

THE UNIVERSITY OF HULL

Dynamic Networks for Robotic Control and Behaviour Selection in
Interactive Environments

being a Thesis submitted for the Degree of
Doctor of Philosophy

in the University of Hull

by

Brian Peach MEng.

February 2019

 1

 2

Abstract

Traditional robotics have the capabilities of the robot hard coded and have the robot

function in structured environments (structured environments are those that are

predefined for a given task). This approach can limit the functionality of a robot and how

they can interact in an environment. Behaviour networks are reactive systems that are

able to function in unstructured dynamic environments by selecting behaviours to

execute based on the current state of the environment. Behaviour networks are made

up of nodes that represent behaviours and these store an activation value to represent

the motivation for that behaviour. The nodes receive inputs from a variety of sources

and pass proportions of that input to other nodes in the network.

Behaviour networks traditionally also have their capabilities predefined. The

main aim of this thesis is to expand upon the concepts of traditional robotics by

demonstrating the use of distributed behaviours in an environment. This thesis aims to

show that distributing object specific data, such as; behaviours and goals, will assist in

the task planning for a mobile robot.

This thesis explores and tests the traditional behaviour network with a variety of

experiments. Each experiment showcases particular features of the behaviour network

including flaws that have been identified. Proposed solutions to the found flaws are then

presented and explored. The behaviour network is then tested in a simulated

environment with distributed behaviours and the dynamic behaviour network is

defined. The thesis demonstrates that distributed behaviours can expand the

capabilities of a mobile robot using a dynamic behaviour network.

 3

Acknowledgements

First and foremost I would like to thank everyone that has supported me throughout my

time study for the PhD. I am especially thankful to Dr. Peter Robinson for his continuous

support as my supervisor, for his patience, criticism and guidance. Without his help this

thesis would not be what it is today.

I would like to extend my gratitude to Dr. Darryl Davis and Dr. Yongqiang Cheng

who also co-supervised me during my PhD as the panel chair and technical expert. Their

constructive criticism helped to keep me on the path during the panel meetings and

ensured that I made great progress. I am also grateful to all the staff in computer science

department who were able to support me throughout the PhD.

I am especially grateful to all of my colleagues and friends who I was able to share

this experience with. A special thanks to Dr. John Stamford who I was able to work with

on many side projects and share many discussions with. I am also grateful for the help

from all of the administrative staff for their support and assistance during my PhD.

Finally, I would like to give my deepest thanks to my partner Louise Foster for her

continuous support over the years. Thank you for your support and patience during my

PhD and supporting my many late nights to see this through to completion. I would also

like to thank all of my family and friends for their support too.

 4

Declaration

The research conducted in this thesis represents the original work conducted by

the author. One key area of the work covered in this thesis has been published in a

conference and scientific publication:

1) Peach, B. and Robinson, P. (2016) ‘The Use of Data Packets in a Behaviour

Network to Improve the Action Selection Mechanism’, PlanSIG 2016.

 5

List of Abbreviations

This section will contain a list of all of the abbreviations used in this thesis.

AI Artificial Intelligence
ANA Agent Network Architecture
ASM Action Selection Mechanism
ASMO Attentive Self-MOdifying
BN Behaviour Network
DBN Dynamic Behaviour Network
GDA Goal Driven Autonomy
GUI Graphical User Interface

HTN Hierarchical Task Network

MASM Mae’s Action Selection Mechanism

RRT Rapidly-exploring Random Tree

STRIPS Stanford Research Institute Problem Solver

UAV Unmanned Aerial Vehicle
UI User Interface
URL Uniform Resource Locator
VMT Vehicle Model Trajectory

 6

Table of Contents

1. INTRODUCTION ..11
1.1. GENERAL STATEMENT .. 11
1.2. RESEARCH HYPOTHESIS .. 13

1.2.1. A gap in the topic domain .. 14
1.2.2. Hypothesis .. 14
1.2.3. The importance of the research ... 15

1.3. RESEARCH OBJECTIVES ... 16
1.3.1. Aims .. 16
1.3.2. Limitations.. 17
1.3.3. Method ... 18

1.4. THESIS STRUCTURE .. 18
1.5. CONTRIBUTION ... 20
1.6. PUBLICATIONS .. 21

2. BACKGROUND ..22
2.1. TRADITIONAL AI .. 22
2.2. BEHAVIOUR-BASED AI ... 26

2.2.1. Behaviour-Based Architecture ... 30
2.2.1.1 Basics of the Behaviour-Based Architecture .. 31
2.2.1.2 Competition Vs Cooperation .. 33

2.2.2 Subsumption Architecture .. 35
2.2.3 Action Selection .. 43

2.2.3.1 Symbolic Approach .. 44
2.2.3.2 Distributed Approach ... 45
2.2.3.3 Dynamic Planning Approach .. 48

2.2.4 Behaviour Networks ... 49
2.2.4.1 Introduction to Behaviour Networks ... 49
2.2.4.2 Components of a Behaviour Network .. 50

2.2.4.2.1 Behaviours .. 51
2.2.4.2.2 Components ... 52
2.2.4.2.3 Action Selection .. 55
2.2.4.2.4 Activation Spreading and The Division Rule ... 56

2.2.4.3 Factors of Favourability.. 61
2.2.4.4 Liabilities .. 62
2.2.4.5 Improvements to Behaviour Networks .. 64
2.2.4.6 Recent Work .. 65

2.3. ALTERNATIVE APPROACHES TO ROBOT CONTROL.. 67
2.3.1. Hierarchical Mechanisms ... 67
2.3.2. Reinforcement Learning ... 71
2.3.3. Neural Networks .. 73

3. PROPOSED APPROACH AND ARCHITECTURE ...78
3.1. OVERVIEW ... 78
3.2. WIRELESS TAG MANAGER .. 81
3.3. ENVIRONMENT MANAGER .. 83
3.4. BEHAVIOUR NETWORK MANAGER ... 84
3.5. USER INTERACTION .. 85
3.6. BENEFITS OF PROPOSED ARCHITECTURE ... 87
3.7. LIMITATIONS OF PROPOSED ARCHITECTURE .. 87

4. BEHAVIOUR NETWORK ...89
4.1. A SOLUTION TO THE DIVISION RULE ... 89
4.2. RESULTS OF THE DIVISION RULE ... 93

4.2.1. Benefits of the new division rule .. 96
4.2.2. Limitations of the new division rule. .. 96

4.3. ENERGY SPREADING IN THE BEHAVIOUR NETWORK ... 97

 7

4.3.1. Energy Packets ... 105
4.3.3.1. Experiment 1 .. 107
4.3.3.2. Experiment 2 .. 108
4.3.3.3. Experiment 3 .. 114
4.3.3.4. Experiment 4 .. 124
4.3.3.5. Overview of the results .. 135

5. DYNAMIC BEHAVIOUR NETWORK ... 137
5.1. TEST CASES FOR THE DYNAMIC BEHAVIOUR NETWORK .. 139

5.1.1. Distributed Behaviours ... 140
5.1.2. Distributed behaviours with multiple goals ... 150
5.1.3. User Interactions .. 157

6. DISCUSSION ... 162
6.1. OVERVIEW OF BEHAVIOUR NETWORKS .. 162
6.2. PROPOSED ARCHITECTURE .. 163

6.2.1. Purpose of the proposed architecture .. 164
6.2.2. Benefits of proposed architecture .. 164
6.2.3. Disadvantages of proposed architecture ... 165
6.2.4. Overview of the results .. 166

6.3. BEHAVIOUR NETWORKS ... 167
6.3.1. Discussion of the division rule .. 167
6.3.2. Discussion on the data packet approach ... 169
6.3.3. Overview of the results .. 172

6.4. DYNAMIC BEHAVIOUR NETWORK.. 173
6.5. LIMITATIONS AND FUTURE WORK ... 175

6.5.1. Connection mechanism of internal behaviours .. 176
6.5.2. Binary nature of behaviours ... 177
6.5.3. Parameter choosing for behaviour networks ... 178
6.5.4. Additional metadata on wireless tags ... 179

7. CONCLUSION.. 181
7.1. SUMMARY OF THESIS ... 181
7.2. CONTRIBUTIONS TO RESEARCH .. 181
7.3. FUTURE WORK ... 184

REFERENCES ... 186

 8

List of Figures
Figure 2-1 - Hierarchical decomposition of a mobile robot control system. 22
Figure 2-2 - Shakey the robot. ... 24

Figure 2-3 - Deliberative Vs Reactive... 27
Figure 2-4 - Vertical decomposition of a behaviour-based control system 28
Figure 2-5 - The components of a hybrid architecture .. 29
Figure 2-6 - The Structure of the Behaviour-Based Control Architecture 31
Figure 2-7 - Different methods for behaviour selection a) competitive b) cooperative .. 34

Figure 2-8 - A representation of a subsumption architecture .. 35
Figure 2-9 - Subsumption Architecture - Example 1 .. 37
Figure 2-10 - Subsumption Architecture - Example 2 .. 38
Figure 2-11 - Subsumption Architecture - Example 3 .. 39
Figure 2-12 - Subsumption Architecture - Example 4 .. 40

Figure 2-13 - Structure of a behaviour network .. 50
Figure 2-14 - Components of a behaviour .. 51
Figure 2-15. First step of the activation spreading function. .. 58

Figure 2-16 - Demonstrates the unbalanced competition between the nodes due to the

division of the number of outputs. .. 59
Figure 2-17 - Demonstrates the unbalanced competition due to the division of the

number of inputs.. 60

Figure 2-18 - Lack of cooperation in action selection .. 68
Figure 2-19 - Lack of cooperation in subsumption architecture 68

Figure 2-20 - Cooperation in the Rosenblatt and Payton .. 69
Figure 2-21 - The neuron of a neural network. ... 73
Figure 2-22 - The components of a Neural Network .. 74

Figure 3-1 - Overall structure of the proposed architecture for the dynamic behaviour

network. ... 79
Figure 3-2 - Internal components of the deliberative control layer................................. 80
Figure 3-3 - Data structure of a wireless tag for use in a behaviour network 82

Figure 3-4 - Structure of Environment Node. ... 83
Figure 3-5 - Initial behaviour network that the robot will start with. 84

Figure 3-6 - Proposed Web GUI to allow users to interact with the behaviour network 86

Figure 4-1 - Scenario where a node can have multiple inputs from different goals. 90
Figure 4-2 - The data that can be stored in each link. ... 90

Figure 4-3 - An example of a behaviour network displayed automatically from

metadata. ... 90

Figure 4-4 - Pseudocode for embedding goal information to the links of a behaviour

network .. 91
Figure 4-5 - A behaviour network to test the division rule. .. 93

Figure 4-6 - Results from testing the original division rule and the new division rule for

spreading energy in a behaviour network. .. 94

Figure 4-7 - Results from using an arbitrary order of behaviour nodes. The order was:

G1, G2, B1, B2, B3, B4, B8, B5, B6 .. 100
Figure 4-8 - An example behaviour network consisting of two goals and eight

behaviours, each connected with either goal or predecessor links. 101
Figure 4-9 - Results from using an arbitrary order of behaviour nodes. The order was:

G1, G2, B1, B2, B3, B4, B5, B6, B8 .. 102
Figure 4-10 - Results from using a random order of behaviour nodes. The order was:

G1, G2, B1, B2, B3, B4, B6, B8, B5 .. 103
Figure 4-11 - Results from using the second approach. The order was: G1, G2, B1, B2,

B3, B4, B5, B8, B6 ... 104

Figure 4-12 - The contents of a behaviour and a packet ... 106

 9

Figure 4-13 - Results from using the packet approach in experiment 1. 107

Figure 4-14 - An example real world situation shown as a behaviour network consisting

of three goals and four behaviours, each connected with different link types. 109
Figure 4-15 - Behaviour Network - Experiment 3 .. 115
Figure 4-16 - Experiment 3 - Results .. 123
Figure 4-17 - The simulated environment for experiment 4 ... 124
Figure 4-18 - Internal memory map for the agent in the simulated environment 125

Figure 4-19 - Behaviour Network - Experiment 4 .. 130
Figure 4-20 - Experiment 4 - Results .. 131
Figure 5-1 - Simulated environment with distributed behaviours................................. 140
Figure 5-2 - Behaviour Network – distributed behaviours scenario 143
Figure 5-3 - Results for distributed behaviours – Bake Cake Scenario 144

Figure 5-4 - Distributed behaviours added to behaviour network over time. 146

Figure 5-5 - The robot is trapped between selecting two different paths. 148
Figure 5-6 - Results for distributed behaviours ... 153

Figure 5-7 - Evolution of the dynamic behaviour network ... 155
Figure 5-8 - Initial state of the Web GUI .. 158
Figure 5-9 - Evolution of the Web GUI as the robot finds new goals and when goals are

completed. ... 159
Figure 5-10 - Web GUI - Updating the motivation for the 'Bake Cake' goal. 159

Figure 5-11 - Results from changing the motivation of a goal at run-time. 161

 10

List of Tables
Table 2-1 - The effects of the different variations of the division rule (Tyrrell 1994). .. 60
Table 3-1 - Types of errors that can be exhibited by the architecture. 88

Table 4-1 - Results from using a random order of behaviour nodes. 99
Table 4-2 - Results from using an arbitrary order of behaviour nodes. The order was:

G1, G2, B1, B2, B3, B4, B5, B6, B8 .. 102
Table 4-3 - Results from using a random order of behaviour nodes. The order was: G1,

G2, B1, B2, B3, B4, B6, B8, B5 ... 103

Table 4-4 - Results from using the second approach. The order was: G1, G2, B1, B2,

B3, B4, B5, B8, B6 ... 104
Table 4-5 - Results from using the packet approach in experiment 1. 107
Table 4-6 - Results from using the packet approach with different types of links. 110
Table 4-7 - Results from using the packet approach with different types of links. 111

Table 4-8 - Results from using the packet approach with merging using different types

of links. .. 112
Table 4-9 - Results from using the packet approach with merging using different types

of links. .. 112
Table 4-10 - Precondition list for Experiment 3 ... 117
Table 4-11 - Add list for Experiment 3 ... 117
Table 4-12 - Delete list for Experiment 3 ... 117

Table 4-13 - Experiment 3, Scenario 1 ... 119
Table 4-14 - Experiment 3, Scenario 1 - Results .. 119

Table 4-15 - Experiment 3, Scenario 2 ... 119
Table 4-16 - Experiment 3, Scenario 2 - Results .. 119
Table 4-17 - Experiment 3, Scenario 3 ... 120

Table 4-18 - Experiment 3, Scenario 3 - Results .. 120

Table 4-19 - Experiment 3, Scenario 4 ... 121
Table 4-20 - Experiment 3, Scenario 4 - Results .. 121
Table 4-21 - Experiment 3, Scenario 5 ... 121

Table 4-22 - Experiment 3, Scenario 5 - Results .. 121
Table 4-23 - Experiment 3, Scenario 6 ... 122

Table 4-24 - Experiment 3, Scenario 6 - Results .. 122

Table 4-25 - Value representation of the simulated environment. 124
Table 4-26 - Precondition list for Experiment 4 ... 126

Table 4-27 - Add list for Experiment 4 ... 127
Table 4-28 - Delete List for Experiment 4 .. 128

Table 4-29 - Initial world state for Experiment 4 .. 129
Table 4-30 - World state when the robot is in the proximity of the kitchen (Experiment

4).. 133

Table 4-31 - World state when the robot leaves the proximity of the kitchen. 133
Table 5-1 - Value representation of the simulated environment with associated

distributed behaviours and goals. .. 141
Table 5-2 - Precondition List for distributed behaviours scenario 142
Table 5-3 - Add List for distributed behaviours scenario ... 142

Table 5-4 - Delete List for distributed behaviours scenario .. 142
Table 5-5 - Initial world state for the distributed behaviours scenario. 142

Table 5-6 - World state when the robot is in the proximity of the kitchen (Distributed

Behaviour Scenario). ... 147

Table 5-7 - World state when the robot leaves the proximity of the kitchen (Distributed

Behaviours Scenario). ... 148
Table 5-8 - Value representation of the simulated environment with associated

distributed behaviours and goals. .. 152

 11

1. Introduction

1.1. General Statement

Robots are growing in number. A great deal of research has been spent on making them

more intelligent and capable of completing the everyday tasks a human would normally

have to do (Weiser, 1993, 1995; Gates, 2007; Richards and Smart, 2013; IFR, 2016).

Typical approaches for robots to navigate and interact with an environment,

involve embedding many different sensors in the robot and the environment, then

having the robot process the data from those sensors to interpret the environment.

Examples include (iRobot, 2007; Fitzgerald, 2013). It is common for the capabilities of

the robot to be hard coded and to have the robot function in structured environments

(structured environments are those that are predefined for a given task). The traditional

approach (knowledge representation) is widely used and discussed in further detail in

section 2.1. This approach can be computationally expensive, due to the vast amounts

of information that need to be processed. It becomes even more computationally

expensive for a robot to function in an unstructured dynamic environment (an

environment that is not predefined and can change unexpectedly) and so alternate

solutions are required.

The overall aim of the research reported here is to investigate how embedded

wireless tags can simplify the everyday tasks of a robot. One approach to solving this

problem is outlined by (Diekmann, Melski and Schumann, 2007; Pais and Symonds,

2011) who discuss a concept that shows that data relating to the location of information

can be stored on a wireless device. It shows that data such as a web URL can be stored

and point to data relating to either the object the tag is attached to or some information

that can be downloaded. This is useful as one of the limitations of wireless tags is the

 12

amount of data that can be stored locally. The limitation of this concept is that the agent

will need access to the internet to get the information it needs. This study is based on

the concept of storing data on a wireless tag and further expands upon it by finding a

solution to store the information directly in a wireless tag. It focuses on what external

information a robot would need, to assist its decision-making process, to be able to

complete tasks, and how to embed that information into wireless tags in an

environment.

In the early 1990s Maes (Maes, 1991c) developed a reactive decision making

process in response to the limited processing capabilities that were available to robots

during that time period. This decision making process, the behaviour network (Maes,

1989, 1991b, 1991d, 1993), used a selection mechanism to determine the most

appropriate action at any given time given the external environment. Tyrrell (Tyrrell,

1994) further extended this work by providing improvements to the action selection

mechanism of the behaviour network. Lee and Cho (Lee and Cho, 2014) extended this

again by adding an additional planning layer, called a deliberative control layer, to the

behaviour network. The behaviour network has not seen a great deal of development

since then. This is due to many factors such as: other approaches in AI becoming more

established; the previous technical limitations no longer being a factor; and the amount

of development time needed to create a behaviour network for each predetermined

structured task. This study uses and extends upon all of the previously mentioned

concepts and exploits the idea of distributing data into the environment, with the

intention of proving that control and task data such as behaviours can be discovered

dynamically in an environment and added to an existing behaviour network. This

concept offers a possible solution to allow a robot to perform relevant actions in a

dynamic environment without the need to hard code every possible behaviour in

 13

advance. Compared to the more established alternatives, this approach would have the

benefit of enabling an agent to learn new tasks / goals without the need for any extra

processing / computational resources.

1.2. Research Hypothesis

Robotic systems using a variety of sensors and actuators have developed over time to

use large complex architectures in order to handle the complexity generated from the

combination of environment, sensor data and task or behavioural definition. This is to

allow robots to function in dynamic environments under uncertainty and in real time.

Knepper et al. (Knepper, Srinivasa and Mason, 2010) suggests that there is no single best

architecture to manage the complexity caused by dynamic environments and diverse

components. Knepper et al. (Knepper, Srinivasa and Mason, 2010) also state that there

is no reliable methodology for determining the best architecture for any given

application.

An ideal robot architecture would allow a robot to achieve tasks and to be

reactive to a variety of situations. It would grant the robot a diverse set of capabilities

including: functioning and reacting in real time; control of actuators and sensors; dealing

with uncertainty; and planning and actions (or sequences) to achieve goals. Such an

architecture would be decomposable into smaller modules. Each module in the

architecture would communicate and send data to other modules in the architecture.

There are different styles of architecture to choose from, including; subsumption

architectures, layered robot control, behavioural control and hierarchical control. These

different styles of robot architecture are discussed in further detail in Chapter 3.

 14

1.2.1. A gap in the topic domain

This study focuses on the use of behaviour networks in dynamic, unstructured

environments and reveals a potential gap in the topic domain. The few extensive articles

that have been published relating to behaviour networks all demonstrate the same

limitation. That is, the assumption that the behaviours of an agent are predefined and

are all that the agent needs to know, either for the environment it is in or for the study

in which it is implemented. Each implementation of a behaviour network shows that the

agent is typically hand-coded to work in a structured environment. The literature on

behaviour networks, reviewed in section 2.2.4, has concentrated principally on finding

the best action selection mechanism for these predefined networks (Maes, 1991b,

1991c; Tyrrell, 1994), though it has been expanded to include planning (Lee and Cho,

2014). The concept of allowing behaviour networks to change or to work in unstructured

environments has not been given much attention and will form a fundamental part of

this study. There are also many different options for action selection in behaviour

networks and this study will examine these mechanisms and expand upon some of the

better choices.

1.2.2. Hypothesis

The hypothesis is that embedding wireless tags on to objects in the environment and

including object specific data, such as; behaviours and goals, will enhance the task

planning of a mobile robot, allowing the robot to successfully complete goals in dynamic

and both unstructured and structured environments. This study will test this hypothesis.

 15

1.2.3. The importance of the research

Behaviour networks have been used to some success. Jiang et al. (Jiang et al., 2012; Yang

and Cho, 2013) both developed simulations involving a behaviour network and Paikan

et al. (Paikan, Metta and Natale, 2013; Lee and Cho, 2014) both created real world

examples. Expanding upon this field adds to the value of this research and may spark

more interest and further research. If this research can demonstrate the benefits of

using embedded devices to assist robots, then that could lead to further research and

applying this technique in more examples and environments.

 16

1.3. Research Objectives

1.3.1. Aims

The objective of this research is to explore the concept of embedding data into the

environment and show that, by doing so, the capabilities of a robot will be improved. To

achieve this outcome this study will focus on embedding information about behaviours

into the environment to provide a robot with the ability to enhance and evolve their

action selection mechanism.

Task planning in robotics is a computationally expensive task every robot will

need a solution for; this is due to the agent needing to have a workable knowledge

representation of the environment it is in. Typical approaches involve hard coding the

tasks the robot needs to complete in order to reduce the computational complexity of

the task (Bolmsjo, Neveryd and Eftring, 1995). While this is accepted in some fields it

does not help in unstructured environments where new objects can be added and new

behaviours required. Behaviour networks are designed to work in these unstructured

environments by continuously selecting the best action to perform at a given time rather

than rigidly following a predefined plan. Previous work in this field again consists of hard

coding the behaviours that an agent can perform in a given environment (Paikan, Metta

and Natale, 2013; Lee and Cho, 2014).

This study begins by developing the technical components and infrastructure for

a behaviour network, based on the work of (Maes, 1991b, 1991c; Tyrrell, 1994). This

work is expanded to receive new behaviours dynamically (for example, from wireless

tags in an environment) and add those behaviours to the agent’s existing behaviour

network. This is achieved by adding data such as, goals and behaviours to wireless

devices and embedding those into objects in the environment. When the robot is in the

 17

environment it will be able to scan for nearby wireless tags, read the data from those

tags and use that data in its decision-making process.

The technical objectives that this project aims to achieve are as follows:

 Implement and test behaviour networks.

 Develop and test improved mechanisms for spreading activation energy in a

behaviour network.

 Design an architecture to support dynamic behaviour networks.

 Implement a dynamic behaviour network in a simulated environment.

 Test distributed behaviours / goals in a simulated environment.

1.3.2. Limitations

It is the purpose of this study to show how embedded devices in an environment can

expand the capabilities of a robot. This study will cover existing techniques and how

those techniques can be used with embedded wireless tags. Wireless tags have been

shown to have limited storage (Pais and Symonds, 2011) which restricts the amount of

data that can be used. The communication range of wireless tags is also limited and can

vary in distance. The behaviour networks that will be used in this study also have

documented limitations (Tyrrell, 1994). Part of this study will be to research these

limitations and develop methods to overcome them. These limitations include:

 Predefined nature of behaviours in a behaviour network

 Problems documented (Tyrrell, 1994) regarding the passing of activation energy

in the network

 18

1.3.3. Method

The main topic area of this study uses and extends the concepts found in (Maes, 1991b,

1991c; Tyrrell, 1994). The study uses a behaviour network for the action selection

mechanism, which allows behaviours to be embedded into the environment; this is

covered in detail in section 2.2.4. Many techniques and methods have been

implemented to develop a workable system, which can be used to test the hypothesis.

This includes; developing a system architecture to support distributed behaviours and

goals, improving the base behaviour network with alternative energy spreading

mechanisms and testing the behaviour network with a variety of scenarios in a simulated

environment.

1.4. Thesis Structure

The content and structure of the remaining chapters of the thesis are as follows:

2. Background Information

The background chapter provides a review of the relevant literature to give

context to the rest of the thesis. It is divided into four sections. First, a discussion

of traditional AI methods leading into behaviour-based AI. Second, action

selection mechanisms and behaviour networks are explained and justification for

their use given. Third, other mechanisms for action selection are examined.

Finally, alternative approaches to AI are discussed.

3. Proposed Architecture

The proposed software architecture is discussed in this chapter. It details how

the architecture can work with the behaviour networks, how the architecture

enables the processing of external information and how all this information is

 19

combined to allow the system to make decisions. The benefits and the limitations

of the system are then examined.

4. Behaviour Network

This chapter extends what has been discussed in the background chapter. The

flaws that have been found during the implementation of the behaviour network

are discussed and the solutions presented.

5. Dynamic Behaviour Network

This chapter covers the novelty of this research: it begins with an in-depth

explanation of what is trying to be achieved with behaviour networks and how

the embedded wireless tags will improve the behaviour network. The results of

a dynamic behaviour network using embedded wireless tags are then presented

together with the results from a series of tests.

6. Discussion

This chapter begins with a discussion of the problems found with the standard

behaviour network, the proposed solutions to those problems and concludes

with the dynamic behaviour network and its solutions. The successes and failures

of the previous experiments are then critically analysed and compared with

current methodologies.

7. Conclusion

This chapter summarises the points that have been raised in this thesis and

includes suggestions for future work or potential extensions to the work

submitted.

 20

1.5. Contribution

The work presented in this thesis extends the field of behaviour networks. This thesis

addresses problems found with the traditional behaviour network, proposing solutions

that allow for more appropriate action selection. The work shows that for the first time,

a behaviour network can evolve in a dynamic environment and argues that behaviour

networks are not an outdated concept. This is demonstrated with a series of tests

demonstrating that a dynamic behaviour network can function in an unstructured

environment and that the use of wireless tags can enhance this process.

 21

1.6. Publications

The work presented in this thesis has also been published (in a condensed form) in a

conference. Peach and Robinson (Peach and Robinson, 2016) describes how the use of

data packets can be used as a replacement for the existing activation spreading process,

in a behaviour network, to allow for more accurate selection of behaviours.

 22

2. Background

This chapter begins with an overview of the subject of Behaviour-Based Architectures. It

starts with a discussion on the history of traditional AI which then leads to the

emergence of behaviour-based architectures. The discussion on behaviour-based

architectures is followed by an overview of more modern approaches such as hybrid

architectures. This chapter concludes with a thorough analysis of behaviour networks

(Maes, 1991b, 1991c; Tyrrell, 1994), detailing all of the components and their benefits

and flaws.

2.1. Traditional AI

Autonomous robotics often use a variety of Artificial Intelligence (techniques used to

allow computer systems to perform tasks that require human intelligence) techniques.

Artificial Intelligence approaches are typically classified as ‘Traditional AI’ and adopts the

top-down (symbolic) approach. This approach subdivides the problem into a series of

sub-problems that are easier to solve. This approach is also knowledge-based, as it

requires a symbolic representation of the world that it can use to verify the sensor input

and to generate actions to perform.

The architecture of Traditional AI is often broken down into a sequence of

components (Brooks, 1986) and used in robot control systems, as shown in Figure 2-1.

Figure 2-1 - Hierarchical decomposition of a mobile robot control system.

(Brooks 1986; Carreras 2004) detailed the components of a mobile robot,

breaking it down into functional modules.

 23

The components shown in Figure 2-1 are broken down into five functional modules;

1. Perception

This module takes in the sensor data as input and is tasked with reducing the

noise and any conflicts caused by other sensors (e.g, two cameras could create

conflicting data). Computer vision techniques may be applied to find objects and

other useful information (such as obstacles) in the environment.

2. Modelling

This module typically uses data from the perception module to build a symbolic

representation of the world internal to the robot (Brooks, 1986, 1991). This world

model can include all of the objects the robot has seen, including their positions,

as well as where the robot believes it is in the world.

3. Planning

The planning model will usually use the symbolic representation of the world

created in the previous module to produce a sequence of tasks that can be

followed to complete a given goal. Many different planning techniques can be

followed in this module, such as searching the state space (STRIPS) (Fikes and

Nilsson, 1971), to find the best sequence of tasks to solve the goal and

Hierarchical Task Network (HTN) (Erol, Hendler and Nau, 1994) which uses

abstract operators to start a plan and an task decomposition to convert the plan

into primitive operators.

4. Task Execution

This module is in charge of representing each of the tasks (given from the

planning module) into smaller operations that can be used to control the

actuators. This module typically oversees the whole of the task execution.

 24

5. Motor Control

This module is in charge of controlling the actuators of the robot allowing it to

interact with the physical environment.

One of the first applications of the traditional AI

architecture into a robot was the deliberative

control architecture, an example of a robot using

this was Shakey the robot (Fikes and Nilsson, 1971).

Here the robot takes in all of its sensor information

and its internal knowledge to create a plan. Shakey

(Figure 2-2) was able to reason about its own

actions by breaking down commands into more

basic commands that it could execute. Some of the

more notable results from the development of

Shakey included the A* search algorithm (Hart,

Nilsson and Raphael, 1968) and the Hough

Transform (Hough, 1962; Ballard, 1981). The experiments for Shakey involved it

navigating in specially prepared rooms in order to complete given goals. The main flaw

of this experiment was that the rooms had to be structured and designed to meet

Shakey’s perceptual constraints otherwise it would struggle with the planning process

and accurately representing the world. This was due to a combination of the low

processing power and poor sensor hardware which was available at that time.

There have been many implementations using the traditional approach. (Swere

and Mulvaney (Swere and Mulvaney, 2003) used decision trees (a model of decisions

and their possible consequences) as a form of navigation for a mobile robot and more

Figure 2-2 - Shakey the robot.

Shakey the robot (Fikes & Nilsson 1971) was one of

the first autonomous robots that used a deliberative

control architecture.

 25

recently Leiva and Barragán (Leiva and Barragán, 2011) used decision trees to control

the behaviours of simulated bots. Collins and Ruina (Collins and Ruina, 2005) used a

finite-state machine for the control architecture of a bipedal walking robot.

Due to the limitations defined previously, alternative approaches were

developed, notably the subsumption architecture in the 1980s (Brooks, 1986),

hierarchical networks (Rosenblatt and Payton, 1989) and action selection mechanisms

in the 1990s (Maes, 1991b, 1991c; Tyrrell, 1994).

The main problem with ‘traditional AI’ is that it has difficulties working in

complex and dynamic environments. Depending on the mobile robot, this can be

because of the limitations in the processing power and that the planning techniques are

not robust enough for dynamic environments. The previous examples of traditional AI

have shown some positive results (the robots achieving their respective goals), however

they are all tested in structured, predictable environments. With the traditional AI

approach; the mobile robots need to create a symbolic model of the world, which can

later be broken down into a set of rules that the robot can use to solve goals. This can

lead to a combinatorial explosion of the number of rules depending on the complexity

of the environment. This traditionally meant that the mobile robot would require a large

amount of storage and computational power, which may be limited on a mobile robot.

Another problem that is found in traditional AI approaches is the difficulty in

processing and executing tasks in real time because the robot will need to process its

sensor data, create a symbolic world model, break the model into a sequence of tasks

and finally execute those tasks quickly. The robot can find that by the time it has made

a decision on what to do, the environment has changed and it will need to process the

new data instead. Creating a symbolic representation of the world is also a challenge for

traditional AI because the robot will need to be able to maintain a model of a

 26

continuously-changing world. The Frame Problem (Hayes, 1971) is a situation where an

agent can have difficulty describing the environment and the effects of its actions.

Another related problem, called the ‘symbol-grounding problem’ occurs when the robot

has difficulty linking symbols (such as ‘door’ or ‘cup’) to real-world perceptions (Harnad,

1990). Vinyals et al. (Vinyals et al., 2015) attempted to address this problem by using a

convolutional neural network, making it possible to accurately describe and caption an

image.

2.2. Behaviour-Based AI

Because of the problems with traditional AI, in the 1980s a number of researchers began

to look for a solution that was more reactive to environment changes. The idea was to

break away from the concept of creating a symbolic model of the world and to instead

rely on input from sensors, to be interpreted as the world model for each moment in

time. One of the more influential researchers was (Brooks, 1986), who developed the

subsumption architecture. This then led to the new fields of behaviour-based

architectures (Maes 1991a) and behaviour-based robotics (Arkin, 1998). Figure 2-3

shows a comparison of deliberative control architecture (traditional AI) with a more

reactive control architecture (behaviour-based architecture).

 27

Figure 2-3 - Deliberative Vs Reactive

Cifuentes Costa (Cifuentes Costa 2013) detailed a comparison between deliberative and reactive systems.

The new behaviour-based architectures used a bottom-up approach (Maes,

1991b, 1991c; Tyrrell, 1994) as opposed to the Traditional AI using a top-down approach.

The bottom-up approach defines the low-level elements of the system in detail. These

elements are then linked together to form a larger subsystem. Subsystems are then

linked, forming layers, until a complete top-level system is created. Using a set of rules,

a reactive system (behaviour-based architecture) is able to provide real-time responses

to changes in the environment. For example, if an obstacle were to present itself to a

robot, a reactive architecture would be able to move around the obstacle without

creating a new model of the world to plan around the obstacle. This approach does not

use any form of deliberation or internal interpretations for planning and it is typically

unable to learn any new behaviours as the behaviours are typically hand-coded (Maes,

1991b; Tyrrell, 1994; Cifuentes Costa, 2013). A behaviour-based architecture is able to

store high-level interpretations of tasks (behaviours), e.g, ‘explore’ or ‘avoid obstacles’,

and this can give the appearance of high-level deliberation as an emergent property.

The behaviours in a behaviour-based architecture work in parallel, reacting to

changes in the perceived environment and providing the robot with an appropriate

Deliberative Reactive

Symbolic Reflexive

Speed of Response

Predictive

Capabilities

Dependence on World Models

Representation-Dependent

Slower Response

High-Level Intelligence

Computation Hungry

Representation-Free

Real-time Response

Low-Level Intelligence

Simple Computation

 28

response, which also helps to achieve some set goals. Figure 2-4 shows the structure of

the behaviour-based architecture. The previous problems with traditional AI (accurate

real-time world modelling and real-time processing for real-time task planning) are no

longer an issue in behaviour-based architecture, as it is reactive rather than deliberative,

meaning the agent only needs to decide on a single behaviour to execute instead of a

detailed plan. However, a new challenge of how to select the most appropriate

behaviour at any particular moment to achieve a set goal will now need to be addressed.

Figure 2-4 - Vertical decomposition of a behaviour-based control system

(Brooks 1986; Carreras 2004).

This relatively new field (at the time) has since been widely researched and has

seen a variety of different implementations. Seraji and Howard (Seraji and Howard,

2002) used a behaviour-based architecture combined with fuzzy logic to measure terrain

traversability and use this information in real-time to update a robot’s navigation

strategy. Carreras (Carreras, 2004) used a behaviour-based architecture combined with

reinforcement learning to allow an autonomous underwater robot to complete simple

tasks.

As both traditional AI and behaviour-based architectures have merit, some

researchers have combined these approaches to create hybrid architectures (Arkin,

1987; Nicolescu and Matarić, 2002; Lee and Cho, 2014). These architectures aim to find

the compromise between the classical top-down approach and the reactive bottom-up

approach. Figure 2-5 shows the components of a typical hybrid architecture.

 29

Figure 2-5 - The components of a hybrid architecture

(Carreras Pérez 2003) defines a three layered hybrid architecture that combines a deliberative layer architecture

with a reactive architecture.

Typical approaches to the hybrid architecture (Figure 2-5) split the architecture into

three layers:

1. Deliberative layer

This is the planning layer and relates closely to traditional AI. Here the goals are

broken down into a sequence of behaviours, which forms a plan to solve a given

goal. This plan can be interrupted by the lower layers of the architecture and runs

in parallel to the other modules.

2. Control layer

This is the ‘middle man’ layer. It is used to supervise the completion of actions /

tasks and to communicate between the reactive lower layer and the deliberative

higher layer (Cifuentes Costa, 2013).

3. Reactive layer

This layer deals with the real-time problems that are presented by the

environment. If there are no problems, then the robot is able to execute the high-

level plan of the deliberative layer and, should a problem arise (such as an

obstacle), the reactive layer will take over and react to the given problem.

 30

The hybrid architecture is able to take advantage of both the hierarchical planning and

the reactive real-time aspects of the behaviour-based architectures. Hybrid

architectures are discussed in more detail in section 2.2.4.6.

2.2.1. Behaviour-Based Architecture

A behaviour is typically characterized as an entity of an agent that encapsulates a

process. A process can be anything, ranging from moving to a specific position to

completing a given task. A behaviour can also store something that can be used to

execute the process that it represents. Maes (Maes, 1991b; Tyrrell, 1994) uses

executable code, for this component of a behaviour. This component can range from

executable code to a hierarchy of behaviour networks (Nicolescu and Matarić, 2002; Lee

and Cho, 2014).

Behaviour-based architecture was developed from traditional AI concepts in

order to create autonomous robots that can achieve goals in dynamic environments. All

behaviours in the architecture take inputs from the robot’s sensors, and send their

output to the coordinator for evaluation. Carreras (Carreras, 2004) explains the purpose

of the coordinator in a behaviour-based control architecture, which is that it is used to

send only one action to each actuator at a given time (Figure 2-6). Section 2.2.1.2 details

the two approaches that the coordinator can use to select which action to send to the

actuators; the coordination method or competitive method.

 31

Figure 2-6 - The Structure of the Behaviour-Based Control Architecture

(Carreras Pérez 2003) details the benefits of a behaviour-based control architecture

 Brooks (Brooks, 1986) suggests that each behaviour in a behaviour-based

architecture must be independent the others as typically only one behaviour can be

selected to execute at any given time, however the internal structure of a behaviour can

be open to interpretation (e.g, the internal structure of a behaviour can include any

combination of behaviours (different levels of abstraction), sensors, internal data and a

coordinator). The resulting structure is a network of interconnected behaviours. One of

the key benefits of the behaviour-based architecture is that it allows for real-time

responses with low computational cost (Carreras Pérez 2003).

2.2.1.1 Basics of the Behaviour-Based Architecture

Behaviour-Based Architectures typically follow a few basic design principles (Brooks,

1986; Carreras, 2004) that are key to creating successful implementations:

1. Parallelism

It is important that a behaviour-based architecture is able to quickly process the

data about the environment and execute the most appropriate behaviour. This

is achieved via parallelism and often is implemented by running each behaviour

on a separate thread. This concept allows the behaviours to either work together

and coordinate or compete with one another for selection (Maes, 1991b; Tyrrell,

1994).

 32

2. Modularity

In every implementation of autonomous robots, one of the key tests is

robustness, the ability for the system to cope with errors and still be able to

function to a high degree of accuracy (Singh and Kelly, 1996; Simmons et al.,

1997). A behaviour-based architecture is able to achieve a high level of

robustness from the concept of modularity. Each behaviour in the behaviour-

based architecture is separate from the other behaviours and the behaviours are

executed individually. If a behaviour fails in the system (due to hardware or

software issues) then other behaviours can still be executed and the robot can

retain some form of functionality. Modularity also allows the network of

behaviours to grow dynamically without affecting or altering any of the existing

behaviours. This concept is one of the key motivations in this thesis.

3. Situatedness / Embeddedness

The term ‘situatedness’ refers to the robot being physically situated in the world.

This means that the robot uses real sensor data to inform its decision on what to

do next and to perform the associated action (Maes and Brooks, 1990). The term

‘embeddedness’ refers to, again, the idea of the robot being in the real-world but

noting that the robot is subjected to any of the influences of the environment,

such as potential damage to the robot. Asimov (Asimov, 1963; Clarke, 1993,

1994) refer to this concept as the third law of robotics, which is used to keep the

robot safe from harm. This was later researched (Murphy and Woods, 2009) and

alternative laws discussed, including robot safety.

 33

4. Emergence

A behaviour-based architecture appears to exhibit high level deliberative

planning as an emergent property of the interaction between behaviours. This is

demonstrated in (Maes, 1991b; Tyrrell, 1994) who gave an agent simple

behaviours in a situated environment and it is shown that the sequence of

selected behaviours can appear like a plan. The behaviour-based architecture

does not have any planning modules (unless a hybrid architecture is used);

however, the sequence of executed behaviours can give the appearance of a

carefully-formulated plan. Meeden et al. (Meeden, McGraw and Blank, 1993)

had a similar experience with their autonomous robot that exhibited plan-like

behaviours.

2.2.1.2 Competition Vs Cooperation

While behaviours are modular and can be independent, is it also possible for

behaviours to work together. Some implementations of behaviours have running

processes, such as (Brooks, 1986) where the output (commands) of each behaviour is

subsumed by higher level behaviours in the network. Some implementations of

behaviours hold a set of instructions or even executable code that is run when the

behaviour is selected for execution (Maes, 1991b; Tyrrell, 1994). For example, a robot

with a robotic arm could be issued with a task ‘Pick up Object’, with the object being far

away requiring the robot to navigate to it. The behaviours ‘Pick up’ and ‘Move to point’

can act individually, competing with one another for selection, or they can coordinate

together to both solve the goal. It is important to remember the role of the ‘Coordinator’

in the behaviour-based architecture. Figure 2-7 shows a representation of the different

methodologies (Competition and Cooperation) and how the coordinator is able to select

an action to be executed.

 34

Figure 2-7 - Different methods for behaviour selection a) competitive b) cooperative

(Carreras Pérez 2003) details two different methods for selecting behaviours. Behaviours either compete with one

another for selection or cooperate with one other to find a middle ground.

1. Cooperative

The coordinator takes input from a range of behaviours and a combination

function is applied. Vector summation or context-dependent behaviour blending

are often used (Saffiotti, Konolige and Ruspini, 1995). Behaviour blending uses

behaviour schemas to describe the behaviours of a robot (expressed as

trajectories of control actions in an environment). This allows for the

combination of behaviours and goals. The level of abstraction of the behaviour

can control which combination function to use; if some behaviours such as ‘move

to point a’ and ‘move to point b’ are selected then a vector summation can be

applied. Here an agent would travel to a midway point until it was more certain

in which action to execute. However, if the behaviours are ‘go home’ and

‘explore’ then behaviour blending will need to be applied allowing the agent to

perform an action that achieves the outcome of both behaviours.

2. Competitive

The coordinator of the competitive methods always outputs a single behaviour

for activation. There are many different methods that can be applied for the

coordinator to determine which behaviour should be selected for activation.

Some popular examples of these methods include subsumption architecture

 35

(Brooks, 1986), action selection mechanisms (Maes, 1991b, 1991c; Tyrrell, 1994)

and voting-based coordination (Rosenblatt and Payton, 1989; Tyrrell, 1993).

2.2.2 Subsumption Architecture

Subsumption architecture is another behaviour-based architecture and was introduced

in the 1980s and further expanded upon in the 1990s (Brooks, 1986). The subsumption

architecture splits behaviours into a hierarchy of sub-behaviours with each level able to

perform actions to a set competence. The lower layers of the subsumption architecture

can relate to atomic actions such as ‘move forward’ or ‘turn left’. The higher layers of

the subsumption architecture can relate to more abstract behaviours such as; ‘explore’

or ‘move to location’ with the higher levels able to utilize the lower levels when the

sensor data requires it. Any layer of the subsumption architecture can send commands

to the actuators of a system, but may be prevented by another layer. Figure 2-8 shows

a representation of a subsumption architecture.

Figure 2-8 - A representation of a subsumption architecture

The diagram shows the input of sensors to a subsumption architecture, with high level behaviours being subsumed by

the lower level behaviours.

The aim of this architecture was to address a problem with AI during the 1980s,

which was that it was difficult to model the world and to be able to react to the

environment in real time. This architecture achieves this when the behaviours receive

input from the sensors and send output to the actuators. This method is performed

Explore World

Wander Around

Avoid Obstacles

Actuators Sensors

 36

asynchronously resulting in many input signals being discarded, this happens when a

new input is sent and there are still old input signals to process. By discarding the old

input signals, it allows the system to work in real-time using the most recent information.

Brooks (Brooks, 1986; Maes and Brooks, 1990) demonstrated this architecture on a

robot named Allen; this robot used three layers of control with the lowest layer being

able to avoid obstacles and the highest layer to explore the environment. Allen was the

first robot to implement the subsumption-based architecture; it used a sonar for

distance, odometry to calculate its position and a Lisp machine to simulate the

subsumption architecture.

There are many benefits to the subsumption-based architecture, some of these

benefits include;

 Abstraction

The subsumption-based architecture offers different layers of abstraction

of its behaviours where each layer of the architecture allows the robot to

operate at different levels of competence, which also require different

levels of resource. The higher levels of competence are applied only when

they are needed allowing the agent to run more efficiently.

 Simplicity

Compared to many other behaviour-based architectures the

subsumption-based architecture has the simplest architecture.

 Extendibility

The subsumption-based architecture can be extended with additional

layers of abstract behaviours.

 37

 Time

As the subsumption-based architecture is the simplest of the behaviour-

based architectures, it is also the quickest to implement. This is ideal for

researchers that need to test out their theories.

In an example scenario where a robot (implementing the subsumption

architecture) is given a goal to explore and map an environment, the subsumption

architecture could look similar to that in Figure 2-9. As the goal is to explore the

environment, we do not want the robot to be navigating in already seen terrain. At the

lowest layer of the subsumption, architecture is an atomic behaviour ‘Move Forward’.

At this bottom layer the robot will simply move forward, until it is subsumed by a higher

level behaviour. At the next level is the ‘Avoid Obstacle’ behaviour and at the top of the

architecture is an ‘Explore’ behaviour, which will point the robot in the direction of an

unexplored area.

Figure 2-9 - Subsumption Architecture - Example 1

This simple example shows a subsumption architecture to assist with a robot’s navigation. Here the move forward

behaviour gets subsumed by the avoid obstacle behaviour and both of these are subsumed by an explore behaviour.

Explore

Avoid

Obstacle

Move

Forward
S1 S2

Mapping

Function

Input

Actuators

 38

In this model of the subsumption architecture there is input to the system, which

is sent to each of the three behaviours. These behaviours are isolated so that the other

behaviours cannot interfere with the inner workings of another behaviour. Each process

(behaviour, suppressor or splitter) is connected via links, which pass data from one

process to the next. Figure 2-10 shows an example of the data flow when the ‘Move

Forward’ behaviour is activated.

The ‘Move forward’ behaviour sends its commands to a suppressor process (S1),

Figure 2-10. This is then sent to the other suppressor process (S2) and from there the

data is sent to a splitter (sends the data to multiple processes). The actuators receive the

data and are able to perform a ‘Move Forward’ action. The data is also sent to a mapping

function which, determines where the robot is located and whether or not it is in an

already explored area.

Figure 2-10 - Subsumption Architecture - Example 2

This example of the subsumption architecture shows the data flow when the ‘Move Forward’ behaviour is selected.

Explore

Avoid

Obstacle

Move

Forward
S1 S2

Mapping

Function

Input

Actuators

 39

Figure 2-11 shows the path the data flows to the actuators when the robot

detects an object and the ‘Avoid Obstacle’ behaviour is activated. The ‘Move Forward’

behaviour has not been stopped, all of the behaviours in the subsumption architecture

run concurrently. When an object is detected in front of the robot, both the ‘Avoid

Obstacle’ behaviour and the suppressor (S1) are activated. The suppressor suppresses

the flow of data from an input when it is activated. The ‘Avoid Obstacle’ behaviour will

send signals to the actuators to make the robot pivot and face a new direction, then

allowing the ‘Move Forward’ behaviour to continue. The combination of these two

behaviours from the different levels of the subsumption architecture as well as the

concept of suppression, allow the robot to dynamically avoid obstacles in real-time.

Figure 2-11 - Subsumption Architecture - Example 3

This example of the subsumption architecture shows the data flow when the ‘Move Forward’ behaviour is subsumed

by the ‘Avoid Obstacle’ behaviour.

Explore

Avoid

Obstacle

Move

Forward
S1 S2

Mapping

Function

Input

Actuators

 40

The mapping function is used to calculate the robot’s relative position by creating

an in-memory map and feeding this data to the ‘Explore’ behaviour. When the robot is

navigating through an already explored area the ‘Explore’ behaviour will use the data

from the mapping function to pivot the robot in a new direction, towards an unexplored

area. When the ‘Explore’ behaviour is activated, the suppressor (S2) is also activated,

suppressing the ‘Move Forward’ behaviour and the ‘Avoid Obstacle’ behaviour. This is

demonstrated in Figure 2-12.

Figure 2-12 - Subsumption Architecture - Example 4

This example of the subsumption architecture shows the data flow when the ‘Explore’ behaviour is subsumes the

other behaviour.

There are many benefits to the subsumption architecture, the first being that it

is a modular architecture allowing new levels to be added to the system to give the robot

greater functionality. The lower levels of the system would remain intact, providing the

same capabilities only these can now be subsumed by the new higher levels. Another

benefit is that it eliminates one of the problems found in traditional AI, that is the

bottleneck caused when sensor data is received but there is still sensor data to be

processed. Instead, in this architecture the behaviours only receive the sensor data that

is relevant to their needs. As each layer in the architecture only needs its relevant

Explore

Avoid

Obstacle

Move

Forward
S1 S2

Mapping

Function

Input

Actuators

 41

information, then there is no need for a representation model of the world to be created

and this allows the robot to respond in real-time to changes in the environment.

Brooks (Brooks, 1986) explained that one of the requirements for a robot control

system is that it should be capable of achieving multiple goals. In the subsumption

architecture this can rarely be achieved as only one behaviour can be executed at one

time and there is no ability to compromise. This is one of the limitations of the

subsumption-based architecture: each behaviour is fighting for control of the robot’s

actuators and there can be some behaviours that are in direct conflict with one another.

The subsumption architecture does have a mechanism for conflict resolution (the

concept of suppression), in which the conflicting behaviours lower in the architecture

are subsumed by the higher-level conflicting behaviour. Another limitation of the

subsumption architecture is the concept of modularity, as the internal workings of each

behaviour are kept separate from other behaviours in different layers it can become

difficult to add additional layers to the system. For example, it is much more difficult to

add layers between the different levels of the subsumption architecture, as you may not

want some behaviours to subsume the new behaviours. It is also difficult to predict the

needs of future layers and this can result in changes needing to be made to the lower

level behaviours in order to accommodate and provide for the new behaviours. Finally,

one of the subsumption architecture’s strengths is also one if its greatest limitations and

that is the concept of subsumption. For example; one layer in the system could have a

behaviour ‘Avoid Obstacle’ to prevent the robot from colliding with obstacles however,

if that layer is being subsumed by a higher layer then it is possible for the robot to collide

with obstacles.

 42

While the concept of the subsumption architecture has been around for many

years, it is still a topic of research. Recent work involving subsumption architectures

includes (Oland, Andersen and Kristiansen, 2016) who used the concept of the

subsumption architecture to break down the task of flying a UAV (unmanned aerial

vehicle) . The task was broken down into a hierarchy of behaviours; ground avoidance,

obstacle avoidance and waypoint tracking with the more abstract levels subsuming the

more detailed lower levels, showing that the subsumption architecture is not limited to

a single field. Nagata et al. (Nagata, Otsuka and Watanabe, 2012) proposed a network-

based subsumption architecture for multiple mobile robots. This is implemented in a

server supervisory control system, which is shown to enable swarm intelligence in the

mobile robots. Turner et al. (Turner, Givigi and Beaulieu, 2013) implemented a

subsumption-based architecture using model-driven development and implemented

the behaviours of the robot in a finite state machine. This shows that the subsumption-

based architecture is still relevant and used in the field of robotics. It also shows the

benefits of a reactive architecture for dynamic environments.

The subumption architecture has been widely used and heavily researched since

it was originally developed in the 1980s. Some recent examples include Halal and

Zaremba (Halal and Zaremba, 2018) who used subsumption as part of their architecture

for allowing a mobile robot to navigate an unstructured environment, (Kragic et al.,

2018) who also based part of their architecture on subsumption to allow a robot to

interact with Lego objects and Gudwin et al. (Gudwin et al., 2018) who used the

subsumption architecture as part of a traffic control manager in a traffic simulator.

 43

2.2.3 Action Selection

Behaviour-based architecture has demonstrated that it is capable of dealing with

dynamic, changing environments (Weser, Off and Zhang, 2010). An agent needs to be

able to decide which action it needs to perform from its selection of possible actions.

Action Selection is the term given to the solution to this problem. The function of an

action selection mechanism is to select, at each moment in time, an action for the agent,

which achieves or helps to achieve its global goals. The key to action selection is using

the correct level of abstraction for the actions. e.g. ‘turn left 90o’ is a low-level atomic

action whereas, ‘explore’ is a high-level action. These actions in an action selection

mechanism are often predefined and fixed.

The problem of selecting the most appropriate action in a behaviour-based

architecture has attracted a great deal of research into action selection mechanisms.

Some of the more researched approaches to action selection are listed below and

explained later in this chapter;

1. Symbolic Approach

2. Distributed Approach

3. Dynamic Planning Approach

Action selection mechanisms follow some basic key principles;

1. Dynamic Environments – The robot will need to be able to select an action to

perform in dynamic and unpredictable environments where it may include

humans or other robots that can either assist or hinder the robot.

2. Real-Time – The robot is expected to operate in as close to real-time as possible.

It should be able to select an appropriate action in a timely manner.

 44

3. The robot will typically need to be able to perform a variety of actions. Each of

these actions may compete for resource allocation and the robot will need to be

able to select the correct actions to perform, to allow it to achieve its own goals.

2.2.3.1 Symbolic Approach

This follows from the same approach as traditional AI where the robot must first take in

sensor data to create a symbolic representation of the world and then infer a plan. The

plan is then executed in a sequence of actions. As previously discussed, depending on

the agent’s resources, this approach may be too slow for real-time execution and it could

have difficulty in creating an accurate description for the world model.

A decision-making strategy that has been adapted to overcome some of the flaws

of the traditional AI concept is the satisficing strategy. Rather than identifying the

optimum solution, this approach attempts to meet criteria for adequacy. This is achieved

by selecting the first plan that can achieve a goal (even if it is sub-optimal) and saving

time by not searching for a better plan (Dolgov and Durfee, 2002).

The symbolic approach is most often implemented using a goal-driven

architecture. In this symbolic approach each available behaviour is described by a set of

goals and each of these goals can be achieved by a defined process. The robot must be

able to choose which process to follow to accomplish its goals. This architecture tends

to be a hybrid of the traditional AI and behaviour-based approaches.

Recent work in this field includes Klenk et al. (Klenk, Molineaux and Aha, 2013)

who discussed a concept called Goal Driven Autonomy (GDA) which allowed their agent

to reason and generate its own goals in response to changes in the environment. This is

in response to the idea that goals need to be revised over time depending on the

situation of the world (Roberts et al., 2014).

 45

2.2.3.2 Distributed Approach

The distributed approach differs greatly from the symbolic approach and follows the

principles of the behaviour-based architecture. Here the distributed approach has many

behaviours available and determines which behaviour to execute based on real-time

local sensor information. There is also always some form of centralised decision system

which determines which behaviour should be ‘the most active’. Some examples of this

approach include;

1. ASMO (Attentive Self-MOdifying)

This is an attention-based architecture based on cognitive attention theory

(William, 1983) and offers a mechanism for directing and creating behaviours,

beliefs, anticipation, discovery, expectations and changes (Samsonovich, 2010).

This architecture works similarly to the action selection mechanism (Maes

1991a;) in that behaviours are selected based on an attention value which the

behaviours use to compete for selection.

2. Winner-Takes-All

This is an architecture in which a behaviour that has the highest motivation

(weighted sum of relevant sensory information and motivation / drives) is

selected and takes control of the robot’s motor system. Depending on the

behaviour it could also take control of other aspects of the robot. The active

behaviour has exclusive access to all of the robot’s resources and does not share

with any other behaviour. It was noted (Prescott, 2002) that this architecture can

be slow when a behaviour releases access of the robot’s actuators to another

behaviour, which can give the appearance of the robot stalling.

 46

3. Spreading Activation

This is covered in detail in section 2.2.4. The spreading activation mechanism was

pioneered by (Maes, 1991b, 1991c; Tyrrell, 1994) and is a model in which

activation energy is passed amongst the behaviours in a non-hierarchical

network. The activation energy is an arbitrary value that is used to identify the

most appropriate behaviour in a behaviour network. This energy is first passed

into the network from the goals and the environment nodes where it is then

passed between the behaviours of the network. The behaviour with the largest

amount of activation after this process is selected for execution.

4. Extended Rosenblatt and Payton

In the late 1980s Rosenblatt and Payton (Rosenblatt and Payton, 1989)

responded to the work of (Brooks, 1986), on the subsumption architecture, and

created a connectionist (interconnected network), hierarchical, feed-forward

network later known as the Rosenblatt and Payton. In this network, there is a

hierarchy of nodes (behaviours) and these nodes receive information from;

internal, indeterminate and external stimuli feeding their activation down the

hierarchy until it reaches an action node. The action nodes are located at the

bottom of the hierarchy named the behavioural final common path; it is at this

level of the hierarchy that a winner-takes-all process is used to select which

action node to execute. Unlike other action selection mechanisms, the

Rosenblatt and Payton allows multiple nodes in the network to remain active at

once. Each of these active nodes excites other nodes in the hierarchy by passing

a degree of preference to the nodes beneath it (either a positive or a negative

preference). The inputs to these nodes (degree of preference from other nodes)

 47

are then combined following some predefined formulae, with the behaviour with

the greatest preference being selected for activation.

Tyrrell (Tyrrell, 1993) reviewed the work of Rosenblatt and Payton

(Rosenblatt and Payton, 1989) as well as many others in the field of behaviour

networks and created his own variant the Extended Rosenblatt and Payton.

Tyrrell (Tyrrell, 1993) discovered fundamental flaws in the original work: he

found that some basic action nodes were being selected more than others

because appetive sub-systems were similar in size to those of consummatory

nodes (consummatory nodes are those that achieve goals and appetive nodes

are those that enable consummatory nodes). Tyrrell (Tyrrell, 1993) introduced

uncertainty and temporal penalties to ensure that consummatory nodes were

preferable to appetive nodes (appetive nodes help other nodes become active);

however, the penalties that were applied were too severe. More changes were

made resulting in the penalties being reduced and the combination of inputs rule

was changed from a simple summation to a more specific rule. This architecture

is explained further in section 2.2.4.

5. Subsumption-Based Architecture

The subsumption-based architecture was created by Brooks (Brooks, 1986) in the

1980s in response to the lack of reactive systems available in robotics at the time.

The subsumption-based architecture comprises of reactive processes that

compete with each other for access for the robots control. A behaviour emerges

from the fixed connections between the processes. Although the subsumption-

based architecture is symbolic, it also follows a distributed approach as their

behaviours are executed based on real-time sensor information and it uses a

centralised decision system to select the most appropriate behaviours.

 48

2.2.3.3 Dynamic Planning Approach

Distributed solutions (those discussed in section 2.2.3.2) can be very difficult to

construct if the robot is to work in a dynamic and uncertain environment, because these

systems require the behaviours of the agent to be predefined. Dynamic planning is an

approach using explicit-hardcoded plans to determine the priorities of the system, which

avoids combinatorial explosion in complexity. The dynamic planning approach only

computes the next action for each time-step based on pre-scripted plans and the current

context. An example of a dynamic planning approach applied to path finding in

unstructured environments is given by (Ferguson and Stentz, 2007),who used a Rapidly-

exploring Random Tree (RRT) algorithm combined with sampling techniques to allow an

agent to successfully navigate a dynamic environment.

These are reactive hierarchical architectures and are commonly found in video

game agents (Cutumisu and Szafron, 2009). A finite state machine works with a limited

number of states with the agent being in one state at any given time. When conditions

in the environment trigger changes, then the agent can transition to another state. The

finite state machine consists of a list of its possible states and the conditions to transition

between states (Chow, 1978). Due to the predefined nature of finite state machines,

they are not commonly used at a top level, instead they are commonly used as elements

in robot architectures and this is due to the dynamic nature of the environment.

 49

2.2.4 Behaviour Networks

One architecture that uses action selection mechanisms is the behaviour network. This

section begins with a basic introduction to behaviour networks before giving a thorough

explanation and analysis of the behaviour network.

2.2.4.1 Introduction to Behaviour Networks

In the early 1990s Maes (Maes, 1991b, 1991c; Tyrrell, 1994) proposed the Agent

Network Architecture (ANA) as a method of selecting behaviours. This incorporated a

spreading activation process to an action selection mechanism, allowing an agent to

become autonomous. ANA is based on the concept of a network of behaviours, which

may be activated as required. The behaviour network consists of a variety of nodes,

which are joined by a variety of links. The aim of the behaviour network is to pass

activation energy between the nodes via the links until a behaviour reaches an activation

energy greater than a set threshold, when it can be selected for execution. The activation

spreading method is discussed in section 2.2.3.2. Figure 2-13 shows a basic example of

the structure of a behaviour network and how the nodes might be connected to one

another.

 50

Figure 2-13 - Structure of a behaviour network

This diagram shows the basic decomposition of a behaviour network.

2.2.4.2 Components of a Behaviour Network

This section discusses in detail all the components of a behaviour network and how

those components are able to work together to drive an autonomous agent. This section

can be used as a tool to assist in the design and development of a behaviour network.

Similar to many other AI techniques, the core of a behaviour network is the concept of

a behaviour. The concept of behaviours owes greatly to the work of Brooks (Brooks,

1986, 1995), who helped to popularize the behaviour-based approach. This technique

was extended by Bryson (Bryson, 2000) who described a combination of behaviour-

based and object-oriented approaches leading to behaviour-oriented design.

B1

B2

B3

B4

B5

Behaviours Goals

G1

G2

Environment

E

1

E

2

E

3

 51

2.2.4.2.1 Behaviours

A behaviour can be characterized as an entity of an agent that encapsulates a process.

A process can be anything, ranging from moving to a specific position to completing a

given task. The challenge has always been how to select the best behaviour for a given

situation (Brooks, 1986). Figure 2-14 shows the components of a behaviour in a

behaviour network.

Figure 2-14 - Components of a behaviour

This diagram depicts the inner components of a behaviour in a behaviour network, also showing the inputs and

outputs of a behaviour (Brooks 1986, Maes 1991, Tyrrell 1994).

A behaviour node in a network can have many types of input coming from goal

nodes, environment nodes or other behaviour nodes. The input to a node is passed via

a range of different types of link. Those links either increase a node’s activation or reduce

it. A behaviour may contain a list of preconditions that will all need to be met in order

for the behaviour to be activated. A behaviour will also contain (the ‘add list’) a list of

conditions that if the behaviour was executed it would make true and (the ‘delete list’)

a list of conditions that if the behaviour was executed it would make false. The behaviour

network operates on the basis that each behaviour has a certain amount of activation

energy. This is an arbitrary value that is used to manage the amount of activation a

behaviour holds. When the activation spreading process is started (the process to move

activation energy between behaviours to identify the most appropriate behaviour in a

 52

given situation), the amount of activation in a behaviour is either increased (from inputs)

or decreased (through outputs). Finally, a behaviour will also store something that can

be used to execute the process that it represents. Maes (Maes, 1991b, 1991c; Tyrrell,

1994) uses executable code for this component of a behaviour. This component can also

be a hierarchy of behaviour networks (Nicolescu and Matarić, 2002; Lee and Cho, 2014).

There are two types of behaviour in a behaviour network; consummatory

behaviours and appetitive behaviours. The consummatory behaviours are more

beneficial to a system than appetitive behaviours as they provide an immediate effect

(towards achieving a goal) whereas the appetitive behaviours assist the consummatory

behaviours to become selected for activation (appetitive behaviours do not achieve

goals, instead they enable consummatory nodes). Appetitive behaviours should lead

into a consummatory behaviour, creating an appetitive-consummatory sequence. Using

an example from (Maes, 1991d), there could be a goal called ‘Hungry’ (‘Food OK’) and

to achieve this goal the agent will need to consume some food. The immediate

consummatory behaviour to achieve this goal would be ‘Eat Food’ in a specific location.

This consummatory behaviour would then have an appetitive behaviours ‘Go to Food’

as this behaviour would help to make the consummatory behaviour active and available

for activation.

2.2.4.2.2 Components

The primary component of the behaviour network is behaviours, discussed in

2.5.2.1. Those behaviours are typically at a lower level than the system level and are also

a higher level than the atomic actions. Figure 2-13 shows a basic example of the

structure of a behaviour network and how the behaviours might be connected to one

another. It shows that the behaviours are connected by external nodes; goals and

 53

environment nodes. The goal nodes depict what the agent will be trying to achieve and

are connected to the consummatory behaviours that will achieve the goal passing

excitation to those nodes. If there are behaviours that can undo a goal, then the goal will

inhibit those behaviours. This is based on a goal been part of the delete list of

behaviours. The environment nodes derive from the processed sensor data that the

robot receives and are connected typically to appetitive behaviours in the system.

As well as the connections from the goals and the environment nodes to the

behaviour nodes, there are also different internal connections between the behaviours

themselves. The internal connections of the network encode different types of

relationship (Tyrrell, 1994):

 Consummatory-Appetitive relationships between nodes

 Conflict relationships between nodes

 Goal-achieving relationships between nodes and goals

 Goal-counteracting relationships between nodes and goals

 Situation-dependency relationships between nodes and environment sensors

Figure 2-14 shows the components of a behaviour and the input and output links,

discussed in (Brooks, 1986; Maes, 1991a; Tyrrell, 1994), are specified as follows:

 Predecessor links: If proposition X is false and proposition X is a precondition of

node A and proposition X is in the add list of node B (i.e., if B can help A to become

executable), then there is an active predecessor link (excitatory) from A to B.

 Successor links: If proposition X is false and proposition X is in the add list of node

A and proposition X is a precondition of node B and node A is executable (i.e., if

A can help B to become executable), then there is an active successor link

(excitatory) from A to B.

 54

 Conflictor links: If proposition X is true and proposition X is a precondition of

node A and proposition X is in the delete list of node B (i.e., if B stops A from

becoming executable), then there is an active conflictor link (inhibitory) from A

to B.

 Environment links: if proposition X about the environment is true and

proposition X is in the precondition list of node A (i.e., if A is at least partially

appropriate to the current situation), then there is an active link (excitatory) from

the sensor of proposition X to node A.

 Goal links: If goal Y has an activation greater than zero and goal Y is in the add list

of node A (i.e., if A is likely to achieve goal Y), then there is an active link

(excitatory) from goal Y to node A.

 Protected goal links: If goal Y has an activation greater than zero and goal Y is in

the delete list of node A (i.e., if A is likely to undo goal Y or to stop it from being

achieved), then there is an active link (inhibitory) from the goal Y to node A.

 55

2.2.4.2.3 Action Selection

The basic principle of a behaviour network resolves around an action selection

mechanism (discussed in some detail in 2.4), which assists in the selection of the best

behaviour (action) for an agent to do next at any given time. The challenge of action

selection mechanisms and behaviour networks is to be able to select the correct level of

abstraction for a behaviour. e.g., a behaviour of ‘pick up object’ is far less abstract than

a behaviour of ‘tidy table’. Nicolescu and Matarić (Nicolescu and Matarić, 2002) used a

hierarchy of abstract levels of behaviours to solve this challenge. This method allowed a

high-level behaviour network to make decisions with abstract behaviours and used a

low-level behaviour network to work out how to complete the selected behaviour.

For an action to be eligible for selection, all of its preconditions must be true and

its activation level must also be greater than a global threshold (Tyrrell, 1994), it is not

fully clear why a global threshold was used in the supporting text. When there are

multiple nodes that are executable then the node with the highest activation is selected.

After a node has been executed its activation is reset to zero while other nodes retain

their activation levels. To calculate if an action is eligible for selection the following

procedure is executed:

1. The external input is calculated from the goal nodes and the environment nodes

into the network of behaviours.

2. The excitation is spread around the network via predecessor, successor and

conflictor links.

3. The activation in all nodes is normalized so that the average activation is equal

to π. It is also unclear as to why there is a need for normalization as the behaviour

network will always select the node with the greatest activation level.

 56

4. If any of the nodes are executable, the node with the highest activation that is

over the global threshold is selected and executed. The nodes activation is then

reset to zero.

5. If there are no nodes that are eligible for selection, then the global threshold is

reduced and the cycle is repeated. As previously mentioned, this appears to be a

pointless step. The threshold will continue to drop until a behaviour’s activation

exceeds it, at which point the behaviour network will execute the behaviour with

the greatest activation (whether that is a normalised value or not).

2.2.4.2.4 Activation Spreading and The Division Rule

The process of spreading activation energy around the network is based on a

concept called the division rule, that is explained in (Tyrrell, 1994), an emergent flaw

from the original work of Maes (Maes, 1991a). The division rule refers to one of the steps

of a behaviour network. The network must calculate how much energy excitation needs

to be spread from one behaviour to the next. The original behaviour network (Maes,

1991a; Tyrrell, 1994) used the following constant parameters:

Global Parameters

() The initial value of the global threshold

() A constant used to determine the weighting of environmental inputs and successor

links

() A constant used to determine the weighting of goal inputs and predecessor links

() A constant used to determine the weighting of protected goal inputs and conflictor

links

 57

The global parameters are constant values that are used in the behaviour

network as input multipliers to calculate the amount of activation that is to be spread

from one node in the network to another. The different link types in the network use

the previously defined global parameters for the input multiplier calculations shown

below.

Input Multipliers

 () Environmental sensors

() Goals

() Protected Goals

(
𝜙

𝛾
) Successor Links

(
𝛾

𝛾
= 1) Predecessor Links

(
𝛿

𝛾
) Conflictor Links

 The input multipliers originated in (Maes, 1991a) and were further detailed in

(Tyrrell, 1994). These input multipliers use the constant global parameters and are used

to define the proportion of activation energy to move between behaviours. To assist in

this calculation, a division rule is also applied to ensure an even amount of activation

energy is passed to nodes with multiple inputs / outputs and is defined below.

Division Rule

(N) Number of outputs of a given type

(M) Number of inputs of a given type

 58

Example:

Given there is a situation where there is a predecessor link from node X to node Y. The

proportion of energy passed from node Y to node X is given by

 = 𝛾

𝛾
𝛼

𝑁𝑀
 (1)

=
𝛼

𝑁𝑀

where  is the activation of node Y.

Figure 2-15 shows an example network made up of nodes and predecessor links.

In this example, activation energy will move from B4 to B5. Node B4 currently contains

an activation energy value of 10. It has 3 input nodes and 1 output node. Using the

previously defined formula from (Tyrrell, 1994):

=
10

1∗3
 =3.33

 This would move a value of 3.33 from node B4 to node B5. Node B4 will retain a

large proportion of energy because it has a large number of inputs of the same type.

Further research into the input multipliers and the division rule was conducted by

(Tyrrell, 1994) and is discussed later in this section.

Figure 2-15. First step of the activation spreading function.

B1

B2

B3

(10)

B5 B4

B6

B7

 59

Tyrrell (Tyrrell, 1994) found that there was an unbalanced competition between

consummatory nodes caused by the division of the number of outputs. For example;

given there is a situation where there is a one-to-one connection between a behaviour

(B1) and a goal (G1) then during each cycle B1 will receive an input of (). Whereas; given

there is a situation where there is a one-to-many connection between a goal (G2) and

behaviours (B2 and B3) then during each cycle B2 and B3 will receive an input of (/2).

This shows that the more behaviours that are connected to the same goal the more

diluted the excitation those behaviours receive in each cycle. This is shown in Figure

2-16. This shows that behaviour B1 will be favoured compared to the other behaviours

in the network.

Figure 2-16 - Demonstrates the unbalanced competition between the nodes due to the division of the number of

outputs.

Tyrrell (Tyrrell, 1994) then changed the division rule by removing (N) altogether

and found a new problem with the division rule; namely that there was a prejudice

against nodes with many inputs of the same type. For example; given there is a situation

where there is a one-to-one connection between a behaviour (B1) and a goal (G1 with

1.0 energy) then during each cycle B1 will receive an input of (1.0 * ). Whereas; given

there is a situation where there is a one-to-many connection between a behaviour (B2)

and multiple goals (G2 = 1.0 and G3 = 0.2) then during each cycle B2 will receive an input

of (0.6 *). This is shown in Figure 2-17.

Behaviours Goals

B1

B2

B3

G1 (1.0)

G2 (1.0)



/2

/2

 60

Figure 2-17 - Demonstrates the unbalanced competition due to the division of the number of inputs.

Tyrrell (Tyrrell, 1994) made some further changes to the division rule in order to

allow the nodes that can achieve multiple goals to get more activation. He removed the

division by goal, predecessor, protected goal and conflictor links. This method also

proved to be unsuccessful in scenarios where a node has multiple predecessor links.

Instead of being penalised with the division rule, these nodes received far more

activation than their competition. This shows that there is a problem with and without

a division rule in some instances. Table 2-1 shows the different problems that can occur

with the division rule. Ideally there would be a division rule that is appropriate in all

situations and enables the agent to successfully complete its goals.

Division Rule Deficit in Action Selection

Division by N Penalizes nodes sharing inputs
No division by N No deficit
Division by M (successor and
environment links)

No deficit

Division by M (goal and
protected goal links)

Penalizes nodes with high M

No division by M (goal and
protected goal links)

No deficit

Division by M (predecessor
and conflictor links)

Penalizes nodes with high M, where
inputs are due to different goals

No division by M (predecessor
and conflictor links)

Favors nodes with high M, where
inputs are due to the same goal.

Table 2-1 - The effects of the different variations of the division rule (Tyrrell 1994).

Behaviours Goals

B1

B2 G3 (0.2)



/2

/2

G1 (1.0)

G2 (1.0)

 61

 Tyrrell (Tyrrell, 1994) proposed a solution to this problem: to take the average of

the input value both with and without division. The predecessor input thus becomes:

𝐼𝑃 =
1

2
 (𝛼 +

𝛼

𝑀
) (2)

In addition, the formula for conflictor input becomes:

𝐼𝐶 =
1

2
 (𝛼

𝛿

𝛾
+

𝛼

𝑀

𝛿

𝛾
) (3)

A side effect of this implementation is the possibility of a feedback loop of both

appetitive nodes and consummatory nodes. It was shown that the appetitive nodes were

selected more often than consummatory nodes after multiple iterations of the spreading

activation process. Tyrrell (Tyrrell, 1994) suggests that there is no general division rule

for predecessor links that works for all situations; this is “because there is no way of

knowing whether or not the inputs derive from the same goal”. Tyrrell (Tyrrell, 1994)

also stated that it was not possible to solve the division rule problem without making

“radical changes to the architecture and central concepts of MASM”. Chapter 4.1 details

a potential solution to this problem.

2.2.4.3 Factors of Favourability

The primary benefit of behaviour networks is that they are designed to work in dynamic

unstructured environments. They use a reactive architecture that is able to select the

best action for a robot to take in the existing situation. Typically, there is no planning

system involved in a behaviour network; the culmination of behaviours over time are

hoped to achieve the global goals set. A plan can thus be seen as an emergent property

of these behaviours over time and could be used as a template for future behaviours.

Lee and Cho (Lee and Cho, 2014) were able to extend the behaviour network by adding

a deliberative control layer on top of a behaviour network. This allows the behaviour

 62

network to subsume the commands of the planning layer when a new situation is

presented, and a different action should be executed.

 The concept of dynamic action selection is a valid and essential tool for robot

planning because, in the real world, environments are constantly changing making it

difficult for hard-coded solutions to remain successful.

2.2.4.4 Liabilities

Behaviour networks have not seen a great deal of research in recent years. There are a

variety of possible reasons for this, each stemming from the liabilities of behaviour

networks described previously. Behaviour networks do not plan, being reactive systems,

and more recent work has focused on robot architectures (Knepper, Srinivasa and

Mason, 2010; Weser, Off and Zhang, 2010) using planning, such as implementing a

planning architecture on top of a behaviour network (Lee and Cho, 2014). Others have

favoured learning algorithms, such a neural networks (Lin and Lee, 1991; Miljković et

al., 2013) as behaviour networks do not learn from their actions or about their

environments.

 The supporting texts on behaviour networks define some core liabilities with the

system (Maes, 1991a; Tyrrell, 1994). The main liability is the division rule which is

explained in the previous section. Other liabilities with behaviour networks include the

binary nature of behaviour node achievement. Nodes can either achieve a goal or not

achieve a goal; there is no mechanism in a behaviour network that allows a behaviour

to partially achieve a goal. The same applies to negating a goal, the behaviour nodes

either counteract a goal or they do not. For example; a robot could partially complete a

goal of ‘Clean Kitchen’ by ‘washing the dishes’. However, this would counteract the goal

 63

of ‘Cook Meal’ to some degree because the pots currently being used by this task might

be cleaned by the other.

 Tyrrell (Tyrrell, 1994) explains that there is a lack of persistence present in

behaviour networks. This is because the original behaviour network (Maes, 1991a) will

remove all energy in a behaviour that has been activated and the energy in all other

behaviours will remain. The behaviour network needs to make a decision in each time-

step and any residual activation energy could negatively influence the next selected

behaviour. For example, over many time steps an undesirable behaviour could

accumulate enough activation energy to become the next desired behaviour for

activation. This is a huge liability for behaviour networks as it can either cause

undesirable behaviours to be favourable or cause the agent to oscillate between two or

more behaviours. For example, an agent could be in a situation where it is navigating a

room and needs to decide which direction to go. Moving to the right will help it bring it

closer to achieving one goal while moving to the left will help it to achieve another. In

one time step the agent moves to the right and the energy in the ‘Move Right’ behaviour

is reset to 0. However, the ‘Move Left’ behaviour will retain some energy from that time

step. In the next time step, both the ‘Move Left’ and ‘Move Right’ behaviour is given

some more activation energy but the combination of two time steps worth of energy in

the ‘Move Left’ behaviour overcomes the fresh energy in the ‘Move Right’ behaviour. In

this example the agent is now stuck in an oscillating loop.

 It was found during the implementation of the behaviour network that the

possibility of connection loops can exist in the behaviour network. This is explained in

more detail in section 4.3, and is caused when multiple behaviours are reliant upon one

another. When energy is passed into this loop, it will then continue to be passed

infinitely as there are no documented methods to break the loop.

 64

 This section has detailed many liabilities within behaviour networks, some of

which could be a contributing factor to why they have not seen a lot of interest in recent

years. These liabilities range from; problems with the internal workings of the behaviour

network (such as the division rule), a lack of persistence for making decisions and the

possibility of the energy spreading mechanism getting stuck in a loop. In the following

sections some of these liabilities shall be addressed and potential solutions suggested.

2.2.4.5 Improvements to Behaviour Networks

The previous sections discussed the current limitations with behaviour networks. It is

possible that if these limitations were improved, then behaviour networks could see

more research and implementations in the future. The lack of planning in behaviour

networks has already seen a potential solution. Lee and Cho (Lee and Cho, 2014) added

a deliberative control layer on top of a behaviour network. The deliberative control layer

handled the planning side of a robot, while the behaviour network reacted to dynamic

changes in the environment. This showed that a top-level planner could make the long

term plans for a robot while a behaviour network operated as a reactive low-level layer

enabling the robot to function in dynamic environments.

 The division rule is a problem that has yet to be solved. Tyrrell (Tyrrell, 1994)

showed a variety of different solutions but later explains that there is no perfect solution

for the division rule. Section 4.1 shows a potential solution to this problem by

embedding data into the links connecting the nodes to allow a smarter, more dynamic

division rule.

 The previous section discussed the lack of persistence present in behaviour

networks and the problem associated with it, selecting inappropriate behaviours. One

solution involves removing all of the energy in the network every time a behaviour is

 65

activated and another solution is to give the selected behaviour some energy equal to

the average amount of energy in the network.

 Finally, a method to escape the feedback loop of a behaviour network is

presented in section 4.3. This method involves creating data packets to travel through

the behaviour network allowing more data to be collected about the source and

destination of the data, preventing repetition.

2.2.4.6 Recent Work

While behaviour networks are no longer a heavily-researched topic, there have been

some recent publications that have implemented behaviour networks into their

solutions. Chae and Cho (Chae and Cho, 2014) proposed a hybrid control system that

integrated a behaviour network, to cope with dynamic environments and a STRIPS

planning module. The control module was used to create a sequence of reactive

behaviours of which the behaviour network could take advantage. This system was

tested with 30 different experiments and showed that the agent was able to complete

both simple and complex tasks. The combination of STRIPS and behaviour networks

allowed it to cope with unstable environments while achieving goals.

 Paikan et al. (Paikan, Metta and Natale, 2013) describes a method for developing

a reactive system by exploiting the connection between behaviours. Here a publish-

subscribe methodology is applied to send data messages between the behaviours using

connection points. The result of this methodology was tested on a humanoid robot and

demonstrated that the final behaviour in a sequence could be built / composed from

other behaviours in the system. However, there were some documented limitations to

this approach. Firstly, this approach required parameters and rules to be defined

specifically for each experiment. Second, this approach struggled with scalability as the

 66

system could only handle a limited number of behaviours and rules. Finally, it was

documented that there are difficulties in monitoring the current state of the system.

This is caused by the publish-subscribe mechanism and could be solved by displaying the

information passed between the modules.

 Lee and Cho (Lee and Cho, 2014) also proposed a hybrid architecture that

implements a planning control layer with a behaviour network. Instead of using STRIPS,

a hierarchical planning layer is used to adjust the sequence of behaviours by using

information from user feedback and sub-goals. The planning layer sits on top of the

behaviour network to control and manage the whole sequence of behaviours taking into

account sub-goals. This combination is designed to allow a robot to react in dynamic

environments and achieve global goals. This methodology was shown to reduce the time

between executing tasks by 17.5%, allowing the robot to select and execute relevant

behaviours more efficiently. This was implemented in both a simulated environment

and in the real world. However, the experiments were limited and the results from the

hybrid method were not compared with original implementations of a behaviour

network.

 Kertész (Kertész, 2012) developed a variant of the behaviour network to handle

computational resources of a robot more efficiently. In this study they proposed a

system where a behaviour network is able to create and destroy behaviours in the

network at run-time. This is a variant of a dynamic behaviour network. The benefit of

this approach is that the behaviour network can remain simple and even complex goals

can be broken down into smaller sub-systems. One limitation of this work (similar to

others) is that each behaviour is still predefined for a particular problem / goal.

 67

2.3. Alternative Approaches to Robot Control

2.3.1. Hierarchical Mechanisms

This section will discuss the different hierarchical mechanisms for action selection. It will

begin by looking into the Rosenblatt and Payton architecture, which was one of the first

hierarchical architectures developed as a response to the subsumption architecture. The

expansion to the Rosenblatt and Payton architecture developed by (Tyrrell, 1994) will be

discussed, concluding with some recent examples of hierarchical mechanisms that are

being used.

Rosenblatt and Payton (Rosenblatt and Payton, 1989) created a layered

architecture motivated by the principles of (Brooks, 1986)’s subsumption-based

architecture. This layered architecture built upon the concept of creating a robot control

system using successive layers of competence. This is achieved by breaking down the

task achieving behaviours into small decision-making units. This allowed for more

information to be available to other units and allowed the units to be fully accessible.

One of the limitations of the subsumption-based architecture is that the behaviours are

closed and are inaccessible from any of the other behaviours in the system. That is not

the case in this architecture as there is no such communication barrier between

behaviours. The small decision making units are defined by how they are connected to

one another. They each take input data and transform them into output data for other

units.

Rosenblatt and Payton (Rosenblatt and Payton, 1989) also explored another

limitation of the subsumption-based architecture; that there is no cooperation between

behaviours. Figure 2-18 shows an example scenario where each behaviour has the

choice of five possible actions A – E. Each behaviour will select the action that is best for

 68

itself. The diagram below shows that for behaviour 1, action A best fits its requirements,

however action B and E would be satisfactory. For behaviour 2, action D would be its

best choice with action E being satisfactory.

Figure 2-18 - Lack of cooperation in action selection

The diagram shows that the preferences for individual behaviours are not combined when considering an action.

The next figure (Figure 2-19) shows the above configuration in a subsumption

architecture; it shows that the output in this scenario would be A if behaviour 1 were

suppressing behaviour 2 otherwise, action D would be selected. The alternative

behaviours in Figure 2-18 are lost as neither behaviour has a means to communicate

with the other behaviours to come to the compromise of selecting action E.

Figure 2-19 - Lack of cooperation in subsumption architecture

This diagram shows that neither behaviour in a subsumption architecture have a method to communicate so there is a

loss of preference for which action a behaviour would like to execute.

The solution to some of the problems of the subsumption architecture (see

section 2.2.2.) as explained by (Rosenblatt and Payton, 1989) was to make the

behaviours as ‘fine-grained’ as possible to ensure that no module in the system had

inaccessible internal states. In this new system, behaviours are broken down into a

collection of simple decision-making units. Each of these units receive weighted inputs

Behaviour 1 Behaviour 2

A B C D E

Behaviour 1

Behaviour 2 S1

A

A D

 69

from the other units in the system and from external data sources such as the robot’s

sensors. The unit then computes an activation level and sends out a single output.

Figure 2-20 extends the problem shown in Figure 2-18 and Figure 2-19. Here two

behaviours again have the choice of five actions A – E. The amount of activation for each

unit’s choice is symbolised by the diameter of the circle. Green circles represent positive

values and red represents negative (inhibition) values. The output of each behaviour is

sent to a command unit, which combines the given input from the other units. The

command unit selects the action with the highest activation (E) as the best compromise

for both behaviour 1 and behaviour 2.

Figure 2-20 - Cooperation in the Rosenblatt and Payton

In this diagram multiple behaviours send their preferences to a command unit to decide an agent’s actions.

Each behaviour in the system is distributed among several units allowing each unit to have a choice in the overall

output of the behaviour.

This new architecture also solved the problem of modularity in the subsumption

architecture as new behaviours that are added to the system do not subsume any of the

existing behaviours or prevent those behaviours from sending their outputs. The new

Behaviour 1

Behaviour 2

A B C D E

A B C D E

Command Unit

 70

behaviours express their decisions on what appears to be the best command to execute

and leave it to the command unit’s output to provide the best decision for all behaviours.

Rosenblatt and Payton (Rosenblatt and Payton, 1989) demonstrated the

different levels of competence in their architecture. At the lowest level was an ‘Avoid

Obstacle’ behaviour, which used a vehicle model trajectory (VMT) to indicate how far in

a certain direction that a robot can go before it meets an obstacle, this behaviour was

broken down into many fine-grained units. Some examples of these units include; a

trajectory selection unit, which, is used to determine which trajectories are hazardous

and which are safe, and a trajectory speed unit to determine the appropriate speed to

travel down a trajectory. These units all work together, sharing data to give the basic

level of competence to enable the robot to avoid obstacles. The next level of

competence that (Rosenblatt and Payton, 1989) demonstrated in their system

implemented a gradient field to indicate an optimal route from its current location to a

goal location. This layer is again broken down into multiple ‘fine-grained’ units, which

are able to assert an influence in the direction the robot has to go.

This approach expanded upon the early subsumption architecture by adding

both modularity (adding more behaviour nodes) and a mechanism to allow the agent to

show a degree of preference between the different behaviour nodes. This allowed the

system to make more informed and ‘smarter’ decisions.

 71

2.3.2. Reinforcement Learning

Reinforcement learning is a technique which uses a reward-based system (scalar

evaluation) to allow an agent to select actions in a given environment with the aim of

maximising its reward score (Kaelbling, Littman and Moore, 1996; Sutton and Barto,

1998; Kober, Bagnell and Peters, 2013). The overall goal is to select the action which will

yield the highest reward, based on past experience. This technique has been heavily

researched and applied to a variety of areas including robotics, game theory and multi-

agent systems.

 Smart and Kaelbling (Smart and Kaelbling, 2002) claimed that reinforcement

learning was well suited for mobile robots and implemented a variant which they called

Q-learning (Watkins and Dayan, 1992). Q-learning is a reinforcement technique that

learns an action-value function for each possible world state and selects an action based

on the value of each possible world state it can move to. In Smart and Kaelbling (Smart

and Kaelbling, 2002) implementation it was assumed that the world could be described

by a set of predefined states and that the robot could only choose from a fixed number

of actions. At each time step the robot would observe the environment (state of the

world) and choose an action to take. After the action had been executed the robot would

receive a reward, based on how successful that action was. The robot would continue to

perform this sequence for a predetermined number of iterations, in the hope that it had

learned the best actions to take in each world state.

 Recent work in the area of reinforcement learning includes (Mnih et al., 2015)

who combined reinforcement learning with neural networks to create a deep Q-

network. This Q-network was tested on a variety of computer games to show that a

reinforcement algorithm can work with high dimensional sensor data. In this study the

 72

Q-network received pixels and the game score as inputs and the results show that the

Q-network could out-perform previous algorithms. Kretzschmar et al. (Kretzschmar et

al., 2016) describes using a technique for modelling the behaviour of pedestrians to

assist the navigation of a mobile robot. An inverse reinforcement learning algorithm was

implemented. The inverse reinforcement algorithm aims to discover the reward function

from a given behaviour model, in this case pedestrian movements. This technique was

successfully implemented in a mobile robot and showed that it was able to navigate in

an office environment with human obstacles.

 While reinforcement learning can be applied to a variety of different areas, the

algorithm does have some limitations which can limit the extent that it can be used in

robotics. Reinforcement learning begins with the robot having no knowledge of the

environment that it is in or the outcomes of its actions on the environment. The robot

must learn, typically by trying random actions, how to function in an environment. Since

it does not know how to function in an environment to begin with, the robot will perform

many incorrect actions, such as hitting obstacles. This could take some time for the robot

to find a reward and begin to improve. In other areas this initial process could be

simulated and after thousands of iterations the agent would learn the mapping function

to the environment. Another major limitation of using reinforcement learning for

robotics is that it is difficult to describe the world state in a way that the reinforcement

algorithm can use as input. This is because world states are large in complexity and can

also change in dynamic ways. Techniques such as the value-function approximation

(Boyan and Moore, 1995) can be used to reduce the dimensionality of the world state

for the reinforcement algorithm to use. Current work in reinforcement learning for

robotics focus on basic tasks such as walking down a corridor or avoiding obstacles.

 73

2.3.3. Neural Networks

Neural networks are a popular machine learning technique that can be used in a variety

of different fields, including data science and robotics. The aim is to mimic one of the

best learning mechanisms currently available, the human brain. Work in the field of

mathematics in the early 1940s (McCulloch and Pitts, 1943) paved the way for research

in neural networks in the early 1950s (Kleene, 1951). Due to the limitations in the

processing power of computers at that time, advancements in neural networks were

limited. In the early 1990s research in this area increased dramatically as the

computational power of machines allowed them to handle larger and more complex

neural networks (Specht, 1991; Lawrence et al., 1997; Haykin and Network, 2004).

 Neural networks consist of three main components; the neuron, the connectome

and the activation function. The neuron, shown in Figure 2-21, takes information from

other neurons or from independent variables via a synapse (link), combines it and

outputs to other neurons. The inputs to the neural network are from a single observation

(such as a world state or row in a database). The input values must then be standardized

or normalised so that each of the values are in a similar range, this is to allow the neuron

to sum the values correctly. The output of a neural network can be a continuous value,

binary values or even a robot action.

Figure 2-21 - The neuron of a neural network.

 74

The synapses (links) that connect the input nodes and neurons to other neurons

each have their own weighting mechanism. The way that neural networks learn is by

adjusting the values in these weights until the desired outcome is achieved. This will

typically use techniques such as gradient descent or back propagation to make these

adjustments.

Figure 2-22 - The components of a Neural Network

Where A represents the input from a neuron, B represents a neuron and W represents the weighting on the synapse.

When data comes into a neuron, the first task is to calculate the weighted sum

of all of its inputs. An activation function is then applied to this value and depending on

the result of this function will determine what signal, if any, is passed on either to other

neurons as an input or as the outcome of the neural network. This process may occur

hundreds or thousands of times depending on the size of the network.

There are different types of activation function that can be applied in the neuron

of the neural network. Which activation function should be used depends on the desired

outcome.

 75

1. Threshold Function

This is an activation function that returns a binary result. If the value, after

applying the threshold function, is zero then the outcome is also zero. If

the result is one, then the outcome will also be one. Shown in the figure

below.

2. Sigmoid Function

This activation function uses a sigmoid formula on the sum of the

weighted inputs. If the value approximates towards 1 then a signal will be

passed on. This activation function is common in the final layer of the

neural network as it can be used for returning probabilities.

3. Rectifier Function

This is a common activation function found in the middle layers of the

neural network. If the input to this function is 0 or less, then it will not

pass that onto the next layer. As the value of the result increases, so does

the output value.

4. Hyperbolic Tangent (tanh)

This function is similar to the sigmoid function with the difference that it

can return values ranging from -1 to 1 instead of 0 to 1.

 76

A common structure for a neural network would be to have the inner hidden

layers using a rectifier activation function and the final layer to use an activation function

based on the desired output. For example, if the output is a binary value then either the

threshold activation function or the sigmoid activation function could be used. The

threshold activation function would output a 1 or a 0 and the sigmoid activation function

would return the probability of the output being a 1.

In order for the neural network to learn, it will use a training set of data so that

it can adjust the weights of the synapses (links) to get the best results. It does this by

taking the output of the neural network and comparing that value to the actual value

and applying a cost function on the difference. The goal is to minimise the cost function

as much as possible, by returning and adjusting the weights of the synapses (links) using

techniques such as back propagation and gradient descent.

Neural networks have been used in robotics for many years. Lin and Lee (Lin and

Lee, 1991) proposed and demonstrated a neural network model using a fuzzy logic

controller and a decision making system. This used supervised learning algorithms with

a self-organising model which was shown to be superior to traditional back propagation

learning models in traditional neural networks. Miller (Miller, 1994) used a neural

network to teach a bipedal walking robot how to walk and make decisions in real-time.

The robot was able to learn how to move its weight in order to take steps without falling

over. Yang and Meng (Yang and Meng, 2000) applied a neural network to robot motion

planning. The neural network was able to learn how to navigate a maze by taking in

environment information as input to the neural network.

Recently Miljković et al. (Miljković et al., 2013) used a neural network-based

reinforcement learning controller (Q-learning) to observe the environment and select

actions to control the robot’s actuators. It would take the observed changes in the

 77

environment and issue rewards to the actions depending on how well they performed.

He et al. (He, Chen and Yin, 2016) designed a robotic system with full-state constraints,

implementing a neural network. The neural network was able to handle uncertainties

and disturbances with the robot.

The activation functions of a neural network could also be applied to the action

selection mechanism of a behaviour network. The behaviour network is based on a

simple summing function which could be replaced with a transfer function, as defined

previously in this section, and could lead to future research on this topic.

Similar to other techniques discussed in the thesis, neural networks have

limitations that reduce their applicability to some scenarios. For example, neural

networks require training in order to function optimally and it can be difficult to train a

system to handle uncertainty in dynamic environments. Training also takes time and can

be computationally expensive (depending on the specifications of the robot). Finally, it

is common for neural networks to be hard coded to accept predetermined inputs and to

output expected results. This makes it difficult for a robot to learn new skills when it

interacts with new objects.

 This chapter has discussed a variety of different technologies and

techniques that have been used in AI and robot control over the years. One limitation

still holds for the majority of these and that is they have difficulties functioning

accurately in dynamic and uncertain environments. The focus of this study is to explore

and expand upon the technical feasibility of using behaviour networks in these dynamic

and uncertain environments.

 78

3. Proposed Approach and Architecture

In the previous chapters we have identified and discussed the possible architectures for

robot control. Siciliano and Khatib (Siciliano and Khatib, 2016) explains the importance

of selecting the correct approach and architecture in a robot system. Before selecting or

designing the architecture, a set of requirements for the agent need to be defined.

Firstly, an agent needs to be capable of navigating and functioning in a dynamic

environment. Secondly, an agent needs to be capable of learning how to handle new

(unknown) objects dynamically. Finally, the agent needs to be able to complete goals in

a timely manner. The architecture will need to be able to support the agent to meet

those requirements.

Based on the requirements, a hybrid architecture with deliberative modules was

chosen. Behaviour networks have been proven to function in dynamic and unstructured

environments (Maes, 1991a; Tyrrell, 1994); however, they do suffer from the limitation

of being hard coded for particular goals. This thesis proposes a solution to that limitation

by introducing wireless tags to store data about the objects in the environment. This

introduction of wireless tags will require a robot architecture which can process the data

embedded on wireless tags and update the behaviour network at runtime. This chapter

details the proposed architecture, which is designed to incorporate wireless tags and

dynamic behaviours into a behaviour network.

3.1. Overview

This section will go into detail, discussing the workings of the proposed architecture. It

will begin with an overview of the whole architecture before going into detail for each

 79

of the components and how they all integrate. The areas of the architecture that will be

discussed include:

 Wireless tag manager

 Behaviour network manager

 Environment manager

 User interaction

Figure 3-1 shows the overall architecture of the system. The diagram shows the

structure of the proposed architecture for the dynamic behaviour network. The agent

uses it’s on board sensors to take information from the environment. This information

is processed and passed on to the deliberative control layer to act upon. The deliberative

control layer also takes information about the wireless tags, from an internal database

and from the input of users to create a behaviour network at runtime. The behaviour

network can then decide on an action to take and pass that decision to the actuators to

complete. Each component of this architecture is detailed in the following sections.

Figure 3-1 - Overall structure of the proposed architecture for the dynamic behaviour network.

 80

The diagram in Figure 3-2 shows each of the internal components of the

deliberative control layer and how they interact with one another. The wireless tag

manager processes nearby wireless tags and passes information to the behaviour

network manager. The environment manager processes observations in the world and

also passes information to the behaviour network manager. Finally, the web manager

takes input from users and passes information to the behaviour network manager.

Figure 3-2 - Internal components of the deliberative control layer

When a wireless tag is located, the Wireless Tag Manager (Section 3.2) will

download the data in a JSON format, process the information and add all found

behaviours and goals to the agent’s local database. The Environment Manager (Section

3.3) will take information (at each time step) about the environment (either from

sensors or simulated environment). This information is processed and used to update

the agent’s representation of the world state. Should a user desire any goal to be

completed first or increase/decrease its priority, then the user can adjust the motivation

for that goal (using the proposed web UI in Section 3.5) and that motivation will be

updated in the agent’s local database. Finally, at each time step, the Behaviour Network

 81

Manager will create a new behaviour network using the information (behaviours/goals

and motivation) from its local database and the information about the environment in

the world state. The behaviour network will be executed and output an action for the

agent to take, sending instructions to the actuators to perform the selected action. Using

this method the agent can react to changes in the environment, react to instructions

from users and grow its behaviour network dynamically from wireless tags found in an

environment.

3.2. Wireless Tag Manager

The wireless tag manager is the area of the architecture that is responsible for

interacting with wireless tags in the environment. When a wireless tag is discovered, the

information on that tag is downloaded and parsed into information that the system can

use. This could include enough information to generate goals, behaviours and

environment nodes that can be passed on to the behaviour network manager.

The wireless tag manager is designed to work on a real-world robot utilising its

external sensors to connect to embedded wireless tags and to process any information

that it found. For simulated tests of the behaviour network, the wireless tag manager

was restricted to scanning for objects within a defined radius of the robot and then

processing data files that were linked to that object. Figure 3-3 defines the structure of

processing data files that were linked to that object.

 82

{

"ObjectId":,

"ObjectName":,

"GoalList":[{

 "goalID":,

 "goalName":,

 "activation":,

 "completed":,

 "Preconditions":,

 "GoalState":,

"BehaviourList":[{

 "BehaviourID":,

 "Name":,

 "Activation_Threshold":,

 "Preconditions_Met":,

 "Currently_Executing":,

 "Priority":,

 "Energy":,

 "GoalNames": [],

 "Preconditions":[{

 "PreconditionID":,

 "Precondition_Name":,

 "Value":,

 }],

 "AddLists":[{

 "AddListID":,

 "Name":,

 "Value":,

 }],

 "DeleteLists":[{

 "DeleteListID":,

 "Name":,

 "Value":}],

 }]

}

Figure 3-3 - Data structure of a wireless tag for use in a behaviour network

The data of the wireless tag directly correlates to the structure of a behaviour node

described in the previous section.

 83

3.3. Environment Manager

The environment manager has been designed to work on a robot utilising its external

sensors to monitor, create, delete and manage the environment nodes (Figure 3-4 shows

the structure of an environment node). The environment manager is the area of the

architecture that is responsible for interpreting data from the sensors of a robot and

converting that information into environment nodes. It will manage a list of these, some

of which may come from data found on wireless tags. It will then have the task of using

the robot’s sensors to validate or disprove the state the nodes are in. For example; a

wireless tag belonging to a Yellow Block may have an environment node ‘Near Yellow

Block’, in its list of environment nodes. The environment manager is then able to use the

sensor data from a robot such as sonar and cameras to determine the state of that

environment node; in this example whether or not the robot is near the yellow block.

For the simulated tests on the behaviour network, the environment manager was

modified to take inputs from the simulated environment. Although the simulated

environment processed the environment information differently, the core concept of

the environment manager remained the same, to use this information to manage the

environment nodes. These nodes are passed to the behaviour network manager to be

added to the behaviour network.

World State [{

 Observation Name: “Near Yellow Block”,

 Observation Value: True

}]

Figure 3-4 - Structure of Environment Node.

 84

3.4. Behaviour Network Manager

The behaviour network manager is the area of the architecture that is responsible for

interpreting the data from the other areas of the architecture and converting that

information into a behaviour network. When the system initialises, the behaviour

network manager will connect to an on-board database and read in all of the initial

behaviours and goals that the robot will start with and create an initial behaviour

network (shown in Figure 3-5).

Figure 3-5 - Initial behaviour network that the robot will start with.

|This diagram displays a basic behaviour network that is used to start the robot in a new environment. As the robot

explores a new environment, new goals and behaviours will be discovered and added to this network.

As shown in Figure 3-5, the robot will begin with a goal ‘Explore’ and a behaviour

‘Move’. The robot will explore its environment until the wireless tag manager is able to

find a wireless tag. At this point, the information on that wireless tag will be parsed and

the behaviour network manager will receive a list of goals and behaviours to add to its

on-board database. These goals will be reported to web GUI to notify the users that

there are new goals available. The behaviour network will function automatically but

new goals may require the authorization from the users before being added to the

behaviour network as an achievable goal. At each time step a new behaviour network

will be created from the behaviours and goals located in the on-board database. The

 85

behaviour network manager also receives constant updates from the environment

manager and is responsible for adding, removing and updating all of the environment

nodes in the network. This is also done at each time step and is achieved by referring to

the agent’s interpretation of the world state (that the Environment Manager is

responsible for updating) and generating new environment nodes. This method of

changing the number of behaviours in a network has been investigated by Kertész

(Kertész, 2012), who implemented a behaviour network that could initialise relevant

behaviours at runtime.

Finally, the behaviour network manager is also responsible for starting the

activation spreading process on the current behaviour network which can then return

appropriate behaviours for execution. In a real-world situation, the behaviour network

would select a high-level behaviour (high-level behaviours are abstract behaviours which

can be completed by executing a variety of actuators) and use that to generate a low-

level behaviour network to select the appropriate actuators to achieve it (Lee and Cho,

2014). In a simulated environment this step can be bypassed as each high level

behaviour can have the appropriate executable code attached to the behaviour.

3.5. User Interaction

The ability to allow a user to interact with the behaviour network is one of the

key methods to allow a behaviour network to become dynamic. Figure 3-6 shows an

example screenshot of the proposed web GUI for user interactions with the behaviour

network. Here the user is able to select from a list of goals that the robot is able to

achieve and set the motivation values (how desirable it would be for the robot to

complete that goal). If those goals are not already in the behaviour network, then the

behaviour network manager will not only add the goal to the network but also any

 86

behaviours that can help to achieve it. Users are also able to cancel or interrupt any goals

that they do not want the robot to achieve. When a goal is cancelled or its motivation is

reduced to zero then not only is the goal removed from the behaviour network but all

of the behaviours that can only achieve that goal are also removed. This allows the

behaviour network manager to manage the size of the network as the number of

behaviours in a network can affect the performance of the network.

Figure 3-6 - Proposed Web GUI to allow users to interact with the behaviour network

This diagram shows the web GUI proposed to allow users to interact with the

agent. The web GUI displays the current goals the agent is executing, with the current

motivation associated with those goals. The web GUI will also display completed goals

and new goals that become available to the agent. This proposed web GUI allows the

users to dictate how the behaviours interact in the behaviour network. For example,

increasing the motivation for a goal will affect which behaviours are selected for

execution. This is a new element for a dynamic behaviour network.

 87

3.6. Benefits of proposed architecture

The main benefit of the proposed architecture is that it employs a modular system in

which each section of the architecture has its own purpose. Each section will act

independently, not caring or knowing any details about the other modules. This allows

the modules to ensure that they are able to perform their tasks and send messages to

other modules that they are connected to. The modules will need to be synchronised to

ensure that there is no lost information and that they are able to function concurrently.

For example, the Wireless Tag Manager module is connected the to the Deliberative

Control Layer and sends messages containing new behaviours to be processed. The

Wireless Tag Manager is not concerned with the other modules such as the Database

module or the Environment Manager.

 The modularity of the proposed architecture also allows it to be extendable. As

each section of the architecture is in charge of its own tasks. New modules can be added

with little effort to add more functionality to the system. Although this study is focused

on behaviour networks and it is at the core of the architecture, it could be ‘swapped out’

for an alternative action selection mechanism.

3.7. Limitations of proposed architecture

While this architecture has been designed around the behaviour network, taking into

account previous work in this field (Tyrrell, 1994) and other architectures (Siciliano and

Khatib, 2016), there are still some limitations to the proposed architecture. Firstly, for

our experiments, it is assumed that each module is able to complete its tasks without

errors. Table 3-1 shows an example of the types of error that can be exhibited in the

architecture and which modules would be affected. There is no error handling

functionality in the proposed system, this is because the architecture was not the main

 88

focus of the study and was developed to enable testing of the behaviour network. Should

a single module fail, e.g, the Environment Manager, the Deliberative Control Layer will

continue to send messages to the Behaviour Network which will continue to attempt to

select behaviours to execute. The experiments in the following sections assume that

these types of errors do not occur.

Type of error Module effected Result of error

Inability to
detect objects

Environment Manager Cannot interact with objects.
Potential for collisions.
Some behaviours in the network will
not be selectable.

Broken wireless
tags

Wireless tag manager New tags will not be added to network.
Objects will be treated as tag less
objects.

Failed Goals Behaviour Network
Manager

If a goal fails, then the network would
have to reset the behaviours needed to
achieve the goal.
Could lead to a loop of behaviours
failing to achieve the goal.

Failed behaviour
/ Action

Behaviour Network
Manager

Actions can be failed, e.g. a robot could
fail to pick up an object.
Will need to reset the behaviour, to try
again.
Could lead to a loop of failing
behaviours.

Failed module Module specific A module could fail completely and be
unresponsive.
Depending on the module the system
could continue with limited
functionality.

Failed action
selection

Behaviour Network
Manager

If the agent fails to make a decision on
which action to take then the system
will be locked in a loop and will not
advance the world state.

Table 3-1 - Types of errors that can be exhibited by the architecture.

 89

4. Behaviour Network

This chapter will provide a deeper explanation of behaviour networks. Following on from

previous chapters which detail what a behaviour networks are and how they work, it will

begin to address some issues found during the development process.

4.1. A Solution to the Division Rule

The division rule is a concept described in (Tyrrell, 1994), where the aim is to ensure that

an appropriate amount of activation energy is distributed between the behaviours to

allow appropriate behaviours to be selected and achieve goals. The division rule uses

the number of input and outputs of the same type in order to calculate the proportion

of energy to transfer. Tyrrell (Tyrrell, 1994) has demonstrated and explained the possible

issues with the division rule as described in (Maes, 1991a) and has also shown potential

solutions (also detailed in section 2.2.4.2.4). None of these solutions works perfectly as

for each implementation (Tyrrell, 1994) there are scenarios in which that solution fails.

One problem resides in whether or not the calculation of energy spread should

involve division by the number of predecessor and conflictor links. As an example, Figure

4-1 shows a possible scenario in which node ‘B4’ has three input links, two of which help

to achieve the same goal. Tyrrell’s approach would set M (the number of inputs) to three

but this would lead to errors in the energy spreading calculations because nodes with

low M would receive too little activation and can lose out against those with high M on

occasions when it should be the preferred behaviour. A proposed solution is to store

data in the links detailing which goal(s) each behaviour can achieve. This meta data

(information about which goals behaviours contribute to) would allow for a more

 90

accurate division rule as the division can then be based on either the number of goals a

behaviour can achieve or the number of inputs to that behaviour.

Figure 4-1 - Scenario where a node can have multiple inputs from different goals.

This diagram shows that behaviours in a behaviour network can help to achieve multiple goals. This is pertinent

information for calculating how the flow of energy should be spread through the network.

If the links can be represented as objects with the following information (Figure

4-2). It is also easy to generate a visual representation of the behaviour network by

linking the source and destination to behaviours in the network (Figure 4-3 shows this

network automatically drawn from the metadata).

Achieves G1 B1

B2

B3

B4

B5

Behaviours Goals

G1

G2

Achieves G1

Achieves G2

Achieves G1

Achieves G1

Achieves G1

Link

Source = “B3”,

Destination = “B4”,

Goals = “G1”,

Type = “Predecessor”

Figure 4-3 - An example of a behaviour network displayed

automatically from metadata.

Figure 4-2 - The data that can be stored in

each link.

 91

Other information that a link should have is the type of the link; this allows the

algorithm to group links together before selecting the appropriate division rule. Finally,

each link should store enough data that it is possible to determine to which goals it

contributes. This will be useful information for the division rule of both predecessor and

conflictor links. Using this information, the following algorithm was developed (Figure

4-4):

This algorithm will get the list of all available goal links and, for each goal link, it

will look for other links, which are either of type predecessor or conflictor, and match

the source of the link to the target of the other link. Then for every match a recursive

method is called that will assign a goal to the link and search for the next link in the tree.

Figure 4-1 shows an example of the algorithm passing goal information along the links

between nodes.

It becomes clear to derive which goal(s) a behaviour can achieve by reading the

data that is embedded in each link. Using that information, a more meaningful division

rule can be applied for both predecessor input and conflictor input.

Algorithm

1: For each Link of type ‘Goal’ in Links

2: Get all links of type ‘Predecessor’ and type ‘Conflictor’ where the link’s target is the same as the goal link

target

3: For each link in the given query

4: Call a recursive method passing in the link and goal information

5:

Method

6: Add goal information to Link

7: Find next link matching the source of the current link and the target of the next link

8: For each link in the given query

9: Call this method passing in the next link and the goal information

Figure 4-4 - Pseudocode for embedding goal information to the links of a behaviour network

 92

Predecessor input formula:

𝐼𝑃 =
1

2
(𝛼 +

𝛼

𝑀𝐴𝑋(𝑀,𝐺)
) (4)

Conflictor input formula:

𝐼𝐶 =
1

2
 (𝛼

𝛿

𝛾
+

𝛼

𝑀𝐴𝑋(𝑀,𝐺)

𝛿

𝛾
) (5)

Global parameters:

() A constant used to determine the weighting of goal inputs and predecessor links

() A constant used to determine the weighting of protected goal inputs and conflictor

links

Input Multipliers:

(
𝛿

𝛾
) Conflictor Links

Division Rule:

(G) Number of goals a behaviour can achieve

(M) Number of inputs of a given type

MAX(M, G) defines which division rule will be applied

In the new division rule, the use of the number of output (N) has been removed

as Tyrrell (Tyrrell, 1994) detailed that there are no drawbacks in that alteration. If the

behaviour can achieve multiple goals, then we divide by the number of goals that it can

achieve. This will ensure that a behaviour that can achieve multiple goals will retain a

strong proportion of energy as it will be preferred over other behaviours. If that

behaviour is not appropriate then the environment nodes will reduce the energy in that

behaviour significantly. Otherwise we divide by the number of inputs of the same type.

If the division is high, then less energy will be passed through the network limiting any

bias that may exist.

 93

4.2. Results of the Division Rule

An example network was used to test the proposed division rule, shown in Figure 4-5. In

this network, there are three goals and ten behaviours. Some simplified assumptions

were made to test the proposed changes to the division rule: each of the links in the

network are of the same type (predecessor), and the order of the nodes selected to

spread energy is predefined. Section 4.3 explores the effects of different orders of

energy spreading in a behaviour network.

 The network in Figure 4-5 uses core principles from the examples in (Tyrrell,

1994) to show the different structures the network can have. In this network the three

goals create small sub networks. Goal 1 creates a network with one behaviour having

multiple inputs that originate from a single goal. Goal 2 creates a small chain of

behaviours, with one behaviour having inputs that originate from two goals. Finally, Goal

3 creates another small chain of behaviours, with one behaviour taking a single input

but indirectly achieves multiple goals.

Figure 4-5 - A behaviour network to test the division rule.

Behaviours Goals

G1 (10)

G2 (10)
B10

B1

B2

B6

B7

B3

B4

B5

B8 B9 G3 (10)

 94

For testing, each goal was given the same motivational value to pass into the

network. The network ran for multiple iterations to show where the conversion of

energy finishes. The first test used the same equations as in (Tyrrell, 1994) for spreading

the energy between different behaviours and the second test used the proposed division

rule. The results of the first test are shown in Figure 4-6.

 Figure 4-6 shows the results from running the behaviour network (in Figure 4-5).

This experiment used the same division rule as described in (Tyrrell, 1994). The chart on

the left shows the value of energy in each behaviour over multiple iterations. The

amount of energy in each behaviour was normalised with a range between 0 and 1 over

each time step. It shows that behaviour (b5) starts and finishes with the highest

distribution of energy, compared to the other behaviours in the network. The three

behaviours with the largest amount of energy (b5, b9 and b10) are each the final

behaviours of the respective goals in the network. These results are expected from this

network as it is designed with a single link type and no environment nodes to affect the

Figure 4-6 - Results from testing the original division rule and the new division rule for spreading energy in a behaviour

network.

The chart on the left shows the energy in each behaviour over time (normalised with a min max scaler) using a

traditional division rule. The chart on the right shows the energy in each behaviour over time (normalised with a min

max scaler) using the proposed division rule.

 95

flow of energy in the network. The chart also shows that over time, the distribution of

energy gradually increases in those three behaviours with behaviour (b5) retaining the

dominance over all other behaviours. The chart also shows that over time the

distribution of energy in the network does not remain constant and that it needs

multiple iterations of energy spreading to converge on the solution.

Figure 4-6 also shows the results from running the behaviour network (in Figure 4-5)

with the updated division rule. This experiment applied the division rule as described in

section 4.1. The chart again shows the value of energy in each behaviour over multiple

iterations. It shows that behaviour (b5) and behaviour (b9) start with a wider range of

values, behaviour (b5) also finishes with the highest distribution of energy. This is good

as it shows network is consistent in that behaviour (b5) is best behaviour to select over

the others after the first iteration of energy spreading. However, that does change after

more iterations as the difference between the behaviours lessens. The three behaviours

with the largest amount of energy are still the appetitive behaviours (b5, b9 and b10).

The chart also shows that over time, the distribution of energy gradually increases in

those three behaviours with behaviour (b10) retaining its dominance over all other

behaviours. This again shows that over time the distribution of energy in the network is

not constant and that over time the behaviours change position and settle after many

iterations.

The results shown in Figure 4-6 show little improvement compared to the original

approach also shown in Figure 4-6. However, the experiment was also successful in

identifying the most important behaviour for the behaviour network in Figure 4-5. The

following sections highlight the benefits and limitations of this new approach and the

next section (Section 4.3) shall investigate further, energy spreading in a behaviour

network.

 96

4.2.1. Benefits of the new division rule

The new division rule was first mentioned in (Tyrrell, 1994) at a conceptual level. Tyrell

concluded that in order to have an accurate division rule, each node would need to know

exactly how many goals its inputs could achieve. The primary benefit of adding this

metadata to the links of the behaviour network is that this information is now easily

accessible. The metadata is also useful for debugging the behaviour network. There is

no information on the evaluation side of behaviour networks, making it difficult to know

whether the network is functioning correctly. The metadata makes it possible to check

that the network has been correctly built at run-time.

4.2.2. Limitations of the new division rule.

The new division rule was developed to solve some of the issues described in (Tyrrell,

1994) and section 4.1. The results, however, have the disadvantage that at different time

steps the behaviour network would select different behaviours. Only after multiple

iterations have passed does the behaviour network decide upon the same behaviour

consistently. This could be due to the sample behaviour network (in Figure 4-5) and a

more complex network may be needed to better represent the changes. However, in

the original design of the behaviour network, it would run for multiple iterations until

the amount of energy in any node surpassed a set threshold. Meaning that the network

would converge on the correct behaviour over time.

 Another limitation to the new division rule is that the added overhead for adding

this metadata to the links of the network may reduce performance. At each time step

the behaviour network will re-create the links of the network. Once the network is

created, it is passed to a recursive function that traverses through the entire network

 97

adding the goal information to the links. This carries an inevitable overhead, which may

limit the real-time responsiveness of a large network.

4.3. Energy Spreading in the Behaviour Network

During the implementation process of the behaviour network, some key issues

were noted that have not been raised in any previous work. One such issue affects the

process of spreading energy around the network. Tyrrell (Tyrrell, 1994) explains that

energy must first enter the network via the goal nodes using the following formulas.

Energy moved from goal =

𝛾
𝛼

𝑁𝑀
 (6)

Energy moved from sensors=


𝛼

𝑁𝑀
 (7)

Global Parameters:

 = A constant used to determine the weighting of environmental inputs and successor

links

 = A constant used to determine the weighting of goal inputs and predecessor links

Input Multipliers:

() Environmental sensors

() Goals

Division Rule:

(N) Number of outputs of a given type

(M) Number of inputs of a given type

 98

The energy is passed between the nodes via the predecessor, successor and

conflictor links. However, there is little discussion on the temporal order in which the

behaviour nodes should pass energy between themselves. For any given network there

may be many possible options for the order in which the energy should be spread and

this can affect the outcome. This section will go into detail of the possible options

followed by an analysis of the performance of these options. This section will also show

the effects of selecting different temporal orders for spreading energy in a behaviour

network.

Each of the following methods adopted a general set of rules prior to selecting

the order that the behaviours should spread the energy between themselves. The

external nodes, such as the goals and environment nodes, would spread energy into the

network first before the internal behaviours could spread energy. This is to ensure that

there is sufficient energy in the network to begin with. The links which increase other

nodes energy levels (such as predecessor and successor links) were selected over

inhibition nodes (such as protected goal and conflictor links) again to ensure that there

was energy in the nodes prior to spreading the energy. The following examples show a

behaviour network consisting of goal links and predecessor links to allow the network to

be tested in more detail.

Tyrrell (Tyrrell, 1994) states that a behaviour network will run for multiple

iterations of energy spreading until a behaviour’s energy level has increased above a set

threshold. The supporting text does not explain exactly how to determine the threshold

feature. During the implementation process of the behaviour network, the first iteration

of energy spreading it was found that depending on the order, the results could be

different. This could yield undesired results either due to a loop or nodes not having all

of the possible energy prior to spreading its energy. If the nodes do not have their full

 99

allocation of energy prior to spreading, then an incorrect portion will be sent, and this

would prevent the network from being in a stable situation. It is possible, however, that

multiple iterations of the same sequence of nodes could average out the values and

show different results. Table 4-1 shows that during one iteration of the spreading

process that behaviour (B6) is preferable to behaviour (B8) however; Table 4-1 shows

that after multiple iterations the energy value in the behaviours plateau making

behaviour B8 more favourable than behaviour B6. Behaviours (B1) to (B4) end the

iteration cycle with 0 energy as they send a full complement to the next behaviour.

Table 4-1 - Results from using a random order of behaviour nodes.

 The order was: G1, G2, B1, B2, B3, B4, B8, B5, B6

This table shows the results from spreading activation energy through the behaviour network shown in Figure 4-6. The

energy spreading process was performed multiple times to test whether the number of iterations made any difference

to the results.

Figure 4-7 shows the normalised distribution of energy in the network over time

(iterations). It shows that during the early iterations of the energy spreading process,

the network has not yet converged on a solution.

After 1

iteration

After 10

iterations

After 100

iterations

After 1000

iterations

B1 (0) B1 (0) B1 (0) B1 (0)

B2 (0) B2 (0) B2 (0) B2 (0)

B3 (0) B3 (0) B3 (0) B3 (0)

B4 (0) B4 (0) B4 (0) B4 (0)

B5 (19.83) B5 (171.45) B5 (1696.16) B5 (16943.22)

B6 (8.67) B6 (65.16) B6 (636.93) B6 (6354.57)

B7 (16.00) B7 (160.00) B7 (1600.00) B7 (16000.00)

B8 (7.50) B8 (123.38) B8 (1266.91) B8 (12702.21)

 100

Figure 4-7 - Results from using an arbitrary order of behaviour nodes. The order was: G1, G2, B1, B2, B3, B4, B8,

B5, B6

Two different approaches were tested. The first approach was to take a random

order of the behaviour nodes and spread the energy from the selected node to the next.

Figure 4-8 shows a potential situation for the behaviour network and where this method

yields unsatisfactory results. Here if behaviour node (B6) is selected to spread energy to

behaviour node (B5) and (B6) has a value of 5, then following the formula:

𝐼 =
1

2
(𝛼 +

𝛼

𝑀𝐴𝑋(𝑀,𝐺)
) (8)

It will move 2.5 to B5. However; if behaviour node (B6) has not received all of its

inputs from other behaviours in the system then it will be moving an incorrect portion

of energy to the receiving nodes. For example, the behaviour B6 may have received

some energy from B2 and sent a portion of energy to B5, however; it may not have

received some energy from B3 meaning that an incorrect portion of energy had been

sent.

 101

Table 4-1, Table 4-2, and Table 4-3 each show that the order of the behaviour

nodes, directly affects how much energy remains in certain behaviours after each

iteration. Each of the random selections were simulated over multiple iterations to test

whether the values would converge if the energy was spread around a number of times.

This proved to be inconclusive as the final behaviour to be selected in each was trapped

in a loop between behaviours B5, B6 and B8. Here the initial choice of behaviour directly

affected which behaviour would have the most energy at any given number of iterations.

For this test, there was no correct or incorrect behaviour to select. The aim is to show

that the different behaviours are selected depending on the order that energy is spread.

Figure 4-8 - An example behaviour network consisting of two goals and eight behaviours, each connected with either

goal or predecessor links.

This figure displays a basic behaviour network that was used to test the energy spreading mechanism. This behaviour

network also includes a feedback loop to show a potential flaw in current behaviour networks.

Behaviours Goals

G1 (10)

G2 (16)

B7

B1

B2

B3

B4

B5

B6

B8

 102

Table 4-2 - Results from using an arbitrary order of behaviour nodes. The order was: G1, G2, B1, B2, B3, B4, B5,

B6, B8

Table 4-2 shows the results from spreading activation energy through the

behaviour network shown in Figure 4-8. The energy spreading process was performed

multiple times to test whether the number of iterations made any difference to the

convergence of the energy. Figure 4-9 shows the normalised distribution of energy in

the network over time (iterations). It shows that during the early iterations of the energy

spreading process, similarly to the previous result, the network has not yet converged

on a solution. However, unlike the previous result the convergence of the energy has

finished on different behaviours. In this order, behaviour (B8) concludes the iteration

cycle with 0 energy because it is the last behaviour selected to send energy.

After 1

iteration

After 10

iterations

After 100

iterations

After 1000

iterations

B1 (0) B1 (0) B1 (0) B1 (0)

B2 (0) B2 (0) B2 (0) B2 (0)

B3 (0) B3 (0) B3 (0) B3 (0)

B4 (0) B4 (0) B4 (0) B4 (0)

B5 (19.83) B5 (171.45) B5 (1696.16) B5 (16943.22)

B6 (16.17) B6 (188.55) B6 (1903.84) B6 (19056.78)

B7 (16.00) B7 (160.00) B7 (1600.00) B7 (16000.00)

B8 (0.00) B8 (0.00) B8 (0.00) B8 (0.00)

Figure 4-9 - Results from using an arbitrary order of behaviour nodes. The order was: G1, G2, B1, B2, B3, B4, B5, B6, B8

 103

Table 4-3 shows the results from spreading activation energy through the

behaviour network shown in Figure 4-8. The energy spreading process was performed

multiple times to test whether the number of iterations made any difference to the

convergence of the energy. Figure 4-10 shows the normalised distribution of energy in

the network over time (iterations). It shows that regardless of the number of iterations

of the energy spreading process, the result stays constant and the energy converges on

the same solution. However, unlike the previous results the convergence of the energy

has finished on different behaviours.

After 1

iteration

After 10

iterations

After 100

iterations

After 1000

iterations

B1 (0) B1 (0) B1 (0) B1 (0)

B2 (0) B2 (0) B2 (0) B2 (0)

B3 (0) B3 (0) B3 (0) B3 (0)

B4 (0) B4 (0) B4 (0) B4 (0)

B5 (6.83) B5 (65.77) B5 (654.86) B5 (6545.77)

B6 (8.67) B6 (96.93) B6 (980.56) B6 (9816.93)

B7 (16.00) B7 (160.00) B7 (1600.00) B7 (16000.00)

B8 (20.50) B8 (197.31) B8 (1964.58) B8 (19637.31)
Table 4-3 - Results from using a random order of behaviour nodes. The

order was: G1, G2, B1, B2, B3, B4, B6, B8, B5

Figure 4-10 - Results from using a random order of behaviour nodes. The

order was: G1, G2, B1, B2, B3, B4, B6, B8, B5

 104

The second approach of selecting the order of the behaviours was to spread

energy from each connected behaviour in sequence following the links from each node.

Inspired by how depth first search can be used to search a given tree, the behaviours

were selected by following links to the end of the tree and then backtracking to an

unexplored node. For example, if behaviour B5 was selected to spread energy then the

next behaviour would be B8 followed by B6. This soon demonstrated the same problem

as mentioned previously: the system does not know whether a behaviour has received

all its inputs or not before sending energy to the next node.

After 1

iteration

After 10

iterations

After 100

iterations

After 1000

iterations

B1 (0) B1 (0) B1 (0) B1 (0)

B2 (0) B2 (0) B2 (0) B2 (0)

B3 (0) B3 (0) B3 (0) B3 (0)

B4 (0) B4 (0) B4 (0) B4 (0)

B5 (24.83) B5 (260.35) B5 (2616.71) B5 (26180.35)

B6 (11.17) B6 (99.65) B6 (983.29) B6 (9819.65)

B7 (16.00) B7 (160.00) B7 (1600.00) B7 (16000.00)

B8 (0) B8 (0.00) B8 (0.00) B8 (0.00)

Table 4-4 - Results from using the second approach. The order was: G1, G2, B1, B2, B3, B4,

B5, B8, B6

Figure 4-11 - Results from using the second approach. The order was: G1,

G2, B1, B2, B3, B4, B5, B8, B6

 105

The results from this approach are shown in Table 4-4 and Figure 4-11. These

results were similar to one of the random selection approaches. It is clear from the

results, from the different methods of spreading energy, that the order of nodes makes

a difference in which behaviour accumulates the most energy. It is worth also noting

that the behaviour network in Figure 4-8 contains a loop amongst nodes B5, B8 and B6.

Here, each behaviour feeds into one another which, makes the order of the nodes a

determining factor for the selected behaviour. The other determining factor would be

the number of iterations that are run before the behaviour networks stops and selects

a behaviour for execution. The purpose of the threshold feature would appear to be to

have a fixed point when the iteration process stops. The aim here is to showcase that

there are many different approaches to spreading energy through a behaviour network

and show that the results from these methods differ and that a solution is required.

 To solve the problem of potential loops and to ensure that the order of nodes

does not determine where the energy converges. One solution is to ensure that each

node cannot send its energy through the network unless it has received all of its input

energy. However, the given situation in Figure 4-6 has a loop amongst behaviours B5, B6

and B8. Each of these nodes has an input which must first be executed prior to that node

being able to spread energy. It is thus impossible to determine when one of these nodes

has received all its inputs. The concept of using energy packets to spread energy

between nodes was implemented to solve this problem.

4.3.1. Energy Packets

To compensate for the situations where a feedback loop occurs or for when the system

needs to know whether a node has received its inputs, a new mechanism for spreading

the energy between the nodes was devised. When a behaviour needs to send its energy

 106

to the next behaviour it will create a packet to send (Figure 4-12). A packet contains data

about itself: a list of all of the previous behaviours that it has travelled to, the target

behaviour that it is about to travel to, its source and the amount of energy it contains.

 Storing data relating to the locations where the packet has been (the sources list)

allows the behaviours to know where the packet has been and where it originated from.

This ensures that a packet of data will never contribute energy to the behaviour that it

originated from and by doing so will prevent any loops from occurring.

The behaviour nodes are also modified to accept energy in the packets. Each

node records its energy, a list of all of the packets that it has received and a total energy

which is a sum of its energy and the energy of all of the packets that it contains.

When a behaviour needs to send energy, it will create a packet and put a

proportion of its own energy into the packet (defined in the previous section). The

packet will then travel along a link of the same type (e.g., predecessor). When it arrives

at a new behaviour the packet will be stored in that behaviours list of packages. The

node will then check if it needs to send energy farther (defined by the outputs of the

same type) and, if so, will create another packet and send a proportion of its own energy

to the next behaviour but only if that behaviour is not in the list of behaviours which

have contributed to that packet. This process of creating and sending packets will

Behaviour (B5)

Energy: 80

Packets: 2

Total Energy: 140

Behaviour (B8)

Energy: 0

Packets: 1

Total Energy: 20 Packet (B5)

SourcesList: [B5]

Target: B8

Source: B5

Energy: 60

Figure 4-12 - The contents of a behaviour and a packet

 107

continue until the packet cannot travel any further (e.g., it does not have any output of

the same type).

4.3.3.1. Experiment 1

The first experiment was to test the data packet approach in the behaviour

network from the previous example (Figure 4-5). This experiment will show how the data

packet approach can handle problems such as loops and the order of selection for energy

spreading that the traditional behaviour network could not deal with. The behaviour

network in Figure 4-8 was used with the data packet approach and the results are shown

in Table 4-5 and Figure 4-13.

After 1

iteration

After 10

iterations

After 100

iterations

After 1000

iterations

B1 (0) B1 (0) B1 (0) B1 (0)

B2 (0) B2 (0) B2 (0) B2 (0)

B3 (0) B3 (0) B3 (0) B3 (0)

B4 (0) B4 (0) B4 (0) B4 (0)

B5 (6.83) B5 (108.29) B5 (1105.22) B5 (11074.4)

B6 (16.17) B6 (164.68) B6 (1660.06) B6 (16613.83)

B7 (16.00) B7 (160) B7 (1600) B7 (16000)

B8 (13) B8 (87.03) B8 (834.72) B8 (8311.61)

Table 4-5 - Results from using the packet approach in experiment 1.

Figure 4-13 - Results from using the packet approach in experiment 1.

 108

This experiment was tested multiple times with a variety of different orders and

the results remained constant. In the experiment above, instead of selecting a set order

for the behaviours to spread energy, each iteration used a different randomly selected

order. This was done to show that this new approach is impervious to the problems

caused by the executing order. It shows that a loop in a system can be tolerated and that

it does not matter if a behaviour has received all of its inputs before sending energy out.

The outcome of these results show that behaviour B6 is the best behaviour to execute,

this is correct as behaviour B6 would help two behaviours (B2 and B3) become

executable and can aid in achieving two different goals.

The packet approach was able to demonstrate some positive results, however;

this was shown using only predecessor and goal links in the network. The next test was

to implement this approach with actual behaviours and multiple different types of links.

This test was run multiple times and similar results were presented.

4.3.3.2. Experiment 2

The second experiment was to test the data packets in a behaviour network with

a simple real-world scenario. This scenario is shown in Figure 4-14 where the agent has

three goals; ‘Avoid Obstacles’, ‘Explore’ and ‘Collect Yellow Blocks’. The aim of this

experiment is to track the data packets as they travel through the network, to ensure

that the correct amount of energy is left in each behaviour after each iteration and to

observe any erroneous behaviour. In this experiment, it is assumed that the robot only

has one hand to pick up objects with. If the hand is full (holding an object) then the robot

cannot pick up any other object.

 109

Here there are three goals a robot could have; ‘Explore’ will have the robot

explore and learn its environment and this will be achieved with the ‘Move’ behaviour.

The ‘Avoid Obstacles’ goal will ensure the robot can avoid obstacles, again with the

‘Move’ behaviour. Finally, the ‘Collect Yellow Blocks’ goal would have the robot find and

move Yellow blocks to a different location. ‘Avoid Obstacles’ and ‘Explore’ both have a

behaviour ‘Move’ which will have the robot move in a random direction. ‘Pick up Yellow

Block’, ‘Put down Yellow Block’ allow the robot to interact with the yellow block to

achieve the goal of ‘Collect Yellow Blocks’. Finally; ‘Pick up Blue Block’ was added to

allow for conflict in the system. The situation of the environment is that the robot is in

front of a Yellow Block (ready to be picked up), the robot’s hand is empty, and it is too

far from a Blue block to interact with it. Using these conditions, the appropriate links are

used to connect the behaviours, shown in Figure 4-14.

Collect Yellow

Blocks (100)

Explore (60)

Avoid Obstacles

 (90)

Pick up

Yellow Block

Put down

Yellow Block

Pick up

Blue Block

Move

Behaviours Goals

Goal Link

Predecessor Link

Successor Link

Conflictor Link

Figure 4-14 - An example real world situation shown as a behaviour network consisting of three goals and four

behaviours, each connected with different link types.

 110

The packet approach was applied to this network. The first implementation

followed the same approach as (Tyrrell, 1994) where energy was sent into the network

first via the goal links. The predecessor links were then used to send energy around the

network followed by successor links and concluding with inhibiting energy following the

conflictor links. The results from this implementation are shown in Table 4-6.

The results in Table 4-6 show that the system believes that the best action to

take would be to perform the ‘Move’ behaviour. This is because of the behaviour

achieves two different goals and is separated from the other behaviours. This means

that the ‘Move’ behaviour does not need to pass its energy to any other behaviour and

that it will not be inhibited either. This is a problem if the other systems in the behaviour

network are what are preferred for the robot to do, more than exploring the

environment. This is not a problem with the network but in motivation (amount of

energy in the goals) of ‘Explore’ and ‘Avoid Obstacles’. These would need to be reduced

or have some other inhibition setting that could be applied to it.

The results in Table 4-6 also show that both the ‘Pick up Yellow Block’ and the

‘Put down Yellow Block’ finished with the same amount of energy even though the most

appropriate behaviour would be ‘Pick up Yellow Block’ given the situation the robot is

in. By included a threshold (Tyrrell, 1994), it was observed that the behaviour network

was able to select a behaviour after a single iteration. This is because multiple iterations

are only needed if the threshold hold is not hit and the network need more energy to

converge on a solution.

Behaviour Energy Total Energy

Move 120 120

Pick up Yellow Block 20 60

Put down Yellow Block 0 60

Pick up Blue Block 0 27.5
Table 4-6 - Results from using the packet approach with different types of links.

 111

To test whether the reasoning for these results is due to the order in which the

energy is passed via the links (the results in Table 4-6 followed the order, predecessor,

successor and conflictor) the same experiment was executed with a different order.

Table 4-7 then shows the results for when this order is changed to; successor,

predecessor and conflictor.

Table 4-7 shows the same results as in Table 4-6, showing that the order that the

links are executed in do not make any difference to the end results. The method that the

behaviours use to pass energy to other behaviours is to send a proportion of energy

based on its current energy level. This could explain the unsatisfactory results as when

a behaviour sends energy to another behaviour via a predecessor link, it is reducing the

amount of energy that behaviour has. When that same behaviour then has to send

energy via a different link type it may find that its energy level is lower than expected or

empty. For example; behaviour 1 has an energy of 50 and it sends 40 energy to behaviour

2 via a predecessor link. Behaviour 1 then has 10 energy left for when it needs to send

energy to behaviour 3 via a successor link. However; behaviour 1 could have also

received a packet of energy from another behaviour so making behaviour 1 have 10

energy and a packet of 30 energy. The current solution of the system has the behaviour

only send energy from its own source and not from any packets it may have received.

This worked fine when there was only one type of link to consider (shown in Table 4-5)

but when multiple links are introduced the solution needs to be modified.

Behaviour Energy Total Energy

Move 120 120

Pick up Yellow Block 20 60

Put down Yellow

Block

0 60

Pick up Blue Block 0 27.5

Table 4-7 - Results from using the packet approach with different types of links.

 112

 The next approach involved merging the energy in each of the packets with the

remaining energy stored in each behaviour for each type of link. For example, following

from the previous example, behaviour 1 has sent 40 of its 50 energy to behaviour 2 via

a predecessor link and it has received a packet from another behaviour. Previously it

would create a packet using the remaining 10 energy and send that via a successor link,

instead, before it creates a new packet it will merge the energy in its current list of

packets with the 10 energy it has remaining and send that proportion.

Table 4-8 shows the results from using this approach with a link order of;

predecessor, successor and conflictor. It shows that the ‘Pick up Blue Block’ has a

negative value, this value is accurate as it is a behaviour that does not benefit the system.

The ‘Put down Yellow Block’ has the most energy with 120, even though it is a behaviour

that cannot be executed based on the current situation that the robot is in. Finally; the

‘Pick up Yellow Block’ has a value of 23.75, which again based on the current situation is

incorrect. The order of the links was then changed to successor, predecessor and

conflictor, and the results are shown in Table 4-9.

Behaviour Energy

Move 120

Pick up Yellow Block 23.75

Put down Yellow

Block

120

Pick up Blue Block -8.75

Table 4-8 - Results from using the packet approach

with merging using different types of links.

Behaviour Energy

Move 120

Pick up Yellow Block 46.25

Put down Yellow

Block

0

Pick up Blue Block 13.75

Table 4-9 - Results from using the packet approach

with merging using different types of links.

 113

Table 4-9 shows that the results from using the packet approach with energy

merging following the link order of; successor, predecessor and conflictor. Here the ‘Pick

up Blue Block’ behaviour has a value of 13.75 which is low in comparison to the values

in other behaviours. This means that this behaviour would be unlikely to be chosen for

activation. The ‘Put down Yellow Block’ behaviour has a value of 0, which again is correct

given the current situation the robot is in. Finally, the ‘Pick up Yellow Block’ behaviour

has the most energy in that subsystem with a value of 46.25, making this the most likely

behaviour to be selected. It is worth noting that the ‘Move’ behaviour has a value of 120

as in this implementation the weighting for the ‘Explore’ and ‘Avoid Obstacles’ goal had

not been changed.

In summary, this experiment has tested the data packet approach in a real-world

scenario with multiple link types. It was demonstrated that the energy packets were

successful in navigating the network. This experiment was run multiple times with

different parameters and the overall results showed that packet merging with a fixed

link order yielded more domain accurate decisions. The network in Figure 4-14 did not

make use of environment nodes and these will be included in the later experiments to

further test this approach.

 114

4.3.3.3. Experiment 3

The third experiment extends the concepts implemented in experiment 1 and

experiment 2 to further test the data packets in a more complex situation. The aim is to

test a situation in which the order of the tasks that the agent needs to execute is

important. This is to ensure that the agent is selecting the most appropriate behaviours

to achieve its goals. The situation (shown in Figure 4-15) is a behaviour network with the

goal to bake a cake. Logically, baking a cake involves multiple steps, some of which need

to be executed in a particular order and others which can be executed at any time. This

experiment tests whether using data packets enables selecting the correct order of

behaviours to execute.

 115

Figure 4-15 - Behaviour Network - Experiment 3

 116

Table 4-10, Table 4-11 and Table 4-12 show the individual properties of the

behaviours that are included in the network shown in Figure 4-15. Here the agent has

one consummatory node ‘Bake’, which achieves the goal of ‘Bake Cake’. It also has six

appetitive nodes, which help to make the ‘Bake’ behaviour executable. The agent can

execute the ‘Heat Oven’ and ‘Line Cake Tin’ behaviour at any time without greatly

affecting the outcome of the goal. The ‘Mix’ behaviour is an appetitive behaviour for the

‘Add mix to tin’ behaviour and should logically be selected after one of the ‘Add Eggs’,

‘Add Flour’, ‘Add Butter’ or ‘Add Sugar’ behaviours have executed. This behaviour

achieves the precondition ‘Mix in Tin’ (The precondition needed to achieve the

behaviour ‘Bake’). If the sequence that the behaviours is executed in are different to the

desired sequence, then the end result would be a failed bake. The chronological

sequence for the expected order of behaviours is:

 Heat Oven (any time)

 Line Cake Tin (any time)

 Add Sugar  Mix

 Add Butter  Mix

 Add Flour  Mix

 Add Eggs  Mix

 Add Mix to Tin (only after adding ingredients, mixing and lining tin)

 Bake (final behaviour)

The Heat Oven and Line Cake Tin behaviour may be selected in any order as both

of these behaviours have an immediate contribution to the goal. For this experiment a

successful cake can be baked regardless of the order of the added ingredients and it is

expected that the order of added ingredients will depend on which the agent locates

first. The Mix behaviour should be selected after each ingredient is added. Once all

ingredients are added then the Add Mix to Tin behaviour should be selected followed by

the final Bake behaviour to achieve the goal.

 117

Behaviour Precondition List

Heat Oven Oven Off

Line Cake Tin Tin Empty

Add Sugar Need Sugar

Add Eggs Need Eggs

Add Flour Need Flour

Add Butter Need Butter

Mix Unmixed

Add Mix to Tin Tin Lined, Sugar, Flour, Eggs,

Butter, Mixed

Bake Mix in Tin, Oven On

Table 4-10 - Precondition list for Experiment 3

Behaviour Add List

Heat Oven Oven On

Line Cake Tin Tin Lined

Add Sugar Unmixed, Sugar

Add Eggs Unmixed, Eggs

Add Flour Unmixed, Flour

Add Butter Unmixed, Butter

Mix Mixed

Add Mix to Tin Mix in Tin

Bake Bake Cake

Table 4-11 - Add list for Experiment 3

Behaviour Delete List

Heat Oven Oven Off

Line Cake Tin Tin Empty

Add Sugar Mixed, Need Sugar

Add Eggs Mixed, Need Eggs

Add Flour Mixed, Need Flour

Add Butter Mixed, Need Butter

Mix Unmixed

Add Mix to Tin Mixed

Bake None

Table 4-12 - Delete list for Experiment 3

 118

This scenario does not take into account the lower level atomic actions that the

agent would need to perform, but instead focuses on the high level behaviours needed

to achieve the goal. For example, in order to add eggs to the cake mix the agent would

need to select actions to position a robot arm near an egg and to apply the correct

amount of pressure to crack the egg. Work has been done to incorporate a hierarchy of

behaviour networks to solve a particular task (Nicolescu and Matarić, 2002). This

concept could be used to extend this scenario, so when the agent selects a high level

behaviour to execute a new behaviour network would be created with that high level

behaviour as the goal and some low level atomic actions as the behaviours.

Table 4-143 shows the first scenario in experiment 3. Here the preconditions

have been met for behaviours; ‘Heat Oven’, ‘Line Cake Tin’ creating the network shown

in Figure 4-15. Each of these behaviours is a valid action to begin the process of baking

a cake. Table 4-134 shows the results from the first energy spreading process. Here the

agent believes that the most appropriate behaviour to execute is the ‘Heat Oven’

behaviour, followed by behaviours; ‘Mix’ and ‘Line Cake Tin’. The agent selected the

‘Add’ ingredient behaviours to be the most inappropriate behaviours to execute at this

time. The baking a cake example was selected as there is a sequence of behaviours that

are expected to be followed. Currently the agent is selecting an expected order of

behaviours.

 119

Based on the results from scenario 1 (Table 4-14), the agent executes the ‘Heat

Oven’ behaviour turning on the oven and meeting one of the preconditions for the ‘Bake’

behaviour. Behaviours; ‘Mix’ and ‘Add Mix to Tin’ may have the most energy but their

preconditions are not met. These behaviours pass a portion of their energy to the

appetitive behaviours that will meet their preconditions. This leads to scenario 2 shown

in Table 4-15 and also the results of the next round of energy spreading in Table 4-16.

This shows that behaviour ‘Line Cake Tin’ is now the most appropriate behaviour for the

agent to execute, followed by the add ingredient behaviours.

Behaviour Energy

Bake -11.5

Heat Oven 15.5

Line Cake Tin 5.9

Add Sugar 2.9

Mix 8

Add Mix to Tin 12

Add Flour 2.9

Add Eggs 2.9

Add Butter 2.9

Table 4-13 - Experiment 3, Scenario 1

World State Values

Oven On False

Oven Off True

Tin Empty True

Tin Lined False

Mixed True

Unmixed False

Have Sugar False

Have Flour False

Have Eggs False

Have Butter False

Mix in Tin False
Table 4-14 - Experiment 3, Scenario 1 - Results

Preconditions Values

Oven On True

Oven Off False

Tin Empty True

Tin Lined False

Mixed True

Unmixed False

Have Sugar False

Have Flour False

Have Eggs False

Have Butter False

Mix in Tin False

Behaviour Energy

Bake 0

Heat Oven 0

Line Cake Tin 15.46

Add Sugar 9.56

Mix 17.06

Add Mix to Tin 27.60

Add Flour 9.56

Add Eggs 9.56

Add Butter 9.56

Table 4-16 - Experiment 3, Scenario 2 - Results

Table 4-15 - Experiment 3, Scenario 2

 120

The agent now selects the ‘Line Cake Tin’ behaviour (based on the results from

Table 4-16) which lines the cake tin ready for the mixture and meets a precondition of

‘Add Mix to Tin’ behaviour. This leads to scenario 3 shown in Table 4-17 and also the

results of the next round of energy spreading in Table 4-18. This shows that the agent

believes that the best option is one of the add ingredient behaviours.

Based on the results from Table 4-18, the ‘Add Sugar’ behaviour is now selected

for execution. This starts the chain of behaviours needed to create the cake mix.

Executing this behaviour leads to scenario 4 shown in Table 4-19 and also the results of

the next round of energy spreading in Table 4-20.

World State Values

Oven On True

Oven Off False

Tin Empty False

Tin Lined True

Mixed True

Unmixed False

Have Sugar False

Have Flour False

Have Eggs False

Have Butter False

Mix in Tin False

Behaviour Energy

Bake 0

Heat Oven 0

Line Cake Tin 0

Add Sugar 11.25

Mix 8

Add Mix to Tin 8

Add Flour 11.25

Add Eggs 11.25

Add Butter 11.25

Table 4-17 - Experiment 3, Scenario 3

Table 4-18 - Experiment 3, Scenario 3 - Results

 121

Table 4-20 shows that currently the most appropriate behaviour to execute is the

‘Mix’ behaviour. The agent then follows the chain of adding ingredients and performing

the mix behaviour until all of the ingredients have been added and mixed. This leads to

scenario 5 shown in Table 4-21 and also the results of the next round of energy spreading

in Table 4-22.

World State Values

Oven On True

Oven Off False

Tin Empty False

Tin Lined True

Mixed True

Unmixed False

Have Sugar True

Have Flour False

Have Eggs False

Have Butter False

Mix in Tin False

Behaviour Energy

Bake 0

Heat Oven 0

Line Cake Tin 0

Add Sugar 0

Mix 13.25

Add Mix to Tin 16

Add Flour 13.25

Add Eggs 13.25

Add Butter 13.25

Table 4-20 - Experiment 3, Scenario 4 - Results

Table 4-19 - Experiment 3, Scenario 4

World State Values

Oven On True

Oven Off False

Tin Empty False

Tin Lined True

Mixed True

Unmixed False

Have Sugar True

Have Flour True

Have Eggs True

Have Butter True

Mix in Tin False

Behaviour Energy

Bake 24

Heat Oven 0

Line Cake Tin 0

Add Sugar -11.25

Mix 0

Add Mix to Tin 45

Add Flour -11.25

Add Eggs -11.25

Add Butter -11.25

Table 4-22 - Experiment 3, Scenario 5 - Results

Table 4-21 - Experiment 3, Scenario 5

 122

The results shown in Table 4-22 show that the most appropriate behaviour to

execute is the ‘Add Mix to Tin’ behaviour and the most inappropriate behaviours are to

add more ingredients to the mix. This leads to scenario 6 shown in Table 4-23 and also

the results of the next round of energy spreading in Table 4-24.

The agent now believes that the most appropriate behaviour to execute is the

‘Bake’ behaviour and in executing this behaviour the agent is able to achieve the goal of

‘Bake Cake’. The whole sequence of selected behaviours are shown in Figure 4-16, here

you can clearly see which behaviours the agent selected at each time step. It also shows

that at certain time steps there were behaviours with greater energy than the selected

behaviour, however these behaviours did not have their preconditions met.

This experiment shows that the current implementation of the behaviour

network is able to successfully and accurately, select the most appropriate behaviours

in a correct sequence leading to the completion of a complicated goal. The test scenario

was a closed test with only one system of behaviours. To further test that this is the best

implementation of a behaviour network a final test scenario was devised incorporating

multiple systems into a single behaviour network and a simulated environment.

World State Values

Oven On True

Oven Off False

Tin Empty False

Tin Lined True

Mixed True

Unmixed False

Have Sugar True

Have Flour True

Have Eggs True

Have Butter True

Mix in Tin True

Behaviour Energy

Bake 39

Heat Oven 0

Line Cake Tin 0

Add Sugar 7.5

Mix 0

Add Mix to Tin 0

Add Flour 7.5

Add Eggs 7.5

Add Butter 7.5

Table 4-23 - Experiment 3, Scenario 6

Table 4-24 - Experiment 3, Scenario 6 - Results

 123

F
ig

u
re

 4
-1

6
 -

 E
xp

er
im

en
t

3
 -

 R
es

u
lt

s

E
a

ch
 l

a
b

el
le

d
 p

o
in

t
re

p
re

se
n

ts
 t

h
e

se
le

ct
ed

 b
eh

a
vi

o
u

r
fo

r
th

a
t

ti
m

e
st

ep
.

 124

4.3.3.4. Experiment 4

Experiment 4 is an extension of the previous experiment. In the previous experiment the

goal of baking a cake and the behaviours associated with that goal was introduced. In

that experiment there were some assumptions such as:

 The robot was located in the kitchen with the oven and the cake tin.

 All of the ingredients were within the range of the robot.

 Low-level behaviours (‘go to’ and ‘pick up’) were included in the higher-level

behaviours.

In order to do the testing for Experiment 4, a simulated environment has been

implemented. The simulation consists of a grid of cells with each cell containing a value

representing an object in the environment. The conditions for this environment are as

follows:

 Movement – the agent can only move from one cell to an adjacent cell.

 Sensors – the agent can only scan the cells immediately next to it.

 Memory – the agent maintains a memory of every cell that it has scanned.

Object in

Environment

Value

Representation

Unexplored area 0

Explored area 1

Wall 2

Ingredient 4

Ingredient 5

ingredient 6

ingredient 7

Kitchen (oven) 8

Robot 9

Table 4-15 - Value representation of the simulated

environment.

Figure 4-17 - The simulated environment for

experiment 4

 125

 In this environment (Figure 4-17), there are two rooms; one room contains the

oven represented by the value ‘8’ and the other room is where the robot will begin

(represented by the value ‘9’). Table 4-15 defines what each value represents in the

environment.

 This experiment uses the following assumption: that the robot will begin the

experiment with a full complement of behaviours and goals. The robot will start with an

‘Explore’ goal and an associated ‘Move to Unexplored’ behaviour, where the robot will

choose the closest unexplored location (represented by ‘0’ in Figure 4-18) and navigate

to that location. The goal is achieved when there are no more unexplored locations for

the robot to navigate to. The robot will also begin with the ‘Bake Cake’ goal and all the

associated behaviours demonstrated in Experiment 3. In addition to these behaviours

the robot will have a ‘Pick Up’ behaviour, this is necessary as each of the ingredients

needed to bake the cake are distributed around the environment (shown in Figure 4-17).

It is again assumed that the robot can only carry one object a time. The robot will need

to explore the environment in order to locate the distributed ingredients. In this

experiment, the robot’s sensor range is limited to the areas directly adjacent to itself.

Once found, the robot will need to collect the ingredients and bring them to the kitchen,

which will enable the robot to perform additional behaviours.

 Figure 4-18 - Internal memory map for the agent

in the simulated environment

 126

 This experiment will make full use of the proposed architecture, described in

Chapter 3. The robot will monitor the environment of the simulator and store the

information in its own memory map (Figure 4-18). At each time step, the environment

manager will take the values of each space around the robot and update the memory

map. At the same time the environment manager will update the world state in the

robot’s memory. The behaviour network manager has access to the world state in the

robot’s memory and will use this information to update the precondition, add list and

delete list for each behaviour. This ensures that the robot will always have an up-to-date

behaviour network for the environment that it is in.

Behaviour Precondition List

Bake Mix in Tin, Oven On, Near Kitchen

Heat Oven Oven Off, Near Kitchen

Mix Unmixed, Near Kitchen

Line Cake Tin Tin Empty, Near Kitchen

Add Mix to Tin Tin Lined, Sugar, Flour, Eggs, Butter, Mixed,

Near Kitchen

Add Sugar Need Sugar, Have Sugar

Go to Sugar Sugar Found

Pick up Sugar Sugar Found, Near Sugar, Hand Empty

Add Eggs Need Eggs, Have Eggs

Go to Eggs Eggs Found

Pick up Eggs Eggs Found, Near Eggs, Hand Empty

Add Flour Need Flour, Have Flour

Go to Flour Flour Found

Pick up Flour Flour Found, Near Flour, Hand Empty

Add Butter Need Butter, Have Butter

Go to Butter Butter Found

Pick up Butter Butter Found, Near Butter, Hand Empty

Go to Kitchen Kitchen Found

Table 4-16 - Precondition list for Experiment 4

 127

For this experiment the robot will not use the wireless tag manger in the

architecture as it will begin this experiment with all of the behaviours that it will need to

achieve the goal. In this experiment there will not be any user interaction to interfere

with the robot’s decision making process and so the web manager from the architecture

will not be used either.

Behaviour Add List

Bake Bake Cake

Heat Oven Oven On

Mix Mixed

Line Cake Tin Tin Lined

Add Mix to Tin Mix in Tin

Add Sugar Unmixed, Sugar

Go to Sugar Near Sugar

Pick up Sugar Hand Full, Have Sugar

Add Eggs Unmixed, Eggs

Go to Eggs Near Eggs

Pick up Eggs Hand Full, Have Eggs

Add Flour Unmixed, Flour

Go to Flour Near Flour

Pick up Flour Hand Full, Have Flour

Add Butter Unmixed, Butter

Go to Butter Near Butter

Pick up Butter Hand Full, Have Butter

Go to Kitchen Near Kitchen

Table 4-17 - Add list for Experiment 4

 128

Table 4-16, Table 4-17 and Table 4-18 show the individual properties of the

behaviours that are included in the network shown in Figure 4-19; these are the

precondition, add list and delete list for each behaviour.

Table 4-19 shows the initial world state that the robot will begin this experiment

in. At this initial point, the robot can only perform explore behaviours until it either finds

some ingredients or the kitchen. The behaviour network in Figure 4-19 shows the initial

state of the network at the start of the experiment.

Behaviour Delete List

Bake None

Heat Oven Oven Off

Mix Unmixed

Line Cake Tin Tin Empty

Add Mix to Tin Mixed

Add Sugar Mixed, Need Sugar

Go to Sugar None

Pick up Sugar Near Sugar, Hand Empty

Add Eggs Mixed, Need Eggs

Go to Eggs None

Pick up Eggs Near Eggs, Hand Empty

Add Flour Mixed, Need Flour

Go to Flour None

Pick up Flour Near Flour, Hand Empty

Add Butter Mixed, Need Butter

Go to Butter None

Pick up Butter Near Butter, Hand Empty

Go to Kitchen None

Table 4-18 - Delete List for Experiment 4

 129

Observation State

Oven On FALSE

Oven Off TRUE

Tin Empty TRUE

Tin Lined FALSE

Need Sugar TRUE

Sugar FALSE

Need Eggs TRUE

Eggs FALSE

Need Flour TRUE

Flour FALSE

Need Butter TRUE

Butter FALSE

Mixed TRUE

Unmixed FALSE

Mix in Tin FALSE

Sugar Found FALSE

Near Sugar FALSE

Hand Empty FALSE

Eggs Found FALSE

Near Eggs FALSE

Flour Found FALSE

Near Flour FALSE

Butter Found FALSE

Near Butter FALSE

Hand Full FALSE

Have Sugar FALSE

Have Eggs FALSE

Have Butter FALSE

Have Flour FALSE

Unexplored TRUE

Explored FALSE

Kitchen Found FALSE

Near Kitchen FALSE

Table 4-19 - Initial world state for Experiment 4

 130

During the early time steps, the robot will select the ‘Move to Unexplored’

behaviour and navigate the simulated environment. When the robot finds an ingredient,

the world state will be updated (by the Environment Manager) allowing the behaviours

associated with that object to be selectable. The robot will either interact with the

ingredient or continue until it locates the ‘Kitchen’ object. Figure 4-20 shows the results

for this experiment.

Figure 4-19 - Behaviour Network - Experiment 4

 131

F
ig

u
re

 4
-2

0
 -

 E
xp

er
im

en
t

4
 -

 R
es

u
lt

s

 132

Figure 4-20 shows the results from this experiment. The top graph shows the

movement of energy over time and the bottom graph shows the selected behaviours at

each time step. During the first 100 time steps the robot explores the environment until

time step 110 when the robot starts to locate some ingredients. The change in the

distribution of energy in the network (from finding the ingredients) was not sufficient to

outperform the ‘Move to Unexplored’ behaviour.

The robot continues to explore the environment until time step 120, where the

robot locates the ‘Kitchen’. Although the robot had found some ingredients to interact

with, the associated behaviours were not selected for execution as they did not have

sufficient energy to out-compete the ‘Explore’ behaviour. This is because those

behaviours had a diluted portion of energy, due to the high number of behaviours

needed to pass energy to the ‘Pick up’ behaviours. When the robot is nearby to the

kitchen, it is capable of executing behaviours, such as; ‘Heat Oven’ and ‘Line Cake Tin’.

The ‘Heat Oven’ behaviour is selected, however; the robot decides that the ‘Go to Flour’

behaviour would be the next best behaviour to select over the ‘Line Cake Tin’ behaviour.

Table 4-20 shows the world state when the robot decides to leave the proximity of the

kitchen.

The path that the robot has selected is now to navigate to the flour, pick up the

flour, return to the kitchen and add the flour to the bowl. The reason why the robot

chooses to the leave the kitchen, even though there are still behaviours to select, is

because of the numerous inputs to that behaviour has overpowered the other options.

It is observed in Figure 4-20 that once the robot leaves the proximity of the Kitchen,

leading to the world state shown in Table 4-21, that the distribution of energy moves to

the ‘Go to Kitchen’ behaviour.

 133

Observation State Observation State

Oven On TRUE Hand Empty FALSE

Oven Off FALSE Eggs Found FALSE

Tin Empty TRUE Near Eggs FALSE

Tin Lined FALSE Flour Found TRUE

Need Sugar TRUE Near Flour FALSE

Sugar FALSE Butter Found TRUE

Need Eggs TRUE Near Butter TRUE

Eggs FALSE Hand Full FALSE

Need Flour TRUE Have Sugar FALSE

Flour FALSE Have Eggs FALSE

Need Butter TRUE Have Butter FALSE

Butter FALSE Have Flour FALSE

Mixed TRUE Unexplored FALSE

Unmixed FALSE Explored TRUE

Mix in Tin FALSE Kitchen Found TRUE

Sugar Found FALSE Near Kitchen TRUE

Near Sugar FALSE

Table 4-20 - World state when the robot is in the proximity of the kitchen (Experiment 4).

Observation State Observation State

Oven On TRUE Hand Empty FALSE

Oven Off FALSE Eggs Found FALSE

Tin Empty TRUE Near Eggs FALSE

Tin Lined FALSE Flour Found TRUE

Need Sugar TRUE Near Flour FALSE

Sugar FALSE Butter Found TRUE

Need Eggs TRUE Near Butter FALSE

Eggs FALSE Hand Full FALSE

Need Flour TRUE Have Sugar FALSE

Flour FALSE Have Eggs FALSE

Need Butter TRUE Have Butter FALSE

Butter FALSE Have Flour FALSE

Mixed TRUE Unexplored FALSE

Unmixed FALSE Explored TRUE

Mix in Tin FALSE Kitchen Found TRUE

Sugar Found FALSE Near Kitchen FALSE

Near Sugar FALSE

Table 4-21 - World state when the robot leaves the proximity of the kitchen.

 134

It is observed at this point that the robot will continue to select the behaviours:

‘Go to Kitchen’ and ‘Go to Flour’ consecutively and not advance the world state. The

expected outcome would be for the agent to navigate to the ingredient, perform the

pickup behaviour and bring the ingredient to the kitchen. The loop that the agent

demonstrated is undesirable and showed no indication of stopping. This negative result

was unintentional and was caused by the unfair competition (where behaviours receive

energy from more behaviours than others) (See section 2.2.4) of the inputs to those

behaviours at each time step. A similar situation was also described in (Tyrrell, 1994),

where unfair competition can lead to incorrect behaviours being selected for execution.

A variety of techniques have been tried to bypass this limitation (Tyrrell, 1994;

Lee and Cho, 2014). The first technique was to use intermediary behaviours to filter the

flow of energy to those behaviours with high inputs. This concept would use an

intermediary behaviour to hold the energy from the various inputs and send a

proportion of that energy to the consummatory behaviour. This yielded poor results as

the proportion of energy given to the consummatory behaviour was still greater than

the energy in all other behaviours in the system.

Another technique was to make changes to the global weighting parameters. A

variety of different values were used for the parameters of the behaviour network.

Those values remained between 0 and 1 and were chosen at random. Some parameter

changes caused the robot to select inappropriate behaviours and some changes limited

the flow of energy through the network. There are parameter tuning algorithms (such

as genetic algorithm or grid search) that could be used to find the best global weights

for the network. However, these algorithms work well in constrained situations and

should the situation / environment change then the results would be much worse than

optimal.

 135

One potential solution to the problem shown in this experiment would be to add

additional motivation to goals / behaviours that the agent is currently performing. For

example, if the agent performs a ‘Go To’ object behaviour then on the next time step

additional motivation would be added to the same ‘Go To’ behaviour until the agent is

able to navigate to the object. The amount of motivation should be strong enough to

allow the behaviour to be selected again but also weak enough that is does not over

power other behaviours from ever been selected.

Another potential solution (explored in section 5.1.2) is to abstract the

behaviours to a higher-level of detail. The theory is that it would reduce the complexity

of the behaviour network, which would result in fewer inputs to each node. If there are

fewer inputs to a node then there would be less chances of bias in the network (as shown

in this experiment). E.g. instead of the behaviours; ‘Go To Object’, ‘Pick up Object’ and

‘Put down Object’, they could be grouped into a single higher-level behaviour. If the

higher level behaviour is selected for execution then additional steps to select the action

to take can then be explored. Lee and Cho (Lee and Cho, 2014) demonstrated how a

high-level behaviour network can start smaller behaviour networks to achieve a high-

level behaviour.

4.3.3.5. Overview of the results

The data packet approach has been tested with four different experiments. The

aim of these experiments is to test the data packet approach with incrementally more

complex / difficult situations. The first experiment (Section 4.3.3.1) incorporated a

simple behaviour network with a single link type. This experiment showed that the data

packet approach, regardless of order, was able to evenly distribute activation energy

through a behaviour network. The second experiment (Section 4.3.3.2) expanded from

 136

the previous experiment to simulate a real-world scenario with different goals and

behaviours and a variety of link types. The behaviour network was again, simple and the

results showed that it was able to evenly distribute the energy through the network and

complete the goal. The third experiment (Section 4.3.3.3) incorporated a much more

complicated real-world scenario, baking a cake. The assumptions for this scenario was

that the agent was within the range of each object/ingredient and the aim was to see if

the behaviour network could select the actions in the correct order to complete the goal.

This experiment, again had a variety of different link types and used the data packet

approach to distribute the energy through the network. The results showed that the

agent was able to select the correct order of actions and complete the goal. To extend

this experiment further, experiment 4 (Section 4.3.3.4) incorporated a simulated

environment for the agent to navigate. The test scenario was the same as experiment 3

except that each object was randomly placed in the environment. The agent then

needed to explore the environment to locate each object/ingredient in order to

complete the goal. The behaviour network was expanded with new behaviours to enable

the agent to navigate and interact with objects. The results from this experiment were

undesirable as the agent was trapped in a loop of selecting conflicting behaviours. This

is discussed in detail in Section 4.3.3.4. The next experiment (Section 5.1.1) shall expand

upon this experiment to test the behaviour network with distributed behaviours/ goals.

One of the aims of this experiment is to see if the agent’s behaviour will change if it

receives the behaviours iteratively from the environment and if that will allow it to

complete the goal successfully.

The technical aims described in Section 1.3.1 discussed the exploration and

experimentation of behaviour networks and their activation spreading mechanisms,

which have been achieved in this Section. These experiments were necessary to assist

 137

with answering the hypothesis of the study; as an agent needs to be able to successfully

complete goals in dynamic and both unstructured and structured environment. The next

section shall continue with this objective as it explores the dynamic behaviour network

with distributed behaviours and goals.

5. Dynamic Behaviour Network

This chapter will begin with a discussion on dynamic behaviour networks, starting with

an introduction to the disadvantages to standard behaviour networks and concluding

with the motivation for using a dynamic behaviour network.

 Chapter 4 covers a detailed explanation of a standard behaviour network and

how it can be used in certain situations. Traditionally, a behaviour network will be hand-

designed (predefined), with each behaviour being hard-coded to work in the

environment of the agent. The network will allow the agent to react to changes in its

environment and select the best behaviour for the situation it is in. The main

disadvantage of the behaviour network is the hard-coded nature of its behaviours. This

limitation prevents the agent from learning new behaviours or goals or reacting to

situations that it was not pre-programmed to handle. For this, a dynamic behaviour

network is required. A dynamic behaviour network is defined as one which can learn

new behaviours over time and can modify itself based on internal and external factors,

while keeping some of the same traits as the static behaviour.

 Chapter 3 discussed the proposed architecture to be used for both a standard

behaviour network and a dynamic behaviour network. In this architecture, the

behaviour network manager is the component responsible for managing the network of

behaviours. It takes input from other areas of the system and uses that to update the

 138

behaviour network, either by adding new behaviours or goals or removing unwanted

behaviours.

 To enable a dynamic behaviour network to learn new behaviours and goals, it is

proposed to embed wireless tags onto objects in a real-world environment. When a

robot enters the environment, it will be able to read the wireless tags and download the

necessary behaviours and goals needed to interact with items in that environment.

Chapter 3 discussed the Wireless Tag Manager and how that would be used to read data

from wireless tags in the environment. When the robot reads a wireless tag, the

information is parsed and passed to the Behaviour Network Manager to add those

behaviours and goals to the existing behaviour network. It is worth noting that the

experiments were conducted in a virtual environment and the wireless tags were

simulated in the experiments.

 Another element to a dynamic behaviour network is the ability to allow users to

interact with the decision-making process. Traditionally, a standard behaviour network

will have predefined goals, each with their own predefined motivations. In this situation,

there is no method for altering those goals or motivations. In the proposed architecture

for this system, the method for how users will be able to influence the motivations of

the goals for an agent are discussed. The Behaviour Network Manager will again take

this input and make changes to the behaviour network at run time.

 139

5.1. Test Cases for the Dynamic Behaviour Network

This section describes all of the test cases that were created to test the dynamic

behaviour network. Each test case showcases a particular problem with which a static

behaviour network would have difficulty and that a dynamic behaviour network can

solve.

 The first experiment will introduce distributed behaviours to a behaviour

network. The primary aim for this experiment is to show that a behaviour network can

grow dynamically, adding new behaviours and goals at run-time. This part of the

experiment will be successful if the agent can successfully navigate a simulated

environment and read in new behaviours / goals dynamically and perform new

behaviours that it did not originally begin with. The secondary aim for this experiment is

to extend the experiment (4) from Section 4.3. To explore whether a dynamic behaviour

network can perform better than the static behaviour network with the same

experiment. This part of the experiment will be successful if the agent is able to

overcome the problems found in Section 4.3 and complete the goal (‘Bake Cake’).

 The second experiment will test the dynamic behaviour network with multiple

competing goals. The previous experiments demonstrated the agent starting with a

single default goal ‘Explore’ along with a larger goal such as ‘Bake Cake’. This experiment

will test the dynamic behaviour network with multiple goals that are distributed in the

simulated environment. This experiment will be successful if the agent is able to

successfully explore the environment, add all found goals / behaviours to its network

and complete all of the goals.

 The third experiment will test how a dynamic behaviour network can respond to

user input. The aim is to show that there are many ways in which a behaviour network

 140

can be dynamic and that by changing the motivation for goal can affect the decisions of

the agent.

5.1.1. Distributed Behaviours

The primary benefit of a dynamic behaviour network is the ability to distribute

behaviours in an environment and to read those behaviours at a later time. This allows

an agent to begin with a limited pool of behaviours, allowing for a constrained decision-

making process. The agent can then locate and add new behaviours at run-time, giving

the agent more functionality than it was originally programmed with.

 To test the functionality of a dynamic behaviour network with distributed

behaviours, experiment 4 from Chapter 4 was extended. The baking a cake example was

used and the behaviours and the goals for this scenario were embedded into the objects

in the environment.

The robot needs to continue to navigate an unstructured environment, an

environment that has not been predefined (shown in Figure 5-1) to locate each of the

key ingredients needed to bake a cake. Each of the ingredients has associated

behaviours, which the robot will read when nearby (simulating reading from a wireless

Figure 5-1 - Simulated environment with distributed

behaviours

 141

tag). Those behaviours will be added to the existing behaviour network and are selected

for activation when appropriate. Table 5-1 shows the associated behaviours and goals

that are embedded in each object in the environment (Figure 5-1).

 The aim of this scenario is for the robot to navigate the unstructured

environment, locating each of the key ingredients needed to bake a cake. When the

robot locates the kitchen, it will find the recipe with the goal for baking a cake. The recipe

will contain a list of ingredients and the instructions to achieve the goal. This will then

trigger the chain of behaviours needed to complete the goal.

Object in

Environment

Value

Representation

Behaviour(s) / Goal(s)

Unexplored area 0 N/A

Explored area 1 N/A

Wall 2 N/A

Ingredient

(Sugar)

4 Behaviour: ‘Pick up Sugar’

Behaviour: ‘Go to Sugar’

Ingredient

(Eggs)

5 Behaviour: ‘Pick up Eggs’

Behaviour: ‘Go to Eggs’

Ingredient

(Flour)

6 Behaviour: ‘Pick up Flour’

Behaviour: ‘Go to Flour’

Ingredient

(Butter)

7 Behaviour: ‘Pick up Butter’

Behaviour: ‘Go to Butter’

Kitchen (Oven)

(Recipe for

making a cake)

8 Goal: ‘Bake Cake’

Behaviour: ‘Bake’

Behaviour: ‘Heat Oven’

Behaviour: ‘Line Cake Tin’

Behaviour: ‘Add Mix to Tin’

Behaviour: ‘Add Sugar’

Behaviour: ‘Add Eggs’

Behaviour: ‘Add Flour’

Behaviour: ‘Add Butter’

Behaviour: ‘Go to Kitchen’

Robot 9 N/A
Table 5-1 - Value representation of the simulated environment with associated distributed behaviours and goals.

 142

Table 5-2, Table 5-3 and Table 5-4 show the individual properties of the

behaviours that are included in the network shown in Figure 5-2. These form the

precondition, add list and delete list for each behaviour. Table 5-5 shows the initial world

state that the robot will begin this experiment in. At this initial point, the robot will only

be able to perform the ‘Move to Unexplored’ behaviour until it has been able to navigate

the environment enough to find the additional behaviours. The behaviour network in

Figure 5-2 shows the initial state of the network at the start of the experiment.

Behaviour Precondition List

Move to Unexplored Unexplored
Table 5-2 - Precondition List for distributed behaviours scenario

Behaviour Add List

Move to Unexplored Explored
Table 5-3 - Add List for distributed behaviours scenario

Behaviour Delete List

Move to Unexplored Unexplored
Table 5-4 - Delete List for distributed behaviours scenario

Observation State

Unexplored TRUE

Explored FALSE

Table 5-5 - Initial world state for the

distributed behaviours scenario.

 143

The experiments are conducted through simulated time steps. At each timestep

the robot will make a decision on which action to perform and that action will be

executed. During the early time steps, the robot will select the ‘Move to Unexplored’

behaviour and navigate the simulated environment. When the robot finds an ingredient,

the world state will be updated (by the Environment Manager) allowing the behaviours

associated with that object to be selectable. The robot will either interact with the

ingredient or continue until it locates the ‘Kitchen’ object where it will obtain the ‘Bake

Cake’ goal. In this scenario the robot will learn about the different ingredients scattered

around the environment but it will not have any motivation to interact with those

objects. When the robot enters the kitchen (represented by an ‘8’) it will read the data

from the wireless tag, telling the robot how to use those ingredients it found earlier on

in the environment. Figure 5-3 shows the results for this experiment.

Figure 5-2 - Behaviour Network – distributed behaviours scenario

 144

F
ig

u
re

 5
-3

 -
 R

es
u

lt
s

fo
r

d
is

tr
ib

u
te

d
 b

eh
a

vi
o
u

rs
 –

 B
a

ke
 C

a
ke

 S
ce

n
a

ri
o

 145

Figure 5-3 shows the results from this experiment. The top graph shows the

movement of energy over time and the bottom graph shows the selected behaviours at

each time step. While the results for this experiment are similar to those in experiment

4 (Figure 4-20), the top half of the chart shows the dynamic nature of the network. This

shows that during the initial time steps of the experiment, only the ‘Move to Unexplored’

behaviour received any input. At time step 8 the robot locates the first object (Eggs). The

Wireless Tag Manager receives the wireless tag data for that object, parses it and passes

that to the Behaviour Network Manager to add to the existing network. It is observed

that this process of locating objects and building the behaviour network continues until

time step 114, when the robot locates the kitchen.

Figure 5-4 shows the evolution of the behaviour network over time for this

scenario. The first part of the behaviour network contains the initial goal and behaviour

to allow the robot to explore the environment. The second part of Figure 5-4 shows that

the behaviour network has grown and new behaviours have been added in real-time.

Although the robot has new behaviours in its network, it cannot utilise those behaviours

until a goal is added and those behaviours receive some motivation. The third part of

Figure 5-4 shows the completed behaviour network towards the end of the simulation.

Here the robot has located the kitchen and found a wireless tag containing a new goal

(“Bake Cake”). This allows all of the behaviours that the robot has found on the different

ingredients in the environment to begin to receive motivation.

The complexity of the behaviour network over time is challenging to define. The

complexity will depend of the number of environment variables, the number of goals,

the number of behaviours and the number of links. The number of links in the network

will depend on the state of the environment and the conditions of the behaviour. In the

worst case scenario the complexity of the network will be O(n).

 146

F
ig

u
re

 5
-4

 -
 D

is
tr

ib
u

te
d

 b
eh

a
vi

o
u
rs

 a
d

d
ed

 t
o
 b

eh
a

vi
o
u

r
n

et
w

o
rk

 o
ve

r
ti

m
e.

T
h

e
fi

rs
t

n
et

w
o

rk
 s

h
o

w
s

th
e

in
it

ia
l

co
n

fi
g

u
ra

ti
o
n

 o
f

th
e

b
eh

a
vi

o
u

r
n
et

w
o

rk
.

T
h

e
se

co
n

d
 n

et
w

o
rk

 s
h

o
w

s
th

e
b

eh
a

vi
o
u

r
n

et
w

o
rk

 a
ft

er
 i

t
h
a

s
fo

u
n
d

 s
o

m
e

w
ir

el
es

s
ta

g
s

a
n
d

 h
a

s
in

co
rp

o
ra

te
d
 t

h
e

in
fo

rm
a

ti
o

n
 i

n
to

 t
h

e
n

et
w

o
rk

.

T
h

e
fi

n
a

l
n

et
w

o
rk

 s
h
o

w
s

th
e

fi
n
a

l
co

n
fi

g
u

ra
ti

o
n

 w
h

en
 a

ll
 o

f
th

e
w

ir
el

es
s

ta
g

s
h
a

ve
 b

ee
n

 f
o

u
n

d
.

 147

 When the robot locates the ‘Kitchen’, similarly to in experiment 4 (Chapter 4),

the ‘Heat Oven’ behaviour is first selected. Again; the robot decides to go to an

ingredient instead of selecting the ‘Line Cake Tin’ behaviour. Table 5-6 shows the world

states when the robot decides to leave the proximity of the kitchen.

The robot has now selected to navigate to the Eggs. It is expected that the next

sequence of behaviours will be to pick up the Eggs, return to the kitchen and add the

Eggs to the bowl. The reason why the robot chooses to the leave the kitchen, is again

because of the numerous inputs to that behaviour has overpowered the other options.

This is a fundamental problem with behaviour networks that is discussed in the following

chapter. It is observed in Figure 5-3 that once the robot leaves the proximity of the

Kitchen, leading to the world state shown in Table 5-7, that the distribution of energy

moves to the ‘Go to Kitchen’ behaviour.

Observation State Observation State

Oven On TRUE Hand Empty FALSE

Oven Off FALSE Eggs Found TRUE

Tin Empty TRUE Near Eggs FALSE

Tin Lined FALSE Flour Found TRUE

Need Sugar TRUE Near Flour FALSE

Sugar FALSE Butter Found TRUE

Need Eggs TRUE Near Butter FALSE

Eggs FALSE Hand Full FALSE

Need Flour TRUE Have Sugar FALSE

Flour FALSE Have Eggs FALSE

Need Butter TRUE Have Butter FALSE

Butter FALSE Have Flour FALSE

Mixed TRUE Unexplored TRUE

Unmixed FALSE Explored FALSE

Mix in Tin FALSE Kitchen Found TRUE

Sugar Found TRUE Near Kitchen TRUE

Near Sugar FALSE
Table 5-6 - World state when the robot is in the proximity of the kitchen

(Distributed Behaviour Scenario).

 148

It is observed at this point that the robot will continue to select the behaviours:

‘Go to Kitchen’ and ‘Go to Eggs’ consecutively and not advance the world state. Again,

there is an undesired emphasis to certain inputs with respect to others (discussed in

previous chapters as unfair competition) at each time step. This is shown in Figure 5-5,

where the robot is caught between two paths.

Observation State Observation State

Oven On FALSE Hand Empty FALSE

Oven Off TRUE Eggs Found TRUE

Tin Empty TRUE Near Eggs FALSE

Tin Lined FALSE Flour Found TRUE

Need Sugar TRUE Near Flour FALSE

Sugar FALSE Butter Found TRUE

Need Eggs TRUE Near Butter FALSE

Eggs FALSE Hand Full FALSE

Need Flour TRUE Have Sugar FALSE

Flour FALSE Have Eggs FALSE

Need Butter TRUE Have Butter FALSE

Butter FALSE Have Flour FALSE

Mixed TRUE Unexplored TRUE

Unmixed FALSE Explored FALSE

Mix in Tin FALSE Kitchen Found FALSE

Sugar Found TRUE Near Kitchen FALSE

Near Sugar FALSE
Table 5-7 - World state when the robot leaves the proximity of the kitchen

(Distributed Behaviours Scenario).

Figure 5-5 - The robot is trapped between selecting two different paths.

 149

The screenshot to the left of Figure 5-5 shows the robot executing the ‘Go to

Kitchen’ behaviour and has a route plotted (represented by the green path) to the

kitchen. The screenshot to the right of Figure 5-5 shows the robot executing the ‘Go to

Eggs’ behaviour with the route plotted. This shows that when the robot tries to navigate

to the kitchen, and becomes in the proximity of the kitchen it will then plot a route to

an ingredient. Then when it is outside of the proximity of the kitchen, the robot will plot

a route back to the kitchen.

This experiment is the same experiment as in section 4.3.1.3 with the addition of

distributed behaviours. In the first experiment the agent was given all of the behaviours

and goals at the beginning of the simulation. In this experiment the agent begins the

experiment with only the ‘Explore’ behaviour. The aim of this experiment was to test the

distributed behaviours in an unstructured environment. The results are positive, as it

shows that the agent is able to navigate the environment and collect new goals and

behaviours. It shows that the behaviour network was successful in incorporating new

behaviours into an already running behaviour network and that it was able to make

decisions towards achieving new goals. Unfortunately, it also shows the same negative

result as the previous experiment and the agent was stuck in the same loop as before.

The results show that a dynamic behaviour network with distributed goals and

behaviours can work. The robot was able to navigate an unstructured environment with

a basic behaviour network and add new goals and behaviours dynamically. Although the

robot was unsuccessful in completing the goal that it had found, the robot was able to

successfully build a new behaviour network dynamically. As discussed previously and

also discussed in (Tyrrell, 1994) the network demonstrated unfair bias between some of

the behaviour in the network leading to incorrect behaviours been selected. The next

experiment will aim to test the dynamic behaviour network without any bias. This

 150

experiment will take inspiration from Section 4.3.1.3, where the behaviour network will

contain higher-level behaviours. These would have fewer inputs resulting in less possible

bias in the network. This experiment will also test the dynamic behaviour network with

multiple goals. The robot will again need to navigate an unstructured environment and

complete all of the goals.

5.1.2. Distributed behaviours with multiple goals

In the previous section, the distribution of behaviours in the environment using the

previous experiment from chapter 4 (baking a cake) was tested. In this section the

concept of distributed behaviours is further tested by presenting a new scenario, one

with multiple goals. In this scenario the robot begins the experiment with the same

conditions as in the previous experiment. The robot is placed in the same simulated

environment shown in Figure 5-1, but each object will be unique and contain different

goals and behaviours. As before, once the robot is within the proximity of the objects, it

will read the data from the wireless tags and build upon the initial behaviour network.

In this scenario the robot will need to navigate and explore the unstructured

environment, locating each object that has been added. This scenario will put the robot

in an environment with several different goals that the robot will need to accomplish.

Object 5 represents a plant in an environment that needs some water. When the robot

locates the plant, it will receive the goal: ‘Water Plant’ and the behaviours: ‘Go to Plant

and ‘Water the Plant’. The robot will need to explore the environment to find some

water in order to solve this goal. Object 6 represents some water, which the robot can

use to water the plant (Object 5). When the robot locates the water, it will receive the

behaviours: ‘Go to Water’ and ‘Pick up Water’. If the robot does not locate the plant

first, then there will be no motivation to interact with the water object. The aim for this

 151

goal is to have the robot locate both objects, collect the water and bring it to the plant

to be able to water the plant.

Object 7 represents some mess in the environment that the robot will need to

tidy. The idea of this scenario is that the behaviours are all higher-level behaviours,

meaning that the robot will not be expected to perform the complicated lower-level

behaviours needed to interact with the object. The assumption is that the when the

higher-level behaviours are selected, that they are immediately executed successfully.

Given this assumption the goal: ‘Clean Mess’ and behaviours: ‘Go to Mess’ and ‘Tidy

Mess’ are embedded in the mess object.

Finally, another object (Object 8) which represents a dishwasher in the

environment, is included. The idea for this object is that the robot will need to turn on

the dishwasher in order to wash some pots. For simplicity, it is assumed that the world

state is such that the pots are already in the dishwasher and the robot only needs to

switch it on. This is to ensure that the robot has a complicated behaviour network, with

many different goals and behaviours. It will also limit the number of behaviours in each

sub system so that neither behaviour is overly popular in the network, causing an unfair

distribution of energy (such as that seen in the previous experiment). Table 5-8 shows

the associated behaviours and goals that are embedded in each object in the updated

simulated environment.

 152

This scenario uses the same initial behaviours as the previous example and the

properties are shown in Table 5-2, Table 5-3 and Table 5-4. Those behaviours are

included in the network shown in Figure 5-2: the precondition, add and delete list for

each behaviour. Table 5-5 shows the initial world state in which the robot begins this

experiment. At this initial point, the robot will only be able to perform the ‘Move to

Unexplored’ behaviour. When it has been able to navigate the environment enough to

find the additional behaviours and goals, other possibilities will arise. The behaviour

network in Figure 5-2 shows the initial state of the network.

Object in

Environment

Value

Representation

Behaviour(s) / Goal(s)

Unexplored area 0 N/A

Explored area 1 N/A

Wall 2 N/A

Plant 5 Goal: ‘Water Plant’

Behaviour: ‘Go to Plant’

Behaviour: ‘Water the Plant’

Water 6 Behaviour: ‘Pick up Water’

Behaviour: ‘Go to Water’

Mess 7 Goal: ‘Clean Mess’

Behaviour: ‘Go to Mess’

Behaviour: ‘Tidy Mess’

Dishwasher 8 Goal: ‘Wash Pots’

Behaviour: ‘Turn On Dishwasher’

Behaviour: ‘Go to Dishwasher’

Robot 9 N/A

Table 5-8 - Value representation of the simulated environment with associated distributed behaviours and goals.

 153

F
ig

u
re

 5
-6

 -
 R

es
u

lt
s

fo
r

d
is

tr
ib

u
te

d
 b

eh
a

vi
o
u

rs

 154

Figure 5-6 shows the results from this experiment. The top graph shows the

movement of energy over time and the bottom graph shows the selected behaviours at

each time step. The results highlight the dynamic nature of the behaviour network as it

shows new behaviours added throughout the experiment. It shows that the robot was

able to navigate the environment until it found the water object. At time step 18, the

robot picked up the water object and at time step 22 the robot executed the ‘Water the

Plant’ behaviour fulfilling the goal ‘Water Plant’. The robot then continues to explore the

environment until it finds the dishwasher, which allows it to execute the ‘Turn on

Dishwasher’ behaviour that completes the goal ‘Wash Pots’. Finally, the robot continues

to explore until it finds the mess in the environment, which allows it to execute the ‘Tidy

the Mess’ behaviour and achieve the final goal.

Unlike the previous experiment, the robot was able to explore the entire

environment, read all of the wireless tags and execute all of the goals. In this scenario

the robot was able select the behaviours which helped it to successfully achieve the

goals without the any of those behaviours having an unfair advantage over any other

behaviour.

 155

F
ig

u
re

 5
-7

 -
 E

vo
lu

ti
o

n
 o

f
th

e
d

yn
a

m
ic

 b
eh

a
vi

o
u

r
n

et
w

o
rk

 156

Figure 5-7 shows the evolution of the behaviour network over time for this

scenario. The first part of the behaviour network contains the initial goal and behaviour

that allow the robot to explore the environment. The second part of Figure 5-7 shows

that the behaviour network has grown and new behaviours have been added in real-

time. The third part of Figure 5-7 shows the completed behaviour network towards the

end of the simulation. Here the robot has located all of the objects in the environment

and has completed one of the goals. At this point, each of the behaviours in the network

are all competing with one another for activation.

The key difference between this scenario and the bake a cake scenario is the

reduction of inputs to each behaviour. This scenario was designed to limit the number

of behaviours in each sub-system (goals) to prevent the number of inputs to each

behaviour. It was shown in the previous experiment that the behaviours with a large

number of inputs from other behaviours had a greater chance of being selected for

execution. While this was expected, it prevented the robot from advancing the world

state and accomplishing the goals. The behaviour that the system exhibited as a whole

was at fault. In this scenario, each behaviour only had a few inputs which allowed the

behaviour network to select the appropriate behaviours and complete each goal.

This experiment was also run numerous times and although the objects (with the

associated goals/behaviours) were spawned in different locations, the results were

same. The agent was able to read the information, build and add to a behaviour network

and achieve all of the goals. As the objects were placed in random locations in the

environment, the order of executed behaviours was different. The time that it took the

robot to complete the goals also differed; however, the robot was always able to

successfully achieve the goals.

 157

This experiment was conducted on a simpler test scenario, where the behaviours in the

behaviour network, were at a higher-level than in the previous experiment. This is to

remove the bias found during that experiment (Section 4.3.3.5) and to show that a

dynamic behaviour network can successfully complete new goals. This approach was

also conducted in (Nicolescu and Matarić, 2002), were a behaviour network used

abstract behaviours, which fed into a lower-level behaviour network. This experiment

makes the assumption that the higher-level (abstract) behaviour that is selected is

completed successfully. Future work (Section 7.3), can involve extending this to

incorporate the generation of the lower-level behaviour network. This experiment was

successful in demonstrating the dynamic nature of the dynamic behaviour network using

sub-systems without bias between the behaviours.

5.1.3. User Interactions

One of the benefits of the proposed architecture is that users can interact with

the behaviour network by changing their preferences for different goals. In a traditional

behaviour network, the goals of the system have their motivations predefined. The

behaviour network will run, selecting and executing behaviours until those goals are

completed. There are no options in these systems to restart completed goals or to cancel

a goal without stopping the behaviour network and restarting the system. In the

proposed architecture, a user interface is included to allow for dynamic manipulation of

the behaviour network. The user interface is detailed in section 3.5.

The user interface is demonstrated using the previous, ‘bake cake’ scenario. In

this experiment the transition when the robot navigates the environment and locates

the kitchen with the wireless tag embedded is observed. When the Wireless Tag

Manager reads the wireless tag, it will parse the information and send that to the

 158

Behaviour Network Manager. When the Behaviour Network manager receives this

information, it will send a send a message to the UI Manager with the information about

the new goals that it has received. In real-time the users will be able to see new goals

appear that the robot will be able to achieve. Figure 5-8 shows the initial state of the UI

as the robot begins to navigate the environment.

When new goals are added to the web UI, the users can then manipulate the

motivation for those goals. In the behaviour network the motivation for a goal indicates

how much energy will be sent from the goal to the behaviours in the system. Reducing

this value will decrease the amount of energy added to the system and allow other

systems (such as the explore system) to become more likely to be achieved. Similarly,

increasing the motivation value will make that system more likely to be selected over

other systems.

Figure 5-9 shows the changes that the web UI will make when new goals are

found in the environment. The first part of the figure shows the initial state of the UI

when the experiment is first run. This shows that the only goal that the robot has is to

explore the environment. The second part of the figure shows the new goal ‘Bake Cake’

Figure 5-8 - Initial state of the Web GUI

 159

has been added and the user now has the options to manipulate the motivation for that

goal. The final part of the figure shows the status of the Web UI when the robot has

completed the ‘Bake Cake’ goal. Here, the goal is moved to the completed column and

the user now has the options to restart the goal and reset the motivation for that goal.

 The functionality and effects of the web UI are further demonstrated to the

dynamic structure of the behaviour network by changing the motivation for the goal

‘Bake Cake’. When the goal is added to the web UI, the motivation is then significantly

Figure 5-9 - Evolution of the Web GUI as the robot finds new goals and when goals are completed.

Figure 5-10 - Web GUI - Updating the motivation for the

'Bake Cake' goal.

 160

lowered as shown in Figure 5-10. The new motivation is sent through the architecture

from UI Manager to the Behaviour Network Manager, where the behaviour network is

updated in real-time.

 Figure 5-11 then shows the results of the experiment by making this change to

the motivation of the ‘Bake Cake’ goal. Figure 5-11 shows that the robot (similar to

previous experiments) continues to explore the environment until it locates the kitchen

object. At this point the new goal is shown to be added to the network and the robot

begins to execute some behaviours towards this new goal. At time-step 130 the

motivation is altered as shown in Figure 5-11 and this is reflected in the robot’s future

action selections. Here the amount of energy in those behaviours is decreased and the

robot favours the ‘Explore’ behaviour over the various behaviours in the ‘Bake Cake’

system.

 The experiments in Chapter 4 acted as the controlled experiments for this test.

From those experiments, it is clear how the behaviour network would run for this

scenario without any user interaction or changes to the motivation of the goals at run

time. Those results can be compared to the results from this experiment to show the

difference. In the previous experiments, the robot would favour the behaviours in the

Bake Cake system over the Explore system. When the motivation for the Bake Cake

system is reduced then the behaviours in the Explore system is favoured. This

experiment was run numerous times with different changes to the motivation at

different times and again showed similar, expected results. This shows that there are

different forms of a dynamic behaviour network. This dynamic network was able to

change its preferences for which goals to achieve at run time which resulted in the whole

system exhibiting different behaviours.

 161

F
ig

u
re

 5
-1

1
 -

 R
es

u
lt

s
fr

o
m

 c
h
a

n
g

in
g

 t
h

e
m

o
ti

va
ti

o
n

 o
f

a
 g

o
a
l

a
t

ru
n

-t
im

e.

 162

6. Discussion

In this chapter the contribution of this thesis and the potential for future work is

discussed. The chapter begins with a discussion on behaviour networks, focusing on their

benefits and disadvantages. This leads to a discussion on the proposed architecture to

extend the standard and dynamic behaviour networks and how this has performed in

testing. The changes that have been made to the standard behaviour network are then

discussed and the results from the experiments reviewed. A discussion on the dynamic

behaviour network then follows, discussing the concept and the experiments before

reviewing the results. Finally, the potential future work that can expand upon the work

in this thesis is discussed.

6.1. Overview of behaviour networks

The focus of this thesis is on how behaviour networks can be used and extended

for unstructured environments (an environment that is not predefined and can change

unexpectedly). A behaviour network is an action selection mechanism that consists of a

variety of nodes, which are joined by a variety of links. The aim of the behaviour network

is to pass activation energy between the nodes via the links until a behaviour(s) has its

activation energy greater than a set threshold. The behaviour that has the largest

proportion of energy and is also executable (has its preconditions met) is then selected

for execution. A behaviour network can use a variety of different techniques to

distribute activation energy around the network and this is discussed in detail in Chapter

2.

The behaviour network is a reactive system. At each time-step the agent will run

the behaviour network, passing activation energy into the network from Goal and

Environment nodes. That energy is then distributed through the behaviour nodes and

 163

the behaviour that has accumulated the greatest amount of activation energy is selected

for execution. The benefit of the behaviour network is the frequency with which the

behaviour network is run; that is the frequency that energy is passed around the

network. As this happens at each time step, the agent is able to make decisions based

on the current state of the environment. Any change to the environment is taken into

consideration and the agent can act accordingly.

While behaviour networks are capable of selecting behaviours in dynamic

environments, they do have a limitation. The limitation is that each behaviour network

needs to be predefined for the task that the agent is to accomplish. Each goal, behaviour

and environment node are traditionally hard-coded to function together and allow the

agent to make decisions in a predefined environment. This is because of the structure of

the nodes in the network. For a node to connect with another node in the behaviour

network, that node must have properties in the add list, delete list or precondition list

of the other node. This relationship allows the activation energy to move from one node

to the next and settle in the most appropriate node for the given situation. One of the

goals of this thesis is to propose a potential solution to this limitation and show that

behaviour networks do not need to be predefined for different tasks.

6.2. Proposed Architecture

The supporting literature on behaviour networks focuses on the structure and

methodologies behind the behaviour network itself. Little focus has been spent

documenting the architecture that can be used to support and enhance the functionality

of a behaviour network. Chapter 3 presented an architecture that can support a

behaviour network for both real-world and simulated agents. This architecture is broken

down into the key modules that are used to move information from one component to

 164

another. Chapter 3 concluded with a discussion on how those modules effect the

functionality of the behaviour network.

6.2.1. Purpose of the proposed architecture

The aim of the proposed architecture is to enable the extension of the

functionality of the standard behaviour network. The architecture is needed to support

each requirement of the behaviour network to allow it to function correctly. For

example, a behaviour network is designed for agents to interact in real-world or

simulated environments. For this, an environment module is then included to manage

the inputs from the environment and parse that information into something that the

behaviour network can use. For the behaviour network, the environment module would

need to manage the world state of the environment as that would affect the input from

the environment nodes in the behaviour network. The world state would also need to

stay updated as the different states would reflect which behaviours in the network could

be selected.

6.2.2. Benefits of proposed architecture

The primary benefit is the concept of modularity that is used to divide the features of

the behaviour network into separate modules. Each module is responsible for its own

tasks and is capable of sharing information with other modules in the architecture. As

each module is separate from the others, they are capable of parallel processing. This

means that each module is executing synchronously, allowing the agent to process more

information than if everything was in a single module / process. For example, the agent

is able to process information from the environment whilst also taking input from other

modules in the system.

 165

 As each module in this architecture is separated from the others, it does add an

element of resilience to the behaviour network. Depending on the module, should one

fail in the architecture, it is possible for the other modules to continue to function.

Although the architecture will not have the same functionality without some of the other

modules, depending on which module failed, it can continue to operate. For example, if

the wireless tag manager failed, the other modules would continue to function. The

robot would be able to explore the environment and achieve the goals it currently has

but, it would not be able to learn anything new from the environment. Furthermore,

during the implementation process, the modularity and resilience of the modules

allowed for more accurate development of the behaviour network. It was simple to

identify any areas of the system that were not functioning correctly and address those

issues.

6.2.3. Disadvantages of proposed architecture

While the architecture was successfully implemented, and each module was able to add

key features to the system, there are still some limitations to be addressed in the

architecture. The main limitation that was observed during the implementation of the

architecture was the different speeds that each module was able to perform their tasks

at each time-step. It is important that each module works seamlessly with one another

and no module is left waiting for another module to finish. The environment manager

module was observed to take longer to process the information about the current state

of the environment than other modules in the system. The result of this module taking

longer to process information, was that the behaviour network manager module would

create a behaviour network based on previous world states, which would lead to the

behaviour network making inappropriate decisions.

 166

 The modules in the architecture communicated by sending the information to

other modules when they had completed their tasks regardless of what the other

modules where doing. To solve this issue, synchronization steps were taken to ensure

that the modules would wait to receive all of the necessary information before

executing.

6.2.4. Overview of the results

Each experiment of the behaviour network and dynamic behaviour network utilised

some modules of the proposed architecture. The experiments for Chapter 4 utilised the

environment manager and the behaviour network manager to create a basic behaviour

network. During these experiments additional changes were made to the environment

manager to ensure the modules were synchronised to prevent incorrect behaviours

being selected. Chapter 5 introduced the remaining modules, including; the

Environment Manager, the Wireless Tag Manager and the User Input manager for the

dynamic behaviour network. Adding these modules showed the benefit of the

modularity of the proposed system, as they were included with very minor changes

being needed for the other modules.

Overall, the architecture was able to successfully support the standard behaviour

network with the environment manager module and the behaviour network module.

The architecture was able to also successfully support the dynamic behaviour network

with very minor alterations being needed. The synchronicity of the modules proved to

be a challenge for the architecture. This was because each module was able to complete

its tasks at different speeds. To be able to pass information around the system during

each time-step, some alterations were then made to the architecture. This was also

 167

tested during the experiments in chapter 4 and chapter 5 and it was demonstrated that

the modules were able to function synchronously and follow the same iteration.

One of the aims of this project, which was discussed in Section 1.3.1, was to

develop an architecture that could be used to test behaviour networks and dynamic

behaviour networks. The proposed architecture was defined in Section 3.1 and used for

the experiments in Section 4 and Section 5. This section has discussed the benefits and

limitations of the proposed architecture and concludes that this objective has been met.

6.3. Behaviour Networks

The behaviour network is the primary motivation of this thesis. This section

begins with a discussion of the first contribution of the thesis, which is the modification

to the division rule. An alternative method of sending data through a behaviour network,

called the data packet approach, is then discussed. The results from the various

experiments are reviewed and discussed. Finally, the limitations of behaviour networks

that were found during these experiments are explored and the section concludes with

potential future research.

6.3.1. Discussion of the division rule

Chapter 2 describes the inner workings of a behaviour network and explains the

problems with the current methods for spreading activation energy through the

behaviour network. As described in chapter 2, a portion of energy from a behaviour is

passed through the various links to other behaviours in the network. The type of the link,

predecessor, conflictor or successor (to name a few), affects which formula is used to

calculate the proportion of energy to send. It was shown that the proportion of energy,

distributed throughout a network, would depend on the number of inputs and outputs

of a behaviour which led to unfair competition between the behaviours of the system.

 168

The problem resides in whether or not the calculation of energy spread should involve

division by the number of predecessor and conflictor input links. This concept of a

division rule has worked successfully on other link types; however, it has been shown

that the inclusion and exclusion of a division rule for predecessor and conflictor links can

still lead to unfair distribution of energy in the network. Tyrrell (Tyrrell, 1994) discussed

a variety of solutions to this problem and concluded that, at the time, there was no

solution to this problem.

In chapter 4, a solution to the division rule was presented. The solution details

how knowledge of how many goals that each behaviour can contribute to can be used

to select a more accurate division rule dynamically. An algorithm for embedding this goal

information onto the links of the network and the updated division rule formulae were

presented and discussed. The new division rule was then tested on a basic behaviour

network and the results were compared with the same experiment but without the

division rule.

The aim of this experiment was to find a division rule that can be applied to any

situation. It has been shown that different division rules can have different effects on

the network (Tyrrell, 1994). An ideal division rule would ensure that there is no unfair

competition between the behaviours of the network and that each behaviour has a fair

chance of getting selected. The results from this experiment were indecisive as the first

round of energy spreading would select different behaviours as opposed to if it was run

for multiple iterations. The behaviour network should be able to select the most

appropriate behaviour at any time step; it should not need to run for multiple iterations

for it to converge on a solution. The supporting text (Tyrrell, 1994) does make use of a

threshold parameter allowing the network to run for multiple iterations. It is argued that

this was a fix to the problem of selecting the correct order of behaviours in which to

 169

spread energy. To address this problem a new method of spreading energy through the

network was also presented (the energy packet approach). One limitation of the division

rule was not on the division rule itself but in the method of how energy is distributed

through the network. The results showed that it needed multiple iterations of spreading

energy to make a decisive decision. However, it is argued that regardless of the iteration,

the behaviour network should always be selecting the best behaviour for the given

situation. That decision should not change based on an arbitrary number of energy

spreading iterations. The later experiments in chapter 4 and chapter 5 demonstrate that

with the use of energy packets, correct behaviours can be selected after a single iteration

of energy spreading.

6.3.2. Discussion on the data packet approach

During the implementation process of the behaviour network, it was noted that

there had been little discussion of the order of energy spreading amongst nodes in the

network and the impact of choosing an inappropriate node order. The supporting text

has detailed how energy enters the network and how the energy should move around

but not about the order. In chapter 4, the effect that the different orders of energy

spreading in the behaviour network can have on the distribution of energy was explored.

The results were presented by selecting a variety of different orders and showed that

different orders led to different distributions of energy in the network. The results also

showed that multiple iterations of the energy spreading process would affect the

resulting distribution of energy in the network. The possibility of feedback loops were

also discussed in this chapter, where there can exist a series of behaviours that each

feed into one another. In the current version of the behaviour network, this would create

a loop of energy passing that would not end.

 170

A solution to the problem of loops was then proposed, the concept of data

packets. Instead of simply sending an arbitrary value representing energy around the

network, a data packet is sent in its place. The data packet will contain a variety of

metadata including the proportion of energy to send from one behaviour to next. Each

packet will also contain a history of where it has been in the behaviour network, allowing

it to escape node loops and to traverse the full network. The goal of the data packets is

to ensure that each behaviour can send a proportion of energy, that would achieve the

desired results, to the next behaviour and ensure that there is no unfair competition in

the distribution of energy.

This concept was tested with a variety of incrementally more complex

experiments. It began with a behaviour network consisting of a single link type. The aim

of the experiment was to distribute the energy packets through a behaviour network.

This experiment showed that the energy packets were able to be successfully distributed

through behaviour network. This experiment was then extended to one with multiple

link types. The aim of this experiment was similar to the previous experiment, where the

goal was to distribute energy packets through a behaviour network but one with

multiple link types. Again, this experiment (using a basic behaviour network) was able to

show similar results in that the energy packets were successfully distributed through the

network. The next experiment in this section involved creating a new, more complicated

test scenario. We presented the scenario of baking a cake as it is a logical problem with

few correct sequences that an agent would need to follow. The aim of this experiment

was to test the energy packets in a more complicated real-world scenario. To also show

that the energy is distributed to behaviours would achieve the goals of the system. Once

more, the results from this experiment were presented showing that the energy packets

were successfully distributed, and the agent was able to select the behaviours to

 171

complete the goal. The data packets were able to navigate the behaviour network fully

and the behaviour network did not need to run for multiple iterations to converge on

the solution. To achieve this, the data packets in each behaviour were merged to ensure

the correct proportion of energy was distributed and the link order for sending the data

packets was defined. This experiment was able to show that the data packet approach

can be used in a real-world situation in behaviour networks to achieve goals.

The final experiment extended the baking a cake scenario further by utilizing the

proposed architecture with a simulated unstructured environment. The goal of this

experiment was to have the agent collect the distributed ingredients and perform the

necessary behaviours to complete the goal. This experiment also used the data packet

approach to distribute energy in the network. It was shown that this experiment yielded

poor results as the agent was unable to accomplish the goal of baking a cake within the

simulated environment. In this experiment the agent would explore the environment

until it found the ‘kitchen’, at this point the agent was able to perform some behaviours

towards the goal. The robot then needed to navigate to an ingredient to bring it to the

kitchen, to then execute more behaviours with that ingredient. As soon as the robot left

the kitchen, its next decision was to return back to the kitchen (before it had made it to

the ingredient). This is because when it was no longer in the proximity of the ‘kitchen’

the motivation to go to the kitchen was too great and outclassed the other behaviours.

When the robot was in the kitchen, there was little it could do but leave towards an

ingredient.

This result shows a good example of one of the fundamental limitations of the

behaviour network. As the behaviours in the network are selected when they have the

most energy and one way to gain the most energy is to be the behaviour with the most

inputs. The division rule that was previously discussed worked on the inputs of a node

 172

and on restricting the output. However, if the node with the greatest number of inputs

is the final destination of the activation energy then there is a greater chance of that

behaviour being selected.

One potential solution to this problem could be to add a method to detect loops

and break the agent out of the loop when it occurs. However, this does not solve the

problem and the agent could return back to the loop soon after. The division-rule was

discussed by (Tyrrell, 1994) as a technique to divide by the number of inputs or goals

but, as previously discussed, was proven to be ineffective. Section 4.1 presented an

updated division rule by incorporating goal information into the division rule formula.

This also yielded unsatisfactory results as it would inhibit behaviours achieving multiple

goals. Another solution would be to reduce the complexity of the network by using

higher-level behaviours. A higher-level behaviour being a behaviour that includes many

sub-behaviours. The aim is to remove the bias from the network which is caused by

behaviours having many more inputs than other behaviours in the network. The final

technique was to reduce the complexity of the network by using high-level behaviours

and was suggested in section 5.1. This is method is further discussed in the next section.

This limitation of behaviour networks will form a strong basis for future research to

address which, is discussed in more detail in section 7.5.

6.3.3. Overview of the results

One of the aims of this study was to investigate behaviour networks (discussed in Section

1.3.1). Section 2.2.4 explored behaviour networks and identified some limitations to the

methods that are used to spread activation energy through a network. Two new

techniques were proposed; a new division rule (Section 4.1) and the data packet

approach (4.3.1). As previously discussed, the results from the new division rule did not

 173

show any significant improvements, however; embedding goal specific information to

the links of a behaviour network did enable easier debugging of a behaviour network

and inspired the second technique (data packets). The data packet approach (discussed

in Section 4.3.1) was able to show better results. This method showed that this new

approach could solve problems (such as; loops in the network and the order for

spreading activation energy through a network). Although, in some experiments the

agent was not able to fully complete the scenario (achieve all of the goals), the reasoning

behind this was due to the structure of the network and not the activation spreading

mechanism. The objective to investigate behaviour networks and the activation

spreading mechanisms has been achieved and Section 7.3 details the future work that

can expand upon the methods presented in this section.

6.4. Dynamic behaviour network

One of the main contributions of this thesis is the concept of the dynamic

behaviour network, which is introduced in chapter 5. A dynamic behaviour network is

defined as a behaviour network which can dynamically control and modify the goals and

behaviours within the network. The numerous benefits that such a system would offer

compared to the traditional behaviour network are discussed. The ability to allow a

behaviour network to grow without any modification to the architecture will allow

agents to achieve more than they were originally designed to accomplish. This is

achieved by distributing behaviours and goals in an environment for an agent to find and

add to their behaviour network. To distribute the behaviours into the environment, the

use of wireless tags was proposed (although other technologies can also be used to

demonstrate this concept) to embed information in to the objects in an environment.

When the robot enters the environment, it will read the data stored on a wireless tag

 174

and use that information to update its behaviour network allowing it to interact with

those objects without prior knowledge.

To test this new concept, the experiments used in chapter 4 were extended. The

bake a cake scenario was extended to incorporate the distributed behaviours. Instead

of the robot having prior knowledge about each object, it now has to navigate the

environment and find each object to learn how to interact with them. This aim of this

experiment was to show that distributed behaviours can be added to a behaviour

network at run-time. The robot began the experiment with the only ability to explore

the environment, ensuring that the robot had to explore and learn the other behaviours

and goals. The results of this experiment were, overall, positive as it was shown that the

robot was able to successfully navigate the unstructured environment and learn all of

the distributed behaviours and goals. All of these were successfully added to the robot’s

behaviour network in real-time and the robot was able to begin performing behaviours

from the new selection. However, the robot was still unsuccessful in completing the new

goal (bake cake) in the simulated environment. The results were similar to the previous

experiment, where the robot was given the goal of baking a cake in the simulated

environment. The results showed that once the robot was in the proximity of the

‘kitchen’, the same unfair bias was present, and the robot was stuck in a loop. When the

robot entered the kitchen, it would perform a behaviour within the kitchen’s proximity

(turn on oven). The network would then select to move towards an object to interact

with, as at that time it is the best thing to do. When the robot leaves the proximity of

the kitchen, the network would choose to go back to the kitchen. This is because the

behaviour to go to the kitchen has more inputs then the go to object behaviour. While

this may not be the best behaviour to perform, the behaviour still receives a greater

portion of energy. Section 6.5 discusses a potential solution to this problem.

 175

To validate that the previous result was due to the unfair bias in the network, a

new scenario to test the distributed behaviours was then proposed. In the next

experiment the objects in the environment each had different goals and behaviours. The

aim for this experiment was to test a more abstract network where the unfair bias in the

previous experiment was no longer present. By having a behaviour network with more

abstract behaviours it was theorised that those behaviours would have fewer inputs and

outputs resulting in less bias in the network. In this experiment, the results showed that

the robot was able to successfully navigate the environment and collect all of the

behaviours and goals. The results also show that the robot was able to successfully select

and execute each behaviour to accomplish all of the goals that it was able to find.

The primary aim of this study was to investigate behaviour networks with

distributed behaviours and goals. This developed into the dynamic behaviour network

which has been tested on a variety of test scenarios. As previously discussed, the results

from this technique showed that a behaviour network can successfully grow and adapt

new behaviours and goals into an existing behaviour network. While the agent was only

able to complete the goals from a simplified network the core concept (distributed

behaviours and goals) was shown to work successfully and opens the field of behaviour

networks for future work.

6.5. Limitations and Future work

The research presented in this thesis has made significant contributions to the

field of behaviour networks. However, there are still limitations in this field that open up

new areas for further research. This section will discuss these limitations and present

potential areas for future research.

 176

6.5.1. Connection mechanism of internal behaviours

The behaviours of a behaviour network were described in detail in chapter 3.

Behaviours in the network are connected via different types of link, depending on the

state of the environment. For example, if there is an observation in the add list of one

behaviour (a) and that same observation is in the precondition list of another behaviour

(b) then there is an active predecessor link from behaviour (a) to behaviour (b). During

the development process of the behaviour network it is observed how fragile this

connection mechanism is. The values in the add list, delete list and precondition list must

match exactly for a link to be created. If a new behaviour is introduced where these

values do not match, then a link will not be created, and the behaviour network will

show poor results. This is especially important when discussing the concept of the

dynamic behaviour networks as there could be numerous creators of different

behaviours. Those creators will need to know all possible world states to correctly create

the add list, delete list and precondition list of a behaviour. For example, if a behaviour

was designed to pick up an object and all possible world states were not defined, then

the precondition list could miss a proposition on that world state. This would result in

the behaviour being selected when it may not be an appropriate time to select the

behaviour.

There is the potential for future research in the area of an ontology that all

creators of the behaviours and goals can follow. This will ensure that the values in the

add list, delete list and precondition list will always match and each link in the network

is correctly created. Schlenoff et al. (Schlenoff et al., 2012) is developing a standardised

robotic ontology for knowledge representation and reasoning in robotics. Alternatively,

fuzzy matching techniques could be adopted to ensure that the propositions in the add

list, delete list and precondition list match what is in the world state or other behaviours.

 177

Fuzzy-based matching is a popular technique for matching text that is similar but not

exactly the same and has been applied to a variety of different domains (Hu and Liu,

2004).

6.5.2. Binary nature of behaviours

Behaviours in a traditional behaviour network are binary in nature. This refers to

the observations / conditions in that behaviours add list, delete list and precondition list.

Those observations can only be fully satisfied. For example, an observation could be

‘near object’ which is either true or false. There is no degree of freedom in this example,

so an agent could be a few metres from an object in a different room but the observation

will still be treated as false. Future research can be included in changing the

fundamentals of a behaviour network to handle degrees of freedom for the

observations. The environment nodes could pass more energy depending on the

relevance of the situation. Following from the previous example, the environment nodes

would pass more energy to the behaviours that are related to an object depending on

how close the robot is to that object.

Additionally, the observations cannot be a combination of multiple observations.

For example, a behaviour could be required to interact with either one object or another

object but not necessarily both. In logic gate theory this would be represented by an OR

gate, however behaviour networks can only handle AND gates. This is because, in the

traditional behaviour network, every proposition in a behaviour’s precondition list must

be true for that behaviour to be selected. The precondition list cannot have one

proposition to be true and one to be false and be selected for execution. Traditional

behaviour networks are not designed for this type of selection and fundamental changes

would need to be made to the structure of a behaviour. There is potential for future

 178

research in the different types of logic gates and how they can be reflected as behaviours

in a network.

Finally, it is not currently possible to partially satisfy a behaviour’s or goal’s

preconditions. This is again because of the binary nature of behaviours. For example,

there could be a goal to clean a room. The robot could have already spent some time

working towards this goal and the room is now partially tidy, let us say the room is 80%

clean. The robot is then given another goal to bake a cake with similar motivation. In this

example, it is not clear which goal the robot would try to satisfy first. One goal is 80%

complete while the other is 0% complete. There should be additional motivation added

to the behaviours of the system that are close to being completed. This would allow the

robot to complete goals in a timely manner and allow for multiple goals to exist

concurrently without the possibility of the robot attempting to complete them all

simultaneously. While criteria such as urgency, completeness and persistence have

already been defined in other AI architectures (Di Rocco et al., 2013), the fundamentals

of the behaviour network would need to be modified to accommodate these criteria.

For example, more motivation could be added to the behaviours of a network that help

to achieve a goal that has already met some of its preconditions.

6.5.3. Parameter choosing for behaviour networks

The supporting text on behaviour networks detail the various parameters used when

building a behaviour network and this was discussed in chapter 2. The supporting text

details what parameters should be included in a behaviour network but not what values

to use or how to set the values of the parameters. In the various experiments discussed

throughout this thesis, the same values were used for the parameters of the network.

These were decided by selecting a random set of values and testing a traditional

 179

behaviour network. However, it is likely that the parameters used in these experiments

could have been optimised and that each experiment could have used a different set of

parameter values.

 Future research in the area would involve testing a traditional behaviour network

with a variety of different parameter tuning techniques and reporting on which

technique would be best for a behaviour network. Some techniques that could be used

include random search (Bergstra and Bengio, 2012), grid search (Lameski et al., 2015)

and genetic algorithms (Eiben and Smit, 2011). It is also possible that the parameters of

the behaviour network cannot be perfectly tuned or adequately justified for all

circumstances. This is because the behaviour network is designed to work in a changing

environment and tuning the network to one environment may not work as well in

another environment. This area should still be further explored as there could be a

generic set of parameters that works well for most environments.

6.5.4. Additional metadata on wireless tags

Future research on the functionality and storage of wireless tags would enhance

the work in this thesis on dynamic behaviour networks. This thesis currently details how

wireless tags can be used to store goal and behaviour information about objects in an

environment for a robot to access and utilise in real-time. However, there is the potential

to store more information about objects on those tags. For example, a wireless tag could

store meta-data relating to how an object can be interacted with. This meta-data could

describe how to pick up an object, how much pressure to apply, the rotation of the

object when placing it down and the associated weight of the object. This could be fed

into the behaviours of the network and allow for smarter interaction of objects without

any prior knowledge of those objects.

 180

Further research can also be performed on the computer vision element of

robotics and the data that can be stored on the wireless tags. The experiments

conducted in this thesis were performed in a simulated environment where computer

vision techniques were not need for the identification of objects in an environment. It is

possible however to store data on the tags relating to the visualisation of the objects.

Basic meta-data such as colour, shape and size can be used for simple object detection.

Larger files, such as 3D models, could be stored on the tag (depending on storage) or

references to location for those files (web) could be embedded on the wireless tags.

Behaviours or code instructions could also be added to the wireless tag to assist with

identifying the object in the environment. The benefit of doing so would be to allow the

robot to identify the objects in the environment, even those of which it has no prior

knowledge. It is also possible that by embedding this metadata in the wireless tags that

it would also help the robot to identify objects faster than using conventional methods.

 181

7. Conclusion

This chapter concludes the thesis by beginning with a summary of the whole

thesis, the contributions of the thesis and then ending with a summary of potential

future work. This chapter discusses how the outcome of this thesis achieves the research

question detailed in Chapter 1.

7.1. Summary of thesis

The aim of this thesis is to demonstrate the technical feasibility and usefulness of

embedding wireless tags to objects in a dynamic environment to assist the everyday

tasks of a robot. To achieve this research question, the objective is defined to be

exploring the use of embedded data in unstructured environments to improve the

capabilities of a robot.

 Behaviour networks were used for the action selection mechanism of the robot

as the behaviour network is a reactive system capable of functioning in an unstructured

environment. The concept of distributing object specific data into wireless tags in an

environment was proposed. By adding new goals and new behaviours to the wireless

tags, the work is able to show that a robot with limited functionality can be enhanced

with data found in an environment. The fundamentals of the traditional behaviour

network were further explored, and key limitations were identified before presenting

the approaches to potential solutions. The next sub-chapter discusses the contributions

of this thesis.

7.2. Contributions to research

This thesis aimed to demonstrate the technical feasibility and usefulness of embedding

wireless tags to objects in a dynamic environment to assist the everyday tasks of a robot.

Behaviour networks were chosen due to their reactive action selection mechanism for

 182

use in dynamic unstructured environments. Within this thesis, behaviour networks were

closely examined and tested in a variety of situations. The different areas of behaviour

networks were tested, and improvements were made along the way. The contributions

of this thesis are summarised below:

1. Updated division rule

The limitations of the standard division rule in traditional behaviour networks are

explored. This is discussed in chapter 3. Changes to the division rule in chapter 4

were proposed. The division rule was documented in (Tyrrell, 1994) and refers to an

unfair distribution of energy in a network when a behaviour has multiple inputs and

needs to transfer a proportion of energy to the next behaviour. It is shown that by

embedding goal-related meta-data in to the links of the network that the system can

select a more appropriate division rule. This method was tested and documented in

chapter 4.

2. New approach for spreading energy through a network

Another limitation with behaviour networks was identified. The order in which the

nodes of the behaviour network are evaluated, affects the distribution of energy. It

was demonstrated that multiple iterations of the energy spreading process also

affected the distribution of energy in the network. In chapter 4, a new approach

called the data packet approach was presented. This technique distributed energy in

packets of data with associated meta-data allowing the behaviour network to

distribute energy more accurately. This technique was tested in a variety of different

experiments and the results were presented.

 183

3. Proposed architecture for behaviour networks

In chapter 3, a modular architecture for use with both traditional behaviour

networks and the dynamic behaviour network was presented. The architecture was

designed to work with both types of behaviours network in both simulated and real-

world scenarios. The modularity of the different areas of the architecture allowed

for quick transitioning between the different networks each with different

requirements. The architecture was used in each of the experiments of this thesis

and the results were documented.

4. Dynamic behaviour network for distributed behaviours

The dynamic behaviour network is the main contribution of this thesis, aside from

the improvements made to the traditional behaviour network. Chapter 5 detailed

the dynamic behaviour network and the experiments that were used to test it within

a simulated environment. The dynamic behaviour network was able to demonstrate

that a robot could enter an unstructured environment and interact with new

behaviours of which it had no prior knowledge to achieve goals that it learned within

the simulated environment.

The findings from the various experiments conducted in this thesis have

demonstrated the validity and the feasibility of distributing data in an environment to

assist a mobile robot. Successful improvements to the traditional behaviour network

have been provided and shown to give positive results. Finally, this thesis has provided

an in-depth discussion into the current limitations of behaviour networks and provided

suggested areas for future research.

 184

7.3. Future Work

This thesis has shown how behaviour networks can be used to navigate

unstructured environments and how embedding data into the environment can improve

the capabilities of a robot. This thesis also discusses the limitations of behaviour

networks in chapter 7. The following areas for future research are then recommended:

1. An ontology for behaviours

It is especially important for dynamic behaviour networks to follow an ontology for

the different terms used in a behaviour’s add list, delete list and precondition list if

new behaviours are to be developed from outside the system. This is because each

distributed behaviour will need to follow a defined set of terms in order to create

successful links between the behaviours in the network. Fuzzy matching could be

applied to combine different terms for the same thing. A common grammar would

also be needed as the order and meaning of the words / terms in the behaviours

would greatly affect how they are matched together.

2. Utilizing the relevance of observations

A behaviour network should take into consideration the relevance of an observation

when determining a proportion of energy to send into the network. Observations of

high relevance to a given situation can provide more energy than those with less

relevance. The proportion of extra energy to be added and the factor of relevance

to a situation would need to be further researched. A definition for relevance for a

behaviour network will need to be described.

3. The use of logic gates in behaviour networks

There are situations that were observed during the development of the behaviour

network where the behaviour’s observations could have been combined and where

 185

a behaviour’s preconditions could have been satisfied if only one of the listed

observations were met. For example; a behaviour could be selected if an agent was

in either (location a) or (location b).

4. Prioritising goals close to completion

Research can be conducted into the effects of prioritising goals that are close to

completion. When a goal is partially completed it can pass into the network a higher

proportion of energy. This would make the goal more likely to be achieved than new

goals that recently added. The benefit of this would be to ensure that the system is

not left with many incomplete goals especially when new goals are added.

5. Parameter tuning techniques

Chapter 6 discusses the limitation of the documentation on behaviour networks

regarding choosing an adequate set of parameters. Further research can be

conducted into the various different parameter tuning techniques for use with

behaviour networks.

6. Additional data on tags for object recognition

This thesis has demonstrated the technical feasibility of embedding data into an

environment. The work in this thesis was conducted in a simulated environment

however; should this be extended to a real-world experiment then further research

will be needed for the recognition of objects in the environment. It is suggested that

further research in the data that can be stored on a wireless tag (such as meta-data

or 3D models) to assist with the object recognition of objects that a robot has no

prior knowledge about.

 186

References
Arkin, R. C. (1987) ‘Path planning for a vision-based autonomous robot’, in Cambridge
Symposium_Intelligent Robotics Systems. International Society for Optics and Photonics,
pp. 240–250.

Arkin, R. C. (1998) Behavior-based robotics. MIT press.

Asimov, I., MYSTERY, R. and TIEDEMANN, M. W. (1941) ‘Three laws of robotics’,
Internet].[cited 2015 Aug 3]. Available from: http://www. auburn. edu/~
vestmon/robotics. html.

Asimov, I. (1963) I, Robot. Doubleday (Doubleday science fiction). Available at:
https://books.google.co.uk/books?id=P9zPAAAAMAAJ.

Ballard, D. H. (1981) ‘Generalizing the Hough transform to detect arbitrary shapes’,
Pattern Recognition, 13(2), pp. 111–122.

Bergstra, J. and Bengio, Y. (2012) ‘Random search for hyper-parameter optimization’,
Journal of Machine Learning Research, 13(Feb), pp. 281–305.

Bolmsjo, G., Neveryd, H. and Eftring, H. (1995) ‘Robotics in rehabilitation’, IEEE
Transactions on Rehabilitation Engineering, 3(1), pp. 77–83. doi: 10.1109/86.372896.

Boyan, J. A. and Moore, A. W. (1995) ‘Generalization in reinforcement learning: Safely
approximating the value function’, Advances in neural information processing systems.
MORGAN KAUFMANN PUBLISHERS, pp. 369–376.

Brooks, R. (1991) ‘Intelligence without Reason’, Artificial Intelligence, 47(1–3), pp. 139–
159. doi: 10.1007/BF01538672.

Brooks, R. A. (1986) ‘A Robust Layered Control System For A Mobile Robot’, IEEE Journal
on Robotics and Automation, 2(1), pp. 14–23. doi: 10.1109/JRA.1986.1087032.

Brooks, R. A. (1995) ‘Intelligence without reason’, The artificial life route to artificial
intelligence: Building embodied, situated agents, pp. 25–81.

Bryson, J. (2000) ‘Hierarchy and sequence vs. full parallelism in action selection’,
Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior,
pp. 147–156. Available at:
http://books.google.com/books?hl=en&lr=&id=Q4w6EvRbySAC&oi=fnd&pg=PA147&d
q=Hierarchy+and+Sequence+vs+.+Full+Parallelism+in+Action+Selection&ots=QmVrcv8
DIf&sig=FUd0lKV5vboKh1E0qrwS7ldluDQ.

Carreras, M. (2004) A PROPOSAL OF A BEHAVIOR-BASED CONTROL ARCHITECTURE WITH
REINFORCEMENT LEARNING PhD Thesis A Proposal of a Behavior-based Control
Architecture with Reinforcement Learning for an Autonomous Underwater Robot,
Camera.

 187

Chae, Y.-J. and Cho, S.-B. (2014) ‘Planning-driven behavior selection network for
controlling a humanoid robot’, in Neural Networks (IJCNN), 2014 International Joint
Conference on, pp. 4244–4250.

Chow, T. S. (1978) ‘Testing software design modeled by finite-state machines’, IEEE
transactions on software engineering, 4(3), p. 178.

Cifuentes Costa, S. (2013) ‘Behaviour blending for multiple robot coordinated navigation
through virtual potential fields. Integración de comportamientos para la navegación
coordinada de múltiples robots mediante potenciales virtuales’.

Clarke, R. (1993) ‘Asimov’s laws of robotics: implications for information technology-part
I’, Computer, (12), pp. 53–61.

Clarke, R. (1994) ‘Asimov’s laws of robotics: Implications for information technology. 2’,
Computer, 27(1), pp. 57–66.

Collins, S. H. and Ruina, A. (2005) ‘A bipedal walking robot with efficient and human-like
gait’, in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on. IEEE, pp. 1983–1988.

Corporation, Ir. (2007) Robots that make a difference - iRobot. Available at:
http://www.irobot.co.uk/ (Accessed: 26 January 2015).

Cutumisu, M. and Szafron, D. (2009) ‘An Architecture for Game Behavior AI: Behavior
Multi-Queues.’, in AIIDE.

Diekmann, T., Melski, A. and Schumann, M. (2007) ‘Data-on-network vs. data-on-tag:
Managing data in complex RFID environments’, Proceedings of the Annual Hawaii
International Conference on System Sciences, pp. 1–10. doi: 10.1109/HICSS.2007.160.

Dolgov, D. and Durfee, E. H. (2002) ‘Satisficing strategies for resource-limited policy
search in dynamic environments’, in Proceedings of the first international joint
conference on Autonomous agents and multiagent systems: part 3, pp. 1325–1332.

Eiben, A. E. and Smit, S. K. (2011) ‘Parameter tuning for configuring and analyzing
evolutionary algorithms’, Swarm and Evolutionary Computation. Elsevier, 1(1), pp. 19–
31.

Erol, K., Hendler, J. A. and Nau, D. S. (1994) ‘UMCP: A Sound and Complete Procedure
for Hierarchical Task-network Planning’, in AIPS, pp. 249–254.

Ferguson, D. and Stentz, A. (2007) ‘Anytime, dynamic planning in high-dimensional
search spaces’, in Robotics and Automation, 2007 IEEE International Conference on, pp.
1310–1315.

Fikes, R. E. and Nilsson, N. J. (1971) ‘STRIPS: A new approach to the application of
theorem proving to problem solving’, Artificial intelligence, 2(October), pp. 189–208.
doi: 10.1016/0004-3702(71)90010-5.

 188

Fitzgerald, C. (2013) ‘Developing baxter’, IEEE Conference on Technologies for Practical
Robot Applications, TePRA. doi: 10.1109/TePRA.2013.6556344.

Gates, B. (2007) ‘A robot in every home.’, Scientific American, 296(1), pp. 58–65. doi:
10.1038/scientificamerican0208-4sp.

Gudwin, R. et al. (2018) ‘An urban traffic controller using the MECA cognitive
architecture’, Biologically Inspired Cognitive Architectures. Elsevier.

Halal, F. and Zaremba, M. B. (2018) ‘A Hybrid Architecture for Planning and Execution of
Multi-Behavior Data Acquisition Missions’, in 2018 IEEE International Conference on
Computational Intelligence and Virtual Environments for Measurement Systems and
Applications (CIVEMSA), pp. 1–6.

Harnad, S. (1990) ‘The symbol grounding problem’, Physica D: Nonlinear Phenomena,
42(1), pp. 335–346.

Hart, P. E., Nilsson, N. J. and Raphael, B. (1968) ‘A Formal Basis for the Heuristic
Determination of Minimum Cost Paths’, IEEE Transactions on Systems Science and
Cybernetics, 4(2), pp. 100–107. doi: 10.1109/TSSC.1968.300136.

Hayes, P. J. (1971) The Frame Problem and Related Problems on Artificial Intelligence.
Stanford University, Computer Science Department.

Haykin, S. and Network, N. (2004) ‘A comprehensive foundation’, Neural Networks,
2(2004), p. 41.

He, W., Chen, Y. and Yin, Z. (2016) ‘Adaptive neural network control of an uncertain
robot with full-state constraints’, IEEE Transactions on Cybernetics. IEEE, 46(3), pp. 620–
629.

Hough, P. (1962) ‘Method and means for recognizing complex patterns’. Google Patents.

Hu, M. and Liu, B. (2004) ‘Mining opinion features in customer reviews’, in AAAI, pp.
755–760.

IFR (2016) World Robotics Report 2016 - International Federation of Robotics, Executive
Summary World Robotics 2016 Industrial Robots.

Jiang, P. et al. (2012) ‘A behaviour network approach to support opportunity-based
virtual enterprises in the internet’, Multiagent and Grid Systems, 8(4), pp. 311–328. doi:
10.3233/MGS-120197.

Kaelbling, L. P., Littman, M. L. and Moore, A. W. (1996) ‘Reinforcement Learning : A
Survey’, 4, pp. 237–285. doi: 10.1613/jair.301.

 189

Kertész, C. (2012) ‘Dynamic behavior network’, in 2012 IEEE 10th International
Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 207–212. doi:
10.1109/SAMI.2012.6208958.

Kleene, S. C. (1951) Representation of events in nerve nets and finite automata.

Klenk, M., Molineaux, M. and Aha, D. W. (2013) ‘Goal‐Driven Autonomy For Responding
To Unexpected Events In Strategy Simulations’, Computational Intelligence, 29(2), pp.
187–206.

Knepper, R. A., Srinivasa, S. S. and Mason, M. T. (2010) ‘Hierarchical planning
architectures for mobile manipulation tasks in indoor environments’, in Robotics and
Automation (ICRA), 2010 IEEE International Conference on, pp. 1985–1990.

Kober, J., Bagnell, J. A. and Peters, J. (2013) ‘Reinforcement learning in robotics: A
survey’, The International Journal of Robotics Research. SAGE Publications Sage UK:
London, England, 32(11), pp. 1238–1274.

Kragic, D. et al. (2018) ‘Interactive, Collaborative Robots: Challenges and Opportunities.’,
in IJCAI, pp. 18–25.

Kretzschmar, H. et al. (2016) ‘Socially compliant mobile robot navigation via inverse
reinforcement learning’, The International Journal of Robotics Research. SAGE
Publications Sage UK: London, England, 35(11), pp. 1289–1307.

Lameski, P. et al. (2015) ‘SVM parameter tuning with grid search and its impact on
reduction of model over-fitting’, in Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing. Springer, pp. 464–474.

Lawrence, S. et al. (1997) ‘Face recognition: a convolutional neural-network approach’,
IEEE Transactions on Neural Networks, 8(1), pp. 98–113. doi: 10.1109/72.554195.

Lee, Y.-S. and Cho, S.-B. (2014) ‘A hybrid system of hierarchical planning of behaviour
selection networks for mobile robot control’, Int. Journal of Advanced Robotic Systems.

Lee, Y. S. and Cho, S. B. (2014) ‘A hybrid system of hierarchical planning of behaviour
selection networks for mobile robot control’, International Journal of Advanced Robotic
Systems, 11(1). doi: 10.5772/56088.

Leiva, A. J. F. and Barragán, J. L. (2011) ‘Decision tree-based algorithms for implementing
bot AI in UT2004’, in Foundations on Natural and Artificial Computation. Springer, pp.
383–392.

Lin, C.-T. and Lee, C. S. G. (1991) ‘Neural-network-based fuzzy logic control and decision
system’, IEEE Transactions on computers. IEEE, 40(12), pp. 1320–1336.

Maes, P. (1989) ‘The dynamics of action selection’, Proceedings of the 11th international
joint conference on Artificial intelligence, 2, pp. 991–997.

 190

Maes, P. (1991a) ‘A bottom-up mechanism for behavior selection in an artificial
creature’, in Proceedings of the first international conference on simulation of adaptive
behavior on From animals to animats. MIT Press, pp. 238–246.

Maes, P. (1991b) ‘A Bottom-up Mechanism For Behaviour Selection In An Artificial
Creature’, pp. 238–246.

Maes, P. (1991c) ‘Learning to Coordinate Behaviours’, Learning.

Maes, P. (1991d) ‘The Agent Network Architecture (A N A)’, 2(4), pp. 115–120.

Maes, P. (1993) ‘Modeling Adaptive Autonomous Agents 1 Introduction 2 What is an
Adaptive Autonomous Agent ?’, pp. 1–37.

Maes, P. and Brooks, R. A. (1990) ‘Learning to Coordinate Behaviors’, in AAAI, pp. 796–
802.

McCulloch, W. S. and Pitts, W. (1943) ‘A logical calculus of the ideas immanent in nervous
activity’, The bulletin of mathematical biophysics. Springer, 5(4), pp. 115–133.

Meeden, L., McGraw, G. and Blank, D. (1993) ‘Emergent control and planning in an
autonomous vehicle’.

Miljković, Z. et al. (2013) ‘Neural network reinforcement learning for visual control of
robot manipulators’, Expert Systems with Applications. Elsevier, 40(5), pp. 1721–1736.

Miller, W. T. (1994) ‘Real-time neural network control of a biped walking robot’, IEEE
Control Systems. IEEE, 14(1), pp. 41–48.

Mnih, V. et al. (2015) ‘Human-level control through deep reinforcement learning’,
Nature. Nature Research, 518(7540), pp. 529–533.

Murphy, R. and Woods, D. D. (2009) ‘Beyond Asimov: the three laws of responsible
robotics’, IEEE Intelligent Systems. IEEE, 24(4).

Nagata, F., Otsuka, A. and Watanabe, K. (2012) ‘Network-based subsumption
architecture for multiple mobile robots system’, 6th International Conference on Soft
Computing and Intelligent Systems, and 13th International Symposium on Advanced
Intelligence Systems, SCIS/ISIS 2012, (January), pp. 187–192. doi: 10.1109/SCIS-
ISIS.2012.6505001.

Nicolescu, M. N. and Matarić, M. J. (2002) ‘A hierarchical architecture for behavior-based
robots’, Proceedings of the first international joint conference on Autonomous agents
and multiagent systems part 1 AAMAS 02, pp. 227–233. doi: 10.1145/544741.544798.

Oland, E., Andersen, T. S. and Kristiansen, R. (2016) ‘Subsumption architecture applied
to flight control using composite rotations’, Automatica, 69, pp. 195–200.

 191

Paikan, A., Metta, G. and Natale, L. (2013) ‘A port-arbitrated mechanism for behavior
selection in humanoid robotics’, 2013 16th International Conference on Advanced
Robotics, ICAR 2013. doi: 10.1109/ICAR.2013.6766466.

Pais, S. and Symonds, J. (2011) ‘Data Storage on a RFID Tag for a Distributed System’,
International Journal of UbiComp, 2(2), pp. 26–39. doi: 10.5121/iju.2011.2203.

Peach, B. and Robinson, P. (2016) ‘The Use of Data Packets in a Behaviour Network to
Improve the Action Selection Mechanism’, PlanSIG 2016.

Prescott, T. J. (2002) ‘Comparing a brain-inspired robot action selection mechanism
with’winner-takes-all’’, in From Animals to Animats 7: Proceedings of the seventh
international conference on simulation of adaptive behavior. MIT Press, p. 75.

Richards, N. M. and Smart, W. D. (2013) ‘How should the law think about robots?’,
Available at SSRN 2263363.

Roberts, M. et al. (2014) Iterative goal refinement for robotics. DTIC Document.

Di Rocco, M. et al. (2013) ‘Configuration Planning with Multiple Dynamic Goals.’, in AAAI
Spring Symposium: Designing Intelligent Robots.

Rosenblatt, J. K. and Payton, D. W. (1989) ‘A fine-grained alternative to the subsumption
architecture for mobile robot control’, International Joint Conference on Neural
Networks, (February 1989), pp. 317–323 vol.2. doi: 10.1109/IJCNN.1989.118717.

Rosenblatt, J. K. and Payton, D. W. (1989) ‘A fine-grained alternative to the subsumption
architecture for mobile robot control’, in Neural Networks, 1989. IJCNN., International
Joint Conference on. IEEE, pp. 317–323.

Saffiotti, A., Konolige, K. and Ruspini, E. H. (1995) ‘A multivalued logic approach to
integrating planning and control’, Artificial Intelligence, 76(1–2), pp. 481–526. doi:
10.1016/0004-3702(94)00088-I.

Samsonovich, A. V (2010) ‘Attention in the asmo cognitive architecture’, in Biologically
Inspired Cognitive Architectures 2010: Proceedings of the First Annual Meeting of the
BICA Society. IOS Press, p. 98.

Schlenoff, C. et al. (2012) ‘An IEEE standard ontology for robotics and automation’, in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp.
1337–1342.

Seraji, H. and Howard, A. (2002) ‘Behavior-based robot navigation on challenging terrain:
A fuzzy logic approach’, Robotics and Automation, IEEE Transactions on, 18(3), pp. 308–
321.

Siciliano, B. and Khatib, O. (2016) Springer handbook of robotics. Springer.

 192

Simmons, R. et al. (1997) ‘A layered architecture for office delivery robots’, in
Proceedings of the first international conference on Autonomous agents, pp. 245–252.

Singh, S. and Kelly, A. (1996) ‘Robot planning in the space of feasible actions: Two
examples’, in Robotics and Automation, 1996. Proceedings., 1996 IEEE International
Conference on, pp. 3309–3316.

Smart, W. D. and Kaelbling, L. P. (2002) ‘Effective reinforcement learning for mobile
robots’, in Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, pp. 3404–3410.

Specht, D. F. (1991) ‘A general regression neural network’, IEEE transactions on neural
networks. IEEE, 2(6), pp. 568–576.

Sutton, R. S. and Barto, A. G. (1998) Reinforcement learning: An introduction. MIT press
Cambridge.

Swere, E. and Mulvaney, D. J. (2003) ‘Robot navigation using decision trees’, Electronic
systems and control division research.

Turner, J. T., Givigi, S. N. and Beaulieu, A. (2013) ‘Implementation of a subsumption
based architecture using model-driven development’, SysCon 2013 - 7th Annual IEEE
International Systems Conference, Proceedings, pp. 331–338. doi:
10.1109/SysCon.2013.6549902.

Tyrrell, T. (1993) ‘Computational mechanisms for action selection’, pp. 1–218. Available
at: http://w2mind.computing.dcu.ie/worlds/w2m.TyrrellWorld/tyrrell_phd.pdf.

Tyrrell, T. (1994) ‘An evaluation of Maes’s bottom-up mechanism for behavior selection’,
Adaptive Behavior, 2(4), pp. 307–348.

Vinyals, O. et al. (2015) ‘Show and tell: A neural image caption generator’, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164.

Watkins, C. J. C. H. and Dayan, P. (1992) ‘Q-learning’, Machine learning. Springer, 8(3–
4), pp. 279–292.

Weiser, M. (1993) ‘Hot topics-ubiquitous computing’, Computer. IEEE, 26(10), pp. 71–
72.

Weiser, M. (1995) ‘The computer for the 21st century’, Ieee, pp. 933–940.

Weser, M., Off, D. and Zhang, J. (2010) ‘HTN robot planning in partially observable
dynamic environments’, in Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pp. 1505–1510.

William, J. (1983) ‘The principles of psychology’.

 193

Yang, K. M. and Cho, S. B. (2013) ‘STRIPS planning with modular behavior selection
networks for smart home agents’, Proceedings - IEEE 10th International Conference on
Ubiquitous Intelligence and Computing, UIC 2013 and IEEE 10th International Conference
on Autonomic and Trusted Computing, ATC 2013, pp. 301–307. doi: 10.1109/UIC-
ATC.2013.70.

Yang, S. X. and Meng, M. (2000) ‘An efficient neural network approach to dynamic robot
motion planning’, Neural Networks. Elsevier, 13(2), pp. 143–148.

