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Abstract

It is a purpose of this thesis to present numerical results on the 
inward solidification of spheres and (horizontal) cylinders filled with 
liquid which is initially at a temperature above the fusion temperature. 

The changes in density within the liquid, due to temperature variations, 
induce a liquid motion by natural convection. There is a non-uniform 
heat transfer from the liquid to the solid phase producing a non- 
symmetrical inward moving solidification interface in the shape of a 
limacon of Pascal. The clegree of distortion in the front is dependent 
on the size of the (initial) Rayleigh number of the natural convective 

flow. Small time perturbation expansions are employed to calculate the 

thermal fields in both the liquid and solid phases, to obtain the stream 
function for the convective motion and to locate the non-uniform 
solidification front. Numerical results are presented graphically for 

both the sphere and the cylinder.
Another purpose of this thesis is to investigate the flow profiles 

of a granular material in a hopper. A simplified approximate analysis is 
presented for the transient flow. The equations governing the motion of 

the material in a two-dimensional hopper are solved and the results 

obtained are compared with those for the steady state flow. The use of 

this transient model in conjunction with experimental observation will be 

of use in practical applications.
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Nomenclature

For the Solidification Problem:
»

a radius of sphere or cylinder
A, B constants of integration

CP
C(r,t) = 0

specific heat

equation of the interface

• D2, Hn , L r r r operators

E interface variable defined by (2.2.19)

F body force per unit mass

Z gravitational vector

k thermal diffusivity

K . thermal conductivity
L latent heat of fusion

P pressure

pn particular integral
Pr Prandtl number defined by (2.2.10)

q variable for numerical computation

r radial position

R dimensionless radial position
Ra Rayleigh number defined by (2.2.10)

t time

T temperature distribution
V velocity of the liquid

V dimensionless velocity of the liquid

volCt) volume of liquid as a function of time

X independent variable

y dependent variable



Greek Letters

(3
y

<s>
A

V

X

8

Superscripts
ft

Subscripts

1

o

F

n

c

coefficient of cubical expansion 
Stefan number defined on page 7 
thermal head defined on page 27 

polar angle

dimensionless temperature distribution 
ratio of diffusivities 

/ A  = COS ©

dimensionless variable defined by (2.2.17) 
density

dimensionless time 

forms of the interface equation 

stream function 
dimensionless stream function

liquid property 
single bar system 

double bar system

initial condition 

surface condition at r = a 

fusion.

n'" 1 order perturbation function 

complete solidification



For the Granular Flow Problem:

s. gavitational constant
h • height of the material at any time

k constant defined by (5.2.3)

M constant defined by (6.2.15)

r radial position

rl radial distance of orifice from 0

r2 radial distance of initial height from 0

t time

u velocity of material (radial)

UT terminal velocity

Greek Letters
constants
constant defined by (5.2.5)

3 • angle of friction between wall and material

e. perturbation parameter
Q polar angle
o~ stress
© M angle of inclination of sloping wall

angle of internal friction

Superscript
— dimensional property



Chapter 1

Moving Interface Problems With Change of Phase
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1.1 General Introduction

Moving interface or moving boundary problems are encountered in 
many scientific, industrial and engineering problems. The general 

formulation of the moving boundary problem can be considered as follows. 

Two substances are separated by a surface and diffusion from one 
substance to the other takes place. This diffusion process may cause 
changes which create the formulation or dematerialization of matter at 

the interface in one, or both of the substances. The interface is 

thus seen to move relative to one, or both of these substances. This 

problem is commonly referred to as a Stefan problem of which there are 

at least two categories; those involving the diffusion of a substance 

and those involving the transfer of heat in the substance. Within 

the first category there falls, for example, the diffusion of oxygen 

into muscle when the oxygen combines with lactic acid. The absorption 

or diffusion of certain dyes into material fabric is of interest to the 

textile industry, whilst the effect of the diffusion of carbon during 
the melting of iron interests the steel industry. Other moving boundary 

problems which are concerned with diffusion involve the back-diffusion 

of a chemical solution into the remaining solution when evaporation 

occurs at the free surface. The rate at which a layer of soil or clay 

consolidates and increases in thickness is of interest to geologists, 

and in chemistry there arises the problem which is concerned with the 

diffusion-controlled growth of a new phase such as a crystal in solution.

It is, however, with the second category of heat transfer problems 

that there can arise the additional problem of change of phase. A 

fundamental feature of a phase-change problem is the moving interface 

which exists between the two phases of the substance. These phases,
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which have different thermophysical properties, are separated by the 

transient interface across which latent heat is either liberated or 
absorbed. It is this transfer of thermal energy which introduces a 
non-linear phase-change process at the interface. As a consequence, the 

number of exact solutions known to the problem is restricted.

In 1860 Franz Neumann found the first and probably the only exact 
solution. He considered a substance of constant temperature which 
occupied the half-space x^ 0 and was subjected to a predescribed 

temperature at the boundary x=0. The solution which Neumann obtained 

was characterized by a similarity variable x//t. Nevertheless, it was 
not until 1891 that this type of problem was called a 'Stefan* problem, 

due to Stefan's classical investigation into the thickness of polar ice. 

The results Stefan obtained, or the method by which he achieved them, 
could be applied to a wide range of other phenomena in earth science.

In particular, investigations have been made into the freezing and 

thawing of expanses of water, the solidification of lava streams and the 
ablation of glaciers.

Phase-change or Stefan problems are still of great practical 

importance in the present day, although this interest originates from 

a more commercial aspect. For instance, studies have been made for 

the steel industry into the solidification of steel ingots. The 

position of the solid-liquid interface was investigated since its 

profile during solidification can be of great interest in relation to 

the quality of the end product. Changing the shape of the ingot moulds 

can make considerable changes to this solidification process and this 
too has been studied.

Another area of interest created by phase-change problems is the 

latent heat of fusion storage devices. In this type of problem the
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need to know the position of the interface is again important, as are 
the heat transfer characteristics of the phase-change material. This 
subject has received much recent attention and there have been several 
papers published on both theoretical and experimental studies.

Indeed, the Stefan problem has been the subject of a great deal of 
theoretical investigations. Of course constructing a mathematical 
model for such a problem can be extremely complicated and hence many 

things may be over-simplified. In particular, the consideration of the 
density changes in the material and the formation of dendrites is complex. 
Such complications will be discussed in a later section.

There have been many solutions presented, each using a method of 

differing complexity. These methods can be classified under the following 

headings: exact analytical, semi-analytical, integral, perturbation, 
numerical and other methods.

It is, perhaps at this point, worth presenting Neumann's one 

dimensional model and solution as generalised by Carslaw and Jaeger [!]• 
The semi-infinite region x ^ O  contains a liquid at a temperature T^ which 

is above the fusion temperature Tj,. At time t=0 the temperature at the 

boundary x=0 is instantaneously reduced to below the fusion temperature. 

This results in the liquid immediately adjacent to the boundary 

solidifying and hence, a solid-liquid interface moves into the liquid.

The temperature is assumed to be the only independent variable and the 

solid and liquid regions are considered separately. The position of the 

interface at any time is given by x = E(t). And so, the heat conduction 

equation for the solid is,

t *
a»* k  a t

o  <; t  <  t t
(l.i.D



and for the liquid,

£j* - ±  *T* , o < t a „
d * >  fc* ôt.

The boundary conditions to be imposed are,
#

~T - To f < T f)  > x  = o , t. > o

« T f X —̂  c© v t  ^ O

and the initial conditions are,

* T  * T o *T * afc o w>»'4k £ (o} •* o

The latent heat condition is,

K Ï T  -  k * ~
*  Sie. &*• * *

act)

and also at the interface,

—f - T* * o on x - , t > o

The exact solutions are found to be,

E C t )  = 2 . A  Æ t

( 1 .1 .2 )

(1.1.3)

(1.1.*)

(1.1.5)

(1.1.6)

(1.1.7)

(1.1.8)
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where A  is a root of the transcendental equation,

-t- X U  fir =  ©
C f ~ Q

(1.1.9)

( 1 .1 .10)

(1.1.11)

In the above a ♦  denotes a liquid property, k the thermal diffusivity,
K the thermal conductivity, L the latent heat and C the specific heat.P
The time taken until solidification is complete is t .

1,2 A Review of Literature on Solidification Problems with Free

Convection Ignored.

An aim of this thesis is to investigate the inward solidification 

of a liquid, not necessarily at fusion temperature, which is contained 

in a sphere or a cylinder. This study was motivated by problems on ingot 

solidification emanating from the British Steel Corporation.

Before this investigation proceeds, however, it is worthwhile 

making a survey of the literature already available on and connected 

with this subject. The majority of these papers make the following 
assumptions:

(1) the initial temperature of the liquid is the fusion temperature

(2) there exists a definite fusion temperature at which
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solidification occurs and hence there exists a demarcation 

line or interface;

(3) all the thermal and transport properties of the system are 
independent of the temperature;

(4) the density changes at the change of phase and elsewhere in 

the solidification process are ignored.

Poots £2"] investigated the solidification of a liquid at fusion 
temperature in several different shaped containers using heat balance 

techniques. Assumptions were made as to the temperature distribution 
and the shape of the interface. Then employing the Karman-Pohlhausen 
technique, he was able to find small time solutions.

Goodman [̂ 3 ̂  also presented the solutions to several problems using 

a heat balance integral. He found that these results compared favourably 
with Neumann’s exact solution for large values of the Stefan number

e p C - m - T o )
- the ratio of the latent heat to the sensible heat of the substance.

It should be noted that for^= 0.25 (steel) the error in Goodman’s 

method is approximately 30%.

In 1967 Tao published his generalized numerical solutions for the 

freezing of a liquid in a cylinder or sphere. Assuming the convective 

heat transfer coefficients to be constant, as is the heat capacity of 

the solid phase, Tao used differences to solve the set of coupled 

differential equations. The solution was then obtained using an iterative 
procedure.

Pedroso and Domoto D ]  used a perturbation expansion for large Stefan 

number for the solidification of the sphere. They showed that the total 

time for solidification, that is as E — ^1, is given by
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*■ t C  -
which was obtained for two terms only. However, it was found that 

near to total solidification the regular perturbation series diverged. 

And so, an Euler Transformation together with an overall energy balance 

was employed to modify the series solution. Huang and Shih t o  applied 
Landau's Transformation to immobilize the moving boundary and, replacing 

the time variable by the normalized position of the moving interface, 

they too introduced a perturbation expansion to solve the solidification 

problem for the sphere and the cylinder.

Riley, Smith and Poots (^7Jinvestigated the sphere and the cylinder 
using the method of matched asymptotic expansions for large ^ . They 
used a two layer analysis. Using Pedroso and Domoto's solution as 

their outer region, they found that an inner layer o ( e ‘) was required. 
The results obtained for small E - the depth of solidification - were 
found to compare well with the small time solutions of Poots. The total 

time for solidification of the sphere was found to be,

*tc. “* J. + -L — _i
(> 6 ^  3 ( 2 r i ^ *  {§')

(1 .2.2)

and for the cylinder,

t- O / i  \  
4- U-p l (1.2.3)

Nevertheless, Stewartson and Waechter t>] showed that even this 

second region analysis breaks down just before the centre solidifies, 
that is, at time
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(1.2.4)

Whilst studying the problem for the sphere, they introduced yet another 

region and thus employed a triple-region procedure. Although the 

resulting analysis was very complex, Stewartson and Waechter were able 
to obtain the temperature profile in the neighbourhood of the region 
near to the time of total solidification. This was a major contribution 

to this field of study. More recently (1980), Soward [93 developed a 
simpler method and was able to solve this problem for the cylinder as 

well as the sphere. Essentially Soward's method ameliorates the 

procedures used by Riley et al. and, although the results had been 

previously obtained, clarified the nature of the solution in various 
domains.

Hill and Kucera [io], using a semi-analytical procedure, considered 

the freezing of a liquid inside a sphere. In their analysis they 

included the effect of radiation at the surface and, by use of an 

integral formulation, they were able to show that the time for complete 

solidification lay between the bounds,

( t -b l o p  $  ^
(o

<  0  i *  g ) 
6

(1.2.5)

bwhere 0( is defined by . If the radiation at the surface isno.
ignored, that is 0C = 0, it can be seen that the upper bound agrees 
well with the solution obtained by Pedroso and Domoto.

Furzeland [ n l  has made a comprehensive and excellent survey of 

numerical techniques which have been used to solve one dimensional 

moving boundary or Stefan problems. In this paper, Furzeland compared 

several viable methods and examined each one for efficiency and accuracy



- 10 -

and, in particular, the ease with which the method could be generalized 

to more than one dimension. More recently Schulze et al. [l2] developed 
analytical and numerical solutions to two-dimensional moving interface 
problems. Although these solutions were applicable to the solidification 

of steel ingots in the steel industry, the studies made on small time 

expansions are of interest in the analysis of this thesis.

1.3 A Review of Literature on Solidification Problems with Free Convection 
*

Until now, all the papers considered have approached the phase-change 
problem classically. That is, the effects of natural convection within 

the liquid fluid have been ignored and the problem has been treated as 

one of pure conduction. This means that the interface can be treated 

as axisymmetrical. One of the reasons for this neglect is that the 
analysis determining the position of the interface and the heat transfer 

would be greatly complicated by the inclusion of the convection. But in 

reality assumption (1) is rarely achieved and the initial temperature of 

the liquid is usually greater than its fusion temperature. Although 

initially solidification will occur solely in a conduction mode, appreciable 

temperature gradients will exist in the liquid adjacent to the interface 

and these temperature differences will produce density variations. It 

is these variations which result in the introduction of buoyancy forces 

which then induce conductive motion in the liquid. This will lead to 

the non-uniform convection of the liquid sensible heat across the 

interface which, as a consequence, becomes non-symmetrical in shape.

There have been many studies made to see how important this convection 

is during solidification and melting. As with the earlier pure conduction 

models, the solutions to these studies can be divided into three groups: 

analytical, experimental and numerical. However,-it seems that there
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not been many analytical solutions obtained and this is probably 
due to the previously described- complication.

In an early investigation Sparrow et al. [l3j discussed the effects 
of natural convection on the rate of melting and heat transfer. They 

studied a melted region around a vertically heated cylinder embedded in 

a solid which was at its fusion temperature. Using an implicit finite- 
difference scheme to find the position of the interface as time progressed, 

these authors concluded that the addition of convection does indeed have 

a noticeable effect. In this investigation, as in many others, it was 

assumed that the Stefan number was large so that the melting front 

moved slowly. This assumption permitted a quasi-steady approximation to 
be made for the convective motion.

Sparrow et al. 0 3  investigated experimentally the effects of 
natural convection on the outward freezing from a cooled vertical 

cylinder. A theoretical model based on empirical heat transfer coefficients 

at the interface gave good agreement with experiment. A numerical study 
of the transient effects of solidification accompanied by natural 
convection in a rectangular enclosure has been considered by 

Ramachandran et al. £i5]. The quasi-steady approximations of Sparrow et 

al. £l3*} were again invoked and results were presented for large Stefan 
number and moderate Rayleigh number of order 103.

Yao and Chen [16] used a regular perturbation solution to show that, 

although conduction was initially the dominant heat transfer mode, the 

natural convection had an increasing effect during the melting process.

Gartling £l?3 used a finite element scheme to effect a method 

which could be used in a two-dimensional region of arbitrary shape. And 

in a later paper, Morgan [l8], retaining the generality of this work, 

employed an explicit finite element technique to solve the same equations.
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Morgan^used this method to investigate the effects of convection during 
the process of melting and solidification in a cylindrical cavity, The 
results obtained for a solidifying substance were shown to agree 
qualitatively with experimental observations.

Problems of latent heat thermal energy storage in a horizontal 
cylindrical capsule involving large Rayleigh number - large diameters - 

were studied by Saitoh and Hirose [»}• Using a Landau transformation 
and an explicit finite difference scheme, these authors also concluded 

that the effect of natural convection played an important role.
Recently Gadgil and Gobin £20J and Ho and Viskanta [21] have 

explored the effects of natural convection on the thermal storage of 

phase-change material in a rectangular enclosure. Heat transfer during 

the inward melting in a horizontal tube has also been investigated 
theoretically and experimentally by Ho and Viskanta £22}. They found 

good agreement between the results obtained from these two methods. In 

Viskanta and Gau [231 experimental and theoretical work has established 

that for the inward solidification of a superheated liquid in a horizontal 
circular tube, the effect of natural convection is important for large 

Stefan number. The theoretical work was based on the quasi-steady 

approximation and on the assumption of an empirical heat transfer 

coefficient at the solid-liquid interface as proposed by Sparrow et al., 

see [l3] and [lH^ respectively.

Further complications which arise in both the melting and 

solidification problem with, or without, convection originate from 

assumption (2), the existance of a definite fusion temperature. 

Unfortunately, not all substances, particularly in engineering practice, 

have this definite fusion temperature at which solidification occurs 

and which gives rise to a distinct demarcation line, or solid-
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liquid interface, between the two phases. Instead solidification occurs 
over a temperature range and, of course, there is no discernable interface. 
Such amorphous substances - glass, wax and plastics being examples - 
change from a solid state to a liquid state by a continual absorption of 

heat and pass through decreasingly viscous stages. Similarly to an 
amorphous substance, alloys often have an ill-defined interface between 

the two phases and during the change of phase, the solidification or 

melting process is determined by the combination of its constituents. 

Generally fusion, which in this case is a vague concept anyway, is a 
gradual process.

Another problem which complicates the determination of the interface 

is that of dendritic freezing. It might be thought that an eutectic 
substance - a substance composed of a mixture of constituents so as to 

solidify at a single temperature - would produce a well defined interface. 

But, in practice (such as the steel industry), this is not so. For example 
when steel solidifies, and particularly if the rate of solidification is 

slow, an instability is created at the interface. This can lead to the 

formation of dendrites, branching crystalline structures, from the 

solidus into the liquidus. From these primary dendrites, secondary 

dendrites evolve and, in turn, tertiary but smaller dendrites are formed.

It is the 'mushy* region which is formed by these dendrites between the 

solid and liquid regions which creates a complex heat transfer structure.

Another consequence of these dendrites during, for example, the 
solidification of steel is the build up of impurities. These are caused 

by the more rapid solidification of the purer metal constituents which 

allow the impure constituents to form into a dense layer in the liquid 

region. This action is known as segregation and can alter the quantity 
of steel produced, (see Schulze [2*0>
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The last assumption made - the neglection of changes in density at 
the change of phase - is also open to discussion. Volume increases or 
decreases which occur at the change of phase affect the magnitude of the 
heat transfer regions. Density changes at the interface together with 

the variations in the physical properties with the temperature, affect 

the propagation of heat in the liquid and solid phases.
Carslaw and Jaeger considered the effect of the change of density 

on solidification and presented an analytical solution. The heat 
conduction equation for the liquid region now becomes,

t J *  - j. i 2 ” + a* £Tr }
fe* ( S t  J (1.3.1)

where the velocity of the liquid along the x-axis is given by,

i*) d eJ
The solution for the solid region is,

T  = T© f 1 ~ ^  [g f e fr ]
[ eKA

“

(1.3.2)

(1.3.3)

which is the same as equation (1.1.9). However the solution for the 
liquid region is now,

(1.3.4)
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and» m  this case, ^  is a root of the transcendental equation,

Obviously if the densities of the two phases are the same, then 
and these solutions reduce to (1.1.10) and (1.1.11).

Tao [25] also considered the problem of solidification which 
included the density jump at the transient interface. But by employing 
an appropriate transformation of variables in time and space as well as 
material constants, he was able to convert the problem to one which had 

equal densities in both phases. This reduced problem, which is now a 

classical free-boundary problem, was designated as the associated problem.
A description of the physical situation which is created by the 

effects of natural convection during solidification in a liquid sphere 

or a liquid cylinder is now given. The changes in the densities, due 

to the temperature variations inducing motion in the liquid, mean that 

the rate of heat transfer across the interface will be greater at the 

north pole of the container than it will be at the south pole. Since 

the rate of increase in the solidification is dependent on the difference 

in the heat flux between the two phases at the interface, the solidification 
front would be expected to move towards the centre at a faster rate at 

the south pole than at the north. Consequently the front will initially 

move inwards symmetrically, but will soon evolve into the shape of a 

limacon of Pascal, and thus it would become non-symmetrical about the 
centre.

In Chapter 2 the effects of the natural convection during solidification 
in a sphere is investigated. The equations governing the thermal fields 

in the two phases, the equation governing the liquid motion and the latent
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heat condition at the interface together with their boundary conditions 
are derived. Small time expansions of the coupled partial differential 
equations are then developed. These perturbation expansions, which 
represent the temperature distributions and the interfacial position, 

proceed in powers of X  and the first six terms up to (and including)

X  v are obtained. The resulting system of ordinary (linear) differential 
equations and the interface condition are solved numerically in Chapter 4. 

These results are then used to locate the position of the interface, 
calculate the temperature distributions in both phases, the velocity 

distributions, the streamlines and the Nusselt numbers. Solutions for 

different parameters, the thermal head (which is proportional to the 

difference between the initial temperature of the liquid and its fusion 
temperature), the Stefan, Rayleigh and Prandtl numbers are then computed 

and displayed graphically.
In Chapter 3 the equations which describe the effects that the 

natural convection has during the inward solidification of a cylinder are 

derived.
Such results may be useful in helping to complete our understanding 

of the effects of natural convection during the solidification or 

melting of metal and alloy systems, see Chiesa and Guthrie [26] and 

Schulze [*]• They are also relevant to the study of heat transfer in 

latent heat of fusion energy storage systems.
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Chapter 2

The Effects of Natural Convection During Solidification in a
Liquid Sphere



2.1 The Derivation of the Governing Équations
In the derivation of the equations governing the heat and mass 

transfer in a liquid undergoing the process of change of phase, certain 
assumptions from previous theoretical works are to be retained. These 

are :
(1) there exists a definite fusion temperature at which 

solidification occurs and thus a sharp demarcation line 
between the two phases;

(2) all thermal and transport properties are independent of the 

temperature ;

(3) the density changes at the change of phase and-elsewhere in 
the solidification process are ignored except in the 
calculation of the gravitational buoyancy force in the liquid 

phase.

The above form the starting point in the construction of mathe

matical models for solidification and melting, see [203 to [23]. 
Essentially it is assumed that there is no volume change on change of 

phase. Moreover, it is implied that the liquid velocity along the 

normal to the interface, which is induced by the change of density at 

change of phase, is also negligible. These assumptions have been 

substantiated experimentally by Sparrow et al. [2 9]. However, for any 

specified material it is a simple matter to compare, for example, the 

size of the velocities induced by the density jump at the moving 

boundary with that representative of the natural convective flow, and 

so establish the validity of the approximations,which have been made, 

see Tao [25].
The physical situation to be examined is illustrated in figure 1.
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SOLIDIFICATION FRONT

Figure 1

Initially a sphere of radius a is filled with a liquid at a 

constant temperature T^, which is above its fusion temperature Tp.

At time t = 0 the temperature at the surface r = a is instantaneously 

reduced to a temperature Tq which is below the fusion temperature.
This causes the liquid adjacent to the surface to emit latent heat and 

solidify. The surface temperature Tq is maintained and, as time 

progresses, the solid-liquid interface moves towards the centre^ The 

interface will be symmetrical about the azimuthal angle and its radial 

position is represented by •
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C (£,<-■) = r- rp l/A .t)  , ¿¿-case. (2.1 .1 )

The transient governing equations for the solid and liquid, subject 

to the previous assumptions, together with their corresponding boundary 
and initial conditions are as follows.

In the solid region the equation of heat conduction is,

k Í jl hx$I\ H- J- — ll*» ¿I
l rxd rl dr ) 1J a t  (2.1.2)

where the temperature distribution is described by T(r,^i,t) and k is 

the thermal diffusivity in the solid. This equation is subject to the 

boundary conditions,

-T ía , c To

and (2.1.3)
T~f ív ÍJLA,O  , /w* , b) » T f

In the liquid region the Boussinesq approximation is now invoked on 

the equations of motion and heat. This approximation is based on the 

assumption that the properties of the molecules in the liquid may be 

considered constant and that the variations in the density field are 

important only in the calculation of the buoyancy force term in the 

equation of motion. Under these conditions, and assuming that the 
temperature and velocity distributions in the liquid are given by 

T (r,^*.,t) and y(vr »v^) respectively (where p  - cosO), the equations of 

energy, continuity and momentum can be written as:
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the thermal energy equation,

u * i  i s _ ( 'i t  a l
* IT-Fri àr j f 3^1 r

= ST* + V,àJ* | i %
^  òr > ò/aò-t

(2.1.4)

where k is the thermal diffusivity in the liquid. 

The equation of continuity is,

i a (r*vr\ -  j _ k -  -  c
f'*5r\ / r d ^ L  r J (2.1.5)

and the momentum or Navier-Stokes equation is,

g  -  v x ( ' 2 x y ,)’j -  p * T

=  -  Y ( t »  +  - s>*£ j V s * * ] (2.1.6)

where p is the pressure, \) the kinematic viscosity and ^ the density of
}(Cthe fluid. The temperature distribution T (r , ^ t  ) and the velocity ,v 

are determined by the coupled non-linear partial differential equations. 

The vector J] in equation (2.1.6) is the external force.due to gravity and 

is given by

r  = l - g p .  o ) (2.1.7)

The equation of state is,

^* = ^* [  i -  c*(T-Tp^"J
(2.1.8)

where is the density of the liquid at fusion temperature and 0(



- 22 -

is the coefficient of cubical expansion. Substitution of the equations 
(2.1.7) and (2.1.8) into (2.1.6) and . then taking the curl of this equation 
gives,

Ï X  à* - Ïx[ï xfï « V')] 
dt, c

--■O*!«'!** + 1  * H I <x C T “T f
(2.1.9)

The pressure term has now been eliminated.

Examination of equation (2.1.5) reveals that the stream function 
(r,/iA.,t) can be introduced such that,

- a
r*

and -  »
rO-yu*Ys- be (2.1.10)

On substituting (2.1.10) into (2.1.9), and after some further analysis 

has been performed, the vector equation in v, is reduced to a scalar 

equation in That is,
V * D * 4 - =  +

r l  à ( r , ^  J
%

The operators «Pr" and Lr ' are defined as,

S T *  -  è T * '

bjx b f

T V  -- +  0  -  g

( 2 .1 .11)

(2 .1 .12)

arid

L r  * ~ jU. à_i
0 - p % ) d r

-4- J_
r  djA. (2.1.13)
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The Jacobian is defined by

Btx.Jp 3x 3j 3x (2 .liiit)

These equations are subject to the following boundary conditions: 

(i) initially,

T  * * Ti

r = o
, out t  * 0  ̂ o ^ r ^ a

(2.1.15)

(ii) at the interface,
T*= T , 

Br y

a t  - t > o (2.1.16)

The second condition in (2.1.16) is the no-slip condition.

The equations for the heat transfer in the two quite separate and 

distinct solid and liquid regions have now been established. However, 

the boundary condition at the solid-liquid interface has yet to be 
derived. This condition, concerned with the absorption and liberation 

of heat across the interface, is non-linear and controls the motion.of the 

interface. The generalised derivation of this boundary condition is 

given in appendix A. The condition can be written as

K (1 T .vc ') - K +(¥ t *-2C) = -pLdC.
db (2.1.17)

For this particular problem, using spherical coordinates, the Stefan 

condition along the interface C(r,^*.,t), which is given by (2.1.1), is

K
hr _òr O - f X ^ ò T  . Ò J > \

T' «ty* dp I
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w a r  -
I d r  r* ô/x "è/j, )

=  p L d r F 
' at

(2.1.18)

2.2 Dimensionless and Neumann Variables

In order to simplify the established equations and their corresponding

boundary conditions, the following dimensionless variables are introduced:
»for the solid region,

<?= r 
a

2
a

t .' - fet ; <&(f?,u,T') -- fT - T « ^
0> (*Tp -To)

and for the liquid region,

R =  r  •, (?f -- £
O CX

- t ; (S’CR.^.x*') - C r *  -~rf) 
o? (rr, -  T r )

kfcIt is worth noting that q> is the Fourier number F and that the
-k*°

(2.2.1)

(2.2.2)

dimensionless parameter k  is defined as

For the stream function the dimensionless variable
* *  •

. 5  =  3 L

a k  (2.2.3)

is introduced. Inspection of (2.1.10) will reveal that the dimensionless 
velocity vector can be written as,

V  « a  v

(2.2 .U)
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Substituting these variables into the derived equations and 
simplifying gives the following equations: 
for the solid region the heat conduction equation is,

j_ _  i  i .  fCt -ju’) ò>®] . i ®
3 R  / H x ò /a L • d//.\ " à t '

which is subject to the boundary conditions,
© O . / a .T') = o

and ’ (2.2.6)

for the liquid region the heat conduction and convection equation is,

X  I ? * ® * }  - ¿ . L  id
8 R  I R ‘ b}x i djx

_  x  ,<8D  — 5 <Si*
f? d ( R , y )  * 1 * '  <2-2-7>

which is subject to the conditions,

® * (  R ,  ¡j., o )  = i

and ( (2.2.8)
< % > * ( & =  O

The convective motion in the liquid is governed by the stream 

function which satisfies the equation,

D* l »  j_  S + x  T <E) +

-+ u W  - I®*
I r V  9 r

University 
Library 

Hull

(2.2.9)
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This equation introduces the dimensionless Prandtl number - the ratio 

of the molecular diffusivity of momentum to that of heat - and also the 
Rayleigh number - the ratio of the buoyancy to viscous forces - which can 
be written as

Pr * ^
■fe*

and f c  = g « « *  
w  t r k r (2 .2 .10)

respectively.
The operators and are now defined as

* Si* €j.
( 2 .2 .11)

and

I • =
0  -Jj?) ^

_l_ c)j
R  ôp, (2 .2.12)

The stream function satisfies the boundary conditions at the 

interface,

ï * ÇME
ZR

« o  a+
dy. (2.2.13)

and the initial condition

a<§ = o
(2.2.14)

Finally substitution of the dimensionless variables into the Stefan 
condition at the interface yields

c)(& -  b(S> dfc
b R  R *  b y  b y
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' S R  ô^*. ô / x  1

=■ R  ^JRt 
Y  à x ' (2.2.15)

where ^ is the dimensionless Stefan number defined as & * Cf CTr -TV)
y  y  fTi -"T f")and the dimensionless parameter 0 is defined as 0 * TT* - —

R  (TV -T»)
The solidification process commences at ”C = 0, at which time the location 

of the solidification front is at the surface of the sphere. That is ,
iI at X

(2.2.16)

Introduction of the Neumann Variables

Clearly for small time the local structure of the solidification 

process at every point on the surface of the sphere will be that for a 

semi-infinite region of liquid initially at a temperature above the 

fusion temperature. Consequently, the following Neumann variables 

(see Carslaw and Jaeger) are introduced. For the solidified region these 

are,

t  - o  "vff) , jU* ( X  * X '
Zi-C')''** (2.2.17)

and for the liquid region,

n - . o K . a  -¿S - c '
2  l’&'.Ÿ*’ ' ‘ (2.2.18)

and it is found convenient to introduce a new interface variable,

■= ci -  (?f )
2.x N (2.2.19)
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In terms of these Neumann variables the interface is located in the solid 
region at 1 = E and in the liquid region at T  = E/ >S .

Note that from (2.2.17)

L  = ^  ^  . b * - i a
b R  Z x ^  ^  and “ “  —  1Zc à Ï

(2 .2 .20)

fcj. Ò •with similar results for obtained from (2.2.18). And so,

on employing these Neumann variables, the heat conduction equation (2.2.5) 
for the solid region becomes,

-  u.xà_ To-iX*) SIS'] 
all » l i  v  l r  j

■=. (i — M  I®  1

(2 .2.21)

and the boundary conditions are

<3)(0'/x ) -  o

and
<£>(£, yu.-c) =* I

(2 .2.22)

For the liquid region the heat conduction and convection equation 
(2.2.7) becomes,

a  T ( i -  ¿ • ¿ ' ' V i

sin
_ ^ a _ | o - / n  a ® ‘ ]  +  & ( $ . © * )

]e>T* J

(2.2.23)

which is subject to the conditions,
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<&*( cto j ¿j., o) - l
and (2.2.2H)

A 1»
and in addition,

dC3)* (co! l+.o) - ^(HfCoo.jm.o) = o
(2.2.25)

The flow field is governed by the equation,

T>V* = J-Jf a  _
B J U t*  2t ’ a r )

■X- I L  ' +  2 U \ *  $ .  L$* <£
a » »

4 < 3 x 6 - / j i » y i - 2 ? V h ) a ® " i a ® 1
a* &r (2.2.25)

which is subject to the boundary conditions

Lp ■= d tp •= d$ « O o1 &

and K r , _
^  (<=*>,/*, o

2The operators D^and L^are now defined by

dV  «  x  ?L  + , (i
* o-zv&'s

(2.2.27)

(2.2.28)

and

L .  • =  _ 1 i _____  +  i c ^
i £ v ( i - / j ? ) a r  ii-2.-e'*r) (2.2.29)

The Jacobian is transformed to become,
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èCÌ,®*) , _ L StÇ.®*)
* £ * * > » )  (2.2.30)

To complete the transformations of the equations, the latent heat
condition at the interface is,

.L è®  -  &§ ]
a-j ( i - i c S T ) *  V  Jr £„

-"X [ J. .  Ì®* -  2-t?Vi . ò®'" ÒE 1
L ^  a r  d - z t ^ r T  a ^ ' v )

=  z b  a i f e x V )
T ÒX

£o
A V

(2.2.31)

and the initial condition on E is,

£( JA, o) - o
' (2.2.32)

2.3 The Perturbation Procedure

The non-linear system of partial differential equations derived in 

the previous section can be solved by assuming, for small time, the 
following regular perturbation expansions :

•o

©a.i.'s) - 1
K~o (2.3.1)

<B>
A

ASt> (2.3.2)

2 .

(2.3.3)
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and «0 ^

E f c , * * ) -  I Va / (2.3, if)

However, the perturbation expansion for the stream function ï  

is more complicated and has yet to be determined. Suppose that this 
function can be written in the form,

s : n > . o  -
(2.3.5)

Then, on substituting (2.3.5) into the flow field governing equation 

(2.2.26) and expanding for small time, the following equation is obtained:

i a* (<ïn- 0  _
ifeT*‘ ■ar*' V  i " H.X»1 ô f *

-  A £
ux* Vs*

- V +  oft-*4

— (\ — 2-T?^*) fix.( 1 -j j* }
" a y

Comparing both sides of this equation, it can be seen that n must take the 

value of 3/2 and hence

or equivalently,
A* *5

CO

f\-* o

(2.3.7)

(2.3.8)

Substitution of these perturbation expansions into.the derived governing
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equations (and the corresponding boundary conditions) yields, on equating 
coefficients of like powers of • X  (or T. ) in the usual method, a system 

of ordinary linear differential equations. Thus the difficulty due to 

the complication of the non-linearity at the interface is removed. The 

perturbation functions £•> and ̂ Îr\ are then determined from
the resulting equations.

Investigation of the coupled partial differential equations with 

the perturbation expansions will reveal that the first perturbation 
functions to have a dependency on Ja are and . Hence, the
expansions can be written as:

=  ® o to * +

(2.3.9)

q ' i v 1, tx.-t?) * <s>2(r) * ® T ( r ) x ’ v +

.♦ ® c « » t * *  t A +  • •• •
(2.3.10)

+  -t- x -t* . . . .

(2.3.11)

and finally,

S '  =
1
4....

(2.3.12)
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Unfortunately the boundary condition at the interface introduces a 

complexity into the normal perturbation procedure. To illustrate this 
problem we consider the boundary condition at the interface in the solid 
region. Direct substitution of the perturbation expansion (2.3.9) into 
the boundary condition

®  x  t  ̂  + .....  ̂ ^  ̂  - I

results in,
(2.3.13)

+  "xS"£» t • • + '¿'Ci ■+ ’ "  ) * I
(2.3.14)

1Obviously, the terms-of 0(T*") cannot be immediately equated since 'C 

appears both implicitly and explicitly. This then necessitates releasing 

from the arguments of the perturbation functions. Utilizing the method 
of Van Dyke [ 27̂ J, the perturbation function is expanded as a Taylor series 

about = Eq . So , expanding about T = Eq , it is found
that at ^ = E,

■t O**£» ■* x£*. + • * * • ) <E) +

-v i  (TNT. + • . ) ' © " ( & ,  u x )  +  ... (2‘3,15)
■2.»

where / denotes differentiation with respect to T. Now, substitution of 

the perturbation series (2.3.9) for (8> ,x) in the above equation,

gives an equation in which *C appears only explicitly. Thus,

£<8>o (£o ) + +  . . . . +  X^*<S)T (£ofp )  4  . . .J -*

4  (t>£, +■ t C *  +  • • - + "d> +  •••*] +

4  C“C*€. **-X£l + * i*<8>0 (Co) +•••"] 4
XJJ" **. J (2.3.16)

%

I
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Similarly the boundary conditions which include the terms 

X  f *£, and at the interface have "C released from their arguments 
and, in this way, terms of order ”£ may be collected since X  now appears, 
as required only explicitly.

Because of the spacial derivatives occurring in the latent heat 

condition (2.2.31), the perturbation equations and their boundary 
conditions become more and more complex with increasing exponent of “t . 

It is noteworthy that these complications (and others) would be removed 

if the further approximations proposed by Sparrow et al. in £l3] and £iu| 

were invoked.

2.4 Determination of Perturbation Functions

Applying the perturbation procedure described in the last section 
to the governing equations and their corresponding boundary conditions, 
the perturbation functions can now be determined. Accordingly, the 

systems of ordinary linear differential equations can be written as follows:

Zeroth Order

Collecting terms of order X°, that is 0(1), the zeroth order 

perturbation functions ®*and E are governed by the equations

which are now given.

For the solid region 0̂ : ^ ^  E , ® 0 satisfies

ctx(S)0 + 2̂ dlC8>0 = O
d i V

(2.4.1)

which is subject to the boundary conditions,

< & •  Co) => O
and

(2>o * 1
(2.4.2)
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For the liquid region j=j T < » ,  ® 0 satisfies

<£®l + = o
dT** c f j* (2.4.3)

which is subject to the boundary conditions,

® ? ( !0  = °
and

<8>o - 1

(2.4.4)

The perturbation function E is given by the interface equation,

.  r i & i  -  i  
2P i «  L  A'

if r rf.®-'
o q

o
*

A*'v

(2.4.5)

First Order
l ^

Collecting terms of order T fc , the perturbation functions (B>, , <B>,
and are determined by the equations ;• 

For the solid region, (B>, satisfies

dt*C5)i + IT i -  2.(3), * /f 
d ir  <*•? (*T (2.4.6)

subject to,

and

[

(E>i<<0 - o

<3Pi +■ -Ci dig)«,
u.e.

-a O

For the liquid region, 0), satisfies

4 - ® '  +  2 T  4 ® ?  -  2<H>*
c L V "  ¿ V

l\. d ® 0 

dL'S*

(2.4.7)

(2.4.8)
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subject to the conditions

l =
I A  d l *  it** §•

* AS
and

® ,  r * o  =  O

The perturbation function is determined by

- ot<8>, -  ^£o€, 3®» 
d \  di\

V * -

Y oUS>* _
d V  X'* d V

J 7*8 &
' A v'

Second Order
Terms of order "C give the following set of equations: 

For the solid region, satisfies

<*2®x =  S T d ® „ . +  i v d ® .
(AT1 <AT dT

subject to the boundary conditions,

®^.Co) = o

and

+  Cl ct®i H- (Ea. -  EaCi1 ) c l ® o =  o

(2.4.9)

(2.4.10)

(2.4.11)

(2.4;i2)
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For the liquid region, (^satisfies

d*Ç3>Î +

A Y dLV
c*T*

(2.4.13)

subject to the boundary conditions,

| V  ♦  S .<*»7 H- f h  - € « ê ‘ )  4® }
[® *  x  s i *  U *» x*» J < *r

B. O

7 * - € p
X'»

and
® £ ( « 0  = O

(2.4.14)

The interface equation determines Ej.

- agp£, d<g>, * (u-c,
a \

dJ8>Z _  zEc§, d®T 
d Y *  ~ A8* dS*

\ 4®*-
l «

+  aeScN 2 £ o £ * )  d ® .  ]
¿1 J

- x n

. (i±& - 3 £ « x +.*&>£«
' X  x*

- 2-£o£a\ dSÎ*

£o
* AS.

(2.4.15)

Third Order
\  AOn collecting terms of order X  (or equivalently X  ), the 

perturbation function ^ s is introduced from the flow field governing 
equation. Firstly, however, the third order perturbation functions for 
the thermal fields are given.

For the solid region, <2>a satisfies the equation,

d * ® »  +. Z l  d ® ,  - € > @ - s  =  Ifcfd®«. - i - S l c l ® ,  +  £*. d ® a
d.7?  <*5

(2.4.16)
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which is subject to the conditions

<Sh(o) = o

and

T © »  *+■ £« cL(8>z + (£*. • G>£?) ct&i +l . 3^ af
+ ( &  2 & > £ , g .t. + a & ' e ?  -  it6 ?  )  <i i >»

3  3

For the 1Liquid region, j satisfies the equation

d * ® * +  Z ^ d L ® ?  _ . & < s > t  =
dJi*' a r

« T c i e S  + S f d ® T ■*• U. ot®a.
d i * o t r * r

which is
«

subject to,

r 4  a. +  ( % -  G o G ?  \  <£<5>7 +L X \ x ^ A?* / d ^ *

4. 2.GT ~ Z G « a -  /f c«3 \+ I a ” X *  X s 2> A* 3 A’ J d r

=  O

< 3 >*C<*>)  - o

(2.4.17)

* o 
£•

(2.4.18)

]r :*
Av*-

(2.4.19)and
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Eg can be determined from the interface equation

d®» _ Z.Eo£i <¿£¡>1. •+ -i(.ei
d.1 dLl

— Z £ o £ » +  2 . £ i £ * )  4 ® ,  + ( € £ o £ i  ■+<Z £ b £,

-  •&£,£* *  4 £ -  ~ 2-G»^ -•?&£?-<• USE.& ) 4®

V'£o

_ x < r  4 ® *  -  2.?5§ <4®£ *-[l+s -  ttS* -}£«& >
[  c^* A V A T *  \ A A* A

+. O k i e ? > d ® ! 4  f t£t£i «.‘g&.e? - * £ » £  + 4 & >
A* -

—  XCcio — •2&>et -f- U-G^Ci -  u. \  d®>t'

A x s  Z * ) < * r . 11

A*»

(2 .4.20)

Finally, the flow function for %  is given by the partial differential 

equation,

+ 2.^* -  2«. ^ — 3  fvo» C I  ̂  ̂@o
if»*- F a r 5 b - ¿ r

which is subject to the boundary conditions

! , < ? »  -  < 3 3 « V ) = ^ n V v
&V

(2.4.21)

O  ext ? » £-o
AH.

(2.4.22)
and

Ouo V - CO

(2.4.23)
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A standard method of obtaining a solution to this type of partial 
differential equation is to assume that the variables are separable.
Thus can be simplified by employing the separable variable as follows:-

O -/* 1) .  i j C p )
(2.4.24)

Hence the equation is reduced to a fourth order ordinary differential 

equation in which, it should be remembered, is dependent on ^only. 

Thus satisfies,

+  z j ' c f l ,  - z - o C f »  „
a r *  n  ¿ r *  n  * 1 *  <*.r «. , . « >

(2.4.26)

(2.4.27)

and is subject to the boundary conditions,

~ ct ̂ ^  ** o  o t  If * ~ Êa

.  *

and
-5> O  OuD

Fourth Order
For the lower orders (n$3) and have been dependent solely

on f and \ respectively and En has been a constant. That is, they have

been independent of the polar angle ©  (/A = cosO). However, on calculating 
_>the order X. equations, the first dependency on jU of these perturbation 

functions is introduced. In particular, a term which governs the 

convective motion in the liquid thermal field is introduced. The equation 
for the liquid region is,
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£®* +2L?*i®V - «® * = 32
di** a?* ot^* <*?*

* « T ,c 48>T +  4 ? ! ® *  +  Z 6 € 3 . o t ® »
ctf* c*** «*?*

• . (2.4.28)

Substituting (2.4.24) into the term on the right hand side which contains
rr* it is found that this term becomes,

-3Zf3x SU.ct®..
(2.4.29)

Since this is the only term containing JU, the following separable 
variables are employed.

<E>c(?,/>) -  < S v U )  +  j u ® ^ )

® :  « *  m)  -  ® *  (V)  + ¡x S C  ( Y )

and

- £*► ^ (2.4.32)

Substitution into the fourth order thermal equations for the solid 

and liquid regions, together with their boundary conditions and also the 

interface equation, gives two systems of differential equations. These 

are the single bar and the double bar systems which are denoted by
«5and respectively.



Fourth Order Single Bar System

The solid thermal function ©^satisfies the equation,

+  Z j c L ® +  -  2(E>it •=
d Y *  d $  <*•*

+ ?$d®1 ■+ lj-d(S>3
d-f ' ot-7 (2.4.33)

which is subject to the boundary conditions,

© 4  Co> *  O
and (2.4.34)

j (8 )14. +  £1 c i © 3  -+ ( £ x ~  £©£.f) c t ® a  ■+
L

..x'

4. (Ez  +  3 £ ^  —  2£i3 —  2_£d£ . ) ot®)i +
 ̂ 3  ' d l

-+ ( i4.&,ei -  2 . & e , e ,  +  J2 -  «jefea. -  £=.e\ t  £ *
(9

+  (*.£.&. -  ? £ o £ ?  -+~i£ieJte^ -  A  e £ ®  
■3 3  ' d $

The liquid thermal function satisfies

c £ @ > *  +  2 .1 *c L ® *  - « ( & :  =  3 2 V .  d ® o  

oLl*' <*** •

o t T  o q *

■= o

r 6«

(2.4.35)

subject to the boundary conditions,

[ +  € d  *  ( J &  -  % £ ?  \  < * ® {  +
L  A  d - i *  A 5"3 / c t ? *



-+[£? + - 2.£7 — Z£o£j £a 4 . Z £¿£?
u * Av A7 A5 s  >

-  1 5 , - Z£o£i€li 4 + (9 ê ei*- -  *S£f£
U * A^ A^- i> A*«- A7'»

-ft*-£i£a -S % £ ? + zçfefe» -  £?£|U' j d * *
3  A7'» ¿A"3- / d ì * .

and

<S> * ( **>) » O

A 7̂

-  o
5* *£?/>&

(2.4.36)

The interface equation which determines is

l o a ? .  =  T  -  2 -e °e ' +  ( ^ '  -  Se,*-
^ L d j  d l  '

- 2 £ . £ i  - t - X e . ' e O d ® *  +  ( 2 £ o€, -  I0Ê.1&. + ! $ £ . € ?

d l  3
+  l+-£a- — 2-Ee»€.3 —  4- ¿f£o £|Êi —  U. £ « ? I

3  dt^

-t-(l6£oZ£, -  IO£,kj - i& £ ,7 f  3o £ o£?£ ï
3 3

-f-^53 +  fë£o£a. ~  £.a. ■+* "A.^*»£cf ~H I2.£i
k  . * 3

-  lfeGÉ.7 +  2 . É > á  -  )&£<>£,£*. + ^ £ i £ 3 + ^ ^

o L ® ä
3  ¿ I

\  r .-
~  A *
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—  Jj. C o C f  4 5 ) I f U>Co £ , —  toGtCz —  ^  £?
3 >> j 4?* l A* A* 2> A1

+  S O & £ |  £a *SU- Co £ -j 4- S S  £| 4. — S £ i
A *  ^  A"5 *> A* 7 T  7 ?

+  U-£a —  ^-£e>£.if. 4- 12-E.y —  14»€o€.i 4- <L £«?£•> 4.2  ̂£ o C >
A '  A* A' A A-
U>£o£i£.% +• 4-£o’€!*£'i +  ̂ E o  £t v a ® o

X^ X " A “* A " ) d r

(2.4.37)

Fourth Order Double Bar System

The governing equation for in the solid region is,

d*®tf + z }  a®>* - z - o 
d i ’" <*•* (2.4.38)

which is subject to the boundary conditions,

<5>c*. Co”) - o

and

[

® >, € *  d & o -  O

i ^ € o

For the liquid, © *  satisfies the equation,

d ? ® >
«LT

+ Z l * d ® z  - % ® Z  - -32.!?a ï î  Ô fib
o t r

(2.4.39)

(2.4.40)

subject to the boundary conditions

l

<s>: 4 ® o
A*»

=r O

®  4 f <*}■)= Oand
A t

(2.4.41)
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The double bar interface equation for is,

r I Otï ]
- * ï

et<£>*̂ —  2. £ o £ q. 0^S>O
¿ T { *  A 3 c q *

4* n

l O ^
(2.4.42)

Finally the perturbation function M »  which is also given by 
collecting terms 0(1* ), satisfies the equation,

0 * 4 « .  + 2 V ' d % ( h  - ¿ ô ' i i *  _
a V 1* à i "  R ò i "

■ «Li* ¿ 1 * (2.4.43)

which is subject to the boundary conditions,

1 x  a r *
*= o

r^*€o
n  7S

and

aï* \  3 1 "
- o

and also
r + - € o

C)1̂  — 5> O  <V> O

(2.4.44)

(2.4.45)
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Similarly to equation (2.4.21), the method of separation of variables 
is used, where

(2.4.46)

This expression is. substituted, together with (2.4.24), into the equation 
(2.4.43) and the boundary conditions (2.4.44) and (2.4.45). Hence the 

fourth order ordinary differential equation for is,

d.% ,. + Z7 -  i t . 'C ? 1- = 4 3 T  -  Z 7 * d ® t  
■ 3 3 *  "r  <>-vz f? d r *  d r  d . r

(2.4.47)

and the boundary conditions are, noting that from (2.4.26) à Ç s = o
si*

at t = .
= °

5?$* A cty**
-  c> > crt f  * go 

1 A«*
(2.4.48)

J
and o L j t .

d r
CU> 7 * -S) ot) (2.4.49)

Fifth Order
In the fifth order thermal liquid equation there are an additional 

three terms which control the convective motion. This equation is,

a5s>;- - io«>7
■Sr4* v r

♦*»-f 0(2)» -J-
b V



- 47

-V « V d & t  + n-Zj&l
¿ \ *  d l *  d V

+2.^H ^®o +. 2.S?s + lT*5Ss d®7
ty. 3f* » /*  « *  ^  * ?

(2.4.50)

Substituting (2.4.24) and (2.4.45) for ^  and Irrespectively, these 
three terms become

-52U.6xfi.d®? -  S2u^.ifs d®?
5 ?*

Employing the same technique used for the fourth order equations, 
the functions <3>* , CS>% and E^(Ja ) can be written as,

® A / * )  *  M  ® < t t ) (2.4.52)

® £ ( r ) (2.4.53)

E * { y )  ■ £* t / * £ s (2.4.54)

Again, as a consequence of these variables, there are two systems of 
equations - the single bar and the double bar.
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Fifth Order Single Bar

For 0 ^  , the thermal solid equation is

+ 2? et®>5 - io g>s = bUr̂ dmi, 
cIV Oil d-i

dQPj, 4" Ol B )». "f* l|* ct®(f
c(f at? oil

>+. 32.1 otCS), 
* 1

(2.4.55)

subject to the conditions

< 8 > *  (  o') SS o

and (2.4.56)

1
(3)$ *t Ci c£©n. +  f£a -CoGi1) d ® 3  ■* (£3 4 DGi *+

dll

+• 2-Go.G? }  C^0a *+ (C4.+ G ôG-T
5 5 <«

4* 3 G-oG-i* ~' GoG?. *4- ¿t-GiG .̂ — D.Go G1G.3 ~ i^GoG
2. *

+a£i£?£x -  G iG .^  c l ® ,  -4. ( C s  - k G f G *
3 " ; ^

- < £ £ *  +  *-a€i ~ & G , € £  +  £ € © € , Ga. •+ l f ^ G 3
IS

— ^ L G o G jG»*. —  S G o G a G i  4* U*G, —  Mo G © G |  4  S &  ̂ °G* G*.
3 3

• V  V
3  .

+  2lGoGiGi —  ̂ G^G-TG- jl •+* S G ^ G ^ G i  -f Q.GoGi**’ —  ltCoG(G ^

-  y  ¿ d  )  d ® .  = 0
^  JT S £ .



The equation for the liquid which governs the thermal function ® r  C D

dL®*1 +  2 * * ° * " ® '  -  l o ® ?  =  d . ® »  + 5 ^ - 1 *  d ® >
'£2.1. ^  J 7 » cdf* rtL'i*
d r *

+  1 ^ * 4 ® ?  1- u - d ® > \
d r  d r  dir

d T

(2.4.57)

which is subject to the conditions

f + e, d®: + /&. _ Eot.1 <*®
I A d.r (XH. x*» ) d-1

< d ® l  +
V

ze, — 2£«£.t€ia ■+* £o£»3 1 d®; +
w X* s A* A1 5 ^  Jf d r

§it 4- U-fcp£.i' --?£?£z -t* 3. Goé.!4, — £o€ou 4 ^£i£i +
A'* A”"1 2. X”1'»- X* X5'»

- ̂ lEoG.»Gs —S.£o£? -«-a.eïaÎEa -  Goer >\ d®,% ^
• 3 X7'«- A9̂ 3A"'- 1 *?

- C Æ ^ l
»

I Es +  * ? £ £  - S t ï - +  U ; £ ?U \  X* X* A* IS X' A*4- 4- it-CiEa — Si£ .£ .ifcu. — ^£oC7_e.^ +  A Eo£?€3
X1 X1 X1*- xv xr

X £ o £ ^ £ ^  4- U£i —  jk £., -f U-4> € a£i €a 4-Cl £> £ i ¿a. +
7 T x' *X* s A5 A*

. + 2 & e ! t  -  ifcele.?e.» + 2 , £ ^ ç t  -  ^ £ ^ ? \ d ® t  =  cXs s X* 1,5 X* K X* dr v &

® > s  / o o )  =  o

and (2.4.58)
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The interface equation which determines the perturbation function Ec is,5

I2.eer . -  ( ^ e, 4
L CL\ d - V

") d - ® -*, +  ^ —  tZ£i£%. +  (4-0 £.o£? -4 (v€L* +
<*T 3

- j .e .£ i  -«e»£r + 4-e?e, e,. ) 4®» + tifeei1' +
•3 d ’f

- ia£,£-s -K4-£? + ( b £ ? £ ,  + 3 S £ » e i £ i  + ? £ ? £ ?  4  £6064 +

- b e i + t v e a  -aeoE-M- f  lae.1, -u,ele? -  ise^e,** + ^ ¿ 6 5  +

— 4- Lt-G^E-iCa —  U.eoET'Ex. 4  ^ ® 1 +
3  )i^ z E o C i 4- £ o f L ^ — ia£t£o. — ¿ o o  £o£* 4-I5& £_o6-!̂  4

\ 3  3

— lO{,Eo£? 4S,2.E.i E-o 4*^b£o£»ei. — CL̂ E-i — \bU-£o£«£4 4
3  3+i>u.e2e.? + ifa £ ^ £ x  + s €.''•£?e.,. - i t - e J e i e ,  4 .

T  IS 3_lfe £ ^ £ .J* ’ — ia £ » £ i +  (4-£it. + € £ o 6 s -  a£ o £ -i - ’S>'2.£oE1+
3- ? £ . e i  4 -a i(.£ le>. -4 u-<2£<.£^ - - i a e i e .e * .
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- « [
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■ 3 z C 5 , e . x - ifc.6o6.tO* +  Ur€x>
,\7'* 1

4- 7-if £0 (£>€Lo£| \ <*«>?
X** A ? / « L ? *

<+&*£, e l  .

* *  '£2 
rVs. (2.4.59)

Fifth Order Double Bar System
s*

For the solid region, 0  5satisfies the equation,

ci*®>5- + ~ 10(S>f ^  cl®).
cLl* cL̂  cL$ (2.4.60)

subject to the boundary conditions,

(S>, (o'} =* o
and

F(5$)y +  d<g), -  2u£.o6L, d ® ) Q
L d? cR

(2.4.61)

•= o

XTv >|rFor the liquid region, © y  satisfies the equation,

d $ ) *  4. Z ^ *  o l g ) ^  - i o < 2 ) *  *  W  d ® *  -  d ®
d r *  c i r  d r

3 ^ ^ 0
-VdU?

— *2>2^h 5 *  d & £  - Z 2 . &  ? 3 d ® ?
d r  d r

(2.4.62)
subject to the boundary conditions,

e. d ® ?  +  5 .<S>1 4. <£§>» +  /
A d r  A *  d l*  \

5? — ^ £o€.i StS\ cJL0tJ dV =  O  

* X K
and

0 ^  (<*>) a  O
(2.4.63)
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The interface equation which determines is,

dl_6)$- -  3.£©£, cl(3V
di\

ct®)( *+

•f +• U-£o£i£q. —  —  ICl£t£n. d ® 0
dll

-  i £ .e ,  c t f C  d ® *
L d V  A V  < tp

+
1 * £ .

-t-

+  / < + £ * ■ ♦ -  -  laelS,. A  d ® . *  1
A *  a 7'* /  J £,

1  ^

(2.4.64)

The fifth order equation and boundary conditions governing the flow 
field is not determined because does not feature in any of the other 
equations.

It can be clearly seen that, as the exponent of "C increases, the 
equations of the thermal fields, their boundary conditions and the 

interface equations become lengthy and complicated. This is mainly due to 
the resolution of the perturbation procedure by the Van Dyke method.

Before these equations for the sphere are solved, the equations 

governing the thermal fields and convective motion in a cylinder are also 

derived, since both of these problems are solved using the same techniques.
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Chapter 3

The Effects of Natural Convection During Solidification in a
Liquid Cylinder
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3.1 The Derivation of the Governing Equations

The derivation of the equations governing the heat and mass transfer 
of a liquid undergoing the process of phase-change in a cylinder is 

similar to that in the case of the sphere. Nevertheless, although the 

equations for the sphere and the cylinder could be established at the same 

time by a general derivation, due to some subtle differences in the 
analyses, the equations are derived separately in order to highlight these 

differences.
The three assumptions made on page 18 are again assumed and figure 1 

is also the same, although the frame of reference is, of course, polar 

cylindrical and not a spherical coordinate system. Yet, due to the 

similarity between these two coordinate systems, the generalised form of 

the heat balance equation - see appendix A - gives the same equation as 
(2.1.18). Thus, at the interface C(r,t), which is represented by

C C r . t )  = r - Cr (3.1.1)

the Stefan condition is

K  I à ? -  C ( ^ ) c3rr à£r \  -  K * / ' a - T %
[ a r r* dy. à y  ) \

ô T *  a n  ^
| = p L  àfc

r* by ày. j v I t (3.1.2)

Although this equation is the same heat balance equation as derived for 

the sphere, it is included throughout this cylindrical problem in order 

to complete the model.
In the solid region, the equation for the heat conduction is



56

(J * S lrVr\ * Td-u^dTK{rdf( *r J T* d^L by
-D
v -  S ’

£>f (3.1.3)

where T(r,|A»t) is the temperature distribution and k is the thermal 

diffusivity. This heat equation is subject to the boundary conditions,

and

» ~To

”T  i ^  )  ■* i p

(3.1.4)

At this stage the Boussinesq approximation is invoked on the equations 

of motion and heat in the liquid. This gives the following equations for 
the energy, continuity and momentum.

The thermal energy equation is,

R  1  r *>'[ V  I r  d/u

~  +  v , d T *  -
b t V (3.1.5)

and the equation of continuity is,

rfr/rv,) ' <V> = o
1 o r  r d y

and finally the Navier-Stokes equation is,

—  V x V n v♦T
f L * *

(3.1.6)

+  o *  F
(3.1.7)
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ftIn these equations v'= (v ,v ) is the velocity in the fluid, T (r,;x,t) 

the liquid temperature distribution, p the pressure and ^  the density 
of the fluid.

As in the case of the sphere, the force exerted due to gravity is,

S- " ° )  (3.1.8)

*and the equation of state, where ^  is the density of the liquid at 

fusion temperature and Cx is the coefficient of cubical expansion, is

? * =  £  [ l  - « ( T - T V ) ]  (3.1.9)

Substitution of these two equations into the equation (3.1.7), and
taking the curl, eliminates the pressure term to give

2 . *  “  V  *  J^y X v  x v  1

v  * 2  * )c
(3.1.10)

The stream function M-(r,/A,t), on examination of the continuity 
equation, is given as

Yu. - ~  and Vr * -  ( * ¿O' (3.1.11)
r t y

Substitution of (3.1.11) into (3.1.10) followed by some further analysis 
yields,

O *  n*r i  * st)r +  (( ^  4*) +

r  *><■<',/*)

5 ^  -  | T ]
(3.1.12)
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where the operator is defined by2

(3.1.13)

and the Jacobian is defined by (2.1.14).

The boundary conditions for the equations in the liquid domain are
(i) initially,

T*=t, -j 
V  -  o  „

a t j o  r^ a . (3.1.14)

(ii) at the interface,

T* •= T.
« bty- = o

dr
at rs rF ,t>o (3.1.15)

At this point it is worth comparing these equations with the

corresponding equations in Chapter 2. Comparison of (3.1.11) with (2.1.10)

shows that the velocity of the liquid in the cylinder can be expected to

be less at the centre than it would be in the sphere. The operator D 2r
has different definitions for the two geometries, yet it is not surprising 
to note that the boundary conditions for both problems are identical.

3.2 Dimensionless and Neumann Variables

The dimensionless variables (2.2.1) and (2.2.2) are introduced for 

the solid region and liquid region respectively 'together with the 

dimensionless parameter However, due to the differing analyses, the
dimensionless stream function is now given as
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?  -  Jh
I?*

And so, on employing these variables the governing equations are 

transformed to become:

for the solid region the heat conduction equation,

i ô  lRà§>) -  (I R à ® ]  ,  à ®
S < W  f?1 ô ^ L  ô / * J  àt.' (3.2.2)

which is subject to the boundary conditions

(£& ( * i ) *" O

and (3.2.3)
®  (fcf/i.-cO.ju.T') =  I

for the liquid region the heat conduction and convection equation,

z>R J R ' - b ^ i  J

(i - u * ^

R  - à C R y )

à ® ’
■Sx.*'

(3.2.4)

which is subject to the boundary conditions

and
®> ( -  *

( f?p#/j,“x O  = O
(3.2.5)

The equation governing the convective motion is

ft b  ( R, /*)i?

<<aO-^ U  ÔJ* _ a®* 
. L  ft b/A. a R

(3.2.6)
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where satisfies the boundary conditions

Ô R
$  »  ©  ai ff*» fiV
by. (3.2.7)

and the initial condition

’£i?,yu. , o )  =  o
(3.2.8)

The dimensionless numbers Pr and Ra are defined by (2.2,10) and the 
2 .operator D* is defined by

*  f? &i?( r *- & (3.2.9)

The latent heat condition at the interface is

o  T à ®  -  O - M * )  â ®  ]
' tx! L «?*■ dyu. à;* j

“  ^  F —  0 " ^ )  <x?>* bf?p "|
L J

(3.2.10)

For the same reasons as those given in section 2.2, the Neumann 

variables (2.2.17) and (2.2.18) together with the interface variable

£(yu.,“c }  =  ( 1 —  fôQ
2 T ^

(3.2/11)

are introduced.- The previously established equations now become,for the 

solid,
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^  r t f - « M ) à < g > l  -  0 z l t D * *  t+'c à.
M  [ * *  1 ( 1 - a n M )  à j + l  bjj.

-  f» - a z > 5 ) U.'Cb©) -  Ä l  à(g)

. * * i (3.2.12)

This equation must satisfy the boundary conditions

and (3.2.13)
<2>C£, /^ ,-gV  I

j*'In the liquid region, (X) is governed by the conduction-convection

equation

2 - T o -  ' i - f ' V ) s ® *  ] +  f i 2-c*'i bL<i,<&>'")

^  *• * M ? »

-  h - t ^ K  s .  f ’
(t -  aT*1̂ * )  S/a 1

-  -  a - f a g j
1 W  C»V

subject to the conditions, #

<g>*(oO ^ ,  o )  =  I

and

and also

"a®̂  («■© o') - u, o) = o
5 1 *  ^

(3.2.14)

(3.2.15)

(3.2.16)
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The equation which governs the flow field is,
*

^  5  = J.C / L  -  f  ♦
* P r ] U t *  2.x* S 1 * J  1

O - a - c ^ D  W T ’.a O

If'“
&&>* +  a ®

♦ “>

i z * W )  v  S !+

where i  Satisfies the boundary conditions,

£  = c*qE -  b t f  = o  a *  7 *  =
fcR by.

&
A''»-

and ~b<E (°0, M. O) -  o

2The operator • is now defined by

_  ___ I__D%- = a , L  ^

- f O - W *  2.
o - ' z ^ r ) ^

a •
at**1 f t - a x *

* / + l

whilst the Jacobian is again defined by (2.2.28).

Finally the latent heat condition at the interface is

_L d g p —  3x S  0  <5*8)

O - a x ^ y  d/* dy^:

(3.2.17)

(3.2.18)

■h

(3.2.19)
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y i -1 3®
* ' ¿ -c ^  b Y

0 ® *  ô £  I

( i - ' w ^ T )  bM  ô ju  j

5 ( £ x ^
'bï.

•7*r«g.
* A S

(3.2.20)

The initial condition on E is,

£Ï/-* , O*) •= O
(3.2.21)

3.3 The Perturbation Procedure
The regular perturbation expansion as used to solve the equations 

for the spherical problem are used to solve this cylindrical problem. 
Nevertheless, before a summary of these expansions is given - purely for 

completeness - the form of the perturbation expansion for the stream 

function [£ must also be resolved. Suppose that this function can 

be written as

= <f„C
(3.3.1)

so that, substituting into the equation which governs the convective 

motion (3.2.14) and expanding for small u , the following equation is 

obtained:'

1 Y  i<l y n) -- 1 \ - J - ,
Tbt*x b y " ’

— f\ 
UX-V

")  _ Y  Y i Z "
g t ’**

&

11 C ' J X ' * 0®>* oCO
z ^

o ( ~ £
f A-»

(3.3.2)
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Comparing both sides of this equation, it can be seen that again n = 3/2. 

Thus the perturbation expansion for the stream function is written as

$ ( T > , - c 'n =  z
(3.3.3)

Whilst the form of.the perturbation expansion for *£ is the same for 
both the spherical and cylindrical problems, it is interesting to 

compare equations (3.3.2) and (2.3.6). In particular, the terms on the 

right hand side differ by f I ""/*•*') *£• / , a factor which will

become more apparent later.
As in the case of the sphere, before all the boundary conditions can 

be found at the interface, Van Dyke's method must be employed to release 

“C  from the argument of each of the perturbation functions.
And so, to recapitulate, the expansions are

= *2)oCl") + x.1*© iIX) x  QbxLX) •+•

+ X * ® > SC 0  •*x c' * ® +  - • •
(3.3.H)

- ® o  (8>* (T*) +

+ x *® K r)  +
®£ L V .J ) + © ’ (V, m') + • • • (3.3.5)

 ̂ — E.O + X»1 + X t x  4* X  ‘ Ê.'j 4*
+  u) 4- 4  . .. . (3.3.6)

...
(3.3.7)
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3.4 Determination of the Perturbation Functions

Substitution of these expansions into the equations governing the 
thermal field in the solid (3.2.12), the thermal field (3.2.14) and the 
convective motion (3.2.17) in the liquid as well as the latent heat 

condition at the interface gives the following differential equations on 
collecting terms of like powers of X  :

Zeroth Order

Collection of terms 0(1) gives the equation in the solid region 
which governs fi>„. That is,

^ ■=. o
ay ^ (3.4.1)

which is subject to the boundary conditions

<8>oLd) » O
and

®>oC£ )̂= I
(3.4.2)

For the liquid region, the zeroth order perturbation function must 
satisfy the equation,

ay* ay
subject to the boundary conditions,

and

(3.4.3)

(3.4.4)

It is not surprising that these equations and the boundary conditions
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are the same as those for .the zeroth order in the spherical problem.
Eq is determined by the latent heat condition

^  [If] _  Y ô<a>,»  1

l

o
Hr (3.4.5)

= £
A 1̂

So, for the zeroth order, the value of Eq obtained is the same for both 
the cylinder and the sphere. However, for higher orders it will be seen 
that the different geometries will produce differing equations and hence 
different results.

First Order

On equating terms 0(T. ), the following equations for the first 
order perturbation functions , (B)f and E^ are obtained: 
for the solid region the thermal function ©, satisfies

c&i + 2.1 - Z.<g), =
d V  < «

2. c U & o
olï (3.4.6)

subject to the boundary conditions

(8>,(d) » o
and

for the liquid region, satisfies the equation

- Z®,v * 2.d&o
« « * *  c t T *  d l *

(3.4.7)

(3.4.8)

subject to the boundary conditions
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and

I + £i c L ® o
A +

n  O

f * * £»
' A*>

®>T ̂<*0 =1 o (3.4.9)

In the interface equation satisfies

4 ( 3 E . [ c t ® ,  _  a-fcc, d ® .  )  ^ 
L c q

a f e g i
A3*

d ® t
d i +

-r*» £• 
1 A4'*-

(3.4.10)

Second Order
The collection of terras of order X  gives the equations: 

For the solid region, satisfies,

et1 ® »  +  2.T d ® *  -  U. = 1 + ^  d ® . +  2  d - ® , 
ctl* d/? oCi

(3.4.11)

subject to the boundary conditions

(K>x(o) « o
and (3.4.12)

[ t8>%. +  ct(8)i ■+ (£a —  ^ ct(S)o 1 -  o
L  ctlf J ^ e .

and for the liquid region, (H^ satisfies,

ot1®? + z}*cl&>+ -  u-ts>%_ = + Zct®T
cLl*' d . ^ +  d $ *

(3.4.13)
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subject to the boundary conditions

[
and

+  Si *t c £ * A AX

(3>ï Cco") = o

1 2^?* ]
1 d V  U - e f

7 A ^

(3.4.14)

Finally, for this order, the.interface equation which determines E2 is,

<)6&. = f 4®»- - Ae„£., cm>, -t- ( z £ , - Z £ ?  +
P t <*? ■ v

(2iL>
( *

-  àGoÊa.) çUe>,

- s e r +  e ^ e î
.A' A 3

€o

CUg>x —  cA®)f 
o L ^  A X  d . r

(i(g>o
a* ;  c l v (3.4.15)

7 A ^

Third Order

As with the sphere, equating terms of order (0r equivalently!?^) 

gives the equation which determines the flow field perturbation function

i i « V >  .
For the solid region the thermal function satisfies the equation,

d̂Si% .+  7.1 ck&i -fctS ), = 6 ^  d ® 0 + Z.el@*
d - V  ¿ I *  cf? c q  oCi

(3.4.16)

and is subject to the boundary conditions,

CS>2 C o) - o
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and (3.4.17)
[  <g>a + £. ci®* + Ce* -  d ® , +
u d ?  oil

(c* —  +  2-£p £» -t- ~  Z £ o £ i£.ì
V *2

\ ct<8>© I rs O  
' *1

For the liquid region, ® 5  satisfies the equation

of<s>? +  2.q*d§>t -  i  -  £ 7 * *  4 ® «  +
d r 1 < «* o tr

+ lf i ‘Kol® * + ZdX3>*
d V  <*-1* (3.4.18)

subject to the conditions,

l® *
^  G  O U B H  +■ ( ^  —

A d \ *
I ^
VA5'-

Ê o £ Î  \  d.®,* .
A*5 ) 3 \ *

+  f £ ; -  ifeEi +  &  ■+ â ^ i J E o  
?  2- A5 A1 s  A1*

5.£»£«Ci
A5

d g >
cil+

+
© - o

and
(S> *  c*r> -  o

A'a
(3.4.19)

E is determined by the interface equation 3

g £ £ a  = 4 § > 3  -  a.£o£.i +  fag, -  n.£il
d.1 d*[

—  3.€-o & l •+• ) d(8>t +  ( —  /^£o £ 7  —  +
oL^

+<?&,£,' -  £ , & .  -  ¡ ¿ e i £ ?  •+ +  i t e ò c e o  d ® ,

3 ^  J } = i.— \Y F c4S>3 — dfS>i + I â£i — 4̂ * ■+.
arr ¿.r I a a*[
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4- 3 C o £ a
A' X5

A cUS>,
j d r

. / U.£o£i —  tf£-o£.? —  2 £ 06.3
(  ^  >?* Av*

^  %£jp£f —  *?£» £ x
A7*  A*'

I*'O- ¡ ¿ e ^ e ?  + a & i  +  tt-etee, \
3 ^  ^  ) d r  \ ^

1 7f-
(3.4.20)

The function f *  is governed by the fourth order partial differential 

equation,

3**3 '+ 0 ^ 3 »  - i : 3 >  = S & ( ' - M ' f Z ® :a. ^  *■ •*■’ *■> — -1̂ 3. ' ^ _5ly
d ? $  Pr ^ b r

>?
(3.4.21)

and is subject to the conditions,

3 ^ | ; , ^ )  « = 0

and

b V

O  Ob * T  ■— ^  O D

(3.4.22)

(3.4.23)

Utilising the method of separation of variables, this equation can 

be simplified by writing the flow field perturbation function {Jj^as,

% ( ! > ■ ) =  z R a b - y Ÿ  Î t W ) (3.4.24)

Substitution of (3.4.24) into (3.4.21) and the conditions (3.4.22) and

(3.4.23) gives the fourth order ordinary differential equation,

< £ ? »  +  - ¿ . o f f ,  -  d ® “
d f* "  9,  d-r* 9r d\*x ' 57? * (3.4.25)
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which is subject to the boundary conditions,

g, - =o at =
and

o  ölo ^  ° o
d V

ÊS
A*>

(3.4.26)

(3.4.27)

Fourth Order

The dependency of the perturbation functions <g> , Q£)* and E on«. ** 4 r^
becomes apparent in the equations obtained from the terms of order T- , 

Investigation of the fourth order thermal field equation for the liquid 
reveals the inclusion of a term,

2 1 1 —  / ¿ ‘V *  ' OLGDo

^  (3.4.28)

Substitution of (3.4.24) into (3.4.28) gives,

—  ctôpo . a.
0 ^  +  ' (3.4.29)

It is interesting at this point to compare this term with (2.4.29).

Again, the separation of variables technique is employed and the 
following variables are introduced:

- ©4-(T) ■+ ju. (S>^CŸ)

< s> ic\ y)- & :c r )
(3.4.31)



and (3.4.32)

Substitution of these variables into the fourth order equations 
produces two systems of differential equationsj the single bar and the 

double bar. These are denoted, as in the case of the sphere, by —  

and sr respectively.

Fourth Order Single Bar System

The solid thermal function (^.satisfies the equation,

✓4. 4. 0(.(Bv —  ^  ~  >f.
i i 1 etl

v *t-1 d-®* +  Z. cL®\
dfi <*•? O.U.33)

which is subject to the boundary conditions,

© „ . ( o ' ) “  o

and

[
(3.4.34)+ Ei d(S>3 €o£.r) ct<S>x +

ctl 0t|

( £ *  +  £ ?  - - A E o e . e »  )  9 ® .  +
1 3 ' C*|

+  Eu. -  tf £ 0& f  h - ^ 4 ® *
3

-  e 0e l •f

eSef ^ d ®
3  /
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The liquid thermal function satisfies the equation,

o t - e C  +  n * o t ® *  - % & > £  =  ifcT*3 o < ® ?  +
¿ t * <*■?*

.(.£ d ® i* ¿i-T ckQ&h. +  oictS),1
S i *  d .r  o^* o ,

subject to the boundary conditions,

i

and

® c  + Ei o l® *  -t- L &  - Ê.Ê? ' d ® £  +
A c£\* \A^ AVl <^T

*

•+ /  £3 -*■ C  -  ze ?  -
I ax X* a*

- «3-£LoG.<£.a.
A*

-*■ a  
3  A“

\ el®'J ¿ T
[ aEoci + iSEcCi* - <2£o £.3 -'s e T i - £ .£ i
1 X * b  A1*- A7'* A7'* A7'7- .
tX£.\E.a *\rI t .  - i i £ o 6 ?  

A“1'1 3  A7'-
-*■ aôëÎÊ .* -  e -o ^ A  

A“1'* 3  A1** /
of® *
o < r

®  *^««0 ■= O
(3.4.

-  O

E is determined by the interface equation

IO £(*. — — ¿EoEi of®, •+ (Z£., — 5E,1' -  2£o£, 
oil <¿5

+  3.£oEx ") o^®ai ■+* ~  to£*i£x +  ‘52.£t£w ■+a£.,.— 2£.e3
rtf ' s

-it.&ci1 +A^eiE>. - it ê e,3 ) ci®, (%&£, - iq£iê>
3

- 2 s e . 3 +  3 o e ,&!£ ,  -  Eo£i^ +  i ?  e,^ +  i+e^Sj. -  s e i  
3  3  fc

-t 2.^3 “■ *+•

- + ¡+ £ ¡£ < £ 3  +  it£2 e ?  -  * - e ? e * £ i  + | e i ' e r ' )  d ® .  j +

It - * .
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'» a

dg>j! _ Z£o€-\ o t® * -+- fpl G  —< *V Av \A"\ dUS>t -+ / 4-£o£, - |D £ ,£ a  +
) ¿ V l  ^-  ft- EaE* 4- U.£o£(£-% -A W A7* 3  A»4

—  5 5  £?• +
7 r  3  a ' fa K

a« x  i f  -

A"* . .  . .  . .  ,

~~ to £ » £ 3  — •+• *So ^ c>€?€!'3l *~ 3>U- £ .o  -4-
X’ 3  X 1 7 ^  3  X

±  M-g o £ > _  *S g .a  - e  3 jE 3  -  S L R o e L . +
A  A? A' 7 T

•4: ^ € o € q . *~ % ^ o ^ g a . -♦• tfr€o g ( g » 3  +  U -£2  £ ?  .
*  A’  ^

-  M g e ? &  +  a e ^ e i -  \  < * ® £
A-5 s  A 4’  /  c ^ *

7*V ■=• £*,

56T - ©LCo€.i ■+
Ax A'

52& £?
A^ A^-

\ ot®|t +  (<ze2

/  ¿ T " \ A1

A*

Fourth Order Double Bar System

The fourth order functions ® * .  K  and E* satisfy the following

equations:

for the solid region,

d % f v  + i ? o < J b *  - s ® „ . - = o
oLi* c L \

(3.4.38)
subject to the boundary conditions,

(E)*/®") =  °
and __ (3.4.39)

f  © « .  -+• | _  o

and for the liquid region,

o £ ® ;  +  ^ < * 3 ?  - s S ;  =  -
ot’f*’- ct-Y

(3.4.40)
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subject to the boundary conditions

[ +  £¡,01®, 
A *  d A

'o ' ' 
* - o

lì« V.O

and

The interface equation which determines is,

I O ^  - £ ct®+L cm 53

oL«>̂  - ae..ët o(<g£
dur A3 d r

^  Co

Xk

(3.4.41)

(3.4.42)

On equating terms of order X  in the flow field equation, the 

perturbation function is found to be governed by the equation,

+ zi* -  Z f& U -jjrfd ® *
♦ 4- pa? ir ô y ctf*

(3.4.43)

The boundary conditions are,

and

j è IL A s^J,. S  O
4 at Co

*

r + s.- t f s i
[ ò r  * ò r L _ ^ ~

(3.4.44)

O



76

and also

^  - 4 — ^  O  O O  T* -- 5> o£>

Introducing the separable variables

(3.4.45)

(3.4.46)

and again utilising (3.4.24), the fourth order differential equation 
(3.4.43) becomes,

+ aj’’ofi* _ !£<£&». = diS>t
dtf** Pc dLVz P, ¿V' «tf (3.4.47)

subject to the.conditions

( Es\ = o
r e, dLl53 1 « o (3.4.48)

L 5f*' A Jy*-%A**
and d-% <*4— O Olù c — ÖÖ (3.4.49)

ol-?*
where the second boundary condition in (3.4.26) has been used to simplify
the first boundary condition,in (3.4.44),

Fifth Order

Investigation of the thermal field equation for the liquid reveals
the presence of the terms
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( a s j 3 a ®?  v « f .T * a i ,  + <J®: A
\ ¿>^ < * r  ¿ t r  5 ^  d i r  I

(3.4.50)

Substituting (3.4.24) and (3.4.46) into these terms gives,

l " ofj* ol|* d T * /  <3-“-51)

and so the fifth order perturbation functions can be written as,

~ ® -S  i 7» )  (3.4.52)

« * « ! * > -  ® ? f r ) f / x g > T ( r )  (3, . 53)

£.<$ +  £ * . ^ U .  (3.4.54)

Substitution of these variables together with (3.4.30) - (3.4.32) gives 
the single and double bar systems of differential equations.

Fifth Order Single Bar System

For the solid region satisfies the equation,

dT®s + 2.1 o t® T -  (o  g>? -  3 z l “ r f© , -f 
<*.?* d T  ci-j

+  'n M ® *  +  i p f o t ® ,  +
<5T ot? 3 r

(3.4.55)
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S>5 CO) O
and (3.4.56)

(&< ■+• ^*2^, "*■ -  £*£7} c4<S)-̂  *V £ £ 3  + 6L* 4*
dT{ <*7
*- & e ? -j. (£<,. + z £ t>eiv -*

5  3 or*~ 7 £r£a ■*• 3 £ o£4* -  £o£i + 2.£,£*. -  2 £ * e ,6.3 -2. s

+2£?€?'€.^ -  £ 06-* ^  +  ( £ 5  +  **.£¿6.? - 6 £ i'£3
3  / a i  V

—  ft-£»u’ +  ti- £ *  + £ ^  — £ x  *t* UrC.o £| £». •*■ 2. £, S.z +
7?

-  2iG>£i£*. - ^ £ o £ l£ s 4- - £ . £ * £ . ?  + j ^ £ o ^ . ? £ » .
3  3  3

4-D.£o £» £1 —  £». 4-ci£o 6» £3 4  £*£.it*’ *+

-  -f i* E ^ , ”5 -  & 1 £ ^ £
T  «5

subject to the boundary conditions

\cm>*
; <*T

—  O

rr *•For the liquid region \8>g satisfies the equation,

M ?  - I O & ?  =
c c r v  < * r  • ¿ if*

+ ( t , t * c £ ® f  - ^ T a S S  +  t t f d & Z  + z d g > *  
a s *  a s +  a ? ? (3.4.57)
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subject to the conditions

a d y
+ ( & * £ *  - l £ ?  

\ A* A* 3As

f £ »  -  £*£.' 'l o t ® i  +
\AV> A*a ) d - V

3.£e£t£a -t* gj € a £ ^  J ci-®a •*■
a * 3  a *  } o t r

+ ( L  *  A £ o £ ?  - 1  £^£a
^  A7** a A1'*

+  3 l£ i£ } -+-
A7'1 ÂT*

_ oL£o£.\C.) •— + a&îeiea -  d d *  Ì d§>? 4

A7-* 3 A'» S A 1 )

4 I £* 4 U-£o £.» — ¿>£<£3 — ¿4-£< 4 é>tt- £< + GÌ
\ A3 A3 A“  A- K A* A3 AT

4tt-Ge»Gi£a. — «ì€o£.i £^. -  Ŝ,t,C-i£.z 4 G? 4

A* A1 ' A1*- A**" 3 A*

— g  £> £? -» ¿4-& £ a£? £a 1- pj-£o £ j£a  ~~ ¿f€o£?£a -V ô£-o £ ? £ 3

s  A * 3  ^  A' A“- A5

+  £ o  £ (*~ — U- €x +  ^
3 A4 K A7

¿ ¡ . e l e i  ^  

i* A‘ <*V
= o

r - - s
A S

and
® V © f c > >  == O

(3.4.58)

The interface equation which determines the perturbation function E

I2f£, ' 

—  StEoGa

(kS>f —  2 £ o £ i  -*
'. ci} * 1

+  eU£a ) ct^pi +  ( if£c£i
oC*

(ZR,-b£Î -t- 

~  i* U O  -*•
3



80 -

Z£x —  2-£©£i —  tf.GoÊi*’ -+■ if £» £i £ »  —  tfc £.©£., ^  cl(8)a +
3 d ?

4* I |(?£̂  —  l*2-£v£3 ”* I3uE a •+ 2E.O&I +  1^£o£^£}, +  1(^.0^ -f

-HtEoQ* - f e r i  -*.a£3  -a.ko€M. +  U.EÍ - * € ? £ *

■ + a E ¿ £ l  - ^ € © e i G i  - i ^ e ^  ^ ê .S'G.Î4* ] dca>. +
3  1 d?

•+(lí>6 ?£, + ^ € . © ^ £ 3  - I 2 £,li* -£££* » £ ,3 +  T ?  Ê o £ ^  +
3  3

— Iö^EoGi* +  S2l6L?£i  + 3(a£©£i£-* — 3lf£^£a — (fctf £» £^£x
3  3

t-3i».£*£«S •+• 2 £ © £ *  -tfc£*£,* -V ££©*£?£> - L f £ ? £ ? £ *  4-
3  «  3

— ^ G &  £.{* —  (^i£.d£i ■+■ 2-£iv ■+ if£d£.3> —  2_£©€.ç —  !££<»£{ 4*.
3

- t f £ © £ l  *  ££.£,. 4- ÍC,£©¿t - ( £ £ © £ . , ^  - S & > £ , £ s  +

+ lf£o £.1 £if. 4- if£*»£.,x£.3 •“ if£^£i£a. -*• I2£.©£f£a •+*

t  î  \»o£i J dn&tf -  X Ï

T'e<

dj¿>?

¿ 1

*“ A £ d£
Av=

>£1 cLG&u. *t* ^ 
'* <** 1

ZJ£( —  é>£( —  2.£ © £ ¿ -f Z£o£|
X  A* X  Â

d®*

*• I U -£»£< ( ̂ -£(£ z  •*■ ît? £ q £ i +  2-Gi —  û.£e>£a -+.
\ A** 3  A7'1 A^ ^

—  t4.£.o£| 4- tf é ^ £ j £ a  £« £ | J d L ® L̂ +
Xs*4 A7'* 3  A,fl j  c q *



81 -

+ t ibe,1" -iz-ejifcs -i2§? + -gele, + 3seo£j&a. •*•V Jt- A7 X1 , A' A*
.+ (t-EÎ £ 3 +■  ff£ t£ a  — fc£a. ■ + 2 -£ i — 2-EoC«*. ■+ ¿t-£.i — *2 Ea £-'

A* 7 ?  A’  A11 A* X* '

— I 5 £ o Ej* -V Z E o £ x  —  £ o €.i€jl -v U-£o — tf£ % ¿ f €.aA’ A1 A" A'
+2e|^:îf '\ oUS>? + /ife§Í6.< -*• Zi&Ûa.* - iz e .,^
3  A‘ / â - f  [  X1'’ A1'*-

-■ ŝ Èçê? +33&D€.r -  lo t  e^e.? + 5 ze ?£ i + 3t% e.€ .à  
3  A’-» 3  Ä S  3  A"** A,f* X*,J-

*~3U-íC7£a — £o£-i Ê.X +  'S if- £ 2 e ? -*- f  £ q£ i  -+-
^  3 ÄF 3 A11'1 >?A

- ¿ e ^ £ ?  -y «g& ire.?^ -  t».e|£?e., -  «  e3ei* -*• 
iS AS. 3  X13'» A1"» 3 A"'*-

*~12Ka £ 3 +  2 ■♦- —  Z £o€-g — ■ Í £.I •+•
Av* A ^  A7'» ^

— 4-£>o£.X •♦• ^ £ tC a  4-lÉ>CeÊ.i — lé»ÊlÊ^Ê.a — Ŝ£cÆt£a +
^  X '*  AT'* > &  X*7

*♦" U-£o Cv^M- *t* U-£^£rj.G.3 -  « - ¿ S c . e S

5 F A'*'-

A9'1 #■
» ■

A**'»

(3.4.59)
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Fifth Order Double Bar System

For the solid region, <8>s satisfies the equation,

< C e > i  *  Z }  o1§>S _  to =  2. d © *
d i 1 dL\ (3.11.60)

subject to the boundary conditions,

< § s (6) *  o

and (3.4.61)

© s €4 d(3>^ -+■ Etf c b ® ,  h- (£ *  - XEo6^6tS) <&£><>

l
(Pi

For the liquid region, <8>7 satisfies the equation,

o P ® '  Z T c t j s > ?  - 1 0 ® *  -  z d t i & l  

d t * 1 <*■?*. d ^ *

d i *  d i *  o L ^

=  o

(3.4.62)

subject to the boundary conditions,

<5)* S i  oUSp*. 1* Si»- *+• / £ ?  -  o l ® 1*
A d i *  dr*  \A^ X* / d i *

- O

and (3.4.63)
(B>̂  feto) s O

The interface equation which determines E is,
0

f  d ® 5

l  d ?

- Z £ o £ î

-  ze«e. d ®,. -  le*!«. d ® ( -* ( 2.L. +
<*T Â Ï  V

—  *2_£.i€U. *+L*-£o £4 i  d © c
d ^

Ì = €0
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[ d ® ?  _  zfce, -  2 - e ^
l  d V  AV j o t^  A1 e < r

f 2 £.t £ .̂ ■ -+- £i£-t+.
A%. Â  X"> ^

«■
c t o o O

(3.4.64)

It can be seen that these derived equations are of the same form as 

the corresponding equations for the spherical problem. Hence, the method 
of solution for either case uses the same techniques and these are 
considered in the next chapter.
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Chapter 4

Solutions and Results for Solidification Problems
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*K1 Analytical Solutions
The equations which were obtained in the two previous chapters and 

which govern the thermal field functions can all be solved analytically, 

see Stead [30] . However, from a practical viewpoint this procedure 

turns out to be limited and rather laborious. Indeed the computation of 
the analytical solutions for. the fixed values of the dimensionless 

parameters ^ \  , Pr and Ra is just as awkward as their derivation.

Moreover, the numerical evaluation of such solutions' is tedious and liable 

to errors. • Even when analytical solutions are sought for large ^  they 

are found to be unsuitable for computation. Nevertheless, in this 

section the zeroth and first order equations are solved analytically since 

the solutions of the lower orders are not as complex as those for the 
higher orders.. These solutions can then be used to check the accuracy of 

the numerical computations.
The general structure of all the equations governing the thermal 

fields and (S>A is now discussed. Each of these equations can be 

written either as

H - S J 1 )

(4.1.1)

or = £ * ( ! * )
#

(4.1.2)

where the operator on the left hand side of each of these equations is

*
(4.1.3)

It can be readily shown that one solution to the homogeneous differential

defined by

h;  • -
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equation
& n (X) = o

(•* ,1..« >
is given by

© rt(T) = ln wfc. ’f

where the repeated integrals are defined by

(»4.1.5)

L " w ( o  ^ €T#C- OC obt , (11,1.6)

V

and

(4.1.7)
Another obvious solution to this differential equation is of the form,

® v ( t ) =  L 'W c f ? )
(4.1.6)

However, this second solution can also be determined in the form of 

a Hermite type polynomial of degree n. Accordingly, a general solution 

to the differential equation (»4.1.1) is,

© „ 0 0  =  A - i C ' V r M  +  8 „  [ Y  +  nfn-.')!'"1 +
L H-

(n- J  -+ pn(J)
(4.1.9)

where *n and Bn are constants to be determined by the boundary conditions 

and p /  f ) is the particular integral. Similarly, the solution to the
differential equation for the liquid region (»4.1.2) is,
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© ’ i n / £  ¿"eric T * + a (h - 0  f**”

+  ( n - i'X/v -x 'Xa -^) ’i * n ’v'
32.

(4.1,10)

Analytical Solutions for the Sphere

The solution of the zeroth order thermal perturbation equation in 
the solid region is,

<B>oCt) - —  eJE-fc.

(- ¿o') (H.l.li)

or, expressed more simply,

(4.1.12)

For the liquid region the zeroth order thermal perturbation function is 
given as,

» ; « * ) =  erf I *  -

QJrfcI £ o \
[ X 4 /  (4.1.13)

or,

® .Vi*) = i -  gJ& ci*)
£rfc / £ 0\

l At4*/ (4.1.14)

In order to determine the value of E these functions are substituted
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into the zeroth order interface equation (2.4.5) to give the transcendental 
equation,

Eq is then obtained using an iterative procedure.

First Order Solution
_ _Using the solutions for <8>, and <8>( in the first order thermal 

equations, it is found that for the solid region, equation (2.4.6) becomes,

d?(8)( +  cL<3>, - Z(E>i
d-V- •fir Êo (4.1.16)

subject to the boundary conditions

<&,(£) = o
' and

=■ -  a e*  e."6*
Jrr exf

(4.1.17)

Whilst for the liquid region, the first order equation (2.4.8) becomes,

«e® r + 2 7 +o i ® r - 2 ® *  
d. r*1 d y *  1

2 -V
J~n exfcJes \

W j
subject to the conditions

(Hit

and
<8 > *  f°°)

_  2 . e ,
J v  A

- Ù

M
O

(4.1.18)

(4.1.19)
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The solutions for these first order équations are, for the solid,

3 J - & 4c. Êo —  T  —  £-» -fri
(U.1.20)

and, for the liquid,

< S > m -  £
Ü

( -
eJrWlL'A. iç^ c/kA

V i  (x-J (U.1.21)

Substituting these functions into the first order interface equation

(2.4.10), E1 is found to satisfy the transcendental equation

[ Z £ ‘ -• £,(!•* z e i -) ]  +

G o G J Î Ê ç

- V € A ( i ~ x)
l A“ ,

Solving for the equation can be simplified to become,

E. =

(4.1.22)

Z.Eo e,
ÇjF? G o

-Co _t£ -v/ -Cfl
-  U  A

9 JïîB H- f I *** 7£jJ } “  | X  \ ̂  ̂? U]
G o  S

i * * * »  ¿ t e a

(4.1.23)
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Analytical Solutions for the Cylinder

Since the general structure of the thermal field equations for the 
cylinder are of the same form as the corresponding equations for the 
sphere, then the same methods for the analytical, as well as the 

numerical solutions, are used. In fact, the zeroth order equations, 

boundary conditions and interface equation, which are identical, 
obviously give the same solutions. However, with increasing exponent of 
T-, the differences soon become apparent.

First Order Solutions

Substitution of (4.1.12) and (4.1.14) into the first order thermal 

equations (3.4.6) and (3.4.8) and their respective boundary conditions
(3.4.7) and (3.4.9) yields, for the solid,

d £ ® .  +- 2-T 4 ® ,  -  2 . ®
d - t J it erf £o (4.1.24)

subject to

and (4.1.25)

Fit erf £»
o

and for the liquid,

subject to
O

and (4.1.27)

!
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The solutions of these equations are, for the solid,

(B>,rO = ___ ) er?c£o -  e*£c. \  - JL ^
l J S E o (4.1.28)

and for the liquid, 

*
® t ( f )  -  1  i  (■ ~

4.1.29)

Substitution of these functions into the first order interface equation
(3.4.10) gives the following:

1
^  _ i

Ü T  Eo < 2 ^ £ o

Go —  Gi 0  ■+

J H

G,
)

A^y

I

i CJhfc /Go
(x m  j

(4.1.30)

or, solving for E^,

E »  =

_E*
£ o

Go

V £ $

Z l n

Go Z
A*4 erfc.

lA*4.

2 J n £  +  fi +  z e S W

frr G o  £o

- e £ V  » Eo
® ** Â ( £ o  Z !
A-ffi t e > P c ^ \

(4.1.31)
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Comparison of this equation with (4.1.23) will reveal the fact that

ÎEÏ ■ Ei (4.1.32)
where E^ and E® are the values of E^ obtained from the interface equations 
for the cylinder and sphere respectively.

* 4.2 Numerical Solutions

To simplify the computer implementation of the established equations 
a final change of variable is made. For the solid region, the following 
variable is introduced,

(4.2.1)
and hence the solutions are to be found 

For the liquid region, the new variable

% m
?

( E o / ^ )

over the interval 0^ ^ $ 1 .  
employed is,

1

(4.2.2)
and the range of integration is 0 < q^°o . However, integrating the 
system of equations over the interval [0,4] , by the method described 

later, and integrating the same system over the interval [0,6^, it is 

found that there is good agreement (5 decimal places) between the two 

sets of results. The reason is due to the exponential decay of the 

solutions which can be seen from (4.1.10), Thus the value of the finite 
upper bound used in the calculation of the liquid equations is 5.

The systems of differential equations are now solved numerically 

with the aid of a computer using the Runge-Kutta-Merson method. This 

method is made available by the Numerical Algorithm Group (NAG) library. 

The reasons for using this numerical scheme are threefold and are given 
as follows:

(i) the method is self-starting, requiring only the initial values of
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the dependent variables;

(ii) the evaluation of the truncation error enables the step width to 
be made as large as possible, or adjusts it automatically as the 
solution proceeds with the aim of keeping the error within a 
predetermined tolerance at each step;

(iii) the estimate of this truncation error is asymptotically correct

With regard to the first reason, it should be noted that the 

systems of equations which have been derived are all boundary value 
problems and not, as this method requires, initial value problems. To 

alleviate this problem the method of complementary functions is employed 

(see appendix B) which transforms these systems of equations into 

initial value problems.

Calculation of E --- ------------n
To determine the value of the nth order perturbation function E ann

iterative procedure is used. Firstly, the system of n second order 
differential equations for the solid and liquid regions, which can be 

written in the general form

for linear equations.

o •» 0,1, .. yrt.

are rewritten as the 2n first order differential system,

ctx (4.2.4)

dbx.
where is defined as
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* © U  and (4.2.5)

The independent variable is either q or q*, depending on which region is

being considered. A similar method is used for solving the fourth order
differential equation governing the flow field functions.

,(o)An initial estimate E is made for E and is used to solve the n
solid and liquid equations by the method described earlier. The results
obtained from these equations, namely — “and , are substituted intoa.cp

the corresponding interface equation which can be written in the form,

Ot.2.6)

and the following function is calculated,

-g.j.eZ*) - e,'*’ _
(4.2.7)

j-where <p(E ) = 0, E being the exact value of E . a n
The solid and liquid equations are then integrated again but the 

value of E^ is now €  E^°\ where 0< 1. The function

= s&i'9- a?n(zo>“»)
A

is calculated and the new value of Er is obtained from

C S.~5>£ ̂ (<>>) —

1

(4.2.8)

(4.2.9)

This scheme is terminated at the mth iteration by predetermined 

tolerances which are imposed on

| ■sj.ietr'y -  [

(4.2.10)

I e tr*'y  -  land
(4.2.11)
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¿i.3 Comparison of Solutions

In order to compare the numerical solutions obtained by the method 
described in section 4.2 with the analytical solutions obtained from 
section 4.1, the case when )i = 0.1, £=3.0, A = 0.1, Ra = 8000 and 
Pr = 13.4 is investigated. Using an iterative procedure on (4.1.15) 

and the subsequent result for Eq in (4.1.23), it is found that the 
analytical solution for the sphere gives,

E = 0.328791 o
and

= 0.084834

On the other hand, solving the thermal field and interface equations 
numerically, it is calculated that (where —  £.«% 1^10 )

and
E = 0.328790 o
E;l = 0.084834

Obviously the agreement between these two sets of results is extremely 
good and, from (4.1,32) it can be seen that similar agreement would be 
obtained for the cylinder.

4.4 Results and Discussion

The numerical results for the depth of solidification and the 

temperature and velocity distributions can now be computed as a function 

of the dimensionless parameters V , £  , A  , Ra and Pr for a specified 
liquid. Because of the assumptions made in the formulation of the model, 

some care must be exercised in interpreting these results. For instance, , 

in the case of water if the initial temperature is above the inversion 

temperature the actual natural convective flow will be quite different 
from that predicted by the present model. The numerical study by
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Watson [28^ on the natural convective motion of water in a rectangular 
enclosure shows how a flaw lies with the Boussinesq approximation.
When this approximation is invoked, see pages 20 and 56, it greatly’ 
simplifies the analysis but, unfortunately, variations in fluid properties 

cannot, in reality, always be neglected. Watson cites, for example, how 

the viscosity of water varies by about 35% over the temperature range 
0 to 10°C, whilst the maximum density occurs at 3.98°C.

Another complication which arises as a direct result of ignoring 

the density changes is, of course, the change of volume. As solidification 
occurs the volume of the solidified region can, in the case of steel, 

contract and create a small gap, or void, between the solid region and 

the surface of the container. A thermal resistance is thus introduced 

between the surface and solid and this can affect the rest of the 
solidification process. Also, depending on the width of the shrinkage 

gap and the level of the temperature, the heat transfer across this 

gap can be by a combination of radiation and conduction or, alternatively 

by radiation and convection. In other words, the condition of constant 
temperature which is normally applied must be replaced by one of 

radiative heat transfer.
Alternatively, in the case of water, the volume can expand on 

solidification and thus creates extra stress within the container, 

particularly in a radial direction. Consider, for example, water in a 

copper pipe; as the temperature drops and the water freezes and expands, 

the radial stress against the pipe wall increases the pressure within 

the ice and thus lowers the melting point.

The shrinkage or expansion of a substance on solidification can be 

an important factor in the design of moulds. The structure of ingot 

moulds for the British Steel Corporation and the shape of ice-lolly
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moulds in the frozen food industry are two of many examples,
Due to the similarities of the geometries of the sphere and 

cylinder, it is probably more instructive to give the numerical results 
obtained from their respective analyses in the same results section. In 

both cases it will be seen from the subsequent results that the shape of 

the solidification front is as predicted in section 1.3. That is, in 
general, the natural convective flow rises in the form of a jet along the 

axis from the south pole ( ® = ^ )  to the north pole (®= 0) and forms a 
forward stagnation point at the north pole. The flow then returns 
downwards (symmetrically about this axis) bathing the inside of the 
solidification front. These down flows collide to give a (backward) 

stagnation point at the south pole. As the volume of liquid decreases 

and loses its sensible heat, the density differences increase leading to 

increased natural convective velocities, This form of 'spin-up* 
in the early part of the solidification process initiates the formation 

of a cusp at the lower pole. As the solidification and natural convective 

processes evolve, the temperature of the liquid will approach the fusion 

temperature and the circulation in the liquid will cease.

For selecting values for the dimensionless parameters to be used in 

the numerical computation, data is obtained for the metal and alloy : 

systems, see Chiesa and Guthrie [26*] and for latent heat thermal storage 

systems, see Sparrow et al. £l3j. The latter system is examined first 

and, as an illustration, the values that the parameters take are as 

follows: y = 0.1, £ = 3 ,  A= 0.1, Ra = 8000 and Pr = 13.U.

Interfacial Positions
The depth of solidification at any time is given by
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E.f/A.'C) =  *** +  -*-T-k*. -i-T?^ + •  -  j

And so, substituting the separable variables (2.4.32) and (2.4.54) for
E and Ec respectively, it is readily seen that the position of the 4 5
interface can be written as s 

.or

Rta.x.-) = att&-»yubC-O
where

OCC} ® I ~  + X .£ j  + T ^ £ j  + " C  6. .̂ *f 4>. )

and ' jj,
bco = +  • • •)

The equation for R(^> ,*C) is the equation for the limacon of Pascal and 
obviously the present analysis becomes invalid for times when b('C)<a(‘C ). 

When this condition does occur the cusp will be located above the centre 

of the container; when b(t ) = a(*C ) the shape of the interface is a

cardioid.
Figure 2 displays the position of the transient interface for the 

sphere. Initially the interface is located at the surface and its 

position is shown at (dimensionless) time intervals of ¡0.1 until the 

(formal) small time expansions break down. In this case, this occurs 

at approximately t = 0.8 when the cusp reaches the neighbourhood of the 

centre. During the early stages of the solidification process the 

interface is symmetrical since the heat transfer is dominated by 
conduction. As the natural convective motion increases the interface 

moves towards the centre at a slightly faster rate at the south pole than 

at the north pole. Thus the shape of the interface is deformed into the 
aforementioned limacon of Pascal with the cusp forming at the south pole.
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Volume of Liquid
It is interesting to compute the volume of liquid remaining in 

the container at any time during the solidification process. Since the 
changes in density have been ignored except in the calculation of the 

buoyancy force, the volume of liquid in the sphere is,

Y*i L€) » - Zira* R  oiff cl

t. 'o

The graph in figure 3 displays the volume of liquid remaining in 
the sphere for the present case. The broken line in this graph is the 
volume remaining when the convection, and its effects, are ignored. The 

results obtained from this graph show very good agreement with those 

obtained from the analytical solution of Stewartson and Waechter L a] and 
the numerical solution of Tao [ “]• It can also be seen from this graph 

that the natural convective motion of the liquid slows down the 
solidification process. This is not surprising since the convection is 
governed, in part, by the initial temperature of the liquid} the higher 

this temperature is, the greater the convective effects.

Streamlines and Velocity Distributions

The stream function can be calculated as a function of the (physical) 

dimensionless variables R and ©  for any time X  . Curves of constant 

are then obtained by interpolation to yield the streamlines for the natural 
convective motion. Figure 4 displays the curves when = 0.1, 0.7, 1.3 

and 2.0 at ^  =0.1; the smaller magnitude of being the outer 

streamline.
The dimensionless velocities of the liquid are also given in this
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diagram. Since the shape of the interface is initially symmetrical, the 

magnitude of the velocities is also symmetrical. The' direction of these 

velocities is as described earlier, with the velocity reaching a 
maximum at the centre of the sphere. As the central column of the flow, 

reaches the north pole its velocity decreases. It then flows down the

inside of the solidification front and its velocity increases as it
© _ TT - £  .

A later stage in the solidification process is given in figure 5.
The streamlines shown in this diagram are £  = 0.1, -0.7 and 1.5,

Although the velocities shown in this diagram appear to be symmetrical, 

the velocity at the south pole is in fact greater than that at the north 

pole; this is because of the non-symmetrical shape of the interface due 

to convection. It can also be seen from this diagram that the effect of 
thermal 'spin-up1 has increased the magnitudes of the velocities, leading 

to a greater degree of non-uniform heat transfer at the interface.

Temperature Distribution
The dimensionless temperature distribution along the radius is 

given in figure 6 for the solid and liquid regions. The two diagrams 

given describe the distributions at the times t  = 0.1 and "£ = 0.4 and 

at various polar angles ©  = 0,^  and IT ; the broken lines indicate the 

position of the interface at^hese various angles. Clearly in the early 

stages of solidification, the temperature profiles are symmetrical. 

However, as time proceeds these profiles vary between the poles and, 

in particular, in the regions adjacent to the interface. This variation 

is more noticeable in the solid region. Also it should be noted that 

there is a drop in the dimensionless liquid temperature, as expected, 

below the initial temperature at the centre of the circle when “C r 0.4.
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Heat Transfer ,

The dimensionless Husselt makers Hu = | 1  -5—  at the solid and
R *

liquid interface and also at the surface of the sphere are displayed in 
figure 7; n measures the outward normal to a surface; in the liquid T = T ,

TR = TF a n d  i n  t h e  S o l l d  T  = Tf a n d  T r  = To ‘ For both of the phases the 
Nusselt numbers are given at the polar angles 6  = o, and 7T .

Initially there is very little convection and the heat transfer 
between the two phases is dominated by conduction. As time passes, and 

the convection becomes more prominent, there is a marked variation with 

®  of the heat transfer from the liquid to the interface. There is less 
transfer of heat at the south pole than the north; at 6  = 0 there appears 
to be a minimum and then the heat transfer increases as the final time 

of solidification is approached. The variation in the heat transfer with 
polar angle 0  from the interface to the solid and from the solid to the 
surface is seen to be very small.

Cylinder

The results and the diagrams obtained for the effects of natural 

convection during solidification in a cylinder are very similar to those 

obtained for the sphere. Due to the differences in geometric shape, the 

effect of the convection is not so apparent. For example, the shape of 

the solidification fronts in figure 8, although limacons of Pascal, do 

not have such a noticeable cusp forming at the south pole compared with 

the fronts at corresponding times in figure 2. This means that, in this 
case, the analysis does not break down until X  is approximately 1.1.

Figure 9 gives the volume of the liquid remaining at any time 

with and without the convective effects. This volume is given by,
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' Y,i to) ~ - l * \  W i - ^ d R d ^

*\ o

Once again the results obtained from the broken line show good agreement 
with other works which ignore convection.

The streamlines and velocity distributions for the dimensionless 
times T =  0.1 and TS = 0.4 are given in figures 10 and 11 respectively. 

The curves of constant $  are obtained for the same values as used in 
the sphere. It can be seen that whilst smaller values of (£ appear to 
give similar streamlines, larger values give streamlines closer to the 

centre for the sphere than for the cylinder. The velocities in the 

cylinder are smaller than those in the sphere. Although near to the 
interface this does not seem apparent, it should be noted that the 

velocities in both diagrams are not necessarily given at the same positions 
for the same times. The thermal spin-up is again seen to occur as the 
solidification proceeds.

The diagrams in figure 12 showing the temperature distributions are 
very much the same as the corresponding diagrams in figure 6. However, 

at time X  = 0.4 the variations in the distributions, particularly in the 

solid region, are less pronounced at the different polar angles. Of 

course, the position of the solidification front is not as far advanced 

in the case of the cylinder and this should be remembered when comparing 

these results with the sphere. The drop in the liquid temperature at the 

centre of the cylinder is also less pronounced than that in the sphere.

The graph of the dimensionless Nusselt number against time is given 
in figure 13. Comparing the diagram with figure 7, it can be seen that 

the heat transfer coefficients at the surface of the containers and at 
the interface in the solid region are similar. However, at the interface
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in the liquid region the variations between the poles are less for the 
cylinder than for the sphere.

Another set of results has been computed from data which was used 

by Chiesa and Guthrie C26l • The solidification of lead in a sphere and 
a cylinder is studied, where

C = 161 L = 23340• P
*0 = 2.28 x 10-7 1.14 x lo“*1
k = 9.5 x 10'6 k*= 24.3 x 10'-6

The fusion.temperature Tp of lead is 327.3°C. The diameter of the

container to be examined is 26mm and it is assumed that the initial

temperature T1 of the liquid lead is 335°C and the reduced temperature
T is 300°C. Hence, the dimensionless parameters are, o

Y = 0.5,. Ç = 5.3, A  = 0.39, Ra = 8717 and Pr = 0.02

It is»perhaps, of more interest to present some of the results 

in dimensional terms although, for simplicity, the graphs are displayed 
with non-dimensional variables.

The shape of the solidification fronts for the sphere and the 

cylinder are seen in figures 14 and 20 respectively. In both cases the 

fronts are given at time intervals of 1.78 seconds up to a final time 

(the time at which this analysis breaks down) of 16 seconds for the 

sphere and 17.8 seconds for .the cylinder.

The volume of liquid remaining in either container is given as a 
function of time in figures 15 and 21.

The streamlines and velocity distributions are displayed in 

figures 16 and 17 for the sphere and figures 2? and 23 for the cylinder. 

These results are given at times 1.78 seconds and 7.12 seconds and the 
velocities are given in metres/second.
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The temperature distributions are probably the most interesting

of the set of results. Figure 18 displays these distributions for the
sphere at times 1.78 seconds and 7.12 seconds; figure 24 displays the
distributions for the cylinder. In both of these figures it is seen

that there is a considerable reduction in the temperature of the liquid
»

after 7.12 seconds. At this time the depth of solidification in the 
sphere is 4.8mm and 5.5mm at ' © =  0 and "Ï respectively and the temperature 

at the centre is 329.8°C, only 2.5°C above the fusion temperature. At 

the same time in the cylinder, the depth of solidification varies between 
4.4mm at the north pole and 4.8mm at the south pole; the temperature 

at the centre is 332.3°C, slightly higher than the temperature in the 

sphere. Although the analysis breaks down for both geometries before 
total solidification, it is seen from the graphs that the temperature 
of the liquid would soon approach 'the fusion temperature and the circulation 

of the liquid in the container would cease.
Figures 19 and 25 show.the dimensionless heat transfer coefticients 

for the sphere and cylinder.
The depth of solidification is now studied for various values of 

the parameters and Ra. Before these are given it should be

remembered that for any specified liquid these parameters depend on the 

values taken by Tq, T^ and T̂ ,, the ambient, initial and fusion temperatures. 

Although .these parameters are* interrelated, the computation of the depth 

of solidification is still made, for while the actual values of the 
parameters may not relate to any particular liquid, the size or order 

may do so.
Table 1 displays the depth of solidification for the sphere with 

the values ^  = 0.1, ^ = 5.0, Av = 0.1, Ra = 8000 and Pr = 13.4 at 

angular'intervals of 30° over the dimensionless time 0.1(0.1)1.0 .
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The solidification depth is also given when = Tp and there is no 
convection. Hence the Rayleigh number Ra is zero and so too is the 

thermal head K . Table 2 displays similar results for the cylinder.
Tables 3 and 4 give the solidification depths for the sphere and 

cylinder for various values of the parameters as time passes until 
t  = 1.0 or the analysis breaks down. From these results it is seen 
that the speed of the moving solidification front increases for small 

Stefan number. The effect of convection on the solidification process 

is greatly influenced by the size of the initial Rayleigh number. This 
is to be expected since Ra gives a measure of the buoyancy force which 

drives the convective motion. Thus the larger this number, the more 

noticeable the effect of convection becomes, leading to a greater 

deformation in the front.
In conclusion, it is worth mentioning that the British Steel 

Corporation has shown interest in the results obtained from this work.

This interest arises in connection with the solidification of steel 
ingots, a study of which has been made by Schulze £24]. Due to the 

complications described in chapter 1, this study neglected the effects 

of convection. It is hoped that the analysis and results obtained from 

this present work will be useful and help to improve our understanding 

of the effects of natural convection during such solidification processes.



ANGLE/TIME 0.1 ' 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 '

0 0.18590 0.27177 0.34093 0.40069 0.45355 0.50059 0.54227 0.57873 0.60996 0.63582
30 0.1859*+ 0.27205 0.34174 0,40241 0.45668 0.50568 0.54997 0.58975 0.62509 0.65595
60 0.18607 0.27281 0.34394 0.40713 0.46522 0.51959 0.57099 0.61986 0.66646 0.71095
90 0.1862*+ 0.27385 0,34696 0.41357 0.47689 0.53858 0.59971 0.66099 0.72298 0.78607
120 0.18641 0.27*+88 0.34996 0.42002 0.48856 0.55758 0,62842 0.70211 0.77947 0.86120
150 0.18653 0.2756*+ 0,35216 0.42474 0.49710 0.57148 0,64947 0.73222 0.82083 0,91620
180 0.18658 0.27592 0.35297 0.42647 0.50023 0.57657 0.65714 0.74324 0.83597 0.93633

Y  = Ra = 0 0.20783 0.30471 0.38524 0.45843 0.52787 0.59444 0.66236 0.72942 0.79726 0.86636

Table 1. Depth of Solidification for the Sphere when - o.i, p  = 5.0, À  = 0.1, Ra = 8000 and Pr = 13.4

ANGLE/TIME 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

.0 0.17897 0.25711 0.31827 0.37010 0.41537 0.45538 0.49079 0.52197 0.54907 0.57216
30 0.17899 0.25725 0.31867 0.37096 0.41693 0.45791 0.49463 0.52746 0.55661 0.58219
60 0.17905 0.25763 0.31977 0.37331 0.42119 0.46484 0.50510 0.54246 0.57721 0.60958
90 0.1791*+ 0.25814 0.32128 0.37653 0.42700 . 0.47431 0.51941 0.56294 0.60536 0.64700

120 0,17922 0.25866 0.32278 0.37974 0.43282 0.48378 0.53372 0,58343 0.53351 0.68442
150 0.17928 0.25904 0.32388 0.38209 0.43708 0.49071 0.54420 0.59843 0.65412 0.71182
180 0.17931 0.25918 0.32428 0.38295 0.43864 0.49324 0.54803 0.60392 0.66166 0.72184

t =  Ra = 0 0.20056 0.28855 0.35864 0.41984 0.47563 0.52782 0.57750 0.62537 0.67195 0.71762

Table 2. Depth of Solidification for the Cylinder when Y = o.i, Ç = 5.0, A = 0,1, Ra = 8000 and Pr = 13.4
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X e Ra 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0 0.20782 0.30471 0.38524 0.45843 0.52787 0.59544 0.66236 0.72942 0.79726 0.86636

80 0 0.18623 0.27383 0.34689 0.41344 0.47666 • 0.53820 0.59913 0.66016 0.72183 0.78457
180 0.18624 0.27387 0.34701 0.41370 0.47712 0.53896 0.60028 0.66181 0.72409 0.78758

5.0 800 0 0.18620 0.27364 0.34635 0.41228 0,47456 0.53479 0,58396 0.65276 0,71166 0.77105

.
180 0.18627 0.27405 0,34755 0.41486 0.47922 0.54238 0.60545 0,66921 0,73427 0.80120

0.1 0 0.18590 0.27177 0.34093 0.40068 • 0.54355 0.50059 0.54227 0.57873 0.60996 0.63582
180 0.18658 0.27592 0.35297 0.42647 0.50023 0.57657 0.65714 0.74324 0.83597 0.93633

10.0 0 0.13670 0.19762 0.24551 0.28597 0.32098 0.35138 0.37759 0.39975 0,41792 0.43203
180 0.13710 0,20001 0,25242 0.30071 0,34755 0.39449 0,44258 0.49259 0.54519 0,60090

3.0 . 8000 0 0,22825 0,33734 0.42756 0.50771 0,58086 0.64834 0.71075 0,76832
180 0,22918 0,34302 0.44408 0.54317 0.64518 0.75318 0,86946 0,99588

0.5 0 0.13256 0.19071 0.23061 0.25530 0.26462
180 0.13511 0.20616 0.27534 0.35087 0.43735

1.0 5.0 0 0.09866 0.13933 0.16147 0.16570
180 0.10216 0.16053 0.22283 0.29675

Table 3. Depth of Solidification for the Sphere for Various Values of the Parameters i r . P A  
as a Function of Time when X = 0.1 and Pr = 13.4



* e Ra 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0 0.20056 0.28855 0.35864 0.41984 0.47563 0.52782 0.57750 0.62537 0.67195 0.71762

80 0 0.17914 0.25813 0.32125 0.37646 0.42689■ 0.47412 0.51912 0.56254 0.60480 0.64625
180 0.17914 0.25815 0,32131 0.37660 0.42712 0,47450 0.51970 0.56335 0,60593 0.64775

5.0 S00 0 0.17912 0.25804 0.32097 0.37588 0.42584 0.47242 0.51655 0.55885 0.59973 0.63952
180 0.17915 0.25825 0.32158 0.37717 0.42817 0.47620 0.52227 0.56704 0.61099 0.65449

0.1 0 0.17897 0.25711 0.31827 0.37010 ■ 0.41537 0.45538 0.49079 0.52197 0.54907 0.57216
180 0.17931 0.25918 0.32428 0.38295 0.43864 0.49324 0.54803 0.60392 0.66166 0.72184

10.0 ‘ 0 0.13303 0.19012 0.23437 0.27157 0.30387 0.33229 0.35738 0.37944 0.39865 0.41509
180 0.13323 0.19132 0.13787 0.27896 0.31720 0.35392 0.38999 0.42604 0.46253 0.49986

3.0 8000 0 0.21771 0.31437 0.39096 0.45666 0.51479 0.56691 0.61379 0.65586 0.69330 0.72619
180 0.21818 0.31721 0.39923 0.47441 0.54699 0.61939 0.69326 0.76980 0.85001 0.93475

0.5 0 0.12684 0.18070 0.21939 0.24725 0.26531 0.27358
180 0.12811 0.18837 0.24158 0.29463 0.35087 0.41253

1.0 5.0 0 0.09399 0.13259 0,15754 0.17126 0.17379
180 0.09572 0.14304 0.18771 0.32557 0.28980

Table U- Depth of Solidification for the Cylinder for Various Values of the Parameters 
as a Function of Time when /\ = 0.1 and Pr = 13.4



Figure 2. Interfacial Positions for the Sphere



Figure 3. Volume of Liquid remaining in the Sphere
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Figure 4. Streamlines and Dimensionless Velocity
Vector for the Sphere at "C- = 0.1
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Figure 5. Streamlines and Dimensionless Velocity
Vector for the Sphere at "C = 0.4



Figure 6. 
Temperature Distributions for the Sphere
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Figure 7. Dimensionless Heat Transfer Coefficients for the Sphere at the
Interface and Spherical Surface Locations, ©  = 0, IT and "TTa.



Figure 8. Interfacial Positions for the Cylinder



Figure 9. Volume of Liquid remaining in the Cylinder
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Figure 10. Streamlines and Dimensionless Velocity 
Vector for the Cylinder at X. = 0.1



Figure 11. Streamlines and Dimensionless Velocity 
Vector tor the Cylinder at X  = 0 . 4

ti
ll



Figure 12. 
Temperature Distributions for the Cylinder
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DIMENSIONLESS H ME

Figure 13. Dimensionless Heat Transfer Coefficients for the Cylinder at
the Interface and Cylindrical Surface Locations, 0 =  0, H and 
TT



Figure 14. Interfacial Positions for the Sphere



Figure 15. Volume of Liquid remaining in the.Sphere
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-3Figure 16. Streamlines and Velocities (10 m/s) 
for the Sphere at t = 1.78 sec.
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Figure 17. Streamlines and Velocities (10 3m/s)
for the Sphere at t = 7.12 sec.
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Figure 18. Temperature Distributions for the Sphere
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Figúre 20. Interfacial Pdsitions for the Cylinder



Figure 21. Volume of Liquid remaining in the Cylinder
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Figure 22.
- 3

Streamlines and Velocities (10 m/s) 
for the Cylinder at t = 1.78 sec.



-3Figure 23. Streamlines and Velocities (10 m/s) 
for the Cylinder at t = 7.12 sec.
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Figure 24. Temperature Distributions for the Cylinder
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figure 25
Dimensionless Heat 
for the Cylinder

Transfer Coefficients
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Chapter 5

The Flow of Granular Materials in a Hopper
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5»1 General Introduction

Understanding the flow of a granular material, particularly in a 
hopper, is of great practical importance. Each day several million 

tonnes of grain, coal, ores, chemicals and many other bulk solids are 
processed and handled using hoppers; Due to the complex nature of 

these granular materials, the mathematical modelling of this problem 

is extremely complicated and the (steady and transient) flow of the 
material through a hopper has never been solved satisfactorily.

The complexities which arise in the modelling of this flow will be 

discussed in a later section. Firstly, in order to fully understand the 

importance played by the granular flow of a material in industry, it is 
instructive to give a practical example.

The example chosen is the problem which has motivated this invest

igation and is as follows. The British Steel Corporation at Scunthorpe 
has four furnaces which produce steel. To fire these furnaces coke or 
sinter, or a combination of both, is used. The device used to fill the 

furnaces with the granular materials and the iron ore is called a bell-top, 
a diagram of which can be seen in figure 26.

The material is loaded (or charged) into the top of this bell 

arrangement. The bell is then lowered and the material (charge) slides 

out to fall directly, or be deflected by a strategically placed shield, 

onto the layers of original burden materials below; the surface of these 
layers is called the stockline.

It is the composition of the burden material layers which is of 

great importance to BSC, Varying this composition can reduce or increase 

both the quality and quantity of the end product. Also the life cycle of 
the interior of the furnace can be reduced, or increased, by the
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distribution of the charging constituents. The proportions of the charging
mixture also depend on the type of ore used and the quality of iron 
required.

Since the chemical reactions inside a blast furnace are very complex 
and not fully understood, BSC were posed with the following problems: 

where was the charge finally located on the stockline, and what was the 
distribution made by the various charging materials ?

At BSC a one twelfth scale model of a blast furnace was built. 

However, it soon became apparent that, unlike a fluid, a granular material 
cannot be scaled down. This provided difficulties for the experimental 

modeller. One difficulty is due to the inability to scale successfully 

the individual granules, their size, shape and density. .And so, it was 

realised that a mathematical model would have to be constructed. At least 
such a model could be used to determine length and time scales of the 
motion.

An aim of this thesis is to model the flow of the granular material 
in the earlier part of this problem. That is, to find a theoretical 

description of the motion of the material from when the bell is initially 

charged until it is nearly empty. In particular, the velocity with which 
the material leaves the bell is required since it is fundamental in

determining the flight of the charge and hence its subsequent distribution 
across the stockline.

Certain assumptions have been made to help simplify the mathematical 

model. Referring to figure 27, it is assumed that the bell is in the open 
position and the part of the bell which is denoted by the broken line is 
ignored.since it can be included at a later stage, Consequently, the 

problem is now essentially one of two-dimensional granular flow in a 

wedge shaped hopper. Of course, the original bell-is three-dimensional
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Figure 26 
The Blast Furnace

GRAVITY £

Figure 27
The Two-Dimensional Hopper
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but due to its axial symmetry and its size, it can be considered two- 

dimensional.
Initially the hopper is fully charged and the top of the charge is

taken, for example, at a radial distance r2 from the origin 0. The outlet
of the hopper is at a radial distance ^  and the angle between the sloping

wall and the vertical wall is ©  ,w
Before this investigation proceeds a review of the literature 

currently available on this subject is made.

5.2 Review of Literature on Granular Flow •

In reviewing this literature it becomes immediately apparent that 

little or no studies have been made on transient flow. Instead it has 

•been assumed that the flow is steady and. so, in theory, the hopper never 
empties since the material is replenished at the top and thus the 

boundary at r = r2 is constant. In the present model being constructed, 

this.is just not so. There is,in fact, a transient flow as opposed to a 

steady flow resulting in the boundary at r = r2 moving towards the 

orifice r = r^.
It is also noticeable that the main criterion for these other studies 

is the determination of the stress field. This knowledge enables 

designers to construct hoppers and bunkers which can safely contain 

granular materials and, at the same time, prevent the material from 

becoming too densely packed,
In nearly all of the reviewed papers, as with the present theory, 

the granular material being considered is assumed to be coarse-grained. 

Thus the material is said to be cohesionless. Whilst the problem to be 

considered is one of transient flow,, it is felt that a study of the steady

flow is of interest.
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Using the assumption of steady flow» the analysis can be immediately 
simplified on two counts.

(1) the density of the material may be considered as constant;
(2) the case when ^ “is near does not have to be considered 

since the flow through the orifice is found to be virtually . 

independent of the head (the volume of material above the orifice).
In 1961 Brown [31] applied the minimum energy theorem to a small 

elementary volume of material in a hopper. He postulated that since 

energy was dissipated on the surface of the element by collisions, rotations 
and frictional forces then the sum of the kinetic and potential energies 

decreased along a streamline. This sum reached a minimum at the free- 

fall arch which is said to form above the orifice. Although the calculated 
flow rates were found to be of the correct order, this theory seems to 

take no account of the frictional properties of the material or of the wall.
The first attempt to find the rate of flow using the equation of 

motion appears to have been made by Savage ^32}. Basically these equations 

are those of soil mechanics with the inertial terms added. Once again 
the frictional forces at the wall were ignored and Savage introduced the 

Mohr-Coulomb Yield criterion. This criterion was shown, by a shear-test 

procedure proposed by Jenike [34^, to be

4- cy(±

( 1 - Sin. Q  )
(5.2.1)

where G r and <3^ are the principal stresses in the r and ^  directions 

and is the effective angle of friction. However, Jenike found that 

for a cohesionless material the angle coincided with the internal 

angle of friction . The dimensionless velocity u found by Savage at
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the orifice r = ^  was given by,

U?

7 K I )

-  | £ \  
______L u .

*-~k

L » - ffvriKI°
(? ) (5.2.2)

where k is related to the angle of internal friction by

k  =  I •»
I -  S u a .<$. (5,2.3)

The expression (5.2.2) was found to give flow rates which were greater 

than those measured by experiment. This is most probably due to the 

neglect of the wall friction and hence over-simplification of the analysis. 

In fact, Savage reported in a later paper [33] that this analysis could, 
in some circumstances, over-estimate the flow rate by as much as 40% - 100%.

Jenike £ and dohanson D 5) have both contributed a great deal to 
our understanding of stress fields in hoppers and bunkers. However, 
whilst studying steady flow in a hopper, they treated the bulk material as 

a rigid solid and used a quasi-steady equilibrium equation. That is, they 

assumed that the inertial terms were negligible and thus reduced the 

problem back to one of static soil mechanics.

In his paper of 1957 Savage 3̂6l] set about improving his earlier

work by introducing the wall friction into his analysis. He developed a

perturbation procedure for small , where £.= (tan$)^ and 5 is the

angle of friction between the wall and the material, and considered the

limit process t-a.n— -^ 0  as ©  0. Savage found that his solution
«>w W

(to two terms) showed that the friction could reduce the flow rates by 

the correct order. Yet he later realised that due to his poor choice 
of perturbation parameter, the solution did not converge well for small
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Also using a perturbation series, Brennen and Pearce £37^ investigated 
the flow (not necessarily radial) of a granular material in a two- 
dimensional hopper . Assuming the stress and flow
fields to be symmetrical about Q  = 0, the average discharge velocity 

for the first two terms was

(k-x)
^ I +  0  s') © U

| 2 ( 1 4 S U a < ! 0  ( 5 . 2 . M )

where Y  is given by w

■ j a ^ Y w  B  rfc ' I — S u a  5

* 5 ^ 5  (^»u a GI —  l )
(5.2.5)

Brennen and Pearce claim that this flow rate agreed reasonably well 

with experiment for flows of glass beads and sand in two-dimensional 

hoppers. However, Savage and Sayed [33] believed this to be fortuitous 
and that the analysis over-estimated the effect of wall friction on the 
flow rate by as much as 20%. Surprisingly experiments with sand by 

Sullivan showed that wall roughness can even increase the flow rate for 

large © w -
Savage and Sayed in considering the gravity flow of granular materials ' 

in wedge-shaped hoppers used the method of integral relations, averaging 

momentum balances across a cross-section of the hopper, The results 

obtained over-estimated the flow yet again, but it is not clear whether 

this was due to the approximations introduced in the solution procedures, 

or some inadequacy in the original equation describing the physical problem.

In the next chapter a model describing the transient flow of a 
cohesionless granular material in a two-rdimensional hopper is constructed.
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This method is based on similar assumptions to those made by Savage.

It is realised that this original analysis could over-estimate the flow 
rate but, nevertheless, the present model could indicate the basic 
structure of the flow profiles.



Chapter 6

The Transient Flow of a Granular Material in a Two-Dimensional Hopper



6.1 Derivation of the Equations and Boundary Conditions

The presentation of a simplified approximate analysis for the 
transient flow of a granular material in a hopper is now given. The 

method follows closely that of Savage [32]. The assumptions on which

this model is based and which help to simplify the analysis are taken 
as follows :

(a) the bulk density of the material is constant throughout;
(b) the walls of the hopper are frictionless;
(c) the angle of inclination ©  is small;w
(d) there is a radial velocity field;

(e) the granules are of a uniform size.

The physical situation of this problem is given in figure 27. The

material which is cohesionless initially fills the hopper and the upper

surface r = r2 is a free boundary. The orifice of the hopper is at r = r

and the flow starts instantaneously at 7  = 0. Since (c) assumes that the
angle of inclination of the sloping wall is small, then cos® can be

w
approximated to unity. However this restriction could be removed by
subsidiary expansions in small ©  .w

The velocity field of the material is given by ïï(r,t‘) and the stress 
components in the r and ©  directions are represented by <5* and 

respectively. The angle of internal friction in the material is and 
g is the gravitational constant.

And so, the equation of motion is,
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which is subject to the boundary condition,

*c(rt = o } t  > o

and the initial condition,

3 , ( r » , o ' >  =  o

The equation of continuity is',

¿L£l> = o
subject to the initial condition,

(6.1.2)

(6.1.3)

(6.1.4)

uir.o) « o , r,  ̂r  ̂ r*
(6.1.5)

By considering appropriate length and time scales, these equations 
and conditions can be further simplified using the following dimensionless 
variables :

"t « £

and

r = r 
r

u. - u.
(6.1.6)

¥ ■

Q i  -

? 3 ri

Before these equations are rewritten in the new variables, the Mohr- 

Coulomb Yield criterion for a*cohesionless material is also introduced. 
This criterion is defined as

or

<3* «  CI -f s ( y \ ^ )  o y  
( I - S u a  c*)

<5k> - b c r

(6.1.7)

(6.1.8)
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The relationship between k and $  is written as,

* ( k  - Q
( k + O

Hence the equation of motion now becomes,

^ 2  +  ( i -  fcf} S ’ * I + u c)u
be ■ * r at

(6.1.9)

(6 .1 .10)

where, for simplification, the r subscript in the stress variable has 
been dropped. The equation (6.1.10) is subject to the conditions,

»[ 6,o\ . o
' r‘ / (6.1.:

and

<y C i, f) « o t -t >, o

The continuity equation is now,
b( t c Q  « o  
hr

subject to the initial condition

(6.1.12)

(6.1.13)

u(r,o) = o ; I $
(6.1 ,m )

6.2 Analytical Solutions •

From (6.1.13) it can be shown that,

dl( r.-t") = Act) r
where A is a function of the time t only,
(6.1.14) gives,

(6.2.1)
Applying the initial condition

(\lo) « O
(6,2,2) .
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Since this investigation is primarily concerned with the velocity of the 
material at the orifice, the function A(t) must be determined. Substituting 
(6.2.1) into (6.1.10) gives,

"do" +• ( i —  k") cr ts. l •+• —  !
r r cLt V 3 (6.2.3)

The solution to this equation is,

<r= B +  _ ! _  4A +  Av
r'-k fe-te") 0-fc-) rfJ: r’-(Hk') <6-2-l*>

where B is a constant which is determined by.the boundary conditions.

This solution is valid only if the value of k is not 2, 1, -1. Should k 
be equal to any of these values then the solution of (6.2.3) is; 

for the special case k = 2,

nC T -  O  r 4- -  c M  + A 1
oU. (6.2.5)

for-the special case *«HII

o C OCT =  O  + r  + d A . Inr *  £
d h Z r ' (6.2.6)

and for the special case k =■■ -i,

O* « D * £ j_ d A -  for K (6.2.7)
r 3 Z. dit r-

(k)where B is a constant. Examination of (6.1.9) will reveal that only 

the first case is of any real importance since for most granular material,

i s * «  q  ^  4 o ° (6.2.8)
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l~kMultiplying (6.2.4) by r and then applying the boundary condition
(6.1.11) yields,

B - (£T'h - (&P o
7F F ) o- k) ott (6-2'9>■too

where A(0) = 0. The condition (6.1,12) yields,

5  +  i +  i dA 4. A *  o

( X T ')  (M ? )  dJb T O ( 6 . 2 . 10 )

By subtracting these equations, a differential equation for A(t) 
obtained,

*  l i z ± I t  =
( u  k )

v*--* i

IS

dA - / M * “ 1'  dA 
cLL In )  d t

t*o

-  h - i o I - (6.2.11)

At time t = 0, (6.2.11) yields,

dA = -ii-te ’) ■ -  »r i
db t.o • - J ( 6 . 2 . 12)

Substituting (6.2.12) into the differential equation (6.2.11)

I - c
gives,

dA -  tk->~)A ' -  - fh-Q 
dt ( h + 0  I - / G V

L In)
This equation, using (6.1.9), can be written more simply as

(6.2.13)

dfl -  ordLt -  M (6.2.14J



where n f t -  0
I - a) a--k

I —  / fika r
and is subject to the initial condition (6.2.2).

The solution of this differential equation is,

^ -hxv̂ k -t -iHsua'ĉ
J s u a .q

(6.2.15)

(6.2.16)

where C is a constant. By applying (6.2.2) it is readily seen that C = 0. 
Hence, substituting (6.2.16) into (6.2.1) yields the velocity function

w-tr.V) « -JL /—  -hvxk i  "t.
r  L  (6.2.17)

or »
u(r.-t) » -x f (bfi) f l - w

r  t < * - ) [  T T T ^ P !  ]«

- t a n k  t - b [  ft- »? 11 ~

. Lfr-̂ +Ol i- pr.'f' (6.2.18)

The negative sign shows that the velocity is in a direction from the top 

to the bottom of the hopper.

6.3 Results and Discussion

The function (6.2.18) describes a velocity flow profile which was 

observed in experiments conducted by BSC. That is, the matérial is 

initially stationary in the hopper, but, as time passes, it begins to 

flow through the orifice. The acceleration rapidly decreases and the 

material flows through the hopper at a constant rate and hence the system
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effectively becomes one of steady state. Comparison of the terminal 
velocity obtained from (6.2.18) with the velocity of the steady state 
system obtained by Savage shows similarities.

The terminal velocity u„ of (6.2.18), that is the limit u(r,t) is 

found to be,

U T

I -  (fV /T .f ** '
i - ( ( v c y *

(6.3.1)

Savage's analysis shows that the velocity at the orifice for the steady 

state is, in dimensionless variables,
k n

UXO
V

(6.3.2)

Figures 28 to 30 display the velocity of the material at the orifice 

of the hopper for various initial heights r  ̂and values of the internal 

frictional angle The curves drawn in each figure show the velocity
as a function of time as predicted by this present theory; the straight 

horizontal lines show the steady state velocity as predicted by Savage's 

theory for the same values of the parameters.

The graph in figure 28 shows the velocity when the ratio of the 

initial height of the material to the position of the orifice is 3. The 

angle of internal friction varies between 20° and 60°. For large frictional 

angles the present transient flow agrees well with the steady flow at 

large values of time. However, as this angle decreases the agreement 

diverges resulting in a higher flow rate for the transient case.

Figure 29 shows a similar graph with = 2 and ^  taking values 

between 20° and 60°; figure 30 displays the graph for / S V  -•
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For large values of the flow rates are identical to those in figure 28 

for smaller values the flow rates are slightly higher.
It is realised that as the material free surface nears the orifice 

the flow pattern becomes even more complicated and is not fully under

stood. Nevertheless, the above simple theory is a first attempt to solve
♦a somewhat intractable problem. It is nonlinear and transient and is 

governed by a system of hyperbolic equations. The numerical solution of 

this system for flow in a steady state is still under consideration by 

research workers in this field.
It is the intention that the emptying velocity profiles of the type 

(6.2.18), namely

(6.3.3)
can be used to obtain actual profiles in conjunction with experiments. 

For example, if the height of the free surface at any time t is h, then 

a relationship between these two variables can be found using the flow

rate (6.2.18). That is, in dimensionless variables,

K s r, r lexft -t (c* ^L ^ (6.3.4)

Using the working model at BSC Scunthorpe or, more ideally, the 

actual blast furnace hopper measurements can be made for h against t for 

any given material. In (6.3.4) there are three constants which are known 

theoretically albeit approximately. We could proceed to find these fo.r 
a particular hopper.

If h^ is known at a specific time t^ then we can find 0( , ^  and )f 

by the method of least squares as described by Milne M  . We minimise

.-¡p -  2  (<**&) + i ] vT
t*i • L I' <«•*» L ^

(6.3.5)
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where h°^S is the observed height of the material during the experiment. 

Hence 0< , ^ and "if are obtained on solving the nonlinear simultaneous
equations,

a j  , a x  , a i  =  ©

(6.3.6)
In this way wè have now the transient flow from a hopper and this 

can be fed into existing programmes developed at Hull for the shape of 

the burden surface in a furnace.
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Appendix A

Derivation of the Non-Linear Condition at the Interface



• - 148 -

In this appendix two methods are given for the general derivation 
of the non-linear condition at the interface. This Is concerned with 
the liberation and absorption of heat across the moving interface 
separating the two phases. Before either derivation is given equations 

which are common to both are established.

A.l Heat Balance Equation

The equation of the moving interface, or front, is defined by the 

equation
F(r,t) = 0  (A.1.1)

Let n be the unit normal to the surface F in the solid-liquid 

direction, and v the normal velocity of the interface. Since V F is 
normal to the surface F(r,t) = 0, £  may.be written as,

a *  J r  ■
J ' Z M  (A.1.2)

It is assumed that T is the temperature distribution of the phase,

K the thermal conductivity, L the latent heat and ^ the density. A 

superscript * denotes the second phase.

In general, if the front advances a distance Sn in a time St, 

then since the difference in the heat flux between the two phases is 

equal to the amount of heat liberated at the front, the heat balance 

equation is ,

K ST. a — K* V.T't A = pLy.n

Using (A. 1.2)' gives

K I t . F  -  K -* 2 T * y p  -  f i - v - Y f  
|3H typi liFl

(A.1.3)

(A.1.4)
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The normal velocity v has now to be determined.

A. 2 Method 1

Since the total differential of F{r,t) = 0 must be zero,

df- V F# dC. -t di * o
bt

(A.2.1)
and thus,

YF. ^
(A.2.2)

Straightforward substitution of (A.2.2) into the heat balance equation 
(A.1.4) gives the required equation

K C T T . S F }  -  tc-*Y y r . ' i'vF')
dt

O*. W £ .0
(A.2.3)

A.3 Method 2

The normal velocity v is now derived explicitly. The point P with 

position vector is now considered on the surface F(r,tQ ) = 0. The 

normal to this surface intersects the neighbouring surface F(r,tQ+ St) b 0 
at Q. The normal velocity of the surface is

lw»t H I
'S'L (A.3.1)
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The equation of the normal through P is

r«. + X vf
(A.3.2)

and hence

^  = r- r. * F
(A.3.3)

where A  is a parameter and V  F is evaluated at (r,t ). PQ meets the—  o
surface F(r,tQ+3t) = 0 at the point Q where the value of /\ satisfies

Ffr„ ■t-X'YFj-Lo + St") = o
(A. 3. il)

Since A  and 3t are small and FCr^t) = 0 a linear approximation 

of the equation gives

thus,

I F . ( M F * )  ^  “
h i

A  « -

(A.3.5)

l Y P l '  (A.3.6)
Substituting (A.3.6) into (A.3.3) gives,

=  - i f
* *  CA.3.7)

and hence the normal velocity of the front, on using (A.3.1), is

 ̂e - "V r
(SFl* (A.3.8)

Substitution of (A.3.8) into the heat balance equation (A.1.4) results

in (A.2.3) as before. .
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Appendix B

The Method of Complementary Functions



- 152 -

The method of complementary functions is a general procedure for 

finding the solution of a set of simultaneous linear differential 
equations whose boundary conditions are specified at two points. Since ■ 
an n**1 order differential equation can be rewritten as a system of n 

first-order differential equations, then a general system of first-otfder 

differential equations in the form of (4.2.4-) need only be considered. 

Let the system be,

. *  Pa !jj « ll * I , . . .
(B.1.1)

where x is the independent variable and the functions p ^  and q^ are 

dependent on x. The subscript j is summed from 1 to n.
It is assumed that the system of equations is defined over the 

interval fa,b} and that the boundary conditions are given at the two 

points

A;
(B.1.2)

md
M i i b V -  8; (B.1.3)

The method commences by integrating the system of n first-order 

omogeneous differential equations

ctjU-i -+■ B  jj Uj - O
obc (B.1.4)

ver the interval using any convenient shooting or initial value 

rocedure subject to the initial conditions,

and

U.i(<0 - A t

dxm fa) ” o 
dx

(B.1.5)

(B.1.6)
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The value of u^ at the point x = b is computed and can be expressed as

u.i(b') * d i
(B.1.7)

The system of n first-order inhomogeneous differential equations

+  Kj Xi *dbc (B.1.8)

is now integrated over the interval using the same initial value 
procedure, but this time subject to the initial conditions

¿̂(<0 *  A c
(B.1.9)

and
dv c  (d) c |

(B.1.10)

The function v. is evaluated at the point x ? b and can be expressed as

(B . i u n

The general solution of the system of linear differential equations 

(B.1.1), subject to the given conditions, may be written as a linear 
combination of the systems (B.1.4) and (B.1.8) as follows;

u-60 * c.iu;00 4- cLiYcix)
(B.1.12)

c. and d^ are constants which are determined from the boundary conditions. 

Finally the original system (B.1.1) is integrated using the initial

conditions,
U t 5 Ai

(B.1.13)

and d ÿ l(à ) -  c i d u iM   ̂ oti dvt (a) dx <Xx dx_ (B.1.14)

It is, perhaps, worth noting at this point that the initial conditions 

(B.1.6) and (B.1.10) specified for the complementary function and the 

particular integral are not unique, and can be chosen so as to simplify 
the analysis and subsequent calculations.
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