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Abstract 
 
Traditional robotics have the capabilities of the robot hard coded and have the robot 

function in structured environments (structured environments are those that are 

predefined for a given task). This approach can limit the functionality of a robot and how 

they can interact in an environment. Behaviour networks are reactive systems that are 

able to function in unstructured dynamic environments by selecting behaviours to 

execute based on the current state of the environment. Behaviour networks are made 

up of nodes that represent behaviours and these store an activation value to represent 

the motivation for that behaviour. The nodes receive inputs from a variety of sources 

and pass proportions of that input to other nodes in the network.  

Behaviour networks traditionally also have their capabilities predefined. The 

main aim of this thesis is to expand upon the concepts of traditional robotics by 

demonstrating the use of distributed behaviours in an environment.  This thesis aims to 

show that distributing object specific data, such as; behaviours and goals, will assist in 

the task planning for a mobile robot.  

This thesis explores and tests the traditional behaviour network with a variety of 

experiments. Each experiment showcases particular features of the behaviour network 

including flaws that have been identified. Proposed solutions to the found flaws are then 

presented and explored. The behaviour network is then tested in a simulated 

environment with distributed behaviours and the dynamic behaviour network is 

defined. The thesis demonstrates that distributed behaviours can expand the 

capabilities of a mobile robot using a dynamic behaviour network.   
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1. Introduction 

1.1. General Statement 

 
Robots are growing in number. A great deal of research has been spent on making them 

more intelligent and capable of completing the everyday tasks a human would normally 

have to do (Weiser, 1993, 1995; Gates, 2007; Richards and Smart, 2013; IFR, 2016). 

Typical approaches for robots to navigate and interact with an environment, 

involve embedding many different sensors in the robot and the environment, then 

having the robot process the data from those sensors to interpret the environment. 

Examples include (iRobot, 2007; Fitzgerald, 2013). It is common for the capabilities of 

the robot to be hard coded and to have the robot function in structured environments 

(structured environments are those that are predefined for a given task). The traditional 

approach (knowledge representation) is widely used and discussed in further detail in 

section 2.1. This approach can be computationally expensive, due to the vast amounts 

of information that need to be processed. It becomes even more computationally 

expensive for a robot to function in an unstructured dynamic environment (an 

environment that is not predefined and can change unexpectedly) and so alternate 

solutions are required. 

The overall aim of the research reported here is to investigate how embedded 

wireless tags can simplify the everyday tasks of a robot. One approach to solving this 

problem is outlined by (Diekmann, Melski and Schumann, 2007; Pais and Symonds, 

2011) who discuss a concept that shows that data relating to the location of information 

can be stored on a wireless device. It shows that data such as a web URL can be stored 

and point to data relating to either the object the tag is attached to or some information 

that can be downloaded. This is useful as one of the limitations of wireless tags is the 
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amount of data that can be stored locally. The limitation of this concept is that the agent 

will need access to the internet to get the information it needs. This study is based on 

the concept of storing data on a wireless tag and further expands upon it by finding a 

solution to store the information directly in a wireless tag. It focuses on what external 

information a robot would need, to assist its decision-making process, to be able to 

complete tasks, and how to embed that information into wireless tags in an 

environment. 

In the early 1990s Maes (Maes, 1991c) developed a reactive decision making 

process in response to the limited processing capabilities that were available to robots 

during that time period. This decision making process, the behaviour network (Maes, 

1989, 1991b, 1991d, 1993), used a selection mechanism to determine the most 

appropriate action at any given time given the external environment. Tyrrell (Tyrrell, 

1994) further extended this work by providing improvements to the action selection 

mechanism of the behaviour network. Lee and Cho (Lee and Cho, 2014) extended this 

again by adding an additional planning layer, called a deliberative control layer, to the 

behaviour network. The behaviour network has not seen a great deal of development 

since then. This is due to many factors such as: other approaches in AI becoming more 

established; the previous technical limitations no longer being a factor; and the amount 

of development time needed to create a behaviour network for each predetermined 

structured task. This study uses and extends upon all of the previously mentioned 

concepts and exploits the idea of distributing data into the environment, with the 

intention of proving that control and task data such as behaviours can be discovered 

dynamically in an environment and added to an existing behaviour network. This 

concept offers a possible solution to allow a robot to perform relevant actions in a 

dynamic environment without the need to hard code every possible behaviour in 
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advance. Compared to the more established alternatives, this approach would have the 

benefit of enabling an agent to learn new tasks / goals without the need for any extra 

processing / computational resources.  

1.2. Research Hypothesis 

 

Robotic systems using a variety of sensors and actuators have developed over time to 

use large complex architectures in order to handle the complexity generated from the 

combination of environment, sensor data and task or behavioural definition. This is to 

allow robots to function in dynamic environments under uncertainty and in real time. 

Knepper et al. (Knepper, Srinivasa and Mason, 2010) suggests that there is no single best 

architecture to manage the complexity caused by dynamic environments and diverse 

components. Knepper et al. (Knepper, Srinivasa and Mason, 2010) also state that there 

is no reliable methodology for determining the best architecture for any given 

application. 

An ideal robot architecture would allow a robot to achieve tasks and to be 

reactive to a variety of situations. It would grant the robot a diverse set of capabilities 

including: functioning and reacting in real time; control of actuators and sensors; dealing 

with uncertainty; and planning and actions (or sequences) to achieve goals. Such an 

architecture would be decomposable into smaller modules. Each module in the 

architecture would communicate and send data to other modules in the architecture.  

There are different styles of architecture to choose from, including; subsumption 

architectures, layered robot control, behavioural control and hierarchical control. These 

different styles of robot architecture are discussed in further detail in Chapter 3. 
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1.2.1. A gap in the topic domain 

 

This study focuses on the use of behaviour networks in dynamic, unstructured 

environments and reveals a potential gap in the topic domain. The few extensive articles 

that have been published relating to behaviour networks all demonstrate the same 

limitation. That is, the assumption that the behaviours of an agent are predefined and 

are all that the agent needs to know, either for the environment it is in or for the study 

in which it is implemented. Each implementation of a behaviour network shows that the 

agent is typically hand-coded to work in a structured environment. The literature on 

behaviour networks, reviewed in section 2.2.4, has concentrated principally on finding 

the best action selection mechanism for these predefined networks (Maes, 1991b, 

1991c; Tyrrell, 1994), though it has been expanded to include planning (Lee and Cho, 

2014). The concept of allowing behaviour networks to change or to work in unstructured 

environments has not been given much attention and will form a fundamental part of 

this study. There are also many different options for action selection in behaviour 

networks and this study will examine these mechanisms and expand upon some of the 

better choices. 

1.2.2. Hypothesis 

 
The hypothesis is that embedding wireless tags on to objects in the environment and 

including object specific data, such as; behaviours and goals, will enhance the task 

planning of a mobile robot, allowing the robot to successfully complete goals in dynamic 

and both unstructured and structured environments. This study will test this hypothesis. 
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1.2.3. The importance of the research 

 
Behaviour networks have been used to some success. Jiang et al. (Jiang et al., 2012; Yang 

and Cho, 2013) both developed simulations involving a behaviour network and Paikan  

et al. (Paikan, Metta and Natale, 2013; Lee and Cho, 2014) both created real world 

examples. Expanding upon this field adds to the value of this research and may spark 

more interest and further research. If this research can demonstrate the benefits of 

using embedded devices to assist robots, then that could lead to further research and 

applying this technique in more examples and environments. 
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1.3. Research Objectives 

1.3.1. Aims 

 

The objective of this research is to explore the concept of embedding data into the 

environment and show that, by doing so, the capabilities of a robot will be improved. To 

achieve this outcome this study will focus on embedding information about behaviours 

into the environment to provide a robot with the ability to enhance and evolve their 

action selection mechanism. 

Task planning in robotics is a computationally expensive task every robot will 

need a solution for; this is due to the agent needing to have a workable knowledge 

representation of the environment it is in. Typical approaches involve hard coding the 

tasks the robot needs to complete in order to reduce the computational complexity of 

the task (Bolmsjo, Neveryd and Eftring, 1995). While this is accepted in some fields it 

does not help in unstructured environments where new objects can be added and new 

behaviours required. Behaviour networks are designed to work in these unstructured 

environments by continuously selecting the best action to perform at a given time rather 

than rigidly following a predefined plan. Previous work in this field again consists of hard 

coding the behaviours that an agent can perform in a given environment (Paikan, Metta 

and Natale, 2013; Lee and Cho, 2014). 

This study begins by developing the technical components and infrastructure for 

a behaviour network, based on the work of (Maes, 1991b, 1991c; Tyrrell, 1994). This 

work is expanded to receive new behaviours dynamically (for example, from wireless 

tags in an environment) and add those behaviours to the agent’s existing behaviour 

network. This is achieved by adding data such as, goals and behaviours to wireless 

devices and embedding those into objects in the environment. When the robot is in the 
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environment it will be able to scan for nearby wireless tags, read the data from those 

tags and use that data in its decision-making process. 

The technical objectives that this project aims to achieve are as follows: 

 Implement and test behaviour networks. 

 Develop and test improved mechanisms for spreading activation energy in a 

behaviour network. 

 Design an architecture to support dynamic behaviour networks. 

 Implement a dynamic behaviour network in a simulated environment. 

 Test distributed behaviours / goals in a simulated environment. 

1.3.2. Limitations 

 
It is the purpose of this study to show how embedded devices in an environment can 

expand the capabilities of a robot. This study will cover existing techniques and how 

those techniques can be used with embedded wireless tags. Wireless tags have been 

shown to have limited storage (Pais and Symonds, 2011) which restricts the amount of 

data that can be used. The communication range of wireless tags is also limited and can 

vary in distance. The behaviour networks that will be used in this study also have 

documented limitations (Tyrrell, 1994). Part of this study will be to research these 

limitations and develop methods to overcome them. These limitations include:  

 Predefined nature of behaviours in a behaviour network  

 Problems documented (Tyrrell, 1994) regarding the passing of activation energy 

in the network  

 

 



 18 

1.3.3. Method 

 
The main topic area of this study uses and extends the concepts found in (Maes, 1991b, 

1991c; Tyrrell, 1994). The study uses a behaviour network for the action selection 

mechanism, which allows behaviours to be embedded into the environment; this is 

covered in detail in section 2.2.4. Many techniques and methods have been 

implemented to develop a workable system, which can be used to test the hypothesis. 

This includes; developing a system architecture to support distributed behaviours and 

goals, improving the base behaviour network with alternative energy spreading 

mechanisms and testing the behaviour network with a variety of scenarios in a simulated 

environment.  

1.4. Thesis Structure 

 
The content and structure of the remaining chapters of the thesis are as follows: 

2.   Background Information  

The background chapter provides a review of the relevant literature to give 

context to the rest of the thesis. It is divided into four sections. First, a discussion 

of traditional AI methods leading into behaviour-based AI. Second, action 

selection mechanisms and behaviour networks are explained and justification for 

their use given. Third, other mechanisms for action selection are examined. 

Finally, alternative approaches to AI are discussed. 

3.  Proposed Architecture  

The proposed software architecture is discussed in this chapter. It details how 

the architecture can work with the behaviour networks, how the architecture 

enables the processing of external information and how all this information is 
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combined to allow the system to make decisions. The benefits and the limitations 

of the system are then examined. 

4.  Behaviour Network  

This chapter extends what has been discussed in the background chapter. The 

flaws that have been found during the implementation of the behaviour network 

are discussed and the solutions presented.  

5.  Dynamic Behaviour Network  

This chapter covers the novelty of this research: it begins with an in-depth 

explanation of what is trying to be achieved with behaviour networks and how 

the embedded wireless tags will improve the behaviour network. The results of 

a dynamic behaviour network using embedded wireless tags are then presented 

together with the results from a series of tests. 

6.  Discussion 

This chapter begins with a discussion of the problems found with the standard 

behaviour network, the proposed solutions to those problems and concludes 

with the dynamic behaviour network and its solutions. The successes and failures 

of the previous experiments are then critically analysed and compared with 

current methodologies. 

7.  Conclusion  

This chapter summarises the points that have been raised in this thesis and 

includes suggestions for future work or potential extensions to the work 

submitted.  
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1.5. Contribution 

 
The work presented in this thesis extends the field of behaviour networks. This thesis 

addresses problems found with the traditional behaviour network, proposing solutions 

that allow for more appropriate action selection. The work shows that for the first time, 

a behaviour network can evolve in a dynamic environment and argues that behaviour 

networks are not an outdated concept. This is demonstrated with a series of tests 

demonstrating that a dynamic behaviour network can function in an unstructured 

environment and that the use of wireless tags can enhance this process. 
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1.6. Publications 

 
The work presented in this thesis has also been published (in a condensed form) in a 

conference. Peach and Robinson (Peach and Robinson, 2016) describes how the use of 

data packets can be used as a replacement for the existing activation spreading process, 

in a behaviour network, to allow for more accurate selection of behaviours.  
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2. Background 
 
This chapter begins with an overview of the subject of Behaviour-Based Architectures. It 

starts with a discussion on the history of traditional AI which then leads to the 

emergence of behaviour-based architectures. The discussion on behaviour-based 

architectures is followed by an overview of more modern approaches such as hybrid 

architectures. This chapter concludes with a thorough analysis of behaviour networks 

(Maes, 1991b, 1991c; Tyrrell, 1994), detailing all of the components and their benefits 

and flaws.  

2.1. Traditional AI 

Autonomous robotics often use a variety of Artificial Intelligence (techniques used to 

allow computer systems to perform tasks that require human intelligence) techniques. 

Artificial Intelligence approaches are typically classified as ‘Traditional AI’ and adopts the 

top-down (symbolic) approach. This approach subdivides the problem into a series of 

sub-problems that are easier to solve. This approach is also knowledge-based, as it 

requires a symbolic representation of the world that it can use to verify the sensor input 

and to generate actions to perform. 

The architecture of Traditional AI is often broken down into a sequence of 

components (Brooks, 1986) and used in robot control systems, as shown in Figure 2-1.  

 
Figure 2-1 - Hierarchical decomposition of a mobile robot control system. 

(Brooks 1986; Carreras 2004) detailed the components of a mobile robot,  

breaking it down into functional modules.  
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The components shown in Figure 2-1 are broken down into five functional modules;  

1. Perception 

This module takes in the sensor data as input and is tasked with reducing the 

noise and any conflicts caused by other sensors (e.g, two cameras could create 

conflicting data). Computer vision techniques may be applied to find objects and 

other useful information (such as obstacles) in the environment.  

2. Modelling 

This module typically uses data from the perception module to build a symbolic 

representation of the world internal to the robot (Brooks, 1986, 1991). This world 

model can include all of the objects the robot has seen, including their positions, 

as well as where the robot believes it is in the world.  

3. Planning 

The planning model will usually use the symbolic representation of the world 

created in the previous module to produce a sequence of tasks that can be 

followed to complete a given goal. Many different planning techniques can be 

followed in this module, such as searching the state space (STRIPS) (Fikes and 

Nilsson, 1971), to find the best sequence of tasks to solve the goal and 

Hierarchical Task Network (HTN) (Erol, Hendler and Nau, 1994) which uses 

abstract operators to start a plan and an task decomposition to convert the plan 

into primitive operators.   

4. Task Execution 

This module is in charge of representing each of the tasks (given from the 

planning module) into smaller operations that can be used to control the 

actuators. This module typically oversees the whole of the task execution.  
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5. Motor Control  

This module is in charge of controlling the actuators of the robot allowing it to 

interact with the physical environment. 

 
One of the first applications of the traditional AI 

architecture into a robot was the  deliberative 

control architecture, an example of a robot using 

this was Shakey the robot (Fikes and Nilsson, 1971). 

Here the robot takes in all of its sensor information 

and its internal knowledge to create a plan. Shakey 

(Figure 2-2) was able to reason about its own 

actions by breaking down commands into more 

basic commands that it could execute. Some of the 

more notable results from the development of 

Shakey included the A* search algorithm (Hart, 

Nilsson and Raphael, 1968) and the Hough 

Transform (Hough, 1962; Ballard, 1981). The experiments for Shakey involved it 

navigating in specially prepared rooms in order to complete given goals. The main flaw 

of this experiment was that the rooms had to be structured and designed to meet 

Shakey’s perceptual constraints otherwise it would struggle with the planning process 

and accurately representing the world. This was due to a combination of the low 

processing power and poor sensor hardware which was available at that time. 

There have been many implementations using the traditional approach. (Swere 

and Mulvaney (Swere and Mulvaney, 2003) used decision trees (a model of decisions 

and their possible consequences) as a form of navigation for a mobile robot and more 

Figure 2-2 - Shakey the robot. 

Shakey the robot (Fikes & Nilsson 1971) was one of 

the first autonomous robots that used a deliberative 

control architecture.  
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recently Leiva and Barragán (Leiva and Barragán, 2011) used decision trees to control 

the behaviours of simulated bots. Collins and Ruina (Collins and Ruina, 2005) used a 

finite-state machine for the control architecture of a bipedal walking robot. 

Due to the limitations defined previously, alternative approaches were 

developed, notably the subsumption architecture in the 1980s (Brooks, 1986), 

hierarchical networks (Rosenblatt and Payton, 1989) and action selection mechanisms 

in the 1990s (Maes, 1991b, 1991c; Tyrrell, 1994). 

The main problem with ‘traditional AI’ is that it has difficulties working in 

complex and dynamic environments. Depending on the mobile robot, this can be 

because of the limitations in the processing power and that the planning techniques are 

not robust enough for dynamic environments. The previous examples of traditional AI 

have shown some positive results (the robots achieving their respective goals), however 

they are all tested in structured, predictable environments. With the traditional AI 

approach; the mobile robots need to create a symbolic model of the world, which can 

later be broken down into a set of rules that the robot can use to solve goals. This can 

lead to a combinatorial explosion of the number of rules depending on the complexity 

of the environment. This traditionally meant that the mobile robot would require a large 

amount of storage and computational power, which may be limited on a mobile robot. 

Another problem that is found in traditional AI approaches is the difficulty in 

processing and executing tasks in real time because the robot will need to process its 

sensor data, create a symbolic world model, break the model into a sequence of tasks 

and finally execute those tasks quickly. The robot can find that by the time it has made 

a decision on what to do, the environment has changed and it will need to process the 

new data instead. Creating a symbolic representation of the world is also a challenge for 

traditional AI because the robot will need to be able to maintain a model of a 
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continuously-changing world. The Frame Problem (Hayes, 1971) is a situation where an 

agent can have difficulty describing the environment and the effects of its actions. 

Another related problem, called the ‘symbol-grounding problem’ occurs when the robot 

has difficulty linking symbols (such as ‘door’ or ‘cup’) to real-world perceptions (Harnad, 

1990). Vinyals et al. (Vinyals et al., 2015) attempted to address this problem by using a 

convolutional neural network, making it possible to accurately describe and caption an 

image. 

2.2. Behaviour-Based AI 

 

Because of the problems with traditional AI, in the 1980s a number of researchers began 

to look for a solution that was more reactive to environment changes. The idea was to 

break away from the concept of creating a symbolic model of the world and to instead 

rely on input from sensors, to be interpreted as the world model for each moment in 

time. One of the more influential researchers was (Brooks, 1986), who developed the 

subsumption architecture. This then led to the new fields of behaviour-based 

architectures (Maes 1991a) and behaviour-based robotics (Arkin, 1998). Figure 2-3 

shows a comparison of deliberative control architecture (traditional AI) with a more 

reactive control architecture (behaviour-based architecture).  
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Figure 2-3 - Deliberative Vs Reactive 

Cifuentes Costa (Cifuentes Costa 2013) detailed a comparison between deliberative and reactive systems. 

The new behaviour-based architectures used a bottom-up approach (Maes, 

1991b, 1991c; Tyrrell, 1994) as opposed to the Traditional AI using a top-down approach. 

The bottom-up approach defines the low-level elements of the system in detail. These 

elements are then linked together to form a larger subsystem. Subsystems are then 

linked, forming layers, until a complete top-level system is created. Using a set of rules, 

a reactive system (behaviour-based architecture) is able to provide real-time responses 

to changes in the environment. For example, if an obstacle were to present itself to a 

robot, a reactive architecture would be able to move around the obstacle without 

creating a new model of the world to plan around the obstacle. This approach does not 

use any form of deliberation or internal interpretations for planning and it is typically 

unable to learn any new behaviours as the behaviours are typically hand-coded (Maes, 

1991b; Tyrrell, 1994; Cifuentes Costa, 2013). A behaviour-based architecture is able to 

store high-level interpretations of tasks (behaviours), e.g, ‘explore’ or ‘avoid obstacles’, 

and this can give the appearance of high-level deliberation as an emergent property. 

The behaviours in a behaviour-based architecture work in parallel, reacting to 

changes in the perceived environment and providing the robot with an appropriate 
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response, which also helps to achieve some set goals. Figure 2-4 shows the structure of 

the behaviour-based architecture. The previous problems with traditional AI (accurate 

real-time world modelling and real-time processing for real-time task planning) are no 

longer an issue in behaviour-based architecture, as it is reactive rather than deliberative, 

meaning the agent only needs to decide on a single behaviour to execute instead of a 

detailed plan. However, a new challenge of how to select the most appropriate 

behaviour at any particular moment to achieve a set goal will now need to be addressed. 

 

Figure 2-4 - Vertical decomposition of a behaviour-based control system  

(Brooks 1986; Carreras 2004). 

This relatively new field (at the time) has since been widely researched and has 

seen a variety of different implementations. Seraji and Howard (Seraji and Howard, 

2002) used a behaviour-based architecture combined with fuzzy logic to measure terrain 

traversability and use this information in real-time to update a robot’s navigation 

strategy.  Carreras (Carreras, 2004) used a behaviour-based architecture combined with 

reinforcement learning to allow an autonomous underwater robot to complete simple 

tasks.  

As both traditional AI and behaviour-based architectures have merit, some 

researchers have combined these approaches to create hybrid architectures (Arkin, 

1987; Nicolescu and Matarić, 2002; Lee and Cho, 2014). These architectures aim to find 

the compromise between the classical top-down approach and the reactive bottom-up 

approach. Figure 2-5 shows the components of a typical hybrid architecture. 
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Figure 2-5 - The components of a hybrid architecture  

(Carreras Pérez 2003) defines a three layered hybrid architecture that combines a deliberative layer architecture 

with a reactive architecture.  

Typical approaches to the hybrid architecture (Figure 2-5) split the architecture into 

three layers: 

1. Deliberative layer  

This is the planning layer and relates closely to traditional AI. Here the goals are 

broken down into a sequence of behaviours, which forms a plan to solve a given 

goal. This plan can be interrupted by the lower layers of the architecture and runs 

in parallel to the other modules.  

2. Control layer  

This is the ‘middle man’ layer. It is used to supervise the completion of actions / 

tasks and to communicate between the reactive lower layer and the deliberative 

higher layer (Cifuentes Costa, 2013).  

3. Reactive layer  

This layer deals with the real-time problems that are presented by the 

environment. If there are no problems, then the robot is able to execute the high-

level plan of the deliberative layer and, should a problem arise (such as an 

obstacle), the reactive layer will take over and react to the given problem.  
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The hybrid architecture is able to take advantage of both the hierarchical planning and 

the reactive real-time aspects of the behaviour-based architectures. Hybrid 

architectures are discussed in more detail in section 2.2.4.6.  

2.2.1. Behaviour-Based Architecture 

 

 
A behaviour is typically characterized as an entity of an agent that encapsulates a 

process. A process can be anything, ranging from moving to a specific position to 

completing a given task. A behaviour can also store something that can be used to 

execute the process that it represents. Maes (Maes, 1991b; Tyrrell, 1994) uses 

executable code, for this component of a behaviour. This component can range from 

executable code to a hierarchy of behaviour networks (Nicolescu and Matarić, 2002; Lee 

and Cho, 2014). 

Behaviour-based architecture was developed from traditional AI concepts in 

order to create autonomous robots that can achieve goals in dynamic environments. All 

behaviours in the architecture take inputs from the robot’s sensors, and send their 

output to the coordinator for evaluation. Carreras (Carreras, 2004) explains the purpose 

of the coordinator in a behaviour-based control architecture, which is that it is used to 

send only one action to each actuator at a given time (Figure 2-6). Section 2.2.1.2 details 

the two approaches that the coordinator can use to select which action to send to the 

actuators; the coordination method or competitive method.  
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Figure 2-6 - The Structure of the Behaviour-Based Control Architecture 

(Carreras Pérez 2003) details the benefits of a behaviour-based control architecture 

 Brooks (Brooks, 1986) suggests that each behaviour in a behaviour-based 

architecture must be independent the others as typically only one behaviour can be 

selected to execute at any given time, however the internal structure of a behaviour can 

be open to interpretation (e.g, the internal structure of a behaviour can include any 

combination of behaviours (different levels of abstraction), sensors, internal data and a 

coordinator). The resulting structure is a network of interconnected behaviours. One of 

the key benefits of the behaviour-based architecture is that it allows for real-time 

responses with low computational cost (Carreras Pérez 2003). 

2.2.1.1 Basics of the Behaviour-Based Architecture 

 
Behaviour-Based Architectures typically follow a few basic design principles (Brooks, 

1986; Carreras, 2004) that are key to creating successful implementations:  

1. Parallelism  

It is important that a behaviour-based architecture is able to quickly process the 

data about the environment and execute the most appropriate behaviour. This 

is achieved via parallelism and often is implemented by running each behaviour 

on a separate thread. This concept allows the behaviours to either work together 

and coordinate or compete with one another for selection (Maes, 1991b; Tyrrell, 

1994).   
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2. Modularity  

In every implementation of autonomous robots, one of the key tests is 

robustness, the ability for the system to cope with errors and still be able to 

function to a high degree of accuracy (Singh and Kelly, 1996; Simmons et al., 

1997). A behaviour-based architecture is able to achieve a high level of 

robustness from the concept of modularity. Each behaviour in the behaviour-

based architecture is separate from the other behaviours and the behaviours are 

executed individually. If a behaviour fails in the system (due to hardware or 

software issues) then other behaviours can still be executed and the robot can 

retain some form of functionality. Modularity also allows the network of 

behaviours to grow dynamically without affecting or altering any of the existing 

behaviours. This concept is one of the key motivations in this thesis.  

3. Situatedness / Embeddedness  

The term ‘situatedness’ refers to the robot being physically situated in the world. 

This means that the robot uses real sensor data to inform its decision on what to 

do next and to perform the associated action (Maes and Brooks, 1990). The term 

‘embeddedness’ refers to, again, the idea of the robot being in the real-world but 

noting that the robot is subjected to any of the influences of the environment, 

such as potential damage to the robot. Asimov (Asimov, 1963; Clarke, 1993, 

1994) refer to this concept as the third law of robotics, which is used to keep the 

robot safe from harm. This was later researched (Murphy and Woods, 2009) and 

alternative laws discussed, including robot safety. 
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4. Emergence  

A behaviour-based architecture appears to exhibit high level deliberative 

planning as an emergent property of the interaction between behaviours. This is 

demonstrated in (Maes, 1991b; Tyrrell, 1994) who gave an agent simple 

behaviours in a situated environment and it is shown that the sequence of 

selected behaviours can appear like a plan. The behaviour-based architecture 

does not have any planning modules (unless a hybrid architecture is used); 

however, the sequence of executed behaviours can give the appearance of a 

carefully-formulated plan. Meeden et al. (Meeden, McGraw and Blank, 1993) 

had a similar experience with their autonomous robot that exhibited plan-like 

behaviours. 

2.2.1.2 Competition Vs Cooperation 

While behaviours are modular and can be independent, is it also possible for 

behaviours to work together. Some implementations of behaviours have running 

processes, such as (Brooks, 1986) where the output (commands) of each behaviour is 

subsumed by higher level behaviours in the network. Some implementations of 

behaviours hold a set of instructions or even executable code that is run when the 

behaviour is selected for execution (Maes, 1991b; Tyrrell, 1994). For example, a robot 

with a robotic arm could be issued with a task ‘Pick up Object’, with the object being far 

away requiring the robot to navigate to it. The behaviours ‘Pick up’ and ‘Move to point’ 

can act individually, competing with one another for selection, or they can coordinate 

together to both solve the goal. It is important to remember the role of the ‘Coordinator’ 

in the behaviour-based architecture. Figure 2-7 shows a representation of the different 

methodologies (Competition and Cooperation) and how the coordinator is able to select 

an action to be executed. 
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Figure 2-7 - Different methods for behaviour selection a) competitive b) cooperative  

(Carreras Pérez 2003) details two different methods for selecting behaviours. Behaviours either compete with one 

another for selection or cooperate with one other to find a middle ground.  

1. Cooperative  

The coordinator takes input from a range of behaviours and a combination 

function is applied. Vector summation or context-dependent behaviour blending 

are often used (Saffiotti, Konolige and Ruspini, 1995). Behaviour blending uses 

behaviour schemas to describe the behaviours of a robot (expressed as 

trajectories of control actions in an environment). This allows for the 

combination of behaviours and goals. The level of abstraction of the behaviour 

can control which combination function to use; if some behaviours such as ‘move 

to point a’ and ‘move to point b’ are selected then a vector summation can be 

applied. Here an agent would travel to a midway point until it was more certain 

in which action to execute. However, if the behaviours are ‘go home’ and 

‘explore’ then behaviour blending will need to be applied allowing the agent to 

perform an action that achieves the outcome of both behaviours.  

2. Competitive  

The coordinator of the competitive methods always outputs a single behaviour 

for activation. There are many different methods that can be applied for the 

coordinator to determine which behaviour should be selected for activation. 

Some popular examples of these methods include subsumption architecture 
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(Brooks, 1986), action selection mechanisms (Maes, 1991b, 1991c; Tyrrell, 1994) 

and voting-based coordination (Rosenblatt and Payton, 1989; Tyrrell, 1993). 

2.2.2 Subsumption Architecture  

 

Subsumption architecture is another behaviour-based architecture and was introduced 

in the 1980s and further expanded upon in the 1990s (Brooks, 1986). The subsumption 

architecture splits behaviours into a hierarchy of sub-behaviours with each level able to 

perform actions to a set competence. The lower layers of the subsumption architecture 

can relate to atomic actions such as ‘move forward’ or ‘turn left’. The higher layers of 

the subsumption architecture can relate to more abstract behaviours such as; ‘explore’ 

or ‘move to location’ with the higher levels able to utilize the lower levels when the 

sensor data requires it. Any layer of the subsumption architecture can send commands 

to the actuators of a system, but may be prevented by another layer. Figure 2-8 shows 

a representation of a subsumption architecture. 

 

 

 

 

 

 

Figure 2-8 - A representation of a subsumption architecture 

The diagram shows the input of sensors to a subsumption architecture, with high level behaviours being subsumed by 

the lower level behaviours.  

The aim of this architecture was to address a problem with AI during the 1980s, 

which was that it was difficult to model the world and to be able to react to the 

environment in real time. This architecture achieves this when the behaviours receive 

input from the sensors and send output to the actuators. This method is performed 
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asynchronously resulting in many input signals being discarded, this happens when a 

new input is sent and there are still old input signals to process. By discarding the old 

input signals, it allows the system to work in real-time using the most recent information. 

Brooks (Brooks, 1986; Maes and Brooks, 1990) demonstrated this architecture on a 

robot named Allen; this robot used three layers of control with the lowest layer being 

able to avoid obstacles and the highest layer to explore the environment. Allen was the 

first robot to implement the subsumption-based architecture; it used a sonar for 

distance, odometry to calculate its position and a Lisp machine to simulate the 

subsumption architecture. 

There are many benefits to the subsumption-based architecture, some of these 

benefits include; 

 Abstraction  

The subsumption-based architecture offers different layers of abstraction 

of its behaviours where each layer of the architecture allows the robot to 

operate at different levels of competence, which also require different 

levels of resource. The higher levels of competence are applied only when 

they are needed allowing the agent to run more efficiently.   

 Simplicity  

Compared to many other behaviour-based architectures the 

subsumption-based architecture has the simplest architecture. 

 Extendibility  

The subsumption-based architecture can be extended with additional 

layers of abstract behaviours. 
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 Time  

As the subsumption-based architecture is the simplest of the behaviour-

based architectures, it is also the quickest to implement. This is ideal for 

researchers that need to test out their theories.  

In an example scenario where a robot (implementing the subsumption 

architecture) is given a goal to explore and map an environment, the subsumption 

architecture could look similar to that in Figure 2-9. As the goal is to explore the 

environment, we do not want the robot to be navigating in already seen terrain. At the 

lowest layer of the subsumption, architecture is an atomic behaviour ‘Move Forward’. 

At this bottom layer the robot will simply move forward, until it is subsumed by a higher 

level behaviour. At the next level is the ‘Avoid Obstacle’ behaviour and at the top of the 

architecture is an ‘Explore’ behaviour, which will point the robot in the direction of an 

unexplored area. 

Figure 2-9 - Subsumption Architecture - Example 1 

This simple example shows a subsumption architecture to assist with a robot’s navigation. Here the move forward 

behaviour gets subsumed by the avoid obstacle behaviour and both of these are subsumed by an explore behaviour. 
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In this model of the subsumption architecture there is input to the system, which 

is sent to each of the three behaviours. These behaviours are isolated so that the other 

behaviours cannot interfere with the inner workings of another behaviour. Each process 

(behaviour, suppressor or splitter) is connected via links, which pass data from one 

process to the next. Figure 2-10 shows an example of the data flow when the ‘Move 

Forward’ behaviour is activated. 

The ‘Move forward’ behaviour sends its commands to a suppressor process (S1), 

Figure 2-10. This is then sent to the other suppressor process (S2) and from there the 

data is sent to a splitter (sends the data to multiple processes). The actuators receive the 

data and are able to perform a ‘Move Forward’ action. The data is also sent to a mapping 

function which, determines where the robot is located and whether or not it is in an 

already explored area. 

Figure 2-10 - Subsumption Architecture - Example 2 

This example of the subsumption architecture shows the data flow when the ‘Move Forward’ behaviour is selected. 
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Figure 2-11 shows the path the data flows to the actuators when the robot 

detects an object and the ‘Avoid Obstacle’ behaviour is activated. The ‘Move Forward’ 

behaviour has not been stopped, all of the behaviours in the subsumption architecture 

run concurrently. When an object is detected in front of the robot, both the ‘Avoid 

Obstacle’ behaviour and the suppressor (S1) are activated. The suppressor suppresses 

the flow of data from an input when it is activated. The ‘Avoid Obstacle’ behaviour will 

send signals to the actuators to make the robot pivot and face a new direction, then 

allowing the ‘Move Forward’ behaviour to continue. The combination of these two 

behaviours from the different levels of the subsumption architecture as well as the 

concept of suppression, allow the robot to dynamically avoid obstacles in real-time. 

Figure 2-11 - Subsumption Architecture - Example 3 

This example of the subsumption architecture shows the data flow when the ‘Move Forward’ behaviour is subsumed 

by the ‘Avoid Obstacle’ behaviour. 
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The mapping function is used to calculate the robot’s relative position by creating 

an in-memory map and feeding this data to the ‘Explore’ behaviour. When the robot is 

navigating through an already explored area the ‘Explore’ behaviour will use the data 

from the mapping function to pivot the robot in a new direction, towards an unexplored 

area. When the ‘Explore’ behaviour is activated, the suppressor (S2) is also activated, 

suppressing the ‘Move Forward’ behaviour and the ‘Avoid Obstacle’ behaviour. This is 

demonstrated in Figure 2-12. 

Figure 2-12 - Subsumption Architecture - Example 4 

This example of the subsumption architecture shows the data flow when the ‘Explore’ behaviour is subsumes the 

other behaviour. 

There are many benefits to the subsumption architecture, the first being that it 

is a modular architecture allowing new levels to be added to the system to give the robot 

greater functionality. The lower levels of the system would remain intact, providing the 

same capabilities only these can now be subsumed by the new higher levels. Another 

benefit is that it eliminates one of the problems found in traditional AI, that is the 

bottleneck caused when sensor data is received but there is still sensor data to be 

processed. Instead, in this architecture the behaviours only receive the sensor data that 

is relevant to their needs. As each layer in the architecture only needs its relevant 
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information, then there is no need for a representation model of the world to be created 

and this allows the robot to respond in real-time to changes in the environment.  

Brooks (Brooks, 1986) explained that one of the requirements for a robot control 

system is that it should be capable of achieving multiple goals. In the subsumption 

architecture this can rarely be achieved as only one behaviour can be executed at one 

time and there is no ability to compromise. This is one of the limitations of the 

subsumption-based architecture: each behaviour is fighting for control of the robot’s 

actuators and there can be some behaviours that are in direct conflict with one another. 

The subsumption architecture does have a mechanism for conflict resolution (the 

concept of suppression), in which the conflicting behaviours lower in the architecture 

are subsumed by the higher-level conflicting behaviour. Another limitation of the 

subsumption architecture is the concept of modularity, as the internal workings of each 

behaviour are kept separate from other behaviours in different layers it can become 

difficult to add additional layers to the system. For example, it is much more difficult to 

add layers between the different levels of the subsumption architecture, as you may not 

want some behaviours to subsume the new behaviours. It is also difficult to predict the 

needs of future layers and this can result in changes needing to be made to the lower 

level behaviours in order to accommodate and provide for the new behaviours. Finally, 

one of the subsumption architecture’s strengths is also one if its greatest limitations and 

that is the concept of subsumption. For example; one layer in the system could have a 

behaviour ‘Avoid Obstacle’ to prevent the robot from colliding with obstacles however, 

if that layer is being subsumed by a higher layer then it is possible for the robot to collide 

with obstacles. 
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While the concept of the subsumption architecture has been around for many 

years, it is still a topic of research. Recent work involving subsumption architectures 

includes (Oland, Andersen and Kristiansen, 2016) who used the concept of the 

subsumption architecture to break down the task of flying a UAV (unmanned aerial 

vehicle) . The task was broken down into a hierarchy of behaviours; ground avoidance, 

obstacle avoidance and waypoint tracking with the more abstract levels subsuming the 

more detailed lower levels, showing that the subsumption architecture is not limited to 

a single  field. Nagata et al. (Nagata, Otsuka and Watanabe, 2012) proposed a network-

based subsumption architecture for multiple mobile robots. This is implemented in a 

server supervisory control system, which is shown to enable swarm intelligence in the 

mobile robots. Turner  et al. (Turner, Givigi and Beaulieu, 2013) implemented a 

subsumption-based architecture using model-driven development and implemented 

the behaviours of the robot in a finite state machine. This shows that the subsumption-

based architecture is still relevant and used in the field of robotics. It also shows the 

benefits of a reactive architecture for dynamic environments.  

The subumption architecture has been widely used and heavily researched since 

it was originally developed in the 1980s. Some recent examples include Halal and 

Zaremba (Halal and Zaremba, 2018) who used subsumption as part of their architecture 

for allowing a mobile robot to navigate an unstructured environment, (Kragic et al., 

2018) who also based part of their architecture on subsumption to allow a robot to 

interact with Lego objects and Gudwin et al. (Gudwin et al., 2018) who used the 

subsumption architecture as part of a traffic control manager in a traffic simulator.   
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2.2.3 Action Selection 

 
Behaviour-based architecture has demonstrated that it is capable of dealing with 

dynamic, changing environments (Weser, Off and Zhang, 2010). An agent needs to be 

able to decide which action it needs to perform from its selection of possible actions. 

Action Selection is the term given to the solution to this problem. The function of an 

action selection mechanism is to select, at each moment in time, an action for the agent, 

which achieves or helps to achieve its global goals. The key to action selection is using 

the correct level of abstraction for the actions. e.g. ‘turn left 90o’ is a low-level atomic 

action whereas, ‘explore’ is a high-level action. These actions in an action selection 

mechanism are often predefined and fixed. 

The problem of selecting the most appropriate action in a behaviour-based 

architecture has attracted a great deal of research into action selection mechanisms. 

Some of the more researched approaches to action selection are listed below and 

explained later in this chapter; 

 

1. Symbolic Approach 

2. Distributed Approach  

3. Dynamic Planning Approach 

 

Action selection mechanisms follow some basic key principles;  

1. Dynamic Environments – The robot will need to be able to select an action to 

perform in dynamic and unpredictable environments where it may include 

humans or other robots that can either assist or hinder the robot.  

2. Real-Time – The robot is expected to operate in as close to real-time as possible. 

It should be able to select an appropriate action in a timely manner.  
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3. The robot will typically need to be able to perform a variety of actions. Each of 

these actions may compete for resource allocation and the robot will need to be 

able to select the correct actions to perform, to allow it to achieve its own goals. 

2.2.3.1  Symbolic Approach 

 

This follows from the same approach as traditional AI where the robot must first take in 

sensor data to create a symbolic representation of the world and then infer a plan. The 

plan is then executed in a sequence of actions. As previously discussed, depending on 

the agent’s resources, this approach may be too slow for real-time execution and it could 

have difficulty in creating an accurate description for the world model. 

A decision-making strategy that has been adapted to overcome some of the flaws 

of the traditional AI concept is the satisficing strategy. Rather than identifying the 

optimum solution, this approach attempts to meet criteria for adequacy. This is achieved 

by selecting the first plan that can achieve a goal (even if it is sub-optimal) and saving 

time by not searching for a better plan (Dolgov and Durfee, 2002).  

The symbolic approach is most often implemented using a goal-driven 

architecture. In this symbolic approach each available behaviour is described by a set of 

goals and each of these goals can be achieved by a defined process. The robot must be 

able to choose which process to follow to accomplish its goals. This architecture tends 

to be a hybrid of the traditional AI and behaviour-based approaches.  

Recent work in this field includes Klenk et al. (Klenk, Molineaux and Aha, 2013) 

who discussed  a concept called Goal Driven Autonomy (GDA) which allowed their agent 

to reason and generate its own goals in response to changes in the environment. This is 

in response to the idea that goals need to be revised over time depending on the 

situation of the world (Roberts et al., 2014). 
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2.2.3.2 Distributed Approach 

 

The distributed approach differs greatly from the symbolic approach and follows the 

principles of the behaviour-based architecture. Here the distributed approach has many 

behaviours available and determines which behaviour to execute based on real-time 

local sensor information. There is also always some form of centralised decision system 

which determines which behaviour should be ‘the most active’. Some examples of this 

approach include; 

1. ASMO (Attentive Self-MOdifying)  

This is an attention-based architecture based on cognitive attention theory 

(William, 1983) and offers a mechanism for directing and creating behaviours, 

beliefs, anticipation, discovery, expectations and changes (Samsonovich, 2010). 

This architecture works similarly to the action selection mechanism (Maes 

1991a;) in that behaviours are selected based on an attention value which the 

behaviours use to compete for selection. 

2. Winner-Takes-All 

This is an architecture in which a behaviour that has the highest motivation 

(weighted sum of relevant sensory information and motivation / drives) is 

selected and takes control of the robot’s motor system. Depending on the 

behaviour it could also take control of other aspects of the robot. The active 

behaviour has exclusive access to all of the robot’s resources and does not share 

with any other behaviour. It was noted (Prescott, 2002) that this architecture can 

be slow when a behaviour releases access of the robot’s actuators to another 

behaviour, which can give the appearance of the robot stalling. 
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3. Spreading Activation 

This is covered in detail in section 2.2.4. The spreading activation mechanism was 

pioneered by (Maes, 1991b, 1991c; Tyrrell, 1994) and is a model in which  

activation energy is passed amongst the behaviours in a non-hierarchical 

network. The activation energy is an arbitrary value that is used to identify the 

most appropriate behaviour in a behaviour network. This energy is first passed 

into the network from the goals and the environment nodes where it is then 

passed between the behaviours of the network. The behaviour with the largest 

amount of activation after this process is selected for execution.  

4. Extended Rosenblatt and Payton  

In the late 1980s Rosenblatt and Payton (Rosenblatt and Payton, 1989) 

responded to the work of (Brooks, 1986), on the subsumption architecture, and 

created a connectionist (interconnected network), hierarchical, feed-forward 

network later known as the Rosenblatt and Payton. In this network, there is a 

hierarchy of nodes (behaviours) and these nodes receive information from; 

internal, indeterminate and external stimuli feeding their activation down the 

hierarchy until it reaches an action node. The action nodes are located at the 

bottom of the hierarchy named the behavioural final common path; it is at this 

level of the hierarchy that a winner-takes-all process is used to select which 

action node to execute. Unlike other action selection mechanisms, the 

Rosenblatt and Payton allows multiple nodes in the network to remain active at 

once. Each of these active nodes excites other nodes in the hierarchy by passing 

a degree of preference to the nodes beneath it (either a positive or a negative 

preference). The inputs to these nodes (degree of preference from other nodes) 



 47 

are then combined following some predefined formulae, with the behaviour with 

the greatest preference being selected for activation. 

Tyrrell  (Tyrrell, 1993) reviewed the work of Rosenblatt and Payton 

(Rosenblatt and Payton, 1989) as well as many others in the field of behaviour 

networks and created his own variant the Extended Rosenblatt and Payton. 

Tyrrell (Tyrrell, 1993) discovered fundamental flaws in the original work: he 

found that some basic action nodes were being selected more than others 

because appetive sub-systems were similar in size to those of consummatory 

nodes (consummatory nodes are those that achieve goals and appetive nodes 

are those that enable consummatory nodes). Tyrrell (Tyrrell, 1993) introduced 

uncertainty and temporal penalties to ensure that consummatory nodes were 

preferable to appetive nodes (appetive nodes help other nodes become active); 

however, the penalties that were applied were too severe. More changes were 

made resulting in the penalties being reduced and the combination of inputs rule 

was changed from a simple summation to a more specific rule. This architecture 

is explained further in section 2.2.4. 

5. Subsumption-Based Architecture 

The subsumption-based architecture was created by Brooks (Brooks, 1986) in the 

1980s in response to the lack of reactive systems available in robotics at the time. 

The subsumption-based architecture comprises of reactive processes that 

compete with each other for access for the robots control. A behaviour emerges 

from the fixed connections between the processes. Although the subsumption-

based architecture is symbolic, it also follows a distributed approach as their 

behaviours are executed based on real-time sensor information and it uses a 

centralised decision system to select the most appropriate behaviours.   
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2.2.3.3 Dynamic Planning Approach 

 

Distributed solutions (those discussed in section 2.2.3.2) can be very difficult to 

construct if the robot is to work in a dynamic and uncertain environment, because these 

systems require the behaviours of the agent to be predefined. Dynamic planning is an 

approach using explicit-hardcoded plans to determine the priorities of the system, which 

avoids combinatorial explosion in complexity. The dynamic planning approach only 

computes the next action for each time-step based on pre-scripted plans and the current 

context. An example of a dynamic planning approach applied to path finding in 

unstructured environments is given by (Ferguson and Stentz, 2007),who used a Rapidly-

exploring Random Tree (RRT) algorithm combined with sampling techniques to allow an 

agent to successfully navigate a dynamic environment.  

These are reactive hierarchical architectures and are commonly found in video 

game agents (Cutumisu and Szafron, 2009). A finite state machine works with a limited 

number of states with the agent being in one state at any given time. When conditions 

in the environment trigger changes, then the agent can transition to another state. The 

finite state machine consists of a list of its possible states and the conditions to transition 

between states (Chow, 1978). Due to the predefined nature of finite state machines, 

they are not commonly used at a top level, instead they are commonly used as elements 

in robot architectures and this is due to the dynamic nature of the environment. 
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2.2.4 Behaviour Networks 

 

One architecture that uses action selection mechanisms is the behaviour network. This 

section begins with a basic introduction to behaviour networks before giving a thorough 

explanation and analysis of the behaviour network. 

2.2.4.1 Introduction to Behaviour Networks 

 

In the early 1990s Maes (Maes, 1991b, 1991c; Tyrrell, 1994) proposed the Agent 

Network Architecture (ANA) as a method of selecting behaviours. This incorporated a 

spreading activation process to an action selection mechanism, allowing an agent to 

become autonomous. ANA is based on the concept of a network of behaviours, which 

may be activated as required. The behaviour network consists of a variety of nodes, 

which are joined by a variety of links. The aim of the behaviour network is to pass 

activation energy between the nodes via the links until a behaviour reaches an activation 

energy greater than a set threshold, when it can be selected for execution. The activation 

spreading method is discussed in section 2.2.3.2. Figure 2-13 shows a basic example of 

the structure of a behaviour network and how the nodes might be connected to one 

another. 
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Figure 2-13 - Structure of a behaviour network 

This diagram shows the basic decomposition of a behaviour network. 

2.2.4.2 Components of a Behaviour Network 

 

This section discusses in detail all the components of a behaviour network and how 

those components are able to work together to drive an autonomous agent. This section 

can be used as a tool to assist in the design and development of a behaviour network. 

Similar to many other AI techniques, the core of a behaviour network is the concept of 

a behaviour. The concept of behaviours owes greatly to the work of Brooks (Brooks, 

1986, 1995), who helped to popularize the behaviour-based approach. This technique 

was extended by Bryson (Bryson, 2000) who described a combination of behaviour-

based and object-oriented approaches leading to behaviour-oriented design. 
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2.2.4.2.1 Behaviours 

 

A behaviour can be characterized as an entity of an agent that encapsulates a process. 

A process can be anything, ranging from moving to a specific position to completing a 

given task. The challenge has always been how to select the best behaviour for a given 

situation (Brooks, 1986). Figure 2-14 shows the components of a behaviour in a 

behaviour network.  

Figure 2-14 - Components of a behaviour 

This diagram depicts the inner components of a behaviour in a behaviour network, also showing the inputs and 

outputs of a behaviour (Brooks 1986, Maes 1991, Tyrrell 1994). 

A behaviour node in a network can have many types of input coming from goal 

nodes, environment nodes or other behaviour nodes. The input to a node is passed via 

a range of different types of link. Those links either increase a node’s activation or reduce 

it. A behaviour may contain a list of preconditions that will all need to be met in order 

for the behaviour to be activated. A behaviour will also contain (the ‘add list’) a list of 

conditions that if the behaviour was executed it would make true and (the ‘delete list’) 

a list of conditions that if the behaviour was executed it would make false. The behaviour 

network operates on the basis that each behaviour has a certain amount of activation 

energy. This is an arbitrary value that is used to manage the amount of activation a 

behaviour holds. When the activation spreading process is started (the process to move 

activation energy between behaviours to identify the most appropriate behaviour in a 
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given situation), the amount of activation in a behaviour is either increased (from inputs) 

or decreased (through outputs). Finally, a behaviour will also store something that can 

be used to execute the process that it represents. Maes (Maes, 1991b, 1991c; Tyrrell, 

1994) uses executable code for this component of a behaviour. This component can also 

be a hierarchy of behaviour networks (Nicolescu and Matarić, 2002; Lee and Cho, 2014). 

There are two types of behaviour in a behaviour network; consummatory 

behaviours and appetitive behaviours. The consummatory behaviours are more 

beneficial to a system than appetitive behaviours as they provide an immediate effect 

(towards achieving a goal) whereas the appetitive behaviours assist the consummatory 

behaviours to become selected for activation (appetitive behaviours do not achieve 

goals, instead they enable consummatory nodes).  Appetitive behaviours should lead 

into a consummatory behaviour, creating an appetitive-consummatory sequence. Using 

an example from (Maes, 1991d), there could be a goal called ‘Hungry’ (‘Food OK’) and 

to achieve this goal the agent will need to consume some food. The immediate 

consummatory behaviour to achieve this goal would be ‘Eat Food’ in a specific location. 

This consummatory behaviour would then have an appetitive behaviours ‘Go to Food’ 

as this behaviour would help to make the consummatory behaviour active and available 

for activation. 

2.2.4.2.2 Components  

 

The primary component of the behaviour network is behaviours, discussed in 

2.5.2.1. Those behaviours are typically at a lower level than the system level and are also 

a higher level than the atomic actions. Figure 2-13 shows a basic example of the 

structure of a behaviour network and how the behaviours might be connected to one 

another. It shows that the behaviours are connected by external nodes; goals and 
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environment nodes. The goal nodes depict what the agent will be trying to achieve and 

are connected to the consummatory behaviours that will achieve the goal passing 

excitation to those nodes. If there are behaviours that can undo a goal, then the goal will 

inhibit those behaviours. This is based on a goal been part of the delete list of 

behaviours. The environment nodes derive from the processed sensor data that the 

robot receives and are connected typically to appetitive behaviours in the system. 

As well as the connections from the goals and the environment nodes to the 

behaviour nodes, there are also different internal connections between the behaviours 

themselves. The internal connections of the network encode different types of 

relationship (Tyrrell, 1994): 

 Consummatory-Appetitive relationships between nodes  

 Conflict relationships between nodes 

 Goal-achieving relationships between nodes and goals 

 Goal-counteracting relationships between nodes and goals 

 Situation-dependency relationships between nodes and environment sensors 

 

Figure 2-14 shows the components of a behaviour and the input and output links, 

discussed in (Brooks, 1986; Maes, 1991a; Tyrrell, 1994), are specified as follows: 

 Predecessor links: If proposition X is false and proposition X is a precondition of 

node A and proposition X is in the add list of node B (i.e., if B can help A to become 

executable), then there is an active predecessor link (excitatory) from A to B.  

 Successor links: If proposition X is false and proposition X is in the add list of node 

A and proposition X is a precondition of node B and node A is executable (i.e., if 

A can help B to become executable), then there is an active successor link 

(excitatory) from A to B. 
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 Conflictor links: If proposition X is true and proposition X is a precondition of 

node A and proposition X is in the delete list of node B (i.e., if B stops A from 

becoming executable), then there is an active conflictor link (inhibitory) from A 

to B.  

 Environment links: if proposition X about the environment is true and 

proposition X is in the precondition list of node A (i.e., if A is at least partially 

appropriate to the current situation), then there is an active link (excitatory) from 

the sensor of proposition X to node A.  

 Goal links: If goal Y has an activation greater than zero and goal Y is in the add list 

of node A (i.e., if A is likely to achieve goal Y), then there is an active link 

(excitatory) from goal Y to node A. 

 Protected goal links: If goal Y has an activation greater than zero and goal Y is in 

the delete list of node A (i.e., if A is likely to undo goal Y or to stop it from being 

achieved), then there is an active link (inhibitory) from the goal Y to node A. 
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2.2.4.2.3 Action Selection 

 

The basic principle of a behaviour network resolves around an action selection 

mechanism (discussed in some detail in 2.4), which assists in the selection of the best 

behaviour (action) for an agent to do next at any given time. The challenge of action 

selection mechanisms and behaviour networks is to be able to select the correct level of 

abstraction for a behaviour. e.g., a behaviour of ‘pick up object’ is far less abstract than 

a behaviour of ‘tidy table’. Nicolescu and Matarić (Nicolescu and Matarić, 2002) used a 

hierarchy of abstract levels of behaviours to solve this challenge. This method allowed a 

high-level behaviour network to make decisions with abstract behaviours and used a 

low-level behaviour network to work out how to complete the selected behaviour.  

For an action to be eligible for selection, all of its preconditions must be true and 

its activation level must also be greater than a global threshold (Tyrrell, 1994), it is not 

fully clear why a global threshold was used in the supporting text. When there are 

multiple nodes that are executable then the node with the highest activation is selected. 

After a node has been executed its activation is reset to zero while other nodes retain 

their activation levels. To calculate if an action is eligible for selection the following 

procedure is executed: 

1. The external input is calculated from the goal nodes and the environment nodes 

into the network of behaviours.  

2. The excitation is spread around the network via predecessor, successor and 

conflictor links.  

3. The activation in all nodes is normalized so that the average activation is equal 

to π. It is also unclear as to why there is a need for normalization as the behaviour 

network will always select the node with the greatest activation level.  
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4. If any of the nodes are executable, the node with the highest activation that is 

over the global threshold is selected and executed. The nodes activation is then 

reset to zero.  

5. If there are no nodes that are eligible for selection, then the global threshold is 

reduced and the cycle is repeated. As previously mentioned, this appears to be a 

pointless step. The threshold will continue to drop until a behaviour’s activation 

exceeds it, at which point the behaviour network will execute the behaviour with 

the greatest activation (whether that is a normalised value or not). 

2.2.4.2.4 Activation Spreading and The Division Rule 

 

The process of spreading activation energy around the network is based on a 

concept called the division rule, that is explained in (Tyrrell, 1994), an emergent flaw 

from the original work of Maes (Maes, 1991a). The division rule refers to one of the steps 

of a behaviour network. The network must calculate how much energy excitation needs 

to be spread from one behaviour to the next. The original behaviour network (Maes, 

1991a; Tyrrell, 1994) used the following constant parameters: 

 

Global Parameters 

() The initial value of the global threshold 

() A constant used to determine the weighting of environmental inputs and successor 

links 

() A constant used to determine the weighting of goal inputs and predecessor links 

() A constant used to determine the weighting of protected goal inputs and conflictor 

links 
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The global parameters are constant values that are used in the behaviour 

network as input multipliers to calculate the amount of activation that is to be spread 

from one node in the network to another. The different link types in the network use 

the previously defined global parameters for the input multiplier calculations shown 

below. 

 

Input Multipliers 

 () Environmental sensors 

() Goals 

() Protected Goals 

(
𝜙

𝛾
) Successor Links 

(
𝛾

𝛾
= 1) Predecessor Links 

(
𝛿

𝛾
) Conflictor Links 

 The input multipliers originated in (Maes, 1991a) and were further detailed in 

(Tyrrell, 1994). These input multipliers use the constant global parameters and are used 

to define the proportion of activation energy to move between behaviours. To assist in 

this calculation, a division rule is also applied to ensure an even amount of activation 

energy is passed to nodes with multiple inputs / outputs and is defined below.     

 

Division Rule 

(N) Number of outputs of a given type  

(M) Number of inputs of a given type  
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Example:  

Given there is a situation where there is a predecessor link from node X to node Y. The 

proportion of energy passed from node Y to node X is given by 

 = 𝛾

𝛾
𝛼

𝑁𝑀
          (1) 

=  
𝛼

𝑁𝑀
  

where  is the activation of node Y. 

 

 

 

 

 

 

 

Figure 2-15 shows an example network made up of nodes and predecessor links. 

In this example, activation energy will move from B4 to B5. Node B4 currently contains 

an activation energy value of 10. It has 3 input nodes and 1 output node. Using the 

previously defined formula from (Tyrrell, 1994): 

= 
10

1∗3
 =3.33  

 This would move a value of 3.33 from node B4 to node B5. Node B4 will retain a 

large proportion of energy because it has a large number of inputs of the same type. 

Further research into the input multipliers and the division rule was conducted by 

(Tyrrell, 1994) and is discussed later in this section.  

 

 

Figure 2-15. First step of the activation spreading function. 
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Tyrrell (Tyrrell, 1994) found that there was an unbalanced competition between 

consummatory nodes caused by the division of the number of outputs. For example; 

given there is a situation where there is a one-to-one connection between a behaviour 

(B1) and a goal (G1) then during each cycle B1 will receive an input of (). Whereas; given 

there is a situation where there is a one-to-many connection between a goal (G2) and 

behaviours (B2 and B3) then during each cycle B2 and B3 will receive an input of (/2). 

This shows that the more behaviours that are connected to the same goal the more 

diluted the excitation those behaviours receive in each cycle. This is shown in Figure 

2-16. This shows that behaviour B1 will be favoured compared to the other behaviours 

in the network.  

Figure 2-16 - Demonstrates the unbalanced competition between the nodes due to the division of the number of 

outputs. 

 

Tyrrell (Tyrrell, 1994) then changed the division rule by removing (N) altogether 

and found a new problem with the division rule; namely that there was a prejudice 

against nodes with many inputs of the same type. For example; given there is a situation 

where there is a one-to-one connection between a behaviour (B1) and a goal (G1 with 

1.0 energy) then during each cycle B1 will receive an input of (1.0 * ). Whereas; given 

there is a situation where there is a one-to-many connection between a behaviour (B2) 

and multiple goals (G2 = 1.0 and G3 = 0.2) then during each cycle B2 will receive an input 

of (0.6 *). This is shown in Figure 2-17. 
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B1 
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B3 
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/2 
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Figure 2-17 - Demonstrates the unbalanced competition due to the division of the number of inputs. 

 

Tyrrell (Tyrrell, 1994) made some further changes to the division rule in order to 

allow the nodes that can achieve multiple goals to get more activation. He removed the 

division by goal, predecessor, protected goal and conflictor links. This method also 

proved to be unsuccessful in scenarios where a node has multiple predecessor links. 

Instead of being penalised with the division rule, these nodes received far more 

activation than their competition. This shows that there is a problem with and without 

a division rule in some instances. Table 2-1 shows the different problems that can occur 

with the division rule. Ideally there would be a division rule that is appropriate in all 

situations and enables the agent to successfully complete its goals. 

 

 

 

 

 

 

 

 

 

Division Rule Deficit in Action Selection 

Division by N Penalizes nodes sharing inputs 
No division by N No deficit 
Division by M (successor and 
environment links) 

No deficit 

Division by M (goal and 
protected goal links) 

Penalizes nodes with high M 

No division by M (goal and 
protected goal links) 

No deficit 

Division by M (predecessor 
and conflictor links) 

Penalizes nodes with high M, where 
inputs are due to different goals 

No division by M (predecessor 
and conflictor links) 

Favors nodes with high M, where 
inputs are due to the same goal.  

Table 2-1 - The effects of the different variations of the division rule (Tyrrell 1994). 
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B1 

B2 G3   (0.2) 

 
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/2 

G1   (1.0) 

G2   (1.0) 
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 Tyrrell (Tyrrell, 1994) proposed a solution to this problem: to take the average of 

the input value both with and without division. The predecessor input thus becomes: 

𝐼𝑃 =  
1

2
 (𝛼 +  

𝛼

𝑀
)          (2) 

In addition, the formula for conflictor input becomes: 

𝐼𝐶 =  
1

2
 (𝛼

𝛿

𝛾
+  

𝛼

𝑀

𝛿

𝛾
)        (3) 

A side effect of this implementation is the possibility of a feedback loop of both 

appetitive nodes and consummatory nodes. It was shown that the appetitive nodes were 

selected more often than consummatory nodes after multiple iterations of the spreading 

activation process. Tyrrell (Tyrrell, 1994) suggests that there is no general division rule 

for predecessor links that works for all situations; this is “because there is no way of 

knowing whether or not the inputs derive from the same goal”. Tyrrell (Tyrrell, 1994) 

also stated that it was not possible to solve the division rule problem without making 

“radical changes to the architecture and central concepts of MASM”. Chapter 4.1 details 

a potential solution to this problem. 

2.2.4.3 Factors of Favourability 

 

The primary benefit of behaviour networks is that they are designed to work in dynamic 

unstructured environments. They use a reactive architecture that is able to select the 

best action for a robot to take in the existing situation. Typically, there is no planning 

system involved in a behaviour network; the culmination of behaviours over time are 

hoped to achieve the global goals set. A plan can thus be seen as an emergent property 

of these behaviours over time and could be used as a template for future behaviours. 

Lee and Cho (Lee and Cho, 2014) were able to extend the behaviour network by adding 

a deliberative control layer on top of a behaviour network. This allows the behaviour 
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network to subsume the commands of the planning layer when a new situation is 

presented, and a different action should be executed.  

 The concept of dynamic action selection is a valid and essential tool for robot 

planning because, in the real world, environments are constantly changing making it 

difficult for hard-coded solutions to remain successful.  

 

2.2.4.4 Liabilities 

Behaviour networks have not seen a great deal of research in recent years. There are a 

variety of possible reasons for this, each stemming from the liabilities of behaviour 

networks described previously. Behaviour networks do not plan, being reactive systems, 

and more recent work has focused on robot architectures (Knepper, Srinivasa and 

Mason, 2010; Weser, Off and Zhang, 2010) using planning, such as implementing a 

planning architecture on top of a behaviour network (Lee and Cho, 2014). Others have 

favoured learning algorithms,  such a neural networks (Lin and Lee, 1991; Miljković et 

al., 2013) as behaviour networks do not learn from their actions or about their 

environments.  

  The supporting texts on behaviour networks define some core liabilities with the 

system (Maes, 1991a; Tyrrell, 1994). The main liability is the division rule which is 

explained in the previous section. Other liabilities with behaviour networks include the 

binary nature of behaviour node achievement. Nodes can either achieve a goal or not 

achieve a goal; there is no mechanism in a behaviour network that allows a behaviour 

to partially achieve a goal. The same applies to negating a goal, the behaviour nodes 

either counteract a goal or they do not. For example; a robot could partially complete a 

goal of ‘Clean Kitchen’ by ‘washing the dishes’. However, this would counteract the goal 
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of ‘Cook Meal’ to some degree because the pots currently being used by this task might 

be cleaned by the other.  

 Tyrrell (Tyrrell, 1994) explains that there is a lack of persistence present in 

behaviour networks. This is because the original behaviour network (Maes, 1991a) will 

remove all energy in a behaviour that has been activated and the energy in all other 

behaviours will remain. The behaviour network needs to make a decision in each time-

step and any residual activation energy could negatively influence the next selected 

behaviour. For example, over many time steps an undesirable behaviour could 

accumulate enough activation energy to become the next desired behaviour for 

activation. This is a huge liability for behaviour networks as it can either cause 

undesirable behaviours to be favourable or cause the agent to oscillate between two or 

more behaviours. For example, an agent could be in a situation where it is navigating a 

room and needs to decide which direction to go. Moving to the right will help it bring it 

closer to achieving one goal while moving to the left will help it to achieve another. In 

one time step the agent moves to the right and the energy in the ‘Move Right’ behaviour 

is reset to 0. However, the ‘Move Left’ behaviour will retain some energy from that time 

step. In the next time step, both the ‘Move Left’ and ‘Move Right’ behaviour is given 

some more activation energy but the combination of two time steps worth of energy in 

the ‘Move Left’ behaviour overcomes the fresh energy in the ‘Move Right’ behaviour. In 

this example the agent is now stuck in an oscillating loop.   

 It was found during the implementation of the behaviour network that the 

possibility of connection loops can exist in the behaviour network. This is explained in 

more detail in section 4.3, and is caused when multiple behaviours are reliant upon one 

another. When energy is passed into this loop, it will then continue to be passed 

infinitely as there are no documented methods to break the loop.   
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 This section has detailed many liabilities within behaviour networks, some of 

which could be a contributing factor to why they have not seen a lot of interest in recent 

years. These liabilities range from; problems with the internal workings of the behaviour 

network (such as the division rule), a lack of persistence for making decisions and the 

possibility of the energy spreading mechanism getting stuck in a loop. In the following 

sections some of these liabilities shall be addressed and potential solutions suggested.  

 

2.2.4.5 Improvements to Behaviour Networks 

The previous sections discussed the current limitations with behaviour networks. It is 

possible that if these limitations were improved, then behaviour networks could see 

more research and implementations in the future. The lack of planning in behaviour 

networks has already seen a potential solution. Lee and Cho (Lee and Cho, 2014) added 

a deliberative control layer on top of a behaviour network. The deliberative control layer 

handled the planning side of a robot, while the behaviour network reacted to dynamic 

changes in the environment. This showed that a top-level planner could make the long 

term plans for a robot while a behaviour network operated as a reactive low-level layer 

enabling the robot to function in dynamic environments.  

 The division rule is a problem that has yet to be solved. Tyrrell (Tyrrell, 1994) 

showed a variety of different solutions but later explains that there is no perfect solution 

for the division rule. Section 4.1 shows a potential solution to this problem by 

embedding data into the links connecting the nodes to allow a smarter, more dynamic 

division rule.  

 The previous section discussed the lack of persistence present in behaviour 

networks and the problem associated with it, selecting inappropriate behaviours. One 

solution involves removing all of the energy in the network every time a behaviour is 
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activated and another solution is to give the selected behaviour some energy equal to 

the average amount of energy in the network.  

 Finally, a method to escape the feedback loop of a behaviour network is 

presented in section 4.3. This method involves creating data packets to travel through 

the behaviour network allowing more data to be collected about the source and 

destination of the data, preventing repetition.  

 

2.2.4.6 Recent Work 

While behaviour networks are no longer a heavily-researched topic, there have been 

some recent publications that have implemented behaviour networks into their 

solutions. Chae and Cho (Chae and Cho, 2014) proposed a hybrid control system that 

integrated a behaviour network, to cope with dynamic environments and a STRIPS 

planning module. The control module was used to create a sequence of reactive 

behaviours of which the behaviour network could take advantage. This system was 

tested with 30 different experiments and showed that the agent was able to complete 

both simple and complex tasks. The combination of STRIPS and behaviour networks 

allowed it to cope with unstable environments while achieving goals.  

 Paikan et al. (Paikan, Metta and Natale, 2013) describes a method for developing 

a reactive system by exploiting the connection between behaviours. Here a publish-

subscribe methodology is applied to send data messages between the behaviours using 

connection points. The result of this methodology was tested on a humanoid robot and 

demonstrated that the final behaviour in a sequence could be built / composed from 

other behaviours in the system. However, there were some documented limitations to 

this approach. Firstly, this approach required parameters and rules to be defined 

specifically for each experiment. Second, this approach struggled with scalability as the 
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system could only handle a limited number of behaviours and rules. Finally, it was 

documented that there are difficulties in monitoring the current state of the system. 

This is caused by the publish-subscribe mechanism and could be solved by displaying the 

information passed between the modules.  

 Lee and Cho (Lee and Cho, 2014) also proposed a hybrid architecture that 

implements a planning control layer with a behaviour network. Instead of using STRIPS, 

a hierarchical planning layer is used to adjust the sequence of behaviours by using 

information from user feedback and sub-goals. The planning layer sits on top of the 

behaviour network to control and manage the whole sequence of behaviours taking into 

account sub-goals. This combination is designed to allow a robot to react in dynamic 

environments and achieve global goals. This methodology was shown to reduce the time 

between executing tasks by 17.5%, allowing the robot to select and execute relevant 

behaviours more efficiently.  This was implemented in both a simulated environment 

and in the real world. However, the experiments were limited and the results from the 

hybrid method were not compared with original implementations of a behaviour 

network.  

 Kertész (Kertész, 2012) developed a variant of the behaviour network to handle 

computational resources of a robot more efficiently. In this study they proposed a 

system where a behaviour network is able to create and destroy behaviours in the 

network at run-time. This is a variant of a dynamic behaviour network. The benefit of 

this approach is that the behaviour network can remain simple and even complex goals 

can be broken down into smaller sub-systems. One limitation of this work (similar to 

others) is that each behaviour is still predefined for a particular problem / goal.  
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2.3. Alternative Approaches to Robot Control 

 

2.3.1. Hierarchical Mechanisms 

 

This section will discuss the different hierarchical mechanisms for action selection. It will 

begin by looking into the Rosenblatt and Payton architecture, which was one of the first 

hierarchical architectures developed as a response to the subsumption architecture. The 

expansion to the Rosenblatt and Payton architecture developed by (Tyrrell, 1994) will be 

discussed, concluding with some recent examples of hierarchical mechanisms that are 

being used. 

Rosenblatt and Payton (Rosenblatt and Payton, 1989) created a layered 

architecture motivated by the principles of (Brooks, 1986)’s subsumption-based 

architecture. This layered architecture built upon the concept of creating a robot control 

system using successive layers of competence. This is achieved by breaking down the 

task achieving behaviours into small decision-making units. This allowed for more 

information to be available to other units and allowed the units to be fully accessible.  

One of the limitations of the subsumption-based architecture is that the behaviours are 

closed and are inaccessible from any of the other behaviours in the system. That is not 

the case in this architecture as there is no such communication barrier between 

behaviours. The small decision making units are defined by how they are connected to 

one another. They each take input data and transform them into output data for other 

units. 

Rosenblatt and Payton (Rosenblatt and Payton, 1989) also explored another 

limitation of the subsumption-based architecture; that there is no cooperation between 

behaviours. Figure 2-18 shows an example scenario where each behaviour has the 

choice of five possible actions A – E. Each behaviour will select the action that is best for 
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itself. The diagram below shows that for behaviour 1, action A best fits its requirements, 

however action B and E would be satisfactory. For behaviour 2, action D would be its 

best choice with action E being satisfactory.   

 

Figure 2-18 - Lack of cooperation in action selection 

The diagram shows that the preferences for individual behaviours are not combined when considering an action. 

The next figure (Figure 2-19) shows the above configuration in a subsumption 

architecture; it shows that the output in this scenario would be A if behaviour 1 were 

suppressing behaviour 2 otherwise, action D would be selected. The alternative 

behaviours in Figure 2-18 are lost as neither behaviour has a means to communicate 

with the other behaviours to come to the compromise of selecting action E. 

 

Figure 2-19 - Lack of cooperation in subsumption architecture 

This diagram shows that neither behaviour in a subsumption architecture have a method to communicate so there is a 

loss of preference for which action a behaviour would like to execute. 

 

The solution to some of the problems of the subsumption architecture (see 

section 2.2.2.) as explained by (Rosenblatt and Payton, 1989) was to make the 

behaviours as ‘fine-grained’ as possible to ensure that no module in the system had 

inaccessible internal states. In this new system, behaviours are broken down into a 

collection of simple decision-making units. Each of these units receive weighted inputs 

Behaviour 1 Behaviour 2 

A B C D E 

Behaviour 1 

Behaviour 2 S1 

A 

A D 



 69 

from the other units in the system and from external data sources such as the robot’s 

sensors. The unit then computes an activation level and sends out a single output. 

Figure 2-20 extends the problem shown in Figure 2-18 and Figure 2-19. Here two 

behaviours again have the choice of five actions A – E. The amount of activation for each 

unit’s choice is symbolised by the diameter of the circle. Green circles represent positive 

values and red represents negative (inhibition) values. The output of each behaviour is 

sent to a command unit, which combines the given input from the other units. The 

command unit selects the action with the highest activation (E) as the best compromise 

for both behaviour 1 and behaviour 2. 

 

Figure 2-20 - Cooperation in the Rosenblatt and Payton 

In this diagram multiple behaviours send their preferences to a command unit to decide an agent’s actions. 

Each behaviour in the system is distributed among several units allowing each unit to have a choice in the overall 

output of the behaviour.  

 

This new architecture also solved the problem of modularity in the subsumption 

architecture as new behaviours that are added to the system do not subsume any of the 

existing behaviours or prevent those behaviours from sending their outputs. The new 
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A B C D E 

Command Unit 
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behaviours express their decisions on what appears to be the best command to execute 

and leave it to the command unit’s output to provide the best decision for all behaviours. 

Rosenblatt and Payton (Rosenblatt and Payton, 1989) demonstrated the 

different levels of competence in their architecture. At the lowest level was an ‘Avoid 

Obstacle’ behaviour, which used a vehicle model trajectory (VMT) to indicate how far in 

a certain direction that a robot can go before it meets an obstacle, this behaviour was 

broken down into many fine-grained units. Some examples of these units include; a 

trajectory selection unit, which, is used to determine which trajectories are hazardous 

and which are safe, and a trajectory speed unit to determine the appropriate speed to 

travel down a trajectory. These units all work together, sharing data to give the basic 

level of competence to enable the robot to avoid obstacles. The next level of 

competence that (Rosenblatt and Payton, 1989) demonstrated in their system 

implemented a gradient field to indicate an optimal route from its current location to a 

goal location. This layer is again broken down into multiple ‘fine-grained’ units, which 

are able to assert an influence in the direction the robot has to go.  

This approach expanded upon the early subsumption architecture by adding 

both modularity (adding more behaviour nodes) and a mechanism to allow the agent to 

show a degree of preference between the different behaviour nodes. This allowed the 

system to make more informed and ‘smarter’ decisions.  
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2.3.2. Reinforcement Learning 

 

Reinforcement learning is a technique which uses a reward-based system (scalar 

evaluation) to allow an agent to select actions in a given environment with the aim of 

maximising its reward score (Kaelbling, Littman and Moore, 1996; Sutton and Barto, 

1998; Kober, Bagnell and Peters, 2013). The overall goal is to select the action which will 

yield the highest reward, based on past experience. This technique has been heavily 

researched and applied to a variety of areas including robotics, game theory and multi-

agent systems.  

 Smart and Kaelbling (Smart and Kaelbling, 2002) claimed that reinforcement 

learning was well suited for mobile robots and implemented a variant which they called 

Q-learning (Watkins and Dayan, 1992). Q-learning is a reinforcement technique that 

learns an action-value function for each possible world state and selects an action based 

on the value of each possible world state it can move to.  In Smart and Kaelbling (Smart 

and Kaelbling, 2002) implementation it was assumed that the world could be described 

by a set of predefined states and that the robot could only choose from a fixed number 

of actions. At each time step the robot would observe the environment (state of the 

world) and choose an action to take. After the action had been executed the robot would 

receive a reward, based on how successful that action was. The robot would continue to 

perform this sequence for a predetermined number of iterations, in the hope that it had 

learned the best actions to take in each world state.  

 Recent work in the area of reinforcement learning includes (Mnih et al., 2015) 

who combined reinforcement learning with neural networks to create a deep Q-

network. This Q-network was tested on a variety of computer games to show that a 

reinforcement algorithm can work with high dimensional sensor data. In this study the 
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Q-network received pixels and the game score as inputs and the results show that the 

Q-network could out-perform previous algorithms. Kretzschmar et al. (Kretzschmar et 

al., 2016) describes using a technique for modelling the behaviour of pedestrians to 

assist the navigation of a mobile robot. An inverse reinforcement learning algorithm was 

implemented. The inverse reinforcement algorithm aims to discover the reward function 

from a given behaviour model, in this case pedestrian movements. This technique was 

successfully implemented in a mobile robot and showed that it was able to navigate in 

an office environment with human obstacles.  

 While reinforcement learning can be applied to a variety of different areas, the 

algorithm does have some limitations which can limit the extent that it can be used in 

robotics. Reinforcement learning begins with the robot having no knowledge of the 

environment that it is in or the outcomes of its actions on the environment. The robot 

must learn, typically by trying random actions, how to function in an environment. Since 

it does not know how to function in an environment to begin with, the robot will perform 

many incorrect actions, such as hitting obstacles. This could take some time for the robot 

to find a reward and begin to improve. In other areas this initial process could be 

simulated and after thousands of iterations the agent would learn the mapping function 

to the environment.  Another major limitation of using reinforcement learning for 

robotics is that it is difficult to describe the world state in a way that the reinforcement 

algorithm can use as input. This is because world states are large in complexity and can 

also change in dynamic ways. Techniques such as the value-function approximation 

(Boyan and Moore, 1995) can be used to reduce the dimensionality of the world state 

for the reinforcement algorithm to use. Current work in reinforcement learning for 

robotics focus on basic tasks such as walking down a corridor or avoiding obstacles.  
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2.3.3. Neural Networks 

 

Neural networks are a popular machine learning technique that can be used in a variety 

of different fields, including data science and robotics. The aim is to mimic one of the 

best learning mechanisms currently available, the human brain. Work in the field of 

mathematics in the early 1940s (McCulloch and Pitts, 1943) paved the way for research 

in neural networks in the early 1950s (Kleene, 1951). Due to the limitations in the 

processing power of computers at that time, advancements in neural networks were 

limited. In the early 1990s research in this area increased dramatically as the 

computational power of machines allowed them to handle larger and more complex 

neural networks (Specht, 1991; Lawrence et al., 1997; Haykin and Network, 2004). 

 Neural networks consist of three main components; the neuron, the connectome 

and the activation function. The neuron, shown in Figure 2-21, takes information from 

other neurons or from independent variables via a synapse (link), combines it and 

outputs to other neurons. The inputs to the neural network are from a single observation 

(such as a world state or row in a database). The input values must then be standardized 

or normalised so that each of the values are in a similar range, this is to allow the neuron 

to sum the values correctly. The output of a neural network can be a continuous value, 

binary values or even a robot action.  

  

Figure 2-21 - The neuron of a neural network. 
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The synapses (links) that connect the input nodes and neurons to other neurons 

each have their own weighting mechanism. The way that neural networks learn is by 

adjusting the values in these weights until the desired outcome is achieved. This will 

typically use techniques such as gradient descent or back propagation to make these 

adjustments.  

Figure 2-22 - The components of a Neural Network 

Where A represents the input from a neuron, B represents a neuron and W represents the weighting on the synapse.  

 

When data comes into a neuron, the first task is to calculate the weighted sum 

of all of its inputs. An activation function is then applied to this value and depending on 

the result of this function will determine what signal, if any, is passed on either to other 

neurons as an input or as the outcome of the neural network. This process may occur 

hundreds or thousands of times depending on the size of the network.  

There are different types of activation function that can be applied in the neuron 

of the neural network. Which activation function should be used depends on the desired 

outcome. 
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1. Threshold Function  

This is an activation function that returns a binary result. If the value, after 

applying the threshold function, is zero then the outcome is also zero. If 

the result is one, then the outcome will also be one. Shown in the figure 

below. 

 

2. Sigmoid Function 

This activation function uses a sigmoid formula on the sum of the 

weighted inputs. If the value approximates towards 1 then a signal will be 

passed on. This activation function is common in the final layer of the 

neural network as it can be used for returning probabilities.  

 

3. Rectifier Function  

This is a common activation function found in the middle layers of the 

neural network. If the input to this function is 0 or less, then it will not 

pass that onto the next layer. As the value of the result increases, so does 

the output value.  

 

4. Hyperbolic Tangent (tanh) 

This function is similar to the sigmoid function with the difference that it 

can return values ranging from -1 to 1 instead of 0 to 1.  
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A common structure for a neural network would be to have the inner hidden 

layers using a rectifier activation function and the final layer to use an activation function 

based on the desired output. For example, if the output is a binary value then either the 

threshold activation function or the sigmoid activation function could be used. The 

threshold activation function would output a 1 or a 0 and the sigmoid activation function 

would return the probability of the output being a 1.   

In order for the neural network to learn, it will use a training set of data so that 

it can adjust the weights of the synapses (links) to get the best results. It does this by 

taking the output of the neural network and comparing that value to the actual value 

and applying a cost function on the difference. The goal is to minimise the cost function 

as much as possible, by returning and adjusting the weights of the synapses (links) using 

techniques such as back propagation and gradient descent.  

Neural networks have been used in robotics for many years. Lin and Lee (Lin and 

Lee, 1991) proposed and demonstrated a neural network model using a fuzzy logic 

controller and a decision making system. This used supervised learning algorithms with 

a self-organising model which was shown to be superior to traditional back propagation 

learning models in traditional neural networks. Miller (Miller, 1994) used a neural 

network to teach a bipedal walking robot how to walk and make decisions in real-time. 

The robot was able to learn how to move its weight in order to take steps without falling 

over. Yang and Meng (Yang and Meng, 2000) applied a neural network to robot motion 

planning. The neural network was able to learn how to navigate a maze by taking in 

environment information as input to the neural network.  

Recently Miljković et al. (Miljković et al., 2013) used a neural network-based 

reinforcement learning controller (Q-learning) to observe the environment and select 

actions to control the robot’s actuators. It would take the observed changes in the 
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environment and issue rewards to the actions depending on how well they performed.  

He et al. (He, Chen and Yin, 2016) designed a robotic system with full-state constraints, 

implementing a neural network. The neural network was able to handle uncertainties 

and disturbances with the robot.  

The activation functions of a neural network could also be applied to the action 

selection mechanism of a behaviour network. The behaviour network is based on a 

simple summing function which could be replaced with a transfer function, as defined 

previously in this section, and could lead to future research on this topic.   

Similar to other techniques discussed in the thesis, neural networks have 

limitations that reduce their applicability to some scenarios. For example, neural 

networks require training in order to function optimally and it can be difficult to train a 

system to handle uncertainty in dynamic environments. Training also takes time and can 

be computationally expensive (depending on the specifications of the robot). Finally, it 

is common for neural networks to be hard coded to accept predetermined inputs and to 

output expected results. This makes it difficult for a robot to learn new skills when it 

interacts with new objects. 

 This chapter has discussed a variety of different technologies and 

techniques that have been used in AI and robot control over the years. One limitation 

still holds for the majority of these and that is they have difficulties functioning 

accurately in dynamic and uncertain environments. The focus of this study is to explore 

and expand upon the technical feasibility of using behaviour networks in these dynamic 

and uncertain environments. 
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3. Proposed Approach and Architecture  
 

In the previous chapters we have identified and discussed the possible architectures for 

robot control. Siciliano and Khatib (Siciliano and Khatib, 2016) explains the importance 

of selecting the correct approach and architecture in a robot system. Before selecting or 

designing the architecture, a set of requirements for the agent need to be defined. 

Firstly, an agent needs to be capable of navigating and functioning in a dynamic 

environment. Secondly, an agent needs to be capable of learning how to handle new 

(unknown) objects dynamically. Finally, the agent needs to be able to complete goals in 

a timely manner. The architecture will need to be able to support the agent to meet 

those requirements.  

Based on the requirements, a hybrid architecture with deliberative modules was 

chosen. Behaviour networks have been proven to function in dynamic and unstructured 

environments (Maes, 1991a; Tyrrell, 1994); however, they do suffer from the limitation 

of being hard coded for particular goals. This thesis proposes a solution to that limitation 

by introducing wireless tags to store data about the objects in the environment. This 

introduction of wireless tags will require a robot architecture which can process the data 

embedded on wireless tags and update the behaviour network at runtime. This chapter 

details the proposed architecture, which is designed to incorporate wireless tags and 

dynamic behaviours into a behaviour network. 

3.1. Overview 

 

This section will go into detail, discussing the workings of the proposed architecture. It 

will begin with an overview of the whole architecture before going into detail for each 
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of the components and how they all integrate. The areas of the architecture that will be 

discussed include: 

 Wireless tag manager  

 Behaviour network manager 

 Environment manager  

 User interaction  

Figure 3-1 shows the overall architecture of the system. The diagram shows the 

structure of the proposed architecture for the dynamic behaviour network. The agent 

uses it’s on board sensors to take information from the environment. This information 

is processed and passed on to the deliberative control layer to act upon. The deliberative 

control layer also takes information about the wireless tags, from an internal database 

and from the input of users to create a behaviour network at runtime. The behaviour 

network can then decide on an action to take and pass that decision to the actuators to 

complete. Each component of this architecture is detailed in the following sections. 

Figure 3-1 - Overall structure of the proposed architecture for the dynamic behaviour network. 
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The diagram in Figure 3-2 shows each of the internal components of the 

deliberative control layer and how they interact with one another. The wireless tag 

manager processes nearby wireless tags and passes information to the behaviour 

network manager. The environment manager processes observations in the world and 

also passes information to the behaviour network manager. Finally, the web manager 

takes input from users and passes information to the behaviour network manager. 

Figure 3-2 - Internal components of the deliberative control layer 

 

When a wireless tag is located, the Wireless Tag Manager (Section 3.2) will 

download the data in a JSON format, process the information and add all found 

behaviours and goals to the agent’s local database. The Environment Manager (Section 

3.3) will take information (at each time step) about the environment (either from 

sensors or simulated environment). This information is processed and used to update 

the agent’s representation of the world state. Should a user desire any goal to be 

completed first or increase/decrease its priority, then the user can adjust the motivation 

for that goal (using the proposed web UI in Section 3.5) and that motivation will be 

updated in the agent’s local database. Finally, at each time step, the Behaviour Network 
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Manager will create a new behaviour network using the information (behaviours/goals 

and motivation) from its local database and the information about the environment in 

the world state. The behaviour network will be executed and output an action for the 

agent to take, sending instructions to the actuators to perform the selected action. Using 

this method the agent can react to changes in the environment, react to instructions 

from users and grow its behaviour network dynamically from wireless tags found in an 

environment.  

3.2. Wireless Tag Manager 

 

The wireless tag manager is the area of the architecture that is responsible for 

interacting with wireless tags in the environment. When a wireless tag is discovered, the 

information on that tag is downloaded and parsed into information that the system can 

use. This could include enough information to generate goals, behaviours and 

environment nodes that can be passed on to the behaviour network manager. 

The wireless tag manager is designed to work on a real-world robot utilising its 

external sensors to connect to embedded wireless tags and to process any information 

that it found. For simulated tests of the behaviour network, the wireless tag manager 

was restricted to scanning for objects within a defined radius of the robot and then 

processing data files that were linked to that object. Figure 3-3 defines the structure of 

processing data files that were linked to that object. 

 



 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

{ 

"ObjectId":, 

"ObjectName":, 

"GoalList":[{ 

  "goalID":, 

  "goalName":, 

  "activation":, 

  "completed":, 

  "Preconditions":, 

  "GoalState":, 

"BehaviourList":[{ 

  "BehaviourID":, 

  "Name":, 

  "Activation_Threshold":, 

  "Preconditions_Met":, 

  "Currently_Executing":, 

  "Priority":, 

  "Energy":, 

  "GoalNames": [], 

  "Preconditions":[{ 

   "PreconditionID":, 

   "Precondition_Name":, 

   "Value":, 

   }], 

  "AddLists":[{ 

   "AddListID":, 

   "Name":, 

   "Value":, 

   }], 

  "DeleteLists":[{ 

   "DeleteListID":, 

   "Name":, 

   "Value":}], 

  }] 

} 

Figure 3-3 - Data structure of a wireless tag for use in a behaviour network 

The data of the wireless tag directly correlates to the structure of a behaviour node 

described in the previous section.  
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3.3. Environment Manager 

 

The environment manager has been designed to work on a robot utilising its external 

sensors to monitor, create, delete and manage the environment nodes (Figure 3-4 shows 

the structure of an environment node). The environment manager is the area of the 

architecture that is responsible for interpreting data from the sensors of a robot and 

converting that information into environment nodes. It will manage a list of these, some 

of which may come from data found on wireless tags. It will then have the task of using 

the robot’s sensors to validate or disprove the state the nodes are in. For example; a 

wireless tag belonging to a Yellow Block may have an environment node ‘Near Yellow 

Block’, in its list of environment nodes. The environment manager is then able to use the 

sensor data from a robot such as sonar and cameras to determine the state of that 

environment node; in this example whether or not the robot is near the yellow block. 

 

 

 

 

For the simulated tests on the behaviour network, the environment manager was 

modified to take inputs from the simulated environment. Although the simulated 

environment processed the environment information differently, the core concept of 

the environment manager remained the same, to use this information to manage the 

environment nodes.  These nodes are passed to the behaviour network manager to be 

added to the behaviour network.  

  

World State [{ 

 Observation Name: “Near Yellow Block”, 

 Observation Value: True 

}] 

Figure 3-4 - Structure of Environment Node. 
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3.4. Behaviour Network Manager 

 

The behaviour network manager is the area of the architecture that is responsible for 

interpreting the data from the other areas of the architecture and converting that 

information into a behaviour network. When the system initialises, the behaviour 

network manager will connect to an on-board database and read in all of the initial 

behaviours and goals that the robot will start with and create an initial behaviour 

network (shown in Figure 3-5). 

Figure 3-5 - Initial behaviour network that the robot will start with. 

|This diagram displays a basic behaviour network that is used to start the robot in a new environment. As the robot 

explores a new environment, new goals and behaviours will be discovered and added to this network. 

As shown in Figure 3-5, the robot will begin with a goal ‘Explore’ and a behaviour 

‘Move’. The robot will explore its environment until the wireless tag manager is able to 

find a wireless tag. At this point, the information on that wireless tag will be parsed and 

the behaviour network manager will receive a list of goals and behaviours to add to its 

on-board database. These goals will be reported to web GUI to notify the users that 

there are new goals available. The behaviour network will function automatically but 

new goals may require the authorization from the users before being added to the 

behaviour network as an achievable goal. At each time step a new behaviour network 

will be created from the behaviours and goals located in the on-board database. The 
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behaviour network manager also receives constant updates from the environment 

manager and is responsible for adding, removing and updating all of the environment 

nodes in the network. This is also done at each time step and is achieved by referring to 

the agent’s interpretation of the world state (that the Environment Manager is 

responsible for updating) and generating new environment nodes. This method of 

changing the number of behaviours in a network has been investigated by Kertész 

(Kertész, 2012), who implemented a behaviour network that could initialise relevant 

behaviours at runtime. 

Finally, the behaviour network manager is also responsible for starting the 

activation spreading process on the current behaviour network which can then return 

appropriate behaviours for execution. In a real-world situation, the behaviour network 

would select a high-level behaviour (high-level behaviours are abstract behaviours which 

can be completed by executing a variety of actuators) and use that to generate a low-

level behaviour network to select the appropriate actuators to achieve it (Lee and Cho, 

2014). In a simulated environment this step can be bypassed as each high level 

behaviour can have the appropriate executable code attached to the behaviour. 

3.5. User Interaction 

 

The ability to allow a user to interact with the behaviour network is one of the 

key methods to allow a behaviour network to become dynamic. Figure 3-6 shows an 

example screenshot of the proposed web GUI for user interactions with the behaviour 

network. Here the user is able to select from a list of goals that the robot is able to 

achieve and set the motivation values (how desirable it would be for the robot to 

complete that goal). If those goals are not already in the behaviour network, then the 

behaviour network manager will not only add the goal to the network but also any 
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behaviours that can help to achieve it. Users are also able to cancel or interrupt any goals 

that they do not want the robot to achieve. When a goal is cancelled or its motivation is 

reduced to zero then not only is the goal removed from the behaviour network but all 

of the behaviours that can only achieve that goal are also removed. This allows the 

behaviour network manager to manage the size of the network as the number of 

behaviours in a network can affect the performance of the network. 

Figure 3-6 - Proposed Web GUI to allow users to interact with the behaviour network 

This diagram shows the web GUI proposed to allow users to interact with the 

agent. The web GUI displays the current goals the agent is executing, with the current 

motivation associated with those goals. The web GUI will also display completed goals 

and new goals that become available to the agent.  This proposed web GUI allows the 

users to dictate how the behaviours interact in the behaviour network. For example, 

increasing the motivation for a goal will affect which behaviours are selected for 

execution. This is a new element for a dynamic behaviour network.  
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3.6. Benefits of proposed architecture 

 

The main benefit of the proposed architecture is that it employs a modular system in 

which each section of the architecture has its own purpose. Each section will act 

independently, not caring or knowing any details about the other modules. This allows 

the modules to ensure that they are able to perform their tasks and send messages to 

other modules that they are connected to. The modules will need to be synchronised to 

ensure that there is no lost information and that they are able to function concurrently. 

For example, the Wireless Tag Manager module is connected the to the Deliberative 

Control Layer and sends messages containing new behaviours to be processed. The 

Wireless Tag Manager is not concerned with the other modules such as the Database 

module or the Environment Manager.  

 The modularity of the proposed architecture also allows it to be extendable. As 

each section of the architecture is in charge of its own tasks. New modules can be added 

with little effort to add more functionality to the system. Although this study is focused 

on behaviour networks and it is at the core of the architecture, it could be ‘swapped out’ 

for an alternative action selection mechanism.  

3.7. Limitations of proposed architecture  

 

While this architecture has been designed around the behaviour network, taking into 

account previous work in this field (Tyrrell, 1994) and other architectures (Siciliano and 

Khatib, 2016), there are still some limitations to the proposed architecture. Firstly, for 

our experiments, it is assumed that each module is able to complete its tasks without 

errors. Table 3-1 shows an example of the types of error that can be exhibited in the 

architecture and which modules would be affected. There is no error handling 

functionality in the proposed system, this is because the architecture was not the main 



 88 

focus of the study and was developed to enable testing of the behaviour network. Should 

a single module fail, e.g, the Environment Manager, the Deliberative Control Layer will 

continue to send messages to the Behaviour Network which will continue to attempt to 

select behaviours to execute. The experiments in the following sections assume that 

these types of errors do not occur. 

 

Type of error Module effected Result of error 

Inability to 
detect objects 

Environment Manager Cannot interact with objects.  
Potential for collisions.  
Some behaviours in the network will 
not be selectable.  

Broken wireless 
tags 

Wireless tag manager New tags will not be added to network.  
Objects will be treated as tag less 
objects.   

Failed Goals Behaviour Network 
Manager 

If a goal fails, then the network would 
have to reset the behaviours needed to 
achieve the goal.  
Could lead to a loop of behaviours 
failing to achieve the goal. 

Failed behaviour 
/ Action 

Behaviour Network 
Manager 

Actions can be failed, e.g. a robot could 
fail to pick up an object. 
Will need to reset the behaviour, to try 
again.  
Could lead to a loop of failing 
behaviours. 

Failed module Module specific A module could fail completely and be 
unresponsive.  
Depending on the module the system 
could continue with limited 
functionality.  

Failed action 
selection 

Behaviour Network 
Manager 

If the agent fails to make a decision on 
which action to take then the system 
will be locked in a loop and will not 
advance the world state.  

Table 3-1 - Types of errors that can be exhibited by the architecture. 
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4. Behaviour Network 
 

This chapter will provide a deeper explanation of behaviour networks. Following on from 

previous chapters which detail what a behaviour networks are and how they work, it will 

begin to address some issues found during the development process. 

4.1. A Solution to the Division Rule 

 

The division rule is a concept described in (Tyrrell, 1994), where the aim is to ensure that 

an appropriate amount of activation energy is distributed between the behaviours to 

allow appropriate behaviours to be selected and achieve goals.  The division rule uses 

the number of input and outputs of the same type in order to calculate the proportion 

of energy to transfer. Tyrrell (Tyrrell, 1994) has demonstrated and explained the possible 

issues with the division rule as described in (Maes, 1991a) and has also shown potential 

solutions (also detailed in section 2.2.4.2.4). None of these solutions works perfectly as 

for each implementation (Tyrrell, 1994) there are scenarios in which that solution fails. 

One problem resides in whether or not the calculation of energy spread should 

involve division by the number of predecessor and conflictor links. As an example, Figure 

4-1 shows a possible scenario in which node ‘B4’ has three input links, two of which help 

to achieve the same goal. Tyrrell’s approach would set M (the number of inputs) to three 

but this would lead to errors in the energy spreading calculations because nodes with 

low M would receive too little activation and can lose out against those with high M on 

occasions when it should be the preferred behaviour. A proposed solution is to store 

data in the links detailing which goal(s) each behaviour can achieve. This meta data 

(information about which goals behaviours contribute to) would allow for a more 
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accurate division rule as the division can then be based on either the number of goals a 

behaviour can achieve or the number of inputs to that behaviour.  

Figure 4-1 - Scenario where a node can have multiple inputs from different goals. 

This diagram shows that behaviours in a behaviour network can help to achieve multiple goals. This is pertinent 

information for calculating how the flow of energy should be spread through the network.  

If the links can be represented as objects with the following information (Figure 

4-2). It is also easy to generate a visual representation of the behaviour network by 

linking the source and destination to behaviours in the network (Figure 4-3 shows this 

network automatically drawn from the metadata). 

 

 

 

 

 

 

 

 

 

 

Achieves G1 B1 

B2 

B3 

B4 

B5 

Behaviours Goals 

G1 

G2 

Achieves G1 

Achieves G2 

Achieves G1 

Achieves G1 

Achieves G1 

Link 

 

Source = “B3”, 

Destination = “B4”, 

Goals = “G1”, 

Type = “Predecessor” 

Figure 4-3 - An example of a behaviour network displayed 

automatically from metadata. 

Figure 4-2 - The data that can be stored in 

each link. 
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Other information that a link should have is the type of the link; this allows the 

algorithm to group links together before selecting the appropriate division rule. Finally, 

each link should store enough data that it is possible to determine to which goals it 

contributes. This will be useful information for the division rule of both predecessor and 

conflictor links. Using this information, the following algorithm was developed (Figure 

4-4): 

This algorithm will get the list of all available goal links and, for each goal link, it 

will look for other links, which are either of type predecessor or conflictor, and match 

the source of the link to the target of the other link. Then for every match a recursive 

method is called that will assign a goal to the link and search for the next link in the tree. 

Figure 4-1 shows an example of the algorithm passing goal information along the links 

between nodes. 

It becomes clear to derive which goal(s) a behaviour can achieve by reading the 

data that is embedded in each link. Using that information, a more meaningful division 

rule can be applied for both predecessor input and conflictor input.   

  

Algorithm 

1: For each Link of type ‘Goal’ in Links 

2:     Get all links of type ‘Predecessor’ and type ‘Conflictor’ where the link’s target is the same as the goal link 

target  

3:     For each link in the given query  

4:          Call a recursive method passing in the link and goal information  

5: 

Method 

6: Add goal information to Link  

7: Find next link matching the source of the current link and the target of the next link 

8: For each link in the given query  

9:      Call this method passing in the next link and the goal information 

 
Figure 4-4 - Pseudocode for embedding goal information to the links of a behaviour network 
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Predecessor input formula: 

𝐼𝑃 =
1

2
(𝛼 +  

𝛼

𝑀𝐴𝑋(𝑀,𝐺)
)       (4) 

Conflictor input formula: 

𝐼𝐶 =  
1

2
 (𝛼

𝛿

𝛾
+  

𝛼

𝑀𝐴𝑋(𝑀,𝐺)

𝛿

𝛾
)       (5) 

Global parameters:  

() A constant used to determine the weighting of goal inputs and predecessor links 

() A constant used to determine the weighting of protected goal inputs and conflictor 

links 

Input Multipliers: 

(
𝛿

𝛾
) Conflictor Links 

Division Rule: 

(G) Number of goals a behaviour can achieve  

(M) Number of inputs of a given type  

MAX(M, G) defines which division rule will be applied 

 

In the new division rule, the use of the number of output (N) has been removed 

as Tyrrell (Tyrrell, 1994) detailed that there are no drawbacks in that alteration. If the 

behaviour can achieve multiple goals, then we divide by the number of goals that it can 

achieve. This will ensure that a behaviour that can achieve multiple goals will retain a 

strong proportion of energy as it will be preferred over other behaviours. If that 

behaviour is not appropriate then the environment nodes will reduce the energy in that 

behaviour significantly. Otherwise we divide by the number of inputs of the same type. 

If the division is high, then less energy will be passed through the network limiting any 

bias that may exist.   
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4.2. Results of the Division Rule 

 

An example network was used to test the proposed division rule, shown in Figure 4-5. In 

this network, there are three goals and ten behaviours. Some simplified assumptions 

were made to test the proposed changes to the division rule: each of the links in the 

network are of the same type (predecessor), and the order of the nodes selected to 

spread energy is predefined. Section 4.3 explores the effects of different orders of 

energy spreading in a behaviour network.  

 The network in Figure 4-5 uses core principles from the examples in (Tyrrell, 

1994) to show the different structures the network can have. In this network the three 

goals create small sub networks. Goal 1 creates a network with one behaviour having 

multiple inputs that originate from a single goal. Goal 2 creates a small chain of 

behaviours, with one behaviour having inputs that originate from two goals. Finally, Goal 

3 creates another small chain of behaviours, with one behaviour taking a single input 

but indirectly achieves multiple goals. 

Figure 4-5 - A behaviour network to test the division rule. 

 

Behaviours Goals 

G1     (10) 

G2     (10) 
B10 

B1 

B2 

B6 

 
B7 

B3 

B4 

B5 

B8 B9 G3     (10) 
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For testing, each goal was given the same motivational value to pass into the 

network. The network ran for multiple iterations to show where the conversion of 

energy finishes. The first test used the same equations as in (Tyrrell, 1994) for spreading 

the energy between different behaviours and the second test used the proposed division 

rule. The results of the first test are shown in Figure 4-6. 

 

 

 

 Figure 4-6 shows the results from running the behaviour network (in Figure 4-5). 

This experiment used the same division rule as described in (Tyrrell, 1994). The chart on 

the left shows the value of energy in each behaviour over multiple iterations. The 

amount of energy in each behaviour was normalised with a range between 0 and 1 over 

each time step. It shows that behaviour (b5) starts and finishes with the highest 

distribution of energy, compared to the other behaviours in the network. The three 

behaviours with the largest amount of energy (b5, b9 and b10) are each the final 

behaviours of the respective goals in the network. These results are expected from this 

network as it is designed with a single link type and no environment nodes to affect the 

Figure 4-6 - Results from testing the original division rule and the new division rule for spreading energy in a behaviour 

network. 

The chart on the left shows the energy in each behaviour over time (normalised with a min max scaler) using a 

traditional division rule. The chart on the right shows the energy in each behaviour over time (normalised with a min 

max scaler) using the proposed division rule. 
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flow of energy in the network. The chart also shows that over time, the distribution of 

energy gradually increases in those three behaviours with behaviour (b5) retaining the 

dominance over all other behaviours. The chart also shows that over time the 

distribution of energy in the network does not remain constant and that it needs 

multiple iterations of energy spreading to converge on the solution.  

Figure 4-6 also shows the results from running the behaviour network (in Figure 4-5) 

with the updated division rule. This experiment applied the division rule as described in 

section 4.1. The chart again shows the value of energy in each behaviour over multiple 

iterations. It shows that behaviour (b5) and behaviour (b9) start with a wider range of 

values, behaviour (b5) also finishes with the highest distribution of energy. This is good 

as it shows network is consistent in that behaviour (b5) is best behaviour to select over 

the others after the first iteration of energy spreading. However, that does change after 

more iterations as the difference between the behaviours lessens. The three behaviours 

with the largest amount of energy are still the appetitive behaviours (b5, b9 and b10). 

The chart also shows that over time, the distribution of energy gradually increases in 

those three behaviours with behaviour (b10) retaining its dominance over all other 

behaviours. This again shows that over time the distribution of energy in the network is 

not constant and that over time the behaviours change position and settle after many 

iterations. 

The results shown in Figure 4-6 show little improvement compared to the original 

approach also shown in Figure 4-6. However, the experiment was also successful in 

identifying the most important behaviour for the behaviour network in Figure 4-5. The 

following sections highlight the benefits and limitations of this new approach and the 

next section (Section 4.3) shall investigate further, energy spreading in a behaviour 

network.  
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4.2.1. Benefits of the new division rule 

 

The new division rule was first mentioned in (Tyrrell, 1994) at a conceptual level. Tyrell 

concluded that in order to have an accurate division rule, each node would need to know 

exactly how many goals its inputs could achieve. The primary benefit of adding this 

metadata to the links of the behaviour network is that this information is now easily 

accessible. The metadata is also useful for debugging the behaviour network. There is        

no information on the evaluation side of behaviour networks, making it difficult to know 

whether the network is functioning correctly. The metadata makes it possible to check 

that the network has been correctly built at run-time.  

4.2.2. Limitations of the new division rule. 

 

The new division rule was developed to solve some of the issues described in (Tyrrell, 

1994) and section 4.1. The results, however, have the disadvantage that at different time 

steps the behaviour network would select different behaviours. Only after multiple 

iterations have passed does the behaviour network decide upon the same behaviour 

consistently. This could be due to the sample behaviour network (in Figure 4-5) and a 

more complex network may be needed to better represent the changes. However, in 

the original design of the behaviour network, it would run for multiple iterations until 

the amount of energy in any node surpassed a set threshold. Meaning that the network 

would converge on the correct behaviour over time.  

 Another limitation to the new division rule is that the added overhead for adding 

this metadata to the links of the network may reduce performance. At each time step 

the behaviour network will re-create the links of the network. Once the network is 

created, it is passed to a recursive function that traverses through the entire network 
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adding the goal information to the links. This carries an inevitable overhead, which may 

limit the real-time responsiveness of a large network.  

4.3. Energy Spreading in the Behaviour Network 

 

During the implementation process of the behaviour network, some key issues 

were noted that have not been raised in any previous work. One such issue affects the 

process of spreading energy around the network. Tyrrell (Tyrrell, 1994) explains that 

energy must first enter the network via the goal nodes using the following formulas. 

 

Energy moved from goal = 

𝛾
𝛼

𝑁𝑀
         (6) 

Energy moved from sensors= 


𝛼

𝑁𝑀
         (7) 

Global Parameters: 

 = A constant used to determine the weighting of environmental inputs and successor 

links 

 = A constant used to determine the weighting of goal inputs and predecessor links 

 

Input Multipliers: 

() Environmental sensors 

() Goals 

 

Division Rule: 

(N) Number of outputs of a given type  

(M) Number of inputs of a given type  
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The energy is passed between the nodes via the predecessor, successor and 

conflictor links. However, there is little discussion on the temporal order in which the 

behaviour nodes should pass energy between themselves. For any given network there 

may be many possible options for the order in which the energy should be spread and 

this can affect the outcome. This section will go into detail of the possible options 

followed by an analysis of the performance of these options. This section will also show 

the effects of selecting different temporal orders for spreading energy in a behaviour 

network.  

Each of the following methods adopted a general set of rules prior to selecting 

the order that the behaviours should spread the energy between themselves. The 

external nodes, such as the goals and environment nodes, would spread energy into the 

network first before the internal behaviours could spread energy. This is to ensure that 

there is sufficient energy in the network to begin with. The links which increase other 

nodes energy levels (such as predecessor and successor links) were selected over 

inhibition nodes (such as protected goal and conflictor links) again to ensure that there 

was energy in the nodes prior to spreading the energy.  The following examples show a 

behaviour network consisting of goal links and predecessor links to allow the network to 

be tested in more detail. 

Tyrrell (Tyrrell, 1994) states that a behaviour network will run for multiple 

iterations of energy spreading until a behaviour’s energy level has increased above a set 

threshold. The supporting text does not explain exactly how to determine the threshold 

feature. During the implementation process of the behaviour network, the first iteration 

of energy spreading it was found that depending on the order, the results could be 

different. This could yield undesired results either due to a loop or nodes not having all 

of the possible energy prior to spreading its energy. If the nodes do not have their full 
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allocation of energy prior to spreading, then an incorrect portion will be sent, and this 

would prevent the network from being in a stable situation. It is possible, however, that 

multiple iterations of the same sequence of nodes could average out the values and 

show different results. Table 4-1 shows that during one iteration of the spreading 

process that behaviour (B6) is preferable to behaviour (B8) however; Table 4-1 shows 

that after multiple iterations the energy value in the behaviours plateau making 

behaviour B8 more favourable than behaviour B6. Behaviours (B1) to (B4) end the 

iteration cycle with 0 energy as they send a full complement to the next behaviour. 

 

 

 

 

 

 

 

Table 4-1 - Results from using a random order of behaviour nodes. 

 The order was: G1, G2, B1, B2, B3, B4, B8, B5, B6 

This table shows the results from spreading activation energy through the behaviour network shown in Figure 4-6. The 

energy spreading process was performed multiple times to test whether the number of iterations made any difference 

to the results. 

Figure 4-7 shows the normalised distribution of energy in the network over time 

(iterations). It shows that during the early iterations of the energy spreading process, 

the network has not yet converged on a solution. 

After 1 

iteration 

After 10 

iterations 

After 100 

iterations 

After 1000 

iterations 

B1 (0) B1 (0) B1 (0) B1 (0) 

B2 (0) B2 (0) B2 (0) B2 (0) 

B3 (0) B3 (0) B3 (0) B3 (0) 

B4 (0) B4 (0) B4 (0) B4 (0) 

B5 (19.83) B5 (171.45) B5 (1696.16) B5 (16943.22) 

B6 (8.67) B6 (65.16) B6 (636.93) B6 (6354.57) 

B7 (16.00) B7 (160.00) B7 (1600.00) B7 (16000.00) 

B8 (7.50) B8 (123.38) B8 (1266.91) B8 (12702.21) 
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Figure 4-7 - Results from using an arbitrary order of behaviour nodes. The order was: G1, G2, B1, B2, B3, B4, B8, 

B5, B6 

 

Two different approaches were tested. The first approach was to take a random 

order of the behaviour nodes and spread the energy from the selected node to the next. 

Figure 4-8 shows a potential situation for the behaviour network and where this method 

yields unsatisfactory results.  Here if behaviour node (B6) is selected to spread energy to 

behaviour node (B5) and (B6) has a value of 5, then following the formula: 

𝐼 =
1

2
(𝛼 +  

𝛼

𝑀𝐴𝑋(𝑀,𝐺)
)        (8) 

It will move 2.5 to B5. However; if behaviour node (B6) has not received all of its 

inputs from other behaviours in the system then it will be moving an incorrect portion 

of energy to the receiving nodes. For example, the behaviour B6 may have received 

some energy from B2 and sent a portion of energy to B5, however; it may not have 

received some energy from B3 meaning that an incorrect portion of energy had been 

sent. 
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Table 4-1, Table 4-2, and Table 4-3 each show that the order of the behaviour 

nodes, directly affects how much energy remains in certain behaviours after each 

iteration. Each of the random selections were simulated over multiple iterations to test 

whether the values would converge if the energy was spread around a number of times. 

This proved to be inconclusive as the final behaviour to be selected in each was trapped 

in a loop between behaviours B5, B6 and B8. Here the initial choice of behaviour directly 

affected which behaviour would have the most energy at any given number of iterations. 

For this test, there was no correct or incorrect behaviour to select. The aim is to show 

that the different behaviours are selected depending on the order that energy is spread. 

Figure 4-8 - An example behaviour network consisting of two goals and eight behaviours, each connected with either 

goal or predecessor links. 

This figure displays a basic behaviour network that was used to test the energy spreading mechanism. This behaviour 

network also includes a feedback loop to show a potential flaw in current behaviour networks. 

 

  

    

Behaviours Goals 

G1     (10) 

G2     (16) 

B7 

B1 

B2 

B3 

B4 

B5 

B6 

B8 
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Table 4-2 - Results from using an arbitrary order of behaviour nodes. The order was: G1, G2, B1, B2, B3, B4, B5, 

B6, B8 

 

 

 

 

 

 

 

 

Table 4-2 shows the results from spreading activation energy through the 

behaviour network shown in Figure 4-8. The energy spreading process was performed 

multiple times to test whether the number of iterations made any difference to the 

convergence of the energy. Figure 4-9 shows the normalised distribution of energy in 

the network over time (iterations). It shows that during the early iterations of the energy 

spreading process, similarly to the previous result, the network has not yet converged 

on a solution. However, unlike the previous result the convergence of the energy has 

finished on different behaviours. In this order, behaviour (B8) concludes the iteration 

cycle with 0 energy because it is the last behaviour selected to send energy. 

After 1 

iteration 

After 10 

iterations 

After 100 

iterations 

After 1000 

iterations 

B1 (0) B1 (0) B1 (0) B1 (0) 

B2 (0) B2 (0) B2 (0) B2 (0) 

B3 (0) B3 (0) B3 (0) B3 (0) 

B4 (0) B4 (0) B4 (0) B4 (0) 

B5 (19.83) B5 (171.45) B5 (1696.16) B5 (16943.22) 

B6 (16.17) B6 (188.55) B6 (1903.84) B6 (19056.78) 

B7 (16.00) B7 (160.00) B7 (1600.00) B7 (16000.00) 

B8 (0.00) B8 (0.00) B8 (0.00) B8 (0.00) 

Figure 4-9 - Results from using an arbitrary order of behaviour nodes. The order was: G1, G2, B1, B2, B3, B4, B5, B6, B8 
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Table 4-3 shows the results from spreading activation energy through the 

behaviour network shown in Figure 4-8. The energy spreading process was performed 

multiple times to test whether the number of iterations made any difference to the 

convergence of the energy. Figure 4-10 shows the normalised distribution of energy in 

the network over time (iterations). It shows that regardless of the number of iterations 

of the energy spreading process, the result stays constant and the energy converges on 

the same solution. However, unlike the previous results the convergence of the energy 

has finished on different behaviours.  

 

After 1 

iteration 

After 10 

iterations 

After 100 

iterations 

After 1000 

iterations 

B1 (0) B1 (0) B1 (0) B1 (0) 

B2 (0) B2 (0) B2 (0) B2 (0) 

B3 (0) B3 (0) B3 (0) B3 (0) 

B4 (0) B4 (0) B4 (0) B4 (0) 

B5 (6.83) B5 (65.77) B5 (654.86) B5 (6545.77) 

B6 (8.67) B6 (96.93) B6 (980.56) B6 (9816.93) 

B7 (16.00) B7 (160.00) B7 (1600.00) B7 (16000.00) 

B8 (20.50) B8 (197.31) B8 (1964.58) B8 (19637.31) 
Table 4-3 - Results from using a random order of behaviour nodes. The 

order was: G1, G2, B1, B2, B3, B4, B6, B8, B5 

Figure 4-10 - Results from using a random order of behaviour nodes. The 

order was: G1, G2, B1, B2, B3, B4, B6, B8, B5 
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The second approach of selecting the order of the behaviours was to spread 

energy from each connected behaviour in sequence following the links from each node. 

Inspired by how depth first search can be used to search a given tree, the behaviours 

were selected by following links to the end of the tree and then backtracking to an 

unexplored node. For example, if behaviour B5 was selected to spread energy then the 

next behaviour would be B8 followed by B6. This soon demonstrated the same problem 

as mentioned previously: the system does not know whether a behaviour has received 

all its inputs or not before sending energy to the next node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After 1 

iteration 

After 10 

iterations 

After 100 

iterations 

After 1000 

iterations 

B1 (0) B1 (0) B1 (0) B1 (0) 

B2 (0) B2 (0) B2 (0) B2 (0) 

B3 (0) B3 (0) B3 (0) B3 (0) 

B4 (0) B4 (0) B4 (0) B4 (0) 

B5 (24.83) B5 (260.35) B5 (2616.71) B5 (26180.35) 

B6 (11.17) B6 (99.65) B6 (983.29) B6 (9819.65) 

B7 (16.00) B7 (160.00) B7 (1600.00) B7 (16000.00) 

B8 (0) B8 (0.00) B8 (0.00) B8 (0.00) 

Table 4-4 - Results from using the second approach. The order was: G1, G2, B1, B2, B3, B4, 

B5, B8, B6 

Figure 4-11 - Results from using the second approach. The order was: G1, 

G2, B1, B2, B3, B4, B5, B8, B6 
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The results from this approach are shown in Table 4-4 and Figure 4-11. These 

results were similar to one of the random selection approaches. It is clear from the 

results, from the different methods of spreading energy, that the order of nodes makes 

a difference in which behaviour accumulates the most energy. It is worth also noting 

that the behaviour network in Figure 4-8 contains a loop amongst nodes B5, B8 and B6. 

Here, each behaviour feeds into one another which, makes the order of the nodes a 

determining factor for the selected behaviour. The other determining factor would be 

the number of iterations that are run before the behaviour networks stops and selects 

a behaviour for execution. The purpose of the threshold feature would appear to be to 

have a fixed point when the iteration process stops. The aim here is to showcase that 

there are many different approaches to spreading energy through a behaviour network 

and show that the results from these methods differ and that a solution is required.   

 To solve the problem of potential loops and to ensure that the order of nodes 

does not determine where the energy converges. One solution is to ensure that each 

node cannot send its energy through the network unless it has received all of its input 

energy. However, the given situation in Figure 4-6 has a loop amongst behaviours B5, B6 

and B8. Each of these nodes has an input which must first be executed prior to that node 

being able to spread energy. It is thus impossible to determine when one of these nodes 

has received all its inputs. The concept of using energy packets to spread energy 

between nodes was implemented to solve this problem. 

4.3.1. Energy Packets 

 

To compensate for the situations where a feedback loop occurs or for when the system 

needs to know whether a node has received its inputs, a new mechanism for spreading 

the energy between the nodes was devised. When a behaviour needs to send its energy 
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to the next behaviour it will create a packet to send (Figure 4-12). A packet contains data 

about itself: a list of all of the previous behaviours that it has travelled to, the target 

behaviour that it is about to travel to, its source and the amount of energy it contains. 

 Storing data relating to the locations where the packet has been (the sources list) 

allows the behaviours to know where the packet has been and where it originated from. 

This ensures that a packet of data will never contribute energy to the behaviour that it 

originated from and by doing so will prevent any loops from occurring.  

 

The behaviour nodes are also modified to accept energy in the packets. Each 

node records its energy, a list of all of the packets that it has received and a total energy 

which is a sum of its energy and the energy of all of the packets that it contains. 

When a behaviour needs to send energy, it will create a packet and put a 

proportion of its own energy into the packet (defined in the previous section). The 

packet will then travel along a link of the same type (e.g., predecessor). When it arrives 

at a new behaviour the packet will be stored in that behaviours list of packages. The 

node will then check if it needs to send energy farther (defined by the outputs of the 

same type) and, if so, will create another packet and send a proportion of its own energy 

to the next behaviour but only if that behaviour is not in the list of behaviours which 

have contributed to that packet. This process of creating and sending packets will 

Behaviour (B5) 

 

Energy: 80 

Packets: 2 

Total Energy: 140 

Behaviour (B8) 

 

Energy: 0 

Packets: 1 

Total Energy: 20 Packet (B5) 

 

SourcesList: [B5] 

Target: B8 

Source: B5 

Energy: 60 

Figure 4-12 - The contents of a behaviour and a packet 
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continue until the packet cannot travel any further (e.g., it does not have any output of 

the same type).  

4.3.3.1. Experiment 1  

 

The first experiment was to test the data packet approach in the behaviour 

network from the previous example (Figure 4-5). This experiment will show how the data 

packet approach can handle problems such as loops and the order of selection for energy 

spreading that the traditional behaviour network could not deal with. The behaviour 

network in Figure 4-8 was used with the data packet approach and the results are shown 

in Table 4-5 and Figure 4-13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After 1 

iteration 

After 10 

iterations 

After 100 

iterations 

After 1000 

iterations 

B1 (0) B1 (0) B1 (0) B1 (0) 

B2 (0) B2 (0) B2 (0) B2 (0) 

B3 (0) B3 (0) B3 (0) B3 (0) 

B4 (0) B4 (0) B4 (0) B4 (0) 

B5 (6.83) B5 (108.29) B5 (1105.22) B5 (11074.4) 

B6 (16.17) B6 (164.68) B6 (1660.06) B6 (16613.83) 

B7 (16.00) B7 (160) B7 (1600) B7 (16000) 

B8 (13) B8 (87.03) B8 (834.72) B8 (8311.61) 

Table 4-5 - Results from using the packet approach in experiment 1. 

Figure 4-13 - Results from using the packet approach in experiment 1. 
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This experiment was tested multiple times with a variety of different orders and 

the results remained constant. In the experiment above, instead of selecting a set order 

for the behaviours to spread energy, each iteration used a different randomly selected 

order. This was done to show that this new approach is impervious to the problems 

caused by the executing order. It shows that a loop in a system can be tolerated and that 

it does not matter if a behaviour has received all of its inputs before sending energy out. 

The outcome of these results show that behaviour B6 is the best behaviour to execute, 

this is correct as behaviour B6 would help two behaviours (B2 and B3) become 

executable and can aid in achieving two different goals. 

The packet approach was able to demonstrate some positive results, however; 

this was shown using only predecessor and goal links in the network. The next test was 

to implement this approach with actual behaviours and multiple different types of links. 

This test was run multiple times and similar results were presented.  

4.3.3.2. Experiment 2 

 

The second experiment was to test the data packets in a behaviour network with 

a simple real-world scenario. This scenario is shown in Figure 4-14 where the agent has 

three goals; ‘Avoid Obstacles’, ‘Explore’ and ‘Collect Yellow Blocks’. The aim of this 

experiment is to track the data packets as they travel through the network, to ensure 

that the correct amount of energy is left in each behaviour after each iteration and to 

observe any erroneous behaviour. In this experiment, it is assumed that the robot only 

has one hand to pick up objects with. If the hand is full (holding an object) then the robot 

cannot pick up any other object. 
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Here there are three goals a robot could have; ‘Explore’ will have the robot 

explore and learn its environment and this will be achieved with the ‘Move’ behaviour. 

The ‘Avoid Obstacles’ goal will ensure the robot can avoid obstacles, again with the 

‘Move’ behaviour. Finally, the ‘Collect Yellow Blocks’ goal would have the robot find and 

move Yellow blocks to a different location. ‘Avoid Obstacles’ and ‘Explore’ both have a 

behaviour ‘Move’ which will have the robot move in a random direction. ‘Pick up Yellow 

Block’, ‘Put down Yellow Block’ allow the robot to interact with the yellow block to 

achieve the goal of ‘Collect Yellow Blocks’. Finally; ‘Pick up Blue Block’ was added to 

allow for conflict in the system. The situation of the environment is that the robot is in 

front of a Yellow Block (ready to be picked up), the robot’s hand is empty, and it is too 

far from a Blue block to interact with it. Using these conditions, the appropriate links are 

used to connect the behaviours, shown in Figure 4-14.  

 

Collect Yellow  

Blocks (100) 

Explore (60) 

Avoid Obstacles 

 (90) 

Pick up  

Yellow Block 

Put down  

Yellow Block 

Pick up  

Blue Block 

Move 

Behaviours Goals 

Goal Link 

Predecessor Link 

Successor Link 

Conflictor Link 

Figure 4-14 - An example real world situation shown as a behaviour network consisting of three goals and four 

behaviours, each connected with different link types. 
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The packet approach was applied to this network. The first implementation 

followed the same approach as (Tyrrell, 1994) where energy was sent into the network 

first via the goal links. The predecessor links were then used to send energy around the 

network followed by successor links and concluding with inhibiting energy following the 

conflictor links. The results from this implementation are shown in Table 4-6. 

 

 

 

 

The results in Table 4-6 show that the system believes that the best action to 

take would be to perform the ‘Move’ behaviour. This is because of the behaviour 

achieves two different goals and is separated from the other behaviours. This means 

that the ‘Move’ behaviour does not need to pass its energy to any other behaviour and 

that it will not be inhibited either. This is a problem if the other systems in the behaviour 

network are what are preferred for the robot to do, more than exploring the 

environment. This is not a problem with the network but in motivation (amount of 

energy in the goals) of ‘Explore’ and ‘Avoid Obstacles’. These would need to be reduced 

or have some other inhibition setting that could be applied to it. 

The results in Table 4-6 also show that both the ‘Pick up Yellow Block’ and the 

‘Put down Yellow Block’ finished with the same amount of energy even though the most 

appropriate behaviour would be ‘Pick up Yellow Block’ given the situation the robot is 

in. By included a threshold (Tyrrell, 1994), it was observed that the behaviour network 

was able to select a behaviour after a single iteration. This is because multiple iterations 

are only needed if the threshold hold is not hit and the network need more energy to 

converge on a solution.  

Behaviour Energy  Total Energy  

Move 120 120 

Pick up Yellow Block 20 60 

Put down Yellow Block 0 60 

Pick up Blue Block 0 27.5 
Table 4-6 - Results from using the packet approach with different types of links. 
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To test whether the reasoning for these results is due to the order in which the 

energy is passed via the links (the results in Table 4-6 followed the order, predecessor, 

successor and conflictor) the same experiment was executed with a different order. 

Table 4-7 then shows the results for when this order is changed to; successor, 

predecessor and conflictor. 

 

 

 

 

 

Table 4-7 shows the same results as in Table 4-6, showing that the order that the 

links are executed in do not make any difference to the end results. The method that the 

behaviours use to pass energy to other behaviours is to send a proportion of energy 

based on its current energy level. This could explain the unsatisfactory results as when 

a behaviour sends energy to another behaviour via a predecessor link, it is reducing the 

amount of energy that behaviour has. When that same behaviour then has to send 

energy via a different link type it may find that its energy level is lower than expected or 

empty. For example; behaviour 1 has an energy of 50 and it sends 40 energy to behaviour 

2 via a predecessor link. Behaviour 1 then has 10 energy left for when it needs to send 

energy to behaviour 3 via a successor link. However; behaviour 1 could have also 

received a packet of energy from another behaviour so making behaviour 1 have 10 

energy and a packet of 30 energy. The current solution of the system has the behaviour 

only send energy from its own source and not from any packets it may have received. 

This worked fine when there was only one type of link to consider (shown in Table 4-5) 

but when multiple links are introduced the solution needs to be modified. 

Behaviour Energy  Total Energy  

Move 120 120 

Pick up Yellow Block 20 60 

Put down Yellow 

Block 

0 60 

Pick up Blue Block 0 27.5 

Table 4-7 - Results from using the packet approach with different types of links. 
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 The next approach involved merging the energy in each of the packets with the 

remaining energy stored in each behaviour for each type of link. For example, following 

from the previous example, behaviour 1 has sent 40 of its 50 energy to behaviour 2 via 

a predecessor link and it has received a packet from another behaviour. Previously it 

would create a packet using the remaining 10 energy and send that via a successor link, 

instead, before it creates a new packet it will merge the energy in its current list of 

packets with the 10 energy it has remaining and send that proportion. 

 

 

 

 

 

Table 4-8 shows the results from using this approach with a link order of; 

predecessor, successor and conflictor. It shows that the ‘Pick up Blue Block’ has a 

negative value, this value is accurate as it is a behaviour that does not benefit the system. 

The ‘Put down Yellow Block’ has the most energy with 120, even though it is a behaviour 

that cannot be executed based on the current situation that the robot is in. Finally; the 

‘Pick up Yellow Block’ has a value of 23.75, which again based on the current situation is 

incorrect. The order of the links was then changed to successor, predecessor and 

conflictor, and the results are shown in Table 4-9. 

 

 

 

 

 

Behaviour Energy  

Move 120 

Pick up Yellow Block 23.75 

Put down Yellow 

Block 

120 

Pick up Blue Block -8.75 

Table 4-8 - Results from using the packet approach 

with merging using different types of links. 

Behaviour Energy  

Move 120 

Pick up Yellow Block 46.25 

Put down Yellow 

Block 

0 

Pick up Blue Block 13.75 

Table 4-9 - Results from using the packet approach 

with merging using different types of links. 
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Table 4-9 shows that the results from using the packet approach with energy 

merging following the link order of; successor, predecessor and conflictor. Here the ‘Pick 

up Blue Block’ behaviour has a value of 13.75 which is low in comparison to the values 

in other behaviours. This means that this behaviour would be unlikely to be chosen for 

activation. The ‘Put down Yellow Block’ behaviour has a value of 0, which again is correct 

given the current situation the robot is in. Finally, the ‘Pick up Yellow Block’ behaviour 

has the most energy in that subsystem with a value of 46.25, making this the most likely 

behaviour to be selected. It is worth noting that the ‘Move’ behaviour has a value of 120 

as in this implementation the weighting for the ‘Explore’ and ‘Avoid Obstacles’ goal had 

not been changed. 

In summary, this experiment has tested the data packet approach in a real-world 

scenario with multiple link types. It was demonstrated that the energy packets were 

successful in navigating the network. This experiment was run multiple times with 

different parameters and the overall results showed that packet merging with a fixed 

link order yielded more domain accurate decisions.  The network in Figure 4-14 did not 

make use of environment nodes and these will be included in the later experiments to 

further test this approach. 
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4.3.3.3. Experiment 3 

 

The third experiment extends the concepts implemented in experiment 1 and 

experiment 2 to further test the data packets in a more complex situation. The aim is to 

test a situation in which the order of the tasks that the agent needs to execute is 

important. This is to ensure that the agent is selecting the most appropriate behaviours 

to achieve its goals. The situation (shown in Figure 4-15) is a behaviour network with the 

goal to bake a cake. Logically, baking a cake involves multiple steps, some of which need 

to be executed in a particular order and others which can be executed at any time. This 

experiment tests whether using data packets enables selecting the correct order of 

behaviours to execute. 

 

  



 115 

 

 

  

Figure 4-15 - Behaviour Network - Experiment 3 
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Table 4-10, Table 4-11 and Table 4-12 show the individual properties of the 

behaviours that are included in the network shown in Figure 4-15. Here the agent has 

one consummatory node ‘Bake’, which achieves the goal of ‘Bake Cake’. It also has six 

appetitive nodes, which help to make the ‘Bake’ behaviour executable. The agent can 

execute the ‘Heat Oven’ and ‘Line Cake Tin’ behaviour at any time without greatly 

affecting the outcome of the goal. The ‘Mix’ behaviour is an appetitive behaviour for the 

‘Add mix to tin’ behaviour and should logically be selected after one of the ‘Add Eggs’, 

‘Add Flour’, ‘Add Butter’ or ‘Add Sugar’ behaviours have executed. This behaviour 

achieves the precondition ‘Mix in Tin’ (The precondition needed to achieve the 

behaviour ‘Bake’). If the sequence that the behaviours is executed in are different to the 

desired sequence, then the end result would be a failed bake. The chronological 

sequence for the expected order of behaviours is: 

 Heat Oven (any time) 

 Line Cake Tin (any time) 

 Add Sugar  Mix 

 Add Butter  Mix  

 Add Flour  Mix 

 Add Eggs  Mix 

 Add Mix to Tin (only after adding ingredients, mixing and lining tin) 

 Bake (final behaviour) 

 

 

The Heat Oven and Line Cake Tin behaviour may be selected in any order as both 

of these behaviours have an immediate contribution to the goal. For this experiment a 

successful cake can be baked regardless of the order of the added ingredients and it is 

expected that the order of added ingredients will depend on which the agent locates 

first. The Mix behaviour should be selected after each ingredient is added. Once all 

ingredients are added then the Add Mix to Tin behaviour should be selected followed by 

the final Bake behaviour to achieve the goal. 
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Behaviour Precondition List 

Heat Oven Oven Off 

Line Cake Tin Tin Empty 

Add Sugar Need Sugar 

Add Eggs Need Eggs 

Add Flour Need Flour 

Add Butter Need Butter 

Mix Unmixed 

Add Mix to Tin Tin Lined, Sugar, Flour, Eggs, 

Butter, Mixed 

Bake Mix in Tin, Oven On 

Table 4-10 - Precondition list for Experiment 3 

Behaviour Add List  

Heat Oven Oven On 

Line Cake Tin Tin Lined 

Add Sugar Unmixed, Sugar 

Add Eggs Unmixed, Eggs 

Add Flour Unmixed, Flour 

Add Butter Unmixed, Butter 

Mix Mixed 

Add Mix to Tin Mix in Tin 

Bake Bake Cake 

Table 4-11 - Add list for Experiment 3 

Behaviour Delete List  

Heat Oven Oven Off 

Line Cake Tin Tin Empty 

Add Sugar Mixed, Need Sugar 

Add Eggs Mixed, Need Eggs 

Add Flour Mixed, Need Flour 

Add Butter Mixed, Need Butter 

Mix Unmixed 

Add Mix to Tin Mixed 

Bake None 

Table 4-12 - Delete list for Experiment 3 
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This scenario does not take into account the lower level atomic actions that the 

agent would need to perform, but instead focuses on the high level behaviours needed 

to achieve the goal. For example, in order to add eggs to the cake mix the agent would 

need to select actions to position a robot arm near an egg and to apply the correct 

amount of pressure to crack the egg. Work has been done to incorporate a hierarchy of 

behaviour networks to solve a particular task (Nicolescu and Matarić, 2002). This 

concept could be used to extend this scenario, so when the agent selects a high level 

behaviour to execute a new behaviour network would be created with that high level 

behaviour as the goal and some low level atomic actions as the behaviours. 

Table 4-143 shows the first scenario in experiment 3. Here the preconditions 

have been met for behaviours; ‘Heat Oven’, ‘Line Cake Tin’ creating the network shown 

in Figure 4-15. Each of these behaviours is a valid action to begin the process of baking 

a cake. Table 4-134 shows the results from the first energy spreading process. Here the 

agent believes that the most appropriate behaviour to execute is the ‘Heat Oven’ 

behaviour, followed by behaviours; ‘Mix’ and ‘Line Cake Tin’. The agent selected the 

‘Add’ ingredient behaviours to be the most inappropriate behaviours to execute at this 

time. The baking a cake example was selected as there is a sequence of behaviours that 

are expected to be followed. Currently the agent is selecting an expected order of 

behaviours. 
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Based on the results from scenario 1 (Table 4-14), the agent executes the ‘Heat 

Oven’ behaviour turning on the oven and meeting one of the preconditions for the ‘Bake’ 

behaviour. Behaviours; ‘Mix’ and ‘Add Mix to Tin’ may have the most energy but their 

preconditions are not met. These behaviours pass a portion of their energy to the 

appetitive behaviours that will meet their preconditions. This leads to scenario 2 shown 

in Table 4-15 and also the results of the next round of energy spreading in Table 4-16. 

This shows that behaviour ‘Line Cake Tin’ is now the most appropriate behaviour for the 

agent to execute, followed by the add ingredient behaviours.  

 

 

 

 

 

 

 

 

Behaviour Energy  

Bake -11.5 

Heat Oven 15.5 

Line Cake Tin 5.9 

Add Sugar 2.9 

Mix 8 

Add Mix to Tin 12 

Add Flour 2.9 

Add Eggs 2.9 

Add Butter 2.9 

Table 4-13 - Experiment 3, Scenario 1  

World State Values 

Oven On  False 

Oven Off  True 

Tin Empty  True 

Tin Lined  False 

Mixed  True 

Unmixed  False 

Have Sugar  False 

Have Flour  False 

Have Eggs  False 

Have Butter False 

Mix in Tin False 
Table 4-14 - Experiment 3, Scenario 1 - Results 

Preconditions Values 

Oven On  True 

Oven Off  False 

Tin Empty  True 

Tin Lined  False 

Mixed  True 

Unmixed  False 

Have Sugar  False 

Have Flour  False 

Have Eggs  False 

Have Butter False 

Mix in Tin False 

Behaviour Energy  

Bake 0 

Heat Oven 0 

Line Cake Tin 15.46 

Add Sugar 9.56 

Mix 17.06 

Add Mix to Tin 27.60 

Add Flour 9.56 

Add Eggs 9.56 

Add Butter 9.56 

Table 4-16 - Experiment 3, Scenario 2 - Results  

Table 4-15 - Experiment 3, Scenario 2  
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The agent now selects the ‘Line Cake Tin’ behaviour (based on the results from 

Table 4-16) which lines the cake tin ready for the mixture and meets a precondition of 

‘Add Mix to Tin’ behaviour. This leads to scenario 3 shown in Table 4-17 and also the 

results of the next round of energy spreading in Table 4-18. This shows that the agent 

believes that the best option is one of the add ingredient behaviours. 

 

 

 

Based on the results from Table 4-18, the ‘Add Sugar’ behaviour is now selected 

for execution. This starts the chain of behaviours needed to create the cake mix. 

Executing this behaviour leads to scenario 4 shown in Table 4-19 and also the results of 

the next round of energy spreading in Table 4-20. 

 

 

 

 

 

 

World State Values 

Oven On  True 

Oven Off  False 

Tin Empty  False 

Tin Lined  True 

Mixed  True 

Unmixed  False 

Have Sugar  False 

Have Flour  False 

Have Eggs  False 

Have Butter False 

Mix in Tin False 

Behaviour Energy  

Bake 0 

Heat Oven 0 

Line Cake Tin 0 

Add Sugar 11.25 

Mix 8 

Add Mix to Tin 8 

Add Flour 11.25 

Add Eggs 11.25 

Add Butter 11.25 

Table 4-17 - Experiment 3, Scenario 3  

Table 4-18 - Experiment 3, Scenario 3 - Results 
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Table 4-20 shows that currently the most appropriate behaviour to execute is the 

‘Mix’ behaviour. The agent then follows the chain of adding ingredients and performing 

the mix behaviour until all of the ingredients have been added and mixed. This leads to 

scenario 5 shown in Table 4-21 and also the results of the next round of energy spreading 

in Table 4-22. 

 

 

 

 

World State Values 

Oven On  True 

Oven Off  False 

Tin Empty  False 

Tin Lined  True 

Mixed  True 

Unmixed  False 

Have Sugar  True 

Have Flour  False 

Have Eggs  False 

Have Butter False 

Mix in Tin False 

Behaviour Energy  

Bake 0 

Heat Oven 0 

Line Cake Tin 0 

Add Sugar 0 

Mix 13.25 

Add Mix to Tin 16 

Add Flour 13.25 

Add Eggs 13.25 

Add Butter 13.25 

Table 4-20 - Experiment 3, Scenario 4 - Results 

Table 4-19 - Experiment 3, Scenario 4  

World State Values 

Oven On  True 

Oven Off  False 

Tin Empty  False 

Tin Lined  True 

Mixed  True 

Unmixed  False 

Have Sugar  True 

Have Flour  True 

Have Eggs  True 

Have Butter True 

Mix in Tin False 

Behaviour Energy  

Bake 24 

Heat Oven 0 

Line Cake Tin 0 

Add Sugar -11.25 

Mix 0 

Add Mix to Tin 45 

Add Flour -11.25 

Add Eggs -11.25 

Add Butter -11.25 

Table 4-22 - Experiment 3, Scenario 5 - Results 

Table 4-21 - Experiment 3, Scenario 5 
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The results shown in Table 4-22 show that the most appropriate behaviour to 

execute is the ‘Add Mix to Tin’ behaviour and the most inappropriate behaviours are to 

add more ingredients to the mix. This leads to scenario 6 shown in Table 4-23 and also 

the results of the next round of energy spreading in Table 4-24. 

 

 

The agent now believes that the most appropriate behaviour to execute is the 

‘Bake’ behaviour and in executing this behaviour the agent is able to achieve the goal of 

‘Bake Cake’. The whole sequence of selected behaviours are shown in Figure 4-16, here 

you can clearly see which behaviours the agent selected at each time step. It also shows 

that at certain time steps there were behaviours with greater energy than the selected 

behaviour, however these behaviours did not have their preconditions met.  

This experiment shows that the current implementation of the behaviour 

network is able to successfully and accurately, select the most appropriate behaviours 

in a correct sequence leading to the completion of a complicated goal. The test scenario 

was a closed test with only one system of behaviours. To further test that this is the best 

implementation of a behaviour network a final test scenario was devised incorporating 

multiple systems into a single behaviour network and a simulated environment.  

World State Values 

Oven On  True 

Oven Off  False 

Tin Empty  False 

Tin Lined  True 

Mixed  True 

Unmixed  False 

Have Sugar  True 

Have Flour  True 

Have Eggs  True 

Have Butter True 

Mix in Tin True 

Behaviour Energy  

Bake 39 

Heat Oven 0 

Line Cake Tin 0 

Add Sugar 7.5 

Mix 0 

Add Mix to Tin 0 

Add Flour 7.5 

Add Eggs 7.5 

Add Butter 7.5 

Table 4-23 - Experiment 3, Scenario 6  

Table 4-24 - Experiment 3, Scenario 6 - Results 
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4.3.3.4. Experiment 4 

 

Experiment 4 is an extension of the previous experiment. In the previous experiment the 

goal of baking a cake and the behaviours associated with that goal was introduced. In 

that experiment there were some assumptions such as:  

 The robot was located in the kitchen with the oven and the cake tin. 

 All of the ingredients were within the range of the robot. 

 Low-level behaviours (‘go to’ and ‘pick up’) were included in the higher-level 

behaviours.  

In order to do the testing for Experiment 4, a simulated environment has been 

implemented. The simulation consists of a grid of cells with each cell containing a value 

representing an object in the environment. The conditions for this environment are as 

follows: 

 Movement – the agent can only move from one cell to an adjacent cell.  

 Sensors – the agent can only scan the cells immediately next to it. 

 Memory – the agent maintains a memory of every cell that it has scanned. 

 

 

 

 

Object in 

Environment 

Value 

Representation  

Unexplored area 0 

Explored area 1 

Wall 2 

Ingredient 4 

Ingredient 5 

ingredient 6 

ingredient 7 

Kitchen (oven) 8 

Robot 9 

Table 4-15 - Value representation of the simulated 

environment. 

Figure 4-17 - The simulated environment for 

experiment 4 
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 In this environment (Figure 4-17), there are two rooms; one room contains the 

oven represented by the value ‘8’ and the other room is where the robot will begin 

(represented by the value ‘9’). Table 4-15 defines what each value represents in the 

environment.  

 This experiment uses the following assumption: that the robot will begin the 

experiment with a full complement of behaviours and goals. The robot will start with an 

‘Explore’ goal and an associated ‘Move to Unexplored’ behaviour, where the robot will 

choose the closest unexplored location (represented by ‘0’ in Figure 4-18) and navigate 

to that location. The goal is achieved when there are no more unexplored locations for 

the robot to navigate to. The robot will also begin with the ‘Bake Cake’ goal and all the 

associated behaviours demonstrated in Experiment 3. In addition to these behaviours 

the robot will have a ‘Pick Up’ behaviour, this is necessary as each of the ingredients 

needed to bake the cake are distributed around the environment (shown in Figure 4-17). 

It is again assumed that the robot can only carry one object a time. The robot will need 

to explore the environment in order to locate the distributed ingredients. In this 

experiment, the robot’s sensor range is limited to the areas directly adjacent to itself. 

Once found, the robot will need to collect the ingredients and bring them to the kitchen, 

which will enable the robot to perform additional behaviours.  

 Figure 4-18 - Internal memory map for the agent 

in the simulated environment 
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 This experiment will make full use of the proposed architecture, described in 

Chapter 3. The robot will monitor the environment of the simulator and store the 

information in its own memory map (Figure 4-18). At each time step, the environment 

manager will take the values of each space around the robot and update the memory 

map. At the same time the environment manager will update the world state in the 

robot’s memory. The behaviour network manager has access to the world state in the 

robot’s memory and will use this information to update the precondition, add list and 

delete list for each behaviour. This ensures that the robot will always have an up-to-date 

behaviour network for the environment that it is in.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Behaviour Precondition List 

Bake Mix in Tin, Oven On, Near Kitchen 

Heat Oven Oven Off, Near Kitchen 

Mix Unmixed, Near Kitchen 

Line Cake Tin Tin Empty, Near Kitchen 

Add Mix to Tin Tin Lined, Sugar, Flour, Eggs, Butter, Mixed, 

Near Kitchen 

Add Sugar Need Sugar, Have Sugar 

Go to Sugar Sugar Found 

Pick up Sugar Sugar Found, Near Sugar, Hand Empty 

Add Eggs Need Eggs, Have Eggs 

Go to Eggs Eggs Found 

Pick up Eggs Eggs Found, Near Eggs, Hand Empty 

Add Flour Need Flour, Have Flour 

Go to Flour Flour Found 

Pick up Flour Flour Found, Near Flour, Hand Empty 

Add Butter Need Butter, Have Butter 

Go to Butter Butter Found 

Pick up Butter Butter Found, Near Butter, Hand Empty 

Go to Kitchen Kitchen Found 

Table 4-16 - Precondition list for Experiment 4 
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For this experiment the robot will not use the wireless tag manger in the 

architecture as it will begin this experiment with all of the behaviours that it will need to 

achieve the goal.  In this experiment there will not be any user interaction to interfere 

with the robot’s decision making process and so the web manager from the architecture 

will not be used either.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Behaviour Add List  

Bake Bake Cake 

Heat Oven Oven On 

Mix Mixed 

Line Cake Tin Tin Lined 

Add Mix to Tin Mix in Tin 

Add Sugar Unmixed, Sugar 

Go to Sugar Near Sugar 

Pick up Sugar Hand Full, Have Sugar 

Add Eggs Unmixed, Eggs 

Go to Eggs Near Eggs 

Pick up Eggs Hand Full, Have Eggs 

Add Flour Unmixed, Flour 

Go to Flour Near Flour 

Pick up Flour Hand Full, Have Flour 

Add Butter Unmixed, Butter 

Go to Butter Near Butter 

Pick up Butter Hand Full, Have Butter 

Go to Kitchen Near Kitchen 

Table 4-17 - Add list for Experiment 4 
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Table 4-16, Table 4-17 and Table 4-18 show the individual properties of the 

behaviours that are included in the network shown in Figure 4-19; these are the 

precondition, add list and delete list for each behaviour. 

Table 4-19 shows the initial world state that the robot will begin this experiment 

in. At this initial point, the robot can only perform explore behaviours until it either finds 

some ingredients or the kitchen. The behaviour network in Figure 4-19 shows the initial 

state of the network at the start of the experiment.  

 

 

 

 

 

Behaviour Delete List  

Bake None 

Heat Oven Oven Off 

Mix Unmixed 

Line Cake Tin Tin Empty 

Add Mix to Tin Mixed 

Add Sugar Mixed, Need Sugar 

Go to Sugar None 

Pick up Sugar Near Sugar, Hand Empty 

Add Eggs Mixed, Need Eggs 

Go to Eggs None 

Pick up Eggs Near Eggs, Hand Empty 

Add Flour Mixed, Need Flour 

Go to Flour None 

Pick up Flour Near Flour, Hand Empty 

Add Butter Mixed, Need Butter 

Go to Butter None 

Pick up Butter Near Butter, Hand Empty 

Go to Kitchen None 

Table 4-18 - Delete List for Experiment 4 
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Observation State  

Oven On FALSE 

Oven Off TRUE 

Tin Empty TRUE 

Tin Lined FALSE 

Need Sugar TRUE 

Sugar FALSE 

Need Eggs TRUE 

Eggs FALSE 

Need Flour TRUE 

Flour FALSE 

Need Butter TRUE 

Butter FALSE 

Mixed TRUE 

Unmixed FALSE 

Mix in Tin FALSE 

Sugar Found FALSE 

Near Sugar FALSE 

Hand Empty FALSE 

Eggs Found FALSE 

Near Eggs FALSE 

Flour Found FALSE 

Near Flour FALSE 

Butter Found FALSE 

Near Butter FALSE 

Hand Full FALSE 

Have Sugar FALSE 

Have Eggs FALSE 

Have Butter FALSE 

Have Flour FALSE 

Unexplored TRUE 

Explored FALSE 

Kitchen Found FALSE 

Near Kitchen FALSE 

Table 4-19 - Initial world state for Experiment 4 
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During the early time steps, the robot will select the ‘Move to Unexplored’ 

behaviour and navigate the simulated environment. When the robot finds an ingredient, 

the world state will be updated (by the Environment Manager) allowing the behaviours 

associated with that object to be selectable. The robot will either interact with the 

ingredient or continue until it locates the ‘Kitchen’ object. Figure 4-20 shows the results 

for this experiment.   

Figure 4-19 - Behaviour Network - Experiment 4 
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Figure 4-20 shows the results from this experiment. The top graph shows the 

movement of energy over time and the bottom graph shows the selected behaviours at 

each time step. During the first 100 time steps the robot explores the environment until 

time step 110 when the robot starts to locate some ingredients. The change in the 

distribution of energy in the network (from finding the ingredients) was not sufficient to 

outperform the ‘Move to Unexplored’ behaviour.  

The robot continues to explore the environment until time step 120, where the 

robot locates the ‘Kitchen’. Although the robot had found some ingredients to interact 

with, the associated behaviours were not selected for execution as they did not have 

sufficient energy to out-compete the ‘Explore’ behaviour. This is because those 

behaviours had a diluted portion of energy, due to the high number of behaviours 

needed to pass energy to the ‘Pick up’ behaviours. When the robot is nearby to the 

kitchen, it is capable of executing behaviours, such as; ‘Heat Oven’ and ‘Line Cake Tin’. 

The ‘Heat Oven’ behaviour is selected, however; the robot decides that the ‘Go to Flour’ 

behaviour would be the next best behaviour to select over the ‘Line Cake Tin’ behaviour. 

Table 4-20 shows the world state when the robot decides to leave the proximity of the 

kitchen. 

The path that the robot has selected is now to navigate to the flour, pick up the 

flour, return to the kitchen and add the flour to the bowl. The reason why the robot 

chooses to the leave the kitchen, even though there are still behaviours to select, is 

because of the numerous inputs to that behaviour has overpowered the other options. 

It is observed in Figure 4-20 that once the robot leaves the proximity of the Kitchen, 

leading to the world state shown in Table 4-21, that the distribution of energy moves to 

the ‘Go to Kitchen’ behaviour.  
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Observation State  Observation State  

Oven On TRUE Hand Empty FALSE 

Oven Off FALSE Eggs Found FALSE 

Tin Empty TRUE Near Eggs FALSE 

Tin Lined FALSE Flour Found TRUE 

Need Sugar TRUE Near Flour FALSE 

Sugar FALSE Butter Found TRUE 

Need Eggs TRUE Near Butter TRUE 

Eggs FALSE Hand Full FALSE 

Need Flour TRUE Have Sugar FALSE 

Flour FALSE Have Eggs FALSE 

Need Butter TRUE Have Butter FALSE 

Butter FALSE Have Flour FALSE 

Mixed TRUE Unexplored FALSE 

Unmixed FALSE Explored TRUE 

Mix in Tin FALSE Kitchen Found TRUE 

Sugar Found FALSE Near Kitchen TRUE 

Near Sugar FALSE   

Table 4-20 - World state when the robot is in the proximity of the kitchen (Experiment 4). 

Observation State  Observation State  

Oven On TRUE Hand Empty FALSE 

Oven Off FALSE Eggs Found FALSE 

Tin Empty TRUE Near Eggs FALSE 

Tin Lined FALSE Flour Found TRUE 

Need Sugar TRUE Near Flour FALSE 

Sugar FALSE Butter Found TRUE 

Need Eggs TRUE Near Butter FALSE 

Eggs FALSE Hand Full FALSE 

Need Flour TRUE Have Sugar FALSE 

Flour FALSE Have Eggs FALSE 

Need Butter TRUE Have Butter FALSE 

Butter FALSE Have Flour FALSE 

Mixed TRUE Unexplored FALSE 

Unmixed FALSE Explored TRUE 

Mix in Tin FALSE Kitchen Found TRUE 

Sugar Found FALSE Near Kitchen FALSE 

Near Sugar FALSE   

Table 4-21 - World state when the robot leaves the proximity of the kitchen. 
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It is observed at this point that the robot will continue to select the behaviours: 

‘Go to Kitchen’ and ‘Go to Flour’ consecutively and not advance the world state. The 

expected outcome would be for the agent to navigate to the ingredient, perform the 

pickup behaviour and bring the ingredient to the kitchen. The loop that the agent 

demonstrated is undesirable and showed no indication of stopping. This negative result 

was unintentional and was caused by the unfair competition (where behaviours receive 

energy from more behaviours than others) (See section 2.2.4) of the inputs to those 

behaviours at each time step. A similar situation was also described in (Tyrrell, 1994), 

where unfair competition can lead to incorrect behaviours being selected for execution.  

A variety of techniques have been tried to bypass this limitation (Tyrrell, 1994; 

Lee and Cho, 2014). The first technique was to use intermediary behaviours to filter the 

flow of energy to those behaviours with high inputs. This concept would use an 

intermediary behaviour to hold the energy from the various inputs and send a 

proportion of that energy to the consummatory behaviour. This yielded poor results as 

the proportion of energy given to the consummatory behaviour was still greater than 

the energy in all other behaviours in the system.  

Another technique was to make changes to the global weighting parameters. A 

variety of different values were used for the parameters of the behaviour network. 

Those values remained between 0 and 1 and were chosen at random. Some parameter 

changes caused the robot to select inappropriate behaviours and some changes limited 

the flow of energy through the network. There are parameter tuning algorithms (such 

as genetic algorithm or grid search) that could be used to find the best global weights 

for the network. However, these algorithms work well in constrained situations and 

should the situation / environment change then the results would be much worse than 

optimal.  
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One potential solution to the problem shown in this experiment would be to add 

additional motivation to goals / behaviours that the agent is currently performing. For 

example, if the agent performs a ‘Go To’ object behaviour then on the next time step 

additional motivation would be added to the same ‘Go To’ behaviour until the agent is 

able to navigate to the object. The amount of motivation should be strong enough to 

allow the behaviour to be selected again but also weak enough that is does not over 

power other behaviours from ever been selected.  

Another potential solution (explored in section 5.1.2) is to abstract the 

behaviours to a higher-level of detail. The theory is that it would reduce the complexity 

of the behaviour network, which would result in fewer inputs to each node. If there are 

fewer inputs to a node then there would be less chances of bias in the network (as shown 

in this experiment).  E.g. instead of the behaviours; ‘Go To Object’, ‘Pick up Object’ and 

‘Put down Object’, they could be grouped into a single higher-level behaviour. If the 

higher level behaviour is selected for execution then additional steps to select the action 

to take can then be explored. Lee and Cho (Lee and Cho, 2014) demonstrated how a 

high-level behaviour network can start smaller behaviour networks to achieve a high-

level behaviour.  

4.3.3.5. Overview of the results 

 

The data packet approach has been tested with four different experiments. The 

aim of these experiments is to test the data packet approach with incrementally more 

complex / difficult situations. The first experiment (Section 4.3.3.1) incorporated a 

simple behaviour network with a single link type. This experiment showed that the data 

packet approach, regardless of order, was able to evenly distribute activation energy 

through a behaviour network. The second experiment (Section 4.3.3.2) expanded from 
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the previous experiment to simulate a real-world scenario with different goals and 

behaviours and a variety of link types. The behaviour network was again, simple and the 

results showed that it was able to evenly distribute the energy through the network and 

complete the goal.  The third experiment (Section 4.3.3.3) incorporated a much more 

complicated real-world scenario, baking a cake. The assumptions for this scenario was 

that the agent was within the range of each object/ingredient and the aim was to see if 

the behaviour network could select the actions in the correct order to complete the goal. 

This experiment, again had a variety of different link types and used the data packet 

approach to distribute the energy through the network. The results showed that the 

agent was able to select the correct order of actions and complete the goal. To extend 

this experiment further, experiment 4 (Section 4.3.3.4) incorporated a simulated 

environment for the agent to navigate. The test scenario was the same as experiment 3 

except that each object was randomly placed in the environment. The agent then 

needed to explore the environment to locate each object/ingredient in order to 

complete the goal. The behaviour network was expanded with new behaviours to enable 

the agent to navigate and interact with objects. The results from this experiment were 

undesirable as the agent was trapped in a loop of selecting conflicting behaviours. This 

is discussed in detail in Section 4.3.3.4.  The next experiment (Section 5.1.1) shall expand 

upon this experiment to test the behaviour network with distributed behaviours/ goals. 

One of the aims of this experiment is to see if the agent’s behaviour will change if it 

receives the behaviours iteratively from the environment and if that will allow it to 

complete the goal successfully.  

The technical aims described in Section 1.3.1 discussed the exploration and 

experimentation of behaviour networks and their activation spreading mechanisms, 

which have been achieved in this Section. These experiments were necessary to assist 
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with answering the hypothesis of the study; as an agent needs to be able to successfully 

complete goals in dynamic and both unstructured and structured environment. The next 

section shall continue with this objective as it explores the dynamic behaviour network 

with distributed behaviours and goals.  

5. Dynamic Behaviour Network 
 

This chapter will begin with a discussion on dynamic behaviour networks, starting with 

an introduction to the disadvantages to standard behaviour networks and concluding 

with the motivation for using a dynamic behaviour network. 

 Chapter 4 covers a detailed explanation of a standard behaviour network and 

how it can be used in certain situations. Traditionally, a behaviour network will be hand-

designed (predefined), with each behaviour being hard-coded to work in the 

environment of the agent. The network will allow the agent to react to changes in its 

environment and select the best behaviour for the situation it is in. The main 

disadvantage of the behaviour network is the hard-coded nature of its behaviours. This 

limitation prevents the agent from learning new behaviours or goals or reacting to 

situations that it was not pre-programmed to handle. For this, a dynamic behaviour 

network is required. A dynamic behaviour network is defined as one which can learn 

new behaviours over time and can modify itself based on internal and external factors, 

while keeping some of the same traits as the static behaviour.  

 Chapter 3 discussed the proposed architecture to be used for both a standard 

behaviour network and a dynamic behaviour network. In this architecture, the 

behaviour network manager is the component responsible for managing the network of 

behaviours. It takes input from other areas of the system and uses that to update the 
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behaviour network, either by adding new behaviours or goals or removing unwanted 

behaviours.  

 To enable a dynamic behaviour network to learn new behaviours and goals, it is 

proposed to embed wireless tags onto objects in a real-world environment. When a 

robot enters the environment, it will be able to read the wireless tags and download the 

necessary behaviours and goals needed to interact with items in that environment. 

Chapter 3 discussed the Wireless Tag Manager and how that would be used to read data 

from wireless tags in the environment. When the robot reads a wireless tag, the 

information is parsed and passed to the Behaviour Network Manager to add those 

behaviours and goals to the existing behaviour network. It is worth noting that the 

experiments were conducted in a virtual environment and the wireless tags were 

simulated in the experiments.  

 Another element to a dynamic behaviour network is the ability to allow users to 

interact with the decision-making process. Traditionally, a standard behaviour network 

will have predefined goals, each with their own predefined motivations. In this situation, 

there is no method for altering those goals or motivations. In the proposed architecture 

for this system, the method for how users will be able to influence the motivations of 

the goals for an agent are discussed. The Behaviour Network Manager will again take 

this input and make changes to the behaviour network at run time.  
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5.1. Test Cases for the Dynamic Behaviour Network 

 

This section describes all of the test cases that were created to test the dynamic 

behaviour network. Each test case showcases a particular problem with which a static 

behaviour network would have difficulty and that a dynamic behaviour network can 

solve. 

 The first experiment will introduce distributed behaviours to a behaviour 

network. The primary aim for this experiment is to show that a behaviour network can 

grow dynamically, adding new behaviours and goals at run-time. This part of the 

experiment will be successful if the agent can successfully navigate a simulated 

environment and read in new behaviours / goals dynamically and perform new 

behaviours that it did not originally begin with. The secondary aim for this experiment is 

to extend the experiment (4) from Section 4.3. To explore whether a dynamic behaviour 

network can perform better than the static behaviour network with the same 

experiment. This part of the experiment will be successful if the agent is able to 

overcome the problems found in Section 4.3 and complete the goal (‘Bake Cake’).  

 The second experiment will test the dynamic behaviour network with multiple 

competing goals. The previous experiments demonstrated the agent starting with a 

single default goal ‘Explore’ along with a larger goal such as ‘Bake Cake’. This experiment 

will test the dynamic behaviour network with multiple goals that are distributed in the 

simulated environment. This experiment will be successful if the agent is able to 

successfully explore the environment, add all found goals / behaviours to its network 

and complete all of the goals. 

 The third experiment will test how a dynamic behaviour network can respond to 

user input. The aim is to show that there are many ways in which a behaviour network 
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can be dynamic and that by changing the motivation for goal can affect the decisions of 

the agent.  

5.1.1. Distributed Behaviours  

 

The primary benefit of a dynamic behaviour network is the ability to distribute 

behaviours in an environment and to read those behaviours at a later time. This allows 

an agent to begin with a limited pool of behaviours, allowing for a constrained decision-

making process. The agent can then locate and add new behaviours at run-time, giving 

the agent more functionality than it was originally programmed with.  

 To test the functionality of a dynamic behaviour network with distributed 

behaviours, experiment 4 from Chapter 4 was extended. The baking a cake example was 

used and the behaviours and the goals for this scenario were embedded into the objects 

in the environment.  

  

The robot needs to continue to navigate an unstructured environment, an 

environment that has not been predefined (shown in Figure 5-1) to locate each of the 

key ingredients needed to bake a cake. Each of the ingredients has associated 

behaviours, which the robot will read when nearby (simulating reading from a wireless 

Figure 5-1 - Simulated environment with distributed 

behaviours 
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tag). Those behaviours will be added to the existing behaviour network and are selected 

for activation when appropriate. Table 5-1 shows the associated behaviours and goals 

that are embedded in each object in the environment (Figure 5-1).  

 

 

 The aim of this scenario is for the robot to navigate the unstructured 

environment, locating each of the key ingredients needed to bake a cake. When the 

robot locates the kitchen, it will find the recipe with the goal for baking a cake. The recipe 

will contain a list of ingredients and the instructions to achieve the goal. This will then 

trigger the chain of behaviours needed to complete the goal.  

 

Object in 

Environment 

Value 

Representation  

Behaviour(s) / Goal(s) 

Unexplored area 0 N/A 

Explored area 1 N/A 

Wall 2 N/A 

Ingredient 

(Sugar) 

4 Behaviour: ‘Pick up Sugar’ 

Behaviour: ‘Go to Sugar’ 

Ingredient  

(Eggs) 

5 Behaviour: ‘Pick up Eggs’ 

Behaviour: ‘Go to Eggs’ 

Ingredient 

(Flour) 

6 Behaviour: ‘Pick up Flour’ 

Behaviour: ‘Go to Flour’ 

Ingredient 

(Butter) 

7 Behaviour: ‘Pick up Butter’ 

Behaviour: ‘Go to Butter’ 

Kitchen (Oven) 

(Recipe for 

making a cake) 

8 Goal: ‘Bake Cake’ 

Behaviour: ‘Bake’ 

Behaviour: ‘Heat Oven’ 

Behaviour: ‘Line Cake Tin’ 

Behaviour: ‘Add Mix to Tin’ 

Behaviour: ‘Add Sugar’ 

Behaviour: ‘Add Eggs’ 

Behaviour: ‘Add Flour’ 

Behaviour: ‘Add Butter’ 

Behaviour: ‘Go to Kitchen’ 

Robot 9 N/A 
Table 5-1 - Value representation of the simulated environment with associated distributed behaviours and goals. 
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Table 5-2, Table 5-3 and Table 5-4 show the individual properties of the 

behaviours that are included in the network shown in Figure 5-2. These form the 

precondition, add list and delete list for each behaviour. Table 5-5 shows the initial world 

state that the robot will begin this experiment in. At this initial point, the robot will only 

be able to perform the ‘Move to Unexplored’ behaviour until it has been able to navigate 

the environment enough to find the additional behaviours. The behaviour network in 

Figure 5-2 shows the initial state of the network at the start of the experiment.  

 

 

 

 

  

Behaviour Precondition List  

Move to Unexplored Unexplored 
Table 5-2 - Precondition List for distributed behaviours scenario 

Behaviour Add List  

Move to Unexplored Explored 
Table 5-3 - Add List for distributed behaviours scenario 

Behaviour Delete List  

Move to Unexplored Unexplored 
Table 5-4 - Delete List for distributed behaviours scenario 

Observation State  

Unexplored TRUE 

Explored FALSE 

Table 5-5 - Initial world state for the 

distributed behaviours scenario. 
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The experiments are conducted through simulated time steps. At each timestep 

the robot will make a decision on which action to perform and that action will be 

executed. During the early time steps, the robot will select the ‘Move to Unexplored’ 

behaviour and navigate the simulated environment. When the robot finds an ingredient, 

the world state will be updated (by the Environment Manager) allowing the behaviours 

associated with that object to be selectable. The robot will either interact with the 

ingredient or continue until it locates the ‘Kitchen’ object where it will obtain the ‘Bake 

Cake’ goal. In this scenario the robot will learn about the different ingredients scattered 

around the environment but it will not have any motivation to interact with those 

objects. When the robot enters the kitchen (represented by an ‘8’) it will read the data 

from the wireless tag, telling the robot how to use those ingredients it found earlier on 

in the environment. Figure 5-3 shows the results for this experiment. 

Figure 5-2 - Behaviour Network – distributed behaviours scenario 
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Figure 5-3 shows the results from this experiment. The top graph shows the 

movement of energy over time and the bottom graph shows the selected behaviours at 

each time step. While the results for this experiment are similar to those in experiment 

4 (Figure 4-20), the top half of the chart shows the dynamic nature of the network. This 

shows that during the initial time steps of the experiment, only the ‘Move to Unexplored’ 

behaviour received any input. At time step 8 the robot locates the first object (Eggs). The 

Wireless Tag Manager receives the wireless tag data for that object, parses it and passes 

that to the Behaviour Network Manager to add to the existing network. It is observed 

that this process of locating objects and building the behaviour network continues until 

time step 114, when the robot locates the kitchen.   

Figure 5-4 shows the evolution of the behaviour network over time for this 

scenario. The first part of the behaviour network contains the initial goal and behaviour 

to allow the robot to explore the environment. The second part of Figure 5-4 shows that 

the behaviour network has grown and new behaviours have been added in real-time. 

Although the robot has new behaviours in its network, it cannot utilise those behaviours 

until a goal is added and those behaviours receive some motivation. The third part of 

Figure 5-4 shows the completed behaviour network towards the end of the simulation. 

Here the robot has located the kitchen and found a wireless tag containing a new goal 

(“Bake Cake”). This allows all of the behaviours that the robot has found on the different 

ingredients in the environment to begin to receive motivation.  

The complexity of the behaviour network over time is challenging to define. The 

complexity will depend of the number of environment variables, the number of goals, 

the number of behaviours and the number of links. The number of links in the network 

will depend on the state of the environment and the conditions of the behaviour. In the 

worst case scenario the complexity of the network will be O(n).   
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 When the robot locates the ‘Kitchen’, similarly to in experiment 4 (Chapter 4), 

the ‘Heat Oven’ behaviour is first selected. Again; the robot decides to go to an 

ingredient instead of selecting the ‘Line Cake Tin’ behaviour. Table 5-6 shows the world 

states when the robot decides to leave the proximity of the kitchen.  

 

 

 

 

 

 

 

 

 

 

 

 

The robot has now selected to navigate to the Eggs. It is expected that the next 

sequence of behaviours will be to pick up the Eggs, return to the kitchen and add the 

Eggs to the bowl. The reason why the robot chooses to the leave the kitchen, is again 

because of the numerous inputs to that behaviour has overpowered the other options. 

This is a fundamental problem with behaviour networks that is discussed in the following 

chapter. It is observed in Figure 5-3 that once the robot leaves the proximity of the 

Kitchen, leading to the world state shown in Table 5-7, that the distribution of energy 

moves to the ‘Go to Kitchen’ behaviour. 

 

Observation State  Observation State  

Oven On TRUE Hand Empty FALSE 

Oven Off FALSE Eggs Found TRUE 

Tin Empty TRUE Near Eggs FALSE 

Tin Lined FALSE Flour Found TRUE 

Need Sugar TRUE Near Flour FALSE 

Sugar FALSE Butter Found TRUE 

Need Eggs TRUE Near Butter FALSE 

Eggs FALSE Hand Full FALSE 

Need Flour TRUE Have Sugar FALSE 

Flour FALSE Have Eggs FALSE 

Need Butter TRUE Have Butter FALSE 

Butter FALSE Have Flour FALSE 

Mixed TRUE Unexplored TRUE 

Unmixed FALSE Explored FALSE 

Mix in Tin FALSE Kitchen Found TRUE 

Sugar Found TRUE Near Kitchen TRUE 

Near Sugar FALSE   
Table 5-6 - World state when the robot is in the proximity of the kitchen 

(Distributed Behaviour Scenario). 
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It is observed at this point that the robot will continue to select the behaviours: 

‘Go to Kitchen’ and ‘Go to Eggs’ consecutively and not advance the world state. Again, 

there is an undesired emphasis to certain inputs with respect to others (discussed in 

previous chapters as unfair competition) at each time step. This is shown in Figure 5-5, 

where the robot is caught between two paths. 

  

Observation State  Observation State  

Oven On FALSE Hand Empty FALSE 

Oven Off TRUE Eggs Found TRUE 

Tin Empty TRUE Near Eggs FALSE 

Tin Lined FALSE Flour Found TRUE 

Need Sugar TRUE Near Flour FALSE 

Sugar FALSE Butter Found TRUE 

Need Eggs TRUE Near Butter FALSE 

Eggs FALSE Hand Full FALSE 

Need Flour TRUE Have Sugar FALSE 

Flour FALSE Have Eggs FALSE 

Need Butter TRUE Have Butter FALSE 

Butter FALSE Have Flour FALSE 

Mixed TRUE Unexplored TRUE 

Unmixed FALSE Explored FALSE 

Mix in Tin FALSE Kitchen Found FALSE 

Sugar Found TRUE Near Kitchen FALSE 

Near Sugar FALSE   
Table 5-7 - World state when the robot leaves the proximity of the kitchen 

(Distributed Behaviours Scenario). 

Figure 5-5 - The robot is trapped between selecting two different paths. 
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The screenshot to the left of Figure 5-5 shows the robot executing the ‘Go to 

Kitchen’ behaviour and has a route plotted (represented by the green path) to the 

kitchen. The screenshot to the right of Figure 5-5 shows the robot executing the ‘Go to 

Eggs’ behaviour with the route plotted. This shows that when the robot tries to navigate 

to the kitchen, and becomes in the proximity of the kitchen it will then plot a route to 

an ingredient. Then when it is outside of the proximity of the kitchen, the robot will plot 

a route back to the kitchen.  

This experiment is the same experiment as in section 4.3.1.3 with the addition of 

distributed behaviours. In the first experiment the agent was given all of the behaviours 

and goals at the beginning of the simulation. In this experiment the agent begins the 

experiment with only the ‘Explore’ behaviour. The aim of this experiment was to test the 

distributed behaviours in an unstructured environment. The results are positive, as it 

shows that the agent is able to navigate the environment and collect new goals and 

behaviours. It shows that the behaviour network was successful in incorporating new 

behaviours into an already running behaviour network and that it was able to make 

decisions towards achieving new goals. Unfortunately, it also shows the same negative 

result as the previous experiment and the agent was stuck in the same loop as before.  

The results show that a dynamic behaviour network with distributed goals and 

behaviours can work. The robot was able to navigate an unstructured environment with 

a basic behaviour network and add new goals and behaviours dynamically. Although the 

robot was unsuccessful in completing the goal that it had found, the robot was able to 

successfully build a new behaviour network dynamically. As discussed previously and 

also discussed in (Tyrrell, 1994) the network demonstrated unfair bias between some of 

the behaviour in the network leading to incorrect behaviours been selected.  The next 

experiment will aim to test the dynamic behaviour network without any bias. This 
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experiment will take inspiration from Section 4.3.1.3, where the behaviour network will 

contain higher-level behaviours. These would have fewer inputs resulting in less possible 

bias in the network. This experiment will also test the dynamic behaviour network with 

multiple goals. The robot will again need to navigate an unstructured environment and 

complete all of the goals. 

5.1.2. Distributed behaviours with multiple goals 

 

In the previous section, the distribution of behaviours in the environment using the 

previous experiment from chapter 4 (baking a cake) was tested. In this section the 

concept of distributed behaviours is further tested by presenting a new scenario, one 

with multiple goals. In this scenario the robot begins the experiment with the same 

conditions as in the previous experiment. The robot is placed in the same simulated 

environment shown in Figure 5-1, but each object will be unique and contain different 

goals and behaviours. As before, once the robot is within the proximity of the objects, it 

will read the data from the wireless tags and build upon the initial behaviour network.  

In this scenario the robot will need to navigate and explore the unstructured 

environment, locating each object that has been added. This scenario will put the robot 

in an environment with several different goals that the robot will need to accomplish. 

Object 5 represents a plant in an environment that needs some water. When the robot 

locates the plant, it will receive the goal: ‘Water Plant’ and the behaviours: ‘Go to Plant 

and ‘Water the Plant’. The robot will need to explore the environment to find some 

water in order to solve this goal. Object 6 represents some water, which the robot can 

use to water the plant (Object 5). When the robot locates the water, it will receive the 

behaviours: ‘Go to Water’ and ‘Pick up Water’. If the robot does not locate the plant 

first, then there will be no motivation to interact with the water object. The aim for this 
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goal is to have the robot locate both objects, collect the water and bring it to the plant 

to be able to water the plant.  

Object 7 represents some mess in the environment that the robot will need to 

tidy. The idea of this scenario is that the behaviours are all higher-level behaviours, 

meaning that the robot will not be expected to perform the complicated lower-level 

behaviours needed to interact with the object. The assumption is that the when the 

higher-level behaviours are selected, that they are immediately executed successfully. 

Given this assumption the goal: ‘Clean Mess’ and behaviours: ‘Go to Mess’ and ‘Tidy 

Mess’ are embedded in the mess object.  

Finally, another object (Object 8) which represents a dishwasher in the 

environment, is included. The idea for this object is that the robot will need to turn on 

the dishwasher in order to wash some pots. For simplicity, it is assumed that the world 

state is such that the pots are already in the dishwasher and the robot only needs to 

switch it on. This is to ensure that the robot has a complicated behaviour network, with 

many different goals and behaviours. It will also limit the number of behaviours in each 

sub system so that neither behaviour is overly popular in the network, causing an unfair 

distribution of energy (such as that seen in the previous experiment). Table 5-8 shows 

the associated behaviours and goals that are embedded in each object in the updated 

simulated environment. 
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This scenario uses the same initial behaviours as the previous example and the 

properties are shown in Table 5-2, Table 5-3 and Table 5-4. Those behaviours are 

included in the network shown in Figure 5-2: the precondition, add and delete list for 

each behaviour. Table 5-5 shows the initial world state in which the robot begins this 

experiment. At this initial point, the robot will only be able to perform the ‘Move to 

Unexplored’ behaviour. When it has been able to navigate the environment enough to 

find the additional behaviours and goals, other possibilities will arise. The behaviour 

network in Figure 5-2 shows the initial state of the network. 

 

 

  

 

 

Object in 

Environment 

Value 

Representation  

Behaviour(s) / Goal(s) 

Unexplored area 0 N/A 

Explored area 1 N/A 

Wall 2 N/A 

Plant 5 Goal: ‘Water Plant’ 

Behaviour: ‘Go to Plant’ 

Behaviour: ‘Water the Plant’ 

Water  6 Behaviour: ‘Pick up Water’ 

Behaviour: ‘Go to Water’ 

Mess 7 Goal: ‘Clean Mess’ 

Behaviour: ‘Go to Mess’ 

Behaviour: ‘Tidy Mess’ 

Dishwasher 8 Goal: ‘Wash Pots’ 

Behaviour: ‘Turn On Dishwasher’ 

Behaviour: ‘Go to Dishwasher’ 

Robot 9 N/A 

Table 5-8 - Value representation of the simulated environment with associated distributed behaviours and goals. 



 153 

  

F
ig

u
re

 5
-6

 -
 R

es
u

lt
s 

fo
r 

d
is

tr
ib

u
te

d
 b

eh
a

vi
o
u

rs
 



 154 

 

Figure 5-6 shows the results from this experiment. The top graph shows the 

movement of energy over time and the bottom graph shows the selected behaviours at 

each time step. The results highlight the dynamic nature of the behaviour network as it 

shows new behaviours added throughout the experiment. It shows that the robot was 

able to navigate the environment until it found the water object. At time step 18, the 

robot picked up the water object and at time step 22 the robot executed the ‘Water the 

Plant’ behaviour fulfilling the goal ‘Water Plant’. The robot then continues to explore the 

environment until it finds the dishwasher, which allows it to execute the ‘Turn on 

Dishwasher’ behaviour that completes the goal ‘Wash Pots’. Finally, the robot continues 

to explore until it finds the mess in the environment, which allows it to execute the ‘Tidy 

the Mess’ behaviour and achieve the final goal.  

Unlike the previous experiment, the robot was able to explore the entire 

environment, read all of the wireless tags and execute all of the goals. In this scenario 

the robot was able select the behaviours which helped it to successfully achieve the 

goals without the any of those behaviours having an unfair advantage over any other 

behaviour.  
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Figure 5-7 shows the evolution of the behaviour network over time for this 

scenario. The first part of the behaviour network contains the initial goal and behaviour 

that allow the robot to explore the environment. The second part of Figure 5-7 shows 

that the behaviour network has grown and new behaviours have been added in real-

time. The third part of Figure 5-7 shows the completed behaviour network towards the 

end of the simulation. Here the robot has located all of the objects in the environment 

and has completed one of the goals. At this point, each of the behaviours in the network 

are all competing with one another for activation.  

The key difference between this scenario and the bake a cake scenario is the 

reduction of inputs to each behaviour. This scenario was designed to limit the number 

of behaviours in each sub-system (goals) to prevent the number of inputs to each 

behaviour. It was shown in the previous experiment that the behaviours with a large 

number of inputs from other behaviours had a greater chance of being selected for 

execution. While this was expected, it prevented the robot from advancing the world 

state and accomplishing the goals. The behaviour that the system exhibited as a whole 

was at fault. In this scenario, each behaviour only had a few inputs which allowed the 

behaviour network to select the appropriate behaviours and complete each goal.  

This experiment was also run numerous times and although the objects (with the 

associated goals/behaviours) were spawned in different locations, the results were 

same. The agent was able to read the information, build and add to a behaviour network 

and achieve all of the goals.  As the objects were placed in random locations in the 

environment, the order of executed behaviours was different. The time that it took the 

robot to complete the goals also differed; however, the robot was always able to 

successfully achieve the goals.  
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This experiment was conducted on a simpler test scenario, where the behaviours in the 

behaviour network, were at a higher-level than in the previous experiment. This is to 

remove the bias found during that experiment (Section 4.3.3.5) and to show that a 

dynamic behaviour network can successfully complete new goals. This approach was 

also conducted in (Nicolescu and Matarić, 2002), were a behaviour network used 

abstract behaviours, which fed into a lower-level behaviour network. This experiment 

makes the assumption that the higher-level (abstract) behaviour that is selected is 

completed successfully. Future work (Section 7.3), can involve extending this to 

incorporate the generation of the lower-level behaviour network. This experiment was 

successful in demonstrating the dynamic nature of the dynamic behaviour network using 

sub-systems without bias between the behaviours.  

5.1.3. User Interactions 

 

One of the benefits of the proposed architecture is that users can interact with 

the behaviour network by changing their preferences for different goals. In a traditional 

behaviour network, the goals of the system have their motivations predefined. The 

behaviour network will run, selecting and executing behaviours until those goals are 

completed. There are no options in these systems to restart completed goals or to cancel 

a goal without stopping the behaviour network and restarting the system. In the 

proposed architecture, a user interface is included to allow for dynamic manipulation of 

the behaviour network. The user interface is detailed in section 3.5. 

The user interface is demonstrated using the previous, ‘bake cake’ scenario. In 

this experiment the transition when the robot navigates the environment and locates 

the kitchen with the wireless tag embedded is observed. When the Wireless Tag 

Manager reads the wireless tag, it will parse the information and send that to the 
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Behaviour Network Manager. When the Behaviour Network manager receives this 

information, it will send a send a message to the UI Manager with the information about 

the new goals that it has received. In real-time the users will be able to see new goals 

appear that the robot will be able to achieve. Figure 5-8 shows the initial state of the UI 

as the robot begins to navigate the environment.  

When new goals are added to the web UI, the users can then manipulate the 

motivation for those goals. In the behaviour network the motivation for a goal indicates 

how much energy will be sent from the goal to the behaviours in the system. Reducing 

this value will decrease the amount of energy added to the system and allow other 

systems (such as the explore system) to become more likely to be achieved. Similarly, 

increasing the motivation value will make that system more likely to be selected over 

other systems.  

Figure 5-9 shows the changes that the web UI will make when new goals are 

found in the environment. The first part of the figure shows the initial state of the UI 

when the experiment is first run. This shows that the only goal that the robot has is to 

explore the environment. The second part of the figure shows the new goal ‘Bake Cake’ 

Figure 5-8 - Initial state of the Web GUI 
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has been added and the user now has the options to manipulate the motivation for that 

goal. The final part of the figure shows the status of the Web UI when the robot has 

completed the ‘Bake Cake’ goal. Here, the goal is moved to the completed column and 

the user now has the options to restart the goal and reset the motivation for that goal. 

 

 The functionality and effects of the web UI are further demonstrated to the 

dynamic structure of the behaviour network by changing the motivation for the goal 

‘Bake Cake’. When the goal is added to the web UI, the motivation is then significantly 

Figure 5-9 - Evolution of the Web GUI as the robot finds new goals and when goals are completed. 

Figure 5-10 - Web GUI - Updating the motivation for the 

'Bake Cake' goal. 
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lowered as shown in Figure 5-10. The new motivation is sent through the architecture 

from UI Manager to the Behaviour Network Manager, where the behaviour network is 

updated in real-time.  

 Figure 5-11 then shows the results of the experiment by making this change to 

the motivation of the ‘Bake Cake’ goal. Figure 5-11 shows that the robot (similar to 

previous experiments) continues to explore the environment until it locates the kitchen 

object. At this point the new goal is shown to be added to the network and the robot 

begins to execute some behaviours towards this new goal. At time-step 130 the 

motivation is altered as shown in Figure 5-11 and this is reflected in the robot’s future 

action selections. Here the amount of energy in those behaviours is decreased and the 

robot favours the ‘Explore’ behaviour over the various behaviours in the ‘Bake Cake’ 

system.  

 The experiments in Chapter 4 acted as the controlled experiments for this test. 

From those experiments, it is clear how the behaviour network would run for this 

scenario without any user interaction or changes to the motivation of the goals at run 

time. Those results can be compared to the results from this experiment to show the 

difference. In the previous experiments, the robot would favour the behaviours in the 

Bake Cake system over the Explore system. When the motivation for the Bake Cake 

system is reduced then the behaviours in the Explore system is favoured. This 

experiment was run numerous times with different changes to the motivation at 

different times and again showed similar, expected results. This shows that there are 

different forms of a dynamic behaviour network. This dynamic network was able to 

change its preferences for which goals to achieve at run time which resulted in the whole 

system exhibiting different behaviours.  
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6. Discussion 
 

In this chapter the contribution of this thesis and the potential for future work is 

discussed. The chapter begins with a discussion on behaviour networks, focusing on their 

benefits and disadvantages. This leads to a discussion on the proposed architecture to 

extend the standard and dynamic behaviour networks and how this has performed in 

testing. The changes that have been made to the standard behaviour network are then 

discussed and the results from the experiments reviewed. A discussion on the dynamic 

behaviour network then follows, discussing the concept and the experiments before 

reviewing the results. Finally, the potential future work that can expand upon the work 

in this thesis is discussed. 

6.1. Overview of behaviour networks 

 

The focus of this thesis is on how behaviour networks can be used and extended 

for unstructured environments (an environment that is not predefined and can change 

unexpectedly). A behaviour network is an action selection mechanism that consists of a 

variety of nodes, which are joined by a variety of links. The aim of the behaviour network 

is to pass activation energy between the nodes via the links until a behaviour(s) has its 

activation energy greater than a set threshold. The behaviour that has the largest 

proportion of energy and is also executable (has its preconditions met) is then selected 

for execution. A behaviour network can use a variety of different techniques to 

distribute activation energy around the network and this is discussed in detail in Chapter 

2.  

The behaviour network is a reactive system. At each time-step the agent will run 

the behaviour network, passing activation energy into the network from Goal and 

Environment nodes. That energy is then distributed through the behaviour nodes and 
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the behaviour that has accumulated the greatest amount of activation energy is selected 

for execution. The benefit of the behaviour network is the frequency with which the 

behaviour network is run; that is the frequency that energy is passed around the 

network. As this happens at each time step, the agent is able to make decisions based 

on the current state of the environment. Any change to the environment is taken into 

consideration and the agent can act accordingly.  

While behaviour networks are capable of selecting behaviours in dynamic 

environments, they do have a limitation. The limitation is that each behaviour network 

needs to be predefined for the task that the agent is to accomplish. Each goal, behaviour 

and environment node are traditionally hard-coded to function together and allow the 

agent to make decisions in a predefined environment. This is because of the structure of 

the nodes in the network. For a node to connect with another node in the behaviour 

network, that node must have properties in the add list, delete list or precondition list 

of the other node. This relationship allows the activation energy to move from one node 

to the next and settle in the most appropriate node for the given situation. One of the 

goals of this thesis is to propose a potential solution to this limitation and show that 

behaviour networks do not need to be predefined for different tasks.  

6.2. Proposed Architecture 

 

The supporting literature on behaviour networks focuses on the structure and 

methodologies behind the behaviour network itself. Little focus has been spent 

documenting the architecture that can be used to support and enhance the functionality 

of a behaviour network. Chapter 3 presented an architecture that can support a 

behaviour network for both real-world and simulated agents. This architecture is broken 

down into the key modules that are used to move information from one component to 
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another. Chapter 3 concluded with a discussion on how those modules effect the 

functionality of the behaviour network.  

6.2.1. Purpose of the proposed architecture 

 

The aim of the proposed architecture is to enable the extension of the 

functionality of the standard behaviour network. The architecture is needed to support 

each requirement of the behaviour network to allow it to function correctly. For 

example, a behaviour network is designed for agents to interact in real-world or 

simulated environments. For this, an environment module is then included to manage 

the inputs from the environment and parse that information into something that the 

behaviour network can use. For the behaviour network, the environment module would 

need to manage the world state of the environment as that would affect the input from 

the environment nodes in the behaviour network. The world state would also need to 

stay updated as the different states would reflect which behaviours in the network could 

be selected.  

6.2.2. Benefits of proposed architecture 

 

The primary benefit is the concept of modularity that is used to divide the features of 

the behaviour network into separate modules. Each module is responsible for its own 

tasks and is capable of sharing information with other modules in the architecture. As 

each module is separate from the others, they are capable of parallel processing. This 

means that each module is executing synchronously, allowing the agent to process more 

information than if everything was in a single module / process. For example, the agent 

is able to process information from the environment whilst also taking input from other 

modules in the system.  
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 As each module in this architecture is separated from the others, it does add an 

element of resilience to the behaviour network. Depending on the module, should one 

fail in the architecture, it is possible for the other modules to continue to function. 

Although the architecture will not have the same functionality without some of the other 

modules, depending on which module failed, it can continue to operate. For example, if 

the wireless tag manager failed, the other modules would continue to function. The 

robot would be able to explore the environment and achieve the goals it currently has 

but, it would not be able to learn anything new from the environment. Furthermore, 

during the implementation process, the modularity and resilience of the modules 

allowed for more accurate development of the behaviour network. It was simple to 

identify any areas of the system that were not functioning correctly and address those 

issues.   

6.2.3. Disadvantages of proposed architecture 

 

While the architecture was successfully implemented, and each module was able to add 

key features to the system, there are still some limitations to be addressed in the 

architecture. The main limitation that was observed during the implementation of the 

architecture was the different speeds that each module was able to perform their tasks 

at each time-step. It is important that each module works seamlessly with one another 

and no module is left waiting for another module to finish. The environment manager 

module was observed to take longer to process the information about the current state 

of the environment than other modules in the system. The result of this module taking 

longer to process information, was that the behaviour network manager module would 

create a behaviour network based on previous world states, which would lead to the 

behaviour network making inappropriate decisions.  
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 The modules in the architecture communicated by sending the information to 

other modules when they had completed their tasks regardless of what the other 

modules where doing. To solve this issue, synchronization steps were taken to ensure 

that the modules would wait to receive all of the necessary information before 

executing.  

6.2.4. Overview of the results  

 

Each experiment of the behaviour network and dynamic behaviour network utilised 

some modules of the proposed architecture. The experiments for Chapter 4 utilised the 

environment manager and the behaviour network manager to create a basic behaviour 

network. During these experiments additional changes were made to the environment 

manager to ensure the modules were synchronised to prevent incorrect behaviours 

being selected. Chapter 5 introduced the remaining modules, including; the 

Environment Manager, the Wireless Tag Manager and the User Input manager for the 

dynamic behaviour network. Adding these modules showed the benefit of the 

modularity of the proposed system, as they were included with very minor changes 

being needed for the other modules.  

Overall, the architecture was able to successfully support the standard behaviour 

network with the environment manager module and the behaviour network module. 

The architecture was able to also successfully support the dynamic behaviour network 

with very minor alterations being needed. The synchronicity of the modules proved to 

be a challenge for the architecture. This was because each module was able to complete 

its tasks at different speeds. To be able to pass information around the system during 

each time-step, some alterations were then made to the architecture. This was also 
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tested during the experiments in chapter 4 and chapter 5 and it was demonstrated that 

the modules were able to function synchronously and follow the same iteration. 

One of the aims of this project, which was discussed in Section 1.3.1, was to 

develop an architecture that could be used to test behaviour networks and dynamic 

behaviour networks. The proposed architecture was defined in Section 3.1 and used for 

the experiments in Section 4 and Section 5. This section has discussed the benefits and 

limitations of the proposed architecture and concludes that this objective has been met. 

6.3. Behaviour Networks 

 

The behaviour network is the primary motivation of this thesis. This section 

begins with a discussion of the first contribution of the thesis, which is the modification 

to the division rule. An alternative method of sending data through a behaviour network, 

called the data packet approach, is then discussed. The results from the various 

experiments are reviewed and discussed. Finally, the limitations of behaviour networks 

that were found during these experiments are explored and the section concludes with 

potential future research.  

6.3.1. Discussion of the division rule  

 

Chapter 2 describes the inner workings of a behaviour network and explains the 

problems with the current methods for spreading activation energy through the 

behaviour network. As described in chapter 2, a portion of energy from a behaviour is 

passed through the various links to other behaviours in the network. The type of the link, 

predecessor, conflictor or successor (to name a few), affects which formula is used to 

calculate the proportion of energy to send. It was shown that the proportion of energy, 

distributed throughout a network, would depend on the number of inputs and outputs 

of a behaviour which led to unfair competition between the behaviours of the system. 
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The problem resides in whether or not the calculation of energy spread should involve 

division by the number of predecessor and conflictor input links. This concept of a 

division rule has worked successfully on other link types; however, it has been shown 

that the inclusion and exclusion of a division rule for predecessor and conflictor links can 

still lead to unfair distribution of energy in the network. Tyrrell (Tyrrell, 1994) discussed 

a variety of solutions to this problem and concluded that, at the time, there was no 

solution to this problem. 

In chapter 4, a solution to the division rule was presented. The solution details 

how knowledge of how many goals that each behaviour can contribute to can be used 

to select a more accurate division rule dynamically. An algorithm for embedding this goal 

information onto the links of the network and the updated division rule formulae were 

presented and discussed. The new division rule was then tested on a basic behaviour 

network and the results were compared with the same experiment but without the 

division rule.  

The aim of this experiment was to find a division rule that can be applied to any 

situation. It has been shown that different division rules can have different effects on 

the network (Tyrrell, 1994). An ideal division rule would ensure that there is no unfair 

competition between the behaviours of the network and that each behaviour has a fair 

chance of getting selected. The results from this experiment were indecisive as the first 

round of energy spreading would select different behaviours as opposed to if it was run 

for multiple iterations. The behaviour network should be able to select the most 

appropriate behaviour at any time step; it should not need to run for multiple iterations 

for it to converge on a solution. The supporting text (Tyrrell, 1994) does make use of a 

threshold parameter allowing the network to run for multiple iterations. It is argued that 

this was a fix to the problem of selecting the correct order of behaviours in which to 
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spread energy. To address this problem a new method of spreading energy through the 

network was also presented (the energy packet approach). One limitation of the division 

rule was not on the division rule itself but in the method of how energy is distributed 

through the network. The results showed that it needed multiple iterations of spreading 

energy to make a decisive decision. However, it is argued that regardless of the iteration, 

the behaviour network should always be selecting the best behaviour for the given 

situation. That decision should not change based on an arbitrary number of energy 

spreading iterations. The later experiments in chapter 4 and chapter 5 demonstrate that 

with the use of energy packets, correct behaviours can be selected after a single iteration 

of energy spreading. 

6.3.2. Discussion on the data packet approach 

 

During the implementation process of the behaviour network, it was noted that 

there had been little discussion of the order of energy spreading amongst nodes in the 

network and the impact of choosing an inappropriate node order.  The supporting text 

has detailed how energy enters the network and how the energy should move around 

but not about the order. In chapter 4, the effect that the different orders of energy 

spreading in the behaviour network can have on the distribution of energy was explored. 

The results were presented by selecting a variety of different orders and showed that 

different orders led to different distributions of energy in the network. The results also 

showed that multiple iterations of the energy spreading process would affect the 

resulting distribution of energy in the network. The possibility of feedback loops were 

also discussed in this chapter, where there can exist a series of behaviours that each 

feed into one another. In the current version of the behaviour network, this would create 

a loop of energy passing that would not end. 
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A solution to the problem of loops was then proposed, the concept of data 

packets. Instead of simply sending an arbitrary value representing energy around the 

network, a data packet is sent in its place. The data packet will contain a variety of 

metadata including the proportion of energy to send from one behaviour to next. Each 

packet will also contain a history of where it has been in the behaviour network, allowing 

it to escape node loops and to traverse the full network. The goal of the data packets is 

to ensure that each behaviour can send a proportion of energy, that would achieve the 

desired results, to the next behaviour and ensure that there is no unfair competition in 

the distribution of energy.   

This concept was tested with a variety of incrementally more complex 

experiments. It began with a behaviour network consisting of a single link type. The aim 

of the experiment was to distribute the energy packets through a behaviour network. 

This experiment showed that the energy packets were able to be successfully distributed 

through behaviour network. This experiment was then extended to one with multiple 

link types. The aim of this experiment was similar to the previous experiment, where the 

goal was to distribute energy packets through a behaviour network but one with 

multiple link types. Again, this experiment (using a basic behaviour network) was able to 

show similar results in that the energy packets were successfully distributed through the 

network. The next experiment in this section involved creating a new, more complicated 

test scenario. We presented the scenario of baking a cake as it is a logical problem with 

few correct sequences that an agent would need to follow. The aim of this experiment 

was to test the energy packets in a more complicated real-world scenario. To also show 

that the energy is distributed to behaviours would achieve the goals of the system. Once 

more, the results from this experiment were presented showing that the energy packets 

were successfully distributed, and the agent was able to select the behaviours to 



 171 

complete the goal. The data packets were able to navigate the behaviour network fully 

and the behaviour network did not need to run for multiple iterations to converge on 

the solution. To achieve this, the data packets in each behaviour were merged to ensure 

the correct proportion of energy was distributed and the link order for sending the data 

packets was defined. This experiment was able to show that the data packet approach 

can be used in a real-world situation in behaviour networks to achieve goals.  

The final experiment extended the baking a cake scenario further by utilizing the 

proposed architecture with a simulated unstructured environment. The goal of this 

experiment was to have the agent collect the distributed ingredients and perform the 

necessary behaviours to complete the goal. This experiment also used the data packet 

approach to distribute energy in the network. It was shown that this experiment yielded 

poor results as the agent was unable to accomplish the goal of baking a cake within the 

simulated environment. In this experiment the agent would explore the environment 

until it found the ‘kitchen’, at this point the agent was able to perform some behaviours 

towards the goal. The robot then needed to navigate to an ingredient to bring it to the 

kitchen, to then execute more behaviours with that ingredient. As soon as the robot left 

the kitchen, its next decision was to return back to the kitchen (before it had made it to 

the ingredient). This is because when it was no longer in the proximity of the ‘kitchen’ 

the motivation to go to the kitchen was too great and outclassed the other behaviours. 

When the robot was in the kitchen, there was little it could do but leave towards an 

ingredient.  

This result shows a good example of one of the fundamental limitations of the 

behaviour network. As the behaviours in the network are selected when they have the 

most energy and one way to gain the most energy is to be the behaviour with the most 

inputs. The division rule that was previously discussed worked on the inputs of a node 
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and on restricting the output. However, if the node with the greatest number of inputs 

is the final destination of the activation energy then there is a greater chance of that 

behaviour being selected.  

One potential solution to this problem could be to add a method to detect loops 

and break the agent out of the loop when it occurs. However, this does not solve the 

problem and the agent could return back to the loop soon after. The division-rule was 

discussed by (Tyrrell, 1994) as a technique to divide by the number of inputs or goals 

but, as previously discussed, was proven to be ineffective. Section 4.1 presented an 

updated division rule by incorporating goal information into the division rule formula. 

This also yielded unsatisfactory results as it would inhibit behaviours achieving multiple 

goals. Another solution would be to reduce the complexity of the network by using 

higher-level behaviours. A higher-level behaviour being a behaviour that includes many 

sub-behaviours. The aim is to remove the bias from the network which is caused by 

behaviours having many more inputs than other behaviours in the network. The final 

technique was to reduce the complexity of the network by using high-level behaviours 

and was suggested in section 5.1. This is method is further discussed in the next section. 

This limitation of behaviour networks will form a strong basis for future research to 

address which, is discussed in more detail in section 7.5.  

6.3.3. Overview of the results 

 

One of the aims of this study was to investigate behaviour networks (discussed in Section 

1.3.1).  Section 2.2.4 explored behaviour networks and identified some limitations to the 

methods that are used to spread activation energy through a network. Two new 

techniques were proposed; a new division rule (Section 4.1) and the data packet 

approach (4.3.1). As previously discussed, the results from the new division rule did not 
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show any significant improvements, however; embedding goal specific information to 

the links of a behaviour network did enable easier debugging of a behaviour network 

and inspired the second technique (data packets). The data packet approach (discussed 

in Section 4.3.1) was able to show better results. This method showed that this new 

approach could solve problems (such as; loops in the network and the order for 

spreading activation energy through a network). Although, in some experiments the 

agent was not able to fully complete the scenario (achieve all of the goals), the reasoning 

behind this was due to the structure of the network and not the activation spreading 

mechanism. The objective to investigate behaviour networks and the activation 

spreading mechanisms has been achieved and Section 7.3 details the future work that 

can expand upon the methods presented in this section.  

6.4. Dynamic behaviour network 

 

One of the main contributions of this thesis is the concept of the dynamic 

behaviour network, which is introduced in chapter 5. A dynamic behaviour network is 

defined as a behaviour network which can dynamically control and modify the goals and 

behaviours within the network. The numerous benefits that such a system would offer 

compared to the traditional behaviour network are discussed. The ability to allow a 

behaviour network to grow without any modification to the architecture will allow 

agents to achieve more than they were originally designed to accomplish. This is 

achieved by distributing behaviours and goals in an environment for an agent to find and 

add to their behaviour network. To distribute the behaviours into the environment, the 

use of wireless tags was proposed (although other technologies can also be used to 

demonstrate this concept) to embed information in to the objects in an environment. 

When the robot enters the environment, it will read the data stored on a wireless tag 
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and use that information to update its behaviour network allowing it to interact with 

those objects without prior knowledge. 

To test this new concept, the experiments used in chapter 4 were extended. The 

bake a cake scenario was extended to incorporate the distributed behaviours. Instead 

of the robot having prior knowledge about each object, it now has to navigate the 

environment and find each object to learn how to interact with them. This aim of this 

experiment was to show that distributed behaviours can be added to a behaviour 

network at run-time. The robot began the experiment with the only ability to explore 

the environment, ensuring that the robot had to explore and learn the other behaviours 

and goals. The results of this experiment were, overall, positive as it was shown that the 

robot was able to successfully navigate the unstructured environment and learn all of 

the distributed behaviours and goals. All of these were successfully added to the robot’s 

behaviour network in real-time and the robot was able to begin performing behaviours 

from the new selection. However, the robot was still unsuccessful in completing the new 

goal (bake cake) in the simulated environment. The results were similar to the previous 

experiment, where the robot was given the goal of baking a cake in the simulated 

environment. The results showed that once the robot was in the proximity of the 

‘kitchen’, the same unfair bias was present, and the robot was stuck in a loop. When the 

robot entered the kitchen, it would perform a behaviour within the kitchen’s proximity 

(turn on oven). The network would then select to move towards an object to interact 

with, as at that time it is the best thing to do. When the robot leaves the proximity of 

the kitchen, the network would choose to go back to the kitchen. This is because the 

behaviour to go to the kitchen has more inputs then the go to object behaviour. While 

this may not be the best behaviour to perform, the behaviour still receives a greater 

portion of energy. Section 6.5 discusses a potential solution to this problem. 
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To validate that the previous result was due to the unfair bias in the network, a 

new scenario to test the distributed behaviours was then proposed. In the next 

experiment the objects in the environment each had different goals and behaviours. The 

aim for this experiment was to test a more abstract network where the unfair bias in the 

previous experiment was no longer present. By having a behaviour network with more 

abstract behaviours it was theorised that those behaviours would have fewer inputs and 

outputs resulting in less bias in the network. In this experiment, the results showed that 

the robot was able to successfully navigate the environment and collect all of the 

behaviours and goals. The results also show that the robot was able to successfully select 

and execute each behaviour to accomplish all of the goals that it was able to find.   

The primary aim of this study was to investigate behaviour networks with 

distributed behaviours and goals. This developed into the dynamic behaviour network 

which has been tested on a variety of test scenarios. As previously discussed, the results 

from this technique showed that a behaviour network can successfully grow and adapt 

new behaviours and goals into an existing behaviour network. While the agent was only 

able to complete the goals from a simplified network the core concept (distributed 

behaviours and goals) was shown to work successfully and opens the field of behaviour 

networks for future work.   

6.5. Limitations and Future work  

 

The research presented in this thesis has made significant contributions to the 

field of behaviour networks. However, there are still limitations in this field that open up 

new areas for further research. This section will discuss these limitations and present 

potential areas for future research.  
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6.5.1. Connection mechanism of internal behaviours  

 

The behaviours of a behaviour network were described in detail in chapter 3. 

Behaviours in the network are connected via different types of link, depending on the 

state of the environment. For example, if there is an observation in the add list of one 

behaviour (a) and that same observation is in the precondition list of another behaviour 

(b) then there is an active predecessor link from behaviour (a) to behaviour (b). During 

the development process of the behaviour network it is observed how fragile this 

connection mechanism is. The values in the add list, delete list and precondition list must 

match exactly for a link to be created. If a new behaviour is introduced where these 

values do not match, then a link will not be created, and the behaviour network will 

show poor results.  This is especially important when discussing the concept of the 

dynamic behaviour networks as there could be numerous creators of different 

behaviours. Those creators will need to know all possible world states to correctly create 

the add list, delete list and precondition list of a behaviour. For example, if a behaviour 

was designed to pick up an object and all possible world states were not defined, then 

the precondition list could miss a proposition on that world state. This would result in 

the behaviour being selected when it may not be an appropriate time to select the 

behaviour.  

There is the potential for future research in the area of an ontology that all 

creators of the behaviours and goals can follow. This will ensure that the values in the 

add list, delete list and precondition list will always match and each link in the network 

is correctly created. Schlenoff et al. (Schlenoff et al., 2012) is developing a standardised 

robotic ontology for knowledge representation and reasoning in robotics. Alternatively, 

fuzzy matching techniques could be adopted to ensure that the propositions in the add 

list, delete list and precondition list match what is in the world state or other behaviours. 
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Fuzzy-based matching is a popular technique for matching text that is similar but not 

exactly the same and has been applied to a variety of different domains (Hu and Liu, 

2004). 

6.5.2. Binary nature of behaviours 

 

Behaviours in a traditional behaviour network are binary in nature. This refers to 

the observations / conditions in that behaviours add list, delete list and precondition list. 

Those observations can only be fully satisfied. For example, an observation could be 

‘near object’ which is either true or false. There is no degree of freedom in this example, 

so an agent could be a few metres from an object in a different room but the observation 

will still be treated as false. Future research can be included in changing the 

fundamentals of a behaviour network to handle degrees of freedom for the 

observations. The environment nodes could pass more energy depending on the 

relevance of the situation. Following from the previous example, the environment nodes 

would pass more energy to the behaviours that are related to an object depending on 

how close the robot is to that object.  

Additionally, the observations cannot be a combination of multiple observations. 

For example, a behaviour could be required to interact with either one object or another 

object but not necessarily both. In logic gate theory this would be represented by an OR 

gate, however behaviour networks can only handle AND gates. This is because, in the 

traditional behaviour network, every proposition in a behaviour’s precondition list must 

be true for that behaviour to be selected. The precondition list cannot have one 

proposition to be true and one to be false and be selected for execution. Traditional 

behaviour networks are not designed for this type of selection and fundamental changes 

would need to be made to the structure of a behaviour. There is potential for future 
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research in the different types of logic gates and how they can be reflected as behaviours 

in a network.  

Finally, it is not currently possible to partially satisfy a behaviour’s or goal’s 

preconditions. This is again because of the binary nature of behaviours. For example, 

there could be a goal to clean a room. The robot could have already spent some time 

working towards this goal and the room is now partially tidy, let us say the room is 80% 

clean. The robot is then given another goal to bake a cake with similar motivation. In this 

example, it is not clear which goal the robot would try to satisfy first. One goal is 80% 

complete while the other is 0% complete. There should be additional motivation added 

to the behaviours of the system that are close to being completed. This would allow the 

robot to complete goals in a timely manner and allow for multiple goals to exist 

concurrently without the possibility of the robot attempting to complete them all 

simultaneously. While criteria such as urgency, completeness and persistence have 

already been defined in other AI architectures (Di Rocco et al., 2013), the fundamentals 

of the behaviour network would need to be modified to accommodate these criteria. 

For example, more motivation could be added to the behaviours of a network that help 

to achieve a goal that has already met some of its preconditions.  

6.5.3. Parameter choosing for behaviour networks 

 

The supporting text on behaviour networks detail the various parameters used when 

building a behaviour network and this was discussed in chapter 2. The supporting text 

details what parameters should be included in a behaviour network but not what values 

to use or how to set the values of the parameters. In the various experiments discussed 

throughout this thesis, the same values were used for the parameters of the network. 

These were decided by selecting a random set of values and testing a traditional 
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behaviour network. However, it is likely that the parameters used in these experiments 

could have been optimised and that each experiment could have used a different set of 

parameter values.  

 Future research in the area would involve testing a traditional behaviour network 

with a variety of different parameter tuning techniques and reporting on which 

technique would be best for a behaviour network. Some techniques that could be used 

include random search (Bergstra and Bengio, 2012), grid search (Lameski et al., 2015) 

and genetic algorithms (Eiben and Smit, 2011). It is also possible that the parameters of 

the behaviour network cannot be perfectly tuned or adequately justified for all 

circumstances. This is because the behaviour network is designed to work in a changing 

environment and tuning the network to one environment may not work as well in 

another environment. This area should still be further explored as there could be a 

generic set of parameters that works well for most environments.  

6.5.4. Additional metadata on wireless tags 

 

Future research on the functionality and storage of wireless tags would enhance 

the work in this thesis on dynamic behaviour networks. This thesis currently details how 

wireless tags can be used to store goal and behaviour information about objects in an 

environment for a robot to access and utilise in real-time. However, there is the potential 

to store more information about objects on those tags. For example, a wireless tag could 

store meta-data relating to how an object can be interacted with. This meta-data could 

describe how to pick up an object, how much pressure to apply, the rotation of the 

object when placing it down and the associated weight of the object. This could be fed 

into the behaviours of the network and allow for smarter interaction of objects without 

any prior knowledge of those objects.  
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Further research can also be performed on the computer vision element of 

robotics and the data that can be stored on the wireless tags. The experiments 

conducted in this thesis were performed in a simulated environment where computer 

vision techniques were not need for the identification of objects in an environment. It is 

possible however to store data on the tags relating to the visualisation of the objects. 

Basic meta-data such as colour, shape and size can be used for simple object detection. 

Larger files, such as 3D models, could be stored on the tag (depending on storage) or 

references to location for those files (web) could be embedded on the wireless tags. 

Behaviours or code instructions could also be added to the wireless tag to assist with 

identifying the object in the environment. The benefit of doing so would be to allow the 

robot to identify the objects in the environment, even those of which it has no prior 

knowledge. It is also possible that by embedding this metadata in the wireless tags that 

it would also help the robot to identify objects faster than using conventional methods.    
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7. Conclusion 
 

This chapter concludes the thesis by beginning with a summary of the whole 

thesis, the contributions of the thesis and then ending with a summary of potential 

future work. This chapter discusses how the outcome of this thesis achieves the research 

question detailed in Chapter 1.  

7.1. Summary of thesis 

 

The aim of this thesis is to demonstrate the technical feasibility and usefulness of 

embedding wireless tags to objects in a dynamic environment to assist the everyday 

tasks of a robot. To achieve this research question, the objective is defined to be 

exploring the use of embedded data in unstructured environments to improve the 

capabilities of a robot. 

 Behaviour networks were used for the action selection mechanism of the robot 

as the behaviour network is a reactive system capable of functioning in an unstructured 

environment. The concept of distributing object specific data into wireless tags in an 

environment was proposed. By adding new goals and new behaviours to the wireless 

tags, the work is able to show that a robot with limited functionality can be enhanced 

with data found in an environment. The fundamentals of the traditional behaviour 

network were further explored, and key limitations were identified before presenting 

the approaches to potential solutions. The next sub-chapter discusses the contributions 

of this thesis.  

7.2. Contributions to research  

 
This thesis aimed to demonstrate the technical feasibility and usefulness of embedding 

wireless tags to objects in a dynamic environment to assist the everyday tasks of a robot. 

Behaviour networks were chosen due to their reactive action selection mechanism for 
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use in dynamic unstructured environments. Within this thesis, behaviour networks were 

closely examined and tested in a variety of situations. The different areas of behaviour 

networks were tested, and improvements were made along the way. The contributions 

of this thesis are summarised below: 

1. Updated division rule 

The limitations of the standard division rule in traditional behaviour networks are 

explored. This is discussed in chapter 3. Changes to the division rule in chapter 4 

were proposed. The division rule was documented in (Tyrrell, 1994) and refers to an 

unfair distribution of energy in a network when a behaviour has multiple inputs and 

needs to transfer a proportion of energy to the next behaviour. It is shown that by 

embedding goal-related meta-data in to the links of the network that the system can 

select a more appropriate division rule. This method was tested and documented in 

chapter 4.  

2. New approach for spreading energy through a network 

Another limitation with behaviour networks was identified. The order in which the 

nodes of the behaviour network are evaluated, affects the distribution of energy. It 

was demonstrated that multiple iterations of the energy spreading process also 

affected the distribution of energy in the network. In chapter 4, a new approach 

called the data packet approach was presented. This technique distributed energy in 

packets of data with associated meta-data allowing the behaviour network to 

distribute energy more accurately. This technique was tested in a variety of different 

experiments and the results were presented.  
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3. Proposed architecture for behaviour networks 

In chapter 3, a modular architecture for use with both traditional behaviour 

networks and the dynamic behaviour network was presented. The architecture was 

designed to work with both types of behaviours network in both simulated and real-

world scenarios. The modularity of the different areas of the architecture allowed 

for quick transitioning between the different networks each with different 

requirements. The architecture was used in each of the experiments of this thesis 

and the results were documented.  

4. Dynamic behaviour network for distributed behaviours  

The dynamic behaviour network is the main contribution of this thesis, aside from 

the improvements made to the traditional behaviour network. Chapter 5 detailed 

the dynamic behaviour network and the experiments that were used to test it within 

a simulated environment. The dynamic behaviour network was able to demonstrate 

that a robot could enter an unstructured environment and interact with new 

behaviours of which it had no prior knowledge to achieve goals that it learned within 

the simulated environment.  

The findings from the various experiments conducted in this thesis have 

demonstrated the validity and the feasibility of distributing data in an environment to 

assist a mobile robot. Successful improvements to the traditional behaviour network 

have been provided and shown to give positive results. Finally, this thesis has provided 

an in-depth discussion into the current limitations of behaviour networks and provided 

suggested areas for future research.   

 

 



 184 

7.3. Future Work 

 

This thesis has shown how behaviour networks can be used to navigate 

unstructured environments and how embedding data into the environment can improve 

the capabilities of a robot. This thesis also discusses the limitations of behaviour 

networks in chapter 7. The following areas for future research are then recommended: 

 

1. An ontology for behaviours  

It is especially important for dynamic behaviour networks to follow an ontology for 

the different terms used in a behaviour’s add list, delete list and precondition list if 

new behaviours are to be developed from outside the system. This is because each 

distributed behaviour will need to follow a defined set of terms in order to create 

successful links between the behaviours in the network. Fuzzy matching could be 

applied to combine different terms for the same thing. A common grammar would 

also be needed as the order and meaning of the words / terms in the behaviours 

would greatly affect how they are matched together.  

2. Utilizing the relevance of observations 

A behaviour network should take into consideration the relevance of an observation 

when determining a proportion of energy to send into the network. Observations of 

high relevance to a given situation can provide more energy than those with less 

relevance. The proportion of extra energy to be added and the factor of relevance 

to a situation would need to be further researched. A definition for relevance for a 

behaviour network will need to be described. 

3. The use of logic gates in behaviour networks 

There are situations that were observed during the development of the behaviour 

network where the behaviour’s observations could have been combined and where 
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a behaviour’s preconditions could have been satisfied if only one of the listed 

observations were met.  For example; a behaviour could be selected if an agent was 

in either (location a) or (location b).  

4. Prioritising goals close to completion 

Research can be conducted into the effects of prioritising goals that are close to 

completion. When a goal is partially completed it can pass into the network a higher 

proportion of energy. This would make the goal more likely to be achieved than new 

goals that recently added. The benefit of this would be to ensure that the system is 

not left with many incomplete goals especially when new goals are added. 

5. Parameter tuning techniques  

Chapter 6 discusses the limitation of the documentation on behaviour networks 

regarding choosing an adequate set of parameters. Further research can be 

conducted into the various different parameter tuning techniques for use with 

behaviour networks.  

6. Additional data on tags for object recognition  

This thesis has demonstrated the technical feasibility of embedding data into an 

environment. The work in this thesis was conducted in a simulated environment 

however; should this be extended to a real-world experiment then further research 

will be needed for the recognition of objects in the environment. It is suggested that 

further research in the data that can be stored on a wireless tag (such as meta-data 

or 3D models) to assist with the object recognition of objects that a robot has no 

prior knowledge about.   
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