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1 Introduction

This thesis is a recount of the research I undertook in the academic year 2016-

2017 and the background work I learned from reading and attending lecture courses.

Sections 2 and 3 are background sections providing an introduction to the concepts

and methods that will be encountered in the research sections later on in the thesis.

The research covered in this thesis is the process of producing the BRST charge

for a String theory in Ambitwistor space. The sstring theory being investigated

originates from [1] theory which is a particle theory and [2] which is a string theory

in Ambitwistor space. Whilst the link between these two papers may not seem

obvious at first but the particle actions these papers are based from are the same.

However for the sake of simplicity supersymmetry, which appears in both [1] and [2],

is not covered.

The reason for the investigation of Ambitwistor string theory stems from Witten’s

initial paper on the subject [3] which showed led to a formula for tree-level 4 dimen-

sional Yang-Mills amplitudes. And more recently Ambitwistor string theories of the

form in [2] provide a way of producing amplitudes for Yang-Mills and gravitational

amplitudes, known as the CHY Amplitudes,which were first shown in[4], [5] [6] and

[7] which are a compact formulae for tree-level scattering amplitudes. It has been

shown that the Ambitwistor String theory in [2] is able to produce expressions for

higher order loop amplitudes [8], [9], [10], [11] and [12] to name just a few examples.

From this point we seek to expand upon a theory that should be physically identical

to the Ambitwistor string in [2] but representing it in Ambitwistor variables as has

been done for the superparticle in [1].

The difficulty with representing the string theory in this way comes from the gauge

symmetry being reducible. This means that the gauge constraint is not independent

and there are additional constraints that affect the degrees of freedom of the theory

as ignoring the reducibility would lead to over fixing of the degrees of freedom of

the theory. So the standard process of gauge fixing and introducing ghosts to reduce

the degrees of freedom is followed, but we have to introduce another ghost system.

The statistics of these ghosts are the same as those of the matter fields (in this case

bosonic) and can be thought of as the reintroduction of those degrees of freedom

that have been over fixed. However, in the case of this theory, it doesn’t stop there.

There is another reducibility constraint that shows that all of the degrees of freedom

in the previous reducibility constraint aren’t independent either necessitating the

introduction of another system of ghosts.

The goal of this thesis is to produce the BRST charge for the Bosonic Ambitwistor

string represented in the Ambitwistor variables shown in [1] for future study. The
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procedure for doing this is outlined in [13] and is followed through the insertion of

the constraints of the string theory. Once this has been done the nilpotency of the

BRST charge is tested on several fields and constraints are obtained that fix the

BRST charge to be nilpotent. After that following a similar procedure to Ohmori

[11] A simple gauge fixed action for a free topological theory is produced.

2 Quantum Field theory and Gauge theory

2.1 Motivation for Quantum field Theory

Quantum Field theory is the basis for the current understanding of how matter and

forces interact with each other. As a theory it has existed for many years and is

formed from the combination of quantum mechanics with classical field theories and

special relativity. The quantisation of the electromagnetic field resulted in an a lack

of distinction between a particle and a field, meaning that the electromagnetic field

had particle like nature. As such Photons can be seen to arise as the quanta for the

electromagnetic field. This led to the realisation that matter can be described as

a spectrum of states arising from matter fields and the forces can be described as

separate fields which interact with matter fields. We know that the Electromagnetic

force (Quantum Electrodynamics), the Strong force (Quantum Chromodynamics)

and Weak nuclear force can be described in this framework and even more recently

with the discovery of the Higgs mechanism the masses of matter can be described

[14]. The only force that fails to be described in this framework is gravity. This is

due not only to the difficult, but impossible due to the fact that the approach of

perturbation theory doesn’t work in the case of gravity and is non renormalisable

[15].

2.2 Second Quantisation and Scalar Field Theories

Now that I have very briefly introduced the idea of matter fields and the motivation of

their existence it is important to know how we go about constructing these theories. If

we work from the simplest example, a scalar field theory known as the Klein-Gordon

equation:

2φ(x) +m2φ(x) = 0 (2.2.1)

where the x = (x, y, z, cτ), with τ being the proper time. With the Scalar fields

being denoted by φ(x) which will be written simply as φ unless a distinction between

fields needs to be made. The Klein-Gordon Equation has a Hamiltonian density and

4



Lagrangian density of

H = (∂0φ)2 +∇φ · ∇φ+m2φ2 (2.2.2)

L = φ2φ−m2φ2 (2.2.3)

To change this into a complex scalar field theory it is a simple matter of replacing and

φ2 with φφ∗. A way of constructing a quantum theory of these fields is by promoting

them to operators that act on the vacuum.

φ|0
〉

= |φ
〉

(2.2.4)

As φ(x) is not a wave function the position basis is outlined as such

φ(x) =
〈
x|φ
〉

=
〈
x|φ|0

〉
(2.2.5)

This makes sense when the field is written in it’s Fourier expansion in terms of ladder

operators a and a† which are the annihilation and creation operators.

φ(x) =

∫
d3k

(2π)3
√

2ωk

[
a(k)e−ikx + a†(k)eikx

]
(2.2.6)

The denominator in this is a consequence of maintaining Lorentz invariance and

doesn’t affect the operator in any significant way but it is worth noting (ωk)
2 =

k2 +m2 = Ek
2. From this representation it is clear to see how φ acting on a vacuum

state, is actually a and a† acting on the vacuum results in a momentum eigenstate

(see 2.2.13 and 2.2.14). As is the case with Classical field theory there exists a

momentum conjugate to the field defined as

Π(x, t) =
∂L

∂φ̇(x, t)
(2.2.7)

Where φ̇(x, t) is ∂0φ(x, t) or more simply the derivative with respect to time. Now

that we have both the field and the conjugate momentum we can begin to apply

canonical commutation relations.

[φ(x, t),Π(x’, t)] = iδ(x− x’) (2.2.8)

[φ(x, t), φ(x’, t)] = [Π(x, t),Π(x’, t)] = 0 (2.2.9)

These are known as the equal time commutation relations, named as such as they

are defined at equal times. From these relations, the Fourier expansion of φ and

knowing that

Π(x) = φ̇(x) (2.2.10)

The commutation relations for the creation and annihilation operators can be derived

as [16]

[a(k), a†(k′)] = (2π)3
√

2ωkδ
3(k − k′) (2.2.11)

[a(k), a(k′)] = [a†(k), a†(k′)] = 0 (2.2.12)
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The creation and annihilation operators are used to define the basis of the quantum

system through the production of momentum eigenstates.√
2Eka

†(k)|0
〉

= |k
〉

(2.2.13)

a(k)|0
〉

= 0 (2.2.14)

The Hamiltonian can be written in terms of the creation and annihilation operators

and ωk
2 = (Ek)

2

H =

∫
d3k

2π3
Ek

(
a†kak +

1

2

)
(2.2.15)

It is now useful to define the Number operator Nk = a†kak and we have the Hamilto-

nian for the simple harmonic oscillator. One of the primary observables in quantum

field theory is known as the propagator which for the Klein-Gordon field is given by〈
0|φ(x)φ(y)|0

〉
= D(x− y) (2.2.16)

For an interacting theory there exist more terms but they will be covered in the

path integral section. An easy way of producing these results is to use a process

known as Wick’s theorem uses the generalisation of n-point amplitudes to a sum of

all “normal ordered”1 field operators and “contraction”2 of fields. The contraction

of 2 fields produces the propagator between the two points.

2.3 Path Integral quantisation

The modern method used for quantising field theories is known as path integral

quantisation and has been used in the context of quantum field theory for decades

[17]and the method was developed and used by Richard Feynman. The core concept

of path integral quantisation of a theory lies in the initial idea that a particle moving

through time takes all possible paths. This section will only cover a small part of the

process of the procedure as it will be enough to inform the process covered in section

3.1. This quantisation originates from the definition of a propagator, which is that

it is the probability amplitude for a transition in position in time from ψ(qi, ti) to

ψ(qf , tf ), where ψ is the wave function of the particle for that position q and time t

. This will be represented as

K(qf , tf ; qi, ti) =
〈
qf , tf |qi, ti

〉
(2.3.1)

This in turn can be split up into smaller transitions and integrating over all of those

small steps.

1Normal ordering is where all creation operators contained within an operator are on the left of

the annihilation operators
2Contractions are a way of automatically time ordering operators through Wick’s theorem (see

[16]
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Figure 1. A diagrammatic representation of splitting up paths into discrete segments and

states.

The representation of figure 1 as an integral can be given as the propagators between

the states.

K(qf , tf ; qi, ti) =

∫
dq1 dq2 . . . dqN

〈
qf , tf |qN , tN

〉〈
qN , tN |qN−1, tN−1

〉
. . .
〈
q1, t1|qi, ti

〉
(2.3.2)

By investigation of one of these steps the propagator between two intermediary points

and removing the time dependence from the states into the operator〈
qn+1, tn+1|qn, tn

〉
=
〈
qn|e−iHτ |qn

〉
(2.3.3)

The terms in the exponential are τ , which is the difference in time between the states

and H is the Hamiltonian operator. After a series expansion around τ the result is

a delta function and a Hamiltonian operation. Taking the Fourier transformation of

the delta function the propagator is.〈
qn+1, tn+1|qn, tn

〉
=

1

2π

∫
dk eik(qn+1−qn) − iτ

〈
qn+1, |H|qn,

〉
(2.3.4)

where H is given it’s usual definition of k2

2m
+V and V is some position dependent po-

tential. The second term in 2.3.4 is done by looking at both parts of the Hamiltonian.

The operation of the potential is the most straight forward.〈
qn+1|V (q)|qn

〉
= V (q̄)δ(qn+1 − qn) =

∫
dk

2π
eik(qn+1−qn)V (q̄) (2.3.5)

Andq̄ = qn+1−qn
2

. The Momentum operation result is as follows〈
qn+1|

k2

2m
|qn
〉

=

∫
dk

2π
eik(qn−1−qn) k

2

2m
(2.3.6)
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The two operations above give the Hamiltonian term and in conjunction with 2.3.4

the transition is 〈
qn+1, tn+1|qn, tn

〉
=

∫
dkn
2π

ei
[
kn(qn−1−qn)−τH

]
(2.3.7)

When taken to the continuum limit the full propagator can be returned by taking

the difference between initial position and final position the exponent becomes

i

[ ∫ tf

ti

dt
[
kq̇ −H

]]
= i

[ ∫ tf

ti

dt
[
L
]]

= iS (2.3.8)

where L is the Lagrangian of the theory and S is the action. This gives one segment

of one possible path taken [14]. To consider all paths all possible positions must

be considered and as a consequence of the aforementioned continuum limit where

the number of intermediary steps between thin initial and final states tends towards

infinity results in the need for a redefinition of the measure these become Dq and

Dk which represents all possible positions and all possible momenta. However, if the

Hamiltonian is of the form p2

2m
−V then the continuum limit integration can be done

for momentum and the expression for the propagator becomes.〈
qn+1, tn+1|qn, tn

〉
=

∫
Dq eis (2.3.9)

This represents the propagator of a free theory with no interactions. However, to

generalise this to an expression from a state at t = −∞ to a state at t =∞ to obtain

the vacuum to vacuum amplitude and one of the core things we want to obtain is

the expectation for field operators as has been done in 2.2.16. The general way of

writing an expectation of an operator O is〈
O(q)

〉
=

∫
Dq

(
eisO(q)

)
(2.3.10)

A way of doing this is through the altering of the Lagrangian by inserting some

source term j(t) so that L → L + jq. So the expression is now a functional of the

source j. The motivation for this will become clearer when discussing how n-point

functions are obtained through functional differentiation 2.3.19.

Z[j] =

∫
Dq exp

[
i

∫ ∞
−∞

dt (L+ jq)

]
(2.3.11)

The expression above is almost the final form for the vacuum to vacuum amplitude

for a free field theory however there needs to be an imaginary term added to the

Lagrangian to isolate the ground state energy contributions3. So the result is

Z[j] =

∫
Dq exp

[
i

∫ ∞
−∞

d t(L+ jq +
1

2
iεq2)

]
(2.3.12)

3The full reasoning for this involves the damping of higher order terms through a series expansion

and the full rational can be found in [14]
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The expression can be altered to be relevant to a field theory simply by the replacing

the position q(t) with the field φ(xµ) that has been used in the cannonical quanti-

sation process in section 2.2. Using the Klein Gordon equation for a scalar field the

generating functional is.

Z[j] =

∫
Dφ exp

[
− i
∫

d4x
1

2

(
φ(2 +m2 − iε)φ− φj

)]
(2.3.13)

2.3.13 is not the easiest to work with and it would be better to be able to write this

in a form that contains the propagator. The expression can be obtained through

functional integration [14]. As the expression is analogous to∫
dx exp

[
− 1

2
(x,Ax) + (b, x) + c

]
= exp

[
(b, A−1b)− c

]
(detA)−

1
2 (2.3.14)

making the assumption that this identity holds for the case of infinite dimensional

function where the inner product (φ, φ) =
∫
φ2 d4x. The x is replaced by φ, A =

i(2 +m2 − iε), b = −ij and there are no c terms. As such, the integral produces

Z[j] = exp

[
i

2

∫
d4x d4y j(x)(2 +m2 − iε)−1j(y)

]
[det(i(2 +m2 − iε))]−

1
2 (2.3.15)

And using the generalisation that,∫
Dφ exp

[
φAφ

]
= det(A)−

1
2 (2.3.16)

and defining (2 +m2 − iε)−1 to be the propagator −Df (x− y) then the generating

functional:

Z0[j] =

∫
Dφ exp

[
− i

2

∫
d4x φ(2+m2−iε)φ

]
×exp

[
− i

2

∫
d4x d4y j(x)Df (x−y)j(y)

]
(2.3.17)

The first integral above can be carried out and just returns a numerical factor, N ,

so the generating functional.

Z[J ] = N exp

[
− i

2

∫
d4x d4y j(x)DF (x− y)j(y)

]
(2.3.18)

The numerical factor N can be normalised out and from this expression the n-point

functions can be found through functional differentiation with respect to j and then

setting j = 0. For example, the 2- point function for the free theory simply produces

the propagator between the two points. The general formula for n point functions is.(1

i

)n[ δ

δj(x1)
. . .

δ

δj(xn)

]
Z0[j] =

〈
0|φ(x1) . . . φ(xn)|0

〉
(2.3.19)

The next thing to do is to introduce the interaction terms, one of the simplest ways

to do this is to add a polynomial term into the Lagrangian L → L + Lint(for this
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example the theory considered will be φ4). The interaction term is − g
4!
φ4 Now the

normalised generating functional is

Z[J ] = exp

[
− i g

4!

∫
d4z φ4(z)

]
exp

[
− i

2

∫
d4x d4y j(x)DF (x− y)j(y)

]
(2.3.20)

By treating the interaction term as series expansion with respect to the coupling

constantg as we assume it is small [18], otherwise this process doesn’t work as well

and replacing φ(z) with

[
1
i

δ
δj(z)

]
. To first order in g the generating functional is,

Z[J ] =

[
1− ig

4!

∫
d4z

{
1

i

δ

δj(z)

}4]
exp

[
− i

2

∫
d4x d4y j(x)DF (x−y)j(y)

]
(2.3.21)

It is easy to see that if g = 0 then this is simply the generating functional for the

free theory. The way to then produce n-point functions is the same as before but

carrying out the functional differentiation that results from the interaction term first.

As such it is easy to see that the interaction term plays an important role in defining

the resulting scattering matrix elements. The interaction term in the theory describes

the types of vertices in a Feynman diagram, in the case of φ4 the vertices are formed

from 4 scalar fields meeting at a single point, whether it forms what is known as

a fully connected diagrams, which represent the interesting parts of the scattering

matrix or a disconnected diagram, which represent the vacuum corrections or free

propagation. To create more complex theories with different kinds of fields then The

Lagrangian can be modified to include the free Lagrangian of the free theory and any

interacting terms that describe self interaction through perturbation and interaction

of the multiple fields. A common example of this is Yukawa theory which describes

interaction between Dirac fields (Spinor, fermionic fields) and scalar fields.

2.4 Gauge Theories and Faddeev-Popov

A specific type of field theory is a Gauge theory, so called as the fields are invari-

ant under transformations, known as gauge transformations. These transformations

occur on a local scale rather than a global transformation. For example;

φ(x)→ φ(x)eiλ(x) (2.4.1)

An example of where this occurs is in Quantum electrodynamics. Where the La-

grangian is given by.

LQED = −1

4
FµνF

µν + iejµAµ (2.4.2)

Where Fµν = ∂µAν−∂νAµ, is the Faraday tensor and the second term is the a source

term. The vector field Aµ is invariant under the transformation.

Aµ(x)→ Aµ(x) + ∂µλ(x) (2.4.3)
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This requires the existence of a Covariant Derivative that acting on a field is,

Dµφ = ∂µφ+ icAµφ (2.4.4)

where c is some constant. The path integral quantisation method now presents some

difficulties. The generating functional for the theory is

Z =

∫
DAµ exp

[
i

∫
d4x LQED

]
(2.4.5)

The problem arises from the measure DAµ as this integration over all Aµ includes

those which are identical due to the invariance of the field shown in 2.4.3. This

requires a term to be inserted into the Lagrangian to remove this over counting. This

term is known as gauge fixing term and fixes the integral to not include the values

related by the gauge transformation. The Gauge constraint imposed is ∂µA
µ = 0.

Resulting in the new Lagrangian.

LQED = −1

4
FµνF

µν − 1

2

(
∂µA

µ
)

(2.4.6)

The symmetry in Quantum electrodynamics is a U(1) symmetry [19], which is an

abelian group. However, there are other theories known as non-abelian Gauge theo-

ries, Or Yang-Mills Theories. The starting point is much the same, there is a vector

field that is invariant under a transformation φ(x) → eiλ
α(x)(Tα)φ(x). Which when

taken to a power series expansion gives the infinitesimal transformation in the form

φ(x)→ φ(x) + δφ(x), where δφ(x) is given by:

δφ(x) = iλα(x)(Tα)φ(x) (2.4.7)

with the term Tα representing matrices which are the generators of the gauge group

and produce the structure functions.[
Tα, Tβ

]
= fγαβTγ (2.4.8)

And λα are the infinitesimal parameters that likewise appear in QED. As such for

some gauge field Aµ(x) the transformation given as.

δAαµ = ∂µλ
α + fαγβλ

βAγµ (2.4.9)

This allows for the construction of a covariant derivative.

Dµφ(x) = ∂µφ(x)− iAαµTαφ(x) (2.4.10)

This is so that the transformation of the covariant derivative becomes a a simple

gauge transformation on the whole derivative as extra terms cancel as follows.

δ
(
Dµφ

)
= ∂µ(δφ)− i(δAαµ)Tαφ(x)− iAαµTα(δφ(x)) (2.4.11)
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The inserted transformations cancel down to simply.

δ
(
Dµφ

)
= iλα(Tα)(Dµφ) (2.4.12)

Now the commutation relation for these covariant derivatives gives:

[Dµ, Dν ] = −iGγ
µνTγ (2.4.13)

Where the tensor Gγ
µν is analogous to the Faraday tensor but includes a term that

arises due to this being built from a non-abelian gauge field [14]. The tensor’s general

form is,

Gγ
µν ≡ ∂µA

γ
ν − ∂νAγµ + fγαβA

α
µA

β
ν (2.4.14)

It transforms as δGγ
µν = λαfγαβG

β
µν . This tensor is what is needed to construct a

Yang-Mills theory which has the Lagrangian.

LYM = −1

2
Tr(G2) = −1

4
Gα
µνG

αµν (2.4.15)

The quantisation of a theory like this is not as simple as QED as there needs to be

a term included to fix the gauge and some extra terms that arise from the Faddeev-

Popov method [20], known as ghosts which are a requirement due to the the non-

abelian nature of the theory The ghosts can be thought of as negative degrees of

freedom which are inserted into the theory to account for the non-physical degrees

of freedom that arise from the non-abelian gauge symmetry. These ghosts are not

physical fields as they violate spin statistics as they obey Fermi-Dirac statistics but

are complex scalar fields, in this case [19]. The generating functional for the theory

without this consideration is.

Z =

∫
DAµ exp

[
i

∫
d4x
(
− 1

2
Tr(Gα

µνG
αµν) + jαµA

α
µ

)]
(2.4.16)

The choice of gauge fixing term is selected dependent on the theory. In this case a

simple gauge fixing term can be used to fix ∂µA
µ = 0

Lgauge = −e1

2
(∂µA

αµ)2 (2.4.17)

Where e has no independent degrees of freedom and solving its equations of motion

produces the desired constraint. The Lagrangian for the ghosts in a Yang-Mills

theory follow the general form of:

Lghost = −∂µc̄α∂µcα −Mfαβγ(∂µc̄α)Aβµc
γ (2.4.18)

Where the c̄ denotes an anti-ghost conjugate to the normal ghost. The first term

in the Lagrangian acts as the kinetic term and the second describes the ghost in-

teractions with the gauge fields through some coupling constant M . As a result of
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these ghosts they must also have some source terms so the full generating functional

becomes.

Z =

∫
DAµDcDc̄ exp

[ ∫
d4x LYM + Lgauge + Lghost

]
(2.4.19)

× exp

[
i
(∫

d4x jαµAαµ + cαξ̄α + c̄αξα
)]

(2.4.20)

The ξ terms represent the sources for the ghosts and anti-ghosts. This approach will

be needed again, and covered in more detail, when encountering the path-integral

formulation of String Theory.

3 String Theory

String theory was originally a theory proposed to describe the physics of the strong

nuclear force. Now Quantum Chromodynamics4 is the more widely accepted and

String Theory now serves as a way of producing scattering amplitudes that have the

same form as supersymmetric 5 Yang-mills theories [23] and that supersymmetric

string theories are dual to Supersymmetric Yang-Mills theory through Ads/CFT

correspondance [24]. The starting point for studying String theory is to extend

the picture of a particle to that of a string. Which is to say if you start with a

relativistic point particle travelling through space-time, said particle traces out a

path. The action of that particle can then be seen to be an integration over the line

element and by parametrisation of the line element with respect to the proper time

the action becomes.

Sp = −m
∫

dτ
√
−ηµν ẋµẋν = −m

∫
dτ
√
−ẋ2 (3.0.1)

Where ẋ2 is the derivative with respect to proper time and xµ is parametrised by

τ This action is insufficient as it doesn’t allow for massless particles so there is the

need for the introduction of an auxiliary field in this case known as an einbien e(τ).

S =
1

2

∫
dτ
(
e−1ẋ2 − em2

)
(3.0.2)

4QCD is a Yang-Mills Theory. Yang-Mills theories currently underpin our understanding of

the standard model and provides unification of the Strong force, Weak force and electromagnetism

given by the symmetry group SU(2) x U(1) x SU(3)
5Supersymmetry is a requirement for string theory to describe any theory with fermions in them

as the fields that form the basis of string theory are scalar fieldss with Bosonic statistics so when

quantised only represent Bosonic states. However, as supersymmetry is not discussed in the research

of this thesis, it will not be discussed here, for a comprehensive review of supersymmetry see [21]

and for its application to string theory see [22]
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Solving the equation of motion for the einbien leads to the solution that e =
√
−ẋ2

m
if

m 6= 0 By fixing this gauge and when m = 0, e = 1 the einbien has no indipendent

degrees of freedom [22]. To make this into a string theory some alterations must be

made. First it is important to outline the coordinates that will be used as this will

no longer be a world line theory, rather a Worldsheet theory the parametrisation

with τ remains but there needs to be an extra degree of freedom σ that for an open

string is constrained by σ = 0, . . . , l .l being the string length, and for a closed string

σ = σ+ 2π. Now the integrand of the theory must represent the area element of the

worldsheet. To do so impose the metric gab such that.

gab = ηµν∂aX
µ∂bX

ν (3.0.3)

g = det(gab) (3.0.4)

The differentials ∂a represent differentiation with respect to σa where a = 0, 1 and

σ0 = τ and σ1 = σ. Xµ(σa) is the function representing the embedding of the

worldsheet onto space-time. The action for this string is.6

S =
−T
2

∫
dσa
√
−g (3.0.5)

The factor T represents the String Tension and is equal to 1
2πα′

[25]. The significance

of this lies in the term α′ which corresponds to the Regge slope. 7The action is

known as the Nambu-Goto action for the string and from it the equations of motion

of the string can be found. There are some things that can be done to make the

action easier to deal with, by removing the square root, in a similar method to how

the action for a relativistic point particle is altered, by introducing an auxiliary field.

However, in this case the term introduced is the worldsheet metric hαβ(τ, σ) and the

action becomes.

S =
−T
2

∫
d2σ
√
−hhαβηµν∂αXµ∂βX

ν (3.0.6)

Where h = det(hαβ). As would be expected the Polyakov action has some symmetries

that have to be considered. The first of which is Poincaré invariance which is a global

symmetry.

Xµ = LµνX
ν + aµ (3.0.7)

Lµν is the tensor for the Lorentz transformation. There is also the Diffeomorphism

invariance, which means that the fields are invariant under the redefinition of coor-

dinates. For Xµ the transformation is.

Xµ(σ)⇒ X ′µ(σ′) ≡ Xµ(σ) (3.0.8)

6It would be possible to further extend this action for higher dimensional objects by increasing

the index a = 0, . . . , n where n is the dimensionality of the object in question.
7The Regge slope is obtained from the plotting spin against mass squared
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As the metric is also dependent on the worldsheet coordinates this must also be

invariant. A 2d metric diffeomorphism is given as.

hαβ(σ)⇒ h′αβ(σ′) = ∂′ασ
λ∂′βσ

εhλε(σ) (3.0.9)

The derivative is ∂′α = ∂
∂σ′α

. There is a third and final symmetry that only affects

the worldsheet and it is a local rescaling of the metric, known as Weyl invariance.

hαβ ⇒ e2ω(σ)hαβ (3.0.10)

For suitably small ω(σ) the transformation can be seen to be δhαβ = 2ω(σ)hαβ. The

combination of both local rescaling of the metric (Weyl invariance) and combined

with the diffeomorphism invariance means that in 2 dimensions we can define the

fiducial metric ĥ which can locally take any form [26]. The choice can be made for

the Polyakov string that the worldsheet metric is the Minkowski metric.

S =
−T
2

∫
d2σ ∂αX

µ∂αXµ (3.0.11)

Which is the same as the action for a free scalar field in 2 dimensions. Bearing in

mind that after having made the choice for the worldsheet metric the choice still has

to satisfy the the equations of motion for the worldsheet metric. Which is

δS =
−T
2

∫
d2σ δhαβ

(√
−h∂αXµ∂βXµ −

1

2

√
−hhαβhλε∂λXµ∂εXµ

)
= 0 (3.0.12)

This expression is obtained by using the identity for the variation of a metric de-

terminant δ(h) = hhαβδhαβ, in this case the transformation needed is δ
√
−h =

1
2

√
−hhαβδhαβ. The Stress tensor for the theory can be found by multiplying out the

string tension and
√
−h and via functional differentiation of the action with respect

to the worldsheet metric.

T ab =
−2

T

1√
−h

δS

δhαβ
(3.0.13)

= ∂αX
µ∂βXµ −

1

2
hαβ
(
∂γX

µ∂γXµ

)
(3.0.14)

3.1 Path Integral Quantisation in String theory

Above is the description of the classical relativistic string. However, String theory is

used to produce Gauge theories and as such it is important to understand how the

theory is quantised. The Path integral method is much the same as in quantum field

theory in so much as the starting point is the integral over all possible fields.∫
DXDh exp(−S) (3.1.1)
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However as a result of the gauge fixing discussed prior this integration results in

an over counting. So after the fixing of the metric, usually to a flat metric, the

integration over the metric can be removed as the coordinates are invariant and so

is the local scaling under the Weyl invariance. A common way of writing the gauge

fixing is as dividing over the volume of the gauge group.∫
DXDh

VolDiff×Weyl

exp(−S) (3.1.2)

After this consideration the only measure that is integrated over is DX This is impor-

tant to isolate the physical configurations not related under gauge transformations.

As has been said in the context of Yang-Mills the method for producing a sensible in-

tegral for the generating functional is the Faddeev-Popov method. To do so consider

the overall gauge transformation of both Diffeomorphism and Weyl.

hαβ(σ) = h
(g)
αβ(σ′) = e2ω(σ)∂′ασ

λ∂′βσ
εhλε(σ) (3.1.3)

Where the combined transformation is denoted by the super script (g) as in (g) :

h→ h(g).The Faddeev-Popov determinant is given as.

1 = ∆FP (h)

∫
D(g) δ(h− ĥ(g)) (3.1.4)

This integral is done over a the measure D(g) which is the measure of the whole

gauge group. Note the change to the fiducial metric ĥ this will then change the the

dependence of the generating functional to the choice of the fiducial metric. Inserting

3.1.4 into 3.1.2 results in and integrating over the metric to solve the delta function.

Z[ĥ] =

∫
D(g)DX

VolDiff×Weyl

∆FP [ĥ] exp(−S) (3.1.5)

As now the only gauge dependent part of the integral is the measure for the gauge

group, integrating over this produces the volume of the gauge group which cancels

with the denominator in the generating functional and produces.

Z[ĥ] =

∫
DX ∆FP (ĥ) exp(−S) (3.1.6)

Now all that remains to be done is to pin down what the Faddeev-Poppov de-

terminant is. The way to do this is to look at the combined diffeomorphism and

Weyl transformations as infinitesimal transformations. The Weyl transformation is

parametrised by ω and in the diffeomorphism the infinitesimal variation of the coor-

dinate is parametrised by some field δσα = cα(σ). The infinitesimal transformation

is:

δĥαβ = 2ωĥαβ +Dαcβ +Dβcα (3.1.7)
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Where Dα is the covariant derivative required for the infinitesimal transformation

Dαcβ = ∂αcβ − Γγαβcγ. The tensor in the second term for the covariant derivative is

the Levi-Civita connection to the worldsheet metric.

Γγαβ =
1

2
hγδ(∂αhβδ + ∂βhδα − ∂δhαβ)

The expression for the Faddeev-Popov determinant 3.1.4 can be rearranged to give

an expression for the inverse determinant. Then inserting the infinitesimal transfor-

mation as the delta function and subsequently changing the measure of integration

to be over the parametrisation of the transformation gives the inverse determinant

as.

∆−1
FP [ĥ] =

∫
DωDc δ(2ωĥαβ +Dαcβ +Dβcα) (3.1.8)

Writing the delta functional in it’s integral form gives the expression[25].

δ(2ωĥαβ +Dαcβ +Dβcα) =

∫
db exp

(
2πi

∫
d2σ

√
ĥbαβ(2ωĥαβ +Dαcβ +Dβcα)

)
(3.1.9)

Inserting 3.1.9 into 3.1.8 and integrating over the Weyl parametrisation requires that

bαβĥαβ = 0 meaning bαβ is a symmetric traceless matrix. This leads to

∆−1
FP [ĥ] =

∫
DbDc exp

[
4πi

∫
d2σ

√
ĥbαβDαcβ

]
(3.1.10)

Taking the inverse of this the determinant looks like this.

∆FP [ĥ] =

∫
DbDc exp

[
i

4π

∫
d2σ

√
ĥbαβD

αcβ
]

(3.1.11)

The factor of 1
4π

can be changed to affect the normalisation by rescaling b and c. Now

going back to the generating functional 3.1.6 and inserting the determinant 3.1.11.

Z[ĥ] =

∫
DXDbDc exp

(
− Sp − Sghost

)
(3.1.12)

Sp is the Polyakov action and Sghost represents the ghost action and is the exponent

of the Faddeev-Poppov determinant [22]. The subject of ghosts and their action will

feature more in the discussion of String Theory as a conformal field theory.

3.2 String Theory as a Conformal Field Theory and the operator product

expansion

Writing the Polyakov action out with the choice of a euclidean world sheet gives

S =
T

2

∫
d2σ ∂1 X

µ∂1Xµ + ∂2X
µ∂2Xµ. (3.2.1)
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This can be written more simply with the use of complex coordinates z = σ1+iσ2 and

z̄ = σ1− iσ2. This requires the defining of integrals with respect to these coordinates

which are

∂ =
∂

∂z
=

1

2
(∂1 − i∂2), (3.2.2)

∂̄ =
∂

∂z̄
=

1

2
(∂1 + i∂2). (3.2.3)

The integration also then needs to change to represent the change of coordinates

dz dz̄z = 2 dσ1 dσ2. So the new action is

S =
1

2πα′

∫
dz dz̄ ∂X · ∂̄X, (3.2.4)

and as one would expect the equations of motion are

∂(∂̄Xµ) = ∂̄(∂Xµ) = 0. (3.2.5)

From this it can be seen that ∂Xµ is holomorphic and ∂̄Xµ is antiholomorphic.

Converting this to example to a Minkowski world sheet metric is a simple matter

of imposing the relation σ2 = iσ0 then holomorphic functions are only dependent of

σ0− σ1 and antiholomorphic is only dependent on σ0 + σ1 8. Another Useful part of

the theory is to look at how the stress tensor is written in complex coordinates. It

is derived in the same way as before and is traceless but becomes

T = − 1

α′
∂X∂X (3.2.6)

T̄ = − 1

α′
∂̄X∂̄X (3.2.7)

and satisfies ∂̄Tz = ∂Tz̄z̄ = 0. Which means T ≡ Tzz is holomorphic and T̄ ≡ Tz̄z̄
is antiholomorphic. After producing the action for the conformal field theory the

next thing to do is to quantise and the form of the generating functional stays the

same as it has before. The difference in this case is that it is useful to look at what

the expectation of a product of local operators is. Defining the expectation of some

functional A[X] as was given in 2.3.10〈
A[X]

〉
=

∫
DX exp(−S)A[X] (3.2.8)

elaborating on this and writing the functional A[x] as a string of some local operators

on the world sheet the expectation is:〈
O1O2 . . .On

〉
=

∫
DX exp(−S)Oa1Oa2 · · · Oan (3.2.9)

8It is from these definitions that holomorphic functions are often described as left moving and

antiholomorphic as right moving
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(This is the form that will be used when discussing vertex operators and scattering

amplitudes).Oa describes a local set of operators related through

Oa(z, z̄)Ob(z′, z̄′) = Cc
ab(z − z′, z̄ − z̄′)Oc(z′, z̄′) (3.2.10)

This is what is known as the operator product expansion [25], [27] which is the de-

scribes what happens when there are two operators within close proximity of each

other. Cc
ab is a set of functions dependent on the separation of the two operators9,

these are known as the coefficient functions. It then stands to reason that the inser-

tion of an expectation of a set of operators can be written in a similar way replacing

Oc with
〈
Oc
〉
. Now that the bare bones of the theory has been described in complex

coordinates how ghosts enter into a CFT can be looked at. By inspection of the ghost

action given in 3.1.11 redefining the coordinate system to a complex coordinates gives

the action

Sghost
1

2π

∫
dz dz̄

(
b∂̄c+ b̄∂c̄

)
(3.2.11)

Where b and c are holomorphic and b̄ and c̄ are antiholomorphic and are short hand

ways of writing bzz, c
z ,bz̄z̄ and cz̄. The Stress tensor for the ghosts can then be found

for the ghost action as

T = 2∂cb+ c∂b (3.2.12)

T̄ = 2∂̄c̄b̄+ c̄∂̄b̄ (3.2.13)

Now that there is an action for the ghosts as a Conformal field theory it is important

to define the operator product expansions of the two ghosts. The way this is done

is by looking at a total a functional derivative of the expectation of one fields. As

this results in a path integral of a total derivative the overall result must be zero so

it leads to an easily manipulable expression. Looking at the case of

δ

δc(z)

〈
c(z′)

〉
=

∫
DbDc δ

δc(z)

(
exp(−Sghost)c(z′)

)
(3.2.14)

This results in:

− 1

2π
∂̄b(z)c(z′) + δ(z − z′) = 0 (3.2.15)

Rearranging and using the formula:

∂̄

(
1

z

)
= 2πδ(z, z̄) (3.2.16)

doing this again for the expectation of a b ghost results in a similar expression and

helps produce the OPEs

b(z)c(z′) =
1

z − z′
(3.2.17)

c(z′)b(z) =
1

z′ − z
(3.2.18)

9This is assuming that the operators are time ordered, or in some cases radially ordered
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It is also at this point worth noting that c(z)c(z′) = 0 and b(z)b(z′) = 0 due to them

being grassmann variables. The same method can be used to find the propagator for

the scalar field X [25]in this theory which for the holomorphic part results from the

OPE:

X(z)X(z′) = −α
′

2
ln(z − z′) (3.2.19)

as X enters into the action only as a derivative term it is more useful to treat the

derivative of X as an operator and the OPE can be obtained in the same way as

before or mores imply by differentiating the OPE with respect to z and z′ to obtain.

∂X(z)∂X(z′) = −α
′

2

1

(z − z′)2
(3.2.20)

As can be seen from these examples the result of the OPE changes depending on

the ordering of the operators. Using this OPE, radial ordering[28] 10 and Wick’s

theorem, the OPE of the two stress tensors can be found.

R[T (z)T (z′)] =
D

2(z − z′)4
+

2T (z′)

(z − z′)2
+

∂T (z′)

(z − z′)
(3.2.22)

The above result has been expanded out by a Taylor expansion and then be used

to produce the Virasoro algebra [22], this will not be covered in this thesis. The

D term has arisen from the multiple metric terms that have been omitted from

previous expressions of the stress tensor for the sake of tidiness but it is important

to remember that they are there and if they take the form of the Minkowski metric

then D has arisen from ηµνηλρη
µληνρ = δλν δ

λ
ν .

3.3 BRST Formalism

The method of Quantisation that is of interest to this thesis is known as BRST quan-

tisation which is based around having a theory with a symmetry that the constraints

follow the form

{Ga, Gb} = fabc G
c (3.3.1)

Where fabc are the structure constants of the closed Lie-Algebra and satisfies the

Jacobi identity [22]. The process also requires a gauge fixing condition, this is usually

done by setting a function or functional of the matter fields to be zero.

Ga(Xµ) = 0 (3.3.2)

10Radial ordering fixes the order of operators in an expression depending on the which sits at a

larger complex radius eg.

R[O(z)P(z′)] =

{
O(z)P(z′) if |z| > |z′|
(−1)P(z′)O(z) if |z′| > |z|

(3.2.21)

The (−1) only appears if the operators are fermionic.
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As this technique being described is obviously requires some non-abelian gauge theory

as has been previously discussed the standard procedure is the inclusion of ghost

fields b and c and are defined ass conjugate to each other. From this there exists a

Classical BRST charge, Q can be constructed from any gauge symmetry [22]. The

BRST charge is the generator of the BRST transformations under which all fields in

the theory transform. The classical BRST charge must be nilpotent i.e.

{Q,Q} = 0 (3.3.3)

The BRST charge for a theory that can be described as above takes the form.

caG
a − 1

2
fabcacbb

c (3.3.4)

One other thing to keep in mind is the BRST charge has ghost number +1 and will

always increase the ghost number by +1 when acting on a field 11 When looking at

the Bosonic String in the complex coordinate space that was the topic of the previous

subsection the the BRST charge is

Q =

∮
dz cTm +

1

2
cTgh −

∮
dz̄ c̄T̄m +

1

2
c̄T̄gh (3.3.5)

Or when written fully

Q =

∮
dz dz̄

[
− 1

α′
c∂X∂X +

1

α′
c̄∂̄X∂̄X + bc∂c− b̄c̄∂̄c̄

]
(3.3.6)

Normally there is a 2nd order differential of the c and c̄ ghosts in the integrand

but I have omitted it in this case. Acting this charge and using the OPE relations

the BRST transformations are found. The charge more commonly considered is the

purely holomorphic version[25]. One interesting result of the BRST charge is that it

can be used to reproduce the conformal anomaly from the OPE of two stress tensors

3.2.22 but in this case the same can be done for the Ghost Stress tensor and can be

compared.

R[Tgh(z)Tgh(z
′)] = − −13

(z − z′)4
+

2Tgh
(z − z′)2

+
∂z′Tgh(z′)

z − z′
(3.3.7)

Equating this to the result 3.2.22 the value for D is 26 and is a requirement for

the BRST charge to be nilpotent[22]. The reason for this is because the only terms

that have a factor of 1
(z−z′)4 are the first terms in 3.2.22 and 3.3.7 which must sum

to zero for Q to be nilpotent. At this point it is worth defining the terms “BRST

exact” and “BRST closed”. Closed states are those which when the BRST charge

acts on them then they reduce to zero, whereas, a BRST exact state is obtained

11Ghost number is a property of ghost fields: c has ghost number +1 and b has ghost number -1
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through the action of the BRST charge. The BRST charge can be used to produce

the Virasoro algebra of String theory, however, this will not be covered here for the

sake of brevity. Overall the BRST formalsim provides an elegant way of encoding all

of the symmetries of a theory into one term and how that can be inserted into the

action of a theory and serve to gauge fix the theory in section 8.

3.4 Scattering Amplitudes

As is the case in QFT the computation of S-matrix elements are important as they

represent the interactions of the theory. So far the only parts of string theory that

has been shown is the free theory. The most common example considered is the

4-point S-matrix. The world sheet picture of this can be modelled as a sphere with 4

insertion points for the strings. at each of these insertion points are what are known

as vertex operators Vαi , these arise from conformal field theory and define a local

operator that represents a state.In the case that will be considered here the topology

of the worldsheet can be considered to be a sphere and the Vertex operators are

local operators on the worldsheet. The choice of these vertex operators defines what

states are present in the String scattering. However, to consider the full S-matrix all

possible topologies of the world sheet must be considered[25]. When discussed above

the shape mentioned was a sphere, however, it is possible for the shape to also be

a torus or any other higher genus shape. So a way to include this is to make add a

term to the action.

S = Spoly + λ
1

4π

∫
d2σ
√
hR (3.4.1)

λ is a coupling constant weighing the contribution of the integral that has been

added. Which is the 2 dimensional Einstein-Hilbert action where R is the Ricci

scalar of the world sheet metric[26]. In 2-dimensions this integral is very different to

the 4 dimensional case, here it simply serves to count the genus of the worldsheet.

Representing the integral as Ω then the value changes with respect to the genus as,

Ω = 2(1− g), (3.4.2)

and g is the number of holes in the world sheet or in other words, its genus. Now that

this has been outlined the matter of the coupling constant needs to be considered to

understand how much higher order genus world sheets contribute to the S-matrix.

As the coupling constant λ 12 will enter into the partition function as an exponential

then it can be written as a new constant gs = eλ This can now be made analogous

to perturbation theory in QFT. The expectation for n Vertex operators on spherical

12This is actually represents the term known as the dilaton [25] which is a scalar field that plays

an important part in string theory
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world sheet is〈
Vα1 · · ·Vαn

〉
=

∫
DX exp

[
− 1

2πα′

∫
dz dz̄ ∂X∂̄X

] n∏
i=1

Vαi(pi) (3.4.3)

There is a subtlety hidden in this expression and it lies in the gauge fixing. As

the geometry of the world sheet is now a sphere, one might think that the fixing

of the metric to being euclidean no longer works. However due to the Weyl and

diffeomorphisms any metric on a sphere can locally be mapped to a flat plane and

therefore the gauge fixing holds. The general form for the scattering amplitude is

A(αi, pi) =
1

Vol

∑
topologies

g−Ω
s

〈
Vα1 · · ·Vαn

〉
(3.4.4)

The volume term that has appeared in this expression requires some explaining,

even though the action has been gauge fixed to a choice of metric there is a remnant

symmetry arising, with the structure SL(2; C)13 which is a result of the infinite

dimensional Virasoro algebra [26]. This symmetry allows the movement of any three

points on a sphere to three other points and once that is done the gauge is fixed.

The simplest Amplitude to compute is the 4 Tachyon Tree level (genus zero world

sheet) scattering amplitude. The vertex operators for the Tachyon14 are [26]

V (pi) = gs

∫
dz dz̄ eipiX (3.4.5)

This then allows the expression for the amplitude to be written as

A(4) =
g2
s

Vol(SL(2; C))

∫ 4∏
i=1

dzi dz̄i

∫
DX exp

[
− 1

2πα′

∫
dz dz̄ ∂X∂̄X

]
exp

[
i

4∑
i=1

piX

]
(3.4.6)

Although this can seem daunting at first really this can be seen to be a Gaussian

integral that occur in Quantum field theory with the free section of the theory plus

a source term which can then be written with respect to the propagator of the scalar

fields15, which have already been derived 3.2.19, and the source terms which will

arise from the vertex operator. So, in actuality the amplitude looks like this

A(4) =
g2
s

Vol(SL(2; C))

∫ 4∏
i=1

dzi dz̄i exp

[
πα′

2

∫
dz dz̄ dz′ dz̄′ j(z, z̄)(P )j(z′, z̄′)

]
(3.4.7)

13The SL stands for “Special Linear” and it is a group of complex 2X2 matrices with unit

determinant
14This is derived from the State operator mapping in conformal field theory and come from the

mode expansions of the string to contour integrals
15It will look different here as the propagator being considered will be considering both coordinates

z and z̄ whereas before the only consideration was for the holomorphic case

23



where (P ) is the propagator of the scalar fields X which is

(P ) =
1

2π
ln |z − z′|2 (3.4.8)

From the standard way of inserting the source term (ij ·X) and comparing with the

vertex operator 3.4.5 the source term can be found to be

j(z, z̄) =
4∑
i=1

piδ(z − zi, z̄ − z̄i) (3.4.9)

This makes the amplitude simpler to compute

A(4) =
g2
s

Vol(SL(2; C))
δ26

(∑
i

pi

)∫ 4∏
i=1

dzi dz̄i exp

[
α′

2

∑
j,k

pjpk ln |zj − zk|
]

(3.4.10)

The delta term arises to encode the momentum conservation and arises as the form

of the source term insertion is the Fourier transform of the delta function. One last

thing to note is that normal ordering will remove the terms where j = k. The final

thing that needs to be done is simplifying the exponential and gauge fix by moving

three of the insertion points to z1 = ∞, z2 = 0, z3 = z, z4 = 1 [25]. The choice of

these points is for simplicity of calculation and any points could have been chosen,

the result of doing this and only having one point which isn’t fixed there is only one

integral to do.

A(4) = g2
sδ

26

(∑
i

pi

)∫
dz dz̄ |z|α′p2p3|1− z|α′p3p4 (3.4.11)

After this there is the matter of assigning which are the incoming and outgoing states

and setting the value of α′. The z integration can be turned into a Gaussian integral

through subbing in:

|z|−a =
1

Γ(a
2
)

∫
dx x

a
2 e−x|z|

2

(3.4.12)

and the same can be done for the |1 − z|.This can be solved using the Euler-beta

function. Then defining the Mandelstam variables 16 as s = −(p1+p2)2 = −(p3+p4)2,

t = −(p1 + p3)2 = −(p4 + p2)2 and u = −(p1 + p4)2 = −(p3 − p2)2 and setting the

value of α′ = 1/2 then the result is.

A4 = g2
sδ

26

(∑
i

pi

)
Γ(−1− s

8
)Γ(−1− t

8
)Γ(−1− u

8
)

Γ(2 + s
8
)Γ(2 + t

8
)Γ(2 + u

8
)

(3.4.13)

16Mandelstam variables are a simple way to represent the ingoing and outgoing momenta in

combined variables that sum to give the sum of masses squared, which for Tachyons is negative
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where the Gamma functions are a shorthand way of writing the integral

Γ(a) =

∫ ∞
0

dx xa−1e−x (3.4.14)

This is a short introduction to the method of computing scattering amplitudes with

one of the simplest examples that has a nice result. For more examples and a more

rigorous treatments of scattering amplitudes see [25] and [22] .Scattering amplitudes

will be revisited in the context of the Ambitwistor string in section 4.2.

4 Twistor Space and Twistor String Theory

Twistor string theory was first fully explored by Witten in 2003. Since then there

have been many explorations into String theory in Twistor space as it appears to

provide an alternate framework for producing gauge theories and scattering ampli-

tudes [3] [29] [2] [30] [8] [31] and [32] are just a few examples. Twistor Space/ Twistor

theory was produced by Roger Penrose as an attempt to provide a way to quantize

gravity [33][34] [35]. The core concept of Twistor theory is that points in space and

time are secondary constructs, formed from Twistors. That is to say that a single

Twistor (light ray) represents a single point in Twitsor Space and that all Twisors

that intersect a single spacetime point form the points on the surface of a Reimann

Sphere CP1.

4.1 An Introduction to 4 Dimensional Twistor Space

The most well understood form of Twistor space is the 4 dimensional case, which

I will explore here to give some context. However, it is important to note that

in the following research sections we will be looking at theories in 10 dimensional

Ambitwistor space which is still an area of ongoing research and the construction of

Ambitwistor space is much more complicated when not in 4 Dimensions

This model of Twistor space is constructed by an from 4 dimensional Minkowski

space-time. Then the Twistor Zα where α = 0, 1, 2, 3 where each component of

can be related to the real space-time coordinates t, x, yand z through the incidence

relation given by Penrose.(
Z0

Z1

)
=

i√
2

(
t+ z x+ iy

x− iy t− z

)(
Z2

Z3

)
(4.1.1)

The sign convention in the matrix above is a result of the choice of signature for the

4 dimensional Minkowski space. From this there exists a case where the product of

a Twistor and a dual Twistor (For a definition of a dual Twistor see 4.1.11 for the
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representation in Spinor variables and compare to the expression for a Twsitor 4.1.6)

is zero, in the case where they arise from a null geodesic.

A dual Twistor, in flat complex spacetime C4 , can be defined as the complex con-

jugate of a Twistor with components such that Z̄0 = Z̄2, Z̄1 = Z̄3, Z̄2 = Z̄0, Z̄3 = Z̄1

. Defining this also fixes the signature of the spacetime metric.The spacetime points

incident with null Twistors can be seen to fall along null lines in spacetime or light

rays. The space of these Null Twistors is what Penrose originally described as Twistor

Space . According to Penrose [33] non-null twistors they can be considered to rep-

resent classical massless particles and as a result of this interpretation it defines

constraints on the parameter of momentum, pµ

pµpµ = 0 (4.1.2)

and are moving forward in time i.e.

p0 > 0 (4.1.3)

A useful way of representing Twistors is as 2 Spinor parts, λa and µa. From the

starting point of 4 dimensional complex spacetime C4 with standard coordinates xµ

then through the introduction of λa as spinor degrees of freedom the space is elevated

to 6 dimensional complex space C6. This can then be reduced by the introduction

of the incidence relation:

µa = xaȧλa (4.1.4)

xaȧ = xµσaȧµ (4.1.5)

The Spinors being defined here µa and λa that their values from 4.1.1 as

Z0 = µ0, Z1 = µ1, Z2 = λ0̇ and Z3 = λ1̇. (4.1.6)

The indices a and ȧ take the values 0 or 1 and ȧ represent spinors of opposite chrality

to those indexed by a where σaȧµ are the 2x2 Pauli spin matrices that map spinors

of opposite chirality to each other and are obtained from the Dirac gamma matrices

can be used to write xµ as a bi-spinor, xaȧ .With these incidence relations imposed

we can see that the space is reduced to a 3 dimensional complex projective space

CP3 when.

t ∈ C4 (4.1.7)

Zα ∼ tZα (4.1.8)

if we define the Twistors as follows.

Zα =

(
µa

λȧ

)
(4.1.9)
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A similar process for the translation of the xµ to a bi-spinor can be done with the

momentum vector Pµ.

Paȧ = σµaȧPµ where Paȧ = λȧλ̃a (4.1.10)

λ̃ arises in the same way as λ has in 4.1.4 except they arise from the dual twistor

4.1.14 and the spinor parts are in the reverse order from before

W0 = λ̃0, W1 = λ̃1, W2 = µ̃0̇ and W3 = µ̃1̇. (4.1.11)

The translation from these vectors to bi-spinors necessitates that

P 2 = PµP
µ = det(Paȧ) (4.1.12)

From the definition outlined prior for the space of non null Twistors describing

massless particles where P 2 = 0 requires the determinant of the bi-spinor Paȧ to be

zero and from the incidence relations forces .

Paȧ = λȧλ̃a (4.1.13)

The notion of Ambitwistor space can be described easily as a space composed of both

Twistors and dual Twistors. A dual Twistor, defined using the same notation and

procedure as the Twistor written down earlier, is written as

Wα =

(
λ̃a
µ̃ȧ

)
(4.1.14)

Both the Twistor 4.1.9 and the dual Twistor 4.1.14 arise from a null line when they

satisfy.

ZαWα = 0 (4.1.15)

This occurs due to the incidence relations for a Twistor arising from null geodesic

with momentum as shown in 4.1.13

Zα =

(
ixaȧλȧ
λȧ

)
and Wα =

(
λ̃a

−ixaȧλ̃a

)
(4.1.16)

Ambitwistor space is then given as a space defined by the Coordinates (Z,W ) where

both arise from a null line.

A = {Z,W ∈ CP3|Z ·W = 0} (4.1.17)
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4.2 Ambitwistor String Theory

The purpose of Investigating String theories in Twistor space is to provide a frame-

work for constructing scattering amplitudes for field theories and has been done so

succesfully by Witten [3] [29]. Following that, more expressions for scattering ampli-

tudes were found and were expanded on by Cachazo, He and Yuan describing massless

scattering amplitudes (CHY Amplitudes)[5][6][4][7]. Mason and Skinner then sought

to provide String Theories existing in the space of Complex Null geodesics that can

replicate the CHY amplitudes. The Bosonic action is obtained from the worldline of

a massless particle [36].

S =
1

2π

∫
l

Pµ∂τX
µ − e

2
P µPµ (4.2.1)

This can be seen to be equivalent to 3.0.2 by solving the equations of motion for

Pµ which results in e−1∂τX
µ = P µ. Subbing this back into 4.2.1 returns 3.0.2 when

m = 0. Which has the following transformations.

δXµ = αP µ, δPµ = 0, δe = dα (4.2.2)

The action for the bosonic string is obtained by complexifying the worldline and the

target space. This can be seen by replacing the differential ∂τX
µ with ∂̄Xµ using

the notation introduced in section 3.2

S[X,P ] =
1

2π

∫
Σ

Pµ∂̄X
µ − e

2
gµνPµPν (4.2.3)

where the holomorphic worldsheet coordinate σ has been suppressed. The modifica-

tions mean that the action describes the worldsheet as a complex Riemann surface

Σ living in a space of null geodesics with the gauge fixing term that forces P 2 = 0

when solving the equation of motion for e. Where P µ is a complex (1,0) form on the

worldsheet.This means that e must represent a (0,1) form on the worldsheet which

has values in the tangent space to the worldsheet and is therefore a Beltrami differ-

ential. Xµ are the coordinates on complex space-time. The transformations of the

fields in this action are the same as those given in the particle theory in so much as

the transformation of Xµ is given as a scaling along a null direction and can be given

as equivalent. We know that P µ must be null by construction and this allows for the

natural consideration and this theory in a space of null geodesics. The symmetries

imposed on this action

δXµ = αP µ, δPµ = 0, δe = ∂̄α (4.2.4)

describe a transformation on the worldsheet which can then be gauge fixed by setting

e = 0. Doing this and fixing the worldsheet metric to be holomorphic such that these

28



are the only degrees of freedom that enter this theory requires the introduction of 2

sets of ghosts.

S =
1

2π

∫
Σ

Pµ∂̄X
µ + b∂̄c+ b̃∂̄c̃ (4.2.5)

The bc ghosts enter in the usual way and the b̃c̃ ghosts are as a result of the gauge

fixing of P 2 = 0. Now that the action has been gauge fixed and the conformal and

gauge transformations are known the construction of the BRST operator is simple

as it only requires the stress tensor and the gauge constraint 17.

Q =

∮
cT +

c̃

2
P 2 (4.2.6)

The formulation of scattering amplitudes requires the definition of vertex operators.

However,the simplest vertex operators can be found by a local variation in the space-

time metric with momentum eigenstates such that

δgµν(X) = εµνeik·X

Where k is representing the momentum insertion involved in the scattering process.

Requiring εµν to be symmetric and traceless. Leading to the vertex operator expres-

sion

cc̃V = cc̃PµPνε
µνeik·X (4.2.7)

The PµPν term arises from the variation of the space-time metric in the action. This

occurs as for the path integral the action sits in a partition function and the alteration

of the metric in the action from gµν → gµν + δ(gµν) partition function becomes.

Z[X,P ] =

∫
DXDP eSe

∫
Σ(εµνeik·XPµP ν) (4.2.8)

If this change in the metric is small then a series expansion results in.

Z[X,P ] =

∫
DXDP eS

(
1 +

∫
Σ

εµνeik·XP µP ν

)
(4.2.9)

The insertion of ghosts here is shorthand for the delta functions of the ghosts eval-

uated at that point on the worldsheet as they are grassmann. εµν is traceless as a

consequence of forcing P 2 = 0 Writing the Vertex operator in it’s usual integrated

form over the worldsheet. ∫
Σ

V =

∫
Σ

δ̄(k · P )PµPνε
µνeik·X (4.2.10)

This integral is interpreted as a local deformation in space-time as is the normal

procedure and is analogous to the usual vertex operators of String theory/conformal

17This will not be the case when the BRST charge is constructed for the theory in Ambitwistor

variables
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field theory. The factor δ̄(k · P ) does the same job as the usual delta function in so

much as it forces k · P = 0 but the δ̄ function is the form of the delta function that

arises from the Cauchy integral formula.

δ̄(z − z′) =
1

2πi

∮
dz′

1

z − z′
(4.2.11)

The application of this delta function can be seen to be applied in 4.2.16. However

the δ̄(k ·P ) exists simply due to the construction of the theory in Ambitwistor space

describing momentum eigenstates in flat spacetime and is fully described in section

2 of Mason and Skinner [2]. Once the Vertex operator expression is formalised then

obtaining the tree level scattering amplitudes for an arbitrary number of insertions is

obtained by the insertion of 3 fixed vertex operators V = PµPνε
µνeik·X and then an

arbitrary amount of integrated vertex operators to compute the correlation function

which gives the amplitude for n particle states.

M =
〈
c1c̃1V1c2c̃2V2c3c̃3V3

∫
V4 . . .

∫
Vn
〉

(4.2.12)

As the Vertex operators are not polynomial in X the plane wave terms eiki·Xcan be

inserted into the action as a summation for the number of vertex operators. so the

action becomes

S =
1

2π

∫
Σ

Pµ∂̄X
µ + i

n∑
i=1

ki ·Xδ2(σ − σi) (4.2.13)

The action now includes all of the X dependence and included in the path integral.

The delta function in the expression is used to fix the insertion of the vertex operation

on the Reimann surface. Through integration the kinetic term Pµ∂̄X
µ they decouple

from the zero modes. And the normal result of a delta function for momentum

conservation over all dimensions of space time, δ26(
∑

i ki) occurs from said integration

just like in 3.4. Integrating out X for the non-zero modes results in the field equation.

∂̄Pµ = 2πi
∑
i

kiµδ
2(σ − σi) (4.2.14)

On a worldsheet of genus zero i.e a sphere this has the unique solution for Pµ obtained

from the definition that P = Pσ(σ) dσ

Pµ = dσ
n∑
i=1

kiµ
σ − σi

(4.2.15)

This expression can be inserted into the expression of the vertex operators for the

momentum term in the delta function δ̄(ki · P (σi)).

k · P =
n∑
i 6=j

ki · kj
σi − σj

= 0 (4.2.16)
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The requirement for i 6= j is the result of the on shell condition k2
i = 0 and removes

the redundant terms. These are the Scattering equations of Gross and Mende [37].

One thing that must be kept in mind as is the case for all theories of this type as it

it still theory on a conformal map is the SL(2; C) symmetry and as such the final

form of the amplitude is:

M = δ26

(∑
i

ki

)∫
d2σ

Vol (SL(2; C))

n∏
i=1

εµνi kiµkiν
(σ − σi)2

∏
j

δ̄(kj · P (σj)) (4.2.17)

5 Berkovits Superparticle in Supertwistor Variables

This section serves to provide the background for our research and is informed by

the previous section as Berkovits constructed a model for a superparticle in twistor

space. The reason for interest in this theory is not simply due to it’s interesting

structure but it has already been shown in more recent literature [2] that through

the extension of superparticle theories in Ambitwistor to string theories can give the

CHY scattering amplitudes for massless particles.

The action Berkovits starts with is the standard expression for an infinite tension

limit string (particle), known as the Brink-Schwarz particle

S =

∫
dτPµ∂τX

µ +
g

2
PµP

µ (5.0.1)

The P µ and Xµ are the bosonic vectors, g gives the world-line metric. Berkovits out-

lines that the, spacetime supersymmetric, superparticle model normally encounters

a problem when P 2 = 0 as the κ symmetries reducing the degrees of freedom result

in a increasing chain of ghosts in an attempt to obtain the usual degrees of freedom

[1]. Starting From the above action, the equation of motion for e gives P 2 = 0.

Berkovits introduced the 10D twistor variable such that the 10D momentum is

P µ = λaΓµabλ
b (5.0.2)

and as has been outlined in 4.1.4 there exists incidence relations between the spinor

components of a Twistor. In this case the incidence relation is.

ωa = XµΓµabλ
b (5.0.3)

This leads to the 5.0.1 being able to be rewritten as

S =

∫
dτ

(
− 2ωa∂λ

a

)
(5.0.4)

In this case I have deliberately omitted the terms that give rise to supersymmetry as

the theory constructed later in this thesis is a Bosonic theory. so by constructing the
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Twistor variables λa and ωa . Note that these are no longer the 4D Twistor variables

from before but are 10 dimensional Ambitwistors and λ is related to 10D momentum

5.0.2 .Γµab is a real symmetric matrix that such that Γµab = Γabµ

γµ =

(
0 Γµab

Γµab 0

)
(5.0.5)

and as such {γµ, γν} = ΓµabΓ
νbc + ΓνabΓ

µbc = 2ηµνδca. The variables λa, ωa exist

as the spinor components of Ambitwistors described in 4.1.9 or 4.1.14 satisfy the

constraints for the gauge. The expression for momentum in 10D 5.0.2 is different to

the expression in 4D 4.1.13 this is because in 10D the chiralities of the λ terms are

the same. The Gamma matrix identity

ΓµabΓµcd + ΓµcaΓµbd + ΓµbcΓµad = 0 (5.0.6)

forces the reduction of the degrees of freedom of λa and ω from 2d − 4 to d − 3 as

the extra degrees of freedom are constrained by the expression

Ga = (λbΓµbcλ
c)Γµadωd − 2λa(λbωb) = 0 (5.0.7)

This constraint generates the Bosonic transformation of Twistor variables.

δλa =
(
− (λcΓµcdλ

d)Γabµ + 2λaλb
)
εb (5.0.8)

δωa =
(

2Γµacλ
c(Γdeµ ωe)− 2δda(λ

eωe)− 2λdωa

)
εd (5.0.9)

and the combination of 5.0.6 and 5.0.7 results in what are known as the reducibility

constraints. These will be expanded upon later when the theory is looked at in the

context of BRST quantisation.

λaΓµabG
b = 0 (5.0.10)

λaΓµab(λ
cΓµcdλ

d) = 0 (5.0.11)

The above constraints are the origin of the reducibility as 5.0.10 shows that Ga = 0

is not an independent constraint and 5.0.11 shows that λaΓµab = 0 isn’t independent

either. We can see that the incidence relation that defines 5.0.3 is invariant under the

transformation δXµ = αλaΓµabλ
b and as a result ωa and λa shows the transformation

for δXµ = αP µ. The transformations of these are then characterised by scaling along

the world line or interactions with the gauge constraints. Now that the structure of

the bosonic theory has been outlined it is simple enough to produce the worldline

action by the inclusion of the constraint 5.0.7 into the action with the insertion of a

Lagrange multiplier ha

S =

∫
dτ − 2ωa∂λ

a + haG
a (5.0.12)

From this point we have enough to go on to produce a string theory from these

variables.
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6 Ambitwistor String Theory in the Spinor Formalism

The construction of a String theory in the same formalism as the berkovits super-

particle is done by simply extending the worldline theory to a worldsheet theory. As

such the theory being produced can be seen to be equivalent to the theory explored

by Mason and Skinner of a Reimann sphere in the space of null geodesics. Taking the

bosonic version of that theory as a starting point with worldsheet Σ parametrized

by z

S =

∫
Σ

Pµ∂̄X
µ +

e

2
P 2 (6.0.1)

The same holomorphic gauge transformations generated by the stress tensor T =

Pµ∂X
µ and symmetries caused by P 2 = 0 hold in this case. Introducing (bosonic)

worldsheet spinors λa(z) and ωa such that

P µ(z) = λa(z)Γµabλ
b(z) (6.0.2)

and the incidence relation

ωa(z) = Xµ(z)Γµabλ
b(z). (6.0.3)

allows for the reformulation of the action to become.

S =
1

2

∫
Σ

ωa∂̄λ
a − λa∂̄ωa (6.0.4)

This removes the need for the Beltrami differential as the kinetic terms are formed

from the spinor components of the twistors and P 2 = 0 is naturally encoded into

this representation from the gamma matrix identities. To write this action in its

manifestly Twistorial form define the Twistor

ZI =

(
λa

ωa

)
(6.0.5)

The differential ∂̄ can be expanded as ∂̄ → ∂̄ + µ∂ this can be done by setting µ = 0

and essentially reinserts the metric. Where µ is a Beltrami differential which take

the form such that
∂f

∂z̄
= µ

∂f

∂z
(6.0.6)

and arise from the expression for a change in the metric [25].

µγjβ =
1

2
ĥγδ∂jĥβδ (6.0.7)

The kinetic term of the action can then be written as

S =
1

2

∫
Σ

ZI ∂̄ZI + µZI∂ZI (6.0.8)
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where the index is raised and lowered by the antisymmetric traceless metric

ΩIJ =

(
0 1

−1 0

)
(6.0.9)

as to satisfy the equation

ZI ∂̄ZI = ΩIJZ
I ∂̄ZJ (6.0.10)

The Stress tensor, follows the standard form of any field theory and is written as

T = δS
δµ

T (z) =
1

2
ZI∂ZI =

1

2
ωa∂λ

a − λa∂ωa (6.0.11)

This theory also is constrained by the same gauge symmetries as the Berkovits super

particle so there exists such an expression that

Ga = (λbΓµbcλ
c)Γµadωd − 2λa(λbωb) = 0 (6.0.12)

In order to fix this constraint it is inserted into the action.

S =

∫
Σ

ZI ∂̄ZI + µT + haG
a (6.0.13)

where µ and ha are gauge fields such that µT = µzz̄Tzz, ha = (ha)z̄dz̄ and act as

Lagrange multipliers in the action. Ga gives a set of constraints that must be satisfied,

but these are not independent and there are further constraints that arise from the

gamma matrix identities and that P 2 = 0.

Γµabλ
bGa = 0 (6.0.14)

This constraint is also not independent and there exists another.

λcΓµcdλ
dΓµabλ

b = 0 (6.0.15)

6.1 Conformal Symmetries, Gauge Symmetries and reducibility

The first thing that must be defined when considering constructing a conformal

field theory and investigating conformal transformations are the Operator product

expansions. In this case we have the simple OPEs of the matter fields being.

λa(z)ωb(z
′) =

δab
z − z′

+ · · · (6.1.1)

The stress tensor for the matter fields in this theory generates the conformal trans-

formations.

δT (v)λa(z) =

∮
dz′ T (z′)v(z′)λa(z) =

1

2

∮
dz′ (ωa∂λ

a − λa∂ωa)v(z′)λa(z)

(6.1.2)

δT (v)ωa(z) =

∮
dz′ T (ω)v(ω)ωa(z) =

1

2

∮
dz′ (ωa∂λ

a − λa∂ωa)v(z′)ωa(z)

(6.1.3)
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Around the contour z = z′. Using 6.1.1 and integrating over poles as delta functions

i.e ∮
dz′

f(z′)

(z − z′)n
=
∂n−1(f(z))

(n− 1)!
(6.1.4)

these transformations become

δT (v)λa = v∂λa +
1

2
λa∂v (6.1.5)

δT (v)ωa = −v∂ωa −
1

2
ωa∂v (6.1.6)

More generally in the form of arbitrary holomorphic vector fields the algebra is

[T (v1), T (v2)] = −T (v3) (6.1.7)

Where the generators are defined in a similar way to the transformations derived

above.

T (v1) =

∮
dz v1(z)T (z) (6.1.8)

and in this case

v3 := [v1, v2] = v1∂v2 − v2∂v1 (6.1.9)

In addition, the constraint Ga(z) = 0, which defines some of the physics of the

worldsheet theory to be that of the massless particle, results in the gauge symmetry

where the Lagrange multiplier ha(z) transforms as

δha = −∂̄εa − 4δ[b
a λ

c]εchb, (6.1.10)

and the ‘matter’ fields transform as

δλa =
(
− (λcΓµcdλ

d)Γabµ + 2λaλb
)
εb (6.1.11)

δωa =
(

2Γµacλ
c(Γdeµ ωe)− 2δda(λ

eωe)− 2λdωa

)
εd (6.1.12)

where εa(z) is a vector-valued worldsheet spinor such that.

G(ε) =

∮
dz εa(z)Ga(z) (6.1.13)

From this we can now construct the full algebra for the gauge symmetry and the

conformal transformations

[G(ε), G(ε′)] = G(ε̆), (6.1.14)

where ε̆c is given by.

ε̆c = −4δ[a
c λ

b]εaε
′
b (6.1.15)

It is also possible to investigate the cross terms between the gauge symmetry and

conformal symmetries generated by the stress tensor and the gauge constraint.

[T (v), G(ε)] = −G(ε̃), (6.1.16)
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ε̃a =
1

2
εa∂v − v∂εa (6.1.17)

This interaction between the conformal and gauge transformations hint at some

interaction terms between the ghosts and we will see later that these appear in the

BRST charge and can be included in the action through the method outlined in 8.

This confirms that the field Ga has conformal weight 3/2 which stands to reason as

each term in Ga is quadratic in λa and linear in ωa which each have conformal weight

1/2. At this point we have enough to introduce the standard conformal ghost system

b and c with conformal weights +2 and -1 respectively and Faddeev-Popov ghosts ba

and ca which are fermionic with conformal weights 3/2 and -1/2. This results in the

introduction of the ghost terms and gauge fixing terms into the action.

S =

∫
Σ

ZI ∂̄Z
I + b∂̄c+ ba∂̄ca + µT + haG

a + · · · (6.1.18)

Where · · · represent the interaction terms for the ghosts that will be elaborated

on in section 8. From this point we can begin to construct the BRST charge from

the theory where we have terms for the ghost stress tensors written as Tgh and the

structure function for the lie algebroid formed by the gauge symmetry.

[Ga, Gb] = fabc G
c (6.1.19)

Wherefabc is the structure function for the gauge symmetry and can be seen from

6.1.14 and 6.1.15 meaning that.

fabc = −4λ[aδb]c (6.1.20)

This leads to the BRST charge

Q =

∮
dz c

(
T +

1

2
Tgh
)

+ ca
(
Ga +

1

2
fabc cbb

c
)

(6.1.21)

However, it is known from Berkovits that this system is reducible of level of level 2 [1].

The constraints Γµabλ
bGa = 0 means that the constraint Ga = 0 isn’t independent and

through gauge fixing and the introduction of the Faddeev-Poppov ghosts ba and ca
serves to over fix the degrees of freedom of the system. This will require the insertion

of more ghosts to reintroduce degrees of freedom and as such must have the same

statistics as the matter fields λa and ωa which have Bose-Einstein statistics.However,

it doesn’t stop there as the identity (λcΓµcdλ
d)Γµabλ

b = 0 corresponding to the 2nd

level constraints implies that the Γµabλ
bGa = 0 is not independent either, so through

the reinsertion of degrees of freedom once again there is an overcompensation and

too many degrees of freedom have been reinserted and some of these must be fixed

so another ghost system must be introduced and have the same statistics as ba and

ca. The full process of this will be covered in the next section.

Zµ
a := Γµabλ

b amd Zµ := Pµ = λaΓµabλ
b (6.1.22)

6.1.22 are the expressions that will account for the reducibility. Zµ
aG

a = 0 is the

level 1 constraint and Zµ
aZµ = 0 is the level 2 constraint.
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7 BRST Charge for a Reducible Gauge system

The procedure for constructing a BRST charge for a reducible system is covered

in detail in [13]. This section will follow the procedure given by Henneaux in the

context of this theory and extend it to a level 2 system. Starting by defining our

bosonic spinor fields as canonically conjugate variables with ωa being the conjugate

of λa so that Ga is linear in the conjugate momentum

Ga(λ, ω) = ξab(λ)ωb (7.0.1)

in this case we can define ξab as

ξab := P µΓabµ − 2λaλb (7.0.2)

As we have already determined the structure functions for the gauge transformations

are only dependent on λ we can rewrite the constraints {Ga, Gb} as

{Ga, Gb} = 2ξ[a|d∂dξ
|b]c = fabc G

c (7.0.3)

{, } here are the classical Poisson brackets and will be from from here onwards.

Poisson brackets are:

{M,N} =
∂M

∂x

∂N

∂p
− ∂M

∂p

∂N

∂x
(7.0.4)

where x is position and p is momentum. For the theory that will be explored in this

case λa is the position variable and ωa is the conjugate momenta. Using notation

where ∂c is shorthand for ∂
∂λc

then the expression for the structure function can be

verified to be

fabc = −4λ[aδb]c (7.0.5)

For a reducible theory there exists some constraints that follow the form of:

Zα1
α0
6= 0 (7.0.6)

Zα1
α0
Gα0 = 0 (7.0.7)

These are the reducibility constraints Using notation where αi is indexed for the

level of reducibility so in this case i = 0, 1, 2. For the theory being considered these

functions exist 6.1.22.

Zµ
a = Γµabλ

b (7.0.8)

Zµ
aG

a = 0 (7.0.9)

therefore α0 = a and α1 = µ an important consequence of the level one constraints is

that they give rise to the requirement for bosonic ghosts cµ and bµ of ghost number

2 and -2. As this theory is level 2 reducible there must exist more constraints

Zα1
α0
Zα2
α1

= 0 (7.0.10)
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which have previously been shown as

Γµabλ
b(λcΓµcdλ

d) = Zµ
aZµ = 0 (7.0.11)

This then implies that in the theory being described there is no index that corre-

sponds to α2 and therefore will be left blank. There still will be the need for Ghosts

for this level of reducibility with ghost number 3 and -3. These will be denoted by

C and B. For this theory we have no need to consider any further constraints as

everything is accounted for however if there were more levels of reducibility then it

would follow the general form that there exist functions such that.

Zαi
αi−1Z

αi+1
αi

= 0 (7.0.12)

where i = 0, 1, · · · , L and L gives the level of reducibility of the theory. Now that the

reducibility of the theory is outlined then the BRST charge can be derived. From

the starting point of the Jacobi identity for the gauge constraint.

{{G[a, Gb}, Gc]} = 0 (7.0.13)

From the algebra 7.0.3 this produces the expression.(
∂dξ

[a|df |bc]e − f [ab
d f c]de

)
Ge = 0 (7.0.14)

And for a reducible theory this implies the existence of functions Mabc
µ that satisfy

∂dξ
[a|df |bc]e = f

[ab
d f c]de −

2

3
Mabc

µ Zµ
e (7.0.15)

The existence of the functions Zµ
a implies other functions of the form Daµ

b exist to

satisfy identities such as

ξbd∂dZ
µ
c + Zµ

d f
bd
c = Dbµ

ν Z
ν
c (7.0.16)

This arises from the expression.(
ξbd∂dZ

µ
c + Zµ

d f
bd
c

)
ξce = 0 (7.0.17)

if this is then multiplied by the first level reducibility constraint contracting with one

of the indices and the fact that

ξabZµ
b = 0 (7.0.18)

which can be verified by the definitions of these functions and the constraints out-

lined, The resulting expression is

Z [µ
a Z

ν]
b f

ab
c = Zµ

c Z
λ
dD

νd
λ (7.0.19)

if this is antisymmetric over µ and ν then the left hand side is exactly 0 and as such

D
a[µ
λ Zν]

a Z
λ
c = 0 (7.0.20)
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Considering the second level reducibility constraint that Zµ
aZµ = 0 because of the

antisymmetric case being satisfied above, the symmetric part suggests the existence

of the following:

Daµ
λ Z

ν
a +Daν

λ Z
µ
a = BµνZλ (7.0.21)

These functions will form the main part of the BRST generator. However there

exist more functions of a similar form that exist to satisfy the level of reducibility

required. The method for producing these functions is from the construction of the

BRST generator and applying the fact that {Q,Q} = 018 The Ghosts introduced

obey the algebra:

gh(cαi) = −gh(bαi) = i+ 1 (7.0.22)

The ghosts introduced alternate statistics for each level of reducibility. For even levels

in this case i = 0 or i = 2 then the ghosts obey Fermi-Dirac statistics, they can be

seen as constraining the degrees of freedom of the theory. The ghosts introduced

for the odd levels of reducibility obey Bose-Einstein statistics and can be seen as

reintroducing previously constrained degrees of freedom. The BRST charge for the

gauge system is constructed as follows.

Q = caG
a +

L−1∑
i=0

cαi+1Z
αi+1
αi

bαi + · · · (7.0.23)

The Summation term above takes care of the reducibility constraints and embeds

them into the BRST charge. From this we can consider the BRST ccharge to be

constructed from different parts each arising from the different levels of reducibility.

In the case of the theory we are dealing with this can be broken down first of all into.

Q(0) =caG
a + . . . (7.0.24)

Q(1) =cµZ
µ
a b

a + . . . (7.0.25)

Q(2) =CZµb
µ + . . . (7.0.26)

As is usually the approach with the BRST charge it must also encode the symmetries

of the theory as a result of {Q,Q} = 0 and starting from 7.0.24

1

2

{
Q0, Q(0)

}
=

1

2
cacb{Ga, Gb} =

1

2
cacbf

ab
c G

c (7.0.27)

As Q is linear in conjugate momenta and the bαi ghosts are defined as conjugate to

the cαi ghosts this leads to the equivalence of the last term above to

1

2
cacbf

ab
c G

c ⇒ 1

2
fabc cacbb

c as {Q0, b
c} = Gc. (7.0.28)

18At the moment the only symmetries being dealt with are the result of Ga and the Reducibility.

The terms arising from the conformal symmetry will be introduced later.
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For the zero level ghosts the numerical pre factors of terms can seen to be the inverse

of the number of ca terms ie: Ga is the coefficient of ca term 1
2
fabc is that for cacbb

c and

therefore for the term Mα1
α0β0γ0

should require 1
3
Mµ

abc is the coefficient for cacbccb
µ. The

functions previously shown for level one reducibility have a general form for higher

level reducibility as coefficients for the higher level ghosts.

Dα0βi
γi

exists for terms cacβib
γi for i = 1, · · · , L (7.0.29)

Bα1βi
γi+1

exists for terms cµcβib
γi+1 for i = 1, · · · , L− 1 (7.0.30)

Mβ0γ0δi−1
αi

exists for terms cacbcγi−1
bαi for i = 1, · · · , L− 1 (7.0.31)

So for the theory being considered where L = 2 the suitable ansatz for the BRST

charge can be written as

QG =
3∑

k=0

QG(k) (7.0.32)

Where each of the terms are

QG(0) =caG
a (7.0.33)

QG(1) =cµZ
µ
a b

a +
1

2
fabc cacbb

c (7.0.34)

QG(2) =CZµb
µ −Daµ

ν cacµb
µ +

1

3
Mabc

µ cacbccb
µ (7.0.35)

QG(3) =
1

2
BµνcµcνB−DacaCB +MabµcacbcµB (7.0.36)

This is the ansatz for the section of the BRST charge that takes care of the gauge

symmetry. As the theory being considered also has conformal symmetry this needs

to be included the BRST charge. The way that this is achieved is to simply introduce

terms for the stress tensors for matter fields and the ghosts

Q = c
(
Tm +

1

2
T

(c)
gh + T

(0)
gh + T

(1)
gh + T

(2)
gh

)
+QG (7.0.37)

Tm is the stress tensor for the matter fields and T
(c)
gh is for the conformal bc ghosts

and T
(i)
gh for i = 0, 1, 2 are the terms corresponding to the ghost arising due to the

gauge symmetry and level 2 reducibility. Tm has already been derived previously but

I will show it’s calculation along side the other stress tensors.For any field with the

action. ∫
Σ

bαi ∂̄cαi (7.0.38)

The stress tensor can be found using the formula:

T = ∂(bαi)cαi − Λ∂(bαicαi) (7.0.39)

Where Λ denotes the weight of the conjugate field bαi . As the weights of the fields

dictate the OPE of the two fields and we have the general OPE of a field with
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it’s conjugate to be
δ
αi
βi

z−z′ then the product of a field and it’s conjugate must satisfy

{bαi , cαi} = +1 because of this these are the weights of the fields and their conjugates:

[λa] = +
1

2
and [ωa] = +

1

2
(7.0.40)

[c] = −1 and [b] = +2 (7.0.41)

[ca] = −1

2
and [ba] = +

3

2
(7.0.42)

[cµ] = −1 and [bµ] = +2 (7.0.43)

[C] = −2 and [B] = +3 (7.0.44)

The Stress tensors that are then derived from these and using 7.0.39 gives.

Tm = (∂ωa)λ
a − 1

2
∂(ωaλ

a)

=
1

2
λa∂ωa −

1

2
ωa∂λ

a (7.0.45)

T
(c)
gh = (∂b)c− 2∂(bc)

= −(∂b)c− 2b∂c (7.0.46)

T
(0)
gh = (∂ba)ca −

3

2
∂(baca)

= −1

2
(∂ba)ca −

3

2
ba∂ca (7.0.47)

T
(1)
gh = (∂bµ)cµ − 2∂(bµcµ)

= −(∂bµ)cµ − 2bµ∂cµ (7.0.48)

T
(2)
gh = (∂B)B− 3∂(BC)

= −2(∂B)C− 3B∂C (7.0.49)

Now that all parts of the BRST Charge have been derived the full expression can be

written.

Q =

∮
dz c

[(1

2
λa∂ωa −

1

2
ωa∂λ

a) +
1

2

(
− (∂b)c− 2b∂c

)
+
(
− 1

2
(∂ba)ca −

3

2
ba∂ca

)
+
(
− (∂bµ)cµ − 2bµ∂cµ

)
+
(
− 2(∂B)C− 3B∂C

)]
+ caG

a + cµZ
µ
a b

a +
1

2
fabc cacbb

c

+ CZµb
µ −Daµ

ν cacµb
ν +

1

3
Mabc

µ cacbccb
ν +

1

2
BµνcµcνB−DacaCB +MabµcacbcµB

(7.0.50)

It is important to keep in mind that the way that this BRST charge has been con-

structed has been done so to satisfy {Q,Q} = 0 when deriving the functions that

arise from the reducibility. Keep in mind that the argument presented here is an

entirely classical procedure so the prospect of there being some quantum anomaly
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has not been explored. The full form of the BRST charge is known the next step is to

define constraints of the structure functions that appear in it and the most straight

forward way of doing that is to have the charge act on a field twice and see what

resulting constraints need to be imposed for the expression to be zero as by definition

the BRST charge action on a field twice should be zero. The Structure functions in

7.0.50 can be derived using the process above through the insertion of the variables

and expressions relevant to the theory being investigated. They are derived to be.

f [ab]
c = −4λ[aδb]c (7.0.51)

Daµ
ν = 2ΓµacΓνcbλ

b (7.0.52)

Bµν = 4gµν (7.0.53)

Da = 2λa (7.0.54)

Mabc
µ = 0 (7.0.55)

Mabµ = 0 (7.0.56)

With the above structure functions inserted into the BRST charge the full expression

is.

Q =

∮
dz c

[(1

2
λa∂ωa −

1

2
ωa∂λ

a) +
1

2

(
− (∂b)c− 2b∂c

)
+
(
− 1

2
(∂ba)ca −

3

2
ba∂ca

)
+
(
− (∂bµ)cµ − 2bµ∂cµ

)
+
(
− 2(∂B)C− 3B∂C

)]
+ caG

a + cµZ
µ
a b

a

− 2λ[aδb]c cacbc
c + CZµb

µ + 2ΓµacΓνcbλ
bcacµb

ν + 2gµνcµcνB− 2λacaCB (7.0.57)

However for the sake of generality and to formally derive the constraints for the

structure functions, the nilpotency calculations will be done using the general form

of the BRST charge given by 7.0.50. However in the cases where applicable the fact

that 7.0.55 and 7.0.56 are zero will be inserted to simplify the expressions.

7.1 Nilpotency of BRST Charge on Matter fields and c ghosts

Due to the nature of the BRST charge and the fact that Ga is quadratic in λa the

more straight forward calculations to carry out are the BRST transformations for λ

and the c ghosts. This should suffice in producing the constraints for the structure

functions. As the matter fields and ghosts are all defined as conjugate pairs the
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operator product expansions for them are simply.

λa(z)ωa(z
′) =

δab
(z − z′)

(7.1.1)

c(z)b(z′) =
1

(z − z′)
(7.1.2)

ca(z)bb(z′) =
δba

(z − z′)
(7.1.3)

cµ(z)bν(z′) =
δνµ

(z − z′)
(7.1.4)

C(z)B(z′) =
1

(z − z′)
(7.1.5)

Rather than doing the BRST transformations twice on every field it is best to obtain

the expressions for the transformations happening once so they can be inserted into

the expressions later on. Starting with the transformation on λa, Using the notation

of s(φ) = {Q, φ} = δQφ. to represent an infinitesimal BRST transformation. This

can be written as an integration over the BRST current J and the field which is

undergoing the transformation.

s(λa(z)) =

∮
dσ J(σ)λa(z) (7.1.6)

where J(σ)is the Integrand of Q Using the OPEs 7.1.1, 7.1.2,7.1.3, 7.1.4, 7.1.5 and

the expression for 7.0.50. For the sake of brevity I will only include the terms of Q

that will affect the expression.

s(λa) =

∮
dσ

[
c
(1

2
λb∂ωb −

1

2
ωb∂λ

b
)

+ cbG
b

]
λa (7.1.7)

The stress tensor terms return a similar term to 6.1.5 with a c ghost, likewise the Gb

term produces a transformation analagous to 6.1.11. So the resultant transformation

is.

s(λa) = c∂λa +
1

2
λa∂c− ξabcb (7.1.8)

It is important to remember that for Grassmann variables such as the ghosts that

when one ghost moves past another the term picks up a sign change due to the change

of order. The matter fields λ and ω obey Bose-Einstein statistics and are therefore

not Grassmannian. The Conformal ghosts (the bc system) the Gauge ghosts (the

baca system) and the Ghosts arising from the 2nd level reducibility (the BC system)

obey Fermi-Dirac statistics and are Grassmanian. The Ghosts from the 1st level

reducibility obey Bose-Einstein statistics as they compensate an over fixing of the

degrees of freedom by the Gauge fixing. The next transformation is for the conformal
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c ghosts.

s(c) =

∮
dσ Q(σ)c(z) (7.1.9)

=

∮
dσ

[
1

2
c
(
− (∂b)c− 2b∂c

)]
c (7.1.10)

= c∂c (7.1.11)

This is the standard result for any free conformal field theory see [25]. The next

logical transformation to do is for the 1st gauge ghost

s(ca) =

∮
dσ Q(σ)ca(z) (7.1.12)

=

∮
dσ

[
c
(
− 1

2
(∂bb)cb −

3

2
bb∂cb

)
+ cµZ

µ
b b

b +
1

2
f bcd cbccb

d

]
ca (7.1.13)

= cµZ
µ
a −

1

2
∂cca + c∂ca +

1

2
f bca cbcc (7.1.14)

This already starts to bring in the reducibility constraints into the expressions that

wouldn’t be present in the transformations for a non reducible gauge system. Looking

at the ghost from the 1st level reducibility.

s(cµ) =

∮
dσ Q(σ)cµ(z) (7.1.15)

=

∮
dσ

[
c
(
− (∂bν)cν − 2bν∂cν

)
+ CZνb

ν −Daν
λ cacνb

λ +
1

3
Mabc

λ cacbccb
λ

]
cµ

(7.1.16)

= −CPµ − ∂ccµ + c∂cµ +Daν
µ cacν +

1

3
Mabc

µ cacbcc (7.1.17)

Finally obtaining the transformations for the ghosts from the level 2 reducibility.

s(C) =

∮
dσ Q(σ)C (7.1.18)

=

∮
dσ

[
c
(
− 2(∂B)C− 3B∂C

)
+

1

2
BµνcµcνB−DacaCB +

1

2
MabµcacbcµB

]
C

(7.1.19)

= −2∂cC + c∂C +
1

2
Bµνcµcν −DacaC +

1

2
Mabµcacbcµ (7.1.20)

As the single transformations for the matter field, λa and the c ghosts are known the

other functions or terms that it is useful to have expressions for their transformations

can be identified. ξab, Pµ, Zµ
a , f bca , Daν

µ , Mabc
µ , Bµν , Da and Mabµ. The transforma-

tions of these functions can be obtained by finding their dependence on λ. This can

be done by looking at the definition of the function for ξab, Pµ and Zµ
a or by looking
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at the conformal weights of the ghosts associated with the functions as each term in

the BRST charge must have conformal weight 1.

[f bca ] =
1

2
⇒ homogenous in λa of order 1 (7.1.21)

[Daν
µ ] =

1

2
⇒ homogenous in λa of order 1 (7.1.22)

[Mabc
µ ] =

1

2
⇒ homogenous in λa of order 1 (7.1.23)

[Bµν ] = 0 ⇒ independent of λa (7.1.24)

[Da] =
1

2
⇒ homogenous in λa of order 1 (7.1.25)

[Mabµ] = 0 ⇒ independent of λa (7.1.26)

From these results the single transformations for the functions are

s(ξab) = ∂cξ
ab(c∂λc +

1

2
λc∂c− ξcdcd) (7.1.27)

s(Pµ) = (∂aPµ)(s(λa)) = ∂cPµ + c∂Pµ (7.1.28)

s(Zµ
a ) = Γµab(c∂λ

b +
1

2
λb∂c− ξbccc) (7.1.29)

s(f bca ) = ∂df
bc
a (c∂λd +

1

2
λd∂c− ξdece) (7.1.30)

s(Daν
µ ) = ∂dD

aν
µ (c∂λd +

1

2
λd∂c− ξdece) (7.1.31)

s(Mabc
µ ) = ∂dM

abc
µ (c∂λd +

1

2
λd∂c− ξdece) (7.1.32)

s(Bµν) = 0 (7.1.33)

s(Da) = (∂dD
a)(c∂λd +

1

2
λd∂c− ξdece) (7.1.34)

s(Mabµ) = 0 (7.1.35)

After working out all of the transformations on all functions and fields for the single

operations of the BRST charge all that needs to be done now is to apply those

transformations to the fields and functions that appear after one operation. Starting

with λa the double operation is obtained by the formula below

s2(λa(z)) =

∮
dσ Q(σ)s(λa) (7.1.36)

s2(λa) = (s(c))∂λa − c(∂(s(λa))) +
1

2
(∂(s(c)))λa − 1

2
∂c(s(λa))− (s(ξab))cb − ξab(s(cb))

(7.1.37)
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After inserting the expressions for the transformations into the expression above:

s2(λa) = c∂c∂λa − c∂
(
c∂λa +

1

2
λa∂c− ξabcb

)
+

1

2
∂
(
c∂c
)
λa

− 1

2
∂c
(
c∂λa +

1

2
λa∂c− ξabcb

)
−
(
∂cξ

ab(c∂λc +
1

2
λc∂c− ξcdcd)

)
cb

− ξab
(
cµZ

µ
b −

1

2
∂ccb + c∂cb +

1

2
fdeb cdce

)
(7.1.38)

Expanding all of the terms above

s2(λa) = c∂c∂λa − c∂c∂λa − cc∂2λa − 1

2
c∂λa∂c− 1

2
cλa∂2c+ c∂(ξab)cb

+ cξab∂cb +
1

2
∂c∂cλa +

1

2
c∂2cλa − 1

2
∂cc∂λa − 1

4
∂cλa∂c+

1

2
∂cξabcb

− (∂cξ
ab)c∂λccb −

1

2
(∂cξ

ab)λc∂ccb + (∂cξ
ab)ξcdcdcb − ξabcµZµ

b +
1

2
ξab∂ccb

− ξabc∂cb −
1

2
ξabfdeb cdce (7.1.39)

Straight away there are terms that can be eliminated. specifically cc∂2λa = 0,
1
2
∂c∂cλa = 0 and 1

4
∂cλa∂c = 0 this is because of the Grassmanality of c that any

terms of c2 are automatically zero. The next terms that can be removed are the

ones that can be summed together, in some cases to zero, c∂c∂λa − c∂c∂λa = 0,

−1
2
c∂λa∂c − 1

2
∂cc∂λa = 0 by reordering of c to match the terms and −1

2
cλa∂2c +

1
2
c∂2cλa = 0. Also as a results of the constraints of the reducibility 7.0.18 means

ξabZµ
b cµ = 0. This reduces the expression to the terms that arise from the gauge

symmetry and the cross terms between conformal and gauge symmetries.

s2(λa) = c∂(ξab)cb + cξab∂cb +
1

2
∂cξabcb − (∂cξ

ab)c∂λccb −
1

2
(∂cξ

ab)λc∂ccb

+ (∂cξ
ab)ξcdcdcb +

1

2
ξab∂ccb − ξabc∂cb −

1

2
ξabfdeb cdce (7.1.40)

By first looking at the derivatives of ξab

c∂(ξabcb)⇒ c∂cξ
ab∂λccb + cξab∂cb (7.1.41)

∴

c∂cξ
ab∂λccb − ∂cξab(c∂λc +

1

2
λc∂c− ξcdcd)cb

= ∂cξ
ab(c∂λc − c∂λc − 1

2
λc∂c− ξcdcd)cb (7.1.42)

(7.1.43)

after cancellation the only terms that are derivatives of ξab.

− 1

2
λc∂cξ

ab∂ccb + ξcd∂cξ
abcdcb (7.1.44)
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Now considering terms linear in ξab:

ξab(c∂cb +
1

2
∂ccb +

1

2
∂ccb − c∂cb −

1

2
f cdb cccd) (7.1.45)

The first and fourth term in this expression cancel through addition and summing

the second and third terms leaves.

ξab∂ccb −
1

2
ξacf bdc cbcd (7.1.46)

Combining both linear terms and derivative terms we have

s2(λa) = (−1

2
λc∂cξ

ab + ξab)∂ccb +
1

2
(ξbc∂cξ

ad − ξdc∂cξab − ξacf bdc )cbcd (7.1.47)

as ξab is homogeneous in λ of order +2. we know that λc∂cξ
ab ≡ 2ξab. The ∂ccb terms

cancel through addition. For Q to be Nilpotent on λa then the remaining terms allow

the derivation of f bca as

ξbc∂cξ
ad − ξdc∂cξab − ξacf bdc = 0

Resulting in

f bca = −4λ[bδc]a

This is the same result for the structure function for the lie algebroid formed by the

gauge constraint and confirms that it is linear in λ.

7.2 Nilpotency of Q on conformal ghosts and 1st order gauge ghosts

From here-on out the results of the BRST operations will be summarised and full de-

tails of the calculations are given in the appendix A. The procedure for the nilpotency

of of Q acting on c is the same for most free conformal field theories.

s2(c) = 2c∂c∂c+ cc∂c (7.2.1)

∴ s2(c) = 0 (7.2.2)

Both terms cancel exactly to zero, due to the grassmanality of c, as is expected.

Moving on to the gauge ghost transformations will begin to produce some of the

47



constraints for the structure functions that arise due to the reducibility.

s2(ca) = (−CPµ − ∂ccµ + c∂cµ +Daν
µ cacν +

1

3
Mabc

µ cacbcc)Z
µ
a (7.2.3)

+ cµΓµab(c∂λ
b +

1

2
λb∂c− ξbccc)−

1

2
∂(c∂c)ca (7.2.4)

+
1

2
∂c(cµZ

µ
a −

1

2
∂cca + c∂ca +

1

2
f bca cbcc) + c∂c∂ca (7.2.5)

− c∂(cµZ
µ
a −

1

2
∂cca + c∂ca +

1

2
f bca cbcc) (7.2.6)

+
1

2
∂df

bc
a (c∂λd +

1

2
λd∂c− ξdece)cbcc (7.2.7)

+ f bca (cµZ
µ
b −

1

2
∂ccb + c∂cb +

1

2
fdeb cdce)cc (7.2.8)

Terms in this expression can be identified as zero are −CPµZ
µ
a = 0 as it is the

constraint that leads to the second level reducibility and −1
4
∂d∂cca = 0 as c2 = 0.

Once expanded out and reordered into coefficients of the ghosts more terms can be

seen to be zero, they include: ca, ∂ca, and cb∂cc through summation of the terms and

c2 terms, cµ terms also vanish as c∂Zµ
a = Γµabc∂λ

b.The coefficient of cbcc is zero due to

the homogeneity of f bca = −4λ[bδ
c]
a . The remaining terms do not cancel algebraically

and the double transformation becomes.

s2(ca) = cµcb(D
bµ
ν Z

ν
a − Γµabξ

bc + f bca Z
µ
c ) (7.2.9)

+ cbcccd(−
1

2
∂df

bc
a ξ

de +
1

3
M bcd

µ Zµ
a +

1

2
f eda f

bc
e ) (7.2.10)

From this the following constraints are obtained.

Dbµ
ν Z

ν
a − (∂cZ

µ
a )ξbc + f bca Z

µ
c = 0 (7.2.11)

And

− 1

2
(∂ef

[cd|
a )ξe|b] +

1

2
f eda f

bc
e +

1

3
M bcd

µ Zµ
a = 0 (7.2.12)

Using the derived values for the Mabc
µ functions 7.0.55 the constraint 7.2.12 can be

given as.

(∂ef
[cd|
a )ξe|b] = f eda f

bc
e (7.2.13)

These constraints are required to be true for the BRST charge to be nilpotent on

the field ca
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7.3 Nilpotency of Q on 2nd order gauge ghosts

Acting the BRST charge twice on the 2nd order ghosts results in the expression

s2(cµ) = −(−2∂cC + c∂C +
1

2
Bµνcµcν −DacaC +

1

2
Mabµcacbcµ)Pµ

+ C(∂cPµ + c∂Pµ)− c∂(−CPµ − ∂ccµ + c∂cµ +Daν
µ cacν +

1

3
Mabc

µ cacbcc)

− ∂(c∂c)cµ + ∂c(−CPµ − ∂ccµ + c∂cµ +Daν
µ cacν +

1

3
Mabc

µ cacbcc) + (c∂c)∂cµ

+ ∂dD
aν
µ (c∂λd +

1

2
λd∂c− ξdece)cacν

+Daν
µ (cµZ

µ
a −

1

2
∂cca + c∂ca +

1

2
f bca cbcc)cν

−Daν
µ ca(−CPν − ∂ccν + c∂cν +Daλ

ν cacν +
1

3
Mabc

ν cacbcc)

+
1

3
∂dM

abc
µ (c∂λd +

1

2
λd∂c− ξdece)cacbcc

+Mabc
µ (cνZ

ν
a −

1

2
∂cca + c∂ca +

1

2
fdea cdce)cbcc (7.3.1)

Once again by ordering this into the coefficients of the different ghosts and there

derivatives there are terms that are zero. These are the coefficients of ccµ, c∂C,

∂cC, c∂cµ, ca∂cν , cC, ∂cacν and caC. For the Nilpotency of the BRST charge to be

satisfied then these constraints must be applied.

DaPµ = Daν
µ Pν (7.3.2)

BνλPµ = 2Da[ν
µ Zλ]

a (7.3.3)

(∂eM
[abc|
µ )ξe|d] +

3

2
M e[cd

µ fab]e −D[a|ν
µ M |bcd]

ν = 0 (7.3.4)

(∂dD
[a|ν
µ )ξd|b] +

1

2
Dcν
µ f

ab
c −D

[a|ν
λ D|b]λµ +M cab

µ Zν
c −

1

2
MabνPµ = 0 (7.3.5)

by inspection the above constraint 7.3.4 can be reduced to zero due to the derived

expression of 7.0.55. By the same token 7.3.5 can be simplified by using 7.0.55 and

7.0.56 to give.

(∂dD
[a|ν
µ )ξd|b] +

1

2
Dcν
µ f

ab
c −D

[a|ν
λ D|b]λµ = 0 (7.3.6)

The application of these constraints reduces the expression to zero as (∂dD
aν
µ )λd =

Daν
µ and (∂dM

abc
µ )λd = Mabc

µ . Therefore, by imposing the above constraints Q is

nilpotent on cµ.
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7.4 Nilpotency of Q on 3rd order gauge ghosts

The expression obtained by acting the BRST charge on the field C is

s2(C) =− 2(c∂c)C + 2∂c(−2∂cC + c∂C +
1

2
Bµνcµcν −DacaC +

1

2
Mabµcacbcµ)

+ c∂c∂C− c∂(−2∂cC + c∂C +
1

2
Bµνcµcν −DacaC +

1

2
Mabµcacbcµ)

(7.4.1)

+
1

2
s(Bµν)cµcν +Bµν(−CPµ − ∂ccµ + c∂cµ +Daν

µ cacν +
1

3
Mabc

µ cacbcc)cν

− (∂dD
a)(c∂λd +

1

2
λd∂c− ξdece)caC−Da(cµZ

µ
a −

1

2
∂cca + c∂ca +

1

2
f bca cbcc)C

+Daca(−2∂cC + c∂C +
1

2
Bµνcµcν −DbcbC +

1

2
M bcµcbcccµ)

+
1

2
(∂dM

abµ)(c∂λd +
1

2
λd∂c− ξdece)cacbcµ (7.4.2)

+Mabµ(cνZ
ν
a −

1

2
∂cca + c∂ca +

1

2
f cda cccd)cbcµ

− 1

2
Mabµcacb(−CPµ − ∂ccµ + c∂cµ +Dcν

µ cccν +
1

3
M cde

µ cccdce) (7.4.3)

The transformations for Bµν and Mabµ have already been shown to be trivial 7.1.33

and 7.1.35. Reorganising the terms into coefficients of the ghosts as has been done

before yields an expression that allows for the easy identification of trivial terms.

Once that is done the coefficients that are removed arecC, c∂C, ∂cµcν , ∂ccaC, c∂cµcν ,

∂ccacbcµ, cca∂C, c∂cµcν , cca∂C, c∂cacbcµ and ccacb∂cµ which leaves the expression

from which the constraints are obtained.

s2(C) = ∂ccaC(Da − 1

2
(∂dD

a)λd +
1

2
Da + 2Da)

+ Ccν(−Bµν −DaZν
a ) + cacλcν(B

µνDaλ
µ +

1

2
DaBνλ +MabλZν

b )

+ cacbcccν(
1

3
BµνMabc

µ +
1

2
DaM bcν +

1

2
Madνf bcd −

1

2
MabµDaν

µ )

+ cacbC(−(∂dD
a)ξdb − 1

2
Dcfabc −DaDb +

1

2
MabµPµ)

− cacbcccdce(
1

6
MabµM cde

µ ) (7.4.4)
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For the Nilpotency of Q to hold, the constraints that must be applied are

M [ab|µM |cde]
µ = 0 (7.4.5)

BµνPµ = −DaZν
a (7.4.6)

Bµ[ν|Da|λ]
µ +

1

2
DaBνλ +Mab[λ|Z |ν]

a = 0 (7.4.7)

(∂dD
[a|)ξd|b]+

1

2
Dcfabc +D[aDb] − 1

2
MabµPµ = 0 (7.4.8)

1

3
BµνMabc

µ +
1

2
D[a|M |bc]ν−1

2
(∂dM

[ab|ν)ξd|c] +
1

2
M [a|dνf

|bc]
d − 1

2
M [ab|µD|c]νµ = 0

(7.4.9)

Once again applying the expressions 7.0.55 and 7.0.56 then 7.4.9 becomes zero by

definition and 7.4.7 and 7.4.8 become.

Bµ[ν|Da|λ]
µ = −1

2
DaBνλ

a (7.4.10)

(∂dD
[a|)ξd|b]+

1

2
Dcfabc +D[aDb] = 0 (7.4.11)

The fact that the BRST charge is classically nilpotent on this many fields under

these constraint is good evidence to show that the expression for Q is correct. There

remains the question as to what the critical dimension of the theory by computing

Q2 The issue with computing this is that it is a very long calculation not simply just

because of the length of the expression as the single transformations of the b ghosts

are not difficult to obtain. The real difficulty lies in deriving the transformation of

ωa as there are many functions that are linear or quadratic in λ for the conjugate

field contract with.

8 Gauge fixing procedure and extended action

Now that a full expression for Q has been obtained we need to have an action that

serves to gauge fix the extra ghosts that have arisen because of the reducibility and

also accounts for the cross terms between the gauge symmetry, conformal symmetry

and reducibility. Thankfully a recent paper by Ohmori [11] a way of producing

a Gauge fixed, BRST exact action can be done by inserting terms in a method

that is analogous to Witten’s paper that sheds light on the concept of the picture

changing operator [38]. The theory explored by Ohmori is the previously discussed

Ambitwistor String theory 4.2 produced by Mason and Skinner [2] Which we hope

to be physically equivalent to the theory outlined in this thesis. Ohmori’s treatment

begins by defining a 2d conformal field theory with Tm being the holomorphic stress

tensor and T̃m is the gauge term that appears as −1
2
P 2 in this theory and as before to

impose the same gauge constraint there is the insertion of the Beltrami differential
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e to act as the Lagrange multiplier. This leads to the inclusion of the term eT̃m

in the action. When considering the theory the ghost systems must be taken into

account. In the Mason-Skinner theory these systems are bc and b̃c̃ with stress tensors.

Tbc = −∂bc − 2b∂c and Tb̃c̃ = −∂b̃c̃ − 2b̃∂c̃. These are used to construct the BRST

charge.

Q =

∮
dz

[
cTm + cTb̃c̃ +

1

2
cTbc + c̃T̃m

]
(8.0.1)

I have omitted the total derivative term that usually appears at the end of the current

as it only serves to make sure the integrand is a current and will play no further part

in the following calculations. From the BRST charge when it interacts with the b

ghosts it returns a term for the combined stress tensor for matter and ghost fields

Q · b = Tm + Tb̃c̃ + Tbc (8.0.2)

= T (8.0.3)

This can be inserted into the action coupled with a Lagrange multiplier µ. The

Transformation for the b̃ ghost produces

Q · b̃ = T̃m − (∂b̃)c− 2b̃∂c = T̃ (8.0.4)

The term T̃mremains but there are the more terms which arise from cross terms

between the conformal ghosts and gauge ghosts these are then grouped into one

term T̃ . This term is then inserted with a Beltrami differential, e rather than simply

inserting a term for the gauge constraints. With the BRST transformation on the

Beltrami differential defined as {Q, e} = δe.The action can then be made BRST

exact if it is extended with the addition of a (δe b̃) term. Likewise for the stress

tensor term with a Beltrami differential µ so that {Q, µ} = δµ the addition of (δµ T )

will make the action BRST exact.

However, for this method to be used in the context of the theory being explored

in this thesis it must be altered due to the reducibility of the gauge theory. The

procedure stays much the same only there are more ghost systems and therefore

more terms inserted into the action for gauge fixing. A suitable starting point is to

compute the results of the BRST charge acting on the b ghosts.

s(b) =

∮
dσ

[
c
(1

2
λa∂ωa −

1

2
ωa∂λ

a
)

+
c

2

(
− (∂b)c− 2b∂c

)
+ c
(
− 1

2
(∂ba)ca −

3

2
ba∂ca

)
+ c
(
− ∂bµ)cµ − 2bµ∂cµ

)
+ c
(
− 2(∂B)C− 3B∂C

)]
b(z) (8.0.5)
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The only term in this that requires much thought is the second term but it can be

shown to simply reduce to the original stress tensor term from which it is derived∮
dσ

c

2

(
− (∂b)c− 2b∂c

)
b(z) =

∮
dσ
(
− cb∂c

)
b(z)

= −b∂c+ ∂(cb)

= −2b∂c− c∂b

= T
(c)
gh (8.0.6)

Once this has been done all of the other terms are simple to work out and leads

to a summation of all stress tensor terms 7.0.45, 7.0.46, 7.0.47, 7.0.48 and 7.0.49

therefore.

s(b) = Tm + T
(c)
gh + T

(0)
gh + T

(1)
gh + T

(2)
gh (8.0.7)

The transformation for ba is given by:

s(ba) =

∮
dσ

[
cbG

b − 1

2
c∂bbcb −

3

2
cbb∂cb +

1

2
f bcd cbccb

d −Dbν
µ cbcνb

µ

+
1

3
M bcd

e cbcccdb
e −DbcbCB +

1

2
M bcµcbcccµB

]
ba(z) (8.0.8)

This leads to the transformation being

s(ba) = Ga − 2c∂ba − 3

2
∂cba − fabc cbbc −Daν

µ cνb
µ +Mabccbccb

µ −DaCB +MabµcbcµB

(8.0.9)

Breaking down the transformation there one can see clearly the terms that are from

the gauge constraint, the cross terms and the functions that exist as a consequence

of the reducibility. The other ghosts transform as

s(bµ) =

∮
dσ

[
cνZ

ν
a b
a − c∂bµcµ − 2cbµ∂cµ −Daλ

ν cacλb
ν

+
1

2
BνλcνcλB +

1

2
MabνcacbcνB

]
bµ(z) (8.0.10)

This becomes

s(bµ) = Zµ
a b

a − 3c∂bµ − 2∂cbµ +Daµ
ν cab

ν +
1

2
BµνcνB +

1

2
MabµcacbB (8.0.11)

Finally the last transformation is

s(B) =

∮
dσ

[
CPµb

µ − 2c∂BC− 3cB∂C−DacaCB

]
B(z) (8.0.12)

= Pµb
µ − 5c∂B− 3∂cB +DacaB (8.0.13)
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These can be inserted into the action, along with the standard gauge fixing terms

for ghosts as follows.

S =

∫
Σ

ZI ∂̄ZI+b∂̄c+ba∂̄ca+bµ∂̄cµ+B∂̄C+µ(s(b))+ha(s(b
a))+hµ(s(bµ))+h(s(B))

(8.0.14)

Then by imposing the BRST transformations of the Lagrange multipliers as follows

s(µ) = δµ

s(ha) = δha

s(hµ) = δhµ

s(h) = δh

The new action can be modified so that it is BRST exact by the addition of the

extended action

Sext =

∫
Σ

δµb+ δhab
a + δhµb

µ + δhB (8.0.15)

So we now have a new action, Ŝ = S + Sext and s(Sext) = −δµ(s(b))− δha(s(ba))−
δhµ(s(bµ))− δh(s(B)) assuming the lagrange multipliers are BRST exact. This can

be further simplified by grouping all of these new terms into one expression.

W = µb+ hab
a + hµb

µ + hB (8.0.16)

so that the action can be written as:

Ŝ =

∫
Σ

ZI ∂̄ZI + b∂̄c+ ba∂̄ca + bµ∂̄cµ + B∂̄C + {Q,W} (8.0.17)

Where W is the expression given in 8.0.16 and now the action is fairly simple repre-

senting a free topological theory.

9 Conclusion

The research conducted in this thesis has outlined a string theory in the form of

Twistor variables which as it has been derived through transformation of the same

action as was discussed in [2] the assumption can be made that they represent the

same theory in a different context. The gauge transformations and conformal trans-

formations were laid out to describe the theory and the reducibility of the gauge

theory. Then the full form of the BRST charge for a reducible gauge theory was

derived along with the structure functions that arise due to said reducibility. The

BRST charge has been shown to be nilpotent on the λ matter fields and all c ghosts

under certain constraints which strongly suggests that the BRST charge constructed
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is correct. Once the BRST charge was obtained an alternative method for gauge

fixing was explored that had previously been applied to the Ambitwistor string. Fol-

lowing that method the extended action for the theory which incorporates all of the

new ghost systems and the there stress tensors is written along with a BRST exact

term that encodes the BRST symmetry and the reducibility in one term and keeps

the action BRST invariant.

9.1 Future questions

Unfortunately due to time constraints I have not been able to explore this theory

more and as such there are still a lot of questions that would be interesting to find

the answer and I hope to outline some here.

Critical dimension and supersymmetry.

There still remains the question of what the critical dimension of this theory is.

Naively, one would expect it to be 26 as is the case with Bosonic string theories.

However, that may not be the case, and the full quantum calculations must be done.

There is also the question of how supersymmetry would affect the BRST charge.

Also the question of what type of supersymmetry would be most appropriate. The

supersymmetry used in [1] by Berkovits is space-time supersymmetry, but now that

the theory has been extended to a worldsheet theory there is the possibility for the

application of RNS supersymmetry.

Vertex operators and Scattering amplitudes

Another interesting thing to do with this theory would be to produce scattering

amplitudes as was done in [2] and investigate them. But before that the vertex

operators for the theory need to be worked out. One would assume that it would

not be as simple as inserting the incidence relations into the expressions for vertex

operators in section 4.2 due to the requirement of the extra ghost systems and the

requirement for ghosts to be inserted with the vertex operators. One alternative

method for deriving the vertex operator insertions can be found in [38] and perhaps

this method could shed some light on the form of vertex operators in this theory.
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A.2 Nilpotency on first order gauge ghost

s2(ca) = (−CPµ − ∂ccµ + c∂cµ +Daν
µ cacν +

1

3
Mabc

µ cacbcc)Z
µ
a (A.2.1)

+ cµΓµab(c∂λ
b +

1

2
λb∂c− ξbccc)−

1

2
∂(c∂c)ca (A.2.2)

+
1

2
∂c(cµZ

µ
a −

1

2
∂cca + c∂ca +

1

2
f bca cbcc) + c∂c∂ca (A.2.3)

− c∂(cµZ
µ
a −

1

2
∂cca + c∂ca +

1

2
f bca cbcc) (A.2.4)

+
1

2
∂df

bc
a (c∂λd +

1

2
λd∂c− ξdece)cbcc (A.2.5)

+ f bca (cµZ
µ
b −

1

2
∂ccb + c∂cb +

1

2
fdeb cdce)cc (A.2.6)

The terms −CPµZ
µ
a = 0 as it is the constraint that leads to the second level reducibil-

ity and −1
4
∂d∂cca = 0 as c2 = 0. By reorganising the expression into coefficients of

the ghosts and there derivatives.

s2(ca) = cµ(−∂cZµ
a +

1

2
∂cZµ

a + Γµabc∂λ
b +

1

2
Γµabλ

b∂c− c∂Zµ
a ) (A.2.7)

+ ∂cµ(−cZµ
a + cZµ

a ) + ca(−
1

2
∂(c∂c) +

1

2
c∂2c) + cµcb(D

bµ
ν − Γµacξ

bc + f bac Z
µ
b )

(A.2.8)

+ ∂ca(
1

2
∂cc+ c∂c+

1

2
c∂c− c∂c) + cbcc(

1

4
∂cf bca −

1

2
c∂λd(∂df

bc
a ) (A.2.9)

+
1

2
(∂df

bc
a )(c∂λd +

1

2
λd∂c)− 1

2
f bca ∂c) + cb∂cc(cf

bc
a − cf bca ) (A.2.10)

+ cbcccd(−
1

2
(∂ef

cd
a )ξeb +

1

2
f eda f

bc
e +

1

3
M bcd

µ Zµ
a ) (A.2.11)

By inspection the coefficients of ca, ∂ca, and cb∂cc are zero through summation of

the terms and c2 terms. The cµ terms also vanish as c∂Zµ
a = Γµabc∂λ

b. Two terms

in the coefficient of cbcc cancel −1
2
c∂λd(∂df

bc
a ) = 1

2
(∂df

bc
a )c∂λd = 0 simplifying the

expression further to

s2(ca) = cµcb(D
bµ
ν − Γµacξ

bc + f bac Z
µ
b ) (A.2.12)

+ cbcc(
1

4
∂cf bca +

1

2
(∂df

bc
a )(

1

2
λd∂c)− 1

2
f bca ∂c) (A.2.13)

+ cbcccd(−
1

2
(∂ef

cd
a )ξeb +

1

2
f eda f

bc
e +

1

3
M bcd

µ Zµ
a ) (A.2.14)

The coefficient of cbcc is zero due to the homogeneity of f bca = −4λ[bδ
c]
a

(∂df
bc
a ) = −1

2
∂d(4λ

bδca − 4λcδba) = −2(δbdδ
c
a − δcdδba) ≡ −4δbcda (A.2.15)

∴
1

4
(∂df

bc
a )λd∂c = −1

4
λd4δbcda∂c = −4λ[bδc]a ∂c =

1

4
f bca ∂c (A.2.16)
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The remaining terms do not cancel algebraically and the double transformation be-

comes.

s2(ca) = cµcb(D
bµ
ν Z

ν
a − Γµabξ

bc + f bca Z
µ
c ) (A.2.17)

+ cbcccd(−
1

2
∂df

bc
a ξ

de +
1

3
M bcd

µ Zµ
a +

1

2
f eda f

bc
e ) (A.2.18)

This then implies the following constraints when writing Γµabξ
bc = (∂cZ

µ
a )ξab:

Dbµ
ν Z

ν
a − (∂cZ

µ
a )ξbc + f bca Z

µ
c = 0 (A.2.19)

And

− 1

2
(∂ef

[cd|
a )ξe|b] +

1

2
f eda f

bc
e +

1

3
M bcd

µ Zµ
a = 0 (A.2.20)

These constraints make it so that the BRST charge is nilpotent on ca.

A.3 Nilpotency for 2nd order ghost terms

Moving on to the next level of reducibility.

s2(cµ) = −(s(C)Pµ + C(s(Pµ))− ∂(s(c))cµ + ∂c(s(cµ)) + (s(c))∂cµ (A.3.1)

− c∂(s(cµ)) + (s(Daλ
µ )cacλ +Daλ

µ (s(ca))cλ −Daλ
µ ca(s(cλ)) (A.3.2)

+
1

3
(s(Mabc

µ ))cacbcc +Mabc
µ (s(ca))cbcc (A.3.3)

inserting the transformations into the above expression leads to the following

s2(cµ) = −(−2∂cC + c∂C +
1

2
Bµνcµcν −DacaC +

1

2
Mabµcacbcµ)Pµ

+ C(∂cPµ + c∂Pµ)− c∂(−CPµ − ∂ccµ + c∂cµ +Daν
µ cacν +

1

3
Mabc

µ cacbcc)

− ∂(c∂c)cµ + ∂c(−CPµ − ∂ccµ + c∂cµ +Daν
µ cacν +

1

3
Mabc

µ cacbcc) + (c∂c)∂cµ

+ ∂dD
aν
µ (c∂λd +

1

2
λd∂c− ξdece)cacν

+Daν
µ (cµZ

µ
a −

1

2
∂cca + c∂ca +

1

2
f bca cbcc)cν

−Daν
µ ca(−CPν − ∂ccν + c∂cν +Daλ

ν cacν +
1

3
Mabc

ν cacbcc)

+
1

3
∂dM

abc
µ (c∂λd +

1

2
λd∂c− ξdece)cacbcc

+Mabc
µ (cνZ

ν
a −

1

2
∂cca + c∂ca +

1

2
fdea cdce)cbcc (A.3.4)
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Once again collecting coefficients of the ghosts and there derivatives makes it easier

to see which terms are zero through addition or because of identities.

s2(cµ) = ccµ
(
∂2c− ∂2c

)
+ c∂C

(
− Pµ + Pµ

)
+ ∂cC

(
2Pµ − Pµ − Pµ

)
+ c∂cµ

(
∂c− ∂c− ∂c+ ∂c

)
+ ca∂cν

(
cDaν

µ − cDaν
µ

)
+ cC

(
Pµ − Pµ

)
+ ∂cacν

(
cDaν

µ − cDaν
µ

)
+ caC(DaPµ −Daν

µ Pν) + (−1

2
BνλPµ +Daν

µ Z
λ
a )cνcλ

+
[
(∂dD

aν
µ )(c∂λd +

1

2
λd∂c)− 1

2
Daν
µ ∂c−Daν

µ ∂c+ ∂cDaν
µ − c(∂dDaν

µ )∂λd
]
cacν

+
[
− 1

2
MabνPµ + (∂dD

aν
µ )ξdb +

1

2
Dcν
µ f

ab
c −Daλ

µ D
bν
λ +Mabc

µ Zν
c

]
cacbcν

+
[1
3
∂cMabc

µ −
1

3
c(∂dM

abc
µ )∂λd +

1

3
(∂dM

abc
µ )(c∂λd +

1

2
λd∂c)− 1

2
Mabc

µ ∂c
]
cacbcc

+
[
− 1

3
Daν
µ M

bcd
ν +

1

3
(∂eM

abc
µ )ξde +

1

2
M ecd

µ fabe
]
cacbcccd (A.3.5)

I have grouped together the terms that sum to zero at the start of the expression

so the coefficients of ccµ, c∂C, ∂cC, c∂cµ, ca∂cν , cC, ∂cacν and caC can be removed

from the expression. The remaining terms in the expression must each be zero for Q

to be nilpotent on cµ so from this expression constraints must be applied.

s2(cµ) = (DaPµ −Daν
µ Pν)caC + (−1

2
BνλPµ +Daν

µ Z
λ
a )cνcλ

+
[
(∂dD

aν
µ )(c∂λd +

1

2
λd∂c)− 1

2
Daν
µ ∂c−Daν

µ ∂c+ ∂cDaν
µ − c(∂dDaν

µ )∂λd
]
cacν

+
[
− 1

2
MabνPµ + (∂dD

aν
µ )ξdb +

1

2
Dcν
µ f

ab
c −Daλ

µ D
bν
λ +Mabc

µ Zν
c

]
cacbcν

+
[1
3
∂cMabc

µ −
1

3
c(∂dM

abc
µ )∂λd +

1

3
(∂dM

abc
µ )(c∂λd +

1

2
λd∂c)− 1

2
Mabc

µ ∂c
]
cacbcc

+
[
− 1

3
Daν
µ M

bcd
ν +

1

3
(∂eM

abc
µ )ξde +

1

2
M ecd

µ fabe
]
cacbcccd (A.3.6)

The simplest constraints that can be seen are from the coefficients of caC and cνcλ
as for each of these terms to be zero then the constraints must be satisfied

DaPµ = Daν
µ Pν (A.3.7)

BνλPµ = 2Da[ν
µ Zλ]

a (A.3.8)

] Naively they can be considered to be suitable as the terms on the right hand

side match the the conformal weights of the terms of the left hand side. The next

constraint is from the coefficient of cacbcccd through anti-symmetrization over a, b, c

and d

(∂eM
[abc|
µ )ξe|d] +

3

2
M e[cd

µ fab]e −D[a|ν
µ M |bcd]

ν = 0 (A.3.9)
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The next constraint that must be imposed is.

(∂dD
[a|ν
µ )ξd|b] +

1

2
Dcν
µ f

ab
c −D

[a|ν
λ D|b]λµ +M cab

µ Zν
c −

1

2
MabνPµ = 0 (A.3.10)

Once these constraints are applied the only terms left are

s2(cµ) =
[
(∂dD

aν
µ )(c∂λd +

1

2
λd∂c)− 1

2
Daν
µ ∂c−Daν

µ ∂c+ ∂cDaν
µ − c(∂dDaν

µ )∂λd
]
cacν

+
[1
3
∂cMabc

µ −
1

3
c(∂dM

abc
µ )∂λd +

1

3
(∂dM

abc
µ )(c∂λd +

1

2
λd∂c)− 1

2
Mabc

µ ∂c
]
cacbcc

(A.3.11)

These remaining terms are zero as (∂dD
aν
µ )λd = Daν

µ because Daν
µ is linear in λ and as

such the coefficient of cacν sums to zero and (∂dM
abc
µ )λd = Mabc

µ so the same process

occurs for the coefficient of cacbcc. Therefore, by imposing the above constraints Q

is nilpotent on cµ

A.4 Nilpotency for 3rd order gauge ghosts

s2(C) = −2(∂(s(c)))C + 2∂c(s(C)) + (s(c))∂C− c(∂(s(C))) +
1

2
(s(Bµν))cµcν

+Bµν(s(cµ))cν − s(Da)caC−Da(s(ca))C +Daca(s(C)) +
1

2
s(Mabµ)cacbcµ

+Mabµ(s(ca))cbcµ +
1

2
Mabµcacb(s(cµ)) (A.4.1)

By inserting the expressions for the transformations this becomes.

s2(C) =− 2(c∂c)C + 2∂c(−2∂cC + c∂C +
1

2
Bµνcµcν −DacaC +

1

2
Mabµcacbcµ)

+ c∂c∂C− c∂(−2∂cC + c∂C +
1

2
Bµνcµcν −DacaC +

1

2
Mabµcacbcµ)

(A.4.2)

+
1

2
s(Bµν)cµcν +Bµν(−CPµ − ∂ccµ + c∂cµ +Daν

µ cacν +
1

3
Mabc

µ cacbcc)cν

− (∂dD
a)(c∂λd +

1

2
λd∂c− ξdece)caC−Da(cµZ

µ
a −

1

2
∂cca + c∂ca +

1

2
f bca cbcc)C

+Daca(−2∂cC + c∂C +
1

2
Bµνcµcν −DbcbC +

1

2
M bcµcbcccµ)

+
1

2
(∂dM

abµ)(c∂λd +
1

2
λd∂c− ξdece)cacbcµ (A.4.3)

+Mabµ(cνZ
ν
a −

1

2
∂cca + c∂ca +

1

2
f cda cccd)cbcµ

− 1

2
Mabµcacb(−CPµ − ∂ccµ + c∂cµ +Dcν

µ cccν +
1

3
M cde

µ cccdce) (A.4.4)
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As as been defined earlier in 7.1.33 and 7.1.35 the transformations of these functions

must be zero as the conformal weights of the functions imply that these functions are

independent of λ and any other field therefore the transformations of Bµν and Mabµ

is trivial. As done previously the expression is split into coefficients of the ghosts

and the derivatives.

s2(C) = cC(−2∂2c+ 2∂2c) + c∂C(2∂c+ ∂c− ∂c− 2∂c) + ∂cµcν(B
µν −Bµν)

+ ∂ccaC(−2Da − 1

2
(∂dD

a)λd +
1

2
Da + 2Da) + c∂cµcν(−Bµν +Bµν)

+ ∂ccacbcµ(Mabµ − 1

2
Mabµ − 1

2
Mabµ) + cca∂C((∂dD

a)∂λd − (∂dD
a)∂λd)

+ c∂cµcν(D
a −Da) + cca∂C(Da −Da) + c∂cacbcµ(−Mabµ +Mabµ)

+ ccacb∂cµ(−1

2
Mabµ +

1

2
Mabµ) + Ccν(−BµνPµ −DaZν

a )

+ cacλcν(B
µνDaλ

µ +
1

2
DaBλν +MabλZν

b ) + cacbcccdce(−
1

6
MabµM cde

µ )

+ cacbcccν(
1

3
BµνMabc

µ +
1

2
DaM bcν +

1

2
Madνf bcd −

1

2
MabµDcν

µ )

+ cacbC(−(∂dD
a)ξdb − 1

2
Dcfabc −DaDb +

1

2
MabµPµ) (A.4.5)

After the omission of the trivial transformations it can be seen that the terms in

the coefficients of cC, c∂C, ∂cµcν , ∂ccaC, c∂cµcν , ∂ccacbcµ, cca∂C, c∂cµcν , cca∂C,

c∂cacbcµ and ccacb∂cµ all sum to zero leaving only

s2(C) = ∂ccaC(Da − 1

2
(∂dD

a)λd +
1

2
Da + 2Da)

+ Ccν(−Bµν −DaZν
a ) + cacλcν(B

µνDaλ
µ +

1

2
DaBνλ +MabλZν

b )

+ cacbcccν(
1

3
BµνMabc

µ +
1

2
DaM bcν +

1

2
Madνf bcd −

1

2
MabµDaν

µ )

+ cacbC(−(∂dD
a)ξdb − 1

2
Dcfabc −DaDb +

1

2
MabµPµ)

− cacbcccdce(
1

6
MabµM cde

µ ) (A.4.6)

The constraints that must be satisfied for the Q to be nilpotent are as follows.

M [ab|µM |cde]
µ = 0 (A.4.7)

BµνPµ = −DaZν
a (A.4.8)

Bµ[ν|Da|λ]
µ +

1

2
DaB[νλ] +Mab[λ|Z |ν]

a = 0 (A.4.9)

∂dD
[a|ξd|b]+

1

2
Dcfabc +D[aDb] − 1

2
MabµPµ = 0 (A.4.10)

1

3
BµνMabc

µ +
1

2
D[a|M |bc]ν−1

2
(∂dM

[ab|ν)ξd|c] +
1

2
M [a|dνf

|bc]
d − 1

2
M [ab|µD|c]νµ = 0

(A.4.11)
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