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Abstract = - '

In Part I, two—dimensional laminar film condensation is inves&igated
on the basis of boundary layer theory. The case -of fléw past a scemi-
infinite flat plate, Which:is aligned parallel to a uniform mainstream
with velocity Afo M= M, is discussed by means of a perturbation
. analysis for'béth small and large rates of cooling at the surface.
.Predictions, for this similar solution of the boundary }ayer‘équations,
are compared with exact numerical solutions in the casc of stcam-water
condensutioﬁ. The perturbation analysis is thon extended- to non-similar
flows and results fo: steam-water condensation are compared with numerical
solutions obtainéd using the Hartree-Womersley method. The casea
Ik (3 = us‘w(é) Cand MmOd z US (\"“2 5&.\ are used for
comparison. The numerical solutions are also studied to discuss separation _
in these condensation problems., |

Paft IT is devoted to the solidification of a cylindrical ba:,
initially at fusion témperature; whén the outer'surface tempérétura is
}owered below fusion. The governing equations are solved nﬁmpricélly
to obta%n accurate results for the solidification process and in addition
a power series in fhe‘non-dimensional time is developed. Térﬁs'of this
series are found both aﬁaljticaliy and numericélly. Interest surrounds
~the radius of convérgence of such a series because of the similafity
between the movements of the solidification front and the growth of the

boundary layer for flow through a cylinder.
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Nomenclature -

Part I !
Cs non-dimensional shear stress
Cp gpécific heat at'constant pressure-
o) similarity function
‘F(g,))  function in non s;imilar_vsolutior;
G ‘ temperature simil@rity functibh
ﬁfg o lnat‘ent heafc of condensation
K ' thermal condﬁctivity | o
" | exponent in Falkner—Skan. velocity ,._M: (_*) - ,U.: (X/ij |
| Nu,‘ | Nusselt number |
P. | ‘pres’svure |
P | ' Prandtl number
‘.1, - “velocity |
'QQ;( ' local.Réynolds numbér o
L) ‘measure of condensate thickness
T tempera'tufce
M,>V velocity compqnenfs
}(,L)V thick film pertu:rbation velocity functions
M,r: [X) | general vapour maihstre.am vélocity
/U;o* constant vapour mainstream velocity
1)3 physical co-o:fdinates |

'x,o\j,' - Howarth-Dorodnitsyn co-ordinates

| X, Y Similarity co-ordinates; 'range of Y is [O,‘;J .
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e coefficients in series expansion of &
E_(b\ " depth ofpenetration of solidification front
-Fr(?) functio.n in series expansion of 9’
I8 thermal conductivity |
L latent heat of solidification .
A cylindrical polar co-o;r'dinate
k. time | |
T ,  temperature
B L /(T
| B Ela non—dimens_ionai penetration depth. -
: ‘X %;eo?.: /
r) dimensionless co-ordiriaté‘, 4’)3‘ (a~ ‘f')/a E. |
v dimensionless temperature; © = (T-To) /(¢ T4 -T0)
Ydl dimensionless time; = tK/d’; , |

-l’: evaluation at fusion temperature

o evaluation at wall temperature
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LAMINAR FILM  CONDENSATTON




Chapter 1

Introduction to Condensation problems

When a cold surface at .tempe;r.'a.tm.'fa, TW’ below saturabtion
tempenribiare, TS’ is exposed to vapour, either saturated or supechent :d,
liquid condensate forms on the surface. If the liquid waebs the surlace
it spreads out and establishes a stable film; this process is referved
to as film condensation. The vapour coutinues to condense at the

1iquid;vapour interface, the heat being transferred through the liquild
film. In contrast the liquid may not wet the surface and th2 condensate
forms into droplets which coalesce as they are drivesn along the sarlace.
This is called dropwise condensation, :

The mechanism of dropwise condeasation is not fully understood,
.but it is very apparent that the heal transfer rate is up to twenty
times higher than for film condensation. It has been geuerdlly sapposed
that heat goes through the bare surfaces that exist batween the drops,
5ut if this is whabt occurs, the means by which the coadensing vapour
reaches the existing drops or forms into new drops is nol certaia.

Emmons [\ J has suggested a possible mechanism. Molecules ceflociod
from the bare surface would have energies less than that of the saturated
vapour and may lead to a layer of subcooled vapour next bto the sarface.
Emmons also suggested rapid condensation sets up violent eddy curvents
that move the subcooled layexr into drops,

Umur and Griffith [_9._] concluded that condensate £ilms greater

than one-molecular thickness do not form on the 'bare' surface, and ' ..:



)

condensation achtually takes place on the drops. This was also the vic
of Trefethen [ﬁ] who recognised that surface tension effects conld
cause circculation within the drops. '

The mechanism is further complicaled by the fact thab experimental
evidence cxists to show that the effect of thermal propertics of the
‘surface material are significant., Mikic [4] proved that the non-
uniformity in surface temperature, under the conditions of dropwise
condensation, causes different heat fluxes for different mabterials.

Although dropwise coadensation occurs initially on conbaminated
surlfaces after a certain period of time the dropé usually all join
together to form a film. Consequently most condensing equipment is
designed on the assumption that the less efficient mode, that is film

condensation, will exist. Part I of this thesis 1is devoted to film

condensation.

o

Moreover iaterest will be confined to iaminar film condensabion,
To show this is reasonable note that there are two general classes of
problems. On bthe one hand there are natural coavection flows in whicn
the vapour is usually at rest far from the body and movement of tha
condensabe is due 6o gravitational effects, On the other hand ther: are
forced convection flows in which the mainstream vapour veloclty relative
to the wall is non-zero and the condensate motion is due to the swecping

effect of the vapour. In the former class it is the condeasate phuse



which may become bturbulent, and it is relevant to note thal a frec
falling £ilm has Dbeen observed by McAdams LS] to chaage to turbuleas
flow at 4["//1,4, = 1800, where 4—\"//4,&, is the film Reynolds uawnbow
based on the condeusation rate. Turbulence in forced flow however
would occur in the vapour phase, which admits solution by bouadarvy
layec theocy. As is well known suction stabilizes the laminar boundary
layer, .and since the condensing vapour causes an effective suction at
the liquid-vapour interface, under certain conditions it completely
eliminates the possibility of transition to turbulent flow. According
.to Schlichting [GB] the condition of complete stability of the laninar
boundary layer flow, subject to the no-slip condition, is expressed by
*
Ws
s
Uo'

) * 'S
waeee Wg is the vapour inflow velocity at the interface and {lo is the

54
> Lig x lO

free stream vapour velocity. The vapour suction in most condensatbion
processes is much greater than this valus.

In a paper coucerning the flow of thin films, wilhout condensatloun,
on vertical plates Kapitsa.{J]] has shown that for Reymolds numbens
greater than 33, waves begin to form on the. surface due to surface tension
effects. To date no-one has accounted for this complication applied %o |
condensation problems and in the work presented here it will agéln be

J e

ignored;  not because the effect is insignificant but by way of necessity



The last decade has‘hitnessed growing interest in laminar film
condensation. Tn the main this has coacerned the condensation of punc
vapours ab saturation temperature under the assumption thatb therce L‘ 210
interfacial resistance, that is there is no temperature jump at the
interfaée hetween the condensate and wapour. However the effects of
vapour superheating, interfacial resistance and the presence of non-
condensables in the vapour have all been studied. Sparrcow and Minkowycz
[S] , and together with Saddqu] have studied combinations of these
effects. The overall conclusion is that the effect of superheating is
not important in a pure vapour, but the presence of even a small amount
of air in steam,fo: example,leads to a significant decrease in the heas
transfer rate., BEven if both these effects had proved to be significant
it would still be permissible to stipulate the vapour beiang hoth pure
and saturated, however neglecting interfacial resistance is a simplifying
assumbtion consequent on taking such a model. Kihetic thebry indicabes

that a temperature jump exisbsj if it did not, no condensation could
OCCUT e

The magnitude of the jump varies directly with the rate of
~condensation, m; consequently the interfacial resistance is most stroagly
manifested in the case of a pure vapour. A widely accepted representalion
of the temreratdre Jump for a pure saturated vapour is

m =" {2 (Ts-T.),

where TS is the saturation temperature, Ti the interfacicl temperaturs
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Here F\fg is the latent heat of condensation, R is the gas coanstant
& ; : 50
of the wvapour, ?35 is the pressure in the free stream and U is

the condensation coefficient characterizing the fraction of the vapour
molecules which actually condense. For the case of steam water

: - . ; r
condensation 0"  is .almost unity,and it has been concluded La]
that interfacial resistance has a negligible effect on condensation for

this fluid.

The aim of the preceding part of the introduction hés been to
outline the nature and applicability of the simplifications involvecd
if we consider laminar'filﬁ condensation of pure saturated vapours.
The remainder of the introduction will be devoted to describing the
previous work in this field and outlining the motivation for the present

work. |

The first theoretical study of iaminar film condensation was made
by Nusselt [}O] who considered the problem of vapour condensing onto
a vertical flat plate. ﬁusselt looked for the steady state solution
in which the condensation, ﬁnder the influence of gravity, moved dowa

the wall while newly condensed wvapour mainﬁained the interface in a



fixed position. The dominant features of condensation problems are not
always obvious so this solution is remarkable, not simply because Nusselt
was a pioneer, bul because he also recognised the essentinl phycics of the
flow. The model ignored momentumn and heat convection effects and
supposed there was no interfacial shear. The motioﬂ of the coadensate
was governed by a balance begween viscous shear, gravity and pressure
forces. NMusselt also applied the same reasoning for vapour condensing
onto a circular cylinder in a gravitational field.

Since then the analysis has been modified to include the effects
Nusselt neglected, and also the variation of condensate properties. The
most recent contribution is by Poots and Miles [j1] who solved the complete

system numerically.

It is the intention in this thesis only to investigate flows in the
absence of a body force solthe preceding work is not directly relevant to
anything that follows. It has been mentioned because of the historical
importance and because the simplicity and accuracy of Wusselt's model make
it the outstanding coantribution to the field.

One problem which will be studied concerns the coandensation of
vapour, having constant.mainstream velocity, onto a semi-infinite flat
plate. This has already received the' attention of Cess [12] and Koh
{13] both of whpm formulated the problem using boundary layer theory, Koh
solved the full equations numerically while Cess neglected inertia forces
and convected energy: The two sets of results were in geneval agreeumenb,
indicating that Ceés' assunptions are generally valid, except for

large Prandtl numbers,but certainly so for stpeam-water



condensation . (Further support for Cess' ideas ié provided by the order
of magnitude arguments applied to this problem by Shekriladze and
Gomelauri [h&] + The re-investigation will start with the basic modsl
assumed by Koh and Cess, except thal here variable coadensate propertics
will be included.  The effect of these is known to be significant
(see E_\f] ), but the real motivabion for solviang the problem again
only appesars when it is considered together with the following problems.
The case of condensation onto the cylinder in the absence of body
Torces has been touched on by Shekriladze and Gomelauri {lW] , but they
avoid the most interesting aspect, that is the effect.condensation has
on separation. Presumably the effective suction at the interface will
delay separation so if the condensation rate is high enough separation
might not occur. According to the analysis of Prandtl 1353 ,.the suction
rate, CQ’ sufficient to prevent separation should satisfy the following

i

inequality:
|/2
CQ' RQD 7 4‘33-

The Russian authors assume CQ is large enough for this to hold and only
make obvious conclusions about the delaying effect. The cuwrent work
will study the case of steam condensing onto the cylinder and will
prévide the first quantitative description of separation in condensation
problems.

As further illﬁstration of this phenomenon, condensation onto the
plate will be investigated in the presence of allinearly retarded

painstream and also the Falkner-Skan type mainstream.



It will transpire thalb the numerical labour involved in such
problems is considerable and some approximate models are highly
desirable. These will be based on perturbation expansions, and in
addition to providing data on the flow, they will prove extremely
valuable in pinpointing the dominqnt features of a particular pr@blem.

To illustrate that thé eésential physics sometimes does nced
highliéhcing, it is only necessary to compare Cess' model for the
plate with that proposed by Sparrow and Gregg [)6] for condensation
onto a rotating disk. In the former the effects of vapour drag were
included but the inertia terms ignored, wﬂilst in the latter the cexact
opposite was assumed. Hudson.[)]] recently investigated the disk
problem numerically and approximately. ?he exact solution did not agree
with the‘results of Sparrow and Gregg, and the approximate models,
analogous to those developed here, clearly showed the interfacial shear

is not insignificant.

The motivation then for the present work is two-fold. Firstly no
quantitative description of separation in condensation problems is
known to exist, and to this end accurate numerical solutions of the
governing eguations will be found. Secondly much of the work which has
been presented embodies assumptions, which are often only intuitive, and
it is the intention to develop uniformly valid approximations which give

accurate data and give assistance in describing the essential physioce.
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Chapter 2

Governing Equations of Laminar Film Condensation

Througnout this part of the thesis attention will be coufined
to two dimensional laminar film condensation in which the vapour is
at the saturated vapour temperature, TS, and the condensation procecss

maintaihed be keeping a boundary at a temperature Ty; va< Tg. In

"addition only problems in which the flow is steady are to be studied,

so the manner in which the wall temperature is lowered to Ty is of no
consequence. If the condensate properties can be taken as known functions
of temperature then such problems are completely described by knoﬁing
the pressure, velocity and temperature distributions throughout .the two
phases togetﬁer with the location of the liquid-vapour interface.

For two-dimensional flows the equations from which these will be
determined are two components pf the momentum transport equation together

with the continuity equation in each phase, the thermal energy equation

applied to the condensate layer and an energy balance associnted with

" the liberation of latent heat at the interface.

Let g = (u,v) denote the condensate velocity with components in
the (x,y) directions, where x measures the distance along the_surfaco
and y measures the distance normal to it., Let T denote the temper;ture
of the condensate such that Ty & T & Tgyand denote the liquid-vapour
interface by :

‘}j'; SC"-). (2944
The condensate momentum equation is then

Digiee =
P24 = =Tp+ £ -Vl m Ing|+Dfeslg

(2.2)




1

where 59 is the density, p the pressure, £ the external body forc;c,
/ﬁb the dynamic viscosity, g a second coefficient of viscosity and 52:iw
the convective derivative.
The continuity equation is:
div ({ogpzo : (2.3)
The energy equation is:

IDCP %{:'—'- 2-(“ V,T\) +WL +T€' %?t +/Vv é?: ,  (2.4)
where Cp’is the specific heat at constént volume, k is the thermal
condﬁctivity, Wi represents the energy associated with a heat source,

p is the coefficient of cubical expansion and é is the viscous dissipation
function.

For the vapour phase let x* measure distance along the interface and
' y* normal to it. Denoting all vapour quantities by a star, the velocity
is q* = (u*,v*), the components taken in the (x*,y*) directions, fD: is

the densityvﬂL: is the dynamic viscosity and p* is the pressure. The
momentum and continuity equations are then:
i *
Fo 30 = -IF+F - pd walagh), @
div gf‘ =0 (2.6)
Here the fluid properties are considered constant since the vapour is
isothermal.

This systém is simplified if the body forces are neglected in the
momentum equations,and the terms representing viscous dissipation and
compressibility effects are excluded from the thermal energy equation.
Also,although the interface is a heat source this occurs at the edge of

each phase and the liberation of latent heat is accounted for in the
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boundary condit‘ions,and S0 wi is also omitted from (2.4).

t is now assumed that the thickness of the condensate layer is
small compared with the radius of curvature of the body so that x = X .
Further, on the assumption that all changes i‘n physical quantities normal

to the surface,or interface,are large compared with changes in the

?

x-direction,it is possible to invoke the boundary layer approximation

(see Miles [8]). Thus the equations reduce to:

Condensate phase ( X 770 ’ oL Aj 800)
/O (u, %_t;_; -5 ) /05 u.m(’) d\bm(l).;_ (/\bm) (2577
d 9 ( = B
R (ou.) e ‘ (00) 20 (2.8)

o per (v V) B0E)

together with the variable property relations
p= T, p= palT), Cp = Cplm) , k= kLT, (2.10)
For the case of steam-water condensation the forms of the variable

properties are available from experimental data (see Appendix I),

/
Vapour phase \ X 2 O, 0 < tffé < ao)

W & Wiz o &

o R e (2.11)
e W s b_\_ky Mmcx) o U 00 4 Vg Bw (s
x Y ot 5’\;}

where "S*"" /1"‘35/(05 , the kinematic viscosity.

The boundary conditions which are imposed on these equations are
the following.
On the body surface ( * %0, ﬁ-:-o) the non-slip condition gives
M= A~ =0, (2:13)

and T= Tw. : (2.14)



I3,
In the vapour mainstream we have:
3
3 il 5 :
W —= Wm(x) s n—= .
AT the liquid-vapour interface ( % 7o, ,,j; S(x),f.o) the continuity

of velocity tangential to the interface yields: .
u.] = f_ “] _ (2.15)
Y_ @:Sbﬁ) W 5*::0

If surface tension effects are neglected at the interface then the

continuity in interfacial stress components yield:

F':_ P’*, ; (2.16)
/LSY-F‘:)_}T-S(")';/A?[W* »}jw=o. Hifp

where the subscript, S, denotes the value of the conderisate evaluated at
the saturated vapour temperature TS' Similarly /},w will be the value
of/u, when T =Ty etc.

Note that (2.16) has already been used in deriving (2.7) and (2.12).

The continuity in mass flow across the interface yields:

' % il »* ¥
e [/O(,U-- 1 g’x ﬂg:ﬁ’@) i /OS ):'/V J@‘vo .
Now since :
g_x(,ou.\ + %’_ﬂ({o'\ﬂ = c;(_ :
then [(0\"]3: Sy =i o‘f %1((0&0 Ay )
& 600 i
and (0‘5’ Lo ]‘j'--o = - gx(of o dy ). (2.18)

Finally it is left to express the fact that the latent heat liberated at
the interface as the vapour condenses is conducted through the body surface

together with convective cooling in the downstream direction.
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- ——1Inke rj—ac_c :
s ~ ! A= &)
4 o 1 J
ﬂ L /_,// |
s '
s l
‘7777'/‘/77/‘/ TT 7777777777 T 77777707
—_—
X

Applying the energy balance to the volume deplcted above we have;

bT‘)

K (“ dx =h [ w g W -GT) du (¢
Kw J‘ 7Y 'yzo 9 {0 (D (CP CP) 37(2.19)
where hfg is the latent heat of condensation, and T is measured in absolute

~units. Alternatively the energy balance can be applied locally at the

interface and then gives:

%1 o T
£ hh(os I_'V ]3»____0 = ks(g‘xp,j:scx). (2.20)
A first step common to some of the work when solving the system
(2.7)-(2.18) together with either (2.19) or (2.20) is to introduce stream
functions for the two phases. ;

The vapour phase admits the conventional incompressible stream

'fﬁnction \}’*(1,3‘) defined by

¥ ¥
¥ = éﬂ/ bt S0 .Baq-‘
AR ?r\j* - N = 5% , (2.21)

and the condensate is treated, for convenience, as a compressible fluid

S0 \L(x,ﬂ) is given by

aq’ = - » L)
/Os 5y /o'\" (OS o (2.22

However if x and y are retained as independent variables for the condensate

e

phase then it becomes necessary to differentiate the density, a difficulty

which is overcome by employing the Howarth-Dorodnitsyn transformation:



where

5.

Y= OJ“H ?25 My

Then the interface is defined by

4= A (x)

A(?L) = oj

D)
(2

du,).

(2.2

(25

It is also convenient to introduce a'dimensionless temperature

function 6(3‘, ‘jt) by:

T= Tw + 3.&1',

so that the boundary conditions on T yield :

=) ; A:,‘;A(?Q.

0=0 , Yi=0

)

AT=To—Tw ;

(2%

Introducing (2.21)-(2.26) into (2.7)-(2.20) the following set of

equations results:

Condensate: ( X7z 0,

Lo 2‘(
A= f’swlwﬂ(‘j)m

/oscf(aw 20 _ % W

oW ax- 3% ?\‘ﬂ

* Vapour (DC. %0, 0% Aj 0037

(bw M _ oyt A
b.\éa‘ bxb}j TR z\ﬁ

Boundary conditions:

oy - 2
2% Y

- O) 6:0.)

X
=/~

At the body surface

Y179,

0& ) & O,

"M

/b’

) (2.

27)
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§6)
Interfacial conditions: (17/ o, My= &(.’JE))/\J?V;O ] DG —.OS {és c‘.:.)l )
O=1, ' (2.32)
| AN
Ps (U2 {03 |2 s i (2333)
5\« - b‘\’ (,) .,,)
Ogl 33"v’ ‘ ol g
R A R
/Mes S—,\j':?_ /'A %981‘ (2.35)
Mainstream condtion:
¥
b_ya* e Mhrbo Qas Aja—o- 0. ' (2.36)

FPinally the local and gldbnl forms of the energy balance arc:

20 rei
ol (3’5\)5.4&) ﬁfﬂ /0'5 '0 ]J_o

wkv;.AT i 0\ dx = hy' Ambq, d*ju ( ;Ts CT)ps 2 iy, 2.38)
%” O_J (58)3\—0 f3 /o i {o ‘lﬂ
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Chapter 3

Numerical similar solutions

Introduction

It has been established in the previous chapter that the equations
and boundary conditions governing the transport of moéentum and energy
are (2.28)—(2.38}. Having coﬁstructed these for the general mainstream
vapour flow Um*(x), the intention in this Chapter is to restrict ourselves
to Um*(x) =YU°*(x/c)m and seek similar solutions; = Fallmer and Skan Ll
first used this as the mainstream velbcity for a single phase flow and it
has proved to be a most fruitful source of information about the behaviour
of both compressible and incompressible boundary layers. It would take
far more than this volume to extend all the work which has been doae in one
phase case to the two phase pfoblems_arising in condensation, but guided by
the work of Hartree E?é] and Stewartson [ZJ] a wealth of information should
be at hand.

With the velocity distribution in the vapour we are looking
simultaneously at the problems qf condensation in the neighbourhood of
the forward stagnation point on thg circular cylinder by taking m = 1,
and the forced flow over a fiat.plate by taking m = 0. The former
problem has recently been extensivély studied by Hudson[f?], while the
latter has been investigated by Cess{fi], and it is to this problem
that much of the effort of this chapter will be devoted. Cess coansidered
a constant property condensate and solved'the problem by utilising

appropriate solutions which were available from work on a single phase

flow. This work will be shown to be largely consistent with the ideas



snd results of this thesis, but the 1im#tations of 'Cesg' method and
sources of innacuracy will be' explained.,

In additicn to this particular problem, m will be alllowed to vaxy
in orxder that some tentative conclusions concerning separation in
condensation flows might be given.

Hartree and Stewartson both studied the results for m & 0, and
though scmewhat artificial because of the singularity in the mainstrean
velocity at ¥ = O,these have been of considerable interest., It is found
that for 0 > m > m  (m = -0.0904) then an infinity of solutions
exist, and moreover for m = mo é solution results which would have zero
shear at the wall. Guided by the reasoning which dictates which of the
infinity of solutions is physically acceptable, we find the corresponding
solution for the condensation problem a.nd. the relevant value of m e

The similarity soclution

For the condensate layer make the change of variébles

L
w1 -\
= Zu:' 44 Ve, f(rp 3 S::b, = u:in | (133510
e 2¢" Vg

Therefore AL (3.2)

i
(Y
|€
l
T
—
S
n
2
~_r
~——>
Aoy
~—

l
=
>

D
(&)
LY

~”

nd, Ar=-dY. 05 = —ps (WS N (o m‘ (3.3)
s 0t gl ety n]
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where dashes denote differentiation with respect to r! .

Then also _éf_‘s_’__ — (Mo,} SM“)[_M 5"@]) + M-\) W—g J
o™

0% Yy
2 ; 3y =l L ¥ W '\\
ok AR ol S T U
bﬂﬁ 274, ENT o cR
Hence the co'ndensate momentum egquation becomes

Y

b(%zﬁﬁ; f“(r)))' + (M) ]Q(V))J}“(q) +2m L(%,S = },(r))l:{zo.(a./x)

The thermal encrgy equation (2.29) bc:comgs) on putting 6(1,3,):.6‘[;7)’

the following:

(fm G ('))) + (ma1) Cp . Fs. )C(r)) Gn=o0, - ()
{)S | Cps
where ?5 = C?S/“S / kS , the Prandtl number.

For the vapour vhase introduce corresponding functions and varichles

by

W¥ & QMngMMVS
= =T

=1 ;
where r)a‘— ( “LO ) /\j¥ and = 2 .,
o Pk I b :

S
L 1= !
comsequersiy pf = (ME )3"" () = W) :f"(
<3 7)

A
ands A7 = —( 5_‘__3‘)"&m+0§(w> (\-0., £
3 e
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The vapour momentum equaticn becomes

" % !
§¥ (9‘*3 +(M~\—\)3[ (?"“)f(f)“) & ZW\,(\“ [3(*/0)”)]1):" (3.8)

L
"~

3

where dashes here denote differentiation with respect ‘to

The boundary conditions on the functions Jt(')) ; j:.Ar w-)

f@=fo=0; al-=o

)a<‘¢)=;;. (3.9)

jx/(0®=— )i . (3.10)

The interface between the condensate and vapour is given by /):.gé ’
~and the equalities of normal mass flow, tangential velocity and contiruity

of shear at the interface yield:

o ARE

s //As :
)

' f"(o) : (3.11)

!
JD‘ (0) ; (3.12)

1

!

( \fz j,@’) :Pl ©). (3.13)

P
- The remaining condition that can be applied is the so called energy
balance which is given in locél end global forms (2.37) and (2.38).
Naturally bothyield the same results when included in the numerical schcmc’
and though the global one is not necessary in the numerical work which is
entailed in solving the problems of this chapter it'proves t0 be more staeble
when investigating retarded flows. The required form of the local energy

* balance is -
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Cps. AT
(T 1670 = oned f09), .

One of the unknowns we are trying to find is the dimensicnless
thickness of the condensate layer, namely. cﬁ . To ease the numericsl
schexﬁe 2 further transformaiior is made which fixes the range of
integration, normal to the wai], as [0,1) , and casts the unknown (j)

" into the eguations.

We take —':b )Y:' ?/¢

then 2

0%

L2
@ DY

-
- -
—

S

g

a.n& we have the following equations to solve for the condensaie layex:
| " : : 2
( o1 f“m) s Gue) GINFO) + 2 (&_s _ ¢ §t )-,o) (3.15)
P N e
(,9_"3 G'0) +tue) & B ¢ G~ - (3.16)
ps s CP
Here the dash denotes differentiation with respect to Y.

The vapour equation remains unaltered:
PO+ Gan) 5 )-g(,\\') +Zm (1= U(']‘“’D 0. (3.1

The above system (3._15)-(3.17) must now be solved subject to the

following boundary conditions:
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:%(0) =z Jtl(o)z o 61(0)1 O)"'G‘(l\'-‘- 4. .(3.18)

. ] " ’ .
oAtk ;f* (A = 4 25.1(3:19)

)

at the interface:

() $0 - £, o
pe s st
j‘/(n_; 4‘ j:w/(o), ‘ (3.21)

[ ps fs 3, j" (‘n:: 4)2- V"Cﬂ, (3.22)
k,os s“) | j

.. AT. G ’(l\ = (.M,-+ V) 4) 5(_]\ : (3.23)
Ps.?\jg

Two_distjnct numerical schemes have been employed‘to solve these
equatiocns. Initially an iterative method involving Runge-Kutta integration
was employed,but work on the more complicated problems in the following
chapters demands the use of a matrix scheme. Cnce this has been developed
.the present simplef set of equatiohs Iy readily introduced into the
program. Appendix C is largely devoted tc; the matrix scheme, which is
also used to find solutions for the problems on solidification in part II,
but a brief note on the Runge-Kutta methed is found in appendix B, The
great advantage of the matrix scheme is that it does not require such
good initial approximations as that involving tﬁe Runge-Kutta integration.
The problem of finding acceptable stexrting data is not difficult if m = O,

which was the first problem studied, but for m & O the problem is very
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real and'solutions in-this range of m were found using the malrix iterative
method. l ;

Later in this project (see Chapters 4 and 6) approximate solutions
ofva range of é&ndensation problems are found. These yield quantitetive
information which proves to be éccurate enough to dispense with the neced
for such detailed célculaticns’but they could be used as starting
values for thg preceding iterative methods.

Ih order to describe the flow behaviour in each of the condensation
problems the following information will be provided: veloocity distri-
butions in the two phases, the thermal field in the condensate ldycr, the
displacement and momentum thicknesses for the vapour yhase, skin friction
coefficients at the wall and interface, wall heat transfer and finally the
rate of condensation.

These quantities of practical inteéest are now defined for the casc

of a generai vapour mainstream with velocity M.M* (c) e,

Condensate thickness: ‘ 8 C'I—)) : ; G
2
Displacement thickness: S‘:. (\_ _.\t: . d‘j (3.25)
Wpeol
S ™
Le]

i g S - M;} ¥
Momentum thickness: 2= i | = i \ d‘j ' (3.26)

% ¥

P&

b. - . “ “
Condensaticn rate B = : = (OS [US ]5':5(%) d 4 (3.27)
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N
[ €s

Wa.l]n. skin frictior;: C_fw = (/M. 3%:} yzo_ (3.29)
' 305 W)

Interfacial s?lle:rr: C{'I - J\A- }%\\') = $6) , (3.29)
' 3 Ps lnast

1

o

Nusselt number: N M = D(.(QI (3.30)
ATeaM i se
The characteristics actually plotted are: :
[ * liq, 1l x /g
Wk BoRE™ n st T Re
Y ) * )5./‘&8 )
(3731)

: C‘Yw. Qex',", C“'L.Q?—:z' ond  Nu. KC;%‘;

whece v : : e )y % %
Rexz Mm% /0, owc Rex =UmGdo /9.

Discussion of results for forced flow over the semi-infinite flat plate

m = 0).

This is the problem tackled by Cess who treated the condensate as a
constant property fluid. Cess introduced similarity variables and having
noted that the resulting equations and boundary conditions for the vapour
phase were analogous to the case of vectored blowing or suction, a
fictitious origin was introduced in order to utilise the work of Emmons
and Leigh Y_’-Z] , who tabulated the Blasius function with suction and
hlowing. Cess then assumed linear velocity and thermal profiles in the

h' -'/
condensate and proceeded to find formulae fox CJN.QQ;"’ and N\L.Qe& -
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involving the suction velocity and corrgs;.)onding wall shear from the
Emmons and Leigh problém. :

The accﬁracy of Cess' work will be discussed later, but it is
important to note now,that the necessity for detailed numerical know-
ledge of the corresponding éingle phase problem is a severe restriction

on applying his technique to the two phase problem.

Velocity distribution

“® f ‘o{'

The dimensionless velocity '{L 5 Y and E: br)
are given in Tables (3)-(6) for the case of T Ty = 0, 70, 90 and 99.99 c,
and the information is also displayed graphically in figure 1.

! O St e :
When T,, = O°C it is quite apparent that u is not proportional to Y,

W
and so Cess is not justified in assuming a linear profile. The same
observation can be made for the other val'ues of T.., though the effect is
not as marked. However thouéh i\; is by nozmeans constant,table % shows
that the shear stress, ﬁj (%ﬁs\d}a » 1s almost constant.
This fact indicates that it is the absence of variable fluid properties,
and not the exc¢lusion of the non-linear terms from the momentum equations,
which is the major source of error in Cess' model. For the particular
case of Tw = 0°C the value of /U. falls from 1.78 x 10° g/cm. ec. at tho

body surface to 2.812 x 1072 g/cm.sec. at the interface, and it is at

this extreme value of TW thajb Cess' results will be seen to be in ‘error

most.
30 i
— Qa 2

The non-dimensional condensate thickness y breviously

3 * o
defined for the general mainstrgam velocity Um(x) becomes:

[ University

Library
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|

l/ S

§, Reyz = AZ ¢ fﬁ' a¥., (3.32)
% ol 'P

and this is included in table 7. As expected the film increases in

thickness as TW falls.

The vapour boundary layer characteristics for this problem become

' .
5 Rex *2 2 (£@ + lim L*-$(9])  G.3)
x | % = 00

1 |
. RO oo $o b-fYe)), 6o
o

which are 3 r tabiiabed tor T, = 0(10)90 and 99.99°C in table 7.

A glance at the velocity profiles in figure 1 indicetes why profiles
were not sketched at regular intervals of Tw. The variation in flow
pattern does not vary as much with T, whén Ty is neax 0°C as it does when
TW ~ 10000. The extreme case of TW = 99.9900 has been included as this
verifies the assertion that the vapour flow tends to the Blasius solution
as QOAT=—e 0. In contrast to the thickening condensate layer as AT
increases,the vapour boundary layer thicknesses decrease. Theldiaplaocm¢nu
fhickness when TW = 90°C is less than 50% of the Blasius value and.whcu
7. = 0°C the factor is less than 10%.

W
The non-dimensional condensation rate becomes

Do S 5
i%i —_;f Eh:x j:’ Co?) ) . (3.35)

and this is to bé found in table 7. The rate increases markedly as TV
i
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falls and this allied to the considerably thinned vapour layer suggests

the vapour may be treated as a strong suction layer, én idea which proves

to be most fruitful later.

Skin friction coefficients

These take the form

‘Cw.Qe'x'Iz": _"“.
P Bl

and C-YI. Qe.,:" = _‘_ j(

which are tabulated along with the othexr characteristics.

Al ), (3.36
¢
(n,

(3.37

!
The variation of wa,gexi with T, is displayed in figure 2
where comparison is made with Cess'! resuits. The greatest error between
the numerical results and Cess' solution occurs in C'{lw. ch
_— 0°C). This is not surprising since it is the viscosity that is
the most sensitive of all the properties to change in temperature (see

©

(at T
Appendix A).
It is also relevant to note thatat each value of Ty the wall sheox

is greater than the interfacial shear for this problem.

Temperature distribution and heat transfer results

The non-dimensional thermal profile G is given in tables 3-6 and

; : o
is observed to be linear for T . = 99.99 and 90°C. When T = 70 and 0°C

— —_— — 1 —_—— _

~~

)
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there is a slight concavity and this ig due to the variation in thermal
conductivity with temperature. The expression involving the Nusselt

number is

Nw.Rex® = | (O_w G"(_o\, R (3.38)
aZ.¢ P35

\

-

. the values of which are found in table 7. Also [Nu. Qex * ey
compal‘f;d in figure 3 with the results obtained by Cess: It is again atl
TW = 0°C where the largest discrepancy occurs and for tho heat transfex
is approximately 10%.

Discussion of results for the Falkner-Skarn mainstream velocity

(m = "000904)

It has already been noted that for 0 72 m m, (mg

that the. solution” of ‘the g:quations arising in the one phase flow is not
uniqﬁe. Hartree [ 20 ] selected that solution in which his function f,(r")
(equivalent to j’“ '(rﬁ in this chapter) tended to unity from below
faster than any other solution, and supported his choice by continuity
arguments. Suc}‘1 arguments are not entirely satisfactory because it is
possible to produce solutions different from Hartree's but satisfying
his continuity arguments. Stewartson [_-'H ] offered an alternative and
more convincing condition and this will be used to select the physicolly
acceptable solution when dealing with condensation.

Suppose that we replace the boundary condition (3.20\by

S
T (nd =nli | ' (3.24)

f
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and call the solutions satisfying (3.15)-(3.19), (3.21-3.24) and (3.24)
{-‘x, G“) {bo( and f:g '« We also require 1 :f'v, ,( | sy 80

that the vapour velocity is less in the boundary layer than in the
mainstreem. Now let X=>» @ , corresponding to prescribing the velocity
component parallel to & further and further from the platc. The solution
obtained by a continuous process as X -® @ is the one we accept.

In the range O 2 m ' » m, Stewartson found two fﬁxnilics of
aoceptabie solutions, one in which the wall shecar is positive and the
other in which the wail shear is negative and typifies a reversed flow
region. At m = m then the wall shear is zero indicating a separation
point type velocity profile.

It has not been possible to find the second branch wsvlutions with
flow reversal, but in view of the hitherto unknown nature of separation
in condensing flows we will content ourseives with finding only the first
branch solutions,and the value of m at which either 5‘” (0) or f" ()
is zero. Any attempt to use this model to describe the behaviour of the
vapour and condensate layers in the presence of an adverse’pressuxe
gradient must be regarded as tentative in yiew of the simplifying nature
of the model.

When sﬁcam flows over a cylindei it is first accelerated from the
staghation point and later retarded. In the model the velocity'prorilos
at stagnation are given by m = 1 and afﬁerwards its form is determined by
giving decreasing values to m. When m u'Q the maximum velocity is obtained

in the mainstream and as m_deéreases below zero the mainstream is retarded
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up to the separation point at which in the condensation problems eithex
the wall or interfacial sheér will vanish.

When discussing the problem of condensation on to the plate with
constant mainstream velocity, a range of wall temperatures was used to

illustrate the dependence of the flow characteristics 'on T,. In this

w
section the single'extreme value TW = OOC is used.
; : A 12
For this case the dimensionless velocities 7w, .= . "{.
v o8 U GO ¢ Y
and o = b_j can be deduced from Table 8 and they are

Mty m¥
also displayed graphically in figure &4 . The change in the velocity
profiles is evid..ent in the graphs but a more satisfactory argument can be
based on the data given in Table 9.

Not surprisinély both the wall and interfacial non-dimensional
shear stressesl decrease as m decreases. However the observation made in
the last section, that the wall shear is the greater, is not a 'universal
feature for as m —» m, (mo = -0.7633), C-gw.Qz,l/;" ' tends to
zero faster than Cfl Ee.xu:" .

Ideally a smaller value of m yielding a lower value of C-(r'w Qe. x"z_
should be given, but when m is near m, convergence is very slow,and in oxdexr
to successively reduce the third significant figure in the wall éhear by
unity it is necessary to reduce m by a quarter of the previous increment
in m. This sequence barely changes m and figure 5,with C‘fw et’é’z.
r;lo_tted against .m,shows this behaviour. of the wall shear rapidly

decreasing over a small range of m.
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If a conclusion concerning separation is to be offered it must be
then that separation first occurs at the wall, not at the interface, and,
because physically acceptable solutions have been found for smallexr values
of m than in the one phase flow, separation is delayed by the presence of

the condensate layex.
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Chapter 4

Approximate analytical solutions for the condensation onto the

flat plate

Introduction

The object of thé present chapter is to develop approximate
solutions for the problem Qf condensation onto the seﬁi—infinite flat
plate given a constant vapour ﬁainstream velocity. Parallel research
by Hudson [l? ] has shown that ﬁhe arguments in this chﬁpter can be
applied to the case of condensation onto a rotating disk. This,
together with the generalisations which follow (see Chapter 6),enables
the method to be offered for use on all problems which admit similar
solutions.

From physica; reasoning it seems that if the difference between
the wall and vapour temperatures is small, then the condensatioﬁ rate
. will be slight and in the limit és AT»>0O the condensate layer will
disappear and the vapour flow will become the Blasius flow. (The

numerical solution for T, = 99.99°C. established these facts). The
CPs.AT
‘ 3- H?s

and it is found that a uniformly valid perturbation expansion in terms

small temperature differences correspond to small values of )&':

of 7LG'meets all the requiremegtsvwe make ,and the naturé of the flow,
compared‘with the numeriéal solution, is modelledvery well for ZST'4 12C;
Since in the case oflst.e¢m-water condensation the largest value

attained by )ﬁ is approximately 0.2, it might be surprising to find that

the results are not in good agreement for the range of wall temperatures
0 Tw < 00° , but this is the case and the reasons for the limitations

will become apparentf
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Nutside the range of validity of this so called thin film
approximation there is the case of appréciable condensation, which
because of the ratio of the vapour and condensate densities demands
a strong vapour inflow towards the interface. Iln contrést to the
first model,here we have the thick film model which involves a strong
suction vapour boundafy layer and a perturbation expansion in terms of

|
(Rz.) ; n= <F /Ms) ,i8 found to fit the requirements.

Thin film approximation

The equations governing the forced flow over the flat plate are (3.15)_

(3.24) with m = 0. Since we are only seeking an approximation valid

for small température differences between the wall and the vapour, the

condensate will be considered as having constant fluid properties. The
equatioans then simplify to:
Condensate‘ f‘” + 4) -ff” (4.1)
Gi" * Fg o ; Ci\ =0 (4.2)
VaRoi: D (4.3)
and the boundary condiions become ;
f= =0 | (4.4)
G@=o, 6a(O= (4.5)
'.f" () = (4.6)
' Interface conditions: (Y=1, %= o).
A fin= ¥, (4.7)
$'0h= ¢ 5% o (4.8)
=@ e (4.9)
and‘ 7(,.@' = o 'jm- (4.10)
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In the limit as AT-»oji.e- X0, then condensatioun will not occur
and the vapour flow will tend to the Blasius flow over the semi-infinite
plate. Consequently as 7(.-"90 then f(\{,p = 0 ’ S(:’Q =2 ©  (which

implies Cb(xa)‘m),f% =0(1) and @ = 0(1).

Therefore let £ = O(X") and < =o(x").

Substitution into the governing equations yields:
)=o,

(4:2) =0 480 ) =0

(4.7) P oy=goledi—>to.

W) R e

(4.9) ;f"" © =0 (L") > Const.,
(4210 B C =IO (W0 TR),

From these we conclude m = ?/3 and n = 1/3,

, N +A

from (4.1) o) + 0(7&

from the Blaciuo

"

It is now possible to seek expansions for f,‘a, d) ‘and fx‘ as

follows :
IF‘ e* fa e & s + 545’4"" ol ' (4.11)
G= O+ £9, + &29;_4--"" (4.12)
¢: £¢‘ & 27— ¢14 iz ¢3+ @ nlie fegile (4.1))

:f“: ;fa" + &:f," + & LX¥r - (4.14)

i o e ;
where £ = x 3 , so that the limiting form as A.\-’Jo is the correct one.
Substitution of (4.11)=(4.14) into the governing equations (4.1)-(4.10)
and the subsequent comparison of coefficients of the various powers of &

yields a series. of equations for the functions fz,ﬁo ete.

boundary condtions
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Comparing the coeflicients of the lowest powers of £ from
> : - ’ * P
(4.3), (4.7), (4.8) and (4.6) the function f,. is seen to satisfy
the equation
w . v % "
o + ’So 5:0 =0 A

subject to the conditions

:F:' (©0)=. 5:0“ ’(03";—0, .J:aw '(ao) = 1
This will be referred to as the zeroth outer solution, to be denoted
‘ by Oo, and it is the desired Blasius flow. This must be solved
numerically but it is well known that Jc;”(o) = AO 1"0v46q6
Utilising the remaining equationé from the basic set in a

similar manner,the following are obtained.

From (4.1) LY=o,
(4.2) B = ’o,‘
(4.4) Lo L'o=o ,
(4.5) B =0, Oo0V= 1,
(4.9 . &2 S v Ay W)
(4590) S 0L (Y Ly

] i
Since -}3‘ (0) 1is already known,this is a determipate set of equations
the solution of which yields the first approximation to the condensate

" flow. This will be denoted by I1 and is:

b= (2A/AN2 (4.15)
l/s
I% 'fz. = ( A"/?-?\) WY 5 (4.16)
fo = & (4.17)

The first vapour perturbation follows by considering the same equations
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from the basic set which were used to find the zeroth approximation but
now powers of & one degree higher “are equated.
For O, there' then result the following:
¥ oy g %l ooy !
trom (4.3) f; o J:. +_;1.o }. =0, (4.21)
which is to be solved subject'to
¥ 0 =0,
SO s dafe 0= £,
and _ jt‘y. { ( 00) =0.
Since :Fox’co)=o then qz is not needed at this stage, and the second

of these boundary conditions becomes f‘”(o) = :"1'(\)/4,' (A 2?0

So that repeated solution of (4.21) is not necessary as A varies,a

2
change of dependent variable is convenient. Put -H‘ (7 ] (A 3 '”'

then the new function satisfies:

¥ e¥! v _x

F “' :FO ) {n Fyai= (=3 (4.22)
the boundary condtions for which are

/ /
3 -2 o
F7 (o =0, F @)= \) F.g' (=) = 0. (4.23)
3 ‘ T, = V3 3 / n \

The solution of this is F‘ ~=' :C'o _J(:Du () .

This satisfies the boundary conditons (4.23) because:

le () ’f(;xl (o) / 5: “(o) =0,
(@ = 550/ frty =

)
N =
&o (=) /5.\, (o) 9o,
and the equation (4.22) becemss on substitution:
: n " WY \ .,EV [Yaryvll )
¥ r¥ x — { (3 (\&; r“_\
A N = &l P+hd +h f
s AR "
= A 0 d {f&’ + 47 50\‘ ]\S =0
& &8 -
o)) an™

"

*’ ()
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)

]
5" mul :F"' b
There then results F, (o) = -Fo““(P) o (©® =0

n
and thus ; ‘a (H=0.

bop—pogion—trd—tho—oondonsato—tro—ianes. Proceeding then to match the
inner flow to that just obtained for the vapour, (Aat)sm(ase) se(4.4), (4,5)'
(4.9) and (4.10) yield for I,:.

vq WM

f3 =0,

.9\“ = o,

e \
.{'3 )= ‘F}, (0 =0,
S = & =0,
) n Ul
2d b fe @+ HT 0 = D3,
and 9\/(!\ = & {3 (D + P2 -{.3_03_

: W Wy
Introducing the known values of Q, s 'f'b (0) S )E, (0) and

f2<1) there results:

[ ] - - ( :;r
12, 'Fs:‘. 9\5— CP)_:._O. (4.25)
The next approximation to the vapour flow is obtained by continuing

the matching technique to derive the governing equation for the function

*
f

5 which is:

-F;u\ hy J—o“ -E--:“ & }; {:D.,,n +{'» f." \ =0 (4.26)
T.he boundary conditions for this are:
A rae”
2 (») =0, i
0 e oyt o (Beya N
aut 3 B © + %f.’“cov +4>x)(z"'£<>) ’- {s'(x).
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/ %/
On substituti f the k g /
itution of e known values for fo (o) . CP,,,‘L (°).¢|. _ and '}‘5“\7

this last equation becomes

5] e
'E:lo‘- CO):

M
Setting A2_= -F; (0) it must be noted that A, is dependent upon NA.
For the case of steam-water condensation A = 190.2, A, = 14.76 and
the function f; is displayed in Figure 6. TFor comple.teness this
figure also displays fz and f-:
Returning to the condensate phase the next terms in the expansions

for £, G and ¢ involve f4,92,¢25 and these are found to satisfy;

m :
$i" =0, =10 = on

under the coaditions

fa ()= 5:4 () =0 |

9)_ (0 = 94 M =0
(62420830 4o zo>+a.¢‘¢,,fl 0 # 8 H 0 = b
and Bz ()= .4" QCF.-(!) + 4):_-?50) + q>5 -f;_(h ?

The solution of this set is

2A \7-
I SEr b
: % i
1k B 3 = -5&<%\3,
9; L4408 (4.27)

It is now possible to write down approprlate formulae for Sm ch

Cw- Rona ¥ o hd T W Re 2 x
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since the thin film model is assumed to have constant fluid properties
. J-J,

Fherefore

(x
50

I i
= J_Z‘ (27\)6 ‘5_,5_'/%1 an)3 (45 (4.28)
o | _.’5—5@(7:‘0\ % O(¥).

3(’ U™ s> My
= %:.{H‘(‘ﬂ + € {—.,,“(,ow---},{x—l'.‘sz W, +--

ol = e ) (Lon)2 %; f'o

mence (fiy. Rex2= dLho [J'i Az]’)(- £ 00 (4.29)
A

NM.. Qe;’b‘ = Zx.'r (%-;3 s <M90‘:7i = G,(O)/EW

JORRICTSS TIREPNSS:

| ,
ks 3 (AN 2 (00 06, o

The merits of the thlin film approximation are considered now by comparing
the results for steam-water condensation given by the model with those
derived by the mumerical procedure of Chapter 3. Table 10 shows thoso
results for TW = 99.99, 99.9, 99.5, 99 and 98°C. and we deduce that tho

model s extremely accurate in the first case but that the prccis.,ion is
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3 : : 0 ok 5 :

is not maintained even when TW = 99°C. This may be a little surprising
'/3 B '3

because the value of x is small in each instance (76 = 0.0109 wheun

I/
TW = 99.99 and )‘3 = 0.1025 when Tw = 99). Indeed when dealing with
steam-water condensation the maximum value attained by Xis =08 077
0

! iy
3: 0.4757) whean T, = 0°C, so that convergence of the expressions
W p

(4.28), (4.29) and (4.30) might be expected throughout the range 0% T <100C

}
2 g2 () = ',7\2/5‘1 C%A‘Dsuni et

Rl llon o~ anlir ha o144
e +* o4

1l 4 dansn 12
IO oo, U oo TTTT

. T aton—gondengatian this Ao - d.
et GOt ST o popey wiroT =

If one accepts that the model displays all the characteristics of
condensation for this range of Tw it is possible to make several further
deductions from noting that the shear on the interface is dependent on

£ (0), the tangential vapour velocity at the interface on f (0) and the

*
 normal velocity on f (0).

The model has been constructed so that in the limit as Ty ™ 100°%C.

condensation will not occur and the vapour flow then becomes the Blasius

.x_
flow. The zeroth order solution,m given by f_,is the Blasius solution,

% ! ¥ i cA
S0 fxo (0) is known from the one phase flow (£ (0) = 0.4696).
The first condensate épproximation, I1’ involves only A (which is

w N
a fluid proper'ty) and fo (0), so can be determined with just the solution
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of the one phase flow over the plate, an observation which will be
greatly utilised later. Physically the condensate, to the first
approximation, is driven by the interracialrsheaf}

Moving back to the vapour phase,the first amendment is given by
t: and since f':(o) = .f;’(,O) = 0 and f‘:'zo) /£ 0 the deduction is made
that only the tangential velocity at the interface is modified to match
that of the first condensate approximation.

Tﬂis has no effect on the inner flow (4.25) and it is in the
second approximation to the vapour that the inflow and shear stress
at the intert'ace are altered, both f; (0) and f;:g) being non-zero.

A further observation is that no account has yet been taken of tae

inertia térms in the condensate phase.

At this stage it is possible to confirm that Cess' model Tor this

1
<

~

problem is correct when [yr is small. In fact his formulae tor Ctﬁ Re

1

and Nu.Rex_2 in this range are identical to the first terms of (4.29) and
(4.30) respectively.

However naving only one term i1n each series Cess concluded that the
rate of change of CI‘W.Rex% with AT, as AT»o is_ zero, whereas the
correct limiting form is only apparent when the second term is available.

When the thin tilm model is applied to other probleus far more
fundamental errors than the troregoing can be exposed. For example it
has been shown by Hudson [_‘7] that a thin tilm model,applied to the

problem of condensation onto a rotating disk,pinpointed the flgw in the

basic assumptions made by Sparrow and Gregg L‘63 PMOM :

Tatie  Qsswmptions o e effects c‘r \WMQL Sheat.
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The thick film approximation %

An essential feature of the thin film approximation is the slight
condensation rate and the thin liguid layer. At the other end of the
range of possible wall temperature.;., i.e. when AT/TS = O (I},
appreciable condensation is to be expected, which, begause of the small
ratio of wvapour to liquid der}si'ty, requires a large vapour inflow at the
interche. Although physically the liéuid layer is of course still
thin, an expansion referred to as the thick film approkimation is now
constructed based on the éoncept of a strong sucfion vapour boundatvy layer.

With 7\ as a convenient large parameter involving the ratio of
vapour and liquid properties, new suction boundary layer variables for
the vapour flow are introduced:

NI i % *
o=t o f e A (4.31)
It has been established in Chaptér 3 that account must be faken of
the variation in fluid propérties when TW ~ OOC, so the full forms of
(3.15)-(3.23),with m = 0, are used here. Introducing (4.31) the basic

equations become:

et ] !
(?‘57,(.3 'F (Y)) + @ {‘(\/\-_{;ll C\/E = o) (4.32)

k A G
(‘%‘b G MY + ¢ Ps%;- iy @ C‘/\zo, . (4.33)

3 3. ¥ * *
and = Fa R e B ERL o . (4.34)
av Lyx > .

The boundary conditions are:
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when ‘/‘--o ; $- 0 , §=0 (4.35)
when Y= 1, Y¥=0 ViR G =11" S . (4.36) .

Fley = f . (4.57)

4; = (0) = -‘7;'; L (0N, . (4.38)

& E* )= txe, f’" (1, : C (4.39)

and . 4) —\F(l) = )C G'-/(|) (4.40)

¥ e l
and as Y R ERCY¥) i o/ (4.41)

Compatible asymptotic expansions for the condensate and vapour

phases are

= FBon ~ '7!\"" RIS G : (4.42)
= | L

G = Mo + A2 HaN+- - - (4.43)

C‘P ks é9+ ;zlil"- el 9 (4.44)

end E¥(Y¥)= B (Y¥) + 2 & YR EETR R (4.45)

Substitution of (4.45) into (4.34) yields the following governing

*
equation for F_ ;
0

pY il

1} .
Fo \F Foa‘ Fox . =0

)

and into (4.38), (4.39) and (4.41) yields the boundary cohditions'
= I (VA " / ;
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Hence the solution for Fo is

For (Y*) = 3k | (

b

=N
SN
U
~

.X.
where S 1is an arbitrary suction parametecr.
iR . R 1 ]
Comparison of the coefficients of 5%, when (4.45) is substituted in

(4.%4) gives

o i
% £ 3%
F"z + F:_ Fb -+ F;“ —-—-)# =
?

and introducing (4.45) this becomes

Ul

R
= i S =04k (4.46)

Integrating (4.46) twice then we have

Ry = A+ 3¢
Comparison of the coefficients of %QL in (4.41) yieldﬁ
) /
ESR R (o) 9=

*
which demands A = 1’so that

‘ .

R (Y= 4 + B e : .47

Attention must now be turned to the condensate phase for which the zeroth

order solutions follow from (4.32) and (4.33), They are
(f?s/b\s ) -+ é-oFoFO 2 (4.48)

' ~ I ] ‘ 4
Sl (‘%sl(s H’ol) ¥ PQQD éo Fo \'\'OI =0. (4.49)
s



These must be solved subject to:

/ -
Fo(q) = Fo (0) =0, Hold=0, Holt)= 1,

F<,(f) = ¥ ;

. ~x!

Fo (N= BoFy @ = &, (8" . (4.50)
BT B - g CEe)

i, s Fo () = X L (N

X ¥*
Alternatively the constants B and S canbe eliminated from (4.50)

and we are left with the six boundary conditions;

F,(0) = Fo' (0) = o, Hplo) =0, Hol) =1,

)

K Bo'(N= 3, Fol), (
and o For G1)i= 3o Fo (DG B3I F G,

The equations (4.48) and (4.49) are solved numerically subject to

BN
Ui
~

(4.51) and this solution is referred to as the first term of the full thick

film approximation. The relevant charact'eristics 55, ‘on) and Géo) are
compared in Table 11 with the exact numerical solutions obtained in

Chapter 3. Agreement with the exact values is excellent in the Tange
o4 TW < 60°C and even when Tw = 90°C the error in cb is only

about 7 per ceat.

‘ The thick film approximation has been developed on the assumption

that 7\ is large but has in no way utilised the fact that X<\ for

OIS TwW < 100°C. The aim now is» to find the limiting form of the

system (4.48), (4.49) and (4.51) as x-)o,
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The required expansions for the unknowns of the first term of t he
ful] thick film approximation are:

lo 4 : .~ ~
Fo='xa-§+",HO=H+"’§O=§.+-')
(4.52)
% % =
A= -\+'E>7C*’") SHLSURACES S U
Substituting these into (4.48) and (4.49) then the functions £ and I are

found to satisfy,

e\ . i e
(%3 3 ) =0 (4.53)% (g;ksg’) 50)(4,54).

The boundary conditions (4.51) yield ;
iy
/ ~ ~a
=Re = R sIonls (4.55)
Fn=%,fw=88  1"m-83, ;

Nunerical solution of this system using the variable properties
described in Appendix A presents no problems, however complete analytical
solution is possible if the fluid properties are approximated as follows:

(°=(05 b3 C?c CPS)

: ~ P (4.56)
k= Kw+(Ks-kuw)H | /t = )LA—N+ (/4‘75-/&‘»3 H.

Assuming the density rewains constant (4.54) gives

Y st (4.57).
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where E is a constant. [IHence we have,

~

)

k ~s
E"‘f 7 og RS Gl ’

~/
- and since H(1) = 1 the constantfis given by

1
K ~
s K

) . . 58
: (4.58)
~ To the same approximation (4.53) yields

2]

pe A
MS dyl b, (4.59)
where D is a constant)and upon changing from " to'ﬁ as. the independcnt
variable jusing (4.57% it follows that:

/'[A, : (4..60)

H
. i ‘
S j v LJ/‘L om]om SO (4

=

Ks JALRRS

The conditions‘Prom (4.55) which remain to be satisfied are

m -? O é a) ?_ f(.):'i:}’m'

)
from whichare obtained

-

01)1

~ N

F'ov= 82300 oma zﬂm'm

e 0= FWO  awa T FO= W0,

 Then substituting from (4.59) and (4.57) we have

D=3d &

(4.62)

(4.63)
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and from (4.62) and (4.57)

2
Pal &

Py ol
(i = p) (4.64)

(oi

| |

a2 ke

where  Ep = 2 = K Zosts di¥ | (4.65)
Ks Pt

: O (o]
The integrals (4.58) and (4.65) are analagous to those obtained by
. Voskresenskiy LQ?;] when moldifying Nusselt's theory to account . the
variation in the physical properties throughout the condensate.
Labunloov 124.] usod (4.56) 1o ovalunbo tho inlogralin npproximaloly.

Using analysis similar to that employed by Labuntsov then we have on

substituting (4.56) into (4.58) and (4.65):

(kg +kn)/2ks ;

Eo={(3+alrsey e [raaite s l]) /6015’1 (4.66)

For the case of steanm-water condensation these quantities,evaluated
for T, = 0(10)90°C,are given in table 12.

~

From (4.63) and (4.64) D and ® are given in terms of E and E‘P .

~ k $
2 ]
N2 E /éP S ® =2 E/ap. - (4.67)
Any desired information can ncw be deduced for the thick film
: 9 ‘ It -"/2
model,and in particular expressions for &, Cfw Reyd and Nu.Rey

are available.
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. e —//L.dr'-f°‘- KEp |

W A 5 —52-
Nu. Re o o G’(o) = ks & (4.68)
o 2 (_?14’ kw 2

! |
and Q= »J_?:E/;,P or 5_(';%. Reu = 2E’/5,‘.,,

In table 13 comparison is made between these approximate formulae
aﬁd the exact results for steam-water condensation. The agreement is
excellent tor 0% Tw < @000 and ¢ is within 10 per clent when
TW = 9o°c. When AT( 10°C accuracy is soon lost, and in particular
the limiting forn as >0 is invalid because (4.68) predicts §=>{2'
whereas the correct limit, given by the thin film approximation, is cb:;o.

The loss in accuracy as X=20 may be surprising considering the
foruulae (4.68) are the result of finding a perturbation expansion in
terns of X . The reason is illustrated in figure 7,whe¥e the variation
of ¢ with AT is displayed. . When AT 7 40°%C the form.of & , say Pn -
given by the numerical solution agrees well with, ®; say, the forn
predicted by the first term of the full thick film approximation.

However as AJ—»© the agreement is lost ( Pn—=o and ¢T-‘>E'_)
because the basic assumption that a strong vapour boundary layer exists
is no loﬁger true. The limiting solution, 47-‘-’% say, as X =2 o is
seen in figure 7 to be in good agreement with q).r LormnOES Tiy & 100%¢,
but since c\)_r itself is not a valid solution tor &7~ 0% then q’T,)o
cannot be expected to agree with CPn in this region.

The solution given'by Cess of this problem also utilises the concept

of a suction boundary layer and includes a limiting form equivalent to

(4.68). Indeed if variable condensate properties are excluded from the
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thick film approximation then E ==£P= 1’and thé simplified formulae would
be the same as those given by Cess. In the author's opinion however Lho
current method is of greater value in four ways. Iirstly no knowledge is
needed of the corresponding single phase problem, secondly the physical

assumptions are minimised, thirdly the model can be readily extended and

finally it is more accurate, as it takes account of variable condensate
properties. |
Conclusions

It has been establisﬂed that analytical formulae can be obtained for
all the physically interesting coefficients, and these are in excellent
agreement with the results of direct numerical integration.

This evidence justifies extending th; ideas to nonjzgzglﬁ;: flows

and thus avoiding the problems of solving coupled non-linear partial

differential. equations with an unknown interface.
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Chapter 5

Numerical solution of non-similar condensation problems

Introduction

The aim of the present chapter is to find solutions of equations
”" .

(2.28)-(2.38) when the form of Ui () is such that similar solutions
do not exist. Two examples are considered, firstly u,,: (x)= u:(l-—é é)’
which represents & linearly retarded flow over a semi-infinite platc)
and secéndly M(}c}‘i UB‘ %’\M(%) which is the, potential flow
past a circular cylinder,
| Both of these configurations have been extensively studicd for a
one phase flow and many extensions to two phase problems occurring in
condensation are no doubt possible, albeit with considerable complications.
However since no information is to hand concerning these condensation |
problems attention will be focused on thé basic description of the flow,
particularly in regions of adverse pressure-grad;gnt vhere the nature of
separation in condensing fluids will be dis&ussed. An important question

which will be answered is: '"Does condensation delay separation and where

does separation first ofcur, at the wall or at the interface?"

Transformation of equations into forms suitable for numerical technigues

The governing equations were introduced in Chapter 2 and simplificd

. : : A
by introducing the stream- functions q/ and \P and the non-dimensional

temperature

0= (T—Tw)/ (Ts- Tww,‘
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There resulted the following equations:

-

Condensate: (,x7/ o, ©¢% Aj, s A(x))

2 P W Py _ /o:. Wi dw»i‘_.k_\_a /_s,ib_p_\
Iy XY, 2% Y Ps Yy {55 3y>
cp(ﬁ'éz _W 39) o)
oy % g3 b\jx 5 &5\ Ps ?’\jx P
vepourt (%7 0, 0% 4% & &),
o ¢ o B L U E R
TR DR o Y k2 >

Boundary conditions:

\})-. mj';o iyt Yir=0 , X Zo0,

(5.4

(5.
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= ms | (5.8)
/"’5{' ]‘j‘ A W) /“ ‘\?f\j"z‘,\,j‘%c )

R L ‘4'_3%: Al — {Js“ L ¢ ] s o (5.9)

and the integrated form of the enexrgy balance

AT. Kw. g (b&\ : \fsc\fﬂ +CogTs-Cp.T g_g; Y, . (5.10)

In the condensate phase the stream function is taken in the form;

Mo M+ - ;
V= (%hfﬂ)fsf‘_ ) F(S>7>, )

: M:‘ m-\\Z ]
where ‘S' =2 and I’) = [ (m+1) RPs ,jl . 305.12)
2 /As ol
The flat plate problem is solved by taking m = O and that for the
cylinder by taking m = 1. The seemingly unnecessary introduction of the
factor (m + 1) ocours becéuse the analysis for the two problems wes
initially done independently and it is now desirable to unify the approach.
Introducing (5.11) and (5.12) into (5.1) and (5.2) then the

differential equations for the condensate layer become:



54..

3 (L By L ez (e
‘.TV] fs/us WY[“ 371 (vas)
23 {_ 3F o OF ag ¥ ey g z(mmv
* (o w W M o5 G?\'-n)(;o \% )\Tgé %ﬁ\ﬁ =0,(5.13)

and _a_-E__k W) 4 B Co FI fgp 25 F Y zweL, (5.14)
‘ %s M Guma3g 3 H 3l

The boundary conditions (5.4) yield;

SHI
F(S)"): %23 -0

and the equation of the interface will be denoted by

\‘(‘) = "D {(xyz : (5.16)
The vapour layer is treated in a similar menner introducing \}/*
as: ;
¥ ‘M-H i
WS i )1 F¥ (g, o) (5.17)
@) e ¢
: : )
where s = x : ‘7# - ((\"n-ﬂ) Mo i >2 Aj&‘ (5.18)
2 Vs

Hence we obtain:

(5.19)
m-1 ‘/
A¥= - (9-'{/\: Vs § ) {;CMV\)F +§ bF -\3,) OF }




and the boundary condition (5.6) becomes: ]

B~ (g7 B L e o

Introducing (5.‘17) and (5.18) into the vapour momentum equation (5.3)

gives:

e 3F 2w (@f&)‘”“
" (tatt) oy

>F
— .3 -
?’7‘ 2
lm Nel |
g5 [2F¥e % I Un5) 4 Uas))o0.
+(_V;_\-'1>'\) 3§ agm 3"‘1 ag‘ﬂ) ") 5) [ d%\/\lo \(b 21)
At the interface ( A{): \-’(g) 5 -()5"’:0 ) we have

(/9'#' F g, (9)= F“(g,03; : (5.22)
('é'r) )cs,u;» x (%i)”vca,m T

/ —S-f— °F §f¥> (5,24)
\/Zs/“\s\) <m )Cﬁ,usﬁ (3\,)&“ (‘S:o).) otk

and finally the energy balance tra.nsforms to give;

w w +1) - 5(ma) § 4 (M=) 7
( ak\q» Ps(mz‘ 3 g S (‘?Or:‘ad‘g

¢

(4 el

{__‘h_ +—£5.-— }5‘: o\u) ‘ (5%
CPs BT AT apsm

no

5)
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An awkward feature of programming these equeations involves the
non-constant condensate bhickness t(s) . This difficulty is overcome

by making one more change of independent variable;

wr
N
oN

~—~

X=ga® s Vi 0 Atiey e

This fixes the range of integration across the condensate layer as EO,‘]-?
-
and casts the unknown function t()() into the differential equaticns ,which

pecome the following.

Summary of Egquations

Condensate phase

\ X i
'g‘ (lgﬁs %\7‘ 2 (2T ?{z C%\v':)tm<b;) (ﬁ:«qm (om = c% \kﬂo“)

(5.27)

2% Ly SF UF W YF ] LaX db N
+ &2 T T T B sy T ) T e,

P K 39 FXW . & 3 3 3F 16 (5.28)
'_é'y( SSKe uy) * B0, ng F & 8’\/ C.P s t(){a % &y oy % 0.
Vapour phase,(putting N= g) = q )

35 " = .ZE_F* .2m / ) ot 5\:“"“" B‘T’“ ‘{
oy*3 2y¥* (M-H) \5‘/“ (Mh) W 57’ TN 3

M ;
e (c__ TANAR ow (00 = | (5.29)
() AXD 9 m‘ Mo .



At the body surface > 7’ = Os R 5
SF
B o =
>y SEVi=lo

the interfacial conditions aze, (Y =R eI 0),

0= l7
1.
((:IJ;S) w‘) 372_ = _5;;*1
: )
i v Sk
e 37' bﬁ"x' :

: S 2_ o *
and ( SN 3 e A

The mainstream vapour condition is

S3FL (< 3M Wt O
'5‘\/&‘ X

and the energy equation is:

X
N K @ﬂf_‘}_ ic‘“’b ( v,
P** oy ke ) B 2B Y a\/\

X{M P logeIlE e

CF S AT AT c;;s o Y

\/*-.—>-0<))

M as

(5.31)

(5.32)

(5.33)

(5.36)
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It will be shown that to commence the numerical integration
these equations it is necessary to know the form of the functions

and L when X = 0. The limiting form of the system as X —= 0 is:

Condensate phase: 0&VY4& 55 X 7,0)

3 (FS/“ 2}\/l) ) g; &)@w) +\;@(v N,o (s.

ok WY
3 (85,3 « Eogg REB =0

Vapour phase:
P, - P8R - 2R (Y« N
ke P Y (M—H)< ) + N\ =o

Boundary conditions, ¥ =0, X2 0,

)

F‘-‘-‘%-f/%o D= o8

Interface conditions; {f 7/=._ b 7/# =0, X2 0)
o= 1,

s s Vo L ?:_F L > F
(/%f/_as‘) e T SRR AT

b Bl meor:
by oY ™ b

of

¥ o
g F)Y:)‘

—~
i

(5

—~
Ul
.

(5.

(5

\)

.39)

.40)

44)
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the mainstream velocity condition is,

D‘:u N . ./'\J (X) A By ont
.'b/ila“ —_— E(‘::\‘O {< ) } [a,a ‘/—-—POO. (‘)-'1’)).'

Iinally the form of the energy balance becomes,

XK
w Kw M.-H —*(M*‘) lefm -0 \’\) ' \,1'
feB) 7 )m j ]

(5 46)

L= S EB. A--_{.é —-Qil}dy
o os. O] BT  Sps O -

In equations (6.37) and (6.39) N‘ is given by;

; .:_2_2-(- '«’-\M \bf*(ﬂ d u,w\(\l 7
J\{’-' l“_;’; () TV o\A/\ ,uo‘x)‘( 2l

It is not proposed to write out in detail the forms taken by (5.27)-

(5.46) for the two problems under discussion. These follow by sﬁbstituting

= 1 with U‘”’: (’q = M: W\/\X/c) for the cylinder, and m = O with
M Cﬂ': U\’.?‘ (\"%’%) for the plate.

However with these substitutions we find for the cylinder N-_—_ 9
for the plate JN=0 ; and the limiting forms of the equations describe
condensation in the neighbourhood of a two dimensional stagnation point,
and forced flow over a flat plate respectively. The governing equations

for these problems have been formulated in Chapter 3. The limiting forms

(5.37)-(5.47) are not identical to (3.15)-(3.23) but if one puts
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F= (“A*’C;&"§ QA Y = (Hn+4\—HZ<y

)
then (5.37)-(5.47) are transformed into the equations of Chaptei- 3.

The necessary information to start' the integration of th.e equations
formulated in this chapter is therefore available. However to avoid
reading very accurate data gt X = 0 into the program, 5ubroutinos are

included which solve the ordin‘é:ry differential equations using the main

“matrix inversion procedure.

Method of solution

Solution of the three coupled non-linear partial differential

£
equations is effected by considering the functions q:. %\/ ) t ; v 2

*_' DF%
and Q = b}’* . There resp.lts a set of parabolic equations, an

appropriate method for the solution of which was proposed by i{artree and
Womersley [25 ]a.nd basically involves replacing derivatives in the
X-direction by differences and all. other quantities by averages. In this
manner the solution at the stage X= Wy + h can be found, once that at

=%Xw~ is known, by'solving a coupled sét of non-linear ordinaxy
differential eguations. The previous section has established how the
solution is obtaineéd at station X = O.

Full details of the Haxrtree-Womersley scheme, quasi-linecarisation of

the ordinary differential equotions and the matrix iteration procedure are

given in Appendix C.
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Discussion of results

‘Due to the considerable numerical labour involved solving the
partial differential equaticns, solutions have been computed only with
TW = 0, 70 and 99.9900 for each of the flow configuraticns. The
characteristics of physical interest were introduced in Chapter 3 for
the general vapour mainstream velocity U«w’: & . The pu_;'-tic:ula::
forms relevant to the plate, m x= u: (l- '(g':é.) , are obtained
.on subs:cituting‘ M(;Q: (\— %é) and o(T—,E " into the
following; those for the case of the cylindex, M CX)'-'— UJ;‘ S LX/C)
follow from putting MC() = (’C;J %M(é\ and 0&5 A

&) Iy Lo(og
2D Rex*= & b0 MO | (%5 ay

§ %'

=3 Cex = o | ® YL\LV\;\,&{‘/ +[F (X2 =F () 1/’40‘3}
Sy p*lg oy S l X

248 Rex? = x New®* < I M av"} Ay (5.48)

J=0)

. b3 2
oo, Rult = & (B4 555 M09 21553

b s > 5"
CipRes® = = -_(x ‘M\ 25 !‘l
gk e R {l
NW-QQXL e X F es E6d \\OO [Nyk zo *
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. Note that the gl.obal condensation rate has not been included above

Instead a study will be made of the vapour velocity normal to the

intgrface,which is the local condensation rate. IFrom (6.19) we have;

r/U';‘(X,07= 2MF Ve X {(M—H) \:”‘+x?,?}
! (M‘\'\) ket X \{

and the dimensionless 'suction' velocity is given by;

: ok ' - .
u”gx,ov .Qt:“ = - M{x)1 F o(X_?_Jﬂ (5.49)
Mt €O KoM a1y

Velocity profiles

The velocities in the condensate and vapour phases are given hy

J ) ::;‘
VR Uo (c) b(x) a7l and ‘\ﬁ =’QAC§Y§,</~ respectively for the

; % | * IEY
cylinder, and by AL M;O EX) a}’ and ,w*.-. uo 3-5.1-:\/-)4 for the

plate. Some of the results for 5—\/ and -5—\/,, at typicel cross-sections
are given in tables 14-19, where $(X) is also tabulated so that the
velocity profiles may be deduced. In addition some profiles are displayed
in figures 8, 9 and 10.

In the discussion of the numerical similar solutions TW was
assigned the value Ty = 99'99OC in order t;’ justify the assertion that the
va'pour flow tended to the Blasius flow as 'A‘\' o0 o The same value of
the wall temperature is used now to establish the fact that the vapour
flow tends to the co:rro:;.ponding non-similaxr single phase flow. The one
rhase problem over the cylinder has been solved numerically by Terrill TQ]

and that for the plate by Hartree ‘._9-7 } and later by Leigh L?.ﬁ ._-]
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The latter problem was also solved approximately by Howaxrth i_lq ] -
whose model is so close to the numericai’so]utions that it will be used
as the yardstick for the vapour boundary layer on the plate.
Comparison bétween the vapour solution and the corresponding

single phase problem is not immediate because of the different cheice

of varisbles, but is illustrated by comparing the vapour momentuﬁ
thickness wilh the momentum thickness of the corresponding cingle phasae
flow. These data are included in tables 22 and 25, which 1list the
physically interesting coefficients as functions of X, when TW = 99.9900,
for the plate and oylipder.problems respectively. Table 22 shows that
the vapour momentum thickness is marginally less than Howarth's value
from X = O until beyohd thfee quarters of the way to the separation point
Xao- As X

S S
it is the vapour layer which remains the thinner,and indicates the point

is approached the thicknesses both increase rapidly. Howevere

of separation in the. condensation problem is moved downstream from the
- single phase locatlon. The same observabions can be made from table 23

iq relation to the cylinder problem. The magaitude of the shift in hes

is not given since it is very swall and to achizve Terrills accuracy a

\

very considerable amount of computing would be necessary.

The fact thal coandensation delays separation, and the smaller TW
'

the greater the delay, is more apparent from the tabulated data for the
other values of TW. Figures 11 and 12 show the variation of xﬁﬂg with

TW.

It appears .that the delay in separation is more marked in the case
of the plate where XSA; is increased from Howarth's value of 0,96,

which is the limiting value as Ty —= 100°C, to 6.3 when Ty = 0°G.



The cor:ceséonding values for the cylinder are xs/cz +€23 radians
| and 7(5/(, = 2A:72 radians. This is due to a fundamenbtal difference
hetween the two vapour wmainstreams. ' The flow over the plate is linearcly
: retarcied from the leading edge whercas that ovsr the cylinder is acceler-
ated in the region ok X < T/  and is oaly de.oele:r:;.x‘aed for

e ¥e < | « If we int"roduce §Y¢ sd&o =l y. then

the Tatio of XS/  fox Ty = 0°C and T, = 99:99°C becomes 4.5, as
against 6.5 for the ratio of X4 at the same tempetr:atums for the
plate. Even now XS/C seems more sensitive to Tw,and. this is because
the pressure gradient varies as %(274() round the cylinder and
therefore only attains its most restricting valae when Xe = 3""/4

The fact that the condensate layer acts as .a. lubricant for the

vapour and effectively delays separation is thus quite appaveat, howsver
the nature of the Llow in the neighbourhood of numerical breakdown and
an answer to the question, "In which phase does separation first occur?"
afe not so obvious. For the single phase linearly retarded flow with the
traditional no-slip condition, Goldstein [_30] in his classic paper hns

s}'zovm that separation is due to an algebralc singularity in tho wall

- shear /Vv( yj_o , of the form;

7% (%\yo X (x=%s Y2 08

Not having similar results available for the behaviour of thea \“11 or
interfacial shear stresses in the condensation problems it is not possible

to fully appreciate bthe behaviour of separation. However it is noticed
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that the values of the wall and intecfac%al shearc coefficioabs'decreaﬁe
rapidly as nuxine":-inal breakdown is appzrouched,so a singularity of the
above type is likely to be present.

We will take the criterion for sepa.xration to be the vanishing of
either the non-dimensional wall shear stress C-fw, Rex'”" , or the
interfacial shear C-Fl Qé,:”f so that a general conclusion can ha
attenpted.

Tab‘les 20, 21, 22, 23, 24 and 25 show the physical ‘coefficients as
functions of x/ c and include a comparison of C"]:N~eex"1 and CfI. Qe_.:z'
at the typical stages. It is observed that near the leading edge of the
plate, or of the forward stagnablon point on the cylinder, that CH@V.Re,yz
is never less than CFI- Re ,:z' » the reason for which has baori given
in Chapter 3, but as numerical bfeaﬁdown ;s approached C{M Ke,zz‘
bacomes the smaller and tends to zero faster. This implies that
separation fiest occurs in the condensate at the body sun;face.

Figuves 8, 9 and 10 conlirm the preceding assertion.

All the above remarks have applied to both flow configurations,
however there are soae differences which ars worth noting. In the region
o< ¥ <& "72 for the oylindep it can be seen that the physical
properties do not change much, and the switch from Cfw. R e’;/z. being
“the larger sheare coefficient to 'bl’le smaller does not take place until the
decelerated zone. In contrast the change over in the plate problems occurs

much more steadily.



Go

The same pattern can be seen in the variation of the condensation

)
X, . ; Ead » U
rate as ~/c¢ increases. For the plate —-—;;,Iﬂ“: . Eex 2 Al e
(4}
steadily,whereas it is maintained relatively constant in the accelerated

region of the cylinder problem. This observation will account for the
reasoning in Chapter 6, that if the vapour phase is considered to be a
strong suction boundary layer, thea this is a better model for

acceleration than for decelerated regions of flow.

Shear Stress

It has been mentioned that values of C-FN.QQ,'::' and &' ee,:,l
are included j.n tables 20-25. In addition figures 1% and 14 display the
behaviour of CFN-R¢>:/2'/£CFN- Qa;/z] =o Dplotted as functic;ns of "7;<5
for ‘the cases Ty = 0,70 and 99.99°%C for the plate and cylinder réspectively.
In each graph it may be noted there is considerable similarity between
the curves for each value of Tw. Consequently knowing Xé from either
figure 11 or figure 12, and the appropriate value of LC{NQQ::.JX-—O from

a similarity solution it is possible to deduce the wall shear for aay

value of TW in either configuration,

Heat Transfer Rates

£
The non-dimensional heat transfer rate N\a\- Qe?\ is tabulated
V.
along with C—{:N. Qexl etc. in tables 20-25. The expected results
-l :
is that NW.Rex = is relatively constant in the accelerated filow

region of the cylinder,but in regions of adverse pressure gradient there



is a decrease which becomses increasingly more marked as separation is

approached.,



Chapter 6

Approximate analytical. solution for non-similar condensation problems

Introduction

The previous Chaptexr has been devoted to the discussion of two
examples of this particular type of problem fol iowing nunerical integration
of the governing equaticns. Tﬁis was seen to involve considerable labouxr
and congequently approximate methods yielding the flow characteristics
are most desirable. v

The aim is to oxtend the thick and thin L£ilm approximations, which
were dévelopcd in Chapter 4, to deal with the general veapour mainstream
velocity va:(l-) . The accuracy of the resulting models will be

. tested by applying the models to the aasoni . M GO =2blo S'M-(Zc-) and
u;(;):u;‘(\’ é%) > and comparing the results with the known numerical'
solutions. |

This general two—dimensidnal flow is described by the set of
equations (2.7)-(2.18) and (2.20). Introduce the dimensionless tempereture

function © , defined by (2.26), and make the following change of variable;

Xz 2, Y= Y/§09, (6:3)

where ﬂ = SCX) is the equaticn of. the vapour-condensate interface.

1

Then the governing equaticns become:

‘Condensate phase (X 2 0, 0&Y & 1),

( LY 68 m)_} FS T u»"~ s, Vs 3 //,\,' Bv (6.2)
x5 dxd/) 8 3\/ '\
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and 01 Y ds o awm it (6.

&S

Vepour: (x»o, 0% «3’% 363,
%

s % / A d
MW o VW o W M o v D (6.5)
IK 7:,)6" (/7" %NL
g %
and, ?5' b ?E =0 (QG)
I N
Boundary conditions ’( X > o 2 Yw))
M= A= O, B=o, (6.7)
* ek . he y
At the interface: (x;,o) y;\ . ,9 -3.03) 6-_-_ :L, (6.8)
Continuity in mass flow:
24 N O\ (-, : 3
(DS Ns = =, [_800 5 pw ay ) : (6.9)
Continuity in tangential wvelocity:

Continuity in interfacial stress components:

L Lo uF 4
PPl Asiai e/ sae .(6'”)

Liberation of latent heat &t the interface:

‘,,5 LT w‘)}';:(.} = ‘(Os 5 c\fv) [S(,x) S(”W\\{v) d‘/] (6.12)
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Finally the free stream conditicn is;

S Y o (613)

Thin film approximaticn
o

This model was introduced in Chapter 4 for the case when ’I.‘W ~s ‘10000

and the condensation rate was slight. It was specified by either of the

inequalities é% << | omRa i w1,
. R Ya
. A perturbation expansion in terms of &= X wes found to

provide the correct limiting form as 7C->- O for the similar flow over
the plate, and there resulted a first order condensate solution which was
activated by. the shear stress equivalent to the wall shear of the single
phase flow satisfying the no-slip condition at y* = O.

Guided by the analysis of Chapter 4' the vapéur velocity is expendcd
in the form;}

Eya-___(m:s-)vt\_-_ 3: T 9\: e Efbﬂ:*’" ) . (6.14)

and in the condensate the following are taken:

M = 2\10"‘ &zu-\‘*'a.su—:ﬁ" e (6.15)
= 22’/U'o+-2_5+0‘,+ 54/0'2_4-" . (6.](‘)

v-
S o+ €O + £+ G+ - - - (6.17)
S

and. = £%6 + &8+ E38ar-- - | . (6.19)
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The range of validity of the thin film model will be such that

cnly small temperature changes occur in the condensate, which will

therefore be treated as a constant property fluid. On substitution of

(6.14)-(6.18) into the simplified forms of (6.2)=(6.13) the zeroth order

perturbaticn functions satisfy the equations:

1.
Condensate: i_j.'&g' -0 b__so AL,
oY S H A oy I
Vapour: 2’\&“ ¥ 2
=2 « ).‘:'.'°, = O,

ox oM

M}\A‘O“*Arob_\f:=uvzd)m+\)z&{

o
TR W ax z\d& 2

Boundary conditions: forX & 0, Y = 0:

'\)«o"’u.o:‘—o - 90::.0)

at the interface, X 2 0, Y =1, y* = 0,

and as

5

(6.19)

(6.20)

(6.21)

(6.22)

P
(0)
.
N

W

SN

(6.25)

—~
(0)
.
no
(&)

~ -

(6.27)
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Firstly note that (6.20), (6.21),.(6.24) and (6.27) aré simply
the equations which govern the single phase.fJCW'subject to the no-slip
condition at the inferface, i.e.,t0 within the current dpproximaticns,
at the body surface. If the solution to this problem is known then the
wall shesr is available.

Denoting this by Tw () » that is
alaly * '
Ms WMo = Tus (X) : - (6.28)
v :

the function Zw' (X) can be taken to be a known function wherever .it
occurs in the solution of the condensate phase.,
The zeroth order condensate solution satisfies (6.19), (6.22), (6.23)
and (6.25) and hence;
’ 2
Doi= Y ands o= t_‘%}’i\ 3a0.Y (6.29)
S | ‘
Now there only remains the energy balance (6.26) to satisfy. Substituting

(6.29) in (6.26) we have & differential equation for determining e W

) Cal d A
Jo S0 ol I Lea’ o seed, Ml (6.30)
' ' Y 3 '
o 305 s TIO" = & [Td® Soea) | (630

Since Cu& €] is known for many two-dimensional flows then So(x)

cen be evaluated analytically or by quadratures.
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X LR ¥ l! ;
For example if UAM (X)- Mo then the zeroth ordexr vapour
approximation represents the forced single phase flow over a semi-
infinite plate)and for this the Blasius solution yields

X %3 N2 P
Cia (X)) = A/“ (stu X) : (0.72)

where A = 0.4696.
Substitute (6.32) into (6.31), apply the condition that at the
leading edge the condensate has zero thickness, then on in%egrating we

have:

\

o= B2 k2 b= 4Vs Ms /{A/M (9_\,5*)"”5

7 1 | )
e S Qe = (B2 2 (i [

X

(‘ig 'xmjla oAb N 3 | (6.33)

which is preqisely the zeroth order solution for 8%\. Qé,c'/l- - derived
in Chapter 4.
Consider ‘now the case of flow of saturated vapour past the circula
cylinder. The vapour mainstream is
ek D = Mo stm (),
where X is distance measured along the surface from the forward stagnation

point and C is the radius of the cylinder,
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The single rhase flow has been examined by ’i‘er:r:ill LZQ J,and
C,,:‘ Cx) is available in the férm
i g_ '
= X2 iU 05 -
Zo () = Wo /Lb (__Cif_;> I~ ("/c\-) (6515

-
/

where the function F(X/C) is g.i.ven' numerically (it is denoted by “%.:j
in the table given on page 93 of Terrill's paper) in the range

0 < ¥/ ¢ 1.8206. At the stagnation point ¥ =0 the condensate
thickness is finite jand for small X, F ~ %% . Thus on substituting

(6.34) into (6.31) we have

(6.35)

V. 3 B /e "3
000 - [ 230 i (e pf >’-3 L) B ]
/X: /UL: \},82(33‘ p!/?-Q(,C)

. A . o
Hence the limiting forms as X =™ ©  of the characteristics 5.‘;::3 Rex

; I ¥ .-1/
qu. QexL and :\“LL. Qex i gre:

; ! . ) oS ’3 4
§X), Re xt = [Sin "/c>2 i U %) d@é\] (3K + - - (6:36)
. = \ X/c ¢



T4=T

In order to illustrate the validity of the thin-film approximation
applied to this non-similar problem the approximate condensatée thicknesses
are compared with the numerical solutions for TW = 99°%C and 99.9900,
which was discussed in Chapter 5. To facilitate comparison the dimensicn-
less group %:)Q 5'7L evaluated from (6.36) s plotted against Rt
along with the numerical sclutions, in figure 15. It is sufficient to
note that when Tw = 99.99°C the agreement is excellent but there is a
noticeable difference (about 5 per cent) when TW = 9900{

The numerical results have shown that the condensate layer behaves
as a lubricant for the vapour and effectively delays separation: Since
Fﬂ?ﬁ;) is only available in the range 0 & X/¢ €  1.822 the thin film
model cannot predlct the flow charactelluths the éentire way up to
separation. However aly o 1nterest1ng to note that for T = 99.99 % the
approx1mate results are accurate rlght up to Xs/e i,

AMlso the thin film model is unable to give any insight into the
nzture of separation. An essential feature is the constant condensate
shear layer which predicts flow reversal in the liquid and vapour at the
éame'point.

Thick film epproximation

In Chapter 4 a thick film approximation wes developed for the range
of TW for which the thin film model was invalid. The eseentiai feature of
the model was the ability to treat the vapcur phase as a strong suction

vapour toundary layer. The numerical solutions of the previous chapter

suggest the same concepts are likely to be fruitful when applied to
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non-similar problems, except perhaps as separation is approached. It
has also become apparent that it is a gross simplification to treat the
condensate as a constant property fluid when AT/TS ~e OGO
Accordingly the full form of equaticns (6.2)-(6.13) are used as a besis
for the model. The co-ordinate system is displayed in figure 16.

Denote the unknown vapour velocity normel tb the interface, y* = O,
by 4.0;' () and in view of the preceding remarks suppose it is large.
Under such circumstances the vapour boundary layer equutions (6.5) and
(6.6), for arbitrary distributions of et 00 Mana WAkim 00 , can be
solved in inverse powers of ws (x)  as given by Watson LB( alens

To utilize Watson's expansion it is only necessary to relax his
condition of zero tangential velocity at the surface. From LE':I :; the

desired solution is as follom}s:

o= jwé‘cxv dx + I 3‘”‘ -F Cx,gﬂ (6.39)
W3 )
* * ;
whee £ = “fé_\j_? MEA | (6.40)
S

Hence the velocity components are:

3%

= Ahm (x) bS ' (6.47)

% * R X wlfs * ex
/\T"‘_': __;0?61)-—\73 {um WJ,\XMN, 2_}& "'um e /ﬁwé“f\z
: w_’f(x\ % 5 I
(&)

where the primes denote differentiaticn with respect to X.
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Substituting (6.41) and (6.42) into (6.5) the vapour momentum

equation yields the following equation for determining L"X(X,g*):

OF 3 L8 N wieo § 1 - (O ot
BS DS+S\- ()&)M}()L‘ (g)‘{"f 3,

(6.43)
3 L[N % S0 el -
- Wm0 w;m{g‘{x %é@ bis :xgi % D f&%:’lzc

%o A :
The chosen condition AV = - W (’q at y* = 0, together with (6.13)

yield:
‘P‘ (X,0) = o, (6.44)
\‘€§{- 5 l .{-‘é o
ana o o ST (6.45)
Now it W& (K)  is large (6.43) is approximately
) e W R4
&gﬂ‘s 7 & ) ' (6.46)
bg% S l .40
which subject to (6.44) and (6.45) yields: :
% §¥
% ¢ -
} = 'g AN e 1\) (6.47)
)

: K ;
where A (70 is an arbitrary functicn of integration. The vapour

phase velccity field is now given by the asymptotic formulae:

r o= (1- Rw.e¥ )+ O(Vw;-‘(xﬁ\)). (6.48)
Mo O ‘ .



o % /e
amd A = - W% () = Vs Mo () W5 () Lg + A (e -—1\}
REEN
T k. s v/ ¥
+ U (s () R0 (e 52)

_ s (X){Pc{ = + A (F —l)}] - (L:.49)

ey : “
‘Thus at the interface Y =1, /§ =0 for %X, o and large (ﬁ) 5

wE060) = (1= AYOO) Ut 00, (6.50)
v (%,0) = — Ws'(x) (6.51)
and /M'S !-— (Os }"55 ) A C’Q \LW\ ()q (6.52)

Having solved for the zeroth order vapour solution now we turn to
the condensate phase and solve (6.2)-(6.4) subject to (6.7), (6.8), (6.12)
and the interfacial conditions (6.9)-(6.11), These together with (6.50)-

(6.52) give respectively:

|
EME = 2 )8 (6.53)
0% Aa 0D bemj o1 dy] ? :
(%, D) = (L= A Mo OO, (6.54)

=t g (%\ L U (JQ‘ WX G A M’ (- - (6.55)
Y=t :

VWhen formulating the thick film model for the similar f:i.O'WS,'the equaticns

corresponding to this set were solved using the full condensate variable
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properties. Then the limiting form of the equations as X =r© was

sought and the variable condensate properties approximated to by:

= (05) Cp = C\os)kz Kw.»(\.isvﬁ':w\@) /";f /mw (ﬁs‘ﬁ\e (6.56)

The intention now is to omit the full solution of (6.2)-(6.4), (6.7)
(6.8), (6.12), (6.53)-(6.55) and to proceed to find the limiting form as
- XL =7 © together with the model fluid (6.56).

The necessaxry expansions are:

we XM GO W(x,Y) + Oxx2), (6.57)
= XM D V(Y + 0 (), (6.56)
W = %Ws (<) + O(A}) | | (6.59)
§ =& Ao, +2 060 (6.60)
A=z 1= LB « OCX—") . (6.61)
b= RO ' ' | (6.62)

a4
For all condensates %;5<31'1. so -the vapour induced pressure

gradient will be ignored. Substituting (6.57)- (6. 62) into the governing
equations (6.2)-(6.4), (6.7), (6.8), (6.12), (6.53)-(6.55) the perturbation

functions satisfy:
Dok , ' k 26 ' (6.63)
By (% W )=o e 3

The boundary conditions are:

‘V\J(X,O) =0, &t (X)O): 0) E(X,\):‘.—.\) (6.64)
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(% a,\ LAO&\ MW\ ("7 U" &y } \I~'s Cf”\\ (6.65)

W (x,0) = B0, . (6.66)

/J\S (3-‘5-\,}\'/3 \I._;‘ = (Og A(%} Wsu C—XB) (6.67)
|

wa Vs (), = 00D gx{e_m\u’im;(w\ﬂga.ea>

Y=o
The equations (6.63) are solved in a similar manner to that introduced
for equation (4.55).

Integrating (6.63) we have

Kg oY i ij it /«45 o«/ = D09, (6.69)

where in general E(X) and D(X) are arbitrary funciions of X.

The former yields, on using ?\ (x) O\) -0 °

'{: lo r~
E'Y = X : dH (]
o Ks

Also we have H(X,1) = 1 so that E(X) is determined by

)
k &~
UQ Og \(s : Q_ks ° '(6.70)

“That is E is a constant depending only on the wall and saturation

temperatures.

Now (6.65), (6.67) and'(6.68) togefher imply
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I AR
(5—\/ Y= <_Z’;-.‘/\‘/'-‘—\ ) e

which together with (6.69) gives:

£ = DO = ks thw

.'2.‘(:5 -

From (6.69) %‘\/ = E\_‘:_K? g’ﬁ‘ : and hence (5.‘71) becor.nes:
=M Kl (6.72)
po X ; ‘-’~/~

ot j /ES= ‘
or 0 \‘S/A‘ ¢ - (6-73)

Thus

S
! K ~
= .:S kK [ g/&z& dﬁpdlﬂ.
£ oui\wies Lo L M s il
f\* : 2y ‘
Therefore ol W &Y = _é;:_ 5 (6.74)
: ; 2E
Ky 3 sz Ja8 ( Kw \:w?' Ja'
where 5?7-{8"’ Tesrd g A ]2 '!25""2‘@‘-)1 (6.75)
Go. )
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On substituting (6.69) and (6.74) 4into (6.68) thon the following

differential equation for A(X) is obtained:

NS N T 6.76)
Ve ® O\X( c)lkmcx)%;)) (6.76)
e L V:L 2 Y%

The problem of finding the thick film approximetion to non-similax
flows is now that of solving (6.77), which is a very simple matter once
M(x) is specified. ; .

In the simple case when M(.%s = M , constant then (6.77)

gives
= 2B i gix\'a . S |
Lo Ep (’ATQ‘) ) . (6.78)
| 3 :
and hence 5\23 Qexlz = 2E /&F7 (6.79)
PN

which is the result (4.68) obtained in Chapter 4.
Returning now to the condensation problems onto the flat plate with
i L X Y2 L
'Lw‘f (x)= Mg(\" g c,) and onto the cylinder whexre Uvm O‘\"—u‘O S’MQS:},

then (6.77) is solved to give the following characteristics.
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Plate Cylinder

pi-

—

E—iD 7(/2:_

- . X Y \ .
500 Rey> : 28 w@z)z L BE (Pnz

| At
el . 1503 /“ P (6.80)
Chw.Res™ : Xgp _L-__fz.g) WL e | Mee \ "
' !"lé; %& +ﬂ“—§ec
RS L2 \a “r o AR
Nw. Res2 . Ep ke (=32 \* . ks B[S L
' R W G Kw \ dom ¥2c

‘The vaiidity of these formulae can be judged from tables 26, 27, 28
and 29 which compare the approximete dimensionless characteristics with
some éf the numerical solutions discussed in Chapter 5. Figures 17, 18,
19 and 2O display the comp ariéon graphically.

The accuracy at the leading edge of the plate is of course that
! obtéined using the thick film model in Chapter 4, where it was observed
that agreement was excellent for 0 £ TW < 60°C and within 10 per cent
for TW = 90°C. The same is true neaxr the forward stagnation point on the
cylinder so it remains to describe the conditions under which the acocuracy
is maintained as X increases.

When TW = 0°C the approximations applied to each configuration remain
as acquraté, except in the vicinity of the point of separation, . Foxr the
flat plate when TW = 70°C the model and numerical results diverge from

= 0, however for the cylindexr, given the same wall température, the
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- 2 SEE ; REZ2TN X T
agreement at x = O is maintained until Sl . Only when = > >

is fhe divergence apparent.

T}}e success of the model when TW 2.70°C applied to the cylindex
compaxred with the i)late occurs because of the fundamental difference
in the flow configurations, which were mentioned in Chapter 5. I'oxr the
cylinder ©O< -Z‘-.: < T—:—_ is'a region of favourable pressure gradient,
and it is'in such a region that the basic assumption, i.e. bg- (\>%0 -
is most: valid. This is evident in figure 21 which displays the variation
of 005:" C’Q and also_the magnitude of a typical neglected texm,:

\): Wﬁl(X)‘/ﬂog(x)l , in (6.43) compared with unity.

A preliminary conclusion is that the model is reliable at the
extreme wall temperature TW = O°C, except near the point of separaticn,
but generally the method is more applica‘ple to accelerated than decelerated
flows. It will be shown later that the model is unable to throw any light
onto the questions concerning the position and nature of separation,

To further highlight the accuracy of the thick f iim approximation
applied to the accelerated region consider the ratio 8(x) /8(.07 3
From (6.80) we have:.

8Cx)

SLAL X 6.8
Siy = Sec (/zc), (6.81)

8(TRYy _ o

. e b
and hence 3 (05

Dircot numerical integration yields the results D) / 3(0) t 1.48

for T, = 70°C ,2nd (2) /S(O) = 1.418 for T, = 0°C.
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From (6.69) we have /';\'5 "I =& -, constant,and consequently
|

This implies, as the zeroth order solution, a constant condengate sheax
I i
across any staticn */ ¢ = const., whereas the numerical solution shows the
wall shear to vanish sooner than the interfacial shesr.
; ' . 4 . ;

Moreover (6.80) implies C-Fw. Qc_xz. only becomes zero at
X X > : R
/C = 8 for the plate problem and /C = N for the cylinder, i.e. at

- ‘L "

the stations where u,w\ (K3 disappee:cs. These are compared with the
numerical values }g/C = 6.3 for the plate and X‘/C = 0.84 for the

cylindex,

Thick film method applied to the Falkner-Skan solutions
In Chapter 3 the similar soluticns were found for the mainstreanm

vapour velocity

, X M
b (O = Mo (%), (6.83)
5 ,
Trithn form of W (XY Sis insarbed 1nto (6.77) then

P oo R iy 80 1 2m : :7... R
%x\_l'\'m b (2) ]: 45‘?105%@3}“‘ (6.84)

Integrating this and using the condition O (O)' = 0, we have:



[«
)

o

(€3]
Ul
.’

‘ L
A(V\ % ‘Js = 28 (E_) 2
L(M-H}u o \X . (6.

The motivaticn for Chapter 3 when discussing the. numerical solutions
of the Falkmer-Skan type equations lay in observing the condensate shear
in the hope of learning something about the nature of sepa;ration.. In the
thick film model there is a conétant condensate shear so we confine

: I/
ourselves to seeking the point of separation and the accuracy of C{w.ﬁexl

form & O.

The dimensiénless wall shear is defined by
i A (Ze.'/z ¥ 2 |
C‘fw-Rﬁx = My Y29 el =X lz(OSALW\ s (6.86)

Introducing (6.57) and (6.60) there results:

//
C{-W.R o /‘AN A(/‘). X MM"(X){ ] :‘ Wi ( r'\) "\2
...(?s i . \ Vs

! ,
(m-r \)/2'. x.af,. (6.87)

Iy.
Thus the thick film model prediocts Cf . Rex T 0 whon -1,

which is ana7 ogous to the values of / = 8 for the plate with adverse

pressure gradient and / o = I for the cylinder.



i\ :

Figure 5 shows the variation of qw. Qe ,‘/-‘- with m. The
similarity between the approximate and the full numerical results in
the region 0 2 m 2 =-0.6 indicates the model is as reliable for

m=-0.6 as for m

]

0. Thus agreement is noted over a wider range of m
than in the case of condensa‘ciqn’in the presence of an adverse pressure
gradient. This may be due to the fact that a singularity exists in the
model formula (6.87), when qw. ‘Qa-xvz' is considered as a function
of m, of the type that Hartree [_20] has shown to exist for the single
phase flow. Such a singularity is not present in (6.80) whereas the
numerioa.l solutions for the cylinder and plate exhibit behaviour similax

to0 that of the single phase flows where a singuiari‘by of the type (5.49)

is known to be present.
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Conclusion for Part T

The main-facts that have'been established by numerical integration
of the full equations are that condensation delays separation and
separation first occurs at the body surface and not at the intérface.

These results could not be deduced from the appfoximatc methods
which predict constant condensﬁte shear layers =nd vanishing sheax whcn
- the meinstream velocity is brought to rest. Howe&er,the thick and thiﬁ
models yield sufficiently accurate results,  except near.separation; S0
that the enormous effort of computing the full solution is no longex
justified.

The real power cf these models lies in the simplicity of the
formulae they yield. .Knowledge of the mainstream velocity is all that is
needed to deduce the condensate thickness AG) from (6.77) in the thick
film approximaticn. For the thin film we musf be given.fhe wall shesx °
for the one phase problem in the similar configuraticn énd (6.30) theﬁ

yields the coefficients.
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L A;, % E>L (:L | [)L

0 0.98812999 ; 0.99861010 ~5.2082931 l -6.4709855 ‘
1 | -0.02176145 | 0.00338211 -0.83662530 | 0.09577277
2 | -0.01026523 % -0.00297578 0.22822022 -0.06905999
5 | =0.01557755 | 0.00457075 | -0.07268900 | 0.02769182
4 | -0.00100025 0.08{ 68510 0.03607111 0.20439558
5 0.06409950 -0.02618713 -0.02584258 ~-0.14554870
6 | 0.03788946 | -0.27551731 ~0.04165410 | -0.79356270
7 | =0.09626597 0.03468912 0.01821563 0.3092%446
8 | -0.07863884 | 0.38483344 | 0.07235524 1269448
9 | 0.04632538 | -0.01549540 | -0.00643871 | -0.17973239
0| 0.04270481 | -0.18014495 | =-0,03717798 | -0.52353273

l'able 1




Water ; |
; Units o o ‘7 Steam i
L
Density .(9 glc.c, 0.9998 0.578 | 0.5977 x 103
Specific heat cal/e’c 1.0055 1.0078 |
g/sec.cu. | 1.782 x 1072| 2.812 % 107°| 1.245 x 10~%

Viscosity,/*.
Conductivity,k
Prandtl NO,F>

Latent heat of

condensatioqﬁ@

o
cal/sec.cm.c.

cal/g.

1.316 x 10‘3

13.616

1565 18x 1072

1.7370

538.83

Table 2.




as.

bl 3¢ SN 1" |
0 0 0.0bO1 0 0 0.0517
0.1 0.00176 0.0601 0.1123 0.05 0.3575
0.2 0.00416 0.0601 0.2198 0.1 0.5897
0.3 0.00725 0.0601 0.32356 0.15 0.7509
0.4 | 0.01108 | 0.0601 | 0.4287 | 0.2 0.8238
0.5 0.01570 | 0.0600 | 0.5241 0.25 0.8849
0.6 | 0.02114 0.0600 | 0.6216 0.3 0.9250
0.7 0.02744 | 0.0599 | 0.7180 | 0.35 0.9513
0.8 | 0.03462 | 0.0596 | 0.8132 | 0.4 0.9684
0.9 | 0.04272 0.0595 0.89074 | 0.45 | 0.9796
%0 0.05175 0.0588 1 0.5 0.9868
0.55 | 0.9915
0.6 0.9945
0.65 0.9965
0.7 0.9978
0.8 0.9991
0.9 0.9996
1.0 0.9999
}_7
prable 3 . Veclocity and temperature distributions for

torced tlow over a tlat plate, Tw = OC.

(0]
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Lo # f* |

S 3y o S 7 |

[ 0 0 0 0 ' D5D2701 ;

0.1 0.00225 0.1008 0.1 0.3461 |
0.2 0.00460 0.2014 0.2 0.563%

0.3 0.00705 0.3020 0.3 0.7106 |

0.4 0.00959 0.4025 0.4 0.8097 |
0.5 0.01224 - 0.5030 0.5 0.8760
0.6 0.01499 0.6032 0.6 0.9199
0.7 0.01784 0.7031 0.7 0.9487

0.8 0.02079 0.8026 0.8 0.9675 |
0.9 0.02385 0.9014 0.9 0.9796

1.0 0.02701 1 1.0 0.9833 |
.2 0.9953

1.4 9-9983 ‘

1.6 0.9994 |

.8 0.9999 {

2.0 1.0000 |

{

‘ 0
for flow over a flat plate T, = 70°C,

Table ( 4 ) velocity and temperature distributions
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LD ¥ £
X ; é;gf G. q Eﬁﬂ
0 0 0 0 0.01167
0.1 0.00111 0.1004 0.2 0.3071
0.2 0,00223 C.2007 0.4 0.5246
0.3 0.00%%6 0.3009 0.6 0. 6821
0.4 0.00251 0.4010 0.8 0.7935
0.5 0,00567 0.5009 1.0 0.8700
0.6 0.00684 C.6008 1.2 0.9208
0.7 0.00803 0.7005 1.4 0.9534
0.8 0.00923 0.8002 1.6 0.9735
0.9 0.,01045 0.9000 Ve S 0.9&55'
1.0 0.01167 1.0000 2.0 0.9923
2.2 0.9961
274 0.99ST
2.6 0.9991
2.8 0.9996
3.0 0.9998
Teble ( 8.) Velocity and temperature distributions

for forced flow over the plate T, = 90°C.




i f%
S5 g a . T
0 0 =0 0 0.000513
0.1 5.133, -5 0.100 0.2 0.09577
0%2 1,027, -4 0,200 5% 15 580.4 0.1906
0.3 1.540, =4 0.300 0.6 0.2845
0.4 2.053, -4 0.400 0.8 0.3766
0.5 2.567, -4 . 0.500 1.0 0.4658
0.6 3.080, -4 0.600 152 0.5506
0.7 3.593, -4 0.700 1.4 0.6298
0.8 4.107, -4 0.800 {,5 0.7018
0.9 4.620, -4 0.500 1.8 0.7658
1.0 5.133, -4 1.000 2.0 0.8209
} 2.4 0.9639
2.8 0.9546
3.2 0.9812 |
! 3.6 0.9932
4.0 0.9979
4.4 0.9994
4.8 0.9999
5.2 1.0000
matls O. Velocity and temperature ‘distributions for forded

flow over plate. TW = 99.990(.‘.
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T, et Be® Bt GRE BRSO o |
0.00 =~ 3.225  0.159  0.0832  0.0605  0.0588  0.373  8.28
10.00  3.054 0.165  0.0862 = 0,0579  0.0568  0.381  7.977
20.00 ' 1.896 0.174  0,0907  0,0551 0,0540  0.389  7.570
50.00  2.749  0.187  0.0969 ~ 0.0515  0,0505  0.400 - 7.055
10.00  1.612  0.205  0.1059 - 0.0471  0,0463 = 0.413  6.426
50.00 2,484 0.231  0.1187  0,0418  0.0412  0.426  5.680
£0.00  2.363  0.271  0.1378.  0.0357  0,0353 . 0.441 - 4.813 |
70,00 2.245 0.334 0.1686 0.0288 0.0285 0.459 %.825 §
80.00  2.120  0.250  0.2214  0.0211  0.0210  0.481 - 2.717 |
90.00  1.942 0,699  0,3286  0.0128  0,0127  0.521  1.495
98.00  1.449  1.260  0.5322  0.0058  0.0058  0.689  O.401
99.99  0.290  1.705  0.6602  0.0035  0.0035 _ 3.452  0.010

Toble 7. Choarocbesistics /fur Condins afion

onfo o plake wits U GO = \Aosé) Constank.
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m 0 Bk =Ued 0.7 | -0.75 [-0.763125 |

Y 10. dy |

0 glEE- g 0 0 0 0 0
0.2 0.095 0.105 0.120 0.143 0.157 | .0.159 | 0.146
0.4 | 0.253 | 0.281 | 0.321 | 0.385 | 0.428 | 0.437 | 0.409
0.6 0.482 0.535 0.615 0.741 0.831 0.860 0.820
0.8 | 0.778 | 0.877 | 1.009 | 1.222 | 1.379 | 1.444 | 1.396
1.0 | 1.177 | 1.309 | 1.506 | 1.821 | 2.056 | 2.167 | 2.122

i 2.28 2.56 2.97 3.69 4.38 5.05 2455
g '&EZSf*

0 0.052 | 0.051 | 0.051 | 0.049 | 0.047 | 0.043 | 0.038
0.1 | 0.589 | 0.544 | 0.489 | 0.409 | 0.345 | 0.290 | 0.249
0.2 | 0.823 | 0.781 | 0.725 | 0.632 | 0.549 | 0.471 | 0.411
0.3 | 0.925 | 0.895 | 0.853 | 0.771 | 0.689 | 0.605 | 0.537
0.4 0.968 0.951 0.921 0.858 0.786 0.705 0.636
0.5 0.987 | 0.97T7 0.959 | 0.912 0.853 0.780 0.713
0.6 | 0.995 | 0.989 | 0.978 | 0.946 | 0.899 | 0.836 | 0.774
0.8 | 0.999 | 0.998 | 0.994 | 0.980 | 0.953 | 0.909 | 0.861
4.0 | 1,000 | 1.000 | 0.998 | 0.993 | 0.978 | 0.950 | 0.915
1.2 1.000 | 0.997 | 0.990 | 0.973 | 0.949
1.4 0.999 | 0.996 | 0.98 | 0.970
376 1.000- | 0.998 | 0,992 | 0.982
1.8 0.999 | 0.996 | 0.990
2.0 1.000 | 0.998 0.994
222 0.999 0.997
2.4 0.999. | 0.998
2.6 1.000 | 0.999
2.8 0.999
350 1.000

i
\

; e : 2\ *KEYW
Table 8: Dimensionless velocities for Falkner Skan nainstream; Um * \0\6 s
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Mow charmoterintics for Ialkner=Skan mainslroan.

Bl s,tf,fzc;z 5. RS f;_z.zc;‘/zii o C{N.Rafz‘ o Re.t Nu.Qe';"i

1 2.27 | 0.109 | 0.057 | 8.32 | 0.0878 | 0.0852 | 0.5%1

0 3.22 | 0.159 | 0.083 | 8.28 | 0.0601 |0.0588 | 0.%73
-0.1 5.41 | 0.171 | 0.087 | 8.69 | 0.0566 |0.0549 |0.35%
2052 3.02 | 0.182 | 0.004 | 9.21 | 0.0530 |0.0515 | 0.%32
-0.3 3.88 | 0,197 | 0.102 | 9.82 | 0.0491 |0.0477 |0.310
-0.4 4.20 | 0.216 | 0.112 |10.58 | 0.0448 |0.0436 | 0.286
0.5 4.62 | 0.242 | 0.126 |11.53 | 0.0400 |0.0%90 | 0.260
-0.6 5.22 | 0.282 | 0.147 |12.77 | 0.0343 |0.0557 |0.2%0
-0.7 6.20 | 0.359 | 0.187 |14.55 | 0.0265 |0.0268 |0.194
-0.75 7.14 | 0.457 | 0.238 {14.94 | 0.0199 |0.0214 |0.168
~0.76 7.54 | 0.510 | 0.264 [14.74 | 0.0171 [0.0194 |0.159
-0.7625 "7.74 | 0.540 10.280 |[14.51 | 0.0157 |0.0185 | 0.155
_0.763125 | 7.85 | 0.556 |0.288 [14.36 | 0.0150 [0.0180 |0.153
_0.765291 | 7.92 | 0.569 |0.294 [14.22 |0.0144 |0.176 |0.152

Table 9
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EXACT Approximate formulae
(4-28) - (4-30.

i W 22| . Rew® | NuRerd| 22 2] (i Ren™ [ o Res
99.99 | 0.289 | 0.00354 | 3.45 | 0.291 | 0.00349 | 3.44
99.9 | 0.630 | 0.00375 | 1.63 | 0.627 | 0.00349 | 1.59
99.5 | 1.01 °| 0.0043 | 0.99 | 1.07 | 0.00349 | 0.93
99 1,22 | 0.0048 | 0.820 | 1.35 | 0.00349 | 0.740
98 1.45 | 0.0058 | 0.689 | 1.704 | 0.00349 | 0.587

Table 10: Comparisoa of thin film model:

¥ *
and numerical solution, Wm (X)= Vo .




a4.

Exact solution Solutiﬁﬁigi fi%:B)-(4.Sl\

W @ G (0) 1" (0 é g'e | F'0.
0 2,276 1.152 0.0333 2,287 1.152 0.0%3
20 2.048 1.082 0.0440 2,057 1.082 0.0439
40 1.847 1.041 0.0472 1.858 1.041 0.0470
60 1.671. 1.016 0.0414 15688, =1 15,0165 0.0411

© 80 1.500 1.006 0.0260 i.542 1.006 0.0255
90 15373 1.004 0.0151 1.476 1.004 0.0140

Table 11 : Comparison of tull thick film approximation

with numerical similar solutions.




100.

Tk ooy E £
0 0.1077 0.903% 0.609
10 0.0969 0.912 0.644
20 0.861 £ 0.939 0.682
30 0.0754 0.952 0.721
40 0.0646 0.964 0.762
50 0.0538 0.974 | 0.802
60 0.0431 0.982 0.843
70 0.0323 0.989 0.883
80 0.0215 0.993 0.922
90 0.0108 0.998 0.962
98 0.0021 1.000 0.996
table 12 . Constants E and €p of thick

film approximation




[e]P

Exact results

Phick limit asX =2 O

¢ | CLR™ [ NuRe™ ¢ |CpReS|NLRER
0 | 2.276 | 0.0605 | 0.373 | 2,099 | 0,0655'| 0,377
20 |2.048 | 0,0551 | 0.389 | 1.945 | 0.0588 |0.389
40 1.84T7 | 0.0471 0.413 1.790 | 0.0492 |0.410
1 60 1.671 | 0.0357 | 0.441 1.648 | 0.0363% |0.437
80 1.500 | 0.0211 0.481 1,523 | 0,01 99 0.467 |
90 1.373 | 0.0128 | 0.521 1.467 | 0,0104 |0.483

\
-Rlble, 13 . Comparison of numericsl results

with formulae (4.68) of thick film approximation.




102.

0 i 2 3 {4 5 6 6.2

y (0. OF/av,

0 0 (4] 0 0 0 0 0 0]
0.2 | 0.095 | 0.092 | 0.088 | 0.084 | 0,080 | 0.074 | 0.060 | 0.049
0.4 | 0.253 | 0.244 | 0.235 | 0.225 | 0.215 | 0.203 | 0.177 | 0.161
0.6 | 0.482 | 0.466 | 0.449 | 0.432 | 0.415 | 0.396 | 0.372 | 0.361
0.8 | 0.788 | 0.763 | 0.737 | 0.709 | 0.683 | 0.657 | 0.644 | 0.653
1.0 | 1.177 | 1.139 [ 1.100 | 1.057 | 1.016 | 0.972 | 0.937 | 0.956

Lo | 2728 8| 22 53002 86 L 85 36, o | Y4 o5 | 5. 357 [® Rt go i i Gtz

y¥ bF“/ayu

0 | 0.052 [ 0.045 | 0.038 | 0.031 | 0.025 |,0.018 | 0.011 | 0.009
0.05| 0.375 | 0.304 | 0.237 | 0.172 | 0.118 | 0.069 | 0.026 | 0.020
0.1 | 0.589 | 0.483 | 0.380 [ 0.279'| 0.194 | 0.112 | 0.041 | 0.03%0
0.15| 0.730 | 0.606 | 0.484 | 0.360 | 0.254 | 0.150 | 0.056 | 0.040
0.2 | 0.823 | 0.690 | 0.559 | 0.422 | 0.303 | 0.182 | 0.069 | 0.049
0.25| 0.885 | 0.749 | 0.613 | 0.470 | 0.342 | 0.209 | 0.082 | 0.058
0.3 | 0.925 | 0.789 | Q.680 | 0.506 | 0.373 | 0.233 | 0.094 | 0.068
0.4 | 0.968 | 0.835 | 0.700 | 0.554 | 0.419 | 0.272 | 0.117 | 0.086
0.5 | 0.987 | 0.867 | 0.724 | 0.582 | 0.448 | 0.300 | 0.137 | 0.103
0.6 | 0.995 | 0.867 | 0.737 | 0.560 | 0.467 | 0.321 | 0.155 | 0.119
0.8 | 0.999 | 0.873 | 0.748 | 0.612 | 0.487 | 0.348 | 0.186 | 0.148
1.0 | 1.000 | 0.875 | 0.749 | 0.617 | 0.495 | 0.362 | 0.209 | 0.173
1.2 0.750 | 0.618 | 0.498 | 0.369 | 0.228 | 0.195
1.4 | 0.619 | 0.500 | 0.374 | 0.243 | 0.215
1.6 0.375 | 0.248 | 0.221
2.0 0.250 | 0.225

Pable 14. Dimensionless velocity distributions; u,x(x) = u:’a- 13 ot b

TN s Ooc.

[
)
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Wil ko 1.0 2.0 2.5 3.0 3.5 4.0 4.2
Y, 0%, OF /Y.

o |o 0 0 0 0 0 0 0

0.2] 0.730 0.702 0.666 0.647 0.624 0.592 0.515 0.275
0.4] 1,522 0,462, = 1,396+ 11.359. 1,317 1.265 1,162 0.889
0.6] 2.378 2.287  2.190  2.138  2.081 2.019 1.939 1,841
0.8| 3.2995% 3.177.4813.048 #1982, 41,914 1.850 1.828 3,070
1.0] 4.284 4.130 3.969 3.887 3.808 3.741 3.776 4.375
t 1.588 1.796  2.109  2.34 2.674 3.231 4,637 7.09
Y,. o

0. | 0.027 0.023 0.018 0,017 0,014 0.012 0.008 0,006
0.1 10,346 “0.270°" 0,197 " 0,161 0.126 0,090 0.050 0.031
0.2 0.563 0.447  0.333  0.276  0.219 0.159 0.091 0.057
0.3| 0.710 0.574 = 0.437 0.367 0.296 0.220 0.131 0,086
0.4]0.809 0.665. 0,517 0,440 0,360 0.273 0.169 0.115
0.5]0.875 0.730  0.577  0.497  0.413  0.320  0.206  0.144
0.6] 0.919 0.775 0.623 0.542 0.456 0.360 0.241 0.174
0.8] 0.967 0.829  0.683  0.604  0.520 0.425 0.203 0.232
1.0 0.987 0.854 '0.715 = 0.641 0.562 0,472 0.355 0.284
1.2]10.995 o0.866 0.733 0.663  0.588 0.504 0.396 0.330|
1.410.998 0.871 0.742  0.674 0,604 0.526 0.427 0.368
1.610.999 0.873 0.746  0.681 0.613 0.540 0. 451 0.398
1.8]1.000 0.874 0,748  0.684  0.619 0.549 0.467 0.421
2.0 0.875 . 0,749  0.685 0,621 0.855  0.479 0.438
oy 0.750  0.687  0.624  0.560 0.492 0.459
5.8 0.687  0.625 0.562 0.498 0.470
3,2 0.562 ' 0.500 0.473
2,6 0.474
4.0 0.475

Table 15: Dimensioneless velocity distributions.

¥
hnd= M3 (I-5 %) ; Tu= 7o%c.
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FLAT PLATE Ty = 99.99°C

Ve 0 0:2 0.4 0.6 0,8 0.9 0,96

U 10" F/y,
0 0 0 0 0 0 0 0
0.2 | 0.210 0.205  0.200  0.19%  0.185 0.177 0.160
034 | 0.420 0.411 0,400  0.%87  0.372 0.358 0.%%"
0.6.| 0.631 0.616. 0,600 . 0.582 -. 0,560 0.545 0.530
0.8 | 0.841 .0.822  0.801° 0.778  0.751 0.737 0.741
1,0 | 1.051 1.028  1.002  0.974  0.943 0.9%3 0.969

: 0.205 05220 = 7042425 %7 0 127712 0,353 0.468 0.729

v : bF;SY?
0 0.0005  0.0005 0,0004 0,0004 0,00035  0,0002  0,0001
0.2 0.095 0.082 0,068 0.052 0.033 0.021 0.013%
0.4 | 0.191 0.165.  0.138 0,109  0.074 0,051 * 0,034
0.6 | 0.285 0.249 0,212 L0 T1H0. 0,120 0.087 0.063
0.8 | 0.377 0.334  0.287  0.236 0.173 0.131 0.099
1.0 0. 466 0.417 : 0.364 0.305 0.231 0.181 0.143
1.2 | 0.551 0.498 0.4  0.375  0.293 0.236 0.193 .
1.6 | 0.702 0.647 0.586  0.515  0.424 0.358 0.248
2.0, | 0.821 0.7707 -0, 712, £:0,643 4% 0.553 0.486 0.307
2.4 | 0.904  0.860 ' 0.809  0.749  0.667 0.605 0.554 ;
2.8 | 0.955 0.917  0.876  0.826  0.758 0.706 0.663 |
3.2 | 0.981 0.950  0.915  0.875  0.822 0.782  0.748
3,6 | 0.993  0.965  0.936 0,903  0.862 0.833 0.808
4.0 | 0.998 0.972  0.945 0,916  0.884 0.862 0.846
A A 0.999 0.974 0.948 0.922 0.894  0.877 . 0.866
4.8 | 1.000  0.975 0.950  0.924  0.898 - 0.883  0.875
5.2 - 0.925  0.899 0.886 0.879
5.6 : 0.900 0.887 0.881
6.0 0.887 0.881

Toble . 16.
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el eNeoNoNo)
L] . -
OCooOonb N

ct

%' 0 | 0.3927| 0.7854| 1.1781| 1.5708| 1.9635| 2.3562| 2.6507| 2.719
' oF
0 "0 0 0 0 “40 0 0 0

0.0963| 0.0956| 0.0937| 0.0904| 0.0859| 0.0800| 0.0717| 0.0572| 0.0431
0.2549| 0.2533| 0.2483| 0.2400| 0.2284| 0.2137| 0.1944| 0.1677| 0.1468
0.4841| 0.4819| 0.4715] 0.4562| 0.4351| 0.4086 | 0.3770| 0.3478| 0.3352
0.7908| 0.7856| 0.7715| 0.7457| 0.7120| 0.6703 | 0.6235| 0.5982| 0.6103
1.1827[ 1.1750( 1.1521| 1.1150| 1.0633| 0.9991| 0.9238| 0.8664 | 0.8644

oW

\<

NN \N

¢« o o e o o o
oMo OOPERNCODOUDUWN-22- 0O

MPHWWNODNON— 22 O0OCOO0O0C0O0O0OO0O0C
.

0.0522| 0.0508| 0.0469| 0.0408| 0.0330| 0.0241 | 0.0149
0.3827| 0.3677| 0.3250| 0.2615| 0.1872| 0.1118| 0.0%12
0.5989| 0.5767| 0.5133| 0.4173| 0.3024| 0.1851 | 0.0835
0.7400| 0.7144| 0.6404| 0.5270| 0.3883 | 0.2424 | 0.1149
0.8319| 0.8048| 0.7262| 0.6042| 0.4523| 0.2885 | 0.1357
0.9302| 0.9027| 0.8226| 0.6965| 0.5355| 0.3548| 0.1756
0.9713| 0.9444] 0.8659| 0.7418| 0.5815| 0.3972 | 0.2060
0.9883| 0.9620| 0.8852| 0.7639| 0.6067 | 0.4243 | 0.2292
0.9953| 0.9693 | 0.8937( 0.7745| 0.6205 | 0.4415 | 0.2469
0.9993| 0.9736( 0.8991| 0.7821| 0.6321 | 0.4593 | 0.2704
0.9999| 0.9743| 0.9001| 0.7838| 0.6354 | 0.4663 | 0.2838| 0.1281| 0.0799
1.0000| 0.9745| 0.9003 | 0.7841| 0.6363 | 0.4690 [ 0.2913| 0.1407 | 0.0924
0.9745| 0.9003| 0.7842| 0.6366 | 0.4700 | 0.2955| 0.1504 | 0.1035

; 0.6366 | 0.4704 | 0.2977| 0.1579| 0.1130
0.4705 | 0.2996| 0.1677 | 0.1277
0.3000| 0.1729| 0.1371
0.3001| 0.1763| 0.1451
0.1777| 0.1466
0.1486
0.1506

0078 0,0060
0169 | 0.0094
.0255] 0.0129
.0334| 0.0166
.0411] 0.0203
) 0.0278
0693 | 0.0356
L0817 0.0434
L0929 | 0,0411
<1124 0.0660

O0CCOOCOO0OO0O0OGC
o
A\ O 2]
U
\O

Table 17: Condensation onto cylinder: TW =003




3-...-.-l-IIIIII-------f13Ef______________________________________

. X 0 0.3927| 0.7854 1.1781| 1.5708| 1.96%5 2.199 | 2.327
y 102 xbli‘/b)'
0 0 0 0 0 0 0 0 0

0.2 [ 0,767 | 0.761 | 0,745 | 0.717 | 0.677 | 0.621 | 0.559 | 0,284
0.4 1,593 | 1.581 | 1.548 | 1.491 | 1.411 | 1.30% | 1.203 | 0.891
0.6 | 2.479 | 2.462 | 2.410 | 2.324 2.204 | 2,049 | 1.932 | 1.806
0.8 | 3.429 | 3.405 | 3.334 | 3.217 | 3.057'| 2.856 | 2.735 | 2.945
1 4.444 | 4.412 | 4.322 | 4.172 | 3.967 | 3.712 | 3.584 | 4.064
t 1.525 | 1.557 | 1.663 | 1.873 |2.273 | 5.175 | 4.68 | 9.24

Y OF*/dy¥
0 0.029 | 0.028 | 0,026 | 0,022 |0.017 | 0.012 | 0.008 | 0.004
0.1 | 0.378 | 0.362 | 0.317 | 0.249 |0.169 |0.088 |0.044 |0.017
0.2 | 0.606 |0.582 | 0.514 | 0.410 |0.285 | 0.153 |0.077 |0.030
0.3 | 0.752 |0.725 |0.646 | 0.525,0.375 |0.208 |0.109 |0.043%
0.4 | 0.846 |0.817 | 0.735 | 0.606 | |0.441 |0.255 |0.138 |0.057
0.5 | 0.905 |0.876 |0.793 | 0.661 |0.491 |0.294 |0.165 |0.071
0.6 | 0.942 |0.913 |0.831 | 0.700 |0.530 |0.326 |0.189 |0.087
0.8 | 0.919 [0.952 |0.873 |0.746 [0.580 [0.376 |0.228 |0.119
1,0 | 0.993 |0.966 |0.889 |0.768 |0.607 |0.410 |0.263 |0.149
1.2 | 0.997 |0.972 |0.896 |0.777 |0.622 |0.432 |0.290 |0.177
1.4 | 0.999 |o0.974 |o0.899 |0.781 [0.629 |0.447 |0.312 |0.203
1.6 1.000 | 0.9745 | 0.900 | 0.783 |0.633 |0.456 |0.328 |0,225

ey it 0.784 |0.635 |0.462 |0.340 |0.244
2 ‘ 0.784, |0.636 |0.466 |0.348 |0.260
2.2 ‘ 0.6364 |0.468 |0.355 |0.273
2.4 | Sila 0.636¢ |0.469 [0.360 [0.283
A & 0.470 [0.362 |0.292
2.8 |see gy 0.4705 |0.364 |0.298
3 : : 0.366 |0.304
3.4 | ‘ ~ |0.367 |0.310
4 _ ‘ 0.368 |0.313

Table 18: Condensation onto cylinder: TW = 70°C.
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*c 0 0.393 - 0,785 S8 .178 it1'e 571 1,728 4 41,806 1.823 E

Y 1o %;

0 0 0 0 0 0 0 0 0
0.2 | 0.291 0,288 .- 0,280 U-50,268 7" 10,248+ 0,236 "+ 0,221- ' 0.044
0.4 0.581 0.576 0.561 0.535 0.496 0.47% 0.451 0.245
0.6 | 0.870 0.863 ° 0.840 0,801 0.744  0.712 0.689 0.609
0.8 | 1.159 1.149: 1651 11958951 50674570, 992*.0770,952 ¥ 0,936 1.133

: 1.447  1.434  1.396  1.333  1.239  1.195  1.191  1.816

0.148 0,152  0.166  0.196  0.277  0.389  0.665 1.761

y* T

o 107210 9. ax107* 18,121 6% 16 ex16%  4.5%10 31210 1.8%10" 1.0%1¢"
0.2 | 0.229 © "0.216" 0.180":" 0126 0,062 ;:+0.032/. . 03013 . 0,008
0.4 | 0.417 0.395 0.333  0.239  0.122  0.067  0.031  0.020
0.6%170.569 0,542 "0.462 . 0,340 " 0.182 . 0,105 .. 0,050 0,037
0.8 0.689 0.658  0.569 0.427 0,240 0.146 0.081 0.059
1,05 1770.780  "0.748.°: '0.654" ‘10,503 0,295 - 0,187 0.110 _ .0.083
1o 0,849 1 048160 70,773 588 0,566 0. 5470 610,229 5001 438" 0.114
1.6 | 0.933 0.903 ' 0.840  0.660. 0.437 0.309  0.213 0.179
2,051 0,974 - 0.945" " 0.875 10,7195 € L0507 0,581 0.283 0.247
2.4 0.991 | 0.964 0.890 0.753 0.558 0.4M1 0.348 0.314
2.8 | 0.998  0.971 0.897° 0.770 = 0.592 0,487 = 0,403 0.373
B 2 0.999 0.973 0.899" .0.779 0.613 0.520 ‘0,447 0.421
3.6 1.000 - 0.974 ~ 0.900'  .0.782  0.625 0,542 10,480 : 0,459
4.0 | 1.000 0.974 0,900, 0.784  0.631  0.555  0.503  0.486
44 | 0,784  0.634 0,563  0.518  0.505
4.8 0.636  0.567  0.527 = 0.516
5.2 - 0.570  0.5333 0.523
6.0 0,572 05357+ ~0.530
730 0.538  0.531

Table 19: Condensation onto cylinder:

Ty = 99.99°C,
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hls . %' %Y, I ] b Ng¥) vy
X S_g) Rex® -;: Rex %"Rexz wa-QCxa' CF]',' 62,:" Nu. ch/‘ g’ Res

o 3.22 0.159 0.083 0.0606 0.0588 0.372 5.84
0.4 | 3.27 | 0.162 | 0.085 | 0.059%6 | 0.0579 | 0.367 | 5.7
0.8 | 3.31 | 0.165 | 0.086 | 0.0586 | 0.0568 | 0.362 | 5.64
'122' | 3.38 | 0.168 | 0.088 | 0.0575 | 0.0558 | 0.356 | 5.54
1.6 | 3.43 | 0.172 | 0.090 | 0.0562 | 0.0546 | 0.350 | '5.44
2.0 | 3.50 | 0.176 | 0.092 | 0.0549 | 0.0533 | 0.343 | 5.33
2.4 | 3.58 | 0.181 | 0.095 | 0.0534 | 0.0518 | 0.336 | 5.23%
2.8 | 3.67 | 0.187 | 0.098 | 0.0517 | 0.0502 | 0.327 | s5.12
3.2 | 3.77 | 0.194 | 0.101 | 0.0498 | 0.0484 | 0.318 | 5.00
3.6 | 3.90 | 0.203 | 0.106 | 0.0478 | 0.0463 | 0.308 | 4.8
4.0 | 4.05 | 0.214 | 0.111 | 0.0454 | 0.0439 | 0.297 | 4.66
4.4 | 4.24 | 0.228 | 0.118 | 0.0424 | 0.0410 | 0.283 | 4.46
4.8 | 4.48 | 0.246 | 0.126 | 0.0389 | 0.0375 | 0.267 | 4.22
5.0 | 4.64 | 0.258 | 0.131 | 0.0368 | 0.0354 | 0.258 | 4.08
5.2 | 4.82 | 0.272 | 0.137 | 0.0344 | 0.0331 | 0.248 | 3.94
5.4 | 5.04 | 0.289 |:0.143 | 0.0317 | 0.0305 | 0.237 | 3.76
|5.6 | 5.30 | 0.310 | 0.150 | 0.0284 | 0.0274 | 0.224 | 3.58
5.8 | 5.67 | 0.337 | 0.157 | 0.0245 | 0.0237 | 0.210 | 3.%6
6.0 | 6.14 | 0.372 | 0.164 | 0.0196 | 0.0193 | 0.191 | %.12
6.1 | 6.49 | 0.390 | 0.166 | 0.0149 | 0.0178 | 0.177 | 2.96
6.2 | 6.95 | 0.419 | 0.168 | 0.0108 | 0.0153 | 0.160 | 2.78
6.5 | 7.67 | 0.440 | 0.166 | 0.0047 | 0.0124 | 0.137 -

Table 20 : Condensation characteristics, Flat plate,

M:Cx) = Algi(l= "3‘%‘,)) Tw= Oo°c.



SLAT PLATE T, = 70°C
I %l el Nl | ! .l
0 Wy B2 éj Rt e GRe? (R Nukex
0 2.24 0.334 0,169  2.70 0.0288  0.0285 0,459
0.2 2.26 0.339 0.171 ~ 2.68 0.0283 = 0,0281  0.45¢4
0.4 2.28 0.345 0.173 2.65 0.0279 0.0277 0.449
0265 52,31k 50,3510 =2 10,1752, 62 0.0274  0,0272 0,444
0.8 2.34  0.356  0.178.  2.59 . 0,0269 | 0.0268.° 0.439 |
L4l 0% 5l 0.362  0.181  2.55 0.0263  0,0263  0.433 |
1.2 2.4 0.369 10,184 -, 2i52 0.0257 ' 0.0258 0,427 |
1.4 2.45 0,377+ 0,188 1,48 0.0251  0.0252 = 0.421 |
1.6  2.49 0.386  0.192  2.44 0,0244  0,0246 . 0.414
1.8 2.54 0.396  0.197 - 2.40 0.0236  0.0239  0.406
2.0 . 2.58 0.407 0,202 © 2.35 0.0228. - .0,0232 | 0,398 |
2. 2-2.64 0. 41975 40,208 5%152,30 0.0219 0.0224  0.389 '
2¢ Aeea 2571 0.433 D.21 482,24 10,0210 0.0216 0.380
2.6 2.79 0.450 -0,221 -“-2.18 0.0199  0.0206  0.369
5.8 2.88  0.469 - 0.223 - 2,11, - 0.0187  0.0196 . 0.357
3.0 2.99 0.493 0.239 2.03 0.0173 0.0184 0.344
3.2 3:13 0.521 0.250 1.94 0.0158 0.0171 0.329
13,41 153031 0.556  0.264 . 1.84 0.0140  0.0156  0.310
BB 3456 0.602 0,280 1.7 0.0120 ~ 0,0138 0,288
3.8° 3.94 0.664 0,300 1,55 0.0094  0.0116  0.260
3698025 0.705 03512 1.45 0.0079 0.0103 0.242
4.0 | 4.63 0.756  0.325  1.34 0,0062  0,0089 0,219
A 52T 0.839 0.340 © 1.21 0.0041  0.0072  0.189
4,2, 6,64 1.007 0,0007  0.0054 0,127




‘\o'

3 | Rext e (8 Re S Rox®|Cg, R [Ghp. Rest | NuRen™
(Howarth) :
0308 | 50290 | :1%705 112 0.660 | 0.00354 | 0.00352 | 3.452
0.1 | 0.298 | 1.751 1.77 | 0.670 | 0.00333 | 0.00334 | 3.35%6
0.2 | 0.308 | 1.803 | 1.82 | 0.681 | 0.00310 | 0.00311 | 3.250
0.3 | 0.319 1}861 1.88' | 0.692 | 0.00286 | 0.00288 | 3.131
0.4 | 0.334 | 1.927 1.95 o.7o§ 0.00260 | 0.00262 | 2.996
0.5 | 0.352 | 2.004 2.03 0.716 | 0.00231 | 0.00234 | 2.840
0.6 | 0.377 | 2.095 2.12 0.730 | 0.00200 | 0.00204 | 2.654
0;7 0.413 -2,206 2.23 0.743 0.00164 6.00169 2.424
0.8 | 0.473 | 2.351 2.38 0.758 | 0.00122 | 0.00129 | 2.114
0.9 | 0.624 | 2.571 2.62 0.775 | 0.00067 | 0.00077 1.604
0.96/ 0.969 '2.908 3.01 0.792 | 0.00017 [ 0.00028 | 1.003
Characteristics for flat piate With adverse pressure

Table 22:

gradient. T, = 99.99°C.




n.

-
% (SRl |9Rat) B el RI of o of, R kit
0 2,27 | 0.109| 0.057 | 8.32 | 0.0878| 0.0852 | 0.531
0.1571 | 2.27 | 0.110| 0.057 | 8.31 | 0.0877| 0.0¢77 | 0.530
0.3142 | 2.27 0.110.1:20.057 8.28 0.0874 | 0.0848 | 0.529
0.4712 | 2.29 | 0.111| 0.058 8.24 | 0.0869| 0.0843 | 0.526
0.6283 | 2.30 | 0.112| 0.058 | 8.18 | 0.0862| 0.0835 | 0.521
0.7854 | 2.33 0.113 | 0,059 9.09 0.0852 | 0.0826 | 0.516
0.9425 | 2.36 | 0.115| 0.060 | 7.99 | 0.0840| 0.0814 | 0.510
1,100 | 2.40 | 0.117| 0.061 7.89 | 0.0824 | 0.0200 | 0.501
1.257 | 2.44 | 0.119 | 0.062 7.71 | 0.0€06 | 0.0782 | 0.492
1.141 | 2.50 | 0.122 | 0.064 7.55 | 0.0785 | 0.0761 | 0.480
1R ST10IE2.5T 0.126 | 0.066 7.3% 0.0759 | 0.0735 | 0.467
1.728 | 2.66 0.132 | 0,069 7.09 | 0.0728 | 0.0706 0.451
1.885 | 2.77 | 0.139 | 0.072 6.84 | 0.0691 | 0.0670 | 0.437
2.042 | 2.92 | 0.148 | 0.076 6.46 | 0.0646 | 0.0626 | 0.411
2.199 | 3.12 | 0.160 | 0.082 6.06 | 0.0589 | 0.0571 | 0.%e4
2.353 | 3.40 0.181 | 0.092 5.69 0.0522 | 0.0512 | 0.35%
2.513 | 3.84 | 0.221 | 0.117 4.92 | 0.0419 | 0.0412 | 0.310
2.670' | 4.85 | 0.331 | 0.154 4,02 | 0.0225 | 0.0231 |.0.240
2.710 | 5.40 | 0.394 | 0.170 | 3.72 | 0.0150 | 0.0160 | 0.208
2.719 | 5.60 | 0.419 | 0.174 - 0.0118 | 0.0130 | 0.198

Table 233 Cylinder Characteristics TW

0

= 0°C,




2.

CYLINDER T, = 70°¢C

e (R B0 B g 1 R N kel
0 1.525 | 0.211 | 0.106 | 0.0466 | 0.0451 |0.675 | 3.98
0.1571 | 1.526 | 0.212 | 0.107 | 0.0405 | 0.0450 |0.674 | 3.98
0.3142 | 1.533 | 0.213 | 0.107 | 0.0463 |0.0448 |0.672 '[3.96
0.4712 | 1.543 | 0.214 | 0.108 | 0.0459 |0.0444 |0.667 | 3.93
0.6283 | 1.558 | 0.217 | 0.109 | 0.0453 | 0.0439 |0.661" | 3.90
0.7854 | 1.578 | 0.220 | 0.110 | 0.0445 ] 0.0431 |0.652 | 3.85
0.9425 | 1.605 | 0.225 | 0.113 | 0.0435 | 0.0422 | 0.641 | 3.78
1.100 1.639 | 0.231 | 0.116 | 0.0422 | 0.0411 | 0.628 | 3.70
1.257 | 1.682 | 0.239 ‘| 0.120 | 0.0406 | 0.0397 |0.612 | 3.61
1.414 | 1.739 | 0.249 | 0.125 | 0.0387 | 0.0379 -| 0.592 | 3.49
1.571 1.813 | 0.263 | 0.132 [ 0.0363 | 0.0357 | 0.567 | 3.35
1.728 | 1.917 | 0.283 | 0.141 | 0.0332 | 0.0330 | 0.537 | 3.17
1.885 | 2.069 | 0.313 | 0.154 | 0.0292 | 0.0294 | 0.497 | 2.93
2.042 | 2.321 | 0.360 | 0.173 | 0.0236 | 0.0245 | 0.443 | 2.61
2.199 | 2.875 | 0.454 | 0.206 | 0.0150 | 0.0171 | 0.356 | 2.14
2.278 | 3.588 | 0.548 | 0.230 | 0.0086 | 0,0115 | 0.282 | |.82
2.327 | 5.168 | 0.662 | 0.255 | 0.0012 | 0.0068 | 0.170 | =

Table -24.




N3,

e |59 @er8: Ran® |82 €5 B RS qw.&:" (51, Rest N Regll
mdions.| * x x (Teeeill) 1
0 0.148 | 0.644 | 0.291| 0.648| 0.0132 0.0130 6.734?
0.1571| 0.149 | 0.646 | '0.292| 0.650| 0.0132 | 0.0130 | 6.720]
0.3142| 0.150 | 0.652 | 0.294| 0.656| 0.0130 | 0.0128 6,677f
0.4712 6.151 0.661 | 0.298 | 0.665| 0.0128 | 0.0126 | 6.604 |
0.6283 | 0.154 0.675 0.3503 | 0.680 | 0.0124 0.0123 6.498
o,7é64 0.157 | 0.695 | 0.311 | 0.700 | 0.0120 | 0.0118 | 6.%53%
0.9425 | 0.162 | 0.722 | 0.320 | 0.727 | 0.0113 0.0112 6.164
1.100 | 0.169 | 0.759 [ 0.347 | 0.764 | 0.0105 0.0104 5.917
1.257 | 0.179 | 0.811 | 0.351 | 0.816 | 0.00951 | 0.00942 | 5.593
1.414 | 0.194 | 0.886 | 0.374 | 0.891 | 0.00817 | 0.00811 | 5.15%
1.571 0.222 | 9©.005 [ 0.406 | 1.011 0;00633 0.00633 | 4.514
1.728 | 0.295 | 1.230 | 0.453 | 1.25 | 0.00357 | 0.00367 | %.385
1.806- | 0.499 | 1.495 | 0.485 | 1.53 | 0.00124 | 0.00147 | 2.003
1.823 1.284 | 1.627 | 0.502 - 0.0004 | 0.0012 | 0.771

Table 25: Cylinder Characteristics, Tw = 99.9900.



4.

S " =
) Ren® | CluRe2 | Nu. Re™

Exact | Approx | Exact | Approx | Exact | Approx

0 Fail 2.97 0.0606| 0.0655 | 0.373 | 0.377
0.8 | 3.31 3.05 0.0586( 0.0638 | 0.363 | 0.%67
.64 1.5.43 3.15 0.0562| 0.0618 | 0.%50 | 0.356
2.4 5.58 3.27 0.0534| 0.0595 | 0.336 | 0.3%42
e L. 78 3.43 0.0498( 0.0567 | 0.318 | 0.327
4.0 |4.05 3.64 0.0454 | 0.0535 | 0.297 | 0.308
4.8 14.48 3.93 0.0389| 0.0495 | 0.267 | 0.285
5.6 J5.3O 4.37 0.0284 | 0.0445 | 0.224 | 0.256
6305615 4.69 0.0196 | 0.0414 | 0.191 | 0.238

Table 26 : Comparison of thick film formulae (6.80)
v
with full numerical solution, W (xX)z Mo (|—gz‘¢),
Twz'olc:



5.

: 8_(5)_ Ke)kl/z : Cch- R,Q.xllz- R ;n;,
15 Exact | Approx{ Exact Approx | kxact| Approx
0] 2.24 2.24 0.0288 | 0.0285| 0.459| 0.452

0.4. 2.28 2:27 0.0279 | 0.,0282 | 0.449 | 0.446

0.8 2.34 2.30 0.0269 | 0.278 0.439 | 0.439

1.2 2.41 | 2.34 | 0.0257| 0.0273 | 0.427| 0.433

1.6 2.49 2.38 0.0244 | 0.0269 | 0.414 | 0.426
2,0 2.58 . 2.42 0.0228 | 0.0264 | 0.398 | 0.418
2.4 2.T1 2.47 0.0210 | 0.0259 | 0.380 | 0.410
2.8 | 2.88 | 2.52 | 0.0187 | 0.0253 | 0.357 | 0.400
5.2 3.13 2.59 0.0158 | 0.0247 | 0.329 | 0.391
3.6 %50 2.66 0.0120 | 0.6240 | 0.288 | 0.3%80
4.0 4.63 2.74 _0.0062 0.0253 | 0.219 | 0.369
4,2 6.64 2.79 0.0007 | 0.0229 | 0.127 | 0.3%62

Table 27 : Comparison of full numerical results

and thick film formulae (6.80) applied the flat
SIRTLY (JRE
plate, Um@* Wo (l"g 3

and Tw = 70°C._




6.

s_%), Re,/x C’f o gex‘é, Nu. Qex—’/z.
-g.‘ﬂ' Exact | Approx | Exact Approx | Exact | Approx
.0 2.27 2.10 0.0878 | 0.0927 | 0.531 | 0.533
0.125| 2.29 2:11 0.0870 | 0.0921 0.527 0.‘330
0.25 2.33 2.16 0.0852 | 0.0902 | 0.516 | 0.519
10.375| 2.42 2.24 ‘0.0814 0.0870 | 0.496 | 0,501
0.5 2.57 2.37 | 0.0759 | 0.0821| 0.467 | 0.473
0.625| 2.84 2.59 | 0.0671 | 0.0750| 0.423 | 0.432
0.75 3.40 3.00 0.0522 [ 0,0647| 0.353 | :0.373
0.8 3.84 3.29 0.0419 | 0.0592( 0.310 | 0.3%41
0.84 | 4.66 | 3.64 | 0.0166 | 0.0533| 0.198 | 0.307
Table 28. Thick film formulae (6£0) compared with

full numerical solutions for cylinder, 1w = 0%.




1nz.

Y Rex'* Cf . Rex’2 Nu. Re o2
;i % kxact Approx| Exact Approx | kxact| Approx
0 1.53 1.58 | 0.0466 | 0.0403 | 0.675| 0.639
0.125| 1.54 1.59 | 0.0461 | 0.0401 | 0.670| 0.634
0.25 | 1.58 1,63 | 0.0445 | 0.0393 | 0.652| 0.622
0;375 1.66 1.69 0.0415 | 0.0379 | -0.620| 0.600
0.5 | 1.81 | 1.79 | 0.0363 | 0.0558 | 0.567| 0.566
0.625| 2.17 1.96 | 0.0267 | 0.0327 | 0.474| 0.517
0.76. | 3.49 2.19 0.0093 | 0.0292 | 0.291| 0.463

Table 29 : Thick film formulae (6.80) compared with

full numerical solution for cylinder Tw
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PART II

INWARD SOLIDIFICATION OF A . CIRCULAR CYLINDER,
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Introduction

-

When liquid initially at the fusion temperature is suddenly
exposed to an environment whose temperature is below fusion,then a
process of solidification begins at the boundary through which the
heat is being drawn, and the solid-liquid interface moves into the
liquid from this boundary as time progresses. In the work presented
in this section it will be assumed thét during the process of solid-
ification the liquid remains at fusion temperature, the properties of
the solid are independent of temperature and that there is a sharply
defined fusion temperature.

These assumptions immédiabely deny us the possibility of predicting
many important results of solidification. For example when metal solidifies
in ingots, or more complicated castings, it is contraction in tﬁe
solidified phase which causes unsoundness in many cases and which
necessitates the employment of such devices as exothermic sleeves to
ensure a supply Qf molten metal to the centres of the more massive
sections of the casting. This phenomenon is common to most solidifying
liquids but there is an important exception in the case of water because
as ice forms its density being less than water would cause compression

'in the liquid phase.

" In order to justify pursuing solutions of solidification problems
under these simplifying assumptions,it is only necessary to state that
there is a general lack'of accurate numerical results on such problems,
Most of the earlier work ﬁas completed on desk machines with crude finite

difference approximations,
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In addition to this shortage of results there are several aspects
of solidification problems which have not been satisfactorily discussed :
and which add greater stimulation to looking once again at this class of
problem. Of particular interest is the behaviour as the time of complete
solidication is approached and, for example, an answer to the.queétion:
"At what‘rate does the solid-liquid interface épproaoh the centre of the
" gylinder?"

‘ The main difficulty in obtaining analytical solutions of solid-

: ification problems stems from the fact that as the liquid undergoes a
change of phase from liquid to solid, thermal energy in the form of
latent heat‘of fusion is liberated at the moving interface and this
leads to a non-linear boundary condition at the unknown interface. One
of the few exact analytical solutions (see Carslaw and Jaeger [3‘2.]) is
.that found by Nbumann and Stefan relating to the solidification of the
semi-infinite regior when the surface wall temperature is suddenly
decreased below fusion. The inherent non-linearity can be removed by
adjusting the wall temperature so that a constant solidification rate
results,and it is this technique which is used by Stefan (see Ingersoll
et. al.(33)) for the semi-infinite region and by Kreith _Iand Rommie [ 34
for the inward solidification of the cylinder and sphere.

Several authors.have offered numerical méthods applied to problems
which retain the mon-linearity, in particular Allen and Severn [3.5 ] and
‘_36] have been very ingenious in applying relaxation methods to treat
the unidimensional problems of the semi-infinite region and thc.cylinder.

Though the method applied to.the former is quite accurate the conclusion

]
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of the present work is that the same method when applied to the &
cylinder yields inaccurate results. This is apparent on compar;son
with the worﬁ of Poots [37 ]} who has found a series solution, which
is exact for small values of the time. This series solution is
developed in a similar manner to that described by Goldstein and
Rosenhead[§8 ] in the discussién of boundary layer growth when a
cyiinder is impulsively started from rest.

There is now considerable incentive for reconsider;ng this class
of problem and in particular to the problem of inward solidification
of the cylinder. The exact solution is computed using the Hartree-
Womersley technique applied to parabolic partial differential equations
and in addition more terms of the series solution are sought in view of
the possible insight they may give into the convergence of Goldstein and
Rosenhead type series. Two additional terms to those given by Poots will
be found)but the analytical solution will be left at that point and

further terms found using an algorithm,

Governing equations and boundary conditions

Under the assumptions made earlier the temperature distribution in

the solidified phase is given by the thermal diffusion equation
Y i T '

where k is the thermal conductivity, (3 is the density of the solid
(and will also be the density of the liquid), C is the specific heat,

‘71 is the form of the Laplacian_in cylindrical polar coordinates,and
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the temperature will be assumed a function of r only.

The location of the solid-liquid interface is defined by
T=0-E, (7.2)

where @ is the radius of the cylinder and E(t) denotes the depth of
penetration of the front.

Initially the entire cyiindrical region is occupied by liquid at
the fusion temperature TF and then at time t = O the outer surface is
switched to ’I‘o < TF'

Thus when t = O

=0 : = T, , T= = G
and at subsequent times we have;

T=Te, 0srs a-E@),
T= To = Q. (7.4)‘

J)

In addition there is the boundary condition associated with the

liberation of latent heat, L, at the interface:
KT = '{"— dE ‘ (7.5)
Vi o ak .

Common to_the numerical and series solutions are the following

)

transformations.

Introduce dimensionless moduli and new variables ¢
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' E T To
E'=_d.r ) e(r))t)
LRy (54 EK
= § i Al
(A oz (7.6)

F’ =0C ('lr-‘-p ~To).

Then the governing equation and boundary conditions become:

e de 39 £2:00 BLTn & NI DD
- o e (7.7)
Y dc m T li=ign, §as, |

subject to

9"- 0 ak VL':o)

_ 00 _ :
‘9-—\ oo Tn-(sag% 45 Y]"" (7.8)

Tt is to (7.7) and (7.8) that the two distinct methods mentioned

previously are now applied.

Method 1: Series expansions for O and & in powers of T .

Following Poots the unknown functions & and © are expanded as

follows.

S 2k
Z e, _cz(l-\—r)
=0 )

omnd B= 2‘ ]tr(,]) a2

(7-9)

By doing this it will transpire that the .complication of the non-

: linearity is removed, and on comparing the coefficients of like powers
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of T in the equation, having substituted (7.8) and (7.9), then

ordinary linear differential equations foxr 5:"(']) have to be solved.

The first three terms in each series are available in the work of

Poots and it is the intention in this section to find the next two

terms analytically and also to describe a procedure for computing any

number of terms.

1(3.) Analytic solution of ‘;r_(:])

Substitution of (7.9) into (7.6) and (7.7) and thé subsequent

comparison of the coefficients of powers of T yields the following

sets of equations and boundary conditions.

First order solution.

o + 244 =0
5o =00(2) =1, £(2) = ep.

(7.10) .

where f is a new independent variable defined by /5 = -\z-eor? and

the dashes denote now differentiation w.r.t. { ;

Second order solution:

-}l" 2{ 5’" 2f|-( )(eo 56‘53*,
L0 = £ =0, 1/®): 3ep;

R 9—5-?:1’43%:(%0)(30-3&{)}»/ + 4%}',5!

2
+(Eoz) (Cs Co + g(aeé-ze?— 4602:0350/,

..~ $200= f2 (eg_") =05 5;(%): 6_0(4-Coez+2e.ﬂ,

(7.11)

(7.12)
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Fourth order solution:

Yo afdd - 6fa= (5) (t-3e )
+ (e%z)[eoel +24 (e-¢f -2¢e0 %3] £
(7.13)
+ (2202 + 5 (deoes-Seats-5 e + be3 47] 4
*(Gyl(err2eoe i + deceifa]
Boyz $(%)20, £(5)= 3 (ecesre ea).
Fifth order solution: | .
PR A Y SV P %o(eo-sféu\-f3l
4 L(eoragled-et-2eoe])fy
4 'eq;oz(eoez+‘[_4€oel-5€o€5-5e.eﬂ +4e°"»§‘)§-./
; f—oz(eoey([Ze.‘wléoez—éeoeq,-ée.es-3@}]

: (7.14)
+ 12¢0e, {* + 3e343) o

i %& ([eoes + e -}" .,.f_e,‘-r?_eqez]:fi + 3ese, ;FQ)

/
'_;4 (0) = :Fq t%): 0 : 54_ (%") < 3£ (Q.@o&‘.“’zele-} “‘("7’5
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Poots has solved (7.10)-(7.12) and gives e , e

1 and e, in his
paper. TFor the sake of completeness these are included below together

with the corresponding function f'. (4) ,1i=0,1, and 2,

The system (7.10) is solved to give

(4o
Lt o, & 3 :
Fe()=RA T erl LT TER N 2t (7.15)
and e, is found to satisfy the transcendental equation
L eo)
= o\ _
'%_‘: A A U‘f (-;_) = L. (7.16)

With (7.15) substituted in (7.11) the solution for the second terms
in each series is

= Mg e A efs s myge’

e’ )
6red
’ (7.17)
whee  Al= - (e fBe)
ALs  A°
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-

Proceeding to solve (7 12) then we have

Jtz(f)- AT { - A?_f +ex§{§ LA R +QS§]
vef g o,

€od | st Sio3 5 ___el_e,'-’-ég‘ Yo
SRR SRR S LA e L

(l+ ) 1,2 2

z—é-—-»eoCl*{%) 2+ %o (%’_(336‘4& eo 4-4—&)} 3+€_01. 262 (148)

‘, 2 24¢(\¥p)

; )
¥

whee  AT= A ev/e,

A;: A' (7.18)

Iy

o
Az plreae e ° [ +eo‘) (3(360 -4eoty+ 05¢ +4<’,)]

(2+ eo‘-(u(m :

|
2 ——
AZ

A3 = 3 As ™ 2ed(ieo),
AL = G /e eflien,
\ (le&l( )
gi= 202 Jeo-4e2)+ A
4(3' o < As/fw?)

242 C e A
A-, Qpe y Pg ZoA'I ks
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The method used to solve (7.10)-(7.12) is exactly that which
will be described in the following analysis when the next two sets of
equations (7.13) and (7.14) are solved

To obtain the fourth term in each series then the functions :fo(g) ’
f (g\ and ‘S‘l(f) , as stated above, are substituted in (7.13) and there

results the following equation for -}3@) :

-E‘-&i{ﬁ-@fs = ditoaf+ a(3§1+e<j-§ (o<4~o(sg+o(b§") (7.19)
+ e‘f1(°<7+ Kag s £ q *830(\o+§40(\\ +§so<t0)
where
oL\ 4A‘ = _4A'. (2-€2/e0)
oy o K A4= 4 A5 & /e,
ds = AR5 + 285 ei/eo + 2A7(2-2e/eo- eF /ed),
Xg= = X4,
A c & 2 R AT (2008 vasy), (1)
o(g.-.‘,(% AL + 4R5- 62 (%Aﬁ)«ﬂ})-}?ﬁg(bg- 2%)

+5 .A°, e (1_9_3) - {20 A ]es + ‘89 A’é
'y €o €o Iw. €o o



4 A \

+§,? RS (3- e - 2%9) o
7.20

Ao = - 4A$—?_A;,én/% +l‘2A’é&/¢o
- 10AE &1 /oo - BAL(1- e¥/ed - 2e2/e0),
A= — )0 AG

0(‘»2_: 2 A; 2| /Qo,

The problem is now to solve equation (7.19) subject to

; .
}5(0) = 53 (eio)_}o ) 5‘3(2'2?)= se-ﬁ: (%&3 + € C:) ) (7.21)

the three cor;ditions being :_cequired since 'e3, which appears in the

R.H.S. of (7.19),:13 unknown.

Define the operator oé '\(D) by

FROEE (- Q{D—ZV\)} . D= g-g : (7.22)

Consequently the differential equations which need to be solved for each

fy({) are of the form

Ln(® I.'f&,? J\.,@(@, ()
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which is linear in ;hlg) and so the general solution may be obtained
. by adding particular integrals to the complementary function.

In ordexr to proceed we note @

,Z“(D) Lg"‘ej ’-] -f {m(m-D/S M*"“"‘\g } (7.24)

Lo O] nle s et "o, 7

and :ZW () &""e M(M-D{ 4 Q(M—V\)g T (7426)

Firstly (7.25) indicates that to obtain the terms involving the
error function on the right hand side of (7.19) then the particular
integral must be of the same form. Assuming such a form, utilising

(7.25) and comparing coefficients then we find:

le(b)[e{"at £ ('é[“‘f*"‘"’ "a“s{—g_ex(,,gz)]

(7.27)

: (umﬂ«“%{*)!ﬁ{- ('_‘_‘5 +4 “(o)(’:s-z

r {r
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Thus it is now necessary to find a solution of

AsO ks

e$ {«7*+ 4§ + ot § + oo 4 +°<uX¢+°"14’5 }

+ {0(|+0(’Lg“’0‘~'5 gz}) ' (7.28)

\

where A7 = Kt and &g = Kg 4 Ao,

{w &

The formulae (7.24) and (7.26) enable the correct form of a particular
integral of (7.28) to be assumed. On application of (7.24) and (7.26)
there results a solution to which is added the operand on the left hand

of (7.27) to give as a particular solution of (Te19)s

3:59 - (B3s B2 g 838%)
+(BZ + 53:.;8* Bé Xz)u%g ' (7@9)
+ (B%*B%g* 3}7!{"*&,0:; +E> 8)6

where

3
p3z -5 (aved | By= -z % BRs-z%3
.Bi,""‘“@(“”(") 5%: -fzﬂ(g Bé: "3_"(0)
.Bélz'%("‘?x*%l““* an), 58'"@3* Ko +3 Xa),

‘rlz-(dq-\- %0(\\)) Blo= = i'a_ (D(to + % 0‘\?))

(7.30)

B3
3 BB
B3 =-igXn , Bip= “ig Xeo



To (7.29) we must now add the comﬁlementary function of (7.19),

i.e. f
304
I
This will be found by considering the repeated integrals of the
error function. These have been studied and tabulated by Hartree £3ﬁ ] ;

the relevant relations are to be found in Carslaw and Jaeger [32 ],

Appendix II. Write
P

" Sl Ay ' (7.31)

Lq{:.{ Sj«, ufe.g g 1

St £ oaf £ . (7.32)
On integrating by parts we have

| —{1 .

L'mfe{=(—{;6 - Sefe £ (7.33)

and i3 ofe 4= ‘ﬁ[%{-i{ L'u,fcf] | (7.34)

. = lq_[(“-l{l)ufc g_ %’_‘—{ Q-‘S"]‘ (7.35)

The general recurrence relation is

2ni ok = o - 24 ©ofe f (7.36)

which shows that '§(§)=MA{0§ satisfies the differential equation
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? |
%’}g + 29 %é: - 2nt = 0 ; (7.37)

and this is the homogeneous part of (7.23).

Consequently a complementary solution of equation.(7.19) is

= afe £, 1.9

(L+¢Y)

NEX LTI 0 DYt I Y ROY L e

Lach of the terms in square brackets of (7;39) is a ﬁolution of

(7.37) and so the complete complementary function is:

b= X Bgragls RIE €S 2680 2uf4). o

where A and A are constants. The general solution of (7.19) is:

S(g) < ® oo KLE €50 #3924 Dert o]
e spl g gty

3 A 34 3 e
£ Y.337+Bg§+52§1+&w§3+8u§ *‘5&{3]6 {. (7.41)
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Since }s(o) =0 then it follows that

-

A= -hleieed]. (1.42)
Also we have §3(%€) =0 , aad henoe
N 1(0 > lf‘ + ey t{y_:-o 5 (7.43)

where 2§0 (3@ y. %:o ):

m=-;ﬁf B8) (20 (e g el + [ R g edlequen)
NCEBIE 53e3)+ (54 25’%“% ) uf (heo)
it L RE D
8y = ﬁ"A‘ -<zeo)2)

and, B?ﬁ B3 - Z‘A?ea’/ﬁ.&o :

The boundary condition has been put in the form (7.43) since €a
is still unknown. It is on solving this equation simultaneously with
that resulting from the last condition in (7.21) that both 7\"‘ o Qs

are now found.

On differentiating (7.34) there results:

;f-s' (30)= U3 + Gpez + ¥s A", (7.45)
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where §3=-2{T (83+8; (3% ey ¢ (3436 ert geo)
v (83 + 0 8) ¢ (BY+ eoBy)ef (36).
; {FQ% B« By + (% B+ 28)-287)%
+(%§Bé+3&i,—zé§)‘5 + (48 -25%)@5
eob} C:&&)l (7.46)

AX

Y= 2 A‘ e—'“) ("i%’),

n‘
0 ke

Then (7.21) yields

{3y vi¥s ey 4+ 05 7\¥=— 5(3&3 +5[Ae,‘e:_/zo,

5 ' (7.47)
of e«,b (5’4.-5@ + ¥s :7\* = b(?.e:\_;_:: £ b’b- 747

Equations (7.43) and (7.47) can now be solved to give:

Ca= Jo¥3- 81¥s5 - 5/33\‘&7/60

(7.48)
295 + 5{5 fo‘b’ob"q.

M N '%0(51" e31,).
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Hence the form of 53(@) becomes:

-

5_3(@_—__ A34 A3g+ A3 2, A’S 83
2 (MG +ASQ L@ e a2 4 o g S
SACTL PR ST AN N
As= B ) A= E>32"'?’7\*) A;:Bg’ Ag: 273‘)

where

A = B | A= Bgi3R AG= Bg , A7 = oX,
. 3 N 3 33 e (7.50)
A} = B) + 2R/, fg = By, A= B +2A/IF,

A?\= Bl AIL' 6“) P‘-lasr’ 5?2..

Thus we have completed the solution for €3 and §3(§> and are now'in a
position to seek the next terms in the expansions. Substituting the
known solutions €{  and ‘f (4) , for i & 3, into the right hand

side of the differential equations (7.14) we obtain:
-5», +2g§4-8§4 §+o(1)s+o(3§
TS Figa w0
R R S o

4 (g +Rg8e o o8 s 6 o R 50y P e ) €
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where Slo= T2 Al + T AV + T Ai +2A3
Y= 403+ (0i+ A3 4+ 2GAT,
3 (034 TOA] + (T3 +TAT + o AT
% = 6A% 4 (203 +G3 )AL + BA) +(0 + 2R
oy = (3q 4-0‘;:.)A33)

A= 2A% + TR AL + T Ay T A ¢ T AL

G5= 4RY + (Mi+ TDAL 420 A2 + (T5 +T0)A]
v (T + 63) A% (752)
= G A§, + (277 +T0) A; + (2ry ¢ NG +3AT
q= (37 + TIAT, |
ag= 2A°( A4 + @ (AL ¢ 5>+Q'4A3
£ .2 A%+ To AR
g = AA?'Z, +f;r A 4“3 4 o‘(gq ){.G'l(Zﬂfl*.z‘?Al
4+ 0 (AG AR ) + (U'so +0’5)A3 ﬁ. (cr4 +m,)‘:\
o+ Zea g Al - TG+ T Ay,
Do =GR Ry~ 485+ (0A), + & A5-245)
+ G (305 & A5 - 2A) + 13 (24] Z Ai%om;

™

‘ 4% (75 + @ A +(€"ZO’4)A}> W'tzﬂ%o)
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- %
G o= BA, +4RY- 483 o ()0 F A2-203)
P
- 2@ A7 £ (3AF ¢ Z AT - 207) + Hé_;\‘;
L 2“‘5/'\17, + T A% + T A%l) ,
Rz 0AY - 4Ad + @ (4A) w283 -2A%

i
— 2T Ay - 25 AT -lb AL + T Ah |

u

A= 4R ¢ v.(sa?s—zA?\)—log A% + Th A?s,

T e -AP:?B?Q-UTR?z_ ; . Aig = -2 A»S_w,.
Moreover in the ahove :
q.’|=‘ -be leo 0= 26,/{0 ’\7:3: i*e;z(eéae.‘-Zeoeg))
T4 = .Zaz/eo,U‘S'-'- 21[4@06|'5€o€3'5€|¢1]) 0p= 2&3/&,)
A S (2e7+4eoea-Geies -3e2) | Ty= -12 /eo,
Q= 24¢ /es, Too= éoa. (eoesy + e e),
ris g (e v20e), Tan Rer/en,

The general solution of (7.52) is found in the identical mamner to that

described for the solution of (7.19) and is :

(7 5;)
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$4 2 4 (34124244 0%) + /R Hf ]
=4 ; (*raf ) +/w [(34-\2{ +4{"’)a§§4§\_(\o§41§3\,65]
+__ (50+gl§+ B, £ + &‘;Jﬂ + (Bi-»&*{-r B"I{L 8 ¢ 3)@(& ¢
4, p4, 0% g2 o
+ (Bg+ Bag4Buf’ #8448, *5*’3 5, {0 B\SO , (7.53)

W, 4- 'l A L "
nere B = =T [ + 2o B¥= -5 (& +3a3),

AR -
AB A (0(\\-\- an ‘\"" 0(5\ B+ = -gg(o(\zi- 0(\45

Aol I b, %
By "3, (A3 +% st L
(‘3 & ‘S\) %\4- 2% d\q-)%\s-': _54 d|g.

In th = i an
e gensral solution (7.53) there are three unknowns /« /u
]
ey which will be ven in (7. =
specified on applying the conditions given i ( 4
name]:r | i

= %) - : o
:;4(0) 44(-2-_\ =0, {1(% =%°(2.eoe4+1e,e,3+<;)(3_ (7.55)
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The first condition yields,
« . Lia4 . o%
/W : ’5(604'&&\) (7.56)

and the second can be written as

~

[ 3, + §oeq=0. (7.57)
Here

Bo= (54363 + § &) e} (400 + & 600+ £ 0P

-

1= -4 (8] 884363 +4e8) (86381 B8 i 810)
(8, + 38 e + 487 ¢3 +§ 876 ) et (3e0)
+{6 ‘0’3_°+‘;& & 18} ed + L Bhes”

+BA ST« 8L, (%) Bf’s(e-g\ﬂg gl

Y= -0 Ale -aeo)"

(7.58)

= A y

\’L(T‘T

- 5 4 &

In order to utilise {the boundary condition associated with the

liberation of latent heat in (7.55) we must write down the differentiated
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form of {4(,0 evaluated at §= ieo

|

L@ = T

. This can be taken as

+ 254 €4 +‘Z55/{7C) (7.5

59)
whero X3 /v. (12¢0 +’2.ea3)+ (8% + B} e +3€>"“(e°\)
r(Bg+ B¢, o + % B eo)u’{;(ﬁea
4 {(E" +& B )+ (o% 50 - %‘Deo
+(37 + 2 87, 287 )(&Y
(7.60)

+ 4By + & 8] -281, (%) +(58]-28% )&
+ (664282 &Y + (781 -288)&)"
-28% (%Y -z&,s(eo)} b
= G (Ji@ol— ) el o A%,
Vs = (r2eo » 2e8 ) o (4 e0) A2 4 (4 +¢5)e &eoﬁl

Thus substituting (7.59) in (7.55)

( .84- o Geo(ﬂe;j- -s'—:&S /‘/:' = 3_£ (9-6;63 +€;\-_%3 ; (7.61)

we have a second equation l_inking the remaining unknowns /';:, and 0,4‘
Solving simultaneously (7.57) and (7.61)}
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eq = (5 ¥s + £ (2ee3 + e2)- 1 T0) (7.62)
( 3 ?-{O—Coe-o(%fo-iz%s) A
~ \ i T '

and ‘ /A« o T %:0 ( o) + Xl'e“") (7.63)

The final step to complete the determination of fifth terms in the
series is to write down 394, (g) .

)= (Af+ ATg. AL g e AL 03+ ALY
(AL R AR e YL At £ ek g

(A/fi-A g +A { A?@& 4 ?S-&T“'ATO& ,-)S)('[ 64)
where ALz Bo+3, A= B AT= BY 412,

45’:" B‘t”))ﬁ‘é‘f\'.'_-'AA/"‘?) Ag: 84‘-} *3/;:') At‘gz)
o z+n/:,a‘%= &‘3 4R A=

Ay = /w hegd At-sfiaf,
: 2 /w('z-és)
A‘} 7 6l"’-) &15 ) &:ﬂ 4'}

N) MRe w«hu:g
oj—yo.gu 164 ¢\
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-

=y

eo(l 2E1) aﬁz )Z{Z \ fr_P_‘({)Xl%') (7.70)

=) =0

where in this last expansion-V is defined by
g_(\+:§1a+ (2_&&\ LS 7171
e i \/r = : (7.71)

In order to determine the form of V 1let
: r

3 = s '
A Z. NSW S ) L2
v=0 ,

so that
= L(i+D) ' |
-— . b
Pl il N e D
A -
Ws,i."" g—;ei"“"i Ws-n)u._. }briJ/i
. | Sy, (7.74)
WS,‘,: o,

and then

L+ S %
-1
V= _7_- W\‘,,r (%5)‘) 2 (7.75)
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- 1(b): Numerical solution of J_;:‘D.

The preceding analysis can be readily extended to obtain further
terms in the expansions but the work involved be‘comos inci-eusingly more
iaborious. The present airn.is to derive the functions. fr(,g\ and the
constants €. numerically,

As before introduce /S'-- Jieof) so that (7.6) becomes

i@z (ﬁ)aglﬁﬁ_(4 et o ()(&)\o (7.66)

LA T ART S TS -] o

On substituting (7.8) and (7.9) into each term of this,equation the

' series expressions for each component of (7.66) become:

Z Jt"“ ,g} 'C , | (7.67)

=0

bS"

f-o

P
S+
\/
[
QO
9-|$3-
N 'm
ulg
ﬁ“‘/
6' N&
i
.
S
~A
[\/i?
~<S
?
_U
+
—
(=)
—9
o
7
_?
=
[P
(Op
o=
N
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r/ :
We now equate the coefficients of t s y for r 7/ 0 and obtain

differential equations governing UC“,S)> o The boundary conditions to

impose on these are realised by substituting (7.8) and (7.9) into

.0=0 ‘{ak 4=0,

(7.76)
B=1 aud Zﬁ ()(u,aa ok {:-‘ie,o.

which result when &: "z‘eof') is introduced into (7.7). Thus we

have

=0, $(%)= 1 o am

YT;”L(C’) : ,}W (%0) =0 j:m.. v (7.78)

and

&0 ; : ) o

'y ; : J
Z Jcr/(e-z t/z = (ﬁeo) (f"]i'oejﬂr.j C'i (7.99) |
s F>

Equating the zeroeth order terms in (7, 76) and (7.79) we obtam (7.10)

as the equaulons governlng:f (g) and eo and thus we have, as before,
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’jo(@"” {_E_: {6.60 c(ieof,e,r&g

where eo is the root of : : (7.80)

(geo e, "“’f’(z&)

|
The root is unique since " eo) = iy Feoe Uf(i@o) 1 i0 a
monotonic increasing functions
As in the analytic solution it is necessary to know fb(g) and
@i for 0 ¢ i £ r-1 when calculating Jcr(.ﬁ and €r . The method
- th : R
 for finding the r terms will thus be described assuming the preceding
terms are known.
: Nt /2 4
Comparing coefficients of CT'“ in (7.66) and using (7.67)-(7.75)

the equation to be solved for }r (g‘) is:

Q) +(aqu[§%o[ rgpridepecp- @]\

-\

-(%oi%{%fﬂ(fvg e"”"rf]§‘(%).;)VPfi-r-f<>' T
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This leads to the differential recurrence relation:

D 20 H 0 - 2050

- £
= (é);)\(?ﬂ.?-\ &AZM LZ @F@P-A |

S (7.62)
'(%i)Z (]L‘WD sl pal e\’e“‘PﬂD' |

6‘:«0 p=o '
" In addition to :fr@ being unknown in this equation €e is as yet

unspecified. Fortunately 6‘- only occurs once on the riglt hand side,

in the last term, so is easily isolated and (7.82) is regrouped as

' follows:

IFr" (g\ +2f frl( )-2efcl0) = 9(0) +ec \’/.-I(@ (7.83)

=\

where ; be(f)= 9—\2 VF pt (4) + Z-.)Z_ qy‘fq(@\lz Eper -a]
. 45 T

(QS SZ j’q,@{jé. (c-4- p+0) ep e.r-f,.;{\

q=-l
-(2) 3%({); (r-pu)eper), (7.64)

me Y= -(% LE2) $o§).
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The boundary conditions for (7.83) come from (7.78) and (72795

These are
}f‘ ()= DL(' (%f) Ptked] (7.85)
e I () = He 4 e Ke (7.86)

-\

where We = (éo) Z-_‘ (r—J +1) ﬁj er_J
' J=1

and Kr' = (\‘+Z)@,

(7.87)

Introduce again the operator oi.'”(b) defined by (7,22)’ then we wish now

to solve

L) Q) = ¢l + ecp () (7.88)

subject © (7.85) and (7.86).
|

Firstly seek solutions :Fr Cg) and :Fr (g) of the equations

4 44 = () (7.9

3["3‘ (0) = dfr*(eio)?-o (7.90)
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and also . lr jruu(,@ = ’\}/r(?\

subjecfs to JQ_: 2 o) = _J::“‘ (e_:z?) -0. (7.91)

The method of integration employed to solve these equations is
Gill's modification of the Runge-Kutta scheme,and solutions are
~ constructed as follows.

Solve

C Lr =0, Fie=o, R =1, (1)

and
L" ‘(:‘f‘(p = q‘,r(@) ﬁ;‘(o)i.-_o)ﬁﬁ'@)-«o, ' _(7§93>
so that if
J-:(g) ~AciEa () + E: (f) )Ar Consl.;mt('/-%)
nen (7.89) 15 satistiot, ¢ (=0 e J¢ (F)=0 peoviaea
Ar= - Era"(%")/ FE(%

A similar pair of functions %o =0 and F I‘“ (,g\ 545

introduced to solve (7.91).

Now let }l‘q3 = l_ :Fra‘(/() + €r -}rxa‘(K) (7.95)
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so this function }T’(ﬂ) satisfies (7.88) and (7.85). " determine

€ evaluate the differentiated form of (7.95) at f:. Jie"’ AT, @t

; /
W) = f D ety aw

and solve this sirulteneously with (7.86).
The function }( (fg) is then obtained by substituting the veolue
of €pr into (7.95), thus completing the cycle which determines tho rth

terms from the previous terms.

2, Direct numericsd solution of the governinge equations

The previous series expansion for & shows for snull T that £~'C!5'
snd consequently g,i is singulexr at € = 0. For this reason any attemlﬁt
to start the numerical solution at T = 0 will lead %o errors,and in oxrder
4o avoid this problem the previously obtained series solution will be
used to start the integration procedure at soﬁe finite small time.

Consequently we take the governing equations in the form (7.66), i.e.

Fo dz. o9
% s @ E R R-RgE o

and the boundary conditions (7.76), i.e.:

p=0 oF f=0; B=) & f-3e (o

and ba?( i) gqg M?;f . (7.102)
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Equation (7.100) will be solved in a similer manner to the pariiel
differentisl 'equations which arose in the study of non-sinilez
condensation flows in Part I of this thesis., In this case the sclution
is available for small time, say at Ts= Co y from the series solutiun,
and knowing this, the solution at time (= tl is deduced by approximeling
to the equation at the time (= J“(Zo + T, ) using the Hertrée-Womersley

. technique. Knowing the solution at a general 'b.ume, = ZN , -that
the time ( = is similarly found solving at 7 =
-( ZNH g (7.100) at c-i(tN*’CNA—\\) 3

Applying the Hartree-Womersley scheme at & gemeral time location

we have ¢

[@’@N , o Hg (20w £ (Zun -2 [ 200 29]
¥er o5t | e Coan e 2 T B

..(‘3 7(2:«3 +£~‘)[.9l“_29_“ 1—_— L[ & + N 09N+\+ 0%« (7.103)
o~ Thrt =T % \=- 2&2_»:#\ 1-7;5..5‘*’ -b_g :85 ]
o €0 .

which cen he written as

DOnsr D0 et d ‘ Mt
-5‘_53- 15 §u _S_S_ + §:. Ne & g?: =0 (7.104)

where S‘-: (.’_2_5\ [Etﬂ-\z- &N"] i A ZN¥) N
€o® Taet = TN o \I- 28 2as + 1-28Sw
Co co

SNt + £~

—keo (Zuw : ‘ (7~105)
g = bleu +{ L&Nﬂ-éﬂ } L - +_2N \ B_:{\{_N_
Tan-TwN e |- 2Ems |- 2—%’;5'_' bg /

HEACTE R

'C'u-\"'tN

)




The condition (7.102) mist elso be epproximeted to at

aend yields
€o [ 3On+ o b_?u Ly (6 2«442'-8'41_ e
bg [} (=¥& Zoth =T ]! I
whilst (7.101) holds at T=Cwyt so thet
em,‘\ =0y 8 =0 3 Ownu= in ,{‘-‘- s eo, (7.167)

Appendix C states thul quagi-linesxisaticn of the cquation ond
houndary condi‘tjons leads to the most rapidly convergent process for
dealirg with the equations a;i‘sing in condensation problems, The same
will be true here but the linearisation of (7.103) to inclvde a teim
§4 ﬁ,,“,\ is by no means & simple matte.f and so the following procedure
has been developed.

At j;he time T= et & value of S N#v is .assumed and (7.104) solved,
in a similaxr manner 1o (¢-41) Lsee hppendix c] , subject to (7.107).

The error Iin the boundary condition is noted and then &Ena| 1s perturbed
by a small amount end & secon@ S.OJ.u.‘tion obtained. Assuming thet {he cxror
in (7.106) “can be expanded as a Taylor series in ENH then a new
estinate of Enwl is calculeted as in the Newton-Ra@iphson method. The
entire process is repeated until gy, has converged to sufficient

accuracy at T=Tnal e
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In order to n::a.im.air.l accuracy as T varies the methed applied in
Appendix C to the condensation problems is now applied. That is the
converged accurate solution at time Ts= Ty is used to find that :Lf
(= Ty +OT . This is now used to compute the solution at L=Tn+28T
which is then compared with the solution at this time ‘obteained by teking
twice the time step length from T=Tn . If the discrepancy is less
. than an allowed tolerance (0.00001 X EN ) then the solution at
T=Cn+ 2.8T obtained by taking the two steps is accepted and the
procedure contirued with the same time step length. Otherwise the time

step length is halved and the process re-sterted at T=Tn .

Discussion of results

Considering tﬁc—: non-dimensional form of the governing eqm;t:i,on and
boundary conditicns (7.6)-(7.8), then it is apparent that the time histoxy
of the solidificetion of a cylindrical bax of any materisl for any
temperature difference (AT can be deduced if solutions are known through-
out the range of P= 'ZL;-"E.‘:, 0 < ‘3400 .

In order to see which part of this range is likely to be jxr.z;ortan't
physica]ly)table (30) has been included giving details of meterial
properties. For freezing water L/ Cp = 160 and since the temperature
difference is likely to be only a few degrees’a, large value of 3 is
expected. The tabulated date for the metels cannot be accuraie since they
depend on the exact specifications,but they do give an idea of the

nagnitude of the various properties and it can be seen for the metels
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listed that L/Cp ~~s 400, Since the cooling of a metal bar is controlled
by radiation from the ;uxface during the solidification process,il is not
realistic to stizmlafe & fixed low wall temperature which would yield

P < 1, and sgain we have /5 FRT.

Consequently the solutions are sought for ﬁ = 10 and ﬂ = 20 in

the zone-of expected physical interest,and for fﬁ = 0.1 at the low end.

To illustrate the nature for (5~| the specific value of (3 = 1.5613
has been chosen. This value can be traced back to Jones [_40] and all
sﬂbsequent authors on the problem have used this case for conparison
pPUrposSEes. Consider firstly then the case fg = 1.5613 and examine the
accuracy of previous solutions.

The full numerical solution, if stexted at T = 0.025 from the
series solution involving five terms, yields results which are given in
table 3! . The time history of the interface is also displayed
graphically in figure 22.’where comparison is made with the numerdical
. solution obtained by Allen and Severn [309] end also with an approximste
‘method formulated by Poots LB]], based on a modificaticn of the Karman-

Pohlhausen technique due to Tani [41 ). The times of complete solidific-
ation by these authors axe ZF = 0.47 and Cf = 0.52 respectively while
the full numerical solution predicts T § = 0,548,

The series solutions with respectively five and twenty-three toums
yield results which are to be found in tables 3l and 33 . The shortex
series agrecs!with the full numericsl soluticn to within 5 per cent for

90 per cent of the total solidification time,while the longer agrees to
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within 0.2 per cent throughout the solidification period and predicts
T-f- =10:55% : ' »

All these models, with the exception of the series involving only
fi?e tefms, predict that the ihterfacial velocity decreases from its
infinite value at T = O but accelerates as the time of complete
solidification is approached. The singularity at T =0 has been
avoided in the numerical scheme by starting at a finite value of <T
but there is also an apparent singularity in (7.100) at £ =1 and
g: -lie, whis:h fmust lead to errors in any of the methods.  Allen and
Severn neglect both singularities, and though no doubt one cause for
their loss in accuracy is the size of the mesh length used in the
relaxation method, it is doubtful whether the scheme as presented could
produca the correct solutions even if the mesh was refined.

The solutions for @ = 10 and @ = 20, which are given in tables
34 and 35 and displayed graphically in .f'igures 2 D5 and St q, F
exhibit similar forms to those for I@ = 1.5613. The temperature
profiles across the solidified annulus are initially almost linear but
as time progresses they become increasingly more concave so that %?] at
,7 = 1 is increasing. As before the interface accelerates towards the
axis as 'C-—y"(_f_. The solution for (6 = 0.1 only behaves in part like
those for ‘6> 1, in that the velocity decreases from its infinite value
at T =0 and then increases. In contrast though as time progresses
the concavity is»in the opposite direction and 0B et r) = 1 now

l

decreases, which is apparent from table 36 and figure 25 .
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The times of complete solidification are given in table 37
for (3 = 001, 0025825613 84540 and 20,

The two-fold incentive for this problem has been stated and
having_produoed and discussed the numerical solutions we are now in a

‘better position to study the convergence of the series.solution.

The radius of convergence, Z;{ s of the serias

£z Z e Jraiat S E 2 (7.908)

r=o

is given by

CK‘; fim (Qr/e”)z (7.109)

The first twenty-three terms of (7.1.08) have been computed for the
case B = 1.5613, the coefficients € being listed in tahle 3% , but
from this it is not possible to conclude that there is a specific radius
of convergence\sinee the ratio ©f /e,‘.,,,,\ is decreasing almost linearly
as x increases. However it is possible to deduce from the following
thabt the radius of oonvejrgence cannot be greater than tf .

To establish this consider the ecquation (7.7) and specifically its
form as the time of compiete solidification is approached. In this region
E—> 1 and the solidified phase is given by 0 & r} 4 1. Thus it is
apparent that the series cannot converge for T= 'C.F becanse the expansion
of (1'- ar)T‘l only converges for En<i.

It has already been acknowledged that this singularity causes the

full numerical scheme to predict erroneous behaviour very close to Ts= t{; ¢
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but if T = 0.548 is accepted when @, = 1.5613 then Tp< 0.548. Tho
fact that longer series agrees so well with the 'exact' solution must
indicate there is a non-zero radius of convergence, and it seems plausible
to suggest thabi the series will converge for < (f bu%t not for z‘.—_[f 3
Tl}o corrvegsponding data to that givean for ﬁ = 1.5613 is @.’L'v.uu {for
the case ﬁ = 20 in tablias 32 ,35 and 39 . Comparing those one is

able to reach the same coaclusion as from the data for @ = 1.5613.
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Latent Heat

Maberial ]| Shatel|iy s sl Speelflc|Mdeniuty L
conductivity 1eat.cg 3 : o .
col /sec.cm.®°C cal/g/"C| g/tm” cal/g G
Water - 0.0001 44 1.0 1.0 .80 160
Ice - 0-9053 0.502 0.92
Steel molten| 0.038 Q%2 7.2
solid 0.076 0.165 7.5 70 424
Aluminium | molton| = 0.411 0.251 2Rand. A
: solid | 0.411 0.206 | 2.70 2 430
Brass molten - = e
solid.| 0.25 0.09 8.5 36 400

" Table . 30.




for the cése /3

1.5613 .

N- Numerical solution; S- Series solution involving 5 terms.

0.1 0. 0.3 0.4 0.5 0.548

N S N S N N S S N S

(0] 0 0 (O 0 0 0 0 0 0
0.190 |[0.190 | 0.176 | 0.177 |0.163 0.151 [0.155 [ 0.137 |0.145 | 0.132 | 0.147
0.389 |0.390 |0.366 | 0.368 |0.344 0.3521:10.322"1 0529571 0.315; 102285 1104522
0.593 [0.594 |0.568 | 0.572 [0.542 0.512 |0.534 [ 0.473 [0.516 {0.540 | 0.524
0.789 |0.779 |0.799 | 0.785 |0.758 0.729 |0.763 | 0.682 {0.754 [0.639 | 0.751
1.000 |1.000 {1,000 |1.000 {1.000 1.000 [1.000 |{1.000 {1.000 {1.000 }|1.000
€ [0.346 [0.346 |0.506 |0.505 |0.642 0.772 {0.757 |0.912 [0.871 |{1.000 {0.887
é%i 1.855 11.854 [1.435 |1.417 [1.303 1.315 |1.164 |1.580 (0.121 12.395 |0.954

Table 3\ Temperature distributions ard interfacial fositicns

* Og)




I3

1

o 2 3 4 5 5.3 245

0.334

de 00 0{181

0.492 | 0.627 | 0.761 | 0.914 | 0.969 | 1.000

0.142 104132 10.139 |0.174 | 0.195 |0.208

Table 32. .. Interface position and velocity (3 m 20,0

Series solution using 20 terms.

0.2 0.3 I' 0.4 0.5 ‘10.548 0.55

c O 001

£ 0.!]0.346 | 0,506 | 0.642 | 0,772 | 0.915 {0.997 | 1.001

d& 1.855 | 1.435 | 1.308 | 1.329 | 1.575 |1.834 | 1.872

ac | ® | ; |

Table 33 ., Interface position and'velocity,[_), = 1.5613

Series solution involving 23 terms.



1.9875

2.4875

2.693

N

S

N

S

N

0.2
0.4
0.6

0.8

de

ac

0.327
0.361

0.176
0.363
0.563
0.775

1.000

0.326

0.356

0.159| 0.162| 0.143| 0.151
0.334 | 0.341| 0.307| 0.324
0.529 | 0.540| 0.496| 0.520
0.749 | 0.759| 0.721| 0.746

1.000 | 1.000| 1.000] 1.000

0.483 | 0.477} 0.616| 0.600

0.280 | 0.266 | 0.257| 0.228

0
0.126
0.274
0.453
0.680

1.0CO

0.745

0.268

0]
0.141
0.307
0.503
0.733

1.000

0.7G8

0.206

0
0.102
0.226
0.382
0.598

1.000

0.896

0.369

0
0.1%2
0.292
0.487
0.721

1.000

0.807

0.192

0.087
0.192
0.319
0.485

1.000

1.000

0.908

0.128
0.286
0.420
0.716

1.000

0.846

0.187

Table

24 . Temperature distributions and interfacial positions

for the case FS = 10

N-Numerical solution; S- Series solution involving 3 terms.

4l



n i S N S N B N S N S N._ S

0s 281007203173 10155 0.159' 0.139 | 0.148 | 0.120 [ 0.138 0.090 |0.128 | 0.074 | 0.126
0.4 | 0.356 | 0.359 0.3é8 0.337 0.299 0.318 | 0.262 | 0,302 | 0.202 [ 0,286 | 0.165 | 0.281
0.6 | 0.555 | 0.558 | 0.522 | 0.534 | 0.486 '0._514 0.437 | 0.496 | 0,346 | 0.479 | 0.281 | 0.474
0.8 | 0,768 | 0.771 | 0.743 | 0.755 [ 0.712 | 0.740 | 0.665 | 0.727 | 0.556 | 0.715 | 0.454 | 0.711

1 1.000 | 1.000 } 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.C00 | 1.000 | 1.000 { 1.000 | 1.000

E |0.334]0.3330.492 | 0.485 | 0.627 0;609 0.761 | 0.718 | 0.923 | 0.819 | 0.998 | 0.848

9€ 10,181 | 0,178 | 0.142 | 0.134 | 0.132| 0.115 [0.140 | 0.104 | 0.206 |0.097 | 0.322 | 0.048

Table 35 . Temperaturs distributions anid interfacial positions
for the case FS = FI0

N- Numarical solution; S- Series solution involving 3 terms.

"¢Q!




0,02

0.04 0.06

0.08

0.

0.114

N

0.2
0.4
O.6

0'8

de
atT

0.281
0.542
0.755
0.906

1.000

0.367
9.58

0.281
0.542
0.755
0.906

1.000

0.368

9.54

0.272 | 0.272 | 0.265
0.531 | 0.532 | 0.522
0.745 | 0.747 | 0.737
0.906 0.902 | 0.895

1.000 | 1,000 | 1.000

0.530 | 0.529 | 0.663
7.16 | 6.99 | 6.24

o
0.265
0.523
0.740
0.898

1,000

0.656
5.89

o
0.515
e
07895

1,000

0.784
5.92

0.515
0-733
0.895
1,000

0.767
5.23

0.257
0.511
0.725
Of883

1.000

0.904

6.22

0.253

0.508

0.727

0.892

1.000

0.867

4.80

0.258

0.513

0.725

0.877
1.000

1.000

7455

0.932
0.457

Table

30 . Temperaturs distributions and interfacial positions

for the case f& = 0.1

N- Numerical solution;

S- series solution involving 3 terms.

V8
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B I5
0 . 0.114
D.2 +10.153
1.5613 0.548
4 1.19
10 2.69
20 5.30

Table 37.
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i er SClecat. | (errern)?
0 1.0337 6.838 46.76
1 0.15118 1,603 2.569
2 0.09432 1.235 1.525
3 0.07640 1.086 1.179
4. 0.070%69 1.005 1.010
5 0.07005 0.953 0.908
6 0.07348 0.918 0.847%
7 0.08004 0.892 - ' 0.769
8 0.08971 0.873 0.762
9 © 0.10281 0.847 0.734
10 0.11997 0.844 0.712
1 0.14208 0.834 0.696
12 0.170%4 0.825 0.681
13 0.20637 0.813 0.669
14 0.25227 0.812 0.659
15 0.31086 0.806 0.650
16 0.38554 0.801 - 0.642
17 - 0.48114 0.797 0.635
18 0.60366 0.793 0.629
19 0.76105 0.790 0.627
20 0.96%60 0.787 0.619
o1 1.22486 0.784 0.615
22 1.56250 - PG

Table 38. Coefficients er in series expansion forp

E , (1.19). b = 1.5613




l%]

o €c N/ (] (.er/(im\l
0 . 3.136 x 107" 19.44 | 378

1 1.613 x-1072 4.837 23.4

2 3.333 x 1073 3.755 | 14.10
3 '8.881 x 1074 3.320 | 11.02
4 2,675 x 1074 3,083 | 9.506
5 8.676 x 107 2.934 |  8.609
6 2.957 x 1072 2.832 8.022
7 1.044 x 1072 2,757 | 7.599
8 3.787 x 1070 2.701 | 7.296
9 1.402 x 1070 2.655 7.048 |
10 5.281 x 107/ 2,620 |  6.862
11 2,016 x 107! © 2,589 | 6.702
12 7.787 x 107° 2.564 |  6.574
13 3.037 x 107° 2.544 |  6.470
14 1,194 x 1070 2,524 |  6.370
15 4.731 x 1077 2.508 6.292
16 1.886 x 1072 2,494 6.219
17 7.563 x 10710 2,482 |  6.161
18 3.047 x 10710 2.471 | 6.107
19 1.233 x 10710 2,461 6.057
20 0.501 x 107" = x

Table 39 . Coefficients.er in series

expansion for & (7.19))‘3 = 20
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Apvendix A: Property values

-

In the condensate phase physical properties are taken to be those
of saturated water at the appropriate temperatures. The data for water
are available in tables compiled by Mayhew and Rogers [.4.2] , and these
as ha.ve been shown by Poots and Rogexrs [43 J , “can be represénted by

algebraic expressions involving the temperature.

& Z Ap CiTa= [T-Taa B = o7l /SOC)

=79 (UW +[Ts-Twlo - 50°%} /@'CS“

0
1"
e §

=

ex P C— ({fw-&[_‘\'.s Tw]@ S0 C} /‘ao C)]

e
! \

\o ; '
ex P &Z_‘ D (Tw +\Ts-Tw) O - 55CY /tgo"(j] X

Here B is the non-dimensional temperature introduced in Chapter 2 and
A., B., C., D. are coefficients listed in table 1.
L S el D
The values of the physical properties of the vapour phase are also
taken from [_42] and are listed in table 2 together with the corresponding

values of the properties at 0°C and 100°C for the condensate.
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Avpendix B:  Integraticon of ordinary differential equalions (Runge-Kutlz)
AppendlX D - £ 1 S dla),

Here the numerical metho{‘d for solv&ng the ordinary differential
'eq_gatior.s (3.15)—(3.?3) is discussed.

The equalions governing the transport o’i‘ momentum and energy in the

- condensate phase yield a third order equaticn for f and a second order
equaticn for G, both of which gon‘tain the unknown conslont <o. At ¥ =0
we have G(0) = O and £(0) = £ (0) = 0; which is insufficjent informaticn
to start step by step integration from that point. However if wvalues for
£ (O), G (O) and ¢ are assumed then the procedure can begin. Using Gill's
modification of the Runge-Kutta technique the two equations are solved
for 0£ Y €1 and the value of ¢(1) is store.d. Using the interfacial
conditions (3.20)-(3.22) values of £%(0), X ,(O) and f*" (0) are calculated
and the vapour equation (3“7) integrated from r)d =0 to r)v= 5“
(at which point i‘*” is zero to within any .desired accuracy). The valuve
on f‘ /(r]¥) is then stored. At this stage no reference has been
made to the energy balance (3.23), and the object is now to discover the
values of £ ¥(0), ¢(0) and & which then yeild the functions f, G and f¥
. such that G(1) = 1, :F*' ¢ ﬁ*‘)"-\ and, moreover, satisfy the cnexrgy

balance. l

It has been found that the following scheme is not convergent fox
arbifrary values of f o (0), G'(O) and @, and indeed quite accurate data
must be provided. This is readily available from thé formulae given in
Chapter 5. Denoting the values of G (O), £ (O) and 4) respectively by

o, (5 and ¢ the procedure is as follows.



3.

With & fixed, solutions of the equations are found taking

x ; fi'(o) =B
x +8x 5 () - g
[ ,f(0)=(3+8(3

where Sof and 5(5 are small compared with & and (3 . Then since

(i) e(0)
(i1) & (0)
(1ii) @ (0)

G(1) and f*'(“’) are functions in o and ﬂ which can be expanded in
Taylor series, new estimates of § ”(O) and G ,(O) can be found such that
¢(1) and f*/(ﬂ) are nearer to unity. With z; still fixled this routine
is repested until G(1)-1 and ¥ /(00 )-1 are both as small as may be
required. A measure of the error iﬁ the energy balance is stored.

With 4) perturbed to 4> <+ SQ) , where Sd, ig small

b .

compared with CP s the procedure is repeated,ond assuming the error in
the energy balance to be a function of ¢ s and expandable in a Taylox
series, a new estimate on) is obtained. It is also possible to regard
A and (3 as functions of ¢ , so that knowing the values of & and (3
when ¢ = d.; and ¢= Z> + 5\{; " then the values of & and /;’ corresponding
to the new d; can be approximated.

The entire process is then repeated until the conditicns on G(1),

f*/(aa) and the energy balance are satisfied.
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Appendix C: Integration procedure for partial differential ecouations

In this appendix details are given of the numerical scheme applied
to solve the equations arising in the problems of condensaticn onto the
plate with a retarded vapour flow,and onté the cylinder.

These are parabolic non-linear partial differential.equations, The
solutions are ovtained using an iferative scheme stepping along the body
surfacef Denoting the distance along the surface of the n.th stage by XN
the problem is that of finding the solution at Xy, once tﬂatfat Xy, is
known. To this end the equations are considered at XN+%’ and at this station
derivatives in the X direction are replaced by central differences, and all
other quantities by averages. This yields ordinary differential equations
for the functio#s athNﬁ and because the solution at XN appears in the
coefficients, the solution is found using matrix iteraéive techniques.

This is the method proposed by Hartree and Womersley[}&], which has
been found to provide a stable convergent process.

‘To.start the step by.step procedgre the solution is demanded at X = 0,
and, as‘was noted in Chapter 4, although this knowiedge is available from
Runge-Kutta techniques, this soiution will be obtained using the matrix
inversion routine.

The methods for the cylindgr and the plate differ only because of
the variation of m and Um*(x) in the two problems,and it will suffico to give

details for 'the case of the cylinder since all the terms in the differentiul

equations are retained.
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Congsider firstly the momentum equation for the condensate phase.

FIF _dF ¥F
f?' (ﬁs 0\/;3 - t(X\F :. = v(% 3 xt() = b/’- 2’)\/ >x0Y

i %F (ﬂ‘/ i t(xy (’: <C> S‘MLZ.C) cos(z'-) = O. (c.1)

Taking each term individually they are replaced using the Hartree -

Womersley technique as follows:

2 (49_#5 S"= 2{[(05 s N-H] " [- N ~ N“‘} }

a\/ (Os/;
) F ?a:'-::_ = "‘ (ewn+ ‘:m—D(FN +?NQ(FN+; ¥ FN II
s & \ ) I \2=

AN ' )
CFBF _OFIF 1. (s Xout ) (s E ) Fues-Fi F@m& # vﬁi\fFN' rNJ\+F~} IV
S T H T 2 2 (e 2 ke z
> B +Bu Ney — EN ‘} \'
X 37( ( D ?G‘N“ +>¢Q(F‘n-n ) XNet = XN 1)

X!M KM\

t(x) (OS( )%“(ZIQS(Z) ( N*\'\'t“\PS s.(bg (7,5;\ Tz BT 3 GV c_(,O

.l. ;_’f
b S

"-‘N‘\ /C XN'//C’

(=t
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In these expressions the subscripts N and N+1 denote that the functions

th th
are evaluated across the N = or (N+1) 's mt,ions,and dashes now denote

differentiation w.r.t. Y. In addition let

, : " KNl Xeie| A S P
R L) Sin " cos ™ | s TS cos™Y |
X= et = Xy owd (Xun)= S' e L 4 _____?_______: :
l KN*VC ' XN/ C J .

Then recombining the above terms there results an ordinary differentiution

equation for FN+1 s

; ! " '
) PN "
[»%/‘%’s— F-N-H ] + él FN-H + gz_ FNH L 'S-'S Eust + g"r FNHI

W \ 2
+ €5 Pt Fun ¥ S nn Aum & §7 Sl $Q vl Fra (c.2)

' !l \2
-@- gq vt P CN*{\“ 4+ gxo et Fuﬁ-;l - §\4- Ewit (FN.H)

+ 3B 3B C{:N-&bm—\\s-fj;;\ + S (Ena )’ =0

where 4—‘5"= (1=%) En Fa ) ff§g= (H’X) FN“ :
4 g:.’ (H'K) hN FN“) : 4§CI: (\.\,3))
b 3o (FY) PN (LD R 480z —201-0) B
345 F2080) tN;N‘) 16 Sn= ‘0"5" 2\ (Xm—b» (c.3)
' c.3

4 §¢5= C\-\'{)tN) SD_= §“ 1’/(ON)
4Se= (—%) P, ot 4 3= -1,
| 4 g_l:-_ —(\#ZY)EN) ‘

-

i 5 e .
SRS (:z/“: FN} AL NN
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Equation (C.2) is a ﬁon—linear ordinary differentia.l equation for
FN+1 , and in oxlder to solve this using a matrix inversion procedure it
must be linearized in some way. Several possibilities are open to us, and
though many are simpler and easier to program we shall linearize everything
utilisirg the quasilinearization technique described by I'Bellma;n and Kalaba
LM] This is essenlially an eitension of the Newton—Raph;zon development
of a seqﬁence of approximation to a root of the scalar equation £(x) = 0.

Consider a general function of m variables .

Fix, xa,- - ,%Xm), (c.5)

In an iterative method to solve equations involving F CX‘) 50 ’Xm) Silet
the Pt}-1 iterate be the set {le,--,xm?}, and suppose that this is not far
removed from the true solution {x‘,...)x»"f. Then expanding in a Taylor

series about {x‘b. .o )Xm P’I we have

A,

JF . w
Flxy, .- ,Xm) = F(X‘Pa" Xmg) (Ex) (s(s-xsr) At i
: ' S=\ s("‘?r" Km, ) ;

|
Neglecting the terms of OLXs-XsED" then the right hand side is lincar
in X, and replaces F(xiy- --,XW\) in the equations.
As an example chocse (’(\,ﬁ_,xg = X X2 Xy then replacing
; b Pty P the above yields as a lin ization
{MP,-—;XMP’I y{"x) "M.k Y a earizatior

of  x\-Xa X3
XiXaXzy = R XXy + KXy (m-—v‘c)+£,§3(x;—ib+‘x\{\@3-;33(c.7)

= %, (KRy) + Xu (R XD+ X3 (R, Ry) — 2%, KuXy,
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An analogous way of reaching this linearization is to assume the latect
iterate {;\ );'L );&315 is not far removed from the true solution {7&\):;13,'\
so that if - : ¢

X, = R ¥ Xy WAL S ;7.“"‘1/ Wisy = X3 +><'-:,/ : (c.e)
the primed quantities are small.

Consequently by taking

X| X2 X3 = &3 +Xl/)(7—<1+7<:_/ )(>_<5 +x3’)7
expandihg the right hand side end neglec ing second order terms-in the
primed quantities we have:
X1 X2 X3 = X Xz ;3 + x,’ Xy X Ry ;,-‘23 +7(3' %2 Xy,
Substituting for X; from (C,8) then (C.7) results.

This method of linearizing has been used in 1957 by Poots L4S] :
indeed many problems in stability analysis introduce disturbances through
equations similar to (¢.8), after which pr.oducts of the disturbances
are presuméd neglegible. The rather heuristic approach of cthers was put
on a proper formal basis by Bellman [4-4_3 ;

As one illustratioh of the power of this scheme consider the following
differential equation. This was uséd’by Davies and James Br@] to

illustrate the way in which the convergence of the basic Cauchy iteration’

could ‘be imprcvedes

% =. ,ﬂz-t-\ . M =0 x=o0
The exact solution is ﬁ= fan x S0 ﬁ =1 when L=r.lhwing the

Cauchy iteration the equation is replaced by :

|

\ 2 ‘
EIC RS
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and the following early terms in the sequence i/\j?} result:

-

L w3 ;
- - y—4 *
il dii WAy =X AT X (c.10)
Alternatively Davies and James suggest replacing (C.9) by
AP = ‘ ' ¥
oo‘&i Y e p BT Y P =ro i R O
-which yields: | e

; X .
Yo=0, 4= L, Y= eﬂp("iﬁl)og exp (53U du. (c.11)

4

If we now apply the Bellman linearization to (C.9) then we have

2
LR = 24pyp-i = Yp- ¥ Ypzo ,x=0,

Tor this set of equati ns we obtain as leading terms of the sequence
{“jp} e
: X

Ak ah T
Mo =0, Y= XY = L% +_,_u<5>(>&)os expcw) d.  (c.12)
For X= 2:_ we know the exact solution is y.= 1, so the accuracy of the

third function, Y3 in each sequence will be compared by putting A= “-/4.-

From (C.10) : Basic Cauchy : t'j?» (T:'/A_) - 0.947
(c.11) : Modified Cauchy iteration : gy (T/a) = 0.968
(C.12) + Bellman method : 33 ( 71'/4) = 0,995

As further and more relevant illustration of the power of the method,
the solution to the Blasius problem will be found iteratively using the
modified Ceuchy method and the Bellman scheme. The equation to be solved
for f(r]) 15
40 OEN

s f =0
) ) N )
subject to '
/ /
:j:(p): 'f (o) = O , ':; () =)

where dashes denote differentiation w.r.‘t.r).

2
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The iterative processes followirg the modified Cauchy and Bellman

linearizations are‘respectively,
) §’n + ﬁcn—\ 'gn =0, = A o) = 0, im@n =1,
(&> 1(««“\ + -;S:n -f'a\-\ * fun 'gwx - fn-t »fw-s =05 3:\(0) w {©)0 3 Wy=1.

4 {
Solutions are effected by introducing = fj:w and Q- S, )
replacing the derivatives by finite differences and the integrals using

i n
the Trapezoidal rule. As a measure of the accuracy,the characteristic f (o)

is given in table @o) at each iteration.

r n e A B

0 1405 0.133333 0.133%33

1 : 0.339236 0.86%298

2 - 0.424364 0.582174

3 0.455999 0.,485417

.46556 i , ;

4 0.465567 0.4700%6 Tab\«’,-d-o
5 0.468425 0.46961523

6 0.469267 0.46961620

7 _ 0.469514 0.46961619

This solution was found using steps of 0.1', "faking 6 units in
the r) direction and with :’-\OQ))- ')/1 . Such a step length with the
'partlcular simple flnlte difference representation has not ylelded j (o)
to more than four decimal places, but the solution does show the excellent
convergence of the Bellman itera#ion. Initially the poor initial estimate'

for f is modified better in (A), but once the solutions get close to the
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'converged éolution the Bellman scheme is-far more rapidly convergent.
The disadvantage of (B) lies in the necessity to have the lower half of
the matrix complete, making the inversion time of course slower.

Turther evidence of thg usefulness of quasi-linearization is given
by Ames L47])who states tha? the full benefil is only accrued if the
boundary conditions also are linearized in the same way.

Have digressed enough we now readdress ourselves to the provlem
of fitting (0.2) into a matrix scheme’and linearize accofding to the
Bellman method.

Dropping the sufficies (N+1) from the terms in (C.2) and linea}jzing,

the the approximating form is:

M N\ u‘ l l }
(bz%—/us F ) T 5P+ 8B+ F ST 445 (FE’A—EF‘—ES“)
% Y kwg (28l =(ET)

—,_“

+ %o (t E’
+ g (LB +EF -EF) + o (CFF'+ TR F + B 2B FF)
+ g.o(tF +EESEED S (3.3_4- D{S(htd(tm“\ 2 4,5,)}

| (e T ele! ~(=/2
+ Sn S (LY +2E®'F _g_t[;:'] >= e
)
- (c.14)
where b and F denote the most recent estimates of t and F in the iterative
process.

Introducing the new dependént variable Q defined by

|

Q= %(—;F')) | (c.15)
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and taking Q = I‘T )then equation (0.13) becomes;

Y
\/{ﬁf&s Qf)l + X Q’ +)62Q47C30SQ(}\/ +)(4'c+7(,530)((:,1‘.)
‘ A : .

where D= §i+ 5 bS QdY + ok + &9 ¢ o}‘ Qd}l)

X = Za + 23y & +.310E + 2%\4-1;& ; o
.16

3 R Py S R
Xy = £3 + 3o &' + 58 og Q a7 +§‘l&'og Q 4Y

Y300+ 8y A2+ 3Ce e (Zo+ 7 3h),

ond Xs= Zp- S5 & fﬁ o - .8 - 5 &
S e B S e =
-5t ) @Ay —28qt @ S/@dy -SLEQ
=2 &u E &+ {(tu v e )"'(tN—:_'E)CgD_A--‘)‘-, S..}E-.
By making the transformation (C.5) it has been possible to reduce
ihe third order equation in F to a second order equation in Q. Of the
.originabboundar; conditions we have now used F(x,O) = 0 in deriving
the substitued form F = OSYQJ\/ from (C.\5Y),
In order to solve equation (C.15) the range of Y is divided into m
equal intervals of length h, so that h = 1/m, and the differential eqguation
approximated to at the m—-1 interior points using finite differences.

Denote the j°° point across the (#+1)  station by '(x“ +1'YJ.), and the

values of Q,P,/w evaluated at this point by Qj,'(Oj and /u,\) . Then

‘ the derivatives are replaced according to
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e (3)

Q;I=5.'R(@5«\-Qs-\>" b
o) Kl (mw- (p)jvd, 1(PpM):. i
( ke QJ) f {CS/AS [‘r (/R }Q“ﬁ e @f 1§ » (C.17)

! 3 :
andoj Q dY is replaced using the traperzoidal rule, i.e.

I e e s R )

The derivatives and integrals of QN and @ are replaced using the
gsame formulae.

As a result of these substitutions the approximate form of (C.6) at

(XN+1’ Yj) ho

( \J&L : -\—‘ 4 .L . _L ( w4
(%,SE/MSZ s lhxl]@_)ﬂ*'[xﬂ h> g%}.xjs (ﬁ;}l§\k+"')¢5]®)

+ L ﬁs/if" RE Xz’} S

_;, hX3 [_QJ-1+ QJ-3 e Q]*’ Xt SR A

(c.18)
Now return to the vapour momentum equation:
P> > F %2 F T ET T
+ F' 2 _a;: =,
r? 2h S Sl -y
(€.19)

C > X X
< (£)sw(Z) eos &) = ol
The Hartree-Womersley scheme is epplied to this in exactly the way
: B e : he way

as to the condensate equation (C.1), and corresponding to (C.2) we have
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% m ' 3 u" St .* &l-”
;N*" a; gl FN-H + gg_;N-H + ga; = F

5 N+ N4

/
% a/ 2 & -3 3¢
- ‘é-, (FNJN \ ¥ {3 Fan + 513 =0, (0.20)
where dashes now denote differentiation with respect to Y, énd
N .A ml
9 e = (-¥)Facis 2 €= (14 ¥) F’
x/ X7_ ~
2 g3z —2FF | 238 =0xY) | a2gl= -4y ;
. X p— ¢\ 4 ey
2 Es = G- VB & =N ET) 52/ 22 I\ e,

Oropping the suffixes (N+1) from (C.2l) and linearizing then:

Il 3l i/
F* "4 ¥ Pty FRo4%$F o 7543‘=-o’ (c.22)

s e e B
xs = & a5 B
= g §5”‘ € X L3:e2)
and %.:‘ = ‘gl;“_gs‘l’ = E»"_ g_}% (E“')l,

Still following the method employed on the condensate momentum

e'quation)a nev dependent variable is introduced by

Xeo TS
QUi Sy i - | (c.24)

Integrating this we have
: ¥
Y
% < £ ¥4 3 'S
F <§CN«\—\)7’W)= g  4aY + F (XNt 5 °3)

(c.25)
(o)
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: % > .
where here - ; CXNH ) 0)# (o) y and‘so remains in the
differential equations as an unknown quantity.

with (C.24) and (C.25) substituted into (C.22) we have

»

Y : P 1
n / X ¥ % % X %
QY + XL & + X QU +Xy OS Q@ay + X% F CKNH,Q +Xq =0, [_9&:}

This is equivalent to (C.15) for the condensate phase and is also
to be represented by finite differences. Unlike the condensate phase
there is no definite range across the vapour boundary layer and there
_arises the problem of deciding how far to extend to solution in the Y*
direction. Fortunately the similarity solutions can indicate this range
at the leading edge of the plate, or the stagnation point of the cylinder,
and there is some indicaticn of the rate at which the vapour momentum
thickness might grow from the work of Leigh and Terrill. If the same
finite difference formulae are used for Q¥ as for Q, then the vapour
step length would have to be as small as h (or smaller since a typical
erxror texﬂthQ(B) would be larger for the vapour phase) and a considerable
number of steps teken across the vapour layer. Instead more accurate
finite differences are introduced into the vapour phase thus cutting
down the number of points, making the matrix smaller and increasing the
speed of inversion. If n steps each of length h  are taken in the Y*
direction, the jth'POint across the (N+1)st station dencted by (XN+1’Y%j)’
and the value of Q¥ at this point by Q*j’ then the derivativeé are rcplaced

.

using for first order derivatives:
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/

P pS XV R h:' ¥ (5)
QF = e 280 -0 Q¥ rigRs -6+ 8 -E @

)
= ) ) Y Iy
Qn;x' = hs CQuys 0@ n-3-18 ®ny +1O Qney + 3@“‘,@) (¢.27)

and jco(' .25_5‘: -2,

/ gt Y > X 4 ©Y
@:)x - f2ng (Qj’?. -.%&J"‘ + 8&:}-\'1 - Jﬁ-]) 'c

and for the second order derivatives:
x5

] = 2nT (lo&‘,—b& —4Q) + 1A Q) -684 +&s>

Q“_\ \Lr\t (‘o Q“ ) &“"\ "4‘&!\—1“‘4 Q'\-} GQ =4 Q f\d‘)

and fm- 2834 N2, (c.28)
P!
&= ane (= &J-z o & 521 -30 &) +\b8 - &5an) ¢
The 1ntegral S N dﬁ is evaluated using the formulac:
Y |
o3 S arts Ehs (QT+8%)
1o % e
OJ\’?" X oy®= %hs C&o +3a} +3&;‘+ K3 (¢.29)

T e % , X
E QT dy? = J:;hs (Qc +4Q, “"?—6);:* e+ 4 Q4 ¢ Q\") ) jeven

Jia ,‘
3 R
“dwa*af‘ni o~1+3<&g+4a4+ - a]) Yrent ou

if too much detail concerning the vapour layer is used. However
accurate soluitions are available at X = O from the Runge-Kutta
integration procedure, and these were used to choose the finite

differential representation and step length hs'
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When solving the condensate momentum equation the latest estimate

'of the temperature is used in the evaluation o€/~,€, Qp.uud k, 80

consequently for the purposes of solving (C.1) and (C.19) the temperature

is a constant, The momentum equations are coupled thirough the

boundary conditiqns and will be solved.simultaneously. Iaving taken
m iﬁtervals across the condeansate layer there are m pivotal values of

Q to find, i.e. Qj for j = 1(1)m, and n values of Q* to be determined,
i.e. Q*j for j = 0(1)n-1. .In addition t and F*(XN+1’O) are also unknown

)St station. The

making a total of (m + n + 2) unknowns at the (N + 1
representations of the momentum equatioﬁs at interior points of the
intervals [.O,T] and L0, n?h;] give a total of (m + n - 2)

simultaneous equations in Q and Q* . To these are added linearized

versions of (5.32), (5.33), (5.34) and (5.36).

Take firstly, (5.32) ¢

Qs Mg )lla 5 \5\“; } [ au.i_:az-]
o ¥ -c . = - *
'Ps /QS = S Y= oYl ¥ =00

*
which on the introduction of Q and Q becomes:

X Y.Q,]‘/-‘-\ = tl i:\'.“‘]sl":o, ' (C.'jO)

This equation holds at X = XN+1 and is linearized using the

Bellman method:

N {GL/ ’}3 Y =) = 2 t_t [&“ /]Y\‘:o "'!'-g. {Q\:]f:,o‘ "1-‘.‘«1 {_-Q:Byx.;o/

- 2 e
o oaledn )y f@u i@l k= TR,

Y=o



<0q. —————

/
: 2 / %
Replacing [Q A and [& l/’{’o , using

\ -
Qo = En(-20m3+ ABun A8 Aunnt FIl B (c.22)

AL é“% s R % Ay e A :\)
ad Qo T Song T3] Re +300 A1 ~300 Q4 +200 @3 <75Qu +2057) |

then we have another linear relationship between the Qi and ’1*
4
Continuity of velocity tangential to the interface yields (5.3%%)

or

- b
QM = & Q o y
which is now linecarized to give

a——

e bl P = =¥ s
QM - \—&o + : Q/o = t&o. ¢ (C¢33)
The continuity of mass flow across the interface yields the
equation

N E: (XN-\-\‘.JIB = Fx (XM»\,03 3

. which is already linear,and on the introduction of Q becomes ;-

A oS ‘ QradY = B (Rne o). (C.34)

A1l that has been written so far concerning the numerical procedure
appliesS to both the plate and the cylinder problems, but in the energy
balance, which provides the last necessary guation linking Q énd 1,
there are differenceé arising when m = 0 ér 1 wh..ich effect the method
of introduction inté the matrix séheme.

We have the global energy balance:
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X fim=0 ' ‘
s Kw (1) ® 3
e Of
((OS &S) P Q-xtcvwn) Og & o) (gf/\\/m ax
= Yw{ﬁ - IEi — C:Q B;: { ; ‘
S {C{’.—SAT AT CP:’ A"- D\/ d/o (€.25)

Common to both problems,the integral on the left hand side ia

written as follows ¢

xﬂuxécm-\)/ bs . N -‘s:(_vw-o\s Be A XM‘E(M-\\
e & dX B Ay K e [ 4B

where INTEG is the value of the integral up to the point XN and will be

. during t luation of
¥nown during the evaluation of Qn+1

Now for the case of the cylinder m = 1, therefore (C.35) becomes:

etc,

A Nt

s, S X KN\ _(M_\\/bs I g
 L(m+ et e d A5
q M : T6) \5\/ L N Fan INTER + tub 3‘/ x ‘X

Xntt
: L (Xn =%n) K n] 2D «H)
it e xg W(S\/\""M = \FN O ‘Svf L’—N\-l( b‘/N =0 (C‘jc’)

then the energy balance becomes:

'
S {ha‘%/cfc ¥ y —%s oﬂb“‘*" Qun dy

Fw\m NTEG (S (Xnt =Xn) (bﬁn}twﬁ_ (Xw-%u} DQNH\ I
SRS PS TN 2En X '5\/ = 2 Rnw T=o

(c.37)
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The integral on the left is non-linear in the quantities unknown at

tne (N+1) station. Hence it is quasilinearized to give, dropping the

suffix (N+1),

ol i@m.» %r ¥ %%:s%x&(b@ +E&-EQ Ydy

The linearized form of the energy balance is now:

wa\L mrq waxu(o

.t OX d'(Y) Q dY + t OS 0‘(‘” Gl\d\\/ ((:sks FS Xm-\ RPN |

wlw Xkt =AN (B0 ntt

= L
= togo((ﬂQo\\/ 55 ps&)fs T2 %ne N DY )‘]':-o. )

where - D_{"\ I—S- - _C—E AT
A C?S-‘L‘\'+ &7 SPs o7

When X .= O-then INTEG = O,and this the value when N = 1, Thereafter
INTEG is updatéd at each station by taking the converged solution at
X_N and adding
+1
KN+t
L [®
before proceed;ng to the stage N+2.

For the case of the plate m =0, then (C.35) becoues:

X L Kt
N&\ CM'\) i
( M) , X5 (Bg ax = A 1\ (?—8 \ i
Q.xf’-““*“) th) oY Yf-o NH X2 £ a\//‘/—o
Nel
Xatel
£ | INE g _‘.j‘ VIV D xS \'
Yo e e i { %
I =Th L ) o !

S

(c.38)

. Tar=es =Kn) On “”’“‘\1
INTEG + j Ef*)\a\/ A B "'(Xwix L‘C (0:‘ Nz t"*\”"}

l\

\
-
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when N p 1 then the procedure is similar to that outlined for the
AKne) f

cy;Linder case with J g()ﬁdx = Ji(xm-\—x«. }(Iﬁ "'S’nn}. . but if

X~

N = 1 then we must deal separately with

K ; !
I | ~
J . > <'a'«/> el i (c.40)

Near the leading edge t and (b )\{ S are only weakly dependent

upon X, therefore let

t(x3( 2@ AR X,

where A and B are found in terms of tN’ tN+1 $ <?)_50\/ and 3‘:»\"/5\' ;

Hence we find

R
2% [0y 4 [ofo |
OS ). X‘?- ) dx = Sb.i.‘( b“/)yﬁo.’sto\ N N= (c.41)

‘Phis is also used in calculating the value of INTEG which is carried
into the vrocedure for finding the solution at the second stage.

Apart from this,the method of multuplying across by t and linearizing

N-+1
is the same used when m =1 forall N. '
We now have (m'+ n + 2) equations for the (m + n + 2) unknowns,
ie. Q (3 =1(1)m), (i = 0(1)a-1), t and F (0).
The equations are written in matrix form as

é‘ & = 2 : (c.42)
7 : * * *’
where _B_ = <Q11 -'c.,va QO_’ cve Q t-; FO)) : 3

§T the transpose of B, R is a column vector the elements of which are the

n-1’

right hand sides of the linearized equations [C8) ¢fC. , and the

element s of A are:
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Solving (C.42) thus yeilds a better aprroximation for Q,Q ,t and
* . ' ' st . ;
P (KNH',O) at the (N+1)”~ station, and to complete the iterative cycle
the new values of t and @ are used in the solution of the Cucrg.y equation

(5.28),

We have for the case of the cylinder:

¢
(ff) 67,\, + ’c(x)%s. & F gé-?, - %f?s .Ps_\:cx\.x {gii?i{- 351:/ w} 0 (C.45)

Apply the Hartree-Womersley linearization to this:

_\ii[(f_\f_\w 9»1;—&] [(P__)v o) ]} Cgm&fw\(h‘rwmﬂn*m 9N+0;n§

psks CPs |

!
il
|

!
1

i i’s (gi,,‘ -\_—&“*D. ¥ (bu*h‘hs{(F&ﬂ‘ FQ(SN«Q T 9N‘> = (‘:N:—\-&m)(grm-m\} = C).) (C'A.b]
' Ps | : ; i

o

where dashes denoted differentiation w.r.t. Y.  This id an ordinary

differential equation for B EJ+1;

( “’3)&«\4 )’ | |
[/CSKS AT = :g‘ s "L{z Onn +{y =0, (can) |

were £z 710 {(*‘O § Glm ay % (=9, au 0“/]
g —SYL&NH-FQ“—l
(4= g{é»‘s)% Y&.m Y + (1-%) Un S Qu d
e KSN[QN+&.¢-«C\} o \-_‘2\ ~ On ]
22 6‘ A‘ PS (py = Coun)lon + £,

)

The ordinary dlfferential equation (C.47) for SNH is already
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linear and can be introduced into a matrix schéme as it stands. We have
On4y =0 when Y = 0,and = Pyyy= | when Y =1 so there are only
the (m-1) interior points unknown. Solving (C.47) at these (m-1) points
0 x4 can be determined. The flni#e differences used for Q in the
condensate momentum equatibn are thaﬁé used for ii in the above.

The iteration procedure at the (N+1)St station,lgiven the solution
at the th station, is to repeétedly solve (C.42) and (C.47) until
successive approximations differ by less than a prescribed set of tolerances.
This is a rapidly coavergent process needing only two of three iterations
aear X = 0, but becomes markedly worse as separation is appro ched. In
order to ascertain that this convergenced golﬁtion at XN+1 is close enough
to the true solution we proceed as follows. Firstly two steps each of
length (X .

- XN) are taken from X to X . ,and then this solution at

N+1 N+12
XN+1 is compared with the solution obtained by takinvéust one step from

XN to XN+1' If the difference between t obtained by the two methods

N+1
is greater thaﬁ an allowable limit then thestep lengths in the x-dircction
ére halvéd and the procedure repeated, otherwise the solution obtained
by taking two steps is accepted at XN+1'

It remains to describe the manner in which the solution is started
from X = O.

The limiting forms of (C.1) and (C.19) as X=» 0 yield differential
equations in which theré is no differentiatiqn with respect to £ so they
are already in forms analogous to (C.2) and (C.20). These are linearized

using the Bellman technique’ and there result:differential equationg the

coefficients of which are functions of the previous iterate.
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The boundary conditions (5.31)=(5.33) remain unaltered as X=+0
so are introduced into the matrix in the same way as before, and it remains
£ TO considér the limiting form of the energy balance as X-»O.
In the neighbourhood of X = O then t(x) and (ggXﬁoWill be taken

to be constant,and for small X the left hand side of (C.35) becomes

wkw & (‘M*") T )~ A 2 T
(P(Oskb Pg ' 5 < Emed t@( Yy‘{-:o J X"" Ax

‘ ¥
= <_fi_%:5)) %’; ‘é‘@\(?\/ Y=o

Thus the limiting fora of (C.35) is:

' .-
(f’:t: ?s \1’=o = ek E_C%TA-%T %Tk Qt.ay, .

which is treated in the same way as (0537)-

In this way a matrix equation analogous to (C.44) results and
enables more accurate solutions Q, Q*, t, and F*(0,0) at X = 0 to be
féund. The iterative cycle #s completed by solving the energy equation
(¢ 45) the limiting form as X-2 0 of which is a linear (in ¥ ) ordinary

differential equation and is solved by the method outlined for (C.47).
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