∇̂fk(x) = ∇f̂k(x) =
2

nhd+2

∑n
i=1(x− xi)k

′∣∣∣∣x−xi

h

∣∣∣∣2 =
2

nhd+2

[
n∑

i=1

k
′
∣∣∣∣∣∣∣∣x− xi

h

∣∣∣∣∣∣∣∣2
]∑n

i=1 xik
′∣∣∣∣x−xi

h

∣∣∣∣2∑n
i=1 k

′
∣∣∣∣x−xi

h

∣∣∣∣2 − x (6.7)

Now by considering a kernel function g(x) = −k
′
(x) for estimating the kernel

density k(x) (kernel G(x) = gx2). Introducing g(x) in Equation (6.7) it becomes:

∇̂fk(x) =
2

nhd+2

[
n∑

i=1

g

∣∣∣∣∣∣∣∣x− xi

h

∣∣∣∣∣∣∣∣2
][∑n

i=1 xig
∣∣∣∣x−xi

h

∣∣∣∣2∑n
i=1 g

∣∣∣∣x−xi

h

∣∣∣∣2 − x

]
(6.8)

In Equation (6.8), the first part is the density estimate at x with kernel G and

the second part is the basic mean shift equation. So the density estimation function

is:

f̂g(x) =
1

nhd

[
n∑

i=1

g

∣∣∣∣∣∣∣∣x− xi

h

∣∣∣∣∣∣∣∣2
]

(6.9)

Using Equation (6.8), the equation for mean shift can be written as:

Mg(x) =

[∑n
i=1 xig

∣∣∣∣x−xi

h

∣∣∣∣2∑n
i=1 g

∣∣∣∣x−xi

h

∣∣∣∣2 − x

]
(6.10)

Equation (6.8), (6.9) and (6.10), can be rewritten as:

∇̂fk(x) = f̂g(x)
2

h2
Mg(x) (6.11)
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So, the final meanshift equation can be represented as Equation (6.12):

Mg(x) =
2

h2

∇̂fk(x)

f̂g(x)
(6.12)

Thus, the mean shift vector always points toward the direction of maximum

increasing density.

For meanshift tracking, selecting the right kernel is considered as one of the most

crucial parts. It determines the size of the search window and within this the sample

weights are determined. This is also proportional to the expected image area of the

target. Normally, this kernel scale is initialised by the first tracking window and its

fixed during the rest of the tracking process. So when the scale of the target changes

significantly, it results in failure of the tracking.

6.4.2 Bayesian theorem based Tracker

Prediction and update based object trackers (like Kalman Filter, Particle filter etc)

are widely used to overcome problems of occlusion and temporary lost object(s).

These trackers use three steps prediction, measurement and update. Though there

are few prediction and update based trackers available, for this work only the Kalman

filter will be discussed. For prediction and update the Kalman filter uses the widely

used and well established Bayesian theorem. In the following sections, the very

basics of Bayesian estimations and then the Kalman filter will be discussed.

Bayesian estimation

The well-known Bayes theorem was originally developed by the British statistician

back in 1763 [130], who developed the fundamental probability law. French math-

ematician Pierre-Simon de Laplace later rediscovered the modern form of Bayesian

theory [131], which has then been successfully implemented in statistical estimation

and decision, modern machine learning and pattern recognition. Bayesian theory is

considered as a branch of mathematical probability theory which models uncertainty

via incorporating prior knowledge and observational measurements [130, 131, 132].
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In 1960, the Kalman filter [133] [134] was first published, derived from Bayesian the-

orem it is considered as one of the most successful approaches in various engineering

and scientific topics [134, 135]. The explanation of Kalman filter will be introduced

in the next section.

In a dynamic system, estimation is normally required for optimal accurate results

when a new measurement is received. For estimating the dynamic state, one way is

to store the entire data set and analyse it to predict the posterior state. However,

the calculation for the huge data set will be enormous. A recursive filter is a method

developed for solving this problem. The Bayesian theorem can be used to make the

prediction and provide an update for a recursive filter [136]. In the prediction step,

a system model will be used to predict the posterior state. In the update step, the

new measurement is received to update and modify the predicted result.

1. System state model: In a given dynamic system, the system state model

can be expressed as Equation (6.13):

xt = ft(xt−1, vt−1) (6.13)

where ft is the function which characterises how the state of the system will

unfold over time. This function is also called a transition function or dynamic

function. vt−1 denotes the system noise (also known as process noise).

2. Prediction: The Bayesian prediction of probability density function for the

moment at time t will be as Equation (6.14):

p̂(xt) = p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (6.14)

where p(xt|z1:t−1) is the prediction of posterior distribution, and z1:t1 is the

prior measurements from time 1 to (t1).

3. Update: The next step is to update the result according to the prediction

and integrate the new measurement. A new measurement received at time t,
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can be expressed as Equation (6.15):

zt = ht(xt, nt) (6.15)

Where ht is the function that measures the state (also known as the observation

function). nt denotes the measurement noise. Then the predicted state model

Equation (6.14) will be updated as Equation (6.16).

p(xt) = p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(6.16)

Where

p(zt|z1:t−1) =

∫
p(zt|xt)p(xt|z1:t−1)dxt (6.17)

In realistic work, it is not possible and necessary to keep all of the prior mea-

surements, which generates huge amounts of calculation. Therefore, to reduce the

complexity of the calculation, the estimation of current state normally just accord-

ing to a complete summary of the past via the Chapman-Kolmogorov equation [137]

which is derived from Markov Chain. Markov Chain [138] is defined as a sequence

of data, where data at time point (t + 1) only depends on data at time point t.

However, using Chapman-Kolmogorov equation considers multiple steps of Markov

Chains [138]. Meaning that estimating the probability at (t + 3), can be estimate

from time point t directly. So, the prediction (Equation (6.14)) and update (Equa-

tion (6.16)) can be updated as:

Prediction:

p̂(xt) = p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 =

∫
p(xt|xt−1)p̂(xt−1)dxt−1

(6.18)

Update:

p(xt) = p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
=

p(zt|xt)p̂(xt)

p(zt|zt−1)
(6.19)
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Where

p(zt|zt−1) =

∫
p(zt|xt)p(xt|zt−1)dxt =

∫
p(zt|xt)p̂(xt−1)dxt (6.20)

Therefore, prediction (Equation (6.18)) and update (Equation (6.19)) are the

fundamental steps of Bayes filter. In the real work, the difficulty is how to represent

the probabilities. Lots of methods have been developed based on Bayes theorem, one

of which is Kalman filter discussed below. This applies to the linear and Gaussian

distribution situation.

Kalman Filter

The Kalman filter is a recursive filter used for solving prediction of a state, estimating

optimal state and filtering noise problems. It is widely in use due to its simplicity,

optimality, ability to track and robustness. This theory was named after Rudolf E.

Klmn, one of the primary developers of its theory. The algorithm works in a two-step

process: the prediction step and the measurement update (correction) step. In the

prediction step, the Kalman filter produces estimates of the current state variables,

along with their uncertainties. Once the outcome of the next measurement (which

includes some error and random noise) is observed, the estimates are updated using

a weighted average, with more weight being given to estimates with higher certainty.

For a dynamic and linear system, the models of motion (xk) and actual mea-

surement/observation (zk) at time k can be expressed using following linear state

Equations (6.21) and (6.22):

xk = Ak−1xk−1 +Bk−1uk−1 +Gwk−1 (6.21)

zk = Hkxk + vk (6.22)

Here

A is the state matrix (n×n dimension),

xk−1 is the process state vector at time (k − 1) (unknown and ideal),
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B is the input matrix,

uk−1 is the input vector,

wk−1 is the process uncertainty,

G is process uncertainty matrix,

H is the measurement matrix, it is a noiseless connection between the state vector

and measurement vector, which is stationary over time (m×n dimension)

vk is the measurement uncertainty with zero mean (v = 0).

Models of motion and actual measurement are matrices of n×1 and m×1 dimen-

sion respectively.

Now if Qk and Rk are the process and measurement uncertainty covariance ma-

trices respectively, then they can be related to the motion noise and measurement

noise as Equation (6.23) and Equation (6.24):

Qk = E
[
wkw

T
k

]
(6.23)

Rk = E
[
vkv

T
k

]
(6.24)

Here E[.] means expected value.

The state vector changes from time (k− 1) to k, keeping a relationship with the

previous state. So, with wk−1 = 0 the posteriori state estimate (x̂−
k ) vector at time

k can be found using Equation (6.21) as:

x̂−
k = Ak−1x̂

a
k−1 +Bk−1uk−1 (6.25)

When the input uk−1 is well known, then prediction error (x̃−
k ) can be easily

found by subtracting Equation (6.21) from Equation (6.25), as

x̃−
k = x̂k − x̂a

k (6.26)

Replacing the values of xk and x̂−
k in Equation (6.26) from Equation (6.21) and
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Equation (6.25) it becomes:

x̃−
k = Ak−1(x̂k−1 − x̂a

k−1) +Gwk−1 (6.27)

Using Equation (6.26) in Equation (6.27), it comes:

x̃−
k = Ak−1x̃

−
k−1 +Gwk−1 (6.28)

x̃−
k is filtering error.

Using the definition of a priori covariance, error covariance matrix Pk at time k

(before the update state) is:

P−
k = E[x̃−

k (x̃
−
k )

T ] (6.29)

After replacing the values in Equation (6.29) from Equation (6.27) and Equation

(6.23), it comes

P−
k = Ak−1Pk−1A

T
k−1 +GQk−1 (6.30)

Now the measurement error or measurement innovation is the difference between

the actual measurement obtained at time instant k and the measurement prediction

obtained from the predicted value of the state, which is:

Measurement Error = zk −Hkx̂
−
k (6.31)

Now, with a Kalman gain of Kk at time k, the unbiased state estimate x̂−
k can

be related to the Measurement Error as

x̂a
k = x̂−

k +Kk[ẑk −Hkx̂
−
k ] = (I −KkHk)x̂

−
k +Kkzk (6.32)

Substitution of Equation (6.25), (6.22) and using Equation (6.21) in to Equation

(6.32) gives:

x̂a
k = x̂−

k +Kk[ẑk −Hkx̂
−
k ] = (I −KkHk)x̂

−
k +Kkzk (6.33)
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Substitution of Equation (6.25) and (6.22) in to Equation (6.33) gives:

x̂a
k = Ak−1x̂

a
k−1 +Bk−1uk−1 +Kk[HkAk−1(x̂k−1 − x̂a

k−1) +HkGwk−1 + vk] (6.34)

Now, the posteriori error covariance matrix P a
k at time k is

P a
k = E[(x̂k − x̂a

k)(x̂k − x̂a
k)

T ] (6.35)

But

x̂k − x̂a
k = (I−KkHk)(Ak−1x̃

−
k−1+Gwk−1)−Kkvk = Lk(Ak−1x̃

−
k−1+Gwk−1) (6.36)

Considering, Lk = (I −KkHk)

So using the values from Equation (6.36) to Equation (6.35) and after several

mathematical manipulation it comes:

P a
k = LkP

−
k LT

k +KkRkK
T
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k (6.37)

Again the trace of a matrix is equal to the trace of its transpose, so the trace of

the matrix Pk can be written as:

T [P a
k ] = T [P−

k ]− 2T [P−
k HkKk] + T [Kk(HkP

−
k HT

k +Rk)K
T
k ] (6.38)

Differentiating Equation (6.38) with respect to Kk gives:

dT [P a
k ]

dKk

= −2(P−
k Hk)

T + 2Kk(HkP
−
k HT

k +Rk) (6.39)

Setting to zero and re-arranging Equation (6.39) gives:

(P−
k Hk)

T = Kk(HkP
−
k HT

k +Rk) (6.40)

Now solving for Kk gives:

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (6.41)
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Equation (6.41) is the Kalman gain equation.

Finally, substitution of Equation (6.41) in to Equation (6.36) gives:

Pk = (I −KkHk)P
−
k (6.42)

Now the overall Kalman filter equations can be divided into three sections ini-

tialization, prediction and filter as:

Prediction:

x̂−
k = Ak−1x̂k−1 +Bk−1uk−1 (6.43)

P−
k = AkPk−1A

T
k +GQk−1G

T (6.44)

Filtering:

x̂k = x̂−
k +Kk[zk −Hkx̂

−
k ] (6.45)

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (6.46)

Pk = (I −KkHk)P
−
k (6.47)

With initial Conditions:

x̂−
0 = x (6.48)

P−
o = Po (6.49)

The process for Kalman equations can be updated in five steps and these five

steps can be shown using Figure 6.7.

181



Figure 6.7: A complete picture of the operation of the Kalman filter, combining with the Equations (6.43), (6.44),

(6.45), (6.46) and (6.47) [139].

6.4.3 Optical Flow

In any image sequence, the distribution of apparent velocities of brightness patterns

is called optical flow. Optical flow can provide information of spatial arrangement

and the rate change of this arrangement for each pixel of an object. If there is no

moving object in the image sequence, optical flow within the image will be contin-

uous. Otherwise, discontinuities optical flow can help to determine moving objects

from images [140, 141]. However, optical flow methods have some difficulties, for

example, the performances of optical flow techniques are low in poorly textured

images which do not define the objects clearly. Another difficulty is handling the

lighting conditions because optical flow assumes the brightness is always constant

[142]. Therefore, optical flow is normally combine with other techniques for fore-

ground segmentation.

Measurement of optical flow is required to be accurate and reliable. Many optical

flow methods have been proposed during the last four decades. Among them, pop-
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ular techniques could be categorized into four types, differential methods, region-

based (block) matching, energy-based techniques and phase-based methods [142].

Differential based methods estimate the flow velocity and calculate the motion be-

tween two frames taken at two time points.

The most popular differential methods include Horn and Schunck [140], Lucas

and Kanade [143, 144], Nagel [145] and Uras et al [146]. The Lucas and Kanade

method is a good algorithm for determining small motion. Therefore, in this project,

Lucas and Kanade optical flow method was implemented with improved Gaussian

Mixture Model for background modelling and object detection.

Explanation of Lucas and Kanade method with equation

The Lucas and Kanade method is based on three assumptions: that the brightness

of moving object is constant, motion is very slow compared with frame changes, and

nearby pixels have the same velocity.

Figure 6.8: Illustration of pixels movement from image frame H(x,y) to frame I(x,y).

Therefore, to estimate pixel motion from image frame H(x, y) to image I(x, y)

(Figure 6.8), first assumption is that the brightness of moving object is constant. If

the displacement is (u, v), it gives:

H(x, y) = I(x+ u, y + v) (6.50)

Then assuming that object is moving very slowly, in this condition, the displace-

ment (u, v) will be less than one pixel. Taking the Taylor series expansion, Equation
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(6.50) becomes as Equation (6.51):

I(x+ u, y + v) = I(x, y) + ∂I
∂x
u+ ∂I

∂y
v + higher order terms

I(x+ u, y + v)≈I(x, y) +
∂I

∂x
u+

∂I

∂y
v (6.51)

Combing Equation (6.50) and (6.51), it comes

0 = I(x+ u, y + v)−H(x, y)

≈I(x, y) + ∂I
∂x
u+ ∂I

∂y
v −H(x, y)

≈I(x, y) + Ixu+ Iyv −H(x, y)

≈(I(x, y)−H(x, y)) + Ixu+ Iyv

≈It + Ixu+ Iyv

It +∇I · [uv]≈0 (6.52)

The third assumption is that of locally constant and smooth motion, which means

the pixels neighbours having same displacement (u, v). When using 5×5 windows,

which gives 25 equations per pixel. hen Equation (6.52) will become

0 = It(Pi) +∇I(Pi) · [uv] (6.53)

Equation (6.53) will be expanded with n×n windows to



Ix(P1) Iy(P1)

Ix(P2) Iy(P2)

. .

. .

. .

Ix(Pn) Iy(Pn)



u
v

 = −



It(P1)

It(P2)

.

.

.

It(Pn)


(6.54)
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Considering A =



Ix(P1) Iy(P1)

Ix(P2) Iy(P2)

. .

. .

. .

Ix(Pn) Iy(Pn)


, V =

u
v

 and b = −



It(P1)

It(P2)

.

.

.

It(Pn)


Then, Equation (6.54) can be written in matrix form as,

ATAV = AT b (6.55)

Therefore,

V = (ATA)−1AT b (6.56)

Where AT is the transpose of A.

Then Equation (6.57) can be written to

Vu

Vv

 =

 ∑
i Ix(Pi)

2
∑

i Ix(Pi)Iy(Pi)∑
i Iy(Pi)Ix(Pi)

∑
i Iy(Pi)

2

−1 −∑i Ix(Pi)It(Pi)

−
∑

i Iy(Pi)It(Pi)

 (6.57)

However, all n pixels Pi in the window are not same importance for the calcula-

tion. So the weights W is assigned to the equation which give more importance to

the pixels closer to the central pixel point. Then Equation (6.56) becomes

V = (ATWA)−1ATWb (6.58)

Combining Equation (6.57) and (6.58) gives,

Vu

Vv

 =

 ∑
iwiIx(Pi)

2
∑

iwiIx(Pi)Iy(Pi)∑
i wiIy(Pi)Ix(Pi)

∑
i wiIy(Pi)

2

−1 −∑iwiIx(Pi)It(Pi)

−
∑

i wiIy(Pi)It(Pi)

 (6.59)

6.4.4 Template Matching tracking

Using the background subtraction techniques mentioned in the previous chapter,

foreground objects can be determined. To perform tracking of these foreground
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objects, the part of image containing an object can be used as a template to search

for it in the next image frame. This technique is called template matching [147].

The algorithm of template matching is to find the object position by searching for

the best matching part in the image by comparing with the template image (shown

in Figure 6.9)

Figure 6.9: Template matching searching window model.

The template image can be represented in different ways by using various object

properties - such as colour histograms, histogram of oriented gradients(HOG), inten-

sity values [148] and more complex feature based points, shapes or surface models.

Searching the image is performed via a moving template image from left to right

and top to bottom by single pixel movement [149]. An object selected as a template

for matching in the next frames can be seen in Figure 6.10:
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Figure 6.10: An image showing a selected object as template. Area under red rectangle indicates the template

image which will be used for searching in the next image [150].

The next key part of this technique is how to measure the similarity between

the searched image and the template image. Many types of algorithms have been

developed for comparison techniques implemented in different situations. There are

some popular comparison calculations which includes - mean absolute difference

(MAD), sum of absolute differences (SAD), sum of squared differences (SSD), mean

square differences (MSD), normalized cross correlation (NCC) etc.

6.5 Summary

Images from background subtraction process provide input for tracking. It is not al-

ways true that object(s) can not be tracked without background subtraction. But for

automatic multiple object tracking from a crowded scenario (as in the LOC case),

background subtraction provides the best results. Moreover, for multiple object

tracking from a crowded situation it was found that none of the single tracking meth-
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ods provide a good result and it was required to combine multiple approach. This

chapter provided some basic information about difficulties of multi-object tracking.

Also description of several useful and widely used tracking method also provided

here. In the following chapter the specific tracker implementation used for the

micro-particles in the LOC experiments will be described.
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Chapter 7

PROPOSED MULTIPLE

OBJECT TRACKING

Most of the established state estimation (object tracking) methods discussed in

previous chapter (Chapter 6) are suitable tracking single objects or multiple ob-

jects which keep a reasonable distance between each other over the image sequence.

Moreover, it is also required that the target objects contain distinguishable fea-

ture(s) compared with the surroundings (background and other object) for making

them differentiable from one another. However, tracking multiple objects from a

scene where the objects are a very small distance apart and the number of objects is

high, additional factors need to be considered compared with the tracking methods

discussed in Chapter 6. For multiple object tracking one of the main problems is

data association, that is relating the object measurement(s) with each of the pre-

dicted states [151]. Other difficulties like false detections, missed detections and

objects being in close proximity to one another also make multiple object tracking

challenging. Moreover, for efficient tracking, an object should not have significant

change in its position between the current frame and the next one, and also its ve-

locity should be reasonably stable [152]. But in real-life, these optimum situations

rarely happen.

For solving such problems widely used approaches can be divided into two classes
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- 1) approaches for finding the optimum solution and 2) statistical correspondence

methods. The Hungarian Method [153] which finds an optimal solution in polyno-

mial time and Rittscher et al. [154] (global optimisation method based on expec-

tation maximisation, to divide crowds into individuals) are considered as to be the

most widely used optimum solution finding based approaches. On the other hand,

Kalman filter, particle filter etc use the statistical correspondence approach.

The performance of the basic tracker (Meanshift, Camshift, template matching

etc) provides moderate performance for tracking single objects having distinguish-

able feature(s). But for multi object tracking, all these basic trackers fail, moreover

if the scene is crowded (that is if the objects are close to each other) then the number

of false detections become much higher. So it was found that for tracking multiple

objects a combination of a basic tracker (like Meanshift, template matching) and an

optimum solution finding approach or statistical correspondence finding approach

provides the best performance.

The input sequences that were required to be analysed for this thesis contained

micro-particles as the objects to track. This micro-particles do not have distinguish-

able features to differentiate them. Also, depending on the experiment, the input

sequence can be too crowded. So considering all these situations, in the proposed

approach, a basic object tracker was combined with a statistical correspondence

finding approach for tracking micro-particles.

As a basic tracker, a combination of improved template matching, Meanshift

(MS) and optical flow performed well tracking single objects and also performed

well with multiple object to some extent. Also this combination was able to solve

the drawback of the tracking window drifting away from the target [155] when using

Meanshift. This combination of trackers was given the name ”Hybrid Meanshift

Tracker”. As another very common problem for the image sequence is ”object

becoming invisible” (that is a visible object become invisible for next few frames or

rest of the frame), so the Kalman filter was combined with the ”Hybrid Meanshift

tracker” to overcome this drawback. In the following section, will discuss in depth

the proposed approach for tracking multiple objects.
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7.1 Proposed Algorithm overview

Tracking starts with detecting the objects of interest from the input sequence. This

object detection process is done using the background subtraction techniques dis-

cussed earlier in Chapter 5. Background subtraction acts as a very useful way of

locating moving objects (also non-moving objects after doing the required modifi-

cations) in any scene. Also a robust background subtraction model can provide the

tracker with robustness against numerous difficulties, like changes in lighting, low

objectbackground contrast etc. Details of these issues has already been discussed in

Chapter 4 (Background subtraction review). In this Chapter, it is assumed that the

tracker gets the detected objects’ locations from the background subtracted image

sequence directly.

In this tracking approach from the first frame onwards, whenever a new object

gets detected it is assumed to be an input for Meanshift tracking, then Meanshift

tries to match the centres of object’s target and candidate regions. For finding the

match between these two regions most typical applications use a 2-D colour his-

togram comparison. However, for the objects (chemically activated micro-particles)

their 2-D colour histogram distributions are very similar, which made the use of

colour histogram impossible. So an alternative way for Meanshift to compare and

match the centres of object’s target and candidate regions was required.

After lots of investigation, it was found that the intensity gradient over the

detected object and its orientation could be a choice for matching the same object

in consecutive frames. The intensity gradient (including value and orientation) over

an object is almost the same within two frames for the same object. So the use

of a Histogram of Oriented Gradients (HOG) [156], for matching the same object

in two consecutive frames was very suitable in this case. In this way, a template

of a detected object was made (using HOG) and it was used for finding the match

between centres for object’s target and candidate regions.

Using the above approach, it was found that if there were only one micro-particle

available to track, or the particles stayed a good distance from each other, Meanshift
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combined with template matching (HOG matching) performed efficiently. But for

situations, where the objects stay very close to each other and many particles follow

the same path across the reaction chamber the above technique produced lots of

false detections. So it was required to find a way to restrict the search window

of Meanshift, which was done using optical flow. Also, for tracking less visible or

invisible objects, out of the several ways available such as particle filter, Kalman

filter etc., it was found that the Kalman Filter was very suitable for this task. So,

when the ”Hybrid Meanshift Tracker” fails to track any object a Kalman filter is

used to predict the position of the current object in the next frame and continues

the tracking. The overall process for the proposed tracking method is given in the

following Figure 7.1.
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Figure 7.1: Overview of the proposed Algorithm. The detected object from the background subtraction goes to the

tracking process. Combination of ”Hybrid Meanshift” (Meanshift combined with template matching) with Kalman

filter provide here the final track result.

In the following sections, all the steps of this tracking method will be discussed

in brief. At the end of each step we will describe the process of combining one step

with other will be described.
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7.1.1 Hybrid Meanshift (combination Meanshift, Template

matching (HOG matching) and Optical flow)

In the proposed approach of tracking objects (micro-particles), the tracking starts

with the use of hybrid Meanshift tracking. Here, the introduced hybrid model for

Meanshift tracking is based on combination of Meanshift, optical flow and template

matching (Histogram of oriented gradients (HOG) matching). Optical flow from

LucasKanade method (L-K method) is combined with the direction of Meanshift

vector, to produce the resultant vector. This resultant vector restricts the search

window for the Meanshift model by moving the search window towards the resul-

tant vector direction. Also the distance for the search window movement is kept

limited using the magnitude from the optical flow estimation. Details of the optical

flow estimation (L-K method) and basic Meanshift have already been discussed in

Chapter 6. After getting a limited area and range, for finding the right object from

current frame to the next frame, the object template matching comes in to action.

For matching the template, every object is represented using HOG and for finding

the similarity between two templates (HOG) Bhattacharyya distance is used. De-

tails of HOG, derived by Dalal and Triggs [156], are described in following Section.

In this section only the process of combination of these methods will be discussed.

For this approach it was first assumed that the object motion is uniform, that

is the objects in successive frames have a consistent relationship in terms of motion

and direction. Also the speed of the object does not change dramatically. These

assumptions were found reasonable to some extent for the objects from microfluidic

experiments, as the movement of the microparticle in microfluidic experiments is

mainly due to vector summation of magnetic force and force due to fluid flow. In

general, these two forces for any point is same over a whole experiment. So in

theory the object (microparticle) movement is uniform and constant over a small

area. Later these assumptions were combined with some other practical observations

to make the tracker robust. Which is discussed in Section 7.1.2.

According to the ”Hybrid Meanshift” approach after a new object is detected,
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Meanshift must first be applied for finding the possible changes between two con-

secutive frames. In this way, a window for the target location in the current frame

is found using the predefined kernel in the first frame. At the same time, when

Meanshift detects an object (in each frame, i.e. both new and old) the bounding

area’s Histogram of oriented gradients (HOG) get registered as a template of the

object, which will be later used for the later purpose of template matching.

In this situation, for restricting the Meanshift search window and limiting its

direction of movement optical flow estimation is introduced. Using optical flow

estimation, it is possible to obtain information about object motion by computing

the optical flow between consecutive frames, then applying the measurement of

uniformity of motion on it. There are many well established methods available for

computing optical flow between frames. Here it was done using Lucas-Kanade’s

[144] gradient-based optical flow measurement, as this method provides the most

accurate and computationally inexpensive optical flow estimations [120]. Details of

the L-K method have already been discussed in Chapter 6, in Section 6.4.1.

Finding optical flow requires two successive frames f(t−1) and ft at time (t−1)

and t. For a 2D image L-K’s estimation provides a vector of the optical flow field

(
−→
V ) between two consecutive frames which contains the magnitude and direction of

the movement, as shown in Equation (7.1):

Optical Flow (Vx,y,t) =

 Magnitude, Vmag,t

Direction, Vdir,t

 (7.1)

The output from L-K optical flow estimation can be represented using the fol-

lowing Figure 7.2:
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Figure 7.2: Dense optical flow computation for two consecutive frames.

After finding the optical flow for the current frame from the previous one, uniform

motion detection is applied by selecting the pixels with non-zero optical velocities.

The remaining pixels having similar motion direction and magnitude are grouped as

the same component. For the hybrid object tracking approach, every two consecutive

frames are used for calculating the optical flow but optical flow is not used as a

tracking method. It is only used to limit the search window direction and magnitude

of the Meanshift.

All this above information from the current location of the object is used for

finding its potential position window in the consecutive frame. This way, a candidate

target location with predefined kernel size is found in the next frame. The HOG

feature is detected inside this MS candidate window, then a match between the

current HOG feature and previously registered HOG feature is sort. For finding the

matching between two HOG features the Bhattacharyya distance is used. In this

way, for each pair of image boxes Wl,j and Wr,j+d for frame ft−1 and ft respectively,

the Bhattacharyya distance (d(H1, H2)) between their HOG can be computed as

Equation (7.2)

d(H1, H2) =

√
1− 1√

H1 H2N2

∑
I

√
H1(I).H2(I) (7.2)
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Where N is the number of descriptor bins of H1 and H2 HOG, I is the position

within the histogram partition. This distance is then compared with a user settable

value (τ), which is fixed throughout the whole tracking process. It was found for

the microfluidic dataset an input of, ζ≤2.50 provided good detection, so it can be

expressed as Equation 7.3:

Match =

1 for ζ≤2.50

0 otherwise

In the present framework, the tracking window always gets an updated HOG

template ready to match the next frame for the same object, unless it finds the

object is non-moving.

The above discussed hybrid tracker performed well for an object having uniform

motion. But in real-life cases it was found that microparticles get stuck to each other

or with micro-pillars (part of the chip structure) and become motionless either for

few frames or for the rest of the image sequence. This motionless situation can

be the result of many other reasons too. The motionless objects also change their

shape a lot from their previous motion condition, for example chemically activated

micro particles are normally elliptically shaped when they are moving but become

more circular when they are stationary. Such changes happen suddenly due to their

relative small number of frame captures per second. In this situations, when the

objects change their shape too fast, it becomes impossible for the Meanshift to

match their templates using the HOG feature.

So the tracking of non-moving objects was not possible using the above pro-

cedure. For solving this problem, help was taken from the three frame difference

technique used in background subtraction. It has already been discussed in Chapter

5 that if an object does not move (which was initially detected as an object) then

it can be detected using the three frame difference technique. So when the three

frame difference technique detects any non-moving objects, the tracker combines

this information for finding the next position of this object and keeps the same id

for the same object at the same position. In this case, the HOG histogram features
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do not get updated until it starts to move again. If the object starts to move again

only its previous information is used for matching the tracked object.

Histogram of oriented gradients (HOG)

Histograms of oriented gradients (HOG) proposed by Dalal et al. [156] mainly

represent the targets contour orientation information, that is it uses the object’s

low level features. For calculating these features, gradient orientations within the

region of interest (ROI) (also known as cells) are calculated and represented as

histograms. The equations for calculating the HOG features are given as Equation

(7.3), (7.4), (7.5) and (7.6):

∆Ix = I(x+ 1, y)− I(x− 1, y) (7.3)

∆Iy = I(x, y + 1)− I(x, y − 1) (7.4)

θ(x, y) = tan−1∆Ix
∆Ix

(7.5)

m(x, y) =
√
∆Ix

2 ++∆Iy
2 (7.6)

In these above equations (Equation (7.3), (7.4), (7.5) and (7.6)), I is the bright-

ness of each pixel, ∆Ix and ∆Iy are the pixel intensity differences in the x and y

directions respectively, m is the magnitude of the gradient and θ is the direction of

the gradient. After getting all the directions of gradient (θ), it is required to divide

them into groups. Dalal et al. [156] divided into groups with a range of 20 degrees.

This way 9 groups of orientation from 00 to 1800 (as the sign is not considered) are

obtained. In this stage the features are required to be normalise (fN) within each

cell using Equation (7.7):

fN =
υ√∑k

i=2 υ
2 + e2

(7.7)
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where, υ is the HOG feature, k is the number of HOG features in the block.

Adding e2 = 1 in Equation (7.7) prevents the result from becoming undefined.

An illustration of the HOG feature extraction for a microparticle can be seen in

Figure 7.3.

Figure 7.3: Sample for a normalised HOG feature of an Micro-particle. Top most left is the input image (selected

object within the green box), the top right side figure is the gradient image. In the second row, the first image is

the extracted features of the object. The last image is showing the normalised histogram of the features (histogram

is just for illustration purpose, not from program result).

Normally for the objects that need to be tracked, pre-processing and noise reduc-

tion is considered during the background modelling implementation stage. More-

over, the approach is actually tracking the object mask from the previous step of

background subtraction. As hybrid background model for subtracting the back-

ground has already been implemented, so it did not require the implementation of

noise filtering to decrease the effect of noise. But for a technique using a less ro-

bust background model, it may be useful to use Gaussian frequency domain filtering

before calculating HOG.
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7.1.2 Kalman Filter

Even after using the ”Hybrid Meanshift” tracking model still the problems of track-

ing objects from input sequence that are crowded objects and objects that travel

keeping a small distance from each other is unsolved. As in this situation ”Hybrid

Meanshift” fails to find the correct target region for the object of interest, so it fails

to find the proper match. For these input sequence images, it was found that within

a small area of the image lots of objects are moving with a small distance between

each other.

Another very common issue in microfluidic input sequences is micro-particle(s)

becoming invisible or hardly visible within the captured frame for a few frames or

for the rest of the frames in the sequence. So when an object becomes invisible or

hardly visible, it is not possible to match the HOG features and then the tracker

failed either by providing a negative result (no object detected) or a false positive

result (by detecting another object).

To address both these situations, it was required to find a solution where the

tracker would not depend on probabilistic density or feature matching for tracking an

object. It was found that implementation of a Kalman filter with the above discussed

hybrid algorithm could provide tracking results even if an object became invisible.

Moreover, the results from magnetophoresis experiments showed that the motion

path can be described as a linear equation for a short distance, that is the objects’

movements are almost linear. So use of a linear Kalman filter provided acceptable

results for tracking crowded and suddenly invisible objects. However, in very rare

cases for the input sequence from the experiment micro-particles showed non-linear

behaviour, for these cases the Kalman filter performed poorly. But these types

of situations occurred mainly due to a poor level of expertise of the experimenter

and may be considered as failed or poorly configured experiments. They are not of

significant concern for the development of an automated system.

To implement Kalman tracking the first step was to model the system. To model

the system according to a Kalman filter (discussed in Chapter 6), required several
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initializations. After initializing all the parameters and states of the Kalman filter, it

is required to know when it will be in action. Inappropriate use of Kalman filter with

Hybrid Meanshift can make the total tracking unsuccessful. That’s why Kalman

tracking is used for estimating a new location when the value for the Bhattacharyya

distance during the process of hybrid tracking failed to satisfy the limit condition.

That is if the likeness between the target and candidate models is less than the

required value and the target object is not decided as a non-moving object then the

Kalman tracker is added to the algorithm for estimating the new location of the

object in the next frames. In this project for tracking micro-particle, the limit was

chosen as 1.50.

At first a vector was constructed for each particle which included the position and

speed of the object within the frame. As a position Kalman filter requires a point,

the object’s centre of gravity was chosen as the location of the object. The initial

velocity was determined by measuring the location changes between two frames and

the time difference between the two frames. Therefore, the motion of the tracked

object can be modelled using Equation (7.8):

Ẋ = AX + w (7.8)

As the measurement of the object’s location gets corrupted by uncorrelated noise,

so the measurements can be expressed as a linear combination of the system state

variables and noise. So the m-dimensional measurement vector can be modelled as

Equation (7.9):

Y = HX + v (7.9)

The state transition matrix F express the system’s dynamics, normally it’s a
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constant matrix, which can be shown as Equation (7.10).

F =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 (7.10)

In Equation (7.10), ∆t is inverse of the frame rate per second (fps).

The measurement matrix, H in Equation (7.9) can be expressed as:

H =

1 0 0 0

0 1 0 0

 (7.11)

As the position and speed of a moving object are the states of the object and

they are two dimensional (X and Y ), so the state of an object can be expressed as

Equation (7.12):

X = [x(n) y(n) Vx Vy]
T (7.12)

In Equation (7.12), n is the number of the frame, x(n) and y(n) are the X

and Y component of the objects position respectively. Similarly, ẋ(n) = Vx and

ẏ(n) = Vy are the X and Y component of the objects speed respectively. These

speed components can be expressed as Equations (7.13) and (7.14).

Vx =
∆x

∆t
=

xn − xn−1

tn − tn−1

(7.13)

Vy =
∆y

∆t
=

yn − yn−1

tn − tn−1

(7.14)

Therefore, the state and measurement equations of the Kalman tracker (shown
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in Equations (7.8) and (7.9)), can be expressed as (7.15) and (7.16):


x(n+ 1)

y(n+ 1)

ẋ(n+ 1)

ẏ(n+ 1)

 = F


x(n)

y(n)

ẋ(n)

ẏ(n)

+ w (7.15)

x(n)
y(n)

 = H


x(n)

y(n)

ẋ(n)

ẏ(n)

+ v (7.16)

Here the random variables w and v are the state and measurement noise respec-

tively. For zero mean and with Gaussian process noise having known covariance Q

and R respectively, w and v can be shown as Equation (7.17) and (7.18).

w≈N(0, Q) (7.17)

v≈N(0, R) (7.18)

Now, for getting better performance it is required to get appropriate values for Q

and R. Another most important thing is to calculate the right initial values for the

Kalman filter, which are x(n), y(n), Vx, Vy (these values get updated in each frame

automatically). Incorrect initial values will provide incorrect estimation and this

will lead to a failure in tracking. Here ∆t remains almost constant over a process,

as it is inverse of fps (frame per second) of the captured sequence. From Equation

(7.15), the values of x(n + 1), y(n + 1), ẋ(n + 1), ẏ(n + 1) can be found which are

the locations and speeds of the object in the next frame. If the likelihood between

the target and candidate models is more than the requirement to use Kalman filter

as a tracker, then the values relating to the object’s location in the next frame

are found using Hybrid Meanshift tracking. If Hybrid Meanshift tracking cannot

calculate the values in Equation (7.15), then the object’s location in next frames are
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recalculated until the proper likeliness is found. This cycle of finding likeliness using

either Hybrid Meanshift or Kalman filter continues until the end of the process.

7.2 Experimental Results

Like the proposed background modelling and object detection technique in Chapter

5, it was intended to develop a system which can perform tracking with high accu-

racy for different real-life scenarios. However, it was not possible to use the same

approaches for micro-particle tracking as other objects like humans, cars etc. The

tracking features are different for all of them. So in this section, the main target

was to show tracking performance for input data sequences from magnetophoresis

LOC experiments. Then also conduct experiments on tracking humans and cars

from benchmark datasets. Though the results were not accurate enough in many

cases, for objects without having strong long occlusion this method still performed

efficiently.

The tracking results for tracking micro-particles in different situations (low con-

centration analyte, highly crowded, without having motion for few frames) are shown

in Figure 7.4, Figure 7.5, Figure 7.6 and Figure 7.7. Tracking result for PETS’09

datasets is shown in Appendix 4
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Figure 7.4: Micro particle tracking with analyte concentration of 0 Nm for DNA hybridization experiment. Here

traces are showing the travelled paths.
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Figure 7.5: Micro particle tracking with analyte concentration of 20 nM for DNA hybridization experiment. Here

traces are showing the travelled paths.
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Figure 7.6: Micro particle tracking with analyte concentration of 100 nM for DNA hybridization experiment. Here

traces are showing the travelled paths.
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Figure 7.7: Micro particle tracking with analyte concentration of 100 nM for DNA hybridization experiment. Here

traces are showing the travelled paths. The object within Red Circle did not move for four frames and kept the

same ID 56.

In Figure 7.4 the tracking was performed on an input data sequence from ex-

perimental results with 0 nM analyte concentration. In this case the objects have

minimum difference from the background. Through use of the background subtrac-

tion technique the tracker has knowledge about the location of the objects, but for

matching an object from its previous location to the current one required HOG

features to match. But in these cases HOG feature matching based Meanshift did

not worked well without Kalman tracking. But still the tracker was able to track

objects throughout the sequence.

Figure 7.5 is showing the tracking for an input sequence from an experiment with

20 nM concentration. Here the visibility of the objects is higher than the objects

from image sequence with 0 nM concentration and the proposed method tracked
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all the object without changing any IDs.

In Figure 7.6 the number of objects are much higher than that of previous figures

(Figure 7.4 and Figure 7.5). Objects are moving with a very small gap between each

other. But the proposed tracker kept track of each object without having many false

positive and negative detections.

In Figure 7.7, the object with ID 56 did not move for four frames and it can be

seen that its ID did not change for the non-moving positions.

The proposed method was found to be more accurate tracking objects with high

concentration (till 20 nM) of analyte, because for low concentration analyte the ob-

jects are not detectable in many cases. However, the proposed method was successful

in tracking objects in low concentration analytes. Table 7.1 shows the number of

total micro-particles and correctly tracked microparticles for various concentrations

(00 nM , 20 nM , 40 nM , 60 nM , 80 nM and 100 nM) of analyte.

Concentration (nM) Tracked Particles

Correctly

Total number

of particles

Accuracy

(%)

0 56 72 77.78

20 44 51 86.27

40 73 81 90.12

60 25 28 89.29

80 154 169 91.12

100 115 127 90.91

Table 7.1: Performance measurement for tracking microparticles.

From Table 7.1, it can be seen that the accuracy of tracking micro-particles for

the proposed method is around 90%. Moreover, the number of detected particles

are also higher than manual method (where the maximum number is around 15 to

40). Measurement based on more particles should provide more confidence in the

results.
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7.3 Summary

In this chapter details of the tracker implementation has been presented and showed

its tracking performance. For all the comparisons performed the same background

modelling and background subtraction pre-processing was used. Also for any pa-

rameter like that for the Kalman filter, the same value is used in all cases to facilitate

comparisons. The accuracy of the approach to track micro-particle was more than

90%, which can be considered as a good accuracy for tracking multiple objects hav-

ing very similar features (path of motion and colour feature) and for objects which

are overcrowded.

There was a problem with detecting the same object with same ID after occlusion

which proved impossible to solve. Unlike humans, vehicles etc. it was not possible

to define any constant feature, though many known features like shape, HOG, SIFT,

corner detection were tried. The main reason behind being unable to find the same

object with the same ID was- when an object starts to move after occlusion is that

an objects features do not persist.

Despite the problems just mentioned the tracker was more than adequate for the

majority of particles which allowed their intensities to be measured, as required by

the experiments. Details of this data analysis and the results obtained are discussed

in the following chapter.
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Chapter 8

DATA ANALYSIS RESULT

In this chapter of thesis, results from using the new approach for making the data

analysis process from magnetophoresis Lab On a Chip results will be presented.

Though lots of different experimental data from various magnetophoresis experi-

ments were used for checking the output of the new approach, it was not possible to

put all the test results here. So to show the performance of the approach, data from

a specific experiment which was published by Prof. Nicole Pamme’s research group

[17] will be presented. Using these image sequences, the new approach is used to au-

tomate the production of a calibration curve with error bars. This is compared with

the results from manually calculated values. Also the limit of detection indicated

by the two approaches is compared.

The published data analysis system is totally manual and hence is both slow

and user dependent, which tends to lead to a non-reproducible system. Moreover,

as the process is not automatic and user dependent, so the effective limit of detection

(LOD) may also vary according to the experimenter. So the aim of this section of

work was to develop a system which is automatic, faster and more reproducible.

8.1 Experimental Set-up

The experiment of interest involves DNA hybridisation, which is a widely known and

used analytical technique in biochemical research, clinical diagnostics and forensic
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science for detecting the presence of specific nucleotide sequences within a sample.

The conventional method of DNA hybridisation is quite time consuming and labour

intensive, as the current method involves long incubation times, several washing

steps and long data processing steps [17]. The whole experiment can be actually

divided into two parts- On chip and off chip experiments. The main concern for this

section and thesis is the off-chip experiment, also known as the result analysis. In

this result analysis section Prof. Nicole Pamme and her group used two well-known

established software- Image Pro and ImageJ.

For this experiment the microfluidic chip used had five inlets and two outlets

(designed by Prof. Nicole Pamme, widely known as NP50), which had a reac-

tion chamber of 3mm×8mm and supported by 10 diamond shaped micro pillars

[17]. This microfluidic chip was fabricated from glass and using photolithography

and wet-etching techniques [157]. Through these inlets solutions of Magnetic parti-

cles functionalised with streptavidin (Dynabeads M270, 2.8µm diameter, obtained

from Invitrogen in Phosphate Buffered Saline (PBS) buffer), Concentrated Saline-

Sodium Citrate (SSC) buffer (20×), Hybridisation buffer (44.115 gL−1 sodium cit-

rate , 87.660 gL−1 NaCl), PicoGreen and working solution were injected at a velocity

of 210 µms−1 into the reaction chamber and they were withdrawn at a rate of 50

µLh−1. For generating the magnetic field, a NdFeB magnet (4mm×4mm×5mm,

grade N48H, Magnet Sales, UK) was placed on the top of the chip and 1mm from

the reaction chamber side. The chip was then placed on the stage of an inverted

fluorescent microscope (TE2000-U, Nikon, Japan) which is equipped with a Charge-

Coupled Device (CCD) camera (Retiga-EXL, QImaging, UK). During the fluores-

cence intensity measurements, the camera’s exposure time was chosen as 300 ms for

recoding the exit of the chamber which is close to the magnet. The recording process

was done using ImagePro 6.2 software and the grey scale intensity of the particle

was measured and analysed using ImageJ (http://rsbweb.nih.gov/ij/). The whole

experiment was done at an ambient temperature of 24oC. The total experimental

setup can be shown using the Figure 8.1:
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Figure 8.1: (a) Continuous flow DNA hybridisation platform. Magnetic particles with immobilised capture DNA

are deflected across a reaction chamber using magnetic field from external magnet and thus several reagent and

buffer streams. DNA hybridisation, intercalation as well as washing steps are thus performed on the surface of the

particles in continuous flow in an automated and rapid fashion. (b) CAD schematic of the microfluidic chip design

featuring five inlets, a 3 mm wide and 8 mm long reaction chamber and two outlets. (c) Photograph of the chip

setup, showing the fabricated glass device interfaced with tubing and the NdFeB magnet (N48H) [17].

8.2 Calibration Curve

The ’Calibration curve’ is a well-known and established method in analytical chem-

istry and biology for determining the concentration of a given substance (analyte)in

an unknown sample by comparing it with a standard set of known concentration

samples [158]. A calibration curve (graph) is actually a plot of experimental means

(average) from the response of an analytical signal which changes with the concen-

tration of the unknown substance and standard concentration. In this graph the

concentrations of the solutions are plotted on X-axis and observable variable (like

solution’s absorbance, light intensity, voltage, current etc.) are plotted on Y-axis.

Then by putting all the observable values (acquired or processed data) with respect

to the concentration of several solutions on the graph a calibration curve can be

obtained. Then by placing the observable value from the unknown concentration on

the calibration curve the concentration of that sample can be determined.

Light intensity as an observable value from a chemical solution is a common
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choice, as according to Beer’s law (also known as Beer-Lambert Law) chemical

solutions absorbs or emit different amount of light depending on their concentrations

and the relation between the concentration and light fluorescence is linear [159].

Moreover, it is quite easy to measure the light fluorescence of a solution using a

normal video camera with suitable software operation.

Mathematically the relationship between fluorescence and concentration is linear,

but it is not always achievable from experimentally determined variables. So in most

cases, the trend line for the calibration curve is required to be drawn in such a way

that it passes a maximum number of the data points.

Calibration curves provide several advantages for many analytical techniques and

experiments. Firstly using calibration curve it is possible to calculate the uncertainty

of the concentration (using the statistics of the least squares line fit to the data)

[161]. Secondly, the calibration curve provides result that depend on an actual

relationship.

8.3 Mathematical Expression of calibration curve

The data points (observed with respect to the concentration) plotted on the graph for

a calibration curve can be fitted to a straight line by using linear regression analysis.

After the linear regression analysis, the calibration curve model can be described as

y = mx + c, where ’y’ is the observable response, ’m’ represents the sensitivity of

the curve calculation and c is a constant which describes the background. Using this

equation, the analyte concentration (x) of an unknown samples may be calculated.

8.4 Data Analysis: Calibration curve

Data analysis or row data analysis is considered as one of the most significant parts of

analytical experiments. Among several data analysis methods, the most commonly

used methods are developing calibration curves, regression lines and limits of detec-

tion. Here for comparing the two different ways to analyse the data, for the same

214



experiment seven different solutions were made of 0 nM (blank), 20 nM , 40 nM , 60

nM , 80 nM , 100 nM concentration. Firstly, the widely used software ImageJ (Java

based) was used for getting the intensities of the objects for the calibration curve,

regression line and limit of detection (LOD). Similar analysis was done using the

newly developed automatic detection software as well. After achieving the results,

the success or accuracy of the analysis was compared in the following section.

8.5 Data analysis using manual method

Here the user is required to find the objects manually one by one. In this case for

differentiating between particles and noise, user’s experience is the most significant

factor. Then for the selected particle the intensity measurement operation can

be done in several ways one of them is drawing a rectangle around the detected

particle. This rectangle indicates that the user is interested in the information inside

the rectangular area. On the shown image in Figure 8.2 the identified object and

a drawn rectangle is shown. After drawing the rectangle, the user needs to press

M to measure the different intensity level (Maximum, Minimum etc.) within the

rectangle. The measured value will be shown into a separate window as shown in

Figure 8.2:
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Figure 8.2: ImageJ particle intensity measurement step.

This step is required to be repeated until most of the particles’ intensity (at least

20 particles) are measured.

After all the particles from one ’Tiff’ or ’SEQ’ file have been measured, the user

needs to save the values in an Excel format. After saving the measured intensity for

the detected particles (for one concentration of the experiment), the user needs to

repeat the process for the other image sequences achieved from experiments using

different concentration.

After the data has been saved in Excel. It is checked for any suspicious ’Peak

Values’. If any are found, the data needs to be checked again, otherwise the Mean

(Average) and Standard Deviation for each experimental result are gathered for

plotting the calibration curve.
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Here as the rectangle, area and the particles are chosen manually, so very often

the results are not so accurate. This process is required to be done for every ex-

periment. Each experimental result needs to be processed separately for finding the

mean and standard deviation from the raw data, which needs to be compared later

with other results. All these processes, if the experimenter gets a success first time,

every time, takes more than 2 hours.

8.6 Current Automatic Software

To overcome the drawbacks of the manual data analysis an automatic detection

software was developed. This automatic software was developed using C++ as

development language. Compared with the analysis steps done using imageJ and

Microsoft excel, this software only requires two steps to achieve the results, step

one is to provide the path of the images to be analysed and second is to press the

button to start ”Analyse”. The whole process takes about 5 minutes (considering 6

image sequences to analyse). This whole process is totally automatic and fully re-

producible, also this process does not require any experience from the experimenter.

It is also an unbiased process, as the area selection for measuring the maximum and

minimum intensity is covered by the minimum boundary rectangle of the object.

The user interface for the software is shown using Figure 8.3:
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Figure 8.3: Automatic LOC Data Analysis software user interface.

8.7 Result analysis process using automatic soft-

ware

During the manual process of calculating the mean and standard deviation for any

experiment, the user selects the data points (micro-particles) manually to measure

the intensity. After measuring the intensity of a few particles (around 15 to 50

number), the mean (average) is calculated and then standard deviation. In this

manual process, the user selects only those micro-particles which are moving and

representing the analyte. In this way, the user is always biased about getting better

results.

For the automatic data analysing system, the results produced were reproducible

and non-biased to any condition. However, during the automatic analysing of the

218



experiments it was found that many objects were detected which do not represent

the analyte concentration, either due to false detection or because the object (micro-

particle) itself provide false information (e.g. stuck particles). So, after analysing

such situations the following observations were found:

1. Micro-particles which are not moving produce much higher intensity, which is

not proportional to the analyte concentration.

2. Any stopped micro-particle (previously moving) produce higher intensity in

the frame which is one frame before it was stopped

3. Any stopped micro-particle produce higher intensity in the frame in which it

starts to move.

After considering all these situations, it was found that when the experiments

were done using higher concentration of analyte and the number of micro-particles

present (detected) within the experiment is high, these three conditions do not

make much effect on the result of mean (average) and standard deviation. However,

when the analyte concentration is low or the number of detected particles is small,

then all these observations have an effect. By analysing the experimental results,

it was found that when the analyte has less concentration, the number of detected

micro-particle is also less. In this situation, it was required to find an effective

way of automatic outlier removal for analysing the data to produce a result which

represents the real scenario.

Considering all these factors, an approach for relating the position and velocity

of each micro-particle with its intensity was developed as shown in Figure 8.4 and

Figure 8.5.
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Figure 8.4: Relation between the objects position, velocity and intensity for a detected object with ID 9, from DNA

Hybridization experimental result with 80 nM concentration.

In Figure 8.4, the micro-particle with ID 9 travelled the area of capture with

almost same velocity without stopping (red line). Also the intensity of the micro-

particle is almost the same (blue line) in every frame.
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Figure 8.5: Relation between the objects position, velocity and intensity for a detected object with ID 11, from

DNA Hybridization experimental result with 80nM concentration.

In Figure 8.5, the velocity of the micro-particle with ID ’11’ was not similar

for all the frames. From frame number 5 to 6 the velocity was much less than its

velocity in previous frames. This change in velocity provides an indication that the

object was either stopped or about to stop. Also the measured intensity (blue line)

when the particle got stopped became very high.

These two figures (Figure 8.4 and Figure 8.5) justify the observations described

in the beginning of the section.

After analysing lots of experimental image sequences and considering several sta-

tistical approaches (mean, median, Gaussian distribution etc.), the best conditions

for outlier are:

1. Intensity of an object was not considered while it was not moving.

2. ‘ Intensity of an object was ignored from the frame before it gets stopped.
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3. ‘ Intensity of an object was not considered from the first frame after it started

to move from its non-moving condition.

4. For each object after getting intensity values fulfilled conditions 1, 2 and 3, all

the values were arranged in an incremental order and only the median value

of the intensity was considered as its representing intensity.

5. Using conditions 1, 2, 3 and 4, for each object only one value was obtained as

intensity, these values were used for getting the mean and standard deviation

for the input frame.

6. in order to make all the assumptions from 1 to 5 more robust against any false

detection, a ratio based intensity measurement for the object was used. In

this ratio based approach, the direction of movement for an object was used

as its central line. The length of the objects central line was required to be a

minimum of 1.5 times bigger than its vertical central line, for the object to be

used for measurement purposes.

Using all the steps discussed above the final result for calculating error bars and

calibration curves to find the concentration of the unknown analyte was achieved.

8.8 Result comparison

For comparing the results achieved from both the manual way and the ’automatic

software’, both the calibration curves for the same input sequence were put together

and shown in Figure 8.6. The result for manual calculation was done by Dr Martin

Vojtisek during his PhD work and it was represented in Figure 8.6 without any

modification.
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Figure 8.6: Calibration curve comparison [56].

From Figure 8.6, it can be clearly seen that the error bars have a similar range to

those from the implementation of automatic software. Here the best-fitting straight

line passing through the mean points was expressed as y = mx + c for both the

manual and automated methods. However, the values of ’m’ and ’c’ for both meth-

ods are not the same. The best fitting line equation depends on the values that are

used for getting the line, for the manual and automated methods the values of mean

intensities were not exactly same. These differences between the values produced

different values for ’m’ and ’c’. However, as it is not so easy to compare the values

of mean and standard deviation from the Figure 8.6, so in Figure 8.7 and Table 8.1

these values are presented again for clarity.
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Figure 8.7: Data used for error bar calculation using automatic method.

Concentration (nM) Mean Standard Deviation Counted Particle

0 2.81 0.62 9

20 17.93 4.45 15

40 27.26 6.11 15

60 36.61 6.65 19

80 39.13 6.67 41

100 50.37 12.45 31

Table 8.1: Manually calculated values, Done by Dr Martin Vojtisek.

Comparing Figure 8.7 and Table 8.1, it can be found that both the values of

means and standard deviations are almost similar in both cases. But the main

differences are this result is reproducible, faster to achieve and no need any special

knowledge for selecting an object.
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8.9 Limit of detection (LOD)

It is quite impossible to find any instrumental measurement which is not associated

with some error, even for baseline (background or black) measurement some signal

can be obtained when no analyte is present. So it is important to measure how

large or big a signal needs to be distinguishable from background noise of the in-

strument. Limit of detection (also known as detection limit) is the expression of this

lowest quantity of substance that can be differentiable from a blank value within

a predefined confidence limit (normally 1%) [160, 161]. There are several types of

”detection limits” that are commonly used, including Instrument Detection Limit

(IDL), Method Detection Limit (MDL), Practical Quantification Limit (PQL) and

Limit of Quantification (LOQ). Moreover, for the same terminology, there can be

differences in LOD according to the definition of LOD, noise contributes to the mea-

surement and calibration. Mostly, for the limit of detection (LOD) the mean of the

blank, the standard deviation of the blank (sigma (σ)) and confidence factor are

required. Here the accuracy and efficiency of the model used for LOD to predict

the unknown concentration from the raw analytical signal also affects the accuracy

of detection [162].

For most analytical experiments a signal can be found even when analysing with

a blank (matrix without analyte). This signal is referred to as the noise level. Gen-

erally, to be detected a signal needs to be at least three times greater than the

background noise. More accurately, it can be said that for measurements with a

normally distributed probability density function for the blank, LOD is defined as a

summation of the blank signal (signal for the background) with 3 × standard devi-

ation (sigma, (σ)) of the blank (background noise). This mathematical relationship

for LOD can be expressed as Equation (8.1):

ylod = yblank + 3×σblank (8.1)

As a summary, LOD is the measurement which represents a level, below which

it cannot be confidently said that the analyte is actually present or not. As there
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is signal available from blank, so it can be said clearly that there is nothing called

pure zero concentration.

So for determining the effectiveness detection using automatic method, limit of

detection (LOD) is one of the best techniques. So for both the case (manual method

and automatic software), LOD was calculated. The calculation steps for LOD for

both manual and automatic software are shown in following section:

Using automatic software, the fluorescence intensity for image sequence input

with analyte concentration of 0nM is 3.01±0.68a.u, so LODA = 3.01 + 3×0.68 =

5.05.

Using manual method, the fluorescence intensity for the same input sequence is

= 2.81±0.62a.u, so LODM = 2.81 + 3×0.62 = 4.66.

Here limit of detection is higher for automatic detection, but lower LOD indicates

better confidence level. The automatic method has 7.72 % less detection capability

then that of using manual method. However, this difference is not particularly

significant. Though the LOD performance is better in manual method, but it was

done in such a way that it cannot be tested again, as the selection criteria of the

particles cannot be reproducible.

For determining the lowest concentration that can be calculated using our pro-

posed method, we can consider the Figure 8.7 again, where the calibration curve is

shown as Equation (8.2):

y = 0.537 ∗ x+ 2.33 (8.2)

Now if y = 5.05, then from Equation (8.2) we get

x =
5.05− 2.33

0.537
= 5.065 (8.3)

Therefore, from Equation (8.3), it can be said that 5.065 mug/mL is the lowest

concentration of analyte that can be measured using the automatic method.

226



8.10 Summary

The difference between automatic and manual detection is not so high for both the

performance and accuracy, this is to be expected given that the manual results were

obtained by an experienced operator. The main differences were reproducibility

and time requirement. Using the automatic detection method, the same calcula-

tions were done three times in three different days and every time the results were

exactly same. But for the manual detection reproducibility was not only difficult,

but also quite impossible. For automatic detection method limit of detection was

slightly higher than the manual detection technique. However, the difference is not

particularly significant.
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Chapter 9

FINAL CONCLUSION AND

FUTURE WORK

9.1 Discussion and Conclusion

This thesis contains mainly two parts, the major part has dealt with automatic ob-

ject detection, tracking and intensity measurement of micro particles movement in

Lab-on-Chip magnetophoretic analytical systems, the rest has used the Comsol sim-

ulation tool to simulate magnetophoresis experiments with respect to the influence

of the magnetic field.

Lab-On-Chip magnetophoretic analytical system allows integration of a microflu-

idic device with sensors and actuators, which results in complex system automati-

cally performing various processes. Over the last five decades, research about mi-

crofluidics has become very popular with a wide range of applications in the fields

of medicine, environmental monitoring and chemical analysis [1, 2]. However, the

automatic result detection and analysis are still a challenging work in this field with

less development than manual experimental procedure.

The work of this thesis is based on analysing the results obtained from magne-

tophoresis LOC experiments done by Prof Pamme and her research group [1, 13, 15].

The results contain a series of image frames which records micro particles move-
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ments. Aiming for automatic micro particles detection, tracking and analysis, a

suitable and successful principle has been developed in this thesis, which includes

three main steps: object detection, object tracking and result analysis.

Object detection is the key procedure for the entire work. Without robust and

accurate object detection technique, it is almost impossible for the next step of

tracking the micro-particles, including automatic analysis. There are many available

methods which have been developed for traffic monitoring, human face recognition

and human behaviour identification. However, none of them were useful in this case

for detecting micro-particles. One of the main problems for these techniques is that

they were not able to detect very low intensity objects. Also most of the avail-

able techniques required at least 10 frames (except ViBe) for training. But it was

not possible to use 10 frames from experimental input sequences, because in most

cases there were only around 100 frames to analyse. The new method presented

here only used 3 frames for starting the detection. It was also able to detect most

of the objects separately, even when they were very close to each other. Which

means, considering the features of micro particles and image quality obtained from

Lab-on-Chips experiments, the proposed method provided robustness compared to

other methods. The proposed object detection technique works in four steps: pre-

processing, background modelling, extracting foreground object features and object

detection (discussed in Chapter 5). Out of all these four steps background mod-

elling and object detection were the most important step and was performed via

combining three frame difference and improved GMM (by introducing T −AMBP

with GMM). The results from our approach was compared with GMM, KDE, Vibe,

adaptive BGL was the result was better than these techniques (showed in Chapter

5).

Following object detection, an object tracking algorithm has been developed

by integrating Hybrid Meanshift (combining Meanshift, template matching (HOG

matching) and optical flow) and Kalman filter (Chapter 7). Lucas-Kanade optical

flow was used to restrict the search window in Meanshift to improve tracking ac-

curacy. HOG was used to represent each object and find the object in next time
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frame.

The objects for tracking are micro particles in LOC experiments. They are

very similar to the background in colour and also there is not many distinguishable

features to differentiate between them. These characteristics make it challenging

to separate them from the background and distinguish between individual objects

for tracking. Though the developed method could achieve most object detection

and tracking tasks, it still has certain levels of limitation. They are- I) when more

than one object follows the same path and occlusion occurs between them, after

occlusion the tracker can not find the same object with same ID, II) when the

number of objects within a small area become too high and III) when the object’s

intensity becomes too low to be identified. One of the reasons behind these problems

is having no feature which is constant over the whole tracking process especially after

occlusion. Also very low contrast of the objects limited the tracking in some cases.

LOC experiments with low concentration of analyte produce very low signal,

which requires pre-processing for making the signal (intensity) stronger. This pre-

processing was only done when necessary. Because it consumes time, which makes

the analysis process slower. Data from a published LOC experiment was analysed

fully automatically to produce a calibration curve in the same format as the original

work. Comparison of the results indicated that the automated procedure provided

results very similar to those obtained manually by an experienced and competent

operator. The manual procedure took at least 2 hours whereas the automated pro-

cess required about 5 minutes for an operator to perform. The automated process

does not require significant knowledge on the part of the operator and is very repro-

ducible. The manual approach is more variable as it depends on operator judgement.

A common problem effecting magnetophoresis experiments, which are the subject

of the automated analysis in this work, is designing the applied magnetic field. It

was found that magnetic field gradient from the applied magnetic field was not

homogeneous as required. For achieving such homogeneous magnetic field gradient,

it was not possible to use single magnet or a conventional shaped magnet. For this

reason, either custom shaped magnet(s) or more than one permanent magnets were
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required. However, use of custom shaped magnets are not practical. So in Chapter

three a two permanent magnet solution with one placed in the upper and the other

in the lower position of the chip was investigated. This set-up of simulation provided

nearly homogeneous magnetic field gradient across the reaction chamber.

9.2 Future Work

To improve and extend the proposed methods for background subtraction, tracking

and automatic LOC based measurement future work the following future work can

be considered:

1. An important and general problem existing in the object tracking field is the

integration of foreground object contextual information during the tracking

process. For example, in the Lab-on-Chip micro-particle tracking application,

introducing the object recognition step during the tracking procedure could

identify and separate different types of particles if there are more than one

type of particle in the reaction chamber.

2. In this proposed method, the K number of histogram was chosen to represent

the background model and subsequently threshold TB to determine the pixel

as foreground or background was closely related with K number. Therefore,

further optimization of the K number threshold TB will be critical and crucial

for generating much more accurate results.

3. Further investigation can be done concerning the object feature operator. In-

stead of using pixel intensity, a texture feature for describing background

model and foreground object was applied due to its properties of robustness,

adaptiveness and effectiveness against noise. In the future, other more com-

plex object feature describes like SIFT or region covariance could be combined

together for more robust object recognition and accurate tracking.

4. One of the assumed conditions for the proposed algorithm is that the camera

is fixed with a certain distance above the chamber. The problems occurred
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for this situation are that first, the video taken was only for a part of reaction

area not the entire reaction chamber, second the method will not work if the

camera is moved. In the future, an improved algorithm for tracking objects in

a video taken by a moving camera or multiple cameras which cover the entire

reaction area could be considered.

5. Design of a Lab-on-Chip device with one camera or two which could record

the video across the entire reaction chamber.

6. Investigate the use of magnetic modelling and simulation to help predict the

path of the particles to improve tracking. This will integrate the two theories

of this thesis. Unfortunately, there was insufficient time to pursue this during

this work.

More generally and more importantly, the overall aim of future work is to de-

velop a complete fully automated measurement system. This could perform all the

processes of the physical experiment as well as the data analysis and provide to

potential for real world analysis for example in medical point of care situations.
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Appendix A

IMAGE HISTOGRAM

NORMALIZATION

Figure A.1: Histogram Normalization applied on image from PETS’09 dataset.
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Appendix B

THREE FRAME DIFFERENCE

Figure B.1: Three frame difference applied on images from PETS’09 dataset.
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Appendix C

GRADES AND PROPERTIES

OF NEODYMIUM MAGNETS

Grade Br

kGs

Hcb

kOe

Hci

kOe

(BH)max

MGOe

Density

g/cm3

Max working

Temp oC

N30AH 10.8 10.2 35 30 7.8 220

N33AH 11.2 10.5 35 33 7.8 220

N35AH 11.8 11.0 35 35 7.8 220

N30EH 10.8 10.2 30 30 7.7 200

N33EH 11.2 10.5 30 33 7.7 200

N35EH 11.8 11.0 30 35 7.7 200

N38EH 12.2 11.4 30 38 7.7 200

N30UH 10.8 10.2 25 30 7.6 180

N33UH 11.2 10.5 25 33 7.6 180

N35UH 11.8 11.0 25 35 7.6 180

N38UH 12.2 11.4 25 38 7.6 180

N40UH 12.5 11.6 25 40 7.6 180

N33SH 11.2 10.5 20 33 7.5 150

N35SH 11.8 11.0 20 35 7.5 150

N38SH 12.2 11.4 20 38 7.5 150
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N40SH 12.5 11.6 20 40 7.5 150

N42SH 12.8 11.6 20 42 7.5 150

N45SH 13.2 11.6 20 45 7.5 150

N35H 11.8 10.9 17 35 7.4 120

N38H 12.2 11.3 17 38 7.4 120

N40H 12.5 11.6 17 40 7.4 120

N42H 12.8 12.0 17 42 7.4 120

N45H 13.2 12.5 17 45 7.4 120

N48H 13.8 11.0 17 48 7.4 120

N50H 14.3 13.0 17 50 7.4 120

N35M 11.8 10.5 14 35 7.4 100

N38M 12.2 11.0 14 38 7.4 100

N40M 12.5 11.2 14 40 7.5 100

N42M 12.8 12.0 14 42 7.4 100

N45M 13.2 12.2 14 45 7.4 100

N48M 13.8 13.0 14 48 7.6 100

N50M 14.0 10.0 14 50 7.8 100

N35 11.8 10.9 12 35 7.4 80

N38 12.2 11.3 12 38 7.4 80

N40 12.5 11.6 12 40 7.5 80

N42 12.8 11.6 12 42 7.5 80

N45 13.2 11.0 12 45 7.6 80

N48 13.8 10.5 11 48 7.7 80

N50 14.0 10.0 11 40 7.8 80

N52 14.4 10.5 11 41 7.8 80

** Coating: Ni, Zn, Ni-Cu-Ni, Black Epoxy, Clear Cellulose

** Shape: Block, Disc, Ring, Arc

** Sintered NdFeB Grades (Source www.magnetsales.co.uk))
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Appendix D

HUMAN TRACKING

Figure D.1: Human tracking (correctly tracked) using proposed method from PETS’09 dataset.
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The observations are

1. The tracking starts with tracking object 1, 2, 3 and 5

2. Object number 11 was tracked all the way since it came to the screen in frame

107 until it goes out from the scene in frame 154.

3. Object number 7 was tracked from Frame 50 till 362. It has several times

overlap with other objects, the tracker still successful to recognize it.

Figure D.2: Human tracking (false detection) using proposed method from PETS’09 dataset.

Observations are:

1. When objects overlap with each other, tracker fails to recognize the same

object in next frame.
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2. For two nearby objects, the tracker sometime recognizes as one object, some-

time recognize as two individual objects with new ID number. For example,

number 5 was initially recognized as one object, then ID changes.

3. Number 20 object was tracked over 100 frames and then changed to number

30. Same problem happened for two numbers 9 and 5, later they appeared as

24 and 26.
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Appendix E

CODE EXPLANATION
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BGModeling TAB 

Step 1 : Inputing Image 

void BgmodelingThread::start() 

{ 

…… 

 QByteArray byteOpenName = m_strOpenFile.toLocal8Bit(); 

 char* szOpenFile = byteOpenName.data(); 

 char* szFileType; 

 int ch = '.'; 

 szFileType = strrchr( szOpenFile, ch ) + 1; 

 QString strFileType(szFileType); 

 

 if(strFileType == "avi"||strFileType == "mp4") 

 { 

 VideoCapture video(szOpenFile); 

 

 … … 

 } 

 else 

 { 

     TIFFCapture tiff(szOpenFile); 

 

 … … 

} 

} 

 

Step 2 : Three Frame Different BgModeling 
- Adaptive Thresholding 

void FrameDiff_BgModeling::adaptiveGaussianThresholding(Mat 

&foreground, int maxThreshValue, int threshType) 

{ 

    int threshValue, maxValue = 256; 

    double result, sum1, sum2, sum3, sum4; 

 

    int min = 0; 

    while ((foreground.data[min] == 0) && (min < maxValue)) 

        min++; 

 

    int max = maxValue; 

    while ((foreground.data[max] == 0) && (max > 0)) 

        max--; 

 

    if (min>=max) 
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        threshValue = maxValue / 2; 

    else 

    { 

        int movingIndex = min; 

        do 

        { 

            sum1 = sum2 = sum3 = sum4 = 0.0; 

            for (int i = min; i<=movingIndex; i++) 

            { 

                sum1 += i * foreground.data[i]; 

                sum2 += foreground.data[i]; 

            } 

 

            for (int i = (movingIndex+1); i<= max; i++) 

            { 

                sum3 += i * foreground.data[i]; 

                sum4 += foreground.data[i]; 

            } 

 

            result = (sum1/sum2 + sum3/sum4) / 2.0; 

            movingIndex++; 

        } while (((movingIndex+1) <= result) && (movingIndex < max-

1)); 

 

        threshValue = floor(result/10 + 0.5); 

    } 

 

    threshold(foreground, foreground, threshValue, maxThreshValue, 

threshType); 

} 

 
- Three Frame Different BgModeling 

void FrameDiff_BgModeling::process(const Mat &img_input, Mat 

&img_output) 

{ 

    if(img_input.empty()) 

        return; 

 

    Mat proc_img; 

    cvtColor(img_input, proc_img, CV_BGR2GRAY); 

 

    if(img_input_prev.empty()) 

    { 

        img_input_prev = proc_img.clone(); 
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        img_output = Mat(proc_img.size(), CV_8UC1); 

        img_output = Scalar::all(0); 

        return; 

    } 

 

    if(img_input_last.empty()) 

    { 

        img_input_last = img_input_prev.clone(); 

        img_output = Mat(proc_img.size(), CV_8UC1); 

        img_output = Scalar::all(0); 

        return; 

    } 

 

    img_foreground = Mat(proc_img.size(), CV_8UC3); 

    img_foreground = Scalar::all(0); 

 

    Mat temp1, temp2; 

    absdiff(proc_img, img_input_prev, temp1); 

    absdiff(proc_img, img_input_last, temp2); 

    bitwise_and(temp1, temp2, img_foreground); 

 

    if(img_foreground.type() == CV_8UC3) 

        cvtColor(img_foreground, img_foreground, CV_BGR2GRAY); 

 

    adaptiveGaussianThresholding(img_foreground, 255, 

CV_THRESH_BINARY); 

    dilate(img_foreground, img_foreground, Mat());   

 

    img_foreground.copyTo(img_output); 

    img_input_last = img_input_prev.clone(); 

    img_input_prev = proc_img.clone(); 

} 

 

Step 3 : MBP BgModeling 
- Calculate MBP Feature 

void TextureBGS::MBP(RgbImage& image, RgbImage& texture) 

{ 

    for(int y = TEXTURE_R; y < image.Ptr()->height-TEXTURE_R; ++y) 

    { 

        for(int x = TEXTURE_R; x < image.Ptr()->width-TEXTURE_R; 

++x) 

        { 

            for(int ch = 0; ch < NUM_CHANNELS; ++ch) 

            { 
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                vector<int> boundaryValues; // 3*3 window elements 

exclude center 

                vector<int> windowBins; // 3*3 window elements 

 

                // get 3*3 window elements 

                int val = (int)image(y, x, ch); // center value 

                windowBins.push_back(val); 

 

                val = (int)image(y-2, x, ch); 

                windowBins.push_back(val); 

                boundaryValues.push_back(val); 

 

                val = (int)image(y-1, x-2, ch); 

                windowBins.push_back(val); 

                boundaryValues.push_back(val); 

 

                val = (int)image(y-1, x+2, ch); 

                windowBins.push_back(val); 

                boundaryValues.push_back(val); 

 

                val = (int)image(y+1, x-2, ch); 

                windowBins.push_back(val); 

                boundaryValues.push_back(val); 

 

                val = (int)image(y+1, x+2, ch); 

                windowBins.push_back(val); 

                boundaryValues.push_back(val); 

 

                val = (int)image(y+2, x, ch); 

                windowBins.push_back(val); 

                boundaryValues.push_back(val); 

 

                // arrange 3*3 window elements 

                sort(windowBins.begin(), windowBins.end()); 

                int centerValue = windowBins[3]; // median value for 

MBP 

 

                // This part is for equation 1. 

                unsigned char textureCode = 0; 

 

                // this only works for a texture radius of 2 

                if(centerValue - boundaryValues[0] + HYSTERSIS >= 0) 

                textureCode += 1; 
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                if(centerValue - boundaryValues[1] + HYSTERSIS >= 0) 

                textureCode += 2; 

 

                if(centerValue - boundaryValues[2] + HYSTERSIS >= 0) 

                textureCode += 4; 

 

                if(centerValue - boundaryValues[3] + HYSTERSIS >= 0) 

                textureCode += 8; 

 

                if(centerValue - boundaryValues[4] + HYSTERSIS >= 0) 

                textureCode += 16; 

 

                if(centerValue - boundaryValues[5] + HYSTERSIS >= 0) 

                textureCode += 32; 

 

                texture(y,x,ch) = textureCode; 

            } 

        } 

    } 

} 

 
- Calculate MBP Histogram 

void TextureBGS::Histogram(RgbImage& texture, TextureHistogram* 

curTextureHist) 

{ 

    // calculate histogram within a 2*REGION_R square 

    for(int y = REGION_R+TEXTURE_R; y < texture.Ptr()->height-

REGION_R-TEXTURE_R; ++y) 

    { 

        for(int x = REGION_R+TEXTURE_R; x < texture.Ptr()->width-

REGION_R-TEXTURE_R;   ++x) 

        { 

            int index = x+y*(texture.Ptr()->width); 

 

            // clear histogram 

            for(int i = 0; i < NUM_BINS; ++i) 

            { 

                curTextureHist[index].r[i] = 0; 

                curTextureHist[index].g[i] = 0; 

                curTextureHist[index].b[i] = 0; 

            } 

 

            // calculate histogram 

            for(int j = -REGION_R; j <= REGION_R; ++j) 
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            { 

                for(int i = -REGION_R; i <= REGION_R; ++i) 

                { 

                    curTextureHist[index].r[texture(y+j,x+i,2)]++; 

                    curTextureHist[index].g[texture(y+j,x+i,1)]++; 

                    curTextureHist[index].b[texture(y+j,x+i,0)]++; 

                } 

            } 

        } 

    } 

} 

 

- Check Similarity 

int TextureBGS::ProximityMeasure(TextureHistogram& bgTexture, 

TextureHistogram& curTextureHist) 

{ 

    int proximity = 0; 

    for(int i = 0; i < NUM_BINS; ++i) 

    { 

        proximity += std::min(bgTexture.r[i], curTextureHist.r[i]); 

        proximity += std::min(bgTexture.g[i], curTextureHist.g[i]); 

        proximity += std::min(bgTexture.b[i], curTextureHist.b[i]); 

    } 

 

    return proximity; 

} 

 

void TextureBGS::BgsCompare(TextureArray* bgModel, TextureHistogram* 

curTextureHist, 

                unsigned char* modeArray, float threshold, BwImage& 

fgMask) 

{ 

    cvZero(fgMask.Ptr()); 

 

    for(int y = REGION_R+TEXTURE_R; y < fgMask.Ptr()->height-

REGION_R-TEXTURE_R; ++y) 

    { 

        for(int x = REGION_R+TEXTURE_R; x < fgMask.Ptr()->width-

REGION_R-TEXTURE_R;  

  ++x) 

        { 

            int index = x+y*(fgMask.Ptr()->width); 

 

            // find closest matching texture in background model 
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            int maxProximity = -1; 

 

            for(int m = 0; m < NUM_MODES; ++m) 

            { 

                int proximity = 

ProximityMeasure(bgModel[index].mode[m],  

   curTextureHist[index]); 

 

                if(proximity > maxProximity) 

                { 

                    maxProximity = proximity; 

                    modeArray[index] = m; 

                } 

            } 

 

            if(maxProximity < threshold) 

            fgMask(y,x) = 255; 

        } 

    } 

} 

 
- Update Background Model 

void TextureBGS::UpdateModel(BwImage& fgMask, TextureArray* bgModel, 

                 TextureHistogram* curTextureHist, unsigned char* 

modeArray) 

{ 

    for(int y = REGION_R+TEXTURE_R; y < fgMask.Ptr()->height-

REGION_R-TEXTURE_R; ++y) 

    { 

        for(int x = REGION_R+TEXTURE_R; x < fgMask.Ptr()->width-

REGION_R-TEXTURE_R;  

  ++x) 

        { 

            int index = x+y*(fgMask.Ptr()->width); 

 

            if(fgMask(y,x) == 0) 

            { 

                for(int i = 0; i < NUM_BINS; ++i) 

                { 

                    bgModel[index].mode[modeArray[index]].r[i] 

                    = (unsigned 

char)(ALPHA*curTextureHist[index].r[i] 

                    + (1-

ALPHA)*bgModel[index].mode[modeArray[index]].r[i] + 0.5); 
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                } 

            } 

        } 

    } 

} 

 

Step 4 : Combine Two Method 

- Combine Two Method 

void BgModeling::process(Mat src) 

{ 

 Mat proc_img = src.clone(); 

     m_pFrameDiff->process(src, m_framediffImg); 

 

     m_pMBP->process(src, m_mbpImg); 

     m_histogram = m_pMBP->getHistogram(); 

 

     resize(m_mbpImg, m_mbpImg, m_framediffImg.size()); 

     bitwise_and(m_mbpImg, m_framediffImg, m_mbpImg); 

     removeNoise(); 

     

 m_maskImg.release(); 

     Mat mask_fg = m_finalImg.clone(); 

     vector< vector<Point> > contours; 

     vector<Vec4i> hierarchy; 

     findContours(mask_fg, contours, hierarchy, CV_RETR_TREE,  

  CV_CHAIN_APPROX_SIMPLE); 

     if( contours.size() != 0 ) 

     {  

         int idx = 0; 

         for( ; idx >= 0; idx = hierarchy[idx][0] ) 

         { 

              drawContours(proc_img, contours, idx, 

Scalar(0, 0, 255), 2); 

         } 

     } 

 

     proc_img.copyTo(m_maskImg, m_finalImg); 

} 

 

- Remove Noise 

void BgModeling::removeNoise() 

{ 

 vector< vector<Point> > contours; 

     vector<Vec4i> hierarchy; 
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 Mat proc_img = m_mbpImg.clone(); 

     findContours(proc_img, contours, hierarchy, CV_RETR_TREE,  

  CV_CHAIN_APPROX_SIMPLE); 

     Mat img_foreground = Mat(m_mbpImg.size(), CV_8UC1); 

     img_foreground = Scalar::all(0); 

     if(contours.size() != 0) 

     { 

         for(int idx = 0; idx >= 0; idx = hierarchy[idx][0]) 

         { 

              Rect contourRect = 

boundingRect(contours[idx]); 

              if((contourRect.width < 

10)&&(contourRect.height < 10)) 

                  continue; 

 

              drawContours(img_foreground, contours, idx, 

Scalar(255),  

    CV_FILLED); 

         } 

     } 

 

     m_finalImg = img_foreground.clone(); 

} 

 

Step 5 : Save Results 

- Save Three Frame Different BgModeling Result 

void BgmodelingThread::saveFrameDiff() 

{ 

QString strFrameDiffName = m_strSavePath + "/" + m_strSaveName + 

"_framediff." +  

 m_strSaveType; 

    QByteArray byteFrameDiffName = strFrameDiffName.toLocal8Bit(); 

    char *szFrameDiffName = byteFrameDiffName.data(); 

 

    if((m_strSaveType == "avi")) 

    { 

        if(m_nFrameNum == 0) 

            m_pFrameDiffVideo = cvCreateVideoWriter(szFrameDiffName, 

CV_FOURCC('M', 'J', 'P', 'G'), m_nFps, m_frameDiffImage.size()); 

 

        IplImage saveArr = m_frameDiffImage; 

        cvWriteFrame(m_pFrameDiffVideo, &saveArr); 
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        if(m_nFrameNum == m_nFrameCnt-1) 

            cvReleaseVideoWriter(&m_pFrameDiffVideo); 

    } 

    else 

    { 

        if(m_nFrameNum == 0) 

            m_pFrameDiffTiff = TIFFOpen(szFrameDiffName, "w"); 

 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_IMAGEWIDTH, 

m_frameDiffImage.cols); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_IMAGELENGTH, 

m_frameDiffImage.rows); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_BITSPERSAMPLE,8); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_SAMPLESPERPIXEL,3); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_PLANARCONFIG, 

PLANARCONFIG_CONTIG); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_PHOTOMETRIC, 

PHOTOMETRIC_MINISBLACK); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_ORIENTATION, 

ORIENTATION_TOPLEFT); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_RESOLUTIONUNIT, 

RESUNIT_INCH); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_XRESOLUTION, 100.0); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_YRESOLUTION, 100.0); 

        TIFFSetField(m_pFrameDiffTiff, TIFFTAG_SUBFILETYPE, 

FILETYPE_PAGE); 

 

        for (int j = 0; j < m_frameDiffImage.rows; j++) 

        { 

            Mat rowImg = m_frameDiffImage.row(j); 

            TIFFWriteScanline(m_pFrameDiffTiff, rowImg.data, j, 0); 

        } 

 

        TIFFWriteDirectory(m_pFrameDiffTiff); 

 

        if(m_nFrameNum == m_nFrameCnt-1) 

            TIFFClose(m_pFrameDiffTiff); 

    } 

} 

 

- Save MBP BgModeling Result 

void BgmodelingThread::saveMBP() 

 

- Save Mask Result 
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void BgmodelingThread::saveMask() 
 

- Save Histogram Result 

void BgmodelingThread::saveHistogram() 

 

- Save Final Result 

void BgmodelingThread::saveFinal() 

 

Tracking TAB 

Step 1 : Inputing Image 

void TrackingThread::start() 

{ 

…… 

 QByteArray byteOpenName = m_strOpenFile.toLocal8Bit(); 

 char* szOpenFile = byteOpenName.data(); 

 char* szFileType; 

 int ch = '.'; 

 szFileType = strrchr( szOpenFile, ch ) + 1; 

 QString strFileType(szFileType); 

 

 if(strFileType == "avi"||strFileType == "mp4") 

 { 

 VideoCapture video(szOpenFile); 

 

 … … 

 } 

 else 

 { 

     TIFFCapture tiff(szOpenFile); 

 … … 

} 

} 

 

Step 2 : Background Modeling 

void TrackingThread::process(Mat src, bool bVideo) 

{ 

    …… 

    if(m_nFrameNum > 2) 

    { 

        m_pTracking->process(src, m_fgImg, bVideo); 

        m_resultImg = m_pTracking->getResultImage(); 

    } 

    else 
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        m_resultImg = src.clone(); 

 

  …… 

} 

 

Step 3 : Kalman Tracking 

void KalmanTracker::Update(vector<Point2d>& detections) 

{ 

    if(tracks.size() == 0) 

    { 

        for(int i = 0; i < detections.size(); i++) 

        { 

            KalmanTrackEngine* tr = new 

KalmanTrackEngine(detections[i], dt,  

  Accel_noise_mag); 

            tracks.push_back(tr); 

        } 

    } 

 

    int N = tracks.size(); 

    int M = detections.size(); 

    vector< vector<double> > Cost(N,vector<double>(M)); 

    vector<int> assignment; 

 

    double dist; 

    for(int i = 0; i < tracks.size(); i++) 

    { 

        for(int j = 0; j < detections.size(); j++) 

        { 

            Point2d diff=(tracks[i]->prediction-detections[j]); 

            dist = sqrtf(diff.x*diff.x+diff.y*diff.y); 

            Cost[i][j]=dist; 

        } 

    } 

 

    KalmanAssignment APS; 

    APS.Solve(Cost, assignment, KalmanAssignment::optimal); 

 

    vector<int> not_assigned_tracks; 

    for(int i = 0; i  <assignment.size(); i++) 

    { 

        if(assignment[i] != -1) 

        { 

            if(Cost[i][assignment[i]] > dist_thres) 
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            { 

                assignment[i] = -1; 

                not_assigned_tracks.push_back(i); 

            } 

        } 

        else 

        { 

            tracks[i]->skipped_frames++; 

        } 

    } 

 

    for(int i = 0; i < tracks.size(); i++) 

    { 

        if(tracks[i]->skipped_frames>maximum_allowed_skipped_frames) 

        { 

            delete tracks[i]; 

            tracks.erase(tracks.begin()+i); 

            assignment.erase(assignment.begin() + i); 

            i--; 

        } 

    } 

 

    vector<int> not_assigned_detections; 

vector<int>::iterator it; 

 

    for(int i = 0; i < detections.size() ;i++) 

    { 

        It = find(assignment.begin(), assignment.end(), i); 

        if(it==assignment.end()) 

        { 

            not_assigned_detections.push_back(i); 

        } 

    } 

 

    if(not_assigned_detections.size() != 0) 

    { 

        for(int i = 0; i < not_assigned_detections.size(); i++) 

        { 

            KalmanTrackEngine* tr = new KalmanTrackEngine  

  (detections[not_assigned_detections[i]], dt, 

Accel_noise_mag); 

            tracks.push_back(tr); 

        } 

    } 
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    for(int i = 0; i < assignment.size(); i++) 

    { 

        tracks[i]->KF->GetPrediction(); 

 

        if(assignment[i] != -1) 

        { 

            tracks[i]->skipped_frames = 0; 

            

tracks[i]->prediction=tracks[i]->KF->Update(detections[assignment[i]

], 1); 

        }else 

        { 

            

tracks[i]->prediction=tracks[i]->KF->Update(Point2f(0,0),0); 

        } 

 

        if(tracks[i]->trace.size()>max_trace_length) 

        { 

            tracks[i]->trace.erase(tracks[i]->trace.begin(), 

tracks[i]->trace.end()- 

  max_trace_length); 

        } 

 

        tracks[i]->trace.push_back(tracks[i]->prediction); 

        tracks[i]->KF->LastResult=tracks[i]->prediction; 

    } 

 

} 

 

Step 4 : MeanShift Tracking 

void MeanShift_Optical_Hog_Tracking::process(Mat src, RESULT_OBJECTS 

currentObjects, bool bVideo) 

{ 

    objectBufferFormat(&m_currentMeanshiftObjects); 

 

    for(int i = 0; i < currentObjects.objectPositions.size(); i++) 

    { 

        m_currentMeanshiftObjects.objectCnt++; 

        

m_currentMeanshiftObjects.objectRects.push_back(currentObjects.objec

tRects[i]); 

    } 
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    if (m_currentMeanshiftObjects.objectCnt > 0) 

    { 

        getObjectID(bVideo); 

 

        m_thirdMeanshiftObjects = m_lastMeanshiftObjects; 

        m_lastMeanshiftObjects = m_beforeMeanshiftObjects; 

        m_beforeMeanshiftObjects = m_currentMeanshiftObjects; 

    } 

    else 

    { 

        m_thirdMeanshiftObjects = m_lastMeanshiftObjects; 

        m_lastMeanshiftObjects = m_beforeMeanshiftObjects; 

        objectBufferFormat(&m_beforeMeanshiftObjects); 

    } 

 

    m_resultImg = src.clone(); 

    if(!m_lastFrame.empty()) m_thirdFrame = m_lastFrame.clone(); 

    if(!m_beforeFrame.empty()) m_lastFrame = m_beforeFrame.clone(); 

    if(!m_currentFrame.empty()) m_beforeFrame = 

m_currentFrame.clone(); 

m_currentFrame = src.clone(); 

 

…… 

} 

 

Step 5 : Check Direction Using Optical Flow 

void MeanShift_Optical_Hog_Tracking::getObjectID(bool bVideo) 

{ 

    INDIVIDUAL_OBJECT object; 

    vector<int> currentObjectIDs; 

 

    for (int i = 0; i < m_currentMeanshiftObjects.objectCnt; i++) 

    { 

        //object.frameNum = m_nFrameNum; 

        object.objectRect = 

m_currentMeanshiftObjects.objectRects[i]; 

 

        bool isNewObject = true; 

 

        for (int j = 0; j < m_beforeMeanshiftObjects.objectCnt; j++) 

        { 

            bool bExistID = false; 

            Point currentPt = 

Point(m_currentMeanshiftObjects.objectRects[i].x +  
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  m_currentMeanshiftObjects.objectRects[i].width/2, 

        m_currentMeanshiftObjects.objectRects[i].y +  

  m_currentMeanshiftObjects.objectRects[i].height); 

            Point beforePt = 

Point(m_beforeMeanshiftObjects.objectRects[j].x +  

  m_beforeMeanshiftObjects.objectRects[j].width/2,

  

        m_beforeMeanshiftObjects.objectRects[j].y +  

  m_beforeMeanshiftObjects.objectRects[j].height); 

 

            int angle = getAngle(beforePt, currentPt); 

 

            if(!bVideo) 

            { 

                if((abs(currentPt.x - beforePt.x) > 

5)&&(abs(currentPt.y –  

   beforePt.y) > 5)) 

                    if(currentPt.x < beforePt.x) 

                        continue; 

 

                int max_y = m_currentFrame.rows * 95 / 100; 

                if(max_y < beforePt.y) 

                    continue; 

 

                int max_x = m_currentFrame.cols * 95 / 100; 

                if(max_x < beforePt.x) 

                    continue; 

 

                if(m_beforeMeanshiftObjects.angles[j] != 1000) 

                    if(abs(angle-

m_beforeMeanshiftObjects.angles[j]) > 3) 

                        continue; 

            } 

   

  …… 

    } 

} 

 

Step 6 : Check Similarity Using Hog 

bool MeanShift_Optical_Hog_Tracking::isMatched(Mat src1, Mat src2) 

{ 

    Mat img1 = src1.clone(); 

    Mat img2 = src2.clone(); 

    resize(img2, img2, img1.size()); 
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    Mat img1_hsv, img2_hsv; 

    cvtColor(img1, img1_hsv, CV_RGB2HSV); 

    cvtColor(img2, img2_hsv, CV_RGB2HSV); 

 

    int histSize[] = {img1.size().width, img1.size().height}; 

    float hranges[] = { 0, 180 }; 

    float sranges[] = { 0, 256 }; 

    const float* ranges[] = { hranges, sranges }; 

 

    cv::MatND img1Hist, img2Hist; 

    int channels[] = {0, 1}; 

 

calcHist( &img2_hsv, 1, channels, cv::Mat(), img2Hist, 2, 

histSize, ranges, true,  

 false ); 

calcHist( &img1_hsv, 1, channels, cv::Mat(), img1Hist, 2, 

histSize, ranges, true,  

 false ); 

 

    double intersection = compareHist(img1Hist, img2Hist, 

CV_COMP_CORREL); 

 

    if (intersection > 0.5) 

        return true; 

    else 

        return false; 

}                

 

Step 7 : Save Results 

void TrackingThread::saveResult() 

{ 

QString strResultName = m_strSavePath + "/" + m_strSaveName + 

"_tracking." +  

 m_strSaveType; 

    QByteArray byteResultName = strResultName.toLocal8Bit(); 

    char *szResultName = byteResultName.data(); 

 

    if((m_strSaveType == "avi")) 

    { 

        if(m_nFrameNum == 0) 

            m_pResultVideo = cvCreateVideoWriter(szResultName, 

CV_FOURCC('M', 'J', 'P',  

  'G'), m_nFps, m_resultImg.size()); 
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        IplImage saveArr = m_resultImg; 

        cvWriteFrame(m_pResultVideo, &saveArr); 

 

        if(m_nFrameNum == m_nFrameCnt-1) 

            cvReleaseVideoWriter(&m_pResultVideo); 

    } 

    else 

    { 

        if(m_nFrameNum == 0) 

            m_pResultTiff = TIFFOpen(szResultName, "w"); 

 

        TIFFSetField(m_pResultTiff, TIFFTAG_IMAGEWIDTH, 

m_resultImg.cols); 

        TIFFSetField(m_pResultTiff, TIFFTAG_IMAGELENGTH, 

m_resultImg.rows); 

        TIFFSetField(m_pResultTiff, TIFFTAG_BITSPERSAMPLE,8); 

        TIFFSetField(m_pResultTiff, TIFFTAG_SAMPLESPERPIXEL,3); 

        TIFFSetField(m_pResultTiff, TIFFTAG_PLANARCONFIG, 

PLANARCONFIG_CONTIG); 

        TIFFSetField(m_pResultTiff, TIFFTAG_PHOTOMETRIC, 

PHOTOMETRIC_MINISBLACK); 

        TIFFSetField(m_pResultTiff, TIFFTAG_ORIENTATION, 

ORIENTATION_TOPLEFT); 

        TIFFSetField(m_pResultTiff, TIFFTAG_RESOLUTIONUNIT, 

RESUNIT_INCH); 

        TIFFSetField(m_pResultTiff, TIFFTAG_XRESOLUTION, 100.0); 

        TIFFSetField(m_pResultTiff, TIFFTAG_YRESOLUTION, 100.0); 

        TIFFSetField(m_pResultTiff, TIFFTAG_SUBFILETYPE, 

FILETYPE_PAGE); 

 

        for (int j = 0; j < m_resultImg.rows; j++) 

        { 

            Mat rowImg = m_resultImg.row(j); 

            TIFFWriteScanline(m_pResultTiff, rowImg.data, j, 0); 

        } 

 

        TIFFWriteDirectory(m_pResultTiff); 

 

        if(m_nFrameNum == m_nFrameCnt-1) 

            TIFFClose(m_pResultTiff); 

    } 

} 
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Analysis TAB 

Step 1 : Inputing Image 

void ErrorbarThread::process() 

{ 

    QByteArray byteOpenName = m_strOpenFile.toLocal8Bit(); 

    char* szOpenFile = byteOpenName.data(); 

    char* szFileType; 

    int ch = '.'; 

    szFileType = strrchr( szOpenFile, ch ) + 1; 

    QString strFileType(szFileType); 

 

    QString strFgFile = m_strSavePath + "/" + m_strResultName + 

"(fg).tif"; 

    QByteArray byteFgFile = strFgFile.toLocal8Bit(); 

    char* szFgFile = byteFgFile.data(); 

    m_pFgTiff = TIFFOpen(szFgFile, "w"); 

 

    QString strMedianFile = m_strSavePath + "/" + m_strResultName + 

"(median).tif"; 

    QByteArray bytMedianFile = strMedianFile.toLocal8Bit(); 

    char* szMedianFile = bytMedianFile.data(); 

    m_pMedianTiff = TIFFOpen(szMedianFile, "w"); 

 

    if(strFileType == "avi"||strFileType == "mp4") 

    { 

        VideoCapture video(szOpenFile); 

        m_nFrameNum = 0; 

        m_nFrameCnt = video.get(CV_CAP_PROP_FRAME_COUNT); 
        m_nFps = video.get(CV_CAP_PROP_FPS); 
        m_nHeight = video.get(CV_CAP_PROP_FRAME_HEIGHT); 
        m_bVideo = true; 

 

        for(;;) 

        { 

            Mat currentImg; 

            video.operator>>(currentImg); 

            if(currentImg.empty()) 

                break; 

 

            m_intensityImg = currentImg.clone(); 

 

            // object buffer reset 

            m_nMovingThreshold_X = currentImg.cols/5; 
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            m_nMovingThreshold_Y = currentImg.rows/5; 

 

            Track(currentImg); 

 

            m_nProgressValue = 95 * m_nFrameNum / m_nFrameCnt; 

            if(m_nProgressValue != m_nLastProgressValue) 

            { 

                setProgress(m_nProgressValue, m_nThreadIdx); 

                m_nLastProgressValue = m_nProgressValue; 

            } 

        } 

    } 

    else 

    { 

        TIFFCapture tiff(szOpenFile); 

        m_nFrameNum = 0; 

        m_nFps = 30; 

        m_nFrameCnt = tiff.get(TIFF_CAP_PROP_FRAME_COUNT); 

        m_nHeight = tiff.get(TIFF_CAP_PROP_FRAME_HEIGHT); 

        m_bVideo = false; 

 

        for (;;) 

        { 

            Mat currentImg; 

            tiff.operator>>(currentImg); 

            if(currentImg.empty()) 

                break; 

 

            m_intensityImg = currentImg.clone(); 

 

            // object buffer reset 

            m_nMovingThreshold_X = 150; 

            m_nMovingThreshold_Y = 60; 

 

            Track(currentImg); 

 

            m_nProgressValue = 95 * m_nFrameNum / m_nFrameCnt; 

            if(m_nProgressValue != m_nLastProgressValue) 

            { 

                setProgress(m_nProgressValue, m_nThreadIdx); 

                m_nLastProgressValue = m_nProgressValue; 

            } 

        } 

    } 
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    TIFFClose(m_pFgTiff); 

    TIFFClose(m_pMedianTiff); 

 

    completeTrack(); 

    setProgress(97, m_nThreadIdx); 

 

    saveResultFiles(); 

    setProgress(98, m_nThreadIdx); 

    saveErrorBarData(); 

    setProgress(99, m_nThreadIdx); 

 

    m_allObjectsArray.clear(); 

    m_completeObjectsArray.clear(); 

    objectBufferFormat(&m_currentObjects); 

    objectBufferFormat(&m_firstLastObjects); 

    objectBufferFormat(&m_secondLastObjects); 

    objectBufferFormat(&m_thirdLastObjects); 

    setProgress(100, m_nThreadIdx); 

} 

 

Step 2 : Background Modeling 

- Get Threshold Image 

Mat ErrorbarThread::getThresholdImage(Mat src) 

{ 

    Mat fg_img; 

 

    m_pBgModeling->process(src, fg_img); 

    if(fg_img.empty()) 

    { 

        fg_img = Mat(src.size(), CV_8UC1); 

        fg_img = Scalar::all(0); 

    } 

 

    return fg_img; 

} 

 

- Detect Objects 

void ErrorbarThread::detectObjects(Mat src) 

{ 

    Mat procImg = src.clone(); 

cv::findContours(procImg, m_contours, m_hierarchy, CV_RETR_TREE,  

 CV_CHAIN_APPROX_SIMPLE); 
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    if( m_contours.size() != 0 ) 

    { 

        int idx = 0; 

 

        for( ; idx >= 0; idx = m_hierarchy[idx][0] ) 

        { 

            Rect contourRect = boundingRect(m_contours[idx]); 

 

            if ((contourRect.width > src.cols/2) 

||(contourRect.height > src.rows/2) ||  

  (contourRect.width < 

OBJECT_SIZE_TIFF_MIN)||(contourRect.height <  

  OBJECT_SIZE_TIFF_MIN)) 

                continue; 

 

            m_currentObjects.objectCnt++; 

            m_currentObjects.objectRects.push_back(contourRect); 

            Point contourCenter = 

Point(contourRect.x+contourRect.width/2,  

  contourRect.y+contourRect.height/2); 

            m_currentObjects.positions.push_back(contourCenter); 

            int nIntensity = calcIntensity(contourRect); 

            m_currentObjects.intensities.push_back(nIntensity); 

        } 

    } 

} 

 

Step 3 : Object Tracking 

void ErrorbarThread::trackObjects() 

{ 

    INDIVIDUAL_OBJECT object; 

    if (m_currentObjects.objectCnt > 0) 

    { 

        if (m_firstLastObjects.objectCnt > 0) 

        { 

            setObjectID(); 

        } 

        else 

        { 

            for (int i = 0; i < m_currentObjects.objectCnt; i++) 

            { 

                m_nObjectID++; 

                m_currentObjects.objectIDs.push_back(m_nObjectID); 

                object.frameNum = m_nFrameNum; 
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                object.objectID = m_nObjectID; 

                object.position = m_currentObjects.positions[i]; 

                object.objectRect = m_currentObjects.objectRects[i]; 

                object.intensity = m_currentObjects.intensities[i]; 

                m_allObjectsArray.push_back(object); 

            } 

        } 

 

        m_thirdLastObjects = m_secondLastObjects; 

        m_secondLastObjects = m_firstLastObjects; 

        m_firstLastObjects = m_currentObjects; 

    } 

    else 

    { 

        m_thirdLastObjects = m_secondLastObjects; 

        m_secondLastObjects = m_firstLastObjects; 

        objectBufferFormat(&m_firstLastObjects); 

    } 

} 

 

void ErrorbarThread::completeTrack() 

{ 

    // rank id 

    OBJECTS_ARRAY tempArray; 

    vector<int> vecObjectCountList; 

    vector<int>::iterator iter; 

 

    for (int i = 0; i < m_nObjectID; i++) 

    { 

        vecObjectCountList.push_back(0); 

    } 

 

    for (int i = 0; i < (int)m_allObjectsArray.size(); i++) 

    { 

        iter = vecObjectCountList.begin(); 

        int nObjectCount = 

vecObjectCountList[m_allObjectsArray[i].objectID - 1] + 1; 

        iter = iter + m_allObjectsArray[i].objectID - 1; 

        vecObjectCountList.erase(iter); 

        vecObjectCountList.insert(iter, nObjectCount); 

    } 

 

    int nMeanObjectCnt = 0; 

    for(int i = 0; i < vecObjectCountList.size(); i++) 
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    { 

        nMeanObjectCnt += vecObjectCountList[i]; 

    } 

    nMeanObjectCnt = nMeanObjectCnt/vecObjectCountList.size(); 

 

    for (int i = 0; i < (int)vecObjectCountList.size(); i++) 

    { 

        for (int j = 0; j < (int)m_allObjectsArray.size(); j++) 

        { 

            if (m_allObjectsArray[j].objectID == (i + 1)) 

            { 

                tempArray.push_back(m_allObjectsArray[j]); 

            } 

        } 

    } 

 

    // remove less 3 object 

    vector< vector<INDIVIDUAL_OBJECT> > allDatas; 

    vector<INDIVIDUAL_OBJECT> eachObjDatas; 

    int id = 1; 

    for (int i = 0; i < tempArray.size(); i++) 

    { 

        if(i == 0) 

            id = tempArray[i].objectID; 

 

        if(id == tempArray[i].objectID) 

        { 

            eachObjDatas.push_back(tempArray[i]); 

        } 

        else 

        { 

            allDatas.push_back(eachObjDatas); 

            eachObjDatas.clear(); 

            id = tempArray[i].objectID; 

        } 

    } 

 

    tempArray.clear(); 

    for(int i = 0; i < allDatas.size(); i++) 

    { 

        if(allDatas[i].size() > 3) 

        { 

            for(int j = 0; j < allDatas[i].size(); j++) 

                tempArray.push_back(allDatas[i][j]); 
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        } 

    } 

 

    // check moving position 

    Point startPt, endPt; 

    vector<int> removeObjectIDs; 

    int currentID = 0; 

    for(int i = 0; i < tempArray.size(); i++) 

    { 

        if(i == 0) 

        { 

            currentID = tempArray[i].objectID; 

            startPt = tempArray[i].position; 

            endPt = tempArray[i].position; 

        } 

 

        if(currentID == tempArray[i].objectID) 

        { 

            endPt = tempArray[i].position; 

        } 

        else 

        { 

            int move_x = abs(endPt.x - startPt.x); 

            int move_y = abs(endPt.y - endPt.y); 

 

            if(move_x < OBJECT_NON_MOVE && move_y < OBJECT_NON_MOVE) 

            { 

                removeObjectIDs.push_back(currentID); 

            } 

 

            currentID = tempArray[i].objectID; 

            startPt = tempArray[i].position; 

            endPt = tempArray[i].position; 

        } 

    } 

 

    // remove non-moving objects 

    OBJECTS_ARRAY removeNonMovingObjects; 

    for(int i = 0; i < tempArray.size(); i++) 

    { 

        bool isRemoveObject = false; 

        for(int j = 0; j < removeObjectIDs.size(); j++) 

        { 

            if(tempArray[i].objectID == removeObjectIDs[j]) 
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            { 

                isRemoveObject = true; 

                break; 

            } 

        } 

 

        if(!isRemoveObject) 

            removeNonMovingObjects.push_back(tempArray[i]); 

    } 

 

    // arrange objects 

    INDIVIDUAL_OBJECT object; 

    int tempID = 0, realID = 0; 

 

    for (int i = 0; i < (int)removeNonMovingObjects.size(); i++) 

    { 

        if (tempID == removeNonMovingObjects[i].objectID) 

        { 

            object = removeNonMovingObjects[i]; 

            object.objectID = realID; 

            m_completeObjectsArray.push_back(object); 

        } 

        else 

        { 

            tempID = removeNonMovingObjects[i].objectID; 

            realID++; 

            object = removeNonMovingObjects[i]; 

            object.objectID = realID; 

            m_completeObjectsArray.push_back(object); 

        } 

    } 

} 

 

Step 4 : Save Excel Files 

void ErrorbarThread::saveErrorBarData() 

{ 

    if(m_completeObjectsArray.size() > 0) 

    { 

        vector< vector<INDIVIDUAL_OBJECT> > allDatas; 

        vector<int> realIntensities; 

        QString strAllObjectCsvName = m_strSavePath + "/" + 

m_strResultName + ".csv"; 

        QFile allObjFile(strAllObjectCsvName); 
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        QString strFirstExcelName = m_strSavePath + "/" + 

m_strResultName +  

  "_first.csv"; 

        QFile firstExcelFile(strFirstExcelName); 

        firstExcelFile.open(QFile::WriteOnly|QFile::Truncate); 
        QString strSecondExcelName = m_strSavePath + "/" + 

m_strResultName +  

  "_second.csv"; 

        QFile secondExcelFile(strSecondExcelName); 

        secondExcelFile.open(QFile::WriteOnly|QFile::Truncate); 
 

        if (allObjFile.open(QFile::WriteOnly|QFile::Truncate)) 
        { 

            QTextStream stream(&allObjFile); 

            QStringList strList; 

 

            strList.clear(); 

            strList << "ID" << "Frame Number" << "Intensity" << 

"State" << "Speed" <<  

  "Position" << "Median Values"; 

            stream << strList.join( "," ) + "\n"; 

            strList.clear(); 

 

            QTextStream firstStream(&firstExcelFile); 

            QTextStream secondStream(&secondExcelFile); 

            QStringList strFirst, strSecond; 

 

            strFirst.clear(); 

            strFirst<<"Object ID"<<"Frame 

Number"<<"Intensity"<<"Speed"<<"Moving"; 

            firstStream<<strFirst.join(",") + "\n"; 

            strFirst.clear(); 

 

            strSecond.clear(); 

            strSecond<<"Object ID"<<"Intensity"; 

            secondStream<<strSecond.join(",") + "\n"; 

            strSecond.clear(); 

 

            vector<INDIVIDUAL_OBJECT> eachObjDatas; 

            vector<int> eachIntensities; 

            vector<int>::iterator iter; 

 

            int id = 1; 

            for (int i = 0; i < m_completeObjectsArray.size(); i++) 
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            { 

                if(id == m_completeObjectsArray[i].objectID) 

                { 

                    

eachObjDatas.push_back(m_completeObjectsArray[i]); 

                } 

                else 

                { 

                    allDatas.push_back(eachObjDatas); 

                    eachObjDatas.clear(); 

                    id = m_completeObjectsArray[i].objectID; 

                } 

            } 

 

            for(int i = 0; i < allDatas.size(); i++) 

            { 

                eachIntensities.clear(); 

 

                for(int j = 0; j < allDatas[i].size(); j++) 

                { 

                    int intensity = allDatas[i][j].intensity; 

                    if(j == 0) 

                    { 

                        eachIntensities.push_back(intensity); 

                    } 

                    else 

                    { 

                        iter = eachIntensities.begin(); 

                        bool bInsert = false; 

                        for(int k = 0; k < eachIntensities.size(); 

k++) 

                        { 

                            if(intensity < eachIntensities[k]) 

                            { 

                                eachIntensities.insert(iter, 

intensity); 

                                bInsert = true; 

                                break; 

                            } 

 

                            iter++; 

                        } 

 

                        if(!bInsert) 
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                            eachIntensities.push_back(intensity); 

                    } 

                } 

 

                int median_idx, median_val, before_val, next_val; 

                if(allDatas[i].size() % 2 == 0) 

                    median_idx = allDatas[i].size() / 2 - 1; 

                else 

                    median_idx = allDatas[i].size() / 2; 

                median_val = eachIntensities[median_idx]; 

                before_val = eachIntensities[median_idx-1]; 

                next_val = eachIntensities[median_idx+1]; 

 

                realIntensities.push_back(before_val); 

                realIntensities.push_back(median_val); 

                realIntensities.push_back(next_val); 

 

                QString strID, strMedians; 

                for(int j = 0; j < allDatas[i].size(); j++) 

                { 

                    strID.clear(); 

                    strID = 

QString::number(allDatas[i][j].objectID); 

                    strList << strID; 

                    strFirst << strID; 

 

                    QString strFrameNumber = 

QString::number(allDatas[i][j].frameNum); 

                    strList << strFrameNumber; 

                    strFirst << strFrameNumber; 

 

                    QString strIntensity = 

QString::number(allDatas[i][j].intensity); 

                    strList << strIntensity; 

                    strFirst << strIntensity; 

 

                    if(j == 0) 

                    { 

                        strList << "Stop"; 

                        strList << "0"; 

                    } 

                    else 

                    { 
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                        int move_value = isMoved(allDatas[i][j-

1].position,  

    allDatas[i][j].position); 

                        if(move_value > 10) 

                            strList << "Move"; 

                        else 

                            strList << "Stop"; 

 

                        QString strSpeed = 

QString::number(move_value); 

                        strList << strSpeed; 

                        strFirst << strSpeed; 

 

                        if(move_value > 10) 

                            strFirst << "Move"; 

                        else 

                            strFirst << "Stop"; 

                    } 

 

                    QString strPosition = 

QString::number(allDatas[i][j].position.y *  

   255 / m_intensityImg.rows); 

                    strList << strPosition; 

 

                    strMedians.clear(); 

                    strMedians = QString::number(before_val) + ". " 

+  

   QString::number(median_val) + ". " + 

QString::number(next_val); 

                    strList << strMedians; 

 

                    stream << strList.join( "," )+"\n"; 

                    firstStream << strFirst.join(",") + "\n"; 

                    strList.clear(); 

                    strFirst.clear(); 

                } 

 

                strSecond << strID; 

                strSecond << strMedians; 

                secondStream << strSecond.join(",") + "\n"; 

                strSecond.clear(); 

            } 

 

            allObjFile.close(); 
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            firstExcelFile.close(); 
            secondExcelFile.close(); 
        } 

 

        int total_value = 0; 

        for(int i = 0; i < realIntensities.size(); i++) 

        { 

            total_value += realIntensities[i]; 

        } 

        float final_median = (float)total_value / 

(float)realIntensities.size(); 

 

        QString strCsvName = m_strSavePath + "/" + m_strResultName + 

"(Error Bar).csv"; 

        QFile file(strCsvName); 

 

        QString strThirdExcelName = m_strSavePath + "/" + 

m_strResultName +  

  "_third.csv"; 

        QFile thirdExcelFile(strThirdExcelName); 

        thirdExcelFile.open(QFile::WriteOnly|QFile::Truncate); 
 

        if (file.open(QFile::WriteOnly|QFile::Truncate)) 
        { 

            QTextStream stream(&file); 

            QStringList strList; 

 

            QTextStream thirdStream(&thirdExcelFile); 

            QStringList strThird; 

 

            strList.clear(); 

            strList<<"Object ID"<<"Average"<<"Standard 

Deviation"<<"Start Frame"<<"End  

  Frame"; 

            stream << strList.join( "," )+"\n"; 

            strList.clear(); 

 

            strThird.clear(); 

            strThird<<"All 30%"<<"med 50%"<<"average"<<"s.d"; 

            thirdStream<<strThird.join(",") + "\n"; 

            strThird.clear(); 

 

            float sumOfDivations = 0; 

            for(int i = 0; i < realIntensities.size(); i++) 
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            { 

                float divation = (float)((float)realIntensities[i] 

–  

  

 final_median)*(float)((float)realIntensities[i] - 

final_median); 

                sumOfDivations += divation; 

            } 

 

            float final_div = sumOfDivations / 

realIntensities.size(); 

            final_div = sqrtf(final_div); 

 

            strList << "final value"; 

            QString strAverage = QString::number(final_median); 

            strList<<strAverage; 

            QString strDivation = QString::number(final_div); 

            strList<<strDivation; 

            stream << strList.join( "," )+"\n"; 

            strList.clear(); 

 

            for(int i = 0; i < allDatas.size(); i++) 

            { 

                int value1 = realIntensities[i*3]; 

                int value2 = realIntensities[i*3+1]; 

                int value3 = realIntensities[i*3+2]; 

 

                float median_value = 

(float)(value1+value2+value3)/3; 

                float divation = (float)(value1-

median_value)*(float)(value1- 

   median_value) + (float)(value2-

median_value)*(float)(value2- 

   median_value) + (float)(value3-

median_value)*(float)(value3- 

   median_value); 

                divation = sqrtf(divation/3); 

 

                QString strID = QString::number(i+1); 

                strList << strID; 

                strAverage = QString::number(median_value); 

                strList << strAverage; 

                strDivation = QString::number(divation); 

                strList << strDivation; 
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                QString strStartFrame = 

QString::number(allDatas[i][0].frameNum); 

                strList << strStartFrame; 

                QString strEndFrame = 

QString::number(allDatas[i][allDatas[i].size()- 

   1].frameNum); 

                strList << strEndFrame; 

                stream << strList.join( "," )+"\n"; 

                strList.clear(); 

 

                strThird << strID; 

                strThird << QString::number(value1); 

                strThird << strAverage; 

                strThird << strDivation; 

                thirdStream << strThird.join(",") + "\n"; 

                strThird.clear(); 

 

                strThird << strID; 

                strThird << QString::number(value2); 

                strThird << ""; 

                strThird << ""; 

                thirdStream << strThird.join(",") + "\n"; 

                strThird.clear(); 

 

                strThird << strID; 

                strThird << QString::number(value3); 

                strThird << ""; 

                strThird << ""; 

                thirdStream << strThird.join(",") + "\n"; 

                strThird.clear(); 

            } 

 

            file.close(); 
            thirdExcelFile.close(); 
        } 

    } 

} 

 

Step 5 : Save Results 

void ErrorbarThread::saveResultFiles() 

{ 

    QString strObjID; 

    QByteArray byteObjID; 

    char* szObjID; 



293 
 

    int tempID = 0; 

    Point befPt = Point(-1, -1); 

    Point lastBefPt = Point(-1, -1); 

 

    VideoCapture video; 

    TIFFCapture tiff; 

    Mat currentImg; 

    int nFrameNum = 0; 

 

    TIFF *tiffTrace, *tiffNoTrace, *tiffOrg; 

    VideoWriter videoTrace, videoNoTrace; 

 

    QString strOrgName = m_strSavePath + "/" + m_strResultName + "." 

+ m_strSaveType; 

    QByteArray byteOrgName = strOrgName.toLocal8Bit(); 

    char *szOrgName = byteOrgName.data(); 

 

QString strTraceResultName = m_strSavePath + "/" + 

m_strResultName + "(with  

 trace)." + m_strSaveType; 

    QByteArray byteTraceResultName = 

strTraceResultName.toLocal8Bit(); 

    char *szTraceResultName = byteTraceResultName.data(); 

 

QString strNoTraceResultName = m_strSavePath + "/" + 

m_strResultName + "(without  

 trace)." + m_strSaveType; 

    QByteArray byteNoTraceResultName = 

strNoTraceResultName.toLocal8Bit(); 

    char *szNoTraceResultName = byteNoTraceResultName.data(); 

 

    QByteArray byteName = m_strOpenFile.toLocal8Bit(); 

    char* szFileName = byteName.data(); 

    char* szFileType; 

    int ch = '.'; 

    szFileType = strrchr( szFileName, ch ) + 1; 

    QString strFileType(szFileType); 

 

    bool bFirst = true; 

 

    for(;;) 

    { 

        if(strFileType == "avi"||strFileType == "mp4") 

        { 
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            if(bFirst) 

            { 

                video = VideoCapture(szFileName); 

                bFirst = false; 

            } 

 

            video.operator >>(currentImg); 

        } 

        else 

        { 

            if(bFirst) 

            { 

                tiff = TIFFCapture(szFileName); 

                bFirst = false; 

            } 

 

            tiff.operator >>(currentImg); 

        } 

 

        if(currentImg.empty()) 

            break; 

 

        if(currentImg.type() == CV_8UC1) 

            cvtColor(currentImg, currentImg, CV_GRAY2BGR); 

 

        Mat withoutImg = currentImg.clone(); 

        Mat confirmImg = currentImg.clone(); 

 

        OBJECTS_ARRAY drawObjArray; 

        cv::vector<int> currentIDs; 

 

        for (int j = 0; j < (int)m_completeObjectsArray.size(); j++) 

        { 

            if (m_completeObjectsArray[j].frameNum == nFrameNum) 

            { 

                

currentIDs.push_back(m_completeObjectsArray[j].objectID); 

                drawObjArray.push_back(m_completeObjectsArray[j]); 

            } 

        } 

 

        for (int j = 0; j < (int)m_completeObjectsArray.size(); j++) 

        { 

            if (m_completeObjectsArray[j].frameNum <= nFrameNum) 
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            { 

                for (int cnt = 0; cnt < currentIDs.size(); cnt++) 

                { 

                    if (currentIDs[cnt] == 

m_completeObjectsArray[j].objectID) 

                    { 

                        

drawObjArray.push_back(m_completeObjectsArray[j]); 

                    } 

                } 

            } 

        } 

 

        for (int k = 0; k < (int)drawObjArray.size(); k++) 

        { 

            if (tempID == drawObjArray[k].objectID) 

            { 

                if(befPt.x < drawObjArray[k].position.x) 

                    line(confirmImg, befPt, 

drawObjArray[k].position, colors[tempID%8],  

   2); 

                lastBefPt = befPt; 

                befPt = drawObjArray[k].position; 

            } 

            else 

            { 

                if(k != 0) 

                { 

                    strObjID = QString::number(tempID); 

                    byteObjID = strObjID.toLocal8Bit(); 

                    szObjID = byteObjID.data(); 

                    cv::putText(confirmImg, szObjID, befPt,  

   CV_FONT_HERSHEY_COMPLEX_SMALL, 1.0, 

colors[tempID%8], 2); 

                } 

 

                tempID = drawObjArray[k].objectID; 

                line(confirmImg, drawObjArray[k].position, 

drawObjArray[k].position,  

   colors[tempID%8], 2); 

                befPt = drawObjArray[k].position; 

            } 

 

            if(k == (drawObjArray.size() - 1)) 
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            { 

                strObjID = QString::number(tempID); 

                byteObjID = strObjID.toLocal8Bit(); 

                szObjID = byteObjID.data(); 

                cv::putText(confirmImg, szObjID, 

drawObjArray[k].position,  

   CV_FONT_HERSHEY_COMPLEX_SMALL, 1.0, 

colors[tempID%8], 2); 

            } 

        } 

 

        for (int j = 0; j < (int)m_completeObjectsArray.size(); j++) 

        { 

            if (m_completeObjectsArray[j].frameNum == nFrameNum) 

            { 

                strObjID = 

QString::number(m_completeObjectsArray[j].objectID); 

                byteObjID = strObjID.toLocal8Bit(); 

                szObjID = byteObjID.data(); 

                cv::putText(withoutImg, szObjID, 

m_completeObjectsArray[j].position,  

   CV_FONT_HERSHEY_COMPLEX_SMALL, 1.0,  

   colors[m_completeObjectsArray[j].objectID%8], 

2); 

            } 

        } 

 

        if(m_strSaveType == "avi") 

        { 

            if(nFrameNum == 0) 

            { 

                videoTrace.open(szTraceResultName, CV_FOURCC('X', 
'V', 'I', 'D'),  

   m_nFps, confirmImg.size()); 

                videoNoTrace.open(szNoTraceResultName, 
CV_FOURCC('X', 'V', 'I', 'D'),  

   m_nFps, withoutImg.size()); 

            } 

 

            videoTrace.write(confirmImg); 
            videoNoTrace.write(withoutImg); 
        } 

        else 

        { 



297 
 

            if (nFrameNum == 0) 

            { 

                tiffOrg = TIFFOpen(szOrgName, "w"); 

                tiffTrace = TIFFOpen(szTraceResultName, "w"); 

                tiffNoTrace = TIFFOpen(szNoTraceResultName, "w"); 

            } 

 

            TIFFSetField(tiffOrg, TIFFTAG_IMAGEWIDTH, 

currentImg.cols); 

            TIFFSetField(tiffOrg, TIFFTAG_IMAGELENGTH, 

currentImg.rows); 

            TIFFSetField(tiffOrg, TIFFTAG_BITSPERSAMPLE,8); 

            TIFFSetField(tiffOrg, TIFFTAG_SAMPLESPERPIXEL,3); 

            TIFFSetField(tiffOrg, TIFFTAG_PLANARCONFIG, 

PLANARCONFIG_CONTIG); 

            TIFFSetField(tiffOrg, TIFFTAG_PHOTOMETRIC, 

PHOTOMETRIC_MINISBLACK); 

            TIFFSetField(tiffOrg, TIFFTAG_ORIENTATION, 

ORIENTATION_TOPLEFT); 

            TIFFSetField(tiffOrg, TIFFTAG_RESOLUTIONUNIT, 

RESUNIT_INCH); 

            TIFFSetField(tiffOrg, TIFFTAG_XRESOLUTION, 100.0); 

            TIFFSetField(tiffOrg, TIFFTAG_YRESOLUTION, 100.0); 

            TIFFSetField(tiffOrg, TIFFTAG_SUBFILETYPE, 

FILETYPE_PAGE); 

 

            for (int j = 0; j < currentImg.rows; j++) 

            { 

                Mat rowImg = currentImg.row(j); 

                TIFFWriteScanline(tiffOrg, rowImg.data, j, 0); 

            } 

 

            TIFFWriteDirectory(tiffOrg); 

 

            TIFFSetField(tiffTrace, TIFFTAG_IMAGEWIDTH, 

confirmImg.cols); 

            TIFFSetField(tiffTrace, TIFFTAG_IMAGELENGTH, 

confirmImg.rows); 

            TIFFSetField(tiffTrace, TIFFTAG_BITSPERSAMPLE,8); 

            TIFFSetField(tiffTrace, TIFFTAG_SAMPLESPERPIXEL,3); 

            TIFFSetField(tiffTrace, TIFFTAG_PLANARCONFIG, 

PLANARCONFIG_CONTIG); 

            TIFFSetField(tiffTrace, TIFFTAG_PHOTOMETRIC, 

PHOTOMETRIC_MINISBLACK); 
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            TIFFSetField(tiffTrace, TIFFTAG_ORIENTATION, 

ORIENTATION_TOPLEFT); 

            TIFFSetField(tiffTrace, TIFFTAG_RESOLUTIONUNIT, 

RESUNIT_INCH); 

            TIFFSetField(tiffTrace, TIFFTAG_XRESOLUTION, 100.0); 

            TIFFSetField(tiffTrace, TIFFTAG_YRESOLUTION, 100.0); 

            TIFFSetField(tiffTrace, TIFFTAG_SUBFILETYPE, 

FILETYPE_PAGE); 

 

            for (int j = 0; j < confirmImg.rows; j++) 

            { 

                Mat rowImg = confirmImg.row(j); 

                TIFFWriteScanline(tiffTrace, rowImg.data, j, 0); 

            } 

 

            TIFFWriteDirectory(tiffTrace); 

 

            TIFFSetField(tiffNoTrace, TIFFTAG_IMAGEWIDTH, 

withoutImg.cols); 

            TIFFSetField(tiffNoTrace, TIFFTAG_IMAGELENGTH, 

withoutImg.rows); 

            TIFFSetField(tiffNoTrace, TIFFTAG_BITSPERSAMPLE,8); 

            TIFFSetField(tiffNoTrace, TIFFTAG_SAMPLESPERPIXEL,3); 

            TIFFSetField(tiffNoTrace, TIFFTAG_PLANARCONFIG, 

PLANARCONFIG_CONTIG); 

            TIFFSetField(tiffNoTrace, TIFFTAG_PHOTOMETRIC, 

PHOTOMETRIC_MINISBLACK); 

            TIFFSetField(tiffNoTrace, TIFFTAG_ORIENTATION, 

ORIENTATION_TOPLEFT); 

            TIFFSetField(tiffNoTrace, TIFFTAG_RESOLUTIONUNIT, 

RESUNIT_INCH); 

            TIFFSetField(tiffNoTrace, TIFFTAG_XRESOLUTION, 100.0); 

            TIFFSetField(tiffNoTrace, TIFFTAG_YRESOLUTION, 100.0); 

            TIFFSetField(tiffNoTrace, TIFFTAG_SUBFILETYPE, 

FILETYPE_PAGE); 

 

            for (int j = 0; j < withoutImg.rows; j++) 

            { 

                Mat rowImg = withoutImg.row(j); 

                TIFFWriteScanline(tiffNoTrace, rowImg.data, j, 0); 

            } 

 

            TIFFWriteDirectory(tiffNoTrace); 

        } 
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        currentImg.release(); 

        nFrameNum++; 

    } 

 

    if(m_strSaveType != "avi") 

    { 

        TIFFClose(tiffNoTrace); 

        TIFFClose(tiffTrace); 

    } 

} 

 

Step 6 : Play Result 

void PlayResultThread::start() 

{ 

 QString strOrgFile, strWithFile, strWithoutFile; 

     strOrgFile = m_strOpenPath + m_strOpenName + ".tif"; 

     strWithFile = m_strOpenPath + m_strOpenName + "(with 

trace).tif"; 

     strWithoutFile = m_strOpenPath + m_strOpenName + "(without 

trace).tif"; 

 

 QByteArray byteOrgFile = strOrgFile.toLocal8Bit(); 

 char *szOrgFile = byteOrgFile.data(); 

 

 QByteArray byteWithFile = strWithFile.toLocal8Bit(); 

 char *szWithFile = byteWithFile.data(); 

 

 QByteArray byteWithoutFile = strWithoutFile.toLocal8Bit(); 

 char *szWithoutFile = byteWithoutFile.data();   

 

 VideoCapture orgVideo, withVideo, withoutVideo; 

 TIFFCapture orgTiff, withTiff, withoutTiff; 

 int nFrameNum = 0; 

 

    for(;;) 

    { 

        if(g_bPlayStop) 

            break; 

 

        while (g_bPlayPause) { 

            QThread::sleep(1); 

        } 
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  Mat orgImg, withImg, withoutImg; 

        if(nFrameNum == 0) 

        { 

            orgTiff = TIFFCapture(szOrgFile); 

            withTiff = TIFFCapture(szWithFile); 

            withoutTiff = TIFFCapture(szWithoutFile); 

        } 

 

        orgTiff.operator>>(orgImg); 

        withTiff.operator>>(withImg); 

        withoutTiff.operator>>(withoutImg); 

 

  if(orgImg.empty()) 

   break; 

 

  if(orgImg.type() == CV_8UC1) 

   cvtColor(orgImg, orgImg, CV_GRAY2RGB); 

  else 

   cvtColor(orgImg, orgImg, CV_BGR2RGB); 

 

  if(withImg.type() == CV_8UC1) 

   cvtColor(withImg, withImg, CV_GRAY2RGB); 

  else 

   cvtColor(withImg, withImg, CV_BGR2RGB); 

 

  if(withoutImg.type() == CV_8UC1) 

   cvtColor(withoutImg, withoutImg, 

CV_GRAY2RGB); 

  else 

   cvtColor(withoutImg, withoutImg, CV_BGR2RGB); 

 

  QString strFrameNumber = "frame number " + 

QString::number(nFrameNum +  

   1) + " / " + QString::number(m_nFrameCnt); 

  QByteArray byteFrameNumber = 

strFrameNumber.toLocal8Bit(); 

  char *szFrameNumber = byteFrameNumber.data(); 

  cv::putText(orgImg, szFrameNumber, 

cv::Point(orgImg.cols/2, orgImg.rows  

   - 10), CV_FONT_HERSHEY_COMPLEX_SMALL, 1.0, 

cv::Scalar(255, 255,  

   255), 2); 

  cv::putText(withImg, szFrameNumber, 

cv::Point(withImg.cols/2,  
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   withImg.rows - 10), 

CV_FONT_HERSHEY_COMPLEX_SMALL, 1.0,  

   cv::Scalar(255, 255, 255), 2); 

  cv::putText(withoutImg, szFrameNumber, 

cv::Point(withoutImg.cols/2,  

   withoutImg.rows - 10), 

CV_FONT_HERSHEY_COMPLEX_SMALL, 1.0,  

   cv::Scalar(255, 255, 255), 2); 

 

        if(m_nTraceMode == PLAY_WITH_TRACE) 

        { 

            QImage org = QImage((const unsigned char*)(orgImg.data), 

orgImg.cols,  

  orgImg.rows, QImage::Format_RGB888); 

            

m_pOrgView->setPixmap(QPixmap::fromImage(org.scaled(m_pOrgView->widt

h(),  

  m_pOrgView->height()))); 

            QImage with = QImage((const unsigned 

char*)(withImg.data), withImg.cols,  

  withImg.rows, QImage::Format_RGB888); 

            

m_pResultView->setPixmap(QPixmap::fromImage(with.scaled(m

_pResultView->width 

 (), m_pResultView->height()))); 

        } 

        else 

        { 

            QImage org = QImage((const unsigned char*)(orgImg.data), 

orgImg.cols,  

  orgImg.rows, QImage::Format_RGB888); 

            

m_pOrgView->setPixmap(QPixmap::fromImage(org.scaled(m_pOrgView->widt

h(),  

  m_pOrgView->height()))); 

            QImage without = QImage((const unsigned 

char*)(withoutImg.data),  

  withoutImg.cols, withoutImg.rows, 

QImage::Format_RGB888); 

            

m_pResultView->setPixmap(QPixmap::fromImage(without.scale

d(m_pResultView->wi 

 dth(), m_pResultView->height()))); 

        } 
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        QThread::msleep(m_nSpeed); 

  orgImg.release(); 

 

        nFrameNum++; 

    } 

    g_bPlayStart = false; 

    g_bPlayStop = false; 

    g_bPlayPause = false; 

} 

 

Step 7 : Show Analysis Result 

void analysisDlg::drawRealGraph(int nID) 

{ 

    if (m_graphData.size() == 0) 

    { 

        return; 

    } 

 

    ui->real_graph->clearGraphs(); 

    ui->real_graph->clearItems(); 

 

    std::vector<int> vecIntensity, vecFrameNumber, vecSpeed, vecPos; 

    int startFrame, endFrame; 

    BOOL bFlag = TRUE; 

  

    for (int i = 0; i < (int)m_graphData.size(); i++) 

    { 

        if (nID == m_graphData[i].nID) 

        { 

            vecIntensity.push_back(m_graphData[i].nIntensity); 

            vecFrameNumber.push_back(m_graphData[i].nStartFrame); 

            vecPos.push_back(m_graphData[i].nPos); 

 

            if(bFlag) 

            { 

                vecSpeed.push_back(0); 

                bFlag = FALSE; 

            } 

            else 

                vecSpeed.push_back(m_graphData[i].nSpeed); 

        } 

    } 

 



303 
 

    for(int i = 0; i < (int)m_showData.size(); i++) 

    { 

        if (nID == m_showData[i].nID) 

        { 

            startFrame = m_showData[i].nStartFrame; 

            endFrame = m_showData[i].nEndFrame; 

        } 

    } 

 

 int nSize_Y = 0; 

    QVector<double> intensity_X(vecIntensity.size()), 

intensity_Y(vecIntensity.size()); 

    for (int i = 0; i < (int)(vecIntensity.size()); ++i) 

    { 

        intensity_X[i] = (double)vecFrameNumber[i]; 

        intensity_Y[i] = (double)vecIntensity[i]; 

 

  if(nSize_Y < intensity_Y[i]) 

   nSize_Y = intensity_Y[i]; 

    } 

    ui->real_graph->addGraph(); 

    ui->real_graph->graph()->setData(intensity_X, intensity_Y); 

 if(!m_bLine) 

 

 ui->real_graph->graph()->setLineStyle(QCPGraph::LineStyle::l

sNone); 

 

    QVector<double> speed_X(vecIntensity.size()), 

speed_Y(vecIntensity.size()); 

    for (int i = 0; i < (int)(vecIntensity.size()); ++i) 

    { 

        speed_X[i] = (double)vecFrameNumber[i]; 

        speed_Y[i] = (double)vecSpeed[i]; 

 

  if(nSize_Y < speed_Y[i]) 

   nSize_Y = speed_Y[i]; 

    } 

    ui->real_graph->addGraph(); 

    ui->real_graph->graph()->setData(speed_X, speed_Y); 

    QPen speed_pen; 

    speed_pen.setColor(QColor(255,0,0)); 

    ui->real_graph->graph()->setPen(speed_pen); 

 if(!m_bLine) 
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 ui->real_graph->graph()->setLineStyle(QCPGraph::LineStyle::l

sNone); 

 

    QVector<double> pos_X(vecIntensity.size()), 

pos_Y(vecIntensity.size()); 

    for (int i = 0; i < (int)(vecIntensity.size()); ++i) 

    { 

        pos_X[i] = (double)vecFrameNumber[i]; 

        pos_Y[i] = (double)vecPos[i]; 

 

  if(nSize_Y < pos_Y[i]) 

   nSize_Y = pos_Y[i]; 

    } 

 

    ui->real_graph->addGraph(); 

    ui->real_graph->graph()->setData(pos_X, pos_Y); 

    QPen pos_pen; 

    pos_pen.setColor(QColor(0,0,0)); 

    ui->real_graph->graph()->setPen(pos_pen); 

 if(!m_bLine) 

 

 ui->real_graph->graph()->setLineStyle(QCPGraph::LineStyle::l

sNone); 

 

    ui->real_graph->xAxis->setLabel("Frame Number"); 

    ui->real_graph->yAxis->setLabel("Intensity, Speed, Position"); 

 

 float delta_x = (float)(endFrame - startFrame + 1)/100; 

 float delta_y = (float)(nSize_Y + 10)/100; 

 

 int step = vecIntensity.size() / 5 + 1; 

 for(int i = 0; i < (int)(vecIntensity.size()); i++) 

 { 

  int nStep = i % step; 

 

  if(nStep == 0) 

  { 

   QPen pen; 

   pen.setColor(QColor(0,255,255)); 

 

   QVector<double> intensity_top_x(2), 

intensity_top_y(2); 
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   intensity_top_x[0] = vecFrameNumber[i] - 

delta_x*2; 

   intensity_top_x[1] = vecFrameNumber[i] + 

delta_x*2; 

   intensity_top_y[0] = vecIntensity[i] + 

delta_y*2; 

   intensity_top_y[1] = vecIntensity[i] + 

delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(intensity_top_x,  

    intensity_top_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   QVector<double> intensity_bottom_x(2), 

intensity_bottom_y(2); 

   intensity_bottom_x[0] = vecFrameNumber[i] - 

delta_x*2; 

   intensity_bottom_x[1] = vecFrameNumber[i] + 

delta_x*2; 

   intensity_bottom_y[0] = vecIntensity[i] - 

delta_y*2; 

   intensity_bottom_y[1] = vecIntensity[i] - 

delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(intensity_bottom_x,  

    intensity_bottom_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   QVector<double> intensity_left_x(2), 

intensity_left_y(2); 

   intensity_left_x[0] = vecFrameNumber[i] - 

delta_x*2; 

   intensity_left_x[1] = vecFrameNumber[i] - 

delta_x*2; 

   intensity_left_y[0] = vecIntensity[i] + 

delta_y*2; 

   intensity_left_y[1] = vecIntensity[i] - 

delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(intensity_left_x,  

    intensity_left_y); 
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   ui->real_graph->graph()->setPen(pen); 

 

   QVector<double> intensity_right_x(2), 

intensity_right_y(2); 

   intensity_right_x[0] = vecFrameNumber[i] + 

delta_x*2; 

   intensity_right_x[1] = vecFrameNumber[i] + 

delta_x*2; 

   intensity_right_y[0] = vecIntensity[i] + 

delta_y*2; 

   intensity_right_y[1] = vecIntensity[i] - 

delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(intensity_right_x,  

    intensity_right_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   // intensity value 

   QString strIntensity = 

QString::number(vecIntensity[i]); 

   QCPItemText *intensityLabel = new 

QCPItemText(ui->real_graph); 

   ui->real_graph->addItem(intensityLabel);

    

     

 intensityLabel->position->setType(QCPItemPosition::ptAxisRec

tRatio); 

   double intensity_x = 

(double)(vecFrameNumber[i] - startFrame +  

    delta_x) / (double)(endFrame - 

startFrame + 1); 

   double intensity_y = 1 - 

(double)vecIntensity[i] /  

    (double)(nSize_Y + 10); 

  

 intensityLabel->position->setCoords(intensity_x,  

    intensity_y);    

   intensityLabel->setText(strIntensity); 

  

 intensityLabel->setFont(QFont(font().family(), 10)); 

   intensityLabel->setPadding(QMargins(8, 0, 0, 

0)); 

   intensityLabel->setColor(QColor(0, 0, 255)); 
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   QVector<double> speed_top_x(2), 

speed_top_y(2); 

   speed_top_x[0] = vecFrameNumber[i] - 

delta_x*2; 

   speed_top_x[1] = vecFrameNumber[i] + 

delta_x*2; 

   speed_top_y[0] = vecSpeed[i] + delta_y*2; 

   speed_top_y[1] = vecSpeed[i] + delta_y*2; 

   ui->real_graph->addGraph(); 

   ui->real_graph->graph()->setData(speed_top_x, 

speed_top_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   QVector<double> speed_bottom_x(2), 

speed_bottom_y(2); 

   speed_bottom_x[0] = vecFrameNumber[i] - 

delta_x*2; 

   speed_bottom_x[1] = vecFrameNumber[i] + 

delta_x*2; 

   speed_bottom_y[0] = vecSpeed[i] - delta_y*2; 

   speed_bottom_y[1] = vecSpeed[i] - delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(speed_bottom_x,  

    speed_bottom_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   QVector<double> speed_left_x(2), 

speed_left_y(2); 

   speed_left_x[0] = vecFrameNumber[i] - 

delta_x*2; 

   speed_left_x[1] = vecFrameNumber[i] - 

delta_x*2; 

   speed_left_y[0] = vecSpeed[i] + delta_y*2; 

   speed_left_y[1] = vecSpeed[i] - delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(speed_left_x, 

speed_left_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   QVector<double> speed_right_x(2), 

speed_right_y(2); 
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   speed_right_x[0] = vecFrameNumber[i] + 

delta_x*2; 

   speed_right_x[1] = vecFrameNumber[i] + 

delta_x*2; 

   speed_right_y[0] = vecSpeed[i] + delta_y*2; 

   speed_right_y[1] = vecSpeed[i] - delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(speed_right_x, 

speed_right_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   // speed value 

   QString strSpeed = 

QString::number(vecSpeed[i]); 

   QCPItemText *speedLabel = new 

QCPItemText(ui->real_graph); 

   ui->real_graph->addItem(speedLabel); 

   

  

 speedLabel->position->setType(QCPItemPosition::ptAxisRectRat

io); 

   double speed_x = (double)(vecFrameNumber[i] - 

startFrame +  

    delta_x) / (double)(endFrame - 

startFrame + 1); 

   double speed_y = 1 - (double)vecSpeed[i] / 

(double)(nSize_Y +  

    10); 

   speedLabel->position->setCoords(speed_x,  

    speed_y);    

   speedLabel->setText(strSpeed); 

   speedLabel->setFont(QFont(font().family(), 

10)); 

   speedLabel->setPadding(QMargins(8, 0, 0, 0)); 

   speedLabel->setColor(QColor(255, 0, 0)); 

 

   QVector<double> position_top_x(2), 

position_top_y(2); 

   position_top_x[0] = vecFrameNumber[i] - 

delta_x*2; 

   position_top_x[1] = vecFrameNumber[i] + 

delta_x*2; 

   position_top_y[0] = vecPos[i] + delta_y*2; 
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   position_top_y[1] = vecPos[i] + delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(position_top_x,  

    position_top_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   QVector<double> position_bottom_x(2), 

position_bottom_y(2); 

   position_bottom_x[0] = vecFrameNumber[i] - 

delta_x*2; 

   position_bottom_x[1] = vecFrameNumber[i] + 

delta_x*2; 

   position_bottom_y[0] = vecPos[i] - delta_y*2; 

   position_bottom_y[1] = vecPos[i] - delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(position_bottom_x,  

    position_bottom_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   QVector<double> position_left_x(2), 

position_left_y(2); 

   position_left_x[0] = vecFrameNumber[i] - 

delta_x*2; 

   position_left_x[1] = vecFrameNumber[i] - 

delta_x*2; 

   position_left_y[0] = vecPos[i] + delta_y*2; 

   position_left_y[1] = vecPos[i] - delta_y*2; 

   ui->real_graph->addGraph(); 

  

 ui->real_graph->graph()->setData(position_left_x,  

    position_left_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   QVector<double> position_right_x(2), 

position_right_y(2); 

   position_right_x[0] = vecFrameNumber[i] + 

delta_x*2; 

   position_right_x[1] = vecFrameNumber[i] + 

delta_x*2; 

   position_right_y[0] = vecPos[i] + delta_y*2; 

   position_right_y[1] = vecPos[i] - delta_y*2; 

   ui->real_graph->addGraph(); 
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 ui->real_graph->graph()->setData(position_right_x,  

    position_right_y); 

   ui->real_graph->graph()->setPen(pen); 

 

   // position value 

   QString strPosition = 

QString::number(vecPos[i]); 

   QCPItemText *positionLabel = new 

QCPItemText(ui->real_graph); 

   ui->real_graph->addItem(positionLabel);

  

  

 positionLabel->position->setType(QCPItemPosition::ptAxisRect

Ratio); 

   double position_x = 

(double)(vecFrameNumber[i] - startFrame +  

    delta_x) / (double)(endFrame - 

startFrame + 1); 

   double position_y = 1 - (double)vecPos[i] / 

(double)(nSize_Y +  

    10); 

  

 positionLabel->position->setCoords(position_x,  

    position_y);    

   positionLabel->setText(strPosition); 

   positionLabel->setFont(QFont(font().family(), 

10)); 

   positionLabel->setPadding(QMargins(8, 0, 0, 

0)); 

   positionLabel->setColor(QColor(0, 0, 0)); 

  } 

 } 

 

    // set axes ranges, so we see all data 

    ui->real_graph->xAxis->setRange(startFrame, endFrame + 1); 

    ui->real_graph->yAxis->setRange(0, nSize_Y + 10); 

 

    int n = endFrame - startFrame + 1; 

    QVector<double> pTickY, pTickX; 

    QVector<QString> piLabelsY, piLabelsX; 

    for (int i = 0; i <= n; i = i + step) 

    { 

        pTickX.push_back(startFrame + i); 
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        piLabelsX.push_back(QString::number(startFrame + i)); 

    } 

 

 for(int i = 0; i < nSize_Y + 10; i = i + 10) 

 { 

  pTickY.push_back(i); 

  piLabelsY.push_back(QString::number(i)); 

 } 

 

    ui->real_graph->yAxis->setAutoTicks(false); 

    ui->real_graph->yAxis->setAutoTickLabels(false); 

    ui->real_graph->yAxis->setTickVector(pTickY); 

    ui->real_graph->yAxis->setTickVectorLabels(piLabelsY); 

    ui->real_graph->xAxis->setAutoTicks(false); 

    ui->real_graph->xAxis->setAutoTickLabels(false); 

    ui->real_graph->xAxis->setTickVector(pTickX); 

    ui->real_graph->xAxis->setTickVectorLabels(piLabelsX); 

 

    QString strData = "Blob Number = " + QString::number(nID) + " 

\nRed = Speed \nBlue = Real Intensity \nBlack = Path \nFrame Number 

= from " + QString::number(startFrame) + 

        " to " + QString::number(endFrame); 

    QCPItemText *textLabel = new QCPItemText(ui->real_graph); 

    ui->real_graph->addItem(textLabel); 

    textLabel->position->setType(QCPItemPosition::ptAxisRectRatio); 

    textLabel->setPositionAlignment(Qt::AlignRight|Qt::AlignBottom); 

    textLabel->position->setCoords(0.7, 0.3); // lower right corner 

of axis rect 

    textLabel->setText(strData); 

    textLabel->setTextAlignment(Qt::AlignLeft); 

    textLabel->setFont(QFont(font().family(), 10)); 

    textLabel->setPadding(QMargins(8, 0, 0, 0)); 

 

    ui->real_graph->replot(); 

} 

 

void analysisDlg::drawNormalizeGraph(int nID) 

{ 

    if (m_graphData.size() == 0) 

    { 

        return; 

    } 

 

    ui->average_graph->clearGraphs(); 
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    ui->average_graph->clearItems(); 

 

    std::vector<int> intensity, frameNumber, vecSpeed, vecPos; 

    int startFrame, endFrame; 

    BOOL bFlag = TRUE; 

    for (int i = 0; i < (int)m_graphData.size(); i++) 

    { 

        if (nID == m_graphData[i].nID) 

        { 

            intensity.push_back(m_graphData[i].nIntensity); 

            frameNumber.push_back(m_graphData[i].nStartFrame); 

            vecPos.push_back(m_graphData[i].nPos); 

 

            if(bFlag) 

            { 

                vecSpeed.push_back(0); 

                bFlag = FALSE; 

            } 

            else 

                vecSpeed.push_back(m_graphData[i].nSpeed); 

        } 

    } 

 

    for(int i = 0; i < (int)m_showData.size(); i++) 

    { 

        if (nID == m_showData[i].nID) 

        { 

            startFrame = m_showData[i].nStartFrame; 

            endFrame = m_showData[i].nEndFrame; 

        } 

    } 

 

    QVector<double> x(intensity.size()), y(intensity.size()); 

    int normalizeIntensity = 0; 

    for (int i = 0; i < (int)(intensity.size()); ++i) 

    { 

        normalizeIntensity += intensity[i]; 

    } 

 

    if (intensity.size() == 0) 

    { 

        normalizeIntensity = 0; 

    } 

    else 
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    { 

        normalizeIntensity = normalizeIntensity / intensity.size(); 

    } 

 

 int nSize_Y = 0; 

    for (int i = 0; i < (int)(intensity.size()); ++i) 

    { 

        x[i] = (double)frameNumber[i]; 

        if((normalizeIntensity+5) > intensity[i]) 

            y[i] = (double)intensity[i]; 

        else 

            y[i] = (double)normalizeIntensity - 5.0; 

 

  if(nSize_Y < y[i]) 

   nSize_Y = y[i]; 

    } 

 

    // create graph and assign data to it: 

    m_vecNormalize = y; 

    ui->average_graph->addGraph(); 

    ui->average_graph->graph()->setData(x, y); 

    QPen intensity_pen; 

    intensity_pen.setColor(QColor(0,255,0)); 

    ui->average_graph->graph()->setPen(intensity_pen); 

 if(!m_bLine) 

 

 ui->average_graph->graph()->setLineStyle(QCPGraph::LineStyle

::lsNone); 

 

    QVector<double> speed_X(intensity.size()), 

speed_Y(intensity.size()); 

    for (int i = 0; i < (int)(intensity.size()); ++i) 

    { 

        speed_X[i] = (double)frameNumber[i]; 

        speed_Y[i] = (double)vecSpeed[i]; 

 

  if(nSize_Y < speed_Y[i]) 

   nSize_Y = speed_Y[i]; 

    } 

    ui->average_graph->addGraph(); 

    ui->average_graph->graph()->setData(speed_X, speed_Y); 

    QPen speed_pen; 

    speed_pen.setColor(QColor(255,0,0)); 

    ui->average_graph->graph()->setPen(speed_pen); 
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 if(!m_bLine) 

 

 ui->average_graph->graph()->setLineStyle(QCPGraph::LineStyle

::lsNone); 

 

    QVector<double> pos_X(intensity.size()), 

pos_Y(intensity.size()); 

    for (int i = 0; i < (int)(intensity.size()); ++i) 

    { 

        pos_X[i] = (double)frameNumber[i]; 

        pos_Y[i] = (double)vecPos[i]; 

 

  if(nSize_Y < pos_Y[i]) 

   nSize_Y = pos_Y[i]; 

    } 

    ui->average_graph->addGraph(); 

    ui->average_graph->graph()->setData(pos_X, pos_Y); 

    QPen pos_pen; 

    pos_pen.setColor(QColor(0,0,0)); 

    ui->average_graph->graph()->setPen(pos_pen); 

 if(!m_bLine) 

 

 ui->average_graph->graph()->setLineStyle(QCPGraph::LineStyle

::lsNone); 

 

    ui->average_graph->xAxis->setLabel("Frame Number"); 

    ui->average_graph->yAxis->setLabel("Intensity"); 

 

 float delta_x = (float)(endFrame - startFrame + 1)/100; 

 float delta_y = (float)(nSize_Y + 10)/100; 

 

 int step = intensity.size() / 5 + 1; 

 for(int i = 0; i < (int)(intensity.size()); i++) 

 { 

  int nStep = i % step; 

  if(nStep == 0) 

  { 

   QPen pen; 

   pen.setColor(QColor(255,0,255)); 

 

   QVector<double> intensity_top_x(2), 

intensity_top_y(2); 

   intensity_top_x[0] = frameNumber[i] - 

delta_x*2; 
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   intensity_top_x[1] = frameNumber[i] + 

delta_x*2; 

   intensity_top_y[0] = intensity[i] + 

delta_y*2; 

   intensity_top_y[1] = intensity[i] + 

delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(intensity_top_x,  

    intensity_top_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   QVector<double> intensity_bottom_x(2), 

intensity_bottom_y(2); 

   intensity_bottom_x[0] = frameNumber[i] - 

delta_x*2; 

   intensity_bottom_x[1] = frameNumber[i] + 

delta_x*2; 

   intensity_bottom_y[0] = intensity[i] - 

delta_y*2; 

   intensity_bottom_y[1] = intensity[i] - 

delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(intensity_bottom_x,  

    intensity_bottom_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   QVector<double> intensity_left_x(2), 

intensity_left_y(2); 

   intensity_left_x[0] = frameNumber[i] - 

delta_x*2; 

   intensity_left_x[1] = frameNumber[i] - 

delta_x*2; 

   intensity_left_y[0] = intensity[i] + 

delta_y*2; 

   intensity_left_y[1] = intensity[i] - 

delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(intensity_left_x,  

    intensity_left_y); 

   ui->average_graph->graph()->setPen(pen); 
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   QVector<double> intensity_right_x(2), 

intensity_right_y(2); 

   intensity_right_x[0] = frameNumber[i] + 

delta_x*2; 

   intensity_right_x[1] = frameNumber[i] + 

delta_x*2; 

   intensity_right_y[0] = intensity[i] + 

delta_y*2; 

   intensity_right_y[1] = intensity[i] - 

delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(intensity_right_x,  

    intensity_right_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   // intensity value 

   QString strIntensity = 

QString::number(intensity[i]); 

   QCPItemText *intensityLabel = new  

    QCPItemText(ui->average_graph); 

   ui->average_graph->addItem(intensityLabel);

    

  

 intensityLabel->position->setType(QCPItemPosition::ptAxisRec

tRatio); 

   double intensity_x = (double)(frameNumber[i] 

- startFrame +  

    delta_x) / (double)(endFrame - 

startFrame + 1); 

   double intensity_y = 1 - (double)intensity[i] 

/ (double)(nSize_Y  

    + 10); 

  

 intensityLabel->position->setCoords(intensity_x,  

    intensity_y);    

   intensityLabel->setText(strIntensity); 

  

 intensityLabel->setFont(QFont(font().family(), 10)); 

   intensityLabel->setPadding(QMargins(8, 0, 0, 

0)); 

   intensityLabel->setColor(QColor(0,255,0)); 
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   QVector<double> speed_top_x(2), 

speed_top_y(2); 

   speed_top_x[0] = frameNumber[i] - delta_x*2; 

   speed_top_x[1] = frameNumber[i] + delta_x*2; 

   speed_top_y[0] = vecSpeed[i] + delta_y*2; 

   speed_top_y[1] = vecSpeed[i] + delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(speed_top_x, 

speed_top_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   QVector<double> speed_bottom_x(2), 

speed_bottom_y(2); 

   speed_bottom_x[0] = frameNumber[i] - 

delta_x*2; 

   speed_bottom_x[1] = frameNumber[i] + 

delta_x*2; 

   speed_bottom_y[0] = vecSpeed[i] - delta_y*2; 

   speed_bottom_y[1] = vecSpeed[i] - delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(speed_bottom_x,  

    speed_bottom_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   QVector<double> speed_left_x(2), 

speed_left_y(2); 

   speed_left_x[0] = frameNumber[i] - delta_x*2; 

   speed_left_x[1] = frameNumber[i] - delta_x*2; 

   speed_left_y[0] = vecSpeed[i] + delta_y*2; 

   speed_left_y[1] = vecSpeed[i] - delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(speed_left_x, 

speed_left_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   QVector<double> speed_right_x(2), 

speed_right_y(2); 

   speed_right_x[0] = frameNumber[i] + 

delta_x*2; 

   speed_right_x[1] = frameNumber[i] + 

delta_x*2; 
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   speed_right_y[0] = vecSpeed[i] + delta_y*2; 

   speed_right_y[1] = vecSpeed[i] - delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(speed_right_x,  

    speed_right_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   // speed value 

   QString strSpeed = 

QString::number(vecSpeed[i]); 

   QCPItemText *speedLabel = new 

QCPItemText(ui->average_graph); 

   ui->average_graph->addItem(speedLabel);

    

  

 speedLabel->position->setType(QCPItemPosition::ptAxisRectRat

io); 

   double speed_x = (double)(frameNumber[i] - 

startFrame + delta_x)  

    / (double)(endFrame - startFrame + 

1); 

   double speed_y = 1 - (double)vecSpeed[i] / 

(double)(nSize_Y +  

    10); 

   speedLabel->position->setCoords(speed_x,  

    speed_y);    

   speedLabel->setText(strSpeed); 

   speedLabel->setFont(QFont(font().family(), 

10)); 

   speedLabel->setPadding(QMargins(8, 0, 0, 0)); 

   speedLabel->setColor(QColor(255, 0, 0)); 

 

   QVector<double> position_top_x(2), 

position_top_y(2); 

   position_top_x[0] = frameNumber[i] - 

delta_x*2; 

   position_top_x[1] = frameNumber[i] + 

delta_x*2; 

   position_top_y[0] = vecPos[i] + delta_y*2; 

   position_top_y[1] = vecPos[i] + delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(position_top_x,  
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    position_top_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   QVector<double> position_bottom_x(2), 

position_bottom_y(2); 

   position_bottom_x[0] = frameNumber[i] - 

delta_x*2; 

   position_bottom_x[1] = frameNumber[i] + 

delta_x*2; 

   position_bottom_y[0] = vecPos[i] - delta_y*2; 

   position_bottom_y[1] = vecPos[i] - delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(position_bottom_x,  

    position_bottom_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   QVector<double> position_left_x(2), 

position_left_y(2); 

   position_left_x[0] = frameNumber[i] - 

delta_x*2; 

   position_left_x[1] = frameNumber[i] - 

delta_x*2; 

   position_left_y[0] = vecPos[i] + delta_y*2; 

   position_left_y[1] = vecPos[i] - delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(position_left_x,  

    position_left_y); 

   ui->average_graph->graph()->setPen(pen); 

 

   QVector<double> position_right_x(2), 

position_right_y(2); 

   position_right_x[0] = frameNumber[i] + 

delta_x*2; 

   position_right_x[1] = frameNumber[i] + 

delta_x*2; 

   position_right_y[0] = vecPos[i] + delta_y*2; 

   position_right_y[1] = vecPos[i] - delta_y*2; 

   ui->average_graph->addGraph(); 

  

 ui->average_graph->graph()->setData(position_right_x,  

    position_right_y); 

   ui->average_graph->graph()->setPen(pen); 
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   // position value 

   QString strPosition = 

QString::number(vecPos[i]); 

   QCPItemText *positionLabel = new 

QCPItemText(ui->average_graph); 

   ui->average_graph->addItem(positionLabel);

    

  

 positionLabel->position->setType(QCPItemPosition::ptAxisRect

Ratio); 

   double position_x = (double)(frameNumber[i] - 

startFrame +  

    delta_x) / (double)(endFrame - 

startFrame + 1); 

   double position_y = 1 - (double)vecPos[i] / 

(double)(nSize_Y +  

    10); 

  

 positionLabel->position->setCoords(position_x, 

position_y);    

   positionLabel->setText(strPosition); 

   positionLabel->setFont(QFont(font().family(), 

10)); 

   positionLabel->setPadding(QMargins(8, 0, 0, 

0)); 

   positionLabel->setColor(QColor(255, 0, 0)); 

  } 

 } 

 

    // set axes ranges, so we see all data: 

    ui->average_graph->xAxis->setRange(startFrame, endFrame + 1); 

    ui->average_graph->yAxis->setRange(0, nSize_Y + 10); 

 

    int n = endFrame - startFrame + 1; 

    QVector<double> pTickY, pTickX; 

    QVector<QString> piLabelsY, piLabelsX; 

    for (int i = 0; i <= n; i = i = i + step) 

    { 

        pTickX.push_back(startFrame+i); 

        piLabelsX.push_back(QString::number(startFrame+i)); 

    } 

 

 for(int i = 0; i < nSize_Y + 10; i = i + 10) 
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 { 

  pTickY.push_back(i); 

  piLabelsY.push_back(QString::number(i)); 

 } 

 

    ui->average_graph->yAxis->setAutoTicks(false); 

    ui->average_graph->yAxis->setAutoTickLabels(false); 

    ui->average_graph->yAxis->setTickVector(pTickY); 

    ui->average_graph->yAxis->setTickVectorLabels(piLabelsY); 

    ui->average_graph->xAxis->setAutoTicks(false); 

    ui->average_graph->xAxis->setAutoTickLabels(false); 

    ui->average_graph->xAxis->setTickVector(pTickX); 

    ui->average_graph->xAxis->setTickVectorLabels(piLabelsX); 

 

    QString strData = "Blob Number = " + QString::number(nID) + " 

\nRed = Speed \nGreen = Normalize Intensity \nBlack = Path \nFrame 

Number = from " + QString::number(startFrame) + 

        " from " + QString::number(endFrame); 

    QCPItemText *textLabel = new QCPItemText(ui->average_graph); 

    ui->average_graph->addItem(textLabel); 

    textLabel->position->setType(QCPItemPosition::ptAxisRectRatio); 

    textLabel->setPositionAlignment(Qt::AlignRight|Qt::AlignBottom); 

    textLabel->position->setCoords(0.7, 0.3); // lower right corner 

of axis rect 

    textLabel->setText(strData); 

    textLabel->setTextAlignment(Qt::AlignLeft); 

    textLabel->setFont(QFont(font().family(), 10)); 

    textLabel->setPadding(QMargins(8, 0, 0, 0)); 

 

    ui->average_graph->replot(); 

} 

 

Step 8 : Show ErrorBar 

void errorbarDlg::drawErrorBar() 

{ 

 QVector<ERRORBAR> drawErrorBarData; 

 vector<int> considerIdx; 

 for(int i = 0; i < m_nErrorBar.size(); i++) 

 { 

  bool bConsider = false; 

  for(int k = 0; k < considerIdx.size(); k++) 

  { 

   if(i == considerIdx[k]) 

   { 
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    bConsider = true; 

    break; 

   } 

  } 

 

  if(bConsider) 

   continue; 

 

  ERRORBAR errorbar; 

  errorbar = m_nErrorBar[i]; 

 

  if(i < m_nErrorBar.size()-1) 

  { 

   for(int j = i + 1; j < m_nErrorBar.size(); 

j++) 

   { 

    for(int l = 0; l < 

considerIdx.size(); l++) 

    { 

     if(j == considerIdx[l]) 

     { 

      bConsider = true; 

      break; 

     } 

    } 

 

    if(bConsider) 

    { 

     if(j == m_nErrorBar.size()-1) 

     { 

     

 drawErrorBarData.push_back(errorbar); 

     } 

 

     continue; 

    } 

 

    if(m_nErrorBar[i].inputName == 

m_nErrorBar[j].inputName) 

    { 

     considerIdx.push_back(j); 

     errorbar.average =  

    

 (errorbar.average+m_nErrorBar[j].average)/2; 
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     errorbar.divation =  

    

 (errorbar.divation+m_nErrorBar[j].divation)/2; 

    } 

 

    if(j == m_nErrorBar.size()-1) 

    { 

    

 drawErrorBarData.push_back(errorbar); 

    } 

   } 

  } 

  else 

  { 

   drawErrorBarData.push_back(errorbar); 

   considerIdx.push_back(i); 

  } 

 } 

 

    // generate some data: 

    m_bManual = false; 

    m_vecGraphData.clear(); 

 QPen pos_pen; 

 pos_pen.setColor(QColor(255,0,0)); 

 

    int x_range = 0; 

 int y_range = 0; 

    EQUATION_VARIOUS various; 

    QVector<double> error_x(drawErrorBarData.size()), 

error_y(drawErrorBarData.size());  

    for (int i = 0; i < drawErrorBarData.size(); i++) 

    { 

        error_x[i] = drawErrorBarData[i].inputName; 

        error_y[i] = drawErrorBarData[i].average; 

 

        QVector<double> lineX(2), lineY(2); 

        lineX[0] = error_x[i]; 

        lineX[1] = error_x[i]; 

        lineY[0] = error_y[i] - drawErrorBarData[i].divation; 

        lineY[1] = error_y[i] + drawErrorBarData[i].divation; 

        ui->graph_view->addGraph(); 

        ui->graph_view->graph()->setData(lineX, lineY); 

 

        if(x_range < error_x[i]) 
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            x_range = error_x[i]; 

 

  if(y_range < lineY[1]) 

   y_range = lineY[1]; 

    } 

 

    if(m_bConnect) 

    { 

        ui->graph_view->addGraph(); 

        ui->graph_view->graph()->setData(error_x, error_y); 

    } 

 

 float delta_x = (float)x_range / 50; 

 float delta_y = (float)y_range/50; 

 for (int i = 0; i < drawErrorBarData.size(); i++) 

 { 

  QVector<double> max_x(2), max_y(2); 

  max_x[0] = error_x[i] - delta_x*2; 

  max_x[1] = error_x[i] + delta_x*2; 

  max_y[0] = error_y[i] + 

drawErrorBarData[i].divation; 

  max_y[1] = error_y[i] + 

drawErrorBarData[i].divation; 

  ui->graph_view->addGraph(); 

  ui->graph_view->graph()->setData(max_x, max_y); 

 

  QVector<double> min_x(2), min_y(2); 

  min_x[0] = error_x[i] - delta_x*2; 

  min_x[1] = error_x[i] + delta_x*2; 

  min_y[0] = error_y[i] - 

drawErrorBarData[i].divation; 

  min_y[1] = error_y[i] - 

drawErrorBarData[i].divation; 

  ui->graph_view->addGraph(); 

  ui->graph_view->graph()->setData(min_x, min_y); 

 

  various.x_pos = error_x[i]; 

  various.y_pos = error_y[i]; 

  various.y_pos_max = max_y[0]; 

  various.y_pos_min = min_y[0]; 

  m_vecGraphData.push_back(various); 

 

  QVector<double> rectleft_x(2), rectleft_y(2); 

  rectleft_x[0] = error_x[i] - delta_x; 
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  rectleft_x[1] = error_x[i] - delta_x; 

  rectleft_y[0] = error_y[i] - delta_y; 

  rectleft_y[1] = error_y[i] + delta_y; 

  ui->graph_view->addGraph(); 

  ui->graph_view->graph()->setData(rectleft_x, 

rectleft_y); 

  ui->graph_view->graph()->setPen(pos_pen); 

 

  QVector<double> rectbottom_x(2), rectbottom_y(2); 

  rectbottom_x[0] = error_x[i] - delta_x; 

  rectbottom_x[1] = error_x[i] + delta_x; 

  rectbottom_y[0] = error_y[i] - delta_y; 

  rectbottom_y[1] = error_y[i] - delta_y; 

  ui->graph_view->addGraph(); 

  ui->graph_view->graph()->setData(rectbottom_x, 

rectbottom_y); 

  ui->graph_view->graph()->setPen(pos_pen); 

 

  QVector<double> rectright_x(2), rectright_y(2); 

  rectright_x[0] = error_x[i] + delta_x; 

  rectright_x[1] = error_x[i] + delta_x; 

  rectright_y[0] = error_y[i] - delta_y; 

  rectright_y[1] = error_y[i] + delta_y; 

  ui->graph_view->addGraph(); 

  ui->graph_view->graph()->setData(rectright_x, 

rectright_y); 

  ui->graph_view->graph()->setPen(pos_pen); 

 

  QVector<double> recttop_x(2), recttop_y(2); 

  recttop_x[0] = error_x[i] - delta_x; 

  recttop_x[1] = error_x[i] + delta_x; 

  recttop_y[0] = error_y[i] + delta_y; 

  recttop_y[1] = error_y[i] + delta_y; 

  ui->graph_view->addGraph(); 

  ui->graph_view->graph()->setData(recttop_x, 

recttop_y);  

  ui->graph_view->graph()->setPen(pos_pen); 

 } 

 

    calcEquation(); 

 

    QVector<double> equation_x(x_range + 10), equation_y(x_range + 

10); 

 int y_min = 0; 
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    for(int i = 0; i < x_range+10; ++i) 

    { 

        equation_x[i] = i; 

        equation_y[i] = m_A * (double)i + m_B; 

 

  if(y_min > equation_y[i]) 

   y_min = equation_y[i]; 

    } 

    ui->graph_view->addGraph(); 

    ui->graph_view->graph()->setData(equation_x, equation_y); 

    QPen pen; 

    pen.setColor(QColor(0,255,0)); 

    ui->graph_view->graph()->setPen(pen); 

 

    QString strEquation; 

 if(m_A == 0) 

  strEquation = "y = "; 

 else if(m_A == 1) 

  strEquation = "y = x "; 

 else 

  strEquation = "y = " + QString::number(m_A) + " * x 

"; 

 

 if(m_B < 0) 

  strEquation = strEquation + QString::number(m_B); 

 else if(m_B > 0) 

 { 

  if(m_A == 0) 

   strEquation = strEquation + 

QString::number(m_B); 

  else 

   strEquation = strEquation + " + " + 

QString::number(m_B); 

 } 

 else 

 { 

  if(m_A == 0) 

   strEquation = "y = 0"; 

 } 

 

 double ss_reg = 0, ss_tot = 0; 

 for(int i = 0; i < m_vecGraphData.size(); i++) 

 { 

  ss_tot += m_vecGraphData[i].y_pos; 
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  double current_y = m_A * 

(double)m_vecGraphData[i].x_pos + m_B; 

  double delta_y = m_vecGraphData[i].y_pos - 

current_y; 

  double square_delta = delta_y * delta_y; 

  ss_reg += square_delta; 

 } 

 ss_tot = ss_tot / (double)m_vecGraphData.size(); 

 double r_2 = 1 - ss_reg / ss_tot; 

 QString strR2 = "R^2 = " + QString::number(r_2); 

 //QString str_errorbar_equation = strEquation + "\n" + 

strR2; 

 

    QCPItemText *textLabel = new QCPItemText(ui->graph_view); 

    ui->graph_view->addItem(textLabel); 

    textLabel->position->setType(QCPItemPosition::ptAxisRectRatio); 

    textLabel->setPositionAlignment(Qt::AlignRight|Qt::AlignBottom); 

    textLabel->position->setCoords(0.8, 0.1); // lower right corner 

of axis rect 

    textLabel->setText(strEquation); 

    textLabel->setTextAlignment(Qt::AlignLeft); 

    textLabel->setFont(QFont(font().family(), 20)); 

    textLabel->setPadding(QMargins(8, 0, 0, 0)); 

 

 QCPItemText *textLabel1 = new QCPItemText(ui->graph_view); 

 ui->graph_view->addItem(textLabel1); 

 textLabel1->position->setType(QCPItemPosition::ptAxisRectRat

io); 

 textLabel1->setPositionAlignment(Qt::AlignRight|Qt::AlignBot

tom); 

 textLabel1->position->setCoords(0.8, 0.2); // lower right 

corner of axis rect 

 textLabel1->setText(strR2); 

 textLabel1->setTextAlignment(Qt::AlignLeft); 

 textLabel1->setFont(QFont(font().family(), 20)); 

 textLabel1->setPadding(QMargins(8, 0, 0, 0)); 

 

    // give the axes some labels: 

    ui->graph_view->xAxis->setLabel("Input Name"); 

    ui->graph_view->yAxis->setLabel("Intensity"); 

 

    // set axes ranges, so we see all data: 

    ui->graph_view->xAxis->setRange(0, x_range + 10); 

    ui->graph_view->yAxis->setRange(y_min, y_range + 10); 
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    int nx = (x_range + 10) / 10; 

 int ny = (y_range + 10) / 10; 

    QVector<double> pTickY, pTickX; 

    QVector<QString> piLabelsY, piLabelsX; 

     

 for (int i = 0; i <= nx; i++) 

    { 

        pTickX.push_back(i * 10); 

        piLabelsX.push_back(QString::number(i * 10)); 

    } 

 

 for(int i = y_min; i <= ny; i++) 

 { 

  pTickY.push_back(i * 10); 

  piLabelsY.push_back(QString::number(i * 10)); 

 } 

 

 if(m_bShowValue) 

 { 

  for(int i = 0; i < drawErrorBarData.size(); i++) 

  { 

   // current value 

   QString strValue = 

QString::number(error_y[i]); 

   QCPItemText *valueLabel = new 

QCPItemText(ui->graph_view); 

   ui->graph_view->addItem(valueLabel); 

   

  

 valueLabel->position->setType(QCPItemPosition::ptAxisRectRat

io); 

   double pos_x = (double)error_x[i] / 

(double)(x_range + 10); 

   double pos_y = 1 - (double)(error_y[i] - 

y_min) /  

    (double)(y_range - y_min + 10); 

   valueLabel->position->setCoords(pos_x, 

pos_y);  

   valueLabel->setText(strValue); 

   valueLabel->setFont(QFont(font().family(), 

10)); 

   valueLabel->setPadding(QMargins(8, 0, 0, 0)); 
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   // div value 

   QString strDiv = 

QString::number(drawErrorBarData[i].divation); 

   QCPItemText *divLabel = new 

QCPItemText(ui->graph_view); 

   ui->graph_view->addItem(divLabel); 

  

  

 divLabel->position->setType(QCPItemPosition::ptAxisRectRatio

); 

   double divpos_x = (double)error_x[i] / 

(double)(x_range + 10); 

   double divpos_y = 1 - (double)(error_y[i] –  

    drawErrorBarData[i].divation/2 - 

y_min) /  

    (double)(y_range - y_min + 10); 

   divLabel->position->setCoords(divpos_x, 

divpos_y); 

   divLabel->setText(strDiv); 

   divLabel->setFont(QFont(font().family(), 

10)); 

   divLabel->setPadding(QMargins(8, 0, 0, 0)); 

   divLabel->setColor(QColor(255, 0, 0)); 

  } 

 }  

 

    ui->graph_view->yAxis->setAutoTicks(false); 

    ui->graph_view->yAxis->setAutoTickLabels(false); 

    ui->graph_view->yAxis->setTickVector(pTickY); 

    ui->graph_view->yAxis->setTickVectorLabels(piLabelsY); 

    ui->graph_view->xAxis->setAutoTicks(false); 

    ui->graph_view->xAxis->setAutoTickLabels(false); 

    ui->graph_view->xAxis->setTickVector(pTickX); 

    ui->graph_view->xAxis->setTickVectorLabels(piLabelsX); 

 

    ui->graph_view->replot(); 

} 

 

void errorbarDlg::calcEquation() 

{ 

    if (m_vecGraphData.size() == 1) 

    { 

        m_A = 0; 

        m_B = m_vecGraphData[0].y_pos; 
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    } 

    else if (m_vecGraphData.size() == 2) 

    { 

        m_A = (m_vecGraphData[1].y_pos - m_vecGraphData[0].y_pos) /  

  (m_vecGraphData[1].x_pos - m_vecGraphData[0].x_pos); 

        m_B = m_vecGraphData[0].y_pos - m_A * 

m_vecGraphData[0].x_pos; 

    } 

    else 

    { 

        bool bTrue = false; 

        for (double y0 = m_vecGraphData[0].y_pos_min; y0 <=  

  m_vecGraphData[0].y_pos_max; y0 = y0 + 0.1) 

        { 

            for (double y1 = m_vecGraphData[1].y_pos_min; y1 <=  

  m_vecGraphData[1].y_pos_max; y1 = y1 + 0.1) 

            { 

                m_A = (y1 - y0) / (m_vecGraphData[1].x_pos - 

m_vecGraphData[0].x_pos); 

                m_B = y0 - m_A * m_vecGraphData[0].x_pos; 

                bool bTrueTemp = true; 

 

                for (int variousCnt = 0; variousCnt < 

(m_vecGraphData.size() - 2);  

   variousCnt++) 

                { 

                    double tempY = 

m_A*m_vecGraphData[variousCnt+2].x_pos + m_B; 

                    if((tempY > 

m_vecGraphData[variousCnt+2].y_pos_max)||(tempY <  

   m_vecGraphData[variousCnt+2].y_pos_min)) 

                        bTrueTemp = false; 

 

                    if(!bTrueTemp) 

                        break; 

                } 

 

                if(bTrueTemp) 

                { 

                    bTrue = true; 

                    break; 

                } 

            } 
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            if(bTrue) 

                break; 

        } 

 

        if(!bTrue) 

        { 

            m_A = 0; 

            m_B = 0; 

        } 

    } 

 

 int a = m_A * 10; 

 int b = m_B * 10; 

 

 m_A = (double)a / 10; 

 m_B = (double)b / 10; 

} 
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