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a b s t r a c t

This paper considers fault estimation (FE) and fault-tolerant control (FTC) for linear parameter varying
systems with actuator and sensor faults, uncertainties, and disturbances. The inevitable coupling
between the FE and FTC functions needs to be taken into account in the design to ensure the overall
FE-based FTC closed-loop system performance and robustness. This paper proposes an iterative strategy
to achieve the robust integration of FE and FTC by leveraging the concepts of Separation Principle and
Small Gain Theorem. The iterative algorithm involves solving multi-objective linear matrix inequality
optimisation problems at each iteration and has finite-step convergence guarantee. Efficacy of the
proposed algorithm and its advantages over the existing works are illustrated through numerical
simulations.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Active fault-tolerant control (FTC) has been demonstrated ef-
ective in maintaining robustly acceptable system performance in
he presence of faults. The most studied active FTC framework is
econfigurable control using fault detection and isolation (FDI),
ee the celebrated book (Blanke et al., 2006), the rich works
eviewed in Zhang and Jiang (2008) and some recent results
n Ding (2021) and Zhang et al. (2020). In the past decade, great
ttention has been paid to another FTC framework, which in-
olves (i) a fault estimation (FE) observer to estimate the system
tate and/or faults, and (ii) an FTC controller that combines a state
eedback action to guarantee non-faulty system stability with a
eedforward action to compensate the faults, see e.g. Abdullah
nd Zribi (2012), Bouarar et al. (2013), Chen et al. (2019), Do
t al. (2020), Gao and Ding (2007), Lan and Patton (2016a, 2016b,
016c), Liu et al. (2017) and Shi and Patton (2015). The FE-based
TC framework can avoid the complex design procedure of FDI
nd thus is the focus of this paper.
Most existing works cast the FE design as a state estimation

roblem by regarding the faults as auxiliary state variables (Chen
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∗ Corresponding author.

E-mail addresses: Jianglin.Lan@glasgow.ac.uk (J. Lan), r.j.patton@hull.ac.uk
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0005-1098/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
et al., 2019; Do et al., 2020; Gao & Ding, 2007; Hashemi & Tan,
2020; Jiang et al., 2006; Lan & Patton, 2016c; Shi & Patton, 2015;
Xu et al., 2021). However, it is shown in Lan and Patton (2016c)
that there exist bidirectional robustness interactions between the
FE and FTC designs: On the one side, the FE performance is
affected by system control robustness because the FE observer
leverages the system model where uncertainties inevitably exist;
On the other side, the FTC performance is in turn influenced
by the estimation robustness due to the use of the estimated
state and faults. These bidirectional robustness interactions break
down the Separation Principle (Luenberger, 1971), leading to the
loss of guarantee in closed-loop stability by using the traditional
Separated strategy (Jiang et al., 2006; Liu et al., 2017) to design the
FTC controller and FE observer, where their coupling is ignored.
This gives rise to the necessity of robust integration of FE and FTC
with consideration of the coupling effects.

The robust integration of FE and FTC can be formulated as
an observer-based robust control problem to be solved using the
well-established robust control theory. Based on this formulation,
several robust integration strategies have been developed in the
literature using the linear matrix inequality (LMI) technique. The
Two-step strategy is proposed in Shi and Patton (2015) for linear
parameter varying (LPV) descriptor systems with actuator faults.
The Two-step strategy designs the FTC controller first and then use
it to determine the FE observer. However, it considers only the
effects of FTC on FE, i.e. the unidirectional robustness interaction,
and relies on a heuristic method to ensure feasibility of the FE
observer design and balance the performance of FE and FTC.

Building on the Two-step strategy, the Iterative two-step strategy

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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s developed in Chen et al. (2019) for LPV systems with sensor
aults. It adopts an iterative algorithm to systematically refine
he FTC controller performance, which is less conservative than
he Two-step strategy but still considers just the unidirectional ro-
ustness interaction. To account for the bidirectional robustness
nteractions, the Integrated strategy is first developed in Lan and
atton (2016c) for linear systems by solving the FE observer and
TC controller from a single LMI optimisation problem. The strat-
gy is further extended to Lipschitz nonlinear systems (Hashemi
Tan, 2020), T-S fuzzy systems (Bouarar et al., 2013; Lan &

atton, 2016b), LPV systems (Do et al., 2020), input saturated
ystems (Hashemi et al., 2019) and large-scale interconnected
ystems (Lan & Patton, 2016a). Although the Integrated strategy
ives a more optimal design than the Two-step strategy and Itera-
ive two-step strategy, it has higher complexity in formulating and
omputing the LMI optimisation problem, especially for complex
ystems such as LPV, T-S fuzzy and large-scale interconnected
ystems.
This paper aims to develop an innovative robust integration

trategy that can handle the bidirectional robustness interactions
nd has reduced complexity in the LMI formulation and compu-
ation. The key idea is to approximately recover the Separation
rinciple by ensuring that the pure feedback interconnection of
he FTC system and FE estimation error system is small-gain
table (Isidori, 2017). This enables us to establish a stable closed-
oop system by assembling the separately determined FTC con-
roller and FE observer. Different from the Separated strategy
here the coupling is ignored (Jiang et al., 2006; Liu et al.,
017), the present research ‘‘approximately’’ recovers the Sepa-
ation Principle via attenuating the coupling effects as much as
ossible, but they still exist. The idea of using the Small Gain
heorem to approximately recover the Separation Principle has
een adopted in Peaucelle et al. (2017), but it is not in the area
f FE and FTC. Moreover, a heuristic design procedure is used
n Peaucelle et al. (2017) to establish a stable closed-loop system,
hich is undesirable for real implementation. This paper will
evelop an efficient and easily implemented robust integration
trategy. The main contributions are summarised as follows:

(1) An iterative strategy is proposed to achieve robust inte-
gration of FE and FTC for uncertain LPV systems with ac-
tuator faults, sensor faults and disturbances. The proposed
strategy addresses the bidirectional robustness interactions
rather than unidirectional robustness interaction as in the
Two-step strategy (Shi & Patton, 2015) and Iterative two-step
strategy (Chen et al., 2019).

(2) The multi-objective LMI optimisation problems solved at
each iteration have feasibility guarantee under the given
assumptions. The iterative algorithm is proved to have
finite-step convergence.

(3) Extensive theoretic and numerical analysis show that the
proposed strategy is less computationally complex than
the Iterative two-step strategy and Integrated strategy (Lan
& Patton, 2016c), and achieves better robust closed-loop
performance than the Separated strategy (Jiang et al., 2006;
Liu et al., 2017), Two-step strategy and Iterative two-step
strategy.

The rest of this paper is organised as follows. Section 2 de-
cribes the system model and the robust integration problem.
ection 3 presents the iterative strategy, followed by the anal-
sis of convergence and computational complexity in Section 4.
ection 5 provides a simulation example. Section 6 draws the
onclusion.

otations: R is the set of real numbers. ∥ · ∥ and ∥ · ∥∞ are

he 2-norm and ∞−norm in the Euclidean space, respectively. y

2

l2[0,∞) is the space of square-integrable vector functions over
[0,∞). I and 0 are identity and zero matrices of appropriate
dimensions, respectively. s.p.d. and s.t. are short for symmetric
positive definite and subject to, respectively. The superscript †
enotes the pseudo-inverse of a matrix. ⋆ induces symmetry in
block matrix. diag(·) denotes a block diagonal matrix. Z ≻
≺)0 indicates that the matrix Z is positive (negative) definite.
erm(Z) = Z + Z⊤. trace(Z) is the sum of the diagonal elements
f matrix Z . Z (k) denotes the value of matrix Z that is computed
t iteration k.

. Problem statement and preliminaries

Consider the uncertain LPV system

ẋ = (A(θ )+∆A(θ ))x+ B(θ )u+ F (θ )fa + D(θ )d
= Cx+ Efs

(1)

here x ∈ Rn, u ∈ Rm, fa ∈ Rq, d ∈ Rl, y ∈ Rp, and fs ∈ Rr are the
ectors of state, control input, actuator fault, external disturbance,
easured output, and sensor fault, respectively. ∆A(θ ) represents

he system uncertainty. The matrices C and E are constant, while
(θ ), B(θ ), F (θ ) and D(θ ) depend on the known time-varying
cheduling parameter θ ∈ Rg , which can be system state, inputs,
utputs, or some exogenous signals. The system is assumed to
ave a polytopic representation with [A(θ ) | B(θ ) | F (θ ) | D(θ )] =

ℓ

i=1 φi[Ai | Bi | Fi | Di], where φi, i ∈ [1, ℓ], are non-negative
calar functions of θ satisfying

∑ℓ

i=1 φi = 1.

ssumption 2.1. The matrix ∆A(θ ) satisfies ∆A(θ ) =M(θ )F(t)N
here M(θ ) =

∑ℓ

i=1 φiMi, Mi and N are known matrices of ap-
ropriate dimensions, and F(t) is an unknown matrix satisfying
⊤(t)F(t) ⪯ I .

ssumption 2.2. The pair (A(θ )+∆A(θ ), B(θ )) is stabilisable for
ll admissible uncertainty. The quadruple (A(θ )+∆A(θ ), F (θ ), C, E)
as no invariant zeros in the open right-half complex plane. The
ctuator fault fa is matched, i.e. rank([Bi Fi]) = rank(Bi) = m.

ssumption 2.3. The disturbance d, the faults fa and fs, and f̈a
nd f̈s all belong to l2[0,∞).

Assumption 2.1 is a standard assumption on system uncer-
ainty in the robust control theory (Boyd et al., 1994).
ssumption 2.2 is standard for designing FE-based FTC for LPV
ystems (see e.g. Abdullah and Zribi (2012) and Shi and Patton
2015)), where the first part ensures system stabilisability and
he second part ensures that the system state, actuator faults
nd sensor faults can be fully estimated. For Assumption 2.3,
t is realistic to consider disturbance and faults belonging to
2[0,∞). The existence of l2[0,∞) second derivatives is also not
nrealistic for faults such as sinusoidal signals (Gao & Ding, 2007)
nd continuous time functions (Lan & Patton, 2016b).
This paper aims to design an FE observer to estimate the state

nd faults, and an FTC controller to compensate the faults and sta-
ilise the state. The main purpose is illustrating the key ideas of
he proposed strategy for robust integration of FE and FTC. Hence,
or simplicity and clarity, a state feedback FTC controller and a
uenberger-type FE observer are used. This does not exclude the
pplicability of other forms of controllers and observers, e.g. the
nes in Gao and Ding (2007), Lan and Patton (2016c) and Shi and
atton (2015).
To estimate the state and faults, the signals fa, ḟa, fs and ḟs are

egarded as auxiliary state variables. Define x̄ =

x⊤ f ⊤a f ⊤s ḟ ⊤a ḟ ⊤s ]
⊤, then it follows from (1) that

˙̄x = Ā(θ )x̄+∆Ā(θ )x+ B̄(θ )u+ D̄(θ )d̄
¯

(2)

= Cx̄
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here d̄ = [d⊤ f̈ ⊤a f̈ ⊤s ]
⊤, C̄ = [C 0 E 0 0] and

Ā(θ ) =

⎡⎢⎢⎢⎣
A(θ ) F (θ ) 0 0 0
0 0 0 I 0
0 0 0 0 I
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦ , ∆Ā(θ ) =

⎡⎢⎢⎢⎣
∆A(θ )

0
0
0
0

⎤⎥⎥⎥⎦ ,

B̄(θ ) =

⎡⎢⎢⎢⎣
B(θ )
0
0
0
0

⎤⎥⎥⎥⎦ , D̄(θ ) =

⎡⎢⎢⎢⎣
D(θ ) 0 0
0 0 0
0 0 0
0 I 0
0 0 I

⎤⎥⎥⎥⎦ .

By regarding both fa and fs and their derivatives as auxiliary
state, each fault is assumed to have second-order dynamics. It
thus enables the proposed observer to estimate a wider range
of actuator and sensor faults. To estimate an even more general
class of faults, high-order dynamics can be used to characterise
the faults (Gao & Ding, 2007; Lan & Patton, 2016b), but leading
to an increased observer dimension.

Observability of the augmented system (2) is guaranteed un-
der Assumptions 2.1–2.3 (Lan & Patton, 2016b). Hence, the state
x̄ can be estimated by the augmented Luenberger state observer
˙̂x̄ = Ā(θ ) ˆ̄x+ B̄(θ )u+ L(θ )(y− ŷ)

ŷ = C̄ ˆ̄x
(3)

where ˆ̄x and ŷ are the estimates of x̄ and y, respectively. The gain
L(θ ) =

∑ℓ

i=1 φiLi is to be determined. Once ˆ̄x is obtained, the
estimated state and fault are x̂ = [In 0 0 0 0]ˆ̄x, f̂a = [0 Iq 0 0 0]ˆ̄x
and f̂s = [0 0 Ir 0 0]ˆ̄x.

Let e = x̄ − ˆ̄x. Subtracting (3) from (2) yields the estimation
error system

ė = Āc(θ )e+∆Ā(θ )x+ D̄(θ )d̄ (4)

where Āc(θ ) = Ā(θ )− L(θ )C̄ .
Design the FTC controller as

u = K (θ )x̂− H(θ )f̂a (5)

where [K (θ ) | H(θ )] =
∑ℓ

i=1 φi[Ki | Hi], with the design gains Ki

and Hi, i ∈ [1, ℓ]. Since fa is matched, we design Hi = B†
i Fi such

that fa is fully compensated if it is accurately estimated. The use
of fault feedforward may cause input saturation and consequent
control performance degradation. A way to handle this is referred
to Hashemi et al. (2019) and is not the focus of this work.

Applying (5) to (1) gives the FTC closed-loop system

ẋ = (Ac(θ )+∆A(θ ))x+ B(θ )G(θ )e+ D(θ )d (6)

with Ac(θ ) = A(θ )+ B(θ )K (θ ) and G(θ ) = [−K (θ ) H(θ ) 0].
Combining (4) and (6) gives the FE-based FTC system[

ẋ
ė

]
=

[
Ac(θ )+∆A(θ ) B(θ )G(θ )

∆Ā(θ ) Āc(θ )

][
x
e

]
+

[
D(θ )d
D̄(θ )d̄

]
. (7)

This closed-loop system is perturbed by d (external disturbance)
and d̄ (including d and fault modelling errors f̈a and f̈s). The
off-diagonal elements B(θ )G(θ ) and ∆Ā(θ ) in the system matrix
clearly evidence the existence of bidirectional robustness inter-
actions between the FTC and FE observer systems. Therefore, the
gains K (θ ) and L(θ ) need to be designed to ensure that the system
(7) is stable against the disturbances (d and d̄) and the coupling
effects (B(θ )G(θ )e and ∆Ā(θ )x).

The mutual coupling breaks down the Separation Principle,
and thus closed-loop system stability cannot be guaranteed by
the independent choices of stabilising gains K (θ ) and L(θ ) using
the Separated strategy (Jiang et al., 2006; Liu et al., 2017). By using
the Two-step strategy (Shi & Patton, 2015) and Iterative two-step
3

Fig. 1. A generic closed-loop system with two elements.

strategy (Chen et al., 2019), suboptimally stable solutions may be
attained but they are too restrictive. The Integrated strategy (Lan &
Patton, 2016c) is considered to be an ideal strategy, but suffering
from difficulty in solving the bilinear matrix inequality problem.
Although a convex LMI problem can be obtained using equality
constraint or Young inequality, its formulating and computing
are complex, especially for systems such as T-S fuzzy, LPV and
large-scale interconnected systems. A way around this difficulty is
to recover the Separation Principle approximately by minimising
the coupling effects B(θ )G(θ )e and ∆Ā(θ )x. In such case, the
FTC controller and FE observer can be designed separately with
reduced complexity in formulating and computing the LMI prob-
lems. This motivates the proposal of a decoupling strategy in this
paper, which can minimise the coupling effects and guarantee
closed-loop stability by assembling the separately designed FTC
controller and FE observer.

Before proceeding to present the proposed strategy, the Small
Gain Theorem (Glad & Ljung, 2000; Isidori, 2017) and a lemma for
robust stability of uncertain LPV systems (Montagner et al., 2005)
are introduced.

Theorem 2.1 (Small Gain Theorem). Consider a feedback loop de-
picted in Fig. 1 composed of two stable systems S1 and S2, with inputs
r1 and r2 and outputs e1, e2, y1 and y2. If ∥Gy1e1∥∞ · ∥Gy2e2∥∞ < 1,
hen the closed-loop system is input-to-output stable. If in addition
1 = 0 and r2 = 0, then the closed-loop system is asymptotically
table.

emma 2.1. Consider the uncertain LPV system in the form of (1)
ut without faults (i.e. F (θ )fa = 0 and Efs = 0). The closed-loop
ystem with the controller u =

∑ℓ

i=1 φiKix is stable and satisfies the
∞ performance ∥Gyd∥∞ < γ if there is a s.p.d. matrix P such that

Π̃ij PDi PMi N⊤ C⊤

⋆ −γ 2I 0 0 0
⋆ ⋆ −I 0 0
⋆ ⋆ ⋆ −I 0
⋆ ⋆ ⋆ ⋆ −I

⎤⎥⎥⎥⎦ ≺ 0, i, j ∈ [1, ℓ]

here Π̃ij = Herm(P(Ai + BiKj)).

The proposed iterative strategy will build on Lemma 2.1 that
dopts the common Lyapunov method (with a single s.p.d. ma-
rix P). This is known to be conservative, but it can keep the
resentation concise and clear to illustrate the key ideas of the
roposed strategy. To reduce the conservativeness, one can di-
ectly replace the common Lyapunov function method by the
arameter-dependent Lyapunov function method in de Oliveira
t al. (2004) to have multiple s.p.d. matrices Pi, i ∈ [1, ℓ].

. Iterative robust integration of FE and FTC

.1. Overview of the proposed strategy

A conceptual diagram of the FE-based FTC closed-loop system
7) is depicted in Fig. 2, where x̃ is the performance output
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Fig. 2. Conceptual diagram of the FE-based FTC system (7).

associated with d and the coupling effect ẽ; ze and ẽ are the
performance outputs associated with d̄ and the coupling effect
x̃, respectively. The weight Ce is given, while W ∈ Rn×n and V ∈
Rm×m are tunable positive definite matrices. For design purpose,
the outputs x̃ and ẽ are defined to reduce the coupling effects,
while the real coupling terms within the closed-loop system
remain as ∆Ā(θ )x and B(θ )G(θ )e because ∆Ā(θ )x = ∆Ā(θ )W−1x̃
and B(θ )G(θ )e = B(θ )V−1ẽ.

One design objective is ensuring robust stability of (7) against
d and d̄. This is achieved by designing the observer and con-
troller gains to minimise the H∞ performance metrics ∥Gx̃d∥∞ and
∥Gze d̄∥∞. Another objective is guaranteeing closed-loop stability
when assembling the FTC controller and FE observer. Fig. 2 shows
that without d and d̄, the closed-loop system is a pure feedback
interconnection of two systems with inputs (outputs) ẽ and x̃.
According to Theorem 2.1, the closed-loop system is asymptot-
ically stable if ∥Gx̃ẽ∥∞ · ∥Gẽx̃∥∞ < 1. Moreover, it is desirable to
attenuate the coupling effects as much as possible to enhance the
closed-loop robustness. This can be realised through maximising
the weights W and V , as delineated below: Let ∥Gx̃ẽ∥∞ ≤ γ̃1 and
∥Gẽx̃∥∞ ≤ γ̃2, where x̃ = Wx and ẽ = VG(θ )e. According to Isidori
(2017), these ∞-norm inequalities are equivalent to the 2-norm
inequalities ∥Wx∥ ≤ γ̃1∥ẽ∥ and ∥VG(θ )e∥ ≤ γ̃ ∥x̃∥. Suppose W1
and W2 satisfy W1 ≺ W2 and ∥W1x∥ = ∥W2x∥ ≤ γ̃1∥ẽ∥. Then
it is clear that the effect of ẽ on the state x is attenuated more
by using the weight W2. Hence, a bigger weight W is desirable. A
similar story applies for the weight V . In conclusion, maximising
the weights W and V can attenuate the coupling effects as much
as possible.

According to the above analysis, the proposed iterative strat-
egy will consist of three parts:

(1) FTC controller design: Design the gains Ki, i ∈ [1, ℓ], and
the weight W such that the FTC closed-loop system (6) is
stable and satisfies ∥Gx̃d∥∞ < γ1 and ∥Gx̃ẽ∥∞ < 1, where
γ1 > 0. The details are given in Section 3.2.

(2) FE observer design: Design the gains Li, i ∈ [1, ℓ], and the
weight V such that the estimation error system (4) is stable
and satisfies ∥Gze d̄∥∞ < γ2 and ∥Gẽx̃∥∞ < 1, where γ2 > 0.
The details are given in Section 3.2.

(3) Iterative refinement: An iterative strategy to realise simul-
taneous maximisation of the weights W and V and refine
the gains Ki and Li, i ∈ [1, ℓ]. The details are given in
Section 3.3.

Remark 3.1. Two outputs ze and ẽ are used to characterise the
estimation performance against d̄ and x̃, respectively. The reason
of considering ẽ is that only the affine mapping B(θ )G(θ )e of the
estimation error e intrudes the FTC closed-loop system, and thus
it is desirable to directly attenuate B(θ )G(θ )e rather than e. This
can reduce the design conservativeness of the existing strategies
where a single output z is used.
e

4

3.2. FTC controller and FE observer designs

To design the FTC controller, rewriting (6) as

ẋ = (Ac(θ )+∆A(θ ))x+ D(θ )d+ B(θ )V−1ẽ
x̃ = Wx

(8)

where ẽ is given in Fig. 2, V is known from the FE observer design,
and W is to be determined. The FTC controller is designed using
Theorem 3.1.

Theorem 3.1. Under Assumptions 2.1–2.3, the FTC system (8)
is stable with ∥Gx̃d∥∞ < γ1 and ∥Gx̃ẽ∥∞ < 1, if the following
optimisation problem is feasible:

min
Xi,i∈[1,ℓ],P,S,γ̄1

α1γ̄1 + α2trace(S)⎡⎢⎢⎢⎣
Π̌ij Di Mi PN⊤ P
⋆ −γ̄1I 0 0 0
⋆ ⋆ −I 0 0
⋆ ⋆ ⋆ −I 0
⋆ ⋆ ⋆ ⋆ −S

⎤⎥⎥⎥⎦ ≺ 0, i, j ∈ [1, ℓ] (9a)

⎡⎢⎢⎢⎣
Π̌ij Bi Mi PN⊤ P
⋆ −R−1 0 0 0
⋆ ⋆ −I 0 0
⋆ ⋆ ⋆ −I 0
⋆ ⋆ ⋆ ⋆ −S

⎤⎥⎥⎥⎦ ≺ 0, i, j ∈ [1, ℓ] (9b)

P = P⊤ ≻ 0, S = S⊤ ≻ 0, γ̄1 > 0 (9c)

where Π̌ij = Herm(AiP + BiXj), R = (V⊤V )−1, and α1 and α2
are prescribed positive scalars. The gains are obtained as: Ki =

XiP−1, i ∈ [1, ℓ],W =
√
S−1, γ1 =

√
γ̄1.

Proof. Let ẽ = 0. Consider the Lyapunov function Vx = x⊤Pxwith
a s.p.d. matrix P . By using Lemma 2.1, the system (8) is stable
with ∥Gx̃d∥∞ < γ1 if⎡⎢⎢⎢⎣

Πij PDi PMi N⊤ I
⋆ −γ 2

1 0 0 0
⋆ ⋆ −I 0 0
⋆ ⋆ ⋆ −I 0
⋆ ⋆ ⋆ ⋆ −S

⎤⎥⎥⎥⎦ ≺ 0, i, j ∈ [1, ℓ] (10)

here Πij = Herm(P(Ai+ BiKj)) and S = (W⊤W )−1. Let P = P−1
nd Xi = KiP . Multiplying both sides of (10) with diag(P, I, I, I, I)
nd its transpose, then it yields (9a). Let d = 0 and R = (V⊤V )−1.
nder Lemma 2.1, the system (8) is stable with ∥Gx̃ẽ∥∞ < 1
f (9b) holds. To minimise γ1 and maximise W (i.e. minimise
), the design of Ki and W is formulated as the multi-objective
ptimisation problem (9), where γ̄1 = γ 2

1 . □

The FE error system (4) can be rewritten as

ė = Āc(θ )e+ D̄(θ )d̄+∆Ā(θ )W−1x̃

e = Cee
ẽ = VG(θ )e

(11)

here x̃ is given in Fig. 2, W is known from the FTC controller
esign, and V is to be determined. The FE observer is designed
sing Lemma 3.1.

emma 3.1. Under Assumptions 2.1–2.3, the FE system (11) is
table with ∥Gze d̄∥∞ < γ2 and ∥Gẽx̃∥∞ < 1, if the following
ptimisation problem is feasible:

min
i,i∈[1,ℓ],Q ,R,γ̄2

β1γ̄2 + β2trace(R)⎡⎣Ωij Q D̄i C⊤e
⋆ −γ̄2I 0

⎤⎦ ≺ 0, i, j ∈ [1, ℓ] (12a)

⋆ ⋆ −I
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⎡⎢⎣Ωij QM̄i G⊤i 0
⋆ −I 0 0
⋆ ⋆ −R 0
⋆ ⋆ ⋆ N⊤N − S−1

⎤⎥⎦ ≺ 0, i, j ∈ [1, ℓ] (12b)

Q = Q⊤ ≻ 0, R = R⊤ ≻ 0, γ̄2 > 0 (12c)

where Ωij = Herm(Q Āi − YjC̄), M̄i = [M⊤

i 0]⊤, and β1 and
β2 are prescribed positive scalars. The gains are obtained as: Li =
Q−1Yi, i ∈ [1, ℓ], V =

√
R−1, γ2 =

√
γ̄2.

Proof. Consider the Lyapunov function Ve = e⊤Qe with a s.p.d.
matrix Q . The proof follows from Lemma 2.1 with Yi = QLi,
R = (V⊤V )−1, S = (W⊤W )−1. □

A necessary condition to ensure feasibility of (12b) is

N⊤N − S−1 ≺ 0. (13)

Since S is the decision variable of the optimisation problem (9),
the condition (13) can be satisfied by imposing the constraint
λmax(S) < λmin((N⊤N )−1) given a nonsingular N⊤N . However,
solving (9) with such an eigenvalue constraint is difficult. This
paper proposes a method to ensure (13) without imposing any
extra constraint. It is based on the observation that for any
uncertainty matrix ∆A(θ ), the matrices M(θ ) and N can be freely
chosen, as long as they abide by Assumption 2.1. The proposed
method is described below: (i) When solving the optimisation
problem (9), define N = δ0 × In with δ0 ∈ (0, 1], then select
M(θ ) and F(t) to satisfy Assumption 2.2. (ii) When solving the
optimisation problem (12), re-scale N and M(θ ) as N̂ = δN
and M̂(θ ) = δ−1M(θ ), where δ =

√
λmin(S−1) − ϵ0 and ϵ0

s a small positive scalar. Using this method gives N̂ and M̂(θ )
that always satisfy Assumption 2.1 and (13). Hence, Lemma 3.1 is
reformulated as Theorem 3.2.

Theorem 3.2. Under Assumptions 2.1–2.3, the FE system (11)
is stable with ∥Gẽd̄∥∞ < γ2 and ∥Gẽx̃∥∞ < 1, if the following
optimisation problem is feasible:

min
Yi,i∈[1,ℓ],Q ,R,γ̄2

β1γ̄2 + β2trace(R)⎡⎣Ωij Q D̄i G⊤i
⋆ −γ̄2I 0
⋆ ⋆ −R

⎤⎦ ≺ 0, i, j ∈ [1, ℓ] (14a)

⎡⎣Ωij Q ˆ̄Mi G⊤i
⋆ −I 0
⋆ ⋆ −R

⎤⎦ ≺ 0, i, j ∈ [1, ℓ] (14b)

Q = Q⊤ ≻ 0, R = R⊤ ≻ 0, γ̄2 > 0 (14c)

where Ωij = Herm(Q Āi − YjC̄), ˆ̄Mi = [M̂⊤

i 0]⊤, M̂i = δ−1Mi,
δ =

√
λmin(S−1)− ϵ0. ϵ0, β1 and β2 are all given positive scalar but

ϵ0 is required to be small. The gains are obtained as: Li = Q−1Yi, i ∈
[1, ℓ], V =

√
R−1, γ2 =

√
γ̄2.

The iterative strategy to be detailed in Section 3.3 will be based
on the optimisation problems (9) and (14). Hence, it is necessary
to analyse their feasibility.

Proposition 3.1. The optimisation problem (9) is feasible under
ssumption 2.2 with an appropriate matrix R, while (14) is feasible
nder Assumption 2.2.

roof. By using Schur complement (Boyd et al., 1994), the LMIs
9a) and (9b) are equivalent to

ˇ ij + Diγ̄
−1
1 D⊤i +MiM⊤

i + PN⊤NP + PS−1P ≺ 0,
Π̌ + B RB⊤ +M M⊤

+ PN⊤NP + PS−1P ≺ 0,
ij i i i i

5

where i, j ∈ [1, ℓ]. There is always a large enough γ̄1 and S
satisfying the above inequalities, if it holds that

Π̌ij + BiRB⊤i +MiM⊤

i + PN⊤NP ≺ 0, i, j ∈ [1, ℓ].

This means that feasibility of the optimisation problem (9) re-
lies on an existing P to stabilise the uncertain system (1) and
the matrix R that is obtained in the observer design. There-
fore, the feasibility is guaranteed under Assumption 2.2 with an
appropriate value of matrix R.

The LMIs (14a) and (14b) are equivalent to

Ωij + (Q D̄i)γ̄−12 (Q D̄i)⊤ + G⊤i R
−1Gi ≺ 0, i, j ∈ [1, ℓ].

Ωij + Q ˆ̄Mi(Q ˆ̄Mi)⊤ + G⊤i R
−1Gi ≺ 0, i, j ∈ [1, ℓ].

One can always find a large enough scalar γ̄2 and a s.p.d. matrix
R to satisfy the above inequalities, if there exists a s.p.d. matrix
Q such that Ωij + Q ˆ̄Mi(Q ˆ̄Mi)⊤ ≺ 0. This means that the feasi-
bility of optimisation problem (14) relies on observability of the
uncertain system (1), which is guaranteed by the second part of
Assumption 2.2. Therefore, feasibility of the optimisation problem
(14) is guaranteed under Assumption 2.2. □

3.3. Iterative algorithm

This section presents Algorithm 1 to determine the gains Ki
and Li, i ∈ [1, ℓ], based on Theorems 3.1 and 3.2. At the ini-
tialisation step, the optimisation problem (9) is solved to get the
initial feasible FTC controller gains K (0)

i , i ∈ [1, ℓ], and the weight
W (0) based on the given matrix R(0)

known (i.e. V (0)). The iteration
loop involves two steps: FE observer design and FTC controller
refinement. At Step 1, the FE observer gains L(k)i , i ∈ [1, ℓ], and the
matrix R(k)

known are solved from the optimisation problem P1 based
on K (k−1)

i , i ∈ [1, ℓ], and W (k−1) that are obtained in the previous
iteration. At Step 2, the FTC controller gains K (k−1)

i , i ∈ [1, ℓ], are
refined by solving optimisation problem P2 based on the matrix
R(k)
known updated at Step 1. The iteration continues until the relative

change of the cost function J (k)c of problem P2 is smaller than the
prescribed tolerance ϵ.

The definition of the matrix R(k)
known and how it is used in

optimisation problem P2 are detailed below. Let V̄ = V⊤V . At
teration k, V̄ (k) is designed as

¯ (k) =

(
V̄ (0)
+

k∑
s=1

∆V̄ (s)
)

(15)

where V̄ (0) is the initial value of V̄ and ∆V̄ (s) are s.p.d. matrices
determined at iterations s ∈ [1, k]. Hence, V̄ (k)

= V̄ (k−1)
+ ∆V̄ (k).

Corresponding to (15), define

R(k−1)
known = (V̄ (k−1))−1, ∆R(k)

= (∆V̄ (k))−1 (16)

where R(k−1)
known is known at iteration k while ∆R(k) is the decision

variable. Applying (16) to (14b) gives⎡⎣Ω
(k)
ij Q (k) ˆ̄Mi Π1
⋆ −I 0
⋆ ⋆ Π2

⎤⎦ ≺ 0, i, j ∈ [1, ℓ] (17)

where Ω
(k)
ij = Herm(Q (k)Āi − Y (k)

j C̄), Π1 = [G⊤i G⊤i ], and Π2 =

diag(−R(k−1)
known,−∆R(k)).

Note that using a too small V (0) leads to the need of large
numbers of iterations to approach a good attenuation of the
coupling, while using a too big value may cause early termination
of the iteration. In this work, V (0) is chosen close to an identity
matrix. The gain γ̄1 is optimised at the initialisation step and fixed
at Step 2 to optimise S(k) only. Hence, the part α1γ̄1 is not included
in the cost function of optimisation problem P2.
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Algorithm 1 Iterative robust integration strategy

1: Input: Ai, Bi, Fi, Di, Āi, D̄i, Mi, i ∈ [1, ℓ]; C , N , C̄ , Ce, V (0), α1,
α2, β1, β2, ϵ0, ϵ.

2: Initialisation: Set K (0)
i ← X (0)

i (P (0))−1, i ∈ [1, ℓ], W (0)
←√

(S(0))−1, J (0)c ← α2trace(S(0)), where P (0) and S(0) are so-
lutions to the problem (9) with R = R(0)

known = (V̄ (0))−1 and
V̄ (0)
= (V (0))⊤V (0).

3: for k = 1, 2, . . . do
4: Step 1: FE observer design
5: Set L(k)i ← (Q (k))−1Y (k)

i , i ∈ [1, ℓ], ∆V̄ (k)
← (∆R(k))−1,

R(k)
known ← (V̄ (k−1)

+ ∆V̄ (k))−1, where Q (k) and ∆R(k) are
solutions to problem P1:

J (k)o =: min β1γ̄
(k)
2 + β2trace(∆R(k))

s.t. (14a), (14c), (17), δ =
√

λmin((S(k−1))−1)− ϵ0,

ˆ̄Mi = [δ
−1M⊤

i 0]⊤, Gi = [−K
(k−1)
i B†

i Fi 0],

with Yi, Q , γ̄2 and R in (14a) and (14c) being replaced by Y (k)
i ,

Q (k), γ̄ (k)
2 and ∆R(k), respectively.

6: Step 2: FTC controller refinement
7: Set K (k)

i ← X (k)
i (P (k))−1, i ∈ [1, ℓ], W (k)

←

√
(S(k))−1,

J (k)c ← α2trace(S(k)), where X (k)
i , P (k) and S(k) are solutions to

problem P2:

J (k)c =: min α2trace(S(k))

s.t. (9a), (9b), (9c), R = R(k)
known,

with Xi, P and S in (9a), (9b) and (9c) being replaced by X (k)
i ,

P (k) and S(k), respectively.
8: if |J (k)c − J (k−1)c | < ϵJ (k−1)c then
9: Set Ki ← K (k)

i , Li ← L(k)i , i ∈ [1, ℓ], and stop.
10: end if
11: end for
12: Output: Ki, Li, i ∈ [1, ℓ].

4. Convergence and computational complexity

4.1. Convergence analysis

Before analysing the convergence of Algorithm 1, it is neces-
ary to discuss feasibility of the three optimisation problems that
t involves. The initialisation step requires solving the optimisa-
ion problem (9), which is feasible under Assumption 2.2 with
n appropriately selected matrix R(0)

known (i.e. V (0)), as shown in
roposition 3.1. The optimisation problem P1 solved at Step 1 is
lightly different from the optimisation problem (14), with only
he LMI (14b) being replaced by (17) to include R(k−1)

known. Hence,
he proof of Proposition 3.1 can be directly adapted to show that
roblem P1 is feasible under Assumption 2.2 and a large enough
atrix R(k−1)

known. Since R(k)
known ≺ R(k−1)

known by construction, the value
of R(k)

known decreases with iterations. Therefore, the problem P1
is feasible through the iterations until R(k−1)

known reaches a certain
small value, i.e. when the weight V is maximised to some value.
The feasibility proof of the optimisation problem P2 needs to use
Proposition 4.1 .

Proposition 4.1. If the optimisation problem P2 is feasible at
iteration k− 1, then it is feasible at iteration k.
6

Proof. Let Lc1(P (k), X (k)
j , S(k)) be the left-hand side term of (9a),

and Lc2(P (k), X (k)
j , S(k)) be the left-hand side term of (9b) with

deletion of the second row and second column. By using Schur
complement, the LMIs (9a) and (9b) are then rewritten into the
compact forms:

Lc1(P (k), X (k)
j , S(k)) ≺ 0, i, j ∈ [1, ℓ].

B†
i Lc2(P (k), X (k)

j , S(k))(B†
i )
⊤
+ R(k)

known ≺ 0, i, j ∈ [1, ℓ].

By construction, 0 ≺ R(k)
known ≺ R(k−1)

known. Hence, by induction, the
solution to problem P2 at iteration k−1 is always feasible to this
problem at iteration k by setting X (k)

j = X (k−1)
j , P (k)

= P (k−1) and
S(k) = S(k−1). □

Under Proposition 4.1, the optimisation problem P2 is always
feasible if it is feasible under R(0)

known, which reverts to the same
optimisation problem solved at the initialisation step. Therefore,
problem P2 is always feasible under Assumption 2.2 with an
appropriately selected R(0)

known (i.e. V (0)). Furthermore, the cost
function of problem P2 is shown to converge in Lemma 4.1.

Lemma 4.1. The cost function sequence {J (k)c }
∞

k=0 of problem P2
converges to a (local) minimum J∗c .

Proof. By construction, Algorithm 1 generates a series of pos-
itive scalars J (k)c . Under Proposition 4.1, J (k+1)c ≤ J (k)c . Hence,
the sequence {J (k)c }

∞

k=0 is non-increasing and bounded below by
zero. Let J∗c be the greatest lower bound of the sequence, then
J (k)c ≥ J∗c ,∀k ∈ [0,∞). Moreover, there is an integer n0 such
that Jn0c ≤ J∗c + ε, ∀ε > 0, otherwise J∗c is not the greatest
lower bound. Hence, J∗c − ε ≤ J (k)c ≤ J∗c + ε, ∀k ≥ n0, meaning
that {J (k)c }

∞

k=0 converges to J∗c and it is a Cauchy sequence (Rudin,
1964). Therefore, |J (k)c − J (k−1)c | < ε, ∀k > n0. This confirms that
Algorithm 1 terminates in finite iterations and gives an arbitrarily
close approximation to the true local minimum J∗c . □

Convergence of the cost function of the optimisation problem
P1 is also analysed below.

Proposition 4.2. The cost function sequence {J (k)o }
∞

k=1 of problem
P1 does not necessarily converge.

Proof. Let Lo1(Q (k), Y (k)
j , γ̄

(k)
2 , K (k−1)

i , R(k−1)
known, ∆R(k)) and

Lo2(Q (k), Y (k)
j , K (k−1)

i , R(k−1)
known, ∆R(k)) be the left-hand side terms of

the LMIs (14a) and (14b), respectively. Then (14a) and (14b) are
rewritten compactly as

Lo1(Q (k), Y (k)
j , γ̄

(k)
2 , K (k−1)

i , R(k−1)
known, ∆R(k)) ≺ 0,

Lo2(Q (k), Y (k)
j , K (k−1)

i , R(k−1)
known, ∆R(k)) ≺ 0, i, j ∈ [1, ℓ].

As seen from (17), both the above two inequalities include the
nonlinear term Π⊤1 (−Π−12 )Π1 that are dependent on the con-
troller gain K (k−1)

i . Hence, their solutions at iteration k−1 are not
necessarily feasible at iteration k. This implies that the solution to
the optimisation problem P1 at iteration k− 1 is not necessarily
a solution to it at iteration k. Therefore, convergence of the cost
function sequence {J (k)o }

∞

k=1 cannot be established. □

By using Lemma 4.1 and Proposition 4.2, the properties of
Algorithm 1 are summarised in Theorem 4.1.

Theorem 4.1. If the optimisation problem solved at the initialisa-
tion step is feasible, then Algorithm 1 terminates in finite iterations
under the stopping criterion. The obtained gains Ki and Li, i ∈ [1, ℓ],
minimise the mutual coupling between the FE and FTC designs,
guaranteeing robust stability of the FE-based FTC closed-loop system.



J. Lan and R. Patton Automatica 145 (2022) 110556

P
L
l
0
w
a
m
c
a
a
s

n
s
c
b
T
p
d
P
L

4

o
e
s
F
o
i
p
w
d
d

s

roof. The convergence follows from Proposition 4.1 and
emma 4.1. Proposition 4.2 implies that the cost function of prob-
em P1 does not necessarily decrease. However, since ∆R(k)

≻

,∀k ≥ 1, the iteration gradually increases V̄ and equivalently the
eight V . Under Proposition 4.1, this leads to a reduction in J (k)c
nd a consequent increase in W . Hence, the iterative algorithm
aximises W and V , resulting in maximal attenuation of the
oupling effects between FE and FTC designs. Under Theorems 3.1
nd 3.2, the gains Ki and Li, i ∈ [1, ℓ], generated by Algorithm 1
lso guarantee robust stability of the FE-based FTC closed-loop
ystem in the presence of uncertainties and disturbances. □

Due to the nonlinear nature of iteration, the sequence {J (k)c }
∞

k=0
ormally converges to a local minimum and gives suboptimal
olutions to the integration of FE and FTC. However, this is not too
onservative. Generally, suboptimal solutions are also obtained
y the Separated strategy (Jiang et al., 2006; Liu et al., 2017) and
wo-step strategy (Shi & Patton, 2015) due to the separate design
rocedure, by the Iterative two-step strategy (Chen et al., 2019)
ue to the iteration, and even by the Integrated strategy (Lan &
atton, 2016c) due to the linearisation needed to formulate the
MIs.

.2. Computational complexity

This section analyses computational complexity of the LMI
ptimisation problems in Algorithm 1 with comparison to the
xisting strategies. To establish a fair comparison, the existing
trategies are modified to have the same FE observer (3) and
TC controller (5). Moreover, the complexity of solving individual
ptimisation problem, rather than all the optimisation problems
nvolved in a strategy, is investigated. The computational com-
lexity of an LMI is estimated by Gahinet et al. (1995): C = RS3,
here R is the LMI row size and S is the total number of scalar
ecision variables. Hence, computational complexity of different
esigns is derived below:

(1) Separated strategy: Complexity of solving the FTC controller
is Cs,1 = Rs,1S3

s,1 with Rs,1 = (4n + l) × 2ℓ
+ 2n + 1 and

Ss,1 = 0.5n(n + 2 mℓ + 1) + 1; Complexity of solving the
FE observer is Cs,2 = Rs,2S3

s,2 with Rs,2 = (2n + 5q + 5r +
l)× 2ℓ

+ 2(n+ 2q+ 2r)+ 1 and Ss,2 = 0.5(n+ 2q+ 2r)(n+
2q+ 2r + 4pℓ+ 1)+ 1.

(2) Two-step strategy: Complexity of solving the FTC controller
is Ct,1 = Rt,1S3

t,1 with Rt,1 = Rs,1 and St,1 = Ss,1;
Complexity of solving the FE observer is Ct,2 = Rt,2S3

t,2 with
Rt,2 = Rs,2+ (4n+ l)×2ℓ

+2n and St,2 = Ss,2+0.5n(n+1).
(3) Iterative two-step strategy: Complexity of solving the initial

FTC controller is Cit,0 = Rit,0S3
it,0 with Rit,0 = Rt,1 and

Sit,0 = St,1; Complexity of solving the FE observer at each
iteration is Cit,1 = Rit,1S3

it,1 with Rit,1 = Rt,2 and Sit,1 = St,2;
Complexity of refining the FTC controller at each iteration
is Cit,2 = Rit,2S3

it,2 with Rit,2 = Rt,2 and Sit,2 = St,2 +mnℓ.
(4) Integrated strategy: The complexity is Cin = RinS3

in with
Rin = Rt,2 and Sin = St,2 +mnℓ.

(5) Proposed strategy: Complexity of solving the initial FTC con-
troller is Cp,0 = Rp,0S3

p,0 with Rp,0 = 2Rt,1+ (m− l)×2ℓ
−1

and Sp,0 = St,1 + 0.5n(n+ 1); Complexity of solving the FE
observer at each iteration is Cp,1 = Rp,1S3

p,1 with Rp,1 =

2Rs,2+ (2m− l−3q−3r)×2ℓ
+2(m−n−2q−2r)−1 and

Sp,1 = Ss,2+0.5m(m+1); Complexity of solving the refined
FTC controller at each iteration is Cp,2 = Rp,2S3

p,2 with
Rp,2 = 2Rt,1+(m−l)×2ℓ

−1 and Sp,2 = St,1+0.5n(n+1)−1.

It is observed that solving the FTC controllers in the Separated
trategy and Two-step strategy have the same complexity, but the
7

Fig. 3. Comparative computational complexity under various system dimension
n and number of scheduling parameters ℓ. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

later has a more complex FE design. For the Iterative two-step
strategy, computing the initial FTC controller and FE observer are
as complex as the Two-step strategy. However, refining the FTC
controller is much more complex than solving the FTC controller
in the Two-step strategy. Complexity of the Integrated strategy is
higher than that of the FE observer, but same as the FTC controller
refinement, of the Iterative two-step strategy. Each single LMI opti-
misation problem of the Proposed strategy is less computationally
complex than that of the Integrated strategy. Compared to the Iter-
ative two-step strategy, the Proposed strategy solves less complex
LMIs during iterations, but a more complex initialisation problem
due to the multi-objective setting. It is also observed that the
computational complexity of all designs mainly depends on the
system dimension n and the number of scheduling parameters ℓ.

The above observations are illustrated by an example system
with m = 2, q = 1, l = 1, p = 2 and r = 1. The values
of n and ℓ are varied to show evolution of the complexity. In
Fig. 3, corresponding to the blue axes are results of the first
case with ℓ = 2 and n ∈ [2, 50], while corresponding to the
red axes are results of the second case with n = 10 and ℓ =
2, 4, 8, 16. The obtained results are normalised against the Inte-
grated strategy complexity Cin, which is within [1.6e8, 6.4e13] in
the first case and within [1.6e10, 1.7e16] in the second case. The
results confirm the analysis above and conclude that the Proposed
strategy has reduced computational complexity in solving the
LMI problems, compared with the existing Integrated strategy and
Iterative two-step strategy.

5. Simulation example

Consider a mass–spring–damper system (De Caigny et al.,
2010) in the form of (1) with the matrices:

A(θ ) =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
−

θ
m1

θ
m1

−
c1+c2
m1

c2
m1

θ
m2

−
θ+k2
m2

c2
m2

−
c2
m2

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0 0
0 0
1
m1

0
0 1

m2

⎤⎥⎥⎦ ,

∆A = σc2Ap, Ap =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 −

1
m1

1
m1

1 1

⎤⎥⎥⎦ , F =

⎡⎢⎣
0
0
1
m1

⎤⎥⎦ ,
0 0 m2
−m2

0
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Fig. 4. Evolution of Jc , Jo , trace(W⊤W ) and trace(V⊤V ).

D =
[
0 0

1
m1

1
m2

]⊤
, C =

[
1 0 0 0
0 1 0 0

]
, E = [0 1]⊤,

here c1 and c2 are the viscous frictions of the masses; θ and k2
are the stiffnesses of the first and second masses, respectively;
σc2 is the variation of c2 from its nominal value. The simula-
tion uses: m1 = 10 kg, m2 = 1 kg, k2 = 5 N/m, c1 =
0.2 N s/m, c2 = 0.3 N s/m, θ (t) = 13 − 3 cos(0.86π t/18) N/m,
σc2 = 0.01 sin(0.1π t), d = 0.01 sin(π t), fa = 10 sin(0.1t), fs =
0.1 cos(0.2t).

Since θ (t) ∈ [10, 16], designing φ1 = (θ (t) − 10)/6 and
φ2 = (16−θ (t))/6. It is verified that the example system satisfies
Assumptions 2.1–2.3 with M = 0.01×Ap, F(t) = sin(0.1π t)× I4,
N = I4. The parameters used to run Algorithm 1 are Ce =

[0 0.1×I4], V (0)
= 4×I2, α1 = 1.0e−5, α2 = 1.0e−5, β1 = 1.0e−5,

β2 = 2.0e−6, ϵ = 2.0e−3 and ϵ0 = 2.2204e−16. The algorithm
terminates in 16 iterations. The evolution of Jc , Jo, trace(W⊤W )
and trace(V⊤V ) are shown in Fig. 4. The FTC controller cost Jc
monotonically decreases and converges to the local minimum
1.7271e−07, while trace(W⊤W ) and trace(V⊤V ) monotonically
increase. However, the FE observer cost Jo does not converge.
These results coincide exactly with the convergence analysis in
Section 4.1.

Comparative closed-loop simulations are performed using the
observer (3) and controller (5) with the gains Li and Ki, i = 1, 2,
obtained from the Separated strategy (Liu et al., 2017), Two-step
strategy (Shi & Patton, 2015), Iterative two-step strategy (Chen
et al., 2019), Integrated strategy (Lan & Patton, 2016c), and Pro-
posed strategy. The initial conditions are x(0) = [1 2 0 0]⊤

and ˆ̄x(0) = 0. The estimation errors and state responses under
different designs are shown in Fig. 5. All the strategies, except
the Separated strategy, can achieve accurate estimation and state
stabilisation at steady-state. This is because the mutual coupling
between FE and FTC is ignored by the Separated strategy. Com-
pared to the Iterative two-step strategy, the Two-step strategy has
better estimation performance but worse state stabilisation. This
is because the effects of estimation errors on the control perfor-
mance are considered by the former but not by the later. Since
the Integrated strategy considers the mutual coupling, it achieves
better estimation and stabilisation than the Iterative two-step
strategy. For this example, the Proposed strategy achieves even
(slightly) better performance than the Integrated strategy, because
it minimises the coupling effects and the separation of FE and FTC
8

Fig. 5. FE and FTC performance under different strategies.

designs offers more freedom to obtain better solutions. The above
results show that the Proposed strategy has the advantage in
achieving better estimation and stabilisation than the Integrated
trategy, by using an LMI formulation with less computational
omplexity.

. Conclusion

An iterative strategy is developed for achieving robust inte-
ration of FE and FTC for uncertain LPV systems, via tuning two
eighting matrices to minimise the coupling effects and refine
he design gains. The iteration converges to a (local) minimum
n finite steps under the stopping criterion. Compared to the
xisting strategies, the proposed strategy has reduced complexity
n formulating and computing the LMI optimisation problems.
imulation results demonstrated efficacy of the proposed strategy
nd its advantages over the existing strategies. The strategy is
irectly applicable to the robust integration of FE and FTC for
any other systems such as linear time-invariant, Lipschitz non-

inear and T-S fuzzy systems. Future research will be extending
he iterative strategy for large-scale interconnected systems.
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