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Abstract 

The structural bulk properties of fibrous materials are investigated. Theoretical models 

are developed and their predictions are compared to measured data. The properties under 

both static loading and dynamic excitation are studied. 

Macro-scale experimental models are constructed to represent the idealised 

microscopic structure and to investigate its static behaviour under compression. As a 

result, the dominant mechanisms of deflection and nonlinearity are respectively identified 

as bending and the increase in the number of inter-fibre contacts under compression. 

Exploratory investigations concerning friction and electric contact resistance are 

conducted on macro-scale models. 

As an effective means of representing its structural characteristic, a transversely 

isotropic structure of stacked cylinders is employed to model a bulk fibrous material. 

Based on this, static bending models are fonnulated to describe the structural nonlinear 

stress-strain behaviour of bulk fibrous media under static compression. In these models, 

the increase in the number of inter-fibre contacts is related to the shortening of fibre 

links, and is also further examined in tenns of "connectivity'' inside a medium. 

Similarities to, and differences from, percolation theory are noted. 

The dynamic structural bulk properties of fibrous materials are also investigated. 

Their nonlinear behaviour is dealt with mainly in tenns of dependence on the amplitude 

of excitation, and is characterised by shifts in the measured transmissibility and the 

corresponding complex Young's modulus. 

As in the case of the static properties, the dynamic behaviour of a fibrous material 

1s also investigated by means of idealised models, which show that the nonlinear 

mechanism is similar to that in the static case. 

A novel method is proposed to improve the efficacy in measuring the dynamic 

properties of a bulk fibrous material. The new method combines the advantages of two 

conventional techniques, the transfer function method and the mechanical impedance 

method. 
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Finally, a nonlinear governing partial differential equation is derived for the 

dynamic behaviour of a bulk fibrous material. Its analogy to nonlinear equations in other 

types of media is observed. And the nonlinear behaviour, especially regarding the 

occurrence of harmonic components, is predicted in the theory as well as being 

confirmed by experiment. 

lll 



Chapter 1 

Not applicable 

Chapter 2 

Roman symbols 

a 

List of Symbols 

Distance from the welded end of the rod to the contact point 

with the adjacent rod 

Location on a rod 

Location on a rod 

Location on a rod 

Coefficient 

Coefficient 

Coefficient 

Coefficient 

Diameter of a rod 

Location on a rod 

Distance for a hanger in 3-D model 

Young's modulus of a material 

Flexural rigidity, or Bending stiffness 

Force applied to a structure 

Contact (or reaction) force at the location A 

Contact (or reaction) force at the location B 

Force applied at the location C 

Contact (or reaction) force at the location D 

Contact force in a Hertzian contact 

Weight of a top loading plate 

Weight applied to a structure 

IV 



I 

j 

L 

sf 

u 

y 

Greek symbols 

8 

Second moment of area of a beam about its neutral axis. 

Summation index, which also denotes each layer 

Length of a rod link which deflects 

Length of a rod from its origin to the location A 

Length of a rod from its origin to the location B 

Length of a rod from its origin to the location C 

Length of a rod from its origin to the location D 

A total number of deflectable layers 

External moment 

Moment at the origin 

Bending moment in a rod 

Exponent 

Number of contacts in the j-th layer 

Number of deflected layers 

Axial load applied to a beam 

Load at the location i 

Critical load 

Reaction force at the origin 

Reaction force at the location A 

Sliding factor 

Elastic energy of an elastic system 

Total complementary energy of an elastic system 

Potential energy of an elastic system 

Cartesian coordinate 

Cartesian coordinate 

Deflection of a bulk model 

Deflection at the location A 

Deflection at the location B 

Deflection by bending effect 

Deflection at the location C 

V 



V 

Chapter 3 

Roman symbols 

a 

b 

C 

Deflection contributed by a force loading 

Gap between the loading bar and target bar, before the contact is made. 

Deflection by Hertzian contact 

Initial Hertzian deflection by a top plate 

In-line deflection at the location i 

Deflection contributed by a moment loading 

Initial angle between the loading bar and the bottom plate 

Angle between the loading bar and the bottom plate, 

after the first coming-to-contact 

Initial angle between the loading bar and the bottom plate, 

after the second coming-to-contact 

Poisson's ratio 

Radius of a circular contact area 

Radius of a-spot 

Real contact area 

Load bearing area 

Conducting area 

End surface 

Cross-sectional area of a rod 

Half-width of a rectangular contact area 

Coefficient 

Diameter 

Young's modulus 

Force applied to a structure 

Friction force 

Hardness of a material 

Length of a cylinder 

Distance along a beam between its origin and the contact location 

Length of a beam 

Vl 



N 

r 

R 

RI 

R2 

Re 

Rei 

Rc2 

Re, 

s 

t 

y 

Greek symbols 

6 

µ 

V 

Length of rod links 

Length of rod links 

Length of a rod 

Exponent 

Normal force 

Radius of a cylinder 

Resistance 

Resistances of rod link 1 

Resistances of rod link 2 

Constriction resistance 

Constriction resistances of members 1 

Constriction resistances of members 2 

Contact resistance 

Film resistance 

Reaction force at the contact 

Rig resistance, accompanied by integer subscripts 

Resistance of a rod 

Sample resistance, accompanied by integer subscripts 

Shear strength 

Thickness of an alien film 

Yielding pressure for a material deforming plastically 

Strain 

Coefficient of friction 

Poisson's ratio 

Coefficient 

Electrical resistivity 

Resistivity of an alien film 

Stress 

Resistance of an alien film 

vii 



Chapter4 

Roman symbols 

a 

A 

b 

d 

E 

Eh 

F 

n 

N, 

p 

q 

s 

t 

V 

w 

Greek symbols 

a 

/3 

/3 

Parameter for the original MNBM with offset 

Surface area of a bulk model 

Parameters for the original MNBM with offset 

Diameter of a cylindrical rod. 

Young's modulus of a material 

Bulk Young's modulus 

Force applied to the centre of a rod link 

External force applied to a bulk model 

Link length of a rod 

Second moment of a cross sectional area of a rod about the neutral axis

Additional moment 

Bending moment 

Number of measured data 

Number of layers 

Exponent 

Proportional constant 

Sum of squared residual 

Thickness of a bulk model 

Bulk volume (fibres plus voids) 

Elastic energy of a link 

Parameter for the generalised MNBM 

Parameter for the generalised MNBM 

Ratio of the width to the length of a cell frame 

(not confused with parameter f3 ) 

Dimensionless parameter 

Deflection of each layer 

Total deflection of a bulk model 

Strain 

Elastic collapse strain 

Vlll 



&d 

&; 

&,h 

&x 

&y 

&z 

' 

vb 

Pb 

Ps 

er 

ere 

er; 

'f' 

'Po 

Chapter 5 

Roman symbols 

A 

B 

d 

Pc 

p 

Q 

X 

y 

Densification strain 

Measured Strain 

Threshold strain 

Strain in x- direction 

Strain in y- direction 

Strain in z- direction 

Dimensionless parameter for MNBM 

Bulk Poisson's ratio 

Bulk density 

Density of a fibre material 

Stress 

Elastic collapse stress 

Stress representing each reading 

Varying solid fraction 

Initial solid fraction 

Proportionality constant 

Proportionality constant 

Fibre diameter 

Young's modulus 

Fibre link length 

Probability 

Critical probability widely 

Exponent 

Proportionality constant 

Substitute variable 

Critical exponent 

Percolation quantity 

IX 



Greek symbols 

K 

T 

Chapter 6 

Roman symbols 

a 

a, 

A 

C 

D 

Eo 

E1 

Ed 

EP 

F 

Fo 

F; and F
2 

F, 

F+ 
and F_ 

I\ 

F+ and F_ 

j 

Threshold strain 

Dimensionless parameter for MNBM 

Effective elastic constant 

Proportionality constant 

Electrical conductivity 

Critical exponent 

Solid volume fraction 

Initial solid fraction 

Critical Solid volume fraction 

Threshold solid fraction 

Velocity propagating through a sample 

Accleration at the bottom end of a sample 

Accleration at the top end of a sample 

Acceleration 
Complex wave velocity 

Vibration displacement 

Real part of Young's modulus 

Bulk Young's modulus at the first resonance 

Dynamic bulk Young's modulus 

Bulk Young's modulus at the p-th resonance 

Force propagating through a sample 

Force at the bottom end of a sample 

Measured forces associated with the mass m 1 and m2 , respectively 

Force at the top end of a sample 

Forces propagating in the positive and negative direction, respectively 

Mangitude of forces 

Imaginary unit � 

X 



k 

K 

l 

m 

s 

t 

T 

Tcalibration 

Tcompensated 

Tmeasured 

V 

v
+ 

and v_

/\ /\ 

V+ and V-

V 

X 

z 

Greek symbols 

a 

Complex wave number 

Scale factor for calibrating a force transducer 

Length of a sample 

Loading mass including a top plate and an accelerometer 

Extra mass contributed by the bottom plate and accelerometer on it 

Known weights 

Mass of a sample 

Dynamic mass of a system 

Force reflection coefficient 

Ratio of the attenuation constant and the phase constant 

Cross-sectional area of a sample 

Time 

Transfer function or Transmissibility 

Transfer function for calibration 

Compensated transfer function 

Measured transfer function 

Magnitude of transfer function 

Magnitude of the transfer function at the first resonance 

Magnitude of the transfer function at the p-th order resonance 

Velocity propagating through a sample 

Velocity at the bottom end of a sample 

Velocity at the top end of a sample 

Velocities propagating in the + and - direction, respectively 

Mangitude of velocities 

Velocity 

Dimension 

Mechanical characteristic impedance 

Attenuation constant. 

Phase constant 

p-th solution of the equation (6.7c)

XI 



!!,.fp 

17 

171 

17 p 

i; 

p 

pd

</J 

(I) 

(1)1 

(l)p 

Chapter 7 

Not applicable 

Chapter 8 

Roman symbols 

a 

A 

C 

c: 

C 

d 

D 

e 

E 

Resonance bandwidth measured at IT
P 
I/ ..Ji, at p-th order

Loss factor 

Loss factor at the first resonance 

Loss factor at the p-th resonance 

Displacement of a sample under longitudinal excitation 

Static density of a sample 

Dynamic bulk density 

Phase of transfer function 

Angular frequency 

Angular frequency at the first resonance 

Angular frequency at the p-th resonance 

Coefficient 

Coefficient 

Amplitude of the fundamental displacement component 

Amplitude of the second harmonic displacement 

Coefficient 

Coefficient 

Coefficient 

Propagation speeds in a solid structure (not confused with coefficient c) 

Wave speed in the linear regime in the case of the fluid 

Coefficient 

Coefficient 

Coefficient 

Coefficient 

Young's modulus of a material 

xii 

I 



Eb 
Bulk Young's modulus 

Ee 
Complex Young's modulus 

Ex 
Young's modulus in the x-direction 

f Coefficient 

Fv.x 
Viscous force in the x-direction 

g Coefficient 

G Modulus of elasticity in shear, or the modulus of rigidity. 

Jn ( ) Bessel function of the first kind of order n 

k Wave number 

K
2 

and K
3 

Conventional combinations of the second and third order elastic 

constants in orthotropic directions in crystal lattices 

I Coefficient 

m Coefficient 

n Coefficient 

p Acoustic pressure 

p Coefficient (not confused with acoustic pressure p) 

q Coefficient 

r Coefficient 

rG 
Radius of gyration about the direction of the propagation 

s Condensation 

s Coefficient (not confused with condensation s) 

S Elastic constant which is inversely proportional to elastic modulus 

t Time 

V0 
Amplitude of a particle velocity 

x Cartesian coordinate 

x· Discontinuity distance 

y and z Cartesian coordinates 

Greek symbols 

a Nonlinear parameter 

Coefficient of nonlinearity, p = - 2 p• 

Coefficient of nonlinearity 

Shear strain 

Ratio of principal specific heats (not confused with shear strain y) 

xiii 



6 Normal strain 

( Parameter from the MNBM 

17 Structural coefficient of viscosity 

e Substitution variable, B = kx - OJ t

A Lame constant

V Poisson's ratio of a material

q Particle displacement

q Displacement amplitude 

q0 , q1 and ;2 Terms of displacement in a perturbation analysis. 

p 

Po 

(J" 

T 

'Po 

{J) 

Chapter 9 

Density of a material 

Density at the equilibrium state 

Normal stress 

Shear stress 

Initial solid fraction 

Forcing angular frequency 

Young's modulus of a fibre material 

Bulk Young's modulus 

'f'
0 

Initial solid fraction 

XIV 



Acknowledgements 

Abstract 

List of Symbols 

Table of Contents 

Introduction 

Table of Contents 

Chapter 1 

Chapter 2 

Idealised macro-scale static models 

2.1 SEM photographs 

2.2 Hertzian deflection of a stacked cylinder model 

2.2.1 General nature of the model 

2.2.2 Analysis 

2.3 Fibre bending model: the use of FE analysis 

2.3.1 Analysis 

2.3.2 Discussion 

2.4 Linear bending model for a system of stacked cylinders 

2.5 Coming-to-contact models 

2.5.1 Single new contact model 

2.5.2 Double new contact model 

2.6 Three-dimensional contact model 

2.6.1 Behaviour of an elemental modular structure 

2.6.2 Deflection by a longitudinal force 

xv 

11 

IV 

xv 

1 

11 

12 

14 

14 

16 

19 

19 

21 

23 

27 

28 

33 

36 

38 

42 



2.6.3 Analysis 

2.7 Summary 

Chapter 3 

Contact Friction and Resistance 

3.1 Contact Friction 

3.1.1 Review on Friction 

3.1.2 Measurement method 

3.1.3 Analysis 

3.2 Contact Resistance 

3 .2.1 Electric contact 

3.2.2 Single cross-rod contact 

3.2.3 A network of cross-rod contact 

3.2.4 Single fibre conductivity test 

3.2.5 Bulk steel wool test 

3.3 Summary 

Chapter 4 

Static models for the bulk compressional 

elastic properties of fibrous media 

4.1 Review 

4.2 Cellular materials 

4.3 Power-law model 

4.4 Bending models 

4.4.1 Linear bending model 

4.4.2 Simple Nonlinear Bending Model (SNBM) 

xvi 

44 

49 

51 

52 

52 

56 

58 

63 

63 

65 

71 

73 

80 

82 

84 

85 

88 

93 

97 

97 

100 



4.4.3 Modified Nonlinear Bending Model (MNBM) 

4.5 Measurements and comparison with theory 

4.5.1 Method of measurement of stress/strain characteristics 

4.5.2 Comparison between experiment and theory 

4.5.3 Effective solid fraction 

4.6 Generalised form of MNBM 

4.6.1 Case study 1: the fibre component and the use of binder 

4.6.2 Case study 2: laminar and tangled structures 

4.6.3 Case study 3: failure of bending models 

4.7 Summary 

Chapter 5 

Connectivity in fibrous materials 

5.1 Percolation theory 

5.2 Literature review 

5.3 Fibrous materials 

5.4 Summary 

Chapter 6 

Measurement of dynamic properties 

of porous elastic materials 

6.1 Reviews 

6.2 The transfer function method 

6.2.1 Methodology 

6.2.2 Measurement 

6.3 Transmissibility-dynamic mass method 

6.3.1 Development of the method 

XVll 

103 

107 

108 

109 

113 

117 

121 

124 

127 

129 

131 

131 

135 

139 

149 

151 

151 

154 

154 

158 

164 

165 



6.3.2 Four-pole representation 

6.3.3 Experiment 

6.4 Summary 

Chapter 7 

Dynamic structural behaviour of fibrous materials 

7 .1 Review of previous works 

7.2 Experimental investigation 

7.2.1 Nonlinearity by excitation level 

7.2.2 Nonlinearity by excitation signal type 

7.2.3 Nonlinearity by static loading 

7.2.4 Idealised dynamic models 

7.3 Summary 

Chapter 8 

A differential equation for the nonlinear 

168 

170 

178 

180 

180 

182 

183 

186 

191 

194 

199 

dynamic structural behaviour of fibrous materials 201 

8.1 The differential equation governing longitudinal motion 201 

8.2 The governing differential equation for fibrous materials 204 

8.3 Lossy differential equation 208 

8.4 The governing nonlinear differential equation for fibrous materials 209 

8.5 Solution of nonlinear differential equations 215 

8.5.1 Perturbation analysis 216 

8.5.2 Fubini solution 220 

8.6 Experimental investigation 223 

8.7 Summary 226 

xviii 



Chapter 9 

Conclusions 228 

References 235 

xix 



Chapter 1 

Introduction 

Many solid materials, both naturally occurring and manufactured, contain internal 

cavities, or "pores", that are filled with a fluid. Such porous materials are extremely 

common and include wood, cork, sponges, sand, rocks, snow, concrete, brick, popcorn 

and expanded polystyrene. Porous media are usually of the cellular, granular or fibrous 

type. A cellular material may be composed of closed or open cells in a solid frame 

structure, usually containing a fluid within the cells. A granular material is composed of 

discrete particles, which may or may not be fused together or bound together by an 

adhesive. A fibrous material consists of long, thin, rod-like structures, usually 

interwoven, which are termed fibres. These may, or may not, be treated with a binding 

agent. In this thesis, it is fibrous materials that are of primary interest. 

There is an enormous variety of fibrous materials in commercial and industrial 

use, and in everyday life. Textiles, cloths, cotton wool, rope, fibre-reinforced solid 

materials, paper and optical fibre for communication are all examples of these. Some are 

natural, such as vegetable fibres, fibres covering fruits, human and animal hair, but others 

are manufactured, such as glass fibre blanket, felted textile, and wire wool. Although 

fibrous materials in general have many purposes, they have three main roles in 

engineering applications: as vibration isolation materials, sound absorbing materials, and 

thermal insulation materials. Particularly in the case of vibration isolation, the structural 

properties of fibrous media are clearly of paramount importance. It is these structural 

properties which will form the main topic of this thesis. "Multifunctional" roles for 

fibrous media are, however, also possible. For example, an internal acoustic lining within 

an air duct also bestows thermal insulation to the duct wall, even though its thermal 

properties may not be optimal. And, conversely, the thermal insulation blanket in an 

aircraft fuselage structure also conveys the benefit of acoustic damping. Most of the 
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examples above - even human hair - can be analysed by a physical or engineering 

approach, if they are formed so as to constitute an interconnected bulk structure of fibres. 

Porous media in general can also be grouped in different ways. For example, an 

acoustical classification is based on the thickness of a layer of the material, which can be 

regarded as a "sheet" or a "bulk material" depending on the acoustic wavelength of 

interest. Categorisation may also be made according to the structural nature of the solid 

frame of the material. The earliest models describing sound propagation in porous media 

are based on the assumption that the solid skeleton of the material is rigid and therefore 

does not move [1]. This may be a valid assumption when the bulk modulus of the solid 

frame is very much greater than that of the interstitial fluid, which is usually air. The 

density of frame material could be important, especially for an elastic frame material. 

Such materials are discussed in the next category. The dilatational fluid wave is 

considered dominant, and thus such models are also known as "equivalent fluid" models. 

Because of their simplicity, "rigid frame" models have long been favoured in acoustic 

modelling and associated design techniques for sound absorbing systems. The very 

simplicity of such models requires only the complex characteristic impedance and the 

complex propagation coefficient (or two other equivalent complex parameters) to 

describe the acoustical properties of the medium fully. 

Another category of porous materials which has, in recent years, attracted much 

attention in the literature, is one in which motion of the solid frame is appreciable [2]. 

Porous media with bulk frame moduli of the same order as those of the fluids in the pores 

fall in this group. Because of the relative motion of the elastic frame and the interstitial 

fluid, wave propagation within the material is much more complex than that in a single­

wave rigid-frame material. Thus, the understanding of the structural behaviour of the 

frame becomes essential. 

A final - but less well recognised - category of porous materials is that in which 

the bulk modulus of the frame is significantly less than that of air. Such media are termed 

"limp frame" materials, which are, for example, light and unconstrained fibrous materials 

[3]. Although the solid phase can move, the fluid-home wave usually tends to be 
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dominant ( depending on the frequency and material parameters), because of the 

difference in moduli between the two phases. The material behaves like a distribution of 

"limp mass", the motion of which may be rather loosely coupled to the fluid motion. 

Because of the simplicity of the equivalent fluid model for poroelastic materials, 

their structural behaviour has traditionally been suppressed in analyses. The acoustic 

behaviour of porous materials has been studied in detail since Lord Rayleigh, in the early 

part of the nineteenth century [ 4 ], modelled them as parallel straight capillary tubes 

containing a viscous, heat-conducting fluid. His approach has generally been regarded as 

the simplest geometrical form of model by which a porous material may be analysed, 

whilst retaining the salient physical effects. 

Zwikker and Kosten [5] extended the Rayleigh model to include an inclination 

angle of the capillary tubes to the direction of the incident sound. Based on the fact that 

the compressibility and inertia of the porous medium govern the wave propagation, the 

complex effective, frequency-dependent, density and bulk modulus were introduced. 

Johnson, Koplik and Dashen [6] defined the dynamic tortuosity as the ratio 

between the effective density and the equilibrium density of the fluid in the pores. They 

also introduced a characteristic length. Attenborough [7] and Allard [l] derived 

expressions for the effective density for idealised porous materials. Champoux and 

Allard [8] derived an effective bulk modulus based on the work of Johnson et al. 

Delany and Bazley [9] conducted experiments in which the bulk acoustic 

properties - characteristic impedance and propagation constant - of various fibrous 

materials were measured, and showed that the two bulk quantities can be represented as 

functions of a single fluid/acoustical frequency parameter, the steady viscous flow 

resistivity multiplied by frequency and divided by fluid density. 

Biot's salient work [10, 11] showed the importance of the solid phase in 

poroelastic materials. He showed theoretically that there exist two dilatational waves and 

a rotational wave in a porous material which is assumed to have a flexible frame. He 

specified both types of wave in the solid phase, together with a dilatational wave only in 
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the interstitial fluid phase. The fluid-solid coupling effect was shown to play a significant 

role. 

In this case, the structural characteristics of porous materials are important, since 

structural motion can strongly couple with the fluid-borne wave in certain frequency 

ranges and influence the acoustic behaviour of the material. Structural/acoustic coupling 

in porous media has received increasing attention in recent decades. Kawasima [12] 

proposed an air-fibre composite medium model, with fibres vibrating in air. Resonant 

behaviour was theoretically predicted but not experimentally confirmed. 

Dahl, Rice and Groesbeck [13] investigated the anisotropy of a fibrous material, 

where measurements both normal to and parallel to the fibre layers were conducted. 

Resonant effects in the acoustic properties was observed when a fibrous material was 

exposed to the normally incident sound wave. However, the resonance frequency of 

fibres was not fully modelled, and was simply adjusted by observing its effect on the 

measured impedance. 

Lambert [14] proposed a one-dimensional fibre-resonance model different from 

those by Kawasima and Dahl et al. His predictions and measurements showed acoustic 

resonance effects deviating from those forecast by a rigid frame model. However, the 

resonance frequency was obtained from an adjusted fibre-resonance parameter based on 

experiments. These resonance models by Kawasima, Dahl et al., and Lambert were all 

derived based on the idea that only portions of fibres could resonate. Parameters 

representing the moving structural components were introduced, and their extreme values 

were related to the rigid-frame model. 

Watson and Cummings [15] measured the bulk acoustic properties of lightweight 

fibrous media under different degrees of static compression. The data showed very 

pronounced structural resonance effects, the resonance frequencies increasing with the 

static loading. The evidence of significant amplitude dependence was also reported. 

Wilson, Cummings and Rice [16] gave experimental data on the dynamic elastic 

properties and damping of fibrous media, which also showed significant nonlinearity. 
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It is worth noting that, in references [12-16], no attempt was made to develop 

comprehensive models of the bulk structural properties of fibrous materials, for use in 

vibroacoustic formulations for these media. However, such models are necessary for the 

complete modelling of fibrous materials and for a proper understanding of the various 

aspects of sound transmission in flexible-framed materials. The purpose of the present 

investigation is to make some progress toward meeting this need. 

Most of the reported investigations concerning the structural or coupled 

structural/acoustic behaviour of fibrous materials have been confined to the linear 

regime. Because of increasing interest in the extreme environmental conditions to which 

poroelastic materials can be exposed (e.g., in vehicle exhaust silencers), it is 

advantageous to understand the mechanisms by which they react to high sound pressure 

amplitudes or other forcing functions. Understanding the "static" structural nonlinearity 

of fibrous materials can be a step forward in this connection. The static behaviour of 

cellular materials have been extensively studied [ 17, 18], but this is not the case for 

fibrous materials. The static nonlinear behaviour of granular materials should also be 

investigated. Unconsolidated granular materials might experience densification under 

high-intensity sound and this could affect their dynamic perfonnance. 

Sides, Attenborough and Mulholland [19] idealised a fibrous material by means 

of "stacked-cylinder model". Since bending was prohibited by the stacking configuration, 

the model was analysed in tenns ofHertzian contact deformation. 

Rosen, Bagchi and Kibler [20] proposed a "space-frame material model" to 

investigate the three dimensional structural behaviour of fibrous thermal insulation 

materials. Fibres were represented by trusses in four vertical planes and a horizontal 

plane. The static behaviour of the model was formulated on the basis of the axial 

defonnation of fibres. However, the model predicted an incorrect nonlinear stress/strain 

relationship. 
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Sherwood and Van Damme [21] investigated the static compression of flat clay 

plates. The deformation of each plate was assumed small enough to behave linearly. Both 

numerical simulation and controlled experiments were conducted to investigate the 

nonlinear behaviour of deposited plates. It was observed that, as the compression 

progressed, the number of inter-particle contacts per plate increased and the bulk 

structure became gradually stiffer and showed structural nonlinearity. 

Baudequin, Ryschenkow and Roux [22] investigated the nonlinear elastic 

behaviour of a light fibrous material. Fibre elongation and compression were ignored, 

and only the linear bending of individual fibres was taken into account. The bulk 

nonlinearity was attributed to the creation of new contacts between fibres and a 

corresponding increase in the number of contacts when the material is subjected to 

compression, rather than to Hertzian deformation (which also shows a degree of 

nonlinearity). Certain other factors such as friction, sliding and damage, apparently likely 

to exist in a fibrous material, were not taken into account. By means of a scale 

transformation, a power-law relation was identified between the applied compressive 

stress and the corresponding strain in the high-strain region. However, this model was not 

applicable in the low-strain region. 

In Chapter 4 of this thesis, static bending models will be developed to describe 

the nonlinear stress-strain relationship of bulk fibrous materials under static compression. 

Several specific models will be presented and their applicability will be discussed in 

terms of the strain range and the type of fibrous structure. Regarding the development of 

static models, in Chapter 2, the main physical mechanisms governing their bulk elastic 

behaviour will be investigated by means of experimental macro-scale elastic rod 

structures. In Chapter 3, the feasibility of extending the microscopic models will be 

studied in terms of contact friction and electric contact resistance. And in Chapter 5, the 

change in the number of inter-fibre contacts will be further investigated in terms of 

"connectivity'' inside the fibrous material. 
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In their "dynamic" applications, bulk fibrous materials and other poroelastic 

media have been widely used for vibration isolation. The most effective way to control 

an undesirable vibration is of course to tackle it at source, but this is not always possible. 

Thus, engineers often have to design a structure in which the transmitted response from a 

vibration source is minimised. There are several different approaches in such methods of 

passive vibration control. They are related to overall structural design, material selection, 

localised additions, added damping and resilient isolation [23]. Among these, a fibrous 

material may often find its role as a resilient isolation element. Its role will be principally 

to isolate the source of vibration from its supporting structure by being physically placed 

between the two [24, 25]. The supporting structure is usually regarded as the receiver, to 

be protected from the unwanted vibration. A quantitative measure of vibration 

transmission is therefore a prime parameter in the evaluation of the efficacy of vibration 

isolation treatment. 

Traditional vibration isolation techniques have often been based on "lumped­

parameter" models, in which the source is usually represented as a point mass and the 

isolator as a (usually massless) spring [24-27]. Such simplification has been well 

established in an elementary understanding of vibration isolation, but there are 

limitations to its practical application. For example, it cannot explain resonance 

phenomena ("surging") caused by wave motion in the spring at the higher frequencies, 

and is limited to the fundamental resonance of the mass and the spring [25]. Thus, a 

frequency-domain dynamic structural analysis becomes essential in understanding 

vibration transmission through the isolator. This is particularly important if the isolator 

material is nonlinear in its dynamic properties. 

The dynamic structural properties of fibrous and other poroelastic materials have 

frequently been represented by the complex modulus of elasticity, characteristic 

impedance, propagation constant and complex density, only two of which quantities are 

independent. They are often experimentally determined. Perhaps because of applications 

in vibration isolation, experimental determination ( and theoretical understanding) of the 

structural properties of poroelastic materials are often closely related to those employed 
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in the case of vibration isolation mounts such as solid rubber. Harrison, Sykes and Martin 

[28] investigated longitudinal wave motion in isolation mounts in terms of the force

transmissibility. They observed that the properties of isolation mounts could be affected 

by wave motion which is not explained on the basis of lumped-parameter models. Pritz 

[29, 30] investigated a method, involving a complex transfer function, for determining 

the propagation constant, which was obtained by solving a transcendental equation. The 

propagation constant was then converted into a dynamic modulus. However, this method 

was based on the assumption that the density of a material was a fixed, real, quantity 

equal to the static value. Wilson and Cummings [31] proposed a method to measure the 

dynamic mechanical properties of a porous material without prior knowledge of its 

density. In doing so, they measured the mechanical impedance between the velocity input 

and the force transmitted at the other end of a sample. It was equivalent to the two­

thickness method [32-34] for measuring the characteristic acoustic properties of porous 

media. Instead of a transfer function and the mechanical impedance, the stiffness of a 

sample can also be measured to evaluate the bulk Young's modulus. Sahraoui, Mariez 

and Etchessahar [35] calculated the elastic modulus of an open-cell polymer material by 

measuring its compressional stiffness and Poisson's ratio in the quasi-static frequency 

range. Langlois, Panneton and Atalla [36] also developed a quasi-static compression test 

method. A polynomial relation based on compressional stiffness and shape factor was 

proposed to evaluate the elastic properties such as Young's modulus, Poisson's ratio, and 

the loss factor. These methods are, however, restricted to isotropic materials. 

In Chapter 6, a series of experimental methods is reviewed. In particular, the 

transfer function method is described in detail. A novel method to measure the dynamic 

structural properties of a fibrous material is then proposed. Its advantage and limitations 

are also discussed. In particular, numerous measurements of the nonlinear dynamic 

behaviour of fibrous materials are presented in Chapter 7. 
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In much published work, the structural and acoustic behaviour of porous 

materials has been mainly investigated in the linear region, in which the amplitude of 

excitation is assumed to be very small. In cases, wave propagation in these materials 

could be explained by the use of linearisation which leads to the development of a wave 

equation. Traditionally, most applications have been investigated under such an 

assumption, with the benefit of a straightforward solution resulting from the linearity of 

the wave equation. These solutions have been understood on the basis of harmonic 

motion such as a pure sine wave. However, with finite amplitude excitation, a nonlinear 

version of each governing partial differential equation is inevitable because the first order 

approximation for a linear equation no longer holds. Such nonlinear equations have been 

reported for the propagation of finite amplitude wave through ideal gases, other fluids 

and solids [38, 40, 41, 42]. Solutions for those situations have shown the occurrence of 

higher-order harmonic components of the excitation frequency and the distortion of a 

sine wave as it propagates through the medium. 

Crystals often experience anharmonic effects such as a structural instability and 

higher harmonics when their surface atoms are exposed to high amplitudes of vibration 

[38]. Melngailis, Maradudin, and Seeger [39] showed the distortion of an initially 

sinusoidal ultrasonic wave with finite amplitude as it propagates through anharmonic 

crystals. Breazeale and Ford [ 40] showed the distortion of a sine wave as well as the 

occurrence of a second harmonic component when an ultrasonic wave passes through a 

solid. Melngailis and Breazeale's solution was obtained by means of a perturbation 

analysis. Keck and Beyer [42] presented a theory concerning the generation of harmonic 

components as a finite-amplitude ultrasonic wave propagates in ideal gas and liquids. 

They also introduced a solution by Fubini, whose work was not known widely in this 

context. A series of specific applications concerns a closed or open ended pipe, excited at 

the other end by an oscillating piston. Betchov [43] theoretically studied the nonlinear 

motion of air trapped in a closed pipe. He predicted the distortion of a waveform and the 

generation of a shock wave. Cruikshank [ 44] obtained experimental data in good 

qualitative agreement with the theoretical work by Chester [ 45], who predicted distortion 
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and discontinuities in waveforms at high amplitude in a closed tube. Jimenez 

theoretically (46] and Sturtevant experimentally [47] studied nonlinear oscillation of a 

gas in a tube, and showed that good agreement between the two sets of results could be 

achieved by adjusting the effective length of the tube and the reflection coefficient at the 

end. 

Such nonlinear phenomena have also been reported for the structural behaviour of 

porous materials. Belyaeva, Ostrovsky and Zaitsev [ 48] showed that the second harmonic 

amplitude had a quadratic dependence on that of the fundamental frequency in a fluid­

filled unconsolidated granular material and a porous material made from a polymer. 

However, this nonlinear dependence has not been reported for fibrous materials to the 

best knowledge of the present author. 

In Chapter 8 of this thesis, the structural behaviour of fibrous materials is studied 

by developing a governing nonlinear partial differential equation for this particular 

purpose. The analogy of this equation to those for other types of media is discussed. 

Finally, an analytical solution and experimental confirmation of this is presented, 

describing the occurrence of a second hannonic component in the case of a fibrous 

material. 
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Chapter 2 

Idealised macro-scale static models 

As an exploratory, initial, part of this investigation, a series of large-scale structures, or 

"macro-models" of fibrous media were constructed and tested experimentally. The object 

was to study, at a convenient physical scale, some of the structural effects that were 

thought to be potential causes of nonlinearity in the static mechanical behaviour of the 

bulk material. These macro-models were kept as simple as possible and efforts were 

made to build, into each, the particular effects that required investigation, e.g. Hertzian 

contact deflection of fibres in contact or "coming-to-contact" behaviour of nearby fibres. 

The macro-models were, on the whole, "modular" in that they constituted small, but 

representative, regions of much larger overall fibrous structures. The starting-point of the 

macro-model phase of the research was to examine a range of fibrous media visually by 

the use of a scanning electron microscope. This was done with differing degrees of 

mechanical compression applied, so that the salient physical effects of this compression 

could be examined. For comparison, similar tests were also applied to certain cellular 

media such as polyurethane foam. Then an experimental and numerical study of Hertzian 

contact effects between crossing fibres was carried out, with the object of establishing the 

importance of these effects and, if appropriate, eliminating them from the subsequent 

investigation. Following the conclusions from this part of the study, fibre bending effects 

were examined, in a suitably configured stack of fibres, both by the finite element 

method and by the use of Euler beam bending theory. A series of "coming-to-contact" 

models was next designed and tested, to investigate nonlinear effects brought about by 

increased inter-fibre contacts as a material is compressed. These models contained only a 

few "macro-fibres", and were sufficiently simple for theoretical modelling to be carried 

out without difficulty. Finally, some effects caused by the longitudinal loading of fibres 
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were studied, on the basis that these could be of possible importance in complex three­

dimensional structures. 

2.1 SEM photographs 

At the outset of this research a range of practical fibrous materials, together with 

polyurethane foams, were examined microscopically by the use of a scanning electron 

microscope (SEM, Cambridge Instrument Stereoscan 200). Some fibrous media were 

found to contain "shot" - solid spheres or other shaped particles of the fibre material, see 

the circular objects in Figure 2.1, middle - and in some cases there was evidence of the 

presence of a binder at the contact points between fibres. Open-celled polyurethane 

foams typically have cells that appear regular and uniform (Figure 2.1, bottom left), a 

feature which might prove advantageous in any structural modelling effort. In the case of 

fibrous media, however, there is usually a distribution in fibre diameter, and some of 

these materials have an arrayed planar configuration (Figure 2.1, top left), whereas others 

have a "tangled" three-dimensional geometry (Figure 2.1, middle). 

In addition to visual investigations of unloaded materials, porous media deformed 

by static compression were also examined here. For example, the top left and top right 

pictures in Figure 2.1 show the same fibrous material without compression normal to the 

planes of fibres (left) and with compression of about 0.7 strain (right). The SEM photos 

under compression clearly signify the difference in structure between the two states of 

this material. When compressed, the fibrous material is seen to become denser and to 

have more inter-fibre contacts (the key mechanism for nonlinearity, to be discussed later 

in this thesis). 

The bottom left and right pictures in Figure 2.1 show the same polyurethane foam 

material without static compression (left) and with static compression of about 0.7 strain 

(right). Evidence not only of an increase in density of the structure, but also of buckling 

and twisting of the structural members is clearly visible here. 
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Apart from illustrating some essential differences between the behaviour, under 

compression, of the structure of fibrous and cellular materials, the five SEM photographs 

shown here also reveal two very significant features in the case of fibrous media: the 

increase in material density (which would, of course, be expected), and the increase in 

the number of inter-fibre contacts per unit volume. These two effects will, as shown later 

in this thesis, help to form the basis of a predictive model for the bulk static 

compressional behaviour of layered fibrous media. 

figure 2.1 Microscopic views of a fibrous material and a polyurethane foam taken by the SEM. 

Top left, unloaded fibrous material; Top right, fibrous material under compression; Middle, 

"tangled" structure of a 30 fibrous material; Bottom left, unloaded polyurethane foam; Bottom right, 

polyurethane foam under compression. 

13 



2.2 Hertzian deflection of a stacked cylinder model 

2.2.1 General nature of the model 

A rectangular lattice may be considered as one of the simplest idealisations of the 

structure of a layered fibrous material. Thus as a first step to represent the microstructure 

of fibrous materials, a stacked cylinder arrangement has been adopted for the purposes of 

modelling and, on a macro scale, for associated experiments. The Hertzian characteristic 

of inter-fibre contacts in this model has already been described in the work of Sides, 

Attenborough and Mulholland [19). In the present chapter its static behaviour is re­

examined. The model is basically a layered structure of cylindrical rods. Each layer is 

composed of rods, placed parallel, with a uniform interval between adjacent members. 

The layers comprising parallel rods are orientated at right angles to one another to form a 

stack of layers. The rods in every layer lie directly above, and are parallel to, those two 

layers above and below. The arrangement is shown schematically in Figure 2.2. 

Figure 2.2 Schematic view for Hertzian contact model. Left, general layout; right, simplest model. 

In the laboratory tests, the stacked structure was constructed from straight silver­

steel rods 3 mm in diameter and about 335 mm in length. Both values are nominal and 

here the lengths of the rods do not have any real significance in the analysis. The 

construction of the bulk structure was achieved by building up each layer from a thick 
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steel base plate and it was finished by placing another thick steel plate on top of the 

stack, to act as a support for a series of loading weights. In building up the structure for 

the Hertzian deformation test, the simplest model can be constructed by layers having 

only two rods, which are sufficient to keep each layer stable and in balance (Figure 2.2). 

Thus each layer with two rods is in contact with other layers having the same number of 

the rods, so the layer will have four contact points on each contact plane, which is an 

imaginary common tangent plane running through the contact points. (Clearly, this does 

not apply to the top and bottom layers of two rods.) Throughout the layers, the contact 

points were aligned vertically to prevent any bending behaviour, which would have 

caused a spurious additional deflection. 

Initially a silicon sealant was used to glue each rod and layer to form the bulk 

structure, but later this idea was abandoned because it was suspected the sealant itself 

was likely to contribute a greater deflection than the Hertzian deformation between the 

rods. Instead, a commercial adhesive tape was used to fix the position of each rod and 

hence each layer. Strips of the tape, of about 3 mm width, were put circumferentially 

around the rod near the contact points solely to restrict the horizontal degree of freedom 

(DOF) of the rods (See Figure 2.3). Thus, the clean Hertzian contact areas were exposed 

and were capable of yielding a reasonably predictable behaviour. 

The compressional force was applied by steel weights placed in the centre of the 

top plate (See Figure 2.3). The resulting deflection of the bulk structure was measured by 

the use of a dial gauge. (The very force applied to the plate by this gauge proved 

negligibly small compared to that applied by the weights.) 

It was necessary to have a sufficient number of layers of rods to give a 

measurable deflection, in view of the inherently small deflection related to Hertzian 

contact. Accordingly, 51 layers of silver steel rods were employed in the bulk structure 

and 50 Hertzian contact planes were thereby generated, with a total number of 200 

contact points. Only one of the four narrow vertical regions encompassing the aligned 

contact points in the various layers is required for prediction of the Hertzian deflection in 

the model. It is worth pointing out that the contact planes generated by the top and 
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bottom steel plates and the adjacent rods are not taken into account. Those two planes are 

also exposed to a general Hertzian contact situation. However, the main difference is that 

the contact deflections are too small to contribute significantly to the total deflection, 

because they are line-contacted rather than point-contacted [ 49, 50]. 

2.2.2 Analysis 

When two solid bodies having curved surfaces come into contact with each other, 

the initial point/line contact changes to circular/rectangular area contact [ 49, 50]. The 

stresses develop in the contact region and the corresponding strains cause a deformation 

to generate the contact area and hence to produce a deflection perpendicular to the 

contact plane. The most general case of this situation occurs when the two solid bodies 

have radii of curvature. This situation was theoretically analysed by Hertz and has been 

named after him. Perhaps the best known case among a number of applications is that 

where two spheres are in contact. The case of interest here may be treated in this way, 

because two cylindrical rods in contact at right angles may be shown to produce a 

circular contact area. In many engineering applications, the area of contact is of more 

interest than the perpendicular deflection, because the area is directly related to the 

contact stress or pressure, which will be linked to the strength or safety of the structure 

such as gear teeth and valve cams [ 49]. Here, however, as far as the compressional 

behaviour of the model is concerned, only the vertical or perpendicular deflection is of 

importance. The "vertical" direction in the case of an upright structure is the direction 

perpendicular to the contact plane. 

It is well known that the deformation in a single Hertzian contact between two 

identical spherical materials is given by [19, 49] 

(2.1) 
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where F
H 

is the contact force, v is Poisson's ratio, d is the diameter and E is the 

Young's modulus of the material. Poisson's ratio and Young's modulus were chosen as 

those typical of stainless steel. They are 0.3 and 200 GN I m 2
, respectively [51]. 

In the experimental tests conducted here, the initial Hertzian deflection of the 

stack of rods, caused by the top loading plate (of mass 6 kg) was taken into account. 

Masses of up to 8 kg were added, by 1 kg increments, to the top plate, and the tests were 

repeated twelve times. The spatial resolution of the dial gauge was 0.01 mm.

In Figure 2.3, measurement apparatus is illustrated. The entire 51 layers are not 

shown for the sake of the simplicity and space, but the four contact points per layer in the 

actual model are implied in the side view. 
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Figure 2.3 Schematic view of the experimental apparatus for measurement of the Hertzian 

contact deflection of a stack of cylindrical rods. The enlarged circle shows how the horizontal 

DOF is constrained by a strip of adhesive tape. 
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Figure 2.4 shows a comparison between the predicted and measured Hertzian deflection 

of the bulk model as a function of the applied force, which excludes the weight of the top 

loading plate. It is worth noting that, because of the nonlinear characteristic of Hertzian 

deflection, the contact force is not linearly related to the deflection. The deflection in the 

ordinate and the contact force in the abscissa represent the effect of the additional

weight, over and above that of the top loading plate. Thus the effect of the loading plate 

cannot be envisaged by a linear extension of this plot. 

Hertzian deflection model 
0.1 �--�--�--�--�--�--� 

0.08 

E 0.06 
.§. 
.Q 

� 0.04 

0.02 

4 8 12 16 20 24 
Force per contact (N) 

Figure 2.4 Force-deflection behaviour of the Hertzian contact model. Circles denote measured 

data. Solid line is the theoretical deflection. 

In general, the agreement seems encouraging, especially in view of the fact that a 

"clean" Hertzian contact situation is not easy to achieve in a large bulk structure. A slight 

nonlinearity is observed both in the measurement and prediction. For the lower contact 

forces, prediction and measurement are in excellent agreement, but they diverge from 

one another for higher forces. This discrepancy might be explained by a possible 

instability of the model under the prevailing conditions. This occurs because the model 

owes its upright bulk structure to the horizontal DOF restriction imposed solely by the 

tapes around the circumferences of the rods near the contact points. It is thus possible 

that the horizontal constraint might be less than perfect, particularly in the upper parts of 
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the structure, and will be more significant at heavier loads. When the instability occurs, 

the contact points of the rods will be placed off a vertical axis. In this case, strictly 

speaking, the conditions of the current model become invalid. However, the effect of the 

instability was thought to be small and it was not investigated in detail. 

As discussed, Hertzian deformation is expected to take place wherever inter-fibre 

contact occurs. In a realistic configuration, however, its contribution is likely to be very 

small because the deflection is inherently restricted by the fibre diameter, which is 

normally only a few microns or tens of microns in a typical fibrous material. Although 

Hertzian deflection bears a non-linear relationship to the applied force and the bulk 

elastic behaviour of fibrous media is inherently non-linear, the Hertzian deformation of 

fibres is unlikely to be the explanation of this non-linear bulk elasticity, which will be 

investigated further in the following sections. 

2.3 Fibre bending model: the use of FE analysis 

It was concluded in the previous section that, because of its intrinsic small contribution, 

Hertzian deflection cannot explain the nonlinear bulk behaviour of fibrous materials 

when they are compressed. Rather, it is the bending of individual fibres that is much 

more likely to be responsible for the bulk compressional behaviour of a fibrous medium 

[22]. As a first step, a fibrous structure that has inherently linear bulk elastic behaviour is 

investigated here, both by beam bending theory and by numerical analysis. The use of a 

finite element method - very widely used in structural analysis - is described in this 

section. 

2.3.1 Analysis 

A commercial FE code, ANSYS 5.5, was used to carry out the numerical simulation. 

Before proceeding with the main analysis, the validity of an element (a 3D 8-noded 

structural solid element) in a "macro bending model" was checked. In this process, a 
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single beam of length 100 mm and diameter 3 mm was analysed by the FE code and by 

beam bending theory. The beam was clamped at both ends and a force was applied at its 

centre. The beam deflection in the FE simulation and the bending theory agreed to within 

1 %. 

In the pre-processing of a "full model", depicted in Figure 2.5, 20 layers of rods 

were assembled, each link having a length of 100 mm and a diameter of 3 mm. In contrast 

to the Hertzian macro model of Section 2.2, each layer of rods in the bending model was 

displaced laterally by half the rod spacing in order to permit bending deflection. This was 

done in both plan coordinate dimensions. The arrangement is shown in Figure 2.5 and in 

more detail in Figure 2.6. Thus, a different number of contacts were created in each 

contact plane, because of the finite plan dimensions of the model. They are 9, 12 and 16 

and this pattern is repeated throughout the fibre stack. The nodes of the lowest rods 

adjacent to the bottom plate were fixed in all possible degrees of freedom. The shared 

nodes of adjacent rods were merged. The nodes on the vertical centre plane of each rod 

were prevented from moving in the horizontal directions, which assumption is justified 

by the fact that the external force is applied vertically to induce a purely vertical 

deflection. Although the full structure was assembled in the pre-processing procedure, 

only a quarter ofit was actually analysed in the simulation, because of its symmetry. 

Full model 'I. model 

20 layers 

/\N::. � 

for Calculation 

Figure 2.5 Geometry of the bending model created in the pre-processing for FE analysis. 
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In the simulation, a constant force of 5 kg/(49 N) was applied to an imaginary top 

plate. The choice of a 5 kgf force is arbitrary. Other values could be tried as long as 

consistent with a linear deflection. The force was divided equally amongst the 9 contact 

points that were formed by the two top layers. It was evident that the simulated result did 

not produce uniform deflection across a horizontal plane. This was explained by an "end 

effect" caused by the finite geometry of the simulated structure, which was not taken into 

account in the beam bending theory. The deflections at the 9 contact points of the top 

layer were averaged to produce a representative figure, based on the symmetrical 

geometry of the structure. 

It is believed that the linear bending behaviour of a virtual macro-scale bending 

model could be well analysed by an FE code. That is because, when the vertical 

deflection (0.635 mm) of the simulation is obtained by averaging, it is found to be only 

about 1 % different from the theoretical deflection o (0.641 mm) obtained by beam 

bending theory [50], 

F L3

o = N--
1 3tr:E d4 

' 

(2.2) 

where N1 is the number of deflected layers (18 here, because the top and bottom layers 

are not deflected), F is the force applied to the centre of the structure, L is the spacing 

between rods, dis the rod diameter and Eis the Young's modulus (selected here to be 

that of a typical stainless steel, 2 x 105 N / mm 2 ). 

2.3 .2 Discussion 

Despite the possibility of success of an FE analysis on a virtual macro-scale bending 

model, some technical difficulties were encountered here. Most of them stemmed from 

the geometrical complexity of the model and eventually led to a question of efficiency 

and even the possibility of a more complex FE analysis for the model. Technically, the 

difficulties appeared in the form of an error in degrees of freedom (DOF) and the 

warning of a large negative pivot value, which could make the matrix singular. The effort 
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to overcome these problems turned out to be a time and resource-consuming procedure 

without a significant promise of success. 

Selection of the type of element used was related to the above problems. The use 

of a 3D structural element led to a great increase in the number of the elements in 

comparison to the use of a 2D beam element, and created the problem of insufficient 

boundary conditions or restrictions. However, the selection of a 2D beam element was 

dismissed in the first instance, although such an element is specifically designed for 

bending behaviour. The reason for this was that - because its intrinsic two­

dimensionality - the 2D beam element was not suitable to mimic certain essential 

features of the lattice structure of a virtual macro-scale bending model, such as a 

cylindrical geometry of each idealised rod and the "crossed" formation of the lattice. 

The adoption of a 3D element certainly contributed to the instability of the virtual 

model. However, the fundamental cause of this may be the particular geometrical 

features of this model for example the high aspect ratio of each rod, incurred by its large 

length to diameter ratio. In the model, long rods with many elements are connected to 

one another just by a few nodes at the contact points. Forces are also transmitted through 

those few merged nodes. Because the whole model is sustained by a few nodes, a 

shortage of constraints or boundary conditions is inevitable. Thus one can encounter the 

problem of a DOF error when one tries to establish a matrix system to solve. Although it 

can be overcome, there is still the possibility of a warning of a large negative pivot value. 

Modelling only bending deformation is evidently not straightforward, and thus 

there seems to be little hope of including Hertzian contact deflection in the virtual model. 

The Hertzian contribution is, of course, likely to be too small to be significant. However, 

both bending and Hertzian contact models cannot coexist in the same pre-process and 

analysis phases. To establish a well-conditioned matrix system for bending simulation, 

the contact nodes of adjacent rods need to be shared to keep the number of DOF as small 

as possible. But to run the code for Hertzian deformation the nodes must not be merged 

[52], otherwise, the contact (or attack) surface cannot penetrate the target surface, 
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because the merged node moves as one; this would prevent Hertzian deflection occurring 

in the simulation. 

In summary, based on the various difficulties encountered here, any notion of the 

further adoption of FE analysis was discarded in the cases of other, more complicated, 

structures. The quarter model of the full structure described above required 73500 

elements and 93240 nodes. This number of nodes is close to the limit (128000) imposed 

in the version 5.5 of ANSYS installed on a Pentium 4 machine with 512MB of RAM and 

a CPU speed of 500MHz. Therefore a microscopic FE formulation of a realistic fibrous 

material or even its idealisation would be a challenging procedure because of (a) a lack of 

computing resources and (b) vulnerability to the large number ofDOF. 

2.4 Linear bending model for a system of stacked cylinders 

The concept of a stacked cylinder model was used again to investigate the bending 

behaviour of the bulk structure. The model was identical to that described in section 2.3, 

with alternate layers of rods offset by half the rod spacing in order to permit bending. In 

this case, however, the extent of the theoretical model in the planes of the rod layers was 

unspecified, and it could tacitly be assumed to be infinite. The rod layout is shown 

schematically in Figure 2.6. A perspective view is shown in the upper figure, showing the 

offset arrangement of the rods. 

The measurement was carried out in a similar manner to that in the case of the 

Hertzian model described in Section 2.2. Steel weights were placed in the centre of the 

top plate to produce the compressional force. The deflection was detected by a dial gauge 

with a resolution of 0.01 mm. The experimental arrangement is depicted in Figure 2.6. 

The main parts of the apparatus are common to those in the Hertzian model experiments, 

so only the idealised bulk structure is illustrated. Eight layers are shown, with four links 

per layer as used in the actual experiments. The rods whose axes are in the plane of the 

paper are shown as grey or black. The black rods are all in the same vertical plane, as are 

the grey rods, though black and grey rods are laterally offset from one another by half the 
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rod spacing. To constrain the horizontal degrees of freedom, small pieces of "Blu Tack" 

adhesive were placed alongside the rods near the contact points, and these are indicated 

schematically by the elliptical shapes in Figure 2.6. 

"Blu 
Tack" 

adhesive 

Figure 2.6 Schematic view of the bending model. Top, general model with infinite number of 

rods; Bottom, experimental arrangement. Note that rods are shifted by half the rod spacing to 

ensure bending. 

The initial test produced a significant discrepancy between prediction and 

measurement, and the causes were identified as follows. The bottom and top plates 

departed significantly from flatness on a length scale equal to the length of a bar. 

Moreover, most of the steel rods were found to be bent because of frequent and heavy 

loading in the previous experiment such as the Hertzian deflection tests. The degree of 

curvature caused by previous loading was probably small for a single rod, but the 

cumulative effect was thought to be significant when a bulk structure was made. 

Certainly, initial gaps (in the unloaded stack of rods) between individual rods and 

between the plates and rods were noted. Thus the actual deflection, under load, of the 

stack of rods would be significantly greater than expected on the basis of complete inter­

rod contacts. To compensate for the effects of these initial gaps in the bending behaviour, 
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additional rods were inserted between the layers. The deflection was then measured 

under load to evaluate the additional, spurious, deflection that occurred before the rods 

came fully into contact with one another. The subtraction of this value from the original 

data produced a much more reasonable behaviour, shown in Figure 2.7. 

A total of eight layers were stacked to construct the bulk structure. The two top 

and bottom layers are not accounted for in the bending deflection calculations, because 

they were directly attached to the plates. So only six layers contribute to the bending, but 

seven contact planes were formed in the case of the Hertzian component of the 

deflection. The two contact planes created by the plates were not counted either, because 

of their small contributions. The same silver steel rods of 3 mm in diameter were used. 

The distance between inter-rod contacts, along each rod (the "link length") was taken to 

be 100 mm. The Young's modulus and Poisson's ratio were treated as previously. In the 

predictions, the Hertzian deformation was taken into account, in addition to the bending 

deflection, so that a direct comparison may be made between the two. As mentioned in 

Section 2.2, the initial contribution 8 Hi of the loading plate should be considered in the 

case of the Hertzian deflection. Thus the predicted deflection 8 is composed of both 

bending and Hertzian effects, 80 (50] and 8H [49], respectively. 

(2.3) 

Here, Fw is the applied weight and F
P 

is the weight of the top loading plate, N
1

is the number of contacts in the j-th layer ( corresponding in the present case to 9, 12, and 

16). m is the number of deflectable layers ( 6 in the present case), and L is the length of a 

deflectable rod link. Euler beam bending theory with ( effectively) clamped boundary 

conditions is employed in evaluating 88 in equation (2.3). Although the actual boundary 

condition is simply-supported, symmetry in an effectively infinite stack of cylinders will 

prevent any rotation of structural elements at the contact points. 

The Hertzian deflection is negligible as compared to the bending deflection, as 

one may see from Figure 2.7. The Hertzian contribution amounts to about 1% of that of 
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bending. The thick solid line, which includes both deflections, is hard to distinguish from 

the thin dashed line for bending deflection only. Both measurement and prediction 

indicate that the model behaves linearly and there is good agreement between them. 

Although a discrepancy may be observed at higher loads, it is fairly small. The 

nonlinearity in the Hertzian deflection is, not surprisingly, impossible to distinguish in 

Figure 2.7. 

Bending model 
0.3 .--------.---�--....-------.---�--....--� 

0.25 

0.2 

E 

§ 0.15 

0.1 

0.05 

10 20 30 40 
Load (N) 

50 

8 

60 70 

Figure 2.7 Deflection/force behaviour of the linear bending model. Circles represent the 

measured data. Solid lines are predictions. The thick line includes both linear bending and 

Hertzian deflections. The thin dashed line is for linear bending deflection only. 

So far, one may observe that the stacked cylinder models yield good agreement 

between theoretical prediction and measured data, both in case of the bending model and 

in the Hertzian model. However, the deflection caused by bending is definitely more 

representative of a realistic fibrous material than that from purely Hertzian deflection. 

However, its linearity is not representative of the observed elastic behaviour of actual 

bulk fibrous media: it is well known that a fibrous material deflects nonlinearly under 

compression. One mechanism for this non-linearity is the increase in the numbers of 

inter-fibre contacts as the material is compressed [22]. Therefore, as will be seen in 

Chapter 4, real fibrous materials behave nonlinearly throughout the strain range of static 
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compression, even though it is usual to assume fibrous materials have a linear stress­

strain behaviour under small strain and that any nonlinearity is not significant in this 

region. 

2.5 Coming-to-contact models 

In Sections 2.2-2.4, two stacked cylinder models were analysed to investigate the 

possible idealised behaviour of fibrous materials; these were the Hertzian contact model 

and the bending model. The bending model described in Sections 2.3 and 2.4 involves a 

linear behaviour, which is not observed in an actual fibrous material under static 

compression. Although the Hertzian contact model does embody nonlinearity, its 

inherently small contribution to the total deflection discounts any notion that it would 

play a significant part in explaining the nonlinear bulk elastic behaviour of fibrous media. 

Instead, it has been shown [22] that the nonlinearity of fibrous material is related to the 

increased number of inter-fibre contacts as the material is compressed. To verify this idea 

experimentally in the present investigation, simple experimental macro-model structures 

related to the previous idealised silver steel structures were developed. They were made 

up of crossed rods with different initial gaps between them (Figures 2.8 and 2.13) and are 

referred to here as "coming-to-contact" models. Two different arrangements were 

constructed, the first of which involved a single coming-to-contact event between two 

structural members, as a force was applied to the structure, and the second of which 

involved two coming-to-contact events. The two models otherwise shared some general 

geometric features. It is worth mentioning that mechanisms other than the nonlinear 

fibre-contact are not pursued at this stage. For example, "fibre fracturing" is not 

addressed here. Such fracturing is unlikely with silver steel rods, however, it could occur 

in glass fibre. Such occurrences will be addressed implicitly in Section 4.4.3. 

Three different terms will be used here for rods forming structural elements in a 

coming-to-contact model. A "loading rod" is one to which an external force is applied. A 

"target rod" is one which is to make contact with a loading rod. Thus new contacts are 
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made when the loading rod and the target rod meet one another. Finally a "supporting 

rod" is one which supports the target rod(s), to allow space for the target rod to deflect. 

These are illustrated in Figure 2.8. 

2.5.1 Single new contact model 

As a means of investigating the effects of the increase in the number of inter-rod contacts 

with compressive strain, a "single new contact" model was first developed. It was made 

up of crossed cylindrical rods with different initial gaps between them, as depicted in 

Figure 2.8. Supporting rods were glued to the base plate and one end of the loading rod 

was also glued to it by the us_e of a resilient silicone adhesive, permitting some degree of 

rotation but little translation of the end of the rod. The boundary conditions at that end 

were therefore taken to be those appropriate to a simply supported end. A single new 

contact was designed to occur in this structure. The arrows in Figure 2.8 show the 

reference position where the force was applied and the deflection measured. Silver 

stainless steel rods of 3 mm diameter were used to construct this coming-to-contact 

model. Rods of this 3 mm diameter were used because they are readily available. The 

choice of diameter is not important here since it is not intended to produce a scale model 

of a fibrous material. Despite its geometric simplicity, it is believed that this model 

embodies one important feature of the local behaviour of an area of a real, transversely 

isotropic, fibrous material with a laminar configuration. 

Steel plate Force 

1--· 

______ j' __ 
Deflection 

Glued 

Figure 2.8 Schematic diagram showing a single-new-contact coming-to-contact model.
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In the actual experimental arrangement, three further, identical, coming-to-contact 

structural modules were added to make a total of four modules, as depicted in Figure 2.9. 

They were placed at the comers of a square, to maintain the balance and symmetry of the 

whole structure. Then a steel plate was placed over the four modules, supported by the 

tips of the loading bars. The measurement was then conducted in a manner similar to 

those described in Sections 2.2 and 2.3. Steel weights were placed on the centre of the 

loading plate to produce the compressive force, which was distributed evenly between 

the four loading bars. The dial gauge was used to measure the vertical deflection of the 

four structures. 

Dial gauge 

Weights 

Glued 

Figure 2.9 Schematic view of the experimental arrangement for the single coming-to-contact 

model. The fourth element is not seen in this view, because it is obstructed by the element in 

the centre. 

The schematic diagram in Figure 2.10 shows a vertical cross-sectional view along 

the centreline of the loading rod. The loading force Fe is. applied vertically to the 

structure and the contact force Fa is assumed to be perpendicular to the contact plane of 

two adjacent rods. 

Thus, when a simply supported boundary condition at the lower end of the 

loading rod is assumed, an equation of moment balance about the lower end of the rod 

may be written: 

L . F = (L - d · tan B ) · cos B · F . 
a a c l I c (2.4) 
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From this, one can find the contact force F
a 

applied to the target rod. The other 

parameters except the loading force F
e 

can be obtained from the geometry of the 

structure. The dimensions of the experimental model were as follows, L
e 

being the 

length of the loading bar and L being the link length of the target bars (measured between 

junctions with the supporting bars): 

La = 70 mm, L
b 

� 80 mm, L
e 

= 83 mm, L = 120 mm, d = 3 mm. (2.5) 

Fa 

Figure 2.10 Free body diagram before a fresh contact occurs. 

Once the force F
a 

is known, the deflection of the loading bar (or the deflection of the 

related bulk structure) can be quantified. The deflection o is governed by slender beam 

bending theory with simply supported boundary conditions when the force Fis applied in 

the vertical plane of the central axis of the target rod with Youngis modulus E and 

diameter d [50]: 

(2.6) 

At this stage, the value for F is equal to that of F
a 

. In contrast to the both-ends-clamped 

situation in the bending model, the target bars here are free to rotate, but rest on the 

supporting rods. The deflection given by equation (2.6) accounts for the first, linear, part 

of the predicted deflection/load relationship (see Figure 2.11). It is worth noting that 

Hertzian contact behaviour has not been accounted for. That is mainly because it would 

not make a significant contribution, and this assertion is supported by the previous cases 

previously described in this chapter. 
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It may be noted that the contact force F
a 

is not constant, because the angle B
1 

is 

changing according to the level of deflection. However, because of the particular 

geometry, the change of this angle is small enough for it to be neglected. Thus, Fa is also 

assumed constant and fixed at the initial value until the next contact is generated. The 

loading rod L
e 

is assumed to remain straight. Some small degree of bending would occur 

in this rod at the point A but, because of the particular dimensions of the model (see 

(2.5)), this would be small and is neglected. Bending deflection in the target rod would 

be dominant here. 

Single coming-to-contact model 
1.2�------------------
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E
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············ 
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Figure 2.11 Deflection/load behaviour of the single-new-contact coming-to-contact model. The 

circles denote measured data. The solid line represents prediction. The dotted line and its arrow 

indicate the "offset" of the second linear line. Here the "load per element" is equal to Fe in 

Figure 2.12. And "deflection" is equal to the vertical movement at point C. 

Once the new contact has occurred (Figure 2.12), the previous moment equilibrium 

(equation. 2.4) is no longer valid, and a new equation applies: 

(2.7) 

The assumption that the loading bar is straight will lead to the condition, 
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(2.8) 

where the deflections at points A and B are denoted by 00 and <56, respectively. Thus the 

two contact forces F0 and F6 can be identified from the equations (2.7) and (2.8). Even 

while the structure deflects further, the angle 02 is assumed constant. Once both contact 

forces have been found, the deflection of the loading bar can be quantified by the 

deflection of either of the two target bars, which are related by the above equation. This 

deflection explains the slope of the second line, but not the offset on the ordinate in 

Figure 2.11. 

Fa Fb 

Figure 2.12 Free body diagram after a new contact occurs. 

To determine fully the linear deflection/force relationship for the new 

configuration, the offset of the line in the ordinate (see Figure 2.11) needs to be found. 

This is related to the point at which coming to contact occurs. In the model, it is assumed 

that the additional contact is generated when, at point B, the initial gap is equal to the 

deflection of the loading rod. The initial gap ogap may be approximated by

(2.9) 

If angular changes are assumed small, the deflection at the point B may be obtained from 

that at the point A:

Lb 
8b 

=-·8
L 

a 

a 

(2.10) 

When the loading begins, the deflection oh is less than the gap 8 gap , but when the

loading bar meets the second target bar (See Figure 2.12), oh will be equal to ogap. Thus,

32 



the magnitude of the force responsible for the additional contact can be identified. This 

force will determine the offset of the second linear part of the deflection/load curve (see 

Figure 2 .11 ), and so the piecewise linear behaviour of the coming-to-contact model can 

be fully explained. 

Measured data and the predictions of equations 4, 6, 8, 9 and 10 in Figure 2.11 

are in good agreement, and a stiffening, piecewise linear, characteristic is apparent as 

expected. This confirms that the overall nonlinearity can be explained adequately by 

increased contacts rather than by Hertzian deflection (which, as previously mentioned, is 

not accounted here because of its relatively small value). 

2.5.2 Double new contact model 

The only difference between the double new contact model and the single contact new 

model is that one more target rod is added to the structure. A schematic diagram is shown 

in Figure 2.13 together with a free body diagram after the double new contacts in Figure 

2.14. 

Steel plate Force 

l--· 

______ _i __ 
Deflection 

Glued 

Figure 2.13 Schematic diagram showing the double-new-contact coming-to-contact model. 

Target rods are attached to the supporting rods by the use of silicone adhesive. 

It can be seen that the geometry is very similar to that of the single-new-contact coming­

to-contact model. The moment equilibrium is identical for the first two contacts ( one 

existing and one new contacts). Thus the magnitude of the force determining the onset of 
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the first new contact is also found by the same procedure. For the second additional 

contact, the moment may be balanced by the following equation when a simple supported 

boundary condition is imposed at the lower end of the loading bar (all parameters except 

forces are known from the geometry of the structure): 

(2.11) 

Figure 2.14 Free body diagram after a second new contact occurs. 

The experimental model was constructed with the following dimensions (the 

nomenclature is as before, and point D is added to denote the second new contact point): 

L0 =62mm, Lb � 75mm, L
e 

=83mm, L
d 

� 82mm,L=120mm,d=3mm. (2.12) 

The other two conditions necessary to find all three contact forces are found in the same 

way as for the single fresh contact model. When the loading bar is assumed to remain 

straight, one can assume that the deflections 8
0

, ob and od at contact points will be 

proportional according to geometrical compatibility: 

(2.13a) 

(2.13b) 
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Equations (2.11) and (2.13a,b) enable the three contact forces F0 , Fb and Fd to be 

determined. Once all the contact forces are evaluated, the deflection of the loading bar 

can be quantified by the deflections of any of the three target bars (these are related to 

one another). The deflection is obtained in the same way as that of the single new contact 

model, by the use of slender beam theory with simply supported boundary conditions at 

the ends of the rods, the force being applied in the vertical plane of the central axis of the 

target rod. This deflection explains the slope of the linear behaviour after the second new 

contact occurs. 

To complete the analysis of the model, the offsets (in the ordinate) of the linear 

portions of the deflection/load curve need to be found. In other words, it should be 

known at what applied force the second coming-to-contact occurs. The basic idea is 

identical to that previously outlined in the case of the single new contact model. The 

second new contact is formed when, at the point D, the initial gap ogap equals the 

deflection of the loading rod. In this case, the initial gap corresponds to the gap that 

remains immediately after the first new contact has occurred. It may be approximated by 

(2.14) 

The subscript for angles is '2' not '3', because the gap is determined by the stage before 

the contact is created. When the assumption of small angular variation is made, the 

deflection at the point D may be obtained from the value at the point A via geometric 

compatibility (equations (2.13a,b)). Thus the magnitude of the force at that point will 

determine the offset of the piecewise linear curve after the second new contact. 

In the measurements, the bulk structure and the test method were arranged in a 

similar way to that in the case of the single-coming-to-contact model. A total of four 

modules were built up and placed at the four corners of a square, as before. The 

arrangement resembled that in Figure 2.9, except for the different number of target bars. 

Measured data and prediction at compared in Figure 2.15, and are in reasonable 

agreement. The onset of nonlinearity is clearly evident. 
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Figure 2.15 Deflection/load behaviour of a double-new-contact coming-to-contact model. The 

circles denote the measured data. The solid represents the prediction. 

The two "coming-to-contact" models described here offer convincing support for 

the idea that an increased number of inter-fibre contacts is responsible for the non-linear 

compressional elastic behaviour characteristic of real fibrous materials. However these 

models still require further development in order to be applicable to realistic materials. 

The geometric simplicity of the essentially laminar configuration of these models is 

likely to limit their application to planar layered media, and the modelling therefore 

needs to be made more general. 

2.6 Three-dimensional contact model 

As one may infer from the central SEM image in Figure 2.1, some fibrous materials have 

a structure composed of "tangled" fibres which is more three-dimensional in nature than 

the essentially laminar structures discussed in Sections 2.2-2.5. To investigate the 

idealisation of such media, an experimental macro-scale model was developed with 

three-dimensionally arranged rods. The model was composed of three silver steel rods of 

diameter 3 mm. The rods were welded to a brass base plate of thickness 5 mm. As far as 

the number of contacts is concerned, it was designed to make two successive contacts 
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across initial gaps. To ensure the realisation of a three-dimensional structure, the rods 

were orientated at such angles as to give a reasonable representation of a general 

structure in three dimensions, which is schematically shown in Figure 2.16. Thus it might 

be regarded as a more realistic representation of the behaviour of fibres in an actual bulk 

fibrous medium. The three rods will be termed a loading bar and target bars. The loading 

bar is also termed rod 1. The target bars are further specified as rod 2 and rod 3. Rod 2 is 

situated closer to the loading bar, near the intended contact point, than rod 3. The 

appropriate dimensions and angles characterising this macro-model are recorded in Table 

2.1. When a load is applied to rod l, it deflects or bends alone until it meets rod 2. Since 

rod 1 and rod 2 come into contact with each other, they move together, as the load in 

increased, until the rod 2 meets rod 3. Finally the three rods move in unison. 

Angle of inclination 
Length (mm) to base plate (0) Distance a (mm) 

Rod 1 143 53 79 

Rod2 97 42 87 

Rod3 101 37 NIA 

Table 2.1 Characteristic dimensions of the three-dimensional model. 

The distance "a" is from the welded end of the rod to the contact point with the adjacent rod. The 

value for Rod 3 is not required in the analysis, because Rod 4 is not present. 

Rod 1 

Figure 2.16 Schematic view of the three-dimensional model. The arrow shows the location and 

direction of the applied force. 
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2.6.1 Behaviour of an elemental modular structure 

To analyse this particular three-dimensional model, especially once a new contact has 

been made, it is necessary to interpret the behaviour of the generic cantilever beam 

shown in the schematic and free-body diagrams in Figure 2.17. That is because, when the 

loading rod meets the first target rod and makes a new contact, it has an additional 

support together with the original built-in (welded) boundary condition. The support can 

be defined by a simply supported boundary condition, and there is also the possibility of 

sliding motion between the loading rod and the target rod. This newly generated situation 

appears to be relatively simple to analyse and may be solved by the superposition of 

several known solutions. It could be the case that the reaction Ra is known a priori, by 

superposing the deflections resulting from the external force F, the external moment M 

and the reaction Ra . However, the problem should be solved step by step, because the 

reaction R0 is, in general, unknown. 

Figure 2.17 Schematic view (top) and free body diagram (bottom) of an elementary beam 

structure in the three dimensional model. 
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We need to find the reaction force R
a 

applied to the target bar, and the deflection at the 

end of the target bar. From the equilibrium of forces and moments (about the left-hand 

end of the bar; see Figure 2.17), the following two conditions may be written: 

(2.15a) 

M
O 

+ M = a R
a 

- F L (2.15b) 

This is a "statically indeterminate system" [51], however, because only two equations are 

available for three unknowns, R0 , R
a 

and MO • Nevertheless, this setback can be 

overcome by the application of the "force-deformation relationship". The boundary 

conditions usually include both "force equilibrium conditions" and "geometric 

compatibility conditions". The equilibrium conditions will involve restrictions on the 

shear and bending moment at certain points. The geometric conditions will involve 

restrictions on the deflection and slope at certain points: 

y = 0 at x = 0 and x = a, 

dy = 0 atx=a.
dx 

(2.16a) 

(2.16b) 

To evaluate the reactions, we need to investigate the deformation of the bar. Once again, 

the bending moment M b in the rod may be written, 

(2.17) 

The function involving angle brackets, ( x - a) , is a type of singularity function which is 

useful in dealing with a discontinuous loading. These angle brackets resemble ordinary 

brackets except that the function is always zero when the argument is negative. When the 

exponents are -1 and -2 (these numbers are placed as a subscript for attention), the 

function equals zero everywhere except at x = a. These functions are integrated according 

to the following rules [51]: 
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x (x-a/+1

I (x-a)" dx = when n � 0,  
-00 n + 1

f
00 

(x-a)_
1 
dJC = (x-a)0

, 

(2.18a) 

(2.18b) 

(2.18c) 

When bending is involved in the deflection of a structure, the bending moment may be 

related to the deflection by [51], 

(2.19) 

where E and I denote, respectively, the Young's modulus and the second moment of area 

of the beam about its neutral axis. Their product EI represents the "flexural rigidity" or 

"bending stiffness". 

While equation (2.19) is integrated twice to find the deflection, the specific 

boundary conditions (equation (2.16a,b)) can be evaluated together. By doing this, one 

may find the reaction R0 in the present model, 

F 

) 3 R =-(3L-a +-M.
a 2a 2a 

(2.20) 

If this reaction is inserted back into equation (2.17), the bending moment in the specific 

beam of interest is completely represented by 

M = F(x-L)-(�(3L-a)+�MJ(x-a) 1 . 
b 

2a 2a 
(2.21) 

To evaluate the deflection at the end of the bar, an energy method may be 

successfully adopted. "Castigliano's theorem" states that if the total complementary 

energy u
c of a loaded elastic system is expressed in terms of the loads, the in-line 

deflection J; at any particular loading point is obtained by the partial derivatives of uc

with respect to the load P; at that point [51], 
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au
c

8. = -., oP,'

(2.22) 

To apply Castigliano's theorem it is necessary to determine the total elastic energy of the 

system in terms of the loads that are parallel to the required deflection. In a linear elastic 

system, it is obvious that its complementary energy is equal in magnitude to the potential 

energy UP . It has been widely accepted that the potential energy rather than its 

complementary counterpart in such a system is used. Therefore, for a linear-elastic 

system, the term "elastic energy" U will be adopted to express the potential energy or the 

complementary energy. When a bending moment exists in a structure, the elastic energy 

may be represented by integrating the bending moment along the characteristic 

dimension, which is usually the length of a beam [51], 

U= r,M; dx.
Jo2£/ 

(2.23) 

When the bending stiffness El is assumed constant, the elastic energy will be expressed

by 

U=- L -- 3L-a +- L -- 3L-a . 

F
2 { 3 a ( )

2
} 

FM { 2 a ( )}
6EI 4 2EI 2 

(2.24) 

Thus, according to Castigliano's theorem, the deflection at the end of a bar may be 

written 

8 =-=- L -- 3L-a +- L -- 3L-a . 

au F { 3 a ( )
2

} M { 2 a ( )}
L oF 3EI 4 2EI 2 

(2.25) 

For the particular model in Figure 2.16, the moment M in Figure 2.17 is related to the 

force F (see Figure 2.19), because of the idealisation of the load-bearing shape as a 

straight rod (see Section 2.6.3). Finally, relations (2.20) and (2.25) for the reaction force 

and the deflection will be used to evaluate the contact force and the deflection of each 

rod after a fresh contact in the analysis of the three-dimensional model. 
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2.6.2 Deflection by a longitudinal force 

So far only transverse forces on the rods have been investigated. This limitation could be 

justified in many cases such as a planar geometry, because transverse forces are 

dominant. However, for a more complicated situation having a more or less three­

dimensional geometry, it might be necessary to include the contribution by longitudinal 

forces. When a load with multiple components is applies to the beam illustrated in Figure 

2.18, its deflection may be predicted [ 51] 

y(x) = C1 +C2 x+C3 sin( /P x)+C4 cos( /P x),
vm vm 

(2.26) 

where C1-C4 are coefficients to be determined from the boundary conditions and P is the

axial load applied to the beam. 

.----� X 

p 

Figure 2.18 Schematic view of a beam under a multi-component load. Clamped boundary 

condition is applied at x = 0. 

Equation (2.26) is obtained by solving a series of load-deflection differential equations 

which include equation (2.19). When the boundary condjtions are applied to (2.26), its 

coefficients may be obtained. Two geometric-compatibility conditions and two load­

equilibrium conditions are: 

y = O and
dy 

= 0 at x = 0,
dx 

EI_L=-M and - EI- =Fat x=L.
d 2 d 

( 
d 2 y 

Jd x
2 

dx d x
2 
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Thus the following coefficients are determined for the deflection equation (2.26). 

F�1 � M �
C =- -tan( -L)+-sec( -L)

I p p EI p EI 

F 
C =--

2 
p 

C =F [El 
3 P'VP 

(2.28a) 

(2.28b) 

(2.28c) 

(2.28d) 

When a compressive force is applied longitudinally to a long slender beam structure, 

buckling can often occur. The "critical load" �r (also known as a buckling load) of a 

beam with built-in boundary conditions may be expressed as [51] 

tr
2 

EI 
�r =4/}' (2.29) 

For the case of the loading bar in the current three-dimensional model, the critical load is 

about 13 kN. Thus there will not be such a buckling in the loading bar, because the 

maximum load is less than 0.02 % of the critical load. However, it is still worth analysing 

the deflection by longitudinal forces, which are evaluated to contribute about 3% to the 

deflection. This is the result of the current three-dimensional geometry, where a greater 

proportion of the force is applied in the longitudinal direction than in the case of a 

laminar geometry (where this proportion is negligibly small). Nevertheless, bending 

deflection by a transverse force is about 30 times greater than that by a longitudinal 

force, for this exaggerated three-dimensional geometry. Thus, one may conclude that it is 

not always necessary to consider the effect by a longitudinal force in the majority of 

situations. 
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2.6.3 Analysis 

In the three-dimensional macro-model for an experiment, the load-bearing rod has a 

hooked end to bear a load, but it can be modelled as a straight rod with the appropriate 

force and moment at the loading location (Figure 2.19). 

Figure 2.19 Free body diagram of the three dimensional model. The right-hand diagram shows 

an idealisation of the left-hand structure. A clamped boundary condition is assumed at the lower 

end of the rod due to a welding. 

The deflection of the loading rod results from the contributions of both the force and the 

moment at loaded end. These contributions are denoted by 8 F and 8 M , respectively. 

These may be written in the following forms, where a circular cross section with a 

diameter of dis assumed [ 50, 51]: 

M L
2 

32L
2

8
M = -- = 4 

F D" sm B, and 
2EI re Ed 

F sin() L3 64L3 

oF = 3EJ = 4 
FsmB. 

3rcEd 
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Table 2.1 lists the values for L and (}. A Young's modulus of 2 x 105 
N / mm

2 was used. 

The behaviour of the loading bar (or the 3-D bulk structure) is governed by equations 

(2.30a-c) until a new contact occurs between the loading bar and rod 2 (the first target 

rod). Thus they explain the behaviour of the first region of the piecewise linear curves in 

Figure 2.20. 

The first linear part in Figure 2.20 shows the deflection of rod 1 only. At this 

stage, cantilever beam behaviour is sufficient, until the rod 1 meets the rod 2. The contact 

between rods 1 and 2 occurs when the applied force reaches a certain value, determined 

by the a priori knowledge of the gap between the rod 1 and 2. {The procedure in Section 

2.5 is adopted.) When the deflection of rod 1 is equal to the initial gap, it is assumed that 

a new contact is generated. The elementary module of Figure 2.17 is required to describe 

the behaviour of the rod 2. The reaction force created where rod 1 meets rod 2 is assumed 

to be applied to rod 2 and to produce a corresponding deflection of rod 2. Similarly 

another reaction force is also applied to rod 3 when rod 2 makes the second new contact 

on rod 3. Finally all three rods are connected to one another by contacts, and rod 3 moves 

downward according to cantilever beam behaviour because there is no further contact. Of 

course, the pre-determined gap between rods 2 and 3 is required to determine the load at 

which the second contact occurs. During the intermediate states between contacts, the 

forces are assumed to be invariant. 

The deflection of the three-dimensional macro-model was measured under a 

vertical downward load, which was applied to a hanger hooked to the upper end of the 

loading rod. A travelling microscope with a resolution of 0.01 mm was used to read the 

deflection at each loading step. The measured results, shown in Figure 2.20, display an 

intrinsic non-linearity brought about by the increased number of contacts, although this is 

not as marked as it is in the laminar cases of Figures 2.11 and 2.15, because the rod links 

between contact points in the 3-D model are not long enough to produce a significant 

deflection (See Figure 2.16). Good agreement is noted between the measured data and 

prediction. However, it should be noted that a discrepancy between prediction and 

measurement was initially observed in the third piecewise linear region (Figure 2.21 ), 
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and hence an "adjustment" procedure was adopted to fit the measured data. In this three­

dimensional situation, sliding motion between the rods was suspected of being more 

important than in the case of laminar structure, because of the significant tangential force 

inherently incurring upon contact in a three-dimensional geometry. (A plot is shown in 

Figure 2.21 to illustrate this behaviour, and this will be explained later in this section.) 

Deflection in the three-dimensional model 
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Figure 2.20 Deflection/force behaviour of the three-dimensional contact model. Circles 

represent the measured data and the solid line is the predicted curve. Dot lines separate three 

piecewise linear regions. 

The aforementioned discrepancy was observed only after the second contact was 

made. This was thought to be caused by a possible relative sliding motion between rods 2 

and 3 at their contact point. From the configuration of the 3D-contact model, it may 

easily be seen ( although it is not certain in Figure 2.16) that the relative sliding motion is 

more likely to happen at the second contact than at the first contact. That is because the 

plane formed by rods 2 and 3, when they meet each other, is not too far from 

perpendicular (78°) to the bottom plate, whereas rods 1 and 2 make a plane with an angle 

of 58°. In the present model, therefore, the sliding effect needs to be taken into account. 

The sliding process itself may be understood in the sense that sliding may be 

related to a reduction of resistance, not necessarily in the form of conventional friction. 
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For the particular geometry of the three-dimensional contact model, because of the 

almost upright orientation of the imaginary plane formed by rod 2 and 3, it seems likely 

that rod 3 would not give a significant resisting contribution to rod 2. Thus rod 2 could 

well move downward with little resistance, such that simply-supported contact in 

position A (see Figure 2.17) is appropriate. This could be confirmed by the fact that the 

third piecewise linear region in Figure 2.20 is close to a simple elongation of the second 

piecewise linear region, which is denoted by a dotted line in Figure 2 .21. In other words, 

the further nonlinear effect by rod 3 may be regarded as relatively small, because rod 3 

does not significantly contribute to the model. However, the main role of rod 3 is to give 

a small resistance to rod 2, by which nonlinearity continues further even if it is very small. 

In terms of static mechanics rod 3, under a sliding motion against rod 2, may be acting to 

reduce the contact force at the junction of rods 2 and 3. On the assumption that rod 2 is 

not sliding relative to rod 3, the reaction force at the contact point may be obtained 

analytically from equation (2.20). However, sliding at that point will eventually lead to a 

reduction in the reaction force. So one can conceive a new reduced reaction force, simply 

by the following recurrence: 

(2.31) 

Here, the sfis a so-called "sliding factor", which is not necessarily a conventional 

coefficient of friction. It could be related to the angle of contact, however this is not 

pursued further. Its extreme values represent a fixed/non-sliding situation for sf = 0 ,  and 

a non-resisting case for sf =I. The latter coincides with the situation where there is no 

further contact and nonlinearity. According to these ideas, this simple relation would 

affect the behaviour of rod 2. For the current three-dimensional model, the sf was 

adjusted to fit the measurement data and was found to be 0.2. 
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Deflection in the three-dimensional model 
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Figure 2.21 "Zoomed" plot of the third piecewise linear region of Figure 2.20. The thick solid line 

is the "adjusted" curve, the dashed line is the original non-adjusted curve, the dotted line 

represents the elongation of the second piecewise linear region (i.e., for a sliding factor of zero) 

and the two thin sold lines are for coefficients of friction in place of sliding factor. The one closer 

to the adjusted line is for a value 0.17 and the other is for 0.12. 

Although the sliding factor sf is not a coefficient of friction, it has been found, in 

the case of the present model, that a coefficient of friction works quite well as the sliding

factor when it is inserted in place of the sliding factor. In other words, the measured 

coefficient of friction obtained was quite similar in value to the adjusted sliding factor. 

However, it does not necessarily follow that the two are related. The same silver steel 

rods with a diameter of 3 mm were tested for their coefficient of friction. The values of 

0.12 and 0.17 were obtained, based on the actual testing method. The former value was 

recorded when a standard 120° tip slider was used, and the latter was of the case for a 

round-tip slider. More information (including tip sliders) about the friction measurement 

is given in Section 1 of Chapter 3. It may be observed, in Figure 2.21, that both these 

values for the coefficient of friction produce similar nonlinear behaviour to that derived 

from the adjusted sliding factor.
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2.7 Summary 

A scanning electronic microscope was used to give a visual impression of the 

microstructure of cellular and fibrous materials. Then a series of idealised macroscopic 

models were constructed to describe the essential geometrical characteristics of a fibrous 

material. They were constructed by means of elastic silver-steel rods. One of them has 

been known as a "stacked cylinder model", whose simplest form was adopted to describe 

Hertzian contact deflection. But, the Hertzian nonlinearity was not regarded to be 

dominant due to its negligible amount. Then, bending of rods in a stacked cylinder model 

was investigated numerically by ANSYS and experimentally. Significant amount of 

deflection was confirmed in bending models, however whose linear behaviour was in 

contrast to a nonlinear nature of bulk fibrous materials. Such nonlinearity was taken into 

account by constructing "coming-to-contact models" which experienced the increase of 

inter-rods contacts. Two models were successively built for single and double fresh 

contacts. Due to their planar structures, a three-dimensional contact models was also 

constructed. These idealised macro-scale models confirmed that bending deflection and 

an increase in the number of contacts are likely to be the mechanism of nonlinear 

behaviour of bulk fibrous materials. 

Although the several idealised macroscopic models representing the microscopic 

characteristic of fibrous materials produced reasonable explanations of how fibrous 

materials behave nonlinearly, the limitations of this approach should be highlighted at 

this stage, especially in the case of a realistic bulk structure. When one considers the 

results of Sections 2.3 (on FE analysis), 2.5 (coming-to-contact planar models) and 2.6 

(the coming-to-contact three-dimensional model), it can be concluded that any attempt to 

describe the performance of a bulk fibrous material by means of its microscopic modular 

behaviour could prove extremely problematical. It was shown how computationally 

intensive the FE analysis is in the simulation of bending behaviour of even a simple 

geometry without consideration of new contacts. When new contact behaviour was 

included, it was necessary to know the initial gaps between structural members and the 
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locations of the new contacts. This process is not practically achievable for a real bulk 

fibrous material with a very great number of contacts. For the three dimensional models, 

apart from an a priori knowledge of gaps, the issue of the statically indeterminate nature 

of the problem was enough to make the situation difficult to tackle. In real bulk fibrous 

materials, such a statically indeterminate system could make the problem impossible to 

solve. This statically indeterminate issue could be related to the restriction of DOF and 

the large negative pivot value in FE analysis. Therefore, to understand better the 

structural behaviour of a bulk fibrous material, a macroscopic approach including the 

macroscopic parameters at the outset is believed to be more feasible than a macro-scale 

model of microscopic structure. This topic will be discussed in Chapter 4, in which 

several static models are proposed. In Chapter 3, a macro-scale approach to the 

microscopic structure will be further investigated particularly in respect of contact 

friction and electric contact resistance. Its conclusion gives further support for the 

macroscopic approach in Chapter 4. 
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Chapter 3 

Contact Friction and Resistance 

By means of macro-scale models with silver-steel rods, the mechanisms of structural 

behaviour of fibrous materials under static compression have been investigated. Bending 

behaviour has been identified as determining the performance of fibrous media. However, 

in one of models, which has a three-dimensional configuration rather than a two­

dimensional or laminar structure, it has revealed that bending theory might lead to a 

discrepancy from what could be observed. Thus, it seems necessary to account for sliding 

contact between the rods. And this requires a coefficient of friction. In this chapter, first 

some of the theoretical background on friction is reviewed, the choice of model is 

explained and corresponding results are discussed. 

While bending provides a dominant "linear" deflection, the increase in the 

number of contact between rods was found out to play a key role and to introduce 

"nonlinear" behaviour. Other than in an idealised model, however, it is not certain how to 

determine the number of contacts, let alone the exact location. For the special case of 

conducting fibrous materials, one may match those numbers to the electric resistance. It 

is a common sense that the more compressed a fibrous material, the more conducting it is. 

In this chapter, a review of theory for electric contact resistance is followed by a 

methodology for idealised structures of silver-steel rods. It will be shown how the 

resistance at a contact responds to the force of contact. In addition, measurements have 

been made on steel wool (a conducting fibrous material) to see if it is possible to extend 

from knowledge of the resistance of idealised contacts on a macro-scale model to the 

conducting properties of a bulk material. 
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3 .1 Contact Friction 

3 .1.1 Review on Friction 

Friction forces between two objects resist relative motion between them, and then slow 

the motion once the objects are moving relative to each other. The causes of friction are 

extremely complicated in nature. However the effects of friction in many cases can be 

described by simple equations with empirical constants. 

There are two main types in friction. "Contact friction" is generated when one 

solid object is set into motion across the surface of another. "Fluid friction" is observed 

when a solid object moves through a fluid. Contact friction is usually represented by a 

coefficient of friction, and fluid friction, which is also known as a drag, is quantified by a 

coefficient of viscosity. 

Historically, contact friction has been explained by means of three classical laws 

of friction. Leonardo da Vinci found that the friction is independent of the area of contact 

(Law of Leonardo). Amontons found that friction F
µ 

is proportional to the normal force 

(Law of Amontons) and independent of the apparent area of contact as Leonardo did. 

Coulomb revealed that the friction is independent of the velocity, if the speed is not too 

large or too small (Law of Coulomb) [53]. These classical laws of friction is mainly 

represented by Amon tons' law, 

(3.1) 

with the coefficient of friction µ and the normal force N . 

The normal force is actually a pair of forces which the objects exert on each other 

when they are in contact. According to Newton's third law, they are of the same 

magnitude and are in opposite direction normal to the contact surface. The coefficient of 

friction is determined by the specific conditions of the surfaces in contact. The contact 

friction is specified further into the static and kinetic cases. Usually it has been 
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recognised that the kinetic friction force is smaller than its static equivalent, and the 

coefficient of kinetic friction is smaller than that for static friction. 

In the 1950s, Bowden and Tabor [54] established a "cohesion theory" which is 

also known as the adhesion model or plastic junction model. The theory postulated that 

the real (or true) area of contact was a small fraction of the apparent (or visible) area of 

contact. 

Even highly polished surfaces may be regarded rough on a molecular-size scale. 

Such surfaces are composed of irregular asperities that comprise a very small part of the 

total surface area. According to the cohesion theory [54, 55], the contact is made only at 

the tips of these asperities. During contact, therefore it is highly likely that the pressure in 

the extremely small contact area is well beyond the yield strength causing plastic flow. 

The plastic flow enlarges the real contact area and continues until the pressure falls back 

below the yielding point and the normal force is supported elastically. This plastic 

behaviour causes the so-called cold-welding between metal objects. This is one of the 

causes of static friction, together with interlocking of asperities. To set the object into 

motion, a tangential force is required to overcome these cold-weld junctions. In this 

situation, Amontons' law can be generalised [56, 57], 

F =SA= S(N/Y)= (S/Y)N = µN, (3.2) 

based on the shear strength S and the real contact area A, which is proportional to the

normal force N and is inversely proportional to the yielding pressure Y for materials 

deforming plastically. 

When the objects are set into motion, cold welds are supposed to be broken [53, 

54]. It leads to the decrease in the amount of a cold welding and further leads to the fact 

that the coefficient of kinetic friction is usually smaller than that of static friction. 

Deformation of the asperities also explains why the friction force seems independent of 

the apparent contact surface (Law of Leonardo). Under the smaller contact surface, large 

deformations of the asperities are created microscopically. Conversely, small 

deformations of the asperities are generated when the larger contact surfaces are formed. 
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In both cases, microscopically, the real contact area is regarded essentially the same, 

provided that the normal force remains equal. 

Due to its significance, the true area of contact deserves a further consideration. 

The definition of contact area and surface condition such as roughness and cleanness are 

some of aspects shared by the mechanical friction and electric contact, because they are 

established by a physical contact. The true area of contact is also preferably known as a 

"load bearing area" and "a-spots" especially in the electric contact. They are regarded as 

a sum of all these real contact spots/asperities, which actually carry a load and maintain a 

physical contact. As far as an electric resistance is concerned, only the portion of the load 

bearing area may be electrically conducting. That is because it is often composed of 

(quasi-) metallic area plus insulating film area. Thus, one can imagine an inequality in 

terms of their size, saying that a "conducting area" is usually smaller than a load-bearing 

area which is mostly smaller than an apparent contact area. 

The load bearing area may be determined theoretically from the load between two 

members in contact, provided that the contact surface is perfectly clean and smooth. If 

the deformation at the contact junction is produced purely elastically at a load smaller 

than the yielding pressure of the members, the load bearing area can be evaluated. For the 

ideal case of two cylinders at a right angle, the radius a of a circular contact area is given 

by the Hertzian formula [ 49, 50, 58], 

a=3 -N 
--1 +--2 -+- , 3 

(
1- v2 1- v2 J/( 1 1 J 

4 E1 E2 '1 '2 
(3.3) 

and the corresponding load bearing area will be Ab = tr a 
2

• For two cylinders in parallel 

contact, the half-width b of a rectangular contact area may be expressed as [ 49, 50, 58], 

(3.4) 

The corresponding load bearing area will be Ab = 2 1r b l . Here N is the contact force 

generated between two members with radius r distinguished by subscript 1 and 2. The 

Poisson's ratio and Young's modulus are denoted by v and E, respectively. The length 
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of the cylinder is indicated by /. However, when the load is large enough to produce a 

permanent deformation even after the removal of a force, the elastic behaviour implied 

by Hertz formula is no longer valid. Instead, if the hardness Hof a material is known, the 

load N may be related to its load bearing area Ab as follows [58], 

(3.5) 

Any value of : between O and 1 is possible. 

In many cases, Amontons' law is known to hold for metals [54]. However failure 

of Amontons' law has been reported in the textile industry [55, 56, 57, 59]. For materials 

with a high elastic modulus such as metals, a plastic flow is experienced on microscopic 

asperities because the elastic deformation is not enough to enlarge the real contact area. 

This case can be analysed according to the Amontons' law. However, for materials with 

a relatively lower elastic modulus, the elastic deformation may be regarded enough to 

secure enlarged contact area. In this case, the contact area is related to the normal force 

raised to some exponent. It is straightforward to find out, from equations (3.3) and (3.4), 

that the contact area is related to N213 for two cylinders at a right angle and to N112 for 

two parallel cylinders. Thus, for non-metals, Amontons' law may be replaced by a new 

empirical relationship of 

F = SA OC S Nn 

= C Nn , (3.6) 

with adjustable constants c and n [55, 56, 57, 59]. Amontons' law corresponds to special 

case of n = 1 (See also equation (3.5) for A - N1 ) for materials with plastically-

deforming asperities such as metals. 

Silver steels, which are the subject of this chapter, are known to have a high 

elastic modulus which makes the Amontons' law applicable. 
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3 .1.2 Measurement method 

The coefficient of kinetic friction for a pair of materials may be measured through a 

system of a block and a plane, in which a block with a mass slides down an inclined 

plane [53]. The critical angle at which the block slides down the plane at constant speed 

can be related to the coefficient of kinetic friction. The coefficient of static friction may 

be measured in a similar way in terms of the angle just before the motion starts. 

However, because of their cylindrical shape, the traditional method is 

inappropriate for measuring the coefficient of friction for silver steel rods which 

constructed the idealised macro-scale model described in Chapter 2. Instead, a so-called 

"friction and scratch hardness apparatus" well established in the surface-engineering area 

has been adopted [60]. 

The apparatus consists of a pivoted beam, a counterbalance, slider, load cell, 

weight platform, and moving stage. It is represented schematically in Figure 3.1. Weights 

are placed on to the weight platform which is connected vertically to the slider and 

horizontally to the load cell. The weight platform is joined with the pivoted beam proper 

through the load cell located inside the beam. The beam is pivoted by roller bearings and 

supported by upright structure and hence is allowed to rotate and to move vertically to 

adjust its height. The specimen is clamped horizontally on to the stage which is mounted 

on a traverse basement. The basement is driven by an electric motor via a worm and nut 

system. Thus the slider connected to the load cell and beam proper is fixed and the 

specimen on the moving stage is travelling horizontally and reciprocally. The weight, 

slider and specimen are lined vertically to make sure that the load is transmitted along the 

vertical axis through the contact formed by the slider and specimen. 

Before the main round of the tests, the load cell needs to be calibrated. During 

this procedure, it is not necessary for the specimen and slide to be present. The weight 

platform is set horizontal. Usually the slider is replaced by a screw to which a nylon 

string is tied. The signal from the load cell is recorded when weights are applied 

downward to the string passing over a pulley wheel. 
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Figure 3.1 Schematic diagram for the friction and scratch hardness apparatus. More details

are given elsewhere [60]. 
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During the main test, the specimen is clamped on to the horizontal stage. The slider is set 

normal to the specimen by adjusting the height of the beam. A spirit level is used to 

check whether it is horizontal. The beam is then pivot-tightened and balanced by 

adjusting the distance of the counterbalance sitting on a treaded rod. Loads are applied by 

metal weights which are placed on the weight platform directly above the slider. The 

slider is then placed softly on to the specimen by the weight. Then, the motor is activated. 

The output signal from the load cell is monitored into a digital oscilloscope through a 

charge amplifier. When the specimen travels away from the beam and parallel to the axis 

of the load cell, tension is experienced. When it moves toward the beam, compression is 

recorded by the load cell. The friction force is quantified by comparing the calibrated 

data from the load cell and the recorded force. The coefficient of friction is obtained from 

Amontons' law, the normal force being provided by the weight. 

3 .1.3 Analysis 

A friction measurement was conducted to evaluate the friction coefficient on the surface 

of silver-steel rods which comprised the idealised macro-scale models. A series of tests 

were followed with different specifications by means of the friction and scratch hardness 

apparatus. Although silver steel rods with 3 mm diameter were used in the construction 

of the idealised models, rods with different diameters were also clamped on to the 

moving stage by means of metal strip and screws. Samples were of 3, 6, 9, 12 mm

diameter with a cylindrical or half-cylindrical shape. Sliders were also chosen to have 

various types of tip shapes. A standard tip having a 120° conical end was used together 

with sliders with a cylindrical and half-spherical shaped tips. For the latter two sliders, 

the dimension of the tips was adjusted to have the same radius of the specimen. The same 

material of silver steel was selected for the sliders. Two different distances for the 

moving specimen were tried. The shorter travelling distance was about 11 mm, and the 

longer distance was of 27 mm. However, the travelling speed of the specimen was not 

58 



varied, to have a fixed speed of about 3.7 mmls. This represents an averaged speed, 

because the reciprocal movement hinders the instantaneous speed from being constant. 

A series of measurements with different specifications were accomplished. 

Although the results were not identical, there were no significant differences among them. 

However, a considerable consistency has not been observed between the various 

specifications of measurements. 

Some data are displayed in Figure 3.2. Generally, periodical peaks were recorded. 

The peak indicates the static-friction required to break the cold welding, but the 

corresponding value of its coefficient evaluated from these data is often more than unity. 

This is also reported for a certain pairs of contact surfaces for the coefficient of static 

friction [53]. The normal force, which is exerted by the weight on the platform, ranged 

from 0.5 to 2.5 N in steps of 0.5 N. As expected, there was no significant difference 

monitored, depending on the normal force in terms of the coefficient of friction. (The 

results for different normal forces are not shown here. Only the 2.5 N case is presented). 

Oscillations in the data in some plots may be related to successive measurements on the 

same specimen. Often they were accompanied by an audible high-frequency noise. Thus 

the contact areas of the specimens were consistently relocated and the surface was 

polished with a soft cloth soaked with acetone to reduce the symptom. In this noisy 

situation, the peaks were also observed to have a bigger value than usual, and hence were 

conjectured to be related to the surface roughness. 

The plots (a) and (b) in Figure 3.2 shows results obtained by using several rods 

with different diameter as specimens. A consistent pattern is not easy to recognise. At a 

glance, the coefficient seems to increase as the diameter increases, but for the 12 mm rod, 

this trend is overturned. Secondly in the plots (a) and (c), the effect of using different tips 

on the slider are presented. For a 3-mm diameter rod, in this example, the cylindrically­

tipped slider seems to produce a significantly bigger friction coefficient. But for 6-mm

diameter rod, however, the difference is not repeated. Instead, the cylindrical tip makes 

more wiggles in the data. It may be because more contact areas are involved for the 

cylindrical and spherical tip than for the standard 120° conical tip slider. Although the 
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size of the contact area does not affect the value of the coefficient in the ideal situation, 

in reality it may produce such wiggles or unstable data. Therefore, the patterns may be 

said to be similar to one another without regard to the types of tips. The plots (a) and (d) 

presents the behaviour for two different moving distances. It is observed that the 

coefficient of kinetic friction is not constant during the sliding and is gradually 

decreasing after reaching its maximum. This is the case for the longer travelling distance. 

However, for the shorter-distance, the values seem to be more stable. Therefore, 

representative values for the coefficient of kinetic friction were evaluated, using the 

higher values for the longer distance and the stable values for the shorter distance, both 

of which yield a similar value. It may be reasonable to say the coefficient of kinetic 

friction is about between 0.1 to 0.2 depending on the cases selected. Figure 3 .3 gives an 

enlarged view of Figure 3.2. Overall compromise values were deduced as 0.12 or 0.17 

from the averaged combination of several other cases, which are not presented here. They 

were used as the friction coefficient when evaluating the behaviour of the three­

dimensional model described in Section 6 of Chapter 2. 
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Figure 3.2 Friction coefficient of silver-steel rods. Effect of different diameter (a and b), slider tip (a and c), and travelling distance (a and d) is 
illustrated. 
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Figure 3.3 Enlarged view of Figure 3.2. Top, (b) in Figure 3.2; Bottom, (c) in Figure 3.2. 
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3 .2 Contact Resistance 

3 .2.1 Electric contact 

An "electric contact" is created when two conductors carrying electric current are 

connected to each other. These conductors are usually called contact members. When 

two members make a contact, what is described as "contact resistance" in an ideal 

situation often implies a "constriction resistance" [58]. The current lines of flow in the 

members are bent and constricted through narrow and small conducting spots and hence 

it causes an increase of resistance beyond a fully conducting situation. This increase of 

resistance is called the constriction resistance. It is mainly localised in the immediate 

neighbourhood of the small conducting spots and is regarded as limited by a so-called 

"end surface", which itself is equipotential. In other words, a constriction is assumed 

unlikely beyond the end surface. The constriction resistance depends on the size and the 

shape of a load bearing area, which often consists of several spots and is also a function 

of the resistivity p ( Q m ) of the material. If the following conditions are met, the 

constriction resistance can be easily evaluated in a simple form. Both members may be 

selected as the same material. The resistivity and the temperature are assumed to remain 

constant in the constriction region. This may be justified because structural variations are 

negligible in such a small constriction region. The conducting area may be regarded as 

equipotential as a result of the equal constrictions ensured by symmetry of the two 

members and the fact that they are of the same material. For one contact member, 

therefore, the constriction resistance Re is expressed by [58], 

R = 
_f!_ 

C 4a' 
(3.7) 

assuming a flat circular contact area with a radius a. 

Jn addition to the constriction resistance, an alien film in the contact may 

contribute to an additional resistance called a "film resistance" R 1 [58],
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(3.8) 

The film may be characterised by its resistance er 
1

, resistivity p 
1

, and thickness t, when

it is assumed to prevail uniformly throughout the conducting area Acd , which is smaller 

than the load bearing area in the presence of an alien film. 

Therefore the contact resistance R
e
,, in a practical situation, is likely to consist of 

both a constriction resistance R
e 

and a film resistance R 1 . Since the constriction extends

into both contact members, then 

(3.9) 

When a film resistance is present, the constriction resistance in both members, R
c1 

and 

Rc2 
, are not quite independent of R 1 , because the presence of alien films affects the real

conducting area related to the constriction. If two cylindrical contact members are chosen 

as the ones with same material and same diameter, the total constriction resistance will 

be simply twice as that in equation (3.7), 

R = ..E._ 
C 2a' 

(3.10) 

when the effect of R I is negligible. This is for an ideal situation with a whole conducting 

area composed of a single, preferably circular, spot. However, for a realistic situation 

where there are several a-spots, the constriction resistance will be defined in a different 

way. 

The load bearing area may be calculated, from the measured electric resistance 

(3.10), when the load is small enough to create only an elastic deformation and the area is 

ideally clean and smooth, and circular or elliptical. However, only measurements in 

vacuum have been reported to confirm the Hertzian deformation [58]. In air, metals are 

supposed to be covered by layers of oxygen, which increase the resistance. Moreover in 

reality, the surfaces are likely to have thick alien films, which contribute to the increase 

of observed resistance and hamper the evaluation of a load bearing area according to the 

Hertz formula. Thus, a cleaning procedure should precede the measurement of electric 
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contact. Thick alien films such as grease or lubricants can be removed by using a volatile 

liquid such as acetone. A metallic surface can also be cleaned by the aid of heating in 

vacuum and by the means of ultrasonic cleaning. 

3 .2.2 Single cross-rod contact 

As a modular test on the electric contact resistance, a cross rod contact 1s often 

investigated [58]. Two cylinders, preferably with a same diameter, with a same 

conducting material are chosen and placed crosswise to produce a reasonable symmetry 

having a circular contact surface. 

Dry plywood ------> - ...
,. _. ' 

, ... _______ _

Supporting member 

Figure 3.4 Schematic measurement setting of a cross-rod contact situation and its circuit

diagram with a loading force.

In the situation of cross-rod contact, a system may be mechanically constructed 

and electrically wired, which is shown in the schematic diagram in Figure 3.4. 'A' and 

'V' denote a current and voltage meters, which were replaced by two separate 

multimeters The particular multimeter used (Thurlby 1905 intelligent multimeter) has 

precisions of 1 µV , l nA and 1 mO. for voltage, current and resistance measurements, 

respectively. Although the internal resistance of the multimeter is not known, the value is 

assumed to be negligible. The electric circuit is formed to have its current flow around 
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the dashed line in the direction of the arrow. The electrical source was a 1.5 V dry battery. 

Electric cables of a type usually deployed in an audio system were used. Wires were 

soldered to the ends of the rod. To produce a variable load at the contact, the loading 

member is clamped at one end and is supported at the contact by a supporting member. A 

series of weights are placed at the other end of the loading member. The contact force is 

evaluated as the reaction force at the contact. 

When the contact is made, the electric circuit generates the equipotential surfaces 

in each cylinder, illustrated in Figure 3 .5. In the immediate neighbourhood of the contact 

area, the equipotential surfaces are likely to be concentric ellipsoids. But, beyond this, 

the surface Ae in the diagram may be regarded as the end surface of the constriction 

generated in the cross rod contact. The voltage will be measured between the ends of 

both members, indicated in the diagram. Because the end surface meets the end of the 

cylinder, the measured voltage will be essentially on the same equipotential surface of 

the voltage at the contact. Therefore the contact resistance can be evaluated by the ratio 

of the voltage to the current measured in the system, according to the Ohm's Jaw. 

Figure 3.5 Equipotential surface in the contact area of crossed rods. Thin lines represent 

equipotential surfaces, and Ae is the end surface, which extends to a voltage meter. The thick 

line is the path of the current flow and is extended to a current meter. 

To evaluate how the contact resistance is related to the varying contact force, it is 

necessary to (a) measure the resistivity of the conducting member, (b) calculate the

contact force from a load, and ( c) find out how the load bearing area is changed

according to the contact force.
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(a) To evaluate the electrical resistivity p, the voltage and the current across a

single rod were measured in a simple circuit (which is not shown here) where wires are 

connected to both ends of the rod. The resistance Rrod was obtained by the ratio of the 

measured voltage drop to the current, and the resistivity was obtained by [53], 

R = 
p·Lrod 

rod A 
' 

rod 
(3.11) 

where L,0d 
is the length of the rod, A,0d 

is the cross-sectional area of the rod. The value 

of 20.7 x 10-s nm was obtained for the particular silver-steel rod used in the system. 

The 330 mm-long rod with 3-mm diameter was installed, so it was assumed that the lines 

of current flow were parallel and the equipotential lines were perpendicular to the length 

and hence the potential constriction was localised to each end of the rod and was 

negligible. 

(b) In the measurement, the weights were hung at the end of a loading rod and

they produced the contact force between two rods. A free-body-diagram associated with 

the loading rod is seen in Figure 3.6, which is similar to the situation in Figure 2.17. Thus, 

the reaction force (or the contact force of this rig) is obtained from equation (2.20), 

3L-[R F R, =
2/ 

(3.12) 

For the particular rig under investigation, the coefficient (3L -/ 
R 
)/21 is evaluated as 2.04. 

F 

Clamped 

Figure 3.6 Free body diagram of a cantilever beam which is featured in the particular setting of

a cross rod contact situation.

(c) Based on the equation (3.3), the radius a of the circular Hertzian contact area

can be further simplified into,
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3d (l-v 2 )R1 
a =3 ' 

SE 
(3.13) 

for two identical contact cylinders of diameter d . v is the Poisson's ratio, E is the 

Y oung's modulus. 

These results together with the equation for the constriction resistance (3.7) lead 

to the dependence of the resistance Ron the load F given by, 

Rex: p-113. (3.14a) 

When the indentation behaves plastically, the load bearing will be related to the hardness 

of a material (3 .5). The resistance-load dependence is, 

Rex: p-112. (3.14b) 

Thus, regardless of an elastic or plastic deformation, it is possible to evaluate the 

qualitative dependence of the constriction resistance on the contact force as long as the 

surface is smooth and clean. 

Finally, in Figures 3.7 and 3.8 are the result of the experiment and corresponding 

calculation. Different points are allocated for several readings of measurement. Each 

reading seems to be fluctuating especially for lower loads, but a stable dependency is 

observed across several readings. The solid line is for the predicted resistance. A 

significant discrepancy is observed. In fact the calculated resistance is only the 

constriction resistance. That is because the film resistance depends on a specific situation 

and thus it is not established in a general form. Although, as a cleaning procedure, the 

rods were thoroughly rubbed by a cloth soaked with acetone, the tested rods were 

exposed to the atmosphere and hence to oxygen contamination. It is likely also that the 

surfaces are not perfectly smooth and with a lot of asperities. In this situation, the 

constriction resistance should be evaluated by [58], 

(3.15) 
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with the radii a0 of each a-spot, which is usually smaller than the circular contact area of 

a Hertzian contact. This will increase the constriction resistance by a significant amount. 

Without knowledge of a microstructure of the surface, it is impractical to determine the 

number and size of all the a-spots. Nevertheless, the effects induced by films and 

asperities are believed to cause the discrepancy. 
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Figure 3.7 Contact resistance in the log-log domain for a cross rod contact situation. Discrete 

symbols are obtained by different sets of measurements. The solid line is of a prediction of a 

constriction resistance for elastic deformation. The dashed line shows only the slope of a 

constriction resistance for plastic deformation. 

In Figure 3.7, where results are plotted as log-log domain, the solid line shows the 

power of -1/3 dependence between the resistance and the load predicted for elastic 

deformation by equation (3.14a). The dashed line shows the power-law of -1/2 

dependence between resistance and load for plastic deformation predicted by equation 

(3. l 4b ). In terms of magnitude, the solid line is actually predicted by the combination of 

equations (3.10) and (3.13). But, the dashed line is shifted arbitrarily to a location in the 

plot where the power dependence is easily identified, because the parameter c; is not 

known in equation (3.5). The data for lower loads seems to fall between these two slopes, 

but to be closer to the power of -1/2. This finding of a plastic behaviour also justifies the 

use of Amontons' law for the silver-steel rods in Section 3.1. Recall that the normal force 
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m the friction test was varied from 0.5 to 2.5 N, and in this range the measured 

resistances seem to follow the power of -1/2 in Figure 3.7. However, under higher loads, 

the measured resistance is seen to deviate significantly from either power-law 

dependence. The reason is not clear apart from that the extra resistances may play a 

bigger role at higher loads than at lower loads. 

In Figure 3.8, plots are made in linear scale, which magnifies the behaviour for 

higher contact forces. Both measured and calculated values seem to have a similar trend 

as the contact force increases. There is a constant gap between them in higher loads. This 

empirical phenomenon will be termed as "terminal resistance" in this section, and will be 

used as an adjusting factor to talce into account a film resistance, the effect of plastic 

deformation, and the deviation due to the presence of asperities. The difference between 

the terminal resistances for the measured and calculated data is evaluated, ranging from 

6.35 to 7.98 mO.
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Figure 3.8 Linear scale representation of Figure 3.7. The line conforms with the solid line in the

previous figure. 
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3.2.3 A network of cross-rod contact 

As an extension of a single cross rod contact, a four-junction network was constructed by 

the use of four silver-steel rods placed in the form of a square with four electric contacts. 

The corresponding resistance was measured when it was wired through a voltage and 

ampere meters to a battery. The contact force for each contact point was evaluated as a 

quarter of the weights on a dry wooden plate which was placed on the top of the circuit 

members. A schematic view of arrangement is drawn in Figure 3.9 together with the 

corresponding circuit diagram. 

Figure 3.9 Schematic measurement setting (left) of a cross rod contact situation and its circuit 

diagram (right}. R
e
, is the contact resistance. R1 and R

2 
are the ones related to the length of 

rods. 

The length of the rods between junctions was determined to form a square so that the 

effective resistance of the circuit was 2R
1 
+ R

2 
+ R

e
, . In fact, 2R

1 
+ R

2 
is equivalent to the 

resistance of a whole single rod, so the effective value becomes R,0d +R
e
,. The resistance

of a rod R,od is predicted by (3.11 ). The contact resistance of R
e
, can be predicted by

equation (3 .9), if the constriction resistance and film resistance are known. However, the 

results of the measurements on a single rod contact suggest that these resistances are not 

predicted accurately. The corresponding discrepancy was treated as a tenninal resistance 

at a higher load. 
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In the result for the network resistance in Figure 3.10, an overall discrepancy, 

denoted by a dashed line, is initially found throughout the loads. Measured data fluctuate 

for lower loads, but become stable in the higher load region, where the terminal 

resistance is observed as introduced in the previous section. After accounting for the 

terminal resistance, a good agreement, represented by a solid line, is achieved for the 

higher loads. A value of 7.0 m Q from the previous section was adopted for the contact. 

It was found that the discrepancy was between 6.88 and 7.18 mO., in this four-junction 

test. These results justify the use of terminal resistance to take into account the non­

constriction resistance for a structure of silver steel rods. The concept of a terminal 

resistance is likely to be valid for other conducting materials as well. Of course, the 

terminal resistance will vary material by material, but is expected to be consistent for 

each type of material with similar characteristics and environments such as surface 

roughness, degree of cleaning, atmospheric conditions, and etc. 
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Figure 3.10 Measured and predicted resistance of a four-junction network of rods. The filled 

circles represent the data. The dashed line represents the constriction resistance prediction 

only. The solid line is the prediction after including "terminal resistance". 
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3.2.4 Single fibre conductivity test 

As a result of the findings with the silver-steel rod models, it is clear that the contact 

resistance is a function of a contact force. When a bulk fibrous material is under 

compression, the contact force at each contact point is supposed to change and so does 

the contact resistance. Information on how the contact force and resistance are related to 

a real single fibre of a conducting bulk fibrous material is necessary to work out the 

number of inter-fibre contacts by means of resistance. However, the "variable" contact 

resistance is one of major difficulties when it comes to the understanding of the structure 

of a bulk fibrous material in terms of a resistance. 

For this purpose, a rig has been designed to measure the contact resistance of 

single fibres. It is mainly composed of bronze bars with a diameter of 1.6 mm and 

supporting blocks as depicted in Figure 3.11. Electric current is supposed to travel 

through the metal bars and the contact between the test wires in order to reach a 

measuring device such as a multimeter for evaluating a resistance. For these 

measurements, unlike the measurements for cross-rod situations, only a single multimeter 

was used to detect a resistance in the system. Neither was there an external electrical 

source. Variable loads are applied to the contact between two fibres by means of a knife­

edge pivoted balance of a metal bar. A 200-mm long main bar having a counterbalance at 

one end is glued to a knife-edge blade which is pivot-supported by a steel plate with 

smooth upper surface. The steel plates are supported by a wooden block. Grooves are 

equally spaced along the main bar to house a weight. Depending on which groove a 

weight is placed, the amount of the load at the contact point is determined. Weights of 1, 

5, 20 and 50 g depending on the strength or diameter of a conducting subject (fibre or 

wire) were placed and· shifted along the grooves of the main bar. Near the other end of 

the main bar, a three-soled bronze frame is soldered to accommodate a conducting 

subject stretched at both ends. Another three-soled bronze frame, holding a conducting 

subject is fixed on a wooden block at right-angles and face-to-face to the upper frame 

making contact between the test subjects. 
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In the experiment, however, when a conducting fibres or wires were placed to 

make contact with each other, the main bar was observed to vibrate. As a method of 

vibration isolation, the system was placed on a thick metal plate having a SO-mm thick 

glass fibrous material beneath it. Tweezers were used to pick up and move a weight in 

order not to provoke an unnecessary vibration. Despite the precautions, it has been 

observed that a contact position was frequently changed while the weight was moved to 

other grooves. The small diameter wire used means that the contact point does not 

remain constant during the unloading and loading of a weight. Even the slightest 

deviation has been observed to make a big difference in contact resistance. Therefore the 

measured resistance were unstable and unrepeatable. 

This symptom of vibration was suspected to appear due to a possible free 

movement of the knife edge blade. Because the blade was intended to have as little 

friction as possible on the steel plate, it seemed to be prone to move when it exposed to 

an external force, such as an up-and-down movement of the bar. Finally, the problem 

was more or less overcome by using a small amount of epoxy resin adhesive to hold the 

blade on the steel plate. The outcome was such that the measured resistance became more 

stable, and the bar did not vibrate significantly. 

Three different conducting wires were tested and their resistances are illustrated 

in the following. They are:

1) 0.85-mm diameter copper wire extracted from an electric cable. (Figure 3.12)

2) 0.19-mm diameter steel wire extracted from an electric cable. (Figure 3 .13)

3) 0.08-mm steel fibre from a steel wool. (Figure 3.14)

Much thinner stainless-steel fibre with a diameter of 0.02 mm was subjected to the test 

also, but it was found to be too thin to endure the load and was broken. 

In Figure 3.12 the "total resistance" label of the ordinate means that the value is 

not for the contact resistance only, but of the whole circuit. As stated before, the internal 

resistance of a multimeter is assumed to be negligible. Despite the fact that the contact 

resistance is of interest, it is worth displaying the total resistance measured in the system 

because, in reality, the contact resistance is not the only factor to be captured in an 
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electric circuit of a material. However, if any variability depending on a load were 

observed, it would be related to the contact resistance rather than other types of resistance 

related to the structure of the measuring rig, which is supposed to be constant. So, the 

behaviour of contact resistance could be identified easily. 
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Figure 3.12 Measured total resistance of a copper wire with a diameter of 0.85 mm by means of 

a single fibre conductivity test rig. Asterisk data correspond to use of a 1-g weight; circle, 5-g; 

and cross, 20-g. 

As expected, for the copper wire, the resistance seems to decrease with contact 

force when the load is small. Some abruptly high values (circles) in Figures 3.12 and 

3.13 may be related to an unwanted change in the contact position when a weight is 

shifted. However at high loads, the contact resistance appears to be practically invariant 

for both the 0.85-mm copper and 0.19-mm steel wires. The data for the 0.08-mm steel 

wool shown in Figure 3.14 seems to decrease monotonously with increasing load but the 

associated contact forces are much smaller than those used with the other two. The 0.15 

n reduction for 0.01 N increase in force is large compared with the 0.1 Q change in 

about 10 N for the 3-mm silver steel test (Figure 3.8). But, provided that the resistivity is 

similar, it seems to be related to the fact that the contact area of steel wool is much 
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0.19mm-diameter steel wire 
3.8---..---...----...----..---...-------

3.75 

£ 3.7

� ... 

ro * 
ci5 3.65 O 

·� �� 
.... ....... - .... '5 3.61-#

3.55 

0 

0 
00 + 

0 

0 

+ + + 

+ 

3.5L----.L......---'------'------'------'----...L.....-----1
0.02 0.04 0.06 0.08 0.1 

Contact force (N) 
0.12 0.14 

Figure 3.13 Measured total resistance of steel wire with a diameter of 0.19 mm by means of a 

single fibre conductivity test rig. Asterisk data correspond to use of a 1-g weight; circle, 5-g; and 

cross, 20-g. 
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Figure 3.14 Measured total resistance of steel wool with a diameter of 0.08 mm by means of a 

single fibre conductivity test rig. Only a 1-g weight was used. 
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smaller than that of silver steel rod due to different size of cross section of both samples. 

Accordingly, the amount of change in contact resistance could be higher. 

Figure 3.15 Circuit diagram of a single-fibre conductivity test rig. Subscript 'et' means contact; 

's' for specimen; and 'r' for rigs. Subscripts 1 to 5 refer to the specimen holding frames, and 

subscript 6 to the main loading bar. 

Although the total resistance was displayed in the preceding figures, the contact 

resistance itself can be evaluated. Here, it will be discussed how much of the total 

resistance is contributed by the contact resistance. For this purpose, a circuit diagram for 

the rig (Figure 3 .15) is considered. The resistance is measured as the ratio of the voltage 

to current is given by, 

(3.16a) 

The subscript r denotes the structure of a rig itself, and the subscript s is allocated for a 

specimen wire. Here, the Re, is the resistance induced by the creation of an electric 

contact, but not merely a constriction resistance. When the segments of 1 to 4 are 

arranged to be of a same length for a specimen and a rig portion, the expression for the 

measured resistance may be simplified as follows, 

(3.16b) 

where the effective rig resistance R, is, 

(3.16c) 

with 
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(3.16d) 

The contribution in resistance of the sample is, 

R1 
= R,1 = R,2 = R,3 = R,4• (3.16e) 

It is very likely that the other resistances (sample and rig resistances) are much 

smaller than the contact resistance. These sample and rig resistances have been measured 

by the same method used for the resistivity of a silver steel rod. The values of these 

associated resistances are shown in Table 3 .1. 

Resistivity Sample resistance Rig resistance 

Rs R, 

Copper wire 3.06x 10-s O.m 0.8 mO. 

Steel wire 2.69xl0-8 O.m 14.3 mO. 6.18 mO. 

Steel wool 4.57x 10-7 O.m 1.36 n

Table 3.1 Electric resistivity and resistances of sample and rig required for the evaluation of the 

contact resistance out of the directly measured total resistance of the system. 

This conjecture about the relative resistances is valid for relatively thick copper 

and steel wire, but it may be controversial for the very thin wire from a bulk steel wool. 

According to the table and the plots, the contributions to total resistance by the sample 

and rig are negligible in the cases of the first two wires, as less than 0.5 % of the amount 

is affected. However, the steel wool itself when stretched on the rig is confirmed to 

produce as much as 15 % of the total resistance measured. This may be due to the 

combination of its high resistivity and relatively long length compared to the diameter 

(See equation (3.11)). Thus it may not be straightforward to observe the behaviour of the 

contact resistance for this type of material, because the non-contact types of resistance 

appear to make a significant contribution.

In a bulk material, however, the situation may be different for a high load, due to 

a much-shortened fibre length which will also reduce the resistance related to the length,
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while the contact resistance is not much affected by the shortening. But, the much more 

complicated network of an equivalent electric circuit would make it difficult to deduce 

the behaviour of contact resistance and thereby to estimate the number of inter-fibre 

contacts. Therefore, it is not practical to extend the knowledge on a single fibre to a bulk 

fibrous material. Despite the difficulty, the behaviour of resistance in a bulk conducting 

material under compression is considered in the next section. 

3.2.5 Bulk steel wool test 

The bulk resistance of steel wool was measured as a function of the load. The wool 

sample was placed between two wooden plates and was loaded by the weights on the top 

plate. Two series of resistance measurements were made, for one the mechanical strain 

(Figure 3.16) was recorded as well. The resistance was measured directly by a single 

multimeter rather than using separate meters for voltage and current. The multimeter was 

then wired to top and bottom layers of the sample using cables and crocodile clips. The 

mechanical stress and strain behaviour was measured by reading the deflection through a 

travelling microscope with a resolution of 0.01 mm.

Although they were extracted from the same larger sample of steel wool, the two 

tested samples were suspected to have different bulk structures, since their structures 

were likely to be altered unintentionally, when they were extracted from the bulk. In 

other words, it was not simple to produce samples with a repeatable structure for this 

particular type of flexible steel wool. 
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Bulk steel wool 
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Figure 3.16 Structural stress-strain relationship of a steel wool under static compression which 

is obtained in parallel with an electric resistance test. The result shows the steel wool behaves 

as a typical fibrous material. 
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Figure 3.17 Electric resistance measured for a steel wool. Two readings were obtained for 

samples from different parts of the bulk material. The circled data was obtained for the sample 

whose stress-strain compressional behaviour is shown in Figure 3.16. 
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The strain-stress result represented in Figure 3 .16 is nonlinear and looks like that 

of typical fibrous materials under static compression. More of this kind of data will be 

presented in Chapter 4. The measured resistance is represented in Figure 3.17. At lower 

stresses the measured resistance seems to be fluctuating, however the results for two 

samples were not matching, probably as a result of differences in the structure of the 

samples. At higher stresses, the results seem stable and to converge to a certain value, 

which may be related to the characteristic of the material, regardless of the sample. Note 

that the mechanical strain and electric resistance become stable in the stress region of the 

same order. 

3.3 Summary 

Methods of predicting and measuring contact friction and electric contact resistance and 

their measurements have been reviewed briefly. Measurements have been conducted for 

macro-scale specimens (for friction and resistance) and a realistic fibrous material (for 

resistance only). 

It was not found possible to obtain a representative characteristic for friction due 

to the lack of behavioural trend across numerous specimens. However, the measured

coefficient of friction was adopted in Chapter 2 to narrow the discrepancy in agreement

between prediction and measurement for macro-scale silver-steel three-dimensional 

model. 

Electric contact measurements were conducted for crossed rods of silver steel. At 

first, a single contact situation was investigated and then it was extended to a network of 

four contacts. Due to oxygen contamination, alien film, and possible asperities, 

reasonable agreement was not obtained in the first attempt. However, in the end, it was 

achieved by the introduction of a "terminal resistance" which accounts for those factors. 

A single wire or fibre was tested as well. The results for the resistance and force have 

shown the same trend as those observed for bigger silver steel rods. Measurements on a 

bulk fibrous material (steel wool) have yielded a reasonable resistance-force pattern. 
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However, due to the complex geometry and electric circuit, it seems to be difficult to 

extend what has been learned from macro-scale and single-fibre contacts to a bulk 

fibrous material. 

Therefore, the idea of relating the electric contact resistance to the number of 

inter-fibre contacts inside the fibrous materials has not been investigated further. As a 

consequence, as also mentioned in the concluding remark in Chapter 2, a "macroscopic" 

approach has been adopted to describe the nonlinear structural behaviour of fibrous 

material under compression, rather than applying what is known in a microscopic scale to 

a bulk fibrous material. These models will be detailed in Chapter 4. 
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Chapter 4 

Static models for the bulk compressional elastic 

properties of fibrous media 

A series of macro-scale models representing the microscopic structure of fibrous 

materials (Chapter 2) has suggested that the structural behaviour, in compression, of such 

media is principally governed by bending rather than Hertzian contact deflection. These 

models have also demonstrated that the nonlinearity is likely to be brought about by the 

creation of further inter-fibre contacts as the material is compressed. The possible role of 

inter-fibre friction was raised, especially for a structure with considerable randomness of 

fibre orientation (Section 2.6). But the friction effect appeared to be small for a laminar 

structure in compression, and certainly a large part, if not the greater part, of fibrous 

media in common use are of essentially laminar structure. It was also discovered that the 

frictional behaviour of the fibre material was difficult to measure (Section 3.1). The 

possibility of using an electrical resistance technique to determine the number of inter­

fibre contacts per unit volume in a conducting fibrous material was also investigated 

(Section 3.2). Despite its successful application to idealised macro-scale models, a full 

extension to a realistic fibrous material was abandoned because of the complicated nature 

of the electrical network. The same conclusion was also reached concerning the 

applicability of structural modules to a bulk fibrous material because of geometric 

irregularity and complexity in a realistic fibrous material (see Chapter 2). In other words, 

an understanding of the structural behaviour of a bulk fibrous medium from the details of 

its microscopic structure turned out to be impracticable. Instead, the possibility of an 

"equivalent continuum" approach, incorporating the essential physical features of the 

simple structural models of Chapter 2, has been raised. 
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4.1 Review 

Several models have been appeared in the literature, related to the analysis of fibrous and 

other porous materials with a related structure. Sides, Attenborough and Mulholland [19] 

investigated a structural lattice in the form of a "stacked-cylinder model", in which 

Hertzian contact deformation was the sole governing factor in the bulk elastic behaviour, 

since bending effects were prohibited by the stacking configuration. Their model had the 

same configuration as that of the Hertzian contact model in Chapter 2 (see Figure 2.2). In 

a realistic situation, however, the contribution of Hertzian contact effects is likely to be 

very small because the deflection is inherently restricted by the fibre diameter, which is 

normally only a few microns or tens of microns (see Section 2.2). Although Hertzian 

deflection bears a nonlinear relationship to the applied force, it is unlikely to be the 

explanation of the observed nonlinear bulk elasticity of fibrous media, as was pointed out 

in Chapter 2. 

In addition to the Hertzian stacked-cylinder model of Sides et al., other models 

describing the structural behaviour of fibrous media have been reported. A so-called 

"space-frame material model" was reported by Rosen, Bagchi and Kibler [20]. This was 

intended to represent the three dimensional structural behaviour of a random fibre 

network, particularly in fibrous thermal insulation materials for aerospace applications. 

Fibres in the model were represented by trusses in four vertical planes, together with a 

horizontal plane of trusses. One of the four vertical planes of trusses is depicted in Figure 

4.1. The model is physically an approximate model and mathematically a discrete 

representation of a continuous actual material, because of the limited number of trusses 

used. The three most basic ideas of the space frame model are the transformation matrix 

(equation 117 in reference [61]), the effective Young's modulus, and the principle of 

virtual work. By the use of the transformation matrix and the principle of virtual work, 

the strain component in the microscopic fibre direction can be linked to its macroscopic 

counterpart. The effective Young's modulus itself contains the microscopic fibre stress 

component and hence yields nonlinear relationships between the bulk stresses and 
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strains. However, the space frame model was only based on the "axial" behaviour of its 

fibre components. No bending mechanism or change in the number of contacts between 

fibres was embodied in the space-frame model (these effects will be the main theme in 

this chapter). Most notably of all, the model predicted an incorrect stress-strain 

relationship which yielded the result that a fibrous material becomes softer under static 

compression and stiffer under static tension, which is contrary to experience and runs 

counter to the results presented in this chapter. However, the concept of adopting the 

transformation matrix and the principle of virtual work may be useful in application to 

the microscopic structural behaviour of fibrous mate.rials. 
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figure 4.1 Schematic view of a hypothetical vertical plane containing trusses in the space frame 

material model of Rosen et al. [20]. Angle a is the orientation of the plane and f3 is the inclination 

angle of the trusses. 

Sherwood and Van Damme [21] investigated deposited compaction of flat clay 

plates which can be related to the compression over a long time scale, such as a 

geological time scale in the case of clays deposited on the bottom of the sea. The 

deformation of each plate was assumed small enough to be governed by the linear 

biharmonic equation. In a simulation, a discrete two-dimensional lattice was proposed. 

The plates were added at random positions of the lattice. Compaction was generated by 
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the weight of the plates. Throughout the compression, each plate was allowed to deform 

until equilibrium was reached. The number of structural contacts per clay plate was also 

considered. As the compression proceeded, the number of contacts per node of the lattice 

was observed to increase and the bulk structure becomes gradually stiff er. However, the 

friction and related sliding between plates were not taken into account in their simulation. 

In an experiment, a pack of drawing papers was piled up to emulate a quasi two­

dimensional bulk structure. In addition to gravitational forces, external forces were 

applied vertically to the paper pile. When the compressive stress and corresponding void 

ratio (porosity/solid fraction) were evaluated, a power law relationship between the two 

was observed to apply at high stress, though not at low stress. 

Baudequin, Ryschenkow and Roux [22] investigated the nonlinear elastic 

behaviour of a low density fibrous material. The nonlinearity was attributed to the 

creation of new contacts between fibres, and a corresponding increase in their number, 

when the material is subjected to compression. In their proposed model, the mechanical 

behaviour of individual fibres themselves was assumed to be linear. The fibre diameter 

was assumed constant and hence did not contribute to the nonlinearity. Fibre elongation 

and compression were ignored, and only the bending of fibres was taken into account. 

Other factors such as friction, sliding or damage, apparently likely to exist in fibrous 

materials, were not taken into account. Thus the length of fibre links between contacts 

was presumed to be the only length scale, and the inverse cubic dependence of the 

transverse stiffness of fibres in bending on this length played a significant role in 

understanding the bulk elastic behaviour of fibrous materials. By means of a scale 

transformation, a power-law relation was identified between the applied compressive 

stress and the length of fibre links, which was extended to the strain. Their power-law 

dependence was confirmed by measurement in the large strain region. 

In the following sections, the details of various static bending models for fibrous 

media will be discussed. Initially, the structural behaviour of cellular materials will be 

reviewed, since it is useful to understand the structural difference between cellular and 

fibrous media on a theoretical basis. The work by Baudequin et al. [22] will then be 
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discussed further and its application as a structural "fitting model" for fibrous materials at 

high strain will be considered. The development of a series of bending models will next 

be described in detail. Their application to actual fibrous media, their limitations, and 

modifications to these models will also be described. 

4.2 Cellular materials 

Before further discussion of detailed models for fibrous materials, it is worth reviewing 

the current understanding of the structural behaviour of cellular materials. These 

materials play very similar roles to fibrous materials in their acoustic, thermal and 

mechanical applications. Comparison of the similarities and differences in mechanical 

behaviour between these two types of porous medium could be illuminating and will help 

to explain why different types of structural model need to be employed in each case. 

(Granular materials, a third type of porous medium, are sufficiently dissimilar to cellular 

and fibrous materials for them to be excluded from the present discussion.) 

Cellular materials can be made from a variety of solids such as polymers, metals, 

ceramics and naturally-occurring materials such as wood [ 18]. The physical properties of 

foams depend on several factors which are mainly separated into material-related factors 

and test-related factors (17]. Apart from test-related factors, the structural behaviour of 

cellular materials in general is determined by their material-related factors and 

particularly by the way in which the cell frames respond to the applied stresses. The 

material-related factors are mainly connected with the geometric structure or cell 

connectivity of the bulk material and the properties of the solid-phase material. The solid 

density, Young's modulus and yield strength are important properties of a cell material. 

The bulk structural properties of foams are affected by the solid volume fraction, the 

degree of anisotropy, the interstitial fluid, and whether the cells are closed, open (i.e., 

"closed-cell" or "fully reticulated", respectively) or a combination of both ("partially 

reticulated"). 
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In many applications, cellular materials are exposed to static compression. In such 

cases, their structural behaviour can be characterised by three distinctive regimes. Under 

low stresses, foams are likely to exhibit linear elasticity. As stresses increase, they 

undergo a structural collapse, and finally they experience an extreme densification which 

is associated with a sharp rise in stresses. These three regions are often referred to as 

"Hookean" ( or "linear elasticity"), "plateau" ( or "post collapse") and "densification" 

respectively, and can be separated by critical strains such as the "elastic collapse strain" 

and the "onset of densification strain". The former strain value is intended to draw a line 

between the elastic linear region and the structural collapse region. The latter 

distinguishes between the collapse region and the densification region [62, 63]. 

In the linear elasticity (Hookean) region, the mechanism of structural behaviour is 

detennined by whether the cells are open or closed. The behaviour of open-cell foam is 

dominated mainly by the "bending" of cell frames especially if the foam has a low solid 

fraction. For open-cell foam with a high solid fraction, it is believed that the "axial" 

deformation of the cell frames needs to be taken into account. Closed-cell foam is likely 

to be governed by the "stretching" of cell membranes, although the axial and bending 

deformation of cell frames also need to be taken into account. Interstitial fluids are 

believed to affect the stiffness when their viscosity is high for open-cell foams, and when 

the cell membranes do not break in the case of closed-cell foams. 

For isotropic low-density open-cell foams, an analogy can be found with fibrous 

materials under compression as long as the foams are in linear elastic region. Provided 

that the cell size is much smaller than the overall dimensions of the bulk foam, the bulk 

Young's modulus of foams under static compression can be evaluated from standard 

beam theory involving the linear elastic bending deflection of cell frames with a load 

applied at the midpoint [18, 64]. (This is closely related to the behaviour of an idealised 

fibrous model, which will be described in Section 4.4.) So long as stresses are small 

enough to keep the foam in the elastic region, the axial and shear deformations of cell 

frames are usually neglected as compared to the larger bending deflection. Gibson and 

Ashby [18] proposed the following relationship between the bulk Young's modulus E
b
,
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the modulus of the cell material E and the solid fraction 'll1
0 

(equal to solid volume +total 

volume of solid plus fluid): 

Eb � \T12
To • 

E 
(4.1) 

The upper limit of the linear elastic region can be predicted by the "elastic collapse 

strain" cc (see the papers by Dement'ev and Tarakonov [62, 63]), 

(4.2) 

This elastic collapse strain plays a key role in designing foam-based damping systems 

[18]. The solid fraction 'll1
0 

is related to the parameter /J (the ratio of the width to the 

length of a cell frame) by 

(4.3) 

In reality, when the compressive load applied to the bulk material increases, so does the 

axial component of stress along the frame members, which adds an extra moment in the 

case of bent frames. Thus the linear elastic region is not exactly linear, but involves a 

gradual decrease in the bulk modulus as the bulk stress increases. 

As the compressive stress nears the upper end of the Hookean region, a plateau 

region is encountered, where stresses are parallel to the strain axis for open-cell foams or 

increase slightly for closed-cell foams during a significant rise of strain. The plateau is 

associated with the collapse of the cell structure, which is initiated by elastic bucking for 

elastomeric foams such as rubber and some types of polymer foams, by plastic yielding 

or hinges for metal foams such as porous aluminium, and by brittle crushing for ceramic 

foams (See Figure 2.1). As the compressive stress increases, so does the axial stress on 

cell frames. When the compressive load reaches the Euler load for bucking, the frames 

may be assumed to begin to buckle. Thus, for elastomeric open-cel_l foams, the plateau 

comes with the buckling of cell frames. The critical load of for buckling can be 
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determined by the use of Euler's formula and the elastic collapse stress ac 
is related to 

the solid fraction '¥0 and modulus E of solid material by [18]

ac � 0.05'¥;
E 

(4.4) 

In terms of strain, the plateau region is essentially bounded by the elastic collapse strain 

e
c 

in equation (4.2) and the onset of densification strain e
d 

(see Dement'ev and 

Tarakonov [62, 63)), 

/J e
d 

=1- cos(n-/4) . 
l+/J/4 

(4.5) 

At significantly large compressive strains when the cell frames have almost 

completely collapsed, the adjacent and opposing frames of the cells touch one another 

and a densification region is followed (see also Figure 2.1). During densification, the 

strain increases rapidly to a "limiting strain" e1 [18], 

(4.6) 

, The limiting strain is not equivalent to but is less than the porosity, because there are still 
\ 
' remaining pores even under extreme compression. 

As an illustration of the preceding discussion, the nonlinear stress-strain 

behaviour of a 30 mm thick layer of open-cell foam material was measured by reading its 

deflection - with the use of a travelling microscope having a resolution of 0.01 mm -

when it was loaded by weights placed on a thin aluminium plate, resting on top of the 

foam layer. Its fully-reticulated structure was confirmed by means of a 45x optical 

microscope (the image in Figure 2.1 is not for the fully-reticulated foam). The overall 

behaviour showed the expected three distinct regions of linear elasticity, post collapse 

and densification (Figure 4.2). The measured data were also fitted by the relations 

introduced in the earlier paragraphs. Dement'ev and Tarakonov's critical compressive 

strains were evaluated from equations ( 4.2) and ( 4.5), whose parameters are as follows: 

solid fraction, '¥0 = 0.05; elastic collapse strain, e
c 

= 0.03; plateau stress, 3300 N / m 2
;
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onset of densification strain, &d = 0.67; and /J = 0.245. In the process of fitting, the 

stress in the post-collapse region was assumed to lie parallel to the axis of strain [62, 63), 

although this assumption is not strictly realised as may be seen from the measured data. 

Although the density of the solid material comprising the cell elements was not known a 

priori, nor the solid fraction as a result, it was possible to determine these parameters by 

iterating several trial values of the solid fraction, evaluating two critical compressive 

strains, and determining the optimum solid fraction which places the plateau region in a 

proper position of the stress-strain curve. (Since it is the strain-stress relationship which 

is actually plotted in Figure 4.2, the term "plateau" might seem inappropriate, because 

the stress axis is placed in the abscissa. The generally accepted convention - of placing 

the stress in the ordinate and the strain in the abscissa - is not followed in this thesis, 

because stress is regarded as the independent variable in a measurement.) 
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Figure 4.2 Measured and predicted behaviour of the nonlinear strain-stress relationship for open­

cell foam with a bulk density of 30.2 kglm
3

• The solid circles denote measured data, and the solid

line the prediction. 
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4.3 Power-law model 

Before describing the bending models that have been developed in the present 

investigation, it is worth introducing an existing structural model for a fibrous material 

and discussing its application. It will also be helpful to explain how this and the bending 

models are different. Recently, a power-law relationship has been proposed [22] for the 

stress-strain behaviour of low density fibrous materials under large compressive strain: 

(4.7) 

Here, eth is the threshold strain and q is a proportionality constant. The threshold strain is 

not mathematically related to any of strains mentioned in Section 4.2, but its physical 

meaning could be similar to the limiting strain in ( 4.6). The exponent p can be fixed at -

1.5, which has been obtained theoretically [22], particularly for fibrous materials under 

compression. 

The particular relationship expressed in equation (4.7) has been adopted here as a 

means of fitting the nonlinear stress-strain behaviour of fibrous materials when they are 

subjected to large loads. If p is fixed at -1.5, the other two unknowns, e,h and q, can be 

obtained from a least squares fit by the use of numerical iteration. If linear regression is 

employed, the power law in equation (4.7) is better expressed logarithmically, 

loga = logq + p1og(6,h -6) . (4.8) 

To find a least squares fit, a "sum of squared residual" Scan be expressed as below, 

S = f {log a; - log q-p log(e,h -6; )}
2 

, (4.9) 
i=l 

where n is the number of measured data. It is necessary to minimise S with respect to 

both log q and 61h , and the following equations result: 

as 
n 

( ) = -2L {toga; -logq-plog(e,h -eJ} = 0, and
a logq i=l 
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as 
n 1

- = -2p L {loga;-logq-plog(e,h -E;)} = 0. 
OE,h i=I E,h -E; 

(4.11) 

Although q can be found explicitly from equation ( 4.10), the same is not true of E,h in 

equation ( 4.11 ), and an iterative method of solution is therefore employed, as follows. A 
trial value of E,h needs to be assumed to find q from the following equation ( derived 

from equation (4.10)): 

1 { n n } 

logq =-;; �log a; -p �log(&,h -E;) ( 4.12) 

Toe assumed value of &,h , together with the value of log q resulting from equation 

( 4.12), are inserted in equation ( 4.9) and a value of Sis found. Successive values of Sare 
then found by varying e,h and the minimum value is thus determined by comparison, 

together with the corresponding iterated values of &,h and q. As an example, the sum of 

squared residual S is plotted versus strain in Figure 4.3 for an acoustic duct-lining 

material (See Table 4.1 and 5 .1 ). A regression process based on this procedure is 

illustrated in Figure 4.4 (note the log-log axes). For the regression process work properly, 

some measured data need to be excluded from the low strain range. The exclusions have 

been made according to the total number of data points and the deviations from the linear 

relationship shown in Figure 4.4. The final result of applying this power-law model to 

actual measured data in the stress-strain domain is shown in Figure 4.5. As it is seen, this 

fitting method applies only to the high strain region. Although the power-law model 

performs poorly at low strains, it is still useful especially in determining effects of the 

storage of low bulk density fibrous materials, which could cause a high strain. The 

parameters in the equation (4.7) for the acoustic duct-lining material are: q = 656.6; e,h =

0.7802; andp = -1.5. 
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Figure 4.3 Sum of squared residual associated with equation (4.9), plotted against trial strain, 

for the acoustic duct lining material. The minimum value occurs at the threshold strain. 
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4.4 Bending models 

4. 4 .1 Linear bending model

As a first step in the development of bulk bending models, a fibrous material has been 

modelled as an idealised structure of stacked cylindrical rods. Thjs is reasonable because 

many layered fibrous media may be characterised as "transversely isotropic". In other 

words, fibres are randomly orientated, but are situated predominantly in adjacent layers. 

z 

Figure 4.6 Idealised model for the bending behaviour of a fibrous material. 

In the model depicted schematically in Figure 4.6, parallel elastic cylindrical rods form 

each layer, and successive layers are shifted by half a rod spacing (or fibre link) with 

respect to each other to allow the rods to bend. To make the model as simple as possible, 

the spacing between rods remains the same throughout the structure and the diameter is 

kept constant, thereby reducing the behaviour of the entire bulk model to that of a local 

structure. The deflection mechanisms for this model would be Hertzian and bending 

deflection. Hertzian deformation must occur at the contact points of adjacent rods, but it 

is assumed that this is negligible compared to the bending deflection of rods. Because of 
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its transversely isotropic geometry, the model can be regarded as two-dimensional. Thus, 

its compressional behaviour can be successfully identified as one producing uni-axial 

deflection, as shown in Figure 4.7. Therefore, the characteristic dimensions will be the 

rod diameter d and the "link length" l between adjacent cylindrical rods. These two 

dimensions are assumed to be fixed throughout the model, and are the defining geometric 

parameters. 

i Force

LayerlL.--------�:i....---- _,__,.'-­

Layer2 

t
l 

J 
t t 

Figure 4.7 Side view of the idealised model, indicating the diameter and the contact points of 

the cylindrical rods. The black and grey horizontal rods are not in the same vertical plane. The 

diagram on the right shows the deflected configuration schematically. 

Initially, a single rod link will be examined, rather than the entire bulk network. 

The procedures in what follows are based on the assumptions that the link has a fixed 

length, the force F is applied at its geometric centre, and its cross section is uniform 

along the length - and symmetric along the line of action - of the force, which permits a 

two dimensional representation of its behaviour. The fibre link in the model is also 

assumed to have the structural characteristic of a "linear" elastic beam that is 

symmetrical, relatively slender and hence predominantly subjected to pure bending. The 

material of the beam is supposed homogeneous enough to have a constant Yqung's 

modulus E. On the basis of these assumptions, the elastic energy Wof the link, created by 

the bending moment Mb along the link, can be expressed by the following equation [61], 

M2 F2!3 
W = J-2E-; dx = -38_4_E_1 ' (4.13) 

98 



where I is the link length of each rod and I is the second moment of the cross sectional 

area of a rod about the neutral axis. Although the assumed boundary condition here is 

simply supported, the symmetry inherent in an effectively infinite stack of rods will 

prevent any rotation of structural elements at the contact points. The deflection o arising 

from the force Fis obtained from Castigliano's theorem [ 61] as 

aw F/
3 

o =BF
= 

I92EI (4.14) 

If one now returns to the "bulk" bending model which is composed of a network of the 
rod links, the number of layers N, in the bending model is defined by N, = t/ d, where t

is the thickness of the bulk model and d is the diameter of each cylindrical rod. The total 
deflection i\ of the bulk model is given by i\ = N1 o . Note that the total bending 

deflection has contributions from rods orientated in both orthogonal directions in Figure 

4.6. Recall that the rod in the model has diameter d, and then its second moment of cross 

sectional area I (about the neutral axis) is then given by trd 4 /64. From the configuration 

of the model, the contact force F on the link is related to the force F 
ex
, external to the 

model by F = F
ex
,1 2 /A. Here, A is the surface area of the bulk model to which F

ex
, is 

applied. Thus, the quantity A/12 is the measure of the number of contacts per layer for 

this particular model. Finally, if it is recalled that the bulk strain e is defined by e = i\/t

and the bulk stress by er = F ex,/ A , then the parameters are reduced to F = c, 1 2 and 

0 =de. If these are inserted into (4.14), then the stress-strain relation for compression in 

the linear bending model may be expressed 

(4.15) 

Based on the geometric structure in Figure 4.7, the ratio of the rod link length to the 
diameter is given in terms of the solid fraction lf'0 (solid volume / total volume of bulk 

medium) by 

I tr 
-=-. 

d 4 '¥0

(4.16) 
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Finally, if equations ( 4.15) and ( 4.16) are combined, the stress-strain relation based on 

the idealised linear bending model is written in terms of a macroscopic parameter lf'
0

, 

(4.17) 

As expected, the bulk modulus here is independent of the stress and strain, and 

consequently equation ( 4.17) embodies a linear stress-strain relationship. 

4.4.2 Simple Nonlinear Bending Model (SNBM) 

Unlike the linear bending model described in the previous section, a bulk fibrous material 

is known to deflect nonlinearly under compression. In a real fibrous medium, this 

nonlinearity occurs predominantly by the increase in the number of inter-fibre contacts, 

as the material is compressed [22] (see also Chapter 2 concerning idealised macroscopic 

models). Based on the schematic view of the bending model in Figure 4.7, it is clear that 

there could be one more new contact per rod link (for example, layer 1 could make 

contact with layer 2) when the stress reaches the requisite value, but no further contacts 

on the basis of this particular geometry. Thus for this configuration, the stress-strain 

relation will be a piecewise linear curve composed of only two linear regions. Under 

normal compression, the strain increases as a function of the stress, and the solid fraction 

increases correspondingly. Since this compression process causes new contacts to occur, 

the length of each fibre link becomes shorter. 

When the fibrous material is subjected to compression, the solid fraction q, and 

the bulk density Pb change correspondingly. IfHertzian deformation and volume change 

by bending of the fibres are neglected during the compression, the total fibre volume in 

the model is likely to remain essentially unchanged, especially in a fibrous material with 

a low solid fraction ( or high porosity). For fibrous materials which are transversely 

isotropic in the horizontal direction of x and y (as in the model shown in Figure 4.6), the 

changing solid fraction q, of the compressed material can be represented as follows,

recalling that the total mass remains fixed,
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( 4.18) 

Here, Ps represents the density of the fibre material, Vis the bulk volume (fibres plus

voids), vb is the bulk Poisson's ratio and the subscript O denotes the initial value of a 

property without compression. Thus, the variable solid fraction is defined by the 

longitudinal strain&z (or & if the subscript z is discarded), which is regarded as positive 

for compression, while & 
x 

and & 
Y 

are considered positive in expansion. Equation ( 4.18) 

may be approximated by the simpler form 

\f' � \f'o ' 
1-6

(4.19) 

because vb is likely to be very small in a laminar material with a two-dimensional fibre 

arrangement and the term vb&z in (4.18) is therefore neglected. 

In a real fibrous medium, the compression process ts certain to cause new 

contacts to occur, which consequently reduces the average length of the fibre links. In 

addition, one may also conceive an increased solid fraction, based on the relation ( 4.16), 

which can be related to the strain in equation (4.19). Therefore, in the idealised model, 

one can imagine a link length which varies depending on the degree of compression. This 

process can be envisaged schematically as in Figure 4.8. 

Compression 

Figure 4.8 Schematic view, demonstrating the shortening of fibre links during compression. 

But this seems technically impossible in the model, as mentioned in the first paragraph of 

this section, because the cylindrical rods are not allowed to move horizontally in any 

layer, but are assumed to deflect only vertically. Nevertheless, the intermediate states 
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with shortened characteristic fibre links can be conceived, irrespective of how they have 

occurred, and then only the consequence of this rearrangement on the deflected states 

need be considered. Therefore, the linear bending model may be applied at each stress­

strain state, to create a nonlinear version, by inserting the effect of solid fraction change 

with strain ( 4.19) into the linear model ( 4.17): 

( 
4 \JI ) s 

u = 3:rE --0
- c.

,rl-6 
(4.20) 

In equation ( 4.20), the factor of (1-c t5 appears because of the progressive change in

structure of the linear stacked fibre model, as the strain increases. The net result is 

therefore a nonlinear bulk elastic behaviour which may also be interpreted as an 

integration of piecewise linear behaviours for each infinitesimal stress-strain region. The 

bulk Young' s modulus may be found from E b = du/de , 

Eb = 3:rE(± \J'o )s 1+4&. 
;r 1-e 1-e 

(4.21) 

These equations are adopted here to describe the nonlinear stress-strain behaviour of 

actual fibrous materials (see Section 4.5). The materials chosen for illustration are first, a 

thermal insulation blanket from an aircraft fuselage, and secondly an acoustic duct lining 

material. The measured data for these media have been inserted into equation ( 4.20) to 
yield a best-fit effective solid fraction \J'0 when the Young's modulus Eis fixed. Even 

though nonlinearity has been introduced by the change of solid fraction, it is found that 

the SNBM is valid only for the low strain region. The "fitted" theoretical curve, from 

equation (4.20), for the acoustic duct lining material is shown in Figure 4.9, in which the 

measured data are well predicted only for strain values up to about 0.2. For the thermal 

insulation blanket, the fitted curve will be shown later, together with plots from other 

models. 
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figure 4.9 Measured and theoretical strain/stress relationship for the duct lining material. The 

circles are for the measured data, the line is for the SNBM. 

4.4.3 Modified Nonlinear Bending Model (MNBM) 

In the SNBM of the previous section, the effect of nonlinearity has been accounted for on 

the basis that the solid fraction changes according to the strain. As illustrated in Figure 

4.9, however, the SNBM yields poor results at high strain. In the previous section, each 

elastic rod or fibre was considered to be initially straight with infinite length and to be 

bent during compression. Any change to the structure of the fibre itself in the sense that, 

in a realistic situation, the arrangement of fibres is different from that in the idealised 

model in Figure 4.6, has not been considered so far. It is certain that, in real fibrous 

media, the both-ends-clamped boundary conditions for each fibre link would no longer 

be valid. 

The boundary conditions at the ends of each fibre link are a measure of the 

flexibility at those points. Based on the schematic view of the idealised model in Figure 

4.6, as already mentioned in Section 4.4.1, the symmetry in an effectively infinite stack 

of elastic rods will not allow any rotation of structural elements at the contact points, 
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although the actual boundary condition is simply supported. But this type of clamped 

boundary condition is relevant only to the ideal situation. That is why some modification 

needs to be made here to give allowance for the structure of actual fibrous materials. To 

account for this, the concept of "binding force" or corresponding "flexibility" at the ends 

of each fibre or at the contact point can be introduced. In Figure 4.10, the bending 

moment distribution along the rod link is shown for some typical boundary conditions. 

Curve 1 is for the rod link clamped at both ends, curve 2 is for the simply supported ends, 

and curve 3 is for both ends having an applied additional moment M
O

, representing the 

deviation from simply supported boundary conditions. 

M 

0 l 

2 

l

Figure 4.1 O Diagram showing the bending moment along the fibre link. 

It may be imagined that the binding force or binding restraint at the contact points 

is related to the rotation or flexibility at those points. No rotation is allowed for clamped 

ends, and the ends are free to rotate in the simply supported case. It is also worth noting 

that, in practice, simply supported ends lead to the largest peak value of bending moment 

among the possible combinations of various boundary conditions. Most of these peak 

values in an actual material are likely to vary between the minimum value associated 

with both-ends-clamped condition and the maximum value of the simply supported case. 
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Even though the entire structure would expenence both-ends-clamped boundary 

conditions in the idealised model, some fibres in a real fibrous material would be exposed 

to the simply supported boundary condition because of the lack of constraint near the 

ends of the fibres. One may also conceive that, in certain situations, the ends may be 

likely to rotate more than they would in the simply supported case, especially when there 

are additional loads along the fibre link. Some of the possibilities for this concept are any 

deviation from an idealised situation such as the existence of relatively short fibres, 

irregular shapes or non-uniformity of fibre cross section, initial curvatures of the fibre 

and even damage to fibres. In the MNBM described in this section, all these various 

possibilities causing departures from the idealised model will be represented in terms of 

"additional loads". These external loads are assumed here to be expressed in terms of the 

"additional moment" regardless of their causes. For very short fibres, for example, the 

boundary conditions incurred by symmetry in the model cannot be adopted. If the fibres 

are short enough for the whole structure to contain a significant number of free ends, the 

parts of fibres near the free ends are likely to deflect more than they would in the case of 

the both-ends simply supported boundary condition. Irregular or non-uniform cross­

sectional shape and initial curvature of fibres are features that usually exist to some 

extent in an actual material, and which are also likely to be causes of deviation from the 

boundary condition assumed so far in this discussion, because the model has been based 

on the bending behaviour of"idealised" circular-section elastic rods. 

A single rod link will be examined here rather than the bulk network, as in the 

discussion in Section 4.4.1. One can imagine an additional moment M, representing the 

deviation from the clamped boundary condition, at the end of each fibre link. It is 

assumed that the additional moments are evenly distributed in both halves of the link, 

which are then assumed to be acted on by opposite moments, thereby reinforcing the 

effects of the acting force by ensuring greater rotation of the link. The elastic energy of 

the link, created by the bending moment, can be expressed by the following equation, 

provided that the same assumptions in Section 4.4.1 are used [61]: 
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W= fM; dx=-l-(F
2

/
J 

+M 2/).
2El 2El 192 

(4.22) 

If it is assumed that the additional moment M arises solely from the force F acting on the 

centre of each link, the deflection of the link is straightforward to calculate by the use of 

the Castigliano's theorem [61]. This assumption seems reasonable because the entire 

behaviour within the model is actually activated by the external force F ex, and the force 

F is a manifestation of Fex, on the fibre link. The fibre rotation, as a feature of the 

internal behaviour of the model, will inevitably be related to the force F, in the sense that 

a higher load causes a greater rotation. So the additional moment M on the link can be 

related to the force F and further to the strain s , in the sense that a higher strain is

accompanied by a greater rotation or flexibility. M can also be written as a function of

one of the characteristic dimensions of the model, the diameter d, as follows by the

introduction of the new dimensionless parameters r and ( : 

(4.23) 

If equation (4.23) is inserted into (4.22), the elastic energy of the link will be given by 

W =-l-(F
2

/
3 

+(( sd)2 p2z)
2El 192 

(4.24) 

The deflection '5 of a fibre link, arising from the force F, is obtained from Castigliano's

theorem as 

aw F ( /3 ( )2 ) '5=-=- --+ (sd l .
BF El 192 

(4.25) 

Secondly, if one focuses again on the bulk bending model comprising a stack of 

elastic rods, the bulk deflection can be defined in terms of the total external 

compressional force. The relationship between deflection and force in the microstructure 

can be expressed in terms of the bulk strain s and stress u and the microscopic 

dimensions of diameter and link length, through the same procedure as that described in 

Section 4.4.1 to give
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(4.26) 

The relationship between the aspect ratio of the fibre link and the solid fraction in 

equation ( 4.16) is now inserted into ( 4.26) to replace the fibre aspect ratio d I I by the 

macroscopic parameter \J' . The relationship in ( 4.19) is again adopted here to embody 

the nonlinear behaviour. The MNBM may, finally, be represented in the form of a bulk 

stress-bulk strain relationship, 

( 
4 \J' 

)
5 

31fE --0
-. C 

1l' 1-c 
er= 

( 
4 \J' 

)
2 

1+192 '&--
0 

Jl'l-c 

The bulk Young's modulus of the MNBM is given by E
b = d a/d c as 

( 4 \J' 
)

2 

( )5 (4c+1)+192 ( c--0 (4c-1)
3,rE 4 \J'o 1l' 1-C 

E =- --
• I-& "I-& 

{1+192( ( & ; l�'J}' 

(4.27) 

(4.28) 

As seen in equations (4.27) and (4.28), the MNBM involves three parameters, the 

Young's modulus E of the solid material, the solid fraction of the undeflected material 

\J'0 and a newly introduced constant (. It is worth noting, at this stage that the solid

fraction may have to be given an adjusted "effective value" because of the sensitivity 

brought about its high power dependence embodied in equation ( 4.27). Comparison 

between equation (4.27) and measured data together will be made in Section 4.5.2. 

4.5 Measurements and comparison with theory 

The results of deflection-force measurements on selected samples of fibrous materials 

were used to produce strain-stress plots, and comparison is made between these and 

predictions made by the use of the models described in Sections 4.3 and 4.4. 
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4.5.1 Method of measurement of stress/strain characteristics 

The two materials examined in detail in this investigation were: first, a glass fibre 

thermal insulation blanket from an aircraft fuselage, and secondly a glass fibre acoustic 

duct lining material. The nominal bulk densities were 9 and 35 kg/m3
, respectively. Each 

of these materials was cut into a parallelepiped shape and glued to thin aluminium plates 

by the use of an adhesive spray. Equal groups of metal weights were positioned on the 

top plate at each comer and the corresponding deflection was measured by the use of a 

travelling microscope with a resolution of 0.01 mm. A short "sting" was glued to the 

centre of the plate, and the microscope was focussed on the tip of the sting. Figure 4.11 

shows the measurement arrangement. 

Objective lens 

Travelling 
microscope 

Vernier scale 

l Movable 

Figure 4.11 Schematic diagram showing the experimental setting for measuring the deflection

of a fibrous material under static compression.
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4.5.2 Comparison between experiment and theory 

The strain-stress data measured on the thermal insulation blanket and the duct lining 

material are shown in Figures 4.12 and 4.13. In both cases, a highly nonlinear 

relationship is observed, with a very great increase in bulk stiffness occurring for high 

values of strain, as compared to the case where e � 0. (At this stage, it may be worth 

noting that a fibrous material behaves structurally in a different way from a cellular 

material (Figure 4.2), which has three distinct regimes.) The thermal insulation blanket 

was much more compliant than the duct lining, and it proved difficult to obtain data for 

stresses less than about 80 Pa, because of the fact that the aluminium top plate itself 

compressed the material quite significantly. The much denser - and stiffer - duct lining 

shows an early onset of nonlinearity, for e < 0.2, with a progressive stiffening as the 

material is compressed. Also shown in Figures 4.12 and 4.13 are the predicted strain­

stress curves from the SNBM and the MNBM, together with that forecast by the power­

law model. 

In the MNBM, the parameters rand s were obtained through a simple numerical 

iterative procedure from the measured data. The use of the parameters y and ( requires an 

"adjustment" procedure to find the effective value of solid fraction, based on the (fixed) 

Young's modulus of the solid material. If the adjustment procedure is correctly 

performed, the parameter yis observed to increase linearly from near zero, at zero strain, 

as one may see in Figures 4.14 and 4.15. The straight line in Figures 4.14 and 4.15 is a 

regression line for the parameter y. Sometimes, however, data points at very low strains 

deviate from this pattern. Nevertheless, they do not adversely affect the essential 

behaviour of the model. This linearity without a significant offset ensures that the 

parameter ( is approximately constant over the strain range of interest, because it can be 

regarded as the slope of y.
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Figure 4.12 Strain-stress behaviour of the thermal insulation blanket. •. measurement; -. 

MNBM; --0-, SNBM; -!::.-, power-law model. 
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Figure 4.13 Strain-stress behaviour of the acoustic duct lining material. •, measurement;-.

MNBM; --0-, SNBM; -!::.-, power-law model.
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Based on the three parameters - the Y oung's modulus E, the solid fraction '-I' 
0 

and the constant ( - the measured nonlinear strain-stress behaviour of the two fibrous 

materials (See Table 4.1) studied can be well reproduced by the MNBM, as shown in 

Figures 4.12 and 4.13. A value of 7.5x1010 
Pa is used as the Young's modulus of the 

solid material in both cases. The values for adjusted solid fraction are 0.0093 and 0.0144, 

for the thermal insulation blanket and duct lining material respectively. The fact that 

four-digit accuracy is necessary for the solid fraction is an indication of the sensitivity of 

the MNBM to this parameter. Further discussion about the sensitivity will follow in the 

next section. The constant parameter ( has the values 22.06 and 7.92 for the thermal 

insulating blanket and the duct lining, respectively. 

In the case of the SNBM, it is found that good agreement between prediction and 

measurement is observed only in the low strain region. This is because flexibility or 

rotation at the contact points or at the end of links has not been taken into account. 

Therefore, the discrepancy in the high strain regime is not surprising, considering that a 

greater load is more likely to result in situations which would violate the assumption of 

idealised boundary conditions. The power-law predictions fit the data well in the high 

strain region, in contrast to the SNBM. Again, this is to be expected, since the underlying 

physical restrictions on which this theory is based would preclude its application at low 

values of strain [22]. 

It may be observed that the MNBM, although having the drawback of containing 

an adjustable parameter (see the following section), is capable of describing well the 

observed bulk elastic behaviour of the two fibrous materials discussed, over the entire 

range of strain for which data have been obtained. This is also the case for a variety of 

other materials which appear in Table 4.1 (see Section 4.5.3 for discussion). 
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4.5.3 Effective solid fraction 

It has been mentioned, with reference to the MNBM, that both t; and y are dependent on 

the solid fraction. In fact, the procedure for finding the constant parameter t;is equivalent 

to that in searching for the effective solid fraction. The strain-dependence of the 

parameter y is sensitive to the value of the solid fraction, as may be seen from plots of y 

versus & for a range of values of solid fraction, presented in Figure 4.16 for the acoustic 

duct lining material. 

6 
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2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 
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Figure 4.16 Dependence on the solid fraction of the MNBM. •, adjusted effective solid 

fraction, '¥
0 

= 0.0144; -0-, arbitrary value, '¥
0 

= 0.0165, and /J., calculated value, '¥
0 

= 

0.0140. Solid lines are regression lines for each case. Some data at lower strain are not

counted. 

The solid circles denote the "adjusted" value of the effective solid fraction, equal 

to 0.0144. The open squares correspond to an arbitrarily chosen value of '¥
0 = 0.0165, 

which was about 15% higher than the adjusted value. The open triangles are matching to 

a calculated value of '¥0 = 0.140, based on an assumed solid density of 2500 kg/m3 and 

the measured bulk density of 35 kglm3
• It is worth noting that, in this case at least, the 

adjusted value of '¥0 is only about 2.9% higher than the calculated figure (which is 
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Acoustic Aircraft Steel wool 
duct lining thermal E-glass Glass fibre (circular 

Property 
material insulation 

Rockwool 1 Rockwool2 
wool

Basalt wool wool section fibres) 
Bulk densityt 

35.0 9.0 57.8 kg/m3 41.2 27.2 57.1 10.6 57.8 

Solid densityt 
kg/m3 2500 2500 2500 2500 2570 2700 2500 7900 

Young's modulus 

7.5xI010 
7.5xl010 9.85xl0 10 9.85xl010 7.7xI010 8.9xI0 10 7.5xI010 2. lx1011

of framet, Nlm2

Adjusted solid 
0.0144 0.0093 0.0232 0.0188 0.0161 0.0115 0.0099 0.0100 fraction 

Calculated solid 
fraction 0.014 0.0036 0.0231 0.0165 0.0106 0.0211 0.00424 0.00732 

Parameter ( 7.92 22.06 8.73 9.16 9.345 9.387 14.246 18.377 

t Measured value 

t Assumed value (based on published data) 

Table 4.1 Various parameters for a range offibrous materials related to the Modified Nonlinear Bending Model (equation(4.27)). 
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dependent on the assumed value of the solid density, itself subject to a degree of 

uncertainly in view of the unknown binder content of this material). 

In all three of the cases presented in Figure 4.16, the parameter y increases 

approximately linearly with c, although the non-adjusted cases have offsets from the 

origin, preventing y from being represented solely by its slope. It is worth noting again 

that the procedure for finding the effective solid fraction is equivalent to a search for the 

constant parameter s, This means that, once the solid fraction is adjusted, it will result in 

a unique value of the parameter (. The solid fraction is therefore actually the only

adjustable parameter among the three in the equation (4.27). 

It is, of course, possible for equation ( 4.27) to be re-defined such that it includes 

both the slope and the zero offset of the parameter y. In this case, however, the total 

number of parameters will be increased by one. (This is clearly a disadvantage in the 

model, and one may conclude that the adjustment to find the effective solid fraction is 

worthwhile in order to minimise the total number of parameters.) If, however, the extra­

parameter scheme is adopted and the adjustment procedure is discarded, the MNBM in 

equation (4.27) can be re-defined as 

(4 q, )

5 

3:rE --

0
- c

,rl-c 
(j = 

( 
4 q, )2 . 

1+192 (ac+b)--0 

,r 1-& 

(4.29) 

The parameters a and b denote the slope and zero offset in Figure 4.16. For the adjusted 

case, the parameter a is equivalent to '- and the parameter b may be assumed to be zero. 

Predictions from equation ( 4.29) for the acoustic duct lining material are compared, in 

Figure 4.17, to those from the adjusted case of equation ( 4.27). It can be observed that, 

over the strain range of interest, both definitions adequately describe the nonlinear stress­

strain relationship of a fibrous material. 
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Figure 4.17 Strain-stress behaviour of the acoustic duct lining material. •, measurement; -----·, 

equation (4.29) with four parameters and a measured solid fraction of 0.0140; --, equation 

(4.27) with three parameters and an effective solid fraction of 0.0144. 

It is of interest to see whether materials other than the duct .liner exhibit such 

close correspondence between the values of adjusted and calculated solid fraction. In 

Table 4.1 such a comparison is given for a variety of fibrous media, and other relevant 

data are also included. It can be seen that the correspondence between adjusted and 

calculated solid fraction figures varies considerably, ranging from fair to excellent for 

five of the materials (duct lining, Rockwool l, Rockwool 2, E-glass wool and steel wool) 

and being poor for the other three materials (thermal insulation, basalt wool and 

(lightweight) "glass fibre wool"). It is hard, at this stage, to speculate on the reasons for 

these disparities. However, it is worth noting that the calculated solid fractions in Table 

4.1 are based on the published data for solid density of fibres. Thus, strictly, there could 

be difference between the values in the literature and the true solid densities. Also, the 

contribution of binding materials was not taken into account, although their effect is 

assumed small unless heavily used. In addition, the initial state of a fibrous material may 

need to be accounted for, if it has been already significantly compressed. However, this 
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might not make a big difference if the solid fraction is evaluated in a way of weighing a

bulk material and using a solid density from literature.

4.6 Generalised form of MNBM 

The MNBM has been developed on the basis of the linearity of the parameter y with

respect to strain both without a zero offset (4.27) and also with an offset (4.29). The

applicability of the MNBM has been confirmed for a variety of commercial fibrous

materials (Table 4.1 ). However, a departure from the MNBM has been noted in rare

cases. "A-glass Battery Mat", the commercial name of a Lancaster Fibre Technology

product, has been observed to behave differently from other fibrous materials. As can be

seen in Figure 4.18, the parameter r is not linearly related to the strain &, but has a

nonlinear curvature, which cannot be described by the MNBM regardless of whether it

has an offset or not. However, it has been revealed that a linear relationship with strain
may be found by the use of the relationship r = t; & (in other words, the parameter t; is

assumed to be the slope of ]1. Now, the parameter s may be observed to vary almost

linearly with strain (Figure 4.19), after a trial-and-error choice of the solid fraction 'f' 
0

• 

(Note again that the parameter s is a constant in the MNBM.) Therefore, the nonlinear

stress-strain performance of a fibrous material such as A-glass Battery Mat could be

described by a generalised form of the MNBN,

31!E __ o_ & (4 'f' 
J
S 

1r 1-& 
(j = 2 .  

1 + 192((a & + p)e i 'Po J
trl-& 

(4.30)

(Because of the introduction of the generalised form of the MNBM in ( 4.30), it may be

better to refer to the MNBN in ( 4.27) and ( 4.29) as the "original MNBN" to avoid

confusion. A further distinction between (4.27) and (4.29) is clearly related to the offset.)

The original MNBM without an offset in (4.27) can be deduced from the generalised

MNBN when the parameter a goes to zero, in which case the parameter p will be
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equivalent to r;. Finally, when the parameters a and P are determined by the 

adjustment of the initial solid fraction with a prior knowledge of the Young's modulus of 

a fibrous material (See Table 4.2), the nonlinear stress-strain relationship of the A-glass 

Battery Mat can be described successfully as one may see from Figure 4.20. 

A-glass Battery A-glass non- E-glass non-
Mat adhesive bulk

adhesive bulk 

Solid fraction 0.0160 0.0138 0.01375 

Young's modulus 
of frame NI m2 6.8x 1010

6.8x 10 10

7.7 X 10 10

Parameter 
-16.453 -15.118 -20.653

a 

Parameter 
13.892 10.240 14.835 

E-glass adhesive Layered stainless 3-D stainless steel
bulk steel bulk 

bulk 

Solid fraction 0.01445 0.0100 0.0100 

Young's modulus 
7.7 X 10 10

21 X 10 10

21 X 1010
2 

of frame NI m

Parameter 
-22.469 -74.176

Parameter r; 
a 

Parameter 
18.377 14.589 73.492 

p 

Table 4.2 Parameters for various fibrous materials whose structural behaviour has been 

analysed by the generalised Modified Nonlinear Bending Model. Young's modulus of the 

frame is assumed (from literature}. Solid fraction is adjusted. Parameters a and p are 

evaluated according to equation (4.30). The data for 3-D stainless steel bulk were taken 

from Table 4.1. 
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Figure 4.18 Non linear characteristics of the parameter y for A-glass Battery Mat. 
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Figure 4.20 Measured and predicted nonlinear strain-stress relation of A-glass Battery Mat. The 

circles represent the measurement data and the dotted line the generalised MNBM predictions. 

The physical reasons why such a generalised version of MNBM appears to be 

successful are not understood. However, some of the types of fibrous material which may 

be described by one or other version of the MNBN have been discovered by an heuristic 

process. (Obviously, the original MNBM is a subset of the generalised MNBM. But a 

distinction is drawn between the two here mainly because of the linear and nonlinear 

characteristics of the parameter y.) Fibrous materials with a three-dimensionally tangled 

geometry have been observed to have a linear relationship between r and c, with a 

constant value of I;, and to be described by the original MNBM, (4.27). Fibrous 

materials with a two-dimensionally laminar geometry with horizontal layers of fibres 

have been found to have a nonlinear relationship between r and c and a linear 

relationship between I; and c, and to be described by the generalised MNBM (4.30). 

Actually, whether the geometry is two-dimensional or three-dimensional may not be 

straightforward to decide and hence falls to the individual's judgement. 

The author's own criterion is mainly based on whether fibres are interwoven and 

hence its bulk structure is stable without consolidation by a binding material. If the fibres 
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are interwoven with one another, they will be "locally" three-dimensionally tangled, 

although the layers may appear to be straight "globally". In this case, a binding material 

may not be necessary to keep the bulk structure stable. (However, most commercial 

fibrous materials are impregnated with binders.) If the fibres are not interwoven but are 

merely "piled up", they cannot be kept stable without a binding material when the bulk 

fibrous medium is exposed to tension or shear forces. In this case, the bulk structure will 

be closer to an ideal two-dimensional laminar layout than the former cases. Based on the 

author's experience, many of the commercially available fibrous materials have been 

"locally" tangled and are describable by the original MNBM. In the case of A-glass 

Battery Mat, the fibres lie locally in straight, laminar layers which are held together by 

the liberal use of a binder (synthetic latex). Thus it seems reasonable to assume that this 

is a two-dimensional laminar structure rather than a three-dimensional tangled structure. 

This argument concerning the categorisation of fibrous materials has been supported by 

further examination of fibrous materials which have been fabricated under laboratory 

conditions. It will be further discussed in the following sections. 

4.6.1 Case study 1: the fibre component and the use of binder 

Three bulk fibrous materials (made from glass fibres) have been fabricated by the author 

in the laboratory. Each layer of fibres was made by placing the fibres horizontally 

together, a few at a time. The structure is similar to that shown in the left-hand photo of 

Figure 4.24.Altemate sets, each of several layers, were orientated perpendicularly to one 

another to achieve a stable bulk structure. Both A-glass and E-glass fibres were used to 

construct the bulk structure. A- and E-glass are types of glass with different chemical 

compositions. With each type of glass fibre, two types of structure were made: one 

reinforced by spray type glue used as a binder, and the other without any binder. Thus, in 

tenns of the categorisation introduced in the previous section, all the fabricated bulk 

fibrous materials had the general form of a two dimensional laminar structure. 

Comparisons between the experimental data and predictions have shown that these 
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materials are all describable by the generalised MNBM ( 4.30). In Figure 4.21 (which 

shows measured data from three of the materials), the parameter r is observed to bear a 

nonlinear relationship to strain. In Figure 4.22, the parameter sis seen to vary linearly 

with the strain. In Figure 4.23, the nonlinear bulk strain-stress behaviour of these 

fabricated materials is observed to be well predicted by the use of the generalised 

MNBM. (See also Table 4.2 for parameters.) By observing that different types of 

material and the use of adhesive (non-adhesive A-glass, and adhesive/non-adhesive E­

glass) do not make a significant difference to the general behaviour of the parameters, 

one may suggest that the need for the generalised MNBM was not brought about by such 

details of the structure of the material. Instead, the observation seems to support the 

author's assertion that the generalised MNBM is applicable particularly to materials 

having a two-dimensional laminar structure. 
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Figure 4.21 Nonlinear characteristics of the parameter r for bulk fibrous materials manually 

fabricated by the author. The circles for the 31 mm thick A-glass bulk material without binder,

the asterisks for 33 mm thick E-glass without binder and the crosses for 21 mm thick E-glass

with binder. 
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Figure 4.22 Linear variation of the parameter (for bulk fibrous materials manually fabricated by 

the author. The symbol notation is the same as that in Figure 4.21. 
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Figure 4.23 Measured and predicted nonlinear strain/stress relation of bulk fibrous materials 

manually fabricated by the author. The notation of discrete symbols is the same as in Figure 

4.21, and the dotted line for the generalised MNBM for each material. 
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4.6.2 Case study 2: laminar and tangled structures 

In an effort to validate the author's structural categorisation described above, 12 µm

diameter, circular cross-section, stainless steel fibres (supplied in skeins of constant­

diameter fibres) were used to build up bulk fibrous materials of two different types: a 

two-dimensional laminar structure and a three-dimensional tangled structure. The fonner 

was fabricated by the author in the laboratory, by the same method as that described in 

the previous section. The latter was fabricated by Lancaster Fibre Technology, and was 

produced by the use of a spinning machine on its production line. Because of its highly 

interwoven structure, a binding material was not involved in its production. In Figure 

4.24, the structural difference between two samples can easily be identified. 

Figure 4.24 Photographs of bulk materials: left, material manually fabricated by the author, 

showing laminar structure; right, fabricated by Lancaster Fibre Technology, showing tangled 

structure. Both materials were made out from the identical stainless steel fibres. 

In both the experimental data and the predictions, the intrinsic difference between two 

bulk materials is very evident. In Figure 4.25, the parameter r for the tangled bulk 

material varies almost linearly with strain, while the layered bulk medium exhibits a very 

nonlinear relationship. In Figure 4.26, the parameter t; for the tangled medium is 

evidently described by a constant value, while the layered medium requires a linearly 
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varying (. As a consequence, the nonlinear strain-stress behaviour of the two types of 

bulk material can be well described by the original MNBM for the tangled structure and 

by the generalised MNBM for the layered structure (See Figure 4.27 and Table 4.2). The 

findings in this and the previous case studies would seem to offer at least partial 

justification for the author's method of categorisation. 
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Figure 4.25 Parameter r for bulk fibrous materials made from stainless steel fibre. The circles

denote that fabricated by the author, and asterisks denote that fabricated by Lancaster Fibre

Technology. 

It is worth noting that, although this divergence in structural behaviour between 

the two categories of fibrous media seems to be supported by the experimental evidence, 

the very idea of the tangled and two-dimensional laminar categories appears to be 

contradictory to the ideas implicit in the bending models themselves, if one recalls that 

their development was based on the ideal laminar structure (Figure 4.6). For consistency 

with the bending model, the laminar type of fibrous materials, such as the ones in Case 

study t and in left-hand photo in Figure 4.24, should be predictable by the original 

MNBM, rather than by its generalised form. However, it is believed that such an 

inconsistency does not necessarily invalidate the ideas associated with the MNBM. That 
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Figure 4.26 Parameter (for bulk fibrous materials made from stainless steel fibre. The symbol 
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Figure 4.27 Measured and predicted nonlinear strain/stress relation for bulk fibrous materials 

out of stainless steel fibre. The notation for discrete symbols is the same as that in Figure 4.25. 
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is because the fine details of the model are not so much at issue as the underlying 

physical mechanisms, namely the creation of inter-fibre contacts, corresponding 

nonlinear characteristic and introduction of additional loads, which are applicable to both 

categories of fibrous material. In the next section, a structure which is indisputably very 

different from the idealised laminar structure will be discussed. 

4.6.3 Case study 3: failure of bending models 

So far in this work, several bending models have been developed and applied to fibrous 

materials. The applicability of each model has also been discussed with reference to 

specific features such as the strain range and the structure of fibrous materials. In this 

section, however, both the applicability and the theoretical background will be 

considered for the bending models "as a whole". The SNBM and MNBM bending 

models are both based on a stacked cylinder model with an idealised laminar structure. 

So far, they have only been applied to real fibrous materials for which such a structure 

has some relevance to the actual structure of the material (whether the materials may be 

described as "laminar" or "tangled"). However, other types of fibrous material are 

available. In particular a fibrous material called "Needle Mat" (available as both 

"acoustic type" and "thermal type"), supplied by Lancaster Fibre Technology, was 

investigated here. Its fibres are E-glass (largely of borosilicate glass) and its bulk 

structure is basically layered as in other fibrous materials. However the bulk structure is 

kept stable not by adhesive binding materials and interwoven fibres, but by glass fibre 

"needles" penetrating vertically through the fibre layers. Thus its geometrical structure is 

fundamentally different from that of more common types of fibrous material and also 

from the idealised model in Figure 4.6. Due to the presence of the vertical needles, the 

stress-strain behaviour under static compression would be expected to be different. That 

is because the vertical needles will have a tendency to buckle or collapse (as shown 

schematically in Figure 4.28) when the critical compressive force is reached. 
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Examination of the strain-stress plots in Figure 4.29 reveals the effects of such a buckling 

effect, highlighted by dashed ellipses for acoustic-type and thermal-type Needle Mat. 
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Figure 4.28 Schematic diagram depicting the structural behaviour of a fibrous material having 

vertical members under compression. 
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Figure 4.29 Measured strain-stress behaviour of Needle Mat fibrous materials. The circles are 

for an acoustic type material and asterisks for a thermal type material. The dashed ovals denote 

the regions where a structural buckling effect occurs. 

The similarity in the stress at which buckling occurs is believed to imply that the critical 

force is about the same for both structures. Hence it is also deduced that the structural 

behaviour in compression normal to the plane of the material is mainly governed by the 

buckling of the vertical needles, not by the creation of new inter-fibre contacts, although 

there may be such an effect prior to collapse. Because of buckling, the strain-stress 

128 



relationship of needle mats is not thought to be describable by any of the bending models 

so far discussed. It may be noted that, because of the presence of vertical needle fibres 

and the associated buckling effects, the mechanisms of static compression of fibrous 

materials of this kind are thought to be more akin to those of cellular materials than to the 

more common types of fibrous material. But the degree of collapse is evidently much 

smaller in a fibrous material with vertical needles than in a cellular material (see the 

difference in the amount of the vertical jump of strain between Figures 4.2 and 4.29). 

That is, perhaps, because of an inherent structural difference related to the fairly close 

proximity between layered fibres and the relatively remote distance between cell frames 

(see Figure 2.1). 

4.7 Summary 

Cellular materials have first been discussed in this chapter in order to highlight the 

structural differences between fibrous and cellular materials, with particular reference to 

the associated differing mechanisms in static bulk structural behaviour. An existing 

"power-law" model for fibrous materials under large strains was then described. 

Following this discussion, a transversely isotropic ideal structure consisting of 

elastic cylindrical rods was proposed to model the nonlinear static stress-strain 

behaviour, in bending, of a fibrous material under compression. This structure is a 

stacked cylinder model, incorporating staggered alternate layers in order to allow the 

components to bend. Initially, a model incorporating linear bending behaviour was 

described, and this was then extended to its nonlinear counterpart. In this second model, 

the concept of the shortening of micro-structural fibre links was introduced to account for 

the increase in the contact density between fibres upon compression of the material, a key 

mechanism of the nonlinearity. This shortening of link length was then related to a 

changing volumetric solid fraction, with strain, preserving the nonlinear stress-strain 

behaviour. The simplest model to take account of this nonlinearity effect, i.e. the simple 

nonlinear bending model (SNBM), was shown not to predict the nonlinear behaviour 
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well at high strain. A modified model (MNBM) was formulated to include fibre 

flexibility at the contact points at the ends of each fibre link. Finally a modified version 

of the nonlinear bending model was shown to be in good agreement with measured data, 

when the solid fraction is treated as an adjustable parameter because of the sensitivity of 

the model to the solid fraction at zero strain. It was also shown that the MNBM can be re­

defined without the adjustment procedure but with one additional parameter. Predictions 

from these nonlinear bending models were also compared to from the power-law model. 

It was observed that the SNBM yields good predictions in the low strain region, the 

power-law model in the high strain region, and the MNBM throughout the strain range of 

interest. 

Additionally a need to "generalise" the MNBM, and make it dependent on the 

material structure, arose. Support was given to the author's heuristic categorisation of 

fibrous materials by the results of tests on several fibrous materials fabricated in the 

laboratory. The behaviour of two-dimensionally layered fibrous materials appeared to 

deviate from that predicted by the original MNBN, but to be describable by a 

"generalised MNBM". Two case studies were used to illustrate the application of this 

latter model. In the third case study, the behaviour of a fibrous material with an unusual 

structure was examined, and it was concluded that fibre buckling effects were significant 

in its bulk elastic behaviour.

Among several forms of the MNBM, the preferable model would seem to be the 

MNBM with an adjusted solid fraction (i.e. the original MNBM without a zero offset in 

the strain-dependence of the parameter r ), since the predicted strain-stress relationships 

appear to be very similar in this case and in the case of the model with an offset (equation 

( 4.29)). A range of commercial fibrous materials seems to be well described by the 

adjusted solid fraction approach.
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Chapter 5 

Connectivity in fibrous materials 

The number of inter-fibre contacts in a fibrous material has been identified as one of the 

important mechanisms responsible for nonlinear bulk elastic behaviour in compression 

(see the bending models developed in Chapter 4). This effect has also been 

experimentally demonstrated in the series of idealised macro-scale models described in 

Chapter 2. The increase or decrease in contact number within a fibrous material is related 

to how individual fibres are connected one another. As previously stated (in Chapters 2, 3 

and 4), it is impractical to devise complete models of fibrous materials, both taking into 

account all microstructural details and being applicable to the bulk structure. Therefore, a 

statistical and macroscopic approach is necessary. Apart from applications to fibrous 

media, such a connectivity phenomenon has been actively investigated in the field of 

"percolation theory". Its introduction therefore seems to be appropriate in order to assist 

in understanding further the structural behaviour of fibrous materials under static 

compression. It is impossible to do justice to the entire theory of percolation theory in 

just one chapter, of course, and here it is proposed to discuss only aspects which are 

relevant to the present investigation. The bending models in Chapter 4 will also be 

examined in terms of the way in which percolation theory is expressed. And the 

similarities and differences between the two cases will be discussed. 

5 .1 Percolation theory 

In physics, the term "percolation" is used to describe a situation in which a transition

occurs between a "locally-connected" (or "non-percolating") state and an "indefinitely­

connected" ( or "percolating") state. Such a transitional characteristic itself indicates that

the idea of percolation shares features in common with a phase transition such as that of
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condensation or evaporation of water at the critical temperature and pressure. Percolation 

may be seen as a geometrical analogy of a phase transition. However, the difference 

between the two is that a phase transition is a "dynamical" process which is an obstacle 

to the creation of a quantitative microscopic theory, but percolation is defined for "static" 

objects, which leads to an easier situation in developing a microscopic theory [66]. 

A percolation model may be regarded as an aggregation of points distributed in 

space. In its simplest form, this space may be idealised as a two-dimensional plane 

square lattice. Some of the points (or sites) are regarded as linked, adjacent or connected. 

Whether two points are linked is determined by a random mechanism, governed by types 

of models mentioned later. The linkage is mathematically determined for a given 

"probability". Each edge (or bond) in the lattice is thought of as either open (or 

connected) with a fixed probability p and closed (or disconnected) with a probability 

1- p . Physically, the open edges can be interpreted as inner paths in the lattice. The

centre of the lattice can be regarded as placed at the end point of an "infinite" path, when 

a point near the centre is connected to those on the boundary through a series of open 

edges. The concept of linkage or path can also be expressed in terms of a "cluster". 

A cluster is an aggregation of points, but is a part of the model. It is assumed that 

points in the same cluster are connected by given paths, but that no path can be found 

between points in different clusters. If an infinite path between points in different clusters 

could exist, this would imply the existence of a single, "infinitely connected", cluster. 

There is a critical value p
c 

of probability, at and beyond which there can exist such 

infinite clusters, which would pervade the entire structure of the lattice. Thus one may 

conceive a situation in which all open clusters are finite in connectivity when p <Pc , but 

where there are only infinitely connected open clusters when p >Pc , under which 

conditions the system is said to be in a percolating state. 

In the critical region where the probability p approaches its critical value p
c

from either direction, it is widely held that a "percolation quantity" Y behaves as a 

power of the difference between the two probabilities, 

(5.1) 
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This is also known as a "universal power law" of percolation [65, 66]. The exponent X
c

is usually known as a "critical exponent", which decides the "universality class" of a 

particular percolation quantity in a particular percolating system. The critical probability 

Pc is dependent on the dimension and structure of the model [65]. It is also affected by

the type of the percolation model. 

In engineering application, the percolation probability p can be replaced with 

other physical parameters, such as condensation, density, solid fraction, porosity or 

electric current density, which are all related to "connectivity". And the percolation 

quantity Y may refer to the effective electrical conductivity, elastic constants such as bulk 

Young's modulus, transport properties such as flow permeability and so on, and these are 

represented by the power law relation (5.1) in the critical region. The value of the critical 

exponent in these cases has been evaluated, together with the critical probability [67-76]. 

Various kinds of percolation model can be defined according to the connection 

and occupation rules for the basic elements (sites/points or bonds/edges, for example), 

which also determine the behaviour of the models as a consequence. Percolation can be 

divided into several subsets, which themselves can overlap one another. The simplest and 

most widely investigated is "bond percolation" [65]; the points may be fixed, and the 

path of random linkage between them is determined by whether the edges (or bonds) are 

open or closed. In "site percolation" it is sites, rather than bonds (or points), that are 

declared to be open or closed. Bond percolation can thus be seen as distinct from site 

percolation. "Mixed percolation" is a mixture of both site and bond percolation and is 

more often encountered in real systems. A bond/site percolating system is one which 

becomes un-percolated when its bonds/sites are (respectively) removed [78]. In an 

"anisotropic percolation" [67, 68, 75], different edges could have different probabilities 

of being open. Anisotropic percolation is believed to have wide application to disordered 

materials, in connection with their connectivity state such as elasticity or electrical 

conductivity. In "long-range percolation" [65], pairs of points may be connected although 

they are geometrically placed at a distance from one another. In "dependent percolation" 

(or "correlated percolation"), the probability of being open is not independent of the 
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surrounding sites and edges. The opposite of dependent percolation is "random 

percolation", in which sites and edges are occupied with a probability independent of the 

other elements. "Continuum percolation" [67, 73] deals with a collection of overlapping 

spheres, discs, rods, or other realistic elements. These elements are allowed to occupy 

any location within the model. In contrast, a regular lattice is a kind of "discrete 

percolation" [65], in which points are only defined at the vertices of the lattice. In "time­

dependent percolation", the probability of points being open is a function of time. Among 

the above, bond versus site percolation, dependent versus random percolation and 

discrete versus continuum percolation may be regarded as the most significant pairs. 

Percolation theory has been found to play an important role in the analysis of 

disordered media. In this application, it has been regarded as one of the simplest 

mathematical and physical tools with the minimum statistical dependence [65]. It is often 

stated that percolation theory emerged as a consequence of attempts to answer a simple 

question relating to the probability that the centre of a porous rock is wetted when the 

rock is immersed in water [65]. Intuitively, if the porous rock were composed entirely of 

closed cells, the water would not be absorbed at all. If, on the other hand, the rock had 

only open cells, then it would be simply a matter of time before the water reaches the 

centre of the rock. However, in a more realistic situation where the rock comprised a 

combination of both open and closed cells, the problem of calculating the probability 

would not be straightforward. Percolation models can be useful in dealing with the 

spread of an epidemic in an orchard [65]. Trees may be hypothetically positioned at the 

points of a lattice in the model. A probability, which is often a function of distance, can 

be assigned to the odds that a blighted tree would infect a healthy tree in its vicinity. The 

spacing between trees needs to be sufficiently greater than that associated with the 

critical probability in order to escape the catastrophic outcome that a small portion of the 

trees will eventually infect the majority of trees. In the same way, percolation theory can 

also be applied to the spread of bacteria and fire propagation in a forest. Another 

application is in telephone engineering, where all possible paths connecting a pair of 

callers can be made in the switching network. When lines are busy, a new call may be 
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blocked. Thus, in theory, a tolerable blocking probability is required in designing the 

network in order to keep the switching system economic and competitive. 

5.2 Literature review 

Critical transition behaviour in the percolation model has been investigated 

experimentally [67] and in simulations [68-71, 74, 75]. The percolation threshold Pc

and the critical exponent X in equation (5.1) have attracted the greatest interest in 

investigations. Among the various possible critical behaviours, that of electrical 

conductivity has long been popular, because percolation is believed to be closely related 

to the onset of electric conduction in a composite material [67, 75, 75, 76]. The 

conductivity in a carbon-fibre polymer composite material has been the main subject in 

the percolation approach [67, 68, 75]. This type of material is renowned for excellent 

electromagnetic interference (EMI) shielding and other electromagnetic characteristics 

[75, 76]. It consists of a polymer as a matrix and "fibres" as particles inside. An epoxy 

resin (containing a hardener) is often used as a polymer and typically has very high 

resistivity, while carbon fibres have high conductivity and high elastic modulus. The 

fibres are mixed with resin in a controlled concentration ( or solid fraction). 

Carmona et al. [67] investigated the effect of anisotropy as a function of particle 

aspect ratio in a percolation model. Their percolation model of a carbon fibre/polymer 

composite embodied randomly disordered fibres but had a non-isotropic geometric 

property. The authors observed that a sharp drop of electrical resistivity occurred at a 

critical volume fraction, and that the percolation threshold was lower than that in an 

isotropic percolating system. Such a drop in resistivity is interpreted as the onset of 

electrical conduction, which is related to the existence of infinitely connected carbon 

fibres. When spheres are embedded in epoxy resin, this constitutes an isotropic system 

and the "number of contacts" per sphere is likely to be limited. Where the particles are 

long disordered fibres, a greater number of inter-particle contacts can be expected 

( depending on the aspect ratio) because of an increase in the total surface area. Thus, this 
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increase in the number of contacts leads to lowering the critical volume fraction in the 

composite. The authors' argument concerning the increased number of contacts for 

carbon fibres in the composite can be related to that of an increase in the number of 

contacts in a fibrous material under compression. 

Boissonade, Barreau, and Carmona [68] used a three-dimensional cubic lattice to 

evaluate the critical exponent, X, in a Monte Carlo simulation. They determined the 

critical probability Pc as a function of the length of a "fibre". These authors reached the 

conclusion that their simulated anisotropic systems shared the same universality class as 

other isotropic percolating systems, on the basis that their critical exponents had about 

the same value as those typical of other three-dimensional random percolation processes. 

Although it was not explicitly stated, the critical probability in their anisotropic system 

might be expected to be different from those of isotropic cases, according to the results of 

other investigations [67, 73, 75]. 

Kantor [69, 74] investigated a two-dimensional square lattice by the use of the 

Monte Carlo method and demonstrated that geometrical properties can be useful in 

evaluating certain physical properties of a percolating system. Together with Webman 

[71], Kantor specifically focused on the macroscopic elastic modulus of an "elastic 

percolating system", with long thin rods having the properties of both bending and 

stretching. The critical behaviour of the effective elastic constant K, which could be a 

bulk or shear modulus, was given by 

(5.2) 

where Ko is a proportionality constant, ris the critical exponent, and q, and \Jlc are the 

solid volume fraction and its critical value respectively. He suggested values for the 

lower and upper bounds of the critical exponent in the cases of two-dimensional square 

and three-dimensional cubic lattices. It was also emphasised that the critical exponent of 

the macroscopic elastic stiffness was significantly larger than that in an electrical 

conductivity percolation model, and confirmed that the elastic behaviour belongs to a 

different universality class from that of conductivity. 
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Balberg, Bindenbaum and Wagner [70] examined a three-dimensional continuum 

system, characterised by the overlapping of regular objects such as spheres, cubes, and 

ellipsoids. The critical concentration was reported to be dependent on the aspect ratio of 

the objects and on the macroscopic anisotropy. Their study was limited to the critical 

threshold, and specific properties such as the electrical conductivity or elastic properties 

were not investigated. Although not explicitly stated by these authors, an inference may 

be drawn from their results concerning the dependence of the critical threshold on the 

aspect ratio and macroscopic anisotropy, leading to the conclusion that the critical 

probability of threshold is an "intrinsic property" of a material. 

Deptuck, Harrison and Zawadzki [72] fabricated a set of "sintered, submicron, 

silver-powder beams" with pre-determined volume fractions q., . The silver powder was 

bonded by sintering to form a porous beam while heated in a stainless-steel mould in 

which the powder was distributed in a controlled solid volume fraction. Measurements 

were then performed to determine the Young's modulus Eb and electrical conductivity 

a of the material. The authors observed that the beams behaved as percolation systems. 
e 

In order to evaluate the percolative parameters near the critical region, the measured data 

were processed by means of least-squares fits conforming to the following linearised 

equations: 

In ae = A+ t ln{\J1 - q.,J for the conductivity, (5.3) 

InEb = B + T ln{\J1 -\J1J for the Young's modulus. (5.4) 

A range of trial values for the critical volume fraction q.,c was iterated to evaluate the 

root-mean-squared residuals of the measurement data from the least-squared fit lines. 

Based on the minimum residual, both the critical exponents t and T , together with the 

proportionality constants A and B were determined. No significant difference was 

observed in the critical volume fraction between the conductivity and the elastic 

modulus. The authors observed that the critical exponent for the elasticity, r, is 

significantly larger than that for the conductivity, t, and this result is consistent with other 
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work [71]. The results in [72] again confirmed that the elasticity and conductivity belong 

to two different universality classes of percolation. 

In a study of a continuum percolation system, Bug, Safran and Webman [73] 

showed the dependence of the critical percolation threshold on the aspect ratio of rods. 

They regarded their findings as a useful approximation for long rods with random 

distribution. They observed that their conclusion was not consistent with that of Carmona 

et al. [67] and suggested that the aspect ratio in this investigation was insufficiently large. 

In the work of Ueda and Taya [75], the results from a Monte Carlo simulation 

were reported in the case of a percolation model in which short "fibres" were distributed 

in two-dimensional space. Macroscopic anisotropy of differing degrees was generated 

throughout the fibre structure, and the aspect ratio and distribution of fibres ranged from 

well-orientated to random. It was found out that the more random the fibre distribution 

and the larger the fibre aspect ratio, the smaller the critical volume fraction becomes. 

This trend is related to the connectivity, which in this case can be the "number of 

contacts" between fibres [67]. And the effective conductivity was also evaluated 

according to the universal power law of percolation in equation (5.1). 

In the work of Ruschau and Newnham [76], conduction in "conductor-filled 

polymers" was investigated. Percolation behaviour was verified by observing that a sharp 

drop in resistivity occurred at the critical volume fraction. Such a decrease brings the 

resistivity of the polymer closer to the resistivity of the conducting filler than that of the

matrix material. It was observed that the more nearly spherical the element is, the higher

the critical volume fraction becomes, and also that the higher the aspect ratio of the fibre 

is, the smaller is the critical volume fraction. This result is consistent with those

concerning the threshold parameter, presented by other workers [67, 75]. However, the

critical volume fractions observed [76] were inconsistent with those found by other 

workers, and publications were cited in which it was concluded that the volume fraction

can vary even within the same filler-polymer system. It was suggested that this

inconsistency might occur because of the different packing geometries, types of lattice

and the percolation model.
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Although electrical conductivity ( or resistivity) is an obvious indicator of 

percolation, it has been reported that conductivity in some materials does not yield a 

threshold phenomenon. One of them is a type of detrital sedimentary rocks that have 

been studied in geological physics. These rocks exhibit a power-law relationship between 

porosity and conductivity but do not have a threshold effect; this has been known as 

"Archie's law" [78]. The absence of a threshold is directly related to the microstructure 

of those rocks, which was determined by the way in which they had been formed. For 

such rocks, almost no isolated pockets or pores are reported and therefore every pore is 

already connected, hence there is no threshold. It has also been reported that it is 

relatively easy to fabricate a laboratory model showing a percolation threshold effect, 

because the threshold phenomenon is associated with the structure [78]. 

5.3 Fibrous materials 

In Chapter 4, a series of static models was developed to describe the nonlinear structural 

behaviour of fibrous materials under compression. In the associated analysis, only the 

strain/stress relationship in the region of positive strain was considered. However, in this 

section, the behaviour of a hypothetical range of negative strain will be considered. Here, 

a negative strain is in the range in which a tensile stress is applied, since a normal 

compressive stress was defined as positive in Chapter 4. 

By simply plotting the theoretical strain/stress relationship in the region of 

negative strain and stress, one can observe a "splitting apart" effect in fibrous media. In 

Figure 5.1, both the SNBM (dotted line) and the MNBM (dashed line) are plotted, 

together with measured data for positive strain and stress, in the hypothetical negative 

(third quadrant) and the "realistic" positive (first quadrant) strain/stress region. It is clear 

that the material is much "softer" in tension than its compressional counterpart, because 

of the apparent lengthening of fibre links. The third quadrant is expanded in Figure 5.2, 

to show clearly the apexes of curves, which may be taken as indicating the moment when 

a fibrous medium starts to "split apart" under tension. Although it shows mathematically 
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Figure 5.1 The extension of the SNBM (dotted line) and MNBM (dashed line) static 

models to negative stress, together with measured data on an acoustic duct lining 

material. 
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for the SNBM, the dashed line for the MNBM. 
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a smooth curvature around the apexes, it is believed unlikely that they would behave 

physically in such a manner. 

The splitting apart effect of fibrous layers at this apex is directly related to the 

nonlinear mechanism of static bending models in Chapter 4. From equations ( 4.16) and 

( 4.19), the relationship between the strain c and the mean fibre link length / can be 

obtained in terms of the mean fibre diameter d and initial solid fraction lJ10 
, 

(5.5) 

The equation shows that the fibre link length could increase under tension. This increase 

will persist as long as lengthening of the fibre link length is physically sustainable. At 

some stage, however, it will pass a threshold where the length of a fibre link would be 

longer than that of the side of a given sample cross-section. Thus, the stable structure of a 

bulk fibrous material would no longer exist. 

If both the SNBM and the MNBM are expressed in terms of the bulk Young's 

modulus, the interpretation of the split-apart behaviour is fairly straightforward. By 

combining equation ( 4.21 ), for the Young' s modulus, and equation ( 4.19), for the 

relationship between the solid fraction and strain, one may find the bulk Young's 

modulus given by the SNBM in terms of the solid fraction only, 

(5.6) 

It is clear from this relationship that the bulk Young's modulus will vanish when 

q., = 0.8 q.t0 , considering that zero solid fraction is a trivial solution which can never be 

attained. One can examine the behaviour near the vanishing bulk Young' s modulus, by 

introducing a substitute variable X, which is assumed very small and positive, 

4 
q., =-lJ1o +X. 

5 
(5.7) 

Insertion of (5.7) into (5.6) will yield, to a first order approximation, 
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where terms of order .x2 and above are neglected. One can see that the bulk Young's

modulus will follow a power-law relationship with an exponent of unity (i.e., a linear

relation) near the region where it vanishes, and this may be termed a "threshold". An

example of this power-law relationship is shown in Figure 5.3 for the SNBM applied to

an acoustic duct-lining material (specified in Tables 4.1 and 5.1). The vertical dotted line

indicates the initial solid fraction and hence implies that this power-law behaviour occurs

mainly in the hypothetical tension region for this particular fibrous material. The inclined

dashed line is the regression line, showing the power-law dependence, whose slope is

1.0564.

In the case of the MNBM, the bulk Young' s modulus in equation ( 4.28) may be

re-written in terms of the solid fraction,

(5.9) 

The threshold solid fraction \Jl,h, at which the Young's modulus vanishes, will be

determined by the numerator of the right-hand quotient, provided that the trivial solution

predicted by a zero solid fraction is ruled out. The threshold solid fraction will be given

by a root of a third-order polynomial equation with real coefficients. Thus, the solution

will be one real and two complex roots, three real roots with at least two of them equal,

or three real unequal roots. Among these three options, the first one ( of a single real and
two complex roots) will be the most likely. If the single real root is denoted lJl,h and a

small positive variable X is defined by q, = \Jl,h + X, the behaviour of the bulk

Young's modulus near the threshold may be represented as a first order approximation,

(5.10) 
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Figure 5.3 Power-law dependence of the SNBM near the solid fraction threshold for an 

acoustic duct lining material. The oblique dashed line is the regression line and the 
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Figure 5.4 Power-law dependence of the MNBM near the solid fraction threshold for an 

acoustic duct lining material. The oblique dashed line is the regression line and the 

vertical dotted line indicates the initial solid fraction. 
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where /(\Ji) denotes a function of \Ji. Thus, the bulk Young's modulus in the MNBM 

near the threshold is also governed by a power law relation with a unit exponent. An 

example of this power-law relationship is shown in Figure 5.4 for the MNBM applied to 

the acoustic duct-lining material of Figure 5.3. The vertical dotted line indicates the 

initial solid fraction. The inclined dashed line is the regression line showing the power­

law dependence, whose slope is 1.0485. The curvature of the Young's modulus of the 

MNBN in Figure 5.4 is less smooth than that of the SNBM in Figure 5.3. It is believed 

that this is caused by the presence of the parameter sand the corresponding adjustment 

procedure, employed to ensure better agreement between prediction and measurement in 

the medium and high strain range. 

The relations (5.8) and (5.10), between the Young's modulus and the solid 

fraction in the SNBM and MNBM (respectively) near the threshold may be expressed in 

a general power-law form as in equations (5.1) and (5.2), 

(5.11) 

Several fibrous materials have been tested to measure their strain/stress relationships 

under compression. Both the SNBM and the MNBM have next been employed as 

described in Chapter 4. The power-law dependence has also been evaluated in the form 

of equation (5.11) by the procedure leading to Figures 5.3 and 5.4. The parameters 

involved in this evaluation are listed in Table 5.1. To evaluate the parameters, a basic 

numerical procedure similar to that in Section 4.3 is employed. The main difference is 

that the threshold solid fraction \Jl,h is obtained from the strain at the apex in Figure 5.2, 

by means of equation ( 4.19). The two remaining unknowns p and q are calculated using 

the least squares fit method, in such a way that a and c are replaced by E 6 and \Ji , 

respectively in equation ( 4.9). 
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Acoustic duct A ircr aft thermal 
lining materi al insulation mater i al Roc kwool 1 

Bulk 
dens ity 
(kg/m3) 

35.0 9.0 57.8 

FrameE 
7.5xl0 10 7.5xl0 10

9.85x1010

(Pa) 

SNBM MNBM SNBM MNBM SNBM MNBM 

\J'o 0.0139 0.0144 0.0067 0.0093 0.0233 0.0232 

( 0 7.919 0 22.058 0 8.731 

611, -0.25 -0.1998 -0.25 -0.1548 -0.25 -0.156

lJ',,, 0.01112 0.01196 0.0054 0.0080 0.0186 0.020 

p 1.0564 1.0485 1.1116 1.1171 1.0346 1.0518 

O(Pa) 3.08xl05 4.12xl05 l.32x 105 2.03x 105 2.09xl06 5.11 xl06

E-glass fibrous materi al Glass min eral wool Roc kwool 2 

Bulk 
density 27.2 24.4 41.2 
(k1dm

3)

FrameE 
7.7x10 10 8.0x 10 10

9.85 X 10
10

(Pa) 

SNBM MNBM SNBM MNBM SNBM MNBM 

q,o 0.0160 0.0161 0.0116 0.0120 0.0189 0.0189 

( 0 9.3455 0 10.216 0 9.167 

e,,. -0.25 -0.1797 -0.25 -0.1950 -0.25 -0.1688

lJ',,, 0.0128 0.0136 0.0093 0.010 0.0151 0.0161 

p 1.0991 1.0480 1.0661 1.0644 1.0459 1.0507 

Q(Pa) 7.08xl05 7.73xl06 l.75xl05 2.57x 10 5 
1.03 X 10

6 2.04x 106

Table 5.1 (To be continued.) 
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Basalt wool Glass fibrous material Steel wool 

Bulk 
density 57.1 10.6 57.8 
(k;dm

3

) 

FrameE 
8.9x 10 10 7.5xl0 10 

2. lxl0 11 

(Pa) 

SNBM MNBM SNBM MNBM SNBM MNBM 

\J'o 0.0110 0.0115 0.0080 0.0099 0.0079 0.0100 

( 0 9.387 0 14.246 0 18.377 

6,h -0.25 -0.2032 -0.25 -0.1847 -0.25 -0.1638

\J',h 0.00884 0.00956 0.0064 0.0084 0.00628 0.00859 

p 1.070 1.0937 1.0235 1.1094 1.0211 1.0916 

O(Pa) l.76xl0 5 2.94x 10 5 6.12xl0 4 1.85 X 10 5 l.78xl0 5 5.58xlQ5 

Table 5.1 Parameters involved in the evaluation of the power-law dependence of the SNBM and the 

MNBM near the threshold solid fraction in terms of the Young's modulus. 

It can be observed that the exponents for all the materials listed are close to unity, 

as discussed in the preceding paragraphs. This same value of the exponent signifies that, 

from the percolation viewpoint, all the fibrous materials in Table 5.1 belong to the same 

universality class provided their Young's moduli are dealt with in a similar way to that in 

which the experiments described in Chapter 4 were conducted. An interesting aspect of 

the threshold value of strain may be noted. For the SNBM, regardless of the type of 

fibrous material, the threshold strain is found to be -0.25. This is obvious from equation 

(4.21), since the numerator is 1 + 4&. Such a fixed threshold may seem unrealistic .. The 

possible reason for a fixed threshold strain may originate from the fact that the nonlinear 

mechanism in the SNBM is related only to the spacing between the contacts, not with the 

binding forces appearing in real cases. On the other hand, binding forces or other factors 
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are included in the MNBM, and so the threshold strain turns out to be variable. Despite 

this variability of the threshold strain in the MNBM, some of the values in Table 5.1 may 

appear to be unrealistically small. If this is the case, it may be because entire layers in the 

model have been assumed to behave equally and identically, whereas in real situations, 

with local defects, this assumption might not be reasonable. Also, because of the 

presence of a binding agent or the "knotting together" of fibres, actual fibres might 

maintain their connection when they are under tension and at a small angle to the 

direction of the applied stress, which could dramatically increase the "negative" 

threshold strain. However, in bending models, this orientation of fibres is not allowed. 

The existence of a threshold, as described above, is one of key concepts in 

percolation theory. Also, the power-law dependence is essential to describe the behaviour 

near the threshold. For simple percolation models, the theoretical values for the critical 

exponents are known [65, 66, 77]. Kantor and Webman [71] reported values of 3.6 and 

3.55 for the critical exponent of elastic modulus in their "discrete" lattice network. In the 

case of realistic models in a field of "continuum" percolation, the values of critical 

exponents are believed to be different from those associated with idealised lattice 

percolation [77]. For a so-called Swiss cheese model, the exponent for the elastic 

modulus is reported to be larger than those of a standard lattice model by the amount of 

1.5 and 2.5 in two and three dimensions, respectively [77]. 

However, the exponent of unity in the SNBM and the MNBM is well below 

those reported in the literature. Such a discrepancy may be explained by noting that the 

mechanisms involved in other percolating elastic systems [71, 72] are rather different 

from that prevailing in the fibrous materials studied in the present investigation. In the 

first place, it may seem that the threshold phenomenon is different in the two situations. 

In the case of fibrous materials, it is the formation of a bulk material without "splitting 

apart". In the case of percolation theory, it is the formation of infinitely connected paths 

between both sides of a specimen. Secondly, in the other investigations of percolation 

[71, 72], several specimens were prepared with different "pre-fixed" solid fractions. 

(These were achieved by varying the solid volume and keeping the bulk volume fixed.) 
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Thus a bulk material could exist even below the threshold. But some solid elements 

would not contribute to the elastic modulus below the threshold or even above it if they 

were isolated. In a fibrous material, the solid fraction would change gradually with strain. 

(The change of solid fraction occurs because of the change of bulk volume with a fixed 

volume of solid.) Below the threshold, a bulk fibrous material is not defined, because it 

would already have split apart. Thus none of the fibres contribute to the bulk Young's 

modulus below the threshold, and all of them do above the threshold. Previous 

publications on percolation [71, 72] concerned comparisons "across samples", whereas a 

single fibrous material under compression and hypothetical tension is related to the 

behaviour "within a sample". In order to achieve the "across-samples" situation for 

fibrous materials, one needs to prepare the samples with different initial solid fractions 

and a fixed bulk volume. One may need an interstitial component other than air, such as 

an epoxy resin, to keep the bulk structure stable. If an abrupt change of bulk Young's 

modulus is observed in a particular sample, the solid fraction at which the change occurs 

will be the threshold value for fibrous materials of that kind. 

Based on the aforementioned findings, the following conclusions can be reached. 

Fibrous materials in general may be regarded as percolating systems. For example, a 

carbon-fibre polymer composite (see [67, 72, 75, 76]) may be regarded as a bulk fibrous 

material with two solid phases, and indeed is a percolating system. However, the 

treatment of hypothetical gradual static compression or tension does not appear to be a 

successful way of proving that a fibrous material is a percolating system, despite the 

behavioural similarity evident in equation (5.11) and Table 5.1. As previously suggested, 

other investigative approaches such as those in the literature previously cited [67, 71, 72] 

are required to demonstrate that a fibrous material having either acoustic, thermal or 

mechanical applications is also a percolating system. 
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5.4 Summary 

The increase in the number of inter-fibre contacts occurring as a fibrous material is 

compressed is regarded as being of the utmost importance in the development of 

nonlinear structural models of fibrous materials. That is because the number of contacts 

per unit volume is directly related to the lengths of the fibre links, which in turn decides 

the degree of bending deflection of the fibres and hence the deflection of the bulk 

material. The inter-fibre contact density may also be regarded in terms of the 

connectivity between fibres. The degree of connectivity has been investigated in other 

areas of science. One of these is "percolation theory", the basis and applications of which 

have been introduced here. 

Bending models such as the SNBM and MNBM have been expressed in the form 

of a power law near the threshold, as is common practice in percolation theory. In this 

process, both models have been re-written in terms of the bulk Young's modulus and the 

variation of solid fraction (See equations (5.6) and (5.9)). Both of them have also been 

extended to a hypothetical tension region, because fibrous materials are already stable (or 

well connected) and do not have any threshold effect when they are under compression. 

The discrepancy in the critical exponent, between the present bending models and the 

results of previous research on the elastic modulus of percolating fibre composite 

materials, has been pointed out. A set of possible reasons for fundamental differences in 

the way in which fibrous materials are treated, and their connectivity is established, has 

been outlined. 

Finally, it is concluded that a fibrous material could be regarded as a percolating 

system. The bending models developed in Chapter 4 do not demonstrate percolating 

behaviour exactly, but address another type of connectivity. This is analogous to the fact 

that a phase transition is not exactly the same as percolation, but is similar to it. However, 

the variation of the number of inter-fibre contacts in a fibrous material has potential as a 

percolating system. This has been confirmed already in the laboratory, for electro­

magnetic purposes, with fibre-composite materials [67]. A structural percolation 

149 



phenomenon has been observed for a porous beam [72]. Therefore, an experimental 

investigation of structural percolation could be a fruitful topic for fibrous materials used 

for vibro-acoustical and structural purposes. A different experimental approach is 

required for this purpose as described in the latter paragraphs of Section 5.3. 
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Chapter 6 

Measurement of dynamic properties 

of porous elastic materials 

Up until now, the static behaviour of fibrous materials has been addressed. The 

understanding of static performance itself is important for the use of fibrous materials, 

but usually their application involves a dynamic situation. This is true also for other types 

of poroelastic and viscoelastic materials, such as cellular materials and solid rubbers, 

respectively. To make the most of those materials in dynamic environments, their 

dynamic material properties need to be known in stages of design and development, or 

installation and application. Those dynamic properties are effectively characterised by 

the complex moduli in frequency domain and can be usually measured by means of a 

longitudinal harmonic excitation of a specimen. This chapter starts with reviews on a 

series of previous contributions to the methodology of how to measure the dynamic 

properties. Subsequently, one of the methods is discussed in detail, and a new method 

that employs conventional techniques is presented together with its applicability and 

limitation. 

6.1 Reviews 

There are several ways of classifying experimental methodologies for dynamic 

properties, especially for the longitudinal bulk Young's modulus. They can be described 

as "resonance methods" [15, 29, 30, 81-85, 87-90] or "non-resonance methods" [35, 36, 

92], depending on the frequency of interest and according to the standing wave pattern 

that is excited inside a sample. For the resonance method, it is necessary to excite several 
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modes of longitudinal vibration. So a relatively long sample may be needed. Usually the 

properties are evaluated at the resonance and anti-resonance frequencies, so the resulting 

values are discrete in frequency domain. The non-resonance method targets the 

frequency below the first resonance of a sample, which may be short in length. Thus, as 

far as a frequency of interest is concerned, it is often referred to as a "quasi-static 

measurement". 

Also the experimental methodologies can be classified into four groups according 

to what is measured i.e. transmissibility, compressional stiffness, mechanical impedance 

and dynamic mass measurements. The "transmissibility method" [15, 29, 30, 81-85, 

87-89] captures the ratio of the same physical quantity (acceleration, velocity or

displacement) between two measurement channels. The force transmissibility is often 

also measured [28]. Usually the transmissibility method is related to the resonance 

method. The "compressional stiffness method" [35, 36, 83, 93] measures the ratio of the 

force transmitted on one end to the displacement excited on the other end of a sample. It 

is a non-resonance method, therefore is usually restricted to frequencies below the 

fundamental resonance frequency. The "mechanical impedance method" analyses the 

ratio of the force transmitted to the velocity excited [16, 31]. It is also a non-resonance 

method. The "dynamic mass" [90] is obtained from the ratio of the force to the 

acceleration recorded at the excited end of a sample. It is a resonance method. A 

conventional method based on a transmissibility measurement and a novel method using 

both transmissibility and dynamic mass will be described in details later. 

Nolle [79] investigated structural properties of viscoelastic materials such as 

rubber-like solid materials by means of acoustic measurement, which was not included in 

the groups identified previously. His technique was to measure the wavelength of a long 

narrow strip of a material stretched by a small weight and to convert the measured 

wavelength to the velocity of sound in the sample. The velocity was used to evaluate the 

elastic modulus by means of the relationship between the velocity, modulus and density. 

It was necessary to control the temperature to avoid it influencing the sound velocity. 
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The theoretical and experimental approaches to determination of the structural 

properties of poroelastic materials are related to the wave motion in vibration isolation 

mounts such as solid rubber. Harrison, Sykes and Martin [28] investigated the wave 

motions in isolation mounts. Longitudinal wave motion was mainly discussed by means 

of the magnitude of force transmissibility. They noticed that the vibration isolating 

properties of mounts could be changed by their wave motion which was not explained by 

an elemental vibration theory based on a spring-mass-damping system [26, 27]. So, they 

asserted that vibration isolation mount should be treated as a continuous medium with 

wave motion rather than as a lump-parameter system. 

Pritz [29, 30, 81, 82, 84, 85, 87, 88] adopted a transfer function method to 

acoustic or viscoelastic materials. The term "transfer function" can be interpreted as 

equivalent to "transmissibility''. He showed the transfer function technique was effective 

and useful in evaluating frequency-dependent complex modulus of vibroacoustic 

materials. His approach applied in two ways using: a spring-like specimen [29] and a 

rod-like specimen [30], respectively. The "spring-like specimen" was modelled as a 

lumped-parameter system of spring, mass and damping. Thus its dimensions need to be 

negligible compared with the wavelength. The high frequency limit of the method for a 

spring-like specimen was determined by a wave motion. The "rod-like specimen" was 

treated as a continuum with distributed parameters. Its dimensions could be comparable 

with the wavelength. The upper frequency limit for measurements on the rod-like 

specimen was imposed by the lateral wave motion which is apparent when a wavelength 

becomes smaller than the radial dimension of the sample. Between the two, the rod-like 

specimen approach was preferred [30], because (a) the wavelength of vibroacoustic 

materials is usually very small, (b) in some cases, the small ratio of the top-plate mass to 

the sample mass makes it difficult to assume a spring-like specimen, and (c) a wider 

frequency range can be covered by the rod-like specimen approach due to its series of 

high frequency resonances, compared to the single low frequency resonance of a spring­

like specimen approach.
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Wilson and Cummings [16, 31] have proposed a new experimental technique 

based on measuring the mechanical impedance of two samples of different length - one 

is twice as long as the other, which is equivalent to the "two thickness method" for 

determining acoustic impedance (33]. The method was suggested as an alternative to the 

widely accepted transfer function method (29, 30]. While the transfer function method 

assumes a frequency-independent static real density of the sample, the concept of 

complex dynamic density is acceptable in their mechanical impedance method. 

6.2 The transfer function method 

6.2.1 Methodology 

The transfer function method is based on measuring the transmissibility of acceleration, 

velocity, or displacement between the excited end and the other free or loaded end of a 

sample under longitudinal excitation. Here, the case for a sample with a loading mass on 

its top will be addressed. Both end surfaces of a specimen are usually bonded to plates, 

which could be metal, wood, or plaster of Paris. The weight of the top plate plays a role 

as a loading mass and hence exerts a static stress. Sometimes, the weight needs to be 

chosen to match the actual stress to which the specimen is exposed in a practical 

application (29, 30]. When the sample is glued to the plates, the proper contact between 

the two is important to ensure a genuine transfer function induced by a sample not by the 

interaction between the two, such as a modal vibration of the plate itself. If an 

accelerometer is attached to the top plate, it is also included in the loading mass. Often, a 

non-contact capacitive probe [16] and non-contact laser velocity-meter are used as 

alternatives to avoid the loading effect of the accelerator and its cable. A sample is 

prepared to have a proper aspect ratio depending on a measurement requirement for it to 

be rod-like or spring-like. Sometimes a long slender sample is preferred to ensure a 

sufficient number of resonances. However such a sample may cause instability problem 
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when it is excited. The stability issue needs to be treated carefully, because the 

measurement is based on the ideal longitudinal vibration of a sample. 

The transfer function method may be represented schematically in Figure 6.1. The 

sample is sandwiched between two plates as described in the previous paragraph and is 

excited through the bottom plate by an electro-dynamfo shaker. The input signal could be 

a white noise, pink noise or sine sweep to excite a broad band spectrum. 

mass, m 

Shaker 

Figure 6.1 Schematic diagram showing the measurement setting for the transfer function 

method. In this setting, two accelerometers are placed out of phase. 

The transfer function T is defined as the complex ratio of the vibration displacement D

between two plates. Provided that the vibration is harmonic, the transfer function will be 

the same whether the ratio taken is for the velocity V or acceleration A. When 

accelerometers are used, the ratio of accelerations is preferred to other integrated signals, 

because of a possible signal-to-noise ratio problem. 

(6.1) 

The transfer function of a rod with a loading mass can be derived by solving a 

longitudinal wave equation [29, 30]. It can be presented in its complex form (6.2), or be 

divided to its magnitude ITI and phase </J (6.3), 

!_ = cos k I - !!!:_ k I sin k I .
T M 

(6.2) 
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c
1;( = cosh al cos /JI+ : (al sinh al cos /JI - /JI cosh al sin /JI), (6.3a) 

- s;;r = sinh al sin /JI + : ( al cosh al sin /JI - /JI sinh al cos /JI) . (6.3b) 

The complex wave number k of a sample is defined by k = f]- Ja, where /J is the 

phase constant and a is the attenuation constant. The loading mass is denoted by m. The 

mass and length of a sample are represented by Mand /, respectively. 

When the transfer function is measured, post-processing is required to get the 

complex wave number k of a sample. Due to the transcendental nature of equations, the 

complex form of equation (6.2) needs to be solved iteratively by means of the Newton­

Raphson method or Muller's method, both of which support complex manipulation. 

Alternatively the generalised Newton method could be adopted to solve the systems of 

equations (6.3). 
Once a and /J are known, the bulk complex dynamic modulus Ed can be 

calculated by using following relationships between the bulk Young's modulus and 

components of complex wave number [29, 30, 94], 

(6.4a) 

(6.4b) 

where 17 is the loss factor. The static density of a sample and angular frequency are 

denoted by p and m, respectively. However, it may be easily shown that the series of 

equations in (6.4) is nothing but the following single relation, 

(6.5) 

The transfer function method is often seen as a "resonance method". That is 

because the frequency and the magnitude of the transmissibility at the resonances could 
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lead to the bulk Young's modulus and loss factor at those frequencies [28, 84, 85, 88]. 

Based on a one-degree-of-freedom mass-spring-damping system, at the first resonant 

angular frequency m1 , the bulk Young's modulus E1 and loss factor 771 are given by, 

l {U
2 

E1 =M--1'
s 

77
1 

� ITi I'

(6.6a) 

(6.6b) 

where I-Ti I is the magnitude of the transfer function at the first resonance and S is the 

cross-section area of a sample. These values from the resonance method could lead to 

good starting guesses for the complex wave number in solving the transcendental 

equations (6.2) and (6.3). It is also often useful as a single representative bulk Young's 

modulus of a material. This feature will be adopted in Section 7.2.3. At other (p-th order) 

resonances induced by longitudinal waves, the bulk Young's modulus and loss factor can 

be obtained by, 

1 2 m2 
Ep

= p-
( ):

'
/J l p 

llfp 

77p �!,'

(p=2,3,4, ... ) (6.7a) 

(6.7b) 

where /l f P is the resonance bandwidth measured at ITP I/ Ji, at p-th order. ITP I is the 

magnitude of the transfer function at the p-th order resonance. (/J l) 
P 

is the p-th solution 

of the following transcendental equation, 

(6.7c) 
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6.2.2 Measurement 

To demonstrate the transfer function method, a sample of fibrous material made out of E­

glass was tested. The block diagram for the experiment is shown in Figure 6.2. A signal 

generator excites a signal which is amplified by a power amplifier and fed to a shaker 

inside a vacuum chamber. The accelerations on both plates are captured by 

accelerometers. The output signals are amplified by charge amplifiers and fed into a FFT 

analyser, which manipulates the transfer function between signals from two 

accelerometers. 

Vacuum 
Chamber 

Charge amplifier 

Charge amplifier 

Power 
Amplifier 

Signal 
Generator 

FFT analyser 

Figure 6.2 Block diagram of a measurement setting for the transfer function method. 

First two accelerometers need to be calibrated. Usually the sensitivity information 

is supplied by a manufacturer. But it is still worth calibrating the measurement system, 

which include the accelerometers themselves, amplifiers and cables. That is because the 

transfer function is evaluated by the "ratio" of the signals captured by the system. The 

relative difference of their performance needs to be compensated, especially the phase 

difference. To do so, two accelerometers are placed in a balance on a flat plate which is 

excited by a shaker. In that case, two accelerometers are assumed to be under identical 

conditions and their signals are compared by evaluating the transfer function between the 

two Figure 6.3 shows an example of a calibration transfer function ( T 1.6 . ) Simple, ea I ral/011 • 
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division enables the measured transfer function ( T,
,.
easu,ed) to be compensated for the 

transfer function between the accelerometers ( Tcompensared) by post-processing, 

T 
Tmeasured 

compensated =

T calibration 

2 

(I.) 1.5 

·c 1 
0) 
ro 

� 0.5 

0 
0 20 

- 10
0) 
Q) 

5-

Q) 

0 
ro 

(I.) -5
ro 

Cl.. -10 
0 20 

40 60 

40 60 

(6.8) 

80 100 120 140 160 180 200 

80 100 120 140 160 180 200 

Frequency (Hz) 

Figure 6.3 Transfer function for accelerometer calibration. The upper plot shows the magnitude; 

lower plot shows the phase difference between two-measurement channels. The dashed line in 

the lower plot denotes the zero phase difference. 

The dynamic measurement is conducted in vacuum or in air depending on 

whether interest is in the structural properties or the air-structural coupling interaction. 

For the accurate evaluation of the "structural" loss factor, the air inside the pores of a 

material needs to be removed. In Figures 6.4 and 6.5, the magnitude and phase angle of 

the recorded transfer function for the E-glass fibrous material are shown. At the quasi­

static frequencies, the phase angle is viewed out-of-phase. That is because the 

accelerometers are placed in a way to make such a phase difference as seen in Figure 6.1. 

Thus this out-of-phase should be corrected to give an in-phase in the analysis. The 

magnitude of the transfer function measured in vacuum of approximately 10-4 
Torr is 

observed to have a sharper shape than that in-air measurement especially for the 
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Figure 6.4 Magnitude of transfer function for an E-glass fibrous material (35 kg I m 3 ) with a 

static stress of 21 NI m 
2

. The thinner line is result for in-air measurement; thicker line for ln­

vacuo measurement. 
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Figure 6.5 Unwrapped phase angle of transfer function for an E-glass fibrous material, with the 

same condition in Figure 6.4.
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resonance frequencies. The resonant frequencies are seen to decrease in the atmospheric 

condition, which indicates the decrease of Young's modulus (See equation (6.6a)). The 

magnitude at the resonances decreases also, which indicates the higher loss factor, 

apparent due to the air-structural coupling (See equation (6.6b)). The first resonance 

corresponds to the resonance of the spring-mass-damping system, while the next 

resonances are caused by the longitudinal waves. In Figures 6.4 and 6.5 (also in Figure 

6.3), the transfer function below 20 Hz is not obtainable due to a poor signal-to-noise 

ratio. 

The Young's modulus and loss factor solved from the transcendental equation 

(6.2 or 6.3) are plotted in Figures 6.6 and 6.7. The "loss modulus" is the imaginary part 

of the complex Young's modulus, or the product of the Young's modulus and the loss 

factor. When in-vacuo results for Young's modulus are compared to those from in-air 

measurement, one can see the slight decrease, while a significant increase is observed for 

the loss factor and loss modulus. It is also seen that the loss factor passes at least one 

maximum in the atmospheric situation, as has been observed in other investigations [90]. 

The negative loss factor may appear due to a possible measurement error. Hence, it is 

assumed to be a small positive value close to zero rather than the negative, because such 

a small loss factor requires a high accuracy in measurement especially for the phase 

determination. There are also a couple of discontinuities observed in the Young's 

modulus plot. It may be related to the accuracy of the measurement. It may be also 

connected with the zero-finding algorithm used to solve the transcendental equation. 

There might be a chance that the wrong roots were found. This is partially true, because a 

different initial guess sometimes produces slightly-extended continuous results. 

However, that does not seem to be the only reason, because there is still discontinuity 

found regardless how the transcendental equation is solved and which initial guesses are 

introduced. 
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Figure 6.6 Dynamic Young's modulus (above the separation line) and loss modulus (below the 

line) of an E-glass fibrous material in Figure 6.4 and 6.5. The circles are results for in-air 

measurement; dots for in-vacua measurement. 
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Another reason is the possible limitation in the transfer function method. In its 

derivation, the density of a sample was assumed to be a real quantity rather than a 

complex value and hence to be frequency independent [29, 30]. It was a priori value 

which could be simply obtained by weighing the sample and measuring its dimensions. 

As widely known, the acoustical and structural properties of fibrous and poroelastic 

materials or even solid materials could be represented by the complex modulus of 

elasticity, characteristic impedance, complex wave number, complex density and 

complex velocity, only two of which are independent. For example, in an acoustical 

situation, it has been firmly established that two sets of those parameters, obtained from 

two sets of measurement, are needed to determine acoustic properties of a material [32, 

33, 34]. It has also been demonstrated that two sets of measurements are necessary in 

determining mechanical properties without a priori knowledge [16, 31, 35, 36, 92]. 

Because the static density is assumed in the transfer function method [29, 30], only one 

measurable property, which is the complex wave number in this case, is used to calculate 

the dynamic Young's modulus (See equation (6.5)). However, in some cases, it may be 

an excessive assumption to take a real-value frequency-independent density for granted, 

because it may distort the true relationship between those five properties. The air­

structural coupling situation is likely to be the case in which one could expect a complex 

density rather than a real-value density [16]. If a material has other damping conditions 

such as a significant inter-fibre friction, even the in-vacuo situation may need a complex 

density, which requires one more independent set of measurements. The experimental 

evidence to support this conjecture and a novel methodology to test it will be presented in 

the next section. 
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6.3 Transmissibility-dynamic mass method 

A new method for measuring the dynamic properties of fibrous materials has been 

developed. The basic concept combines the advantages of the existing methods. The 

transfer function method [29, 30] is a very robust and efficient method, however its 

assumption of a frequency-independent real-value density of a sample might not be 

appropriate for some cases, where the complex density is required. It also demands a 

numerical iteration to solve the transcendental equation to get the complex wave number, 

from which the bulk Young's modulus can be extracted. The mechanical impedance 

method [16, 31] does not have an assumption about a density, but requires two samples 

of a material, one of which should be twice as long as the other, to avoid solving the 

transcendental equation. Preparing two samples is sometimes not straightforward and 

may lose consistency as a result. This may sometimes hamper the evaluation of the true 

properties. 

The new method exploits the advantages of both methods. There is no need to 

assume the density of a material as a real-value one. The complex wave number is 

determined by solving an analytical equation rather than by the numerical iteration 

required for the transfer function method. So the simplicity of the post-calculation can be 

expected. Moreover the measurement is carried out on a single sample of a material, just 

like in the transfer function method. Thus any inhomogeneity related to two different 

samples can be avoided, unlike the mechanical impedance method. Once the 

measurement set-up is complete, the only extra requirement may be to change the 

measurement channels, which might not even be necessary if a facility is available for the 

simultaneous processing of three channels. 
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6.3 .1 Development of the method 

The configuration of a new method is shown in Figure 6.8. A longitudinal sample with a 

mass on its top is considered to have a constant cross-section. The material of a sample is 

also homogenous and isotropic or at least transversely isotropic. It is assumed that the 

lateral motion is not prevented at the ends bonded to the plates. The radial dimension is 

preferred to be much smaller that the wavelength. Thus a linear relation between the 

stress and strain can be assumed. Based on these assumptions, the longitudinal wave 

motion in the elastic sample can be given by a one-dimensional wave equation [26, 27, 

28, 61, 86, 95], 

(6.9) 

The symbol i; is the displacement of the sample under longitudinal excitation in the 

dimension x and time t. The dynamic bulk Young's modulus E
d 

and dynamic bulk 

density p
d 

may be complex to deal with viscosity or internal losses in the material. 

Force Fo 
Transducer 

Shaker 

Figure 6.8 Schematic diagram showing the measurement setting for the novel method. 

A simple harmonic vibration characterised by exp(jm t- jkx) with a complex 

wave number k can be a solution to (6.9). When the specimen is excited longitudinally, 

it experiences stress and strain, which can also be represented by the force and velocity. 
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Under the harmonic vibration, the components of the force and velocity travelling in both 

directions of the material may be defined by; 

F
+ 

= fr
+ 

exp(jw t - jkx), F_ = fr_ exp(jwt + jkx), (6.10a) 

v
+ 

= v
+ 

exp(jwt- jkx), v_ = v_ exp(jwt + Jkx). (6.10b) 

The subscript+ and - denote the positive and negative direction, and the symbol A over 

the character represents the magnitude of the quantity. Thus the mechanical characteristic 

impedance Z is given by the ratio of the force and velocity, 

(6.11) 

The negative sign appears due to the opposite direction of the travel. The material will 

experience the combination of the forward and backward propagating components. So, 

the force F and velocity v together with acceleration a could be written again, bearing 

in mind 8 /at = j w , 

F = {fr+ exp(-jkx) + fr_ exp(jkx) }exp(j m t) , (6.12a) 

v = {i1+ exp(-jkx) + v_ exp(jkx)}exp(jwt), (6.12b) 

a= jm {v + exp{-jkx) + v_ exp(jkx)}exp(jmt). (6.12c) 

The accleration at the top and bottom ends of the sample are evaluated as, 

a,= jm {v + exp(-jkl) + v_ exp(jkl)}exp(jmt) at X = /, (6.13a) 

a
o 

=Jm{v
+ +v_}exp(jmt) atx = 0. (6.13b) 

From the two values above, the transfer function T is defined, 
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a
1 

v + exp(-Jkl) + v _ exp(jkl) 
T=-= " " 

a
0 

v++v_ 

The force reflection coefficient r
F 

may be introduced, 

(6.14) 

(6.15) 

Therefore, the transmissibility of accelerations between ends of the sample are 

represented by the complex wave number k and the reflection coefficient r 
F 

as follows, 

exp(-jk/)- r
F 

exp(jkl) 
T= 

1-r
F 

(6.16) 

The forces measurable at the top and bottom ends of the sample can also be represented 

by the product of the mass and associated acceleration, 

F, = m, a1 
= {1\ exp(-jkl) + fr_ exp(jkl) }exp(} (J) t), (6.17a) 

F0 = M · a0 
={fr+ + fr_ }exp(j(J)t). (6.17b) 

Here m denotes the mass of the top plate plus an accelerometer and M d will be 

interpreted as a dynamic mass of the system, which includes the sample itself, two plates 

and the two accelerometers. From these two relations in (6.17), the transfer function of 

acceleration can be obtained again, 

a
1 

Md 
fr

+
exp(-jkl)+F_exp(jkl) M

d 
exp(-jkl)+r

F 
•exp(jk/) 

T=-=- A A = . (6.18) 
a

0 
m F

+ 
+F_ m l+r

F 

Finally, using equations (6.16) and (6.18) produces the following analytical formula 

relating the complex wave number k to the transmissibility T and dynamic mass M d, 

mT
2 +M

d cos kl= ( } .
m+Md 

T 
(6.19) 

Therefore, to work out the complex wave number, two pieces of measurement 

information are essential. They are the transmissibility T from two accelerometers and 
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dynamic mass M d from the force transducer and accelerometer on the bottom plate. It is 

essential to be aware that the inverse cosine is "multi-valued". So it needs to be 

"unwrapped" to produce the complex wave number belonging to a proper branch. Failing 

to do so will end up with a non-reasonable discontinous complex wave number which 

will also lead to a wrong evaulation of other dyamic properties, especially at high 

frequency after a branch cut. 

6.3.2 Four-pole representation 

The relationship (6.19) between the complex wave number k, transimissiblity T, and 

dynamic mass M d can also be derived by the well-known four-pole representation [80, 

86], where a force F0 and velocity v0 at the input terminal give rise to a force F, and

velocity v, at the output terminal of a system. The force-velocity relation can be 

expressed by a four-pole equation as below, 

v
1 

= v
0 

cosk/- j Fo sink/,
z 

(6.20a) 

(6.20b) 

The subcripts O and / represent the input and output terminals spaced with the distance / 

for the current setting (Figure 6.8). The characteristic mechanical impedance is denoted 

by z . The symbol /\ over a character denoting the magnitude of the physical quantities 

is omitted for a virtue of brevity. All the forces and velocities need to be represented by 

the accelerations through the top-end mass m and dynamic mass M d ,

F,=ma1 , 

a, 
v, =-.-,

J{J) 

ao 
Vo

=

-.-, 
J{J) 

If the four-pole equations are re-written in the terms of acceleration, then 
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If the transmissibility T = a1 / a0 is introduced, then 

T=coskl+
MdO) 

sink/, 
z 

O)mT = -Z sink/+ M 
d 

wcoskl. 

(6.22a) 

(6.22b) 

(6.23a) 

(6.23b) 

Therefore, the analytical equation connecting the complex wave number k with the 

transmissibility T and dynamic mass M d is confirmed again, 

mT2 +Md cos kl= 
( ) 

. 
m+M

d 
T 

The mechanical characteristic impedance of the material can be retrieved as, 

MdO)sinkl z M
d
wcosk/-O)mT 

Z = , or = -'"-------
T -cos kl sin kl 

(6.19) 

(6.24) 

The other dynamic properties including complex Young's modulus E
d
, complex density 

pd , and complex wave velocity c can be obtained by means of following arithmetic

manipulation. 

ZO) 
Ed

= -, 
k 

Zk 
Pd

= -, 
0) 

c=Jf..

(6.25) 

(6.26) 

(6.27) 
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6.3 .3 Experiment 

Unlike the transmissibilty measurement, the dynamic mass measurement requires more 

caution in calibrating transducers. That is because the transmissibility is worked out 

based on the ratio of the identical physical amounts, and hence only the relative quantity 

does matter, not the absolute quantity of each transducer signal. However, the dynamic 

mass is the ratio of two different measurements, which are force and acceleration. Thus 

the sensitivity of each transducer must be known precisely. The sensitivity is supposed to 

be supplied by manufacturers. Nevertheless, it is recommended to check whether the 

initially provided sensitivity still holds. Calibration of the accelerometer is quite 

straightforward. Any commercially available calibration excitator can be adopted as the 

way that a piston phone is used for a microphone. However, a force transducer demands 

a two-step procedure for the senstivity calibration [96]. A force transducer needs to be 

subjected to the same acceleration level a, which is fed by a calibration excitator, with 

two known weights m
1 

and m
2 

attached on its top in a row. Putting two weights is 

essential because a force transducer itself has an inertial mass inside and hence just one

mass does not produce a proper value for the calibration. A scale factor K will be

determined in the following way,

(6.28) 

Here, F
2 

and F; are the measured forces associated with the mass m
2 

and m
1

, 

respectively. If the initial senstivity has been intact, the scale factor will be unity, 

otherwise it needs to be multiplied to the provided sensitivity to produce a rectified one. 

After the sensitivity information is secured, the main round of experiment can be 

conducted in the following way. The schematic diagram for the proposed method has 

been already shown in Figure 6.8. The specimen is bonded to the top and bottom plates, 

both of which house an accelerometer. The sample is excited through a force transducer 

which is placed between the shaker and the bottom plate of the sample. The 

transmissibility of two accelerometers is to be obtained in the exactly same way in the 
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transfer function method. The dynamic mass of a sample will be measured by the ratio of 

signals between the force transducer and the accelerometer on the bottom plate. 

However, the measured ratio of the force to the acceleration on the bottom plate is not 

actually what is sought as a dynamic mass of the specimen plus loading mass. That is 

because a force transducer is supposed to capture the signal induced by the combined 

effect of a sample with loading mass and a bottom plate with an accelerometer. 

Therefore, in order to get a genuine dynamic mass contributed by the sample with 

loading mass, the mass of the bottom plate and accelerometer should be taken into 

account. Thus the dynamic mass M d will be in the following form, 

(6.29) 

The symbol m0 
denotes the extra mass contributed by the bottom plate and 

accelerometer on it. A block diagram for the measurement will not be much different 

from that in Figure 6.2 for the transfer function method, only to include one more 

channel for a force transducer. 

To demonstrate the proposed method, a sample fibrous material made out of E­

glass, which is identical to that shown for the transfer function method in Section 6.2, has 

been tested. Figures 6.9 and 6.10 show the measured dynamic mass. It is normalised by 

the static mass of the specimen plus the top mass. The real part is seen to approach to the 

static mass at near-zero frequency, despite the non-availability of data due to a poor 

signal-to-noise ratio. The measured transmissibility between two accelerometers has 

already been shown in Figures 6.4 and 6.5 for the transfer function method. 

Figure 6.11 shows the function cos kl evaluated from the m.easurements of 

dynamic mass and transmissibility. As anticipated from equation ( 6.19), the real part of 

cos kl approaches unity and the imaginary part approaches zero as for the static situation, 

where the transmissibility T is supposed to be unity. This trend is also evident in Figure 

6.11. For in-vacuo situation with a negligible loss, it is expected that the function cos kl,

especially its real part, is bounded between -1 and +l, to produce a typical graph of a 

cosine. However, it is observed that the function deviates from this especially at high
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Figure 6.9 Real part of the measured dynamic mass of an E-glass fibrous material sample tested 

in vacuo. The dotted line shows the zero. 
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Figure 6.10 Imaginary part of the measured dynamic mass of an E-glass fibrous material sample

tested in vacuo.
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Figure 6.11 Function cos kl evaluated from the measured transmissibility and dynamic mass 

of an E-glass fibrous material sample tested in vacuo. The circles denote its real part and the 

crosses represent its imaginary part. The solid lines show the boundaries within which the 

function is valid. 
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Figure 6.12 Complex wave number evaluated from the function cask/ for an E-glass fibrous

material sample tested in vacua. The circles denote the phase constant and the crosses

represent the attenuation constant.
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frequencies, where the validity of data is suspect. The complex wave number evaluated 

in vacuum is shown in Figure 6.12 after unwrapping, recalling that the inverse cosine is a 

multi-valued function. 

The mechanical characteristic impedance was also calculated as shown in Figure 

6.13. Unlike the previous plots for the dynamic mass and complex wave number, only 

portion of data has been chosen for display. That is because the characteristic impedance 

together with other dynamic properties have not produced reasonable values, as hinted in 

Figure 6.11, where the function cos kl at some frequencies is outside the zone between -

1 and + 1. Otherwise, the characteristic impedance may be seen practically frequency­

independent below about 95 Hz.

The evaluated complex Young's modulus is shown in Figure 6.14 together with 

the counterpart obtained by the transfer function method. A reasonable agreement 

between the two is observed below 60 Hz and then a sudden drop of the modulus by the 

transfer function method is notified. The relative continuity of the modulus by the new 

method may suggest that the behaviour of the solution in the transfer function method

may be unreasonable. It may also indicate that the discontinuity has not been caused by 

an improper solution of the transcendental equation, but by an intrinsic cause involved in 

the transfer function method. As conjectured in the last paragraph of Section 6.2.2, a 

possible reason for this unphysical performance by the transfer function method may be 

the assumption of a real frequency-independent density of the sample. A fixed value for 

the density does not seem to allow a reasonable solution when the transcendental 

equation is solved for a frequency range where the dynamic density may be complex.

The discrepancy between the measured complex density and assumed real-value density 

can be seen in Figure 6.15. Due to a non-perfect signal-to-noise ratio in the measurement, 

some missing or unreasonable data are observed. Nonetheless, one may see the intrinsic 

discrepancy between the two.
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A complex wave speed is also evaluated and displayed in Figure 6.16. Like in the 

works of other investigators [15, 16, 89], the wave speed may be assumed to be non­

dispersive, because there is no consistent pattern, although some fluctuation is observed. 

So, a single representative value of 10 m/ s will be adopted in Chapter 8. 

It is also certain that the new method is subjected to a frequency 

limitation. As shown in Figure 6.11, the function cos kl does not seem to be evaluated 

properly as the frequency increases. It is believed that the dynamic mass was not 

measured properly due probably to the restricted performance of the force transducer. 

Usually, a force transducer itself has an inertia, so it might not catch a signal properly in 

a higher frequency range. It is also believed that such an error may be worsened 

especially if the system experiences a high-peak resonance. When a sample is tested in 

the atmospheric condition rather than in a vacuum, the level of a resonance is supposed 

to be reduced, as seen in Figure 6.4, due to a higher loss induced by an air-structural 

coupling effect. In such a case, a force transducer seems to record a signal better than 

otherwise high-peak cases, and as a consequence, an extended curve for the dynamic 

properties can be achieved. The plots for the complex Young's modulus and complex 

density for the same fibrous material sample tested in air are shown in Figures 6.17 and 

6.18. One can see that the reasonable data is extended up to the frequency for the second 

resonance (See Figure 6.4) induced by longitudinal waves. 

6.4 Summary 

Methods for determining dynamic properties, especially complex bulk Young's modulus, 

have been reviewed. They can be classified into resonance and non-resonance methods. 

They have been divided further into several categories according which of the transfer 

function (transmissibility), mechanical impedance, compressional stiffness and dynamic 

mass have been measured. In particular, the transfer function method has been reviewed 

intensively. A new method has been developed that combines the advantages of 

conventional methods. It is based on the measurement of transmissibility and dynamic 
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mass. It benefits from a simple manipulation of an analytical equation rather than solving 

a transcendental equation by a numerical iteration, which is encountered in the transfer 

function method. By requiring only one specimen, it can also avoid a potential difficulty 

in experiment and its sequential evaluation occurred by any inhomogeneity related to two 

pieces of samples, which is the case for the mechanical impedance method. Most of all, 

its ability to deal with a complex density seems to give an alternative to the transfer 

function method which relies on the assumption of a real-value frequency-independent 

static density, which is often suspected to produce unreasonable values for dynamic 

properties. However, despite all the benefits it can bring to the evaluation for dynamic 

structural properties, it seems to suffer a limitation in its applicabilty, especially as the 

frequency increases. It is assumed that this is because the measurement of a dynamic 

mass is not as good as the transmissibility in those frequency regions. Therefore, 

methods of increasing the applicability of the novel method may need to be the subject of 

a further work. 
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Chapter 7 

Dynamic structural behaviour of fibrous materials 

In Chapter 6, methodologies were reviewed for measurement of the dynamic properties 

of porous materials in the direction normal to the surface. No limitation was imposed on 

the type of porous material tested. In this chapter, however, attention is focussed on 

fibrous materials. Published works on their dynamic behaviour are reviewed and 

experimental data are presented. Finally, a dynamic model for idealised fibrous materials 

will be proposed. 

7 .1 Review of previous works 

Nolle [79] noted that the dynamic modulus of rubber-like materials is often much larger 

than the static modulus (in contrast to the case of ideal crystalline materials). The 

difference between dynamic and static moduli was also recognised by Zwikker and 

Kosten (See p. 76 in [5]) stating: "It seems plausible that a statical measurement of the 

stiffness of a sample should give us the modulus of K1 (modulus of the frame). However 

it is a rather well-known fact that the dynamical modulus may be several times the

statical one." 

Pritz [29, 30, 81, 84, 87, 88] observed that almost every vibroacoustic material 

exhibits nonlinear elastic behaviour as the amplitude of excitation increases. However, in 

order to determine the linear dynamic properties (which are of some practical 

importance) it was emphasised that the dynamic strain in measurements should be kept 

below the limiting value at which nonlinear effects appear. It was also mentioned that the 

limiting strain could act as a material property, but no theoretical or systematically 

determined experimental value was reported [82, 87]. The "dynamic strain" was also 
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investigated only theoretically for a viscoelastic rod-like specimen under longitudinal 

excitation [30, 82], and was assumed to be non-uniform (unlike the case of a spring-like 

specimen [29]), changing its value according to the standing wave pattern inside the 

sample. 

Pritz also investigated the in vacuo dynamic Young's modulus and loss factor of 

mineral and glass wools containing binding materials [84, 85, 87]. Based on 

experimental results over the frequency range of architectural interest (100-3000 Hz), the 

frame properties were reported to be independent of frequency [84]. The loss factor was 

reported to be less than 0.01. In addition, the nonlinearity of the bulk dynamic properties 

was investigated [85, 87]. The resonant frequency and resonant magnitude of the transfer 

function were both observed to decrease with increasing strain amplitude. Accordingly 

the dynamic modulus was observed to decrease and the loss factor to increase, through a 

maximum, with increasing strain amplitude. The pattern of changing resonant frequency 

against strain was fitted by a polynomial [87].

Fibrous materials for thermal insulation, used in aircraft fuselage structures, have 

been intensively investigated in experiments concerning the frequency and amplitude 

dependence of their dynamic properties [15, 16, 89]. For dynamic excitation, these 

materials were observed to behave nonlinearly, with the same pattern as that reported for 

mineral and glass wool used for architectural purposes, by Pritz [89]. At very high levels 

of excitation, the dynamic modulus approached its static counterpart. It was confirmed 

that the dynamic modulus was also related to the degree of static "pre-stress" (induced by 

the mass of a plate placed on top of the sample). The modulus was observed to increase 

as the static stress increased, which showed the stiffening effect of a sample under 

increasing static loading [89]. It was also suggested that the character of the frequency 

dependence in thermal insulation materials might be different, depending on the type of 

excitation. From experiments with three different types of excitation spectrum involving 

constant acceleration, velocity, and displacement, it was inferred that the dynamic 

modulus could be regarded as frequency-independent only when the excitation spectrum 

was of constant velocity, rather than constant acceleration or displacement [ 15]. 
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Apart from fibrous materials, Pritz also investigated, in detail, cellular materials 

such as polyethylene and polystyrene foams [88]. The bulk dynamic Young's modulus 

and loss factor of these materials were measured as a function of the frequency and 

amplitude of excitation. The bulk Young's modulus of two types of foam was reported to 

slightly increase with frequency, in contrast to the frequency independence of 

polyurethane foam [29]. Beyond the linear upper limit of dynamic strain, the cellular 

materials were observed to behave nonlinearly like fibrous materials as reported in [85, 

87, 89]. Although fibrous materials and cellular materials showed the same trend of 

nonlinear behaviour, a much larger excitation amplitude was necessary to initiate 

nonlinearity in the foams, than in their fibrous counterparts. The reason for this was not 

explained by Pritz. However, the different level of linearity limitation for the two types 

of materials does not seem to be surprising to the present author. This is because it was

demonstrated in Chapter 4 that nonlinearity in fibrous materials is initiated by bending of 

their fibre components, while frame buckling in cellular materials causes their 

nonlinearity. As may easily be seen, buckling by the axial component of force is much 

harder to achieve than bending by the transverse component of force. Therefore, in 

general, cellular materials are expected to have higher threshold values of nonlinearity 

than fibrous materials.

7 .2 Experimental investigation 

Nonlinear dynamic behaviour in fibrous materials needs to be investigated carefully 

especially when the Young's modulus is measured. Some of the aforementioned 

characteristics will be confirmed by the results of experiments, reported here. Among 

several measurement methods, a resonance method [29, 30] has been used. The classical 

transfer function method (Section 6.2) has been used rather than the newly proposed 

transmissibility-dynamic mass method (Section 6.3) because the experiments reported in 

this chapter had been conducted before the new method was developed. However, the 
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transfer function method proved to be adequate to measure the dynamic nonlinear 

behaviour of interest for the purposes of this chapter. 

7.2.1 Nonlinearity by excitation level 

A mineral wool material with a nominal bulk density of 24 kg/m3 and a thickness of 50 

mm was subjected to a series of in vacua measurement in which the excitation level was 

varied. A square sample with the cross-sectional area of lOOx 100 mm2 was loaded with a 

1.5 mm thick aluminium plate weighing approximately 24 g. The weight of the plates 

varies because they were not exactly lOOx 100 mm2
• Aluminium plates were bonded to 

both sides of the sample by means of spray-type glue. The fibrous material then was

vibrationally excited by white noise, generated by an electro-dynamic shaker.

When the excitation level is low enough to suppress nonlinearity, the measured 

transmissibility may be expected to be repeatable. However, as illustrated in Figure 7.1, 

at higher levels the transmissibility plot changes: as the level increases, the resonance 

peaks decrease both in frequency and magnitude. This is the same trend of observation as 

that previously reported [85, 87, 89]. In Figure 7.2 it may be noted that, as the level 

increases, the phase angle does not change as rapidly around resonances as it does at a 

lower level. In Figure 7.3, the frequency variation of dynamic elastic modulus is plotted. 

It can be observed that the bulk Young's modulus decreases and the loss modulus - the 

product of Young's modulus and loss factor - increases with the excitation level. It is 

also interesting to note that the bulk Young's modulus varies little with frequency when 

the excitation level is in the linear range, though it increases with frequency under higher 

excitation levels. Figure 7.4 shows the excitation level measured by the accelerometer on 

the bottom plate connected to the shaker. It may be concluded from the data that the 

nonlinear behaviour of the mineral wool can be caused simply by a several-fold increase 

in the excitation level. {This will be discussed in more detail in a later section.) 
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Figure 7.1 Magnitude of the transfer function, showing its dependence on excitation level with 

white noise, for a mineral wool material. The solid line is for the lowest level and the dotted for 

the highest. 
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excitation level with white noise, for a mineral wool material. The solid line is for the lowest

level and the dotted for the highest.

184 



4000 

; 2500 
"C 
g 2000 

-� 1500
C

0 1000

500 

25 30 35 40 45 50 55 60 65 70 
Frequency (Hz) 

Figure 7.3 Frequency dependence of the dynamic modulus, for different levels of excitation

with white noise, for a mineral wool material. The solid line is for the lowest level, and the

dotted for the highest. The group of upper curves is for Young's modulus and the lower for

loss modulus. 
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Figure 7.4 Acceleration levels of the bottom plate with white noise excitation. The solid, dashed

and dotted lines conform to those of Figures 7.1 to 7.3.
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7.2.2 Nonlinearity by excitation signal type 

The transmissibility itself can be varied depending on which type of excitation signal is 

used. Apart from white noise, a band of sine sweep signal was also generated to excite 

the specimen. The results are shown in Figures 7.5 to 7.8. The nonlinear distortion in 

transmissibility can be easily identified. However, the patterns are different with the two 

types of excitation signal. According to Figure 7.8, the excitation level of the sine sweep 

signal is higher than that of white noise. Nevertheless, the resonance frequency in the 

sine sweep situation has a higher value (Figure 7.5) and correspondingly the inferred 

overall modulus with the sine sweep signal is higher than that with white noise (Figure 

7.7). This is contradictory to the observations for different levels of excitation by white 

noise. 
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Figure 7.5 Magnitude of the transfer function, for different types of excitation, for a mineral wool 

material. The solid line denotes a sine sweep signal and the dotted line white noise. 
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for a mineral wool material. The solid line is for a sine sweep, and the dotted for white noise. 
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modulus. 
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Figure 7.8 Acceleration levels on the bottom plate with different types of excitation. The solid line 

denotes a sine sweep signal and the dotted line white noise. 

At this stage, some differences related to the nature of both types of signal may be 

noted. White noise can be assumed to excite virtually all frequency components 

simultaneously. Thus a data acquisition system such as an FFT analyser may also be 

expected to register the responses connected with these frequency components 

simultaneously. If the system is nonlinear and the excitation level is above the 

nonlinearity threshold, harmonics of each frequency component in the signal will be 

excited and these will be captured by the data acquisition system. However, the sine 

sweep signal contains only one frequency component at any given time. The data 

acquisition system also records only the fundamental frequency component which is 

generated at the moment of a test. Although the material will behave nonlinearly, the 

harmonics of the fundamental component will not be detected because of the inherent 

characteristics of a sine sweep algorithm. Therefore, the effects ofnonlinearity in the sine 

sweep signal are less than those in the case of white noise, although the level of 

excitation is apparently greater in the sine sweep signal than in the white noise signal. 

Although the nonlinear behaviour of fibrous materials is the main topic in this chapter, in 
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many practical applications such as design work, the linear value of Young's modulus is 

often useful. Thus, as far as linearity is concerned, a white noise signal might not be 

appropriate for evaluation of the dynamic characteristic of materials, especially for 

nonlinear systems such as fibrous materials, because of the generation of harmonics. The 

harmonics may eventually distort the information related to the frequency of interest, 

which may be a harmonic of one of the lower frequency components. 

In Figures 7.9 to 7.11, the effects of different excitation ]eve.ls for a sine sweep 

signal are illustrated. The trend of nonlinearity appears to be the same as that observed in 

the case of white noise excitation. In Figure 7 .12, the excitation level measured for the 

sine sweep and white noise signal are presented together for comparison. Therefore, 

because of the different algorithms employed in signal generation and acquisition, the 

mixed use of different types of signal is not recommended for the evaluation of non Ii near

behaviour in fibrous materials.
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Figure 7.9 Magnitude of the transfer function, for different excitation level of sine sweep

signals, for a mineral wool material. The solid line is for the lowest level and the dotted for the

highest. 
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signals, for a mineral wool material. The solid line is for the lowest level and the dotted for the 
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Figure 7.11 Frequency dependence of the dynamic modulus, for different excitation level of 

sine sweep signals, for a mineral wool material. The solid line is for the lowest level and the

dotted for the highest. The upper three curves are for the Young's modulus and the lower three

are for the loss modulus.
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7.2.3 Nonlinearity by static loading 

The dynamic modulus is also known to vary depending on the static loading mass, and 

this effect is particularly evident in the resonance method [89], which often requires a top 

loading plate. This may be the reason why the loading mass needs to be selected for 

specific applications. An acoustic duct lining material was subjected here to varying 

static stress by means of masses placed on the top plate. Plots of the in vacua

transmissibility between two accelerometers around the fundamental resonance are 

presented in Figures 7 .13 and 7 .14. The solid line is for a static stress of 24 N!m
2

, which 

is the top plate alone; the dashed line, 73 Nlm
2

; the dotted line, 220 Nlm
2

; and the dash­

dot line, 416 N/m
2

• The last three cases include the additional masses together with the 

aluminium top plate. The presence of the double peak for 73 Nlm
2 is believed to be 

related to an imbalance occurring when masses were placed on the top plate, causing 

additional degrees of freedom in the motion of the system to be excited. However, as far 
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as the shifting of resonance frequencies is concerned, the stiffening of fibrous materials 

as the static stress increases is clearly demonstrated. 
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Figure 7 .13 Magnitude of the transfer function, showing its dependence on the static loading, 

for an acoustic duct lining material. The solid line is for 24 N/m
2

; the dashed line, 73 N/m2
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2

; and the dash-dot line, 416 Nlm
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Figure 7.14 Phase angle of the transfer function, showing its dependence on static loading, for 
an acoustic duct lining material. The line definitions are as in Figure 7 .13. 
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In Figure 7.15, a variation of excitation levels is superimposed upon the 

relationship between the bulk Young's modulus and the static loading stress. A single 

representative value, obtained at the resonance frequency for each loading stress (see 

equation (6.6a)), of the dynamic Young's modulus has been evaluated to show the 

relationship more effectively, rather than by plotting continuously frequency-dependent 

values. The static Young's modulus for the material is also included in the plot by the use 

of the MNBM (see Chapter 4). The discrepancy between the static and dynamic values is 

plainly visible. Although the absolute value of this discrepancy increases slightly as the 

static stress increases, the relative discrepancy is larger at lower static loadings, where the 

dynamic modulus can be several times greater than the static value. As reported by 

Watson and Cummings [89], the dynamic modulus is also observed to decrease as the 

excitation level increases. In Figure 7 .15, the symbols represent the measured 

acceleration, at the fundamental resonance frequency, of the bottom plate, which was 

bonded to the specimen. The stiffening effect of the material is confirmed through a

range of excitation levels as the static loading stress increases. 
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Figure 7.15 Dynamic Young's modulus of an acoustic duct-lining material and its dependence 

on static loading and the acceleration amplitude of the lower plate. 0, 0.3 m/ s 2 
; *· 0.6; 6,

0.9; and x, 1.2, respectively. The solid line is for the static Young's modulus according to the

MNBM. 
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7 .2.4 Idealised dynamic models 

Nonlinearity in fibrous materials under static loading has been shown to occur as a result 

of an increase in the number of inter-fibre contacts (see Chapters 2 and 4). The same 

concept can be applied to the dynamic situation. A number of what may be tenned 

"idealised dynamic models" have been formulated here to support this idea 

experimentally. Straight, uniform, circular rods such as welding rods and glass capillary 

tubes were cut to a fixed length. They were then stacked in order to build a bulk 

structure. Rods were placed at an equal spacing in each layer. Each new layer was placed 

at 90° to the layer below and was shifted by a half spacing between rods, relative to the 

next layer but one below, to allow bending to occur. This structure is essentially the same 

as that of the idealised static bending models described in Chapter 4. As an example, a 

photograph of a model composed of glass capillary tubes is shown in Figure 7.16. 

Figure 7.16 Photograph of an idealised experimental dynamic model made from glass

capillary tubes. 

Each capillary tube had an outer diameter of 1.26 mm and was cut to a length of 100 mm. 

The nominal spacing between the rods was 33.3 mm, and there were 42 layers. The bulk 

density of the structure was 31.7 kglm3
• Thus the solid fraction was 0.0127, based on a 
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density of 2500 kg/m
3 for glass. Given the nature of the idealised structure, there would 

not be a change in the number of inter-rod contacts, even if the excitation level were 

high. However, if the level were great enough, there could be a possibility of intermittent 

contact between layers. The measured transfer function of the idealised model is shown 

in Figures 7.17 to 7.18, and the excitation levels with white noise and sine sweep signals 

are shown in Figure 7.19. It can be seen that there is no difference whatsoever in the 

transmissibility between white noise and sine sweep excitation (Figures 7.17 and 7.18).

Taking into account that the difference in the excitation level between two signals is 

about 50 dB (Figure 7.19), one may regard the idealised model as a true linear system. 

This suggests that a nonlinear mechanism in fibrous materials is a change in the number 

of inter-fibre contacts in the dynamic situation as well as for static loading. It may be

worth noting again that, in real fibrous materials, an increase in the excitation level of

only 10 dB is enough to bring about nonlinear behaviour (Figure 7.8), while no

nonlinearity is observed in the idealised dynamic model despite a large change in the

excitation level. 
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Figure 7.17 Magnitude of the transfer function, showing its dependence on signal type, for an

idealised dynamic model made from glass capillary tubes. The solid line denotes a sine sweep

signal, and the dots white noise.
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In addition to the level of excitation, the fact that the transmissibility is identical 

with white noise and sine sweep signals may also highlight, in a different way, the fact 

that there is no nonlinear mechanism involved in the idealised model. If the idealised 

dynamic model were a nonlinear system, one would expect a discrepancy in the 

transmissibility between the two signals. That is because harmonics would be present for 

white noise, but not for the sine sweep signal. The invariance of transmissibility with 

signal type may therefore suggest that no harmonics are involved, which indicates that 

the idealised model is a linear system. 

The idealised dynamic model has introduced another interesting feature, in 

addition to giving indirect support for the proposed the nonlinear mechanism of fibrous 

materials under dynamic excitation. It has been reported [5, 79] and confirmed here 

experimentally (Figure 7.15) that the dynamic Young's modulus of poroelastic materials 

is usually much higher than its static counterpart. However, in Figure 7.20, the dynamic

Young's modulus of an idealised structure is seen to be very close to its static 

counterpart, which is measured in a separate static test and denoted by the dashed tine. 

Thus there seems to be practically no significant discrepancy between the two,

considering the very large discrepancy in the case of real fibrous materials. These 

findings were also repeated for other idealised dynamic structures with different element 

materials and inter-rod spacing.

The reason for the discrepancy between the static and dynamic moduli of fibrous 

materials may be explained in part by data [5, 97, 98] showing that the frequency 

dependence of the dynamic modulus of viscoelastic materials is a direct consequence of 

damping. The greater the slope of increase of the dynamic modulus-frequency curve, the 

higher is the damping. Thus it appears that the frequency independence of the bulk elastic 

modulus of fibrous media could be realised only for ideal elasticity with no damping. For 

the case of idealised dynamic models, the frequency dependence of the modulus (see 

Figure 7 .20) may be regarded "weak" in the sense that it does not show a gradual 

increase or decrease. The loss factor in air (see Figure 7.21) is small and falls to the order 

of 0.01 in most cases. It is believed that the low-loss nature of the idealised dynamic 
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models extends the frequency independence of the dynamic bulk elastic modulus down 

to zero frequency, and renders the Young's modulus similar in the cases of static loading 

and dynamic excitation. Although a factor of the order of 0.01 is small, it is not 

negligible. It is therefore conjectured that the structural simplicity of the experimental 

models might also be a contributory factor. 

7.3 Summary 

The dynamic elastic behaviour of fibrous materials has been reviewed and experimental 

data have proved to be in agreement with published results. Attention has been focussed 

on the nonlinear behaviour of fibrous media. It has first been confirmed that one can 

observe the nonlinear distortion of transmissibility plots and a corresponding change in 

the complex Young's modulus as a function of excitation level. The trend is that, with 

increasing excitation amplitude, the dynamic modulus decreases and the loss factor 

increases; this is detectable by a decrease of resonant peaks in the transmissibility both in 

frequency and magnitude.

Secondly, the dependence of modulus on the type of excitation signal was 

examined. It was shown that white noise and a sine sweep showed a clear diff crence in

results. Harmonics were recorded together with fundamentals during a white-noise

measurement, thus the fundamental component of a higher frequency was contaminated

by the harmonics of a lower frequency. However, the sine sweep procedure did not detect

hannonics, even in a nonlinear system, due to the nature of its data generation and

acquisition algorithm. 

Thirdly, the dependence of bulk elastic modulus on static loading was 

investigated; a stiffening effect was observed with an increase in static loading. It was

also noted that the dynamic modulus could approach its static counterpart, with

increasing excitation.

Finally, an idealised experimental dynamic model was introduced. It had the same 

transversely isotropic layered structure as that used in previous static bending models. It
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has been shown that the dynamic behaviour of this structure is independent of the level of 

excitation and the type of signal. This therefore seems to suggest that the nonlinear 

mechanism in the dynamic situation is similar to that in the static situation, namely a 

change in the number of inter-fibre contacts. Tests on the idealised experimental model 

have also demonstrated that its dynamic modulus is very close to its static modulus. It is 

believed that its inherent low loss factor as well as its idealised simple structure could 

explain this feature. 
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Chapter 8 

A differential equation for the nonlinear dynamic 

structural behaviour of fibrous materials 

The dynamic behaviour of bulk fibrous materials, including nonlinear effects, has been 

discussed in Chapter 7. It was observed that nonlinear characteristics could be identified 

in "raw" measured data such as the transmissibility as well as in corresponding "post­

processed" data such as the complex bulk Young's modulus. Despite this nonlinearity, 

the linear wave equation has been used to determine the bulk properties in the nonlinear 

region (see the development of methods in Chapter 6 and other references [16, 28, 29, 30, 

85, 87]). It is therefore appropriate that the nonlinear behaviour of bulk fibrous materials 

should be investigated by means of a nonlinear formulation of the in vacuo structural 

wave equation. The development of such an equation and its interpretation and 

application to bulk fibrous materials are described in this chapter. 

8.1 The differential equation governing longitudinal motion 

When porous or homogeneous solid materials are at rest, the stress-strain relationship is 

governed by the equations of equilibrium. However, in a dynamic situation where actions 

such as force, displacement, velocity or acceleration are applied to parts of the structure, 

the equations of equilibrium need to be replaced by equations of motion. Usually it takes 

time for such changes to travel to all parts of the structure. This is because the 

"information" or "signal" represented by changes in stress or strain, is transmitted as a 

form of wave with finite propagation speed [61]. 
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The following wave equation governs the linear dynamic behaviour of plane 

waves in solid or porous media, represented by the particle displacement i;, when there 

are no body forces [61, 86, 100, 101, 102, 104], 

(8.1) 

Depending on how solids resist changes in both volume and shape (storing energy in 

both compression and shear), there are several types of waves with different propagation 

speeds c. These are compressional (longitudinal) waves, transverse (shear) waves, 

torsional waves, flexural (bending) waves and Rayleigh surface waves (102]. Especially 

for longitudinal and transverse waves in isotropic solid or porous materials, the phase 

speed c of those waves can be written [61, 86, 100, 101, 102, 104] 

�fi 1 'd' l c = v---;;-- or pure ong1tu ma waves, (8.2a) 

c = i for transverse waves, (8.2b) 

c = H for quasi-longitudinal waves, (8.2c) 

where the symbol A denotes a Lame constant and G is the modulus of elasticity in 

shear, or simply the modulus of rigidity. The modulus of elasticity in tension or 

compression is E (i.e., the Young's modulus), and the material density is p. In the case 

of a porous material the Young's modulus, shear modulus and density should be for the 

bulk structure rather than for the solid comprising the frame of the material. The bulk 

parameters are usually much smaller than those for the solid material. For isotropic 

materials, the parameters appearing in equation (8.2) are related to one another by 

2=( )( )E ' 
1+ V 1-2V 

V (8.3a) 
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E 

G = 2(1+v}' (8.3b) 

Here, v denotes the Poisson's ratio. 

The distinction between the pure and quasi-longitudinal waves can be explained 

in the following manner. Theoretically a pure longitudinal wave can be realised only for 

a structure whose extent in all directions is much greater than a wavelength. Thus, lateral 

dimensions are not free from stress. Instead, lateral strains are usually set to zero - which 

does not necessarily imply an infinitesimal Poisson's ratio - to produce the relations 

(8.2a) and (8.3a). However, in many engineering applications, most structures or 

materials in use have at least one of the dimensions smaller than the wavelength of 

interest. This is the case, for example, in plates, beams, rods and bars [86]. Thus, a pure 

longitudinal wave is hard to realise in practice. The lateral strains experience periodic 

variations because of effects related to Poisson's ratio. The absence of lateral stresses 

makes the wave speed in practice smaller than that of a pure longitudinal wave. 

According to the definition of Young' s modulus as the ratio of stress to strain in tension 

or compression with no lateral stresses, the phase speed of a quasi-longitudinal wave is 

directly related to Young's modulus as forecast by equation (8.2c) [86]. However, the 

relation for a quasi-longitudinal wave is an approximation of so-called "Love theory" 

[81, 90, 100], which partially takes into account the lateral motion, 

(8.4) 

Here r 
G 

represents the radius of gyration about the direction of the propagation, the x 

axis in this case. Thus, for a long slender rod, the second term on the left-hand side of 

equation (8.4) may be negligible, justifying the approximation of quasi-longitudinal wave 

motion. 
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8.2 The governing differential equation 

for fibrous materials 

So far in this chapter, the isotropy of solid media has been taken for granted. As a 

consequence, simple relationships have been established between Young's modulus, 

shear modulus and Poisson's ratio (in equation (8.3)) and the phase speed of waves (in 

equation (8.2)). However, fibrous media - which are the main subject of this thesis - are 

not, in the first place, isotropic materials. Therefore, the true nature of the structural 

behaviour of typical fibrous materials needs to be investigated with the inclusion of 

anisotropy. 

By analogy, it may be useful to note that three basic equations are required to 

derive a wave equation in acoustics [95]. These are usually called the equation of 

continuity, the equation of motion and the equation of state. Similarly, three basic 

relationships are also needed to develop a structural wave equation in a solid body. They 

are the equation of motion, the displacement-strain relation and the stress-strain relation. 

The stress-strain relationship is also known - in the case of linear elasticity- as Hooke's 

law. The first two relationships will be the same regardless of whether or not the material 

is isotropic. 

Consider a parallelepiped element of material, with stress components acting on 

its six sides. The equations of motion are easily obtained by equating the external force 

acting on this element to the inertial force in each orthogonal direction. Provided that 

there are no body forces, the differential equations for small displacements are [61] 

(8.5a) 

(8.5b) 

(8.5b) 
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The normal stress is denoted a, the shear stress T , the particle displacement c; and the 

density p. For stresses, the single subscript indicates that the first and second subscripts 

are equal. The first subscript denotes the side of the parallelepiped to which the stress is 

applied and the second denotes the direction of the stress, as is usual in the stress tensor. 

For displacements, the single subscript denotes the direction of the displacement. 

For small displacements, strain can be related to displacement by a first order 

approximation of the partial derivatives of displacements. Thus the relationships can be 

expressed as follows (under the assumption that the strains are small compared with unity 

[51, 61]), 

ac:y 
6 =--

y ay , 
6, = oc;t , and 

az 

In equations (8.6a,b }, the normal strains are denoted e and the shear strains y.

(8.6a) 

(8.6b) 

For isotropic materials, three elastic constants such as Young's modulus, shear 

modulus and Poisson's ratio suffice to describe the linear structural relationships between 

stresses and strains. For anisotropic materials, the number of elastic constants could be as

large as 21. This number is reduced when the material has a particular symmetry, and is

equal to three in the isotropic case [103]. Although fibrous materials are generally 

regarded as anisotropic, they have a certain symmetry which has the effect of reducing 

the necessary number of elastic constants (provided the macroscopic volume is chosen to 

be large enough to overcome the potential inhomogeneity related to the microstructure ). 

They may at first seem to be orthotropic materials, because their structures all appear to 

be identical after a 180° rotation about any of the three orthogonal coordinate axes. 

Secondly, one of the three orthogonal axes is the axis of symmetry, and any plane 

containing it is the plane of symmetry. So they can be further simplified as transversely 

isotropic materials or hexagonal materials. The transversely isotropic nature of typical 

layered fibrous materials is depicted in simplified form in Figure 8.1. 
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Figure 8.1 Schematic diagram of a typical layered fibrous material. Its transverse isotropy is 
exaggerated. 

The simplicity brought by the symmetry of orthotropic media is that there is no 

interaction between the normal and shear stress and strain components, which reduces the 

number of elastic constants to nine. Furthermore, no distinction is made for other two 

axes (y and z in Figure 8.1) in the case of transversely isotropic materials, which requires 

only 6 elastic constants [51, 103]. Therefore, the relation between strain and stress in 

linear elastic fibrous materials may be expressed in the following, 

Bx S11 
-vlsll -v1S11 a

x 

Sy -v1S11 S22 
-v2S22 a

Y 

6z 
-v1S11 - V2S22 S22 a

z 

(8.7) = 

Yxy S44 '( xy

Yyz 
Sss '( yz 

Yzx S44 '( zx 

Here, S is an elastic constant which is inversely proportional to elastic modulus. 

Subscripts represents directions, 1 to 3 for x to z in normal components, and 4 to 6 for x 

to z in shear components (see Figure 8.1). Symmetry has already been allowed for in 

subscripts and blank elements. The blank in the matrix shows there are no relations for 

particular strain-stress components. 

Provided that all the elements in the stiffness matrix (8.7) are linear, the equation 

of motion (8.5a) turns out to be the following expression, after three basic equations for

structural motion for fibrous materials are combined together, 
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(8.8) 

In the case of one-dimensional plane longitudinal waves, where c;Y = c;z = O and

c;x = i;\ (x) (the main case of interest of this chapter) the above relation further simplifies 

to 

(8.9) 

The bulk Poisson's ratio v1 of typical fibrous materials is likely to be close to zero, but 

the other Poisson's ratio v2 relating the two transverse directions is not negligible. Recall 

that the elastic constant Su is exactly the inverse of the Young's modulus Ex in the x-

direction; then the differential equation for the longitudinal plane wave in a fibrous 

material is expressible in the form 

(8.10) 

Most interestingly, equation (8.10) reveals that, for fibrous materials which are 

transversely isotropic and have a zero Poisson's ratio associated with the main axis of 

symmetry, there is no distinction between longitudinal plane waves, in contrast to the 

situation encountered in isotropic materials. In other words, there is only one type of 

longitudinal plane wave in typical fibrous materials, regardless of their relative bulk 

dimensions with respect to wavelength, while isotropic materials have three different 

wave types: a pure longitudinal wave, a quasi-longitudinal wave, and a Love-type 

longitudinal wave. These findings will justify the use of equation (8.10) in measuring the 

dynamic properties of fibrous materials with finite lateral dimensions (see equation (6.9) 

in the derivation of a novel method). In Chapters 6 and 7, typical fibrous material 

samples for use in tests had dimensions of 5 cm (thickness) x 10 cm x 10 cm.
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8 .3 Lossy differential equation 

So far, only perfectly elastic materials have been considered. Because internal friction in 

the structure would be present in practice, the wave equation for viscoelastic materials 

may need to be employed. The behaviour of such materials is also governed by the three 

basic equations which have been used in Section 8.2 for perfectly elastic materials. There 

may be two ways to approach this viscoelastic problem. The first, which is more 

rigorous, is apply a type of "causality condition" to the relationship between stress and 

strain, which states that there are no stresses and strains before the onset of motion. Thus 

the one-sided Laplace transform in the time domain may be applied to a stress-strain 

relation such as equation (8. 7), given that stresses a(x, t), strains c(x, t) and all the 

elastic constants are time-dependent, while the other two basic equations for motion and 

displacement-strain remain unaltered [100]. The other method, which is somewhat 

heuristic though simple and efficient, is to modify the equation of motion directly, while 

maintaining the other two basic equations. Keeping in mind that the viscous force is 

associated with the time rate of strain change, one can assume that the viscous force Fv,x 

in the x direction in longitudinal wave propagation may be expressed 

F oc a2c;" . v,x otox 

Thus the equation of motion (8.5a) becomes 

00' OTxy OT,x a ( 82

;x J 82c;x
-2-+-+--+- T/ -- =p--.ox By 8z Bx "8t8x ot2 

(8.11) 

(8.5a') 

Here, T/ denotes a structural coefficient of viscosity. Provided that the viscosity is 

constant, then the differential equation for a longitudinal plane wave for viscoelastic 

fibrous material may be expressed 

(8.12a) 

208 



The above expression is identical to those previously adopted [28, 79]. In the case of a 

linear solution with harmonic motion, the "lossy" wave equation can be represented in 

the same form as the lossless wave equation by introducing the complex Young's 

modulus Ee, 

(8.12b) 

This equation is the basis for the determination of the Young's modulus E and the loss 

modulus (J) 17 x by the experiments described in Chapters 6 and 7. 

8 .4 The governing nonlinear differential equation 

for fibrous materials 

Fibrous materials are known to be more prone to nonlinearity than cellular porous 

materials [88]. When vibration levels in fibrous materials exceed a threshold value, 

nonlinear effects have been reported [15, 16, 85, 87] (also see Chapter 7). In such cases, a 

linear wave equation may be inappropriate to describe the structural motion of fibrous 

materials. In the development of the linear wave equation for the one-dimensional motion 

of fibrous materials, the amplitude has been assumed to be small enough to belong to the 

linear regime. Thus, among the three basic equations leading to the wave equation for 

structural motion, the equation of motion and the strain-displacement relationship were 

linearised on the basis of a first-order approximation. If the amplitude is finite, both 

approximations need to be amended to include higher order terms [51]. In addition, the 

nonlinear contribution is also required in the stress-strain relationship, in which the 

elastic constant (or stiffness matrix) would not be fixed, but would vary spatially in a 

bulk material. Among the three basic equations, the stress-strain relationship is 

considered to be the most important in terms of nonlinear effects, and it might be 

sufficient to consider only the dependence of elastic moduli on the space dimension in 

order to derive the nonlinear differential equation for longitudinal wave motion. This 
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argument can be justified by the way in which nonlinearity is usually treated in high­
intensity acoustics. As mentioned earlier in this chapter, the acoustic wave equation is 
derived from three basic equations: the equations of continuity, motion, and state. They 
are all actually obtained by the use of first order approximations. When nonlinear effects 
are modelled in the acoustics of single-phase gaseous media, the equations of continuity 
and motion are not normally expanded to the higher order terms. Only the equation of 
state which links the acoustic pressure p to the density p (or condensation s) of air is 

expanded [37, 42] beyond the second order terms, 

B 2 C 3 
p=As+-s +-s + ... , 

2! 3! 

Po 

(8.13a) 

(8.13b) 

Here the subscript O denotes the equilibrium state. Usually, the second order 
approximation is adopted, and the coefficient ofnonlinearity p• is defined [37] as 

• 1 B /J = +-. 2A 
(8.14) 

Where nonlinear effects prevail, Hooke's law does not apply and the compliance 
matrix in is no longer constant. The linear wave equation (8.10) for one-dimensional 

longitudinal plane waves may be modified to include nonlinear effects [26, 27] by the use 
of equations (8.5), (8.6) and (8.7) (where the elements of the compliance matrix in 

equation (8.7) are dependent on the space coordinate): 

(8.15) 

Here, Young's modulus Ex is replaced by the bulk Young's modulus E
b
(x) to 

emphasise its dependence on x, and the subscript x is now omitted from �, since the 

motion is one-dimensional. Unlike the Young's modulus, the density is regarded as being 
invariant with the space coordinate. The bulk Young's modulus is effectively dependent 
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on the strain in the material. Especially in the case of fibrous materials, the nonlinear 

stress-strain relationship may be obtained according to the modified nonlinear bending 

model (MNBM, equation ( 4.27)) in Chapter 4. Although the MNBN has been derived for 

static compression, it has also been shown to be applicable in the case of tension 

(Chapter 5). It is also likely that it could be applied to a quasi-static dynamic situation 

(this will be discussed further, later in this chapter). The bulk Young's modulus, based on 

the MNBM, has been shown to be a function of strain & (see equation (4.28)) and hence 

it is also a function of the longitudinal displacement i;. Thus it is no longer constant, but 

variable depending on the displacement amplitude. Therefore the governing equation 

may be further expanded via the chain rule, 

The combination of equation (4.28) and (8.16) leads to a nonlinear partial differential 

equation for one-dimensional longitudinal plane wave motion in a fibrous material. At 

this stage, the Taylor series expansion with respect to & = 0 (i.e., the Maclaurin series) is 

adopted for the bulk Young's modulus, 

E
b 

=A+Be+Ce2 + ... , 

dE 
-2..=B+2C&+· ... 
de 

(8.17a) 

(8.17b) 

Coefficients A, B and C, for a solid fraction ll10 and parameter ( from the MNBM are: 

(8.18a) 

B= lOA, (8.18b) 

(8.18c) 

211 



In the first instance, the second order approximation may be adopted to produce the 

following nonlinear partial differential equation, 

a2; =_!_{A+ 2B ai; + 3c(a;J2 

+ .. ·} a2;
.

ot 2 
p ox ox ox2 

(8.19) 

However, provided the dynamic strain 1s very small, the following first order 

approximation may be sufficient: 

c
i c; 

= _!_ {A + 2 B 
a c;} ,ii;

at 2 p ox ax2

This may also be expressed as 

a2c; = A {1-20 ac;} a2c;. 
ot

2 
p ox ox

2

(8.20a) 

(8.20b) 

The error of the first order approximation of Taylor's series (8.17) is 0.3% for c = 0.01, 

1.2% for c = 0.02 and 2.3% for c = 0.03, in the case of an acoustic duct-lining absorber 

(properties specified in Tables 4.1 and 5.1). A strain of order of 10-2 is regarded as being 

very high in the dynamic situation, so the use of the first-order approximation is justified. 

In equation (8.20b), the negative sign in the nonlinearity term appears because of the sign 

convention for the MNBM, in which compressive strain is chosen to be positive. The 

sign convention therefore needs to be inverted in equation (8.20b), in which tension is 

regarded as positive. It is also worth noting that the value of -20 is fixed as long as the 

material is a fibrous medium with quasi-static motion. 

It is also interesting to observe that equations (8.20) are independent of the 

parameter (, because only the coefficient C in the second order term is related to it. 

Recall that the parameter s was adopted to take into account the flexibility of fibre links 

(Section 4.4.3); this independence from ( is then consistent with the SNBM, which 

applies only in the low strain region - as does equation (8.20) - and does not contain s.
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Second order partial differential equations can be grouped into three categories, 

depending on the roots of its characteristic equation. When a partial differential equation 

is generalised in the form 

if; i i; i i; aq aq 
a-+b--+c-+d-+e-+f�+g=O,

8t2 Btox ox2 et ox 
(8.21) 

it is said to be hyperbolic, parabolic or elliptic, with the "discriminant" of the equation, 

b2 -4ac, respectively greater than, equal to, or less than, zero [105, 106, 107]. In a 

physical sense, a hyperbolic type of equation is required to guarantee a simple wave 

which is not discontinuous [106], such as a wave equation. In case of fibrous materials, 

the requirement would be 

b2 -4ac=4- 1-20- >0 ,
A { 8;} 
Pb 

OX 

i.e. o; < 0.05 
Bx 

(8.22a) 

(8.22b) 

For displacements of practical interest, it may be expected that the equation will remain 

hyperbolic, because a strain higher than 0.05 is very unlikely to occur. 

Based on these findings, the governing equation (8.20) has been derived to 

explain the nonlinear dynamic behaviour of fibrous materials. Throughout the 

development, the loss mechanism has not been included because of a lack of knowledge 

of the nonlinear dissipation mechanism. However, use of the lossless nonlinear 

governing equation for a structural wave may be justified, because the loss factor of 

typical fibrous material is known to be very small in a vacuum. A range of typical values 

has been reported to be 0.001 to 0.01 [84, 87].

Some doubt has, however, been raised here about the applicability of the MNBM 

to a dynamic problem, because it has been developed for static compression. The main

difficulty originated in how to reconcile the local deflection of a fibre layer with that of

the bulk fibrous material. In the MNBN, because of its static characteristics, the change
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of strain or displacement was treated as being invariant across the specimen, which can 

be easily confinned from wave equations such as (8.10) or (8.15), where the inertia tenn 

is set to zero for static equilibrium. Thus the deflection of each layer in the MNBN 

contributes equally to that in the bulk fibrous model. However, this is not the case in the 

dynamic situation, where the local strain and displacement experience peaks and troughs 

[30, 82]. Thus, it seems likely that the MNBM is not applicable to the dynamic situation 

in the first instance. Nonetheless, two positive points may be raised at this stage. First, 

the MNBN may still be valid in the low frequency region where the motion is quasi­

static and where dynamic effects are not significant. Such a quasi-static approach is often 

adopted, for example, in the experimental detennination of Young's modulus by means 

of the so-called stiffness method [35, 36, 92, 93]. Secondly, the concept of strain 

dependence in the Young's modulus may still be useful in describing nonlinear effects on 

the Young' modulus in a fibrous material. Thus the Taylor series expansion scheme 

according to in equation (8.17) might still be valid even at higher frequencies. 

At high frequencies, where the MNBM is clearly not applicable, equation (8.20) 

may be generalised by the use of equation (8.16) in the fonn 

a
2

� = Eb (
1 

+ p a�J a2
i; 

. 
8t

2
p ax ax

2 (8.23) 

Here, p represents the degree of nonlinearity, which can be interpreted as the coefficient 

of nonlinearity, 

(8.24) 

This is equivalent to the nonlinear parameter p• in equation (8.14) as p = -2 p•. It

therefore represents the dimensionless rate of change of the bulk Young' modulus E
b

with strain c. It is obvious that there will be no nonlinearity if the Young' s modulus is

not affected by the strain.

Interestingly, an analogy can be found when the nonlinear governing differential 

equation for fibrous material is expressed in the fonn of equation (8.23). The propagation
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of a pure longitudinal ultrasonic sound wave with finite amplitude in an isotropic solid is 

known [37, 39, 40] to be governed by 

(8.25) 

where K 2 and K 3 are conventional combinations of the second and third order elastic 

constants in orthotropic directions in crystal lattices. As in equation (8.23), ; denotes 

particle displacement. The propagation of a finite amplitude longitudinal wave in a fluid 

is described [37] by 

if; 2 82; ( 
B;J-2-B/A 

-=c --
1+­

Bt
2

° Bx
2 

Bx 
(8.26) 

The symbol c
0 

is the speed of sound for small amplitude waves. The constants A and B 

represent the degree of nonlinearity according to equations (8.13) and (8.14). The 

nonlinear partial differential equation governing finite amplitude sound propagation in an 

ideal gas is [3 7, 42, 108] 

a2ig =c2 a2ig (1+ a;J-t-r
Bt

2 0 

Bx
2 

Bx 
(8.27) 

Here, y denotes the ratio of principal specific heats. When expanded in binomial series, 

both equations (8.26) and (8.27) can be expressed in the same form as equations (8.23) or 

(8.25). Therefore, according to these four nonlinear differential equations, it can be 

concluded that nonlinearity in longitudinal waves with finite amplitude (or high 

intensity) is related to the spatial derivative of displacement or strain. 

8.5 Solution of nonlinear differential equations 

The analytical solution of the lossless or inviscid type of equation (such as (8.25), (8.26) 

or (8.27)) is known for the case of a single travelling wave [37, 39, 40, 42, 108, 110, 

111). In these references, the application was to high-amplitude sound waves propagating 
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m air or a liquid and to the propagation of ultrasound in solid materials, but the 

application to in vacuo structural waves in fibrous materials (equation (8.23)) has not yet

been reported. Because of the isomorphism in the governing differential equations, this 

solution should be applicable to fibrous materials. In the following sub-sections, two 

ways to approach this solution will be examined. One is perturbation analysis, and the 

other is known as the "Fubini solution" or the "Bessel-Fubini solution". 

Because of the reduction in the number of parameters, it may be more convenient 

to carry out the mathematical manipulation if equation (8.23) is re-written in the form 

2 2 Eb 
where a =c /3, and c =­

p 

8.5.1 Perturbation analysis 

(8.28a) 

(8.28b) 

Perturbation analysis [107, 113] is an analytical method for finding an approximate 

solution of a weakly nonlinear differential equation. Accordingly, the perturbed system is 

regarded as being slightly different from a known standard linear system. Such a 

difference is represented by the expansion of the nonlinear system in terms of a 

perturbation or nonlinear parameter, which is a in the case of the equation (8.28). 

Because its absence would make equation (8.28) linear, the parameter a can be treated 

as a measure of the extent to which equation (8.28) deviates from its linear counterpart. 

Thus a candidate for the solution may be expressed 

;(x,t) = ;0 (x,t)+ a <;1 (x,t )+ a 2 <;2 (x,t)+ .. ,. (8.29) 

It is usually assumed that either the parameter a is small, or either the effect of nonlinear 

tenns such as ac;1 (x,t) is small or smaller than that of the linear term such as c;
0 (x,t). 

For a fibrous material, the effect will be addressed later in this section. In the case of
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wave propagation in germanium [ 40], the value of a was - 6.5 x 10 7 in mks units. 

However, the displacement was usually of the order of lA = 10·10 
m.

Each term in equation (8.29) can be evaluated by satisfying the initial conditions 

or the boundary conditions. Upon inserting equation (8.29) into (8.28a) and collecting 

together terms in powers of a , one finds 

(8.30) 

=c2 82t;o +a(c2 8
2i;, + Bt;o 8 2t;oJ+a2(c2 8 2t;2 + Bt;o aii;, + oi;, o2i;oJ+ ...

ox2 ox2 ox ox2 ox2 ox ox2 ox ox2 
' 

The coefficient of each power of the nonlinear parameter a should be matched in order 

that equation (8.30) should be satisfied identically in terms of a. This process produces 

the following system of equations: 

(8.3 la) 

(8.31b) 

(8.3 lc) 

The first equation is homogeneous and the other two are inhomogeneous. The three 

equations constitute a linear system, because the inhomogeneous lower-order terms are 

determined at previous stages. Suppose the following sinusoidal boundary condition is 

considered at the driving point: 

· i;(O,t)=� sin(-mt). (8.32) 

Here, the forcing frequency is denoted by m and the corresponding wave number will be 

k = m/ c. The symbol A represents the magnitude of the quantity. The solution of 
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equation (8.31 a) can now be straightforwardly obtained by usmg the substitution 

B=kx-mt, 

(8.33) 

Upon inserting (8.33) into (8.31 b ), one obtains the inhomogeneous partial differential 

equation 

(8.34) 

The particular solution of equation (8.34) can be found by using a trial solution 

c;
1 

= B xsin28 + Dxcos2e, (8.35) 

where B and D are arbitrary coefficients. Then the particular solution can be obtained, 

By the use of the above results, equation (8.3 l c) now assumes the form 

02c; 8
2 c; c;3k

4 

__1... = c2 -f +--
2
-[3 sine +5 sin3B + 2kx cose + 6k x cos3B]. 

ot
2 

ox 16c 

(8.36) 

(8.37) 

The following trial solution may be employed in order to obtain a particular solution of 

(8.37): 

t; 
2 

= p X sin O + q X COS O + r X Sin 30 + S X COS 3(} " • 

+ d x2 sine+ I x2 cosB + mx2 sin3B + n x2 cos3B, (8.38) 

where p, q, r, s, d, /, m and n are arbitrary constants. After some manipulation, one finds

a solution 

� 3k 3

( 
2 ) J 3k 4 

c;
2 

=--
4 

xcose+-xcos3B ---
4 

(x2 sinB+x2 sin3B). 
16c 3 32c 
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Finally, the perturbation solution of equation (8.28a) can be determined in the following 

form up to second order in a, by inserting (8.33), (8.36) and (8.38) into (8.29): 

11. 
q 2 k2 

q =; sin(kx-wt)-a-
2
-x cos2(kx-wt)

8c 

t; 3k4 

- a2 --
4 

x2 { sin(kx-wt)+ sin3(kx-wt)} 
32c 

+ a2 --x cos(kx-wt) + -cos3(kx-wt} , .. J 3 k 3 { 2 

} 16c4 3 

(8.40) 

This solution clearly shows the generation of harmonics as the wave travels, and also 

demonstrates that the intensity of the lower harmonics is reduced by "leakage" into 

higher harmonics. If the first order approximation is adopted, then the amplitude of the 

second harmonic appears to be proportional to the square of that of the fundamental 

component. These two terms are often employed to determine the nonlinearity parameter 

of a system [37]. The amplitude of the fundamental displacement component A
1 
= q and 

that of the second harmonic A2 need to be measured. (Here the difference between q
1

and A1 is that t;; appears in the perturbation expansion, whereas A1 denotes the

amplitude of the jth harmonic. The magnitude of t;; can therefore have a combination of

several A1 terms. ) Then the nonlinearity parameter a can be determined from 

(8.41 ) 

The nonlinearity parameter a has a negative value in equation (8.28a). Although a is in 

itself not small, it appears to be compensated for by a weak excitation in the form of a 

power of the small amplitude A
1

• For example, the result of Section 8.6 can be used: for 

a 30 Hz sinusoidal excitation with an amplitude of -40 dB re 1 mm on a 5 cm thick 

fibrous material (which means a= -20c2 from equations (8.20b) and (8.28b)), the 

product of the second harmonic A
2 

and the nonlinear parameter a ( or the magnitude of 

a ig
1 
(x,t) in equation (8.29)) will be 8.8x 10-6 m. This is 12% less than the fundamental 
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amplitude A1 and hence one can expect that the magnitude of the next higher order term,

a 2 q
2
(x,t), in equation (8.29) should be much less than that. Thus, the perturbation

analysis seems to be applicable where the effect of the nonlinear terms are small,

provided that x, the distance travelled from the source, and the driving frequency m are

not too great.

8.5.2 Fubini solution 

The exact solution for the particle velocity V in an inviscid fluid governed by equation

(8.27) is known in terms of a Bessel function, and is termed the (Bessel-) Fubini solution

[ 40, 42]. This solution is based on the condition of weak nonlinearity,

2c
0 

Vo<<--, y+l

corresponding to

2c 
V: <<-0 p 

(8.42a)

(8.42b)

in equations (8.23) and (8.28a), and this is easily satisfied for the case of structural wave
nonlinearity in fibrous materials. Here, V

0 
is the amplitude of the particle velocity. In

equations (8.42a,b), r is the ratio of principal specific heats, and c
0

, c are the wave

speeds in the linear regime in the case of the fluid and structure respectively. For a

sinusoidal particle velocity signal

V(O,t)= V
0 

sin{wt) (8.43)

at the driving point, Fubini [ 40, 42] gave the following velocity-based form of an exact

solution which satisfies the governing equation of particle displacement (8.27):

V = 2 V
0 f J,, (n x/ �· )sin{n(wt -kx )} .

n=I 
nx/x 
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Here, J) ) is a Bessel function of the first kind of order n, x· represents a 

"discontinuity distance", at which a discontinuity in the first derivatives of the 

displacement (i.e., the velocity) is assumed to occur as the wave propagates in a 

nonlinear system, given by [ 42] 

2c2

• 0 

x = (y + 1 )m V
0

• 

(8.45a) 

Although the solution (8.44) was derived for the case of an inviscid fluid, its equivalent 

should be equally applicable to the case of fibrous media [ 40]. Thus, fibrous materials 

(see equations (8.23) and (8.28)) have a discontinuity distance 

• 2c2

X 
= = 

- /Jm V0

2c 2

(8.45b) 

Because the solution (8.44) is expressed in terms of particle velocity, integration is 

required to obtain a solution in terms of particle displacement. Term-by-term integration 

yields 

(8.46) 

where the displacement amplitude � and the velocity amplitude V
0 

are related by
" 

v
0 

=mi;, as indicated in (8.45b).

A comparison between the two solutions from the perturbation analysis (8.40) 

and the Fubini method (8.46) requires a power series expansion of the Bessel function in 

(8.46), 

(8.47) 

The solution will be the sum of the fundamental and its harmonics, 

(8.48a) 
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expressed by the following series: 

V. = V. sin(mt-kx)[1-.!.(�)
2 

+-1
(�)

4 

_,,,] 1 0 8 x· 192 x· ' 

V, =V0 sin {2(wt-kx)}[�(;. )-!(;. )' + ;s(;. r-··l 

V = V. sin{3 (mt-kx)}[I(�)
2 

_.E_(�)4 +�(�)6 _,,,]. 
3 0 8 x· 128 x· 5120 x· 

(8.48b) 

(8.48c) 

(8.48d) 

To rectify the difference between the displacement and velocity boundary conditions, a 

phase shift is required. Thus the argument OJ t -kx in (8.48) needs to be replaced by 

31t/2-(mt -kx). The solution represented by (8.47) and (8.48) may be re-written 

" q 2 k2 

q = q sin(kx-mt)- a-2-x cos2(kx-mt) 
8c 

; 3k 4 

-a2 --x2 { sin(kx-mt) + sin3(kx-mt) }
32c4 

(8.49) 

if the first two terms of each harmonics are retained. Upon comparison between (8.40) 

and (8.49 ), one can easily see that the first four terms of each solution are identical to one 

another. The differences in the higher order terms may be explained by the fact that the 

perturbation solution has been based on a binomially-expanded version (8.23, 8.25) of 

the governing equation (8.26, 8.27) in the Fubini solution. 
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8.6 Experimental investigation 

Experimental results concerning the generation of harmonics in nonlinear structural 

waves propagating in a fibrous material (E-glass) will be described in this section. 

According to the solution of equations (8.40) and (8.49) the amplitude of the second 

harmonic, A2 , is proportional to the square of that of the fundamental component, A
1 

, 

especially for a weakly nonlinear travelling wave. 

Figures 8.2 and 8.3 show the displacement amplitudes measured on the top and 

bottom plates respectively when a layer of E-glass fibrous material (placed between the 

two plates in a vacuum) was excited by a shaker fed with a sinusoidal signal at 30 Hz, 

which is close to the mass-spring resonance frequency of the material and top plate 

together. The selection of a frequency near resonance was made on the basis that the 

displacement of the top plate will be relatively high, thereby giving the best likelihood of 

observation of nonlinear effects. Figure 8.4 shows the displacement of the shaker alone, 

in order to illustrate the nonlinearity of the shaker itself. The dotted lines in Figures 8.2 to 

8.4 have a slope of two, corresponding to the relationship A2 oc A
1

2
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Figure 8.2 Nonlinear behaviour of bulk E-glass fibrous material under longitudinal excitation at 

30 Hz. The relationship between the displacement amplitudes of the second harmonic and the 

fundamental component on the top plate is plotted. The dotted line is the fitted line with a

slope of two. 
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Figure 8.3 Nonlinear behaviour of bulk E-glass fibrous material under longitudinal excitation at 

30 Hz. The relationship between the displacement amplitudes of the second harmonic and the 

fundamental component on the bottom plate is plotted. The dotted line has a slope of two. 
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Figure 8.4 Harmonic distortion in the shaker at 30 Hz, with no specimen in place. The dotted

line has a slope of two.
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In Figure 8.2, the measured data closely follow the relationship A
2 

oc A
1

2 
• 

However, according to Figure 8.4, the amplitude of the second harmonic generated by 

the shaker itself is approximately proportional to the square of the fundamental 

component over the upper part of the excitation range. The forcing function evidently 

also suffers harmonic distortion. One should, perhaps, not therefore assert that the 

relationship A
2 

oc A/ is a genuine characteristic of the nonlinear behaviour of this 

fibrous material, throughout the entire range of excitation level in the tests. 

On the other hand, one may observe that the A
2 ex: A,2 relationship is not followed 

by the measured data below a fundamental component level of -20 dB re 1 mm in Figure 

8.3 and 8.4. However, this relationship is followed down to a fundamental component 

level of -43 dB re 1 mm in Figure 8.2. (Note, however, that the level of -25 dB for the 

fundamental in Figure 8.2 corresponds approximately to a level of -20 dB in Figures 8.3 

and 8.4.) Therefore, in the region of weak nonlinearity, the relation A
2 

ex: A1
2 can be 

observed experimentally, and is predicted theoretically (see equations (8.40) and (8.49)).

These observations are consistent with those of other workers for a porous material made 

from a polymer [48, 112]. 

The nonlinear parameter a was also measured. It can be evaluated from equation 

(8.41), which shows the quantitative relationship between the amplitudes of the 

fundamental and the second harmonic. The dynamically measured values are plotted in 

Figure 8.5, together with the predicted value based on the static MNBM. In determining 

these values, a wave speed of 10 m/s was assumed; this was determined experimentally 

in Chapter 6 for the same fibrous material. As seen in Figure 8.5, the MNBM predictions 

are not greatly different from the measured values over most of the region of weak 

nonlinearity, at a distance not far from the driving point.

It should be pointed out here that the above theoretical solution might not be 

appropriate to the experimental equipment which has been employed here. This is 

because the solution has been derived under the assumption of a single travelling wave, 

whereas waves travelling in both directions were present in the experimental 

arrangement. Nevertheless, it is believed that the theoretical solution and results obtained 
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here are at least indicative of the relative amplitudes between the fundamental component 

and its harmonics, together with the corresponding nonlinear parameter. 

0 ....----.-----,-----r-----r------.----.---------

-500

"'E -1000 

� -1500 

Q) • • 
E -2000 ,...------··•·--------------e---------------------------------------------------------------------------

ro • ,._
ro 

o. .2500 ,._ 
ro 
Q) 

. £ -3000 
C 

z -3500

• 

• 

• 
• 

• • 

• • •• • 
• 

• • • • 

• 

• 
• 

• • 
•••

•

• 

. 

-4000 l-_..,__ _ _.__ _ _.__ _ _._ _ __._ _ __. _ ___...___..___.....____. 
-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 

Amplitude of Fundamental (dB re 1 mm) 

Figure 8.5 The measured nonlinear parameter a of bulk E-glass fibrous material with 

longitudinal sinusoidal excitation at 30 Hz. The dashed line is the predicted value from the 

static Modified Nonlinear Bending Model. 

8.7 Summary 

The nonlinear nature of the in vacuo structural wave in fibrous materials has been 

investigated in this section. Structural wave equations for different types of waves were 

first discussed in the case of isotropic media. The linear partial differential equation 

governing one-dimensional plane longitudinal waves was then derived for a fibrous 

material with a transversely isotropic structure. By means of the strain dependence of the 

bulk Young's modulus from the Modified Nonlinear Bending Model (MNBM), the linear 

governing differential equation for fibrous materials was extended to its nonlinear 

counterpart. Despite the static nature of the MNBM, it appears that it could be applicable 

to a quasi-static dynamic situation. Moreover, the same form of the nonlinear equation 
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can be applied at higher frequencies, as long as the strain dependence of the bulk 

Young's modulus is specified. 

For dynamic excitation with finite amplitude, an analogy between the governing 

equations was identified in the cases of ideal gases, liquids, solids and fibrous materials. 

The solutions of these equations by both perturbation analysis and the Fubini solution 

were discussed. 

Finally, the generation of harmonics by nonlinear effects was confirmed by 

observing the predicted relationship between the amplitudes of the fundamental 

component and the second harmonic. The nonlinear parameter was also measured and 

these data were compared to the predicted value from the (static) MNBM. Reasonable 

agreement was found under the limited conditions of weak nonlinearity and quasi-static 

frequency. 
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Chapter 9 

Conclusions 

This thesis is concerned with the static and dynamic structural properties of bulk fibrous 

materials. The first half of the thesis (Chapters 2 - 5) is devoted to the static elastic 

behaviour of fibrous media and the remainder (Chapters 6 - 8) is focused on their 

dynamic properties. Several themes have run through each chapter and some of these 

have revealed new aspects of fibrous materials, as follows. 

1. The nonlinear mechanism in the structural behaviour of fibrous materials has been

successfully identified: it is the change in the number of inter-fibre contacts with bulk

strain. This number may be supposed to increase monotonically when the material is

subjected to static compression, but to oscillate in the dynamic case. The idealised

experimental models which have been fabricated support this idea in the cases of both

static loading (where stacks of silver steel rods were used, See Chapter 2) and

dynamic loading (where stacks of glass capillary tubes or welding rods were built,

See Section 7 .2.4).

2. Two predictive static bending models have been developed to describe the nonlinear

bulk elastic properties of fibrous media under compression. Both have the

configuration of an ideal transversely isotropic structure consisting of elastic

cylindrical rods (See Figure 4.6). These static models have been based on the findings

about the nonlinear mechanism involving inter-fibre contacts. Of the two models, the

modified nonlinear bending model (MNBM, Section 4.4.3) has been shown to

describe well a high degree of nonlinearity, ranging from low strain to high strain, by

means of a single equation, while the application of the simple nonlinear bending

model (SNBM, Section 4.4.2) is confined to low strain. Both models are presented
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not only by the stress-strain relation (equation (4.20) and (4.27)) but also by the bulk 

Young's modulus-strain relation (equation (4.21) and equation (4.28)). 

3. The change in the number of inter-fibre contacts has been further investigated.

Percolation theory has been introduced in this study, and this has led to questions

regarding the relationship between percolation theory and the behaviour of fibrous

material under static compression. In doing so, the bulk Young's modulus-strain

relations of static models have been converted to the bulk Young's modulus-solid

fraction relations (equation (5.6) and equation (5.9)). Similarities and differences

were discussed, and it has been determined that the particular aspects examined in

this thesis are not directly related to percolation theory. However, it is believed that a

fibrous material is potentially a percolating system, and a method of approach which

would resolve this question has been suggested.

4. A novel method has been developed, to measure the dynamic bulk Young's modulus

of a fibrous material under longitudinal excitation. It combines the features of

conventional methods such as the transfer function method and the mechanical

impedance method. Although it is very robust, the transfer function method requires

an assumption about a bulk density and yields a transcendental equation (equation

(6.2)) for a complex wave number. The mechanical impedance method appears, at

first sight, to overcome the difficulties occasioned by the transfer function method.

However, its execution involved difficulties in practice, because of the need for the

use of two samples of different lengths. In contrast, the novel method does not

demand the assumed density or the use of two samples, but produces a

straightforward analytical solution (equation (6.19)) for a complex wave number.

s. A nonlinear partial differential govemmg equation (equation 8.23) has been

developed to describe the dynamic structural behaviour of fibrous materials under

longitudinal excitation. Unlike other types of poroelastic or non-porous materials, it
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has been shown that there is only one type of a longitudinal wave for fibrous 

materials (equation (8.10)). Its derivation has been tailored especially for fibrous 

media, although it is analogous to that for finite-amplitude wave propagation in other 

types of media such as ideal gases, fluids and solids. The occurrence of a second 

harmonic component of a sine wave has been identified experimentally (Figure 8.2). 

The static modified nonlinear bending model (MNBM) has been shown to be capable 

of estimating the nonlinear parameter so long as both the excitation frequency and the 

propagation distance are small (See Figure 8.5). 

6. An idealised experimental dynamic model (Figure 7.16) has been constructed initially

to investigate the nonlinear mechanism in the dynamic case. In addition, it has

yielded the interesting feature that there is no significant discrepancy between its bulk

static and dynamic bulk moduli (Figure 7.20), unlike a real fibrous material. The low

loss factor and simple structure of the model are believed to be responsible for this

phenomenon.

Jn the course of this research, certain topics have not been investigated in as much detail 

as had been originally planned. Three of these are as follows. 

1. A macro-scale experimental and predictive model investigation, based on idealised

representations of the microscopic geometry of a bulk fibrous material, has been

shown to be a useful tool for investigation of the principal mechanisms responsible

for the bulk structural behaviour. However, a more ambitious goal involving the

assembly of many such models as "modules" in an idealised bulk material has led to

practical problems involving the sheer size and complication of the mechanical

structure which could, for example, lead to a series of statically indeterminate

systems. This was also highlighted during the finite-element analysis (Section 2.3).

Although the FE approach is being used in the analysis of a cellular porous material
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such as a replica bone, its implementation to an idealised fibrous material is not an 

easy task, not alone a real bulk fibrous material. The difference could be easily 

explained, in terms of "connectivity" that, in a cellular material, its morphology does 

not change much, even though its frames experience buckling. However, in a fibrous 

material, there is no way to predict where fresh contacts are formed. Even though one 

has a means to know the contact locations, after every single new contact, one needs 

to make sure that contact forces could pass through them, which requires the merge 

of contact nodes in a FE analysis. Apart from the investigation on mechanical 

aspects, the electrical contact resistance on idealised models together with bulk 

electrical conductivity on a steel wool was investigated as a means of measuring the 

inter-fibre contact density. However, various practical difficulties have been 

highlighted, related to the extremely complex nature of the electrical circuit. 

2. Dissipation mechanisms in the structural motion of fibrous materials have not been

treated theoretically in this thesis. In the case of static compression, possibly because

of the laminar configuration of the idealised structure, theoretical models without a

loss mechanism satisfactorily describe the nonlinear stress-strain relationship. In a

test for the dynamic elastic properties of fibrous materials, the loss component was

also measured; but this was no more than an empirical approach. However, in the

development of the nonlinear governing partial differential equation, only the inviscid

form of the nonlinear equation was derived and solved to describe the dynamic

behaviour of a fibrous material.

3. Although a novel method was devised as an alternative way of measuring the

dynamic bulk Young's modulus of a fibrous material under longitudinal excitation,

there appears to be a limitation in its applicability, especially regarding the frequency

range. However the reasons for this are not completely understood, apart from their

seeming to be related to the measurement of the dynamic mass.
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Items 2 (dissipation mechanism) and 3 (improvement of the new method) are obvious 

topics for future research. Other ideas for future work are: 

1. The static models (SNBM and MNBM) are only concerned about the normal

compression. However it should be possible to extend this work to provide a

static model of the "shear" behaviour of a fibrous material. First, it would be

necessary to investigate the shear mechanisms, about less is known than the

normal compression behaviour. It could involve inter-fibre friction, and the

contribution of binder materials could be a lot more significant than it is for the

normal compression.

2. The investigation of a fibrous material as a percolating system will be no doubt an

interesting task. To do so, fibrous materials need to be prepared with different

pre-fixed solid fractions. Their elastic properties such as bulk Young's modulus

could be key issues, but their electric properties such as conductivity could also

be worth investigating especially for a steel wool. Their percolation behaviour

could be a useful design guide, for example, to optimise the amount of fibres

required, especially for fibre-reinforced structures, which require interstitial

materials. This percolation approach could be applied not only to fibrous

materials, but also to other types of porous materials such as unconsolidated

granular materials with different interstitial elements.

3. According to equations (4.17), (4.21) and (4.28), the bulk Young's modulus E
b

without compression (i.e. e = 0) is dependent on the "fifth power" of the initial

solid fraction \J'0 as follows,

(9.1) 

Therefore, an experimental investigation of the power-law dependence would be 

an exciting topic in the future. Practically, high-precision equipment [22], rather 
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than a set of travelling microscope and weights, might be necessary to measure 

the deflection and force for this purpose, because fibrous materials are supposed 

to behave nonlinearly no matter how small the loading force. Once it is 

confirmed, such knowledge would be very useful in the design stage of fibrous 

materials, because it would tell manufacturers how to control the solid fraction of 

fibrous materials to achieve the specific bulk Young's modulus required by a 

commercial market. More interestingly, this work could be done in line with the 

measurements to investigate the percolating behaviour of fibrous materials, 

because both require the same types of sample materials, which would be 

constructed with different initial solid fractions. The difference might be the fact 

that a non-air interstitial substance is not required for the purpose of confirming 

the power law dependence. 

4. In the dynamic measurements, an electro-dynamic shaker was used as a means of

exciting sample materials, involving direct contact between the shaker and the

sample. However, care needs to be taken because improper contact could affect

the longitudinal excitation and lead to measurement error. On the other hand,

non-contact probes have been used to avoid the extra loading effect of

accelerometers. So, one possible way to get around the source-sample contact

situation may be to use a non-contact source. It could be implemented by means

of a high-amplitude shock wave, which can be generated by focusing a high­

powered laser beam [114]. An unpublished trial by the author has found that

laser-generated acoustic shocks contain sufficient energy to move particles. Thus,

this new source of excitation could be a means of improving the measurement

quality in future.

5. Another topic that would exploit laser-generated shock waves would be to use it

as a one-way wave. Because they are pulses, it should be possible to arrange for

forward and backward travelling waves to be separated. Therefore, the high-
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amplitude shock pulses would be an effective means to obtain data for finite­

amplitude response to compare with the solution (equation (8.40) and (8.49)) 

based on a one-way wave. 

6. The thesis has addressed only the structural motion. Therefore its expansion to a

structural-fluid coupling model, such as Biot theory [10, 11], would be another

attractive future work. The nonlinear equation (8.23) in Ch8 was derived

especially for a fibrous material with a transversely-isotropic structure. However,

the process in Ch8 was simplified only to the longitudinal direction. Therefore, it

would be interesting to derive the nonlinear equations for all directions of

"transversely-isotropic" or even "anisotropic" structure, as well as their solutions.

It could be a step-forward from "nonlinear" version of Biot theory, which only

concerns "isotropic" structure despite its superb physical insight. For this task, the

knowledge from the item 1 (shear behaviour) of future works would be useful in

investigating other directions than the longitudinal direction, even though it .

would concern the static behaviour in the first instance.

Finally, it may be remarked that the findings in this thesis are believed to contribute to 

the enhancement of our fundamental understanding of the structural behaviour of bulk 

fibrous materials. For example, the static models may be employed to describe the 

nonlinear behaviour of fibrous material in static applications. The proposed test method 

for the dynamic Young's modulus could improve the efficiency of measurement 

techniques. Finally, application of the governing nonlinear differential equation derived 

in Chapter 8 should cast light on methods of approach to the structural behaviour of 

fibrous materials subjected to high amplitude excitation. 
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