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Abstract

Domain-Specific Aspect Languages (DSALs) are a valuable tool for
separating cross-cutting concerns, particularly within fields with
endemic cross-cutting practices. Agent-Based Modelling (ABM)
runtime inspection, which cuts across the core concern of model
development, serves as a prime example. Despite their usefulness,
DSALs face multiple adoption issues: the literature regarding their
development and use is incohesive, coupling to a weave target hinders
re-use, and available tooling is immature compared to Domain-
Specific Languages (DSLs). We believe these issues can be aided by
furthering DSL middle-out techniques for DSALs.

We first define the background of what a DSAL is and how they
may be used, moving onto how we can use DSL techniques to further
DSALs. We develop a middle-out semantic model approach for
developing domain-level DSALs with transparent aspect orientation
using adaptions of DSL techniques. We have implemented the
approach for model-specific DSALs for the in-house framework
Animaux, and as middleware-specific DSAL for agent messages in the
JADE framework, which can be specialised to models using extension
DSALs. We give illustrative result cases using our implementations
to provide a base of the user development costs and performance of
this approach.

In conclusion, we believe the adoption of these technologies aids
ABM applications and encourage future work in similar fields. This
thesis has given a base philosophy toward DSLs, a novel approach
for the development of middle-out DSALs and illustrative cases of
this approach.
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Chapter 1

Introduction

This chapter introduces our motivating problem statement, research aims and

contributions. Our research aims are defined through a set of core hypotheses,

and each chapter has an associated question which directs its purpose.

1.1 Problem Statement

Computational science uses software as scientific apparatus to perform and observe

experiments ’in silico’. Through this thesis, we focus on Agent-Based Modelling

(ABM), a popular computational science tool used to simulate the actions and

interactions of autonomous agents with the intention of assessing the system as a

whole. The field relies on many agents with simple rules causing complex behaviour

at the macro scale to re-create or predict the appearance of complex phenomena in

the modelled system.

1
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The use of ABM programs as scientific apparatus brings forth the software

concern of runtime inspection of models for experimentation. The observing code

must be reliable to retain scientific integrity, malleable to a range of experiments

and maintainable for the scientist. In an ideal scenario control of inspection will be

separate from the model code.

Using conventional object-oriented methodologies, runtime inspection becomes a

cross-cutting concern during ABM development. A cross-cutting concern is a concern

which cannot be modularised using a program’s dominant decomposition method. In

practice this results in inspection code scattered and tangled throughout solutions

with a large amount of shared code across experiments and even models.

This shared code is referred to as boilerplate code, a phrase used across many

industries referring to unoriginal, repetitive text which is used as a filler for larger

documents. The use of libraries, frameworks and Domain-Specific Languages (DSLs)

can provide a division of labour between a core implementation of ’that type of

program’ and specific variants of it by allowing the re-use of boilerplate code across

implementations by packaging it into components or notations. We specifically focus

on the DSL approach to reducing boilerplate through this thesis.

This leaves the problem of scattering and tangling of the cross-cutting runtime

inspection code, which is challenged by the software decomposition method Aspect-

Oriented Programming (AOP). AOP allows for cross-cutting concerns to be separated

into aspects. These aspects can then be controlled and developed separately to the

core concerns of a system.

Domain-Specific Aspect Languages (DSALs) are aspect-oriented DSLs which

allow the expression of cross-cutting concerns using domain-specific abstractions. A

DSAL provides domain-specific abstractions to the representation of, identification of
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or effect at a set of Join Points (JPs) in the runtime of a program. Proper adaption of

DSALs for the runtime inspection of ABMs could allow ideal separation of concerns

with domain expert level code for writing experiments.

DSAL adoption is hampered, firstly because of a lack of knowledge of the

combination of the domain-specific and aspect-oriented paradigms. Secondly, DSALs

are more difficult to develop than a standard DSL because of the addition of an

external weaving target. This difficulty is exacerbated by the inability to use an

off-the-shelf DSAL for problems as is commonly possible with a DSL. Where a

General-Purpose Aspect Language (GPAL) is general to all programs written in a

certain language, a DSAL is not meaning small differences in weave target can lead

to incompatibility for weaving or unsuitability of notation.

We believe that the use of DSALs is becoming more important as the software

complexity of systems is rising, and computational time is becoming a readily available

commodity to perform these ’in-silico’ experiments with. As such, the bottleneck

for scientific development is the scientist’s productivity rather than the computer’s

execution times. This problem has been addressed in part by movements such as the

research software engineer position, where a software engineer supports a scientist’s

coding work. The creation of notations such as DSLs and DSALs is extremely useful

in this area because it allows clear separation of simulation implementation expert

and domain expert roles.

This thesis aims to present the philosophies of these paradigms to aid their

informed use, present a development methodology for DSALs which allows proper

division of labour between implementation and use of model experiments and give

implementations using these methods with quantitative results.
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The summary of our problem statement is:

DSALs are a suitable tool for ABM runtime inspection yet they have a high

barrier to entry. This is because custom-built implementations are generally required

while their implementation difficulty is higher than that of a DSL compounded by a

lack of knowledge about their implementation patterns. Are there ways to practically

improve the productivity of development and use of custom DSALs for ABM runtime

inspection?

1.2 Objectives of the Thesis

We now discuss the objectives of this thesis in terms of questions and contributions.

We can define our thesis statement as:

DSL middle-out techniques can be adapted to create domain expert level DSALs

with transparent aspect orientation. This technique reduces the barrier to entry for

using a mature method of reducing scatter and tangle using domain-level code.

The driving hypothesis which we visit throughout the thesis are:

• Applying a middle-out approach utilizing a semantic model to DSAL

development and use allows separation between domain-application and weaving

implementation. This separation allows multiple sets of aspects, with differing

weaving implementations to be written using the same middle layer across

multiple instances of one or more models.
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• Using custom-built middle-out DSALs allows sets of runtime inspection

experiments to be run on ABMs with reduced scatter, tangle and boilerplate

code compared to inline object-oriented methods.

• A direct GPAL implementation of Domain-Specific Join Points (DSJPs) will

provide similar to inline performance when there is a direct mapping to DSJP

available, yet poor performance when not. Dependency injection of General-

Purpose Join Points (GPJPs) into target code may be used to allow better

performance, with the disadvantage of more scattering throughout the base

code.

1.3 Thesis Structure and Contributions

This chapter has presented our problem topic, research questions and hypothesis.

The rest of the thesis is laid out as chapters which have accompanying questions and

contributions.

Chapter 2: Foundations

This chapter presents the background of our work and the definitions which we use

throughout this thesis. The main contribution to be found in this chapter is our

definition of what a DSL is.

The question of this chapter is:

How can we define and view DSLs, AOP, DSALs and ABM through this thesis?
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This question grounds our research, giving clear meaning to our intended direction.

Grounding is necessary because accepted definitions of these terms are not consistent

throughout the literature, and our definitions make this thesis a contained entity.

Chapter 3: Towards Modularised Runtime Inspection of Agent-Based

Models

This chapter reviews the literature around our problem statement and the literature

around middle-out DSALs. This literature review sets the scope of our work and

leads us to our two main contribution chapters.

The question of this chapter is:

What difficulties face ABM runtime inspection which are reduced by the use of a

DSAL, what are the barriers to DSAL adoption and what existing research has

challenged these barriers?

This question sets up our initial literature review of research towards allowing

the profitable implementation of DSALs, then brings us to our research direction of

a novel approach to implementing DSALs for ABM runtime inspection which forms

the rest of the thesis. We specifically focus towards improvements of DSALs by

moving closer to the DSL experience because this is a well-grounded and practical

method of improvement.
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Chapter 4: AnimauxRI - Runtime Inspection Targeting Specific Models

This chapter is our first investigation into our middle-out DSAL with a semantic

model concept. The chapter focuses on Sugarscape and Kawasaki models within

our in-house framework called Animaux. The main contribution to be found in this

chapter is the development of a semantic model based middle-out process for DSALs.

The question of this chapter is:

How can we implement a middle-out DSAL for specific models without domain-

oriented interfaces?

This question brings the original work into defining a novel method for developing

middle-out DSALs for a set of pre-defined models within the Animaux framework.

This work then becomes the basis for the next chapter’s research.

Chapter 5: JADERI - Runtime Inspection Targeting Middleware

This chapter follows from the previous, furthering the concept of a middle-out DSAL

with a semantic model by allowing the use of a core DSAL across a generic cross-

cutting concern which can then be extended using an internal DSAL for specific

models without re-implementation of weave logic. The main contribution to be found

in this chapter is the laying of middle-out processes together to allow for specific

DSAL development without re-implementing an aspect orientated bottom layer.

The question of this chapter is:

How would we implement a middle-out DSAL for a generic cross-cutting concern

within a framework using domain-oriented interfaces, which could then be specialised

to specific models without re-implementing weave logic?
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This question forwards the previous questions contribution by applying the middle-

out concept to allowing multiple extension DSALs to be created from a core DSAL

which performs the weaving logic. This moves the development of model-specific

DSAL tasks closer to a DSL developer rather than an aspect-oriented language

developer.

Chapter 6: Synthesis of AnimauxRI and JADERI

This chapter discusses, contrasts and compares the approaches taken in AnimauxRI

and JADERI. This states that the base approach underpinning both chapters is the

same, and choices made in either chapter and may be applicable to the other. This

chapter is an especially useful discussion for choosing language type and weaving

target specificity forwarding future research within this area.

Chapter 7: Conclusion

This chapter discusses our work with relation to our original aims, hypotheses and

contributions set out in this chapter. We conclude with a discussion of future

research.



Chapter 2

Foundations

This chapter lays out the background of the four main fields which underpin our

research, giving us a clear framework to base the rest of the thesis.

The primary research question answered by this chapter is:

How can we define and view Domain-Specific Languages (DSLs), Aspect-Oriented

Programming (AOP), Domain-Specific Aspect Languages (DSALs) and Agent-Based

Modelling (ABM) through this thesis?

2.1 Introduction to Domain-Specific Languages

Firstly, we will introduce the foundations of the base research area throughout this

thesis. We use domain-specific techniques throughout the thesis, and our definitions

of why we use DSLs show the motivations for our work.

9
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2.1.1 Motivation

DSLs have been popular since the beginning of computer science, often without

people even recognising they are writing a DSL. The classical use case of a DSL can

be shown by one of the many small Unix languages such as grep or awk performing

a single small but common task as is discussed in Bentley (1986), which calls on

people to treat these interfaces as languages. This stems from the idea of reducing

boilerplate code in tasks, especially tasks which are performed often and by many

people as the biggest time savers available to us are the things which we do very

often. This reduces the burden of the large start-up costs of creating a language

because many uses benefit. The application domain in question is also a relevant

issue, with different tasks being more amenable to domain-specific benefits (Sprinkle

et al., 2009). In Unix times a prime example was text processing, meaning DSLs such

as sh and bash became the primary user interface of a computer. This benefit was

further forwarded by writing programming languages which generate code of other

DSLs when working in very specific domains such as typesetting graphs as in GRAP

which generated PIC code to outsource image creation (Bentley and Kernighan,

1986). The creation of DSLs has been forwarded as a worthy design pattern by

Gamma et al. (1995).

In a modern context, DSLs are used within projects as extensions for what

general-purpose Object-Oriented Programming (OOP) cannot do well. Some are

stand-alone languages bundled as libraries which take a string as input for a standard

task, such as regular expressions; some are extensions within a language allowing

domain-specific input style, such as LINQ in C#; some are sets of languages with vast

frameworks allowing full projects to be based around them, such as in the RePast

suite.



Foundations 11

One of the most important features of a DSL is removing boilerplate from what

the user has to write or read. The expression boilerplate is borrowed from the legal

profession where it refers to statements which are very often present and can be used

as the basis to create a new legal document. This leverage of known boilerplate code

in areas and its automatic generation from known language context allows for greater

efficiency in areas which have been dealt with before. The downside of this approach

is the opposite of the benefit; the generated code is hidden from the programmer

meaning they may be mistakes in the code they cannot be aware of or could only be

aware of from reading the documentation on the semantics of the language if such

documentation exists. This movement of responsibility from the programmer to the

implementation of the language must be taken into account when choosing to use a

DSL, mature DSL software is more likely to have comprehensive documentation than

side hobby project languages for example. The process of using a DSL to reduce the

creation of boilerplate code for a problem can be explained through its mapping from

problem to solution space as shown in Figure 2.1. A DSL is generally implemented

as a problem-oriented language which has a mapping to a solution-oriented language,

this solution-oriented language is generally a General-Purpose Language (GPL) which

in turn mappings towards actual implementation. The choice of implementing a DSL

through an intermediary GPL or hosting the DSL within a GPL is generally taken

because of the quality of mapping between these languages and many implementation

targets. In the same way that DSLs provide suitable mappings for a domain, GPLs

provide suitable mappings for a virtual architecture to many physical architectures.

The use of GPLs as implementation targets for a DSL reduces the workload required

for implementing the DSL because cross-platform implementations are provided by

the general-purpose base.
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Figure 2.1: The mapping of domain-specific code to machine implementation inspired by
Czarnecki and Eisenecker (2000).

We can explain this concept of mapping from problem space to solution space

by comparing programming languages to transport maps. Transport maps are

abstractions over an environment to allow planning of movement through an

environment at speed and ease greater than traversing the environment physically.

Much like maps, high-level programming languages are abstractions over a computing

environment to allow the expression of programs with benefits such as speed of

writing, safety, useful features not available out of the box at machine level. Machine

level programming languages are generally explained as representations of computer

operations, although even these operations are becoming more and more complex

mappings to even lower level operations. Higher level languages allow us to traverse

through many of these operations at an abstraction level of some higher-level virtual

architecture such as Java or C rather than a specific machine architecture. This

is much like standard roads maps allow journey planing at the abstraction level

of routing and distances without knowing the specifics of implementing a drive

through that route, which is not appropriate to consider thoroughly at planning

time. Domain-specific high-level languages allow us to traverse through specific

problems at the task level rather than requiring implementation details. This is

shown in transport maps by how train route maps sacrifice geographical accuracy
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for clear, complete maps of stops because the passengers are trying to decide which

train they need to be on and for how many stops rather than see the geographical

’implementation’ of this.

2.1.2 What is a DSL

Given this motivation, we now investigate what constitutes a DSL. We place

emphasis on this because we believe it is important to ground our work around

a solid philosophical framework. We will begin by looking through the literature

definitions of DSL, then moving into the framework we follow in this work. We

include similar terms in our umbrella of DSL such as little languages and application-

oriented languages as well as field-specific names such as probabilistic programming

languages which are DSLs for machine learning.

There are two main schools of defining DSLs within the literature. By far the

most popular method is through a list of necessary and sufficient features as in

classical categorisation such as domain focus, limits on expressiveness and language

fluency as found in Thibault et al. (1999); Mernik et al. (2005); Michaelson (2016).

A secondary method generally found through interdisciplinary research is through

qualitative assertions about the elegance or productivity boost from DSLs as found

in Hawick (2011, 2013). These two methods share complimentary problems where

the objective focus of classical categorisation does not translate well into real life as

it causes fuzzy edges, and the qualitative assertions while generally uncontroversial

are also generally without proof or elaboration of the claims.
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These types of definitions are well suited for scientific articles where people are

already familiar with the concept of a DSL, and there is limited space for background

and research methodology of the work. For the purposes of this thesis, we believe

these are not sufficient definitions and give the philosophy and framework for our

work through the rest of this chapter.

The main contention points in the literature are around the definitions of the

narrowness of the domain, exclusivity of the specificity and nature of the language.

The question of how narrow a domain must originate with the first high-level languages

such as FORTRAN, COBOL and LISP which had definite application areas but

were sufficiently general to perform in many domains without issue. Sammet (1969)

refers to these languages as problem-oriented languages because they are higher

level than assembly code making them closer to the problem than the machine

implementation, reserving application-oriented languages for those with facilities and

notations which are useful primarily in a single application area. Sammet moves onto

saying how this definition between problem and application is somewhat relative

depending on the width of the application area in question. More recent work

by Czarnecki and Eisenecker (2000) states that all programming languages have

some degree of domain specificity, but there is some arbitrary cut-off point where

a language becomes domain-specific. The question of how broad a domain can be

while still being specific has recently became poignant for languages such as Ant.

Ant is a software build automation language whose domain has gone through a rapid

change since Ant’s introduction in 2000 resulting in the Ant programming language

’sliding into generality’ because of what programmers expect within the domain

with the increased automation brought by integrated development environments and

ubiquitous internet access Fowler (2010).
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Given that we can decide what constitutes an acceptable domain size the next

question is what does specific mean in this context. Does the language need to be

exclusively used within a domain? If so using a DSL in a different domain would

strip it of the DSL definition, especially so if the language was found to be Turing

complete and thus the very definition of a general programming language. Taking

the example of postscript which has a single definite use of page description, would

we remove the DSL definition of it because of its Turing completeness? Fowler (2010)

includes in his definition ’limited expressiveness focused on a particular domain’,

given this description can a Turing complete language be referred to have limited

expression? Alternatively, are all programming languages of limited expressiveness

because they cannot express solutions to non-computable problems? We believe

this limited expression is a valid comment given the expected use a human can

give to a language because Turing completeness is not the only factor in limiting

programming languages. Furthermore, we believe the use of a DSL in a separate

domain or coincidental usefulness in other domains does not strip the DSL of its

domain specificity. Although we do not consider it impossible for a DSL to be Turing

complete, especially when this Turing completeness is difficult to manage; we agree

with the general best practices set out in Völter (2009) that external DSLs should

avoid being Turing complete leaving Turing complete problems which require domain

specificity for APIs and internal DSLs mixed with the host language.

The final common point of contention is: does a DSL have to be executable

as is claimed in the seminal survey of DSL research by van Deursen et al. (2000),

or as stated in Mernik et al. (2005) and Wile (2001) can they be specifications,

definitions or descriptions for domain expert involvement which may or may not be

to be programming languages. Völter (2010) brings the notion that DSLs must be
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processable rather than executable which we believe is a better definition. Through

the definitions in this thesis, we include these non-executable languages in our

definition of DSLs.

To satisfy these contentions, we treat the categorisation of DSLs using prototype

theory, a method of categorisation which is popular in cognitive psychology

and linguistics. Prototype theory originated with Rosch (1978) building upon

Wittgenstein’s (1953) work on family resemblance. This moves away from necessary

and sufficient feature classifications and towards how categories are used in the

real world. This approach views prototypical categories as experiential rather than

objective, envisaging a relationship between concepts and the world rather than

the objective features of a category. The main reason we believe DSLs require an

experiential classification rather than an objective set of features is the inherent

subjectivity in the use of programming languages. Although a set of programming

languages may be able to solve a problem, there are qualitative and quantitative

differences between the resulting approaches when considered in relation to a human

programmer. We believe DSLs exist in relation to the environment they are used

in, while a DSL cannot offer more computational capability than a Turing complete

language, it may offer many things in relation to the use of the language such

as domain expert understanding, reduced lines of code and less boilerplate code

required. It should be noted classical feature semantics is not replaced by prototype

theory but augmented where necessary, for example, shapes such as triangles can be

categorised exhaustively using classical feature semantics as 3 sided polygon with

internal angles adding up to 180◦. We will now explain why prototype theory is

appropriate for classifying DSLs using the four common qualities of prototype theory

research discussed in Geeraerts (2016).
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• Prototypical categories cannot be defined using a single set of

necessary and sufficient attributes

As we have seen from definitions of DSLs from the literature, although the core

of each definition alludes to the same base of improving software economics

or involving domain experts there is contention around what features a DSL

must or should have. This means that any given definition, somebody will come

up with a counterexample. This could either be something included by the

definition which others would not consider DSLs or something excluded by a

definition which others do consider a DSL.

Furthermore, these sets of features vary depending on the intent of use within

the definitions field because the focus of using a DSL is as a tool through a

process rather than the requirement of ticking boxes. This ties into work by

Coleman and Kay (1981) where a thing or event is a psychological object or

process rather than an objective set of necessary and sufficient conditions. We

can illustrate this using the famous psychological experiment of categorising a

vessel as a cup or a bowl depending on the prescribed use of an object from

Labov (1973). This begins by showing images with a neutral framing context;

when the same drawing of a cup is stretched horizontally alike in Figure 2.2

it becomes less likely people will refer to it as a cup, and once it has reached

a certain threshold people begin referring to it as a bowl. Interestingly when

framing context is added of the vessel being used for food the threshold of

people beginning to categorise the vessel as a bowl requires far less horizontal

stretching. Although this is an excellent illustration of how framing effects

categorisation there are limitations to using laboratory experiments focused

solely around the applicability of words as discussed by Wierzbicka (1985) who

favours methodical introspection towards the structure of the concept which
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Figure 2.2: Illustrations of vessels with scaling width similar to those used for the Labov
(1973) experiment.

underlies and explains the applicability of a word. As such, our definition of a

DSL should constitute the philosophy which is being driven forward through a

DSL rather than descriptions of the features which happen because of this.

This is especially related to the variety of XML subset DSLs which are written

in a general-purpose modelling language, yet only using a small subset of the

features and self-enforcement of pseudo keywords the programmer could be

classified as using a DSL because the use of the language is in line with the

internal structure of how a DSL is intended to be used even though the language

base which is used is objectively general-purpose.

• Prototypical categories exhibit a family resemblance structure

The core idea of family resemblance comes from Wittgenstein (1953) where

a rigid definition cannot be made because there’s no element that everything

in a category has in common, but they all share something and likely many

things with other members of the category. This is in reference to the visual

resemblance between members of a family; the children can exhibit many traits

from either parent such as eyes, height, nose but the children themselves do

not need to have any single characteristic in common. In regards to prototype

theory Lakoff (1987) defines this sort of group as a radial category of clustered

and overlapping meanings.
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DSLs fit into this type of structure because a majority share the same major goals

of improving software productivity and increasing domain expert involvement,

although there are so many different methods of achieving this creating a list

of necessary and sufficient features is an impractical task. Furthermore, as we

have previously mentioned this method of categorisation would not sufficiently

answer the question of what concepts experientially underlie and explain the

applicability of DSLs (Wierzbicka, 1985).

• Prototypical categories exhibit degrees of category membership

Progressing from a binary classical feature semantics, the members within a

category are given a graded membership through the semantic features they hold,

how they meet these features and the importance of these features in regards

to the prototype of this category. The scale of which a graded membership

if operated is defined operationally by people’s judgements of the goodness

of membership in the category, with the prototype being the clearest case

of category membership (Rosch, 1978), for example, an owl may be a better

representative of the bird category than a penguin is. The people involved

in these judgements vary from discipline to discipline, and as such, different

features will receive different weightings depending on the discipline involved.

For example, DSL researchers may consider more languages DSLs than general

software engineers because they are looking for research potential in features

which are taken for granted by a general developer such as fluent interfaces on

APIs.

This phenomenon is informally mentioned throughout the DSL literature

specifically as domain specificity being a matter of degree or the target of

a language being somewhat relative Czarnecki and Eisenecker (2000); Sammet

(1969). A concrete example of this is a fluent interface DSL such as the Python
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family tree DSL in Maddra and Hawick (2016) may be given a weak grading in

domain-specificity, when on the other hand an external DSL such as NetLogo

(Wilensky, 1999) may be given a high grading of departing from traditional

general-purpose code.

An example of an arbitrary communities grading of DSLs may be like is shown

in Figure 2.3. The prototypical DSLs are languages such as SQL, regex and

NetLogo because they have clear domains and no general-purpose features away

from their domain. Moving away from this we have languages like HTML which

may not be considered a ’programming language’ but are very domain-specific.

Ant and Bash are intended towards a domain, but their domains are large.

Fluent interface DSLs may be called an API or a DSL depending on their use.

Unity is a game engine rather than a language, although is used as a DSL for

games with its scripting APIs so may be a borderline case which could be called

a DSL in some contexts. On the other hand, the ABM framework MASON

is used to reduce boilerplate just like Unity is although provides no scripting

feature out of the box so we would not consider it a DSL, although extensions to

Mason may be. Finally, languages such as FORTRAN and COBOL do have an

intended domain although the domains are generic and general-purpose features

are in the languages, so they would be considered general-purpose.

• Prototypical categories are blurred at the edges

Finally, the concept of fuzzy edges arises because a member may lie in-between

categories by sharing features of multiple categories. This causes blending of

definitions that cannot be done in the strict sets given by a classical feature

semantics. This allows for the creation of rich categories especially useful for

areas which have evolved through time leaving interesting outliers to groups. An

example of this could be categorising a mudskipper fish which possesses many
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Figure 2.3: An example group of programming languages in an illustration of their graded
membership to the category of DSL.
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of the semantic features of a fish but also spends large portions of time outside

of the water which would leave it out of many conventional fish definitions. The

preciseness of the definitions we give using prototypes has been criticised by

Hofstadter and Sander (2013) because the same fuzziness affecting the categories

we discuss effects the words we use to define the semantic features of a category.

For example, does domain-specific apply at language design, develop or use

time? Moreover, when this does apply is it an exclusive specific or is the intent

of specificity enough. The ambiguity of words used in the definitions is beyond

the scope of this thesis, but we have mentioned it for completeness.

A DSL which is Turing complete may be considered a DSL or a GPL depending

on the context of the classification. This is in contrast to a binary definition

where domain-specific is a direct antonym to general-purpose, which we believe

does not capture the underlying concept which gives real-world applicability to

the term domain-specific. There is more to the definition of DSL than a forced

specificity towards a domain, and as such, its categorisation should not depend

upon this sole feature.

We primarily consider DSLs as tools for forwarding different fields, especially

scientific fields by moving the level of abstraction to the most suitable for the task at

hand. It is agreed throughout the literature that DSLs are a step past frameworks

for software maturity (Mernik et al., 2005; Michaelson, 2016) and through this thesis,

we treat them as such. We look to use DSLs as tools facilitating confluences between

fields have library and framework technology in place, and furthering DSL techniques

can aid the work (Walker, 2016). As such, our definition of DSL focuses on the

potential to improve the economics of software development or improve domain

expert involvement.
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In closing, we have given this detailed definition as it is useful for presenting

our research framework but through general use of DSLs we believe straightforward

use of definitions alike that of the agent definition from Russell and Norvig (2003)

where the DSL definition is meant to be a tool for forwarding programming language

research and use, not as an absolute characterisation dividing DSLs and non-DSLs.

In the same way, we could refer to a calculator as an agent, but it would not be

interesting; we could remove Turing complete languages from the DSL definition, but

it could remove a valid line of inquiry. A DSL is a programming language designed

or used towards a domain-specific goal.

2.1.3 Purposes of DSLs and their Implementation

Now we have discussed what motivates a DSL use we move into the purpose and

implementation of DSLs in the literature. In Fowler’s (2010) DSL book, Brad Cross

creates a separation between a computational and compositional DSL.

• Computational: performs actions on a semantic model. Generally, programming

an alternative computing architecture such as a state machine.

For example, JMock expectations are set up using a mix of Java and declarative

JMock statements which manipulate the semantic model’s expectations as

shown in Listing 2.1.
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Listing 2.1: Example JMock computational DSL code.
// create expectation
context.checking(new Expectations() {{

oneOf (subscriber).receive(message);
}});

// perform task
publisher.publish(message);

// verify expectation is met
context.assertIsSatisfied();

• Compositional: describes composite structures. Generally, data types for a

specific application such as user interfaces.

For example, GEDCOM defines the individuals and relations between individuals

in a family tree to form a graph structure as shown in Listing 2.2.

Listing 2.2: Example GEDCOM compositional DSL code.
0 @I1@ INDI
1 NAME /Last/ First
1 BIRT
2 DATE 1 Jan 1970
1 FAMC @F1@
1 FAMS @F2@

Through this thesis we use Fowler’s (2010) definition of a semantic model as

the backbone of DSL implementation. A semantic model is a representation of the

subject the DSL describes, for example, an in-memory object model, state machine

or database tables. In simple applications, a semantic model may be used as a

domain model which executes or generates code, in more complex scenarios a domain

model would be a framework for creating applications within a domain with the

semantic model containing the data which drives specific implementations using this
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Figure 2.4: The semantic model concept from problem to solution to implementation.

framework. Semantic models have two interfaces: population and operation. The

population interface is used to create instances of the semantic model and should

only be used by the parser and tests of the model. The operation interface is used to

operate an already populated semantic model.

An illustration of the semantic model idea is a DSL for machine learning such as

DEFIne (Dethlefs and Hawick, 2017) whose intention is to allow the quick population

of complicated machine learning frameworks for experiments. The semantic model

for this will hold parameters specificity the training, optimising, evaluating and

visualising deep learning models and the domain model will be able to operate this

model to fulfil the DSLs purpose. As shown in Figure 2.4 the DSL will be parsed

or executed to populate the semantic model, which can then be operated by the

domain model to start up the specified experiments.

A semantic model is generally stored in a way suited towards its use rather than

an abstract syntax tree because it is concerned with business logic rather than DSL

implementation. Separating this allows the semantic model to be used separately

from the DSL, and the DSL’s testing to be split into parsing the DSL text and
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executing the semantic model. This also allows the use of multiple DSLs or parsers

to populate the same semantic model; this is referred to as a network of domains by

Czarnecki and Eisenecker (2000). For external DSLs, this also reduces the burden of

parsing DSL texts directly to host language text which is error prone especially for

non-expert compiler writers.

This idea is similar to Parnas’s (1979) concept of ’virtual machines’ which in

modern terminology could be referred to as frameworks which virtually extend the

language’s architecture. He states that the convenient programs accessible through

the higher-level machines allow the writing of simpler software, even though going

higher level reduces expressibility and adds computational constraints. Semantic

models are like this because they act as an architecture of the domain model to be

programmed by the DSLs population.

The implementation of a DSL is generally split into external and internal. An

external DSL is a stand-alone language, whereas an internal DSL is based within

a host language. Through this thesis, we focus on textual DSLs although we also

discuss non-textual at the end of this segment for completeness.

• Textual External

External DSLs are stand-alone languages implemented as a separate entity

from any host language although generally using some high-level language as

a compilation or interpretation target. This gives freedom in implementation

techniques, especially in limiting expression as the language features can be

selected carefully which is more difficult in internal DSLs as they may be mixed

with host language features. External DSLs can either be implemented as

stand-alone languages to perform a task, components for use within general-

purpose frameworks or strings for parsing within libraries. The benefit of an
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external DSL is they have full control over their syntax and the code they

generate. They are especially useful for projects where the main GPL does not

have many extension features such as C or in stand-alone tasks which follow an

unconventional programming structure such as text manipulation.

There are several ways to implement a textual external DSL:

– Regular language or ad-hoc parser in an interpreting program, suited to

naive implementations of simple data formats alike CSV and domain-specific

limitations on XML. This is the default for very simple DSLs, for CSV

or XML based DSLs there may be libraries which can aid this parsing.

Generally, these languages will not provide rich Integrated Development

Environment (IDE) support or error checking as a full language would be

expected to.

– Traditional language development tools using context-free grammars, suited

to creating complex languages. This requires knowledge of parsing languages

and auxiliary features such as IDE support will have to be created separately

if required.

– Language workbenches providing a full language creation suite, suited to

creating supported complex languages. This requires vendor buy-in but

gives great usability of end language with the option to add features such

as IDE support with little configuration.

An example of an external DSL used widely in industry and academia is Neo4j’s

graph query language Cypher; an external DSL implemented using a custom

parser written in Scala. Being external allows Cypher to constrain operations

on the underlying database, at the cost of expressibility in fringe use cases such

as implementing graph algorithms. An example of fringe use is Cypher being
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Figure 2.5: The Cypher betweenness centrality algorithm flow diagram.

used for finding the betweenness centrality of a graph using a greedy heuristic

adapted from Mattiussi et al. (2011) in Balaghan et al. (2017). This fringe case

requires advanced use of Cypher’s syntax. The algorithm is shown in Listing

2.3 and illustrated in Figure 2.5.

There has also been work on creating an internal DSL for Neo4j with JCypher

from Schützelhofer (2016), an internal fluent interface DSL in Java which

generates Cypher code without the user leaving the Java ecosystem.

Listing 2.3: Cypher code to implement a betweenness centrality greedy

heuristic from Balaghan et al. (2017).
MATCH p=allShortestPaths((a)-[*]->(b))
WHERE a <> b

WITH a,b,collect(p) AS allpaths, count(p) AS allcount
UNWIND allpaths AS p
UNWIND nodes(p)[1..-1] AS n

WITH n,a,b,1/tofloat(allcount) AS fraction
RETURN ID(n), sum(fraction)
AS betweenness centrality
ORDER BY betweenness centrality DESC
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• Textual Internal

Internal DSLs are languages within host languages, implemented using existing

language features. They are languages which allow writing at the domain-level

of abstraction, rather than directly using a set of libraries at the implementation-

level. These are especially popular in the functional community because of

the inherent extensibility of functions. The main use of internal DSLs is

improving software productivity within a commonly occurring problem for the

host language user or problems not suited to the host languages style. There

are several ways to implement a textual internal DSL such as (van Deursen

et al., 2000; Veldhuizen and Gannon, 1998; Czarnecki et al., 2000):

– Embedding the language within the host as a fluent interface to a semantic

model, allowing the use of the host language’s IDE features to populate

semantic models without any modification. This is the simplest form of

DSL, and there is contention to its status as a DSL. We consider fluent

interfaces to be a DSL technique, further discussion of this can be found in

Section 2.1.2.

– Embedding the language within the host such as a library using the provided

features, limiting possibilities of extension to the host language’s features

but retaining the host’s environment. For example, creating an internal DSL

in C++ allows rich additions through templates and operator overloading.

– Adding pre-processing or textual macros to a host language, allowing the

creation of pseudo-external DSLs in a fraction of the time but without

semantic checks. This is common in C code because of its lack of DSL

support otherwise.
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– Meta programming or runtime code generation within the background of

the library can allow complex compiler like results, but errors can only

be found at runtime. This is especially exciting because domain-specific

optimisations can be produced without extending the toolchain.

– Extending the host compiler or interpreter, bringing opportunities for

compile-time semantic checks and domain-specific partial evaluation. This

is only possible if the host language is extensible or the compiler for the

host language allows this.

– Extending the programming environment to provide domain-specific tooling

inside an environment using specific tools, this relies on the hooks provided

the chosen extension tool. This has been done by Blitz++ using Tau

profiling (Shende et al., 1998) where profiling information is based on

domain-specific user-level routines instead of the hidden implementation-

level. This allows coherence between written code and profile output.

An example of an internal DSL is our Python family tree DSL (Maddra and

Hawick, 2016). This DSL is motivated by the rise in the availability of digitised

family history data, with the intent of searching, outputting and analysing

GEDCOM (Genealogical Data Communication) files without the need of a GUI.

GEDCOM itself is a compositional external DSL designed to pass genealogical

data between parties. GEDCOM is widely supported by genealogy software and

has a simple reference-based lineage-linked structure to link families together.

Order within the file itself is insignificant as the people and families are identified

using reference tags, this makes the format difficult to read without an interfacing

program. Example code using the DSL can be found in Listing 2.4.
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The DSL takes advantage of IDLE, Python’s Integrated Development and

Learning Environment to allow interactive programming as is discussed by

Martin (1985), where programming can be considered a monologue or a dialogue.

With a domain such as a genealogy file traversing, interactive dialogue between

the program and the programmer allows real-time exploration of datasets with

feedback of results and conflicts as they happen. Non-interactive execution

is unaffected by this, and pre-existing scripts can be called from within the

interpreter. To avoid cluttering of irrelevant domain jargon, the DSL’s Python

modules can be imported and removed seamlessly, as such, the semantic model

can be populated by multiple DSLs depending on the user’s needs.

Providing a development environment similar to this for an external DSL would

require high implementation costs, highlighting the benefit of internal DSLs

being able to utilise the host language’s ecosystem. Python is a particularly

strong candidate for this because of the large amounts of scientific libraries and

frameworks available.
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Listing 2.4: Python internal family tree DSL example code.
tree << "OldTree.ged"

father = search(surname="Last", forename="First")

child = new_person().\
set_sex("male").\
set_name("Brand", "New").\
set_birth("1 JAN 1970", "ENGLAND"))

father.add_children(child)

print(father.name())

father.graph_family()

tree >> "NewTree.ged"

DOT is used as an output language for visualisation of the family tree from

arbitrary root nodes. This is a re-use of an existing external DSL to reduce our

implementation burden. As DOT is a lightweight DSL which just requires a

simple compiler to produce images this fits seamlessly with our other forms of

output. This benefit of being able to re-use DSLs in different projects should

be considered when choosing to create or use a DSL.

An additional definition of ’active libraries’ can be made for DSLs which although

they are treated as internal DSLs they play a role in the compilation or execution

of their code allowing for compile or runtime domain-specific code generation,

optimisation, debugging, profiling or testing to be performed (Czarnecki et al.,

2000). Active libraries allow the extension of languages in cases where the host

language is insufficient or not practically suited towards doing a task, but the

task as a whole is suited to the language. An example of this is in Husselmann’s
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(2014) SOL language towards data-parallel structural optimisation in ABM

through the use of a multi-stage programming language Terra embedded within

LUA.

• Visual and Projectional

In addition to the traditional textual DSLs there are visual and projectional

DSLs which offer interesting techniques for certain scenarios and are interesting

research for the future of DSAL development, throughout this thesis, we focus

on textual DSLs. Traditionally textual formats have been preferred because of

their better integration with existing tooling and users learned experience of

coding, with graphical representations being used more at the planning and

modelling stages of development although this is changing with advances in

technology (Völter et al., 2014).

Graphical editing is generally suited to compositional DSLs because it shows

the connections and positioning of objects. Often there is a textual format

behind the graphical interface, which the user may edit independently of the

visual representation and keep changes from both such as in Eclipse Modelling

Framework (EMF) projects and Android UI design. Displaying large numbers

of entities can cause problems for performance and usability. For example,

in graphical family tree software large families may become incomprehensible,

requiring filtering to reduce the amount of entities to display.

An example of a computational visual DSL is Repast Simphony’s flowchart

mechanism for describing agent behaviours. This is suited to non-traditional

programmer audiences and displaying agent behaviours in articles to domain

experts. The visual format allows the gist of behaviours to be effectively

communicated and edited without knowledge of the underlying implementations.
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Projectional editing brings forward the opportunity for the mixed-type writing

of programs such as tables to populate 2D arrays and selective hiding of non-

relevant parts of abstract syntax trees. Examples of projectional language

workbenches are MPS (Campagne and Campagne, 2014), MetaEdit+ (Tolvanen,

2016) and Intentional software (Simonyi et al., 2006). Examples of projectionally

edited languages include Mbeddr (Völter et al., 2012) and Cedalion (Rosenan,

2010; Lorenz and Rosenan, 2011).

Although some visual DSLs may be considered to be more of a GUI rather

than a DSL, we still consider visual interfaces which are designed towards

populating a model through domain-specific parameters. We think this is

similar to the concept of a punch card and a good example of this type of

language is Simulation Program Generator (SPG) found in Hawick (2011).

Before electronic development environments were commonplace punch cards

were considered a method of programming, the shift towards textual languages

is just a sign of the usefulness of the format with the advent of keyboards

and electronic text editors. The move towards more visual methods for non-

programmers and specific scenarios is a further move towards the new graphical

interfaces we are all used to today. The main issues for these visual languages

is competing with the portability, compatibility and free input speed of text.
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2.1.4 Summary

In summary, we have defined DSLs as a tool to improve software economics and

domain expert involvement by changing notations and automating boilerplate

creation. This can be used as an enhancement to predominantly object-oriented

projects either as external languages or internal extensions to a base language. This

frame of use ties into our next sections introduction of AOP.

2.2 Introduction to Aspect-Oriented

Programming

We now introduce AOP as a base for separating cross-cutting concerns before moving

into DSALs. We concentrate on an object-oriented target with the pointcut advice

model which is used by the industry standard AspectJ throughout this thesis.

2.2.1 Motivation

AOP gives developers another option in how they would like to structure their

code by introducing aspects, a new unit of modularisation specifically for cross-

cutting concerns. Over time the software paradigms have moved towards more

effective software economics. Procedural programming brought subroutines to

improve reuse; structured programming then placed constraints on program flow,

OOP then combined data and behaviour into single conceptual entities which may

be extended through hierarchies. These techniques provide a way to package the

core concerns of an application effectively although still leave some axillary concerns

scattered and tangled across modules.
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AOP is a programming paradigm which can be used to augment the capabilities

of object-oriented techniques to deal with cross-cutting concerns. This has been

included in movements such as post-object programming and advanced separation

of concerns where the primary method of software decomposition is object-oriented

with techniques such as AOP and DSLs being used where they can improve software

economics.

The concept behind AOP is stated in Filman and Friedman (2000) as the desire

to make statements in the form: in program P, whenever condition C arises, perform

action A over a conventionally coded program P. This means the core concerns of a

program can be written as program P without being responsible for the cross-cutting

concerns of a program such as the runtime inspection, logging, caching, transaction

management and authorisation. These cross-cutting concerns could then be specified

as separate entities will be weaved into this program P using the conditions required

to fulfil the cross-cutting concerns.

This solves issues of scattered and tangled code where common tasks can be

performed from a single place saving time and reducing the risk of mistakes such

as leaving a module without the concern or an old version of a concern. Tasks

may include adding a cross-cutting concern to an existing project, modifying a

cross-cutting concern, toggling of a cross-cutting concern or testing a cross-cutting

concern.

2.2.2 What is AOP

Now we established that the goal of AOP is to allow separation of cross-cutting

concerns within software which cannot be sufficiently captured using procedural or

object-oriented techniques, we can describe the concept behind its use.
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Figure 2.6: Comparison of object-oriented and aspect-oriented methods of separating
concerns.

AOP is a paradigm which changes the view of a software system around the

concept of a cross-cutting concern. Cross-cutting concerns have been generally

defined to be properties that affect the performance or semantics of a system’s

components in systemic ways. Practically this means a cross-cutting concern is a

concern which cannot be encapsulated within the dominant decomposition method

because it is scattered across many dominant modules and tangles implementation

with other concerns (Elrad et al., 2001). This is illustrated in Figure 2.6 where the

cross-cutting concerns are viewed as cutting across the dominant decomposition

method in AOP whereas in object-oriented they are scattered and tangled throughout

the system as properties of objects. We can explain these changes by how paradigms

treat nouns and verbs: procedural programming requires nouns and verbs to be

defined separately, object-oriented allows the encapsulation of nouns and verbs within

individual objects which may form hierarchies with other objects, aspect-oriented

allows the implicit addition of verbs to existing nouns or the addition of nouns

through inter-type declarations.
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Cross-cutting concerns are separated from primary concerns by adding the new

unit of modularisation, the aspect. Kiczales et al. (1997) defines component and

aspect as follows:

• A component: a unit of a system which can be cleanly separated using objects,

methods, procedures or APIs.

• An aspect: properties that affect the performance or semantics of components

in systematic ways which cannot be cleanly separated into components.

Aspects can be symmetrical or asymmetrical, where symmetrical allows aspects to

affect core code and other aspects and asymmetrical gives a unidirectional distinction

of aspects affecting core code. It is generally accepted that asymmetrical aspects

are easier to debug because the graph which could be formed from symmetrical

aspects can become increasingly complex compared to the well-defined asymmetrical

unidirectional aspects (Murphy et al., 2001; Lippert and Lopes, 2000). We focus on

asymmetrical aspects because they are the industry standard and suit the purposes

of runtime inspection.

The core idea behind this is that a system can be viewed to allow the primary

decomposition method to fulfil the primary concerns and cross-cutting concerns to

be separated into aspects and weaved into the solution at compile or runtime. This

is a fundamentally different way of looking at these cross-cutting concerns as an

extension of the object-oriented mindset, an object’s class no longer contains all

features of an object because cross-cutting features such as logging and authorisation

may be stored as aspects.

We can explain this in relation to the paradigm of literate programming from

Knuth (1984) where the highly coupled concerns of documentation and programming

which are normally dealt with separately are moved into the same source. In literate
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Figure 2.7: The aspect-oriented process weaving aspects and components adapted from
Kumar et al. (2016).

programming, the documentation and coding are written in a WEB file which is

then weaved to produce documentation or tangled to produce a program. This line

of thinking has followed on in modern languages with tools such as Javadoc where

documentation is written in Java comments with the related implementations.

Where literate programming brings two coupled concerns into the same source to

be separated through weaving and tangling, AOP focus on separating systematic

concerns into separate sources which are to be joined through weaving. The likeness

of these two approaches in opposite directions can be seen in Figures 2.7 and 2.8.

Compared to ubiquitous and well-understood object-oriented practices this may

seem to be over-engineering or difficult to comprehend for developers. This is explored

in Constantinides et al. (2004) where AOP is compared to the arbitrary use of go

to and come from statements. However, the weaving process is still a structured

approach which follows the aim from Dijkstra (1968) of shortening the conceptual gap

between the static program and the dynamic process through a trivial correspondence

between the program source and execution process. We believe although the use
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Figure 2.8: The literate programming process adapted from Knuth (1984).

of aspects being weaved from external sources from may increase the complexity

of forming a meaningful set of coordinates to describe the process of a program,

this is traded off against the benefit of refactoring previously scattered and tangled

cross-cutting concerns into structured aspects.

The addition of aspect orientation to a project should change the philosophy

of development within the system, where objects contain the core concerns of a

system; axillary cross-cutting concerns are dealt with using aspects. This means

that a programmer should not have to concern themselves with any changes to

the coordinates used at runtime as aspects will provide implementations for cross-

cutting systematic concerns without affecting the flow of their code. This weaving

of aspects into oblivious objects could be considered a disruption of object-oriented

encapsulation, yet when viewed from the aspect-oriented lens of them being part

of the classes which they affect, aspects do not break the encapsulation of classes

(Elrad et al., 2001). Furthermore, the user can be aided in viewing the progress of

a program through the use of IDE extensions such as AspectJ development tools

which display Join Points (JPs) and potential pointcut matches of aspects.
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In summary Filman and Friedman (2000) have defined AOP’s distinguishing

features over object-oriented as quantification + obliviousness. The quantification

represents the breadth of the JP model allowing separate statements within aspects

to affect a program in multiple appropriate places with appropriate potential for

effect. The obliviousness represents the ability to weave programs without the target

requiring to prepare for receiving these enhancements. As such, the obliviousness does

not mean a complete lack of knowledge that aspects will be applied but reasonable

freedom from accommodating the aspects as is required in interfaced programming

or dependency injection approaches.

Moving onto how aspect-oriented systems are implemented, the ability to

supporting cross-cutting concerns requires several components as discussed in

(Ubayashi et al., 2004; Kumar et al., 2016; Elrad et al., 2001):

• The JP representation. The points of reference that aspects can select and

effect, these may be lexical (static) as in method calls or dynamic as in method

executions.

• A means of identifying JPs. Such as on certain method calls or program state

changes.

• A means of effecting at JPs. Such as executing code at JPs.

• A means of altering the static structure of a program. Such as inserting new

variables for logging.

• A means of packaging cross-cutting concerns. Such as an aspect class.

The first 3 of this list form the language’s JP model in the Ubayashi and Tamai

(2001) definition, as this forms the basis of possible cross-cutting support.
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Figure 2.9: Aspect-oriented join point stream through program execution with an
illustrative aspect identifying join points.

A JP representation realises itself through execution as a stream of points through

the execution of a program where aspects may identify or effect. An illustration of

this is shown in Figure 2.9, through the flow of the program JPs arise which may

match an aspects identification and have effect executed on it.

2.2.3 Categories of AOP and their Implementation

Through this thesis, we predominantly focus on the pointcut advice model of AOP

although Chapter 5 takes inspiration from a composition filter approach. We will now

discuss proxy-based weaving through inversion of control frameworks, deploy-time

weaving, compiler weaving and the composition filters approach.

Proxy-based

The simplest form of AOP is proxy based; this is where an invocation of control

framework wraps methods with proxies which perform the identification checks for

JPs. This method limits the potential JPs to method call JPs which can be extended

using other methods of weaver implementation. This approach is used by Spring AOP,
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Figure 2.10: The proxy-based AOP method, each method which may have join points
attached to it is wrapped in a proxy method.

a part of the larger Spring framework which does not claim to provide a full aspect-

oriented solution. The Spring framework is a lightweight framework for enterprise

applications, common enterprise tasks such as logging and authorisation are suited

to using Spring AOP. Spring AOP allows the use of the AspectJ compiler-weaver

instead of or in addition to Spring AOP if they require a complete aspect-oriented

solution. Through the Spring IDE Eclipse plug-in, users can visualise their aspects

cross-cutting. An illustration of the proxy-based AOP method is shown in Figure

2.10.

Deploy-time weaving is an approach used by Cohen and Gil (2004) where an

aspect program is implemented through method overriding during the compilation

stage allowing the user to extend, enhance and replace the standard services provided

by JavaBeans containers. This means that the program’s object structure exists

as written without aspects in the executable allowing for debugging and profiling

of unaltered core code. This form of weaving has essentially the same expressive

power as proxy approaches because it is essentially weaving in proxy classes during

compilation time. This approach is useful for middleware approaches where the

methods which will require aspect orientation are known.
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Compiler-Weaver

AspectJ is the most popular General-Purpose Aspect Language (GPAL); it is

implemented through an extended Java compiler and a runtime library. It has

also been the base for aspect-oriented research such as the Aspect Bench Compiler

(ABC) from Allan et al. (2005).

AspectJ offers three types of JP weaving which produce the same class files

regardless of method:

• Compile time weaving, which can be used when the source code for aspects and

target is available. The AspectJ compiler will take both source files to create a

woven standard Java class file for use with the JVM.

• Post-compile weaving, which may also be referred to as binary weaving is used

to weave pre-compiled classes or JAR files.

• Load time weaving, which is binary weaving but deferred until the JVM loads

a class. This requires one or more weaving class loaders to be running on the

JVM to weave classes before they are defined in the JVM.

AspectJ does not have any explicit support for runtime weaving although toggling

of aspects can be provided using simple boolean checks at runtime. An illustration

of the resulting implementation from a compiler-weaver method is shown in Figure

2.11.
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Figure 2.11: The compiler-weaver AOP method, cross-cutting concerns are directly placed
into the implementation classes at compile, post-compile or load time.

Composition Filter Approach

A modular extension of the OOP model focused towards composability allowing

for aspect-oriented development through declarative filter specifications. The core

concept of composition filters is enhancing OOP by manipulating sent and received

messages between objects. This allows behavioural changes because externally visible

behaviour in OOP is manifested by the communication between objects (Bergmans,

2004).

This approach shows usability for middleware approaches where common filterable

actions are known for a large set of programs and may be modified slightly to fit

different cross-cutting concerns. This inspires some of the work we do in Chapter 5,

as this filters approach is suited towards agent-oriented message passing.

This approach is designed around modification at runtime as it binds to objects

at runtime and filters may be altered as program execution goes because they are

just data which is operated on. The implementation idea behind this method of

extending an object with layers of filters is illustrated in Figure 2.12.
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Figure 2.12: The composition model AOP method, cross-cutting concerns are expressed
by manipulating incoming and outgoing messages.

2.2.4 Summary

In summary, we have defined AOP as an enhancement to predominantly object-

oriented projects, especially in areas with endemic cross-cutting concerns. This

definition is in line with our definition of DSLs which can be used in predominantly

object-oriented projects for specific tasks which have consistent boilerplate code.

These two paradigms are complementary and are combined in the field of DSALs.

2.3 Introduction to Domain-Specific Aspect

Languages

We now discuss our thesis’s core field of DSALs which brings the idea of domain

specificity to managing a set of cross-cutting concerns. This type of language is

the basis for our work in agent-based runtime inspection and is used through our

contribution Chapters 4 and 5.
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2.3.1 Motivation

DSALs are aspect-oriented languages which are domain-specific in one or more of

the axis of the language’s JP model (Fabry et al., 2015). The previously mentioned

axis of a language’s JP model are representation, identification and effect. This is a

combination of our previously mentioned topics of DSLs and AOP. This combination

provides an opportunity to combine existing mature DSL and AOP technologies to

form exciting research directions in practical application domains.

The comparison of a DSAL to a GPAL is similar to the difference between a DSL

and GPL. Where a DSL is intended to remove boilerplate code from a program,

a DSAL is intended to reduce the boilerplate forming step associated with aspect

mining when using a GPAL. Aspect mining is a step in the aspect-oriented process

where cross-cutting concerns are found before the implementation or refactoring of

the concern (Kumar et al., 2016). A DSAL greatly reduces or removes the mining

step because it is already aimed towards a set of cross-cutting concerns in either

representation, identification or effect.

A hindrance of DSAL implementation, when compared to DSLs, is they require

a weave target, which inherently means coupling to external sources. While a DSLs

implementation will be tied to some semantic model generally under the control of

the language developer, the weave target’s external source may be a static completed

program, a program under current development or a version of some middleware

component. The weave target problem is specific for DSALs rather than GPALs

because a GPAL’s weave target is generally target language features which will

remain static regardless of base program. For example, a GPAL may target method

calls or variable changes in general as opposed to specific behaviour calls or state

changes which depend on some specific application implementation for a DSAL. This
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is where pure-DSL techniques and pure-AOP techniques clash. We must take into

account not only the generation of implementation from a problem domain-level

DSL but also coordinate this implementation within the host program.

DSALs are especially suited to projects where there is a stable domain and

stable weave target. An example scenario showing the usefulness of a DSAL is a

software engineer can create languages for domain experts to use when dealing with

cross-cutting concerns on some base program. For example, changing many runtime

inspection tasks for experiments upon pre-written simulation models. In this case,

the base weave target remains the same which is ideal for the DSAL developer, and

the domain experts would not need to concern themselves with the weaving and

boilerplate implementation of their cross-cutting experiments.

An interesting direction for DSAL research is how we can reduce the start-up

costs for creating and using a DSAL, with a target of nearing the difficulty of the

implementation of DSLs. Without appropriate methods and tools for creating DSALs,

there is an increased risk of ad-hoc solutions being chosen even when a DSAL could

provide benefit in the long term, especially when deadlines are tight.

2.3.2 What is a DSAL

Our definition of what can be classed as a DSAL relies on our previous definitions of

what constitutes aspect-orientation and domain-specificity. Although a DSAL is a

DSL, we separate the definitions through this thesis to avoid requiring specifying

aspect-oriented DSL and non-aspect-oriented DSL throughout. Using the definition

from Fabry et al. (2015), a DSAL is an aspect-oriented language with domain

specificity applied to one or more of the axis of aspect orientation: representation,

identification and effect. We will discuss the concept of domain-specific JP
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representation, identification and effect within this section. This concept forms

a three-dimensional graph to give a rough estimation of how domain-specific a

DSAL is, where coordinates are assigned in the same way as specified in the graded

membership definition of how we can define a DSL from Section 2.1.2. For example,

a DSAL which is only domain-specific in effect would resemble a GPAL which uses

a DSL for effect, whereas a DSAL which is domain-specific in representation and

identification would resemble a GPAL with declarative, domain-specific pointcuts

provided. We will now examine how each of these axes could be made to be domain-

specific.

Representation

A DSAL is based around its representation which provides the JPs which can be

targeted by the identification and effect axis. General-Purpose Join Points (GPJPs)

refer to places in the execution (dynamic) or syntax (lexical) of the implementation

of a program; Domain-Specific Join Points (DSJPs) refer to JPs at a domain-specific

level of abstraction at either the dynamic or lexical level.

Through this thesis we use the specialise, aggregate and create model which is

defined in Fabry et al. (2015) and shown in Figure 2.13. This model defines the

implementation of a DSJP as the specialisation of a single GPJP, the aggregation of

many GPJPs or the creation of a new JP augmenting the original program’s flow of

GPJPs.
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Figure 2.13: DSJP in relation to GPJP through specialisation, aggregation and creation.

Identification

Given a JP representation, identification allows selection of the JPs to be affected.

The domain specificity of the identification could be an extension of a domain-specific

representation or a domain-specific layer which forms declarative statements over a

general-purpose representation.

Effect

Effect is placed at an identified JP, the considerations for a domain-specific effect

are the language used and parameters available to the programmer. The parameters

available affect the domain specificity of an effect language by providing the leverage

the programmer has on the context around the JP. For example, an effect could

have no context, a GPJP description giving information about program state or a

domain-specific object which provides declarative calls for tasks which are important

for this domain. The domain specificity of an effect language can be judged as a

DSL would be, with the most domain-specific options being full declarative DSLs

with domain-specific IDE support taking into account JP context. On the other
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hand, the effect of a DSAL could be a GPL if the goal is to shield from program

implementation for inserting cross-cutting concerns although requiring full leverage

to implement the concern.

The domain specificity of effect code could also take into account the limits of a

domain, for example, a DSAL designed for the verification of models may provide an

effect language which may record information for verification purposes but cannot

affect the state of a simulation.

2.3.3 DSAL Development Approaches

The development approaches of DSALs has been covered in a review from Fabry

et al. (2015) which highlights the lack of direction on how to develop a DSAL

through the literature. Furthermore, any DSL literature methods which apply to

DSALs must be adapted to consider the external weave target, aspect composition

methods and implementation JP context mapping to domain-specific context. The

main implementation methods highlighted by Fabry et al. (2015) are interpreters,

compilers, embedding, hybrids and DSAL infrastructures. This list is inspired by

the list in Mernik et al. (2005) with DSAL infrastructures added. We can relate the

DSAL infrastructures to language workbenches which were not prominently used at

the time of the Mernik et al. (2005) survey.

When considering the implementation method for a DSAL, it is important

to consider the community around a method’s tooling, the learning curve of a

method and re-usability of the method across other problems. This is a problem for

DSAL development more than DSL development because DSLs have mature parser

generators such as ANother Tool for Language Recognition (ANTLR) and language

workbenches such as Xtext which have large communities around mature consistently
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updated software. Using mature software in the implementation of languages goes

towards ensuring updates and bug fixes are available across the implementations

of the DSAL project which may not be available for hobbyist or academic projects.

As such, movements to increase DSAL adoption cannot just focus on creating new

research tooling but also methods to develop and use emerging tooling, preferably

leveraging pre-existing mature software.

We now look at the different types of implementation for DSALs.

Interpreters

Creating a DSAL by making a JP interpreter on an instrumented program is the

simplest form of creating a DSAL. This method allows for dynamic JPs but not

lexical JPs as everything is done at runtime.

The implementation of this method involves instrumenting the application with

JPs which can be checked using the runtime interpreter and advice can be fired

directly if there is a match. This approach will generally be developed using the host

language by adding the DSAL classes, JPs may be added using a GPAL or directly

called within base code.

This method allows rapid development times and is extendible even at runtime

because the DSALs weaving interpreter is held in memory rather than weaved into

the source code. This means that prototyping new DSAL ideas and creating DSALs

for short projects is an ideal use case for this method.
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The disadvantage of this approach, like all interpreter approaches is the runtime

overhead of matching JPs in an interpreter and no access to semantic checks at

compile time which a compiler would have. The runtime slowdown can be somewhat

reduced by using techniques such as partial evaluation of JPs meaning only possible

JPs are passed through the full interpreter.

Compilers

Creating a DSAL by compiling targets and aspects together to source or binary is

an efficient way of implementing a DSAL because only necessary JPs need to be

added into the source code. This method is less open to runtime changes because

changes are done in the source of the program being weaved into. To change aspects

at runtime would require the reloading of affected classes or aspects to be pre-weaved

in but toggled off until needed. Both lexical and dynamic JPs may be implemented

using this method, and semantic checks can be provided at compile time.

This method is more time consuming to implement than the interpreting method,

and the implementation requires knowledge of code generation. The generator could

weave into the target source code or generate semantically equivalent code in a GPAL

to delegate the task of weaving. This could be implemented by creating a compiler

from scratch, extending a compiler or adding a pre-processing step. If the weave

target is a DSL, the weaving may be easier compared to a GPL because of simpler

keyword matching.
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Creating a compiler weaver for a DSAL is different to a GPAL in that the mapping

from domain-specific concept to implementation may change over time, whereas for

a GPAL mapping to language is consistent. This problem remains whether weaving

directly to source or generating GPAL code because the implementation changes will

still require changes.

Embedding

Creating a DSAL by packaging host language features into a library is an emerging

way of implementing DSALs as aspect-oriented techniques become available in modern

multi-paradigm languages. This is analogous to implementing an internal DSL where

the host language defines the difficulty and opportunity for language development.

As such, this approach’s difficulties compared to other methods depends on the host

language and type of aspect orientation required.

Simple AOP can be performed using proxy AOP which only requires GPL features

to wrap each target method with a proxy method which will perform all weaving at

runtime. This requires target code to have a network of proxies, these proxies could

be ad-hoc or structured using a framework such as Spring AOP.

Further AOP can be performed in languages with post-object-oriented paradigm

features such as Scala with traits and Groovy with its meta-object protocol, all without

leaving the host language’s feature set. Languages which allow meta-programming

such as Java and C# allow the same sort of internal DSAL to be created yet with a

considerable performance cost by modifying objects at runtime.
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This approach shows great promise for the future as more languages take this

multi-paradigm approach and developers begin to use AOP as part of their normal

development without requiring extra tooling in their build process. Depending on

the host language features used this may be done at compile time or runtime, forcing

performance cost to be calculated on a case by case basis.

Hybrids

Given the differing potentials of these approaches, in many cases, it may be wise to

use a combination to alleviate issues while retaining benefits. These hybrids may be

because of requirements such as embedding the identification and effect measures

into a host language but requiring a separate JP interpreter because the language

lacks appropriate aspect-oriented features. On the other hand, a hybrid may be done

to take advantage of different approaches such as using a mature GPAL weaver to

capture GPJPs then to interpret them as DSJPs at runtime. An example of making

a production level DSAL using a hybrid approach would be a language which has

separate implementation styles depending on the situation, where runtime changes

are required an interpreter is used, yet with static JPs a compilation approach is

taken to increase performance.

This approach requiring knowledge of different approaches may seem to increase

development time, but on the other hand, using appropriate methods to alleviate

the pitfalls of choosing a single method can save time. For example, the compilation

approach is efficient at runtime but time-consuming to create a compiler for each

DSAL, using a GPAL to compile a partially evaluated set of JPs which are then

interpreted at runtime can give a middle ground between fast language development

and appropriate runtime. This approach has the most power out of the above
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methods because it can combine each of them to achieve the required results. The

disadvantage of this method is scattering and tangling within the DSAL itself must

be managed carefully because of the dependencies between different methods.

Infrastructures

The DSAL infrastructure approach is a move towards making language workbenches

for DSALs, providing a cohesive environment designed towards the DSAL

development and deployment process. This is to solve the problems of requiring

multiple heterogeneous pieces of software tied together to develop DSALs.

Developing an infrastructure from scratch is a gargantuan task which requires a

large intended user base to make development worthwhile. While DSLs have large

projects such as Eclipse Xtext and JetBrains MPS for creating DSL infrastructure,

most DSAL infrastructures are academic projects which are focused towards research.

This brings into question if it is worth using an academic project to create DSALs over

the mature DSL and AOP tools which give re-usable skills and a wider community

of users.

The main considerations when choosing an infrastructure are the completeness of

its feature coverage, the learning curve required to create solutions, the frequency

of software updates and community which relies on the software. The vendor or

developer of the infrastructure is also a consideration because once a project has

chosen to use an infrastructure, it is tied into this decision.

A common downside of large frameworks is although example projects are easy

to follow and show useful features, moving onto creating bespoke solutions requires

a deep understanding of the features and semantics of the infrastructure. These
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downsides are alleviated with industry standard mature projects which have active

community boards filled with help topics and development from many sources keeping

updates flowing.

One of the most notable infrastructures for DSALs is ABC from Allan et al.

(2005) which is focused around extending the AspectJ compiler. The code produced

by this infrastructure is production quality and has a relatively large user base. This

infrastructure can also be used for general AOP extensions, for example, Harbulot

and Gurd (2006) created an AspectJ extension allowing JPs at loops. The addition

of loop JPs in AspectJ allows the language to perform more implementation invasive

AOP, which is discouraged by the general audience but may be useful in specific

scenarios such as creating a DSAL generating AspectJ code to implement a weaver.

Another example of extending the AspectJ compiler is the language-oriented

modularity project from Hadas and Lorenz (2017) which extends the AspectJ

compiler to allow for semantic preservation of DSAL concepts in AspectJ + metadata

implementations. This workbench takes the existing mature AspectJ compiler and

adds means to insert metadata which is relevant for DSAL development.

As most AOP research is done with the assumption that Java will be a base

language, The Pluggable and OPen Aspect Run-Time (POPART) from Dinkelaker

et al. (2009) is a DSAL infrastructure for weave targets with a DSL as a base language.

POPART allows the creation of DSALs using internal DSLs within Groovy to create

plugins for the JP representation (referred to as JP model in the article), pointcut

language and advice language. POPART is implemented as a library in groovy with

AspectJ for instrumenting GPJP; they do not consider aspect composition in their

approach.
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2.3.4 Summary

In summary, we believe DSALs provide an important tool for cross-cutting concerns

using domain-specific techniques. We believe these are especially useful where a

domain expert can change a cross-cutting concern without requiring implementation

details. Runtime inspection, visualisation and verification of simulations are prime

examples. DSALs suffer from a longer implementation time and less mature

tooling compared to a standard DSL which opens up research for their development

techniques and tools.

2.4 Introduction to Agent-Based Modelling

Finally, we introduce the foundations of our application area throughout this thesis.

We concentrate on lattice-based ABMs of complex systems in Chapter 4 and the

communications between intelligent agents in Chapter 5.

2.4.1 Motivation

ABM is a popular complex systems research tool used to simulate the actions and

interactions of autonomous agents with the intention of assessing the system as a

whole. The field is based around emergence which is the process of many agents with

seemingly simple rules at the microscale causing complex behaviour at the macroscale

to re-create or predict the appearance of complex phenomena in the system being

modelled (Bonabeau, 2002). An agent has been defined as anything which perceives

its environment through sensors and acts upon its environment through actuators

(Russell and Norvig, 2003). This is a broad definition which allows many things to
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fall into the category of agent, because of this the definition is to be used as a tool for

analysing systems rather than an absolute characterisation. The term agent is used

through this thesis where it is profitable through our scientific lens to view the item

as an agent. For example, a polling method for our visualisation could be viewed as

an agent although it does not contain interesting properties for our purposes, so we

are not to be concerned with it. Further definitions of agent types are given later.

ABM is especially useful for the study of complex systems where agent-agent

and agent-environment processes dominate the behaviour of the system and thus

influence the examined data’s relationships and potential for future action in critical

ways (Marshall and Galea, 2015; McLane et al., 2011). Furthermore, the flexibility

and repeatability of in-silico experiments within computational science allows ABM

to modify existing models and examine previously examined behaviours with high

re-use of existing systems (Hawick, 2012b). This is especially useful in areas where

it is expensive, complicated or dangerous to perform experiments in the field, such

as military and offshore environments. Two models discussed in this thesis are the

Sugarscape and Kawasaki models, visual examples of these models can be found in

Figure 2.14. The Sugarscape model is an ant-based model where choices are dictated

by environmental factors. Kawasaki based models are exchange or spin based where

choices are dictated by interacting with neighbouring agents.

Throughout this thesis, we focus on ABM rather than agent-oriented artificial

intelligence although there is significant cross-over between the ideas and applicability

of our work between these fields. As our focus is the runtime inspection of how agents

act, the internal structure of the agents is of little concern to us. The agents we focus

on can generally be described using Russell and Norvig’s (2003) skeletal taxonomy

of agents as simple or model based reflex agents as they appear in complex physical

systems rather than goal or utility based agents which are more common in complex
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adaptive systems. We hold scope to investigate the use of this technology further

especially as big-data analytics and machine learning open the door for further agent

inspection.

Emergence refers to the collective phenomena or behaviours in complex systems

at the macroscale which arise from microscale interactions. In short, the whole of a

complex system is more than the sum of its parts. Common emergent properties of

systems are self-organisation into patterns such as flocking birds, chaotic behaviours

such as small changes in initial conditions producing large changes in later conditions,

fat-tailed behaviours such as rare events happening far more often than expected

and adaptive interaction such as agents modifying strategies through experience

(Holland, 2014).

A direct example of this is water’s wetness, no individual molecule can be assigned

the property of wetness, yet many individual interactions of these water molecules

create the emergence of wetness. The whole is larger than the sum of its parts. One

explanation for such unexpected behaviour comes from Simon’s (1996) explanation

of evolution not as a set of agent tournaments for the occupation of a fixed set of

niches, but the proliferation of niches coming from the act of evolution itself. The

environment to which agents adapt is formed mainly of the other agents in the

system rather than the physical environment; which is, in turn, changed because of

the agent population.

ABM has gained increased use in fields such as economics, social science, military,

biology and public policy as a tool for the investigation, explanation and prediction of

complex phenomenon (Macal, 2016). Traditionally models have been used in only the

context of a theory which they mechanically describe. The field of complex systems

has led to simulation models not only used as a bookend for a well-accepted theory
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Figure 2.14: Examples of Kawasaki (left) and Sugarscape (right) models.

but used to actively and autonomously mediate between theory and the real system

(Morgan and Morrison, 1999; Janssen, 2012). This change allows us to consider how

techniques of interacting with models can be used to forward the frontiers of a field

rather than just describing theories within it.

The purpose of an ABM depends on the underlying conceptual knowledge of

the area and the objectives of the study being performed. In a survey of ABM

practices Heath et al.’s (2009) defines three roles of a model which lie on a spectrum

dependent on conceptual knowledge of a system. The basic premise of the scaling

goes from a low conceptual knowledge being examined by implementing models to

generate potential behaviours to a high conceptual knowledge being used to examine

predictions of the real system as is shown in 2.15.
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Figure 2.15: The 3 roles of ABMs adapted from Heath et al. (2009).

2.4.2 Categories of ABM

ABM simulations have been separated into four types by Macal (2016) because of

the difficulty in giving such a broad field a single encompassing definition. The

definitions essentially scale in the complexity of computation from simple agents

performing isolated behaviours to intelligent agents adapting as the model runs.

These definitions are useful in defining what an ABM is, what it does, how it works

and what it can do.

• Individual ABMS

Agents are treated individually and have a diverse set of characteristics. This

is a baseline of what an ABM is; using simple agents with simple scripted

behaviours. The benefits of this type of model is simple agents scale well for

ultra-large simulations.

• Autonomous ABMS

Agents are autonomous individuals who act upon changes in the model on

their own accord. This takes the autonomy of an agent as the fundamental

distinction of what makes an agent. The benefits of this type of models is the

agent’s actions can be based upon their inner state rather than being dictated

to them by an observer, this type of model also scales well for large simulations.
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• Interactive ABMS

Agents are autonomous individuals involved in non-trivial interactions between

other agents and the environment which allows for higher modelling capability

at the cost of another degree of computational complexity. This type of model

requires special care for scalability as agents become more intelligent and rely

on synchronising actions with other agents and the environment.

• Adaptive ABMS

Agent are autonomous individuals involved in non-trivial interactions between

other agents and the environment while adapting their behaviour individually

or changing group behaviour throughout the simulation. These agents are

aimed towards being more intelligent than in previous definitions, and as such,

are significantly more computationally complex and difficult to simulate in

reasonable time on the large scale.

Although ABM has multiple definitions to what constitutes agent simulation

and roles within studies, they are used in a standard flow which has been covered

by many both in general (Macal and North, 2006) and in specific fields such as

pharmacology (Cosgrove et al., 2015).

The ABM process is described in Figure 2.16. The base of the process is

hypothesising before, and after each iteration of model development, this base

allows for the model to be first created and then improved at each step. The core

process of model creation contains first the conceptual development, followed by an

operational implementation of this conceptual model. Once an operational model

has been created this must be verified against the conceptual model and validated
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Figure 2.16: The basic ABM process adapted from processes described by Macal and
North (2006), Husselmann (2014) and Mitre (2014).

against the target system, following this, the model should be operated and analysed

with the validation and verification results in mind. The process will then begin

again with the hypothesising informed by the results of previous model steps.

2.4.3 Popular Frameworks and Languages

The purpose of advancing the field of simulation leads to the technology being used

to implement the model being the object of observation. ABM has seen a great deal

of effort into improving the tooling and methods available for its users specifically

in the conceptual process, domain-specific frameworks and analysis tools. ABM is

a prime candidate for software re-use because simulation environment boilerplate

code requirements are similar across models, and inter-disciplinary use has driven

the requirement for tools to aid the development process for domain experts. It has

been highlighted in the literature that the improvement of ABM tooling by computer
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scientists is a beneficial step forward especially with the community of digitally

literate members of other fields emerging to benefit from the inter-disciplinary work

(Cegielski and Rogers, 2016).

There is an active community of researchers working on ABM frameworks using

domain-specific and aspect-oriented techniques. The first notable toolkit to gain

traction in the community was Swarm (Minar et al., 1996) aimed at creating complex

models without having to write the boilerplate framework; this has become an

inspiration for a class of GPL framework based ABM toolkits. This is in contrast to

stand-alone languages such as NetLogo (Wilensky, 1999) and seSAm (Klügl et al.,

2003) which allows for the creation of models through simplified frameworks for

faster development time at the expense of runtime speed.

A majority of the state of the art frameworks are built on top of object-oriented

general-purpose programming languages (Bandini et al., 2009) which opens up the

possibility for augmenting framework capabilities with currently available libraries

and internal DSLs which are not made directly available by the framework. Major

frameworks for object-oriented ABM include:

• Multi-Agent Simulator Of Neighbourhoods or Networks (MASON) from Luke

et al. (2005) is a micro-kernel approach to ABM which is developed with

the intention of being extended by domain-specific packages. MASON’s

simplicity and execution speed means it is a primary candidate for creating

large custom purpose simulation suites. D-MASON from Cordasco et al. (2012)

is a parallel version of MASON designed to harness unused PCs to increase the

performance of models. The goal of this framework is to introduce distribution

at the framework level so domain experts with limited knowledge of computer

programming and systems can be unaware of the distribution.
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• REcursive Porous Agent Simulation Toolkit (Repast) is a full suite approach to

ABM which has a Simphony framework (North et al., 2013) and HPC framework

(Collier and North, 2013) which both have ReLogo modes of input for simplified

Logo inspired input. Repast Simphony is an easy to learn Java framework for

use on standard computing hardware. Repast for HPC is an expert focused

C++ framework designed for use on large clusters and supercomputers. Repast

is an interesting case because it has suites suitable for all programmers from

domain experts using the ReLogo groovy DSL up to expert high-performance

programmers using a lean C++ framework.

• Flexible Large-scale Agent Modelling Environment (FLAME) from Holcombe

et al. (2006) is an ABM framework designed around templates which map

formal descriptions of agents into simulation code, allowing simulations to

run on systems from laptops to high-performance computers. This is done by

focusing on the inherent parallelism of ABM, unlike other frameworks which

treat agent actions on a one-by-one basis (Coakley et al., 2012). Models are

described using XML and agent functions are implemented in C. The model

specifications are then compiled to C code by the xparser which can then be

compiled with agent functions to produce a simulation. FLAME GPU from

Richmond et al. (2010) builds upon the flame framework by targeting graphical

processing units which are under-utilised by other frameworks while hiding

implementation boilerplate for GPU data storage and agent communication.

Both these frameworks allow for very large, efficient models.

• Java Agent DEvelopment framework (JADE) from Bellifemine et al. (2003)

is a Java framework which supports agent-based development by providing

middleware for Foundation for Intelligent Physical Agents (FIPA) compliant

messaging and graphical tools to aid in debugging ABM. This is a multi-agent
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development framework rather than an ABM framework although can be used

to create ABMs if the user creates their own scheduler. JADE concerns itself

with the creation and communication of agents, leaving the rest for the user

to develop themselves. JADE has been the target of DSL activity by Bergenti

et al. (2017) creating JADEL, a language for agent-oriented development of

real-world modern driven projects. This language limits its domain specificity by

focusing on the definition of agents rather than the creation of a full simulation;

the author refers to this as an agent programming language rather than a

multi-agent programming language.

AOP techniques have been brought to ABM by Amiguet et al. (2004) which uses

the Aalaadin meta-model (Ferber and Gutknecht, 1998) for separating agents for

AOP on top of the MadKit multi-agent platform created by the same authors as

Aalaadin (Gutknecht and Ferber, 2000). The Multi-Agent Modelling language is a

macro-language over swarm which uses the aspect-oriented separation of concerns

to allow computer scientists who cannot model social systems and social scientists

who cannot implement models to be able to each deal with their side of a project

(Gulyás et al., 1999). Established frameworks have also been augmented with aspect-

oriented features to explore the potential for AOP on top of ABM. Notable examples

include HLA-ACTOR-REPAST which allows the distribution of RePast models

using asynchronous message passing actors in a theatre architecture using aspect-

oriented techniques Cicirelli et al. (2009) and AspectNetLogo which allows the use

of aspect-oriented techniques to be used on Netlogo (de S. Braga et al., 2012).
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2.4.4 Concerns Within ABM

ABM is an especially suitable target domain for frameworks and languages which

aid the separation of concerns because of the division between the conception,

implementation and operation stages of modelling; high domain expert involvement;

high quantifiability of autonomous components and consistent boilerplate code.

Common concerns of ABM identified during the development and use of the Animaux

framework are (Hawick, 2012a; Preez et al., 2012):

• The model’s agent behaviour

• The simulation geometry

• The specification of parameters both statically and dynamically

• The dynamic visual rendering of the whole system

• The runtime inspection of the system of agents and their environment

Core concerns of ABM can be successfully expressed using existing popular

frameworks and languages which provide general boilerplate code for ABM, as

outlined in Section 2.4.3. Furthermore, the active DSL community for ABM has

created very domain-specific frameworks and languages to facilitate model creation

by domain experts in a specific sub-field. For example, ENVISION from Bolte et al.

(2007) is a spacial multi-paradigm modelling framework for the analysis of scenario-

based community and regional integrated planning and environmental assessment,

which has been used to model forest management outcomes using an ABM by Spies

et al. (2017). This type of tool is becoming more important as ’in-silico’ experiments

are spreading across interdisciplinary research in fields such as systems pharmacology

and public health as covered in reviews by Cosgrove et al. (2015); Tracy et al. (2018)

respectively.



Foundations 69

While these tools provide excellent reduction in boilerplate code and abstraction

level of language, cross-cutting concerns such as runtime inspection are still scattered

and tangled throughout projects even in highly domain-specific frameworks. Runtime

inspection of ABM is an especially interesting concern for DSAL research because of

its importance for agent-based modellers and cross-cutting involvement of the other

concerns. The mindset of ABM being from the microscopic level up poses interesting

questions for the quantification of concerns and runtime inspection of models

(Bonabeau, 2002); it gives the potential for not only the actions and interconnections

of the microscopic units but also the macroscopic emergent phenomenon which these

simple actions produce.

A real-world field which relies heavily on runtime inspection of models is validation

and verification where the emphasis is on ensuring the model is an appropriate

representation of a real system given a set of objectives (Heath et al., 2009). This is

an important step because models are inevitably imperfect representations of the real

system, but we can take steps to prove they are conceptually sound, appropriate for

purpose and correctly implemented (Stanislaw, 1986). Verification and validation has

also been referred to as the sanctioning of simulation models and assessing credibility

of models rather than the binary claim of verified or validated because of the inherent

subjectivity involved in choosing appropriate objectives to base completion criteria

from (Winsberg, 1999; Schlesinger et al., 1979).

2.4.5 Summary

In summary, we have defined our target domain of ABM as a tool scientists can use

as apparatus for ’in-silico’ experiments of many simple agents producing emergent

behaviour at a macro level. This field is pre-disposed to the use of domain-specific
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and aspect-oriented techniques because of: many sub-domains, domain expert

involvement, high quantifiability and consistent boilerplate code. This thesis is

especially concerned with research opportunities for the runtime inspection of ABM

for both general and domain-specific using DSALs. We now move into a literature

review of DSALs for the runtime inspection of ABM.



Chapter 3

Towards Modularised Runtime

Inspection of Agent-Based Models

This chapter follows our problem statement through the literature towards our two

main contribution chapters; this sets the purpose, significance and boundaries of

the following chapters. This chapter contains the literature required to lead to

our contribution chapters, further literature with the associated discussion is found

within the body of our contribution chapters.

The primary research question answered by this chapter is:

What difficulties does Agent-Based Modelling (ABM) runtime inspection have which

are reduced by the use of a Domain-Specific Aspect Language (DSAL), what are the

barriers to DSAL adoption and what existing research has challenged these barriers?

71
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3.1 Implementing ABM Runtime Inspection

Runtime inspection is one of the core concerns of scientific simulation, it is the

means of viewing the data which can be used to generate results, mediate between

theories and predict real systems as we use simulations as scientific apparatus. The

use of proper apparatus can save a scientists time, allow a grounding for others to

understand results from and increase ease of reproducibility (Minar et al., 1996).

Although conceptually inspecting a model is a core concern for the scientist, in

implementation runtime inspection is generally considered a cross-cutting concern

which must be scattered and tangled across many modules amongst the concerns of

the model itself at implementation-level abstraction. Providing facilities to aid the

verification and validation of models is an important next research step by North

et al. (2013) for the Repast Frameworks. As such, we now look at the literature to

investigate the potential for new techniques which can be added to ABM frameworks

or used as auxiliary libraries is a much-needed research direction.

The simplest method of runtime inspecting a model is instrumenting the model’s

behaviour code with desired output statements and using boolean flags for toggling

this inspection. This produces simple runtime inspection which is fit for task and

does not require any additional tooling or skillset for the programmer. Although this

method seems to be immature software development, it is very appealing for short

sprints towards finishing projects and getting the results required to perform further

research. The disadvantage is that this method results in single-use code scattered

and tangled throughout a project, meaning any changes to inspection or addition

of new inspection means working through core concern code with a high likelihood

of human error at some point. Furthermore, future projects cannot directly benefit

from the apparatus designed for this project.
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A more mature method is having runtime inspection code written into the ABM

framework being used or an auxiliary library, so inspection features may be re-used

across projects and human error is minimised by containing logic in one place. This

minimises the boilerplate creation problem for each project yet still leaves calls to

the inspection code scattered and tangled throughout the solution. While this is a

cleaner solution than ad-hoc code scattered to inspect a model, the creation of a

runtime inspection library or selection of a framework which provides appropriate

inspection mechanisms requires foresight and overhead at the beginning of a project

for a pay-off through the end of the project and future projects.

The reduction of scatter and tangling can be done by adopting Aspect-

Oriented Programming (AOP), although as stated in Nusayr and Cook (2009)

the implementation of runtime inspection in a domain may not directly map to

implementations within programs written past simple logging of methods. These

issues have been tackled by DSALs explicitly designed for runtime verification tasks.

For example, Logical Automata for Runtime Verification and Analysis (LARVA)

from Colombo et al. (2009) is a runtime verification architecture which uses a script

as input which we consider a DSAL aimed towards the monitoring of real-time

properties within Java programs. It compiles to runtime monitoring code with

AspectJ aspects for instrumentation. This type of DSAL forms a wrapper over

a General-Purpose Aspect Language (GPAL) to produce a suitable specification

language for a broad domain. Domain-Specific Language for Instrumentation (DiSL)

from Javed et al. (2016) is a DSAL which extends AspectJ with an extensible Join

Point (JP) model and coverage of both Java and Android class libraries. This is

an implementation-level DSAL which is intended to replace AspectJ as a base for

runtime verification tools such as JavaMOP (Jin et al., 2012) and LARVA to provide

functionality otherwise not available. An example of a tightly domain-specific DSAL
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is Embedded Real-Time Systems Aspect Language (ERTSAL) from Sousan et al.

(2007) designed for monitoring, evaluating and debugging of embedded real-time

systems. Interestingly as embedded systems are predominantly written in C and

C++; ERTSAL compiles to AspectC++ rather than the common AspectJ.

As such, the most mature method of expressing runtime inspection on models

is using a DSAL designed for this task, either at the framework level or model

level. A DSAL allows for a cross-cutting concern to be modularised from the core

concerns of a program at the domain-level of abstraction improving processes of

development (Soule, 2010). This combines the notational advantages of Domain-

Specific Languages (DSLs) with the organisational advantages of AOP, both of which

have been used throughout the ABM literature as covered in our Chapter 2.

To use a DSAL require pre-planning which is seldom given in short projects or

article experiments where ad-hoc solutions may be added without planning. The main

barriers to using this approach is a lack of knowledge about DSALs to be discussed

as a program is starting and a lack of guidance in the literature for implementing

DSALs in practical manors. The initial cost of implementing a DSAL can be paid

back across many rounds of experiments and dissemination of results by reducing

the complexity of writing experiments and improving software quality (Chibani

et al., 2013). Furthermore, once the research ethos of a group has DSALs implanted

within it, future projects are more likely to use the approach. We now look at the

philosophical and technical challenges towards adoption of DSALs for ABM runtime

inspection.
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3.2 DSALs for ABM Runtime Inspection

Moving towards a solution for making DSALs available for ABM runtime we should

consider the existing literature on DSALs for ABM towards runtime inspection of

models. We then can move into DSL and DSAL techniques which are worth further

examination. ABMs scientific nature means that having a language for runtime

inspection during the experimentation stage is especially useful; this provides a

division of labour between the implementation of experiments and conceptualisation

of experiments as illustrated in Figure 3.1. A recent move towards having research

software engineers to create languages for teams, working cooperatively with allowing

more freedom for domain experts to write and share domain-level code could be

used here. A similar approach has been seen with probabilistic programming

languages where the different tasks of creating and using state of the art machine

learning languages are separated into technical areas of domain experts, probabilistic

programming to be dealt with by programming language and machine learning

representation experts, machine learning to be dealt with by machine learning solver

and compiler experts and inference engines to be dealt with by compiler experts

(Defense Advanced Research Projects Agency, 2013).

The primary technical consideration for wide adoption of DSALs for ABM runtime

inspection is the sheer variance of ABMs. Although abstract concepts of ABM are

similar across the field, the implementation of these concepts and the styles of agents

can vastly differ as seen from the discussion in Section 2.4.2.

The differences in implementation of a model’s weave target can be avoided

by controlling the weave target as in Gulyás et al. (1999). Multi-Agent modelling

language provides a DSL environment where agents can be split into agents and

observer aspects which are weaved together at DSL compile time into swarm
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Figure 3.1: The division of labour between roles creating an ABM with accompanying
runtime inspection DSAL.

observable agents using the xmc compiler and then can then be compiled to binary

using an Objective-C compiler such as the GCC. As this language’s compiler generates

both the weave target and aspects during the same weave, it has generality across all

code written using the DSL. An illustration of this process his shown in Figure 3.2.

This DSAL is designed as a full approach to ABM development which contains runtime

inspection aspects as a piece of the language. The implementation environment of the

ABMs is delegated to the generated swarm, and the observable agent classes used are

available without MAML. The benefit of this approach is forming an aspect-oriented

abstraction level above the popular framework to allow for better modularity without

sacrificing the use of a mature framework; the framework even moved towards creating

a prototype GUI to populate the language for non-programming domain experts.

This is especially useful for frameworks such as swarm which have a reputation for

its steep learning curve (Allan, 2010).
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Figure 3.2: The MAML framework aspect-orientated splitting of observation and model
code adapted from Gulyás et al. (1999).

Another implementation of domain-specific runtime inspection features can be

seen in methods such as Virtual Overlay Multi-Agent System (VOMAS) from Niazi

et al. (2009). The VOMAS technique is designed towards verification and validation

of ABM by domain experts (subject matter experts in their terminology), allowing

data and animation of errors at runtime. It comprises of creating a custom-built

overlay agent system which can contain aspects validation from logs, animations

or invariant checks, this is illustrated in Figure 3.3. This method relies on VO

agents which are located throughout the model coupled with the implementation of

simulation agents to relay information to the VO manager and watcher. As such,

this is a novel agent-oriented technique which rather than dealing with runtime

inspection as a cross-cutting concern, it translates it into a core concern of proving a

virtual overlay agent system with the model. As this technique is based around the

validation and verification of ABMs which require rigorous runtime inspection, they

recommend domain experts should be involved in the development of the model and

the custom-built VOMAS from the start of a project to ensure proper delivery to

maintain in line with best practices for model creation from Law (2008).
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Figure 3.3: The VOMAS method of observing an agent-based simulation, adapted from
Niazi et al. (2009).

While these approaches give novel modularity approaches to inspection code they

are still coupled to and involved in the process of creating the model, meaning the

aspect writer must be familiar with the base implementation. This stems from a

use case where a model and its experiments are written simultaneously. We would

like to separate the runtime inspection from the core model, so inspection code

may be written as a model is developed or after a model is finished. Our intended

runtime inspection language is detached from the implementation so that a domain

expert who has a conceptual map of a model can perform experiments without

implementation specifics of the model. Note that the domain expert may be the

same person as the model developer although at a different time.

Because ABM is a vast and varied domain any attempt to cover the whole of

the domain with a DSAL would be either large, restrictive or resemble a GPAL

with some auxiliary functions added for ABMs. As we have covered in Sections

2.1.2 and 2.3.2 this could still be classed as domain specificity, for example having

general-purpose representation and identification yet with domain-specific effect

aiding runtime inspection. In the absence of a catch-all solution, developers may
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want to create their own DSALs to work with their models or specialised generic base

DSAL to a specific model they want to work on. This sort of work could be done

during development time or when runtime inspection is required. If this is done for

a model before runtime inspection is required only the domain expert role has to be

played upon model completion instead of fishing through the model implementation.

As research groups will already have implementations of their models within certain

frameworks, the availability or creation of frameworks which works with their set

of existing models. This will lower the barrier to entry for using a DSAL, which

we defined as a primary reason for DSALs lacking adoption for projects previously.

This brings us to an approach where the likely options are using a DSAL which

has been targeted towards a popular framework or built into these frameworks as

may happen because of the specification of this being an important way forward for

ABM frameworks, creating a DSAL for in-group use which may be used across other

projects by the group or creating a DSAL with intention to only use it once as in

Hadas and Lorenz (2016). Furthermore, to properly use DSALs the people involved

in the project must understand the philosophical frameworks of DSLs and AOP; and

DSAL development requires a skill set which may not be available to the average

agent-based modeller.

We now look at middle-out approaches from DSL research and how they can be

applied to DSALs to allow the creation of languages for specific models or specific

implementation concerns with specialisation towards models at a later stage.
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3.3 Middle-Out DSALs

The middle-out process is a language-oriented technique which originated with Ward

(1995) comparing it to top down, bottom up and outside-in development methods.

The essence of this technique is creating a language which can effectively solve

the problem, then implement and use the language separately. Directly mapping

the concept of middle-out development for DSLs to a middle-out ABM runtime

inspection DSAL means that you create a language which a person playing the role

of domain expert would like to runtime inspect a program with, then a person acting

as a language developer would implement the language and a person acting as a

domain expert would inspect models using the language. This method fits perfectly

with the workflow mentioned in the previous section, yet the previously mentioned

extra considerations of DSALs and the field of ABM mean the middle-out process

will need to be adapted to be usable in this scenario.

The middle-out approach is similar to other approaches based around language-

oriented programming, and as such, there is significant overlap with approaches

such as generative programming from Czarnecki and Eisenecker (2000) based around

the idea of generation of software families, language-driven development from Clark

et al. (2015) based around engineering languages using meta-modelling, software

factories from Greenfield and Short (2003) aimed towards model-driven product lines

and language-oriented programming from Dmitriev (2004) aimed towards projection

language workbenches. Through this thesis, we focus on the middle-out approach

because the process fits in well with the concept of a core model and cross-cutting

runtime inspection.



Towards Modularised Runtime Inspection of Agent-Based Models 81

The first mention in the literature of a DSAL being treated as a DSL frontend is

from Bagge and Kalleberg (2006) where aspect-oriented languages are implemented

using a DSL and a library written in a transformation language. The library must

be written in a transformation language because the straightforward translation

of DSL to library call is not possible for DSALs using simple macro-expansion

because aspects may affect many parts throughout a program. They view aspects as

meta-programs that transform the code of the base program, in this context aspect

languages are domain-specific program transformation languages which hide the

complexity of program transformation from programmers using notions such as JPs,

pointcuts and advice. They illustrate their approach using a small error-handling

DSAL extension to the functional language Tiny Imperative Language (TIL). To

implement this approach DSALs are not directly weaved into the subject language,

they are translated into transformation language calls to be performed on the base

program at compile time. They claim provided the transformation language has a

sufficiently powerful transformation library for the subject language this is an easy

task, but implementing an arbitrary DSAL in this fashion may be too complicated

for regular developers. This is especially true over large languages such as C or

Java because the complexity generally comes from the subject language semantics

rather than the DSAL. The weaving is performed at compile time by checking each

function for alerts, performing logic to find active handlers on this alert, if multiple

handlers are on a single alert sorting by precedence, and finally re-writing the function

according to a template to weave. The compilation process is shown in Figure 3.4, the

weaving process is done at compile time by executing the DSAL meta-program after

initial syntax and type checking, once weaved the program is a pure TIL program

which is compiled with an unmodified TIL compiler.



Towards Modularised Runtime Inspection of Agent-Based Models 82

Figure 3.4: The compilation process of the TIL+Alert implementation adapted from
Bagge and Kalleberg (2006).

This approach is suitable for people who require a simple DSAL and have a

firm grounding in meta-programming or transformation languages. In programming

language design, a first-class citizen is an entity which supports all the operations

generally available to other entities in a given programming language. Second-

class citizens are not fully integrated with a given programming language and its

development environment, which may lead to difficulties during use. This method

does not move towards the first-class adoption of DSALs yet provides a novel method

of program transformation for implementing them without using a base GPAL. As

this method transforms the code of the base program after compilation but before

execution, all debugging must be performed on generated code yet is effectuated in

pre-generated code. A slightly adapted version of this method could be used to do

runtime weaving using meta-programming or create a simple to implement source

text pre-processor using regular expressions for small prototype DSALs on consistent

code bases.

We can now move onto the first explicit mention of language-oriented programming

towards DSALs in the literature, with a position paper from Hadas and Lorenz (2015)

who consider DSALs in their current state to be second-class citizens in the language

space; second-class DSLs because they are harder to develop through lack of cohesive

tooling, and second-class AOP languages because they are harder to use through

incompatibility with general aspect tools. This results in the practical language-
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oriented modularity project from Hadas and Lorenz (2017) which moves towards

bringing language-oriented programming productivity to DSALs as first-class DSLs

and AOP languages by providing a process and DSAL infrastructure to allow the

creation of DSALs throughout the software modularisation process. This requirement

for the first-class development of DSALs comes from the problem that off-the-shelf

DSAL solutions will likely not be suitable for an application even in the same domain

because of changes in weave target implementation and domain expert terminology.

Thus, most projects will have to either create bespoke DSALs or modify existing ones

to fit their needs. As we noted this is especially pronounced for ABM because of the

wide variance of models available and schools of thought within the domain. Moving

towards language-oriented programming for DSALs means that in the same way we

can create a DSL as a productive measure to solve a particular type of problem we

are having, a DSAL could be created with similar productivity because appropriate

methodology and tooling is available. Their approach creates a DSAL using a

language workbench which transforms the DSAL code to a kernel language that is

based on a GPAL. This gives a first-class DSL creation process using a language

workbench and first-class GPAL Integrated Development Environment (IDE) support

for DSALs which are in some sense reducible to GPAL code. Towards this goal they

state it is preferable to use mature, general software to maximise tool support and

features, for example, language workbenches such as Spoofax, MPS or Xtext and

aspect languages such as AspectJ or Spring. They then comment that the approach

of directly generating GPAL code has two main pitfalls:

• The semantic gap between DSAL and GPAL often creates a non-linear mapping

of semantics between the languages. This mapping must be protected when a

program’s JP signatures change or previously matching pointcuts may behave

unexpectedly on new base code. Furthermore, the semantics of the DSALs
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generated code may clash with existing GPAL or DSAL code if there is no

composition measure in place. For example, the transformation done by the

DSAL in TIL+Alert from Bagge and Kalleberg (2006) could invalidate aspects

in another DSAL.

• The abstraction gap between DSAL and GPAL means that development tools

at the generated GPAL source level will not represent the code in the DSAL at

the appropriate abstraction level. For example, aspects which are written to

detect changes in agents which requires a view of multiple agent states would

appear at the implementation tooling level to merely be checking the status

of arbitrary variables with no relation to the overarching goal of the original

pointcut advice.

They address these pitfalls through the addition of metadata to the GPAL, in their

implementation this is done by extending the AspectJ compiler with domain-specific

annotations. These annotations bring the ability to suppress JP shadows, control

the order of execution for conflicting advice, and a means to point to an external

source of the DSAL code for use when navigating aspect code. As this approach

uses a GPAL code transforming weaver, there is no inherent disadvantage in runtime

performance compared to the direct use of a GPAL, and their compiler extensions

will work with standard aspects programmed for that version of AspectJ meaning

they could be used in a project which already uses AspectJ.

This method places high importance on retaining both DSL and AOP first-class

status in a cohesive package for language development and use akin to what a

language workbench provides for a DSL. Their general synopsis comes in the form

that DSL workbenches do not provide back-end weaving capabilities, and AOP
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composition frameworks do not provide domain-specific front-end user experience

capabilities, and both are required in a cohesive process to produce a first-class

DSAL.

3.4 Direction

The literature we have gone through focuses on methods which can be used generally

across abstract sets of DSALs, through this thesis we focus on our target domain

of ABM runtime inspection. While we only relate our work to this domain at the

abstraction level of implementing DSALs, this domain is a representative domain

of many others, especially those which comprise of autonomous components within

some bounded environment such as multi-agent systems, robotics and distributed

teller systems.

The context of our domain relying on short-term projects or implementations

towards articles means we must find a method which minimises start-up cost to

provide practical DSAL adaption while being capable of facilitating effective re-use or

repurposing towards new projects and articles. We adapt middle-out practices from

a pure DSL approach towards a DSAL as a DSL with a semantic model that provides

transparent AOP. The aspect orientation is provided transparently by static GPAL

JPs being passed through the semantic models Domain-Specific Join Point (DSJP)

processor. This allows the use of existing mature tooling and existing skillsets to

create and re-appropriate custom DSALs. This is possible because the abstraction

target of our language is at the domain-level to be used by the domain expert rather

than the implementation-level to be used by an aspect-oriented software engineer,
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meaning the aspect orientation provided by our middle-out process can be transparent

to a user. This is very important as it allows us to not focus on first-class AOP for

the top layer aspects, but only for the bottom layer utilities.

We believe that for domain-level DSALs using a middle-out approach allows the

front-end DSL development and back-end AOP implementation to be implemented

separately without consideration of providing first-class aspect orientation. This

is because the language user in a domain-level DSAL will not be looking through

implementations for AJDT markers but can trust the DSAL will provide appropriate

weaving for the written aspects transparently. The developer of the language is free

to use a fully tooled GPAL or create their own weaver because from the middle layer’s

point of view it is merely important the necessary utilities be implemented. The

implementation and use of the front-end DSAL will be at the same productivity level

provided by using a language workbench for DSLs, albeit with a different process

than the creation of a non-aspect-oriented DSL.

Problems of semantic and abstraction gaps are not relevant for middle-out

development targeting a semantic model because the language is based around

the semantics of the model being populated. This approach means that the semantic

model must be checked for feasibility during its development but once instantiated

the semantics of language calls will match the model’s performance. The abstraction

of the user’s input to the model is at the domain-level rather than the aspect-oriented

level. Any issues with the aspects found by the semantic model are issues for the

back-end language developer to deal with at the correct level of abstraction for their

static GPAL code or the semantic models processing engine.
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Aspect composition problems stem from a choice to directly generate GPAL

code which matches the semantics of the DSAL code; this problem can be avoided

by using static AspectJ aspects which are used as input for a DSJP interpreter.

This is a runtime performance hit which can be reduced using partial evaluation.

Despite the runtime performance hit this removes the developer time hungry step of

creating a working compiler from the DSAL to the GPAL code in place of the more

straightforward task of creating and populating a semantic model for the DSAL.

As the developer time to implement a DSAL has been considered a hindrance to

DSAL adoption, this may be a worthwhile trade. We will investigate the performance

of aspects as a primary concern through our experiments. This approach allows

composability with other handwritten GPAL code, especially as our aspects are

contained in their own file and any clashes will be apparent at compile time for the

developer of new aspects written in the same GPAL. Further work on composability

could be done by combining ideas from the literature, such as, using the AspectJ

compiler extensions from Hadas and Lorenz (2017) which is compatible with the

semantic model based middle-out approach as a bottom layer implementation method.

The compiler changes could provide benefit over using a standard GPAL for writing

the static aspects because composability with other DSALs generated aspects, or

other’s GPAL code could be dealt with explicitly.

3.5 Summary

This literature review has covered the initial problem of ABM runtime inspection

methods, currently available implementations of runtime inspection for ABM with

emphasis towards scientific projects, and finally framed our research direction of

middle-out DSALs for runtime inspection of ABM.
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We have discussed the benefit to giving DSALs to domain experts to inspect

ABMs. This is through moving to understandable domain-level syntax and reduction

of scatter and tangle within core concern code, allowing for experiments to be created,

modified and toggled freely. DSALs could be implemented towards a specific model

directly or implemented as a general core across an implementation middleware

which can then be extended towards specific models. We explore these techniques in

Chapters 4 and 5 respectively. To allow the adoption of DSALs for scientific projects

a philosophy and implementation method must be readily available. Currently, there

is no cohesive literature on how the middle-out process for DSLs can be adapted

to a runtime inspection DSAL. This hampers the adaption of DSALs because

implementation technique requires full knowledge of both DSL implementation and

aspect orientation before it can be attempted. Through Chapters 4 and 5 we lay

out a clear process with illustrative implementations that apply to ABM runtime

inspection.

In Chapter 4 we begin our investigation into how a DSAL can be middle-out,

moving into external DSAL model-specific implementations for Sugarscape and

Kawasaki models within our in-house ABM framework Animaux. This is our

first step towards realising DSALs for ABM projects and is used as a base for

Chapter 5. In Chapter 5 we move towards a solution for middleware targeting

DSAL implementations which can be used across many projects with model-specific

internal DSALs using the middleware target of Foundation for Intelligent Physical

Agents (FIPA) ACL communications in JADE. This is a solution where a mature

core can be created once for dissemination between projects, and the relatively fast

implementation of extension DSALs allows a model-specific environment for domain

experts. This could even be used to form open source projects released as add-ons to
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major ABM frameworks. Finally, in Chapter 7 we will conclude on our research and

the potential for the use of middle-out techniques in the broader research community

with reference to this chapter’s direction.



Chapter 4

AnimauxRI - Runtime Inspection

Targeting Specific Models

This chapter is the first of our two main contribution chapters, focusing on

our primary investigation of the middle-out process for Domain-Specific Aspect

Languages (DSALs) and implementation towards specific models. This approach is a

high specificity, low generality approach, and as such, is a very domain-specific area

to focus on. The target audience for a DSAL such as this is somebody using novel

in-house technology without domain-oriented interfaces for a large number of different

experiments, written at the domain expert level, on a small set of models. We first

motivate and present our approach, followed by details of our implementations,

closing with experiments, results and discussion. Our implementations are extensions

to the Animaux Agent-Based Modelling (ABM) framework (Hawick, 2012a; Preez

et al., 2012) written using a combination of Java, AspectJ, Xtext and Xtend.

90
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The primary research question answered by this chapter is:

How can we implement a middle-out DSAL for specific models without domain-

oriented interfaces?

4.1 Motivation

ABMs are used as apparatus for simulating data for scientific articles, a means of

capturing this data dynamically is runtime inspection. Runtime inspection is an

indispensable tool in an agent-based modellers kit when using software as apparatus

for scientific articles. Each model will have specific characteristics which must be

recorded, understood and then conveyed to a reader. Runtime inspection is useful

for this in that it is the querying and control of execution of programs; this is both a

high boilerplate and cross-cutting concern task. Having an infrastructure to base

runtime inspection code from dramatically helps the development of such systems.

Through this chapter we focus on two reflex driven ABMs, we explain our case

study models in Section 4.2. Common runtime inspection tasks for this type of

model include:

• Logging, saving or graphing agent, environment and observer level statistics of

a model for use in populating results for or presenting research

• Breaking execution on certain events much alike a breakpoint

• Augment visualisation of agents within a model, for example, making anomalies

stand out

• Implementing domain laws such as events to never or always happen
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Current state of the art object-oriented frameworks for ABM are excellent for

expressing the core components of an ABM, but leave cross-cutting concerns such as

runtime inspection scattered and tangled throughout models using implementation-

specific syntax. This scattering and tangling is inevitable using object-oriented

technology because a cross-cutting concern affects the performance or semantics

of many components in systematic ways which cannot be cleanly separated into a

different component. A further consideration is the mapping of implementation code

to domain-level constructs, preserving the semantics of runtime inspection queries.

In an implementation of a model, a variable within an agent may change multiple

times through a step as it processes although in the semantics of the model only the

final version is important. For example, the wealth of a Sugarscape agent as it moves

and degrades, yet the inverse may also be true as in Kawasaki model particles which

may legitimately exchange multiple times within a single step. As such, directly

monitoring the implementation variable may or may not be sufficient to inspect the

model’s behaviour depending on the semantics of the model.

The above problems are exacerbated when a framework is in the early stages

of development or has poor documentation because this encourages incorrect

assumptions to be made. This is more of an issue where people who have not

been involved in development or have forgotten specific implementation details want

to run experiments on a model.

As such, we want to have a means of runtime inspection which allows the scientist

to better observe, interact and understand the model. The objectives we have

highlighted to providing an ideal solution for this are:

• Separating the runtime inspection code from the simulation code

• Controlling the coupling of the simulation code and observation code
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• Having coherent defined semantics

• Expressing the display or exportation of data without re-writing boilerplate

code

• Giving solution level Integrated Development Environment (IDE) support for

the user

DSALs have been deemed an excellent match for the domain of runtime inspection

through the literature (Mehner and Rashid, 2002; de Borger et al., 2012; Colombo

et al., 2009; Javed et al., 2016). Specifically, in our case, a DSAL could be used to

provide a small set of coherent model level abstractions to shield the user from any

concern except for runtime inspection of our chosen model while writing experiments.

In work by Fabry et al. (2015) it has been found that most implementations of

DSALs are ad-hoc extensions of languages for single purposes, potentially because

of lack sufficient tooling or lack of understanding of DSALs. Using specific tooling

requires a steep learning curve with a resulting high vendor lock-in and low

transferable skills to other DSAL frameworks which results in low adoption.

We believe a structured approach using mature and reusable software could result

in better production of DSALs, and adoption of DSALs for more projects once a

team has used them. Language-oriented programming’s middle-out architecture has

been related to DSALs by the language-oriented modularity project from Hadas

and Lorenz (2017) and the AWESOME project from Kojarski and Lorenz (2005,

2007) with an emphasis towards aspect composition. Although they believe the

Domain-Specific Language (DSL) language workbench with GPAL backend is not

a suitable technique because the semantics of the DSAL code may not map to the

semantics of the GPAL code. In Section 4.3 we propose a language workbench with a

semantic model implemented using a GPAL is a suitable approach for model-specific
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DSALs and can be done using mature, stable software projects which have high

transferable skills for developers. This is applying lessons learnt from middle-out

DSL development to DSAL research. In Section 4.4 we produce an implementation

of our approach using an Xtext DSL over a Domain-Specific Join Point (DSJP)

interpreting framework utilising AspectJ General-Purpose Join Points (GPJPs) as

input.

4.2 Case Study Models

Through this article, we focus on Kawasaki and Sugarscape models. These models

have been chosen because through their simplicity they display the essence of two

types of ABM applications. The Sugarscape model is an ant-based model where

choices are dictated by environmental factors. Kawasaki based models are exchange

or spin based where choices are dictated by interacting with neighbouring agents.

4.2.1 Sugarscape

A Sugarscape model is an agent-based social simulation based upon the rules presented

in Epstein and Axtell’s (1996) book growing artificial societies. It serves as a means to

demonstrate the abilities of reflex ABMs which only interact with their environment.

The Sugarscape model involves a distinct set of agents that move around a spacial

system, usually a regular mesh. There might be some regular field of material such as

wealth or some other spatially-oriented property spread around the whole mesh, but

not every spatial cell is occupied by an agent. This differentiates Sugarscape from

cellular Kawasaki models where all cells do have a single agent. We illustrate the
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Figure 4.1: Example Sugarscape model visualisation at steps 0,200,400 and 550.

list of Sugarscape style agents as travelling around a regular mesh, but this model

generalises to a real-space particle-based model where agents need not necessarily be

restricted to discrete integer positions.

This model is illustrated in Figure 4.1 where 0 steps shows a random distribution

of ants placed over an environment with 2 peaks of sugar. 200 steps shows the

gathering of ants around these two peaks, with 400 steps showing a spreading apart

as sugar supplies run low. 550 steps shows the population of ants coming to an end

as there is not enough sugar to sustain activity.

The Sugarscape Algorithm used in this work is based on a sugar-field of N sites

with NA agents distributed across it spatially. We have simplified the model so that

I is 2 units of sugar and the costs of moving CM and surviving CS are one unit

of sugar each respectively. We restricted the models so that only one agent can

occupy a site at a time, dead agents are culled from the system to stop blocking the

movement of live agents.

Throughout the experiments the model is populated using the common twin

peaks sugar pattern. It is useful as it clearly gives an unfair advantage to those

agents who are near one of the two peaks and disadvantages agents located on the

flat plains.
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Algorithm 1 Sugarscape Agent Model.
choose lattice size, shape, eg square 2562

choose neighbourhood N eg Nearest, Moore, or Radial
for all runs do
initialise N sugar-field sites by pattern eg Flat/Peaks
initialise NA unique agent locations randomly
for all time steps, e.g. 500 do
for all agent i ∈ NA do
identify unoccupied neighbouring site with most sugar
pick one at random tie-break if more than one
move to chosen new site
metabolise, using up “cost Cm of moving” sugar units from wealth
metabolise, using up “cost Cs of surviving” sugar units from wealth
consume, accumulating income I units of sugar from new site

end for
remove dead agents (with negative wealth)
record measurements, e.g. Gini coefficient
exit when no live agents remain

end for
end for
normalise averaged measurements

For our purposes we can break down a Sugarscape model into its constituent

observable elements as shown in Table 4.1.

Agent Type Events Properties

Ant Movement, Wealth Change Wealth, Location, Neighbourhood

Environment Occupation Change Sugar, Occupation

Observer Step Step Number, Gini Coefficient,

Ant List, Environment List

Table 4.1: Summary of Sugarscape constituent elements.
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4.2.2 Kawasaki

A Kawasaki model focuses on the evolution of a model through ’spin-exchange’ or

’spin-flip’ particle dynamics. It serves as a means to demonstrate the abilities of

reflex ABMs where every space of a lattice is an agent.

Models based on a Kawasaki exchange pattern use a spatial arrangement of agent

state variables on a mesh or network. Each agent has one or more state variables

such as atomic species, wealth or opinion. Kawasaki exchange dynamics involves

selecting an agent; selecting one of its neighbours; considering the consequences of

exchanging the two agents spatially; and either carrying out that change or not

according to a computed probability based on those consequences. Repetition of

this basic algorithm, often to an initially random mixture of agents, can lead to

surprisingly complex spatial patterns of agents that can spontaneously segregate, or

cluster, or form other patterns with properties that emerge from the system as a

whole and which are not prescribed by the individually encoded agent behaviours.

This model is illustrated in Figure 4.2 where 0 steps shows an initial square

distribution of A-species agents, upon a vacant background of B-species agents.

Then 1000, 2000 and 4000 steps show the dispersion of the initial square as A-species

and B-species agents exchange position with one another.

The Kawasaki Algorithm used in this work is based on a mesh occupied by

A-species agents, represented as a 1 and B-species agents, represented as a 0. This

can be simplified as A-species agents in a vacant background of B. Throughout

the experiments the ’spin-exchange’ Kawasaki dynamics method (Kawasaki, 1966)

is used to simulate exchange probability where neighbouring site variables ci and

ci±1 are exchanged. This interaction between species is performed by a function

consisting of an assignment of bonds between neighbouring agents. This function has



AnimauxRI - Runtime Inspection Targeting Specific Models 98

Figure 4.2: Example Kawasaki model visualisation at steps 0, 1000, 2000 and 4000.

no explicit dynamical scheme associated with it, and so one is imposed artificially

using Monte Carlo techniques to make the model system evolve between different

microstate configurations.

Algorithm 2 Monte Carlo Kawasaki Model Algorithm.
N = L2 sites on square lattice
for all runs do

initialise sites with pv = 0.5 vacancies
for all time-steps do

for all sites i in random order do
choose a random neighbour site j
compute energy change if i, j exchanged
if energy falls then

accept change and do exchange
else

compute Metropolis probability p
generate random probability r
accept change conditionally on r < p

end if
end for

end for
average results over runs

end for

For our purposes we can break down a Kawasaki model into its constituent

observable elements as shown in Table 4.2.
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Agent Type Events Properties

Particle Selected Site, Selected Neighbour Type, Bind,

Exchange Metropolis Probability

Observer Step Particle List, Step,

Exchange Numbers

Table 4.2: Summary of Kawasaki constituent elements.

4.3 Analysis, Design and Approach

Through this section, we explain the process of choosing our approach and how we can

conceptually use it for ABM. As has been covered in Section 2.1, a majority of the

productivity benefits for this case can be provided by the movement from ad-hoc code

on a per model basis towards a general-purpose framework designed to allow re-use of

boilerplate code in the area. The next step can be adding domain-specific support for

models which raises the software maturity by reduction of semantic gap and hiding

boilerplate away from the user. Although to this point the scattering and tangling

of the cross-cutting concern is merely moved away from the user, to alleviate the

cross-cutting problem we must use aspect-oriented techniques. To do this, we move

from our object-oriented environment to an aspect-oriented environment for a marked

improvement in scatter and tangle, then allowing the addition of domain-specific

features to aid the framework further forming a DSAL. This process is illustrated in

Figure 4.3, although using a GPAL and DSL are visualised as the same maturity in

this illustration this is dependent on circumstance. GPALs give a better reduction

of scatter and tangling, DSLs reduce the requirement to directly write scattered and

tangled code.
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Figure 4.3: Maturity of runtime inspection through object-oriented GPL to DSAL.

We now consider how is best to implement a DSAL framework over an object-

oriented framework without domain-oriented interfaces through the lens of language-

oriented programming.

4.3.1 Middle-Out Language-Oriented Programming

Language-oriented programming is one of the many umbrella terms for a type

of development which has a significant focus on the use of DSLs towards some

end. Through this thesis we focus on Ward’s (1995) definition of language-oriented

programming based upon middle-out centric development which specifies the focus

and order of the development process. Middle-out development’s thesis is that a DSL

can be used to package domain knowledge, which in turn can be used to dramatically

reduce development effort while increasing maintainability and enabling reuse. As

such, the first stage of development should be a definition or selection of a language

which is suitable for the task. Only then moving onto system implementation using

the language and implementation of the language, probably using some existing

language forming a cascade of abstraction levels through projects. The order of

implementation may change, and in many cases will be an iterative process with

many layers of languages but the core idea of using a DSL as the structure for a task

is required.
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Figure 4.4: Software development processes adapted from Ward (1995).

Middle-out development is compared to top-down, bottom-up and outside-in

development methodologies by Ward (1995). Middle-out provides benefit by not

requiring a complete concept of the system to begin, giving domain context to

bottom-up utility elements and formalising the boundaries of the system in the DSLs

semantic model. This middle layer forms an abstract machine that the top-level

problems can be written using and low-level utilities can aim to implement. This is

much like earlier ideas for software productivity such as virtual machines for program

families by Parnas (1976, 1979). The four development processes are illustrated in

Figure 4.4, where arrows denote development activity.

As software development is an ever-changing environment, recent agile methods

should also be applied to this process because changes in the needs of a middle layer

throughout development are inevitable. Rapid prototyping of the DSAL may be the

appropriate solution in some cases where the DSLs implementation can be focused

on to achieve complete knowledge of possible system boundaries, or DSLs use to

attain if it is complete for a task.
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To allow iterations of the middle layer we prefer using a semantic model to

separate the implementation and parsing of the language. Using a semantic model

makes language definition and parsing easier by giving an abstract data type which

matches the kind of data captured in the DSL, which can be updated throughout

development as new requirements arise.

The use of a semantic model allows the parsing of the language and the testing

of the domain model to be done separately which is especially useful when they are

implemented in different frameworks. For example, in our illustrative implementation

where a DSL is implemented in Xtext, separately to a DSJP interpreter using Java

and AspectJ Join Points (JPs).

Currently, we have focused only on language-oriented programming for DSLs,

which begs the question of what differences there are for DSALs. Bagge and Kalleberg

(2006) has noted that simple macro-expansion as found in DSLs is not sufficient

for DSALs because of their cross-cutting nature. Language-oriented modularity by

Hadas and Lorenz (2017) also comments on the preservation of semantics by current

methods of implementing DSALs. We now explore the extra considerations which

aspect orientation brings compared to the standard DSL middle-out scenario.

4.3.2 How a DSAL can be Middle-Out

A middle layer is based upon a high abstraction level concept in both DSLs and

DSALs, but DSALs have the extra consideration of a weaving target. This dependency

means that although a DSALs middle layer is based upon a conceptual model, the

bottom layer must be coupled with the implementation of a specific ABM as shown

in Figure 4.5.
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Figure 4.5: The coupling of a DSAL to the concept of a model, with the weaver coupled
to the implementation of a model.

This creates limitations which need to be taken into account at the initial creation

stage of the middle layer and future iterations. As we are using a semantic model for

this, the semantic model essentially contains the JP representation of the system.

Knowledge of the underlying weave target is required to know what identification

and effect are feasible. This is less of a problem for a General-Purpose Aspect

Language (GPAL) because their target is the static grammar of a language, thus

supported and unsupported JPs are the same throughout any program. The issue

for a DSAL, if implemented using a GPAL is GPJPs may not correspond to domain

events. Examples of limitations in AspectJ are no JP for loop iterations and a lack

of access to auxiliary information at a JP such as no array index support within the

set JP.

Because of the difficulty in guaranteeing DSJPs being accessible in the target

program, the process of creating the middle and bottom layers must have higher

priority than creating top layer programs for a DSAL. This means the formal

specification of the middle layer should begin with a specification of a semantic model

which can be populated by available DSJP, then once feasibility has been established,

middle layer DSAL development and top layer programs may be worked on.
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We define the JP model of our middle layer using the specialise, aggregate, create

model from Fabry et al. (2015). This method of creating DSJP uses GPJPs as a

base JP which are then specialised, combined or added into program flow. This is

achieved through a three-step process.

• Step 1: define a DSJP which is required.

• Step 2: find the plausible GPJPs which may be specialised, aggregated or

created to provide this DSJP.

• Step 3: combine these into a specification for that DSJP.

This method of DSJP creation means that JPs may be conditional non-atomic

events in the running of the host program. This makes before and around advice

problematic to implement as it requires some lookahead or backtracking mechanism.

As such we have taken the choice to allow advice to only be fired after a DSJP is

triggered, removing options for before and around as is provided in AspectJ. For

future work, it is plausible to imagine useful applications for pre-emption of events in

deterministic simulations, although this would be with a considerable performance

decrement.

A representative amount of runtime inspection can be performed using only after

advice where aspects are used primarily as a logging tool for offline processing. The

important consideration is consistent semantics, such as all timings of events are

after an event. Interactive runtime inspection methods may be detrimentally affected

through being limited to after behaviour as JPs would ideally be placed before an

event occurs giving time for a user to assess situations. Examples of interactive

runtime inspection behaviour include: augmenting the visualisation of simulations,

corrective warnings or pausing simulations.
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As runtime inspection of models should not affect the underlying model, we must

also consider how we can control the effect advice has on the resulting model’s core

semantics. Using an external DSL for advice which is controlled by our environment,

this can be solved by containing the potential action by the user. If using an internal

DSL or direct general-purpose advice, this requires more consideration, as runtime

inspection advice could change the results of the inspected code. It should be noted

that for some use cases such as augmenting visualisation, constrained effect on

underlying framework code is required.

In summary, a middle-out process for DSALs must place focus onto the

representation, identification and effect of JPs within the middle layer. This can

be achieved through decoupling the bottom and top layers by creating a semantic

model during middle layer development. This semantic model should be populated

through the top layer aspects and allow the population of weaving engines in the

bottom layer.

4.3.3 Application to ABM

ABM is an interesting target for a runtime inspection language because it allows the

language to not only be an executable runtime inspection language saving time for the

developer but also a means of communicating what runtime inspection is happening

to a model during hypothesising, dissemination and repetition of research. The use

of a DSAL means that this process can be done through iterations of the modelling

process with great reuse of code, retaining the semantics of experiments throughout

model development. The behaviour level description of a model will remain the same

regardless of implementation details. This means a description of agent events can be

written without knowing the full details of the implementation, assuming the DSAL
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is maintained along with changes of the model when required. The ABM process

suits the required heavier emphasis on the bottom layer of middle-out development

because a majority of models will be conceptually defined with information on what

must be inspected. This gives a solid base for the initial creation of DSJP at an early

stage, allowing a dialogue between domain expert and language developer which may

improve the implementation of a model.

The selection of DSJP for ABMs is simple because the behaviours of simple agents

form direct cause for inspecting the environment, things such as wealth movements in

Sugarscape ants or exchanges for Kawasaki particles can be highlighted as important

and added to a DSAL’s JP representation. Macro behaviours which are the result of

emergence are by definition far harder to assign a JP, and interesting work around

them would be what states at JPs may lead to behaviours occurring.

To retain the integrity of models inspected by our code we limit the runtime

advice possible to external logging, changing visualisation artefacts and pausing of

stepping in the simulation. This means that runtime inspection code written using

the DSAL will not affect the results of experiments, and as such, can be used as a

safe method of extracting results from a model.

4.4 Implementation

Through this section, we will discuss our implementation of a middle-out DSAL over

the Animaux ABM framework. We discuss our implementation through the lens of

middle-out’s three layers. First, we discuss the language definition and considerations

taken throughout its definition; secondly, we discuss the implementation of the

language using a semantic model technique; finally, we discuss the intended use of
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Figure 4.6: The top, middle and bottom implementation layers of AnimauxRI in relation
to a target.

the language with regards to the next sections experiments. It should be noted that

although we discuss the bottom layer before the top layer, these two layers can be

independently developed in any order.

The architecture of our implementation is displayed in Figure 4.6. Our middle

layer is an Xtext DSL which populates a semantic model, this semantic model then

generates code for our bottom layer. Our bottom layer is comprised of AspectJ

GPJPs and a DSJP runtime which interprets GPJP into DSJP and controls advice.

The top layer of our DSAL is intended for users and they need not be aware of the

implementation of the lower two layers. Using this approach allows us to use the

mature Xtext system for creating our DSL, the mature AspectJ system for weaving

GPJPs and domain-specific engines to manage application-specific DSJPs.

4.4.1 Middle Layer: The Language

In line with the DSL philosophy of building abstraction levels, the tooling we have

used for our middle layer design and creation is Xtext. A language workbench for

making DSLs which have good default support for generators, validators and IDE

plug-ins. This is done by utilising ANother Tool for Language Recognition (ANTLR)
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for parsing and Eclipse Modelling Framework (EMF) models for tree storage, making

for a simple experience to make simple DSLs with defaults and opportunities to work

with changing the back-end structure of things if required by advanced users. The

DSL produced by this suite has the semantics of a DSAL provided by the DSJP

interpreting runtime explained in the bottom layer section.

Language Definition

The language definition forms the basis of the top and bottom layers, which may be

implemented independently of each other. As such, a definition should be formally

specified to allow both a specific and immutable target. In large projects, such

before-development waterfall type definitions are bound to require changes, especially

during the early stages of development. An extra consideration for an aspect-oriented

middle layer is the implementations of base programs will differ, so the domain-

specific representation must be generic across all back-end systems. The benefit of

a language being very domain-specific is the required vocabulary should be stable,

so definitions can be made from the domain jargon which will be consistent across

different implementations (Mernik et al., 2005).

In a DSAL environment to ensure plausibility of the middle layer, it is required

to focus on the bottom layers abilities as well as the middle layer far more than is

required in a standard Turing complete environment. The middle layer needs to be

defined with consideration not only to the domain but also the intended weaving

toolings potential given a set of target programs. An example of this is if using a pure

AspectJ weaving back end, arbitrary positions within for loops cannot be captured

directly because AspectJ’s GPJP representation does not include mechanisms for

capturing loop executions. This can be remedied by using a tool such as the aspect
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bench compiler to include for loops (Allan et al., 2005; Harbulot and Gurd, 2006),

create an additional static analysis solution using a parsing tool such as ANTLR to

locate for loops and add them to the JP stream (Parr, 2013) or using a bytecode

manipulation framework such as ASM from Bruneton et al. (2002). If the designer

does not want to deal with these workarounds or the tooling used for the language

backend is set in stone they will need to define the language with semantics which

can be captured by that back-end tool, either by limiting the language features,

enforcing rules upon targets or limiting the set of programs the language is intended

for use with.

We begin by forming an informal specification of general-purpose Aspect-Oriented

Programming (AOP) tasks which will be required to form the DSJP to runtime

inspect the chosen models. This step is an exploration of potential problems with

implementation to decide if anything needs to be done or scope needs to be limited

before moving forward with DSAL creation.

The requirements we have found for this project are:

• Inter-type declarations. To augment storage of state within agents such as

previous positions.

• Beginning and end of steps. Specialisation for step counting and use as a

scaffold for DSJP which require checking of state on a step-by-step basis. This

would require extra work in AspectJ like languages if stepping was implemented

through a loop rather than method calls.

• Around visualisation of agent colour. To augment the display of agents without

affecting their internal state.

• Kawasaki chosen neighbour and site. Specialisation from inside steps.
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• Tracking Kawasaki exchanges. Requires DSJP creation combining chosen site

and neighbour because of use of non-AspectJ supported array indexing.

We can then begin creating DSJP which may populate our semantic model. The

chosen DSJP for our two selected models are shown in Tables 4.3 and 4.4.

Observer "StepStart " | " StepEnd"

Sugarscape "(No)ChangeWealth" | "(No)Movement" | "(No)SugarChange"

| "(No)UnoccupiedChange" | "SugarTotal" | "AntNumber"

Kawasaki "Exchange" | "ChosenSite" | "ChosenNeighbor"

Table 4.3: DSJP available for AnimauxRI.

Sugarscape "Step" | "Name" | "Location" | "MaxSugar"

| "Wealth" | "Neighbourhood" | "Sugar"

| "Unoccupied" | "SugarRemaining" | "AntRemaining"

Kawasaki "TypeSite" | "TypeNeighbour"

| "ExchangeSite" | "ExchangeNeighbor"

| "ExchangeNumber" | "StepsExchangeNumber"

Table 4.4: Pointcut comparators available for AnimauxRI.

Xtext DSL creation

Now we have a list of JPs to work from we can begin creating our language with

Xtext. We have chosen to use an AspectJ like style for our aspects.
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Listing 4.1: Xtext grammar excluding keyword definitions.
Model:

toggle=("ASPECTS_ON"|"ASPECTS_OFF")?
pointcutadvices+=Pointcutadvice*;

Pointcutadvice:
pointcut=Pointcut ’{’ advices+=Advice+ ’}’;

Pointcut:
parts+=PointcutPart (operators+=POINTCUT_OPERATOR

parts+=PointcutPart)*;

PointcutPart:
part=POINTCUT_PART_TERMINALS (’(’ sfield=COMPARABLE_FIELD

soperator=COMPARABLE_OPERATOR snum=INT ’)’)?;

Advice:
typedadvice=PrintAdvice | typedadvice=ControlAdvice

| typedadvice=ColourAdvice;

PrintAdvice:
type=("PRINT"|"GRAPH") PrintPart=ADVICE_PRINTABLE;

ControlAdvice:
control="PAUSE";

ColourAdvice:
"COLOUR" all="ALL"? colour=COLOUR;

We populate our semantic model using the EMF model generated by Xtext, this

transforms the implementation-specific parsed model into an in-memory model of

our languages behaviour. Our in-memory model is a list of PointcutAdviceSM which

contains lists of included PointcutPartSM and AdviceSM. These can then be viewed

at runtime, acted on programmatically or operated to generate the matching Java

code. From this point the Java generation is merely mechanical firing of the semantic

models as shown in Listing 4.2 as all parsing from DSL has been finished by this

stage. The translation from EMF model to semantic model transforms the data
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gathered from parsing the DSL into problem level information which we can use to

populate our DSJP runtime. An example of the changes in making the semantic

model is moving the list of pointcut operators from the pointcut level where they are

in the Xtext grammar to the pointcut part level in the semantic model as this is how

they are stored in our DSJP runtime. A further advantage of this is any changes to

the DSLs specification will only require changes in the population of the semantic

model once, rather than changes throughout the generation of code. A class model

of our semantic model can be found in Figure 4.7.

Listing 4.2: Object-oriented semantic model Java generator.
def generateJavaCode() {

return ’’’
package dsjpruntime.gen;
import dsjpruntime.*;

public class Population {
public static void Populate(DSJPRuntime runtime) {
AdviceEngine adviceEngine = runtime.getAdviceEngine();
«FOR pa : pointcutAdvices»

«pa.compile»
«ENDFOR»
}

}
’’’
}

Xtext quick fixes allow for IDE support of the DSL, giving suggestions for user

code errors at the domain-specific level. Example code for doing this can be found

in Listing 4.3, which is illustrated in Figure 4.13.
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Figure 4.7: AnimauxRI semantic model class dependency diagram.
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Listing 4.3: Example snippet of Xtext quick fix implementation.
@Check
def checkPointcutAdvice(Pointcutadvice PA) {

var checker = new PointcutAdviceSM(PA)
for (var counter = 0; counter < checker.Advices.size ;

counter++) {
if (checker.Advices.get(counter).GetError

.contains(NO_COLOUR_INDEX)) {
warning("Add all to give colour agent target",

DSAL77Package.Literals.POINTCUTADVICE__ADVICES,
counter, NO_COLOUR_INDEX, {counter.toString})

}
}

}

@Fix(DSAL77Validator.NO_COLOUR_INDEX)
def noColourTarget(Issue issue, IssueResolutionAcceptor acceptor) {

acceptor.accept(issue, "No Target Agent, Change to ALL" ,
"Give Colour to All Agent", "", new ISemanticModification() {

override apply(EObject element, IModificationContext context)
throws Exception {
var PA = element as Pointcutadvice
var index = Integer::parseInt(issue.data.get(0))
var colouradvice = PA.advices.get(index).

typedadvice as ColourAdvice
colouradvice.all = true

}
})

}

4.4.2 Bottom Layer: AspectJ and the DSJP runtime

Our bottom layer is a Java framework for interpreting GPJP into DSJP populated

through an API and operated by AspectJ GPJPs.
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Figure 4.8: AnimauxRI class dependency diagram.

The use of a DSJP interpreter added to the target’s project which handles aspects

within it is an alternative to transforming the program’s source code to incorporate

the aspects directly. This approach follows on from the semantic model idea of

separating the creation of GPJP (parsing) and forming domain-specific abstractions

at runtime. As such, the APIs to populate and operate our DSJP runtime act

alike the matching interfaces for a semantic model. Use of this pattern allows us

to separate the weaving of GPJPs to AspectJ’s mature general weaver and the

processing of GPJPs into DSJPs in inherently domain-specific code explicitly tailored

for the target models. A class dependency diagram of our implementation of this

approach can be found in Figure 4.8 and system flow in Figure 4.9.
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Figure 4.9: The join point flow through AnimauxRI’s bottom layer.

AspectJ GPJP

The models dealt with in this project’s runtime inspection can be covered by a small

set of powerful GPJP locations, which are augmented to match each pointcut and

advice’s requirements. The AspectJ file is responsible for creating an instance of the

DSJP runtime to populate at program start-up and operating this DSJP runtime by

inputting GPJPs into it. The set of AspectJ pointcuts used in this project is shown

in Listing 4.4. We will discuss how this set of GPJP combined with the context

provided through the advice engine can provide our full set of GPJP.

Listing 4.4: AspectJ pointcuts sorted by advice operator.
//before and after:
pointcut Step(): execution(

void Framework.AnimatModel.Evolver.evolve());

//around:
pointcut antColourGet(): execution(

Color Framework.Ant.getColor());

//after:
pointcut KawasakiSite() : execution(

void Framework.AnimatModel.KawasakiSite());

//after returning:
pointcut getk1(): execution(

int Framework.AnimatModel.Neighbourhood.randomSite());

pointcut getk2(): execution(
int Framework.AnimatModel.Neighbourhood.randomNeighbour(int));
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DSJP runtime

The DSJP runtime contains the pointcut matching and advice engine for our language.

Pointcuts are matched by taking the stream of GPJP and marshalling them to domain-

specific pointcut matchers which may be interested in their occurrence. The partial

evaluation of JPs by the DSJP runtime is vital to ensuring good performance from

an interpreting JP approach. As seen in Listing 4.5, only pointcuts which can match

a JP are passed a JP. Furthermore, pointcut advice are toggled at the AspectJ

level depending on the models used within pointcuts. For example, if there are

no Sugarscape pointcuts, then Sugarscape JPs will be ignored without the excess

computational overhead.

Listing 4.5: DSJP runtime marshalling of GPJP.
@Override
public void InputGPJP(JP jp) {

//Direct JP marshalling
for (dsjpruntime.DSPointcut DSPointcut :

gpjptypesforuse[jp.getType().index]) {
DSPointcut.inputGPJP(jp);

}

//Step JP also used to create auxiliary DSJPs
if (jp.getType() == Enums.JPtype.O_StepStart

|| jp.getType() == Enums.JPtype.O_StepEnd) {
CreateStepBasedDSJP(jp);

}
}

The advice engine works through an interface which has an implementation within

the framework of Animaux. Although this could be done through AOP, we have

added it as a component of the framework because the behaviours are so tightly

coupled to the implementation of the framework and are generally core concerns

rather than cross-cutting concerns. Examples of behaviours in the advice engine
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are getting properties from the agents, the environment of the model and overall

observations upon the model. The advice engine provides means to create many

of the DSJP which require further context and provide our advice methods in a

single class, rather than scattering and tangling highly coupled calls throughout the

project.

We now give examples of how we form our DSJP using the specialise, aggregate

and create model.

• Specialise

The specialisation of JPs is the simplest form of creating a DSJP; it is especially

useful where a single DSJP may have multiple implementations. For example,

step start and step end DSJP are created directly from the accompanying

execution of the evolve method. This specialisation moves the implementation

of a models step method to a higher level of abstraction for use within pointcuts.

• Aggregate

Aggregation of JPs is useful for tracking common contextual events. We do not

provide any direct aggregation DSJP because of our deliberately small selection

of base GPJP. Our DSAL allows DSJP to be aggregated by the user using the

then keyword.

• Create

Creation of DSJP which do not exist in the GPJP flow of the target program is

the most complex form of defining DSJP, and can facilitate some of the hardest

to manually code runtime inspection. For example, Kawasaki exchange DSJP

are formed by collecting data as the random site and random neighbour GPJP

which is then processed to check if an exchange has taken place. This must

be done because the exchanges are done through indexed array assignments
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which although are direct events within the general-purpose program are not

accessible with sufficient context by AspectJ. Specifically, AspectJ cannot give

the index of set pointcuts performed on arrays.

Simpler creation DSJP such as ant number, total sugar and space occupied

DSJP are created from the base of the step GPJP and context from the advice

framework.

4.4.3 Top Layer: Use of the Language

The approach gives the user a very high-level Xtext DSL as a front-end which

generates the population of our back-end framework. This is a complete separation

of user-written top layer programs and language developer-written bottom layer code.

The user can view generated code if they wish by looking at the population.java file

found in the gen directory as shown in Figure 4.10.

The proposed use of this DSL is as an axillary measure to ABMs in development

in the Animaux framework, specifically the Sugarscape and Kawasaki models. We

have chosen to use the Xtext provided Eclipse editor for our aspects, which generates

population files directly into our Animaux project’s gen folder.

As this environment will require the toggling and modification of aspects

throughout development of the project, the DSL allows for toggling of aspects

at the start of each file using the optional ’ASPECTS_ON’ and ’ASPECTS_OFF’

commands which default to aspects on. Java-style comments are supported through

the DSL allowing quick modifications and notes about aspects to be stored, this is

shown in Figure 4.11.
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Figure 4.10: Example Sugarscape DSL code in Eclipse editor (left), with generated code
(right).

Figure 4.11: Example of toggling and commenting of aspects.
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Although the use of a DSAL is at the solution level, language implementation

semantics must still be taken into account by the user. For example, pointcut advice

are applied in the order in which they are written, meaning the code in Listing 4.6

would not colour any ant orange as the magenta colouring advice will overwrite it.

Listing 4.6: Example of pointcut advice priority.
//Applied first
Movement (Wealth > 10) {

COLOUR ORANGE
}

//Applied second, overwriting the first advice
Movement {

COLOUR MAGENTA
}

Using an Xtext DSL as a middle layer allows the organised application of DSL

validation with support for IDE assistance in Eclipse, IntelliJ and a web editor. This

means domain-specific checks which are not present in the back-end model can be

added to the DSLs validation with feedback and suggestions pushable to a user at

the IDE level. An example of this in our application is not being able to pair a

Sugarscape and Kawasaki JP together in a pointcut as is shown in Figure 4.12. An

example of Xtext’s quick fix mechanism providing auto-complete proposals is giving

a target to colour advice where the pointcut provides none as shown in Figure 4.13.

This moves supported compile time errors and debugging potential to the user

level, although errors which have not been given custom validation rules will arise

at the grammar’s level of abstraction rather than the target. Problems which arise

during runtime will be revealed at the implementation-level of abstraction; These

will be handled and logged by the DSJP runtime for inspection by the language

developer.
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Figure 4.12: Example of Xtext validation of pointcut advice type matching within Eclipse.

Figure 4.13: Example of Xtext quick fix provision within Eclipse giving domain-specific
corrections.

4.5 Results

We now will perform experiments with performance and code metrics. We use code

metrics on intended use cases, showing the core usefulness of this approach with

respect to the language developer and end user. We perform performance metrics

to ascertain the practical viability of this method, with discussion of potential alike

methods which could give different results.

Experiments are performed on a Windows 10 machine with an i7-4790k @ 4.4ghz

with minimum processor frequency at 100% to reduce variability and 16GB of

2133mhz cl9 ram. No performance throttling issues were encountered through testing.

These experiments are done through the Animaux GUI, timings are taken directly

around the stepping loop, recording directly before the first step has begun to directly

after the last step has finished. Timings for these experiments are hard-coded into

the Animaux framework using system nano time to avoid any overheads of an aspect
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approach misrepresenting data. Each experiment has 20 data points, represented as

box plots in our figures. The models used for these experiments are a mountains

pattern in Sugarscape and a 50% chance random distribution of particles in Kawasaki.

A large portion of the benefit provided by the DSAL is provided by the framework

which the DSAL is based upon rather than the DSAL being a one-step process. The

underlying framework can be used without the DSAL giving the same amount of

semantic power albeit at a lower level of abstraction. As such, the DSAL can be

considered a population layer of abstraction over the framework which implements

the semantic model. Through these experiments, we will use the comparison between

inline code, DSAL code and generated framework code as a metric.

We use lines of code as a metric to illustrate the implementation size of our

framework. Although this metric does not give a full representation of difficulty

to write or length of the code in said lines, we believe it is a reliable indication of

progress given software practices are consistent and the code is written in good faith.

The implementation of the DSAL consists of roughly 1000 lines of code because of

the use of object-oriented techniques to keep DSJP runtime code to a minimum. The

interfaces and Xtext grammar form roughly 150 lines of code, the DSJP runtime

forms roughly 550 lines and the Xtext generator forms roughly 300. Miscellaneous

additional code such as validation rules in Xtext are not included in these figures.

Lines of code does not translate well across programming languages, for example,

most statements in our generated framework can be considered as one line of code but

are significantly more complicated than their DSL counterparts. In our comparisons

between DSL and generated code, we use total characters excluding white space

as a base mark and logical entities as a metric. A logical entity is a variable use,

method call (chains taken as single) or a stand-alone keyword. These metrics are
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limited as they merely record length of code rather than the complexity although

for our purposes in small snippets of code this is suitable. Character readings are

taken ignoring white space and entities ignore punctuation. Statistics on generated

code exclude class definition and DSJP runtime access set-up as this is generated

regardless of pointcuts.

4.5.1 Aspect Performance Base Benchmark

We first benchmark the performance of the Animaux framework with no active advice

using the Java compiler, the AspectJ compiler without AnimauxRI imported and the

AspectJ compiler with AnimauxRI imported. This experiment performs 500 steps of

each model from a fresh initialisation, results are shown in Figure 4.14 and 4.15.

These benchmarks show low performance overheads of roughly 3% for Sugarscape

and around 6% for Kawasaki with the DSJP runtime running with no aspects loaded.

The Kawasaki model’s higher difference is because there are more AspectJ pointcuts

on each step, even though the Kawasaki has a higher base time meaning each JP’s

overhead is less significant. Because of the higher overhead of the Kawasaki tests,

we have included an inline DSJP injection case within further experiments. This

inline injection approach allows us to compare what overhead is from the DSJP

interpretation and what is from the DSJP creation.

We test this injection case in a worse case performance scenario by activating

pointcuts for chosen site, chosen neighbour and exchange. The advice for these

steps is incrementing an integer to avoid optimisations removing blank aspects. The

experiment results are found in Figure 4.16.
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Figure 4.14: Sugarscape base benchmark results.

Figure 4.15: Kawasaki base benchmark results.
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Figure 4.16: Kawasaki all pointcuts benchmark results for injected and AspectJ
implementations.
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There is a considerable difference between the performance of the injected and

AspectJ methods. This is because the AspectJ method has overhead from creating

the GPJP and then has to check if it has to create DSJP on these GPJP. The injected

approach uses the logic already existing in the model’s code to check if a DSJP is

needed which requires significantly less overheads. The injected approach does not

reduce scatter, although it does mean that tangle is still retained within the DSJP

engine except for the single statement of creating the DSJP. This sort of approach

may be useful when performance must be improved or for a selection of high impact

JPs. This approach could also be applied to the Sugarscape model although most

Sugarscape DSJP are specialisations of the AspectJ step JP which has roughly the

same performance as injected JPs.

4.5.2 Printing Steps

We now benchmark the performance of common intended use cases of the DSAL.

Our first experiment is the simple task of printing the step number upon each step.

This is a specialisation pointcut with direct advice, and as such, does not have much

overhead. The overhead from the aspect, in this case, is because of matching the

step pointcut and accessing the step variable through the advice engine.

The generated code is shown in Listing 4.7 and the inline implementation of the

advice is shown in Listing 4.8, performance results are shown in Figures 4.17 and

4.18, and code metrics can be found in Table 4.5.
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Characters Logical Scatter Tangle

Entities

Inline 25 2 1 block Inside

model class

DSAL 20 3 1 Independent

pointcut advice aspect

Generated 219 12 1 Independent

pointcut advice aspect

Table 4.5: Code metrics for printing step number on each step.

Listing 4.7: Printing step aspect framework generated code. Located in aspect

file.
DSPointcutPart PP1 = new DSPointcutPart(Enums.JPtype.O_StepStart,

Enums.PointcutOperator.end);
runtime.addDSPointcut(new DSPointcut(1, adviceEngine,

() -> {
System.out.println(adviceEngine.O_getStep());

}, new DSPointcutPart[] {PP1}));

Listing 4.8: Printing step inline code. Located inside stepping loop.
System.out.println(step);

This is a simple demonstration of how aspect orientation can remove a task from

the model’s inline code and into an aspect file with little impact on performance.

Kawasaki has more overhead compared to the Sugarscape model because of the

higher number of JPs meaning more overhead. This code only removes a single piece

of inline code into an aspect, although seemingly small this allows the writing of

aspects without knowledge of the implementation of the stepping or logging system
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Figure 4.17: Sugarscape print step experiment results.

Figure 4.18: Kawasaki print step experiment results.
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used by the model. Furthermore because of the declarative potential of DSLs similar

simple aspects can be used to perform complex domain-specific tasks with similar

code.

4.5.3 Printing Gini Coefficient at Intervals

Following on from the previous experiment, a simple, practical use case of a language

like this is the printing of some important model-specific metric at intervals throughout

runtime. For this, we have chosen the relatively expensive to calculate Gini coefficient

to be printed every 50 steps through execution. The pointcut logic required for this

is a simple specialisation of the step JPs with a comparison on the step number,

the overhead over normal execution is mainly from the calculation of the Gini

coefficient. This experiment’s aspect has very little overhead compared to the inline

implementation. The inline and aspect implementations can be found in 4.9 and

4.10, Performance metrics are found in Figure 4.19 and code metrics are found in

Table 4.6.

This experiment is similar to the previous experiment but has a domain-specific

variable available to the user. The context of the DSAL allows for checking at compile

time so a Gini coefficient check can only be performed on appropriate models, and

the user does not have to think about calculating the Gini coefficient themselves.
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Characters Logical Scatter Tangle

Entities

Inline 52 6 1 block Inside

model class

DSAL 38 5 1 Independent

pointcut advice aspect

Generated 285 16 1 Independent

pointcut advice aspect

Table 4.6: Code metrics for printing Gini coefficient at intervals of 50 steps.

Listing 4.9: Printing Gini coefficient at intervals aspect framework generated

code. Located in aspect file.
DSPointcutPart PP1 = new DSPointcutPart(

Enums.JPtype.O_StepEnd, Enums.PointcutOperator.end, 50,
Enums.ComparableFields.O_step, Enums.Operator.Modulo);

runtime.addDSPointcut(new DSPointcut(1, adviceEngine,
() -> {

System.out.println(adviceEngine.S_O_getGiniCoefficient());
}, new DSPointcutPart[] {PP1}));

Listing 4.10: Printing Gini coefficient at intervals inline code. Located in

stepping loop.
if(step % 50 == 0) {

System.out.println(CalculateGini());
}
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Figure 4.19: Sugarscape printing Gini coefficient experiment results.
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4.5.4 Colouring a Selection of Moving Ants

We now move onto a relatively expensive pointcut and advice of colouring of ants

conditionally as they move within Sugarscape, the results of this aspect are shown in

Figure 4.20. This aspect colours ants which have a wealth of over 10 which is high

for this scenario. This allows a more detailed look at wealth distribution than the

default red and yellow dichotomy. This is an interesting case because while there is

a significant performance hit, the inline implementation requires changes in multiple

parts of the Animaux framework due to the design of the ant colouring. This means

there is an apparent trade-off between faster scattered and tangled implementation

specific code and slower domain-level aspect-oriented code. This trade-off is especially

interesting for this type of advice because colouring ants at runtime implies a user

watching and possibly feeding back to the system, which will be the performance

bottleneck rather than the aspect code. This experiment also requires an additional

pointcut advice which resets the colour of ants at the end of each step.

The inline and aspect implementations can be found in Listings 4.11 and 4.12,

performance results are shown in Figure 4.21 and code metrics can be found in Table

4.7.

In the base model ant colour is only calculated when they need to be shown to

the GUI, rather than being set after every wealth change as if not drawn to the GUI

the colour is not used. As such, externally changing the colour value of an ant is not

sufficient as it will be overwritten prior to display. The aspect method of dealing

with this is using AspectJ around advice on the colour calculation method and

changing the return value to an externally set value if a pointcut advice has matched.
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Figure 4.20: Sugarscape colouring wealthy ants aspect side to side with default
visualisation at 150 steps into a model.

This method does not alter the runtime of the framework when the pointcut is not

matched and changes behaviour by the interception of normal operation rather than

the changing of model logic.

Even though the advice for this method is only required when the GUI draws

the ants, in the current version of our DSAL there is no static check or partial

evaluation aimed to only setting ant colour when it will be visualised; the aspect

will change each ant’s colour every time it moves rather than only during the 500th

step. Partially evaluating this JP’s execution by only checking when the ants will

be visualised would give great performance bonus, this could be done by only firing

colour setting advice upon steps which will be visualised. A more drastic measure

of increasing performance would be using a dependency injection approach as we

have tried with Kawasaki or a code transformation weaver rather than our runtime

interpretation weaver.
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The relative performance cost is exacerbated by the short runtime of the

Sugarscape models, models with longer base runtime may not consider a few

seconds of runtime overhead to be a problem and many projects would happily

trade developer time for small increases in compute time. Despite the computational

inefficiency of this advice, it provides great separation of the user from the non-trivial

implementation semantics of the framework and the domain concept which they want

to realise. From a user perspective, the performance hit may be worth it because

of the coding and thought time saved each time an aspect like this is written. A

similar aspect to this is shown in Listing 4.13, where once the aspect begins firing

performance will not matter because any human inspection to test, verify or validate

the model will be by the bottle-neck for speed.

Characters Logical Scatter Tangle

Entities

Inline 215 23 4 blocks Inside ant and

over 2 classes model classes

DSAL 57 9 2 continuous Independent

pointcut advice aspect

Generated 505 27 2 continuous Independent

pointcut advice aspect

Table 4.7: Code metrics for colouring a selection of moving ants.
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Listing 4.11: Colouring a selection of moving agents aspect framework generated

code. Located in aspect file.
DSPointcutPart PP1 = new DSPointcutPart(Enums.JPtype.S_A_Movement,

Enums.PointcutOperator.end, 10, Enums.ComparableFields.
S_A_wealth, Enums.Operator.GreaterThan);

runtime.addDSPointcut(new DSPointcut(1, adviceEngine, () -> {
adviceEngine.S_A_ColourAnt(PP1.JP.ant.name , Color.MAGENTA);

}, new DSPointcutPart[] {PP1}));

DSPointcutPart PP2 = new DSPointcutPart(Enums.JPtype.O_StepStart,
Enums.PointcutOperator.end);

runtime.addDSPointcut(new DSPointcut(2, adviceEngine, () -> {
adviceEngine.S_O_ResetAntColour();

}, new DSPointcutPart[] {PP2}));
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Listing 4.12: Colouring a selection of moving agents inline code. Located inside

the Ant class and Sugarscape logic code.
//Inside Ant class
public Color changedColor = null;

Color getColor() { //only called when shown to screen
if (changedColor == null) {

checkColor();
}
else {

color = changedColor;
}
return color;

}

//Inside Sugarscape logic code
int oldk = k;
...
if (oldk != k) {

if(a.wealth > 10) {
a.changedColor = Color.cyan;

}
else {

a.changedColor = null;
}

}

Listing 4.13: Pausing simulation on low ant count and colouring stationary ants

DSAL code. Located in aspect file.
StepStart(AntRemaining < 50) {

PAUSE
COLOUR ALL OFF

}

NoMovement(AntRemaining < 50) {
COLOUR RED

}
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Figure 4.21: Sugarscape colouring wealthy ants experiment results.
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4.5.5 Printing Kawasaki Exchanges

Moving onto a Kawasaki specific test of tracking exchanges we can consider the

creation of DSJP which do not exist as AspectJ GPJP. This experiment prints the

site and neighbour of each exchange which occurs on the first 2 rows of a 256x256

model. Animaux’s exchange mechanic relies on assigning into arrays of integers, yet

AspectJ’s set pointcut does not expose the index of array assignments. Without the

use of third-party tools such as ABC from Allan et al. (2005), extra steps must be

taken in the capture of GPJP to create this exchange DSJP using AspectJ. As such,

our implementation is an expensive operation which is set up using the chosen site

and chosen neighbour JP specialisations to create shadow values of a site’s spins

which are then compared after the site has finished executing. The inline and aspect

implementations can be found in 4.14 and 4.15, performance metrics of this can be

found in Figure 4.22 and code metrics in Table 4.8.

This implementation is similar to our colouring a selection of moving ants

Sugarscape experiment, although we have our injection-based approach to compare

times with. The scatter and tangle improvement from this experiment is low because

the exchange is located in a single place. Although as we stated in the printing

steps and Gini coefficient examples, hiding the implementation from the user using

transparent aspect orientation gives benefit for showing the code to external domain

experts and maintaining code without full implementation semantic understanding.

The injection approach gives a significant performance increase over the AspectJ

approach, again because the creation of GPJP and the matching to potential DSJP

is not required in the injected approach. Much like the last model, the project’s

requirements for performance will define if the extra scattering through the project

will define if this is worthwhile.
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The performance results of this experiment are roughly the same as the all

pointcuts experiment from Figure 4.16 because the exchange JP requires the site

and neighbour JPs to be created.

Characters Logical Scatter Tangle

Entities

Inline 79 9 1 block Inside

model class

DSAL 43 7 1 Independent

pointcut advice aspect

Generated 323 19 1 Independent

pointcut advice aspect

Table 4.8: Code metrics for printing Kawasaki exchanges.

Listing 4.14: Printing Kawasaki exchanges aspect framework generated code.

Located in aspect file.
DSPointcutPart PP1 = new DSPointcutPart(Enums.JPtype.K_O_Exchange,

Enums.PointcutOperator.end, 512, Enums.ComparableFields.
K_O_ExchangeSite, Enums.Operator.LessThan);

runtime.addDSPointcut(new DSPointcut(1, adviceEngine,
() -> {

System.out.println("Site : " + PP1.JP.k);
System.out.println("Neighbour : " + PP1.JP.k2);

}, new DSPointcutPart[] {PP1}));
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Figure 4.22: Kawasaki printing a selection of exchanges experiment results.

Listing 4.15: Printing Kawasaki exchanges inline code. Located inside Kawasaki

logic code.
if(k1 < 512) {

System.out.println("Site : " + k1);
System.out.println("Neighbour : " + k2);

}
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4.6 Discussion

Through this chapter, we have motivated, analysed, designed, implemented and

examined an approach to providing separated domain-level runtime inspection on

a set of models running on the Animaux framework. This work will be forwarded

in Chapter 5 with work on the JADE framework using an internal DSAL. We now

discuss the process, results and implications covered in this chapter.

4.6.1 on Aspect-Oriented Runtime Inspection

The language we have designed using our approach is essentially similar to the

domain-specific pattern-action languages used for text processing in Unix systems.

Extending the Unix philosophy of writing programs which do one thing well and can

be chained with other programs to perform large tasks (Kernighan and Pike, 1983).

The language captures the essence of commonly asked questions about a model as it

runs and allows the user in simple terms to state when this happens, do this. The

advent of AOP had made this type of language more powerful because it is used to

augment patterns in computational systems rather than being a stand-alone program

for offline textual data. The selective runtime inspection of models allows for models

which would take massive amounts of storage space to be observed as a whole to be

observed in specific parts which the scientist is interested in.

The code which is written and modified the most times gives the potential for

the most significant savings of development time. Runtime inspection is one of these

tasks where similar queries will be written for many similar models across many

similar observation experiments. AOP allows the separation of runtime inspection
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code from the core concern of simulating a model, allowing this code to be written,

modified and applied as a stand-alone entity rather than changing multiple pieces of

code throughout a solution to achieve the same effect.

The use of aspect-oriented techniques does create an overhead in terms of an

extra build step and another level of system geometry for the programmer to keep

track of. The extra build step of compiling DSAL code and AspectJ aspects is hidden

from the user by modern IDEs, and as such, is not a pressing concern. However, the

introduction of a further level of system geometry in the form of aspects does influence

the number of things a programmer must hold in their heads when considering changes

to program code. This introduces a trade-off of if the added complexity of code

being weaved into the system is worthwhile because of the reduction of complexity

in expressing the concerns in an aspect-oriented manner. For the domain of runtime

inspection where simple runtime inspection may be adequately performable using

simple logging with boolean toggles scattered and tangled throughout the code,

although this becomes more difficult as more models are introduced to a framework

which the code may interfere with or more complex inspection tasks are required.

We believe as the domain of runtime inspection is inherently separated from the core

concerns of the model execution and is so commonly used, modified and toggled that

the use of aspect-oriented techniques is warranted for all but the most straightforward

cases.

The language implementation used in this chapter generates code from a static

set of aspects at compile time. There is significant scope for live programming

while a model is running, with feedback for which aspects have fired and what effect

they have caused. For example, having multiple colour aspects on a single model it

would be useful to know which aspect has coloured a specific ant and why. This live

approach is suited towards our dynamic interpretation framework far more than code
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generation approaches which are inherently static. If the decision to use a runtime

interpreter of the DSJP remains, then it may be profitable to consider the use of a

live editor during runtime rather than our single populate at start-up design decision.

4.6.2 on External Middle-Out DSALs

A separate DSL to the underlying framework means the user-facing code can be

organised in a way that the user would like rather than how the implementation

is done. In this DSAL we have chosen to use the AspectJ style of pointcut advice,

although we could have also investigated declarative styles following how a domain

expert may request an behaviour. For example, saying colour the moving ants rather

than saying when an ant moves colour it. This change could be done to the Xtext

DSL without affecting the underlying framework; opposite approaches could even be

used in the same project with two different DSLs for the same semantic model.

The middle-out used in this approach may best be described as a mix between

bottom-up and middle-out development because of a DSALs heavy reliance upon

plausibly available GPJP. When developing a middle-out DSL previous experience

of what bottom-up utilities can be provided using a base language is consistent and

probably re-usable across DSLs. When developing a middle-out DSAL, the target

code dictates the plausible JPs to a great extent, which only then can be used to

create an implementable semantic model for the middle layer. This means that to

some extent the possible utilities providing the features for the DSAL are set by the

target framework or programs rather than the language designer. We retain use of

the language-oriented middle-out approach rather than coining a new term because,

despite the increased reliance on the plausibility of the bottom layers DSJP, the

focus of working from a DSL first is still the primary concern.
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If a framework target has not yet been developed and the framework can be

designed to suit the required JPs for a language, this allows for increased autonomy

during middle layer scoping. This approach to framework creation also allows

planned use of injection-based implementations for problematic JPs rather than

traditional aspect-oriented implementations. Using dependency injection creates a

higher scattering of code in the framework implementation, but at the top layer the

scattering and tangling will remain the same as if using traditional AOP. This is

only possible because the scattering and tangling of DSJP instrumentation within

an application will be orders of magnitude less than the scattering and tangling of

GPJP instrumentation.

This approach’s layered structure provides excellent separation of concerns of the

language use, development and aspect implementation which is generally desired

when solutions work. This separation is provided by the distribution of specialised

work throughout the layers which may be performed by one or more people in

different roles. The disadvantage of this approach is dependencies between layers

may cause work on one layer to be halted while a solution is found. For example, if

the DSL is generating code which does not match the expected semantics, the user

must first notice the problem is the generated code rather than the DSL code and

then modify the middle layer’s generator to fix this. This is especially infuriating if

the problem in the generated code is a simple issue such as a missing parenthesis,

yet it cannot be fixed manually because it is overwritten with every change to DSAL

code.

The use of an external DSL comes with the disadvantage of having to provide

the axillary support now expected by programmers. This task is significantly

reduced through the use of language workbenches, which make external DSLs a more

economical and mature option. Without the use of language workbenches making



AnimauxRI - Runtime Inspection Targeting Specific Models 146

an external DSL is either a direct textual parsing task which does not provide IDE

support or a combined task of creating a language and toolchain. These tools have

steep learning curves although a majority of the initial curve overlaps with the use

of BNF based parser generators such as Flex, Bison and ANTLR. Once this learning

curve has been passed full featured DSLs can be designed, implemented and deployed

quickly making language-oriented ideas more feasible in everyday projects.

4.6.3 on Domain-Specific Aspect-Oriented Development

Tools

This chapter’s contribution is predominantly a display of DSL techniques adapted

for DSALs allowing language creators to use the mature language creation and AOP

weaving tools to their advantage while retaining semantics throughout. Although we

have used the industry standard frameworks AspectJ and Xtext for our Animaux

implementation, the approach is not tied to these pieces of software.

A problem with the use of GPJP as a base for a DSAL is the reliance on the

underlying general-purpose aspect frameworks JP model which will generally be

incomplete. Examples of this problem emerging through this project is the lack of

support for providing array index on set JPs and lack of support for loop invocations

as JPs. Within this project, as we have control of the underlying framework, and

have only a limited domain to deal with these did not cause critical issues. In larger

DSALs especially those targeted towards proprietary frameworks or hardware such as

general-purpose graphics processing unit programming, the underlying GPJP model

will almost certainly constrain a projects potential.
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The use of an interpreting runtime rather than code manipulation was taken for

this project because it considerably reduces the development time of a DSAL. An

interpreting framework which accepts GPJP and marshals them to appropriate DSJP

matchers is based on a homogeneous client-server idea where all JPs are treated the

same. Further work could include the addition of code transformation for JPs which

are inefficient to match using the interpreter model. This could be because they are

especially simple specialisations which are not worth the overhead of the full runtime

or are specialised towards small sections of runtime such as only specific agents may

match within a specific position and may be partially evaluated at compile time.



Chapter 5

JADERI - Runtime Inspection

Targeting Middleware

This chapter follows on from our work in Chapter 4, moving towards a middleware

targetting core Domain-Specific Aspect Language (DSAL) implementation, and

accompanying extension DSALs focused targetting specific models without needing

to re-implement weaving logic. This is a generic approach which requires more

initial investment for the core, although has more potential for reuse across many

projects with a small investment for extension towards a specific model. The target

audience for a DSAL such as this is researchers who use existing open technology

to produce prototypes, proof of concepts and working systems to be experimented

on for short-term projects. We first motivate and present our approach with the

associated Foundation for Intelligent Physical Agents (FIPA) background, followed

by details of our implementations, closing with experiments, results and discussion.

Our implementations are extensions of the JADE framework (Bellifemine et al., 2003)

written using a combination of Java and AspectJ.

148
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The primary research question answered by this chapter is:

How would we implement a middle-out DSAL for a generic cross-cutting concern

within a framework using domain-oriented interfaces, which could then be specialised

to specific models without re-implementing weave logic?

5.1 Motivation

The motivation for this work is allowing researchers who use the same frameworks to

make many Agent-Based Models (ABMs) throughout different projects to have tooling

and processes which allow them to create and use DSALs for the runtime inspection of

agent communication models. This kind of tool allows the implementation of runtime

inspection features at the level of abstraction of the agent communication rather than

the implementation of this communication. Examples of runtime inspection tasks

could be gathering statistics throughout runtime, creating domain laws providing an

exception-like tool for monitoring behaviour which should never or always should

happen at runtime which may indicate problems in the conceptual model rather

than the implementation of this conceptual model. Our technical solution is towards

creating an aspect-oriented core of Join Points (JPs) based upon filters on middleware

operations which happen across many models and using internal Domain-Specific

Languages (DSLs) as a means of packaging domain knowledge into more specific

DSALs based upon this core. These choices are in contrast to what was done in

Chapter 4, where JPs are targeted towards individual models and an external DSL

is used to capture domain knowledge. Although we focus specifically on internal

DSLs for this chapter; external DSLs are also applicable for this approach as we

discuss later.
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The layered approach to dealing with abstraction follows the notion that

separating application specific and domain-specific code allows for better reuse

as the domain-specific code may be a base for many application-specific languages

without modification (Poulin, 1995). A concrete example of this is our internal

Python DSL for family tree data (Maddra and Hawick, 2016) which used the DOT

graph DSL to produce output, removing the need to re-create a graph drawing library

as discussed in Chapter 2.

The idea of a core DSAL is illustrated in Figure 5.2. Rather than creating a new

DSAL for each model, the core may be used directly, wrapped with utility classes for

a certain field of problems or packaged into a very specific internal language for a

specific model. This means the original boilerplate work of weaving into a framework

is done once, and further domain-specific specialisation can be done if and when

required.

The middle-out uses of this core can be seen in Figure 5.1. This is a stronger

form of middle-out development than is seen in Chapter 4 because the middle layer

is explicitly formed as a core DSAL for language developers, which can then be used

to form new languages for subdomains as required. This is possible when targeting

middleware because the weave target is standardised ahead of time. In Chapter 4

the focus on many specific models which can be implemented in many ways meant

we had to focus more on the bottom layer as we defined a middle layer because of

the inherent dependency on it.

The middleware supported cross-cutting concern we have aimed our language

at is agent communication. The communication between agents is a vital part of

agent-based systems as it allows the cooperation, collaboration and negotiation which

can result in emergent behaviours. We use the JADE framework as the middleware
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Figure 5.1: Concept of an extensible core DSAL with internal DSALs for specific
problems.

Figure 5.2: Comparison of responsibility when weaving with and without the use of a
core DSAL at the middleware level.
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base. JADE is a software framework to develop distributed agent-based applications

in compliance with the FIPA specifications for interoperable intelligent multi-agent

systems (Greenwood, 2004; Bellifemine et al., 2001). Our work adds to the existing

support tools provided with JADE such as the remote management agent, dummy

agent, introspector agent, log manager agent, directory facilitator agent and sniffer

agent (Bellifemine, 2004; Bellifemine et al., 2007).

We have chosen to use JADE because of the framework’s affiliation with the FIPA

standard giving a strong base to build our JP model from. The specifications released

by FIPA are basic building block technologies which can be integrated into many

fields to produce complex systems with a high degree of interoperability. This makes

them an excellent fit for targeting as a core implementation of a JP model. This

standardised base also makes it far more likely that our DSAL will be compatible

with JADE models in many versions of JADE without any changes or preparation by

the model programmer during development. JADE is targeted towards multi-agent

systems rather than ABM but is suitable for both, generally speaking, multi-agent

systems focus on smaller numbers of more intelligent agents than ABM. At the

inter-agent communication level, a multi-agent system and interaction-oriented ABM

are similar enough for our method to be used for either approach. The specialisation

towards multi-agent systems provides needed tools for ABM and allows for better

use in realising simulation models in hybrid-physical demonstrations.

The concept of using JADE-like multi-agent system frameworks for agent-based

simulation rather than multi-agent systems has been a topic of debate within the

software engineering community because ABM frameworks generally do not follow

the agent-oriented middleware approach as many multi-agent systems frameworks



JADERI - Runtime Inspection Targeting Middleware 153

do. Cardoso (2015) is moving towards using JADE design principles to design ABM

which can be generated into Repast models, with future work of allowing JADE

generation as well.

Our target audience and JADE goes hand in hand with our choice to focus

on internal DSALs through this chapter. JADE is an advanced agent framework

which allows for large complex system by skilled programmers. Using an internal

DSAL gives the user higher flexibility and responsibility in being able to use Java

features within pointcuts and advice. An external approach relies more heavily on

the developer of the external DSAL to fit everything needed in the DSAL in each

release as the user is locked into using the DSL for all features.

There have been extensions to the JADE framework in the literature. JADEL

from Bergenti et al. (2017) is an Xtext based DSL for simplifying the creation of JADE

agents, behaviours and ontologies using an agent-oriented approach. JADEx from

Braubach et al. (2005) is a BDI-extension of JADE which supports the construction

of agents using XML-based agent descriptions and procedural plans in Java.

5.2 The Foundation for Intelligent Physical

Agents Standards

FIPA is an IEEE Computer Society standards organisation with the goal of promoting

the success of emerging agent-based applications, services and equipment by providing

internationally agreed specifications for interoperability between solutions. Through

this chapter, we focus on the FIPA implementation within the JADE framework.

There are other many systems which use FIPA standards such as: Java-based

Intelligent Agent Componentware (JIAC) (Hirsch et al., 2009), Zeus Agent Toolkit
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(Nwana et al., 1999) and FIPA-OS Agent Platform (Poslad et al., 2000). There

are also agent frameworks such as JACK intelligent agents who are not tied to any

specific agent communication languages although reference FIPA standards as a

possible choice in their publications (Howden et al., 2001). As the adherence to

FIPA standards should allow interoperation between different frameworks, there has

been work done on this between JIAC and JADE by Soklabi et al. (2013) although

through this chapter we focus solely on JADE. We have chosen JADE because of its

maturity and the aforementioned wide use within research, especially in the DSL

area. Thus far FIPA has no official procedure to test compliance to standards. JADE

gains it claim to compliance from successfully participating in both the Seoul 1999

and London 2001 FIPA interoperability tests and through an active participation of

the JADE team as a member on the FIPA architecture board (Greenwood, 2004;

Bellifemine et al., 2003).

The FIPA agent platform is illustrated in Figure 5.3. The main components

are a Directory Facilitator (DF), Agent Management Service (AMS) and Message

Transport service (MTS). The DF is an optional component responsible for providing

yellow pages services to other agents. It maintains a list of agents which is available

to all agents with authorisation to view it. Many DFs may be active on a single

agent platform and may register with each other to form federations.

The AMS is responsible for monitoring and controlling the agent platform and all

of its remote containers, this includes the remote management of agent life-cycles and

sending of custom messages from external sources. The JADE white pages service is

hosted by the AMS, and all agents must register with the AMS to get a valid Agent

IDentifier (AID). The AMS also launches the graphical interfaces of auxiliary agents

such as the dummy agent or sniffer agent.
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Figure 5.3: Depiction of the agent management ontology adapted from Greenwood (2004).

The MTS is a service responsible for the delivering of FIPA Agent Communication

Language (ACL) messages across agents on the same or different agent platforms

using an appropriate method of transportation such as HTTP, RMI-IIOP or SMTP.

Through this chapter, we focus on JADE ACL messages. ACL messages are

modelled after speech acts within speech act theory. A speaker utters speech acts,

which are known as performatives or communication acts. These speech acts may be

used to refer to the agent’s intention in the world. This display of agent intention

is a large part of why FIPA ACL discussions are worthy of runtime inspection.

The set of FIPA communicative acts are shown in Table 5.1 and the set of FIPA

protocols are shown in Table 5.2. These messages also contain content which may be

in any language, this could be a FIPA SL content language; a standard programming

language such as PROLOG, HTML, SQL or a bespoke language created for a project.
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Communivative Base CA Assertive Commisive Directive Mediate Phatic Query

Act (CA)

accept-proposal inform x

agree inform x

cancel disconfirm x

cfp query-ref x

confirm confirm x

disconfirm disconfirm x

failure inform x

inform inform x

inform-if inform x

inform-ref inform x

not-understood inform x

propagate inform x

propose inform x

proxy inform x

query-if request x

query-ref request x

refuse disconfirm; x

inform

reject-proposal inform x

request request x

request-when inform x

request-whenever inform x

subscribe Request x

- whenever

Table 5.1: Types of FIPA Communicative Acts (CAs) from Poslad (2007).
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Interaction Task Push / 1-1 / 1-m Other Features

Protocol (IP) Info-sharing Pull Receivers

Request Task Pull 1-1 Cancelable (by initiator)

Request-when(ever) Task Push 1-1 Cancelable

Query Info Pull 1-1 Cancelable

Contract-Net (CN) / Task Push 1-m Cancelable, iterated version

Iterated CN is a multi-round IP

English / Dutch Auction Info Pull 1-m Cancelable

Broker Info Pull 1-m Cancelable

Recruit Task Pull 1-1 Cancelable

Subscribe Info Push 1-1 Not cancelable

Propose Task Pull 1-1 Not cancelable

Table 5.2: FIPA interaction protocols from Poslad (2007).

5.3 Analysis, Design and Approach

This section builds upon the analysis found in Chapter 4, specifically in regard to the

issues of creating model-specific DSALs. The main points of discussion are how can

we benefit from creating a middle layer based upon a strong middleware standard,

what approach should be used to realise implementations of this, and how will this

present itself in real-world projects.

5.3.1 Middle-Out DSALs for Middleware

Given the difficulty of implementing DSALs compared to DSLs (especially internal

DSLs), it would be favourable to move the implementation of DSALs into a

process closer to that of creating a DSL. When implementing a DSAL at model
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implementation-level, the base code will be different and require different JPs to

express each model. This problem of runtime inspecting on a per model basis was seen

in Chapter 4 where Sugarscape and Kawasaki models use different data structures for

model operation, resulting in requiring different General-Purpose Join Points (GPJPs)

to create Domain-Specific Join Points (DSJPs). Although the resulting DSAL allows

for programming at the model abstraction level, the creation of the DSAL needs to

use GPJPs highly coupled to either a single model or a program family of models.

An example of a program family models is the Animaux framework’s Kawasaki

models with differing evolution dynamics of gravity, erosion and algae. A further

disadvantage to implementing based upon non-standardised code is the use of difficult

to quantify dynamics within models, namely use of arrays for storing values and

looping around calls as AspectJ does not support these directly. This means that a

model may require the inefficient creation of JPs or require refactoring of the model

to allow feasible aspect-oriented runtime inspection.

we can use a middle-out approach with middleware to implement a single

implementation-level core DSAL which can then be extended using DSL techniques

at the middleware level of abstraction to create model-specific DSALs. This allows

for many models to use the same set of JPs and use appropriate arguments upon

these JPs to form pointcuts upon this set of JPs. Instead of weaving into a model’s

implementation, we weave onto a middleware which many models will use. This is

suited to fields of runtime inspection where middleware is commonly used although

is less suited to things which are ad-hoc or internal to an object as these will not

have standardised domain-oriented interfaces.

The middle-out implementation of such a core is similar to the middle-out of

Chapter 4 although with differences for the bottom and top layers. The middle

and bottom layer are mediated by the static middleware standard meaning different
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Figure 5.4: Logical layering for extendible middle-out development targeting middleware.

bottom layer targets will be applicable. The top layer may be used as the bottom

layer implementation of new internal DSALs created for more specific domains. This

is shown in Figure 5.4

5.3.2 Middle-Out DSALs for Agent Communication

One of the key concepts of agent-based systems is communication between agents. It

may be the basis which agents cooperate, collaborate and negotiate with one another,

and can give direct signs of the agent’s beliefs, desires and intentions within a system.

This is especially true of standards such as the FIPA ACL where messages are given

performatives, protocols and languages which directly denote the behaviour of an
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agent. Although the agent’s behaviour is out of the scope of FIPA specifications,

we can use the communication of agents to track behaviours and trends within the

system.

Given the FIPA specification, we can create pointcuts on certain behaviours

and weave advice for inspection, analytics or logging at these points. This has the

advantage over directly weaving into the behaviours because the communications

specification will be followed for all FIPA compliant agents, meaning the core DSAL

will not need to be re-compiled or modified to add these extra DSJP.

This approach could also be implemented to work across a set of frameworks

which implement FIPA ACL messages. The mapping between different frameworks

could be dealt with internally, making for a framework agnostic core and extension

DSALs. To implement this in our implementation this would require a wrapper class

over the input parameter for advice for JADE ACL messages and the equivalent from

the other frameworks. This does not account for framework-specific code written

within custom filters and advice added through Java code. Using Java as an advice

language couples the advice to the elements it calls and parameters passed to the

advice, this makes cross-framework use problematic. To solve this issue a framework

agnostic ACL message class could be used as a parameter for advice rather than

directly using the JADE ACL message class, this will incur a small performance hit

in deep copying the results of each message at pointcuts. The weaving into other

models would merely require the addition of AspectJ pointcuts for that model with

the appropriate GPJP marshalling. Through this chapter, we focus on a JADE only

implementation.
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5.3.3 Filter Based Core Implementation

The core of the approach should be based directly upon the FIPA standard using

interfaces to allow for strong type checking through the core implementation. This

is important to formalise the capabilities of the core, although this is not an external

language it is as important to specify properly.

We have chosen a subset of the FIPA ACL which we deem to be useful for

our implementation although this may be extended using custom filter and advice

methods within the implementation. We have maintained these choices to maintain

the simplicity of illustrating the approach. The core implementation has three

primary considerations: completeness, direct usability and extendibility.

Completeness of domain coverage is a consideration for all framework and language

development. A language which is not complete for a domain either does not have a

range of tools wide enough to deal with the intended tasks or misses tools which are

required in certain situations. For internal DSLs this is less of an issue because of

the access to host language features around the DSL, for example, looping of DSL

constructs will be provided by the host. In an external DSL, a domain-incomplete

language could stop useful tasks from being possible. Reducing the scope of a language

can also be an intended feature, for example, preventing effect on underlying agents.

The choice to use an internal DSL also allows for access to the core directly through

Java code without modification which may not be possible if the core is built into

the back-end of an external DSL.

The direct use of the core DSAL is useful for low use cases which do not warrant

a pre-emptive language to call them and ad hoc work adding to already created

extension DSALs in fringe cases. The direct use of the core should be the same as

writing the equivalent calls in an internal DSL in implementation, as both ways are
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populating the same semantic model. The usability of the core is important because

it will be the base which internal DSALs can be based off; a poor core design will

lead to difficulty in creating extension DSALs.

The extensibility of the core is the fundamental part of this approach working

in a middle-out fashion. It relies on the previous two considerations along with the

ethos of the team working on the projects.

5.3.4 Model-Specific Internal DSLs

The core language gives appropriate expressive power for the target cross-cutting

concern although does not capture the boilerplate of writing runtime inspection code

for specific models. We can give this expressive power by creating DSAL layers over

our initial core; these could be internal or external DSLs. We focus on internal DSLs

because we believe it is more appropriate for the model’s programmers remain in the

Java projects environment, removing the need for incorporating new tool kits into

development. If we were to use external DSLs then extra tooling and skill sets for

language development would be required.

The internal DSALs can be implemented as another layer on of the specialise,

aggregate and create model we have used throughout this thesis, this is illustrated

in Figure 5.5. The core’s JPs can be further specialised, aggregated or created upon

to create a language which is especially expressive using a simple publish-subscribe

like model on existing DSJP without requiring any further aspect-oriented tooling.

Furthermore, code which has been used to create an internal DSL in one domain may

be reusable across many causing an upward spiral of productivity within projects.
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Figure 5.5: The two-step specialisation, aggregation and creation process of creating
extension DSJP.

5.3.5 Summary of Approach

In summary, the motivation for our approach is towards making communication

runtime inspection DSALs available and viable for using across many ABM in short-

term projects. This problem consists of making the approach known, the barrier for

entry low and potential to create complex solutions that fit real-world projects.

This is achieved through the use of a middle-out language development process

where a core language’s middle layer is based on middleware which is consistent across

many models. Once this language has been implemented the resulting language can

be used directly or as a base to create new DSLs without having to re-implement

the weaving.
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5.4 Core Implementation

We now discuss how we have implemented a core middle-out DSAL for runtime

inspecting JADE ACL messages. We produce a core DSAL as a Java framework

using AspectJ GPJPs to weave into the JADE middleware. This framework can be

directly used as a fluent interface DSL at the core message filter level of abstraction

or can be used to create higher level internal or external DSLs.

We have decided to use a similar DSJP engine approach to Chapter 4, modified

to a filter approach for pointcuts and Java lambdas as advice rather than creating an

advice engine or event-based parser. The filter model suits message passing domains

well, and allowing Java advice means that an end-user can create their own advice

libraries, reducing the scope of the core to functional necessities.

The architecture of our core is shown in the dependency diagram in Figure 5.6.

There is one instance of the method pointcut class for each pointcut, and this contains

each of our method filters which hold the contents of our DSJP model. Each pointcut

holds one advice which is executed if the pointcut is met on a JP. Everything flows

into the JP class which is a wrapper over GPJPs for sending and receiving an ACL

message, in our implementation, these are AspectJ JPs.

5.4.1 Join Point Model

The first step is the creation of the semantic model which will be used to create our

DSJP model using a set of base filters. These JPs are created from two AspectJ GPJP

shown in Listing 5.1, namely handle send and handle receive in the JADE framework

with copies of parameters for filtering. These two GPJP allow for recording all ACL

messages sent throughout a JADE model.
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Figure 5.6: JADERI core class dependency diagram.

The base of our semantic model is a subset of JADE’s ACL message properties

and the filter operations we can perform on them; we outline these parts first as

interfaces and enums within the message filter class as seen in Figure 5.7. The

protocols and communicative acts used are interfaces as they may be non-FIPA

compliant values to check for. The type of JP is an enum which can be checked

statically for compatibility by the provided apply statement. There are still runtime

errors which may be caused by using an operator which is not allowed for the type

being checked, for example, we do not allow contains operator on integers. This

could be statically checked by having different operator types for string and integer

although causes repetition of code; this is a downside of using an internal approach

because extra compiler semantic checks are not possible.
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Figure 5.7: Message filter class implementation.
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Additional filters can be added using the custom filter lambda which performs

arbitrary code onto a JP, returning a boolean result.

Listing 5.1: AspectJ implementation of send and receive handling aspect.
pointcut Send(ACLMessage msg, AID aid, boolean clone) : execution(

void jade.core.AgentToolkit.handleSend(ACLMessage, AID, boolean)
)
&& args(msg, aid, clone);

before(jade.lang.acl.ACLMessage msg, AID aid, boolean clone) :
Send(msg, aid, clone) {

if(DSJPruntime.runtime.active) {
JP point = new JP(JP.JPtype.send, aid, msg);
DSJPruntime.runtime.InputGPJP(point);

}
}

pointcut Receive(AID aid, ACLMessage msg) : execution(
void jade.core.AgentToolkit.handleReceived(AID, ACLMessage))

&& args(aid, msg);

before(AID aid, ACLMessage msg) :
Receive(aid, msg) {

if(DSJPruntime.runtime.active) {
JP point = new JP(JP.JPtype.receive, aid, msg);
DSJPruntime.runtime.InputGPJP(point);

}
}

5.4.2 Identification

The identification for our model is done through adding filters to a pointcut to match

a set of JPs. This can be done through a fluent interface or separate method calls.
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A cascading system handles the identification of JPs, this object-oriented style of

creating the filters suits maintains encapsulation well and is highly extensible. JPs

are first input into the DSJP runtime which marshals them to each message pointcut

instance which marshals it to each of its message filter instances.

A message pointcut is of type send or receive and defaults as firing on every

message of that type, for a pointcut with filters to fire all filters must return true.

Message filters process JPs through the operator enum’s abstract apply method which

has an instantiation for each constant. This is a compromise for using an internal

DSL because semantic feedback cannot be provided for non-supported operator calls

without the creation of a different filter enum for each type of comparison, requiring

a repetition of code. We throw an arithmetic exception if a filter is a non-supported

operation such as contains on an integer.

Custom filters can be added for situations which cannot be easily done through

the default filters. These filters are Java lambdas with the parameters of the JP and

pointcut which return a boolean for matching a pointcut. They are treated the same

as default message filters above their level of abstraction.

5.4.3 Effect

A Java lambda provides the advice within our core with the JP and pointcut as

parameters. This allows for unfiltered access to runtime inspect code at the JP in

Java. Auxiliary features such as graphing libraries and analytic toolkits are not

within the scope of the core framework, and our internal DSL approach supports

their integration on a pay as you go basis.
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Our proposed method of extending advice is by wrapping the JP or pointcut into

objects which supply domain-specific and declarative features for use by end users.

An external DSL or GUI wrapper could be used as the advice mechanism with

a compilation step into a lambda. This could be useful for live programming or

involving novice programmers with a system such as this, although requires significant

work as seen in Chapter 4.

5.4.4 Runtime Toggling

Toggling of individual pointcut advice is supported in the core framework. A GUI

is not within the scope of the core as we believe it cross-cuts with the target’s

GUI. The addition of a GUI to the core language is a good use for Aspect-Oriented

Programming (AOP) or could be implemented by extending the core library.

We add a simple GUI for the toggling of pointcut advice using a JavaFX list

view updated using an AspectJ aspect as seen in Listing 5.2. It is a simple use of

AOP which requires no extra tooling as AspectJ is already used in our projects to

Marshall GPJP into the core. The aspect ties into the filter adding method of every

message pointcut and calls to update the list ensuring an updated list at all times.

Listing 5.2: AspectJ implementation of updating the list of aspects for the

toggling interface.
pointcut ModifiedFilterPointcut() : execution(
com.JADERI.MessagePointcut com.JADERI.MessagePointcut.Filter(..));

after() : ModifiedFilterPointcut() {
Main.updateToggleList();

}
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Live coding or changing of aspects is supported by changing the filter objects at

runtime although we have not implemented this in our experiments. This is more

suited towards an external DSL approach because to allow full support for advice a

Java Integrated Development Environment (IDE) would be required rather than a

lightweight external DSL IDE such as a web interface generated by Xtext.

5.5 Use of Core and Internal DSAL Extensions

Through this section, we will show the core DSAL implementations for a set of

example models and any internal DSAL extensions we have created for these models.

We have used example models shipped with the JADE framework as they suit our

needs well in showing off the runtime inspection capabilities of the DSALs. As we

focus on the middleware implementation for our filtering, we could substitute these

models for many others.

The generality of models the core can support further backs up our choice to

remain with internal DSALs for this project. The use of internal DSALs allows

for time to be spent only implementing the important domain-specific features and

leaving edge case completeness for general-purpose code as needed. The access to

underlying Java, especially in internal DSAL backends means that edge cases can

be dealt with in a pay as you go fashion rather than requiring pre-emption from a

language designer. We can then move into very domain-specific internal DSALs for

domain experts who may not be competent programmers.
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5.5.1 Thanks Agent

Our first example is the thanks agent example packaged with JADE. This model

proposes an agent creating two agents and having a simple conversation with them.

We have chosen to use this model as it is a clean showcase of ACL message passing

in JADE and the stock example already has runtime logging included which we can

use as a baseline for our results.

The included runtime logging regarding ACL message passing is done through

print line statements scattered and tangled throughout the implementation as is

shown in Figure 5.8. This can be used as a benchmark for our solution’s scattering

and tangling. Note how this is the level of scatter and tangle in a simple model with

a single agent class, it would be less manageable as the project scales.

We have re-produced this logging using our core framework and then created a

further internal DSAL for runtime inspecting at an application-specific abstraction

level. We can see an example of our core DSAL implementation in Listing 5.3, this

uses the fluent interface of the core DSL to chain the instantiation, filtering and

advice of two of the print statements from the example. Note how the core DSAL

works at the implementation-level of abstraction for a generic ACL message, and

as such, the filter setup requires full context and the advice uses the base JADE

ACLMessage class as a parameter.

Although the amount of code required to express the concern is more than the

in-line implementation, there is a clear improvement in scattering and tangling

because all runtime inspection is moved into a separate file and may be toggled on

or off at will.
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Figure 5.8: Scatter and tangle of message specific logging in default thanks agent
implementation.
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Listing 5.3: A snippet of code from the runtime inspection of the thanks agent

example using the core DSAL.
new MessagePointcut(send)

.Filter(MessageFilter.type.Content, MessageFilter.Operator.
Equals,"GREETINGS")

.advice((JP, PC)-> {
System.out.println(JP.getSource().getLocalName() +

" SENT GREETINGS MESSAGE TO " +
AIDListtoString(JP.getMsg().getAllReceiver()));

});
new MessagePointcut(receive)

.Filter(MessageFilter.type.Content, MessageFilter.Operator.
Equals,"GREETINGS")

.advice((JP, PC)-> {
System.out.println(JP.getSource().getLocalName() +

" RECEIVED GREETINGS MESSAGE FROM " +
JP.getMsg().getSender().getLocalName());

});

We created an internal DSAL on top of the core for this model which replaces

implementation-specific boilerplate with model-specific enumerated types with

associated methods to fill the boilerplate. The class diagram for this can be seen in

Figure 5.9. This still leaves the core DSAL objects available for use by the internal

DSAL, meaning backwards compatibility is maintained. The advice of this DSL is

made more domain-specific by providing a wrapper class around the JP parameter

of the advice lambda. This wrapper method moves advice method calls towards

the model’s intention level by providing the boilerplate around the implementation

objects.
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Figure 5.9: Thanks agent internal DSAL class diagram.
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We can see an example of the code created by this DSAL in Listing

5.4. The difference between this and the core implementation is in the

movement of abstraction level into domain-centric language rather than the

implementation specifics of the ACL message passing. This means that the

code is slightly shorter because of removing boilerplate and the intention of

the filters is clear in regard to the model.

Listing 5.4: A snippet of code from the runtime inspection of the thanks agent

example using an internal DSAL extension.
new ThanksDSL(send)

.MessageType(GREETINGS)

.advice((jp, PC) -> {
System.out.println(jp.getsender() +

" SENT GREETINGS MESSAGE TO " +
jp.getrecievers());

});

new ThanksDSL(receive)
.MessageType(GREETINGS)
.advice((jp, PC) -> {

System.out.println(jp.getreciever() +
" RECEIVED GREETINGS MESSAGE FROM " +
jp.getsender());

});

We also provided further application specificity by allowing pre-made filters to

be packaged into the DSAL through constructor arguments. A full implementation

of the runtime inspection provided in Figure 5.8 is shown in Listing 5.5. This

approach means that commonly used pointcuts can be added declaratively into a

project without consideration for implementation or added to save time on small

modifications. This approach gives a large decrease in program size and makes

pointcuts essentially declarative, but requires heavy amounts of boilerplate writing

in the implementation of the DSAL and, as such, is only suitable for commonly used

pointcuts.
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Listing 5.5: The full code from the runtime inspection of the thanks agent

example using pre-built filters in an internal DSAL extension.
new ThanksDSL(send,GREETINGS);
new ThanksDSL(receive,GREETINGS);
new ThanksDSL(send,THANKS);
new ThanksDSL(receive,THANKS);
new ThanksDSL(send,ANSWER);
new ThanksDSL(receive,ANSWER);
new ThanksDSL(receive,REGISTER);
new ThanksDSL(receive,DEREGISTER);

5.5.2 Book Trading

The book trading example presents a simple multi-agent system for trading books

between buyers and sellers; it is featured throughout the JADE programming

documentation (Bellifemine et al., 2007). We have modified the book trading

example to showcase other features of our approach, especially the use of Java around

our aspects and the custom filters. We have made booksellers stock an unavailable

book when requested to allow for performance timed runs of book sales.

A common inspection task on such a model would be tracking who buys which

books and from who, in the default model during the sale acceptance message the

book purchased is not mentioned. As the runtime inspection framework’s scope only

covers the ACL messages and not internal agent state, this means a workaround

must be created to store which book an agent is trying to buy and cross-reference

this with successful sales. The core DSAL code for this is shown in Listing 5.6.

This shows the use of a hash map to maintain state between messages and using

this to display information through print statements. The potential to do this is a

benefit of the internal DSAL approach because these Java types are provided without
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implementation as would be required in an external DSAL. This operation could be

moved into the back-end of an extensions DSAL if it is commonly required through

the model.

To test the implementation of our hash map aspect, we modified the book trading

model to send an object of type book containing the book’s title when a sale is

successful. We use a custom filter for this because the filtering of content objects is

not within the scope of the default filters. The code for this can be found in Listing

5.7. In this example we combine a custom filter with other filters to ensure the

custom filter is only used when necessary, this could also be done within the custom

filter as if statements.
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Listing 5.6: An example of using the Java advice to do non-straightforward

message inspection tasks.
HashMap bookTarget = new HashMap<String,String>();

new MessagePointcut(send)
.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.

Contains, "Buyer")
.Filter(MessageFilter.type.Performative, MessageFilter.Operator.

Equals, MessageFilter.Performative.CFP)
.advice((JP, PC) -> {

bookTarget.put(
JP.getSource().getLocalName(), JP.getMsg().getContent());

});

new MessagePointcut(send)
.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.

Contains, "Seller")
.Filter(MessageFilter.type.Performative, MessageFilter.Operator.

Equals, MessageFilter.Performative.FAILURE)
.advice((JP, PC)-> {

String reciever = (
(AID)JP.getMsg().getAllReceiver().next()).getLocalName();

System.out.println(reciever + " FAILED PURCHASE OF " +
bookTarget.get(reciever) + " FROM " +
JP.getMsg().getSender().getLocalName());

});
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Listing 5.7: An example of using a custom filter instead of the provided filters

to check content objects in messages.
new MessagePointcut(receive)

.Filter(MessageFilter.type.ReceiverLocal, MessageFilter.Operator
.Contains, "Buyer")

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "Seller")

.Filter(MessageFilter.type.Performative,
MessageFilter.Operator.Equals,
MessageFilter.Performative.INFORM)

.Filter((JP) -> {
boolean result = true;
try {

String msgbooktitle = ((Book)JP.getMsg()
.getContentObject()).getTitle();

String aspectbooktitle = (String)bookTarget.get(
JP.getSource().getLocalName());

if (msgbooktitle.equals(aspectbooktitle)) {
result = false;

}
}
catch(Exception e) {

System.out.println(e.toString());
}

return result;
})
.advice((jp, PC) -> {

System.out.println(jp.getMsg().getSender().getLocalName()
+ " Aspect Hashmap Records Inconsistent");

});
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5.6 Results

We will now display the code and performance metrics from our implementations

of this approach. We first discuss a benchmarking model we have made to test

the scalability of this approach then move to the models discussed in the previous

chapter.

Experiments are performed on a Windows 10 machine with an i7-4790k @ 4.4ghz

with minimum processor frequency at 100% to reduce variability and 16GB of

2133mhz cl9 ram. No performance throttling issues were encountered through testing.

These experiments were run from batch scripts, timings are taken using Java’s

system nano time method. Code metrics are consistent with those taken in Chapter

4; characters are counted excluding white space and a logical entity is a variable use,

method call (method chains taken as a single call) or a stand-alone keyword. Each

experiment has 20 data points, represented as box plots in our figures. The models

we have used for this testing are a custom message passing benchmarking model, the

JADE examples thanks agent model and the JADE examples book trading model.

5.6.1 Benchmark Model

For performance benchmarking, we have created a simple model of a sending agent

and a receiving agent who exchange a set number of messages and then shut down.

We use this model to reliably test the DSALs against the performance of JADE

using a synthetic load.

We performed tests with 1000 messages and 1000000 messages on three instances

of the benchmark model. A base model without aspects, a single matching filter

aspect shown in Listing 5.8 and nine matching filter aspect shown in Listing 5.9.
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Listing 5.8: Core DSAL aspect code for benchmarking with 1 string comparison

filter.
new MessagePointcut(receive)

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "B")

.advice((jp, pc) -> {
i++;

});

Listing 5.9: Core DSAL aspect code for benchmarking with 9 string comparison

filters.
new MessagePointcut(receive)

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "B")

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "E")

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "N")

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "C")

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "H")

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "M")

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "A")

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "R")

.Filter(MessageFilter.type.SenderLocal, MessageFilter.Operator.
Contains, "K")

.advice((jp, pc) -> {
i++;

});

The results for 1000 messages are shown in Figure 5.10 and 1000000 messages

in 5.11. The experiment is split into time to send and time to receive all messages,

as can be seen, these are closely correlated inferring the sending of the messages is
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Figure 5.10: Benchmark model 1000 message experiment results.

the bottleneck due to queue size limits. The addition of our sample aspects causes a

low impact on this model, in real-world tests the relative impact would be even less

because agent behaviours would be a larger percentage of runtime.

Early work on the scalability of JADE by Cortese et al. (2003) found JADE scales

linearly when adding thousands of agents, DFs, containers etc. Our experiments

show moving from 1000 to 1000000 messages only caused roughly a 40x increase in

performance time. This synthetic load test for a high number of messages with good

scaling further compounds that JADE is a suitable framework for large complex

interactive agent-based systems.
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Figure 5.11: Benchmark model 1000000 message experiment results.

5.6.2 Thanks Agent

To test the performance of aspects on the thanks agent example, we have recreated

the message logging performed by inline system print line statements throughout

the base model using our aspects and commented these out for the tests with our

aspects. We test both the core DSAL implementation and internal DSAL versions,

code snippets can be found in Listing 5.4 and Listing 5.3.

Performance results can be found in Figure 5.12. There is a very low overhead to

this approach because the filters are simple single checks for message type to log,

the overhead of the advice is included in the inline approach, and most messages

require advice thus do not waste time checking messages not related to the concern.
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Figure 5.12: Thanks agent inline, core DSAL and internal DSAL experiment results.

There is no statistical performance difference between the core DSAL and

extension DSAL because they are essentially equal in implementation, the only

performance overhead of the internal DSALs are the construction of filters at a

message pointcut’s population.

Code metrics for the original print statements, core DSAL and two versions of

the DSAL extension are found in Table 5.3. The inline print statements are included

as a base context for the aspects although it should be noted the aspects have the

additional concern of identifying the JP which is not included in the size of the print

statements. As such, the core and specific DSAL approaches include the same print

statement and the constructor DSAL has it implemented as a pre-made option.
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Characters Logical Scatter Tangle

Entities

Inline 641 30 8 blocks Inside

Printing over 112 lines agent class

Core 1920 109 8 continuous Independent

DSAL pointcut advice aspect

Internal 1132 88 8 continuous Independent

DSAL pointcut advice aspect

Constructor 235 24 8 continuous Independent

DSAL pointcut advice aspect

Table 5.3: Code metrics for recreation of thanks agent message logging.

Furthermore, every character or logical entity is not equally expressive or difficult

to write. These subjective measures of code are difficult to bring out in quantitative

analysis. We give a visual comparison in Listing 5.10 for the difference in abstraction

level between the DSALs. The move from imperative implementation-level code,

through domain-specific population code and finally to declarative application-specific

code can be seen.
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Listing 5.10: Code samples of each type of implementation.
// Inline Print
System.out.println(getLocalName() + " SENT GREETINGS MESSAGE TO " +

t1AgentName + " AND " + t2AgentName);

// Core DSAL
new MessagePointcut(send)

.Filter(MessageFilter.type.Content, MessageFilter.Operator.
Equals,"GREETINGS")

.advice((JP, PC)-> {
System.out.println(JP.getSource().getLocalName() +

" SENT GREETINGS MESSAGE TO " +
AIDListtoString(JP.getMsg().getAllReceiver()));

});

// Specific DSAL
new ThanksDSL(send)

.MessageType(GREETINGS)

.advice((jp, PC) -> {
System.out.println(jp.getsender() +

" SENT GREETINGS MESSAGE TO " +
jp.getrecievers());

});

// Constructor DSAL
new ThanksDSL(send,GREETINGS);

5.6.3 Book Trading

To test the performance of aspects on the book trading example, we use the runtime

inspection aspects from Listings 5.6 and 5.7, located in Section 5.5.2.

The performance results for trading 10000 books can be seen in Figure 5.13. The

runtime is subject to availability of books because of agent’s random choices which

account for some spread across runs. There is an increase in runtime between the

base and aspect-enhanced programs because of the addition of new features although

this increase in runtime is within expected bounds. This is because as shown in the
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Figure 5.13: Book trading 10000 books experiment results.

benchmark model the filters have little effect on runtime performance and as shown

in the talk agent example the advice’s runtime increase is similar to that of an inline

approach.

Characters Logical Scatter Tangle

Entities

Core 1055 57 2 continuous Independent

DSAL pointcut advice aspect

Table 5.4: Code metrics for our book purchase tracking example.

Code metrics can be found in Table 5.4. Interestingly this single concern

implementation required dependency between two pointcut advice. This scattering

is unavoidable because the collection of this context cannot be done from the
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context of the seller response pointcut advice. The important thing is maintaining

understandability of code; it is more beneficial to have slight scattering in aspect code

when two concerns meet rather than scattering throughout the implementation. This

scattering can be removed at the user level by moving required context collection

into the back-end of an extension DSAL or method to package needed filters.

5.7 Discussion

In closing, we will discuss this approach, our implementation and results.

5.7.1 on Limitations due to Concern Specificity

This approach focuses on the middleware-specific implementation of a cross-cutting

concern in ABM by providing a core DSAL which can be extended with model-specific

DSALs. This allows for coverage of a concern in ABM which is not tied to any specific

model, which is a benefit over targeting a specific model. The downside of this is

other concerns such as internal agent behaviour, environment context and model

statistics are not within the scope of the DSALs. Using model-specific techniques

from Chapter 4 a DSAL could be made to support all runtime inspectorate behaviour

within a model, although without consideration for re-use across models written

in the same framework. Through this chapter, the core DSAL will work for any

FIPA ACL communication without requiring re-implementation of weaving logic,

but extending support to other concerns may break cross-model compatibility.

This means the inspection of non-communication will not be possible using the

DSAL, making projects need to either use an implementation-specific DSAL or scatter

and tangle code. Through future work multiple concerns could be provided with
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a group of middleware-oriented DSALs targeted towards the frameworks different

concerns, leaving only edge case which require re-implementing weavers or scattering

and tangling code.

5.7.2 on Internal vs External DSALs

One of the core threads through this chapter has been the comparison between

this internal approach and the external approach in Chapter 4. The approach in

Chapter 4 is a very high-level external DSAL aimed towards a specific model which

is not extensible by the user. This very high-level language allows for domain-level

description of what to be inspected and what to print although only allows for simple

behaviours. This is in line with the external DSL for a domain expert or common

problems scenario, we have traded generality for ease in a specific domain. The

internal approach in this chapter, on the other hand, gives power to the person

using the DSAL to create and extend languages using full Java code around the

DSAL’s constructs. This is more in line with a programmer who is working through

a project and wants to improve software economics by shielding themselves from

the boilerplate of weaving into agent communications and modularising this code

appropriately for toggling and maintenance. This internal approach also allows for

specific internal DSALs to be created for use by a domain expert as was shown in

the thanks agent example from Listing 5.5 where the internal DSAL is used as a

declarative language.

From a language developer perspective, the use of an internal DSL as the core

form of access to our semantic model eased the development of the project because

testing cases and developing extension DSLs felt like a fluid process rather than

API checkbox filling. This means that programmers who have a grounding in the
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filter-based aspect-oriented approach will be able to use the core system and create

extension DSALs without needing to learn a new API style. An internal DSAL as a

core entry method to the implementation’s semantic model could also be useful for

developing external DSAL extensions because through Chapter 4’s code generation it

would have been useful to be able to write and test generated code samples in a more

human-accessible form. We believe this is in line with the concept of a DSL being a

step past an API in software maturity because of the readability and maintainability

they bring (Mernik et al., 2005).

From a language use perspective, the internal approach foregoes domain-specific

IDE support for the familiar IDE environment of the Java program around it. Much

of the domain-specific support provided in Chapter 4’s external DSL cannot be

provided in an internal DSL at compile time, a distinct disadvantage for internal

DSLs. Yet internal DSLs can provide runtime feedback through logging and exception

handling. There is scope for further enhancement to the internal DSL could be done

by using a language such as Scala or Groovy which give more flexibility for language

enhancement while remaining comparable with the JVM and Java IDEs.

5.7.3 on Cross-Framework DSAL use

This approach allows the cross-framework use of pointcuts, and through wrapping

ACL messages into a platform agnostic wrapper, limited cross-framework use of

advice. The implementation we have produced is aimed only at use within JADE

because it is the dominant FIPA compliant agent framework. Cross-platform aspects

would be especially useful for the verification and validation of models through

docking; docking is the process of creating a model in two different frameworks to

compare and contrast the outputs of both models (Appleget et al., 2014). Comparing
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different implementations allows for identification of mistakes in models although

without a cross-framework runtime inspection method the inspection must be written

separately for each model.

To allow for transparent cross-framework development, aspects could contain

implementation-specific details of different frameworks and select the appropriate

implementation depending on runtime context. An example of this would be running

the same aspect on two models which have different naming conventions for ping

messages; where one model may send ’pings’ between agents, another may send

’dings’, yet the semantics of agent behaviour remains the same. This allows a

single aspect to be used across implementation styles, with the implementation

transparently changing for the appropriate naming convention. As JADERI only

focuses towards a JADE implementation, this cross-implementation development

step is not included in our implementation.

5.7.4 on Potential Adoption in Future Research Projects

The target audience of this approach is researchers who create many models and run

many experiments which are implemented using a common middleware. Compelling

use-cases for this are team projects where a domain expert is involved or projects

which require many different experiments with changing points of interest and

parameters. As shown through our results there is a negligible difference between the

implementation performance of DSAL aspects compared to inline implementations,

yet a considerable difference in the code abstraction level and modularity from the

model.
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Projects that require runtime inspection of agent behaviour which is not available

through the ACL communication of agents are not in the scope of this chapter. We

consider the processes and development of other middleware-specific DSALs to be

exciting future research following the steps taken through this chapter. An example

of further runtime inspection possible in JADE would be weaving into the agent

base class to inspect agent lifecycle state with agent-specific extensions for internal

states.



Chapter 6

Synthesis of AnimauxRI and

JADERI

This section discusses the synthesis of the techniques in our two main contribution

chapters. The approaches mentioned in Chapter 4 and Chapter 5 are different

variations along the same approach, with significant commonalities and differences

to discuss. There is no reason why Chapter 4’s approach is limited towards external

DSLs and Chapter 5’s approach is limited towards internal. The approaches may be

used interchangeably or in combination as is suitable for purpose. Chronologically

our work began with Chapter 4 and matured into the approach in Chapter 5. The

initial work was performed with an external DSL because using a concrete grammar

for the middle layers semantic model to be based upon aided the middle-out process.

We then moved to implement an internal DSL approach, extending the initial work

from Chapter 4. The model-specific work in Chapter 4 is based around the Animaux

framework where models are implemented within the framework’s step logic without

domain-oriented interfaces. The middleware-specific work in Chapter 5 is based

193
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around the JADE framework with set interfaces separately from the underlying

framework code. We now discuss the abstract approach which both these chapters

utilise, followed by discussion of the considerations for different approaches within

the two chapters.

6.1 The Abstract Approach

The middle-out DSAL approach is a software development process which is agnostic

towards the type of DSAL used for the middle layer and domain size targetted.

This is because the approach first focuses on the creation of a middle layer, centred

around a semantic model. A semantic model can then be used to separate a top

layer program’s population of the model from a bottom layer utility’s operation of

the model. This technique is an extension of the language-oriented programming

paradigm from Ward (1995), paired with the semantic model concept discussed in

Fowler (2010). Different approaches towards implementing this abstract process

have advantages and disadvantages. We will discuss considerations for an internal or

external DSAL and for a model-specific or middleware-specific focus.

6.1.1 DSL Implementation Techniques

The type of DSL chosen effects the language development, use and maintenance.

Internal DSLs are generally faster to implement, maintain and document than an

external DSL. Internal DSALs are based within a host language and benefit from

the features provided by the host language. This is especially useful for advice

languages because operations such as looping and standard output will be included

in a DSAL as standard. This benefit comes with the disadvantage of being limited
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by the extension potential of the host language and not being able to constrain

actions within the language using domain-specific context at program write time.

For an end-user an internal DSL does not require any new items in the toolchain

of a project and it should be relatively simple to include it in projects. Generally

internal DSLs are more suited towards software developers than pure domain experts

because it provides a familiar development environment. For effective inclusion of

domain experts, internal DSAL input can be moved into a separate class file allowing

a pseudo-external environment for domain experts. The separation of an internal

DSL from base general-purpose code suits aspect-oriented languages.

External DSLs are generally more time consuming to develop and maintain

than an internal DSL. In addition, external DSL development techniques generally

require knowledge of language development toolkits where internal DSLs can be

developed using design patterns from the host language. The formal nature of

creating an external DSL may be an aid to a project because it enforces a serious

look at the middle layer before moving onto implementation of the bottom layer

utilities. External DSLs give more control of language features and development

environment possibilities compared to an internal DSL. This is especially useful

for pointcut languages because they differ from what is expected in a standard

object-oriented host language. For an end-user an external DSL may be presented

without a development environment, with a bespoke environment such as an Xtext

generated IDE or as a plug-in to an existing IDE such as Eclipse or Intellij. As an

external DSL cannot benefit from the host language’s infrastructure as an internal

DSL can, the provision of suitable development tools and masking of implementation

concerns is an important consideration.
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There may also be situations where non-conventional methods such as visual

or projectional languages would be suitable for a domain. This approach will

add language development and use considerations not applicable to the ubiquitous

textual programming languages used commonly. This approach will exacerbate the

disadvantages of developing an external DSL because of the widened difference from

a conventional programming language. This approach may be suitable when dealing

with a domain which has clear graphical representations or targeting domain experts

who are not textual programmers.

6.1.2 Weaving Target Specificity

The scope of the cross-cutting concerns captured by a DSAL determine the

applicability of a language across projects and application-specificity of its concepts.

The architecture of the underlying agent simulations have an impact on the feasibility

of a model-specific or middleware-specific approach. ABMs which are written without

interfaces governing the implementation semantics of a model provide a difficult target

to create re-usable weaving rules. Frameworks which use standardised middleware

perform a majority of the aspect-mining for the language developer. For example, the

FIPA communication framework gives communicative acts and interaction protocols

which can be used to describe agent actions.

Creating a model-specific language allows for specificity toward specific

applications, at the cost of generality across other frameworks in a model. This

approach can allow for a direct domain-specific dialect towards a single set of problems,

without considering implementation patterns across models. The implementation

of a specific model determines the DSJP representation potential within the model,

for example an agent-oriented interface may aid aspect-mining. Aiming at a specific



Synthesis of AnimauxRI and JADERI 197

model removes the potential for re-use en masse across a framework of models but

internally some re-use may still occur. The weaver underpinning a model-specific

DSAL could contain weaving logic for many DSALs as in Chapter 4, where Sugarscape

and Kawasaki use the same weaver. This means that model agnostic join points such

as step logic can be reused across models.

Creating a middleware-specific language allows for greater reuse across sets of

models which are similar in implementation but can be different in conceptual

semantics. This approach first targets the dialect of the implementation of a set of

models, such as a domain-oriented protocol. The middleware’s cross-cutting concern

is then either directly monitored i.e. counting message sends as in Chapter 5 or

converted into a model-specific concern by the DSAL’s end user i.e. tracking book

transactions as in Chapter 5. Aiming at a middleware target means that the models

in question must be implemented using a standardised architecture, or re-use across

many models may run into compatibility issues.

Both model-specific and middleware-specific methods can be combined within

the same set of DSALs. An example use case for this could be within the JADE

framework where communications can effectively be captured at the middleware level,

but internal agent behaviours may require model-specific join points for effective

capture.

6.2 AnimauxRI Discussion

Chapter 4 is the first development of the middle-out DSAL technique which

investigates the creation of external DSALs for 2 specific models in the Animaux

framework, Sugarscape and Kawasaki. The case study DSLs written during this
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chapter are very domain-specific external DSLs, serving as an illustration of the

middle-out process developed through Chapter 4. The purpose of this chapter’s

research was to excavate the potential for this method using two example models

with differing characteristics. Model-specific was chosen because Animaux is written

using direct modification within a step’s evolve mechanic without an interface for

implementation of behaviours, this is in contrast to an agent-oriented framework

with well-defined interfaces. Implementing a middleware-oriented DSAL where a

framework does not have well-defined components interfaced to perform concerns adds

a layer of difficulty. In many situations, informal changes in implementation between

models will stop such a DSAL from being applicable across models. This means that

frameworks without declared interface may suit the model-specific approach more

than a middleware-oriented approach. External DSLs were investigated through this

chapter because this was our first work into creating a middle-out DSAL and the

use of a concrete grammar helps formalise the process. Model-specific languages can

benefit from the added control of an external DSL, and potential for standalone use

may favour domain expert involvement.

6.2.1 Alternative Approaches with a non-agent-oriented

framework

An internal DSL approach could have been applied to Animaux either as a direct

replacement of the external DSL, or an internal DSL layer underpinning an external

DSL. Directly replacing the external DSL with an internal DSL would reduce the

burden of implementation associated with an external DSL, yet also lose the benefits

of using a mature language workbench such as Xtext. This design decision would be

mainly concerned with the implementation burden of the language against the use



Synthesis of AnimauxRI and JADERI 199

cases of the intended end-user. Having an internal DSL alike the one from Chapter 5

underpinning an external DSAL would allow layered use of the same DSAL features,

with little extra implementation cost. For example, a program developer suited

internal DSAL to be used during development and a domain expert suited external

DSAL for use during operation of models. The API used to populate the pointcut

advice engines for AnimauxRI was designed specifically for direct population by

the Xtext DSL, without consideration of human readability. This limitation of

Chapter 4 brought on the idea for producing an internal DSAL core in Chapter 5. A

middleware-specific approach would be difficult to apply to the Animaux architecture.

As Animaux agents are arbitrarily altered through evolutions of a storage array,

individual agent actions are not explicitly written in a generic way. Cross-cutting

concerns within program families which share implementation techniques could be

implemented into a middleware-specific DSAL. For example, a model with multiple

growth mechanics or an economic model with differing taxation methods could be

captured using a single language.

6.3 JADERI Discussion

Chapter 5 focused on a middleware specific approach, implemented using internal

DSLs. The case studies through this chapter are used to display differences between

a generic core language implementation and domain-specific extension languages

as wrappers over this. The middleware focus of this chapter is chosen because

concerns which are dealt with across many models can have model-independent

runtime inspection implementations. This suits protocol-oriented frameworks such

as JADE, especially for agent communications where it implements FIPA standards.

This chapter also introduced the concept of chaining together DSALs to reduce
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implementation burden for additional targets. This is achieved through a middle

layer core language which can be extended to create the bottom layer of higher

level extension DSALs for specific models or application areas. Internal DSLs were

used through this chapter for the core language to improve on Chapter 4’s API for

populating the semantic model to be more human readable. Furthermore, creating

extension DSALs using an internal DSL does not require additional code generation

or tools to be added into the toolchain.

6.3.1 Alternative Approaches with an Agent-Oriented

Framework

An external DSL approach could have been used for this chapter for the core language

or extension languages upon the core language. As a full middleware level cross-

cutting concern is a larger domain than the AnimauxRI example in Chapter 4, using

an external DSAL for the core language of this chapter would require a comparatively

large amount of work. External DSL creation costs do not scale linearly, and larger

domains mean much larger development, documentation and maintenance costs.

Extension DSALs for specific purposes being written in an external DSAL would

require less development effort than a core external DSAL, and as such may be a

more achievable approach. Combining internal and external approaches would be

especially interesting because different models sharing this middleware have different

purposes and end-users. An experimental model which is being directly inspected

by a developer could use either the existing core DSAL, or a low development

effort internal DSAL packing commonly used features for this type of problem.

An established model which will be experimented on by many external domain

experts may benefit from an external DSAL approach which provides them with
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the application-specific abstractions they need. This use case showcases the direct

interplay between the domain expert level language external DSLs can provide and

the higher development, documentation and maintenance burden they require.

A model-specific implementation of agent-communications within the JADE

framework is also possible, and given understanding of the JADE architecture may

be more straightforward than the implementation in Chapter 4 because of direct

agent-oriented interfaces to hook the language from. Directly targeting a subset of

the middleware cross-cutting concern to provide support for a discrete set of join

points required to examine specific models may require less development effort than

implementing support for generic agent interaction. Having said this, the model-

specific weaver could not be reused across generic models so this loses re-usability. A

main advantage of the middleware targeting approach is that the middleware weaver

only needs to be implemented once, then model-specific languages can be created

with less development effort. Concerns such as internal-agent behaviour which are

not fully standardised by the JADE framework may benefit from a model-specific

approach because of the lack of standardised middleware.

6.4 Summary

In summary the middle-out DSAL approach is viable for use with internal, external

or mixed types of DSL. This thesis has focused on an external approach for specific

models within an in-house framework which does not have domain-oriented interfaces

and an internal approach for a middleware concern within a framework using domain-

oriented interfaces. We believe the model-specific approach is equally suited to

malleable and interfaced frameworks. It is suited towards malleable code bases

because difficult DSJP’s underlying GPJPs can be written as specific implementations
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inside a framework. Writing generic wrappers of GPJP for difficult DSJP may be

difficult with an established interface. The model-specific approach is also suitable

for interfaced projects where subsets of multiple interfaces can be joined together

without having to implement all interface GPJP. On the other hand, we believe the

middleware approach is more suited towards stable interfaced frameworks because

they give a stable base to target, improving both maintainability and ease of domain

capture. In malleable solutions targeting an adhoc middleware may be difficult to

scope and test, furthermore reusability across models will be subject to adherence to

malleable processes.

The selection of using an internal or external language should generally be based

on the end users of the program and the anticipated effort to creating such a language,

similar to the process undertaken when developing a DSL. For example, generally

an internal language will take less development effort than an external one, yet the

external DSL may give a more enticing domain-specific jargon for an end user. The

consideration of language development time and effort should be a significant one,

especially if the language developer will not be available for the duration of the

project.

In future work, we are especially excited for mixed methods which use an internal

DSAL as a core language which can be extended by external, internal or visual

languages depending on the project needs. We especially think this is valuable for

targeting the middleware of large frameworks, where a mature core DSAL can have

significant development and maintenance time because it has a wide potential for

use.
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Conclusion

We now conclude our research in relation to the hypotheses set out in Chapter 1,

the contributions within this thesis and future work.

7.1 Relation to Initial Hypothesis

The hypothesis we laid out at the start of this thesis are:

• Applying a middle-out approach utilizing a semantic model to Domain-Specific

Aspect Language (DSAL) development and use allows separation between

domain-application and weaving implementation. This separation allows

multiple sets of aspects, with differing weaving implementations to be written

using the same middle layer across multiple instances of one or more models.

• Using custom-built middle-out DSALs allows sets of runtime inspection

experiments to be run on Agent-Based Models (ABMs) with reduced scatter,

tangle and boilerplate code compared to inline object-oriented methods.
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• A direct General-Purpose Aspect Language (GPAL) implementation of Domain-

Specific Join Points (DSJPs) will provide similar to inline performance when

there is a direct mapping to DSJP available, yet poor performance when not.

Dependency injection of General-Purpose Join Points (GPJPs) into target

code may be used to allow better performance, with the disadvantage of more

scattering throughout the base code.

Through this thesis, we have implemented and tested our approach with

performance and code metrics which show it is feasible to use in short projects.

The reduction in scatter, tangle and semantic gap improves software economics,

especially where the small performance hits are cheap because computational time

is cheaper than programmer time. The performance drop was manageable through

our experiments with the interpreter approach although for DSJP with many

parameters or many potential instantiations, the injection approach offers superior

performance. The performance becomes more important as model runs become

longer or computation time costs more.

We designed and implemented semantic-model based middle-out processes for

both model-specific DSALs and middleware cross-cutting concern specific DSALs

which can be extended for specific models. We have created internal and external

DSALs with transparent aspect orientation. Transparent aspect-orientation does

not harm the use of the DSAL because domain-level Integrated Development

Environment (IDE) support gives feedback which is at a more appropriate level than

implementation-specific first-class GPAL support.
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The main discussion point we found in regards to performance is how ’good’ is

good enough for a particular project, creating a simple DSAL which covers common

tasks takes little time compared to creating a fully-fledged DSAL with IDE support

and high performance.

We rank the approaches for creating DSJP as follows: AspectJ Join Points (JPs)

are fast to create and maintainable in an aspect-oriented fashion although have poor

performance where there is not a direct GPJP to DSJP mapping; DSJP call injection

is fast to create with near inline performance although causes high scatter; creating

a code transformer is the most difficult approach and causes high coupling especially

if the target language is a full GPL although this offers inline performance without

code scattering.

If we forego obliviousness by including the model in the bottom layer of our DSAL,

we can improve the ease of aspect mining and performance. A problem for this is

despite how beneficial a DSAL can be for a project, it hampers model development

by adding in the consideration of a Domain-Specific Language (DSL) which exists

separately from the core concerns of the system. This can be considered a more

middle-out approach because the runtime inspection language is considered as the

’bottom layer’ ABM is implemented. While this may be extreme for specific models,

considering the DSAL before implementing middleware may be a useful option if a

high-performance DSAL add-on to a framework is intended to be provided. In the

case of the cross-cutting concern oriented DSALs more time spent on the core DSAL

may be worthwhile because of the considerable re-use potential.

We believe the most influential idea for use within academia and industry is

Chapter 5’s DSAL aimed at middleware because it allows a high-quality core DSAL

to be created which can then be shared among projects. This type of DSAL creation
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could aid large frameworks such as Repast Simphony which wants to find ways to

provide facilities for verification and validation of models (North et al., 2013). The

large base of models available for use with the DSAL and ready availability for those

already familiar with a framework means that a middle-out approach beginning with

scoping of what sort of DSALs would be ideal for this middleware, then moving

towards its implementation and use may be worthwhile. The ability to further

specialise the core DSALs is important as well, because it brings the pay as you

go philosophy into development so a core DSAL for a concern can be minimalistic

with extra features only developed by those who require them. Without this the

core DSALs would have to be massive languages with extensive features for the

domains. This is similar to the approach taken by the MASON framework providing

a minimal sandbox for ABM which openly supports DSL extensions and re-use of

its components (Luke et al., 2005).

7.2 Our Contributions

We now discuss the three main contribution areas of this thesis in regard to providing

DSALs for scientific projects.

Middle-Out DSALs

We began this thesis by defining the concept and use of DSALs with an emphasis

towards DSLs. We present this definition chapter because we believe having a

strongly seated philosophy aids the adoption and use of emerging techniques. We

bring concepts from other fields such as prototype theory in this chapter because

they are rarely considered through computer science research although play a vital
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role in how the field and research around the field develops. The languages which

are considered DSLs by an average software engineer will be different to those of a

project scientist primed with the discussion in our Chapter 2, and these changes will

affect the outcomes of projects.

This is especially important for the field of DSALs because it is a niche of domain-

specific within a niche of aspect-oriented. Without informed practitioners there will

be a lack of suitable application areas for research and the techniques developed

through research will not be brought to fruition. We would like to aim our research

towards creating confluences between prominent application areas and interesting

domain-specific and aspect-oriented research areas as is discussed by Walker (2016).

The combination of work from DSLs into DSALs has been covered several

times through the literature. This thesis differs from the other work by taking

a strong stance on making DSALs which have transparent aspect orientation rather

than trying to provide first-class aspect orientation. The processes described in

this thesis only require project-specific code, main-stream aspect libraries or DSL

language workbenches. Despite not offering new tooling within our contributions,

we believe that the improvement of tooling is an important issue and new tooling

can be integrated into approaches such as the ones presented in this thesis. This is

similar to how language workbenches have improved large external DSL development

productivity while maintaining similar developer workflows to old tools such as Flex

and Bison.
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We believe the work done in this thesis is becoming especially important as

programming skills become readily available within research groups. Whether this is

the set of scientists which have coding skills as part of their primary skill set or with

software engineers within inter-disciplinary research groups to help produce research

production quality code.

Model-Specific DSALs

Our first approach towards a middle-out DSAL considered very domain-specific

DSLs for use in a framework without domain-oriented interfaces. The approach we

outlined allows for great separation of the front-end DSL creation and back-end

weaver creation. These DSALs were interesting because they provided very strong

members of the DSL category and allowed the use of standard DSL user experience

features such as IDE quick fixes and compiler error reporting. While they do not

offer any first-class aspect-oriented features the domain knowledge tied into the DSL

syntax allows for effective first-class DSL support at a level GPAL based first-class

support cannot provide. Transparent aspect-orientation is admissible because the

aspects are written at the domain-level, and aspect-oriented rules are implicit within

the DSL code. For example, Sugarscape and Kawasaki advice cannot be used in the

same pointcut because it is semantically invalid, stopping the need for checking of

GPAL implementation.

The DSALs produced with this method have a high initial cost and a small target

market. As such we believe their use lies in projects where external, programming

novices would like to inspect models. An example of this would be the operational

analysis of supply chain simulations during logistics research projects.



Conclusion 209

An interesting change to this approach would be making the population of the

DSJP runtime use an internal DSL as is done in Chapter 5. The population API

of this DSL is designed to match a direct mapping to the semantic model of the

DSL rather than a fluid experience for a user to write or understand pointcut advice.

While this reduced the complexity of creating a code generator, it means that the

direct use of the framework and debugging of aspects is difficult.

Middleware Specific DSALs

Our second approach towards a middle-out DSAL consists of creating a core DSAL

which can be used directly or as an API for creating more specialised DSALs for

specific problem sets.

These internal DSLs are a weak member of the category of DSL, as some don’t

even consider fluent interfaces to be DSLs. Yet their use dramatically improves the

experience of populating aspects compared to the semantic-model structured API

from Chapter 4. This type of DSL does not take long to make and offers substantial

benefit in fluidity.

The core DSAL takes substantial time to create and should be complete enough

to create all base pointcut and advice required by the potential extension DSALs.

Subsequent extension DSALs, on the other hand, are fast to create and can package

domain-knowledge in either internal or external DSLs. The advice of the aspects

in our implementation is plain Java with the potential to provide domain-specific

context using wrapper classes around the JP passed to advice.
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This approach is especially useful for projects where end-users are competent

programmers, but the implementation of aspect-oriented code is still desired. This

could be because one developer is more familiar with the implementation of a model

or models will be re-visited after implementation details are forgotten. Furthermore,

this approach is useful across-projects because a core designed for an extensive

framework such as JADE can be used across many models and many projects.

The significant downside of this approach is being constrained to the context

exposed by the middleware, for example in this case only data exposed by the ACL

message is available within advice. To expand past this DSAL composition would

need to be considered, which has not been considered throughout this thesis. The

semantic model approach would be suitable for this for small-scale composition of

DSALs although for larger sets of DSALs a composition framework may become the

appropriate choice.

It would also be interesting to try external DSL extensions to the core, the

generator for these would potentially be more difficult to write because the population

API is suited to fluent input rather than a direct translation of the semantic model

as in Chapter 4.

As this approach has high start-up costs, but then the core may be used across

many projects. There is good potential for moving towards the dependency injection

and code translation approaches where it would improve performance for many users.
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7.3 Future Research

To further our research, we would like to forward our research into DSALs where

it can be directly applied in relevant application areas, which will then bring new

opportunities for practically important research through the confluence of ideas.

Although we do not touch on them through this thesis, we are interested in

exploring creating higher-level internal DSALs using languages such as Groovy and

Scala. These languages provide far more options for dynamic and domain-specific

internal DSL creation than in Java yet maintain compatibility with the JVM. An

approach using this type of language as a DSL base could allow what are classically

external DSL features to be brought into Java projects.

Projectional editing is also interesting for the aspect-oriented space because

we could change what the programmer views based upon their intention as a

model implementation developer, DSAL developer or DSAL user. This could be

used to provide first-class support for developing a DSAL by separating DSAL

implementation abstract syntax tree components and core model components,

allowing different visualisations depending on the developer. Using current approaches

this would require a high development investment to see a proper implementation

for using DSALs alongside ABMs.

The next step for the aspect-oriented implementation of our DSALs is exploring

the effects of foregoing obliviousness in implementation to allow the use of dependency

injection, annotations or projectional editing for providing aspects. Hadas and

Lorenz (2017) did this with their addition of annotations for creating first-class

aspect-oriented support for DSALs although we are more interested in using this for

increasing the experience of building the DSJP representation and performance at
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runtime. The desire to design code with aspects in mind comes from as far back as

Murphy et al. (2001) where it is noted exposing JPs is hard because of the lack of

planning when writing the initial program.

This moves away from implementing our bottom layer with a pure aspect-oriented

solution, and does require the scatter and tangle of JP locations. Yet this allows

fast implementation of DSJP which will be high-performance compared to GPAL

interpreted actions. Most of the scatter and tangle will still be modularised into

aspects, so this approach will still fulfil its role as a DSAL. We have decided not to

follow the code transforming method of implementation because the process is highly

coupled to the base code and requires significant work to implement over arbitrary

sets of large General-Purpose Language (GPL) based projects. This approach moves

from aspect-oriented implementation of the DSAL to physical instrumentation of the

base programs which could be done during or after model development to a middle

layer specification. This would be infeasible for GPAL aspect-oriented programming

although is a suitable fit for domain-specific actions as they will be fewer DSJP in

a program compared to GPJP by orders of magnitude. Instrumentation further

reduces the amount of interpretation required to convert GPJP into DSJP with

checks by piggybacking off the base codes program flow. This means that a bottom

layer approach would provide an instrumented scaffolding suitable to implement a

core DSAL and any extension DSALs from this. The scaffolding could be either

togglable through use of variables or in the case of middleware targeted DSALs

placed into swappable versions of the middleware libraries.

For middleware targeting DSALs using dependency injection within the

middleware code could be especially useful because the end-users will not have

to deal with the scatter and tangle, and performance bonuses would benefit many

users across many re-uses of the core and extension DSALs. This could be used
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to solve the problem of providing suitable facilities for inspecting, verifying and

validating models which has been flagged by North et al. (2013). For model-specific

DSALs, injection approaches allow problematic DSJP to be implemented with

high performance, but the low re-use potential and volatile target makes the extra

development effort less worthwhile. This approach is not suitable during especially

volatile development stages as arbitrary changes to the model may inadvertently

change DSAL semantics.

In closing, we believe that AOP, DSLs and more specifically DSALs will thrive

as multi-paradigm languages and development environments progress. As we reduce

our dependence on scattered code within object-oriented projects and improve our

knowledge of appropriate development techniques, DSALs have the potential to

become an invaluable domain-specific programming practice.
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