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CHAPTER 1

INTRODUCTION

In the study of three-particle interactions at low energies by means
of the Faddeev equations (Faddeev (1961)) it is necessary to know the two-
body scattering amplitudes both on and off the energy shell. The on-shell
amplitudes corresbond to physical states and can be measured experimentally,
whereas the off-shell amplitudes are generally unknown., Since the off-shell '
amplitudes are not uniquely specified by those on-shell, it is necesséry to
make some assumptions regarding the nature of the two-body interaction.

The simplest assuﬁpfion which can-be made is that the interaction is
given by an energy—indepéndent separable potential (Lovelace (1964)). A more
physically realistic assumption is that the interaction 1s given by a local,
energy-independent potential and this is the assumption we shall make,
together with conditions on the short-range nature of the potential.

The off-shell amplitude is determined by the Lippman~Schwinger equation
T= V+V6T =V+T6V (1.1

where

(k H+¢.£)

is the free particle Green's function, H, is the free particle Hamiltonian,

. - . 2 . .
V is the potential and k is the energy. Using the partial—wave expansion

<1€'l7—/191»>‘= (4.’7-/0/9) Z(o?€+/)<)oll ,01 P(f ,P) @2

and a similar expansion for the Born approximation <(g,!V! Pay s we obtain

the partial-wave Lippman-Schwinger equation

], = Vio+ V6T, | (1.3)

£

where there is a different G, for each partial wave .



Therefore, in determining the off-shell amplitudes, the potential is
not involved directly but only via the Born approximations to the off-~shell

partial-wave amplitudes

Vi p2) = B <p IV Ip) .
[ vl

However, because of the existence of the potential, the partial-wave
amplitudes Vz(pf,p:) are not iﬁdependent and in this thesis we investigate
relationships between the amplitudes which enable the off-shell Born
approximations to be determined diréctly from the on-shell Born approximations
V() = Vo kK5, |

For the Born approximation to the off—shell scattering amplitude we use

the notation

4‘«3{—21) = -2 <V
= S (aee) V. Vi(pkp2) P (5. 5.) (1.5)

£=o
with q =!¥‘- »Bz/ , or in terms of the potential

1L ( = ?/vaL(Z \/{r) dr (1.6)

The justification for deriving (1.6) from (1.5) is given in Section 1.1.

2 2 2
On-shell, we have p, = p, = k and

G C, (K)/k | w.)

where g (k*) is the Born approximation to the £'th phase shift.

In Chapters 2, 3 and 4 we consider the inverse scattering problem at
fixed energy (Newton (1962) and Sabatier (1966,1967)), that is, determining
the underiying'potential directly from all the phase shifﬁs at a given energy
kz. This approach is more practical than the Gel'fand-Levitan approach
- (1951), starting from one phase shift at all energies, since the latter
requires a knowledge of the phase shifts at high energies wﬁere potential

theory is not valid. The problem of finding the potential from all the phase



shifts at one energy has also been treated by Wheeler (1955), Regge (1959)
and Martin and Targonski (1961) but none of these approaches are as generél
as that of Newton (1962). - However, Sabatier (1966) has shown that this
generality leads to an infinite set of potentials associated with each set
of phase shifts at a given energy and henée that the off-shell extrapolation
obtained from (1.6) is not unique. This lack of uniqueness can be removed
(Sabatier (1966)) by selecting the potential with the shortest range from
amongst this infinite set, although as shown in Chapter 3 this only gives
correct values for fBO«f) when q2-< 4k?.

A review of the inverse scattering problem at fixed energy is gi?en in
Chapter 2 in terms of the generalisation of Newton's method derived by
Sabatier (1967). 1In Cﬁapter 3 the inverse problem is treated in the Born
approximation and since a general solution to the equaﬁions has not been
" found, we consider two special cases which can be solved explicitly. For
these two special cases, ekpressions are derived for the Born approximation
fB(-q2) in terms of the phase shifts and it is found that both cases produce
incorrect results for fs(-ql) when q2 > 4k°, The reaéon for this incorrect
pehaviour is that neither of the potentials is short-range in the sense of
(1.20)‘and hence the Vm(k?) only determine V, (p*) for p* < k* as described
in Chapter 5.

In éhapter 4 we consider approximations to Newton's potential where N
(=0,1,2) phase shifts are treated exactly and the rest are treated to first
order only. Expressions are derived for the approximate potential in terms
df the phase shifts and numerical results are given for each approximation
when the input phase shifts are those of a unit-range Yukawa potential.

As mentioned previously, the partial-wave amplitudes are not independent
and in Sections 5.1 and 5.2 we derive relations between the Born‘ |
approximations to the on-shell amplitudes Ve(kz). It is shown that Vk(kz)
can be expressed in terms of either one Vm(qz) at all energies or all the

vm(qz) at any energy q1 > kz, the expressions being éxplicit sums or



integrals over the given amplitudes. The conditions on the potential that
are required for these results to be valid'are discuséed in Section 1.1. The
results are most useful for short-range potentials, that is, ones for which
V(r) falls off exponentially as r + o, so we also consider this class of
potentialé and the consequent behaviour of fhe partial-wave amplitudes
associated with them. In Section 5;3 it is shown that a low=-energy expansion
of the amplitudes can be obtained for short-range potentials and that the
region of convergence of this expansion is diréctly related to the range of

" the potential. Finally, in Section 5.4, we consider a high—~energy expansion
of the amplitudes which is valid for a class of potentials which includes
sums of Yukawa and exponential potentials. For such a potential 1t is shown
that the high-energy expansion enables Vz(kz) to be calculated from all the
V.(q%) at energy q" < k*.

Therefore by usipg the high-energy expansion in conjunction with the
low-energy expansion, it is possible to calculate Vl(kz) for all k? from all
the V,.(¢?) at any energy q’. o

In Chapter 6 we éonsider the off-shell amplitudes Vl(p?,p:) and derive
an expression for these amplitudes in terms of all the on-shell amplitudes
Vm(kz) at energy kz. The expression obtained converges for all p? and p:
such that p, + P, € 2k and for short-range potentials the region of
convergence is extended élightly. For ‘the particular choice k ;'&<p, + p,),
a simpler expression is obtained.which convérges rapidly and involves
precisely the same functions as were required for the low-energy expansion.

| Therefore, given all the Vm(qz) at any energy q2, we can.calculate
yz(pf,p:) for any pf and p: by first determining all the V ((p, + pz)z/h)
‘from either the low-energy or high-energy exbansions and then using the

procedure described in Chapter 6.

1.1 Conditions on the potential

In this section we derive properties of the partial-wave amplitudes



which are required in the following chapters.

We assume the existence of a potential V(r) such that

fwl V)| dr < .9

For such a potential, the Born approximations to the partial-wave aﬁplitudes

(1.4) and
VE) = - [ ) Ve) v s 0.

2 2
are well defined for pf} p. > 0 and k > 0 respectively by virtue of the

equality (Abramowitz and Stegun (1968) ; 10.1.50)

,Z(M”)p(z - aw

_(no
which gives

-

{jz(_“.)l < (a4+1) zv | (£ = o0) (1.11)

Setting q = lp - P, ’ we have from (1.4) and (1.5)

£8(-3) = f {Z(w: jelpH) jalpur IAIS } V)
’f g sialgr) V(r)+ dr e

where we have used (Abramowitz and Steguﬁ (1968) ; 10.1.45)
w[AR) | |
SM (MH)J (Aa jf(“ P(Cmg) | (1.13)

with R = (a2 + b2 =2abcos & )z. For potentials of the form (1.8), the
legitimacy of interchanging the order of integration and summation in

deriving (1.12) is assured by their absolute convergence since

| sia()/x | < | | o

for real x.
Therefore the scattering amplitude fB(-qz) is well defined both on and
of f the energy shell for potentials belonging to the class (1.8).

From (1.4), (1.11) and (l.12) we see that



’ \{4 (ftz) .F:.z)l < "FB(O)}/(QQ'H) | | (1.15)

and so the amplitudes are bounded.and tend to zero as £+ o, Therefore, by
the Lebesgue dominated convergence theorem (Bartle (1966), Chapter 5), we can

take limits under the integral in (1.4) and obtain
8
\4(0,,02) = %{fz) o) = gj)a; (‘/32) (1.16)

and

I-

F 5 o0 P"

Lim V(f),,/o) = Lim \/(/")/’l) = | - aan

since 30(0) = S}o and je(oo) 0. Note that on-shell (1.16) becomes
V(o) = §,*F (o)

z
Also, provided k # 0, we can differentiate (1.9) under the integral

B\ (K) f f joli) k) V) .

) .
which is well defined for k > 0 since zj,(z) is bounded for fixed 4 and

()] = L) - e Elfeer” < |

Equation (1.18) also holds at k® = 0 in the sense that I;m}: vz x*) = 0.
: 30
These properties of the Vk(p,,pt) are all that are required to derive
the basic equations in Chapters 5 and 6. However we often restrict the
potential further by assuming that it is a 'short-range' potential. We
define a short-range potential to be one such that
Lim exf)(o(l‘) V(i) = 0 | (1.20)
>0 ’ :
for some { > 0. The range of the potentilal is taken as the reciprocal of

_ the least upper bound of such <.

For any such potential we have



Lwr“z V() dr < oo

2
for all n > 0 and therefore we see from (1.4) that as p? or p, + O

2 2 2 ‘ .
\4 ({3 ) fx) = 0 Uthz)) (1.21)
where we have used the bound (Abramowitz and Stegun (1968) ; 9.1.62)

Ijﬂ(z)} < [az]"2! wﬁ[lf(mzu (1.22)

(24+1)!

Using (1.22) for r <VR and |v(r)| € AeXp(-a(r) for r > R, where A and

R are positive constants independent of £, gives

G < Lpp Rl Tl [ Iveled

1 (1.23)
Q(Fafz)z I Q-e Qf). ) l
where we have used (Watson (1966) ; 13.22.2) ‘

Lme-atjv (Lt)Jv(Ct)lb - Tie v(%‘i) (1.24)

From the asymptotic behaviour of the Legendre functions of the second
kind (Abramowitz and Stegun (1968) ; 8.10.5, see also (5.35)) we see that

2
for fixed pf and p,
e

2 2
V(phpl) ~e 0.2
as j—roo, with cosh o = (oLz"' P?. + P:)/ZP'P:.'
2 ' ‘
For complex k= we see from (1.9), (1.22) and the Lebesgue dominated

convergence theorem that Vl(kz) is analytic in kz provided

29 k] < « | _.(1.26)

and.hence that the series expansion of Vz(kz) about k* = 0 will converge for

at least k}<:¥?/4. Therefore, for a short-rahge potential of range'Jri the

low—-energy expansion described in Section 5.3 will certainly converge forv
2 ¢ L4,

For the Yukawa potential V(r) = -Aexp(-pr)/r we see from (1.9) and



(1.24) that
2 A 2
\/z(h) LS z(l+7ﬁa_‘) » (1.27)

and hence using (Abramowitz and Stegun (1968) ; 8.6.19)

0 (=) =—2'—g(xmj(;_fg-igﬂ-g_,(x)@_m(x) e

we have

o+l

\/I(kz) =’&j Al Zh—ZL"(L,e + Zh_nﬁa,o (1.29) °

=1

Therefore the 'high-energy' expansion

\/E(/‘iz) = ik.zz(o(i,a [‘jAz +/g;,xz)

(=1

will certainly be valid for any sum of‘Yukawavpotentials and also for

rJexp(tftr) with J > -1, since these can be

potentials of the form V(r)
obtained from Yukawas by differentiating with respect to u . Consequently
the high-energy expansion described in Section 5.4 will be valid for at
least all potentials of the form
— . -j w - _r)
V6) = 2 2 Byt PG
c J)‘I
These properties of the partial-wave amplitudes are all that are

requiréd in the following chapters and the only conditions which have been

assumed are those regarding the short range nature of the potential.



CHAPTER 2

REVIEW OF THE 1INVERSE SCATTERING PROBLEM AT FIXED ENERGY

This chapter consists mainly of a review of the results obtained by
Newton (1962) and Sabatier (1966 ana 1967) in their work on determining a
local potential from the knowledge of all the phase shifts at a fixed
energy. The notation used and formulae derived form the basis for Chapters
3 and 4 in which several approximations'to the inverse scattering problem
are investigated.

The first section of this chapter is concerned with the general theory
of the inverse scattering probleﬁ and it 1s shown that an infinite‘set of
constants (at each energy) are all that are required to determine the
underlying local potential. A method of relating these constants to the
phase shifts is described in the second section thereby completing the

formal solution of the inverse problem.

2.1 General Theory

We consider elastic scattering of spinless particles by a gpherically
symmetric 1océl potential. It is assumed that all the phase shifts at a
fixed energy k% are known and that an underlying loéal potential does
exist. The method to be used in constructing the potenfial is the one
due to Sabatier (1967) as if results in a much wider class of potentials
than the original method of Newton (1962). The essential difference‘
pbetween the two approaches is that Newton considered the summaéion in
(2.5) to be over integer values only, whereas Sabatier (1967) extended the
technique to allow the summation to be over any subset of [-},o[. As well
as including the potentials of Newton as a special case, it will be seen
at the end of this chapter that this wider class of potentials includes

all those which are analytic in a neighbourhood of the origin.

The problem is to determine the potential which, when inserted in the
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radial Schrddinger equation, reproduces the original set of phase shifts
2
at the given energy k .

Defining the differential operator

D.(z) = = [55+] ‘
(=) = Z (32 @
the zero-potential radial Schrddinger equation can be written as

Do(k*) u/(kr) = /*9“*‘)“/-“‘*) | . | (2.2)

The regular solutions of (2.2) subject to the boundary conditions

Lim u/t(l?*) (}?'”)./‘-I F(/‘*’Qf) Qﬂ” rE I (2.3)

+>0

are u/‘“,“_) = ,‘n’kr/:{ ];4_#“2?‘)
= kl“J/‘Uﬂ')

In order that the gM(kr) be regular solutions of (2.2) we see from

(2.4)

(2.3) that we must have s> -1, - In fact in the remainder of this chapter
we assume for simplicity that s 2 0,

The regular solutions gﬂ(kr) are used to define fhe function
gl = k) )bl o) ey

- where the constants gﬁ(kz) are as yet unspecified. From (2.2) it can be

seen that g(k,r,r’) satisfies the differential equatioﬁ
Do(kr) j(!‘h*‘,*") = Do(k*’)ﬁ(h,'“,*') (2.6)

énd also that

‘ o
ﬁ(h) ) j“‘ﬁ‘,o o 2.7)
It is assumed throughout that u is a discrete index, but with only
slight modification we could take s to be a continuous index in which case

the summation in (2.5) would be replaced by an integral.

The function g(k,r,r') is now used to define a function K(k,r,r')
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via the integral equation

K{Af’r) j(l(f“*) [J" /Ar K(}?”’)j(k ) (2.8)

In order to ensure convergence of (2,5) and hence the existence and
uniqueness of a solution to (2.8), Sabatier (1967) imposed the following
bound on the gﬂ,for any s i=
-2 i :
c. < B« /‘ ( ) (2.9)

/‘ ‘ .
for some o and ﬂ> 0, and with B a constant.

With this bound on the Cu Sabatier (1967) showed that the only
solution to the homogeneous form of (2.8) was the trivial solution and
hence that the solution of (2.8) was unique.

It is now possible to define the function jf(k,r,r') by

lhrv) = Dleyr) Kk
| - Do(kr)K(krr) - ew

where .
Dlkr) = Dlk) =+ V)
and ' » |
_ 2 Kk, + 1)
\/(f) = R ﬁ{F[ + } (2.12)

By straightforward differentiation, integration by parts and the use
of (2.6) and (2.7) it can be seen that the righthand side of (2.10)
satisfies the homogeneous version of (2.8). Therefore, as (2.8) possesses

a unique solution we have
! _ C) '
§(hrr) = |
' ' (2.13)

and hence from (2.10)

\JD(k,r)KU?,t*') = Db/kr')_k(/z,r,r')

(2.14)
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Also, from (2.8) and (2.7), it can be seen that
K(kr+ 0] = _/{(A)oﬂ-') = O

(2.15)

Finally the functions f&L(k r) are defined by

B (ht) = wlht) — f rt') wlhe') 216

Application of the differential operator D(k,r) to (2,16) yields

D lk+) 5‘}‘““) = /‘9‘”) AL (2.17) -
and from (2.3) and (2.15)

é.,(h, 0) = O | - (2.185

Therefore the functions éﬁ(k,r) defined by (2.16) are the regular
solutions of the radial Schriddinger equation under the potential V(r) defined
by (2.12). |

Upon inserting (2.5) into (2.8) we obtain

K(k,a-lr kZ (k) K (A r) u (‘H—) | (2.19)'

Kke) = ‘“?*(kr) fk( waer Kl )/(A*‘). -

and hence from comparison with (2.16)

}{(h,*‘)_ = ?}('k»*) ' (;.21;

This allows (2.19) to be rewritten as

K (hrt) /«Z (k/;éﬂr (k') .22

and so after substituting for K(k,r,r,) and interchanging the order of -

. integration and summation, (2.20) reduces to

é“”‘)*) = ?{Ar) - kaL/,vU“) ‘v(l‘l) fév(k’*) o (2.23)
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where

k- '
o x.
L V(kr) = f = LL/‘(x) (=) (2.24)

S

The definition of the potential V(r) in (2.12) can also be simplified

using (2.22) to give
_2 df L .
Vi) = ~EH[E) byl g bd] .,

In principle, equations (2.23), (2.24) and (2.25) provide the solution
to the inverse scattering problem at fixed energy. The integral in (2.24)
can be evaluated for m#V due to the fact that the g,&kr) satisfy the

differential equations _
2, : ( +')
L) v (1 -2 el =0
A /0 _
and therefore

:jgz [’ Vv/((fftét)_, UK,CK)Q} _ "v(v-féi;;,4£>~+l) ggu(x)t&,(x)

where W(a,b) is the Wronskian of a and b. Hence, as the gﬂﬁx) are regular

solutions, we obtain

k), (k)
Lf;v(kf) -

V() = Gl (2.26)

for/x#v .
- "If the constants Cv(kl) are known, the regular solutions %&(k,r) of
the radial Schrddinger equatidn can be found by solving the system of linear
equations in (2.23). Once the éﬁ(k’r) have beeﬁ determined, the potential
can easily be calculated from (2.25).
Therefore the only step remaining in the solution of the 1inverse
scattering problem is that of 6btaining the constants cv(kz) from all the

phase shifts at the given energy k.
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2.2 Relating the Su(kz) to the phase shifts

In the previous section the underlying potential in the inverse

scattering problem was obtained in terms of a set of, as yet unspecified
. ’
: 2
constants gﬁ(k ). As the only quantities assumed known are all the phase
2 s
shifts 6, (k ) at the fixed energy kz, it is necessary to determine a
relationship bet (K
e ship between these phase shifts and the e“(k ). In practice, we

only have knowledge of the phase shifts for =4 where [:is a non-negative
integer, but as no additional work is involved we consider the more generai
case where V& R

The phase shifts are defined in terms of the asymptotic beﬁaviour of

the regular solutions of the radial Schrddinger equation via
e
| s (Rt =52 +§)
9/}/#,*) ~ A f’“( IR (e27)

as r><. The properties of the constants A, can easily be obtained by
comparison of éﬂ(k,r)bwith the physical wave functions %;(k,r) which are

normalised such that
‘7’/ (k 4—) ~ ef;‘;' (;H“ -—z“"‘”— -+ g ) '
fpe 00 h = 7 | (2.28)

as r +oo,and
L///,. (4, 0) = O - o (2.29)
Due to the normalisation condition (2.3) we have as r » o (see, for example
] H]

De Alfaro and Regge, 1965)

gothr) = FOhr)
JF e -ihr k/‘ ‘
~ T [ﬁ/k)f_ - ﬂ(-k)e_ Jm (2.30)
where Af/pbf} £,(k) are the Jost functions

B = WOk, #(\k,r) -
and f(A,k,r) are the solutions of the radial Schrddinger equation for which
ihi-
¢ e ) = :
Lim e H(hke) =} .52

The definition of the S matrix
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a: 5, (kY
S(A h) = e
| (2.33)
. allows (2.28) to be rewritten as
'é’bi?; ,,k{‘- _..kr-“(-_ k]
5’/ (k+) ~ ——-F(_@ L(k) ( ) (2.34)
Therefore from (2.30) we obtain
i f(-k) ¥ (k)
— /" i’
é‘(kjf') = \I———A e ‘2/¢+I /7(/‘_’_37) (2.35).
anci the constants A/,.;n( ()2.27) ére giv_}e:zby )
S A -k
I ‘ 2 /7(/‘_,_%) | (2.36)

Use of (2.33) and the‘equality . ‘ ’ ‘

‘F‘)‘ (k) = 'Ph (-k) (2.37)
for A and k real (De Alfaro and Regge ,1965) readily yields the fact that
the constants A/, are real, that is

e = I (2.38)
In order to relate the c/.(kz) to the phase shifts, Sabatier (1967)
made the assumption that the asymptotic behaviour of the C/.(k") was such

that ' : P

l Cu (kz) { < B/«t
(2.39)

for some constant B and € > 0. With this constraint Sabatier (1967) proved

that the series in (2.23) are uniformily convergent as r - and hence can be

replaced by their asymptotic behaviour (2.27),

| u/(Ar) A~ sin (k- %) | i
and (o)
L) ~ Lo,
SV\.L 2_(‘\7—/)]
— ‘V"’z) (/A-o-‘i“)" V'}é/*
O ‘ - - (2.41)

2Q~v+1) | v =p
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(The above result for V = is obtained directly from (2.24) and is valid
for p > -} ; see, for example, Abramowitz and Stegun (1968) : 11.4.6 )

Substituting these asymptotic forms 1into (2.23) we obtain

)

@‘ s> {}U' - AT ""5/“) = 5"“.{Ar-/%t} -k L/(sv Cv(kz) Hv Sh(kr-%‘&+5") (2.42)

- and after equating coefficients of exp (7kr)

4 QL(; - ) &-L%— ~ kZ.Lf:)v (), e

. ns
(S, - )
T = y (2.43)
The real nature of the éﬂ_now allows the real and imaginary parts of

(2.43) to be separated, giving | - |
;}‘ = wo; - kgL/(:), Cv(kz) A, @[SV-S/ "'}(VV)] (2.44)

and | , | S

s"f‘g/‘ - —AZ L(;:)v ;v(kz) A S;,\[gv-s/‘"'}(v-/*)] @.45)

Equations (2.44) and (2.45) provide the required relationships between
the_phase shifts and the coefficients c/&kz). Given the phase shifts at
energy k* these equations, in principle, yield the Sn(ki) nteh in turn
determine the potential V(r) via equations (2.23) and (2.25).

Unfortunately, due to their complexity, it is not possible iﬂ practice
to obtain numerical solutions to these sets of equations and so it is
neceésary to investigate various approximations to them. These
approximations to the inverse scattering problem form most of the work
described in Chapters 3 and 4. In Chapter 3 the probleﬁ 1s considered in
the Born approximation whilst in Chapter 4 approximation methods are
described where several phase shifts are treated exactly and the remainder
are treéted to first order only.

Throughout this chapter the index + has been allowed to take any real

value not less than zero. Since, in practice; the only krown quantities are

the phase shifts % , for [an integer, it 1s necessary to consider the
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range of values of the indices for which solutions to (2.44), (2.45) and
(2.23) are meaningful. Sabatier (1967) proved that if the /4'5 are rational
and include all the integers, then it is possible to choose arbitrarily,
subject only to some very weak constraints, ail the Ca for which s 1is not
an integer and hence solve the problem.

Furthermore, on restricting attention to potentials such that rV(r) is
analytic in |r| < T , Sabatier (i967) has proved that the function K(k,r,r)
in (2.12)-can be expanded ag |

K(A,’f“)‘l') = hfce(k‘) ul(kl') é(/‘?)f)
FR) q. (K, (k) @, (k) (2.46)

éno
convergent in |r| < T , and that this expansion is unique.

Therefore, under the assumption that rV(r) is analytic in lr] <T , we
need only consider solutions which correspond to indices taking integer and

half-odd-integer values.
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CHAPTER 3

THE INVERSE SCATTERING PROBLEM IN THE BORN APPROXIMATION

In this chépter solutions to the inverse scattering problem are
obtained by treating the problem in the Born approximation. It 1s shown
in the first section that the problem is greatly simplified in this
approximation although it is still not possible to solve the equations and
find the most general potentials corresponding to v taking both integer
and half-odd-integer values. Two special cases for which solutions can be
fdund are considered in the second section‘and it is seen that one of these
results'in a one-parameter family of potentials associated with each set
of phaée shifts at a glven energy. The asymptotic behéviour of this
family of pbtenfials allows just one to be selected which falls off faster
than fa+€

In the fiﬁal section the potentials derived from these two'special
cases are used to determine the off-shell scattering amplitude in Born
approximation. When the input phase shifts are taken to be those of a

single Yukawa potential, it is shown that these off-shell amplitudes are

very different from those of the original Yukawa potential.

3,1 The Born approximation

Following the method described by Sabatier (1967), we consider'
solutions to equations (2.23), (2.25),(2.44) and (2.45) in the 'linear
approximation' ; that is, only first order terms in the phase shifts and
the cv(k?) are retained. In this approximation, equations (2.44) and

(2.45) reduce to

(=) |
ﬁ/ = | - g L/)v a, m[%(v-y)] (3.1)

5/(/11) = Z[;:: a, sln[:f‘(V*/*U | (3.2)

and
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upon setting

@, = k. (k) B, coo (5.K))

As we are dealing only to first order in the gﬁ(kz), it can be seen from

(3.3)

(3.3) that the a,. are also first order small and hence that (3.1) and

(3.3) become

F)/ = | | (3.4)
and ' |
_ (k*
2. k R ) (3.5)

The expression for the potential is also greatly simplified in this

approximation. From (2.23) and (2.25) we see that fhe dependence on the

solutions 2&(k,r) is removed, yielding

Vi) = -3 E[F) ) gm] 6.8
”~~ :
Since the only known quantities are the physical phase shifts Sl(kz),
it is necessary to restrict the range of values for s in (3.2) to‘/*=-€,
an integer. Having done this, it is then possible to determine the a,, ,
for vV non-integer, froﬁ the S?(k?) and solve the problem. In the process
of detgrmining the a_, , it may be found that (3.2) does not have a unique
solution (c.f. Newton's potential). If‘this occurs, it may be necessary
to impose constraints on the potential so that one particular set of a,
caﬁ be selected. | |
In particular, allowing v to take only integer and half-odd-integer
values we obtain a solution corresponding to the potential, described at
the end of Chapter 2, for which rV(r) is analytic in [r] < T . It is this
class of potentilals which is to be considered in the remainder of this
chapter since, in potential scattering theory, it is A deéirable feature
that the potential be analytic.- |
Sabatier (1967) has proved that this linear approximation is the same
as the usual Born approximation. The Born approximation to the phase shifts

is given by
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SU) ~ ES)
kf”# jo the) V)

—
—

= kK wuz(kr) V(r) dr

(3.7

which, on replacing the potential by (3.6), becomes

S = -k [ ) [ S k) W )]
o -

: ) ‘ﬂ—" . J -l i( }] CI
- u

= -Qk/Z{c/“foz Wl

The integral in (3.8) can be evaluated (see, for example, Sabatier (1967)
) S
Appendix B ) Bgivtng S;,:'C:‘f'(/‘-f)]
5((1?) = " ;%/‘(/«H}-cuw)
("") . ™

= > Ly, ausie[F )2 @9

which is identical to (3.2) for the physical'phase shifts,

-Therefore, in the Born approximation, the inverse scattering problem

reduces to finding solutions of the linear system of equatioms

where Pt ‘
2[Z(-0]
é; _ Su 2 (p
ep — (prE)N = (L E)”

(3.11)
for €= 0,1,2,°**++ and p = 0,4,1,14,**+++, The potential can then be

obtained directly from (3.5) and (3.6).

3.2 The Potentials of Newton and Sabatier

Although (3.5), (3.6) and (3.10) in principle provide the solution
to the inverse scattering problem in Born approximation, there still
remains the question of the existence and uniquéness of a éolution >to (3.10).
Initially it appears that a solution can be obtained by truncating time
system (3.10) after N terms and numerically solving the reduced system of

equations. This turns out to be an unsatisfactory approach since the elements
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82) e++ fall off very slowly (as -é—l) and as N +eothe determinant of B
’ -3
tends to zero. In fact, for N = 15, det(B) = 10 ‘.'
As the general inverse of B has not been found, we consider two special

cases for which explicit inverses have been constructed. These two cases .

are obtained by setting

(i) cp 0 for p =m, an integer

and (ii) ck 0 for p=mnm + }, a half-odd-integer

and they produce the potential originally investigated by Newton (1962),

and the 'even potential' of Sabatier (1967), respectively.

Newton's Potential

After removing all half-odd-integer values of the index p, we see that

(3.10) can be rewritten in the form

o= (%) |
Se(k’) = ZM4r ap | (3.12)

F=e
&)
where we have introduced the matrix M  defined by
' -
() (m+d) = (0407 for (£-m) odd
Mom = (3.13)
g L 0 : for (f-m) even

)
The two-sided inverse §  of M9 and a vector x(‘)which is annihilated

by M#O have been constructed by Sabatier (1966). Explicitly
() 2 (L4+2) P (4+%) (22+4)

Vie = T [L+1) [(£+A+%)
' ‘ (3.14)
(<) N
RE+1
A/I("”)‘ = O for (0-m) even (3.15)
and () L) (=) —,—("‘) ()
= = )ap = V. 2 \%
29 am+) LAm+ '21 € ) m am
where 4
2y , (2m+a'2al) (Qm-&-') (-?m+°(+')
Tom = Tames) (Ao 2o e ) 2030 ) (3.16)

and these formulae are certainly valid for « > -}.

- ‘
Since the matrix M ) is Hermitean, it appears to have paradoxical
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properties —~ the existence of an inverse and a zero eigenvalue. Redmond
(1964) investigated these properties for the case o= 0 and showed that
the source of the paradox was the existence of the eigenvector;g“ﬁ which
was orthogonal to all other eigenvectors but which was not normalisable
and did not belong to a complete set of eigenvectors. The analysis élso
showed that the vector;g“) was unique to within a constant multiplier,

(%)

. Sabatier (1966) extended the uniqueness proof to y “ and for the two
special cases being considered, these are the only vectors which will be
required.

The system of equations in (3.12) can now be inverted, giving
= %) %)
. = g Y (g(k) + A v @A

with )\ a constant. Therefore, when the af are substituted in (3.5) and
(3.6), we obtain a family of potentials parameterised by A for each set
of phase shifts. Even though a unique solution does not exist in tﬁis
case, it is still possible to éingle out a potential of particular
interest by considering the asymptotic behaviour of this family of potentials.
With the assumption tha; the phase shifts tend to zero faster than
.6—3-635 f—*oO, Sabatier (1966) showed that the family of potentials

behaved asymptotically as

Vir) ~ _an T (}\—/8)_43% coo (24~ )

F O(s%2) (3.18)
where | |
B = 2 Vp tm‘gr - Z %o °§r+, (3.19)
pP=o | p=e
and ' ‘ »
O.%;{-l = Z_\{Tm &ﬂg‘;m M2m12r+' QA S:’{f-o-' (3.20)
m=o0

Note that & in these formulae refers to a positive number which can

be made arbiltrarily small but not equal to zero, but that it does not

necessarily have the same value each time it occurs.
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Therefore, from (3.18), we see that there is only one potential within
- each family which goes to zero faster than r_2+£as r - « and that all the
other potentials have a damped oscillating tail. This potential is
characterised by the condition A =/3 énd has been called the 'special
potential' by Sabatier (1966) but in this and the foliowing chapter we
refer to it as 'Newton's potential'. Although ﬂ in (3.19) depends on
a*l’” ,we see from (3.17) and (3.14) that it can be expressed in a closed
form independent of both a and X.

It should be noted that the condition )\ =ﬁ is valid for the genefal
solution of Newton's potential and not just for its Born approximation. In
fact, this condition, together with equations (3.19) and (3.20), will be
used in Chapter 4 when we investigate other approximations to Newton's
potential.

In the Born approximation we see from (3.19).and (3.20) that Newton's
potential is determined by

o= VT sw) ‘
L e (3.21)
and therefore from (3.5) and (3 17)
= @)
C (A k Zéj SU?) + k V Z\{; ge(/?‘) (3.22)
£=0 L=o

A procedure has been written to calculate the c,,(kl) from any set of
phase shifts at energy K (it is assumed that only the first‘N phase shifts .
are non-zero ). As a simple practical test we have taken as S,,S,,m-,g,,
the Bérn approximations to the Yukawa potential V(r) = -exp(-r)/r and set
ge =0 for ¢> 10. Table 3.1 contains some results for this example where
several initial energies are considered, and it can be seen that the ¢, (k")
rapidly approach a constant value at each energy. This behaviour can be
'seeh directly from (3.22), (3.14_), (3.15) and (3.16) since, as p + ©

C_f/kz) > 4 (k)™ Z \f:L) é:w(kij (3.23)

f=0
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The results shown in Table 3.1 will be used in Section 3.3 to calculate the

Born approximation to the off-shell scattering amplitude.

Sabatier's Even Potential

Returning to the second special case of the inverse of B, we see that,

on setting cp = 0 for all integ_er values of p, (3.10) becomes

(eo) :
5, (k) = Z gpet Lot 5""-[%(/0—2#2—)] | (3.24)
p=e

In the Born approximation it is easy to see that this case produces an even
potential, since, from (3.6) A ‘
. o9 .
d [ ]
\/{r') = ln— dr L\: O”F"‘ (k) “ ( hr) (3.25)

p=e
and | rf*“") = 7:__ ]’ (k)

!

= ,rzf" (Su,,, ot Ferms Bt )

where o{ and ﬁn are constants.

In order to simplify the notation we introduce the matrix E defined by

(=0)
E,p = szw— sal ¥ (f‘j*’ )]
— 2 2
= -f{[(!f"z‘) -p J (3.26)
and the vector g_ such that
A ,
with é‘o = O (3.27)
Rewriting (3.23) in terms of E and § we obtain
2 A :
S(A)_;_Z Ep ¢ (3.28)
e )f r .
p=°

From the definition of I"(") in (3.13) we see that

£y = -0 p"- 0T
= -2 Mg, G.29)

)
and as ¥ 1s a two-sided inverse of M ), the inverse 7 of E is given by
(o)

I B
’le,f = 2 J’*'IQP ,
4“")——2 "‘or =0
_ 9 (2pel)? (3.30)
Qe)* - (-?)cw-l)"l

‘F‘or £+ 0
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Similarly, the vector s which is annihilated by E is given by
=N for p=
S = - | (3.31)
| 'Fo?‘ F # O ’

and therefore it is possible to invert (3.28), giving

qu’) gl(/x) +/Q P (3.32)

£=o
with ﬂ a constant.

A
From the condition c, = 0, we see that
oD

peef sl

and therefore

e lk) = _h-';%,eg(k) .
| + & ZS (kY (3.34)

A proceduré, analogous to the one‘for Newton's potential, has been
written to calculate the ¢ »tfrom any set of phase shifts at a given
energy. Table 3.2 contains some results for the example where we take as

go , g' ,-----,é;o the Born approximations to the Yukawa potential
V(r) = -exp(-r)/r and set é; =0 for £> 10. As in the case of Newton's
potential, the values rapidly approéch a constant value at each energy; in
fact, frém (3.34), (3.30) and (3.31) we see that as p + <
-24-) o 2 |
CP“I_(A‘) —s Sk ;ge(k) (3.35)

In the next section we descriBe a method of determining the Born

approximation to the off-shell scattering amplitude directly from the phase

shifts, by assuming that the potential is of the form given by (3.6).

3.3 The Born approximation to the off-shell scattering amplitude

The Born approximation to the off-shell scattering amplitude is
defined as ) ' a ,
8-g?) = -2 <plV[p')
(=~ )
2‘( S;A(Zr) Vi) + o+ (3.36)
° Univerdty

Library
Fall

Il
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where q = I,p_ - ,p_'l.

Assuming that the potential is given by (3.6) we can rewrite (3.36) as

8 1) o D[[-/ 9 2 (ke {

_ot) = Asm,r——-rgc(ku | e

'F/i ‘22_[ ZJd" v )/* (3.37)
o R

For Newton's potential and the even potential of Sabatler we introduce
8,6 - ‘

the notation fS(—ql) and fe(-qz) respectively, In the case of Newton's

potential we see from (3.23) that cP(k?) > ¢ , a constant, as p = <,

Therefore, on setting Cp =c + d , (3. 37) becomes

Flg) = 24 js‘“(l) L (ko)
| +_’2?_l.(° s'm(zr dr “': G f“‘z (A’)J"[’ | (3.38)

provided that the c, are bounded. The integral in the first part of (3.38)
can be evaluated (Abramowitz and Stegun (1968) ; 10.1.52, 5.2,1 and 4.3.143)

giving , 2k for2k
£lg] = i (z’lk)

[or [" "(A
+2g fstmg T Z (3.39)
for q # 2k. The point q = 2k produces a s1ngu1arity in both parts of (3.38)
and will not be considered further. After integration by parts and use of
the estimate (Underhill (1970)) »
- :
Z‘Ie L) < C+ Cflzj(x)‘ 3.0
£=0 '

for Zd bounded, (3.39) reduces to

1C (-3') = (+jh +‘2,]¢ m/zrzd () (3.41)

L0

Provided ld I <.A1 as ¢+ it is possible to interchange the .
order of integration and summation in (3.41). The integral can then be

expressed in a standard form ( Bateman (1954) ; 19'2 32 ) and hence

g‘k ;‘:.2;) Z‘ll Qz” 57;_) z?< “z‘

ﬂg/-f); y , e . i O (3.42)
o) . SUQE) e

We can perform a similar analysis for Sabatier's even potential, since



- 27 -

from (3.35) we see that °f+t(k2) + e, a constant, as p > < . Therefore, on

setting Cpeq = e + gp » We obtain - 2 '
’ = 1
£0,(1-3) — ) 3 Qi gern
- IR e Te+rt A
’FB(— z) - g 3 (.,3 Z z
E Z (3.43)
O 22>”—Az
“keg 8 1 X N
provided |ge| < B4 . The result that £.(-q") = 0, for ¢~ > 4k” , 1is in
agreement with Sabatier (1967).

A procedure has been written to calculate ﬁ:(—qz) and f:(-ql), for any
value of qz’ from (3.42) and (3.43) gilven the coefficients c<(kF) and
cHt(k:v.). For q3 < 4k? the series in (3.42) and (3.43) converge slowly and
results were obtained by summing the first 200 terms in each series. For
qz > 4k* the series in (3.42) converges very rapidly and in order to obtain
6 figure accuracy, only the first 30 terms were found necessary.

Tables 3.3 and 3.4 show results for several values of qz_when the
coefficients C, and c,,, are taken as the ones in Tables 3.1 and 3.2
respeétively ( these were obtained from the phase shifts to the Yukawa
potential v(r) = -exp(-r)/r ). From these tables it can be seen that the

results are only correct for the region qa < 4. TFor q’l > 4k* we have

ﬁ:(-qa) = 0 from (3.43), and upon considering the limit qa + oo in (3.42)
e that ' - _

we se ‘FB/“ z) ~ thzl(C*'Ulo)

. v 7

lkzi'l c.(K)

—

(3.44)
symptotic behaviour for the Yuk ~1
The correct asymp ukawa potential is q = whereas
from Table 3.1 we find that 2t e, (k) = 0.072, 0.360 and 0,553 for k = 0.2,
0.6 and 1.0 respectively. This behaviour can easily be seen in Figure 3.1
8 2
shere fN(—qQ) is plotted for q~ < 10.0 and k = 0.2, 0.6 and 1.0.
6 _
Having determined £ (-qz) from all the phase shifts at a given energy
kl , it is now possible to obtain the Born approximation to the on-shell

partial wave amplitudes V, (p) for any value of p'., On shell, the partial-

. 8 '
wave expansion of £ (—ql) is given by
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. 8 = ' 2 .
£ {*iQ} = IZ;(Q“’) ANNALS S (3.45)
where qa' = 2p"‘(1-/4) and/u= cos ©. Therefore

2 ' ] 2/
) = & [ Bl Pl
e Y S 2. L) (8/ 2) )2
= -(Qp)lf /j()'z/Qr)?L{fZ)Ji (3.46)
[e]
which can be evaluated numerically for any value of pa from the previously
calculated f:(-qz) and fs(—qa). For pa = kl, (3.46) reduces to

Ve(kz) = S}(kz)/k when either (3.42) or (3.43) are substituted for fe(—qz),

by virtue of the integral ( Abramowitz and Stegun (1968) ; 8.14.8 )
| - Coo(/uﬂ)‘-é'-r)

‘(l 8 (Jf—) @4{1)11 -_-.l (2-p) (Lt p#1)
) . 5

st £

(3.47).
=t

B ‘ 8
Since, in the example considered, f~(-qz) and fE(-qa) were only

2 2
correct for q < 4k

, it follows from (3.46) tﬁat Vo (pz) will 6n1y be
correct for p < k. The behaviour of Ve(pz) for p > k 1s 1llustrated in
Table 3.5 where results are given for the case k? =1,0 and p2 = 2.0,

It is to be expgcted that fj(—qz).and f:(-qz), together with anf other
fe(—qz) derived from/the inverse problem, be correct for qa < 4%t since,
in this region, the phase shifts at energy K* uniquely determine fs(-qz)
(and Vz(qz) for ¢¢ < k¥ ) as described in Chapter 5. |

Because of the discrepancy in V}(pz) for p > k, it follows that the
off-shell extrapolations from the V;(pl) obtaingd from (3.46) and (3.42) or
(3.43), will also differ from the true values. For example, usiﬁg (6.8) we
find that V, (4,1) = 0.1184 for Newton's potential based on the V;(0.36) for
the Yukawa potential V(r) - —ekp(-r)/r. Using Sabatier's even potential we
'~ obtain V°(4,1) = 0.0238 whereas ;he true yalue for the Yukawa potential is
0.2012. It also follows that the off-shell T matrix will exhibit similar
disérepancies which will increase as the energy kg is decreased.

The origin of the discrepancies lies in the long~range nature of both

Newton's potential and the even potential of Sabatier. In fact, on setting
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Cu = A, a constant, for alllu , we see from (3.6) and (3.25) that V(r) ~ f—z
as r >, As in nature we are concerned with short-range interactions, the
use of either of these potentials is unphysical, 1In particular, the off-shell
extension of the scattering amplitude derived by Underhill (1970), which

i{s based on Newton's potential, is likely to be unreliable.

Although, in the Born approximation, these two special cases have
resulted in long-range poténtials it 1s possible that the family of solutions
to (3.10) includes one which corresponds to a short~range potential. If
the inverse of the matrix B in (3.10) can be determined and a solution to
the equations found by démanding that the potential be short-range, then
the Born approximation to the off-shell scattering amplitude can be obtained

from (3.37) without direct reference to the potential.
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cz(kz)

4? k=0.1 k = 0.2 k = 0.6 k = 1.0 k=2,0

o | 0.97097 | 0.89404 | 0.49974 | 0.27640 | ©0.09474
1 | 1.47073 | 1.39080 | 0.91406 | 0.57295 | 0.22861
2 | 1.23173 | 1.18203 | 0.87533 | 0.61905 | 0.29263
3 1.28709 | 1.21974 | 0.86396 | 0.62324 | 0.32393
4 | 1.24240 | 1.17800 | 0.83631 | 0.60736 | 0.33555
5 | 1.26405 | 1.19714 | 0.83345 | 0.59820 | 0.33863
6 | 1.24549 | 1.18093 | 0.8238 | 0.58853 | 0.33703
7 | 1.25686 | 1.19020 | 0.82426 | 0.58421 | 0.33396
8 | 1.24672 | 1.18140 | 0.81983 | 0.57971 | 0.33041
o | 1.25371 | 1.18717 | 0.82063 | 0.57796 | 0.32703
10 | 1.24733 | 1.18166 | 0.81810 | 0.57570 | 0.32422
11 | 1.25206 | 1.18558 | 0.81882 | 0.57495 | 0.32165
12 | 1.24768 | 1.18180 | 0.81718 | 0.57367 | 0.32027
13 | 1.25109 | 1.18464 | 0.81778 | 0.57332 | 0.31829
98 | 1.24850 | 1.18217 | 0.81514 | 0.56947 | 0.30883

99 | 1.24853 | 1.18222 | 0.81516 | 0.56948 | 0.30883

Table 3.1 : ¢, (k*) for Newton's potential from So(kz), S‘(kz),-....., Sw(k’),

the Born approximations to the Yukawa potential V(r) = -exp(-r)/r.
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2
Corg (k)

Z | k=01] k=02 k=06 | k=10 | k= 2.0

0 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
1 1.05540 | 0.98756 | 0.60782 | 0.36186 | 0.13548
2 0.85957 | 0.84354 | 0.67964 | 0.48890 | 0.22681
3 0.82455 | 0.79993 | 0.64988 | 0.50540 | 0.27172
4 | 0.81351 | 0.78645 | 0.62554 | 0.49510 | 0.20131
5 0.80857 | 0.78070 | 0.61219 | 0.48232 10.29785
6 0.80593 | 0.77770 | 0.60512 | 0.47245 | 0.29806
7 0.80435 | 0.77590 | 0.60116 | 0.46569 | 0.29551
8 0.80332 | 0.77476 | 0.59875 | 0.46119 | 0.29205
9 0.80263 | 0.77398 | 0.59718 | 0.45819 | 0.28855
10 0.80213 | 0.77342 | 0.59610 | 0.45614 | 0.28540
11 | 0.80176 | 0.77008 | 0.59313 | 0.45469 | 0.28275
12 0.80148 | 0.77270 | 0.59473 | 0.45364 | 0.28063
13 0.80126 | 0.77245 | 0.59428 | 0.45285 | 0.27941
98 0.80004 | 0.77109 | 0.59180 | 0.44878 | 0.26865

99 - 0.80004 0.77109 | 0.59180 0.44878 0.26865

Table 3.2 : CIH,-_(kz) for the even potential of Sabatier from ga (kz),

5‘(1(2),'-"-, S,a(kz)’ the Born approximations to the Yukawa

poﬁential V(r) = -exp(-r)/r.
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8
fN (_qz) 8
. ¥
£ (-q%)
K 0.2 0.6 1.0 2.0 =(1+q2)"
q
0.1 0.99010 | 0.99010 | 0.99009 | 0.98549 | 0.99010

0.2 0.96154 | 0.96154 | 0.96154 | 0.95887 | 0.96154
0.3 0.91743 | 0.91743 | 0.91744 | 0.91702 | 0.91743
0.5 0.35433 | 0.80000 | 0.79999 | 0.80192 | 0.80000
0.7 0.15976 | 0.67114 | 0.67114 0.67161 0;67114
0.9 0.09296 | 0.55249 | 0.55248 | 0.55137 | 0.55249
1.0 | 0.07452 | 0.50000 | 0.49999 | 0.49894 | 0.50000
1.1 0.06112 | 0.45249 | 0.45249 | 0.45197 | 0.45249
1.3 0.04333 | 0.28021 | 0.37175 | 0.37242 | 0.37175
1.5 0.03235 | 0.18950 | 0.30769 | 0.30820 | 0.30770
1.9 0.02003 | 0.10925 | 0.21692 | 0.21648 | 0.21692

2.4 0.01250 0.06591 | 0.11136 0.14796 0.14793

3.0 0.00798 0.04133 0.06667 0.10028 0.10000

8
Table 3.3 : fN(—q:) from So(k’), S,(kn),-----, S‘o(kz), the Born

approximations to the Yukawa potential V(r) = -exp(~r)/r.
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B, 2
fe (-q7) £8qh
K 0.2 0.6 1.0 2.0 =(1+q?)"

q
0.1 | 0.99010 | 0.99010 | 0.99509 | 0.98550 0.99010
0.2 | 0.96154 | 0.96154 | 0.96154 | 0.95887 | 0.96154
0.3 0.91743 | 0.91743 | 0.91744 | 0.91702 | 0.91743
0.5 0.79999 | 0.79999 | 0.80192 | 0.80000
0.7 0.67114 | 0.67114 | 0.67161 | 0.67114
0.9 0.55248 | 0.55248 | 0.55137 | 0.5524
1.0 0.49999 | 0.49999 | 0.49894 | 0.50000
1.1 0.45248 | 0.45249 | 0.45197 | 0.45249
1.3 0.37175 | 0.37242 ‘| 0.37175
1.5 ' 0.30769 | 0.30820 | 0.30770
1.9 | 0.21692 | 0.21648 | 0.21692
2.4 ' ' 0.14796 0.14793
3.0 |- - | 0.10028 | 0.10000

Table 3.4 : f:(-qz) from So(kz), S,(kl),"'“, Sm(kz), the Born
approximations to the potential V(r) = ~exp(-r)/r.

f:(-qz) =0 for-q > 2k,



- 34 -

Estimated V£(2)

: v, (1) Exact

4? £ Newton's Pof Even Pot{ Vt(z)
0.4024 0;2579 0.2012 0.2747
0.1035 0.1023 0.1265 0.0933
0.0318 0.0370 0.0428 0.0376
0.0104 0.0141 0.0049 0.0162
0.0035 0.0078 "~ 0.0059 0.0072
0.0012 0.0042 0.0093 0.0033
0.0004 0.0012 0.0021 0.0015
0.0002 0.0002 -0.0031 0.0007

Table

3.5

Values of the Born approximations Yz(kz)

2

k™ = 2 for the Newton-Sabatier potentials,

with those for the Yukawa potential V(r) =

at energy

compared

-exp(~-r)/r,

to which the former are fitted atyenergy k? =1,
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Yukawa
k=0.2 “\
I 1 1 I 1 T (] 1 —
2 3 b 5 6 7 8 9 q

Figure 3.1 : The Born approximation fg(—qz) for Newton's potential fitted
PULE LI L G ot

8 .
to the phase shifts S?(ki) of the Yukawa potential V(r) =
-exp(-r)/r , for k = 0.2, 0.6 and 1.0. They agree with the

-/
Yukawa curve, fa(—qz) = (¢* + 1), for q < 2k.
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CHAPTER 4

APPROXIMATIONS TO NEWTON'S POTENTIAL

In this chapter we consider approximations to Newton's potential
where the first N,( N = 0,1,2 ) phase shifts are treated exactly and the
rest are treated to first order only. We deal with Newton's potential
since all the approprigte inverses are known but the method wili carry
over to more general solutions of the inverse scattering problem, such as
those characterised by (2.46), once the’inverses of the corresponding
matrices have been found. The generalisation of the N = 2 case is.not as
clear as the other two cases and will obviously depend on the abilitf to
find an approximate inverse of (1 + R).

The method of calculating the potential parameters cl(kl) in each of
the approximations is described in the first section and.the corresponding
approximations to Newton's po;ential are obtained in the second section.
Finally some numerical results are given for each of the approximations.

Firstly we summarise the relevant.results from Chapters 2 and 3 for
the case of Newton'é potential, that is, cv(kz) =0 for V #QZ, a-non-negatiQe

integer. The potential is given by

Vi) = —,Z(Ar)-lﬁir’[?':‘ K{Aﬂ’)] (4.1)

| K/k;*) = kZC,e %@(A,r) ux(ér) | .(4.2)
4k = wlh) = k) L, e fulhe)

Lz,m (7-‘) = Lj"(:f)f"‘ll)"lj N | (4.4)

The coefficients c, are such that
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(/‘{cz)—] = —QZ_EH) ( XM é?mg am) o,
(4.5)

m=0

with
ZMF,MC‘“ i Zt‘“‘gz Memﬁ“gm Qen = Z;“g; .6)
and .
[(m=&)m+ee)]™ (m-2) odd
M[m = | | (4.7)
@, (m- -é)even

From (3.13) we see that the inverse of M and the vector y which is

annihilated by M are glven by

ge = e[ (F)]

(4.8)
Vaets o
and
-1
Mp = O ([-m) even
-1 -1 (4.9)
M;Zp,afm‘l = M"“*’,-'le = T;"" Vae Vam
where :
T = (fm+3) (Am+1)° -
¢m (hem+1]{20-2n-1] (24 + 2m +2) (4.10)

In order to simplify the analysis we use matrix notation with 4 the
diagonal matrix such that ,Aﬁ,e:b"g@ and e the column vector with all its

elements unity. With this notatién, (4.6) becomes

MS& +AMA'9& = Aﬁ_ - (4.11)

the general solution to which is

o (AT A s R

S~

with

R=M'AMA

(4.13)
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and >\ a constant.

It is possible for some choices of Z& that the matrix (1 + R) will
beAsingular, although we have not been able to construct.such a ‘Zl(with
ZX real), and in the following éections we assume that (1 + R) is non-
singular.

For Newton's poténtial, that is, the one which falls off faster than

-2+€
T , we have from (3.19)

>\ = MTA(_Q*MAi) (4.14)

which ensures that

Lim (a22+l—- a.pz) = O | ' (4.15)

£—> ==

Note that (4.14) involves only the odd a's which are given by (4.12)
independently of k ,» since Ry ,,= 0 unless (¢- n) is even. Therefore
% is given explicitly and the problem of constructing Newton's poteﬁtial

consists essentially of inverting the matrix (1 + R) and solving the

equations in (4.3).

4.1 The Potential Parameters

In this section we calculatg the coefficients ¢y for Newton's potential
in the approximations where N ( = 0,1,2 ) phase shifts are treated exactly

and the rest are treated to first order only.

We consider all the phase shifts to be small, so that we are essentially
working in the Born approximation. TFrom (4.13) we see that R is second

order small and may be neglectéd. Therefore

(o) ~1
a =M-A,%+>\X o | (4.16)

where

(4.17)
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and hence, by (4.5)

) N ! ‘ -1 :
kc[ == [ —Q(Qﬂ-f’) + ql(o)] (4.18)

In each of these equations the errors are of order 53 so that we are
. . 2 °

in fact working to second order in the phase shifts. To first order, (4.18)
] .

(o) _ (o)
reduces to k¢, = 3, which is the Born approximation described in

Chapter 3.

This approximation satisfies the requirement (4.15) exactly, since
* ’

from (4.8)

. -1l
Lm Vae T Z"W : (4.19)

Vo X
and from (4.10)
Lim T, = =/
>0
and ‘ . - (4.20)
L;m 7;;""\ - O : : ’
e

for fixed m.

We now treat¢g exactly and all the other phase shifts to first order

Since My, = 0 , wve see from (4.13) that Ry (;(\S Z"( é’dg" i.e. R is

mag

first order small and so (1 + R =1 -R. Also, to first order, we see
. ?

that

AMAM_,A :\_—/QA -‘ - (4.21‘)

/8 = Z Moa +1 Jm-u M

me=o ' Am+l, 0 (4.22)
b 62 baS, + B+ )

a first order small quantity.

where

Therefore, from (4.12), we obtain for the odd a's (which do noﬁ depend
n
on N) |

(") = (I-MAMA)M A

opD



= (1-p)M A e = (1-p) ()

and hence from (4.14)

A~ v Ae -0 /-?)vAMAM"Ae
= MTA,Q —(/“ﬁ)MTIBA_e;

Froh (4.22) we know that f? is first order small and so
)\(') ~ (/*,B)xTA,%
= (1-p)\”

Therefore the even a's are given by

()L = (- M Ag + )X (1I-M"AMA)y

cven ,
~ =) (). - (FANT MO MAY
and hence ‘
b - a” - BaS Ry
since vy, = 0, Vo = Land R =R . = 0.

From the definitlon of R we see that

PR M s B8 MW,AJ(;A;

m=20 Jo J‘S

m=0o aAm+y lm*l o

to first order in 6;1g', j#0.

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

Introducing the vector,g,equal to the first column of the matrix M, we
. H .

see that (4.27) gives
Ry = kad MTA m

and hence from (4.26)

Ma” = U-plA e - IS A

o L
which, with (4.11), yields-

MA Y = Be + E S

(4.28)

(4.29)

(4.30)
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provided 5;7‘ 0 for a1l £ .

Using (4.30) we see that the coefficients Cp in (4.5) are given by

T . 2 -1 .
hcz = [- ;zgen) + (’_,8"4&" So Mg,o)/%m] (4.31)

which is valid even if % = 0 for some j.

We complete the approximation by removing the remaining negligible

. terms in (4.26), so that

a?l(l) = t;d g .'12 Z Mo;l +1 b’L‘S:_m-u Im+!, 0

\

SO M;
i.e. é:m 4’.1,.\ (;"‘ g.!mu M,}mu,o
(1) oo
Qe = % + t&n <S
\" .
"'Z: 24 V‘?m é:m. 2"”" [(Qm*"f(?mi—-v
__{km+3)
(/,_mH) (va--'l)ij (4‘32)
and )
{ -1 -
Q-MH = %er é:m gZMOQmH (;“"‘S o+ MJ ! M |
i.e. m=e S
(1) T To
a,‘leﬂ = 2€+l é;/\ S Z&l .1 + (3:‘\4-') (wa:l) (4.33)

m=0
Using the limits (4.19) and (4.20) we readily see thaf (4.32) and
(4.33) satisfy the requirement (4.15) and hence that the resultant potential

will fall off faster than r—1+£.

N=2 :

In this approximation both So and S, are treated exactly and we see
from (4.13) that R is no longer small. However, we show that it is still
possible to invert (1 + R) explicitly to first order in the remaining phase

Shifts .

Let R represent' the matrix R when all the phase shifts except S and
(-4

S. are set to zero. We see from (4.‘13) that the only non-zero elements of

Miry baSs M, 6
and  _ (4.34)

M.’MH o tz"'go MO,! C’Lga

R are

o ,_,:'Dl
| I

QL+
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Therefore

Pl = 4R

(4.35)
where ‘ _
A = Mo}, M,’o LZ,LSO (;AS.
= L. S GBS
' (4.36)
and it follows that
— v~/ -1 = . ‘
(1+R) = | - (1+4) "R (4.37)

We now set R = R + € and work to first order in € , éo that
-1 _ — 1=l = 1-
(f"‘R) = (HR) - “*R)G(HR), (4.38)

To first order in SL ( £t>1) we have from (4.13)

EQJ,MH = EJJ'H,:M =0

-1 .
e.zj,ze MJJ',; t"gn Mr,ae {:VLS.‘M (£#0)
..-, .
63310 = 2;, M{ja +i (;‘"Samw Mamuo &n go (4.39)

eai-ﬂ,alﬂ = M;z +l,0 (;f\g Mo:uu (:“’l g 20+1 (?#0)
62J+I | = z M:'J*’ 2Am bdg?’" Mlml C’\ S

m=4

From (4.34) and (4. 39) we see that the only non-zero elements of ReR

are - - —
( R R 280 Z R.‘Ma o am 2"",0

(eo,o( + 6..4)

Re R z
( );M-}IJ/ RJ@H ! 1,am+i R.‘lmd o

me=p

and

and

= .2€+Il(eoa°(+ Euo{)

and so

—

Re R = « (Eo,o + 6,,,) R {4.40)

Therefore, by virtue of (4.40), it is possible to rewrite (4.38) in the
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simpler form

(I+R)"' = |- € + (l-r«i)_‘[ R—e+€§‘ R—]

- a((/'l"a()—z(EOO‘ ) (4.41)
~ |-+ (I+4)7 [R? - LR - ]
| _,L(]+ol)2(£:o°+€-u)f_a
i.e.
(I+R)—‘ ~ | - [I + o((l"""c)-l(eo,o"' el)l)]R
+ (l+o()f' R* (4.42)

sincé €,, and €,, are first order in 51’ 2> 1.

In proceeding from (4.41) to (4.42) we have introduced terms of or&er
62 and althoﬁgh (4.42) i»s easier to handle than (4.41), it can lead to a
set of a's which violate (4.15) and consequently a potential which has an
oscillating f——{ tail of order ez .

Having obtained (1 + R)-’ we can now determine' th'e odd a's directly"

from (4.12). Straightforward but tedious analysis gives the ddd a's

explicitly as

(==]

2) -l' - l. |
7 = (1+<) M.w,oé“"g" +ZY .S (4.43)

20+ e+ m
me=2, 4 )
where the ¥ 's are given by

— 00 e M M

Qe+l am+) a4+),0 ° ,am+l ' am4l, 0

- -1
y [ ’ - M.lm :] [ M - L M.uu o Ma,am
alel am (1+) 22+, 2m 3(1+l)

The odd a's can now be inserted in (4.14) to give the approximation to )\

and (4.44)

as A ' ‘
- (2)
I + ) A\ E.S, |
' = ' (4.45)
with (1)
. = - ("f‘c() &(\. S Mo ,2m+) .2m+',o
~and (4.46)

m

@ _ _ M, M, M
)‘a - [I K= _”: Vi X
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Finally, using (4.45) and (4.12) we obtain the even a's as

| a:: = (1+)” _MQ;)" [ 2 bns, + (i:oc)ﬁag,]
+ (»I +ol)-lt7mgo Vie T Zyzgm bmgm (4.47)

maQ

where the b4 are explicit, though complicated, expressions in ﬁL1£, CL1S;’

2, m

)

M, M-'; and y but not involving any summations,

In these forms, equatlons (4.43) and (4.47) explicitly show the terms
correspondlng to the case where S = 0 for all £> 1.

As the ng are tedious to calculate it is often more convenient in
practice to keep some of the terms of order Ef'rather than working exactly
to order €. For instance, it is computationally easier to use expression
(4.42) to calculate (1 + qu than it is to use (4.41), although as mentioned
earlier this can lead to a set of a's violating (4.15).

Having obtained the a's from (4.43) and (4.47) it is.a simple process

to complete the approximation by determining the ¢'s from (4.5).

4.2 The Approximate Potentials

Having calculated the coefficients cp to the désired accuracy as
described in the previous section, we must now solve equation (4.3) to the
same accuracy in order that an approximation to Newton's potentiél.can be
determined from (4.2) and (4.1).

For Newton's potential wé see from (4.5) that c, + constant, as £+ <o,
since the a's were constructed such that condition (4.15) was satisfied.

As 7& ='q£-+()(5}) we have, from (4.3),

Zl_ (kr)c.. ¢.(k, Y= 0(S,) | | 4 .48)

m=0
ekr)m*'

and as m > ,for fixed f and kr, Le‘m(kr) ~ (mkr)" (Qmﬂ

Therefore, since in these approximations we are working to first order

in S;\for m > N, we can replace (4.3) by

P = Y - AzL%cm ¢m - kfl_ c u (4.49)

£m Cm Uen
m=N
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This gives a set of N linear equations for ¢°, ¢,,--...,?ahq which then
explicitly give ¢é for Z3 N.

Substitutiqg (4.49) in (4.2) gives

K(k,r) = KO - kZ-Ce Se (_951-u1) (‘4.50)

AZ[_Z,M ¢, Unm (4.51)

m=0

kel S) e

From (4.49) we see that the ¢£ for < N are given by

N={ | | |
Z ( g‘;m * Ll,mcm)(¢m‘ “‘m) + S; = O (4.53)

and hence K(k,r) can be obtained for any value of r by solving (4.53) for

where

and

?‘,e -u, ( Z < N ) and performing the summation in (4.50).
Although this process can be performed for any N we are here only
concerned with the cases N = 0, 1 and 2 corresponding to the approximations

to the c's given in the previous section.

N=0 :

When all the phase shifts are small (4.50) becomes

K(k,‘“) = K | . | (4.54)

(4]

In this case all the c's are small, so that we see that the errors in (4.54)
3

are of order S; ,as were the errors in the corresponding approximations

(4.18). 1In fact the Born approximation to Newton's potential described in

Chapter 3 was obtained by u51ng

K (li ) A ZC w ' (4.55)

£=0

2
[
-

Here all the phase shifts except S; are considered to be'small and ¢ ‘e
o
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given, by (4.53), as

(1+ LOJOCO)/¢0—(‘L0) +§ =0 (4.56)

o

and heﬁce from (4.50)

K/k,r) = Kg. T kco S.,l[ [+ [—o,oco]_’ (4.57)

When g;and g;are the only phase shifts which are not small, we obtain
from (4.53)

g-u =[S lye -S+L,c)]o

o .

d
an (4.58)

d-w = [Slye - SUvL.e)[p
D = [ (1+ Lo,a Co)(l *'.LL: Cu)' Lozn Coc']-’ I (4.59)

Therefore (4.50) gives

Kike) = K+ k[0+L,.c)e S
| + (I + l_,), é, )C‘o S: - -Z‘LO'l ¢, S. g,JD '(4'60)

where

For each of these approximations it is a straightforward process to
obtain the potential from K(k,r) via (4.1); for instance, by using ﬁumerical

differentiation techniques.

As an illustration of ;hese three approximations to Newton's potential
we consider the example of the Yukawa potential V(r) = -exp(-r)/r. The
input phgse shifts are taken as those of the Yukawa at energy k* = 1 and
the resultant potentials are calculated for various values of r. In Tables
4.1 and 4.2 we give results for r in the range 0.1 to 2.2 and 2.8 to 10.0
respectively. As cah be seen from these results the approximate pétentials

oscillate about the true values and that the results become progressivel
ely
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better as more phase shifts are treated exactly. The exact values for the
input phase shifts used in these calculations were derived from results of
Stern (1969) and they have the values :-

tan §, (1) = 0.52058

tan § (1) = 0.11209
tan §,(1) = 0.03271
tan 3(1) = 0.01055
and  tan 5,(1) = tan (1) for £> 3

8
where g;(k ) is the Born approximation to the AL'th phase shift,
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Approximatioﬁs to -V(r)

r =0 N=1 | N=2 exp(-r)/r
0.1 7.03925 13.96851 14.22785 9.04837
0.2 3.19689 5.92616 6.01806 4.09365
0.3 | 1.90939 3.34484 3.38875 2.46939
0.4 1.26473 2.11490 |.  2.14008 " 1.67580
0.5 0.88035 1.41732 1.43515 1.21306
0.6 0.62856 0.98089 0.99679 0.91469
0.7 0.45440 0.69049 0.70727 0.70941
0.8 0.33016 0.48927 0.50837 0.56166
0.9 0.24019 0.34612 0.36818 0.45174
1.0 0.17488 0.24264 0.26781 0.36788
1.2 0.09478 0.11250 0314312 0.25100
1.4 0.05798 0.04501 0.07917 0.17614
1.6 0.06638 |  0.01360 0.04884 0.12619
1.8 0.04846 |  0.00314 0.03712 0.09183
2.0 0.05646 10.00429 0.03498 0.06767
2.2 0.06526 0.01099 | = 0.03674 0.05037

7

Table 4.1 : Appfoximations to Newton's potential obtained from the
phase shifts to the potential V(r) = -exp(-r)/r at energy
k2-= 1.0, when N ( =0,1,2 ) phase shifts are treated exactly

and the rest are considered to first order only.
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Approximations to —V(r)><102

r N=0 N=1 N=2 10% —1";:'
2.8 7.18696 3.22779 3.71191 2.17179
3.2 5.61272 3.51266 2.57550 1.27382
3.6 3.28980 2.87038 1.03011 0.75899
4.0 1.21701 1.72359 -0.17899 0.45789
b 0.57386 0.57386 -0.63796 0.27903
4.8 ~0.16198 ~0.17323 ~0.40412 0.17145
5.2 0.28152 -0.36616 0.15625 0.10609
5.6 0.84732 -0.13921 0.06298 . 0.06603
6.0 1.12694 0.22098 0.75777 0.04131
6.4 0.98364 0.46057 0.51895 0.02596
6.8 0.54763 0.46762 0.09145 10.01638
7.2 0.08407 10.27984 ~0.27293 0.01037
7.8 -0.17652 0.02684 ~0.39622 0.00658
8.0 _0.15368 -0.15143 -0.25903 0.00419
8.4 0.06905 ~0.17827 0.01586 0.00268
8.8 0.31773 -0.07217 0.25349 0.00171
9.2 0.43694 ©0.07859 0.32702 0.00110
9.6 0.37186 0.18071 0.21965 0.00071
10.0 0.17876 0.18375 0.01449 0.00045

Table 4.2 @ Approximations to Newton's potential obtained from the

phase shifts to the potential V(r) = -exp(-r)/r at energy

kz = 1.0, when N ( =0,1,2 ) phase shifts are treated exectly

and the rest are considered to first order only,
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CHAPTER 5

THE BORN APPROXIMATION TO ON-SHELL AMPLITUDES

In this chapter relations between the Born approximations to the
on-shell partial-wave amplitudes are derived. These relations can then;
in principle, be used to determine the off-shell amplitudes as described

in Chapter 6.
co

By assuming that the potential satisfiesj lV(r)l,r_za[r < oo , we
show that knowledge of one partial-wave amplituze (in Born approximation)
at all energies implies knowledge of all others at all energies, and that
knowledge of all these amplitudes at any one energy implies knowledge of
them all at lower energies. Theée relations are derived in Section 5.1
and 5.2.

Upon restricting the potential further, such that it is short-range,
we show in Section 5.3 that a low-energy series expansion of the amplitudes
can be obtained which can be used as a parameterisation of the potential;
It is shown that this series expansion leads to an expression for Yl(kz)
in terms of Vﬁxqz) which converges for all kz:s qz. This expression, which
is derived independently in Section 5.2 and shown to‘converge for a short
distance outside kz=§ q2 for short-range potentials, is used to evﬁluate
YL(kz) in this extended region for Yukawa potentials of rangell and 1/7.

As the methods described in the first three sections can in generalA
only be used to evaluate the partial-wave amplitudes at lower energies; we
investigate a 'high energy' expansion of tﬁe émplitudes in Section 5.4,
This expansion, which is valid for any‘potential of the form (5.68), 15
shown to converge very rapidly for Yukawa potentials and that small errors

2 .
in the input Vm(q ) have little effect on the calculated VC( kz).
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5.1 Relations between Born approximations for different angular momenta

In this section we show that for any potential satisfying

f‘”/\/(t—),t}o(l' < oo .

o .
the on-shell Born approximations Vl(kz) can be expressed in terms of an

integral of any other Vnﬂqz), the integral running from qzs 0 to kiif
¢ > m and from =K to e if L<m.
On-shell, the Born approximation to the scattering amplitude is given

in terms of the partial-wave amplitudes by

PARA) - TR e

.5-);1153 - —2(!-/*)(1“8)’
= i—(‘wﬂ) \/{l[kz) 5(/*) N (5.2)
and €=0 '
240 k()
)
- Z(QW (A)P(/) | e
GB), = QI%B(I) s
Therefore |

| [/,.+ J) ahﬂt (/‘* ) 53/:%8 | ‘(5.5)

or in terms of the partial-wave amplitudes

(s 1) K f(uw)\[(k’)ﬁw = (< ’)Z‘AZM)V(A) F/} .

L=o

0\

)

which can be written as

kY (2en) V&) BG) + K Zv {k)[{gu)f’ Gl 20,00

- Zwk“)é(zn)[ &,(/*) =l (/*)J ?5-”. .
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since

e (1) £) = 208,60 £.0]

el Be) = ()B4 LB

for ¢ > 0.

and (5.8)

The orthogonality of the Legendre polynomials enables the coefficients

of P, (/.J to be equated, giving - |
R (@) R + £ ) + (e, (8]
= 2(¢0-1) \é_‘(k') - (£+1)(4+2) \L;(kl) (5.9)
that is '

M*')\/\é = ‘j\/\é_,- | | . (5.10)

with

\/\/2 =k \4:’//?7 + kl\é'(kz) +(/¥2) \{H(kz) 4 \4(/%2) (5.11)

Therefore, by repeated application of (5.10), we obtain (¢ + 1)w£ = 0 for

? 3 0 and hence '
kzé+2[o70{3(h-ze \4(;%1) + k-ze \/[+l(k7)] + (‘Q [+2) \4+4(A1) =0 5.12)

which, when integrated from k* to o, gives
2 28 - ‘22’2 2 2 2
\/[(lﬁi) = (4Z+i)h '[hli/ \é“(i)alz - \éﬂ(k) | (5.13) -

for (; 0, since Vz(qz) +> 0 as ql-r °0 ,

Similarly, rewriting (5.11) in the form

_4-[ 24+2 2 28+2 2 2¢ N

5 R V_(K) + kY h )J = 24k \/L,_'(k) (5.14)
and integrating from 0 to kz, gives

g1 - 2 TURE N

for V4 > 1, since szl(kz) + 0 as k¥ + 0,

These equations may be generalised to give
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| 2o -2 plR +,1) ay
LK) = (temei) k Jﬂ /D,,,‘_f_, “‘%)V,,,(f)cl{
* (")m-l\/m(kl) {o<l<m)

(5.16)
and (2m+),1)
—2m-1+ 2m+2 ~ 2
2 -2 2
V(K] = (Lrmei) § j P -2 VL () 4y
(“) \/”“) (O$m<£) (5.17)
where the Jacobi polynomials P {1) are given by ‘
(a,b) |
2 (a+n)! 2)!
Pﬂ (l) (a+b+n)! [(?Z‘b+)7;a+£)(;ﬁz,) ‘ (5.18)
. é=o

The proof of (5.16) is by induction on /. The validity of (5.16) for
m= 4+ 1 is established by (5.13) and we assume that (5.16) holds for a

given ¢ < m. Therefore for £ - 1 we have from (5.13), (5.16) and (5.18)
m-4-]

\/[-I (hi) 2£(f+m+l) h ] j *zl‘{ﬂz)_z (m+[+n+l)l(.]) d zo/ 2

"al{m-t-n-1)! (.’{2+J+I)l

m-€ -2¢ e
P2 K Ty - V)
m-4-/

_ 2£-2 (m+fra+l)l (-1)" T
U h Z(n+l),'(m-[-n-l)!((él)émﬂ)! J Z lv"’(z’)tl;

n=0

2a+2 -2q+ H)

28-2

-4
F 20K 1y ()
after integrating by parts. Use of (5.16) and the identity ( Abramowitz
and Stegun (1968) ; 22.4.1)
(22 0) m-£ ' ’ '
‘- - -] P (!+m+f’).’ _ m= .
/D ( ,) Z{ ) P! (,M+F)’ (m—.?—/o)[ - (—I) . (m >/‘é) (5.20)

m-¢
pre

then gives
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V, (k) = K ‘i—ze\/(i) [ (m!?)? fz)é-:u

o ntl -0+l
— m+.€+n+
— (ln-#l)’(m ; ”")’))(ll-#n)’ (h) Z (-I) V(h)
20-2 [ -3 (2¢
Sl f--l‘-L)va,)czZ

+ () \L (k) . (5.21)

thereby completing the proof of (5.16).
The proof of (5.17) can be performed similarly, or by noting that (5.15)
is obtained from (5.13) ( and (5.17) from (5.16) ) under the transformation
L > -4-|

m — -m-| | (5.22)

P o
| 7 - J
and that R* R

(-22-1, ) 2 2\{-m- e+
Pu'(ll‘ﬂl-é‘-) = (—kir){ ’P(Q ‘é)l-‘:—l-‘l—) ”([>m)(s.23)

&-m-1 J / £-m-i
which can be proved directly from (5.18).

. 2
From (5.16) we see that as k - 0, Vt(kz) = 0(kz£) for short-range
potentials, and so the equations exhibit the appropriate threshold behaviour
for these types of potentials. The consistency of (5.17) with this

threshold behaviour is assured by virtue of the identity

O-m-]
0-m+P+l (1'*’"*?"")!
—/ F! ([-m-l-f))! (2m+f+l)2 (m+f)+r+2)

F=°
which, for r = m, follows directly from (5.18). The validity of (5.24) for

= } (m'srd) (5.24)

m<7zT< { can be seen by considering

_-[__r = f Xr-m(I“x)e—m;’;‘%(l—)«x).rn-ec[) ' (5.25)

Expanding (5.25) as a series in x we see that the coefficient of qf+m+| in‘

(5.25) is the same as the left hand side of (5.24). Integration by parts

of (5.25) and use of the recurrence relation ( Gradshteyn (1965) ; 2,111.2 )
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\dh  _ o Jx""cu _ N 526

([—x})m - (n—m+l)x (’_xk)‘“" (I"x%)m-'(n-m-bl)x
e+m+l ’

then shows that the coefficient of x is unity, thus proving (5.24).

Although (5.16) can in principle be used to obtain any Vz(kz) from
Vm(qz) for m >¢, it involves an integral from qz = k' to e and this high-
energy behaviour of V";(ql) is usually unknown. Therefore we now show that,
for any short-range potential, the integral in (5.16) can be replaced by an
integral running from ¢ = 0 to k at the expense of introducing a polynomial -
in k" with m - { undetermined coefficients.

Since V, k") = O(k ) as k¥ » 0, for any short-range potential, we

define

ﬁe = Lin k-ﬂ\/z(kz) (5.27)

R*—>o

and so it follows from (5.16) that

ﬁ) (QZ 2) Z+m +,)f 1-24-1 Vn(zl)a(zz (Oé(«n)(S.ZS)

Therefore
2l [T -20-2 QL) Ak \ N
(m_;..[-f-’)k £7 a_e_‘ (I"‘?Z-‘?) Vm(z)cli
m-L-|
2.0+da i
= Nk (£+m+n+1)! ~2(entl) L
n=a( ') k n! (28+a+ ) (m-d-a-i)! i \'/"(21);[}

Zﬁ K )" (Q”el) o (5.29)

where we have used (. 18); and hence (5.16) can be recast as

\, (k) = Z( )l g K )LD |
-ze 2 +41) 5.
—(£’+m+')k Pmu N “‘)Vm(;)o/z‘( 30)

m-¢-1i
for0$é<m-

The last term on the right hand side of (5.30) is of order ka.m and so
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‘the first term gives the first m - £ terms in the series expansion of Ye(ki).
This series expansion of Vl(kz) is discussed further in Section 5.3 where a
generalisation of (5.30) is also derived,

It should be noted that by definition the constants f% are‘independent

of £ and hence can be taken as parameters specifying the potential.

5.2 Relations between Born approximations at different energles

In the previous section we expressed Vl(kz) in terms of Vm(qz) for a
given m and all values of qz. In practice we do not know the vglues of
Wm(qz) for large qz, in fact this is a reglon where potential theory is not
applicable. Therefore it is useful to express Ve(kz) in terms of Vm(qz) at
a given energy q2 and for all m, since these fall off rapidly with increasing
m and we need not consider large q’. We show in this section that Yz(kl) for
all £ and K £ q2 can be deduced from all the Vm(qa) at energy qz.

Using (5.1) and setting
= I - ('f/“)hz/iz | (5.31)
we have _
> (2ol i) L) = £ 0))
e = 4P (-ak(1-p)

Z(QQH (k)P) (5.32)

é=o0
The orthogonality of the Legendre polynomials then yields

\/ ZR /A,ZJV (z ‘ s

where

Rzm(k‘,{) = (m+2) | BOJE ) e

[ 2 :. (20+1,- -1) a
{i:ZI) (;) P (/ .g;ﬁ_)

m-£

__k: "L amel) (L men)] |
(’) X ) ni(m-2- ")+ (a'l;+n+17T (5.34)
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The proof of (5.34) is given in Appendix 1 but an independent derivation
- of this result and (5.33) are given in Section 5.3. The justification for
interchanging the order of integration and summation in obtaining (5.33) from

(5.32) is that (5.33) is absolutely convergent for any potential such that

JMIV/I‘)}PJT“ < eo _, This can be seen since, from (5.34), }R,)m‘ < (2m+l)

SRV € 3 L)

}o_i_(fzm;) fjnf(kr) JVE vl

meo
waV(r)/r’alr
usiﬁg the properties of the Jm(x) descrﬂ:ed in Chapter 1,

From the asymptotic behaviour of the Jacobi polynomials ( Sz.egzj (1937)
8,21.18 ) we see that the Rl)m fall off as m-J‘i as m ->'oov for k* < q*, thereby
ensuring the rapid convergence of (5.33). For k* > q*, the R,Jm diverge as
m'fexp(Ym) where coshy = -1 + 2k7'v/q2 ( szegd (1937) l; 8,21,7 ) and so the
series (5.33) will diverge unless thé Vm(qz) fall off faster than exp (-¥m).

From the asymptotic behaviour of the Legendre functions of the second kind

Q(I ~ [F (4 W‘A wf[ ({+% ’2] (5.35)

as { + o0 , with coshrl =X, we see that for any short-range potential of

range o the V, (qz) will have the asymptotic form
" .
\4 ( i) PN (5.36)
with cosh7n = 1+ 1/ (20(_2 qz), and hence that (5.33) will converge provided
2 2 -2 . .
k™ < g + () | (5.37)

Therefore it is only for potentials which have a Very short range that
(5.33) wili converge for any significant distance outside the region q2> K.
In Chapter 1 we showed that the Vp (k) for a potential of range £  were
analytic in the strip Ij’" k}< ZLI . Therefore for any such potential we can,

in principle, obtain a continuation of V (q ) to arbitrarily 1arge k* by
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repeated application of (5.33) for qz < k¥ < q* + 2L4Y? . 1In practice this
breaks down since any errors introduced at one step of the process are
{ncreased in the subsequent stages and the results répidly become unreliable,
Note that for the special case of qz = kz,(5.33) reduces to V, x*)
v, (k*), since Rem(kn,kz) = Se'm.
The consistency of the repeated application of (5.33) 1s quaranteed by

the sum rule

ZR&””CFQ) Rn)m(fzazz) = Rz,m(ktiz) (5.38)

since then, from (5.33), we have

\4 ”‘(2) = i Rl),n(kz, fz) ZRn,mA(FZ’ 22) \/m(f)
Z: \/, (1 Z R )R,,,m([f,f)

> R (k) \L(5)

The proof of the sum rule (5.38) is given in Appendix 1.

5.3 The Low—energy expénsion

As discuéséd in Chapter 1, the partial-wave amplitudes for any short-
range potential of range o(-' are analytic in the complex kz plane for
I jm h/ < %_' . As this includes the region K* < oCz/A we expect that the
series expansion of V, (k) about k' =0 given by

\4("(2) = i(-l) ('QMI)/B kT . (5.39)

m= 2

2
will converge for at least k* < oL /4,
A truncated form of this series was derived in (5.30) and since the lgm
do not depend on £ , they can be taken as parameters specifying the potentia]_.,

To verify that the /gm are independent of £ we assume that (5.39) is true

for [ = 0,1,*°*°**,r and consider
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\lﬂ([‘(z) - Z}‘ )"’ " {jm:lr)/gm k | | (5.40)

2
Using (5.12) and equating coefficients of k " (n>r+1) we have

() Ateersa) (TR = 0

A | :
which yields ,3,, = /9,, thus proving the independence of the ﬁm on £ .

Using the identity ( Abramowitz and Stegun (1968) ; 22.3,2 )

(Q“I)") n=t " m+dea
P (_I) = (m+e+‘) Z( ’) (m ?(:,)'['(Q)Z+o+l)'

m-£

n=0

= gm,e | . ‘ (3.42)

it is possible to invert (5.39) to give

(201) k= Z(‘Q”’*’ (m+£) \/m(hz). (5.43)

maf

since then, from (5.39), we have

\ () ='f () ) e )V

=m

n-¢

Z(Jm’ \/(k Z mll(nn:n't;ﬁ){.zemﬁ)!
- \4<k‘)

In practice it is expected that for m > M the Vm(kz) will be well

approximated by gl(kl)/k and so it is useful to eliminate the /9m form s> M

in (5.39). Using (5.43) we have

v (k) =}":(-z) (ol)p b -
- S () ) B )V GR)

nsm
and so

VCRDACE (*”*')ﬁm

IR e AW AALY

m=M

(5.44)
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for 4 < M after using the'identity

+m)' = (l’H-M)
_S_ ( (m- (’)’r;m+f+')’ (n-m)! - (I) (n-€) (a+£+1) (a-M) T (M+OT (M -C-1]] (5.45)
mazM

for < M & n, which can easily be proved by induction on M,

Therefore (5.44) provides an M-parameter representation of the potential
and the parameters ﬁi, ﬁ".....,/%h'can be fitted from knowledge of Sjki),
Sxkz)’.....,g;ﬁ(kl),

The series expansion of Vl(kz) now allows us to ébtain an expression
for the Born approximatioq to the scattering amplitude in terms of the ﬁ&,.

From (5.1) and (5.39) -

peant) = ) ) (k) BG)

o
Z () (el fk Z( ) B bl
S e Y aen B[ (-2 Pl L 5.

where we have used ( Gradshteyn (1965) 37.127 )

_('("/*)m@(/*)al/( = C)T () (05 8se) (5.47)

(M+£*U!(m-2)[

The summation over 4 and the integral can now be evaluated (.Abramowitz and
Stegun (1968) ; 8.9.1 , 8.9.2 and Gradshteyn (1965) s 7.224,4 ) giving

£8(-ak (1) z( )" 2 (zmu(m') BT (1)

m RO

i("?"‘*') 4-"‘ (Qmm) /Bm [-Jk‘([./)]m  (5.48)

Therefore as V(r) can in principle be derived from

+ V() = -'n:'josh(rFT) WLB“) dt | (5

it follows that the parameters ﬁL,specify the potential uniquely, since the
8 ‘

analytic continuation of £ (t) outside the region of convergence of (5,48)

will be unique for real t < O,

Although the series (5.39) and (5.48) do not always converge, we show
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that for any short-range potential the series (5,43) and (5.44) converge for
2
all k°. To prove this convergence we use (5.30) which was derived directly

from the recurrence relation (5.12) and is valid for any potential such that
f lV(r) a(r-<eo, |

Introducing the function

¢ hz-ze-z 2
:[;}F(kz) = }? foz \47(21)':12 | (le) (5.50)

we can rewrite (5.30) in the forﬁ

Vo) = )TV ) (T (T ke
m=4€
B Z(mI)z)/(gmr:ﬂ;;’()g,M”)p I g‘iz) ‘(5.51)

where we have used (5.18) for the Jacobi polynomials,

From (5.12) we see that

(¢+p+2) T, (W) = h" "“[(@f A () - Vu,,ﬂ y
-9 e (Z ]"lﬁ |

(p) Ty () =\, (k) - LT, (K)
~ V., (K = €L, (k)

i

and so

FL)‘F = \/“P + v“f’*‘ + (:{4+P+1) Iz '(5.52)'

which can be generalised to give

— . _p'. (m+2“ (Qm-&-‘/) .
pLes Ve ¥ Z Vo

24p Hm-2)! (28+p+0)!
m-f-‘-r'ﬂ

+ (¢+N)! [v ([+N+1)I1N Q] (5.53)

(20+p+0'(N Z2-N!
for p>land N> £+ p + 1,

Inserting (5.53) in (5.51) we obtain
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) Ml e
) - ) L)l (k)

(m=2)! (M-m)! (L+m+1)!

(k) = ()

mel
-1
S R
mz=4
m+z+ ( ‘
;HQ +I> \/ (k) é(m e)' (£+mp+:)ﬂ;(p m)! (5.54)

where
4l + 2 h‘lz -2
§ o T R CAm o

for J<M< N
Therefore using

-0 o) , M-rm | | - | |
kT T o XL RN R

M-£

m={
we have
m-£
g - (ave1)! V., (F) m- 2m
\4/4(}{) (’) (£+M:")'(M 2)] Z(’ o .Qm-+el &i
N' m=4 . .
“loam
| M{"QF+I \/ (L()Z’(m f)' (é+mP+l}'(f> m)! + RN
and hence
M=

i

\‘/e(ki) (’) (:lm+l) ﬁm + RN

. .
M-£ IM (2m m+M\[/aM-I
* Z(') (m- 2)(5,»,;,’2)))( ){Mw} m( ) - (5.57)

m= M . (!<M<N)

by virtue of the identity
M-l ‘

M-p-! (m+p)!
Z(‘,) f (P+P+l).’ ?)o—é)! (m-p)!

=7
P _ (m+ M)!
= (m+b+1){m-€) (m=-M]I (M+€)] (M-2-1]!

form 2 M 2 ( + 1, which can be proved by induction on M. It shouid be

noted that (5.57) is also true for M = N provided we make the convention of

setting the last term to zero.

(5.58)
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with the aid of (5.55) and (5.57) we can now investigate the.convergencé
of the series in (5.43) and (5.44). In Chapﬁer 1 it was shown that for any
short-range potential the VN(kz) fall off faster than any inverse power of N
and therefore for such a potential we see from (5.55) that ’?N + 0 as N>,
In the limit N - o° and RN - 0 we see that (5.57) reduces to (5.44) and

on setting M =4 + 1 in (5.57) we have

N-1 '
k) = p - ) Bl iV )+ R,
that is
24
(22+1)p. b };(sw )vu«) - R (550

which reduces to (5.43) in this limit,

Therefore for any short-range potential the series (5.43) and (5.44)
wili converge for all k2. |

In any practicai application of these formulae, the phase shifts at any
energy will only be known up to S$kz). Therefore using (5.57) it is possible
to deri?é bounds on the errors in Vk(kz) by obfaining bounds on f?N.

We can now obtain an expression for Vk(kl) in terms of Vm(qz) with m 3 0,

that is, recover (5.33). From (5.39) and (5.43) we have
2 ~ 20 — 2m+l {Qn+0 n+M) \
\4“) B Z( I) ( Z(Qmﬂ) V\(Z)
m=¢€

m-4

Z(Q AT Z(m in (n(:;ﬁ;l(,, ey (’é’:‘)m
= zRen(k,i)\//i (5.60)

nze

if

using the definition of ﬁgm in (5.34).

As discussed in Section 5;2, this series will certainly converge for
kz < ql and for short-range potentials it will also converge for a small
distance outside of this regilonm.

To illustrate the convergence of (5.60) we consider the Yukawa potential
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v(r) = —exp(-ur)/r for the two cases s =1 and 4 =7, that is, potEﬂtials‘
of range 1 and 1/7 respectively. In .Table 5.1 calculated values of Vz(k’)
are given for k™ = 0.5, 1.0, 1.5, 1.9, 2.1 and 2.2 when the input V,(q*) are
those of the Yukawa of range 1 at energy q® = 2, Table 5.2 contains similar
results for the Yukawa of range 1/7 but with the Yz(kz) being calculated at
higherbenergies k>. As can be seen from these tables, good results are
obtained in the region k2 > q2‘although as k~ approaches q2 + /u74 the series
(5.60) oscillates about the correct value as the number of terms included in
the summation is increased. For kK >q* +-)3/4 the series diverges rapidly

and no meaningful results can be obtained.

5.4 The High~energy expansion

Since the low-energy expansion yields an expression for Yl(kz)'in cerms
of'Vm(qz)'which, in general, only converges for k2 £ qz.we investigate
meﬁhods of determining V((kz) fo; k" > q°. The reason fér (5.60) only
converging in the region K < q¢* stems from the fact that Vm(qz) only
determines fa(t) for -4q° ¢ t <0. In order to determine V, (k) for k= > q2

3 .
we must analytically continue f (t) to t = -4k*. This is, in principle, a

unique procedure and a natural method of continuation is to sum the series
(5.48) by Pade approximants.

gl = P/ - OF)

where P_, and Q, are polynomials whose coefficients are determined by the
;B 's. In general this is equivalent to approximating the potential by a sum

of Yukawas. As an example we take L = 1 and then from (5.48) we have

8 2 - - |
L) ~ ﬁ/(ﬁ -5 t) | (5.62)
which corresponds to the potential V(r) =f%/3exp(—/‘r)/r with

po= %—/i//@' - C(5.63)



- 65 =

Therefore
-\/QU‘Z) - {_,%:*L') Qﬂ(l+ﬁ:) (e
where
Z(imn) Vm(;z) (5.65)
and )

5/9: Z,z - z(a?mﬂ)(m#)m -Vm(f) | (5.66)

The weakness of this approach is that (5.64) is not even exact at q- = k
since the constants ﬁL are only related to the threshold behaviour of the
2
v (q).
Therefore, instead of using the Pade approximant approach, we use a

method analogous to the low-energy expansion but based on the high-energy

expansion

V) = D KL gk V) .

As shown in Section 1.1, this expansion is valid for any Yukawa potential

and hence is also valid for any potential of the form

\//'“) = Z ZQ T "/Lﬁ(/‘J ) (5.68)

cx-l
The coefficients JHeand Y;(are not inqependent as can be seen by

substituting (5.67) into (5.12). We have

Zk—ul(ﬂ-«ﬁ‘? Lowl M*")y‘ T “(c 241 tz
+A,JA L g, (£ i+2) Z?Aa( (IHJ O (5.69)

which, to be true for all k » requires

O(L,.e = G54,

(£+3) ¢, a+1 (5.70)

and
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Xw _ (0-i+2) y + 2e-2)

(£+0) L0+ (£+0)* L0+ (5.71)

From (5.70) we see directly that
O(L,e = O (i>0+1) (5.72)

. and by repeated application of (5.70) we obtain
. 2+l
0<¢,e - (Z—L+I o (< +1) (5.73)
where o = 0(.,, et
Similarly, from (5.71), we obtain

X (Qﬁﬂ“i) 04 | (5.74)

£+2,¢

(Y,;E = <‘) A [(Fﬂ (-322)]4 (L>l+l) (5.75)

)

and

0-L

L+i-l 0- A
XL,( = (E-L+I)[Xg_ "o’z"(' (¢- p+(e.-/)P) -f-url)] (L‘S[stl) (5.76)

P

where X:_= X;_)-L-, .

Therefore, inserting (5.70) through (5.76)4 into (5.67), we finally

obtain O-v
- 3 1‘“— , 2
Lk b2 (e
\4 (!‘( B {-c+l [a(,_*gdjk + X _ 020( ZP-P-O-L-I)f;[-f-;_,H)]
P:D

2! h c( [((H){ )J | (5.77)

where of; and X‘; are constants which parameterise the potential at high
energies just as the /3;_ do at low energies,

Unfortunately we have not been able to invert (5.77). explicitly to
obtain expressions, analogous to (5.43), giving o ; and X{_ in terms of the
Vm(qz) for a given q°. However, in practice, Vm(qz) will be set zero for
m > N and hence the series in (5.77) can be 'truncated .to give a finite set

of linear equations for o/; and (Y‘_ in terms of V,(q”). 1In order to obtain a
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consistent approximation it is necessary to take N odd, giving an even
_ number of equations, otherwise difficulties arise with the l&3q2 terms.,

As an example we set N = 1, that is V,(q") = 0 for m > 1, and we have

\/o/;z) = 7-2(4,%22-/- X;)
Vi) = g (g b as)

which gives E
oA, = %72[\4{22)*\/./;2)]
and | (5.79)

= +rLavg) - (up- vl gy

Substituting (5.79) into (5.78) with q -> k then gives
VLK) = F ) Vi) [ ey () + V)
and (5.80)
k) = V) = L) - ViG]

These expressions for V,(k*) and V, (k?) are exact at k* = q* and are of the

(5.78)

[}

correct order as kK > oo

Taking N = 1,3,5,¢+*+ we obtain a sequence of approximations which
converge rapidly even if q  is such that the original series (5.67) diverges.
For each value of N, (5.77) can be truncated at 2{=N+1and £ = N, to
forﬁ a system of N + 1 linear equations whiéh can easily be solved for any
particular set of Ve(qz) to give the al; and XQ .. These constants can then
be used to calculate estimates to Vg(k?) for m ¢ £ and k* > qz.‘

Therefore by using this high-energy expansion we obtain an approximate
continuation of Vk(kz) into the region k? > q” which, when used in
conjunction with the low-energy expansion, allows Ye(kz) for any value of k>
to be determined from alllthe Yn(qz) at an arbitrary energy q .

In Tables 5.3 and 5.4 we illustrate the convergence of the high-energy
expansion for the Yukawa potential V(r) = -exp(-r)/r and the exponential
potential V(r) = -exp(-r) respectively. The results were obtained.by

truncating the series in (5.77) at 20 =N + 1 and =N and as can be seen
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the estimated Ye(kz) rapidly converge with increasing N. We have also
investigated the convergence of (5.77) for potentials which are not of the
form (5.68), for example the S-function potential V(r) = - §(r-1), and .
have found that the truncated series no longer converges.

In order to determine the effect of errors in the input Vﬁ(qi) we once
more consider the Yukéwa.potential V(r) = -exp(~r)/r. We have found that a
small error in any vm(q?) for m =‘M (éay) has little effect on Vz(k‘) for
¢ > M, that is, the relative error in the Vz(kz) is less than that in V"(qz).‘
For £ < M the relative errors are generally less than those in VM(q’) althougﬂ
this is not always the case, and for £ = M the errors are almost always
increased. This behaviour of the Va(kz) can be seen'in Table 5.5 where

relative errors of 107 have been introduced into Vh(ql) at energy q~ =1

for M = 0,1,2 and 3.
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Estimated V, (k") Exact V,(k*)

£ K*=0.5 K*=1.0 K*=0.5 kK*=1.0

0 5.49333 4,02374 5.49306 4,02359
1 0.98594 1.03526 0.98612 1.03539
2 0.21180 0.31793 0.21184 0.31783
3 0.04911 . 0.10432 0.04871 0.10433
4 0.01122 0.03535 0.01161 0.03548
/ K =1.5 kK =1.9 K'=1.5 K'=1.9

0 3.24327 2.83130 3.24318 2.83127

1 0.99083 0.94472 0.99091 0.94476
2 0.36031 0.37447 - 0.36023 0.37443
3 0.13983 0.15841 0.13991 . 0.15844
4 0.05632 0.06945 © 0.05627 0.06942
Y K =2.1 K =2.2 K =2.1 K*=2.2

0 2.66991 2.59212 2.66751 2.59362
1 0.92147 0.90919 0.92168 0.91035
2 0.37747 0.37836 0.37794 0.37906
3 © 0.16524 0.16775 0.16542 0.16845
4 0.07455 0.07723 0.07495 0.07749

Table 5.1 : Estimated values of the Born approximationsvve(kz) obtained

from those at energy q1 = 2 by using (5.60) truncated at n = 10,

for the Yukawa potentiai V(r) = =10exp(-r)/r.
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Estimated Ye(ki) Exact Ye(kz)

Y K =4.0 kK =6.0 kK =4.0 k' =6.0

0 1.76604 1.66099 1.76604 1.66099
1 0.08306 0.11006 0.08306 0.11007
2 . 0.00469 0.00874 0.00469 0.00875
3 0.00028 0.00074 ~0.00028 0.00074"
4 0.00002 0.00007 0.00002 0.00007
Vi K =8.0 K =10.0 K*=8.0 K =10.0
0 1.57079 1.49305 1.57072 1.49204
1 0.13096 ' 0.14753 0.13103 0.14754
2 0.01316 |  0.01744 0.01311 0.01749
3 0.00138 0.00223 0.00140 0.00222
4 0.00016 0.00030 0.00016 0.00029
Y Kk =12.0 | ¥k '=14.0 ¥=12.0 K*=14.0
0 1.42240 1.36003 1.42269 1.36096
1 0.16054 0.17203 |. 0.16068 0.17122
D) 0.02186 0.02531 0.02175 0.02581
3 0.00322 |  0.00441 0.00315 0.00417
4 0.00043 10.00067 0.00047 0.00070

Table 5.2 : Estimated values of the Born approximations Ye(kz) obtained

from those at energy qz = 2 by using (5.60)_truncated at n = 10;

for the Yukawa potential V(r) = -lOzexp(-7r)/r.
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& Calculated V, (k%) Exact
Ve (k*)
J N=3 N=5 N=7 N=9
0 | 2.07466 2.12990 2.13295 2.13621 2.13746

1 0.84788 0.83354 0.82903 0.82764 0.82703

3.0 2 0.38647 0.37983 0.37871 0.37856 0.37858

3 0.18129 0.18358 0.18442 0.18468 0.18477
4 0.09263 0.09321 0.09330 0.09331
0 | 1.45576 1.50277 1.51639 1.52046 1.52226

1 0.68357 0.67843 0.67599 0.67503 0.67449
5.0 2 0.36319 0.35479 0.35256 0.35198 0.35177
3 0.19869 0.19562 0.19522 0.19522 0.19526

4 0.11130 | 0.11180 0.11197 0.11205

0 1.13987 1.18335 1.19655 1.20067 1.20261
1 0.57597 0.57601 0.57510 0.57459 0.57422
7.0 | 2 0.33125 0.32457 0.32248 0.32183 0.32155
3 0.19724 0.19266 0.19165 0.19143 0.19139

4 0.11761 0.11757 0.11763 0.11768

0 0.94490 0.98471 0.99712 1.00110 1.00303
1 0.50061 0.50354 0.50361 0.50342 0.50320
9.0 | 2 | 0.30265 0.29782 0.29609 0.29551 0.29522
3 0.19016 0.18553 0.18432 0.18400 0.18390

4 | 0.11873 | 0.11832 | 0.11828 | 0.11829

Table 5.3 @ Estimated values of the Born approximations V?(kz) obtained
N ,
from those at energy q = 1 by using (5.77) truncated at

20 =N+1and €= N, for the potential V(r) =_;10exp(-r)/r.
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k? Calculated Vp(kz) Exact
| . v, (k%)
? N=3 N=5 N=7 N=9
o | 1.65025 | 1.58642 | 1.55653 | 1.54488 1.53846
1 | 1.04303 | 1.06305 | 1.07428 | 1.07926 | 1.08239
3.0 | 2 0.69928 | 0.70830 | 0.71102 | 0.71154 | 0.71143

3 0.45816 | -0.45491 0.45283 0.45192 0.45142

4 0.28207 0.28065 0.28032 0.28029

0 1.07545 1.01022 0.97634 0.96174 0.95238
1 0.72334 0.73072 0.73685 0.74030 0.74317
5.0 | 2 0.52743 0.53905 0.54456 0.54666 0.54769

3 0.38652 0.39065 0.39161 0.39164 0.39129

4 0.27655 0.27530 - 0.27469 0.27432

0 0.80793 0.74745 0.71459 0.69979 0.68966
1 0.56079 0.56097 0.56327 0.56513 0.56712
7.0 2 0.42527 0.43458 0.43980 0.44212 0.44356
3 0.32766 0.33394 0.33645 0.33722 0.33744

4 0.25259 0.25266 0.25245 0.25218

0 0.65137 0.59593 0.56499 0.55071 0.54054
1 0.46123 0.45735 0.45720 0.45791 0.45912
9.0 | 2 0.35811 0.36489 0.36920 0.37131 0.37281
3 0.28405 0.29045 0.29345 | 0.29458 0.29511

4 0.22867 0.22967 0.22985 0.22977

Table 5.4 : Estimated values of the Born approximations Vk(k?) obtained
lablie J-7

2
from those at energy q = 1 by using (5.77) truncated at

20=N+ 1 and 4= N, for the exponential potential

V(r) = -10exp(-r).
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k% Calculated Vl(k?) Exact
v, (k*)
Y/ M=0 M=1 =2 M=3
0 2.48467 1.87226 2.35225 2.00831 2.13746

1 0.85757 0.92758 0.74613 0.87896 0.82703
3.0 2 0.37288 0.43353 0.36087 0.38718 0.27858
3 0.18209 0.19349 0.20302 0.17546 0.18477

4 0.09389 0.08837 0.10981 0.08909 0.09331

0 1.81076 1.23680 1.76896 | 1.36731 1.52226
1 0.72281 0.72022 0.62832 0.70743 0.67449
5.0 -2 0.35298 0.40931 0.31305 0.37517 0.35177
3 0.19087 0.22276 0.18979 0.19740 0.19526

4 0.11004 0.11796 0.12296 0.10613 0.11205

0 | 1.44953 | 0.93080 | 1.44390 | 1.04829 | 1.20261
1 | 0.62912 | 0.58698 | 0.55527 | 0.59010 | 0.57422
7.0 2 | 0.32921 | 0.36845 | 0.28402 0.34569 0.32155
3 | o.18858 | 0.22387 | 0.17438 | 0.20094 | 0.19139

4 0.11469 0.13209 0.11835 0.11666 0.11768

o | 1.21974 | 0.74966 | 1.23139 | 0.85550 | 1.00303
1 | o0.56012 | 0.49626 | 0.50209 | 0.50735 | 0.50320
9.0 2 | 0.30743 | 0.33114 | 0.26363 | 0.31636 | 0.29522
3 | 0.18331 | 0.21565 | 0.16289 | 0.19656 | 0.18390

4 0.11548 0.13687 0.11206 0.12135 0.11829

Table 5.5 ¢ Estimated values of the Born approximations Yl(kz) oBtained
O ———————— .

from those at energy q2 = 1 by using (5.77) truncated at

{ = 2. -1 =9, for the potential V(r) = -10exp (-r)/r, when

relative errors of 10] have been introduced into the Yh(ki).
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CHAPTER 6

THE OFF-SHELL BORN APPROXIMATION IN TERMS OF THE ON-SHELL

In Chapter 5 we described methods of determining the on;shell Born
approximations Ve(kz) at any energy kz, either in terms of all the Wn(qz)
at one energy q2 or in terms of the values of one of them at all energies.
In this chapter we show that the off-shell Born approximations Ve(pf,p:)
can be obtained from all the Yn(kz) at avparticular energy k* and hence,
using the results of Chapter 5, that Ve(p?,p:) can be derived from either

2
all the Vﬁ(qz) at any energy q , or one particular V;(qz) at all energles.

6.1 The off-shell Born approximations

The Born approximations to the off-shell partial-wave amplitudes are

given in terms of the scattering amplitude as

Pl-lp-pf) = Y eV f)Rp5)  wn

énd in terms of the underlying local potential by

\/z ([’;2, F:) = - f?'z(f.f)Jg(fz*) \/(r) - odr o (6.2)

which is well defined provided

fow’ \/(r)/*“zol'“ < © (6.3)

For the on-shell amplitudes we have used the notation

Vi) = k) 6.0

and these are given in terms of the on-shell scattering amplitude by

I SL) =§(u+')\/£(k’)6//) 6

AA'
with p = k.k' .
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Given any particular values for'R, andig;, we can choose k2 such that '

_ 2 2 -
(79"7{.’2) = lk(}‘/) (6.6)
with -1 ¢ g1 provided only that p, + p, € 2k. Therefore, from (6.1) and

(6.5), we have

}i(un f.,fz)P(g 2)
- Z(wwmm 6.7

and hence

\{(,0.1, ff) - Z.I‘em(f,i, F:) hl) \/m (Az) (6.8)

with

I (p piy K ——MHJP{ I‘M?—F'Fv&)«}« (6.9)

That the summation in (6.8) is from m =.@ and not m = 0 can be seen directly '

from (6.9), since I, ;,= 0 form<¥,

2 : .
For general values of k , the integral in (6.9) is not readily
expressible in a closed form, but it is possible to calculate I,  for

arbitrary £ and m as described below.

Setting

T, (o} (m+2fP/ lavhy) s 10

we see, from Appendix 2, that

[” Izm("‘ ) + I

(2m+3) £+],m % )
-——Hi—-—“u (ap) +bI,, (ab) O

) (Qm—l) Im'
for m > £ 2 1, with

T, (sb) =

| . . |
Iz,eﬂ(“ﬂb) = (:’24'*‘3)“5 | (6.12)
BT () = Bulaol-Rfec) o P < B (el

and
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Therefore, by repeated application of the recurrence relation (6.il)
and use of the 'initial values' (6.12), we can obtain I&"i for any values
of £ and m, and hence determine the off-shell amplitudes from (6.8).
| Although this approach gives good results for small £ (see Section 6.2),
it tends to produce large errors in the ;4J" for large £ ( and m ) an& 50 we
look at another method for calculating (6.8).

Since k and/;acan be chosen arbitrarily, subject only to condition (6.6),
we can certainly select the value k = _-,_(p, + pl). With this choice of k,

(6.9) becomes

I,?,m (Poz)Pz) )) m+z —8//)&('[1-4'!%94)# (6.13)

where

O < L = [;L-fr/oz/(’o,+/)l>1 < | (6.14)

I,,,(p,ipf,(%?-‘“—(‘ (m+sz/ —.<+4/&)al/~
= ()" R (0(7 ‘;)

- (-’)m-f(‘;zm_l_, )a‘- P(Jﬂ” -
m+ L+l (6.15)
by virtue of (5.34).

Because of the bounds (6.14) onol , the convergence of (6.8) is
guaranteed for all p, and p, provided the underlying potential beiongs to
the class in (6.3). Moreover, we sece from (6.15), that each term of (6.8)
has the threshold behaviour (p, p,_)e as p, or p, > 0, as is required for
b Vl(p‘,pl) for any short-range potential, by (6.2). '

Since the Jacobi polynomials in (6.15) have already been required to
relate the Born approximations at different enérgies, as described in Chapter
5, very little extra work is involved in going off-shell using (6.8) and
(6.15).

2
Therefore, given all the Vé(q ) for some energy qz’ we can determine
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v (p},p:) for any pf and p:Vsuch that p; + p, € 2q by using (6.8), the
recurrence relation (6.11) and the 'initial values' (6;12). For p, + p,> 2q

we need t§ know Vk(kz) for k* > g* (where‘k2 > (p, + pL)2/4 ). These can be
calculated for short-range potentials by the methods described in Section 5.2,
and for the more restricted class of potentials (5.68) by using the high-
eﬁergy expansion in Section 5.4. Therefore, provided the potential belongs

to the class (5.68), we can determine Yt(gz,p:) from the Vl(qi) for

p, + P2 > 2q by first using the high energy expansion to obtain YL((p, + pz)z/4)
and then making usé of (6.8) and (6.15).

Having described the general method for determining the off-shell
amplitudes we now consider two cases of particular interest. The first case
is when p, and p, do not differ too greatly from k, that is, we are close to
the enérgy shell. Siqce p, > p; = k, we see from (6.14) that o/~ 1 and

hence from (6.15) and the definition of the Jacobi polynomials we have

I = (Qmﬁ-’)(o(.“l) | (m >,£)

£,m

and - ‘ (6.16)
I,, =~ | + 4(«-1)

Therefore, to first order in (1 -<l), we have
G5 pt) = V&) = (-0[ 2V ()
| "'Z(«imﬂ) \/m(ki)] (6.1

m=4+|
where k = 5(p, + py)- .

Using (5.43) for the case of the s wave, we can rewrite (6.17) in the

form
é
V(g5 pl) = VKD = (1-0[ £ V(R) + A —Z(am/)vm(p)J
| - o (6.18)
with fi = VO(O).. Therefore, for the s wave, we have
(pspt) = VoK) = (=4[ e = (k)]
| + O 1—4)1) (6.19)

which only involves V .
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As an example of this approximation we can calculate V,(1.5,0.5) from
the phase shifts to the potential V(r) = -exp(-r)/r at energy k? = 0.933.
Using (6.19) we obtain V,(1.5,0.5) = 0.375 which compares favourably with

the correct value of 0.380.

The second case of interest is when we are far off-shell, for instance

when p, >> p,. From (6.14) we see that this implies L = 0 and hence from

(6.15) m-4 (2041 -1)
(2Am+] 4 )
I{m = ("I) (mil’ili oA a_e (o)
m-¢ ' 2
=~ [-l) T%%_g_(m;_.ez/) (ér_f.) o0

P
Therefore, for the s wave, we obtain :

\/o (f)tz) Fzz) = i(‘/)m(lmﬂ) vm(k’) (6.21)

ms=0

where k = p, /2. Note that (6.21) is indepehdent of p, and is in fact exact
for p, = 0. For example, we obtain V,(4,1) = 0.2000 using (6.21) for the

Yukawa potential V(r) = -exp(-r)/r, whereas the exact value is 0.2012.

6.2 Numerical Results

We now give some results for Yk(pf,p;) when the recurrence relation
(6.11) is used to evaluate (6.10) and compare these results with those
obtained when (6.15) is used in place of (6.10), i.e. when k ig chosen to
take the value k =% (p, + p,).

| From (6.11) we see that in the process of calculating Ilén it is
necessary to calculate nearly all the IILM for m' <m and {' < m'. Not only
is this a time consuming process but the recurrence relations (6.11) afe
unstable in the sense that any errors produced in I%n‘ are amplified when
%§m+z is calculated. The instability does not become poticable_until m > 10
and, provided the summation in (6.8) is truncated at m . 9, good results are

obtained.

S
In Table 6.1 V,(p",p,) is given for p, = 1,4, p, = 1,2,3,4 and £= 0,1,
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2,3 when the Vk(kz) are taken to be those of the potential V(r) = -exp(-r)/r
at energy k2'= 4.0, Table 6.2 contalns similar results when the Vl(kz) are
taken to be those of the S -function potential V(r) = -§(r-1). The results
in both of these tables were obtained by truncating the summation in (6.8)
.at m =9 and as can be seen, at leaét 3 figure accuracy is achileved for all
the values.  The high accuracy of the results in Table 6.2 is due to the
rapid decay of Yz(kl) with increasing £ for the S-{unction potential ( in
fact V§(4.0) &-10‘} compared with 10-3 for the Yukawa potential).

As a comparison of the use of (6.11) against (6.15) we give results in
Table 6.3 for V, (p,z,p:) with p, = 1,4 , p, = 1,2,3,4 and {=0,1,2 vhen the
Vl(kz) are taken as those of the potential V(r:)'= -exp(-r)/r at energy
kz = (p, + Pz)2/4' From these results we see that (6.15),in general, glves
at least one extra figure accuracy over (6.11). In fact, the use of (6.15)
for the $ —function potential gives 7 figure accuracy when only the first
9 terms of the summation ;re included. |

Therefore the use of (6.15) leads to more accurate results than does
(6.11) and hence is the preferréd method of célculating Vl(p?,p:), although
it does mean that a new set of Vl(kz) have to be obtained whenever p,‘or P2

are altered.
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2
Vé (P. ,P:)
B, L | p,= 1.0 p,= 2.0 p,= 3.0 p,= 4.0
o | 0.40234 0.20053 0.10189 0.05982
1| 0.10365 0.05173 0.02045 0.00936
1.0 |
2 | 0.03158 0.01535 0.00475 0.00178
3 | o.01011 0.00507 0.00110 0.00031
0o | 0.40236 0.20118 0.10198 0.05972
1| 0.10354 0.05177 0.02030 0.00937
1.0 2 | 0.03178 0.01589 0.00483 0.00176
Exact . )
3 | 0.01043 0.00522 0.00123 0.00035
0 0.06255 0.06705 0.06525
1 0.01960 0.03085 0.03609
4.0 A |
2 0.00726 0.01681 0.02308
3 0.00293 0.00970 0.01564
0 0.06255 0.05706 0.06522
4.0 1 0.01960 0.03098 0.03601
Exact :
2 0.00730 0.01681 0.02310
3 0.00290 0.00971 0.01569

Table 6' 1

: Yé(pf;p:) calculated using the recurrence relation (6.11),
the Ye(kl) being those of the Yukawa potential V(r) = -exp(-r)/r

at energy x* = 4.0,

-l
v, (p),p;) = (2p,p,) Qz((l+P%+p:)/2P.P1) and these values are

given in rows 2 and 4.

The exact result for the Yukawa is
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v, (p,5p0)
p, 4 | p=1.0 p,=2.0 p,=3.0 p,=4.0

o | 0.70804 0.38256 0.03959  ~0.15920

1.0 1| 0.09071 0.13112 ©0.10411 0.03497
0.00385 0.01230 0.01852 0.01715

3 | 0.00008 0.00055 0.00014 0.00206

o | 0.70807 0.38257 0.03958 -0.15921

1.0 1| 0.09070 0.13113 0.10411 0.03497

Exact

2 | 0.00385 0.01231 0.01853 0.01714

3 | 0.00008 0.00055 0.00014 0.00206

0 -0.08602 -0.00890 0.03580

4.0 1 0.05056 0.04013 0.01348
2 0.05483 0.08251 0.07633

3 0.01392 0.03485 0.05255

0 . =0.08602 -0.00890 0.03580

4.0 1 0.05055 0.04014 0.01348

Exact )

2 0.05483 0.08251 0.07633

3 0.01392 0.03486 0.05255

6.2

Table : Vk(p?,p:) calculated using the recurrence relation (6.11),

the Ve(kz) being those of the potential V(r) = -§(r-1) at energy
2 . : 2 2

k™ = 4.0. The exact result for this potential is V, (p,5p,) =

jl(p,)jz(pz) and these are given in rows 2 and 4.
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V, (%20
P, Pz=1‘0 p1=2.0 p2=3.0 ) pl=4.0
0 0.40236 0.20119 0.10194 0.05974
1.0 1 0.10354 0.05178 | 0.02029 0.00936
2 0.03178 0.01590 - 0.00484 0.00175
0 0.40235 . 0.20118 0.10198 ‘ 0.05972
1.0 1 0.10354 0.05177 0.02030 0.00937
Exact
2 0.03178 0.01589 ‘ 0.00483 0.00176
0 0.06255 0.06706 0.06522
4.0 1 _ 0.01959 0.03099 0.03601
2 0.00729 . 0.01682 0.02310
0 0.06255 0.06706 0.06522
4.0 1 0.01960 0.03098 . 0.03601
Exact :
2 0.00730 0.01681 0.02310

Table 6.3 : V,(p’,p;) caleulated from V, (k') with k =4{p + p,) using
(6.15), the Y&(kz) being those of the Yukawa potential
V(r) = -exp(~r)/r. The exact result for the Yukawa is
=/ 2, -2 |
Ye(EZ,Pi) = (2p,p,) Q,((1+p;+ p,)/2p, p,) and these values

are given in rows 2 and 4.



- 83 -
APPENDIX 1

In this appendix we pfove that

R[Im{"(z, Za) = E),n /é{; | (Al.1)
Re,m“ij Za) = (n+%) E(/‘) a(/‘) J/‘ | (A1.2)
1)4

pE) = BT ws

,m

where

with /ul= 1—(1-7u)k3/q1,and

We also show that the Rem satisfy the sum rule

SR (k) RIPE) = Ry o

n=4&
From the results in Appendix 2 we know that R, m(kz,ql) satisfies
td

the recurrence relation
ae)g v hR = BEIR, L ER
am+3) Y mei 7 "ledm Lm 4, m-1 7" -t m (AL.5)
(m>L3 l)
and we show that the function P(‘m satisfies the same recurrence relation.

The Jacobi polynomials of different order are related by (Abramowitz

and Stegun (1968) ; 22.7.15 and 22.7.18 )
(1, =1)

' - “o,-!
[n+ g‘tiﬂ)(lx)e, (x) = /M"‘*’)F =) - ””' P (’) (AL.6)

and ’ , '

«-1,- -1) (,()_!) , ,)
(Jln +al-' P (x) »*—'—‘ (n+a(-’) ﬁ (=) F (1) AL.7)
where P )(x) 0 for n < 0.

Repeated use of (Al.6) and (Al.7) gives

/h: P — (m"’[*’)(m*ll P + [m-0)(m-0+1)

7% lerym T Am(Am-1) <, m-| (Am+2)(Am+3) "¢, m+i
¢ (m=8[m+2+l) p (A1.8)
am (m+1) '
and( £+1) P (m-£ 1
mt{+ — m=-€~1 *Am
(m+1) £,m (2Am ~1) 5,“ - _é; (;}n e) B-lm

m(m+€'+l)(m é+ )
T lm-€)('n~')(5m+3 B’m+l : (A1.9.)
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respectively, and so

= ' 20+ _ (24+1)
'%T &,}m -9 6-:,,,, T (am-) B,m-, (Am+3) E)m, (A1.10)

which is the same as (Al.5).
Having shown that Rlﬂn and Rﬁm satisfy the same recurrence relation,

we must now verify that (Al.l) is valid for the cases ;-

1) &=

1) €=m-1

and (111) £ =0

since all other values of £ and m can be obtained from these by using
(Al.5) and (Al.10).

Again using the results in Appendix 2, we see that

2 2 21e
Rz,e(h’i) - (é;) (AL.11)

Rye(Bg] = (22:3) (1- &) (—’{—)g

(A1.12)

R (kt Z = [P )"ﬁ+,(l—:%)J | (A1.13)

o,m

and

from (A2.10), (A2.11) and (A2.7) respectively.
Also, from the properties of the Jacobi polynomials ( see, for example,

Abramowitz and Stegun (1968) ; Chapter 22 ) we have

P(5) = [P

)

- (-k—-) (a8 I-l) (A1.14)
) = e (5
= (224—3) (’ ’l;:) (_%_:_)? (A1.15)
and
2 (1,-1) .
Po,m(’f) = Qexd PU-2K

= &[0 %) - f;ﬂu—f_;;)] (4116
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thereby completing the proof of (Al.1).
Note that the recurrence relation in (Al.5) is also valid for m = 2

since Rl,m= 0 for €> m.

The proof of the sum rule (Al.4) is obtained by expanding each Re,m(kz,qz)

as a series in kzlqz,and we see that (Al.4) becomes

) Zf( [k )™ () o ame ) (e a ) (meen))
. Y J'(H'Q‘?*U'(ﬂ O (jvan+l)! (m=j-alT
n= L=0
A_ Am+1) (m++8)!
LZ;( I) ( 'flgaew)??mt-.,).'e)z (A1.17)

which we assert is true for all values of ' > qz and p*. Interchanging the
order of the n and ¢ summations we see that the limits become &t = 0 to m-#

and n = Z+i to m. Therefore, for (Al.17) to be true for all k",we require

2+ J* : .
3SR R

Py Fel J:O (
— +'+£),'
- (:_Z‘_‘.eu (A1.18)
for all q"and p-and 0 g L s m-4.
Setting r = j + n we then have
T’~L-€ ;_,[
Z Z (-] )1 (Ar=2j+] (fsr=+i)! {mer)!
i (et el (ar-i +0)! {m-r)]
L 5o J J (ar JH).(m r)! |
— (m+e +0)!
for all q~ and p ,and so :
r-i-0 . ’ |
§ (ar-241) (241 +i)! (mas)!
-~ il . ! _ . !
=0 . J . (m-i-2)T %0 (A1.20)

for 0 < L s m -4 and t+¥2 < r<m.

Therefore we require

)J (2r-3;+! ) (0+1- ‘+¢-) _ ‘
Z(- '(r-J-[-c)'(lr-J-’-l)' — g“_)i_‘_g ‘ (Al.21)

for r > ¢.+f , which after setting N=r - ¢ =4, a=2¢+ 2¢ and § = N - §

becomes
N
E J (2i+a+t) ({+a)] S
A ’m J)‘ (N#G'PJ?I)' - N,o , (Al.22)
J=

for N» 0, a>0 and even.
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Therefore, for (Al.4) to be valid for all K ,q2 and p2 we require
(A1.22) to be valid for all N > 0. For N = 0 the result is trivial and for

N > 0 we have N-l

—21 .521-0.4—’)(4-«)/ i i )
{)J{‘%N );{,v{_,.a.,u.,./)f {) ((g/fﬁ:’-vzqt’”)l - (-I)J ((-n-a l)

J' (N-J-l)'(/v-o-a_-o-io-ﬂ" ‘

J=° j=e
fN+n+l -awv) (N+a+2 -aN)
(14a)l_ : ]
(QNt:H)' P (- ’) - ﬁ_" (-1
(1 +a)! -1 .
V—()(m[ (N..)J = 0

Therefore the sum rule (Al.4) is true for all values of k* ,q? and p%
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APPENDIX 2

In this appendix we prove that the function

Tou(eb) = [R0IP (ab)

satisfies the recurrence relation

m={ -'lm

(20+1) Sm . + (2Am+1) b ]— (MH +(2m+1) b :(; (A2.2)

for m > ! >1
Since ( Abramowitz and Stegun (1968) ; 8.5.3 and 8.5.4 )

_['ﬂg/:c)o(x = (JZL./)-'[BH(/*); 8_,{/*)] (A2.3)

for £ # 0 , we have

(2e+)"'[ P, - P (ash )J

= b b ) d
J [a (A2.4)
and hence, for m > 0,

T -T - (amu)J /)J P (asbc) de o

)y 4 m-i —)-a

= (3”1"" bJ P(x dx P(aml)x)
mwb[ XN ] B 4

| | = -(;lm-l LJ‘PM/LH-L/.I 8(1)0[,(/ (A2.5)
since _( &(x)lx = O for £> 0. -l -1 o

Therefore mellb !
' ];,mﬂ - J;m-t = %Ll(,ﬁn(‘“b/() [E'“(/()_ 8—0(/‘)] o}u
| = _ (Am+llb ]

(ll-rl) f"'m

which is the same as (A2.2) thereby proving the recurrence relation.

(A2.6)
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Also, from (A2.4), we readily see that

T (wb) = B Quel)'[ P (arb) = £ (arb)

P fab) + Pfab) |

Using ( Abramowitz and Stegun (1968) ; 8.14.15 )
Q(+'£€*30)!(ffn)!

' 043 (
: .(B(I)x ﬂc[,( = { LI EPREVEDT
-1

. (@)
and ( Abramowitz and Stegun (1968) ;22.3.8 )
[£
-£ n l) (42‘2“ f£-dn
Pi) = 27°) LN (D))=
n=o

we also see that:

1(1£+Udbe

1

and

= Qb

Telah) = f'e(x) 2 ('f) o e

j;,eﬂ (q’ A) = j—.‘Pe(r) ‘24_[ (4;:4‘2)(@-/) aLéx gcjx

(A2.7)

(A2.9)

(A2.10)

(A2,11)
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