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Summary of Thesis
In this thesis we use analytical theory and high resolution finite element

simulations (using the program ‘Surface Evolver’) to consider the influence

of an external magnetic field on the orientation and self-assembly of rod-like

magnetic particles.

Firstly, we calculate the equilibrium tilt angle with respect to the unde-

formed interface and the meniscus shape around an ellipsoidal particle when

a magnetic field is applied perpendicular to the interface. As we increase field

strength, the particle undergoes a discontinuous transition to the ‘perpendicu-

lar’ orientation. We show that it is necessary to include meniscus deformations

in our calculations in order to accurately model this transition. We also show

for the first time that the tilt angle vs. magnetic field curve exhibits hysteresis

behaviour.

Secondly, we study the orientation of magnetic cylindrical particles. For

cylindrical particles at a liquid interface, orientational transitions induced by

an external field remain when the external field is removed i.e. the switching

effect is non-volatile. By tuning both the aspect ratio and contact angle, we

show that it is possible to engineer cylindrical particles that have multiple

locally stable orientations and hence obtain extremely rich magnetic responses

to an external field. We show that such systems provide a facile platform for

creating switchable functional materials.

Finally, we investigate the interactions between, and self-assembly of, mul-

tiple ellipsoidal particles. For two ellipsoidal particles, the only stable con-

figuration was found to be the side-to-side configuration. However, for three

ellipsoidal particles, the tip-to-tip configuration was also found to be locally

stable. There is good qualitative agreement between our finite element sim-

ulations and a linearised analytical theory and we attribute quantitative dis-

crepancies between the two to non-linear and many-body effects.
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Chapter 1
Introduction

1.1. Particles at Liquid Interfaces

Particles adsorbed at fluid interfaces have been extensively studied in the last

three decades due to their many applications in soft matter systems ranging

from: particle stabilised emulsions and foams (i.e. Pickering emulsions);[1, 2]

to membrane and interfacial proteins;[3] to functional surfaces for nanotech-

nology; [4, 5] to personal care products, foods and paint.[6] In this thesis

we focus on colloidal particles, which are in the nanometre to micrometre

range.[1] This mesoscopic size scale is interesting since in this regime, the

particles are large enough so that we can ignore the microscopic details of the

solvent molecules and treat both the bulk fluid phases and the fluid interface

as a continuum. On the other hand, the particles are small enough so that

gravitational forces are unimportant and the behaviour of the particles at the

fluid interface is primarily controlled by surface tension (i.e. capillary) forces

rather than gravity. Most of the research in this area has focused on spher-

ical or nearly spherical particles. However, with advances in the synthesis

of colloidal particles, particles with other shapes have received increasing at-

tention over the last decade. A non-exhaustive list of these shapes include

ellipsoids,[7–10] cylinders,[11, 12] cubes[13] and more exotic shapes including

microbullets,[14] dumbbells,[15, 16] corrugated particles,[17] and particles with

complex cross-sections.[18] A review of the literature with a focus on ellipsoidal

and cylindrical particles is presented in Chapter 2. In Section 1.3 we review

other interesting shapes and their potential applications. It has been suggested
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Chapter 1: Introduction

that these new shapes could be exploited to assemble useful structures or new

materials; however, a better understanding is required of the interactions and

assembly of anisotropic particles.[19] In this thesis we will focus on ellipsoidal

and cylindrical colloidal particles.

1.2. Spherical Particles

We will start our discussion by considering the simpler case of spherical particles

at a fluid interface. When colloidal particles adsorb at an interface a key factor

is the three phase contact angle, θw, given by Young’s Equation

cos θw = γpo − γpw
γow

(1.1)

where γpo, γpw,γow are the interfacial tensions of the particle/oil, particle/water

and oil/water interfaces respectively. In Figure 1.1 we show the effect of varying

contact angle for a spherical particle in its equilibrium position relative to the

fluid interface when gravity can be ignored. The situation where gravity is

important will be considered later in this section.

For a contact angle θw = 90◦ the particle is equally wetted by, in this case,

the oil and water. When a spherical particle with a constant contact angle

different to 90◦ is adsorbed at a liquid interface, the particle moves up into the

oil phase or down into the water phase so that it is in equilibrium. As per-

fectly smooth spheres are axisymmetrical this satisfies the wetting boundary

condition without the particle deforming the liquid interface. For hydrophilic

particles the contact angle is less than 90◦ so that a larger section of the
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Chapter 1: Introduction

particle is in the water phase than in the oil phase, shown in Figure 1.1(a).

For hydrophobic particles the contact angle is greater than 90◦ with more of

the particle in the oil than in the water phase, shown in Figure 1.1(c). For

an ideal surface the contact angle will be the angle calculated by Equation

1.1. However, in the real world the contact angle can vary slightly due to

defects, either chemical or physical.[20] Contact angles can exhibit hysteresis

which is found by calculating the difference between the advancing (θA) and

the receding (θR) contact angles. If a liquid drop is inflated on a flat solid

substrate the contact angle will exceed the angle given by Young’s equation

without the contact line moving; the threshold where further inflation moves

the contact line is known as the advancing contact angle, θA. Similarly, if a

drop is deflated, the contact angle decreases to a limit known as the receding

angle, θR.[20] In all our simulation work we will ignore contact angle hysteresis

and assume that the contact angle is the equilibrium value given by Young’s

equation.

Assuming gravity is negligible and neglecting line tension, the behaviour

of the particles at the interface is controlled by surface tension. The energy

required to remove a particle from the interface is given by

E = πR2γow (1± cos θw)2 (1.2)

where R is the radius of the particle, γow is the interfacial tension between

oil and water and θw is the contact angle.[21] It is reasonable to neglect line

tension since its effects are only noticeable for nano-sized particles, whereas

in this thesis the focus is on micron-sized particles.[22] In Equation 1.2, the

positive value is used for transfer from the interface into the oil. The negative

3



Chapter 1: Introduction

Figure 1.1: Spherical particle at an oil-water interface with different contact angles
(θw) (a) hydrophilic particle θw < 90◦ (b) neutrally wetted particle θw = 90◦ (c)
hydrophobic particle θw > 90◦

value is used for transfer from the interface into the water. The free energy of

detachment of a spherical particle is at a maximum when the contact angle is at

90◦ i.e. when the spherical particle is equally wetted by the two liquids. Using

typical values for a particle with R = 10nm, γow = 30mN m−1 and θw = 90◦

gives the energy of detachment E = 2290 kBT , which means that colloidal

particles essentially attach to an interface irreversibly. As the energy barrier

is thousands of kBT , thermal energy is insufficient to remove the particle from

the interface.

4



Chapter 1: Introduction

Lateral capillary forces arise between particles at liquid interfaces when

there is overlap of the deformation of the interface caused by the adsorbed

particles.[23] For large particles, & 10µm, the deformation of the liquid menis-

cus can arise due to the weight or buoyancy of the particles and the resultant

capillary forces are called flotation forces, see Figure 1.2.[24–26] The sign of

the meniscus slope angles ψ1 and ψ2 at the two contact lines determines if the

lateral capillary force will be attractive (Figure 1.2(a)) or repulsive (Figure

1.2(b)). Specifically, the capillary force is attractive when sinψ1 sinψ2 > 0

and repulsive when sinψ1 sinψ2 < 0. Not surprisingly the larger the interfa-

cial deformation created by the particles the stronger the capillary interaction

between them.[25]

Figure 1.2: Flotation forces for two spherical particles, ψ1 and ψ2 are the meniscus
slope angles (a) attraction between similar floating particles (b) repulsion between
a light and heavy floating particle.[25]

Bond number is the ratio of gravitational effects to the surface tension forces

which is given by the following equation,
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Chapter 1: Introduction

B = (ρwater − ρoil)R2g

γow
(1.3)

where B is the Bond number, ρN is the density of water or oil, R is the radius

of the particle, g is the acceleration due to gravity and γow is the interfacial

tension of the oil-water interface. Using typical values for these parameters

gives a very small Bond number, in the order of 10−5 or less [27] and therefore,

gravitational effects may be disregarded. We do not account for flotation forces

as we can demonstrate using Bond number why gravity is negligible for the

particle dimensions which we consider.

1.3. Non-Spherical Particles

Bowden et al. first demonstrated the effect of capillary interactions caused

by complex shapes at an interface and showed that they can be used to drive

the assembly of particles into desired structures based on the properties of the

particles. Although these results were for mesoscopic particles this research led

to interest in capillary interactions for smaller complex shaped particles.[28]

Brown et al. looked at micron-sized particles showing that quadrupolar de-

formation due to the anisotropic particles caused the particles to interact and

form ordered structures.[29] The behaviour of anisotropic particles at fluid in-

terfaces is even richer than that of spherical particles for two reasons. Firstly,

anisotropic particles can adopt multiple locally stable orientations at the liquid

interface.[11, 13, 30–33] Secondly, for non-neutrally wetting particles (i.e., con-
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Chapter 1: Introduction

tact angle θw 6= 90◦), the constant contact angle requirement at the three phase

contact line leads to significant deformations of the liquid meniscus around the

anisotropic particles and hence strong capillary interactions between particles.

[7–10, 12, 23, 34, 35] This is because anisotropic particles are non-axisymmetric

and therefore, to satisfy a constant contact angle, the liquid interface has to

deform. In fact, the leading order term turns out to be quadrupolar which

is observed in Figure 1.3(b) for a single ellipsoidal particle; that is, for a hy-

drophilic particle, a rise along the sides and depressions at the ends of the

ellipsoid. For small particles, . 10µm, capillary forces can still arise between

anisotropic particles due to the contact line undulations with overlapping de-

formations causing the particles to self-assemble into a variety of structures.

Both the orientation of individual particles and the capillary interaction

between particles are strongly dependent on the shape of the anisotropic

particle. For example, for ellipsoidal particles, the equilibrium orientation

is always ‘side-on’ (i.e., particle long axis parallel to liquid interface),[9] while

for cylindrical particles, the equilibrium orientation can be ‘side-on’ or ‘end-

on’ (i.e., particle long axis perpendicular to liquid interface).[11] In addition,

while the far-field capillary interactions between both ellipsoidal and cylindrical

particles are quadrupolar,[7–10, 12, 23, 34] the near-field capillary interactions

are strongly shape dependent, causing ellipsoidal particles to prefer to assemble

side-to-side (identical ellipsoids) or at an angle (non-identical ellipsoids) and

cylindrical particles to prefer to assemble tip-to-tip.[23, 34, 36]

If in addition, we can change the orientation of anisotropic particles by means

of an external field (e.g. by embedding a magnetic dipole within the particle),

7



Chapter 1: Introduction

which allows us to tune the orientation and capillary interactions between such

particles and hence control their self-assembly. The ability to engineer and

control the configuration of anisotropic particles at liquid interfaces opens up

exciting possibilities for the manufacture of switchable materials with specific

mechanical, optical or magnetic properties.

Figure 1.3: (a) Image of a single ellipsoidal particle in a similar orientation to
(b) which shows a Phase Shifting Interferometry (PSI) image of the quadrupolar
deformation present for θw = 39◦.[8]

Cubes have recently been investigated by Morris et al.; specifically, the au-

thors studied the orientation of cubes in a thin film. They found that cu-

bic particles with high contact angles favour a twisted/tilted orientation but

rupture the thin film easier than if wider, flatter particles with low contact

angles are used. Their work provided useful insight into thin film stability

which the authors suggest could have implications for self assembly of particles

and also the separation of precious minerals which is used in the flotation

industry.[13, 37, 38] Recent applications of the use of anisotropic particles

dispersed in nematic liquid crystals have found interesting one dimensional

chains for planar cells or two dimensional structures for homeotropic cells at

the interface.[14] This deepens the understanding of directed assembly of aniso-

tropic particles within complex fluids. Park et al. provided insight into the ori-
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Chapter 1: Introduction

entation of Janus dumbbells for varying particle size, aspect ratio and surface

properties. They found a primary energy minimum which has advantages for

obtaining particle layers at fluid-fluid interfaces with uniform orientation.[16]

Their research provides a way of designing particles with specific properties

that are tailored for a particular application. Corrugated particles have been

found to have quadrupolar deformation in the far field; however, in the near

field periodic deformations have been observed with different wavelengths of

the particles reaching an equilibrium separation, which suggests capillary re-

pulsion can be used to create microparticle assembly that is not in contact.[17]

Lewandowski et al. have studied particles with complex cross-sections (the

particles studied have planar sides and curved ends) and found preference for

assembly that is based on the aspect ratio of the particles, with planar sides

coming together for aspect ratios of 0.66 and particles favouring the curved

ends together for an aspect ratio of 4.[18, 23]

1.4. Aim and Outline of Thesis

The aim of this thesis is to investigate the orientation, capillary forces and

self-assembly of anisotropic colloidal particles at liquid interfaces, under the

influence of an external field. The specific shapes we will study include ellips-

oids and cylinders and they will be investigated theoretically using analytical

theory and finite element simulations.

The rest of the thesis is structured as follows: in Chapter 2 we review the lit-

erature relevant to our study, including both experimental and theoretical stud-

ies. Particles under consideration range from spheres, to anisotropic particles,

9



Chapter 1: Introduction

to Janus particles. In Chapter 3 we outline the finite element method Surface

Evolver used for the results presented in the rest of the thesis. In Chapter 4 we

present results for an ellipsoidal particle at a liquid interface under the influ-

ence of an external field. We investigate the equilibrium meniscus shape when

a magnetic field is applied perpendicular to the interface for varying contact

angle, aspect ratio and tilt angle.[39] In Chapter 5 we investigate the effect of

an external field on a cylindrical particle. By tuning both the aspect ratio and

contact angle of the cylinders, we show it is possible to have multiple stable

orientations at different tilt angles.[40] In Chapter 6 we study the effect an ex-

ternal field has on multiple ellipsoidal particles. Specifically, we present results

for 2 and 3 ellipsoids for varying tilt and bond angles, to find the orientation

with the lowest free energy. Finally, in Chapter 7 we outline the conclusions

from the thesis and discuss potential future work.

10



Chapter 2
Theoretical Background and
Literature Review
In this Chapter, we outline some of the important concepts for particles at

a liquid interface and present key findings from the literature which will be

extended to form the basis for the rest of the thesis. Specifically, in Section

2.1, we look at the interface deformation around isolated particles presenting

the key equations and approximations for the interfacial profile. In Section

2.2 and 2.3 we review multiple particles at a liquid interface, paying particular

attention to capillary interaction (the interaction caused by overlapping de-

formations of the liquid interface) and self-assembly (particles self-organising

into favoured orientations). In Section 2.4 the preferred orientation of aniso-

tropic particles in zero field is investigated. Finally, in Section 2.5 the ability

to manipulate the orientation of anisotropic particles in an external field is

considered.

An important parameter that describes the geometry of rod-like particles is

aspect ratio. For cylindrical particles this is defined as

α = L

2r (2.1)

where α is the aspect ratio, L is length of the particle and r is the radius of

the particle (see Figure 2.1(a)).

For ellipsoidal particles, the aspect ratio is given by

α = zm
rm

(2.2)

11



Chapter 2: Theoretical Background and Literature Review

where α is the aspect ratio, zm is the semi-major axis, rm is the semi-minor axis

(see Figure 2.1(b)). The effect of different aspect ratios is one of the variables

investigated in this thesis.

(a) (b)

Figure 2.1: Aspect ratio for (a) a cylindrical particle and (b) an ellipsoidal particle

2.1. Interface Deformation by Isolated

Particles

In this section, we outline the key equations to describe the meniscus around

isolated particles at a liquid interface, identifying the best coordinate system

to correctly represent deformations of the interface for rod-shaped particles.

When colloidal anisotropic particles are adsorbed at an interface between

two immiscible fluids, several factors will decide the shape of the meniscus

produced. These include the aspect ratio, contact angle and orientation of

the particle. For micron-sized particles, where gravity can be neglected, the

Young-Laplace equation can be used to describe the shape of the meniscus

around an adsorbed particle. Specifically, each point of the fluid interface

around the adsorbed particle obeys the equation

4P = γ
( 1
r1

+ 1
r2

)
(2.3)

12



Chapter 2: Theoretical Background and Literature Review

where 4P is the pressure difference between the two bulk phases separated by

the meniscus, γ is the surface tension of the interface, r1 and r2 are the two

principle radii of curvature at any point on the meniscus.

The right hand side of Equation 2.3 is the capillary pressure, i.e. the pressure

difference across an interface due to the curvature of the interface. For small

enough deformations we can approximate the curvature by
(

1
r1

+ 1
r2

)
≈ ∇2h so

that 4P = γ∇2h. Here, ∇2 is the 2D Laplacian operator which in Cartesian

coordinates is defined as ∇2 = ∂2

∂x2 + ∂2

∂y2 and h refers to the height of the

meniscus as a function of 2D in plane coordinates. Far from the particle the

meniscus is flat, so4P = 0. Therefore, when gravity is neglected, the interface

deformation obeys the 2D Laplace equation

∇2h = 0. (2.4)

Solving Equation 2.4 thus allows us to determine the shape of the meniscus h

around an adsorbed particle.

Depending on the symmetry of the problem, the Laplace equation can be

solved in different coordinate systems. For spherical or near spherical particles,

where the symmetry is circularly symmetric, the natural coordinate system to

use is circular polar coordinates. In circular polar coordinates, the general

solution of Equation 2.4 is [23]

h(r, θ) = A0 ln r +
∑
n

An
rn

cos(nθ) (2.5)

where r and θ are polar coordinates in a particle centred reference frame.[41]

13



Chapter 2: Theoretical Background and Literature Review

The coefficient An is the amplitude of the interface. The term ln r, in Equation

2.5, is a polar monopole, r−1 cos θ is a polar dipole, r−2 cos (2θ) is a polar

quadrupole etc. Monopoles are forbidden because there is no external force

like gravity; dipoles are also not present because there is no external torque

rotating the particles away from their optimum orientation. Therefore, the

quadrupole term, which describes the shape of the contact line, is the lowest

allowed multipole order. Higher order multipoles also describe the contact line

and are significant when close to the particle. This will be discussed later in

this Chapter.[23, 41] It is convenient to rewrite the capillary quadrupole as

h(r, θ) = Hp

(
rp
r

)2
cos (2θ) (2.6)

where Hp (A2 in Equation 2.5) is the amplitude of the interface along the

circular contour of radius rp surrounding the particle. For a quadrupole the

interfacial deformation is symmetric around two perpendicular axes with rise

and fall, see Figure 2.4.[23] For a perfectly smooth sphere there is no meniscus

deformation, see Chapter 1, Section 1.2. However, for real spheres, surface

roughness leads to contact line undulations and meniscus deformation where

the lowest order multipole is a quadrupole given by Equation 2.6.

Elliptical coordinates are a two-dimensional coordinate system which is the

most convenient coordinate system for solving the Laplace equation when rod-

like particles (e.g. ellipsoids and cylinders) are adsorbed in the side-on ori-

entation at the liquid interface, see Figure 2.2.[9] A particle-centred elliptical

coordinate system (s, t) is related to the Cartesian coordinate system (x, y) by

14
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the following transformations

x = β cosh s cos t (2.7)

y = β sinh s sin t (2.8)

where β is a length scale related to the distance from the origin. The coordinate

system in Figure 2.2 shows different values of constant s producing ellipses and

constant values of t creating hyperbolae. Specifically, β controls the aspect

ratio of constant s ellipses.

Figure 2.2: Elliptical coordinate system - (s, t) coordinates showing ellipses and
hyperbolae for varying values of s and t - adapted from [42]

In terms of elliptical polar coordinates, the 2D Laplace equation becomes

∇2h(s, t) = 1
H2

(
∂2

∂s2 + ∂2

∂t2

)
h(s, t) = 0 (2.9)

15
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where

H = β
√

sinh2 s+ sin2 t (2.10)

The general solution to Equation 2.9 is

h(s, t) = C + A0
s

s0
+
∑
m>0

e−m(s−s0) [Am cos(mt) +Bm sin(mt)] (2.11)

where C is a constant, Am and Bm are elliptic multipole moments with order

m, and s0 is approximately the s coordinate of the contact line. For an isol-

ated cylinder in the side-on state s0 = coth−1 (α) and β =
√

2r
√
α2 − 1.[12]

The lowest decaying mode is m = 2, as the particles are small enough that

gravitational effects can be disregarded and there is no external force on the

particles which would provide a torque. Therefore, the quadrupolar term is

the first surviving term of the expansion in Equation 2.11. Due to symmetry,

all sine moments are equal to zero i.e. Bm = 0; this is true if we align x and y

along the semi-minor and semi-major axes respectively.[43] It is convenient to

rewrite the leading order interface shape h(s, t) as

h(s, t) = H0 +Hee
−2(s−s0) cos(2t) (2.12)

where H0 is the height of the unperturbed liquid interface (the constant term

denoted as C in Equation 2.11), He (A2 in Equation 2.11) is the amplitude of

the interface at the ellipse s = s0.[12]

For ellipsoidal or cylindrical particles in the side-on orientation there is no

meniscus deformation for θw = 90◦, see Section 1.3. However, for θw 6= 90◦, the

constant contact angle condition leads to contact line undulations and menis-

16
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cus deformation. The lowest order multipole is given by Equation 2.12, where

He is the amplitude of contact line undulation. Elliptical quadrupoles have

been shown to represent effectively the interfacial deformation around aniso-

tropic particles for distances larger than a few particle radii away from the

particle surface, typically 3 radii.[12] Loudet et al. found this to be the case

for ellipsoidal particles, see Chapter 1, Figure 1.3. For cylindrical particles Le-

wandowski et al. showed the characteristic quadrupolar deformation, Figure

2.3(a) which highlights the rise at the ends of a cylinder and the slight depres-

sion at the sides typical of a quadrupole. Figure 2.3(b) shows the interface

fringes caused by the presence of the cylindrical particle at the interface, again

with characteristic quadrupolar deformation. Closer to the particle surface,

Figure 2.3: Experimental observations for a cylindrical particle (a) Scanning Elec-
tron Microscopy (SEM) image for a cylinder with α = 3 (b) Interface fringes for a
cylinder with α = 2.5 and θw = 80± 2◦.[12]

higher order modes start to contribute significantly to the deformation around

the particle.[12]

2.2. Far Field Capillary Interactions

We next consider the interactions for multiple anisotropic particles approaching

each other. We start by outlining the theory developed for nearly spherical
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particles and show how this can be adapted for anisotropic particles.

Capillary forces arise between adsorbed particles when the deformed menisci

of the two particles start to overlap.[7, 8] This is because the excess area caused

by the deformed menisci changes as the particles approach each other; clearly

greater menisci deformations produce stronger interactions.[44] For perfectly

smooth spheres there are no capillary interactions because there is no deform-

ation of the interface, see Chapter 1, Section 1.2. However, it has been shown

that spheres in the nanometre to micrometre range can exhibit lateral capillary

forces due to surface roughness.[45] Specifically, particles with rough surfaces,

have irregular contact lines which cause the interface to deform and therefore

lead to substantial capillary forces.

Stamou et al. developed the theory for the far field capillary interaction

between nearly spherical particles.[41] When quadrupolar deformation fields

from neighbouring particles overlap, the energy E associated with the inter-

face is given by the product of the interfacial tension γ and the area of the

liquid–liquid interface, which in the small slope limit is equal to

E ≈ γ

ˆ

A

[
1 + 1

2∇h · ∇h
]
dxdy (2.13)

where the second term inside the square bracket is the excess surface area due

to the deformations h.

Far field interactions are understood by considering the overlap of disturb-

ances hA and hB created by neighbouring particles A and B. In the superposi-

tion approximation, hA and hB are the distortions created by isolated particles

and h = hA+hB.[46] The contribution to E that depends on the inter-particle
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separation and orientation for the far field capillary interaction potential is

EAB = γ

ˆ
∇hA · ∇hBdxdy (2.14)

By inserting Equation 2.6 into 2.14, Stamou et al. [41] showed that for inter-

acting polar quadrupoles, EAB is given by

EAB = −γ
12H4

pr
4
p

r4
AB

cos(2ψA + 2ψB) (2.15)

where rAB is the centre-to-centre separation and ψA and ψB are the bond

angles. In the very far field, the meniscus around anisotropic particles can

be represented as polar quadrupoles and interact according to Equation 2.15.

Theoretical investigations have found that capillary interactions between quad-

rupoles are attractive at long distances and repulsive at short distances.[43]

Although Equation 2.15 accurately describes the attractive force between

ellipsoids and cylinders near contact, it does not explain the rotational beha-

viour observed in experiments. Equation 2.15 predicts quadrupole interaction

minimised for ψA = −ψB or ψA = π − ψB independent of bond angle ψA.

Therefore, it predicts the same energy when the positives face each other as

for the negatives facing each other, see Figure 2.4. However, experiments on

anisotropic particles show orientational dependence of pair interactions, with

the side-to-side attraction being stronger than the tip-to-tip attraction, see

Figure 2.4(b).[23, 36] This behaviour can be explained using elliptical quad-

rupoles because the interface distortion is more concentrated near the tips of

the particle. Therefore, the capillary energy is smaller when the long-axis of
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the quadrupoles is aligned because the tips are closer to each other, see Figure

2.4. Until Lehle et al. investigated the near field capillary interactions between

ellipsoids, the pair interactions were not very well understood.[9] They investig-

ated the capillary interactions for all distances between two ellipsoidal particles

finding capillary interactions are absent for a contact angle of 90◦. They solved

the Laplace equation using elliptical coordinates to find a numerical solution

for the meniscus deformation. Elliptical coordinates provide the most conveni-

ent solution because the curve around the particles is an ellipse. They showed

that the side-to-side configuration represented a lower capillary energy state

than the end-to-end configuration for ellipsoids in contact.[9] Therefore, this

theory correctly explains experimental observations.[7]

Figure 2.4: (a) Polar quadrupoles leave capillary energy unaltered by rotation (b)
Elliptical quadrupoles predict a smaller capillary energy when the tips are closer
together.[23]
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2.3. Self-Assembly

The analysis of far field interactions is important for predicting particle traject-

ories towards self-assembly, but to understand the final microstructures formed

we need to understand near field effects since these eventually become domin-

ant when the particles aggregate.[23] The fact that shape may induce enough

long range capillary interaction to cause orientated self-assembly has been

demonstrated for anisotropic particles such as ellipsoids and cylinders.[7, 12]

Loudet et al. first looked at the behaviour of ellipsoidal particles, finding long

ranged capillary interactions based purely on the shape of the particles, as the

surface chemistry was similar to that of spheres. Because the ellipsoids were

made by stretching spherical particles, they concluded that the interactions

must be due to the shape.[7] Loudet et al. also looked at the effect of surface

chemistry on the self-assembled structures of ellipsoids, finding silicon ellips-

oids preferentially aligned side-to-side whereas polystyrene ellipsoids aligned

tip-to-tip, Figure 2.5(a) and (b). If silicon ellipsoids approached tip-to-tip the

particles were found to rearrange into their preferred side-to-side configura-

tion after contact. These observations may be explained using surface charge.

Specifically, uncharged ellipsoids prefer side-to-side chaining, Figure 2.5(a),

whereas the charged polystyrene ellipsoids form flower-like structures tip-to-

tip, Figure 2.5(b).[7] The attractions between these ellipsoids were found to

be long ranged extending over distances multiple times the particle length.[7]

They also found that the capillary attraction is several orders of magnitude

greater than the thermal energy (105kBT ). Quadrupolar deformation of the

contact line was confirmed by a later study by Loudet and co-workers.[8] For
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uncharged ellipsoidal particles that are relatively smooth, Botto et al. found

that they tend to “roll” over each other into their desired structure i.e. to

preferentially align side-side.[23]

Loudet et al.[36] further extended the understanding of ellipsoidal particles

at interfaces by observing how a pair of prolate ellipsoids with different aspect

ratios self-assemble. They found so called ‘capillary arrows’ where the particles

self-assembled with an angle between their axes which form a strong dipolar

structure which is explained through the near field characteristics of the ca-

pillary interactions of the particles, shown in Figure 2.5(c). Specifically, the

authors suggest that the unequal particles ‘feel’ the side-to-side configuration

as energetically unfavourable and the repulsion of this unfavoured state forces

the particles into an arrow like structure.[36]
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Figure 2.5: Optical microscopy image of ellipsoidal particles at a water-oil interface
(a) silicon ellipsoids scale bar: 21µm (b) polystyrene ellipsoids scale bar: 33µm inset
scale bar: 13.6µm (c) two ellipsoids with unequal length forming a capillary arrow
scale bar: 12µm[7, 36]

In the near field, the capillary energy landscape becomes strongly dependent

on shape. Closer to contact, the aspect ratio becomes an important parameter,

capillary torques become relatively strong and preferred orientations emerge, as

predicted by the interaction potential for elliptical quadrupoles.[23] In contrast

to ellipsoidal particles that are relatively smooth, cylindrical particles have
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clearly defined edges, which are different at the sides to that at the ends.

They prefer to “hinge” at the ends of the particle i.e. to preferentially align

end-to-end, Figure 2.6. Lewandowski et al. and Botto et al. have shown using

numerical simulations that close to the ends of a cylinder there is excess surface

area. When particles approach each other these excess areas overlap causing

a capillary bridge to form which creates an energy barrier for re-orientation,

thus stabilising the end-to-end configuration.[12, 34]

(a) (b)

Figure 2.6: (a) Linear chain of microcylinders assembled by capillarity at the
air–water interface [12] (b) Monolayer of microcylinders formed by compression after
chain formation[23]

2.4. Orientation of Anisotropic Particles in

Zero Field

Up to this point, we have only considered the behaviour of rod-like anisotropic

particles when they are adsorbed in the side-on orientation, i.e. where the long

axis is parallel to the interface. In fact, when rod-like anisotropic particles,

such as ellipsoids and cylinders, adsorb at liquid interfaces, the particles can

adopt multiple orientations relative to the liquid interface. In this section,

we therefore consider the orientation of rod-like particles in the absence of an

external field.
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We first consider the impact of particle orientation on the deformation of

the liquid meniscus around the particle. The deformation and position of the

contact line is determined by the contact angle of the particles (we assume an

oil/water interface for definiteness). In Figure 2.7 we consider an ellipsoidal

particle in the two limiting orientations of end-on, shown in Figure 2.7(a) &

(b) and side-on shown in 2.7(c). In the end-on state, Figure 2.7(a) & (b), it

is possible to satisfy a constant contact angle condition with a flat interface

for a contact angle θw = 90◦. The contact line is located at the equator of the

particle i.e. the particle is equally wetted by the oil and water. For a contact

angle θw 6= 90◦ the constant contact angle can be satisfied by changing the

vertical position of the particle relative to the interface; this is illustrated in

Figure 2.7(b) for a hydrophilic particle. Therefore, more of the particle is in

the water phase rather than the oil. If we now consider the side-on state, it

is possible to satisfy a constant contact angle condition with a flat interface

for θw = 90◦, Figure 2.7(c). For θw 6= 90◦ there is contact line undulation as

discussed in Chapter 1, Section 1.3.

In Figure 2.8 we consider a cylindrical particle in the two limiting orienta-

tions of end-on, shown in Figure 2.8(a) & (b) and side-on shown in 2.8(c). In

the end-on state, Figure 2.8(a) it is possible to satisfy a constant contact angle

condition with a flat interface for a contact angle θw = 90◦. The contact line is

again located at the equator of the particle. For θw 6= 90◦ the constant contact

angle can be satisfied by changing the vertical position of the particle relative

to the interface; this is illustrated in Figure 2.8(b) for a hydrophilic particle.

If we now consider the side-on state, it is possible to satisfy a constant contact
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(a) (b)

(c)

Figure 2.7: Ellipsoidal particles at an oil/water interface with contact line in each
figure shown in red (a) End-on ellipsoidal particle with θw = 90◦ (b) End-on ellips-
oidal particle with θw < 90◦ (c) side-on ellipsoidal particle with θw = 90◦.

angle condition with a flat interface for θw = 90◦, Figure 2.8(c). For θw 6= 90◦

there is contact line undulation as discussed in Chapter 1, Section 1.3.

Next we consider the equilibrium orientation in the absence of an external

field. An equilibrium force balance can be satisfied in either orientation, with

the energetically most favourable option being adopted i.e. the one with the

lowest free energy. To a first approximation, the equilibrium orientation is

the orientation that removes the maximum amount of the oil/water interface,

see Chapter 1, Section 1.3. For ellipsoidal particles the side-on orientation is

always the most stable orientation independent of aspect ratio, α, as this will

always remove the largest amount of the oil/water interface. In fact end-on

ellipsoids are not observed without the influence of an external field or under

compression.[26, 47]

For cylindrical particles the orientation depends on aspect ratio α; this is

because the area removed by the flat ends of the cylinder is constant and
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(a) (b)

(c)

Figure 2.8: Cylindrical particles at an oil/water interface with contact line in each
figure shown in red (a) end-on cylindrical particle with θw = 90◦ (b) end-on cyl-
indrical particle with θw < 90◦ (c) side-on ellipsoidal particle with θw = 90◦.

independent of α i.e. for the end-on state. The area removed in the side-on

state decreases with decreasing α. Therefore, for small enough α the end-on

state becomes the most stable. The expression for the phase boundary between

end-on and side-on state in the α−θw plane is given by Lewandowski et al.[12]

as

α = π

4
1

sin θw
. (2.16)

A phase diagram can be used to show preferred orientation; this was presen-

ted by Lewandowski et al. and is shown in Figure 2.9. The coexistence line

(red dashed line), is where the cylinder can be orientated in either end-on/side-

on configuration. The turning point at the bottom of the graph corresponds

to an aspect ratio α = 1 and a contact angle θw = 90◦.
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Figure 2.9: Phase diagram for an isolated cylindrical particle in the aspect ratio α
contact angle θw plane.[12]

Lewandowski et al.[11] only considered end-on or side-on orientation in their

analysis. In Chapter 5, we also consider intermediate orientations of cylinders

between these two limiting orientations. We find the surprising result that

tilted states are stable for homogeneous short cylinders.

Compressed ellipsoidal monolayers have been studied by Basavaraj et al.

who found that the effect of surface pressure can produce some interesting

results when the particles are compressed. For example, when the layer of

ellipsoids was compressed some ellipsoids reorientated and flipped so that the

long axis of the particle was then in the upright position; further compression

resulted in some ellipsoids leaving the interface.[47] This work was then fol-

lowed up by Madivala et al. who exploited the highly elastic monolayers of

ellipsoids (much higher elasticity than if spherical particles were used) to create

stable Pickering emulsions that could be tuned by changing the particle size
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or concentration.[48, 49] The orientation of more complex anisotropic shapes

has been investigated recently, see Chapter 1, Section 1.3. The most inter-

esting of all of these was the prediction of higher order multipoles being the

leading order for more complex anisotropic shapes rather than quadrupolar as

seen for ellipsoids and cylinders. For example, the leading order distortion for

cuboidal particles has recently been shown to be octupolar.[33] Anisotropic

Janus particles have also been found to adopt tilted orientations as their equi-

librium state is based purely on their surface chemistry.[16, 50, 51]

2.5. Orientation of Anisotropic Particles in an

External Field

In the previous section, we showed that the favoured orientation for ellipsoids

and cylinders depends on shape, aspect ratio and contact angle. In this section

we outline the key literature results for anisotropic particles under the influ-

ence of an external field. It has been shown that by using an external field,

it is possible to gain further control over the assembly of particles at liquid

interfaces, opening up exciting opportunities for creating switchable surfaces.

Mittal et al.[52] have demonstrated the use of an alternating electric field

on anisotropic nanoparticles. They used field and flow directed assembly to

orientate ellipsoidal particles to create micrometre thick films of the particles

with unique optical and mechanical properties and tuned particle orientation

by changing the field frequency/strength.[52] Magnetic fields have been demon-

strated to order ferromagnetic particles experimentally.[53, 54] Vandewalle et
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al. demonstrated an ability to tune the equilibrium distance between soft fer-

romagnetic particles by varying the magnetic field and Lumay et al. induced

periodic deformations of the assembly of ferromagnetic beads by adding a ho-

rizontal and oscillating magnetic field.[53, 54] Kimura et al. used a rotating

magnetic field to create a uniaxial alignment of fibres, see Figure 2.10(a).[55]

Snezhko et al. induced self-assembled asters by using a magnetic field which

could be used to capture, transport and position target microparticles, see

Figure 2.10(b).[56] Interfacial curvature can also be used as an external field

to orientate anisotropic colloidal particles and has been demonstrated to in-

duce assembly at preferred locations, see Figure 2.10(c).[27] Research has now

extended into the use of anisotropic particles in liquid crystals, specifically, mi-

crobullets which are cylinders with one blunt end and one hemispherical end.

They have been used to direct anisotropic particle orientation and assembly

in nematic liquid crystals. The authors used an electrical field to orientate the

dipoles to form two dimensional structures which offered new insights into the

directed assembly of anisotropic particles.[14]
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(a)

(b)

(c)

Figure 2.10: External field examples from the literature (a) fibres oriented ran-
domly (left) alignment of fibres after exposure to static and rotating field (right) (b)
Self-assembled asters [56] (c) Time lapsed images for four particles attaching to the
interface (order of attachment red, green, blue and orange)[27].

In their seminal work, Bresme and co-workers[30, 57] analysed the effect of

an external magnetic field on the orientation of a single ellipsoidal particle

which has a semi-major axis of length zm, two semi-minor axes of length rm

and aspect ratio α = zm/rm. The ellipsoid has a permanent magnetic di-

pole, m, which is adsorbed at a liquid interface in the presence of a magnetic

field, B, applied perpendicular to the interface, see Figure 2.11. They used a
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simple thermodynamic model that assumes that the liquid interface remains

planar and that the contact angle of the liquid interface at the particle sur-

face is θw = 90◦ (we will refer to this theory as BF theory). For definiteness,

we refer to the upper and lower liquid phases as oil and water, respectively.

These authors found that at zero field strength the particle has a horizontal

orientation (long axis of particle parallel to the interface). However, as the

magnetic field, B, is increased, the tilt angle, θt, of the particle with respect to

the interface gradually increases until, at a critical field strength, the particle

undergoes a discontinuous phase transition to the vertical orientation (long

axis of particle perpendicular to the interface). These authors also performed

molecularly resolved computer simulations of nanoscale ellipsoids (roughly ten

times larger than solvent molecules) and found quantitative agreement with BF

theory across a wide range of field strengths and particle aspect ratios.[30, 57]

Figure 2.11: Geometry of an ellipsoidal particle adsorbed at an oil/water interface
in the presence of an external field B applied perpendicular to the interface. The
variables characterising the geometry of the tilted particle are discussed in the main
text. The image is generated from Surface Evolver simulations of an ellipsoid with
contact angle θw = 90◦, aspect ratio α = 3 and tilt angle θt = 45◦, the deformation
of the liquid meniscus has been taken into account.
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However, as discussed in Chapter 1, Section 1.3, for a horizontal ellipsoidal

particle with contact angle θw 6= 90◦, or a tilted ellipsoidal particle of any

contact angle, Young’s condition of a constant contact angle around the three

phase contact line dictates that the liquid meniscus around the particle cannot

remain flat. Instead, the liquid meniscus will be deformed with the amplitude

of the deformation scaling with particle size. As can be seen from Figure 2.11

there is significant deformation of the interface caused by the tilting of the

ellipsoid. The reason why the effect of such deformations was not observed

in the simulations of Bresme et al.[30, 57] is presumably because for nano-

particles, the amplitude of the capillary deformations is comparable to the

thermal fluctuations of the liquid interface and therefore can be neglected to a

first approximation. However, for micron-sized particles, where the amplitude

of the capillary deformations is much greater than thermal fluctuations, we

expect such deformations to lead to quantitative differences with BF theory.

Very recently, Davies et al. have studied this problem for micron-sized

ellipsoidal particles with θw = 90◦ using lattice-Boltzmann simulations[32]

which explicitly account for the deformation of the meniscus. These authors

verified that ellipsoidal particles indeed undergo a discontinuous orientational

transition with increasing magnetic field. However, they also found significant

quantitative differences with BF theory and demonstrated that these differ-

ences are due to the deformation of the liquid meniscus.

Capillary deformation induced by tilting a particle has dipolar symmetry.

The dipolar capillary interactions can be controlled by using an external field.

Exploiting this fact, Davies et al. studied the effect of a magnetic field on
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the self-assembly of multiple ellipsoids using lattice-Boltzmann simulations.[32]

Their theoretical investigations have found switchable ‘capillary caterpillars’

(long chains of ellipsoidal particles in the side-to-side configuration) and have

demonstrated, by applying a magnetic field, an ability to switch on and off

dipolar capillary interactions, see Figure 2.12.[4] Specifically, in Figure 2.12(a)

the initial configuration for side-on ellipsoids randomly distributed on an in-

terface is shown. (b) demonstrates dipolar capillary interactions forming self-

assembled chains when a magnetic field is applied perpendicular to the in-

terface. (c) shows that once the critical field is exceeded all of the particles

undergo a first order phase transition to the end-on state. Therefore, there is

no deformation of the interface meaning no capillary interactions are present.

Finally, (d) shows the particles randomly arranging after the first order phase

transition. The authors suggested the ability to turn off and on the interactions

leads to a potential use of them as switches e.g. interfacial sensors.[32]

Figure 2.12: lattice-Boltzmann simulations for multiple ellipsoidal particles (a)
randomly distributed ellipsoids in side-on orientation (b) self-assembled ellipsoids
due to dipolar capillary interactions when a magnetic field is applied perpendicular
to the interface (c) critical field exceeded therefore particles now in end-on orienta-
tion (d) randomly distributed end-on ellipsoids.[32]

Finally, Davies et al. followed up this work by investigating a small number

of particles, under the influence of a magnetic field, finding interesting sym-
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Figure 2.13: lattice-Boltzmann simulations for equilibrium clusters of ellipsoidal
particles with aspect ratio α = 2 and intermediate external field B = 0.5Bc. From
left 3, 4, 5, 6 and 12 particles.[58]

metric clusters which appear to favour tip-to-tip configurations, see Figure

2.13.[58]

They also used Surface Evolver to analyse dipolar interactions for two ellips-

oidal particles and found the side-to-side orientation to be a global minimum

and the tip-to-tip orientation to be metastable, see Figure 2.14. This res-

ult seems counter intuitive since experimentally and theoretically it has been

shown that side-on ellipsoids approaching tip-to-tip roll into a side-to-side ori-

entation and will therefore be revisited in Chapter 6.[7, 34, 59]

In this thesis we focus on controlling the orientation and assembly of rod-like

anisotropic particles using an external field in the geometry shown in Figure

Figure 2.14: Energy profile as a function of bond angle for two ellipsoidal particle
in contact with an α = 2
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2.11. One limitation of the lattice-Boltzmann method is the fact that the small

degree of inherent noise present limits the resolution near the discontinuous

transition, which is very sensitive to the presence of any fluctuations in the sys-

tem. This is due to lattice-Boltzmann being based on a fixed Eulerian grid that

does not allow for high accuracy in the evaluation of the area of the interface

because of the requirement of a uniform surface mesh; the interface is typically

≈ 5 lattice sites wide at equilibrium.[4, 58] However, this method is beneficial

for looking at large arrays of multiple particles at an interface.[32, 58] In order

to overcome this problem, in Chapter 4, we use the finite element package

Surface Evolver,[60] to analyse the region near the discontinuous transition of

a single ellipsoidal particle much more accurately than previous studies. In

Chapter 6, we use Surface Evolver to analyse the equilibrium configuration

for a small number of ellipsoidal particles (up to three). The problem with

ellipsoids is that any orientational transitions induced by an external field are

lost when the external field is removed i.e. it is a volatile system. In order to

overcome this, in Chapter 5, we analyse the orientation of cylinders in an ex-

ternal field. In the next Chapter we introduce Surface Evolver as the primary

theoretical tool used to study these problems.
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Surface Evolver Method
In this Chapter we outline our simulation method which utilises the program

Surface Evolver.[60, 61]

Surface Evolver is a finite element package designed as an interactive pro-

gram for studying surfaces shaped by surface tension and other forces. All

simulation results in this thesis have been performed using Surface Evolver

which produces high resolution calculations due to the ability to have a finer

mesh close to the particle and therefore, greater accuracy than other simulation

methods.[60, 61]

3.1. Sphere at a Liquid Interface

To explain all of the stages required to create a Surface Evolver simulation

we start by considering the relatively simple example of a sphere at a liquid

interface.

The four basic elements used by Surface Evolver are vertices, edges, facets

and bodies. Vertices are points in space represented by circles in Figure 3.1.

Edges are straight lines joining pairs of vertices with their directions indicated

by arrows, as shown. Facets are flat triangles bounded by three edges. A body

is defined by the series of facets that bound it.

In our example, Surface Evolver divides the interface into a mesh of small

triangles; the vertices of these triangles are then displaced to minimise the

interfacial energy of the three-phase system. A typical set up for a spherical

particle, with all the definitions required, is in Appendix A.
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Figure 3.1: Example start point for a sphere geometry. The circled numbers are
the vertices. The numbers next to the arrows are the edges and the arrows show
the orientation of the edges which are used to define the facets.

In Surface Evolver the three phase contact angle, which is given by Young’s

equation, Equation 1.1, is implemented by using a constraint. The total free

energy of the system, Fint, is given by

Fint = γowAow + γpoApo + γpwApw (3.1)

where γow,γpo,γpw are the interfacial tensions and Aow, Apo, Apw are the areas of

the oil/water, particle/oil and particle/water interfaces respectively. Young’s

equation can be recast as γow cos θw +γpw = γpo, where θw is the contact angle.

For the contact angle we need to specify two out of the three surface tensions;

typically, γow = 1 and γpw = 0. This sets γpo = cos θw which is implemented

by applying the surface tension to the faces of the particle/oil interface on the

contact line. For computational convenience and without loss of generality,

the centre of the particle is fixed at the origin of the coordinate system used

and the interface is free to move vertically to satisfy the contact angle.

As well as the contact line some other boundary conditions are required to

correctly represent the particle at a liquid interface. The first is the three phase
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contact line which requires an equation to represent the shape of the particle

under investigation; in this case, the equation of a sphere

x2 + y2 + z2 = r2 (3.2)

which is applied to the vertices 1 − 5 and edges 1 − 8 in Figure 3.1. x, y and

z are the coordinates of the interface and r is the radius of the sphere. The

homogeneous Neumann boundary condition is used at the outer boundary of

the simulation domain to ensure a flat interface far from the particle.[12] This

is where we apply a contact angle θw = 90◦ to vertices 6− 9 and edges 9− 12

in Figure 3.1.

Once all definitions are complete the file with the extension *.fe can be

opened in Surface Evolver. Figure 3.2, shows the initial setup (a) evolving to

the final minimised surface shown in (f).

(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Evolution of a sphere as the surface is minimised.
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For an isolated sphere with θw = 90◦ the interface remains flat and is at

a height of z = 0. We can calculate from first principles the height of the

interface for varying contact angle. Figure 3.3 shows the geometry we use to

calculate the height of the interface.

Figure 3.3: Spherical particle at an oil-water interface showing how to calculate
the height of the interface for varying contact angle.

θw r cos θw Surface Evolver Error/%
100 0.17365 0.17243 0.7
110 0.34202 0.34104 0.3
120 0.5000 0.49949 0.1
130 0.64279 0.64096 0.3

Table 3.1: Comparison of the interface height calculated using r cos θw with the
height predicted by Surface Evolver simulations including error.

In Table 3.1 we compare the height of the interface calculated for varying

contact angle using r cos θw with the height predicted by our Surface Evolver

simulations shown in Figure 3.4. For all values there is a less than 1% error.

Therefore, we have a simulation with a minimisation scheme that can predict

very accurately the height of the interface. To calculate the height from our

Surface Evolver simulation we outputted the 192 vertices on the contact line
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(a) θw = 90◦

(b) θw = 100◦ (c) θw = 110◦

(d) θw = 120◦ (e) θw = 130◦

Figure 3.4: Surface Evolver output for a sphere with varying contact angle.

and averaged the z values, shown in Table 3.1.

There are two ways of approaching simulating particles at an interface in

Surface Evolver. The surface energy method, which we have shown here for

the spherical particle case, is also used in Chapters 5 and 6. Whereas, the

edge integral method is used in Chapter 4 in collaboration with Prof. Kenneth

Brakke.[61] In the edge integral method, we omit the particle from the simu-

lation and edges where the interface and particle would meet are represented

by an energy integrand. Specifically, we use an ellipsoid area integrand that

calculates strips from the contact line down to the south pole of the particle;

this eliminates the need to explicitly include the particle/water or particle/oil

interface. This is implemented by having a line integral as a constraint on the
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edges where the interface would have met the ellipsoid. We have verified, for

an ellipsoidal particle, that both methods produce the same results.

3.2. Coordinate Transformations

As described in Chapter 2, rod-like particles can have multiple orientations

relative to the liquid interface. The most convenient way to implement this

in a simulation is to use coordinate transformations that relate the local co-

ordinate system aligned along the principle axis of the particle to the lab frame

coordinate system aligned to the liquid interface.

If an anisotropic particle is tilted at an angle θt to the liquid-liquid interface

an adaption of the mathematical formula, using the transform (x′, y′, z′) to

(x, y, z) , is required. To change (x′, y′, z′) to (x, y, z) the following transform-

ations will be used:-

x′ = x

y′ = y cos θt + z sin θt

z′ = −y sin θt + z cos θt

The resulting equations are then inserted as constraints into the Surface

Evolver program and the surface energies are minimised. In this thesis we

investigate the effect of tilt angle on the orientational transition of a single

ellipsoidal and a single cylindrical particle using this tilt angle transformation.

We also investigate the effect of tilt angle θt and bond angle θb on multiple

ellipsoidal particles. In our case we apply the bond angle constraint first before

tilting the particle. Specifically, in Figure 3.5 we show in (a) how we define

the bond angle relative to the lab frame and in (b) how this is then used to
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define both bond and tilt angles.

Figure 3.5: Schematic to show how the bond and tilt angle rotate in relation to
the lab frame (x, y, z) (a) bond angle definition to the prime coordinate system (b)
tilt angle definition to the double prime coordinate system.

The centre-to-centre distance required for multiple ellipsoidal particles, see

Chapter 6 for details, is used in the definitions of the vertices and ellipsoid

equations to ensure that the particles are always separated by the same amount

for varying bond angle. In a similar way to the definitions outlined by Morris

et al.[13] we apply the following transformations:-

x′ = x cos θb + y sin θb

y′ = −x sin θb + y cos θb

z′ = z

x′′ = x′

y′′ = y′ cos θt + z′ sin θt

z′′ = −y′ sin θt + z′ cos θt

3.3. Ellipsoids and Cylinders

In this section we compare our simulation with the data from published liter-

ature for anisotropic particles in the side-on orientation.
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For an isolated ellipsoid with θw = 80◦ it has been reported that there is

only weak contact line undulations with contact line heights zmax being the

maximum and zmin being the minimum. In contrast, an isolated cylinder with

the same contact angle gives a much stronger contact line undulation, around

four times that of an ellipsoid. The comparison between literature and our

Surface Evolver values are shown in Table 3.2 where R = 1.[34]

α 4z = zmax − zmin Our Surface Evolver 4z Error/%
Ellip 3 0.0674R 0.0669R 0.7
Ellip 2 0.042R 0.042R 0
Cyl 3 0.2574R 0.2580R 0.2

Table 3.2: Comparison between literature contact line height values and our Sur-
face Evolver results.

In Figure 3.6 we show our Surface Evolver visualisation with the character-

istic quadrupolar deformation observed around an ellipsoidal and a cylindrical

particle. We have found excellent agreement between our Surface Evolver

simulations and the literature.[34]

(a)

(b)

Figure 3.6: Surface Evolver visualisation for anisotropic particles with α = 3 and
θw = 80◦ (a) ellipsoidal particle and (b) cylindrical particle.
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Chapter 4
Single Ellipsoid in an External Field

4.1. Introduction

In this Chapter, we investigate theoretically the effect of an external magnetic

field on the orientation of a single ellipsoidal particle with a permanent mag-

netic dipole which is adsorbed at a liquid interface when the magnetic field

is applied perpendicular to the interface. We compare our Surface Evolver

results for varying aspect ratio with results from the literature and investigate

the effect of changing contact angle.

Referring back to the seminal work of Bresme and Faraudo[30] and Bresme[57]

(BF theory) who assumed that the liquid interface remains planar around an

ellipsoidal particle with an embedded magnetic dipole that interacts with an

external magnetic field applied perpendicular to the interface and θw = 90◦,

see Chapter 2. They found that the initial orientation of the particle is with

the long axis of the particle parallel to the interface. However, as the magnetic

field is increased, the tilt angle of the particle with respect to the interface

gradually increases until, at a critical field strength, the particle undergoes a

discontinuous phase transition so that the long axis of the particle is now per-

pendicular to the interface. For micron-sized particles, where the amplitude

of the capillary deformations is much greater than thermal fluctuations, we

expect deformations to lead to quantitative differences with BF theory and

this was confirmed by Davies et al. using lattice-Boltzmann simulations[32]

which explicitly account for the deformation of the meniscus. These authors

verified that ellipsoidal particles indeed undergo a discontinuous orientational
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transition with increasing magnetic field. However, they also found significant

quantitative differences with BF theory and demonstrated that these differ-

ences are due to the deformation of the liquid meniscus.

One limitation of the lattice-Boltzmann method is the fact that the small

degree of inherent noise present limits the resolution near the discontinuous

transition, which is very sensitive to the presence of any fluctuations in the sys-

tem. In order to overcome this problem, we use the finite element package Sur-

face Evolver,[60] which allows us to calculate the equilibrium meniscus around

micron-sized particles and analyse the region near the discontinuous transition

much more accurately. We also show for the first time that upon reducing the

external field, the particle undergoes a second discontinuous transition from

the perpendicular orientation to a different tilted state, i.e., we demonstrate

that the tilt angle vs. magnetic field curve exhibits a hysteretic behaviour.

Furthermore, we extend the studies in ref.[30, 32, 57] by considering particles

with contact angles θw 6= 90◦, thus allowing us to study the effect of both

particle aspect ratio and contact angle on the orientational transition.

The rest of this Chapter is organised as follows. In section 4.2 we discuss

the theoretical model describing our Surface Evolver method and defining the

key equations and boundary conditions for our simulation. In section 4.3 we

present our results and discuss the feasibility of observing orientational trans-

itions experimentally in these systems, and finally in section 4.4 we summarise

our main conclusions.
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4.2. Theoretical Model

When particles are adsorbed at an interface, the most stable configuration

for the particle is the one that removes the maximum area of the liquid

interface.[30] This is why, in the absence of an external field, the most stable

configuration for an ellipsoidal particle is where the long axis of the particle

is parallel to the interface (parallel configuration). This point is obvious if

we make the simplifying assumption that the interface around the ellipsoid

remains flat [30, 57] but is in fact also true even if we allow for deformations

of the liquid interface. Conversely, configurations where the long axis of the

particle makes a finite angle to the interface are only stable in the presence

of an external field. Let us consider a prolate ellipsoidal magnetic particle

adsorbed at a liquid interface, which has a semi-major axis of length zm, two

semi-minor axes of length rm, aspect ratio α = zm/rm and whose long axis

makes an angle θt with respect to the unperturbed liquid interface (Figure

4.1). For definiteness, we refer to the upper and lower liquid phases as oil and

water respectively. The particle has an embedded magnetic dipole moment m

which interacts with an external magnetic field B applied perpendicular to the

liquid interface as shown in Figure 4.1.

The total free energy of this three phase system is given by

Fint = γowAow + γpoApo + γpwApw −mB sin θt (4.1)

where γow,γpo,γpw are the interfacial tensions and Aow, Apo, Apw are the areas

of the oil/water, particle/oil and particle/water interfaces respectively. Using

47



Chapter 4: Ellipsoidal Particle in an External Field

Figure 4.1: Geometry of an ellipsoidal particle adsorbed at an oil/water interface
in the presence of an external field B applied perpendicular to the interface (for
simplicity we show the unperturbed interface). The variables characterising the
geometry of the tilted particle are discussed in the main text.

Young’s equation γow cos θw = γpo − γpw where θw is the contact angle of the

oil/water interface at the particle surface, noting that Apo = Ap −Apw, where

Ap is the total area of the particle and dropping irrelevant constant terms, we

can simplify Equation 4.1 to

Fint = γowAow − γow cos θwApw −mB sin θt. (4.2)

Finally, it is convenient to divide the above equation through by γowAp to

obtain the dimensionless free energy of the system as

F int ≡
Fint
γowAp

= Aow − cos θwApw −B sin θt (4.3)

where Aow = Aow/Ap, Apw = Apw/Ap and B = mB/γowAp.

Minimising F int with respect to θt for a given value of B allows us to de-

termine the equilibrium tilt angle of the particle for a given magnetic field

strength. Note that minimising F int is equivalent to solving the equation
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1
cos θt

∂F st

∂θt
= B (4.4)

where

F st = Aow − cos θwApw (4.5)

is the free energy contribution from the interfacial tension terms. Note that

the left hand side of Equation 4.4 is independent of B. Thus, by calculating

the interfacial energy F st and ∂F st

∂θt
as a function of θt, we can determine the

equilibrium tilt angle for a given B via Equation 4.4.

In order to calculate F st, Bresme and Faraudo[30] made the simplifying

assumption that the oil/water interface remains flat in the presence of the

adsorbed particle. This allowed them to derive an analytical expression for

Aow which is given by

Aow = A0

Ap
− α

4G(α)

√
1

cos2(θt) + α2 sin2(θt)
(4.6)

where A0 is the total area of the unperturbed oil/water interface in the absence

of the adsorbed particle and

G(α) = 1
2 + 1

2
α√

1− α−2
arcsin

√
1− α−2. (4.7)

Bresme and Faraudo further simplified the problem by considering the neut-

rally wetting case (i.e., θw = 90◦) where the Apw term in Equation 4.5 can be

neglected. The BF theory predicts a discontinuous transition of the ellipsoidal

particle from a finite tilt angle to the perpendicular orientation (θt = 90◦) at a

critical field strength. The theory also predicts that the critical field strength
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increases with increasing particle aspect ratio α.

In our study, we calculate both Aow and Apw numerically using Surface

Evolver.[60] This allows us to accurately account for the interfacial deforma-

tions caused when analysing the orientational transitions of the particle. Our

Surface Evolver model is a finite element method that divides the oil/water

interface into a mesh of small triangles; the vertices of these triangles are then

displaced to minimise the interfacial energy of the three-phase system. This

means that thermal fluctuations are neglected in Surface Evolver. Because

of this, the method is accurate for modelling micron-sized particles, where

thermal fluctuations are small compared to the amplitude of the meniscus

deformation, but is less accurate for modelling nano-sized particles, where

thermal fluctuations are comparable to the amplitude of the meniscus deform-

ation. We define the x-y plane to lie along the unperturbed oil-water interface,

the z axis to be perpendicular to the interface and work in length units such

that the semi-minor axis length of the particle rm = 1. In the physical system,

the oil/water interface is fixed while the height of the particle relative to the

interface is variable depending on the contact angle θw. In our simulations

this fact is implemented by fixing the centre of the particle at the centre of

the simulation cell but allowing the height of the oil/water interface to freely

vary relative to the particle, which is equivalent to the physical system. The

long axis of the particle is constrained to lie in the y-z plane at an angle of θt

with respect to the y-axis. We use a square simulation cell with side length

12× zm and impose a fixed contact angle of θw = 90◦ at the outer edge of the

cell. In order to confirm that finite size constraints are negligible, for selec-
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ted simulations, the simulation cell length was increased by 50% and yielded

essentially the same results for the critical tilt angle (within 2%) and critical

field strength (within 0.1%).

The contact angle constraint at the three-phase contact line is imposed by

using the edge integral method where the surface integral Apw is partially in-

tegrated and represented as a line integral, see Chapter 3, Section 3.1.[60] For

convenience, all simulation constraints are first represented in the particle ref-

erence frame (i.e., with coordinate axes aligned along the major and minor

axes of the particle) before being transformed to the x-y-z frame via a co-

ordinate transformation, details provided in Chapter 3, Section 3.2.[62, 63] In

order to achieve good numerical accuracy, we used a high level of refinement

for the oil/water surface, e.g., for particles with an aspect ratio α = 3, contact

angle θw = 90◦ and tilt angle θt = 45◦, we used 22500 triangles to represent

the surface and 172 vertices to represent the contact line; the specific number

of triangles and vertices used was varied depending on the values of α, θw and

θt. The minimum-energy surface was found for tilt angles between 0◦ and 90◦

in increments of 1◦. For each tilt angle, we record the location of the contact

line and calculate Aow, Apw and hence F st as a function of θt. The derivative

∂F st

∂θt
in Equation 4.4 was then calculated numerically for each simulated tilt

angle using the central-difference formula;[64] values of the derivative at other

tilt angles were obtained by interpolation.
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4.3. Results & Discussion

We first consider the equilibrium orientation of the ellipsoidal particle as we

increase the external field. In Figure 4.2, we plot the total free energy F int given

by Equation 4.3 (relative to the free energy at θt = 90◦) as a function of particle

tilt angle θt for different field strengths B for a particle with aspect ratio

α = 3 and contact angle θw = 90◦. Figure 4.2(a) and (b) have been calculated

using Surface Evolver and BF theory respectively. For each field strength, the

equilibrium tilt angle is the one that minimises the total free energy. For both

theories, we see that at zero field, the equilibrium configuration is the ‘parallel’

state where θt = 0◦ (black curves).

As we increase the field strength, the equilibrium state becomes the tilted

state where the particle has a finite tilt angle that lies between 0◦ < θt < 90◦

(e.g., blue curves). As we increase the field strength further, the free energy

curve develops two local minima, one corresponding to the tilted state and

the other to the perpendicular state, where θt = 90◦, but the equilibrium

state (i.e., global minimum) is still the tilted state. However, at a threshold

field strength B0, the free energy of the tilted state becomes equal to that of

the perpendicular state (red curve). At this point, the particle in principle

undergoes a first order phase transition from the tilted state to the perpendic-

ular state. However, as first order phase transitions are activated processes,

whether this transition can occur in practice depends on the magnitude of the

energy barrier between the two local minima relative to the thermal energy

kBT . For nano-sized particles, where the energy barrier is of the order of kBT ,

the first order phase transition can occur and evidence for such a transition
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Figure 4.2: Dimensionless free energy as a function of tilt angle (relative to per-
pendicular state) for an ellipsoidal particle with α = 3, θw = 90◦ for different field
strengths: (a) Surface Evolver results (b) Bresme-Faraudo theory.

53



Chapter 4: Ellipsoidal Particle in an External Field

has been found in computer simulations of ellipsoidal nanoparticles.[30, 57]

On the other hand for micron-sized particles, where the energy barrier is in

general thousands of kBT or more, thermal energy is insufficient to activate

the first order phase transition and the particle remains trapped in the tilted

state for B > B0, even though the tilted state is no longer the equilibrium

state (i.e., it is a metastable state). Finally, as we increase the field strength

further, at a critical field Bc1, the local minimum corresponding to the tilted

state merges with the local maximum corresponding to the free energy barrier

at the critical tilt angle θc1 (green curve). At this point, the energy barrier

disappears and the particle undergoes an irreversible transition from the tilted

state to the perpendicular state.

Comparing Figures 4.2(a) and (b), we see that both Surface Evolver and BF

predict the same qualitative features for the orientational transition. However,

there are clearly significant quantitative differences between Surface Evolver

and BF theory. These differences are illustrated more clearly in Figure 4.3

where we plot the equilibrium tilt angle θt as a function of the external field

B for increasing fields for θw = 90◦ and α = 1.5 or α = 3. Specifically, we

compare the results for Surface Evolver, BF theory and the recent lattice-

Boltzmann simulations of Davies et al.,[32] which explicitly account for the

deformation of the liquid meniscus around the particle. Comparing Surface

Evolver and BF theory, we see that both theories agree qualitatively and pre-

dict that the particle undergoes a discontinuous orientation transition above a

critical field strength. However, there are clearly significant quantitative dif-

ferences between BF theory and Surface Evolver. For example, for α = 1.5,
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Figure 4.3: Equilibrium tilt angle as a function of dimensionless field strength for
increasing fields calculated using Bresme-Faraudo theory (solid line), Surface Evolver
(dashed line) and lattice-Boltzmann simulations[32] (points) for a contact angle θw =
90◦ and two different aspect ratios α = 1.5 (blue) and α = 3 (red).

Surface Evolver predicts a larger critical field Bc1 and a larger critical tilt angle

θc1 compared to BF theory, while for α = 3, Surface Evolver predicts a smaller

critical field and larger critical tilt angle compared to BF theory. The results

of Figures 4.2 and 4.3 demonstrate that assuming a flat fluid interface allows

us to capture the essential qualitative features of the orientational transition.

However, if we want to obtain quantitative results for the orientational beha-

viour of micron-sized anisotropic particles, we need to explicitly account for

the deformation of the interface.

Next, we compare Surface Evolver with the lattice-Boltzmann simulations

in Figure 4.3. We see that for both α = 1.5, 3, there is excellent quantitative

agreement between the two theories when we are far enough away from the

orientational transition. However, discrepancies between the two theories begin

to appear near the orientational transition where the lattice-Boltzmann results

become noisy. We believe that these discrepancies are due to the small degree
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of noise that is inherent in the lattice-Boltzmann method. While this noise does

not have a significant effect when we are far enough away from the orientational

transition, it has a big impact near the discontinuous transition, which is

very sensitive to any fluctuations in the system. These results illustrate the

necessity of very accurate numerics if we want to capture the behaviour near

the orientational transition. In this context, Surface Evolver complements

the lattice-Boltzmann scheme and allows us to analyse the region near the

orientational transition to a much higher degree of resolution.

One very important feature for micron-sized particles that has not been dis-

cussed previously is the fact that the very large energy barrier between local

minima states for such particles implies that there will be significant hyster-

esis in their orientational behaviour. This can be seen by analysing Figure

4.2(a) or (b) for the reverse case where we decrease the external field. For high

external fields, the equilibrium state is the perpendicular state (e.g., purple

curve). However, as we decrease the external field to less than Bc1, the free

energy curve develops two local minima, one corresponding to the perpen-

dicular state and the other to the tilted state where 0◦ < θt < 90◦, but the

equilibrium state (i.e., global minimum) is still the perpendicular state. How-

ever, at the threshold field strength B0, the free energy of the tilted state

becomes equal to that of the perpendicular state (red curve). At this point,

the particle should undergo a first order phase transition from the perpendicu-

lar state to the tilted state. However, the very large energy barrier between the

two states prevents the particle from doing so and it remains trapped in the

(now metastable) perpendicular state for B < B0. Finally, as we decrease the
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field strength further, at a critical field Bc2, the local maximum corresponding

to the free energy barrier merges with the local minimum corresponding to the

perpendicular state (blue curve). At this point, the energy barrier disappears

and the particle undergoes an irreversible transition from the perpendicular

state to the tilted state with tilt angle θc2 < θc1. As can be seen from Fig-

ure 4.2(b), this second irreversible transition is also predicted by BF theory.

However, as far as we are aware, the presence of hysteresis in the orientational

transition of ellipsoidal magnetic particles at a liquid interface has not to date

been discussed explicitly in the literature. We emphasise that we only expect

such hysteretic behaviour to be seen for micron-sized particles, where the ac-

tivation energy is large. For nano-sized particles, where the activation energy

is small (order kBT or less),[30, 57] we expect this hysteretic behaviour to dis-

appear and the orientational transition to occur via an equilibrium first order

transition.

Numerically, we have found that a convenient method for determining the

equilibrium tilt angle, the critical fields Bc1, Bc2 and the critical tilt angles θc1,

θc2 is by solving Equation 4.4. This is illustrated in Figure 4.4, where we plot

the curve 1
cos θt

∂F st

∂θt
as a function of θt for α = 3, θw = 90◦. For an arbitrary

magnetic field B, represented by the solid horizontal line in Figure 4.4, the

intersection with the rising part of the curve represents the local minimum

of the free energy curve corresponding to the tilted state; the value of θt at

the intersection is therefore the equilibrium tilt angle. The intersection of the

horizontal line with the falling part of the curve represents the local maximum

of the free energy curve corresponding to the energy barrier (see Figure 4.2).
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Figure 4.4: 1
cos θt

∂F st
∂θt

as a function of tilt angle θt in radians (F st is the dimen-
sionless interfacial tension free energy of the system) for an ellipsoidal particle with
α = 3, θw = 90◦. The equilibrium tilt angle for a given external field B (represented
by the solid horizontal line) is given by the intersection of the horizontal line with
the rising part of the curve. The values of the critical fields and tilt angles can be
determined from the curve as shown above.

The first irreversible transition occurs when the external field is such that the

tilted state merges with the energy barrier which corresponds to the maximum

of the curve in Figure 4.4. We can determine Bc1 and θc1 from the magnitude

and position of the maximum, as shown in Figure 4.4. On the other hand, the

second irreversible transition occurs when the external field is such that the

energy barrier merges with the local minimum at θt = 90◦. We can therefore

find Bc2 from the value of the curve at θt = 90◦; the intersection of Bc2 with

the rising part of the curve then yields θc2 as shown in Figure 4.4.

In Figure 4.5, we plot the equilibrium tilt angle as a function of magnetic

field for both increasing fields (lower curve) and decreasing fields (upper curve)

for α = 3, θw = 90◦; (a) and (b) are calculated using Surface Evolver and BF

theory respectively. The position of the irreversible orientational transitions
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Figure 4.5: Hysteresis curve for the equilibrium tilt angle vs. dimensionless field
strength for increasing and decreasing fields (as indicated by the direction of the
arrows) for α = 3, θw = 90◦ calculated using: (a) Surface Evolver (b) Bresme-
Faraudo theory.
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Figure 4.6: Contour plot (top) and 3D plot (bottom) of the deformation field for
the oil/water interface calculated from Surface Evolver for three different tilt angles
θt of a particle with α = 3, θw = 90◦: (a)θt = 5◦ (b)θt = 30◦ (c)θt = 60◦.

at Bc1 and Bc2 are indicated on the plot. The position of the threshold field

B0, where a reversible first order phase transition can occur (for particles

with sufficiently large activation energy) is also indicated. Note that the lower

curve is metastable for B0 < B < Bc1 while the upper curve is metastable for

Bc2 < B < B0. Once again we see that both Surface Evolver and BF theory

agree qualitatively, predicting that there is a significant degree of hysteresis

in the orientational transition of the particle. However, because of the differ-

ent assumptions regarding the deformation of the meniscus, there are clearly

significant quantitative differences between the two: firstly Surface Evolver

predicts a much narrower hysteresis loop compared to BF theory; secondly the

critical tilt angles predicted by Surface Evolver are significantly higher than

the corresponding tilt angles predicted by BF theory.

Given the importance of the deformation of the liquid meniscus for quantit-

ative calculations of the orientational transition,[32] it is instructive to analyse

the deformation of the liquid meniscus around the particle as a function of the

tilt angle using Surface Evolver. In Figure 4.6, we plot the deformation field
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of the oil/water interface for a particle with α = 3 and θw = 90◦ for some rep-

resentative tilt angles as contour plots (top) and 3D plots (bottom); the solid

oval outline in the contour plots represent the projection of the three-phase

contour line onto the x-y plane. We have chosen a contact angle of θw = 90◦

for clarity since for this neutral wetting condition, any quadrupolar deforma-

tions due to contact angle constraints[7–9] are absent. The deformation field is

clearly dipolar in nature, in agreement with the lattice-Boltzmann simulations

of Davies et al.[32] We also note that the deformation is small for small (a)

and large (c) tilt angles and is maximum for intermediate tilt angles (b). This

is not surprising since (for θw = 90◦) the deformation is zero for θt = 0◦ and

90◦. Interestingly, the tilt angle at which the maximum deformation occurs

(≈ 30◦ in this case, i.e., case (b)) is essentially equal to θc1, the critical angle for

the irreversible transition to the perpendicular state to occur. Qualitatively,

this can be understood from the fact that the maximum deformation effect-

ively corresponds to the maximum torque that can be generated by interfacial

tension to oppose the magnetic torque. Increasing the tilt angle beyond this

point leads to a further increase in the magnetic torque but a decrease in the

interfacial tension torque and the particle therefore undergoes a discontinuous

transition to the perpendicular state.

In Figure 4.7, we analyse the dependence of the critical fields and critical

tilt angles on the aspect ratio of the particles α. Specifically, in Figure 4.7(a),

we plot θc1 and θc2 as a function of α, while in Figure 4.7(b) we plot Bc1 and

Bc2 as a function of α for θw = 90◦; the red lines are the predictions of Surface

Evolver while the black lines are the predictions of BF theory. We see that BF
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Figure 4.7: (a) Critical tilt angles θc1, θc2 and (b) critical field strengths Bc1, Bc2
as a function of aspect ratio α for a particle with θw = 90◦ calculated using Surface
Evolver and Bresme-Faraudo theory.
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theory agrees qualitatively with Surface Evolver. Specifically, both theories

predict that θc1, θc2 decrease with increasing α and the width of the hysteresis

curve Bc1 − Bc2 increases with increasing α. Interestingly, for an aspect ratio

of α = 1.5, the width of the hysteresis curve falls to practically zero for both

Surface Evolver and BF theory. However, as already noted in Figure 4.5,

Surface Evolver predicts significantly lower critical tilt angles compared to BF

theory for any given aspect ratio α (Figure 4.7(a)) and a significantly narrower

width for the hysteresis curve compared to BF theory for any given α (Figure

4.7(b)).

In Figure 4.8, we use Surface Evolver to analyse the dependence of the

critical fields and critical tilt angles on the contact angle of the particles θw.

This represents an extension to BF theory[30, 57] and ref.[32] which were

restricted to the neutral wetting condition θw = 90◦. Specifically, in Figure

4.8(a), we plot θc1 and θc2 as a function of θw while in Figure 4.8(b) we plot

Bc1 and Bc2 as a function of θw for α = 3. We see that for increasing contact

angle away from 90◦, both the critical tilt angle and the critical field strength

decrease. This makes physical sense since for increasing contact angle, more

of the particle enters the oil phase, thus reducing the area of the oil/water

interface removed by the particle. This reduces the interfacial tension torque

relative to the magnetic torque acting on the particle, resulting in a decrease

for both the tilt angle and field strength needed for orientational transitions

of the particle.

Finally, we consider the feasibility of observing the above orientational trans-

itions experimentally. Firstly, for a typical micron-sized system possessing a
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Figure 4.8: (a) Critical tilt angles θc1, θc2 and (b) critical field strengths Bc1, Bc2
as a function of contact angle θw (in degrees) for a particle with aspect ratio α = 3
calculated using Surface Evolver.
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permanent magnetic dipole, we use parameters for anisotropic maghemite (γ-

Fe2O3) particles[65] prepared by the group of Paul Clegg at the University of

Edinburgh.[66] Assuming a typical rod length of L = 3µm and aspect ratio of

α = 10, this yields a magnetic dipole moment m = 4×10−14A·m−2. Assuming

a contact angle of θw = 90◦, for α = 10 the dimensionless critical field for

the tilt to perpendicular transition is Bc1 ≈ 0.5 (by extrapolating Figure 4.7).

Using a typical oil/water tension of γow = 30mN·m−1, this translates to a real

magnetic field of B = 0.7T, which is achievable experimentally.

Next, for a typical micron-sized parametric system, we use the parameters

considered in ref.[30] with rod length L = 3µm, aspect ratio α = 1.7, oil/water

tension γow = 10mN·m−1 and magnetic susceptibility χ = 10. We further

assume that the magnetic dipole is given by m = χB/µ0 · πd2L/4, where B is

the external magnetic field, µ0 is the permeability of free space and d is the

diameter of the rod. Assuming a contact angle of θw = 90◦, for α = 1.7 we

have B̄c1 ≈ 0.1, which translates to a real magnetic field of B = 0.02T. This

is in excellent agreement with the estimate in ref.[30] and is easily achievable

experimentally.

From Figures 4.7 and 4.8, we note that these critical fields can be readily

tuned by a factor of up to 3 to 4 by changing particle aspect ratio or contact

angle within a reasonable range. Interfacial magnetic ellipsoids are therefore

a versatile system whose properties can be readily tailored for specific applic-

ations.
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4.4. Conclusion

Using the finite element package Surface Evolver, we have studied the ori-

entational transitions of an ellipsoidal magnetic particle adsorbed at a liquid

interface due to an applied external field, explicitly accounting for the de-

formation of the liquid meniscus around a particle. We find that when the

magnetic field is increased beyond a critical field Bc1, the particles undergo

a discontinuous transition to the perpendicular state (tilt angle θt = 90◦).

Our results are in qualitative agreement with the simplified model of Bresme

and Faraudo[30, 57] (which assumes a flat liquid interface) and in quantitative

agreement with recent lattice-Boltzmann simulations[32] (which account for

deformation of the liquid interface). Our calculations demonstrate that whilst

assuming a flat interface allows us to capture the essential qualitative features

of the orientational transition, it is important to explicitly include the deform-

ation of the liquid interface for quantitative calculations of the transition. We

also show that there is significant hysteresis in the orientational transition of

micron-sized ellipsoidal particles due to the very large energy barriers that ex-

ist between the tilted and perpendicular states for this system. This hysteresis

is in fact also predicted by the model of Bresme and Faraudo but has not

been explicitly discussed previously. For currently available micron-sized an-

isotropic magnetic particles, we show that the critical magnetic fields required

to induce the orientational phase transitions discussed above are achievable

experimentally. Furthermore, we demonstrate that these critical fields can be

readily tuned by a factor of 3 to 4 by changing the aspect ratio or contact

angle of the magnetic particles. This interfacial system therefore represents
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a versatile platform which can be used to design switchable materials with

specific mechanical, optical or magnetic properties.
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Single Cylinder in an External Field

5.1. Introduction

As discussed in the previous Chapter, recent studies have shown that for mag-

netic ellipsoidal particles adsorbed at a liquid interface, when an external field

is applied perpendicular to the liquid interface, it is possible to stabilise tilted

configurations of the ellipsoidal particles, and above a critical field strength, the

ellipsoidal particles undergo an irreversible orientational transition to the end-

on state.[30, 32] For neutrally wetting ellipsoidal particles (θw = 90◦), where

quadrupolar deformations of the meniscus are absent, Davies et al.[4, 58] have

shown in their seminal work that the tilted orientation of the particles leads

to dipolar capillary interactions between particles that can be used to cre-

ate a switchable system where the self-assembled structure can be controlled

using an external field.[4] However, one drawback of ellipsoidal particles is

that because the side-on state is the only stable orientation in the absence

of an external field, as soon as the external field is removed, the ellipsoidal

particles revert to the side-on state and all memory of particle orientation and

self-assembled structure is lost, i.e., the switching effect is volatile.

In order to overcome this problem, in this Chapter we study the orientation

of magnetic cylindrical particles adsorbed at a liquid interface in an external

field. The advantage of cylindrical particles is that, because of their flat ends,

cylinders can possess multiple locally stable orientations in the absence of an

external field, including side-on and end-on states, as shown by Lewandowski

et al.[11] This means that for cylindrical particles, orientational transitions
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induced by an external field will not necessarily disappear when the external

field is removed, i.e., the switching effect can be non-volatile.

We will analyse this problem theoretically using both a simplified thermo-

dynamic model which assumes the liquid meniscus around the particle is flat

and a high resolution finite element method (Surface Evolver[60]) which ac-

curately captures the meniscus deformation around the particle. In contrast

to previous studies, which only considered end-on and side-on states,[11] we

also consider all intermediate particle orientations and find that the behaviour

for cylindrical particles is even richer than hitherto anticipated. For example,

we find that even in the absence of an external field, cylindrical particles can

possess not only stable side-on and end-on states, but also stable tilted states,

depending on the aspect ratio α = L/2r of the particle (where L and r are

the length and radius of the cylinder respectively). Our calculations show that

tilted configurations with perceptible tilt angles occur for aspect ratios in the

range 0.5 . α . 2; this would explain why these tilted states have not been

observed previously in experimental studies, as only smaller and larger α were

investigated in detail.[11] Such tilted states have been predicted for exotic an-

isotropic Janus particles,[16, 50, 51] but to our knowledge this is the first time

that their existence has been demonstrated for cylinders with homogeneous

surface chemistry. In addition, by tuning both the aspect ratio α and contact

angle θw, we show that it is possible to engineer cylindrical particles to have

two, three or even four locally stable orientations which can be accessed by

varying the external field. Such a system allows us to create switchable func-

tional colloidal monolayers where we can induce multiple non-volatile changes
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Figure 5.1: Configuration of a cylindrical particle adsorbed at an oil/water inter-
face in the presence of an external field B applied perpendicular to the interface.
The variables characterising the geometry of the tilted particle are discussed in the
main text. The image is generated from Surface Evolver simulations of a cylinder
with contact angle θw = 90◦, aspect ratio α = 2.5, tilt angle θt = 45◦ and sharpness
parameter η = 20 and the deformation of the liquid meniscus has been taken into
account.

in optical, magnetic and mechanical properties using an external field.

5.2. Theoretical Model

In this section, we discuss the thermodynamics of the system and provide

details of the flat interface model which we then compare with our Surface

Evolver simulations which account for deformations of the interface.

We consider a cylindrical particle with length L and radius r adsorbed at

an interface between two immiscible liquids (Figure 5.1). For convenience, we

will refer to the top liquid as ‘oil’ and the bottom liquid as ‘water’ in what

follows. The cylinder has an embedded magnetic dipole m along the long axis

of the particle and the particle is tilted such that the magnetic dipole is at

an angle θt with respect to the unperturbed interface. The aspect ratio of the

cylindrical particle is defined as α = L/2r, and the magnetic dipole interacts
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with an external magnetic field B applied perpendicular to the interface.

The total free energy of the three phase system is given by

Fint = γowAow + γpoApo + γpwApw −mB sin θt (5.1)

where γow,γpo,γpw are the interfacial tensions and Aow,Apo,Apw are the areas of

the oil/water, particle/oil and particle/water interfaces respectively. The free

energy in Equation 5.1 can be simplified to the dimensionless form

F̄int ≡
Fint
γowAp

= Aow + cos θwApo −B sin θt (5.2)

where Aow = Aow/Ap, Apo = Apo/Ap are the dimensionless oil/water and

particle/oil areas respectively, Ap is the surface area of the cylindrical particle,

B = mB/γowAp is the dimensionless magnetic field strength and θw is the

contact angle of the oil/water interface at the particle surface. Obviously, we

can readily convert the dimensionless free energy to the free energy in units of

kBT by multiplying the dimensionless free energy with the factor γowAp/kBT

for the relevant particle.

Minimizing F int with respect to θt for a given value of B allows us to de-

termine the equilibrium tilt angle of the particle for a given magnetic field

strength. Note that minimizing F int is equivalent to solving the equation

1
cos θt

∂F st

∂θt
= B (5.3)

where
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F st = Aow + cos θwApo (5.4)

is the free energy contribution from the interfacial tension terms. Thus, by

calculating the interfacial energy F st and ∂F st

∂θt
as a function of θt, we can

determine the equilibrium tilt angle for a given B via Equation 5.3. This is

the method we use to calculate the magnetic response of the cylindrical systems

in this paper, including equilibrium tilt angles, critical fields and critical tilt

angles (see Appendix B).

The interfacial free energy F st is calculated in two ways in this paper. In the

first approach, following Bresme and Faraudo, we assume that the oil/water

meniscus around the adsorbed cylinder is flat.[30] This simplifying assumption

allows us to calculate Aow analytically and we will use this method to study

the case of neutrally wetting cylinders (θw = 90◦), where the Apo term in

Equation 5.4 can be neglected. In the second approach, we calculate both

Apo and Aow numerically using the finite element method Surface Evolver.[60]

This approach allows us to accurately model the deformation of the oil/water

meniscus around the particle and we will use this method to analyse both

neutrally wetting and non-neutrally wetting cylinders (θw 6= 90◦).

We calculate the interfacial free energy (Equation 5.4) for a cylinder of

length L, radius r, assuming the liquid interface remains flat in the presence of

the adsorbed cylinder. To simplify our calculation, we consider the neutrally

wetting case θw = 90◦ where the cylinder centre is located at the interface

plane and the particle rotates about its centre and we can neglect the Apo

term in Equation 5.4. In the flat interface model, the area of the oil/water
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Figure 5.2: Configuration of a cylinder with θw = 90◦ at an oil/water interface
for different tilt angles, assuming the oil/water interface remains flat. Here β =
tan−1 2r/L is the critical tilt angle where the liquid interface just intersects the flat
ends of the cylinder. (a), (c), (e) represent the side view of the cylinder while (b),
(d), (f) represent the intersection between the flat interface and the cylinder.

interface in the presence of the adsorbed particle is simply given by

Aow = A0 − Ast (5.5)

where A0 is an (uninteresting) constant representing the total area of the

oil/water interface in the absence of the adsorbed particle and Ast is the inter-

section area between the cylinder and the flat interface. Our task is therefore

to calculate Ast as a function of tilt angle θt. Without loss of generality, we

assume that the particle centre is at the origin, the interfacial normal is in

the z direction, the particle rotates about the x-axis and the long axis of the

cylinder is in the y direction when it is in the side-on state (Figure 5.2).
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We first define the critical tilt angle β as the angle where the liquid interface

just intersects the flat ends of the cylinder (Figure 5.2(c) and (d)). From simple

geometry, tan β = 2r/L. For θt > β, the liquid interface does not intersect

the flat ends of the cylinder (Figure 5.2(a)) and the intersection between the

interface and the cylinder is therefore an ellipse with semi-minor axis a = r

and semi-major axis b = r/ sin θt (Figure 5.2(b)). In this case, the intersection

area is given by

Ast = πab = πr2

sin θt
, (θt > β) (5.6)

For θt ≤ β, the liquid interface intersects the ends of the cylinder (Figure

5.2(e)) and the intersection between the interface and the cylinder is therefore

an ellipse with semi-minor axis a = r and semi-major axis b = r/ sin θt which

is truncated at y = ±b̃ (Figure 5.2(f)), where b̃ = L/(2 cos θt). Noting that

the equation for the ellipse is (x/r)2 + (y/b)2 = 1, the intersection area in this

case is given by

Ast = 4
´ b̃

0 x(y)dy = 4a
´ b̃

0

√
1− y2

b2 dy

= Lr
cos θt

[√
1− f(θt)2 + sin−1 f(θt)

f(θt)

]
, (θt ≤ β)

(5.7)

where f(θt) = α tan θt.

We now provide details for the finite element package Surface Evolver[60]

that we use to calculate the interfacial free energy and equilibrium meniscus

shape around a cylindrical particle. One problem with using finite element

methods to analyse the orientational behaviour of cylinders is that the method

becomes numerically unstable when the three phase contact line crosses the
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sharp edge of the cylinder. To overcome this problem, we approximate the

cylinder using the super-ellipsoid equation[34]

(
z2

r2 + x2

r2

)η
+
(2y
L

)2
= 1 (5.8)

where η is the sharpness parameter, with η = 1 and η = ∞ corresponding

to an ellipsoid and a cylinder with infinitely sharp edges respectively. In our

calculations, we use η = 20 which corresponds to a cylinder with slightly

rounded edges (see Figure 5.1); we find that this value of η represents a good

compromise between numerical accuracy and stability (see Appendix C). From

an experimental point of view, studying cylinders with slightly rounded edges

is also interesting in its own right since cylinders with infinitely sharp edges

are an idealised limiting case and real cylinders will inevitably have slightly

rounded edges.

In our simulations, the cylinder is gradually tilted from 0◦ to 90◦ in 1◦ in-

crements; only tilt angles 0◦ ≤ θt ≤ 90◦ need to be explicitly calculated since,

in the absence of an external field, the orientational free energy is symmetrical

about θt = 0◦. The oil-water and particle-oil interfaces are divided into a mesh

of small triangles which are displaced to minimise the interfacial energy subject

to appropriate constraints. Specifically, we apply the super-ellipsoid equation

(Equation 5.8) on the vertices representing the particle and the contact line

where the particle meets the oil-water interface. For computational conveni-

ence and without loss of generality, the centre of the particle is fixed at the

origin of the coordinate system used and the interface is free to move vertic-

ally to satisfy the contact angle. Also, the homogeneous Neumann boundary
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condition is used at the outer boundary of the simulation domain to ensure a

flat interface far from the particle.[12] We calculate the area of the interface by

adding up the individual facets of the triangulated mesh. We compared res-

ults for η = 1 (i.e., ellipsoidal particle) with results from the previous Chapter

to confirm that the method gave the same results. In order to achieve good

numerical accuracy we used a mesh that has a higher level of refinement close

to the particle. In the last stages of the evolution we change the model type

from linear to quadratic which adds vertices at the midpoints of each edge

followed by further minimisation which allows us to evaluate the areas with

high accuracy. For example, for particles with an aspect ratio α = 2.5, contact

angle θw = 90◦ and tilt angle θt = 45◦, we used 140000 triangles to represent

the surface and 848 vertices to represent the contact line; the specific number

of triangles and vertices used was varied depending on the values of α, θw and

θt. We use a square simulation box which has length 12×L for α > 1, or length

12 × r for α < 1, and we work in units of length where r = 1. In order to

confirm that finite size constraints are negligible, for selected simulations, the

simulation cell size was increased by 50% and yielded essentially the same res-

ults for the critical tilt angles (within 0.5%) and critical field strengths (within

0.3%).

5.3. Results & Discussion

In this section we present results for the orientational behaviour of magnetic

cylinders at liquid interfaces and discuss their relevance for creating switchable

functional surfaces and the feasibility of realising these results experimentally.
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We first study the equilibrium orientation of neutrally wetting cylinders

(θw = 90◦) adsorbed at the interface in the absence of an external field. In

contrast to previous studies, which only considered the side-on and end-on

states,[11] we also consider all intermediate particle orientations. In Figure

5.3(a)-(c), we plot the dimensionless free energy vs. tilt angle θt for θw = 90◦

for three different aspect ratios α = 2.5, 1.0, 0.25 respectively. The dashed

lines are the predictions of the flat interface model while the solid lines are

the predictions of Surface Evolver, which takes into account the deformation

of the meniscus. Figure 5.3(d)-(h) are the equilibrium orientations for the

different values of α predicted by Surface Evolver. Focussing first of all on the

predictions of the flat interface theory, we see that for large α (e.g., α = 2.5,

Figure 5.3(a)), the side-on state (θt = 0◦) is the equilibrium state, i.e., the

global minima of the free energy. In addition, as we decrease α, the side-on

state becomes less stable relative to the end-on state (θt = 90◦) such that for

small α (e.g., α = 0.25, Figure 5.3(c)) the end-on state is more stable than the

side-on state. These results are in good agreement with previous studies.[11]

However, our fuller analysis reveals the surprising result that for small aspect

ratios α (below a critical value αc ≈ 2), the equilibrium state is not the end-

on state anticipated in previous studies,[11] but a tilted configuration (Figure

5.3(b),(c)). Furthermore, the equilibrium tilt angle increases with decreasing

α such that for very small α the equilibrium tilt angle is very close to θt =

90◦. All the qualitative features predicted by the flat interface theory are

corroborated by the Surface Evolver results (Figure 5.3(a)-(c) solid lines), with

the quantitative differences between the two theories being due to the fact that
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Figure 5.3: (a)-(c) Dimensionless free energy (relative to the end-on configuration)
as a function of tilt angle for cylindrical particles in the absence of an external
field with contact angle θw = 90◦ and different aspect ratios α calculated from flat
interface theory (dashed line) and Surface Evolver simulations with η = 20 (solid
line); (d)-(h) Equilibrium configurations of the particle for the different values of α
obtained from Surface Evolver simulations. The specific tilt angles are (d) 0◦; (e)
−36.4◦; (f) +36.4◦; (g) −82.6◦; (h) +82.6◦.

Surface Evolver explicitly accounts for interfacial deformation and uses slightly

rounded edges. Note that both flat interface theory and the Surface Evolver

calculations predict that tilted configurations with perceptible tilt angles only

occur for aspect ratios in the range 0.5 . α . 2; this would explain why

these tilted states have not been observed previously in experimental studies of

neutrally wetting cylinders,[11] as only smaller and larger α were investigated

in detail in these studies.

We note the striking resemblance between the free energy curves in Figure

5.3 and those for spontaneous symmetry breaking in ferromagnets under zero

field conditions.[67] Making this analogy between the two systems, the side-on

state (Figure 5.3(a)) corresponds to the paramagnetic state, the tilted state

(Figure 5.3(b),(c)) corresponds to the ferromagnetic state and the aspect ratio

α plays the role of temperature. We emphasise that this analogy is purely

mathematical, since we are performing single particle simulations through-

out this paper, while in real ferromagnets, the spontaneous magnetisation is
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due to many-body interactions between neighbouring magnetic dipoles. Not-

withstanding this important physical difference between the two systems, our

mathematical analogy is nevertheless useful in helping us anticipate the mag-

netic response of single cylinders at liquid interfaces. Specifically, it suggests

that the response of cylinders with α > αc and α < αc to an external magnetic

field should be similar to that of paramagnets and ferromagnets respectively,

an expectation which is confirmed later on (see Figure 5.5).

By performing a series expansion (i.e., Landau expansion) of F st in θt about

θt = 0◦ for the flat interface theory (i.e., using Equations (5.5) and (5.7) in

Equation (5.4)) to quadratic order, we find

F st = const + α2

3π (1 + 2α)(α2 − 3)θ2
t . (5.9)

Noting that the critical aspect ratio is the aspect ratio where the quadratic

coefficient in the Landau expansion vanishes, Equation (5.9) predicts that

αc =
√

3. This value for αc from the flat interface theory is slightly lower

that the value deduced from our Surface Evolver calculations for neutrally

wetting cylinders, i.e., αc ≈ 2.3 (see Figure 5.12 and Table 5.1 ).

An interesting question concerns the symmetry of meniscus deformations

around particles in the equilibrium tilted state for α < αc. Naively, one might

expect the leading order deformation to be dipolar. However, dipolar de-

formations are forbidden as there is no external torque acting on the particle

at equilibrium.[23, 41] In Figure 5.4(a) and (b), we plot the Surface Evolver

results for the deformation field and contact line respectively around a cyl-

indrical particle in the equilibrium tilted state with θw = 90◦ and α = 1.
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We see that the deformation is in fact neither dipolar nor quadrupolar but

hexapolar. Under zero bond number conditions (i.e., where gravity is negli-

gible), the leading order distortion that is allowed is quadrupolar,[23, 41] and

indeed for simple anisotropic shapes like ellipsoids, the leading order distor-

tion is always quadrupolar.[7–9] However, for more complex particles shapes,

it is possible to have leading order deformations which are of a higher order

multipole. For example, the leading order distortion for cuboidal particles has

recently been shown to be octupolar.[33] The theoretical framework for the

interaction between capillary multipoles of arbitrary order has been worked

out by Danov et al.[68]

Next, we consider the response of neutrally wetting cylindrical particles to an

external field applied perpendicular to the liquid interface. In Figure 5.5(a),

we plot the Surface Evolver results for the free energy as a function of tilt

angle for cylinders with α = 2.5 > αc. At zero field, the equilibrium state

is the side-on state (black curve), but as we increase the field strength, the

equilibrium state shifts to a tilted state with finite tilt angle (e.g., blue curve),

with the equilibrium tilt angle increasing with increasing field strength. As

the field strength is further increased above a critical field Bc1, the free energy

curve develops a second minima at θt = 90◦ corresponding to the end-on state,

and at a field strength of B = B0 = 0.288, the free energy of the tilted state

becomes equal to that of the end-on state (green curve, see inset). At this

point, the particle in principle undergoes a first order phase transition from

the tilted state to the end-on state. The filled circles on the green curve with tilt

angles θ0 = 33.8◦ and 90◦ are therefore binodal points of the system. However,
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Figure 5.4: Surface Evolver results for (a) the meniscus deformation (contour plot)
and (b) contact line around a cylindrical particle in the equilibrium tilted configura-
tion with θw = 90◦, α = 1, η = 20 (θt = 36.4◦). Note the clear hexapolar symmetry
of the deformation.
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for micron-sized particles (which is the focus of this Chapter), the very large

energy barrier between the two local minima means that in practice there is

significant hysteresis in the orientational transition. Specifically, for increasing

magnetic fields, the particle only undergoes an irreversible transition from the

tilted state to the end-on state when B = Bc2, where the local minima for

the tilted state disappears (red curve, see inset), while for decreasing field

strengths, the particle only undergoes an irreversible transition from the end-

on state to the tilted state when B = Bc1, where the local minima for the

end-on state disappears (blue curve). The open circle on the red curve with

tilt angle θc2 = 43.1◦ and the end on state (θt = 90◦) on the blue curve are

therefore spinodal points of the system. Analogous behaviour to everything

discussed above also occurs for B < 0.

The magnetic response of the long cylinder (α > αc) is summarised in Fig-

ure 5.5(b) where we plot the Surface Evolver results for the locally stable tilt

angle (sin θt) as a function of the external field (B) (see Appendix B for details

of how the magnetic response was calculated). We note that, as anticipated

earlier for α > αc, the response of the cylinder is paramagnetic-like at low

fields (|B| < Bc1), with the equilibrium tilt angle θt (or sin θt) playing the role

of magnetisation in magnetic systems.[69] Specifically, as we increase the mag-

netic field from negative to positive values, the tilt angle increases continuously

from negative to positive. On the other hand, the response of the system ex-

hibits significant hysteresis at higher fields (|Bc1| ≤ |B| ≤ |Bc2|), as discussed

earlier.

From the point of view of creating switchable materials, the key feature of
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Figure 5.5: Surface Evolver results for the magnetic response of cylinders with
θw = 90◦, η = 20. (a and c) Dimensionless free energy as a function of tilt angle
for different field strengths for: (a) α = 2.5; (c) α = 1.0. The insets in (a) and (c)
zoom in on the large tilt angle region of the free energy curves where there is a first
order orientational transition between the tilted and end-on states at large fields.
(b and d) Locally stable tilt angle as a function of field strength for: (b) α = 2.5;
(d) α = 1.0. In (b and d), the vertical lines represent irreversible orientational
transitions, with the direction of the transition as indicated by the arrows. For all
the other solid lines in (b) and (d), it is possible to change the tilt angle along the
line in either direction by changing the external field. In (a - d), the filled and
open circles represent binodal and spinodal points of the orientational transitions
respectively. Note that in (a), there is a spinodal point at the end-on state (θt = 90◦)
on the blue curve. See main text for details.
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Figure 5.5(b) is the fact that any particle orientations induced by an external

field will disappear when the external field is removed (θt = 0 for B = 0), i.e.,

the switching effect is volatile. The magnetic response of neutrally wetting

long cylinders is thus qualitatively the same as that of ellipsoidal particles as

we have seen in the previous Chapter.[30, 32]

In Figure 5.5(c), we plot the Surface Evolver results for the free energy as

a function of tilt angle for cylinders with α = 1.0 < αc. As discussed earlier,

at zero field the cylinder can adopt either one of two equivalent tilted states

(filled circles on black curve). For definiteness, let us assume that the particle

is initially in the tilted state with negative tilt angle. As we increase the

field strength, the degeneracy between the two tilted states is broken and the

negative tilted state is no longer the global minimum. Therefore, in principle,

the particle should undergo a first order phase transition to the positive tilted

state. The filled circles in the zero-field free energy curve, which have tilt angles

of ±θ0, are therefore binodal points of the system. However, the very large

energy barrier between the local minima for micron-sized particles means that

in practice the orientational transition does not occur until the field strength

is equal to Bc1 where the local minima for the negative tilted state merges

with the energy barrier and the local minima disappear (open circle on blue

curve). The open circle on the blue curve, which has a tilt angle of −θc1, are

therefore spinodal points of the system for positive external field. Similarly, if

the particle is in the positive tilted state, upon decreasing the external field,

the orientational transition to the negative tilted state does not occur until

the field strength is equal to −Bc1. To complete the picture, as we increase
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the field strength above Bc3 (or decrease the field strength below −Bc3), there

is a further (small) first order orientational transition in the large field regime

(see inset to Figure 5.5(c)) which leads to a small degree of hysteresis in the

magnetic response between Bc2 ≤ |B| ≤ Bc3 (Figure 5.5(d)).

The magnetic response of the short cylinder (α < αc) is summarised in

Figure 5.5(d) where we plot the Surface Evolver results for the locally stable tilt

angle (sin θt) as a function of the external field (B). The most striking feature

of Figure 5.5(d) is the fact that the response of short cylinders at low fields

(|B| < Bc3) is ferromagnetic-like rather than paramagnetic-like. Specifically,

assuming the cylinder is initially in the negative tilted state, as we increase

the magnetic field from negative to positive, thermodynamically the tilt angle

undergoes a reversible, discontinuous transition from −θ0 to +θ0 at B = 0 (i.e.,

bottom filled circle to top filled circle in Figure 5.5(d)). However, as discussed

earlier, in practice the tilt angle undergoes an irreversible transition to the

positive tilted state only when the magnetic field exceeds Bc1 (i.e., bottom

open circle in Figure 5.5(d)). Analogous behaviour is also observed when we

decrease the magnetic field starting from the positive tilted state.

Applying the terminology for ferromagnetic systems to Figure 5.5(d), the tilt

angles at the binodal points, i.e., θ0 (filled circles in Figure 5.5(d)), correspond

to the ‘remanence’ of the cylinder while the magnetic field at the spinodal

points, i.e., Bc1 (open circles in Figure 5.5(d)), corresponds to the ‘coercivity’

of the system.[69] From the point of view of creating switchable materials, the

key feature of Figure 5.5(d) is the fact that the system possesses two locally

stable orientations (corresponding to the filled circles) which do not disappear
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when the the external field is removed and which can be accessed by varying

the external field, i.e., the switching effect is non-volatile. This means that

neutrally wetting short cylinders (α < αc) can be used to create switchable

functional surfaces with non-volatile switching.

In Figure 5.6, we study the magnetic response of neutrally wetting cylinders

to low external fields over a more comprehensive range of α values, both above

and below αc. Specifically, we plot the Surface Evolver results for the sta-

tionary tilt angles (i.e., tilt angles corresponding to minima or maxima of the

free energy curves) as a function of the external field B for different values of

α, with the solid (dashed) lines corresponding to locally stable (unstable) tilt

angles. The filled and unfilled circles in Figure 5.6 correspond to the binodal

and spinodal points respectively when α < αc. Note that the solid curves

between the binodal and spinodal points are metastable while the rest of the

solid curves are stable. Details of how the magnetic response for different α

was calculated, including the tilt angles and magnetic fields at the binodal and

spinodal points, are provided in Appendix B.

The magnetic response curves in Figure 5.6 clearly resemble the magnet-

isation curves for a ferromagnet as it goes through the Curie temperature.

Specifically, for α > αc, the magnetic response is paramagnetic-like (c.f. Fig-

ure 5.5(b)) while for α < αc, the response becomes ferromagnetic-like (c.f.

Figure 5.5(d)). Note that in Figure 5.6 we have explicitly plotted the unstable

part of the magnetic response curves (dashed lines). In reality, micron-sized

magnetic cylinders will undergo an irreversible orientational transition when

the magnetic field is reduced below the left most spinodal point or increased
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Figure 5.6: Surface Evolver results for the stationary tilt angles (i.e., tilt angles
corresponding to minima or maxima of the free energy curves) as a function of
the external field B in the low field regime for different values of α for neutrally
wetting cylinders with η = 20. The solid (dashed) lines correspond to locally stable
(unstable) tilt angles. The filled and unfilled circles correspond to the binodal and
spinodal points respectively when α < αc. Note that the solid curves between the
binodal and spinodal points are metastable while the rest of the solid curves are
stable. See main text for details.
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above the right most spinodal point (see Figure 5.5(d)).

In Figure 5.7 we plot the phase diagram for orientational transitions of neut-

rally wetting magnetic cylinders in the B−α plane, including the binodal line

(solid line), the spinodal line (dashed line) and the critical point (αc, 0). Re-

ferring to the phase diagram, for B > 0 and B < 0, the thermodynamically

stable tilt angle is positive and negative respectively. For magnetic cylinders

with α > αc, as we increase the magnetic field from negative to positive, the tilt

angle changes continuously from negative to positive. In contrast, for magnetic

cylinders with α < αc, as we increase the magnetic field from negative to pos-

itive, thermodynamically, the tilt angle changes discontinuously from negative

to positive at the binodal line. However, for micron-sized magnetic cylinders,

kinetically, the tilt angle will change discontinuously from negative to positive

only at the upper spinodal line. For all values of α, analogous behaviour also

occurs as we decrease the magnetic field from positive to negative. Finally, we

can find the locally stable tilt angle in all the cases discussed above by using

the magnetic response curve for the relevant α value given in Figure 5.6.

In order to analyse the response of the meniscus deformation to particle tilt,

in Figure 5.8 we plot Surface Evolver results for the difference in the maximal

and minimal height along the contact line at the particle (normalised with

respect to r), i.e., ∆z/r, as a function of tilt angle for cylinders with θw = 90◦

and different values of α. Only positive values of θt are considered in Figure

5.8 since the plots are symmetrical about θt = 0◦. We note that ∆z/r can

be measured experimentally using phase shift interferometry (PSI).[33, 59]

Referring to Figure 5.5(b) and (d), only some tilt angles θt are accessible
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Figure 5.7: Phase diagram for orientational transitions of neutrally wetting mag-
netic cylinders in the B − α plane calculated from Surface Evolver, including the
binodal line (solid line), the spinodal line (dashed line) and the critical point. The
thermodynamically stable tilt angle above (below) the B = 0 line is positive (neg-
ative).
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Figure 5.8: The difference in the maximal and minimal height along the contact
line (normalised with respect to r) ∆z/r as a function of tilt angle for neutrally wet-
ting cylinders for different values of α. Tilt angles which are accessible (inaccessible)
through varying the external field are plotted as solid (dashed) lines. See main text
for details.

through varying the external field, specifically |θt| ≤ |θc2| for α > αc and

|θc1| ≤ |θt| ≤ |θc3| for α < αc and the accessible (inaccessible) tilt angles are

plotted as solid (dashed) lines in Figure 5.8. We see that for α > αc, the ∆z/r

curves do not exhibit any minima (except for the trivial one at θt = 0◦), while

for α < αc, the curves exhibit a minima at the equilibrium tilt angle for that

α. The minima in ∆z/r thus serve as a signature for equilibrium tilted states

which can be readily verified experimentally.

To further analyse the response of the meniscus deformation on particle

tilt, in Figure 5.9 we plot Surface Evolver results for the area enclosed by the

undulating contact line projected onto the unperturbed interfacial plane S as

a function of tilt angle for cylinders with θw = 90◦ and for the same range of
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Figure 5.9: Surface Evolver results for the (normalised) projected area enclosed by
the undulating contact line as a function of tilt angle for neutrally wetting cylinders
with the same range of α as shown in Figure 5.8. Tilt angles which are accessible
(inaccessible) through varying the external field are plotted as solid (dashed) lines.
See main text for details.

α as shown in Figure 5.8. The projected area S for each α is normalised with

respect to the projected area at zero tilt angle S0. Once again, only positive

values of θt are considered in Figure 5.9 since the plots are symmetrical about

θt = 0◦ and accessible (inaccessible) tilt angles are plotted as solid (dashed)

lines. Note that the quantity S/S0 can also be measured experimentally using

PSI under reflection illumination.[33, 59] We see that for α > αc, the S/S0

curves do not exhibit any maxima (except for the trivial one at θt = 0◦), while

for α < αc, each curve exhibits a broad maxima at the equilibrium tilt angle

for that α. The maxima in S/S0 thus serve as an additional signature for tilted

states which can be readily verified experimentally.

We next study the orientation and magnetic response of non-neutrally wet-
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ting particles (θw 6= 90◦). Lewandowski et al.[11] showed that for a given aspect

ratio α, changing the contact angle θw away from 90◦ stabilises the end-on state

relative to the side-on state. This is because when θw 6= 90◦, the contact line

in the end-on state is positioned at the corner of the cylinder so that, as we

change θw away from 90◦, the area of liquid interface removed by the cylin-

der is essentially unchanged for the end-on state, but it is decreased for the

side-on state. This means that we can use θw, in addition to α, to engineer

the orientational free energy landscape, and hence the magnetic response, of

cylindrical particles.

In Figure 5.11 we plot Surface Evolver results for the dimensionless free

energy as a function of tilt angle for contact angles θw = 100◦, 110◦ and aspect

ratios α = 2.5, 1.0, 0.5 in the absence of an external field. In Figure 5.10, we

plot the Surface Evolver results for the dimensionless free energy as a function

of tilt angle for cylinders with η = 20 in the absence of an external field for

θw = 90◦ → 110◦ and aspect ratios α = 0.5 → 2.5 in order to obtain a

systematic picture of how changing θw and α impacts the orientational free

energy landscape.

The free energy curves are plotted over the same range of α and θw but for

more intermediate values in order to obtain a higher resolution picture of how

changing θw and α impacts the orientational free energy landscape. From these

results, we see that for a given θw 6= 90◦, as we reduce α below a critical value

αc, the free energy curve at small tilt angles undergoes spontaneous symmetry

breaking into two equivalent tilted states as before. However, these results

also suggest that increasing the contact angle away from θw = 90◦ leads to a

93



Chapter 5: Single Cylinder in an External Field

Figure 5.10: Surface Evolver results for the dimensionless free energy (relative to
the end-on state) as a function of tilt angle for cylinders with η = 20 in the absence
of an external field and different aspect ratios α and contact angles θw.
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Figure 5.11: Surface Evolver results for the dimensionless free energy (relative to
the end-on state) as a function of tilt angle for cylinders in the absence of an external
field with η = 20 and different aspect ratios α and contact angles θw.

decrease in αc.

In order to determine the value of αc at each contact angle θw, we performed

Surface Evolver simulations at small θt with a resolution of 0.1 in α. The crit-

ical aspect ratio was then determined from the value of α where the curvature

at θt = 0 changed sign. The results for αc as a function of θw are tabulated in

Table 5.1.

θw(◦) αc

90 2.3
95 2.2
100 1.8
105 1.2

Table 5.1: Surface Evolver results for the critical aspect ratio αc as a function of
contact angle θw for cylinders

Note that we only need to perform simulations for θw > 90◦ since the αc

values are symmetrical about θw = 90◦. These results confirm that αc indeed

decreases as we change the contact angle away from θw = 90◦. Note that for
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Figure 5.12: Phase diagram for magnetic cylinders in the α − θw plane for zero
external field calculated from Surface Evolver, including the critical line for the
side-on to tilted state transition.

θw > 105◦ and small values of α, the shape of the free energy curve at small tilt

angles θt becomes increasingly complex such that a simple curvature analysis

of the free energy curves at θt = 0◦, from which αc is derived, is no longer very

meaningful (see last row of Figure 5.10). We have therefore only calculated αc

for contact angles in the range θw = 75◦ → 105◦. In Figure 5.12, we plot the

phase diagram for magnetic cylinders in the α−θw plane for zero external field,

including the critical line for the side-on to tilted state transition. Note that

the phase diagram in Figure 5.12 looks very different from the one given in

ref.[11] because the authors in ref.[11] only considered cylinders in the end-on

or side-on states while we have included the possibility of the cylinders being

in intermediate tilted states.

Next, from Figures 5.3 and 5.11 and Figure 5.10 we see that for a given
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α, increasing θw stabilises the end-on state relative to the side-on state, in

good agreement with the predictions of Lewandowski et al.[11] However, by

analysing all particle orientations and not just the end-on and side-on states,

our calculations show that increasing θw also causes the end-on state to be-

come locally stable, e.g., compare Figure 5.11(a) to Figure 5.11(d) and Figure

5.3(b) to Figure 5.11(b). Indeed for α = 0.5, increasing the contact angle

from θw = 100◦ to θw = 110◦ causes the end-on state to become the globally

stable state (Figure 5.11(f)). Thus, by tuning both θw and α, we can design

cylindrical systems with more than two stable orientations and hence create

switchable materials with unique magnetic responses that have no analogs in

simple paramagnetic or ferromagnetic systems.

We first consider the case α = 2.5 and θw = 110◦ (Figure 5.11(d)). Since

α > αc, the side-on state is stable while the fact that θw = 110◦ means that the

two end-on states are also (locally) stable. We therefore have a system with

three stable orientations in the absence of an external field. The response of

this system to an external field is shown in Figure 5.13(a). For definiteness, let

us assume that the magnetic cylinder is initially in the negative end-on state

(θt = −90◦) in zero field, i.e., bottom filled circle in Figure 5.13(a). As we

increase the external field, the cylinder remains in the negative end-on state

until the field is equal to the critical value Bc1, when the cylinder undergoes an

irreversible transition to a positive tilted state. At this point, if we decrease the

field to zero, we can access the side-on state of the cylinder, i.e., the middle

filled circle in Figure 5.13(a). On the other hand, if we increase the field

from Bc1, the equilibrium tilt angle will increase until the field is equal to the
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critical value Bc2, when the particle undergoes an irreversible transition to the

positive end-on state (θt = 90◦). At this point, if we decrease the field to zero,

the positive end-on state remains stable, i.e., top filled circle in Figure 5.13(a).

Analogous behaviour to everything discussed above will also occur for B < 0

(see Figure 5.13(a)).

We next consider the case α = 1.0 and θw = 100◦ (Figure 5.11(b)). Since

α < αc, two equivalent tilted states are stable while the fact that θw = 100◦

means that the two end-on states are also stable. Note that although the

dimensionless energy barrier stabilising the end-on states are small (∆F int ≈

2.5× 10−4), for micron-sized particles (say r = 1µm) at an oil/water interface

(say γ = 30mN/m), this barrier corresponds to a value of 4 × 104kBT so

that the end-on state is thermally stable. We therefore have a system with

four stable orientations in the absence of an external field. The response of

this system to an external field is shown in Figure 5.13(b). For definiteness,

let us assume that the magnetic cylinder is initially in the negative end-on

state (θt = −90◦) in zero field, i.e., bottom filled circle in Figure 5.13(b).

As we increase the external field, the cylinder remains in the negative end-

on state until the field is equal to the critical value Bc1, when the cylinder

undergoes an irreversible transition to a negative tilted state. At this point,

if we decrease the field to zero, we can access the negative tilted state of the

cylinder corresponding to the second filled circle from the bottom in Figure

5.13(b). On the other hand, if we increase the field from Bc1, the equilibrium

tilt angle will increase until the field is equal to the critical value Bc2, when

the particle undergoes an irreversible transition to a positive tilted state. At
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Figure 5.13: Surface Evolver results for the locally stable tilt angle as a function
of field strength for cylinders with η = 20 and different combinations of α and θw.
(a) α = 2.5, θw = 110◦; (b) α = 1.0, θw = 100◦; (c) α = 1.0, θw = 110◦. The
vertical lines represent irreversible orientational transitions, with the direction of
the transition indicated by the arrows. For all the other solid lines, it is possible to
change the tilt angle along the line in either direction by changing the external field.
The filled circles represent locally stable particle orientations at zero field. In (c),
the dashed lines and open circles represent parts of the magnetic response that are
not accessible once the external field exceeds Bc3. See main text for details.
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this point, if we decrease the field to zero, we can access the positive tilted

state of the cylinder corresponding to the third filled circle from the bottom

in Figure 5.13(b). On the other hand, if we increase the field from Bc2, the

equilibrium tilt angle will increase until the field is equal to the critical value

Bc3, when the particle undergoes an irreversible transition to a positive tilted

state. At this point, if we decrease the field to zero, the positive end-on state

remains stable, i.e., top filled circle in Figure 5.13(b). Once again, analogous

behaviour to everything discussed above will also occur for B < 0 (see Figure

5.13(b)).

We now consider the case α = 1.0 and θw = 110◦ (Figure 5.11(e)). The

orientational energy landscape in this case is very complex, with five stable

orientations in the absence of an external field, including the side-on state,

two tilted states and two end-on states. However, from the magnetic response

of this system in Figure 5.13(c), we see that, regardless of the initial state of the

cylinder, once the magnetic field exceeds the critical value Bc3, only the two

end-on states (i.e., filled circles in Figure 5.13(c)) are accessible while the other

three states (i.e., open circles in Figure 5.13(c)) are no longer accessible. In

summary, from the point of view of creating non-volatile switchable materials,

the key feature of Figure 5.13 is the fact that it is possible to use both α and

θw to engineer cylinders that have three or even four locally stable orientations

which can be accessed by varying the external field.

We can then assess the feasibility of inducing the above orientational trans-

itions experimentally. For definiteness, we will focus on the three stable state

system shown in Figure 5.13(a). For a typical micron-sized system possessing
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a permanent magnetic dipole, we use parameters for anisotropic maghemite

(γ-Fe2O3) particles.[65] Assuming cylinders with radius r = 1µm and aspect

ratio α = 2.5, this yields a magnetic dipole moment m = 5×10−12A·m−2. The

dimensionless critical field for the tilt to perpendicular transition is Bc2 ≈ 0.2.

Using a typical oil/water tension of γow = 30mN/m, this translates to a mag-

netic field of B = 0.05T, which is readily achievable experimentally. Inter-

estingly, the estimated magnetic field required to induce re-orientation of cyl-

indrical particles is of the same order as those predicted in the previous Chapter

for ellipsoidal particles made from the same material with a similar size and

aspect ratio. This fact points to the generality of the predicted orientational

transitions and the feasibility of observing such transitions in a variety of

particle shapes.

Finally, although the primary focus of this Chapter has been to use an

external field to control the orientation of individual cylindrical particles at

a liquid interface, since orientation is coupled to meniscus deformation and

hence capillary interactions between particles, we can also use an external

field to control the self-assembly of multiple particle systems. Switchable self-

assembly has already been demonstrated in the work of Davies et al. for

magnetic ellipsoids[4] and we can exploit the same effect to control the self-

assembly of magnetic cylinders. For example, for the three state system shown

in Figure 5.13(a), the particles interact with each other via quadrupolar capil-

lary interactions when they are in the side-on state[12] but they do not interact

with each other in the end-on state because the meniscus is flat in this case.

Similarly, for the four state system shown in Figure 5.13(b), the particles in-
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teract with each other via hexapolar capillary interactions when they are in

the tilted state (Figure 5.4)[68] but they do not interact with each other in

the end-on state. The key advantage of using cylinders instead of ellipsoids

in this context is that the switching of the self-assembly for cylinders is again

non-volatile.

5.4. Conclusion & Future Work

We have studied the influence of an external magnetic field on the orientation of

single magnetic cylinders at a liquid interface using a simple flat interface model

as well as high resolution Surface Evolver simulations which take into account

the deformation of the liquid meniscus around the particle. We have shown

that, in the absence of an external field, as we reduce the aspect ratio α of the

cylinders below a critical value, the particles undergo spontaneous symmetry

breaking from a stable side-on state to one of two equivalent stable tilted states,

similar to the spontaneous magnetisation of a ferromagnet going through the

Curie point. Similar tilted states have been predicted for Janus particles[3,

16, 50, 51] but to our knowledge this is the first time that their existence has

been discussed explicitly for anisotropic colloids with homogeneous surface

chemistry.

Furthermore, by tuning both the aspect ratio and contact angle of the cylin-

der, we have shown that it is possible to engineer particles that have one, two,

three or four locally stable orientations and we can induce non-volatile trans-

itions between these states by varying the external field. We found that the

magnetic response of systems with one or two stable states is similar to that
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of paramagnets and ferromagnets respectively, while the magnetic response of

systems with three or four stable states have no analogs in simple magnetic

systems. We have also shown that for micron-sized cylinders with realistic

magnetic moments, the critical fields required to access the different stable

orientations are accessible experimentally.

Finally, although this Chapter focusses on using external fields to control

the orientation of individual magnetic cylinders, since particle orientation at

a liquid interface is coupled to capillary interactions between particles, it is

also possible to use an external field to control the self-assembly of multiple

cylinders. Therefore, magnetic cylinders at liquid interfaces provide an exciting

new approach for creating switchable functional surfaces where we can use an

external field to induce multiple non-volatile changes in optical, magnetic and

mechanical properties. Note that the detailed structure of the self-assembled

aggregates is governed by near-field capillary interactions[23, 34, 36] and many

body forces[70] but our understanding of how these forces control the self-

assembly of anisotropic particles is still at an early stage. For future work, we

will study both orientation and capillary deformations in systems consisting

of multiple anisotropic particles.
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Chapter 6
Self-Assembly of Multiple Ellipsoidal
Particles in an External Field
6.1. Introduction

In the previous two chapters, we have seen that for anisotropic particles in

an external field, the leading order meniscus deformation is dipolar, as the

external field generates a torque on the particle. This meniscus deformation in

turn leads to dipolar capillary interactions between the tilted particles which

can be switched on and off using an external field.[32] In this Chapter, we

study the effect of these switchable dipolar interactions on the self-assembly

of multiple ellipsoidal particles.

Before presenting our results in this area, we recall briefly previous results on

the self-assembly of multiple tilted particles, see Chapter 2, Section 2.5. Davies

and Botto studied the self-assembly of two ellipsoidal particles using Surface

Evolver. They only considered a contact angle θw = 90◦ which means that the

deformation of the interface will be dipolar and no quadrupolar deformation

due to the particle being anisotropic will be present in the far field. They

found that although the side-to-side configuration was the global energy min-

imum the tip-to-tip configuration was a metastable state.[58] This result seems

counter intuitive since in experimental and theoretical studies by Loudet[59]

and Botto[23], it was found that side-on ellipsoidal particles approaching each

other tip-to-tip, tend to roll into a preferred side-to-side configuration. In or-

der to clarify this surprising result, in this Chapter we revisit the self-assembly

of two tilted ellipsoidal particles using Surface Evolver in collaboration with a
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summer project student Rizwaan Mohammed.

Davies and Botto also studied the self-assembly of a small number of particles,

using lattice-Boltzmann simulations, to find potential global minimum or meta-

stable orientations for three or more particles tilted at the interface, see results

in Chapter 2, Section 2.5, Figure 2.13. They found the particles forming ring-

like structures in tip-to-tip configurations, with 3, 4, 5 and 6 particles seeming

to preferentially align tip-to-tip rather than side-to-side as has been observed

experimentally for a large number of ellipsoidal particles.[58, 59] The problem

with lattice-Boltzmann is that there is a small degree of inherent noise present

in the system limiting the resolution of the method close to any transitions, as

we have already seen in Chapter 4, Section 4.3. Results for three ellipsoidal

particles have been presented using lattice-Boltzmann simulations, where three

pronged propellor like shapes have been found to be a stable orientation for

many ellipsoidal particles[32] and for three randomly arranged particles.[58]

In order to overcome this problem, we present preliminary results for the self-

assembly of three tilted ellipsoidal particles using Surface Evolver. An earlier

work of Fournier and Galatola[70] studied the capillary attraction and equilib-

rium configurations of near spherical particles. They were the first to include

many-body interactions in their calculations to find equilibrium configurations

and interestingly found metastable states for three and four particles that are

purely due to these many body effects. This confirmed that many body effects

and higher-order multipoles contribute significantly to the deformation of the

interface when close to the particle surface.[70]

Davies et al. studied the self-assembly of multiple ellipsoidal particles using

106



Chapter 6: Multiple Ellipsoids in an External Field

lattice-Boltzmann simulations.[32] They found that they could tune the dipolar

capillary interactions by varying the dipole-field strength and induce a first

order phase transition by exceeding a critical field strength which then turned

the dipolar interactions off as there is no deformation when the particle is

perpendicular to the interface, see Chapter 2, Section 2.5, Figure 2.12.[32]

6.2. Theoretical Model

In this section we outline the Surface Evolver model used to investigate two

and three tilted ellipsoidal particles at a liquid interface. We also present the

interaction potential between capillary dipoles in elliptical coordinates which

was developed by Dr. Lorenzo Botto, Queen Mary University London.

In Figure 6.1 we introduce key parameters needed for our Surface Evolver

simulations. Figure 6.1(a) shows a side view of an ellipsoidal particle with the

particle tilted with respect to the interface at a tilt angle θt. In Figure 6.1(b)

we show a top view looking down on two ellipsoidal particles that have arbit-

rary bond angles θb1, θb2 with their centres separated by an arbitrary length r12.

In Chapter 3 we presented the coordinate transformations required to change

the tilt angle and bond angle of the particles. We apply these coordinate trans-

formations in our Surface Evolver code here. A thorough investigation of the

lowest free energy of the system for varying θb and θt would be computation-

ally expensive. Therefore, we explore a restricted view for varying the bond

angle in a mirror symmetric configuration i.e. θb = θb1, θb2 = π − θb. From

the polar expression for the dipolar interaction, Equation 6.2, the interaction

potential is minimized when θb1 + θb2 = π i.e. mirror symmetric configuration.
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For mirror symmetric configuration, the capillary force is attractive. There-

fore, we expect particles in minimum energy configuration to be in contact.

The centre-to-centre distance rc−c for the particles in closest contact clearly

depends on both the bond angle θb and the tilt angle θt. To derive an analytical

expression for rc−c, we express the surface of the ellipsoidal particles in terms

of the local coordinate system x′′, y′′, z′′ which is aligned along the principle

axes of the ellipsoid

f(x, y, z) =
(
x′′2

r2

)
+
(
y′′2

l2

)
+
(
z′′2

r2

)
= 1 (6.1)

where x′′, y′′, z′′ are expressed in terms of the lab frame coordinate system

x, y, z see Section 3.2 in Chapter 3, r is the semi-minor axes of the ellipsoids

and l is the length of the ellipsoid. Note that in Equation 6.1, we assume y′′ is

aligned along the long axis of the ellipsoid. The surface normal vector is given

by∇f . At contact the x and z components of∇f are zero, i.e. ∂f
∂x
, ∂f
∂z

= 0. To-

gether with Equation 6.1 this gives us three simultaneous equations which can

be solved to find the contact coordinates with the y contact coordinate yielding

rc−c. The final expression for rc−c is rather long and is given in Appendix D. In

Figure 6.1(c) we show the top view looking down on two ellipsoidal particles

in a mirror symmetric configuration with bond angles θb and centre-to-centre

distance at contact, r12 = rc−c. In (d) we define an exclusion zone of thickness

∆/2, which is used because simulating particles in contact causes numerical

issues for Surface Evolver. By simulating varying values for ∆, the results can

then be extrapolated to contact. In this Chapter, we use a constant ∆ = 0.1r.

By varying ∆, we estimate that the interaction energies calculated using this
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value of ∆ agrees with the contact value to within 2% .

Figure 6.1: (a) Side view of an ellipsoid tilted with respect to the oil-water interface
(b) Top view of two ellipsoidal particles showing arbitrary bond angles θb1 and θb2
with centres of the particles separated by length r12 (c) mirror symmetric configura-
tion with bond angles θb with a centre-to-centre distance rc−c (d) mirror symmetric
configuration with an exclusion zone ∆ needed for the simulation in Surface Evolver,
see text for details.

In our Surface Evolver simulations we consider two ellipsoidal particles with

an aspect ratio α = 2, a semi-minor axis r = 1 and a contact angle θw =

90◦. Therefore, there is no quadrupolar deformation due to a constant contact

angle constraint. Figure 6.2 shows our Surface Evolver output for these two

ellipsoidal particles; (a) is a side-view showing the resulting deformation when

the particles are at a tilt angle θt = 15◦ and bond angle θb = 0◦. (b)-(d) are

top views showing the effect of varying bond angle θb. (b) θb = 0◦ represents

a tip-to-tip configuration, (c) θb = 45◦ represents an intermediate bond angle

and finally (d) θb = 90◦ represents the side-to-side configuration. In all our

simulations θb is varied from 0◦ → 90◦ in 5◦ steps.
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(a)
(b)

(c)
(d)

Figure 6.2: Surface Evolver simulation output for two ellipsoidal particles with
aspect ratio α = 2, tilt angle θt = 15◦ and ∆ = 0.1r (a) side view to show the
ellipsoids tilted in a tip-to-tip configuration θb = 0◦ (b)-(d) top view to show (b)
tip-to-tip orientation θb = 0◦ (c) intermediate bond angle θb = 45◦ (d) side-to-side
orientationθb = 90◦.

The number of variables required to fully specify an arbitrary configuration

of three tilted ellipsoidal particles is even larger, i.e. three bond angles and

two centre-to-centre distances. In order to make a Surface Evolver analysis of

three tilted ellipsoidal particles tractable, we restrict ourselves to the subset of

three particle configurations shown in Figure 6.3.

Figure 6.3: Top view of three ellipsoidal particles showing (a) mirror symmetric
configuration with bond angles θb and a centre-to-centre distance rc−c (b) mirror
symmetric configuration with an exclusion zone ∆ needed for the simulation in
Surface Evolver, see text for details.

110



Chapter 6: Multiple Ellipsoids in an External Field

For three ellipsoidal particles in Surface Evolver we simulate an exclusion

zone ∆ = 0.1r, see Figure 6.3b. The particles have an aspect ratio α = 2,

with a semi-minor axis r = 1 and a contact angle θw = 90◦. Figure 6.4 shows

our Surface Evolver output for these three ellipsoidal particles; (a) is a side-

view showing the resulting deformation when the particles are at a tilt angle

θt = 15◦ and a bond angle θb = 90◦. (b)-(d) are top views showing the effect

of varying bond angle θb. (b) θb = 90◦ represents a side-to-side configuration,

(c) θb = 60◦ represents an intermediate bond angle and finally (d) θb = 30◦

represents the tip-to-tip configuration. In all our simulations θb is varied from

30◦ → 90◦ in 5◦ steps. For details on how the particles tilt and bond angles

are implemented, see Chapter 3.

(a) (b)

(c) (d)

Figure 6.4: Surface Evolver simulation output for three ellipsoidal particles with
aspect ratio α = 2, tilt angle θt = 15◦ and gap = 0.1r (a) side view to show the
ellipsoids tilted in a tip-to-tip configuration θb = 90◦ (b)-(d) top views showing (b)
side-to-side bond angle θb = 90◦ (c) intermediate bond angle θb = 60◦ (d) tip-to-tip
bond angle θb = 30◦.
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As well as using Surface Evolver to analyse the equilibrium orientation we

use an analytical theory for pair interactions between capillary dipoles in ellipt-

ical coordinates. Elliptical coordinates are used rather than polar coordinates

because in a mirror symmetric configuration the particles have the same energy

independent of bond angle θb, Equation 2.15 in Chapter 2. Therefore, in or-

der to distinguish between the side-to-side (θb = 90◦) and tip-to-tip (θb = 0◦)

orientation we use elliptical coordinates. These results were derived by Dr

Lorenzo Botto at Queen Mary University London and are included in this

thesis for completeness. The dipolar capillary interactions between two tilted

ellipsoids which are arbitrarily orientated with respect to each other (Figure

6.1) will depend on θt, θb1, θb2, r12. In polar coordinates, the dipolar capillary

interaction is[58, 68]

Upolar (θt θb1, θb2, r12) = γ122πHe (θt)2 R
2
c

r2
12

cos (θb1 + θb2) (6.2)

where γ12 is the surface energy between fluid 1 and fluid 2, He (θt) is the

amplitude of the contact line undulation which is a function of θt, Rc is the

nominal contact line radius, r12 is the centre-to-centre separation and θb1 and

θb2 are the bond angles.

In elliptical polar coordinates, Dr L. Botto has derived the expressions for

dipolar potential with the form

Uellip (θt θb1, θb2, r12) = −γ122πHe (θt)2R2
cf (θb1, θb2, r12) (6.3)

f (θb1, θb2, r12) is a function of θb1, θb2, r12; the expression is long and it is

112



Chapter 6: Multiple Ellipsoids in an External Field

presented in Appendix E.

For large r12, Uellip should agree with dipolar potential in polar coordinates

Upolar (θt θb1, θb2, r12) Equation 6.2. In Figure 6.5 we plot a log graph for both

Uellip and Upolar for varying separation of r12 and find good agreement for the

polar and elliptical expressions for large r12.

Figure 6.5: log graph for two ellipsoidal particles for an aspect ratio α = 3 com-
paring Uellip and Upolar for varying r12

For the three particle configurations shown in Figure 6.3, assuming all in-

teractions are pairwise additions (i.e. neglecting many body effects), the total

interaction potential is

Utot (θt, θb) = −γ122πHe (θt)2R2
c2 (f (θb1, θb2, r12)) + f (θb3, θb4, rr12) (6.4)

where θb3 = 2θb1 − π
2 , θb4 = π − θb3 and rr12 = 2r12 sin θb1. We require

two lots of f (θb1, θb2, r12) as particles 1 & 2 and 2 & 3 interact with each
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other, see Figure 6.3. We then need to add f (θb3, θb4, rr12) as particles 1 &

3 also interact with one another. We will use Uellip and Utot to analyse the

stability of the two particle configuration in Figure 6.7 and the three particle

configurations in Figure 6.8 respectively.

6.3. Results & Discussion

We first considered two ellipsoidal particles at a liquid interface because we

wanted to confirm whether the local energy minimum for a tip-to-tip config-

uration presented in a recent paper by Davies et al. is correct.[58] For our

Surface Evolver model we used the same constraints outlined in Chapter 3 to

represent the ellipsoidal particles and outer simulation domain. In Figure 6.6

we plot the total free energy (relative to the free energy at θb = 90◦) as a

function of the particles bond angle θb at a tilt angle θt = 5◦ for particles in a

mirror symmetric configuration (i.e. Figure 6.1). The particles have an aspect

ratio of α = 2 with an exclusion zone ∆ = 0.1r. In contrast to the results

of Davies and Botto,[58] our results showed no local minima for the tip-to-

tip configuration. To check if there was a mistake in our code, we contacted

the authors who sent us their Surface Evolver program for further investiga-

tion. In collaboration with Rizwaan Mohammed (summer project student) we

have used the Surface Evolver code of Davies and Botto, which has a different

setup and minimisation scheme, to carry out the same calculations. As shown

in Figure 6.6, their simulation code (red dashed curve) gave exactly the same

result as ours, i.e. there is only one minimum corresponding to a side-to-side

configuration.
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From this analysis, we conclude that there is an error in their post pro-

cessing procedure. It is worth noting that no local minima for the tip-to-tip

configuration was found by Botto et al. [23] for ellipsoidal particles in contact

with aspect ratio α = 3, contact angle θw = 80◦ and tilt angle θt = 0◦. Ex-

perimentally, Loudet et al. also found that identical ellipsoidal particles in the

tip-to-tip configuration tend to roll into the side-to-side configuration.[59] Dav-

ies and Botto are currently investigating why their earlier simulations yielded

a local minimum at the tip-to-tip configuration.

Figure 6.6: Comparison between two different Surface Evolver codes (our Surface
Evolver code is black solid line, with Davies and Botto code the red dashed line) for
the dimensionless free energy as a function of bond angle relative to the side-to-side
state (θb = 90◦) for two ellipsoids with aspect ratio α = 2 , tilt angle θt = 5◦ and
gap = 0.1r.

As we have now confirmed that our Surface Evolver program appears to be

correct, in Figure 6.7 we plot the total free energy (relative to the free energy

at θb = 90◦) as a function of the particles bond angle θb with aspect ratio
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α = 2 and exclusion zone ∆ = 0.1r for three different tilt angles; θt = 5◦(in

red), θt = 10◦(in green) and θt = 15◦(in blue). All of our Surface Evolver

simulations (dashed line in Figure 6.7) show that the lowest free energy of

the system is always the side-to-side configuration for two identical ellipsoidal

particles independent of θt. Also plotted in Figure 6.7 is the analytical the-

ory in elliptical coordinates for capillary dipoles Uellip (θb − θb, rc−c + ∆) (solid

line). Given that there are no fitting parameters in the analytical theory, the

agreement between the Elliptical Potential and the Surface Evolver results is

remarkably good. This means that we can use our analytical theory to pick up

the qualitative and even semi-qualitative features for two ellipsoidal particles

in or close to contact. This theory will therefore be invaluable for a more

thorough investigation of the energy landscape of two ellipsoidal particles, as

it will allow us to identify the interesting minimum energy configurations in

addition to the mirror symmetric configurations considered here, without using

expensive computational simulations to find them.

To calculate He (θt) we used our single ellipsoidal particle code with an

aspect ratio α = 2 for varying tilt angle. This is in fact an approximation

since when two ellipsoids approach each other, He will be modified due to non-

linear interactions between the two particles. The results for He for different

θt are presented in Table 6.1 where we see that He increases with increasing θt.

However, since He = 0 for θt = 90◦, He will go through a maximum at some

intermediate value of θt between 0◦ and 90◦.

Next, we investigate three ellipsoidal particles at a liquid interface varying

the bond angle, going from a syzygy of ellipsoidal particles (aligned in a side-
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Figure 6.7: Energy profile as a function of the bond angle θb for two particles in a
mirror symmetric configuration (i.e. Figure 6.1) with a separation between particles
∆ = 0.1r with aspect ratio α = 2 for tilt angles θt = 5◦(red), θt = 10◦(green),
θt = 15◦(blue). Surface Evolver simulation results are represented by the dashed
line and the analytical theory by the solid line.

θt/
◦ He

5 0.087231
10 0.170368
15 0.245471

Table 6.1: Surface Evolver simulation to calculate the amplitude of the contact line
for a single ellipsoidal particle tilted with respect to the interface

to-side configuration θb = 90◦) to a three pronged propellor shape of the three

particles in a tip-to-tip configuration θb = 30◦, see Figure 6.4. In Figure 6.8 we

plot the total free energy (relative to the free energy at θb = 90◦) as a function

of the particles’ bond angles θb with aspect ratio α = 2 and exclusion zone

∆ = 0.1r for three different tilt angles; θt = 5◦(in red), θt = 10◦(in green)

and θt = 15◦(in blue). We can see that the lowest free energy of the system

is when the particles are in a side-to-side configuration. However, in contrast
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to the two particle case we also find that the tip-to-tip configuration is now a

metastable state. This agrees with Davies et al. lattice-Boltzmann simulations

that found stable three particle tip-to-tip configurations (see Figure 2.13 from

Chapter 2).[4, 58]

Again we can compare our Surface Evolver results (dashed line) with the

elliptical potential results (solid line) and find that the elliptical potential cap-

tures the qualitative features of the energy landscape correctly. Specifically,

it shows that a metastable tip-to-tip orientation is indeed present. However,

in contrast to the two particle case , we find a larger difference between the

simulation and analytical theory. This discrepancy is presumably due to non-

linear effects (the contact line will move different to the predictions for a single

ellipsoidal particle, therefore affecting He used in the analytical theory) and

also because of many-body effects which are not taken into account in the ana-

lytical theory which uses the summation of pairwise interactions. The pairwise

approximation is not necessarily correct for particles in close contact, as found

by Fournier and Galatola.[70] Nevertheless, our results suggest that the ana-

lytical theory is accurate enough to help us to identify interesting minimum

energy configurations for three particles. This is very useful since an exhaust-

ive exploration of the energy landscape of three particles using Surface Evolver

is computationally prohibitive.
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Figure 6.8: Energy profile as a function of the bond angle for three particles with
a separation between particles ∆ = 0.1r with aspect ratio α = 2 for tilt angles
θt = 5◦(red), θt = 10◦(green), θt = 15◦(blue). Surface Evolver simulation results are
represented by the dashed line and the analytical theory by the solid line.

6.4. Conclusion & Future Work

In this Chapter we have studied the interactions between two and three ellips-

oidal particles that are tilted with respect to the interface for varying bond

angles. The dipolar capillary interactions for two ellipsoidal particles have

been studied previously by Davies and Botto.[58] However, we found discrep-

ancies between the results of Davies and Botto and our results. Specifically, we

did not find a metastable tip-to-tip configuration for two ellipsoidal particles.

Having rerun their simulation code, we conclude that there is in fact a mistake

in the results of Davies and Botto and the metastable tip-to-tip configuration

is spurious. This discrepancy is currently being investigated by the authors.
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For two identical ellipsoidal particles we found that the most stable orient-

ation is a side-to-side orientation. For three ellipsoidal particles the global en-

ergy minimum is again for the side-to-side orientation. However, we found that

the tip-to-tip configuration (similar to a three pronged propellor) to be a local

minimum. We have also compared our Surface Evolver simulation to the theor-

etical model for the dipolar interaction potential in elliptical coordinates. Both

Surface Evolver and the elliptical potential showed good semi-quantitative

agreement for two ellipsoidal particles with no fitting parameters. For three el-

lipsoidal particles, there is qualitative agreement between the Surface Evolver

simulation and the analytical theory. In particular both simulation and theory

predict that the side-to-side configuration is the global minimum, but the tip-

to-tip configuration is now a metastable state. However, larger quantitative

discrepancies between Surface Evolver and the elliptical potential are present

for three ellipsoidal particles. We attribute these discrepancies to non-linear

and many-body effects.[70]

The logical progression for multiple ellipsoidal particles is to investigate four

or more particles at a liquid interface. At some point the tip-to-tip configura-

tion will become the global minimum of the system rather than the side-to-side

orientation which we have found to be the global minimum for two and three

particles. Davies et al. used lattice-Boltzmann simulations to find equilibrium

clusters for three or more particles, Chapter 2 Figure 2.13, which shows that

the tip-to-tip configuration either becomes a locally stable orientation, as we

have found for a three particle system, or possibly the global minimum for

four or more ellipsoidal particles. In this Chapter, we found that for two el-
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lipsoidal particles the side-to-side orientation will always be favoured. Also,

for three particles the side-to-side orientation is the global minimum but there

is a local minima with the particles in a tip-to-tip configuration. For multiple

ellipsoidal particles the metastable tip-to-tip configuration, found for three

particles, should eventually become the lowest free energy of the system for

more ellipsoidal particles, which is why simulating four or more particles is the

next extension of this work currently being studied by our summer student

Rizwaan.

Finally, for multiple ellipsoids we simulated a restricted mirror symmetric

configuration by varying bond angle by the same amount for all particles. In

an interesting work by Fournier and Galatola, who examined thoroughly the

energy landscape for three and four near circular particles, they found meta-

stable structures for a variety of configurations at similar energies. Following

a similar approach it would be worthwhile simulating multiple ellipsoidal and

cylindrical particles to give us a greater understanding of the self-assembled

structures formed.[70] Using an analytical theory to focus on the most in-

triguing configurations for varying the bond, tilt and contact angles would

reduce the cost of expensive computational simulations.
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Chapter 7
Conclusions & Future Work
7.1. Conclusions

In this thesis we investigated the orientation, capillary forces and self-assembly

of ellipsoidal and cylindrical colloidal particles at liquid interfaces under the

influence of an external field. This was investigated theoretically using both

analytical theory and finite element simulations.

In Chapter 4 we used Surface Evolver to study the orientational transitions

of an ellipsoidal magnetic particle adsorbed at a liquid interface, explicitly

accounting for the deformation of the liquid meniscus around a particle. We

found that when the magnetic field is increased beyond a critical field, the

particles undergo a discontinuous transition to the perpendicular state to align

the embedded magnetic dipole with the magnetic field. Our results confirmed

the orientational transition predicted by Bresme and Faraudo who used a sim-

plified model which assumed a flat liquid interface and we demonstrated the

importance of accounting for deformation of the interface results which were in

agreement with lattice-Boltzmann simulations.[32] We also showed that there

is significant hysteresis in the orientational transition of micron-sized ellips-

oidal particles due to the very large energy barriers that exist between the

tilted and perpendicular states for the system. This hysteresis is in fact also

predicted by the model of Bresme and Faraudo but has not been explicitly

discussed previously. Furthermore, we demonstrated that critical fields can be

readily tuned by a factor of 3 to 4 by changing the aspect ratio or contact

angle of the magnetic particles.
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In Chapter 5 we studied the influence of an external magnetic field on the

orientation of single magnetic cylinders at a liquid interface using a simple

flat interface model and comparing these to high resolution Surface Evolver

simulations which account for the deformation of the liquid meniscus around

the particle. We have shown that, in the absence of an external field, as we

reduce the aspect ratio α of the cylinders below a critical value, the particles

undergo spontaneous symmetry breaking from a stable side-on state to one

of two equivalent stable tilted states. To our knowledge this is the first time

that their existence has been discussed explicitly for anisotropic colloids with

homogeneous surface chemistry. By tuning both the aspect ratio and contact

angle of the cylinder, we showed that it is possible to engineer particles that

have one, two, three or four locally stable orientations and we are able to access

these states by varying the external field. For micron-sized cylinders with

realistic magnetic moments, the critical fields required to access the different

stable orientations are accessible experimentally.

In Chapter 6 we studied the interactions between two and three ellipsoidal

particles that are tilted with respect to the interface for varying bond angles.

For two identical ellipsoidal particles we found that the most stable orientation

is a side-to-side orientation. For three ellipsoidal particles the global energy

minimum is again for the side-to-side orientation. However, we found that the

tip-to-tip configuration (similar to a three pronged propellor) to be a local min-

imum. We compared our Surface Evolver simulation to the theoretical model

for the dipolar interaction potential in elliptical coordinates. Both Surface

Evolver and the elliptical potential showed good semi-quantitative agreement
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for two ellipsoidal particles with no fitting parameters. For three ellipsoidal

particles, there is qualitative agreement between the Surface Evolver simu-

lation and the analytical theory. In particular both simulation and theory

predict that the side-to-side configuration is the global minimum, but the tip-

to-tip configuration is now a metastable state. However, larger quantitative

discrepancies between Surface Evolver and the elliptical potential are present

for three ellipsoidal particles and we attribute these discrepancies to non-linear

and many-body effects.

7.2. Future Work

In Chapters 4 and 5 we investigated the effect an external field has on the

orientational transition for isolated ellipsoids and cylinders. Looking at the

effect multiple particles have on this orientational transition and the potential

hysteresis of the system is a logical next step. Understanding how the ori-

entational transition is affected by the presence of many ellipsoidal/cylindrical

particles will lead to a better understanding of how to manipulate anisotropic

particles into directed self-assembled structures.

For multiple ellipsoids we simulated a restricted mirror symmetric configura-

tion by varying bond angle by the same amount for all particles. Completing a

more thorough examination of the energy landscape for multiple ellipsoidal and

cylindrical particles to give us a greater understanding of the self-assembled

structures formed would be beneficial. To reduce the cost of computational

simulations it would be best to use the analytical theory to focus on the most

intriguing configurations for varying the bond, tilt and contact angles.
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The logical progression for multiple ellipsoidal particles is to investigate four

or more particles at a liquid interface. At some point the tip-to-tip configura-

tion will become the global minimum of the system rather than the side-to-side

orientation which we have found to be the global minimum for two and three

particles. Looking at multiple cylindrical particles and their preferred orient-

ation will also be interesting as ellipsoids and cylinders behave differently.
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Appendix A
Surface Evolver Sphere Program
#define radp 1 //radius of the particle

//define the tension to represent the contact angle using Young’s equation

PARAMETER angle = 90

PARAMETER tens = (cos(angle*pi/180))

//set as a parameter so that it can be changed at runtime

//define equation to represent the sphere

constraint sphere

formula: (x^2 + y^2 + z^2 = radp^2)

// fix outer edge of the interface

constraint xc1

formula: x=-15

constraint xc2

formula: x=15

constraint yc1

formula: y=-15

constraint yc2

formula: y=15

vertices

//oil-water interface

1 -radp -radp 0 constraint sphere

2 radp -radp 0 constraint sphere

3 radp radp 0 constraint sphere
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4 -radp radp 0 constraint sphere

//particle

5 0 0 radp constraint sphere // one vertex representing the p-o surface

//outer square simulation domain

6 -15 -15 0 constraints xc1, yc1

7 15 -15 0 constraints xc2, yc1

8 15 15 0 constraints xc2, yc2

9 -15 15 0 constraints xc1, yc2

edges

//oil-water interface

1 1 2 constraint sphere

2 2 3 constraint sphere

3 3 4 constraint sphere

4 4 1 constraint sphere

//particle/oil interface

5 1 5 constraint sphere

6 2 5 constraint sphere

7 3 5 constraint sphere

8 4 5 constraint sphere

//outer simulation

9 6 7 constraint yc1

10 7 8 constraint xc2

11 8 9 constraint yc2

12 9 6 constraint xc1
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//particle

13 6 1

14 7 2

15 8 3

16 9 4

faces

//oil-water interface

1 9 14 -1 - 13 color green

2 10 15 -2 -14 color green

3 11 16 -3 -15 color green

4 12 13 -4 -16 color green

//particle-oil interface

5 1 6 -5 color yellow constraint sphere tension tens

6 2 7 -6 color yellow constraint sphere tension tens

7 3 8 -7 color yellow constraint sphere tension tens

8 4 5 -8 color yellow constraint sphere tension tens
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Appendix B
Numerical Method for Determining
Magnetic Response of Particles
In our study, the magnetic response of the system, including the stationary tilt

angles (i.e., tilt angles corresponding to local minima or maxima in the free

energy) for a given magnetic field, and the magnetic fields and tilt angles at

the binodal points or points where irreversible orientational transitions occur

(including spinodal points) are determined by solving Equation 5.3 in Chapter

5. To illustrate this method, in Figure B.1, we plot 1
cos θt

∂F st

∂θt
for different state

points, with (a) and (b) corresponding to state points reported in Figure 5.5 (a)

& (c) and (e),(d), (f) corresponding to state points reported in Figure 5.13(a),

(b), (c). For an arbitrary magnetic field B, which is represented by a horizontal

line in Figure B.1, the intersection of the horizontal line with the 1
cos θt

∂F st

∂θt

curve corresponds to either a local minimum or maximum of the free energy

curve. The binodal tilt angles are obtained from the intersection between the

B = 0 line and the 1
cos θt

∂F st

∂θt
curve (filled circles in Figure B.1(b and d)). On

the other hand, the maxima and minima in the 1
cos θt

∂F st

∂θt
curves correspond to

the field strengths and tilt angles where local maxima and minima in the free

energy curve merge, i.e., where local minima disappear. We can therefore use

the the maxima or minima of the 1
cos θt

∂F st

∂θt
curves to determine the spinodal

points (open circles in Figure 5.3(b and d)) or the position of the irreversible

orientational transitions at higher fields. This is illustrated in the plots in

Figure B.1, where the critical angles and field strengths for the state points

reported in Figures 5.5 and 5.13 of Chapter 5 are explicitly labelled.
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Figure B.1: Surface Evolver results for 1
cos θt

∂F̄st
∂θt

vs. θt for cylinders with η = 20
for different combinations of contact angles θw and aspect ratios α. The critical
field strengths and tilt angles where the cylindrical particles undergo an irreversible
transition to a different local minima correspond to the maxima or minima of the
curves and are explicitly labelled. The filled and open circles in (b) refer to the
binodal and spinodal points respectively. See main text for details.
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Numerical values from Surface Evolver simulations for the binodal and spin-

odal points for neutrally wetting cylinders with different aspect ratios are in

Table B.1.

α θ0(◦) θc1(◦) B̄c1

2.0 13.0 7.6 0.007
1.5 23.1 14.1 0.034
1.0 36.4 21.1 0.088
0.5 60.8 30.7 0.213
0.25 82.6 42.0 0.370

Table B.1: Surface Evolver results for binodal tilt angles θ0 and spinodal points
(θc1, Bc1) for neutrally wetting cylinders with different aspect ratios α.
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Appendix C
Accuracy of Approximating Cylinders
as Super-Ellipsoids
As discussed in Chapter 5, one numerical problem when analysing the orienta-

tional behaviour of cylinders is the fact that Surface Evolver becomes unstable

when the three phase contact line crosses the sharp edge of the cylinder. In

order to overcome this problem, in our Surface Evolver simulations, we ap-

proximate the cylinders as super-ellipsoids (Equation 5.8 in Chapter 5) with a

sharpness parameter η = 20. In this section, we estimate the accuracy of this

approximation. In Figure C.1(b), we plot the projection of the particle surface

onto the horizontal x-y plane for different values of η for super-ellipsoids with

α = 2.5. We see that η = 20 yields a reasonably accurate approximation to

the shape of an infinitely sharp cylinder. In Figure C.1(a), we plot 1
cos θt

∂F st

∂θt

as a function of θt for different values η for cylinders with α = 2.5, θw = 90◦,

assuming the liquid meniscus around the particle remains flat. The reason

for assuming a flat meniscus is because exact results for the orientational be-

haviour are known in this case. Specifically, in Figure C.1(a), the infinitely

sharp cylinder curve was calculated using the flat interface model, while the

results for all other values of η were calculated using Surface Evolver with the

interface constrained to remain flat. Note that the position and magnitude of

the maxima in 1
cos θt

∂F st

∂θt
corresponds to the critical angle and critical field for

the irreversible transition from the tilted state to the end-on state (see next

section). We see that the Surface Evolver calculations with η = 20 reproduces

the exact curve accurately except for very close to the maximum. Specifically,
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the η = 20 curve under predicts the magnitude of the maximum (and hence

the critical field) by around 25% but it under predicts the position of the max-

imum (and hence the critical angle) by only 2%. Considering the fact that

in the exact theory, the maximum is a cusp which is extremely challenging to

capture numerically, this level of accuracy is reasonably good. Indeed, in order

to reduce the error in the critical field to 10%, we would need to increase the

sharpness parameter to η = 120 (see Figure C.1(a)), which is not achievable

numerically if we incorporate realistic deformations of the liquid meniscus. Fi-

nally, for cylinders in the side-on state, it is possible to use Surface Evolver

to calculate meniscus deformations around cylinders with infinitely sharp cor-

ners. For typical cylinders in the side-on state (say α = 3, θw = 80◦), we find

that the difference zmax − zmin between the maximum and minimum contact

line heights using Surface Evolver simulations with η = 20 deviates only by

around 10% from the results for an infinitely sharp cylinder. Taking all these

estimates into account, we conclude that the value η = 20 represents a good

compromise between numerical stability and accuracy in our Surface Evolver

simulations.
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Figure C.1: (a) 1
cos θt

∂F̄st
∂θt

as a function of tilt angle θt for an infinitely sharp cylin-
der calculated from flat interface theory and for rounded cylinders with different η
calculated from Surface Evolver simulations where the interface is constrained to be
flat. (b) Projection of cylinders with different values of η onto the horizontal plane.
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Appendix D
Center-to-Center Distance
The final expression for rc−c is

rc−c =
(
l2(cos θb)2(cos θt)2 + 4r2(cos θb)4(sin θt)2 + 2r2(sin θb)2(2(cos θt)2

+(3 + cos(2θb))(sin θt)2)
) 1

2
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Appendix E
Elliptical Polar Coordinates
This theory was developed by Lorenzo Botto a Lecturer at Queen Mary Uni-

versity London. It is presented here for completeness.

The amplitudes of dipoles H = 1 assuming identical particles. We have a

constant aspect ratio α = 2 and can calculate our s0, which is approximately

the s coordinate of the contact line, and β that is a length scale related to

the distance from the origin; it controls the aspect ratio of constant s ellipses.

s0 = a tanh
(

1
α

)
and β = r/ sinh(a tanh(1/α)). We now require the normalised

centre-to-centre separation, r̃ = r12/β. r̃ is then used in s1 and t1below

s1 = a sinh

√√√√1
2

(
r̃2 − 1 +

√(
(1− r̃2)2 + 4r̃2 (sin θb1)2

))

t1 = a tan 2 (tan (−θb1) , tanh (s1)) .

f (θb1, θb2, r12) = H2 exp (−s0) sinh s0 cos (θb1 − θb2)G+ sin (θb1 − θb2)L

(E.1)

where

G = exp (−s1) (sin t1 tan t1 − cos t1 tanh s1)
cosh s1 cos t1

(
(tanh s1)2 + (tan t1)2

)
and

141



Appendix E: Elliptical Polar Coordinates

L = exp (−s1) (tanh s1 sin t1 + tan t1 cos t1)
cosh s1 cos t1

(
(tanh s1)2 + (tan t1)2

)
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