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Abstract

It is a purpése of this thesis to present numerical results on the
inward solidification of spheres and (horizontal) cylinders filled with
liquid which is initially at a temperature above the fusion temperature.
The changes in density within the liquid, due to temperature variations,
induce a liqﬁid motion by natural convection. There is a non-uniform
heat transfer from the liquid to the solid phase producing a non-
symmetric51 inward moving solidification interface in the shape of a
limacon of Pascal. The a;gree of distortion in the front is dependent
on the size of the (initial) Rayleigh number'of the natural convective
flow. Small time perturbation expansions afe employed to calculate the
thermal fields in both the liquid and solid phases, to obtain the stream
function for the convective motion and to locate the non-uniform

.solidification front. Numerical results are presented graphically for

both the sphere and the cylinder.

Anothér purpose of this thesis is to investigate the flow profiles
of a granular material in é hopper. A simplifiedlapproximate analysis- is
. presented for the transieﬁt flow. The equations governing the motion of
the material in a two-dimensional hopper are solved and fhe results

obtained are compared with those for the steady state flow. The use of

this transient model in conjunction with experimental observation will be

of use in practical applications.
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Nomenclature

For the Solidification Problem:

Al

a radius of sphere or c§linder
A, B constants of integration
C specific heat
C(r,t) = © : equation of the interface
. Di, H;, Lr operatoré
E interface variable defiqed by (2.2.19)
F body force per unit mass |
g gravitational vector
k thermal diffusivity
K. thermal conductivity
L latent heat of fusion
P pbessupe
P, particular integral
Pr Prandtl number defined by (2.2.10)
q variable for numerical computation
r radial position
R ' dimensionless radial position
Ra Rayleigh number defined by (2.2.10)
t ‘ time
T temperature distribution
v velocity of the liquid
v dimensionless velocity of the liquid
vol(T) volume of 1liquid as a function of time
X independent variable

y dependent variable



Greek Letters

coefficient‘of cubicalAexpansiSn
Stefan number defined on page 7
thermal head défined on page 27
- polar aﬁgle
- dimensionless temperature distribution
ratio of diffusivities
= cos @
dimensionless Qariable defined by (2.2.17)
density

dimensionless time

wl

forms of the interface equation

stream function

,e-ege'd/o_,,ﬁc > @ 0 x®*

dimensionless stream function

Superécripts
% liquid property
- ' single bar system
= . double bar system

Subscripts

1 ' initial condition
o surface condition at r = a
F ' fusion.
th . .
n - n  order perturbation function

c _ complete solidification



For the Granular Flow Problem:

Ur

Greek Letters

«, 8%

q 0 0 &4

4]
€

SuEePscriQt

gavitational constant

- height of the material at any time

constant detined by (5.2.3)

constant defined by (6.2.15)

radial position

radial distance of orifice from 0

radial distaﬁce of initial height from O
time | |

velocity of material (radial)

terminal velocity

constants

constant defined by (5.2.5)

-angle of friction between wall and material

perturbation parameter

polar angle

stress

angle of inclination of sloping wall

angle of internal friction

dimensional property
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1.1 General Introduction

Moving interface or moving boundary problems are encountered in
many scientific, industrial and engineering problems. The general
formulation of the moving boundary problem can be considered as fplléws.
Two substances are separated by a surface and diffusion from one
substance to the other takes place. This diffusion process may cause
changes which create the formulation or dematerialization of matter at
the interface in ohe, or both of the substances, The interface is
thus seen to move relative to one, or both of these substances. This
problem is commonly referred to as a Stefan problem of which there ére,‘
at least two categories; those involving the diffusion of a substance
and those involving the transfer of heat in the substance. Within
the first cafegory.there falls, for example, the diffusion of oxygen
into muscle when the oxygen combines with lactic acid. The absorption
or diffusion of certain dyes into material fabric is of interest to the
textile industry, whilst the effect of the diffusion of carbon during
the melting of iron interests the steel industry. Other moving boundary
problems which are concerned with diffusion involve the back-diffusion
of a chemical solution into the remaining solution when evaporation
occurs at the free surface. The rate at which a layer of soil or clay
consolidates and increases in thickness is of interest to geologists,
and in chemistry there afises the problem which is concerned with the
diffusion-controlled growth of a new phase such as a crystal in solution,

It is, however,‘witﬁ the sécond Categéry of heat transfer ﬁroblems
that there can arise the additional problem of change of phase. A
fundamental feature of a phase-change problem is the moving interfacé

which exists between the two phases of the substance. These phases,



which héve different thermophysical properties, are separated by the
transient interface across which latent heat is either liberated or
absorbed. It is this transfer of thermal energy which introduces a
non-linear phase-change process at the interface. As a consequence, the
number of exact solutions known to the problem is restricted.

In 1860 Franz Neumann found the first and probably the only exact
solution, ‘He considered a substance of constant temperature which
. occupied the half-space x7 O and was subjected to a predescribed
temperature at the boundary x=0. Thé solution'whi;h Neumann obtained
was characterized by a similarity variable x/{%. Nevertheless, it was
not until 1891 that this type of prbblem was called a 'Stefan' problem,
due to Stefan's classical investigation into the thickness of polar ice.
The results Stefan obtained,.or the method by which he achieved them,
'could be appliéd to a wide range of other phenomena in earth‘science.
In particular, investigations have been made into the freezing and
- thawing of expanses of water, the solidification of lava streams and the
ablation of glaciers.

Phasé-éhange or Stefan problems are still of great practical
importance in the present day, although this interest originates from
a more commercial aspect. For instance; studies have been made for
the steel industry into the solidification of stgel ingots. The
position of the solid-liquid interface was investigated since its
profile during solidification can be of great interest in relation to
the quality of the end product. Changing the shape of the ingot moulds
can make considerable chénges fd this solidifipation'précess and this
too has been studied.

Another area of interest created by phase-change problems is the

latent heat of fusion storage devices. In this type of problem the



need to know the position of the interface is again important, as are
the heat transfer characteristics of the phase-change material. This
subject has received much recent attention and there have been several
papers published on both theoretical and experimental studies.

Indeed, the Stefan problem has been the subject of a great deal of
theoretical investigations. Of course constructing a mathematical
model for such a problem can be extremely complicated and hence many
things may be over-simplified. 1In particular, the consideration of the
density changes in the material and the formation of dendrites is complex.
Such complications will be discussed in a later section.

There have been many solutions presented, each using a method of
differing complexity. These methods can be classified under the following
.headings: exact analytical, semi-analytical, integral, perturbation,
numerical and other methods.

It is, perhaps at fhis point, worth presenting Neumann's one
dimensional model and solution as generalised by Carslaw and Jaeger [l].
The semi-infinite regionr xP0 contain‘s a liquid at a temperature T, which

1

is above the fusion temperature TF' At time t=0 the temperature at thg
boundary x=0 1s instantaneously reduced to below the fusion temperature.
This resulfs in the liquid immediately adjacent to the boundary
solidifying and hence, a solid-liquid intefface moves into the liquid.
The temperature is assumed to be the only independent variable agd the
solid and liquid regions are considered separately. Thé position of the

interface at any time is given by x = E(t). And so, the heat conduction

equation for the solid is,

oT = 1 o7 = o<t gt
ox R ot (1.1.1)



and for the liquid,
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The boundary conditions to be imposed are,

= To (<Te), x=0, t20

"T*-Tt-' 08 X —Dc0 , 'b)O

and the initial conditions are,

TeTo=T"

The latent heat condition is,

(1.1.2)

(1.1.3)

(1.1.4)

ot | t=0 ‘u:n%k €lo) = O (1.1.5)

| K%:-; - K¥ b’\"*‘ ?L on %8
and also at the interface,
T-T*=o0 on x-'ﬁ(l:),t>o. |
| | (1.1.7)
The exa‘ct solutions are fou;ld to be,
) = 2\ ke .18)
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(1.1.9)

T*t-T. J1 - ot [Z—é_‘d‘]

erde [XE’] (1.1.10)

where )\ is a root of the transcendental equation,

~Nk/E

—X"

e + )\L.fﬁ: '=' O

a—;‘x+ K ’To J;., eﬁ-c(*{—\) Cf—_[-—;- (1.1.11)

In the above a ¥ denotes a liquid property, k the thermal diffusivity,
K the thermal conductivity, L the latenf heat and Cp the specific heat..

The time taken until solidification is complete is tc.

1.2 A Review of Literature on Solidification Problems with Free

Convection Ignored;

An aim of this thesis is to investigate the inward éolidification
of a liquid, nof necessarily at fusion temperature, which is contained
in a sphere or a cylinder. This study was motivated by problems on ingot
solidification emanéting from the British Steel Corporation.

Before this investigation proceeds, however, it is worthwhile
making a survey of the literature already évailable on and connected
hifh this subject. The majority of these papers méke the féllowipg
assumptions:

(l)' the initial temperature of the liquid is the fusion temperature;

(2) there exists a definite fusion temperature at which



solidification occurs and hence thére exists a demarcation’
line or interface; | |

(3) éli the.thermal and transport'properties of the system are

independent of the temperature;

(4) the density changes at the change of phase and elsewhere in

the solidification process are ignored.

Poots [2] investigated the solidification of a liquid at fusion
tempefature in several different shaped containers using heat balance
techniques. Assumptiohs were madé as to the température distribution
ana the shape of the interface. Then employing the Karman-Pohlhausen
technigﬁe, he was able fo find small time solutions.

Goodman [3] also presented the solutions to several problems using
alhéat balance integral. He found that these results compared favourably

with Neumann's exact solution for large values of the Stefan number

= L
6 Cp(Te-To)

- the ratio of the latent heat to the sensible heat of the substance.

It should be noted that ftu\gz 0.25 (steel) thevgrror in Goodman's
method is approximately 30%.

In 1967 Tao [ﬁ:lpublished his generalized numerical solutions for the
freezing of a liquid in a cylinder-or éphere. Assuming the convective
heat transfer coefficients to be constant, as is the heat capacity of
the solid phase, Tao used differences to solve the set of coupled
differential equations. The solution was then obtained using an itefatiQe
procedure. |

Pedroso and Domoto [ﬁ] used a perturbation expansion for large Stefan
number.for the solidification of the sphere. They showed that the total

time for solidification, that is as E—91, is given by



.-t;,=‘ "Z,(l N Jé» | | (1.2.1)

which was obtained for two tepms only. However, it was found that

near to total solidification the regular perturbation series diverged.
And so, an Euler Transformation together with an overall energy balance
‘was employed to modify the series solution. Huang and Shih Yﬁ] applied
Landau's Transformation to immobilize the moving boundary and, feplacing
the time variable by the normalized position of the moving interface,v
they too introduced a perturbation expansion to solve the solidification
problem for the sphere and the cylinder.

Riley, Smith and Poots [7]investigated the sphere and the cylinder
using the method of matched aéymbtotic expansions for large €H They
used a two layer analysis. Using Pedroso and Domoto's solution.as
their outer region, they found that an inner layer C)(di) was required.

' The results obtained for small E - the depth of solidification - were
found to compare well with the small time solutibns of Poots. The total

time for solidification of the sphere was found to bde,

te= L+ 1L - L 4 0Of (1.2.2)
6 6 30Qurs (3)
and for the cylinder,
te = L '4; L+ C)(.i. . , :
W LL@ ' 3‘ (1.2.3)

Nevertheless, Stewartson and Waechter [8] showed that even this
second region analysis breaks down just before the centre solidifies,

that is, at time



L4

g X |
t. t = 0 (S—_ ) o (1.2.4)
| 8

Whilst studying the problem for the sphere, they intfoduced yet another
region and thus employed a triple-region procedure. Although the
resulting analysis was very complex, Stewartson and Waechter were able
to obtain the temperature profile in the neighbourhood of the region
near to the time of total solidification. This was a major contribution
to this field of study. More recentiy (1980), Soward [Q:Ideveloped a
simpler method and was able to solve this problem for the‘cylinder as
wéll as the sphere. Essentially Soward's method ameliorates the
procedures used by Riley et al. and, although the results had been
previously obtained, clarified the nature of the solution in various
domains.

Hill and Kucera [lQ], using é.semifanalytical procedure, considered
the freezing of a liquid inside a sphere. 1In their analysis they
included the effect of radiation at the surface and, by use of an
integral formulation, they were able to show thaf the time for complete

solidification lay between the bounds,

(1+2x)8 < te < (1+2)C1 + B)
— — (1.2.5)

where O is defined by O("—‘ ‘j& . If the radiation at the surface is
ignored, that is ® = 0, it can be seen that the upper bound agrees
wéil with the solution cbtained by Pedroso and Dombto. |
Furzeland [11] has made a comprehensive and excellent surve& of
numerical techniques which have been used to s;lve one dimensional
moving boundary or Stefan problems. In this paper, Furzelaﬁd compared

several viable methods and examined each one for efficiency and accuracy '
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aﬁd, %p particular, the ease with wﬁich‘the methsd could be generélized
to more than one dimension. More reéently Schulze et al. [12] developed .
analytical and numerical solutions to two-dimensional moving interface
problems. Aithough these solutions were applicable to the solidification
of steel ingots in the steel industry, the studies made on small time

expansions are of interest in the analysis of this thesis.

1.3 A Review of Literature on Solidification Problems with Free Convection

.

Until now, all the papefs considered have approached the phase-change

problem classically. That is, the effects of natural convection within
the liquid fluid have been ignored»and the problem has been treated as
one of pure conduction. This means that the interface can be treated

as axisymmetrical. One of the reasons for this neglect is that the
analysis determining the position of the interface énd tﬁe heat transfer
would be greatly complicated by the inclusion of the convection. But in
reality assumption (1) is rarely achieved and the initial temperéture of

the 1iquid is usually greater than its fusion temperature. Although

-

initially solidification will occur solely in a conduction mode, appreciable
temperature gradients will exist in the liquid adjacent to the interface
and these %emperature differences will produce density variations. It
is tﬁese variations which result in the introduction of buoyancy forces
which then induce conductive motion in the liquid. This will lead td
the non-uniform convectién of the liquid sensible heat across the
interface which, as a consequence, becomes non-symmetrical in shape.

| There have been many studies made to sée how important thisvconvection
is during solidification and melting. As with the earlier pure conduction
models, the solutions to these studies can be divided into tﬁree groups:

analytical, experimental and numerical. However,-it seems that there
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have not been many analytical solutions obtained and this is probably
due to the previously described- complication.

In an early investigation Sparrow et al. [131 discussed the effects
of natural convection on the rate of melting and heat transfer. They
studied a melted region around a vertically ﬁeated cylinder embedded in
a solid which was at its fusion temperature. Using an implicit finite-
difference scheme to find the position of the interface as time progressed,
these authors concluded that the addition of convection does indeed have
a noticeable effect. In this investigation, as in many others, it was
assumed that the Stefan number @ was large so thaf the melting front
moved slowly. This assumption permltted a qua81 steady approx1mat10n to
be made for the convective motion.

Sparrow et al. [14] investigated experimentally the effects of
natural convection on the outward freezing from a cooled vertical
chlinder. A theoretical model based on empirical heat transfer coefficients
at the interface gave good agreement with experiment, A numerical study
of the transient effects of solidification accompanied by natural
convection in a rectangular enclosure has been considered by
Ramachandran et al. [15]. The quasi-steady approximations of Sparrow et
al. [15] were again invoked and results were Presented for large Stefen
number and moderate Rayleigh number of order 103.

Yao and Chen [16] used a regular perturbation solution to show that,
although conduction was initielly the dominant ‘heat transfer mode, the
natural convectlon had an increasing effect during the meltlng process.

Gartllng [17] used a flnlte element scheme to effect a method
which could be used in a two-dlmensional region of arbitrary shape. And
in a later paper, Morgan [lé], retaining the generality of this work,

employed an explicit finite element technique to solve the same equations.
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Morgan_used this method to investigate the effects of convection d;ring
the process of melfing and solidification in a cylindrical cavity, The
results obtained for a solidifying substance were shown to agree
qualitatively.with experimental observations.

Prdblems of latent heat thermal energy storage in a horizontal
cylindrical capsule involving lérge Rayleigh number - large diameters -
wére studied by Saitoh and Hirose [}9]. Using a Landau transformation
and an explicit finite'difference scheme, these authors also concluded
that the ;ffect of natural convection played anliﬁportant role.

Recently Gadgil and Gobin t?O]'and Ho and Viskanta [?i] have
explored the effects of natural convection»on the thermal storage of
phase-chénge material in a rectangular enclosure. Heat transfer during
the inward melting in a horizontal tube has also been investigated
theoretically and experimentally by Ho énd Viskanta.[Qé].' They found
good agreement between the results obtained ffom these two methods. in
viskanta and Gau [23],'experimental and theoretical work has established
that for the inward solidification of a‘superheated liquid in a horizontal
circulaf tube, the effect of natural convection is important for large
Stefan number. The theoretical work was based on the quasi-steady
approximatibn and on the assumption of an empirical heat transfer
coefficient at the solid-liquid interface as proposed by Sparrow et al.,
see [13] and [14] réspectively.

Further complications which arise in both the melting and
solidification problem with, or without, convection originate from
aséﬁmption (2), the existance of a definite fusion.temperatﬁre. |
Unfortunately, not all substances, particularly‘in engineering practice,
have‘tﬁis definite fusion temperature at which solidification occurs

and which gives rise to a distinct demarcation line, or solid-
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1iquiq_interface, between the two phases. Insteéd solidification occurs
over a temperature range and, of courée, there is no discernable interface.
Such amorphous substances - glass, wax and plastics being examples -
change from é solid state to a liquid state by a continual absorption of
heat and pass through decreasingly viscous stages. Similarly to an
amorphous substance, alloys oftén have an ill-defined interface between
the two phases and during the change of phase, the solidification or
melting process is determined by the combination of its constituents.
Generally‘fusion, which in this case is‘a vague concept anyway, is a
gradual process.

 Another problem which complicates the determination of the interface
is that of dendritic freezing. It might be thought that an eutectic
Substance‘— a substance composed of a mixture of constituents so as to
solidify at a single temperature - would produce a ﬁell defined interface.
But, in practice (such as the steel industry), this is not so. For example,
when steel solidifies, and particularly if the rate of solidification is
slow, an instability is created at the interface. This can lead to the
formation of dendrites, branching crystalline structures, from the
solidus into the liquidus. From these primary dendrites, secondary
dendrites.évolve and, in turn, tertiary but smaller dendrites are formed.
It ié the 'mushy' region which is formed by these dendrites between the
solid and liquid regions which creates a complex heat transfer structure.

Another consequence of these dendrites during, for example, the

solidification of steel is the build up of‘impurities. These are caused
by fhe more rapid solidification of the pufer metal constituenté which
allow the impure constituents to form into a dense layer in the liquid
region. _This action is known as segregation and can alter the quantity

of steel produced. (see Schulze [2u47)
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The last assumption made - the neglection of changes in density at
the cﬂ;nge'of phase - is also open_td discussion. Volume increases or
decreases which 6ccur at the change of phase affect the magnitude of the.
heat tfansfer regions. Density changes at the interface together with
the variations in the physical properties with the temperature, affect
the propagation of heat in the liquid and solid phases.

Carslaw and Jaeger considered the effect of the change of density

on solidification and presented an analytical solution, The heat

conduction equation for the liquid region now becomes,

é:r*-- L .;;r"-r u*é:r*

where the velocity of the liquid along the x-axis is given by,
- 1] ds .
- - )& =
e“' , olt : (1.3.2)

The solution for the solid region is,

T-T. 0 - ot [
oA (1.3.3)

which is the same as equation (1.1.9). However the solution for the

liquid region is now,

- X Aopo-p" R
T*= T.) ! — efFCIz(m\K * 'ork*

o2 EY]

eT\R
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and, in this case,‘A is a root of the transcendental equation,

-+ l-q??)\ = O

Ponmm—

of\ K TR %{A%‘{%’ Tocp (1.3.5)

Obviously if the densities of the two phases are the same, then E>:f3
and these solutions reduce to (1.1.10) and (1.1.11).

Tao [25] also considered the problem of solidification which
included the density jump at the transient interface. But By employing
an appropriate transformation of variables in time and space as well as
material constants, he was able to convert the problem to one'which had
equal densities in both phases. This reduced problem, which is now a
classical free-boundary problem, was designated as the associated problem.

A description of the physicai situation whicﬁ‘is created by the
éffects of natural convection during solidification in a liquid sphere
or a liquid cylinder is now given. The changes in the densities, due
to the temperature variations inducing motion in the liquid, mean that
the rate of heat transfer across the interface Qill be greater at the
north pole of the container than it will be at the south Pole. Since
the rate of increase in the solidification is dependent on the difference
in the heat flux between the two phases at the interface, the solidification
front would be expected to move towards the centre at a faster rate at
the south pole than at the north. Consequently the front will initially
move inwards symmetrically, but will scon evolve into the shape of a
1iﬁacon of Pascal, and fhus it would become non-symmetric;l about the
centre.

In Chapter 2 the effects of the natural éonvection during solidification
in a spﬁere is investigated. The equations govepning the thermal fields

in the two phases, the equation governing the liquid motion and the latent
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heat condition at the interface togetﬁer with théir.boundary conditions
are derived. Small time expansioné éf tﬁe coupled partial differential
equations are then developed. Theée perturbation expansions, which
represent the temperature distributions and the interfacial position,
proceed in powers of 1f‘ and the first six terms up to (and including)
'Cﬁa are obtained. The resulting system of ordinary (linear) differential
equations and the interface condition are solved numerically in Chapter L,
These results are then used to locate the position of the interface,'
calculate‘the temperatufe distributions in bqth phases, the velocity
distributions, the streamlines and the Nusselt numbers. Solufions for
different parameters, the thermal head (which is proportionai to the
‘difference between the initial temperature of the liqﬁid and its fusion
temperature), the Stefan, Rayleigh and Prandtl numbers are then computed
and displayed graphically.

In Chapter 3 the equations thch describe the effects that the
natural convection has during the inward solidification of a cylinder are
derived.

Such results may be useful in helping to cémplete our understanding
of the effects of naturai convection during the solidification or
melting of metal and alloy systems, see Chiesa and Guthrie [26] and

Schulze [2&]. They are also relevant to the study of heat transfer in

latent heat of fusion energy storage systems.
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Chapter 2

The Effects of Natural Convection During Solidification in a

Liquid Sphere
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2.1 The Derivation of the Governing Equations

In the derivation of the equations governing the heat and mass
transfer in a liquid undergoing the process of change of phase, certain
assumptions from previous theoretical works are to be retained, These
are: |

1) thgre exists a definife fusion temperature at which
solidification occurs and thus a sharp demarcation line
between the two phases;

(2) all thermal and transportvproperties are independent of the
temperature;

(3) the density changes at the change of phase and elsewhere in
the solidification process are ignored except in the
calculation of the gravitationﬁl buoyaﬁcy force in the 1liquid
phase.

The above form the starting point in the construction of mathe-
matical models for solidification and meiting, see [20] to [23].
Essentially it is assumed that there is no volume change on change of
phase. Moreover, it is implied that.the liquid velocity along the
normal to the interface, which is induced by the change of density at
change of phase, is also negligible. These assumptions have been
substantiated experimentally by Sparrow et al. [25]. However, for any
specified material it is a simple matfer to compare, for example, the
size’of the velocities induced by the density jump at the moving
boﬁndary with that representative of tﬁe natural cénvective‘flow,.and
so establish the validity of the aﬁproximations'which have been made,
see Tao [_25] .

The physical situation to be examined is illustrated in figure 1.
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Figure 1

Initiélly a sphere of radius a is filled with a liquid at a

m

constant temperature Ll, which is above it; fusion temperature TP'

At time t = O the temperature at the surface r = a is instantaneously
reduced to a temperature T° which is ﬁelow the fusion temperature.
This causes‘the liquid adjacent to the surface %o emit latent heat and
solidify. AThe surface témperature Té is maintained and, as time
progfesses, the solid-liduid interface moves téwards the centre, The

interface will be symmetrical about the azimuthal angle and its radial

position is represented by
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Clr, ) = T -%luy) | p=cweso (2.1.1)

The transient governing equations for the solid and 1liquid, subject
to the previous assumptions, together with their corresponding boundary
and initial conditions are as follows.

In the solid region the equation of heat conduction is,

L3 (raT\ 4 L2 [T )= T
kirz.ar( or "’"b}*{ P a}} l} ot (2.1.2)

where the temperature distribution is described by T(r, h,t) and k is
the thermal diffusivity in the solid. This equation is subject to the

boundary conditions,

—r((l’ }L;‘t) = —ro .

and (2.1.3)

Tlre ().A.b), )vx.b) =. T¢

In the liquid region the Boussinesq approximation is now invoked on
the equatibns of motion and heat. This approximation is based on the
assumption that the properties of the molecules in the liquid may be
considered constant and that the variations in the density field are
important only in the calculation of the buoyancy force term in the
equation of motion. Under these conditions, and assuming that the
temperature and velocity‘distributions in the liquid are given by
T*(r‘,l_g,'t) and x(vr,VM) respectively (where m= cos@), the equat.ions of

energy, continuity and momentum can be written as:
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the thermal energy equation,

k*{ v ar(ﬁa‘r )+ w5 {U—- ‘)%—){ 1

- a l (2.1.4)
- BT + Ve aT - (l:_&\ + Vu
dt br Y a}A
where k* is the thermal diffusivity in the liquid.
The eéuation of continuity is,
, : : L |
n -a— (Tv.\(f) — ',__a__ [(l-Pz)‘ V)‘X = O
Y*of v O . (2.1.5)

and the momentum or Navier-Stokes equation is,

?:[:g__‘i —_\gx(ny_)] — *E

_Y_(P + J?:Q: ‘) — % [Vxval (2.1.6)

where p is thelpressure,\)" the kinematic viscosity and Q’ the density of
the fluid. ' The temperature distribution T*(r,}«,t) and the velocity v
are determined by the coupled non-linear partial differential equations.
The vector F in equation (2.1.6) is the external force.due to gravity and
is given by |

(- gm, gli- b, o)

(2,1.7)

The equation of state is,

- ?: [\ - O((T;'-TF)] ‘ (2.1.8)

P

»
where 3: is the density of the liquid at fusion temperature and §
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is the coefficient of cubical expansion. Substitution of the equations

(2.1.7) and (2.1.8) into (2.1.6) and.then taking the curl of this equation

gives,
Yxo
ot ¥xTxy + Y %[. u(-r—'r.:)];_z_“i (2.1.9)

- ¥x[ex(¥ )]

%
&<

The pressure term has now been eliminated.

Examination of equation (2.1.5) reveals that the stream function

g (r,m,t) can be introduced such that,

Y = —J_té_lk and VP-u '—' aj:
r op. i or

(2.1.10)

On substituting (2.1.10) into (2.1.9), and after some further analysis

has been performed, the vector equation in v is reduced to a scalar

-

equation in Y. That is,

v Dry = 2 (D) +3ur(l-—;ﬂi& aT* - aT*‘}

4+ 1§ ale ity +z§rw.L,u(} U aan
L oln )

The 6perators D, and Le: are defined as,

o
|
o %
+
";:

(2.1.12)
}}

and

(2.1.13)
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The Jacobian is defined by

2P, & . 2P o] _ 3P 31
'b(x.gx ¢ aj 53 93X (2.1:14)

These equations are subject to the following boundary conditions:

(i) initially,

T'-
T ( ot teo, osrsQ
Y =0 (2.1.15)
(ii) at the intérface,
T T, .
L okt Vevelum, ), tv0
Y W= o s ). (2.1.16)
of

The second condition in (2.1.16) is the no-slip condition.

The equations for the heat traﬁsfer in the two quite separate and
distinct solid and liquid regions have now been established. However,
the boundary condition at the éolid-liquid interface has yet to be
derived. This condition, concerned with the absorption and liberation
of heat across the interface, is non-linear and controls the motion.of
interface. The generalised derivation of this boundary condition is
given in appendix A. The condition can be written as

K(TT.¥C) - K* (LT YC) = -plac
St

(2.1.17)

the

For this particular problem, using spherical coordinates, the Stefan

condition along the interface C(r,,;;t), which ig gi&én by (2.1.1), is

AT — (1= OT . dh —
LA A A
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— K*(C"T* - (=) 3T arq
] or r 5}1& T
QLB&

(2.1.18) .

2.2 Dimensionless and Neumann Variables

In order to simplify the established equations and their corresponding

boundary conditions, the following dimensionlgss‘variables are introduced

for the solid region,

§?='1: S Re = &

T = bt 5 ®($?/*.t) (T- T-"Te) (2.2.1)
R & X ' ('1? ':1:>)
and for the liquid region,
R , Re=G
o o
- ‘3:_(: ~ ®(9}.«’C*) T T~ —7Te) (2.2.2)
o2 (. -T;)

RE
It is worth noting that g» is the Fourier number F and that the

. h’
dimensionless parameter }\ is defined as ‘A =

For the stream function the dimensionless variable
. . ‘
ok (2.2.3)

Inspection of (2.1.10) will reveal that the dimensionless
velbcity vector can be written as,

is introduced.

Ve<av
lzt

(2.2.4)
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Substituting these variables into the derived equations and

simplifying gives the following equat.ions:

for the solid region the heat conduction equation is,
L2 (F20) - L ?_'[0-;»’)9_@] .0
2> oR IR R 6}* . ap 2T’ (2.2.5)

which is subject to the boundary conditions,

@, p, ) =
and ) " (2.2.6)

®(?F(P,';')' P,.-c') =

for the liquid region the heat conduction and convection equation is,

- (Rza_@*] o [ ‘)3@
R*oRl R | R*ap e

1ok @) - @

——

" b(R‘,,u) oT” (2.2.7)

vwhich is subject to the donditions,
-
® (?o )"\' O)
and . (2,2.8)
+* * -
@ (QF ' ,“Lo -C ) - o
'The convective motion in the liquid is governed by the stream
function —(E whicﬁ satisfies tﬁe equation,
o
*r
kLot d( R p)
+ Z'De T B H

Umvcrs“y

lerary
Hul

+ Ra(i-p)R{ p 28" _ 2@ K

(2.2.9)
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This equation introduces the dimensionless Prandtl number - the ratio
of the molecular diffusivity of momentum to that of heat - and also the
Rayleigh number - the ratio of the buoyancy to viscous forces - which can

be written as

2= M and gal ='530(CE‘CTT'TT;3
k* o - o*k* | (2.2.10)
respectively.

. 2
The operators DR and LR are now defined as

De* = &+ +(1~ R
. oR? R:. a})_ | (2.2.11)

and

>.

9 +

. L |
(1-p2) @R KR O C (2.2.12)

Le

The stream function satisfies the boundary conditions at the

interface,

TF = EB(E - E)QE = O ot F?"E;

S ——— —————

o) - (2.2.13)
and the initial condition ~
3¢ (R,p1,0) = O
bR ‘ (2.2.14)

Finally substitution of the dimensionless variables into the Stefan

condition at the interface yields

M® - (1= 3® . K| _—
oR r* Ofr O
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_ x| @ - (1) 3@ 8%
\i‘[ae P)-a_ﬁ.'é}ll

$ af?r

(2.2.15)

i
where e is the dimensionless Stefan number defined as 3 b CPCTr"To)

\6 - P* CT' ‘TF)
R (—rp ’-To)

The solidification process commences at “C = 0, at which time the location

and the dimensionless parameter 8' is defined as
of the solidification front is at the surface of the sphere. That is,
' ‘
epgi ot T =o0

(2.2.16)

Introduction of the Neumann Variables

Clearly for small time the local structure of the solidification
process at évery point on the surface of the sphere will be that for a
semi-infinite region of liquid initially at a temperature above the
fusion temperature. Consequently, the following Neumann variables
(see Carslaw and Jaeger) are introduced. For the solidified region these
are,

i-(l"?‘).p=wbe‘—cg—c' .
2(t)* | . | (2.2.17)

and for the liquid region,

’-z | - - »_ -’
(R peome, T
2(c' ) | .  (2.2.18)

and it is found convenient to introduce a new interface variable,

-E(}.A.’C) « (1 -KF)
2T ' (2.2.19)
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In terms of these Neumann variables the interface is located in the solid

. A ;"
region at 1 = E and in the liquid region at _f = E/A* .

Note that from (2.2.17)

?__'=-. 2. > -1

{ = ;5-
"‘ and -, —— __ (2.2.20)

a .
with similar results for R’ ‘5‘.{.:' obtained from (2.2.18). And so,

on employing these Neumann variables, the heat conduction equation (2.2.5)

~ for the solid region becomes, |
3 [0-22TR@] -l [0 28]
il o7 34 S
— - %. * ' Eﬂzb ;; :L} E}GZ)
= (1 LT ol
(1-aviywedd TZ]
(2.2;21)
and the boundary conditions are

QZ>('C’,}* yT) = O

and (2.2.22)

@ (&, p,T) = |
For the liquid region the heat conduction and convection equation

(2.2.7) becomes,
3 [(l—z.'c'“()a@’ ]
T 03" |
S AR-T 1(' }*35® \ .4.;2'&"“3(_@,@‘)
O o 2 (%%, )
;—_(l _.'01 *)iq‘c E)@ - ').'{ y®*

T ' RIS

(2,2.23)

which is subject to the conditions,
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@a.(ob' [P o) -.—..\'

and ._ | - ' (2.2.24)
. )
®(E ,u,Tt*)=D
A
' and in addition,

@* (OO)H:O) = a@*(oo.)*‘o O) = O
oY op | (2.2.25)

'i'he flow field is governed by the equation,
) . ‘ 2
D‘;‘Q = L _b__* = ;* D+ ¥ +
' f J\at* 2ty

u _ o d(E D) ‘+ 2T+ T, L & 1
7.'-73*‘:*)‘[ T 30 ) v N

_+Qq(|— ’}(I-Zfr,*) K — a@ i3 a®"‘
(- ZT' v )a}A .;ZL“ b‘ (2.2.26)

which is subject to the boundary conditions

E=23F = 3& o ot V=&

3F* o
~ and . (2.2.27)
) ¥ (0, p,0)= 0 .
Bi*
The operators Drand L{.are now defined by
'Dru =—aa. + (l"})‘) a‘. <.
ll-c’ a‘i* (l 2-{4 ) a}}'t. (2.2.28)

and

.L% 2 - L+ 1 Q-
3(1 }}’) 3{ (I-?.'C*"?*)’a}»‘ (2.2.29)

The Jacobian is transformed to become,
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ACBY . 1 3lE @)
2(R ) 2T (%% W) (2.2.30)

To complete the transformations of the equations, the latent heat

condition at the interface is,

[_'. MWD - 2 (1- “,)a £l aa‘l -
=€

2T 37 (l—l-c'*i) 3).;. A

—

—% ,s 2% ) d®™ o€
7.1:* a-ia- (l Zt*'s"*) 3}* a}A .{'

= &
%a (E‘t,' _ A
(2.2.31)
and the initial condition on E is,
E(m,0) =0
}A ) (2.2.32)

2.3 The Perturbation Procedure

The non-linear system of partial differential equations derived in
the previoﬁs section can be solved by assuming, for small time, the

following regular perturbation expansions:

«©

. n,
®<¥l}*)t) = AZQ ®ﬂ(‘{o}*)t . (2.3.1)

‘. o .\ e
B, ) ,\Z ®. (’{,}A) T

(2;3.2)

EZ(/L;U—C) = :Ei 6:;\(}A)'1;€L
NnN=o P

(2.3.3)
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and

Nzo

(2.3.4)

E(/u.,'c Z En()ﬂ( )ﬂ

However, the perturbation expansion for the stream function ? (?t#o‘c".)
is more complicated and has yet to be determined. Suppose that this

function can be written in the form,
T pac®) = (T )Tt

Then, on substituting (2.3.5) into the flow field governing equation

(2.3.5)

(2.2.26) and expanding for small time, the following equation is obtained:

g™y o § o (&

(6T 9+ G KT o )
ha T (ETTY) o @ ETY o)
T oy g oy
= (1=22F)Rel12) 3% 4 o)
lt'*\' o | (2.3.6)

Comparing both sides of this equation, it can be seen that n must take the
value‘of 3/2 and hence

QT p) = 2 TalE ) Tt

=3 ) (2.3.7)

or equivalently,

& (?T}A.t"’) - Z '}ms(?}ﬂ ct

Avo

ne

(2:3.8)

Substitution of these perturbation expansions into.the derived governing
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equations (and the corresponding boundéry conditions) yields, on equating
coefficients of like powers of - T (or'fr) in the usual method, a system
of ordinary linear differential equations. Thus the difficulty due to
the complication of the non-linearity at the interface is removed. The
perturbation functions ®,\ s ®: s €n and En are then determined from
the resulting equations.

Investigation of the coupled partial differential equations with
the perturbation expansions will reveal that the first perturbation
functions to have a dependency on }A are QQ$, QD:‘and E;;. Hence; the

expansions can be written as: -
Bt ) = ®olt) + BT + BulBT +
+@5(DTH + O G T + @ (T ). - -

(2.3.9)
YT ) = ®FF) + BT ()T 4
+ @I T - ®IEFNT> -
4 O DT« @ T
- | C(2.3.10)
Ei(}&i1:) - €, +« €,Th 4 é;gﬂ: + €i315§5 +
‘*’quI}i)Tii + 4&;(/4)'tjbt-r~- .

(2.3.11)

and finally,

B () = LA TS + G T+

: (2.3.12)
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Unfortunately the boundary condition at the 1nterface 1ntroduces a
complex1ty into the normal per-turbatlon procedure. To 111ustrate 'thlS
problem we con81der the boundary condltlon at the interface in the solid
region. Direct substitution of the perturbation expansion (2.3.9) into
the boundary condition

O(E+THE +That.. .., u,T) =
(2.3.13)

results in,

®o(€o+‘d"’£(+ .. ') + T:“@.(Go'tt"‘é.* -) +;.=
- (2.3.14)

| Obviously, the terms.of O(’CQ‘) cannot be immediately equate'd since T
appéars both implicitly and explicitly. This then necessitates releasing
T ffom the arguments of the perturbation functions. Utilizing the method
of Van Dyke [27], tﬁe perturbation function is expanded as a Taylor series
about f = Eo' So, expanding ®(.€ ,}A,'C) about .{ = EO, it is found
that at ? =
@(€, 10, T) = @(Co JJ2,T) +
$(TaE + Tt - - ) ®'(Eo, 1, T) +

L’. 2 7
+ é'. (TE +T&+- . )@ (Eo,)u:c)f

(2.3.15)

where 7 denotes differentiation with respect to 7 « Now, substitution of
the per-turbation‘ series (2.3.9) for @(Eo‘)g;'r;) in the above equation,

gives an équation in which T appears only explicitly. Thus,
[ ® (&) f.‘lf"@.(Eo). + a4 ’C%@,(Eo,),).+ . ] +
+(‘p"*€. +TCa + - °'°)[®;(€o> + 'r,"t®:(£°) + .- .] +

+ (Pe rThs Y [Ee) @ ] 4

21
4+ - = |

(2.3.16)
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Slmllarly the boundary conditions which 1nclude the terms ?b@ ® g
L4 :?_F‘ and o at the interface have R~ released from their arg:ments ¥
and, ?n this way, terms of order 'T:k may be collected since T now appears,
as required only explicitly. |

Because of the spacial derivatives occurring in the latent heat
condition (2.2.31), the perturbation equations and their boundary
conditions become more and more complex with incre‘asing exponent of T .
It is noteworthy that these complications (and others) would be removed

if the fur:ther approximations proposed by Sparrow et al. in [13-] and [11;1

were invoked.

2.4 Determination of Perturbation Functions

Applying the perturbation procedure described in the last section
to the governing equations and their corresponding Boundary conditions,
the perturbation functions can now be determined. Accordingly, the

systems of ordinary linear differential equations can be written as follows:

Zeroth Order

Collecting terms of order T.°, that is 0(1), the zeroth order
“ [ * ) .
perturbation functions @, 8, and E_ are governed by the equations
which are now given,

For the solid region 0 ¥ < Eo’®° satisfies .

‘(_1_-_1_0 -+ sz._-_@o = o
0(_;3- - d3 (2.4.1)

which is subject to the boundary conditions,

®o (O) > 0O

and . (2.4.2)
Do (€)= |
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' * * .
For the liquid region Eo £ <00, @ satisfies
- )@;

O L 27%d®. - o
dz#’- d"{ﬁ' . (2.4.3)

which is subject to the boundary conditions, .
* g_g) = o
@0 A“
and (2.4.4)

@ (=0) = |

The perturbation function Eo is given by the interface equation,

T d®, ¥ [ A3
2B6e = [ 17 ] T owl T |
d.} e, ol o . (2.4.5)
N

‘s

First Order
. b “
Collecting terms of order T*, the perturbation functions ®, . ®,

and E. are determined by the equations:-

1

For the solid region, @, satisfies

d® + 27d® - 2@, = 4dO.
s XA d.} [ &4 (2.4.6)

subject to,
@®. (o) = O

and (2.4.7)

(@l + El d_{@o ] ‘
d‘¥ '{cﬁo

-’
For the liquid region, ®, satisfies

o

Lo |, 27d® _ 20f = 4 d®] -
Ou*" d-{* ‘ a-%c (2.4.8)



and

The perturbation function E, is determined by

g‘ = @q -— 250€| @o’
hQ [d{ | It |l

x| e® - 2eg dad
1t Xe dFT

Second Order )

Terms of order U give the following set of equations:

For the solid region, le satisfies

LD, +27d®, ~u®. = 57dD, - L d®,
iF & Z  dag

subject to the boundary conditions,
(ZI%L(Cf) = O

and

[: ®. + ffnﬁffgh *; (& - E;néll) qLQ@k-l = O

a3 T e,

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)
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: »
For the liquid regicn, ®.‘satisfies
R
@ 23dBL - u® = 2T d®. + 4 d®:
o o 43" a3
(2.4.13)
subject to the boundary conditions,
ot d® « (B -eg)dE] 20
N Xooo X ) dF”
z 'IGO
| X
and (2.4.14)

®s (0 =

The interface eqﬁation determines E2.

bpen = | 9B - AL D+ (4 -3}
Ay o d-}

roaneydn.] - p| 480 265 00l
+ 2E0€E ) Eﬁg? :l . ¥ [ NEL }QL ciﬁi’
4

(48 -36T +2EZEV - Z-EoE:.) o,
T *
NS A e uas

Third Order
— ’s.. .

On collecting terms of order “U” (or equivalently T ), the
perturbation functlon @, is introduced from the flow field govern.mg
equaj:mn - Firstly, however', the thlrd order perturbatlon functlons for

the thermal fields are given.

For the solid region, ®5 satisfies the equation,

d®s +23d®s —e®3 = 63d® +33d®, + 4 d®,

w——

5" ax - I3 d3 X

(2.4.16)
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which is subject to the conditions

. @)= ©

= , ' (2.4.17)
' + €d®. + (G -6GENI®, +
[@! | eﬂ E.Iriz 2 .) z_‘_s-,
+(E3 +2-E:“‘ 2€E.EE2 + Q_E.oze_? - _L_,LE?') C‘;Q_@_)o = O
. 3 2 1o W4 e

* _
For the li_guid region, ®3 satisfies the equation

L&, +27dBT — @3 =

d3** A
| LT YR, +8T I, + LoD
d3* dzt 47 (2.4.18)

which is subject to,

@F + € ds +&_E:! ~ £ofd 1O
[ . N a3 AN = dz+ ‘

+(53 + 2.6, -2606Ea + 2EIET —LED d_@:]

A* \2 3 3N 3R | Azt
§te%
Al
= O
and , | ‘ ' (2.4‘..19) .
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E; can be determined from the interface equation

E. = [&® — 266d®. + (ue -4
oe s [on d1

—2€o€a + 265 €, ) d®, + (8E<E, + QEE,

- d3
 RE\Es + hE - 266 ~ RELET + LEEE —%53 &) 91&%%
. ]
=Y d@; ~ 266 @ +(LL_E_. ~ LE - 2EeEa
, CL§‘k | JXFa c[z‘f A o Py

+ :LEi;Ei:‘) <iCB§r + (ngidEh +—§gE:o6§b - i:Eaei + E{Eé’

X a3 I Y
*
-—:Lgffgb -Sggéféc + uii.EZEEz - Q- E;gsa ‘) QEEP:‘]
)&% )671 )(M; Es )\'z Cj;q {o= §e
. P
(2.4.20)

Finally, the flow function for IE, is given by the partial differential

" equation, '
*F; + 7-} aq'-_. ;_ai‘_?s = 8Ka (1— 1) 5_@:
3¢ B 3T B ow )
(2.4.21)

whlch is subject to the boundary conditions

@,(%,p) = AE () =BT — o of { - Eo
a.{* . EzPL . b

(2.4,22)

and .
0E(Fp) — 0 w V—mw
o3

(2.4.23)
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A standard method of obtaining a solution to this type of partial
differential equation is to assume that the variables are separable.
Thus Ez can be simplified by employing the separable variable as follows::

£, = 8Ra (1=, T (T4)

(2.4.24)

Hence the equation is reduced to a fourth order ordinary differential

equation in which, it should be remembered, ®, is dependent on {*only.

Thus @‘, s;tisfies,
.+ *
By + 2T Es LE: - d®.

- 2.
43 B 4T R SR & ¢ (2.4.25)

and is subject to the boundary conditions,

€, = dE =o ot $'= Eo
a_-gt A%

(2.4.26)

and

(2.4,27)

Fourfh Order

For the lower orders (ng3) ®,\ and ®: have been dependent solely
on § and {. respectively-and E has been a constant. Tﬁat is, they have
been independent of the polar angle © (ppr= cos® ). However, on calculating
the order T-z equatlons, the first dependency on }A of these’ perturbatlon
functions is introduced. In partlcular, a term which governs the

convective motion in the liquid thermal field is introduced. The equation

for the liquid region is,



< 4] -

¥

L2170 - @0 = 327 d@F + 167 4O}

——

[ a3 az*

£

I®

'{*

»

g7 Y@L « 4d®T 4 20Cs . d®?
A3¥ A3 o dTF

. (2.4.28)

Substituting (2.4.24) into the term on the right hand side which contains
* ' ' ‘
qi;’ it is found that this term becomes,

~32& T, . d®, . L0
cl3® (2.4.29)

Since this is the only term containing }4, the following separable

variables are employed.

| ®°—(-€;P) = ®W(7) + }*.@u({) (2.4.30)
@:(‘{t p) = @i(?) + }*&: (?} (2.4.31)

and
Eq.{},«) = Eu- -+ },«Ew (2.4.32)
Sub;titution into the fourth order thermal equations for the solid
and liquid regions, together with their boundary conditions and alsO';he
interféce equation, gives twb sysfems'of diffefential.equationé. These
are the single bar and the double bar systems which are denoted by -

= ]
and respectively.



Fourth Order Single Bar System

—

The so0lid thermal function ,@,_,.satisfies the equétion,

C_i_z_@u- + 2% d.__@q. - ‘3@;,‘_ = 3i73d_@o ‘
LR d3 . - d3

+6Pd® +37dB@a + 4 A,
d3 A% Pk (2.4.33)

which is subject to the boundary conditions,

—

®« (0) = ©

and - ' (2.4.34)"

[®u~ + Eid@®: + (Ea-EoEl)d®a +
- % | L d3

4.(£3+1£.‘-7.£.3 —z&aé;'+3§e3e?)0@. N

| d-¢
o+ (LEEY ~ 260661 + IR El* — SEVEL —EolY +Ey
| 6
+ GEG — 3EEt +263E6 —~ &lat ) dB) = o
3 3 d_s
| et

The liquid tﬁefmal function @:_ satisfies
— 3 A
2B 278 -S®Y = 2% ds
aL'{"’" gy - o X
+6TTI®Y + €37d®T  + - dB; o
A3+ L3* o3¢ (2.4.35)

subject to the boundary conditionms,
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+(L_—:_3 + 260 - 26} - 2666 2l ) iy
L E6 ) o

X » S S PEL
Ep - 26867 + WEED 4 8 GEM - SE€E. - E.E 4
p D A N A P
| | .
+hEE. -BRES +26]€€ - 6367)‘25@*'} = O
St N S N *
an@ | (2.4.36)
®. () = o

The interface equation which determines Eﬁ is

= . Td@®. 2E.E, d6D, + - gg*
l10gE, = | &¥« _ 1 @D, LE - S€,
B ‘jd; Lo W4 (

~2efa + 2E0E0) @ + (BEE — 10E1Ea + B2EL

43 | s
FUEs = 2606y —REELD + GEIEE - LEIED) A,
, 3 d

+ (16E2E, - I0E,E, —%ée:,’ + BOELE2E, - 3u€ et

+5SSE" + QEla - SEL + 46 — 2EE, + 126
6 .

3 : 2
CILEEET + 2E26r - 16E.E.E. +WESE €3 +FEE

- L+E§:éi:€51 + EE‘E:*EZT.) E&g?o
3 d3
| 7=6o
— xg ot®4 ~ 2E.€ d@-,, + (UE. ~SE”
| dy’ M d3t Ao A

—26ef. + 2606\ dDY o (R&E - I0EEa
N 23 A3 PO P2

32.Eo€¢ + WEa - 2663 —9€o€a -+ L}-E'QE,E_.;
N PPN a



+ L6 — 2EE, + 1267 —~16E3ET + 26267 1266

)\'a. ) }\‘3 )\’a. XB >\q_

3N

—lbEE e, + UESEEy +RE36ET —UWEsEies) 9®e

X R A+ PN

Fourth Order Double Bar System

. . L
The governing equation for ®q. in the solid region is,

I8 +2td® -8B = ©
43" Xt

which is subject to the boundary conditions,
®, (o) = o

and _ -
[@wﬂpﬂ,c%] = o

For the liquid, @: satisfies the equation,

LB, . 2787 - 3@T = -32R Ey A@S

T

- subject to the boundary conditions

{‘Q‘-D:—ra-@c' = O
Na A |

}*:G—_g

L A%

- and . @: foo)= (@)

A%t

(2.4.37)

(2.4.38)

(2.4.39)

(2.4.40)

(2.4,41)



- 45 =

The doub_ie bar interface equation for fu is,

{ B, - lao—-é‘r d®o } -
; =€o

o7 oy
—i‘x[i“;’: - ZEj\f“ ‘ﬁ’i ]
: = TV
= 'lO@ €, (2.4.42)

: , : . |

Finally the perturbation function ‘I‘.,.(‘ ) }J) which is also given by
: o | ,

collecting terms O(T ), satisfies the equation,

' %itfiu. “+ i-z*'EEigEg - .Eh é{t_EEu -
. aq"“ a-{’k" | 9 az*l

3R (- ,ue} A®" —16Rali- }»)3 oA ®¢
A - d3?

(2.4.43)

which is subject to the boundary conditions,

and | . ' (2.4.44)

and also

| EFE* B | O (2.4.45)



- 4g -
Similarly to equation (2.4.21), the method of separation of variables

is used, where

Bu(t, ) = ERali—y) Tu(¥")

(2.4.46)

This expression is. substituted, together with (2.4.24), into the equation
(2.l+.4_3) and the boundary copditions (2.4.44) and (2.4.45)., Hence the
fourth order ordinary differential equation for :‘-f,'_ is
]

s + 3T 2P

&, 230 e b E - dB®" _27'd®l
't + ks
it B A3t 7 A3 - Jd3* a3

(2.4.47)

and the boundary conditions are, noting that from (2.4.26) 5‘2; =0

. —
at {‘.‘: 7“:. . _— a‘{‘
| &, =o©
= LT
(.’"_L‘ku- + & ng__s = O 015*’ €o (2.4.48)
d-s%r ,\ -{*’- I\“‘
and Oﬂ“ -2 O 74"‘"’ oD (2.4.49)
d“i’! A,
Fifth Order .

In the fifth order thermal liquid equation there are an additional
three terms which control the convective motion. This equation is 3
> g - o : - e s
A®y + 277 9®s - o®y = ou ;* N

2%+ S-S
| | 2Ry
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_,325*2'0(@:' .‘.lé';aol.@f + 8B + 4T

i A3t A%+ X
+2.'a@-» @: i Z'b‘kz d®* + %.i a@s d@o
o M a;A PEANEN- TG &
(2.4,50)

Substituting (2.4.24) and (2.4.46) for 4-3 and q‘." respectively, these

three terms become

—-32u k&, d®Y - 32 %w,o@r
TL EX

(2.4.51)

Employing the same technique used for the fourth order equations,

'y ‘ M
the functions @g s @5- and Es(}»\) can be written as,

BHp) = B (D) + 54({) | (2.4.52)
@:(Y‘;/A)? s (3% + px @:(T*) (2.4.53)
and Es {)A) - E; *rpgg | (2.4,54)

Agaln, as a consequence of these variables, there are two systems of

equations - the single bar and the double bar,
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Fifth Order Single Bar

For ®$ » the thermal solid equation is

3 - — ) Pl 3
d®s + 27d®s — 10®s = 64T d®. 4+ 327d®,

cl%* . d3 d.3 3
Fl6TA®D, + B3 By + 4 ABD,
o3 a3 L% (2.4.55)

subject to the conditions
®g (0) =0

and : ' (2.4.56)

[ 55 + E @¢ + (E'z ‘EOEu") Ci@3 + (E3 1.1&:" -

g | d3
‘ ‘..‘BE? - 2ok €Eq + 2-_6—3.6-?) d____@; + (Eq.“‘ Q—éoé::‘
Y 3 a3 |
“1E . + Q€L — €Eo€d 4 LEEs —AEnElr - %eoe?,
2 |

yac2ee, - &j_e;.‘“) c,ég_?. + (Es + Q€€ - LETE,S
D

_ged + bUEl +2ET —6EE +BEie + hEC
1S :

€€ Eu — DEoLafay +UWED - %E:'G_? + %Eoe?ea_

B . ' 3
4 OEE €y ~RELETE, + AE2ETEY + QEES" ~£§éo€?a1

f;‘l,Eo‘.’Ef~§>_H=‘3£7)d®, = 0
s 5 o3 3:5;,' -
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The equation for the liquid which governs the thermal function ®g* C-{'.)

is,

— - 3 »
d_@ 2';*01@? ..lo@‘s'r = 6u3t d@o +Z>’L'i*ql_®,

{*z _ (.i_‘:{" | ‘i* LA
L1677 A®Y £ D, + LA,
o3’ 93" d.i* O (2.4.87)

which is subject to the conditions

[@: v £ dB®F + (E} —E-;é»z)?_(..@.: +

+\ & +Z_€_‘:1 -%Eu — 2E.€.€6a +1Eo€\.)°}_§_9: +
'S N 3)\3 N S d‘it

+ _E,B' +L\..EO€.| -"16"& —Q-q Ebé.| eoe-n +((..€_E_-,_+
)\9\. )\"‘* )\'74‘; 2 X’V‘L x?"a. )\Sl,

~ L6y —BEoly + AESETE. - B0y | B
)@ﬁ ) 3 )Q‘z )sz :})ck; OL‘*

Es +36£ -LEG -3€F « ggg._.‘_ 42— GEED 4
*» R X By R X
+ QEoEila + LEiEs —DEobiEu — BESETEL 4 AEZENE: 4
X N A* P\ N
2

~AEefafy + UL ~ IGESE + gg&_@_ +UEEE +
X XX 2N

4 2E2er —uE3ed +268e) - LEEN\ dB, | = o
N K3 )\6 S )\"l h )\(, ' a_%'k
M
and | ) | (2.4.58)
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The interface equation which determines the perturbation function 'fi's is,

@Es = [O_l'@s et dB, + (46— 6B 2eaEs +

oLy o3
+25°z@-'2) 0}_@3 + (8&6 ~ 2662 + U0 Eold + UE, +
A3 3 '
- 2Eo€3 —BEL, + U4Es €. - e} ) d®. + (1et+
3 \ % ) T

S REE; —2MET +I6ETE, +BBELEE, +RETET + TEEy +
- bED +UEs -EeEw + AT -ILETED - asa:e,'* + 26565 +

AbEoCiE, +UEIEEs ~ WEsErEs + 2Ed d®. +
3 d:i ,

+ (.sz E3€, + 3ELlE; —126€u -~ 200 B +1Sp LY +
' 3 3

~ 106EL! +S2ETE +3eeeel - 63cie - L EREE, +

3 3
+2L €365 +lbEIE, -—_q%eée-:. + zé ClEr - WESETES
= ! -

_lb E3EY — 126afy + 1l +8Eo€3 - AELEs — 32E3E 4
——%EDE: + 24 E €. + Wl an.t ,—’Slﬁg'e_‘é,‘_ "lé&cé..é;;*-
+ue3el€q + L€2Er€n — LESC €T + 2y E3EE, +

+- léEo ) d@o] ' +
| df Ji.e.
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_Xz[o@;" — €0 d@u. -+ (u_g_, -6E +
" A d3 A A

— MEo€a + AEZET 2B 4 [ BEl - 1266 4
g A d-3* ,\‘a N

+U0 €efy” + UEa —AEo€s —BEoLT + hE36 € +

B e A AR NE N
~y €367 ) B ¢ [I6EF — €6 -24ET 4 [6EE +
3 X | dy? N A N A
v3LEENE + BESEL + CRo€a — - 66 + 4es - iEJéw +
X X* S X xr
+126° —1bESES ~ISEREY 22 €Y — lbEegiEa +
X PP X A’

it i aeter) 48l (ng
X A° 3 A AZ* N

+36E0E26: — 126, - 200 GE! + ISB G

)\qh : N 3 _)-\:'-;1 3 _—)-\?(1.
0666} 452636 + L6 - 6BEIES léuéo&&
2 }\l'/q. ‘ ;\q A )\QI 3 >\7(1_ AW"
+3u Eo 6’ + 1666 — L 6Ie’ + B Erele, - 4
3 X BRR T PR

~16 €36 - 126a2Bs + UEL + REEx -2E.Es
3 e = S TR

~2326:6 - 9E€a + UEo 5.362 -+ D-Ll-Exéz + 4 8EL)
Na PGS ' )\qh. )\ - Xf—;z
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- 326068 - l6ebén  x LEEEL  —4Ee €]

N A" ; A3 Aa
PUEEE + (GEE ) dBT
A?t,, )\Q" d.; *
A
Al (2.4.59)

Fifth Order Double Bar System

==
For the solid region, @) gsatisfies the equation,

dB; +23dB;, - 10®; = A®,

2 2.4.6
oLy - d* .3 (2:4-60)
subject to the boundary conditions,
®s(0)= O
and (2.4.61)

| ""@’ + & d@q— + §d®' *‘(Es "3£°'-‘-'Z-'+ d®°} =0
[ Bt L% | )Cﬁ e

For the liquid region, @:’satisfies the equation,

By L 270d®F 1@ = ud@) - gk TE, dBY

g ol¥" a3* a3
-3Zx4 @q d@: - 3221 T.:E.:s d‘.@r
L3t o%*

(2.4.62)

subject to the boundary conditionms, -

[@: ~sa2 & o) . (_E_e i 2&5_..3)&@3] - o

N a3t A» d3t » &) ..
| TR
and | (2.4,63)

B (5 = o
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The interface equation which determines ES is,

d®s - 26 dD - ALE, A® +

o E - A&
12 3Rs ry 43 | ,d{

+ (4Ee + LEEE, ~ Q665 -~ 12EE, ) d®, | +

_X}j[@t — 2EoE d:_@.-: .—D-EQE:.. d®(* -+
R A Ty
l%Ehy 4-‘§€§L§AGL~ - ;LGZOGif - léMEAEZq_ ____;*
XK S N S A

(2.4.64)

The fifth order equation and boundary conditions governing the flow
field is not determined because Tg does not feature in any of the other
equations.

It can be clearly seen that, as the exponent of “C increases, the
equations of the thermal fields, their boundary conditions and the
interfgce.equations become lengthy and complicated, This is mainly due to
the resolution of the perturbation procedure by the Van Dyke method.

Before these equations for the sphere are solved, the equations
governing the thermal fields and convective motion in a cylinder are also

derived, since both of these problems are solved using the same techniques.
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Chagter 3

The Effects of Natural Convection During Solidification in a

Liquid Cylinder
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3.1 The Derivation of the Governing Equations

-

The derivatiqn of the equations governing the heat and méss transfer
of a liquid undergoing the process of phase-change in a cylinder is
similar to that in the case of the sphere. Nevertheless, although the
equations for the sphere and the cylinder could be established at the same
time by a general derivation, due to some subtle differences in the
analyseé, the equationslare derivedvseparately in order to highlight these
differences.

The three assumptions made on page 18 are again assumed and figure 1
is also the same, although the frame of reference is, of course, polar
cylindrical and not a spherical coordinate system. Yet, due to the
similarity between these two coordinate systems, the gengralised form of
the heat balance equation - see appendix A - gives the same equation as

(2.1.18). Thus, at the interface C(r,t), which is represented by

Cle,t) = F=relpat) (3.1.1)

the Stefan condition is
K é:f'—fl:t‘)a;_r.é_@ - K* B'T*.,_
or = op op d¢

"(i“ “) gz:r*: 2{[} = | l_ Ez!k
—,5 I 0 At (3.1.2)

Although this equation is the same heat balance equation as derived for
the‘éphere, it is included throughout this cylindrical problem in order

to complete the model.

In the solid region, the equation for the heat gonduction is
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k{.'_é.(rb_’_l‘) « (=S [u- 2352_5_1"1 _ 'é_._r
‘ or (3.1.3)

where T(r,pa,t) is the temperature distribution and k is the thermal

diffusivity. This heat equation is subject to the boundary conditions,

—.I-(a ,}A) b) | = .-]-0
and | | | . (3.1.4)

TCh(p k), i) =T

At this stage the Boussinesq approximation is invoked on the equations
of motion and heat in the liquid. This gives the following equations for
the energy, continuity and momentum.

The thermal energy equation is,

s (5 ) (=gt 2 2 [otar]

= §_T* + V¢ a:_r* - (|:B2)‘i ?:r*.\f,.

(3.1.5)
and the equation of continuity is, o
4 ° L
18 (rv) - (,:2}3..-@_ ) = o (3.1.6)
for ~ A .

" and finally the Navier-Stokes equation is,

SERSMER INTEY

¢ ¥ (T xV A
. ¢ (L% Txv) T = (3.1.7)
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In these equations v '= (v "Via ) is the veloecity in the fluid, T (r, p,t)
the liquid temperature distribution, p the pressure and Q» the den81ty
of the fluid.

As in the case of the sphere, the force exerted due to gravity is,

(*3)* , 90~ ), o) | (3.1.8)

. .
and the equation of state, where Q% is the density of the liquid at

fusion temperature and OX is the coefficient of cubical expansion,.is
. :
Qe [' ~ (T TF)] | (3.1.9)

Substitution of these two equations into the equation (3.1.7), and

taklng the curl, ellmlnates the pressure term to give

¥x 3y - y_x[ny,_xy]
ot

= -"9* SZK SZ X v + Tz_x [l -'CXC1.4:T;B:IEE

(3.1.10)

The stream function & (r, ps,t), on examination of the continuity

equation, is given as

: 1 5
s v Op
Substitution of (3.1.11) into (3.1.10) followed by some‘further analysis |

yields,

o*Dt & = Ay + (l_#‘\‘* ST y) +
ot - F a((’/)\)

+¢35<('- 2)a {P@I* - 3T
Ey;. Qr

(3.1.12)
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where the operator Di is defined by

D= 12 (O a-L223 Ta- )5 -
' r‘bf( br) M -)é 5}»[ | 574 (3.1.13)

and the Jacobian is defined by (2.1.14).
The boundary conditions for the equations in the 1liquid domain are

(i) initially,

T7=T |
ot t=0, 0srsa

(3.1.14)
Y =0
(ii) at the interface,
T= T
' ot f'=.(' «
$= O =o | Flpt), tr0 (3.1.15)
or

At this point it is worth comparing these equations with the

corresponding equations in Chapter 2. Comparison of (3.1.11) with (2.1.10)

shows that the velocity of the liquid in the cylinder can be expected to
be less at the centre than it would be in the sphere. The operator D 2

. _ p
has different definitions for the two geometries, yet it is not surprising

to note that the boundary conditions for both problems are identical.

3,2 Dimensionless and Neumann Variables

The dimensionless variables (2.2.1) and (2.2.2) are introduced for
the solid region and 1iquid region respectively ‘together with the
dimensionless parameter A. However, due to the differing analyses, the

dimensionless stream function is now given as



(3.2.1)
And so, on employing these variables the governing equations are
transformed to become:
for the solid region the heat conduction equation,

,'_Q_(@@) ~ (1= [u- ﬂ‘*b@} Y
ROR R‘ O Opr at’ (3.2.2)

which is subiect to the boundary conditions
. ®0,mT) =0
and ' (3.2.3)

@ (Relp T, puT') =

for the liquid region the heat conduction and convection equation,

—('-—ZP‘)‘&E(E!®*3 = @_@)"’, (3.2.4)
(R 1) ot »

which is subject to the boundary conditions

« :
® (R, pr,0) =1 |
and ' (3.2.5)

®*(QF,/J0-'C) = O

The equation governing the convective motion is

'D:"f. - L{ ?_’D:RIE +(l_—_—£~‘)'§ (T, D T)
ot R d (R, 1)

(3.2.6)
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where U satisfies the boundary conditions

- o ot Bf

— (3.2.7)

,(J..

T

o

and the initial condition

RE (R, m,0) = o |
ofR , (3.2.8)

The dimensionless numbers Pr and Ra are defined by (2,2,10) and the
operator D; is defined by
: ?
T =L D (RB) “+ (l-_-_#&z [(l- )&
R

- R or|l R r* a/u 3}a] (3.2.9)

The latent heat condition at the interface is

aﬁé ST ® - (i) am 2k
% [aR ?‘eA:)S‘,Aa#]

- ¥ [E_@* = (1=12) 3®" 3K ]
Po) & ?é} Apx 3)/«

(3.2.10)

For the same reasons as those given in section 2.2, the Neumann

‘variables (2.2.17) and (2.2.18) together with the interface variable

E:C%* ﬂf) = (l" f?;

s (3.2,11)
2T

are introduced. The previously established equations now become;for the

solid,
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d [-2t1)a® -(l—&")“‘uté_[' )@
at[ a%l (-27>%) ol ' 3

=1 -;m"ﬁ)[m@ _21® }

ot 0
? A (3.2.12)
‘This equation must satisfy the boundary conditions
®@(o,p, )= O
and ) : (3.2,13)
®(E,Pa.c)= |
: W
In the 1liquid region, ® is governed by the conduction-convection
equation
a
EL.*l:(]" .i ) E’GD ] + (| iyﬁ k.E>((E Qb )
ot 2%

2T, 1)

- (=) 4Tt 3 {“-)*‘)"‘é@*}
(- a‘t"‘i’) Opr o Ju

= (1- :g*)g ,g_? - 2% '—8-% 3 (3.2.14)

subject to the conditions,

®*(oo,/u.o) =
and o ‘ . R ""(3.2.15) |
GZ) (7%’ ,)L1|'T; ) o
and also
” .
32129 (C1%‘}),Ci> 25(§D (0 /,g Ci)
23%* ' 3/‘" . _ (3.2.16)
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The equation which governs the flow field is,

R A

17 T 2t* o1
— (1= 2y 2(F, Dy &)
(t-2T*53") 20T L)
+ ﬁz(l—;;‘)"{ A 2D + 1 3@
(3.2.17)

L 4

(1-2T"57) 300 2T 37

" where (Z satisfies the boundary conditions,

oW < o ot =&

2R e | A

and (3.2.18)
P (0, 14,0) = o |
Yo

The operator D%*- is now defined by

Do = L 3. - ! ' 9
oyt AT (-2t EY) 33 +
| +'(l—u‘)(" 9 [(l-/ﬁ)"*a. ]
A5 N
(1-20%%") o I (3.2.19)

whilst the Jacobian is again defined by (2.2.28).

Finally the latent heat condition at the interface is

-+

[ | 2 — 2T (- )t d® A€ ]
i€

at™ 2% (1 -aT™3) Op Y
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8[_!_ A®* _ ot (1- )b a®* o€

.’L‘l:*k" 33* _ (1- 'l:"b“-{*) a}A a/“

2e a( eth)
?T

The initial condition on E is,

ff(};.,cf)*= o

3.3 The Perturbation Procedure

(3.2.20)

(3.2.21)

The regular perturbation expansion as used to solve the equations

for the spherical problem are used to solve this cylindrical problem.

Nevertheless, before a summary of these expansions is given - purely for

completeness - the form of the perturbation expansion for the stream

function E must also be resolved.

be written as

BT, T) = En (T T

Suppose that this function can

(3.3.1)

so that, substituting into the equation which governs the convective

»
motion (3.2.14) and expanding for small T, the following equation is

obtained:"
1, EUEETD -
|bt* b?v“

LYy -+ (&, ™M .

9 u.-t‘.' .S‘_z

ha FETTY 3 5 (Tn*")
e R s 0

. @ (L) 9D
EE}':% 2%"

.

“+ o)

+ o(T *"')

(3.3.2)
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Comparing both sides of this equation, it can be seen that again n = 3/2.
Thus the perturbatlon expansmn for the stream functlon is written as

qzn Tt = Z o (3% )Tt

n=3y (3.3.3)

Whilst the form of ,the perturbatioﬁ expansion for q is the same for
both the spherical and cylindrical problems, it is interesting to
comparé equations (3.3.2) and (2.3.6). In particular, the terms on the
right hand side differ by (1—- ‘)L"(l‘z?‘t‘k) , a factor which will
become more .'alpparent later. |

As in the case of the sphere, before all the boundary conditions can
be found at the interface, Van Dyke's method must be employed to release
“C from the argument of each of fhe perturbation functions.

And so, to recapitulate, the expansmns are

@7, M )= @ol1) + T>®, [%) 4.1;@;(1) +
+ T ®,(1) FT®, (W) +T? @, (G0 + - - -

(3;3.4)
(T pzt) = @D + TN (T +
+ ¥ @:('{*) +'C*§'®§ (E‘) +
T LT T @ N

e:(p.’c) = Eo + T*€, + TEa +'1:}*G.3 +
P TUEM[W) + TR 4. ... (20

B ) = 02:.(‘47;431:"% + B AT

(3.3.7)



- B5 -

3.4 Determination of the Perturbétion fﬁnctions-

Substitution of these expansions into the equations governing tge
thermal field in the solid (3.2.12), thé thermal field (3,.2.14) and the
convective motion (3.2.17) in the 1iquid as well as the latent heat
condition at the interface gives the following differential equations on

collectiﬁg terms of like powers of T :

Zeroth Order

Collection of terms 0(1) gives the equation in the solid region

which governs ®,. That is,

§_®°.+ Z%a—@o = O

k3 ’ - (304-1)
2% %
which is subject to the boundary conditions
Qbo(cb =0
and . (3.4.2)
@o (EQ = |

For the léﬂHiQ region, the zeroth order perturbation function must

satisfy the equation,

PO L 230ed - o

!

B.i..z S‘%‘* (3.4.3)
subject %o the boundary conditions,
@: (53) = O
X
and (3.4.4)

® (0) = |

It is not surprising that these equations and the boundary conditions
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are the same as those for .the zeroth order in the‘spherical problem

L 4

Eo is determined by the latent héat condition

TS
A"‘. ’a;* ‘s‘

= | o®@
286 = | 2@-
e [ (3.4.5)
=&

S
N

So, for the zeroth order, the value of Eo obtained is the same for both
the cylinder and the sphere. However, for higher orders it will be seen
that the different geometries will produce differing equations and hence

.different }eSults.

First Order
On equating terms O(tﬁ), the following equations for the first
order perturbation functions @., ®T and El are obtained:

for the solid region the thermal function ®, satisfies

dB 4 27d® - 20, = 2 d®,
d‘{z d..% d‘% (3.4.86)

subject to the boundary conditions

®o(03 =0

and (3.4,7)

,-\-E‘"_{_@p = O
[ ¢a> o 3= €o

for the liquid region, Q@T satisfies the equation

LB 23 ® - 20Y= 2d@? |
daf*z CL?* d"i* e -(:.3.4.8)

subject to the boundary conditions
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I @: + E' d@o = O'
A oﬁ‘*

2 Eo
i»

and

® () = o

In the interface equation El satisfies

WBE = D, _ 266 d
¢ X_dff | dfi]:
. 3=te

_y[ d®! _ ags AL®?
| o3 N <i7*

+&°

Second Ofder

The collection of terms of order T gives the equations:

For the solid region, ®‘_satisfies,

d2®, + 23d®2 —L®, = L4LTd®; + 2&@,
L3> dX A3 a3

subject to the boundary conditions

(o) =0

and

[®,_ + & ou%D. + (Ea— e.oe?) ou@o]
LY

and for the liguid region, &satisfies,

(3.4.9)

(3.4.10)

(3.4,.11)

(3.4.12)

L®F + 27D —u®Y - H_*d_@* + 2d®)

X ozt a3t

a3

(3.4,13)
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subject to the boundary conditions

[@:+&9¢_®? + (& —eal)dBS | Lo
A A3t A% N\ AT 3

and (3.4.14)

*
2 (c8) = ©
Finally, for this order, the interface equation which determines E is,

6BEa = [o_t_@z - LRfu D, <+ (ze,-sgf‘

dz a3
+ E°E| -—-Q.EQE;_) d@o _X’zz d@z -—2an\ d®*
9% e A3t N ax
+(2.E_\ -3E0 + € - 266, d®?
A A oA LA o3t (3.4.15)
TS
Are

Third Order

. : . ;
As with the sphere, equating terms of order T-% (or equivalently'f?‘)

gives the equation which determines the flow field perturbatlon function
By (6 1) .

For the solid region the thermal function ®3 satisfies the equation,

LB + 27d®; -6®, = 83 Ad®, -+43d®, + 2.cled,
45" d3* d3 d3 o

‘(3.uL16)

and is subject to the boundary conditions,

@3(03% o
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and

. (3.4.17)
‘[ D, + & Qgggz + (Ea — Eo€) qggpl +
BT a1
(E?.“&E\S +?;E:.E? -+ €3 - ZEQE\Q'L) d‘.@.)" ] = O
3 > LAt J3se
¥ .
For the liquid region, @3 satisfies the equation
do! « 27183 —e®) = TV dA) o
d-{u. d_‘{* d“{*t
W@ + 2d@%
At* At (3.4.18)

~ subject to the conditions,

Y L B d®F « (‘éz-e:_o_er oL®,*
[®3 A AR* Moo X ) gze T

a 3 3 _a
+ E} - ﬁ:g}_ + gg__ + Q_,_E_\___Ea — AEeE Ea (__@t = O
2 2 )3 - A:. 3 A )\'s oq*
. zl:é _
A
and (3.4.19)

@) (6> = ©

E, is determined by the interface equation

8653 = @3 — QELE, d___@a -+ (D.E, - L‘_E“' +
1 &% d3

—2E.E2 + AESE" ) d®, + (L&-EoE( — ULl — AEoEy +
| a3 | |

+gEo£? - &K€L —~ %Egﬁ? + A€2 + LLE:Q-Ez) d_—_@o}
) 0‘3 }-:éa

-;XY CL.__@: —~ AE=& @:— ~+ (?:.E.‘ —~ LE} +
1 ol%* _ A ATy A A
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IS I oy

L4

+8EED — BCabn _qa;-"e:. + A2+ WEGE\ dODS
)@&> . )éh. 3 )}a, (NP, \) EI%B*

(3.4.20)

The function EES is governed by the fourth order partial differential

equation,

¢ 1+ 2170% - 29 % - gRa(1E Y A®

3 %
a‘tw. ! ;* " ’a? b.{ (3.4.21)
and is subject to the conditions,
Pa( &5 0) = a‘Fs(‘é" L) = 5@3( o
}J. (3.4.22)
and
3‘~E3 (—f* }A\ —_— (& 0b -?*
b%* (3.4.23)

Utilising the method of separation of variables, this equation can
be simplified by writing the flow field perturbation function q3 as,

T (TP ) = 8Rali-p)® E4(3*)

(3.4.24)

Substitution of (3.4.24) into (3.4.21) and the conditions (3.4.22) and
(3.4.23) gives the fourth order ordinary differential equation,

4T, + 27 E - _adT, - yer
oL'{""_' 7 43 90‘-?“ ATt (3.4.25)

+ 2ofa + 2ECE ) ot@. + (WELI — LESET —~2E£4
PN )(vz . ;Kﬁa

.{'(t

&

A"
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which is subject to the boundary conditions,

- == . ' *
'@3=d'_g3 = o a‘t_'f’-iﬁ

¥
oL‘{ , ~ (3.4.26)
and_
= ¥
Al o 0 T 0
. | .
oL} (3.4.27)

Fourth Order

The dependency of the perturbation functions ®“‘, @:_ and El& on pa
becomes apparent in the equations obtained from the terms of order S .
Investigation of the fourth order thermal field equation for the liquid
reveals the inclusion of a tefm,

21— ) 3T | oL@
a/UL oF* (3.4.28)

Substitution of (3.4.24) into (3.4.28) gives,

ok, ® oUB.
3 st J-

(3.4,29)

It is interesting at this point to éompare this term with (2.u.295.
Again, the separation of variables technique is employed and the

following variables are introduced:

®u(?) + " &54.“) o (3;4.30)“
B (1) + e B ()

d

) ®“' (.%I}A)

i

s (T,1)

(3.4,31)
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and Ea () = By + n Eu | (3.1.32)

Substitution of these variables into the fourth order equations
produces two Systems of diffepential equations; the single bar and the
double bar. These are denoted, as in the case of the sphere, by —

’and = respectively.

Fourth Order Single Bar System

The solid thermal function ®“_satisfies the equation,

Clﬁﬁw -‘ :L? 9£§§%- -3 aé)q = ‘&;13»q£gp° +

A d¥
+ 8{ d@g + u'-i d@; -+ 2 0L®3 .
A3 | K7 a3 (3.4,33)

which is subject to the boundary conditions,
D, () = ©
and ) (3.4,34)

By + Ed®  + [E.—Fed) d®. +
o3 - a3

(E$'+ Eq -clé?"&EoEdEz *‘%ﬁi: ) O@?l.+
“ (aepe. v I9EEY - AEEEs - G - £ 4

6
FQEE + Eu - LE.E] + 2AEZE 6, - E36Y ) dD,
3 3 | d3
T 3:&°

= O
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. - S
The 119g1d thermal function ®‘_ satisfies the equation,

LD + 2T%ABS - 3D = 16T awd
oz’ o3 oyt

+$h ol@, + “—7*0(@1 + QO!®3
o7 ¢ aT* olg¥ (3.4.35)

subject to the boundary conditions,

I E‘:‘  + d.®3 -+ (_E_‘z - an:. ) d@; -+

>\ oY Na N L3
—e(é.»a.—ze — JEEEx +2 FIEd\ dt
AN » A A3 3 A* a-.:ﬁ*
+ (Rl + BELY - 26661 -SEIE, — €e€l 4
NG b )\ Na )'\-7,:‘ ;'\-;‘,1_
4G v By — L EET « 20, ~ R Y |
G RG] New A e [ o ‘s’*
| W\
and . e (3.4.36
® (e)=0

fu is determined by the interface equation

|O(5—éu, =[ i_._@)“_ — AEE,; C;?g, “ {Z.E. "‘5€-¢ - 25061
1

+A6ET ) d®a + (Lol — 066 +3zc;£4 +Q€q -25:6,

X
B +UWESEE ~ L%ES’E, ) A®, . (FEae —I0EEs
| | a3 -
~22E° + 3066, - 3UEIEY + STEX 4 Lol ~ SE
3 ~ 2 G

1263 — Do + UE — BESE, + AEDET — BEoEils
—PL(—E;E(&B + L(-E:E(S -—.lé-Eo?’a;LE.'z_ +3§ Eo“.E :‘-) Ql;_@o] ~+
A7 .
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_ Ry [ d@* _. 26061 A @®F +(¢_2_c_£. ~ BEF - Do +

d-% s J{,—f-* A. e A
-rzg_o_g,)ot_@:' + [hfoEr —0E,Ea + 326L7 + 2Ba <+
X ] d3* Xn  Xb X A
- 2E.E63 -t(-_E_g_Ef' 4-(&-61_3_6_1.6:-: - Q-_EEE«S d@f + [ e e

(\S'la (\‘9(') Nﬁz ;\i’_l- Ji* ;\5_
~l0E€z — 28 E7 + 30EE3, - 34 EIET +55 EF

T 3% i 3&:\’<‘+sxi
+ kEo€a _SE3 « 23 — 2EE

)e | )e Ti; )éEh+ 4~l{f§( - ﬁ?fi;éic
+a<-:.,e:, - BEofiEr + UESEE 3

X o TR v hes
~WESETE + 2Edel ) d@y

x 33 ) dgs
| Q*c%“ (3.4.37)

Fourth Order Double Bar System

Lz o = .
The fourth order functions ®,, QD* and E, satisfy the following
equations: '

for the solid region,

CiaéiiF + :Lz:c%j§>q. - i?5§i+-=

A3 I3

(3.4.38)

subject to the boundary conditionms,

Eibqr(c;)<= O
and _ = . (3.4.39)

—_— = O
.43
{=€o.

and for the liquid region,

LBY . 274D —TD! = - LAY, de
'd.'ﬁ"'" - a3 * 0% d—%:

(3.4.40)
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subject to the boundary conditions

»

T
XAt loa.e,
v A
and Q-—S "'(oo) =0 | (3.4.41)
W .
The interface equation which determines %L is,
10Q&, = [ d®, - 266, o.L_@Q] .
: oLt | L lz-e
-3y [d@: T o&.@‘!l
— f |
oLy’ ¥ d ot .
o PN 4.

. o
On equating terms of order T in the flow field equation, the

perturbation function qa* is found to be governed by the equation,

3T, .20 8% - K IC . (1 da?
AT 0 Q3+ P o%** a:fi*

]

(3.4.u43)

The boundary conditions are,

and ' ' ' . (3.1.44)
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and also
'a_'vk ' .
-{ (3.4,45)

Introducing the separable variables
2t | T )
@ (0 ) = BRa(1—p)s F, (T4
' . | (3.4.48)

ané again gtilising (3.4.24), the fourth order differential equation

(3.4.43) becomes,

&P+ 2Pl - LG - da)]
Lt e oLy B ooLE? oﬁ* (3.4.47)

subject to the conditions

Eu(%) = O

| d*ﬁ:’w_ + & 4':_@3 = O (3.4.48)
d:i* f\ d‘.?*:. S*-:.Go
and dP, =0 co T3 | (3.4.49)

R
where the second boundary condition in (3.4.26) has been used to simplify

the first boundary condition.in (3.4.44),

Fifth Order' |
Investigation of the thermal field equation for the liquid reveals

the presence of the terms
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(1= )™ (aaifcs LB + kTT O D) . 23T, I
4 a# o7 I AT o d%*)

(3.u.so)'

Substituting (3.4.24) and (3.4.46) into these terms giQes,

_g%(l—q_-?sq@? +R—‘5“§3°‘_@: «2G, da, M
d3* | oLg¥ ol 3* (3.4.51)

and sovthé,fifth order perturbation functions can be written as,

@s('f,p) = ®s(3) + fa E%S (z) (3.4,52)
O (M= BIE +uBTEF)
and (L) = €5 + E;/.,g (3.4.54)

‘Substitution of these variables together with (3.u:30) - (3.4.32) gives

the single and double bar systems of differential equations.

Fifth Order Single Bar System

For the solid region Cgkysatisfies the equation,

B2®s +2F0l®s - l0o®s = 323“d®D, +
LT* ¥ k¥

+63o® + €37 Da + kT Dy + 2.0BD
di oF di a3

(3.4,55)



- 78 -

subject to the boundary conditions

@s (o) = ©
and - (3.4.586)
['@,, v+ Rd®, + E-CEN)d®y + (B3 + € +
| af A% |
-BE? —2EE6 +2E6€N) d®.  + (B + 266" o
S 8 K

T + JEE” ~ GEl + 266, - 2E.LE; - whk!

2626 - eses ) a®.  + (@, + hElel - 6E76r
| 3 a3

—(&-Eou' + ._‘;Q—Ef +€: "BE(E: + UWELE(E, +2AE,Ex3 +

'S 4
- 256 E, - AeCals * K& —_85636? +Lbecie,
266 6 -~ UEET G +AESETEY -+ E2CH o
—-’u_-_.é:."" CE + 2EFMES ~ 61 &3 _@ = o
2 ‘ s 'S '%
' i:é-

: — e '
For the liquid region @5 satisfies the equation,

d?@: +3...{*0('_-f®: —-IOE;“ = 323*“4_@:
T a7t - ag

HeTUDY + BTTIDY « 4TAEY . 248,
, . dg% : d'{* ' dg"“ a3¥

(3.4.57)
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subject to the conditions

[@‘: £ dBY + (62 - 68 ) d®T
A dTr A AL

(B + £ ~9ED - 2€obikn « AEHED ) dD2 4
X N 3N IS 3 X AT*

+| & + Q667 ~TEE + q Eof® - Be€a +2E£2 +
: }\% Mita Xh )\‘lh )’\n‘ Xﬁ,

9-%__5_\53 —!—_}-_Eo&'s + Q_E:'__(-_?;E.z -— E.o d®| +
Na 3 N PN 3’\“,2 d‘.i*

+('_E_, « LESET - GEIEs - WES + 6hES +E1 -CAED
A® X A* NS axoRn D

+hEo€i€a + AEES —J%E.Ew - b Eaf3 +lg= £ +
O A3 AW e IS

~BESET +U6G.ElEa + 2EEE7 - UE.EEr + DESETES

T )\« 3 )\’ | N e BN

LERer - B33 + agdes —eue:efjd@): e

;\?— 3 A‘ IS (\.1 15 6 d?’
AN
Al
and ' (3.4.58)

RV) = o

The interface equation which determines the perturbation function E. &s, °
5 :

2pEs = [ i__@,' - 2B dB  + (28,-e€2
| % a3

—2EoE2 + MEe EY ) d@z -+ (q.e;,e. - 12662 -éuoeoe,%
| oA 3
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+ 262 - 2661 -WFoET + LEIE Ea - %ES*&? ) d®. +
d3

+ (IbE'.’ —~126\E3 — 1267 + BESE, +IREENE, +4EIED +
"‘H'('Eoﬁ-; .;(,Q;'_ + A& "'D.Eo-‘é.q. + U-E:" —%E}EJ -‘SEI}E:. +

+2E3 6; ~VEEE +UESEE, - UESE G, +3-_e‘:et*) d®, +

3 d3
+ (1bEXE, + 26Eo€rEa —I126,8, - ZREES ~+ 19 Eo&s™ +
R | Y 3
106 EES « SZEDE. + BLELEED - BUETE, - 64 EIERE,
> | ‘ 3
+34 E3E7 + BEsEs - L ESE’ + BESEPE. —-UEIETEr +
) 2 IS 3

_%eze:* — (263 +2Ey + UEaEy — 2685 —I6EIE] +.

—UELEL + BEIEr 4+ [GELT, —I6ESEE - REE,63 +
+LESEEy + WE3EaEr - LESEEY + 12656Te, +

+2E3E, ) d_@,} —~ )375[ A®S -
B B N Ay
- 2GE: ADY  + ( 26 - &7 — 26ofa + 2606 | AB
Na O3 A A A X ] axy

b Lobs — (2662 + UDEE] + 2Ba - 2Eofa
)\3/,_ )\‘l‘a. 3 Al e XS};

_LEofe +hElEE - LEE | d®l 4
)\Vz A'?'a K3 X*fa . d—{*
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¢ [ BES 12683 —126] + RE2E, + BBELTEL -+
A Ao X N

4 GE3E} + affa —bfn 4261 - 26.€u + 46 -RE3E
' )\‘-I- : N )\3 A N A Al

~ISEREY + 26361 —QEoEEa + WESEEr — UEZEIE,
x N S X N
> >\6

d—s* N ‘X"& - N

~RBEL «TAEEY — 0L EET « 526762 +TLELED

——

S :i:{'\. = ')_\Q',; 3 s P\ S >\Q(;
—3uEis — Loy 336, +34 6367+ gede. +
~l Eo€) + TERIETE. -~ LESETE, —-BEIES +
S }\"‘., 3 >\'3’1 -}—\“—;1. 3 X"o.
~126a63 +2E4 + LEoBy - 2Eebs —IGESET +
le.‘ )\Vz )\(.«, A'?f; X’z
—UELE] + BEEr +I6EET - IGEREE. - BELE;
X;;" NG PR 5\7:7; A"
*'W%?E\Eq- 4 LPE_;_%:.G.3 - wﬁ}_@_.ﬁt -+ lm;_g(‘&'i -+
O = X o
+8 e €’
N 7%= €,

'}\T«. . (3.4.59)

*.%E_é";ﬁ'f’) B+ (:u_a_.f_a. 4 BLELNE - 26

P
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Fifth Order Double Bar System

For the solld region, ®g satlsfles the equatlon,

d.‘®g - Z?o(@s ~1O®s = ZO_‘:__®Q.
oL’{" d.'? d.7 (3.4,60)

subject to the boundary conditions,

Ss (o) =
and (3.4.61)
By + € d®, + &, d®, « (& -lﬁoe.&)d@o -6
a3 a3 Ay

For‘ the liquid region, ®: satisfies the equation, Qgeo

LB « 274D - 108 = 24D +

d3* A d3*
ok g, ot__@: - 22k T d@! - 1RE, do?

d'.? d-{* d"f* (3.4.62)

subject to the boundary conditions,

[&: «EABY + &, dBY 4 [E 2662, ) st |- o
A OLY* A ayt a3 A dz*

6

(3.4.63) Xe.

and

@s (00) = © "

~
-

The interface equation which determines f:s is,
| 4B - 2emdB. -2eR B . (oF 4
A3 s X d.3
—‘Z.Eozs —(ZE.‘:E;. -+ “E:E(Eq. > 4—_@0} -+
a
Stk
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- Xy | 4B - 266 dB®E - 268 dEt .

AT Xs ozt Aot
. e Nz QN Azt
A | A g e,
o (\lf‘-

(3.4.64)

It can be seen that these derived equations are of the same form as
the corresponding equations for the spherical problem. Hence, the method
of solution for either case uses the same techniques and these are

considered in the next chapter.
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Chagfer y

Solutions and Results for Solidification Problems
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4.1 Analytical Solutions

The equations which were obtained in the two previous chapters and
which governvtﬁe thermal field functions can all be solved analytically,
see Stead [?0]. Howgver, from a practical viewpoint this procedure
turns ouf to be limited and rather laborious. Indeed the computation of
' the analytical solutions for. the fixed values of the dimensionless
parameters J ,@. s A ,.Pr and Ra ;'Ls just as awkward as their derivation.
Mo?eover, the numerical evaluation of such solutions is tedious and liable
to errors. - Even when analytical solutions are sought for large @ they
are found to be unsuitable for computation. Nevertheless, in this
section the zeroth and first order equations are solved analytically since
the solutions of the lower orders are not as complex as those for the
higher orders.. These solutions can then be used to check the accuracy of
the numerical computations. |

The general structure of all the equations governing the thermai
fields 69“ and QQ:.iS now discussed. Each of these equations can be
written eitﬁer as

HS ®al0) = £, (3)

: (4.1.1)
” RO - £17)

» (4.1.2)
where the operator on the left hand side of each of these equations is
defined by

o= e 2%ds - 2a-
?L'{ _ d'? (4.1.3)

I+ can be readily shown that one solution to the homogeneous differeﬁkia”
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equation
L4

He ®(0 = ©

(4.1.4)
is given by ‘ .

| (4.1.5)

; where the repeated integrals are defined by

0 .
ede T = UHQFFO_.D:. dx |, A=n2.. (4.1.8)
3 ,
and : A ‘
Leafc T = ey

(4.1.7)

Another obvious solution to this differential equatién is of the form,

N
®,\(7¢) = et (“.E) :
(4.1.8)
However, this second solution can also Be determined in the form of

a Hermite type polynomial of degree n. Accordingly, a general solution

- to the differential equation (4.1.1) is,

®a(D) = Mtedel + Ba| T v an-07" o
U-

(n- -Xn-zw-z)i“‘“} + b (1)

(4.1.9)

where An and Bn are constants to be determined by the boundary conditions
and pn(f ? is the particular integral. Similarly, the solution to the

diffefential equation for the liquid region (4.1.2) is,
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-

BL) = AT Vet T BY 1 gy
+ (n-—_ 0((__\__-_-_?_.%’\"3) Ytn-“’ -+ 'P: (7*)
32 |

(4.1,10)

Analytical Solutions for the Sphere

The sblution of the zeroth order thermal perturbation equation in
the solid region is, :
®lD) = erfe? - exk (-3)
exfe b — evfe (- 60) | (4.1.11)

or, expressed more simply,

®au) = QJ’gE
ot €,

(4.1.12)

For the liquid region the zeroth order thermal perturbation function is

© given as,
pH(T) = ottt — ext( )
erfc] o
P (4.1.13)

(4.1.14)

termi . .
In order to determine the value of Eo these functions are substituted
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into thf zeroth order interface equation (2.4.5) fo give the transcendental

equation,

_€2 % -&s3

J?f§3fi. = e -
ofl.  \A® mec(g_c)

(4.1.15)
E, is then obtained using an iterative procedure.

First Order Solution

] L] . *
Using the solutioens for ®o and @, in the first order thermal

equations, it is found that for the solid region, equation (2.4.6) becomes
L] . ’

LB + 23d® -2®, = B8 ¥
2 d. —'—'_""“'.
e g I ot &, (4.1.16)

subject to the boundary conditions

Blo)= o
- and | | (4.1.17)

®|(Eb)= - 2Eo e."&’

Jrt ofé,

Whilst for the liquid region, the first order equation (2.4.8) becomes
. ’

Otz®* + Zf*d@ Z@* -%
[] - -— ?
oL3*? ATt A ~ |
: f T orf E_o) 0 (4.1.18)

Aa

subject to the conditions

®‘f(§_«=)-_--2.€.e,%—’ |
A L1 A Gﬂ43:€§9\>
. ls,

(4.1.19)

and CED:* (‘*ﬁ) - o
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The solutions for these first order equations are, for the solid,

® ()= 2T |ofcbo - oteT - £ &
1) 34 Eo Jm
(4.1.20)
and, for the liquid,'
®(M=2|(-&)e um - Ve (&
F‘t U"‘ ﬁo lU#C()
| >\s (4.1.21)

Substituting these functions into the first order interface equation

is found to satisfy the transcendental equation

amee - €5 [ 26 walie2en |

(2.4.10), E,

Enex? o
-—Ke, '\(l ) 2Eo - U
A | Neerte Q___o) lQ)"?o(_@g) (4.1.22)
N A

Solving for El the equation can be simplified to become,

E|=

(4.1.23)
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Analytical Solutions for the Cylinder |

Since the generél structure of the thermal field equations for the
cylinder are of the same form as the corresponding equations for the
sphere, then fhe same methods for the analytical, as well as the
numerical solutions,Aare used. In fact, the zeroth order equations,
boundary conditions and interfaée equation, which are identical,
obviously give thé same solutions. However, with increasing exponent of

T, the differences soon become apparent.

First Order Solutions

Substitution of (4.1.12) and (4.1.14) into the first order thermal
equations (3.4.6) and (3.4.8) and their respective boundary conditions
(3.4.7) and (3.4.9) yields, for the solid,

LB, + 27dB, - 20, = & eb
a7 oy Jn et g, (4.1.24)

subject to

® (o) =

" and (4.1.25)

€o
@ -+ Z.Eitﬁb = O
r ofb
and for the liquid,
™

Lo « 2770 - 205 = & o °
'i“ 3" [ @—fc( (4.1,26)
. | ,\>

subject to ' ’ €2
F+ RE R = O
4 A exfefBe
o) 13t
and * . ‘e (4.1.27)
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The solutions of these equations are, for the solid,

8“'7"

® (%) = % ok, —ertet -26 & .
U#ﬁp | , i
(4,1.28)

and for the 1iquid,.
X { [ = 28) it e f - STt )
ﬂ LQ)4%L(£E;). QJFQ;(Eég)

! 4.1.29
A» )
Substitution of these functions into the first order interface equation

(3.4.10) gives the following:

3

2@€ = g:‘e" i Eo - E (1 +2Es5)
fn Bortés ,
&
-¥er (3-8 [2&, - ! ]
AT
T )\Ufc(;\-a tU'«?c.(,;\EeQ (4.1.30)

EOQ/_E:- - X&_QXD [Eo

o Zr— "
et & " o
2RB + (!-\-ZE:)Q,.E: - Ii%[_@o?- _ | ]
| /\J— b €Eo . A
FrE-erf A a)-?c,_\k m\ec(%
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Comparison of this equation with (4.1.23) will re§eal the fact that

c _ .8
2El - El ’ - (4,1.32)

c s
where El and El

for the cylinder and sphere respectively,

are the values of El obtained from the interface equations

4,2 Numerical Solutions

To simplify the computer implementation of the established equations
a final change of variable is made. For the solid region, the following

variable is introduced,
1L
o

and hence the solutions are to be found over the interval 0¢ cisl.

(4.2.1)

For the liquid region, the new variable employed is,

q": ‘{* -— l

(Bo¢Xs) (5.2.2)

and the range of integration is Osq*suo . However, integrating the
éystem of equations over the interval [o;u], by the method described
later, and integrating the same system over the interval [0,6], it is
" found that there is good agreement (5 decimal Places) between the two
sets of reéults. The reason is due to the exponential decay of the
solutions which can be seen from (4.1.10). Thus the value of the finite
upper bound used in the calculation of the liquid equations is 5,

The systems of differential equations are now solved numerically
with the aid of a computer using the Runge-Kutta-Merson method. This
methéd is made available by the Numerical Algorithm Group (NAG) iibrary.
The reasons for using this numerical scheme are threefold and are éiVen

as follows:

(i) the method is self-starting, requiring only the initial values of
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the dependent variables;

(ii) the evaluation of the truncation error enables the step width to
be made as large as possible, or adjusts it automatically as the
solution proceeds with the aim of keeping the error within a
vpredetermined tolerance at each step;

(iii) the estimate of this truncation error is asymptotically correct
for linear equations.

With regard to the first reason, it should be noted that the
systems of equations which have been derived are all boundary value
problems and not, as this method requires, initial value problems. To
alleviate this problem the method of complementary functions is employed
(see appendix B) which transforms these systems of equations into

initial value problems.

Calculation of En

To determine the value of the nth order perturbation function E_ an
n
jterative procedure is used. Firstly, the system of n second order
' differential equations for -the solid and liquid regions, which can be

written in the general form

(4.2.3)

d..‘:...®"' = £ (, ®'od—@°r”‘ &'wﬁ
d.x* ax b dx

b, °)'. L X ) ‘“

are rewritten as the 2n first order differential system,

é&jil = :jés

ax | (4.2.4)
d_s'il'ﬂ. = ‘Fi (10307_‘3\;. .o ...3“.3:‘)
doe :

where 3..:‘ is defined as
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\. | - due
o= B¢ and Y= 44 (4.2.5)

9 axc
The independent variable is either q or q%, depending on which region is
being considered. A similar method is used for solving the fourth order

differential equation governing the flow field functions.
(o)

n

An initial estimate E is made for En and is used to solve the

solid and liquid equations by the method described earlier. The results
. , » ) .
obtained from these equations, namely %"and 371: , are substituted into
the corresponding interface equation which can be written in the form,
ﬁﬂ = Q(\(E“B
. (‘+|2|6)
and the following function is calculated,
¢s (s
BLED) = €47 - ®RLE)
(4.2.7)

where §‘\(Ex>) = 0, Ex being the exact value of En.

The solid and liquid equations are then integrated again but the

(o)

n

_,’§;££e£°’) = £E~° - QLe€A)

value of Bn isnow ©EF , where 0€ € < 1. The function

(4.2.8)

is calculated and the new value of En is obtained from

Ef‘\) = a':\o) E.E,(&n‘”) - '§,\(€€n(°’)
_§,\(€f-'°)3~ B (€€~ (4.2.9)

This scheme is terminated at the mth iteration by predetermined
t.oler'ances which are imposed on
(v (v
| Be&n™ — BE™|
‘ (4.2.10)
(val) (w) l
and ‘En - €En

(4.2.11)
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4.3 Comparison of Solutions

In order to compare the numerical solutions obtained by the method
described in section 4.2 with the analytical solutions obtained from
section 4.1, the case when { = 0.1, 9: 3.0, I\ = 0.1, Ra = 8000 and
Pr = 13.% is investigated. Using an iterative procedure on (4.1.15)
and the subsequent result for Bo in (4.1,23), it is found that the

analytical solution for the sphere gives,

E
o

0.328791

and

E

1 0.084834

On the other hand, solving the thermal field and interface equations
: o) (m) -
numerically, it is calculated that (where ,én - En klo 6)
E

0.328790
(o]

and £
1l

Obviously the agreement between these two sets of results is extremely

0.08483y4

good and, from (4.1,32) it can be seen that similar agreement would be

obtained for the cylinder.

4.4 Results and Discussion

The numerical results for the depth of solidification and the
temperature and velocity distributions can now be computed as a function
of the dimensionless parameters ¥ , 3 » As Ra and Pr for a specified
liquid. Because of the assumptions made in the formulation of the model,
some care must be exercised in interpreting these results. For instance, :
in the case of water if the initial temperature is above the inversion
temperature the actual natural convective flow will be quite different

from that predicted by the present model. The numerical study by
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Watson [28] on the natural convective motion of water in a rectangular
enclosure shéws‘how a flaw lies ‘with the Bogssinesq approximation.

When this approximation is invoked, see pages 20 and 56,‘it greatly
simplifies the analysis but, unfortunately, variations in fluid properties
cannot, in reality, always be neglected. Watson cites, for example, how
the viscosity of water varies by about 35% over the temperature range

0 to lOoc, whilst the maximﬁm density occurs at 3.98%.

Another complication which arises as a direct result of ignoring
the density changes is, of course, the change of volume, As solidification
occurs the volume of the solidified region can, in the case of steel,
contract and create a small gap, or void, between thg solid region and
the surface éf the container. A thgrmal resistance is thus introduced
between the surface and solid and this can affect the rest of the
solidification process. Also, depending on the width of the shrinkage -
gap and the level of the temperature, the heat transfer across this
gap can be by a combination of radiation and conduction or, alternatively
5y radiation and convection. In other words, the condition of constant
_temperature which is normally applied must be replaced by one of
radiative heat transfe..

Alterﬁatively, in the case of water, the volume can expand on
solidification and thus creates extra stress within the container,
particularly in a radial direction. Consider, for example, water in a
copper pipe; as the temperature drops and the water freezes and expands,
the radial stress against the pipe wall increases the pressure within
the ice and thus lowers the meiting ﬁoint; . - o

The shrinkage or expansion-of a substance on solidification can be
an important factor in the design of moulds. The structure of ingot

moulds for the British Steel Corporation and the sﬁape of ice-lolly
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moulds in the frozen food industry are f@o of many examples,

Due to the similarities of tﬁe geometfies of the sphere and
cylinder, it is probably more instructive to give the numerical resulfs
obtained fromitheir respective analyses in the same results section. In
both cases it will be seen from the subsequent results that the shape of
the solidification front is as pfedicted in section 1.3. That is, in
. general, the natural convective flow rises in the form of a jet along the
axis from the south pole (® =¥ ) to the north pole (®= 0) and forms a
forward stagnation point at the north'pole. The flow then returns
downwards (symmetrically about this axis) bathing the inside of the
solidification front. These down flows collide to give a (backward)
stagnation point at the south pole. As the volume of liquid decreases
and loses its sensible heat, the density differences increase leading to
increaéed natural convective velocities.- This form gf 'spin-up'
in the early part of the solidification process initiates the formation
of a cusp at the lower pole. As the solidification and natural convective
ppocesées evolve, the temperature of the.liquid will approach the fusion
temperature and the circulation in the liquid will cease.

For selecting values for the dimensionless parameters to be used in
the numeriéél computation, data is obtained for the metal and alloy
systems, see Chiesa and Guthrie [26] and for latent heat thermal storage
systems, see Sparrow et aL. [lﬁ]. The latter system is examined first
and, as an illustration, the values that the parameters take are as

follows: § = 0.1, 8=3, A= 0.1, Ra = 8000 and Pr = 13.4.

Interfacial Positions

The depth of solidification at any time "C is given by
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E(mT) = z;r,"‘- [Eo -~ TE, +TEs -(-'T:“C-:;' +T By, +‘rf"~€_<;+]

And so, substituting the separable variables (2.4.32) and (2.4.54) for
Eu and E5

interface can be written as:

¥E>()J»o15) = I - €& Lﬁlo1£)

respectively, it is readily seen that the position of the

. or

Riw:T) = &t +ublx)
where
OLD) = | - 20 (6> +THE, + TEa +THEy +T'E, + TP +.. )
and

bty= ZTe(TEw + THEs+. ..)

The equation for R(};,ﬂi) is the equation for the limacon of‘Pascal and’
obviously the present analysis becomes invalid for times when b(T)ga(t),
When this condition does occur the cusp will be located above the centre
of the container; when b(T ) = a(t ) the shape of the interface is a
cardioid.

-Figure'Q displays the position of the transient interface for the
sphere. Initially the interface is located at the surface and its
position ié shown at (dimensionless) time intervals of O.i until the
(formal) small time éxpansions break down. In this case, this occurs
at approximately'1:= 0.8 when the cusp reaches the neighbourhood of the
centre. During the early stages of the solidification process the
1nterface is symmetrical s1nce the heat transfer 1s dominated by
conductlon. As the natural convectlve motion 1ncreases the 1nterface
moves towards the centre at a slightly faster rate at the south pole than
at the north pole. Thus the shape of the interface is deformed into the

aforementioned limacon of Pascal with the cusp forming at the south pole.
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Volume of Liquid

It is interesting to compute the volume of liquid remaining in
the container at any time during the solidification process. Since the
changes in density have been ignored except in the calculation of the

buoyancy force, the volume of liquid in the sphere is,
' Al p R U= E(p00)

Y (D) = -2wo® | R dffd}A
| + o

The graph in figure 3 displays the volume of li:quid remaining in
the sphere for the present case. The broke;'l line in this graph is the
volume.remaining when the convection, and its effects, are ignored. The
results obtained from this graph show very good agreement with those
ébtained from the analytical solution of Stewartson and Waechter [_8] and
the numerical solution of Tao[u'j. It can also be seen from this graph
that the natural convective motion of the liquid slows down the
solidification process. This is not surprising since the convection is

governed, in part, by the initial temperature of the liquid; the higher

this temperature is, the greater the convective effects.

‘Stpreamlines and Velocity Distributions

The stream function can be calculated as a function of the (physical)
dimensionless variables R and © for any time T . Curves of constant §
are then obtained by interpolation to yield the streamlines for the matural
convectlve motion. Flgure 4 dlsplays the curves when -'I = 0.1, 0.7, 1.3
and 2. 0 at T = 0.1; the smaller magnitude of 'II being the outer
streamline.

The dimensionless velocities of the liquid are also given in this
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diagram., Since the shape of the interface ié initially symmefrical, the
magnitude of the velocities is glso symmetrical. The'&ire;tion of tﬁese
velocities ié as described earlier, witﬁlthe velocity reaching a
maximum at the centre of the sphere. As the central column of the flow
reaches the north pole its veiécity decreases. ‘it then flows down the
inside of the solidification front and its velocity increases as it
nears © = 1{

A later stage in the SOIidification.proceés is given in figure 5.
The streamlipés shéwn in this diaéram are q; = 0.1, 0.7 and 1.5,
Alfhough the velocities shown in this diagram appear to be symmetrical,
the velocity at the south ﬁole is in fact greater than that at the north
polé; this is because of the non-symmetrical shape of the interface due
to éoﬁvectionf It can also be seen from this diagram that the effect of
thermal 'spin—gp' has increased the magnitudes of the velocities, leading

to a greater degree of non-uniform heat transfer at the interface.

Temperature Distribution

The dimensionless temperature distribution along the radius is
given in figure 6 for the solid and liquid regions. The two diagrams
given describe the distributiéns at the times T = 0.1 and T = 0.4 and
at various polar angles ® =-o, '1.; and W the broken lines indicate the
position of the interféce at these various angles. Clearly in the early
stages of solidification, the temperature profiles are symmetrical.
However, as time proceeds these profiles Qary bétween the poies and,
in par{icular; in the regioné adjacent to the intefface; Thislvariation
is more noticeaﬁle in the solid region. .Also it should be noted that
there ié a drop in the dimensionless liquid temperature, as expected,

below the initial tempefatupe at the centre of the circle when T = 0.4,
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Heat Transfer

The dimensignless Nusselt numberfé Nu = g-rTT(’_I‘_:-a—’_I'—) at the solid and .
R

liquid interface and also at the surface of the sphere are displayed in
figure 7; n measures the outward normal to a sﬁrface; in the liquid T = Tl'
TR = '1‘F and in the solid T = TF and TR = To' For both of the phases the
Nusselt numbers are given at the polar angles & = 0, Ia and T,
Initially there is very little convection and the heat transfer
between the twg phaées is dominated by conduction. As time passes, and
the convection becomes more prominent, there is a marked variation with
® of the heat transfer from the liquid to the interface. There is less
transfer of heat at the south pole than the.north; at ® = 0 there appears
to be a minimum and then the heat transfer increases as the final time
of solidification is approached. The variation in the heat transfer with

polar angle © from the interface to the solid and from the solid to the

surface is seen to be very small.

'gzlinder

The results and the diagrams obtained for the effects of natural
convection during solidification in a cylinder are very similar to those
obtained for the sphere. Due to the differences in geometric shape, the
effect of the convection is not so apparent. For example, the shape of
the solidification fronts in figure 8, although limacons of Pascal, do
not have such a noticeable cusp forming at the south pole compared with
the fronts at corresponding times in figure 2. This means that, in this
casé, the analysis does ﬁot break down until “T is approximately'l.l.

Figure 9 gives the volume of the liquid remaining at any timé

with and without the convective effects. This volume is given by,
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,*,.\ R=1- e/,a.‘l:)
e - 22| [ Roopestag,

+*\ o

Once again thé results obtained from the broken line show good agreement
~ with other works which ignore convection,

. The streamlines and velocify distributions for the dimensionless
times T = 0.1 and T= 0.4 are given in figures 10 and 11 respectively,
The curves of constant q_; are obtained for the same values as used in
the sphere. It can be seen that whilst.smaller values of QE appear to
give similar streamlines, larger values give streamlines closer to the
centre for the sphere than for the cylinder. The velocities in the
cylinder are smaller than those in the sphere. Although near to the
interface this does not seem apparent, it should be noted that the
velocities in both diagrams are not ngcéssarily given at the same positions
for the same times. The thermal spin-up is again seen to occur as the
solidification proceeds.

The diagrams in figure 12 showing fhe temperature distributions are
veryvmuch the same as the corresponding diagrams in figure 6. However,
at time T = 0.4 the variétions in the distributions, particularly in the
solid region, are less pronounced at the different polar angles. Of
course, the position of the solidification front is not as far advanced
in the case of‘the cylinder and this should be remembered when comparing
these results wifh the sphere. The drop in the liquid temperature at the
centre of the cylinder 1s also less pronounced than that in the sphere.

The graph of the dimensionless Nusselt number against time is given
in figure 13. Comparing the diagram with figuqe 7, it can be seen that
the heat transfer céefficients at the surface of the containers and at

the interface in the solid region are similar. However, at the interface
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in the 1iquid region the variations between the poles are less for the

cylinder than for the sphere.

Another set of results has been computed from data which was used
by Chiesa and Guthrie [26]. The solidification of lead in a sphere and

a cylinder-is studied, where

c, = 161 _ L = 23340
-7 -
VY = 2.28 x 10 u=1.1ux10'*
' -5 ' % -
k = 9.5 x 10°° X = 24.3 x 1078

Tﬁe fusion. temperature T, of lead is 327.3%C. The diameter of the
container to be examined is 26mm and it is assumed that the initial
teﬁperature T, of the liquid lead is 335°C and the reduced temperature
To is 300°C. Hence, the dimensionless parameters are,

¥ z0.5_ 8=5.3, A=0.39, Ra=z 8717 and Pr = 0.02

It is,perhaps, of more interest to present some of the results
in dimensional terms although, for 'simplicity, the graphs are displayed
with non-dimensional variables.

The shape of the solidification fronts for the sphere and the
cylinder aré"seen in figures 14 and 20 respectively. In both cases the
fronts are given at time intervals of 1.78 seconds up to‘a final time
(the time at which this analysis breaks down) of 16 seconds for the
sphere and 17.8 seconds for,the cylinder,

Th; volume of 1liquid remaining in either container is given as a
function of time in figures 15 and 21, .

The stréamlines and veiocity diétribufiéﬁs a£e diéblayea in
figures 16 and 17 for the sphere and figures 22 and 23 for the cylinder.
These results are given at times 1.78 seconds and 7.12 seconds and the

velocities are given in metres/second.



- 104 -

‘The. temperature distributions are probably the most interesting l
of the set of results. Pigure 18 displays these dist?ibutions for thé
sphere at times 1.78 seconds and 7.12 seconds; figure.Qu displays the
distributions for the cylinder. In both of these figures it is seen
that there is a considerable reduction in the temperature of the liquid
. after 7.12 ééconds: At this time the depth of solidification in the
sphere-is 4.8mm and 5.5mm at - ®= 0 and 1{ respectively and the temperature
at the centre is 329.8°C, only 2.5°C above the fusion temperature. At
the éame time in the cylinder, the depth of solidification varies between
4.4mm at the north pole and 4.8mm at the soﬁth polé; the temperature
at the centre is 332.300, slightly higher than the temperature in the
sphere. Although the analysis breaks down for both geometriesibefore
total solidification, it is seen from the graphs that the temperature'
of the liquid would soon approach ‘the fusion temperature and the circulation
of the liquid in the container would cease.

Figures 19 and 25 show the dimepsionless heat transfer coefticients
for the sphere and cylinder.

The depth of solidification is now studied for various values of
the'p.arameters 3, @ and Ra. Before these are given it should be
remembered thaf for any specified liquid these parametefs dépend on the
values taken by To’ Tl and TF’ the ambient, initial and fusion temperatures.
Although these parameters are’ interrelated, the combutation of the depth
of solidification is still made, for while the actual values of the
parameters may not relate to any partipular_liquid, the size or order
may do éo. |

Table 1 displays the depth of solidification for the sphere with
the values ¥ = 0.1, § = 5.0, A= 0.1, Ra = 8000 and Pr = 13.4 at

angular'intervals of 30° over the dimensionless time 0.1(0.1)1.0 .



- 105 -

The solidification depth is also given when Tl = TF and there is no
convection., Hence the Rayleigh number Ra is zero and so too is the
thermal head ¥ . Table 2 displays similar results for the cylinder.

Tables 3 and 4 give the solidification depths for the sphere and
cylinder for various values of the parameters as time passes until
T =1.0 or éhe analysis breaks down. From these results it is seen
that the speed of the moving solidification front increases for small
Stefan numper. The effect bf‘convection on the solidification process
is greatly influenced by the size of the initiai Rayleigh number. This
is to be expected since Ra gives é ﬁeasure of the buoyancy force which
drives the coﬁvective motion. Thus the larger this number, the more
noticeable the effect of convection becomes, leading to a greater
deformation in the front;

In conclusiqn, it is worth mentioning that the British Steel
‘Corporation has shown interest in the results obtained from this work.
This interest arises in connection with the solidification of steel
ingots, a study of which has been made b; Schulze [2&]. Due to the
complications described in chapter 1, this study neglected the effects
. of convection. It is hoped that the analysis and results obtained from
this pfesent work will be useful and help to improve our understanding

of the effects of natural convection during such solidification processes.



ANGLE/TIME

0.1l

0.2

0.4

1.0

0.3 0.5 0.6 0.7 0.8 0.9
0 0.18590 0.27177 0.34093 0.40069 0.u45355 0.50059 0.54227 0.57873 0.60996 0.63582
30 0.i8594  0.27205 0.34174% 0O,40241 O.45668 0.50568 0,54997 0,.58375  0.62509 0.65595
60 0.18607 0.27281 0.3u4394 0.40713 0.46522 0.51959 0.57099 0.61986 0.666u6 0.71095
a0 0.18624 0,27385 - 0,3u4696 0.41357 0.47689 0.53858 0.593871 0.66089 0.72298 0.78607
120 0.18641 0.27u488 0.34996 0.42002 0.48856 0.55758 0,62842 0.70211 0.77947 0.86120
150 0.18653 0.27564 0.35216 0.42474  0,49710 0.57148 = 0.64947 0,73222 0.82083 0,91620
180 0.18658 0.27592 0.35297 0.426u7 0.50023 0.57657 0.6571u4 0.74324 0.83597 0.93633
¥§=Ra=z=o0 0.20783 0.30471 0.38524 0.45843 0.52787 0.5944Y 0.66236 0.72942 0.79726 0.86636
Table 1. Depth of Solidification for the Sphere when %= 0.1, @ = 5.0, A= 0.1, Ra = 8000 and Pr = 13.4
ANGLE/TIME 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0.17897 0.25711 0.31827 0.37010 0.41537 0.45538 0.49079 0.52197 0.54907 0.57216
30 © 0.17899  0.25725 0.31867 0.37096 0.41693 0.45791 0.49363 0.52746 0.55661 0.58219
60 0.17905 0.25763 0.31977 0.37331 0.42119 0.u6484 0.50510 0.54246 0.57721 0.60958
30 0.17914 0.25814 0.32128 0.37653 0.42700 . 0.47431 0.51941 0.56294 0.60536 0.864700
120 0,17922 0.25866 0.32278 0.37974 0.43282 0.48378 0.53372 0,58343 0.63351 0.68442
150 0.17928 0.25904 0.32388 0.38209 0.43708 0.49071 0.54420 0.59843 0.65412 0.71182
180 0.17931 0.25918 0.32428 0.38235 0.u43864 0.49324 0.54803 0.60332 0.66166 0.72184
%= Ra =0 0.20056 0.28855 '0.35864 0.41984 0.47563 0.52782 0.57750 0.62537 0.671395 0.71762
Table 2. Depth of Solidification for the Cylinder whem § = 0.1, g: 5.0, )\ = 0.1, Ra-= 8000 and Pr = 13.4
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6 Ra 0.1 0.2 0.3 o.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 o 0.20782 0.30471 = 0.38524  0.45843 0,52787 0.59544  0.66236 0.72942 0.79726 0.86636
80 0 0.18623 0.27383 0.34689 0.41344  0.47666 - 0.53820 0.59913 0.66016 0.72183  0.78457
180| 0.18624 0.27387 0.34701 0.41370 0.47712 0.5389%6 0.60028 0.66181 0.72403 0.78758
5.0 800 | O 0.18620 0.27364 0.34635 0.41228 0O,47456 0.53479 0.58396 0.65276 0.71166 0,77105
1801 0.18627 0.27405 0,34755 0.41486 0,.47922 0,54238 0,60545 0,66921 O,73427 0.80120
0.1 ¢ 0 0.18530 0.27177 0.34093 0.40068 . 0.54355 0.50059 0.54227 0.57873 0.60996 0.63582
180] 0.18658 0.27592 0.35297 0.42647  0.50023 0.57657 0.65714 0.74324 0.83597 0.93633 |
10.0 0 0.13670 0.19762 0.24551 0.28537 0.32098 0.35138 0.37759 0.39975 O.u417%92 0.43203
180f 0.13710 0,20001 0.25242 0,30071 0,3u755 0.39%449 O.44258 O0,49259 0.54513 0,60030
3.0 8000 | O. 0.22825 0.,3373% 0.42756 0.50771 0,58086 0.64834 0,71075 0,76832
1801 0.,22918 0.34302 0.44408 0.54317 0.64518 0.75318 0.869u6 '0,99588
0.5 0 0.13256 0.19071 0.23061 0.25530 0.26u462
180] 0.13511 0.20616 0.27534 0.35087 0.43735
1.0} 5.0 0. 0.09866 0,13933 0.16147 0.16570
180] 0.10216 0.16053 0.22283 0.29675

Table 3. Depth of Solidification for the Sphere for Various Values of the Parameters X.g,%

as a Function of Time when A =0.1 and Pr =

13.4%

- LOT -



‘6 e Ra (V) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 0 0.20056 0.28855 0.35864 0.41984%  0.47563 0.52782 0.57750 0.62537 0.67195 0.71762
g0 0 0.17914 0.25813 0.32125 0.37846 0.42689. O.u7412 O0,51912 0,56254 0.60480 0.64625
180} 0.17914 0.25815 0,32131 0.37660 0.42712 O0.47450 0.51970 0.56335 0,60593 0.64775
5.0 800 | O 0.17912 0.25804  0.32097 0.37588  0.42584  0.47242 0.51655 0.55885  0.59973 0.63952
180} 0.17915 0.25825 0.32158 0.37717 0.42817 0.47620 0.52227 0.56704 0.61099  0.65449
0.1 0 0.17897 0.2571i1 0.31827 0.37010. 0.41537 0.45538 0.49079 0.52197 0.54907 0.57216
180y ©0.17931 0.25918 0.32428 0.38285 0.u3864 0.49324 0.54803 0.603%2 0.66166  0.72184
10.0° 0 0.13303 6.19012 0.23437 0.27157 0.30387 0.33229 0.35738 0.37944 0.39865 0.41509
180} 0.13323 0.19132 0.13787 0.2783%6 0.31720 0.35392 0.38999 O0.42604 0.46253 0.49986
3.0 8000} O 0.21771  0.31437 0.39096 0.45666 0.51479 0.56691 0.61379 0.65586 0.69330 0.72619
180 0©0.21818 0.31721 0.39923 0.47441  0.54699 0.61939 0.69326 0.76980 0.85001 0.93475
0.5 0 0.12684 0.18070 0.21839 0.24725 0.26531 0.27358
180§ 0.12811 0.18837 0.24158 0.29463 0.35087 0.41253
1.0} 5.0 0 0.09399 0.13259 0,15754 0.17126 0.17379
180y 0,09572 0.,1u4304 0.18771 0.32557 0.28980

Table 4. Depth of Solldlflcatlon for the Cylinder for Various Values of the Parameters U , 8., Qo,

as a Function of Time when 1\ = 0.1 and Pr =

13.4

- 80T -



Figure 2. Interfacial Positions for the Sphere
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Figure 3. Volume of Liquid remaining in the Sphere



Figﬁre 4. Streamlines and Dimensionless Velocity

Vector for the Sphere at T = 0.1
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Figure 5. Streamlines and Dimensionless Velocity
Vector for the Sphere at =C = 0.4 .
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Figure 7. Dimensionless Heat Transfer Coefficients for the Sphere at the

Interface and Spherical Surface Locations, © = 0, IT and"TT
a



Figure 8. Interfacial Positions for the Cylinder
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Figure 9. Volume of Liquid remaining in the Cylinder



Figure 10. Streamlines and Dimensionless Velocity

Vector for the Cylinder at X. = 0.1
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Streamlines and Dimensionless Velocity

Vector tor the Cylinder at X =0.4
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Figure 13. Dimensionless Heat Transfer Coefficients for the Cylinder at

the Interface and Cylindrical Surface Locations, 0= o, H and

RE



Figure 14. Interfacial Positions for the Sphere
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Figure 15. Volume of Liquid remaining in the.Sphere
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Figure 16. Streamlines and Velocities (10 m/s)

for the Sphere at t = 1.78 sec.
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Figure 17. Streamlines and Velocities (10 3n/s)

for the Sphere at t = 7.12 sec.
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Figure 20. Interfacial Pdsitions for the Cylinder
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Figure 21. Volume of Liquid remaining in the Cylinder
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Figure 22. Streamlines and Velocities (10 m/s)

for the Cylinder at t = 1.78 sec.



Figure 23. Streamlines and Velocities (10 m/s)

for the Cylinder at t = 7.12 sec.
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Chagfer 5

The Flow of Granular Materials in a Hopper



- 126 -

T

5.1 General Introduction

Understanding the flow of a granular material, particularly in a
hopper, is of-great practical imporfance. Each day eevepal million
tonnes of grain, coal, ores, chemicals and many other bulk solids are
processed and handled using hoppers: Due to the complex nature of
these granular materials, the mathematical modelling of this problem
is extremely complicated and the (steady and transient) flow of the
material through a hopper has never been solved satisfactorily,

The complexities which arise in the modelling of this flow will be
discussed in a later section. Firstly, in order to fully understand the
importance played by the granular flow of a material in industry, it is
) instrpctive to give a practical example,

The example chosen is the pfoblem which has mofivated this invest-
igation and is as follows. The British Steel Corporation at Scunthorpe
has four furnaces which producevsteel. To fire these furnaces coke or
’siﬁter, or a combination of both, is used. The device used to fill the
furnaces with the granular materials and the iron ore is called a bell-top,
a diagram of which can be seen in figure 26.

The meterial is loaded (or charged) into the top of this bell
arraﬁgement. The bell is fhen lowered and the material (charge) slides
out to fall directly, or be deflected by a Strategically placed shieid,
ento the layers of originel burden materials below; the surface of these
layers is called the stockline.

It is the comp051tlon of the burden materlal layers which is of
great 1mportance to BSC. Varying thlS comp031tlon can reduce or increase
both the quallty and quantity of the end product. Also the life cycle of

the interior of the furnace can be reduced, or increased, by the
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distribution of the charging constitueets. The proportions of the eharging
 mixture also depend on the type of ore used and the quality of iron
required. '

Since the chemical reactions 1n31de a blast éurnace are very complex
and not fully understood, BSC were posed with the following problems:
where was the charge finally located on the stockline, and what was the
distribution made by the various charging materials ?

At BS? a one twelfth scale model of a blast furnace was built,
However, it soon became apparent fhat, uniike a fluid, a granular material
cannot be scaled down. This provided difficulties for the experimental
modeller. One difficulty is due to the inability to scale successfully
the 1nd1v1dual granules, their size, shape and density. And so, it was
realised that a mathematical model would have to be constructed. At least
such a model could be used to determine iength and time scales of the
 motion.

' An aim of this thesis is to model.the flow of the granular material
in the earlier part of this problem. That is, to find a theoretical
description of the motion of the material from‘when the bell is initially
" charged untél it is nearly empty. 1In particular, the velocity with which
the material leaves the bell is reduired since it is fundamental in
determining the flight of the charge and hence its subsequent distribution
across the stockline;

. Certain assumptions have been made to help simplify the mathematical
vmodel. Referring to figure 27, it is assumed that the bel} is in the open
position and the part of the bell which is denoted by the broken line is
jgnored.since it can be included at a later stage, Consequently, the
problem ie now essentially one of two-dimensional granular flow in a

wedge shaped hopper. Of course, the original bell.is three-dimensionql
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but due to its axial symmetry and its size, it can be considered two-

dimensional. '
Initially the hoppef is fully charged and the top of the charge is

taken, f?r example, at a radial distance r, from.the origin 0. The outlet

of the hopper is at a radial distance r, and the angle between the sloping

1
wall and the vertital wall is © .
Before this investigation proceeds a review of the literature

currently available on this subject is made.

5.2 Review of Literature on Granular Flow -

In reviewing this literature it becomes immediately apparent that
litfle or no studies have been made on transient flow., Instead it has
been assumed that the flow is steady and so, in theory, the hopper never
empties since the material is replenished at thé top and thus the
boundary at r = r, is constant. .In the present médel being constructed,
this is just not so. There is,in fact, a transient flow as opposed to a
steady flow resulting in the boundary at r = r, moving towards the
orifice r =.rl-

It is also noticeable that the main criterion for these other studies
is the determination of the sfress field. This knowledge.enables
designers to construét hoppers and bunkers which can safely contain
granular materials and, at the same time, prevent the material from
becoming.too densely packed,

In nearly all of the reviewed pabers, as with the present theory,
the granular material being considered is aésumed fo.be'coarse—grained.
Thus the material is said to be cohésionless. Whilst the.problem to be

considered is one of transient flow, it is felt that a study of fhe steady

flow is of interest.
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Using the assumbtion ofvsteady flow, the analysis can be immediately

simplified on two counts.

(1) Athe densit& of the material may be considered as constant{

(2) the case when rz'is near r, does not have to be considered -
since the flow_through the orifice is found to be virtually
independent of the head ithe volume of material above the orifice).

In 1961 Brown [31] applied the minimum energy theorem to a small

‘elementary volume of material in a hopper. He postulated that since

energy was dissipated on the surface of the element by collisions, rotations

and frictional forces then.the sum of the kinetic and potential energies

decreased alqng a streamline. This‘sum reached a minimum at the free—

£all arch which is said to fopm above the orifice, Although the calculated

flow rates were found to be of the correct order, this theory seems to

take no account of the frictional properties of the material or of the Qall.
The first attempt to find the rate of flow using the equation of

motion appears to have been made by Savage [321. Basically these equations

are those of soil mechaﬁics with the‘inertial terms added. Once'again

_the frictional forces at the wall were ignored and Savage introduced the

Mohr-Coulomb Yield criterion. This criterion was shown, by a shear-test

procedure proposed by Jenike [gu], to be

G"@ = (' -+ SMQ’) Ge
(1~ sm@)

(5.2.1)

where sr and Gy are the principal stresses in the r and ® directions .
and Gi is the effective angle of friction. However, Jenike found that

L]
for a cohesionless material the angle @ coincided with the internal

angle of friction @ . The dimensionless velocity u found by Savage at
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the orifice r = r; was given by,

. o ak
w = (k1) | - .‘:‘5) '
0
(R=2) - (_&)“"**) .
r. . .
where k is related to the angle of internal friction by
R= 14+ sma

| — SwQ (5..2.3)

The expression (5.2.2) was found to give flow rates which were greater
than those measured by experiment, This is most probably due to the
neglect of thé wall friction and hence over-simplification of the analysis.
In fact, Savage reported in atlater paper [?3] that this analysis could,
in some circumstances, over-estimate the flow rate by as much as 40% - 100%.
| Jenike [34] and Johaﬁson [?5] have both confributed a great deal to
our understanding of stress fields in hoppers and bunkers. However,
whilst studying steady flow in a hopper, they treated the bulk material as
a rigid solid and used a quasi-steady equilibrium equation. That is, they
assumed that the inertial terms were negligible and thué reduced the
problem back to one of static soil mechanics.

In his paper of 1967 Savage [36] set about improving his earlier
work b§ introducing the wall friction into his analysis., He developed a
perturbation_ procedure for small € , where €= _(tan S)'é and 3 is the
angle of friction between the wa;l and the material; and considered the

: ‘tand : - -
l1imit process —%;—~ ~% 0 as CDW ~» 0. Savage found that his solution

w
(to two terms) showed that the friction could reduce the flow rates hy
the correct order. Yet he later realised that due to his poor choice

of perturbation parameter, the solution did not converge well for small Gbkb
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Also using a perturbation series? Brennen and Pearce [g?] invéstigated
the flow (not necessarily radial) of a granular material in a two-
dimensional hopper = ®,$ ® £ ©®,, . Assuming the stress and flow
fields to be éymmetrical about ® = 0, the averagé discharge velocity

for the first two terms was

, ftz-k
W= (Re) |1 - (7.-.\ [I + 0, ¥, (1bsuiq-2)+ Su(Asng - 3) ]
"'_ —=1tk)
(r-2)| | - (%) 1214 SWmQ) (5.2.4)

where Tw is given by

“+on Yw = -Su QDS J(SM‘Q-SM‘S
Suad (sua@ — 1)

(5.2.5)

Brennen and Pearce claim that this flow rate aéreed reasonably well
with experiment for flows of glass beéds and sand in two-dimensional
hoppers. However, Savage and Sayed [33] believed this to be fortuitous
‘ énd that the analysis over-estimated the effect of wall friction on the
flow rate by as much as 20%. Surprisingly experiments with sand by
* gullivan showed that wall roughness can even increase the flow rate for
large'¢9w..

Savage and Séyed.in considering the gravify flow of granular materials’
in wedge-shaped hoppers used the methgd of integral relations, averaging
momentum balances across a cross-section of the hopper, Thé results
obtained over-estimated the flow yet again, but it 1is not clear whether
this‘was due to the approximations intfoduced in the solution pr§cedures,
or soﬁe inadequacy in the original equation desgribing the physical problem,

In the next chapter a model describing the transient flow of a

cohesionless granular material in a two-dimensional hopper is constructed,
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This method is based on similar assumptions to those made by Savage.
It is realisgd that this original analysis could over;estimate the flow
rate but, nevertheless, the present model could indicate the basic

structure of the flow profiles,
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Chapter 6

The Transient Flow of a Granular Material in a Two-Dimensional Hopper
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L d

6.1 Derivation of the Equations and Boundary Conditions

The pres;ntatién of a simplified approximate analysis for the
transient flow of a granular material in a hopper is now given. The
method follows closely that of Savage [3?]. The assumptions on which
this model is based and which help to simplify the analysis are taken
as follows:

(a) Fhe bulk density of the material is constant throughout;

(b) the walls of the hopper are frictionless;

(c) the angle of inclination Qw' is small;

(d) there is a radial velocity field; -

(e) the granules are of a uniform size.

The phyéical situation of this problem is given‘i; figure 27, The
material which is cohesionless initiallf fills the gopper and the upper
surface r = r, is a free boundary. The orifice of the hopper is at v = r
and the flow starts instahtaneously at t = 0. Since (c) assumes that the
angle of inclination of the sloping wall- is small, then cos 9w can be
approximated to unity. However this restriction could be removed by
subsidiary‘expansions in small Bw. |

The velocity figld of the material is given by U(T,T) and the stress
components in the r and © directions are represented by E}r and Eib
reSpectiveiy. The angle of internal friction in the material is ® and
g is the gravitational constant.

~ And so, the equation of motion is,

l‘;l
€1
"

+'9'5..

P2
o

QIIO/
=]

Q/,Ql
-1ia!

c + (Sr-ce) «+ (6.1.1)
F

o

- R3
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which is subject to the boundary condition,

‘c‘s.-(r”'-E)=o , t?2o0

(6.1.2)
. and the initial condition,
st(fj;, Cf) = 0.
(6.1.3)
The equation of continuity is,
ColE®) = o
OF
(6.1.4)
subject to the initial condition,
wir,o) = o, stsn
(6.1.5)

By considering appropriate length and time scales, these equations

and conditions can be further simplified using the following dimensionless

variables:

C=

i
rp

) (1]
T
ey

and : (6.1.6)

Q
~
i
al
o
c
1
o |
()

Before these equations are rewritten in the new variables, the Mohp-
Coulomb Yield criterion for a’cohesionless material is also introduced
This criterion is defined as

Ce = (1+suwn@) o | o
(1-swma) (6.2.7)

or

Go = RG:
' (6.1.8)
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The relationship between k and ® is written as,

swri@ = (R~ |
(k‘*') (6.1.9)

Hence the equation of motion now becomes,

oc ’.*'“"h>§ = |+ U + wWuw
or | v ot or (6.1.10)

‘where, for simplification, the r subscript in the stress variable has

been dropped. The equation‘(S.l.lO) is subject to the conditions,

.cy ( ;é , © ) = O
- ! (6.1.11)
and
c(1,t) = © ,t20
(6.1.12)
The continuity equatibn is now,
olur < o
br (6.1.13)
subject to the initial condition
w(Ro) o, Isrsg &)
G (6.1.14)
6.2 Analytical Solutions .
From (6.1,13) it can be shown that,
wint) = AW
- - F
(6.2.1)

where A is a function of the time t only, Applying the initial condition

(6.1.14) gives,

(6,2.2) .

Rlcﬁ-«= o
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Since this investigation is primarily concerned with the velocity of the
material at the orifice, the function A(t) must be determined. Substituting

(6.2.1) into (6.1.10) gives,

2w + (-GS = 1 +Ldd - A
of r c dt v? (6.2.3)

The .solution to this equation is,

= B +_C_ +. L _dA AT

PR k) (eRYdE k) 62

where B is a constant which is determined by.the boundary conditions.
This solution is valid only if the value of k is not 2, 1, -1. Should k
be equal to any of these values then the solution of (6.2.3) is;

for the special case k = 2,

o= BR 4 vhe - 4 4 A
‘ dat I (6.2.5)

for. the special case k = 1,

Q--:-Bn) - T + (_i__A__ln(‘ -+ _e._l

dk 2 (6.2.6)
and for the special case k = -1,
(=) -
o= B +f 4+ 1dA - I A (
T . 6.2.7
r+ 3 2 d.t‘ > , )
(k) . ‘ . . -
where B Tisa constant. Examination of (6.1.9) will reveal that only

the first case is of any real importance since for most granular material,

IS @ < ¢0°
. (6.2.8)
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s . 1- '
Multlplylng'(6.2.u) by v 7% and then applying the boundary condition
(6.1.11) ylelds, '

ek
) Ié) fo& = O
(2- R) (- k) ok -  (6.2.9)

where A(0) = 0. The condition (6.1,12) yields,

B+ L+ 1 M .« A .o

(-7:"—‘3—) (ITEBT.&; ( +k) (6.2.10)

By subtracting these equations, a differential equation for A(t) is

obtained,
dA - (Q)'-k g.__A + (1=F) Rl -
ok Gl aey (1+R)
° amk
- Q=R)| 1 = _‘}} (6.2.11)
(2~ k) 0
At time t = O, (6.2.;1) yields, o 2tk
dh| < -a-e>[' - )
dt teo (2-R) | - (&) (6.2.12)
[}
.substituting (6.2.12) int§ the differential equation t6.2.11) gives,
a~k
~ (R=DA" = -(k-1) "(%)
dt -(Rf"') (R-2)| 7 (ﬁy-h (6.2.13)
[

This equation, using (6.1.9), can be written more simply as

_9‘_-_@ -~ swma. A’ = - ™ (6.2.14)
dt |
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| | . —
where _ M = (h— l)‘ | I - (E&)
o (R-2)] 7 _._-(ra, - %

Y
(6.2.15) °
and is subject to the initial condition (6.2.2).
The solution of this differential equation is,
Al) = =[N “+onh 'LJMSUAQ + C
SuAQ (6.2.16)

where C is a constant, By applying (6.2.2) it is readily seen that C = O.

Hence, substituting (6.2.16) into (6.2.1) yields the velocity function,

‘u‘(f-,t)g ;.._|_ ..U._ "‘{'an + “$MQ ‘
r[SwQ : (6.2,17)

or, k

w ook §2[ (&= [1- BT

(k-'zXh-H) | - (r;,n)""

(6.2.18)

The negativé sign shows that the velocity is in a direction from the top

to the bottom of the hopper.

6.3 Results and Discussion

The function (6.2.18)‘describes a velocity flow profile which was
obéefved in experiments conducted by BSC., That is, the matérial.is
initially stationary in the hopper, but, as time passes, it begins to
flow through the orifice. The accelévation rapidly decreases and the

material flows through the hopper at a constant rate and hence the system
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effectiAvely becomes oﬁe of steady state. Comparison éf the terminal
velocity ob‘gained from (6.2.18) with the velocity of the steady stat.e
system obtained by Savage shows éimilar:ities.

The terminal velocity U of (6.2.18), that‘ is the limit u(r,t) is

t=en
foun_d to be,

.

€O 1 = (ReYS

)| 1- (Y
(6.3.1)

Savage's analysis shows that the velocity at the orifice tor the steady

state -is, in dimensionless variables,

(Rer)[ ' = (RS N
-~k

wlr) =
(k-] 1 - (/1) (6.3.2)

Figures 28 to 30 display the velocity of the material at the orifice
of the hopper for various initial heights r, and values of the internal
frictional angie Q . _The curves drawn in each figure show the velocity
as a function of time as predicted by this present theory; the straight
horizontal lines show the steady state velocity as predicted by Savage's
theory for the same values of the parameters. |

| The graph in figure 28 shows the velocity when the ratio of the

initial height of the materjal to the position of the orifice is 3. The
angle of internal friction varies between 20° and 60°. For large frictional
angles the present transient flow agrees well with ‘ghe steady flow at |
1ar~ge"va1uesqof time. However,‘as tﬁis anglé de:cz*ease‘s. the lagreement
diverges resul:ting in a higher flow rate for the transient case.

Figure 29 shows a similar graph with (%\ = 2 and Q taking values
between 20° and 600; f.igur‘_e 30 aisplays the graph- for (5) = b,

£

A
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For large values of ® the flow rates are identical to those in figure 28
for smaller valueé fhe flow rates are slightly higher;

It is realised that as the material free surface nears the orifice
the flow pattern becomes even more complicated and is not fully under-
stood. Nevertheless, the above simple theory is a first attempt to solve
a somewh;t intractable ﬁroblem. It is nonlinear and transient and is
governed by a system of hyperbolic equations. The numerical solution of
this system for flow in a steady state is still under consideration by
research workers in this field.

It is the intention that the emptying Qelocity profiles of the type
(6.2.18), namely '

wie) = o@donh (x¥t)
' (6.3.3)
can be used to obtain actual profiles in conjunction with experiments.
For example, if the height of the free surface at any time t is h, then
a relationship between these two variables can be found using the flow
rate (6.2.18). fhat is, in dimensionless variables,

h - n [21@ t Homh (X¥E) +1 ]L‘
| Du

Using the working model at BSC Scunthorpe or, more.ideally, the

(6.3.4)

actual blast furnace hopper measurements can be made for h against t for
any given material. In (6.3.4%) there are three constants which are known
theoretically albeit approximately. We could proceed to find these for
a particular hopper. .

If hy is ).<r‘10wn at a épécific time t; then we can find & , @ and ¥

by the method of least squares as described by Milne [3@]. We minimise

N a
T(x,8%) = Z Rt izg__(iﬁa-%wb\ (x4 1%
o oo Cle,

(6.3.5)
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where hops is the observed height of the material during the experiment.
Hence & , @ and 8 are obtained on solving the nonlinear simultaneous
equations,

§_'_I=3 'r.a__:‘_-[:"d
B2

o 9
¢ (6.3
In this way we have now the transient flow from a hopper and this

can be fed into existing programmes developed at Hull for the shape of

t+he burden surface in a furnace.
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Appendix A

Derivation of the Non-Linear'Condition at the Interface
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In this appendix two methods are given for the general derivation
of the non-linear condition at'the interface. This is.cogcerned witﬁ
the liberati§n and absorption of heat across the moving interface
separating the two phases. Before either derivation is given equations

which are common to both are established.

- A.1 Heat Balance Equation

The equation of the moving interface, or front, is defined by the
equation | |
| r(_r;,ti =0 B (A.1.1)
Let n be the unit normal to the surface F in the solid-liquid
difection, and v the normal velocity of the interface. Since SZF is
norﬁal to the sﬁrface F(E,t) = 0, n may be written as,
a = YF
I'¥F| (A.1.2)
I+ is assumed that T is the temperature distribution of the phase,
K the thermal conductivity, L the latent heat and Q the density. A
superscript'* denotes the second phase.
In general, if the front advances a distance 8n in a time St,
theﬂ since the difference in fhe heat flux between the~tw6 phases is

equal to the amount of heat liberated at the front, the heat balance
equation is ,
KYT.a ~K*TT 2 = ply.a -
| < - (A.1.3)
Using (A.1.2) gives
KYTYF - K*¥7iye - eLv. ¥F )
|XF] | VFI |¥F) (A.1.4)
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The normal velocity v has now to be determined.

A.2 Method 1

Since the total differential of F(r,t) = 0 must be zero,

dF = YF dt + dF dt a o
ot . |
(A.2.1)

and thus,

YFy = - 23F
ot | (A.2.2)

Straightforward substitution of (A.2.2) into the heat balance equation

(A.1.4) gives the required equation-

(A.2.3)

K(TT.TF) - K*(TTHVF) - - pL3F
| 3t

on FC )= o

A.3 Method 2

F(C,te+IV) 3 o

F( £. t.‘ ® 0
P (D)

Figure A.1l

The normal velocity v is now derived explicitly. The point P with
position vecfor gé is now cbnsidered‘on the sﬁrféce F(i,to) =‘O. The
normai to this surface intersects the neighbouring surface P(E,t°+ St) = o
at Q. The normal velocity of the surface is

. -
lomit PR
st=e 3t | (A.3.1)
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The equation of the normal through P is

-

T= To + A YF
(A.3.2)

and hence o
—D
PR = M- r = AYF
' (A.3.3)
A - R
where is a parameter and Y F is evaluated at (_g_,to). PQ meets the
surface F(_x_~_,t0+3t) = 0 at the point Q where the value of )\ satisfies

F( + \ZF,t.+3t)= 0
. (A.3.4)

Since )\ and ot are small and F(_r_'o st) = 0 a linear approximation

of the equation gives

YF(AYF) « 9F & = o

ot : ' (A.3.5)
thus, P _é’f’— St
¢
|'YF1* : | | (A.3.6)

Substituting (A.3.6) into (A.3.3) gives,

m—

k3
9t Y FI (A.3.7)

and hence the normal velocity of the front, on using (A.3.1), is

ot [yF| (A.3.8)
Substitution of (A.3.8) into the heat balance equation (A.l.4) results

in (A.2.3) as before.
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AEEendik B

The Method of Compleﬁentary Functions



- 152 -

?pe method of complementary functions is a éeneral procedure for
finding the solution of a set of simﬁltaneous linear differential
equations whose boundary conditions are specified at two points. Since -
an nth order'differential equation can be rewritfen as a system of n
first-order differential equations, then a general system of first-order
differential equations in the form of (4.2.4) need only be considered.
Let the system be, |

. f_{ji -+ P’d Y = (1;. v L2,
cloe | | (B.1.1)
where x is the independent variable and the functions pij and q are
dependent on'x. The subscript j is summed from 1 to n.

It is assumed that the sysfem of equations is defined over the
interval_[a,b] and that the boundary conditions are given at the two
points

Yi(o) = A;

(B.1.2)
and : .
3;(b)= B: (B.1.3)

The method commences by integrating the system of n first-order

homogeneous differential equations
du! 4+ piiuw =o
dx J
(B.1.4)
over the interval using any convenient shooting or initial value
procedure subject to the initial conditionms,
wited = A¢ .15
and

Jduwi ()= © (Say)
dx - | (B.1.6)
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The value of u, at the point x = b is computed and can be expresséd as

-

wilb) = ay
(B.1.7)

The system of n first-order inhomogeneous differential equations

dv\. + P“Y\ [ -3
- g9 &
d>e 9

. (B.1.8)
is now integrated over the interval using the same initial value

procedure, but this time subject to the initial conditions

vi(a) = A;

(B.1.9)
and :
dyi(0) = |
dx (B.1.10)

The function v, is evaluated at the point x ¥ b and can be expressed as
ve(bd = e (B.1:11)

The general solution of the system of linear differential equations
(B.1.1), subject to the given conditions, may be written as a linear
combination of the systems (B.1l.4) and (B.1l.8) as follows;

Y60 « Ciwil) + duiYelx)
(B.1.12)
c, and d, are constants which are determined from the boundary conditions.

Finally the original system (B.l.l) is integrated using the initial
conditions,
Yitd = A;

(B.1.13)
and .
dyi(e) = ciduit@ 4 ok dvcl@) S
dx ol oo -~ (B.1.14)

It is, perhaps, worth notirg at this point that the initial conditions
(B.1.6) and (B.1.10) specified for the complementary function and the
particular integral are not unique, and can be chosen so as to simplify

the analysis and subséquent calculations.
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