
An Exploration of Graph Algorithms and

Graph Databases

Phininder Balaghan BSc (Hons)

A thesis presented for the degree of

Doctor of Philosophy

University of Hull

May 2019

A best friend is the only one

that walks into your life when

the world has walked out.

Shannon L. Alder

Dedication

I dedicate this thesis to my Mum, Dad and my Sister. I know how much you have

sacrificed to make me the person I am today. Thank you. Your continued guidance

and love drives me forwards.

To my main supervisor, Ken Hawick. I couldn’t have asked for a better supervisor.

Your guidance and friendship throughout my journey has been invaluable. Thank

you for going above and beyond, and educating me to the world. I would like to

extend my gratitude to my co-supervisor, Neil Gordon. You’ve been on my side

since my first day of undergraduate studies, and have helped me every step of the

way. And finally thank you to Mike Brayshaw for supporting me as well as chairing

my panel meetings.

In addition, I would like to say thank you to the many administration and

technical staff at the University of Hull for their help over the years, in particular

1

Helen El-Sharkawy, Lynn Morrell, Sally Byford, Jo Clappison, Mike Bielby, Mark

Bell, Adam Hird and Andrew Hancock. Thank you to all of the various academics

that I’ve spoken to that have also given me guidance in this PhD, particularly David

Chalupa, James Walker, Kevin Elner and Martin Walker. I would like to extend my

thanks to my internal examiner, Alexander Turner and my external examiner, Omer

Rana for their additional guidance for improvements to the thesis.

To all members of the Computational Science Research Group, past and present,

and in particular; Anth Quinn, Craig Maddra, Liam Stockwell, Daniel Fleming,

Russell Billingsley, Mariusz Kosmatka, George Lacey, Andrew Johnson and Lee

Odiam. Thank you all for pushing me and also for keeping me sane.

Thank you also to my friends outside of university who have also supported me,

especially; Abdullah-isa Amole, Danny Alan, Bhavin Mistry, Seven Sawmynaden,

Sarah Nevins, Raksha Aggarwal, Sam Cooke, Hina Patel and all of my other many

great friends. I’m very lucky to have you all by my side and supporting me through

this long journey. In addition I would also like to thank Nick Fletcher and John

Murray.

Finally, Bronya Holliday. I never would have made it this far if it wasn’t for your

constant support, love, encouragement and kindness that you’ve given me throughout

my PhD. You’ve supported me throughout this PhD and especially in the tough times

you have been my rock, thank you.

For Beji, Priya Didi and Babaji, I hope you are resting wherever you are.

Phini

2

Abstract

With data becoming larger in quantity, the need for complex, efficient algorithms

to solve computationally complex problems has become greater. In this thesis we

evaluate a selection of graph algorithms; we provide a novel algorithm for solving

and approximating the Longest Simple Cycle problem, as well as providing novel

implementations of other graph algorithms in graph database systems.

The first area of exploration is finding the Longest Simple Cycle in a graph

problem. We propose two methods of finding the longest simple cycle. The first

method is an exact approach based on a flow-based Integer Linear Program. The

second is a multi-start local search heuristic which uses a simple depth-first search

as a basis for a cycle, and improves this with four perturbation operators.

Secondly, we focus on implementing the Minimum Dominating Set problem into

graph database systems. An unoptimised greedy heuristic solution to the Minimum

Dominating Set problem is implemented into a client-server system using a declarative

query language, an embedded database system using an imperative query language

and a high level language as a direct comparison. The performance of the graph

back-end on the database systems is evaluated. The language expressiveness of the

query languages is also explored. We identify limitations of the query methods of

the database system, and propose a function that increases the functionality of the

queries.

We further evaluate graph database systems by implementing computationally

complex problems such as the Graph Diameter, Betweenness Centrality and the

Component Labelling problems. These all have algorithms, or heuristics that provide

consistent results, which is in contrast to the Minimum Dominating Set and the

Longest Simple Cycle. We provide novel implementations that are applied into client-

server, embedded and high level languages in the same manner as the dominating

set. We evaluate query methods, their expressiveness and propose functions that

could be used to improve these.

4

Contents

1 Introduction 14

1.1 Graph databases . 15

1.2 Graph algorithms and complexity . 17

1.3 Applying graph theory to graph databases 19

1.4 Problem statement . 20

1.5 Contributions found in this thesis . 21

1.6 Structure of this thesis . 23

2 Literature Review 25

2.1 Review of graph databases . 28

2.1.1 The Property Graph Model 32

2.1.2 Types of graph databases . 35

5

2.1.3 Graph database popularity . 38

2.2 Graph query languages . 39

2.2.1 Cypher . 41

2.2.2 Sparsity’s embedded library calls 44

2.3 Current graph database literature . 45

2.4 Problems found in graph theory . 45

2.4.1 Complexity . 48

2.4.2 Shortest Path and the All-Shortest Path problems 49

2.4.3 Graph Radius and Diameter 54

2.4.4 Betweenness Centrality . 56

2.4.5 The Minimum Dominating Set 59

2.4.6 Component Labelling . 60

2.4.7 Longest Simple Cycle . 63

2.4.8 Depth-First Search . 64

2.5 Integer Linear Programming . 66

2.6 Conclusion . 66

3 Finding Long Simple Cycles in undirected Graphs 68

3.1 Introduction . 69

3.2 Exact Approach to the Longest Simple Cycle problem 71

3.2.1 Dixon and Goodman’s formulation of the Longest Simple Cycle

problem . 71

3.2.2 Our formulation of the Longest Simple Cycle problem 73

3.2.3 Pipeline design for the exact approach 79

6

3.3 Heuristic methods for the Longest Cycle problem 83

3.4 Results . 90

3.4.1 Experimental design . 91

3.4.2 Results of the comparison between Dixon and Goodman’s and

our own ILP formulation . 95

3.4.3 In-depth results of our ILP formulation and our heuristic . . . 97

3.5 Discussion . 103

3.6 Conclusion . 107

4 An exploration of graph databases by implementing the Minimum

Dominating Set problem 109

4.1 Introduction . 110

4.2 Graph database systems . 112

4.3 The Minimum Dominating Set problem 115

4.4 Implementing the Minimum Dominating Set problem into graph database

systems . 117

4.5 Results . 127

4.6 Discussion . 131

4.7 Conclusion . 143

5 Further implications of other problem implementations 145

5.1 Introduction . 146

5.1.1 Graph databases . 148

5.2 Query languages . 149

7

5.3 Exploration of problems . 150

5.4 Problem implementions . 154

5.4.1 Implementations in Neo4j . 154

5.4.2 Implementations in Sparsity 157

5.5 Results . 159

5.5.1 Component Labelling . 160

5.5.2 Betweenness Centrality . 162

5.5.3 Graph Diameter . 165

5.6 Additional discussion . 166

5.7 Conclusion . 169

6 Conclusion 177

6.1 The Longest Simple Cycle problem 178

6.2 The Minimum Dominating Set problem 179

6.3 Exploration of other algorithms . 181

6.4 Additional Discussion . 182

6.4.1 Finding the Longest Cycle in graph database systems 182

6.5 Further avenues of exploration . 185

Glossary 188

8

List of Figures

1.1 Example of a Graph Database . 16

2.1 A social media graph in a relational database model 26

2.2 The property graph model modelled in a social media scenario 33

2.3 A graph to show how the property graph can be modified and changed

into other graph models. Adapted from Rodriguez (2010). 36

2.4 A Diagram of Complexity when P 6= NP 50

2.5 A Diagram of Complexity when P = NP 51

2.6 The shortest path in an instance . 53

2.7 The all-shortest path in an instance 55

2.8 An example of Betweenness Centrality in an instance 58

2.9 An example of Minimum Dominating Set in an instance 61

2.10 An example of the Longest Simple cycle in an instance 65

9

3.1 Process of finding the longest cycle 80

3.2 Perturbation operator 1 - Triangular improvement operator 87

3.3 Perturbation operator 2 - Rectangular improvement operator 88

3.4 Perturbation operator 3 - (plateau exploration operator 1) 88

3.5 Perturbation operator 4 - (plateau exploration operator 2) 89

3.6 Distributions of cycle lenths found by MSLS-100000-III 103

3.7 Distributions of local search approach MSLS-100000-III 105

3.8 Distributions of local search approach MSLS-100000-III 106

4.1 How the single Cypher query is built 121

4.2 All Results sorted by C . 131

4.3 All results with <1ms . 132

4.4 Comparison of results for the three barabasi 100 instances 132

4.5 Comparison of results for the three barabasi 1000 instances 133

4.6 The increase in time for each iterations of the single Cypher query in

the social media graphs. 134

4.7 The increase in time for each iterations of the single Cypher query in

the social media graphs displayed in log-log plots. 135

4.8 The increase in time for each iterations of the single Cypher query in

the social media graphs. 136

4.9 The increase in time for each iterations of the single Cypher query in

the social media graphs displayed in log-log plots. 137

4.10 The increase in time for each iterations of the single Cypher query in

each of the graphs that were not found 138

10

5.1 Full results for Component Labelling Algorithm 161

5.2 Comparison of Sparsity and C for Component Labelling Algorithm . 163

5.3 Full results for Betweenness Centrality Algorithm 164

5.4 The plots for the Graph Diameter Results 167

6.1 Different Min Dom Set results . 185

11

List of Tables

2.1 Symbols within Cypher . 43

3.1 Summary of data sets used . 93

3.2 Comparison of our ILP forumulation and Dixon’s formulation 96

3.3 Dixon and Goodman’s results after a time-out of 10 mins per node . 98

3.4 Results for the exact approach based on our ILP formulation 101

3.5 Computational results for the multi-start heuristics 102

3.6 Cycle Length distributions obtained by MSLS-100000-III 104

4.1 Timings of finding the Minimum Dominating Set 129

4.2 A summary of the implementations for instance size 139

4.3 Slopes of the result plots . 143

5.1 Results for the Component Labelling problem 171

12

5.2 Order of data for Component Labelling plots 172

5.3 Results for the Betweenness Centrality algorithm 173

5.4 Order of data for the Betweenness Centrality plots 174

5.5 Results for the Graph Diameter problem 175

5.6 The order of labels for the x-axis for the Graph Diameter plots 176

13

Rancho: That day I understood

that this heart scares easily.

You have to trick it, however

big the problem is. Tell your

heart, ‘aal izz well, aal izz well.’

Raju: Does that solve the

problem?

Rancho: No, but you gain

courage to face it.

3 idiots

CHAPTER 1

Introduction

The definition of big data has altered in recent times. The sheer amount of data

gathered has increased exponentially. So much so, that previous storage mechanisms

have struggled to cope with the size and the complexity of the data. Thus finding

efficient storage mechanisms of graph-like data has become a pressing issue. Once

the data has been stored, there must be an ability to efficiently analyse and explore

the data with algorithms.

Data is being collected at a greater rate than ever before. It is estimated that by

2020 1.7 megabytes of new information will be created every second for every human

on the planet (Marr, 2015). Much of this data will be unstructured and complex.

Storage mechanisms that rely on strictly schema data, such as relational databases,

14

have found issues arising with both the size and the complexity of this type of data.

A new type of storage mechanism was created, the birth of Not Only SQL

(NOSQL) databases. These new types of databases have fundamentally different

engines which allow them to efficiently store and query data in ways that relational

databases struggled with. A database family that has recently gained traction uses

a graph engine as its core. Graph Databases has been made to specifically target

weaknesses found in relational databases.

1.1 Graph databases

In the database families within NOSQL, graph databases stand out. Rather than

using documents or tabular like data structures to store data, the underlying engine

is a graph. This graph structure allows for a focus on relationships between data

nodes. Graph databases have adopted a different kind of graph model; the property

graph model. This can be simply defined as:

G = (N,E, P) (1.1)

Where G = graph, N is a non-empty set of nodes that exist in graph G, and E

is a non-empty set of edges limited to NxN , and P is a key-value list of properties

which are attached to every node and edge in the graph. Every node and edge in

the graph will have a unique property list assigned to it. An example of a graph

formatted with the property model can be found in fig. 1.1.

As shown in fig. 1.1, each of the nodes and edges have unique property lists.

15

A
B

D

F

H

C
E

G

N
am
e:
"A
n
n
"

A
g
e:
"5
1
"

Jo
b
:"
N
u
rs
e"

N
am
e:
"B
ob
"

A
g
e:
"2
5
"

Jo
b
:"
N
u
rs
e"

N
am
e:
"D
av
e"

A
g
e:
"5
4
"

Jo
b
:"
D
oc
to
r" N
am
e:
"A
m
y"

A
g
e:
"6
0
"

Jo
b
:"
R
et
ir
ed
"

N
am
e:
"G
it
a"

A
g
e:
"3
0
"

Jo
b
:"
D
oc
to
r"

N
am
e:
"J
an
e"

A
g
e:
"7
5
"

Jo
b
:"
R
et
ir
ed
"

N
am
e:
"R
ob
"

A
g
e:
"3
1
"

Jo
b
:"
N
/A
"N
am
e:
"A
n
n
a"

A
g
e:
"1
6
"

Jo
b
:"
S
tu
d
en
t"

M
O
T
H
E
R
_
O
F

FA
T
H
E
R
_
O
F

M
O
T
H
E
R
_
O
FIS
_
M
A
R
R
IE
D
_
TO

IS
_
M
A
R
R
IE
D
_
TO

W
O
R
K
S
_
W
IT
H

E
M
PL
O
Y
S

T
E
A
C
H
E
R
_
O
F

M
O
T
H
E
R
_
O
F

Figure 1.1: A basic example of a graph database. Each of the nodes and edges in
the graph have unique property lists. These property lists can contain values which
are unique to the node or edge, allowing additional information to be stored.

16

Graph database queries can take advantage of the uniqueness of these lists. Further

exploration into graph databases and their multiple uses can be found in section

2.1. An advantage to the graph based underlying engine is that it has the ability to

implement complex graph algorithms.

1.2 Graph algorithms and complexity

Graph theory famously began with the seven bridges of Königsberg problem (Euler,

1736). From there, graph theory as a field has created a vast amount of algorithms.

These algorithms tend to have a varying amount of complexity. They fall into

a selection of complexity classes, with the three most well known as Polynomial

(P), Non-deterministic Polynomial-time Hardness (NP-Hard) and Non-deterministic

Polynomial-time Completeness (NP-Complete). In this thesis, we explore a variety

of problems which fall into these classifications. It is worth noting that there are

many other classifications of complexity that are not investigated here.

We firstly focus on the Longest Simple Cycle problem. This problem finds the

longest simple cycle in an undirected graph. A simple cycle can be defined as a

cycle of minimum length 2 without any repetition of nodes or edges apart from the

initial node. The longest simple cycle problem is a generalisation of the Hamiltonian

cycle problem. Because of this, it is a classical NP-Hard problem. The longest cycle

problem is further explored in section 2.4.7 and in chapter 3.

We then explore the minimum dominating set problem. A dominating set in

a graph is a subset of nodes such that every node in the graph is either in the

17

dominating set or is adjacent to a node in the dominating set. It is classified as a

NP-Complete problem. The most well known heuristic is the greedy algorithm. The

problem is further explored in section 2.4.5 and in chapter 4.

The next algorithm that is explored is the shortest path problem, its variations

and some algorithms which use it as a base for further operations. The shortest path

algorithm is a well known P problem. A variation of this is the all-shortest paths

problem, which essentially finds all of the possible shortest paths in a graph. These

are further analysed in section 2.4.2. The graph diameter is the longest shortest

path, and can be found using the all shortest paths algorithm. This is explored in

section 2.4.3. The betweenness centrality of a graph ranks each of the nodes by its

importance within shortest paths. These are explored in section 2.4.4.

Finally, the Component Labelling problem finds all of the different components

within a graph. Each of the components found are given unique labels. This falls

in the P complexity area, and is explored in section 2.4.6. The shortest path, all

shortest paths graph diameter, betweenness centrality and the component labelling

problems are all also implemented in a variety of ways in chapter 5.

The variety of graph algorithms explored in this thesis give an insight into

different graph problems. The Graph Diameter and Betweenness Centrality both

use a shortest path algorithm as a base. Betweenness Centrality is a node ranking

problem and the Graph Diameter is a distance calculation problem. The Minimum

Dominating Set problem is a classical decision problem while the Longest Simple

Cycle is a generalisation of the Hamiltonian Cycle problem. Finally, the component

labelling problem is a region detecting problem. These problems provide a unique

18

graph challenge for the underlying engines explored in this thesis.

1.3 Applying graph theory to graph databases

Graph databases and graph theory go hand in hand. The uses of complex algorithms

from the well studied theory area can be applied and implemented into databases.

Graph databases can support graphs from a multitude of disciplines, so an algorithm

that can be written for a generic graph in a graph database can be easily applied to

different graph types.

We can evaluate how efficiently the graph database engines are by implementing

the algorithms of varying complexity. The query languages or libraries provided by

the graph database system will be used. This allows an evaluation of a number of

items; the graph engines, the given method of extracting data and the combination

of both.

After we implement the algorithms into graph databases using the query methods

provided by them, we compare performance timings with a high level language

implementing of the said algorithms.

The advantage of being able to apply these algorithms directly into a graph

database allows for more dynamic-ism and better resource management. For example,

a graph database could hold a a snapshot of an scenario due to the persistent storage

mechanism that can only be uniquely provided by a graph database. The scenario

could be dynamic and ever-changing, thus the graph held in the graph database may

be constantly changing, with nodes and edges being removed and added. Taking

19

a copy of the graph out of the database into memory not only means that the

algorithms could be running on an out-of-date snapshot of the scenario, the amount

of extra resources required to be able to do this may not make it viable.

1.4 Problem statement

By their very nature, NP-Hard classified problems cannot be solved efficiently. These

problems typically have an approximation or a heuristic algorithm in order to find a

close to optimum solution. Heuristical algorithms can provide interesting information

even if not giving an exact solution. Graph databases provide a new engine that can

be used to run such algorithms on many different types of instances.

This thesis explores the Longest Simple Cycle problem, which is an NP-Hard

problem, in depth. A heuristic for a different NP-Hard problem is then implemented

into graph databases which allows the underlying engine(s) to be evaluated for

performance and language expressibility. Finally, other algorithms which are known

to be classified as P to NP-Complete are also implemented into graph databases to

further explore the underlying engines.

Due to the nature of the thesis, several hypotheses can be found.

• Can the underlying engines of graph databases efficiently handle complicated

graph algorithms?

• How can these algorithms be expressed in current graph database languages?

• How efficient are the built in functions of the systems?

20

• Can a more efficient exact solution be found for the Longest Simple Cycle

problem?

– If not, can a heuristic be produced?

1.5 Contributions found in this thesis

There are a number of contributions within this thesis, which directly correlate with

the hypotheses given in 1.4. The contributions are:

• Computational methods of solving the longest simple cycle problem

– A novel exact algorithm using an Integer Linear Programming (ILP) has

been created to find the longest simple cycle in a graph

– A Depth-First Search (DFS) based heuristical algorithm which uses perturbation

operators to improve a long cycle has been created to find the longest

simple cycle in a graph

• The Minimum Dominating Set problem has been explored in detail when

implemented into graph databases.

– A novel implementation of the Minimum Dominating Set problem in graph

database systems

– The efficiency of the underlying engines have been explored

– The expressibility of the query languages when applied to this problem

are also evaluated

21

• Graph databases are then further evaluated when other problems that are

classified from P and NP-Complete are implemented with novel solutions, such

as:

– Betweenness Centrality

– Graph Diameter

– Component Labelling

– The efficiency of in built functions, such as the shortest path, of the

systems are evaluated.

A novel flow-based exact ILP has been created to solve the longest simple cycle

in a graph. We compared this to an existing ILP formulation. In addition to this, we

have created a novel DFS based heuristic algorithm. We compare the results found

in all three problem implementations.

We then implement the Minimum Dominating Set algorithm into graph databases

using query methods. We evaluated the expressiveness of the query languages, as

well as the performance of said algorithms by comparing them with a high level

language implementation.

We then further evaluate the graph database engines by implementing other

highly computational algorithms. We compare these with a high level language

implementation, as well as the general expressiveness of the query methods.

In the above implementations, we used a set of instances from a wide variety of

sources, ranging from biological networks to social media networks. All instances

were implemented as undirected graphs, with no self loops. Through these results,

22

we have identified limitations to the query methods provided by the graph databases,

and propose improvements to the query methods.

1.6 Structure of this thesis

The thesis can be read in a linear manner. However each chapter has been written

in a style such that they can be read independently. As such, some sections may

include repetition. These sections have been clearly labelled, and referenced where

repetition may have occurred.

Chapter 2 gives an in-depth review of the various graph algorithms and database

literature required for the oncoming chapters.

In chapter 3 the Longest Simple Cycle problem is explored in depth. An exact

algorithm for finding the longest simple cycle in a graph using an ILP formulation

has been created and compared to existing methods. A heuristic to find the longest

simple cycle based on an initial DFS cycle with improvements due to additional

perturbation operators has also been created.

Chapter 4 explores the Minimum Dominating Set problem, and evaluates how

efficiently the algorithm can be implemented into graph databases. The limitations

and efficiency of the implementations are explored and discussed in detail.

Following from the Minimum Dominating Set problem, other computationally

complex problems such as the Betweenness Centrality, Graph Diameter and Component

Labelling are implemented into graph databases for further performance and efficient

evaluation in chapter 5.

23

In the final chapter, we conclude this thesis. We also discuss long cycles in graph

database systems. This can be found in chapter 6.

24

The greatest education in the

world is watching the masters at

work.

Michael Jackson

CHAPTER 2

Literature Review

The need for storing graph-like data has increased in recent times (Yannakakis,

1990). However, traditional, conventional database storage mechanisms have found

this difficult. Relational databases are one such database type. At the time of

writing, relational databases are the most popular databases (DBEngine, 2017b).

The relational model consists of tables, with data stored in a row (Codd, 1970).

The figure in 2.1 shows an example of a relational database model. The relational

model requires the different entities of the data to be split into separate tables.

Within these tables are many columns that can represent attributes of these entities.

This gives the benefit of having a strong schema on the data, allowing the database

manager to constrain the data allowed into the database. In the figure, the data has

25

People

id Name Gender
1
2
3
4
5
6

Lisa
Arnold
Alex
Sam
Mark
Sam

Female

Male

Female

Male
Female

Female

Friendships

Id Person Friend

1

2

3

4

5

1 2
2 4
2 1
1 6

5 6

One

Many

Figure 2.1: A social media example using the relational database model. The
relational model requires the data to be structured into multiple tables that are
different entities within the data. In this example, the people and the friendships of
the people are separated into two tables. Within these tables, the columns may have
a “Key” column. This is unique to that table. For the people and friendships table,
the key component is the ID of the person. The data can be joined together by using
one of three relations. The “One-to-One”, “One-to-Many” and “Many-to-Many”.
The “One-to-Many” is shown above. The “One” represents a key value. There can
only ever be “One” person, however that person could have “Many” relationships
(Data, 1975).

been split into two separate entities to signify the people, and the friendships the

people have in relation to each other. The “Key” column is a unique field. The key

field for both the friendships and the people are the ID, as there can only be one

unique person. The two entities can then be joined together by three different types

of relationships. The “One-to-One”, the “One-to-Many” and the “Many-to-Many”.

An example of a “One-to-Many” is given in the figure (Data, 1975; Howe et al.,

2013).

26

However, there are many downfalls to using a relational database. Due to the

strict schema that is required by relational databases, data which requires a less

restrictive schema is very difficult to store within a relational database. Using the

example in figure 2.1, if we wanted to know the age of the people, we would have

to create a new column within the table. This opens up the opportunity for missing

data as not all age data may be known.

This was not the only restriction. Scaling a relational database to be able to hold

a significant amount of data is very difficult to do. Comparing the example to a

real-life social media, we would hope to have more information than just the age of

the person. The amount of data would increase, and the size of the persons tables

would also dramatically increase, thus effecting the querying time.

Because of these restrictions, Not Only SQL (NOSQL) was introduced. NOSQL

databases do not claim that relational databases are redundant, in fact there are

times when it is recommended to use relational databases for certain types of data.

Instead, NOSQL databases are an alternative to relational databases when limitations

of relational databases are found.

Within NOSQL, there are a number of different database ”families”. These

families include:

• Graph database

• Document database

• Key-Value Store database

• Object database

27

• Tabular database

• Triple/Quad Store database

• Multi-Modal database

Most of these different NOSQL families have been reviewed in (McColl et al.,

2014; Corbellini et al., 2017). One of the families which are interesting is graph

databases.

2.1 Review of graph databases

Storing graph data in relational databases heavily relies on computationally intensive

operations. This limitation has been recognised, particularily in social media platforms.

Some social media platforms such as Facebook created their own graph storage

methods (Bronson et al., 2013). Tools for computation of graph-like data are also

required (Hawick, 2007).

Definition 2.1.1. A database is a collection of related data. Data is facts that are

recorded and have implicit meanings (Elmasri and Navathe, 2010). In this thesis,

data is used as both a singular and plural definition, as opposed to datum as its

singular, as it is common in database literature for it to be referred as this.

Definition 2.1.2. A database management system (DBMS) is a collection of

programs which enable users to create and maintain a database. A transaction

represents a piece of work occurring in a database. A transaction typically describes

any change in a DBMS. Transactions can follow the four rules of Acidity.

28

Definition 2.1.3. ACID is a collection of rules that all transactions in a database

must follow. Atomicity, Consistency, Isolation and Durability are all properites that

must be followed in a all-or-nothing manner (Gray, 1981; Gray and Reuter, 1992).

The four properties are explored in the definitions below.

Definition 2.1.4. Atomicity is a property of ACID. An atomic transaction is

one where a series of database operations must occur, otherwise the database rolls

back. An operation is a single process that can occur in a query. For example, an

exchange of a single item between two people involves two operations. The removal

of item from the first person is a single operations, and an addition of the item to

the second person is the second operation. An atomic transaction either follows both

the operation through, or none of it is carried out, thus preventing any loss of data.

Definition 2.1.5. Another property of ACID is Consistency. This gives the

requirement that data can only be changed as according to any constraints or rules

imposed to the data, such as a schema.

Definition 2.1.6. Isolation is a transaction processing manager that defines when

one process has finished, and when the next begins. It essentially manages the

concurrency effects of transactioned data.

Definition 2.1.7. The final property of ACID is Durability. This guarantees that

all transactions that have occurred will survive permanently.

Definition 2.1.8. A database schema is a specific structure described in a formal

language. This schema is a constraint on data stored.The schema will needto be

supported by the DBMS.

29

In order to store and query graph data efficiently, it became clear that a new type

of database was required. Thus, graph databases were born. They are a part of the

NOSQL family.

Graph databases have been used in a wide variety of research, such as in analyzing

voting and donation networks in Brazilian politics (Bursztyn et al., 2016), analysing

bibliographic data (Zhu and Yan, 2016), systems engineering (Harrison, 2016), prevenance

segmentation (Abreu et al., 2016) and much more.

Graph databases built upon some of the research into graph models in the

1990’s. Many different unique graph models were created. These graph models have

formed the basis of different modern day models. For example, HypergraphDB has

based its model off the Hypergraph model created by Levene in the 1990s (Levene

and Poulovassilis, 1990; Levene and Poulovanssilis, 1991). As well as this, other

models such as GOOD (Gyssens et al., 1994), Gram (Amann and Scholl, 1992),

GraphDB (Güting, 1994), PaMaL (Gemis and Paredaens, 1993), GOAL (Hidders

and Paredaens, 1994) and LDM (Kuper and Vardi, 1993) were created.

In addition, an extensive survey of these and other models was completed by

Angles and Gutierrez (2008).

Around the millennium, there was a dip in research into graph storage models.

This was most likely due to the memory restrictions of hardware that was available

at the time, as well as the prominent rise of relational databases. With the rise of

processing power and general increase in memory available in machines as standard,

graph storage and graph computation has become more prominent (Robinson et al.,

2013).

30

Graph databases typically are fully transactional and maintain Atomicity, Consistency,

Isolation and Durability (ACID). ACID is a set of properties of database transactions

that guarantee the validity of a transaction, regardless of an error or power failure.

If an error or power failure occurs, the database will revert to its previous form

(Haerder and Reuter, 1983; Gray, 1981).

According to the database ranking site DBEngine (2017c), since 2013, graph

databases have seen the highest rise in popularity .

This rise in popularity was due to a number of factors. One of which is that

graph databases have focused on storing data by using the structure of a graph. It

allows the user to focus on the relationships between the data. Graph databases

tend to have a few defining characteristics. One such defining characteristic is the

ability to store data free of schema. This is one of the main differences in comparison

to Relational and, in some circumstances, other NOSQL databases as they require

a strict schema. Another characteristic is the focus of the relationship between the

data in the graphs. This can expand through different data types, as explained in

section 2.1.1.

Graphs can be created in many different database types. In fig 2.2 it shows how

to create a graph in different database types such as relational, XML and others.

However it can be argued that one of the unique features that make graph databases

different from other database types is the ability to create an explicit graph without

relying on indexes (Rodriguez and Neubauer, 2010).

31

2.1.1 The Property Graph Model

For this section, a graph is referred to as a property graph. Fig. 2.2 shows an example

of a simple property graph. The example shows a basic social media scenario, with

the nodes representing different people, and the edges representing the relationships

between the people. The properties are a list of “Key-Pairs” which are attached

to the nodes and edges. In the example, the property list for the nodes add more

information about the person, and for the edges they define the type of relationship

between the people. The schema-free feature of the graph can be seen in the property

list for both the edges and nodes. For example, the edges each have their own defining

property such as Beth being a mother to, a friend to and is married to three different

people.

Definition 2.1.9. A simple definition of the Property Graph model consist of

Nodes (N), Edges (E) and Properties (λ) such that G = (N,E, λN , λE). Properties

are a list of key-value pairs which are attached to nodes (λN ∪N) and edges (λE∪E).

Every node and edge in the graph have their own unique property list. In general,

the property graph model is a directed graph that allows self-loops.

It is worth noting that the property graph model can be tweaked in order to suit

a different need for a graph database system. For example, HyperGraphDB uses a

directed hypergraph at it’s core (Iordanov, 2010) .

Another definition of the Property Graph Model

The property graph model has been defined in multiple ways. A defintion was

provided in section 2.1.1, however this is quite simplistic. A much more detailed

32

Name: Sarah
Age: 21
Position: Manager
Salary: 25,000

Name: Bob
Sex: Male
Age: 55
Works_at: Prog
Salary: 35,000

Name: Beth
Age: 65
Status:Retired
Children:4

Name: Sam
Age: 50
Sex: Male

IS_MARRIED_TO

IS_MARRIED_TO

FATHER_OF

MOTHER_OF

FRIENDS_WITH

Figure 2.2: A property graph modelled in an social media scenario. As defined in
section 2.1.1, the property graph model encapsulates nodes, edges and properties.
The nodes represent different people and the edges represent the relations between
the people. Both the nodes and edges contain properties. Properties are generally a
list of “Key-Pairs” which are associated with each node and edge. In the example,
the properties represent additional data about the people in the nodes and the type
of relationships in the edges. All the nodes represent different people, and because of
the property graph’s schema free feature, we are able to store different information
about the people.

33

definition was given by Tomaszuk (2016), who defines the property graph model as

PG = 〈V,E, S, P, he, te, lv, le, pv, pe〉 where:

1. V is a non-empty set of nodes

2. E is a set of edges

3. S is a set of strings

4. P contains each property that has a form p = 〈k, v〉 where k ∈ S and v ∈ S

5. he : E → V is a function which yields the source of each edge (head)

6. te : E → V is a function which yields the target of each edge (tail)

7. lv : V → S is a function mapping each node to a label

8. le : E → S is a function mapping each edge to a label

9. pv : V → 2p is a function used to assign nodes to their multiple properties

10. pe : E → 2p is a function used to assign edges to their multiple properties

It is quite clear to see how many overheads a graph database has from the

definition in (Tomaszuk, 2016). There are multiple functions required which assign

properties to their respective nodes and edges. For example, item 9 in the above list

shows how a function is used to map properties to each individual node in a graph.

34

Why use the Property Graph model?

The schema free feature allows the property graph to model other graph models. For

example, should the data require weighted graphs, you may add the weights to the

edges of the graph by setting the properties of the edge to represent weights. Figure

2.3 shows how the property graph model can be transformed into other graph models

(Rodriguez, 2010).

The ability to transform a graph model into a different model allows the freedom

to adapt and change the database to meet its data requirements. For example, a

simple undirected graph can be mimicked on a graph database by removing properties

and creating two directed edges between every pair of nodes, as shown in fig 2.3.

2.1.2 Types of graph databases

Graph databases can currently be typically sorted into two different types of databases.

The first of which is a client-server database. The second is an embedded database.

Client-Server Databases

Definition 2.1.10. A client-server Database Management System (DBMS) allows

clients to send query requests to a server. Clients can be external or internal to the

machine where the server is stored. A common relational database that uses this

model is MySQL.

Client-server databases either take advantage of a query language, or they provide

libraries that use the query language to query the database engine.

35

Pr
op

er
ty

 G
ra

p
h
 M

od
el

W
ei

g
h
te

d
 G

ra
p
h

D
ir
ec

te
d
 G

ra
p
h

U
n
d
ir
ec

te
d
 G

ra
p
h

R
d
f

G
ra

p
h

S
im

p
le

 G
ra

p
h

S
em

an
ti
c

G
ra

p
h

M
u
lt
i-

G
ra

p
h

La
b
el

ed
 G

ra
p
h

H
yp

er
n
od

e
M

od
el

S
im

at
ic

-X
T
 M

od
el

G
R
O

O
V
Y
 M

od
el

LD
M

 M
od

el

A
d
d
 W

ei
g
h
ts

 t
o

A
tt

ri
b
u
te

s
A
d
d
 A

b
st

ra
ct

io
n

A
d
d
 H

yp
er

n
od

es

A
d
d
 S

ch
em

a

A
d
d
 S

ch
em

a

R
em

ov
e

Pr
op

er
ti
es

R
em

ov
e

Pr
op

er
ti
es

R
em

ov
e

Pr
op

er
ti
es

R
em

ov
e

at
tr

ib
u
te

s
fr

om
 P

ro
p
er

ti
es

R
em

ov
e

at
tr

ib
u
te

s
fr

om
 P

ro
p
er

ti
es

R
em

ov
e

K
ey

s
fr

om
 P

ro
p
er

ti
es

R
em

ov
e

D
ir
ec

ti
on

al
it
y

R
em

ov
e

K
ey

s
fr

om
 P

ro
p
er

ti
es

M
ak

e
K
ey

s
U

R
IS

R
em

ov
e

Lo
op

s,
 d

ir
ec

ti
on

al
it
y

an
d
 m

u
lt
ip

le
 e

d
g
es

R
em

ov
e

Pr
op

er
ti
es

Figure 2.3: A graph to show how the property graph can be modified and changed
into other graph models. Adapted from Rodriguez (2010).

36

At the time of writing, Neo4j is the most popular graph database vendor (DBEngine,

2017b,d). Neo4j is a Java Virtual Machine (JVM) based graph database. It uses a

JVM server to process the queries sent to it either through its own query language

Cypher, or through various APIs that can be integrated with a selection of high level

languages (Neo4j, 2018). Miller (2013) provides an introduction to Neo4j. Neo4j

is an active advocate of the property graph model. It is worth noting that Neo4j

redefines the term “edges” with the term “relationship” (Neo4j, 2018).

Neo4j is a fully transactional database that supports ACID functionality.

As mentioned before, Neo4j has a unique query language called Cypher. Cypher

is a declarative language, and has been described as “expressive” especially when

compared to other graph query languages (Rath et al., 2012). Cypher is explored in

greater detail in sub-section 2.2.1.

Embedded Database

Definition 2.1.11. An embedded DBMS allow the user to embed a database into

their own high level language program. A similar relational example can be SQLite.

The second model is an embedded model. The database is created and stored

locally, typically through library calls in a high-level language. An example system

of which would be Sparsity. Sparsity is a system written in c and c++.

Embedded databases do not typically have or use a query language, instead they

provide library calls which act as a query language. Embedded databases are stored

local to a program.

As such, only an imperative language can be used to query an embedded database.

37

At the time of writing, the most popular embedded graph database is Sparsity

(DBEngine, 2017d).

Sparsity is one of the more popular embedded graph databases. It began life as

DEX (Mart́ınez-Bazan et al., 2007) where it then re-branded as Sparsity. It does not

currently have a dedicated query language, instead the database can be queried by

using some of the in-built library function when combined with a high-level language.

It also fully supports ACID transactions. One special feature of sparsity is the ability

to disable ACID transactions, should they not be required.

2.1.3 Graph database popularity

At the time of writing, graph databases have seen a rise in popularity (DBEngine,

2017b). In fact, in recent years graph database usage has increased by over 500%

(DBEngine, 2017a).

This is due to a number of factors. More consumers are realising the limitations

of relational databases. The data used by the consumer is very complex, can be

modelled in a graph-like manner (Yannakakis, 1990) and requires a less restrictive

schema. In contrast to relational databases, graph databases are schema free. This

allows any type of data to be stored within the database. Coupled with the property

graph model, this gives scope to store any type of data within a graph.

Some major companies have seen this, with the likes of Google (Bronson et al.,

2013; Malewicz et al., 2010), Facebook (Bronson et al., 2013) and Microsoft (Shao

et al., 2013). Facebook, in particular, stated the limitations of SQL and why they

created their own graph storage mechanism (Bronson et al., 2013) .

38

However, it is worth noting the trend of multi-modal databases. In 2016, some of

the most popular Graph Database vendors became multi-modal databases. Multi-

modal databases combine two or more database families into one single package. At

the time of writing the most popular multi-modal database is OrientDB (DBEngine,

2017b; OrientDB, 2017). OrientDB was previously a “pure” graph database, however

it is now a combination of a graph and document database (OrientDB, 2017).

It is worth mentioning that in this thesis we focus only on “pure” graph database

systems. Multi-Modal databases may introduce an additional layer of complexities

that may effect the graph aspect due to the addition of database types.

2.2 Graph query languages

Querying graphs are computationally hard (Barceló et al., 2011). As such, querying

graph databases are also hard (Barceló Baeza, 2013). Due to the challenge of

querying graphs, at the time of writing, a formalised query language for graph

databases does not exist. There have been attempts at finding more efficient ways

to query graphs (Lee and Chung, 2014; Zheng et al., 2014). However it is still seen

as computationally hard.

Graph queries also have unavoidable overheads (Stonebraker and Cattell, 2011).

These overheads alone cause the computational and time performance of graph

database queries to be effected.

Because of this, a range of graph query languages exist. Some of the query

languages from the late 1980’s and early 1990’s include G (Cruz et al., 1987), G+

39

(Cruz et al., 1988; Mendelzon and Wood, 1995), Gram (Amann and Scholl, 1992)

and GOQL (Sheng et al., 1999). Some of the features of these languages were used

as an inspiration for more recent languages. For example, G and G+ introduced

recursion within a query.

Some of the more recent query languages include Gremlin (Gremlin, 2017), Cypher

(Neo4j, 2017b), openCypher (Marton et al., 2017), SLQ (Yang et al., 2014), GraphQL

(He and Singh, 2008), ProGQL (Tausch et al., 2011) and PGQL (van Rest et al.,

2016) with others (Angles and Gutierrez, 2005). A survey of these languages has

been explored in (Wood, 2012; Holzschuher and Peinl, 2013), however these are now

quite dated.

It is worth noting that there has been some attempt at formalising a query

language, such as openCypher (Marton et al., 2017) and SPARQL (Seaborne and

Prud’hommeaux, 2008). Some aspects of these languages have been adapted by

some graph database systems, but in general they have not yet been fully adapted.

The most popular system at the time of writing is Neo4j. Neo4j’s query language is

Cypher. A specification to drive how future graph languages are implemented have

been discussed (Angles et al., 2017).

There have been some studies into the performance of some graph query languages

(Holzschuher and Peinl, 2013), as well as some studies into query optimisation by

using algebra (Hölsch and Grossniklaus, 2016).

40

2.2.1 Cypher

Definition 2.2.1. A declarative language is a programming paradigm that expresses

the logic of a computational process without having the need to describe the control

flow (Lloyd, Lloyd).

Cypher is a declarative scala-based language. Cypher has been proven to be

quite versatile, being used as a back-end of a Domain-Specific Language (DSL) for

querying source code data (Urma and Mycroft, 2015).

Cypher aims to expressively show graph queries by using ASCII art. An example

of ASCII art would be using two parentheses () to indicate a node. A basic Cypher

query can be found in alg. 1. A basic Cypher query consists of a clause which is

then followed by a pattern, restriction or expression. A formal semantic definition

of Cypher has been produced, though this only focuses on read-only query results

(Francis et al., 2018).

A clause is a keyword, whereas the pattern and expression can be a number of

items.

Algorithm 1 A Skeleton Cypher query in its most basic form. Items in capital letters
are key words. Optional clauses are surrounded by []. Adapted from Drakopoulos
(2016).

1: MATCH <pattern>
2: [WHERE <restriction>]
3: RETURN <expression> | <pattern>
4: [ORDER BY <pattern> [DESC/ASC]]
5: [LIMIT <number>]
6: [WITH <variables>]

Algorithm 1 shows a Cypher query at a skeleton stage. A pattern is a set

41

of symbols used to represent nodes and edges within a graph. A restriction is a

restriction on the sub-graph found by the query. It could be searching for certain

nodes within a particular set of properties for example. An expression is a singular

variable that can be returned by the query.

Algorithm 2 A basic Cypher query. This finds all of the nodes in a graph with
the property “name” and who’s name has been set to “test”. The query returns the
neighbourhood of that node.

1: MATCH (n) -[r]->(m)
2: WHERE n.name = “test”
3: RETURN n,r,m

Using algorithm 1 and 2, a Cypher query can be dissected. The simple Cypher

query in alg. 2 essentially states “ Find all of the nodes in the graph that have a

name property with the name test, and return the neighbourhood of that node”.

A Cypher query begins with a MATCH clause. This is followed by a pattern. In

alg. 2, the pattern is (n)-[r]->(m). The n and m in the pattern represent a node

variable. The r represents an edge variable. This allows the ability to specify a

certain unique node.

After the MATCH clause, an optional clause can be used. In alg. 2, an optional

clause called WHERE is used. A WHERE clause can be used to restrict the query.

In the example, n.name is used. The name represents a property of node n.

The final required clause in a Cypher query is RETURN. This essentially states

what should be returned from the query. In the example query, the variables n, r

and m are returned.

The advanced Cypher algorithm in 3 showcases some of the more advanced query

features of Cypher. A WITH clause allows the ability to continue a query while

42

Algorithm 3 A more advanced Cypher query. Here we are finding all nodes with
the property ”age”. All nodes with the age property set to 21 are then connected to
all of the nodes with the age property which has been set to 22.

1: MATCH(h)
2: WHERE h.age = 21
3: WITH h
4: MATCH(j)
5: WHERE j.age = 22
6: WITH h,j
7: CREATE (j)–>(h)

Symbol Meaning
() Node
(n) Variable n which represents node n
[] Edge
[r] Variable r which represents edge r

< −− or −− > Indicates if the query requires a direction

Table 2.1: Some of the common symbols within Cypher

saving some of the variables from the previous MATCH query. Cypher has proven

to be quite versatile. It has been used as a Domain Specific Language for analytical

processing (Bachman, 2013).

A feature of Cypher is that it contains in-built functions that are essentially

algorithms. An example of this is the shortest path. At the time of writing,

other common graph algorithms are not implemented into the language itself. The

algorithms, or functions, that are built-in tend to be related to finding paths between

nodes.

Cypher’s ASCII-like language uses a number of symbols which each represent

different parts of a graph. Some of the most common symbols used in Cypher are

explained in table 2.2.1.

43

2.2.2 Sparsity’s embedded library calls

In contrast to query languages, embedded databases tend to use library calls that

are equivalent to query calls. We use Sparsity’s library calls as an example of how

they may be similar.

Algorithm 4 Creating a simple Friend with relationship between two nodes.

1: function SetUpGraph(Graph g)
2: . First we set up the Nodes, Edges and Attributes
3: Person = new Nodetype(”Person Node”)
4: name = new g.NewAttribute(Person, ”Name”, DataType.String,

AttributeKind.Unique)
5: age = new g.NewAttribute(Person, ”Age”, DataType.Long,

AttributeKind.Unique)
6: Friends with = g.NewEdgeType(”Friends with”, true,true)
7: . Now we create Nodes
8: Node Sam = g.newNode(Person)
9: Node Bill = g.newNode(Person)

10: g.setAttribute(Sam, name, value.setString(”Sam”)
11: g.setAttribute(Bill, name, value.setString(”Bill”)
12: g.setAttribute(Sam, age, value.setInt(21))
13: g.setAttribute(Bill, age, value.setInt(22))
14: . Now we create an edge between Sam and Bill
15: . If Multi-Edges are allowed
16: if g.hasMultiEdges then
17: Edge = g.newEdge(Friends with, Sam, Bill)
18: . If they are not allowed
19: else
20: Edge = g.FindOrCreateEdge(Friends with,Sam,Bill)
21: end if
22: end function

As shown in alg. 2.2.2, creating a simple relation between two nodes takes a

number of lines of code. This is to be expected as it is an imperative language, as

opposed to Cypher’s declarative style. Each of the nodes, properties and edges in

44

the graph must be given a unique type. This allows a more definitive schema to be

set, in comparison to Cypher, where these can be created more freely.

2.3 Current graph database literature

Current literature of graph databases focus on comparisons with relational databases

(Holzschuher and Peinl, 2013). This could be through language performance of query

languages in basic queries (Holzschuher and Pein, 2016), or through general methods

(Jouili and Vansteenberghe, 2013). There has also been some insight into optimising

query languages (Sarwat et al., 2012; Barceló Baeza, 2013).

Other literature has also benchmarked some of the databases (Macko et al., 2013).

With this, some performance evaluation of database systems in terms of queries

(McColl et al., 2014) have also appeared. A review of current database systems have

been released (Buerli, 2012; Angles and Gutierrez, 2008) however, these are now very

dated. There has been some exploration into efficient correlation searching (Ke et al.,

2008).

2.4 Problems found in graph theory

Graph theory began with the famous seven bridges of Königsberg problem (Euler,

1736). Whereby within the city of Königsberg, there existed two large islands which

were connected to the mainland. Seven bridges separated the islands. A problem

was set to see whether it was possible to cross each bridge once when walking around

the island.

45

Euler proved that it was not possible to cross all bridges just once. This was

found by representing the islands as nodes, and links between the islands as edges.

The field of graph theory was born. To begin with, we set some definitions that will

be used in this thesis. Any definition not given will be assumed to be from (Gross

et al., 2013).

Definition 2.4.1. A simple undirected Graph G with nodes n1, n2...nn can be

defined as G = (N,E) with nn ∈ N and with an edge set such that E ⊆ V × V . An

unordered edge can be represented as (nn, nn+1) such that (nn, nn+1) ∈ E. A simple

directed Graph G contains ordered edges, which are defined as [nn, nn+1] ∈ E with

the source of the edge being nn and the sink of the edge being nn+1. An edge may

also be weighted. If so, the weight of the edge is denoted by w(E). The Induced

Subset of graph g is defined as G(ni), or as S. It consists of a subset of nodes from

graph G, such that S ⊂ V .

Definition 2.4.2. An undirected path within the graph G can be defined as

v1, e1, v2......vn, en, vn+1 such that (vn, vn+1) ∈ E and the endpoints for edge e are vn

and vn+1. For a directed path, the source of the path p is n1 and the sink of the

path is vn. The initial node of any path is always n1 and the final node is always nn.

As well as that, no internal node can be repeated. The nodes in-between the source

and sink node in the path are known as immediate nodes. The path between any

two nodes is represented by p(a, b).

Definition 2.4.3. The degree of a node n , denoted as deg(n), is the number of

edges which are incident to n plus twice the number of self-loops. For directed graphs

46

we also have the in and out degree of a node. The in-degree of node n is the number

of edges which are directed into node n or the number of edges whose sink node is

node n. The set of nodes which direct into node n is also known as the in-set of the

node n. The out-degree of node n is the number of edges which are directed from

n, or the number of edges whose source node is node n. The set of nodes which are

directed from the node n is also known as the out-set of node n.

Definition 2.4.4. A cycle within graph G is a closed path with a length of at least

one. The initial and final node of the path must be the same for it to be a cycle. A

graph is said to have a Hamiltonian cycle if the cycle contains every node in the

graph once. A graph is said to contain an Euler Cycle if every edge e in a graph

can be crossed only once within a cycle.

Definition 2.4.5. The neighbourhood of a vertex n within an undirected graph

are the nodes which are adjacent to the nodes. Denoted as Ni. In a directed graph,

the neighbourhood of node n is the out-set of the node n. In both cases, it can be

denoted as N(v).

Definition 2.4.6. An isolated node is a node without any edges. It has a degree

of 0 (deg(n) = 0).

Definition 2.4.7. A self-loop is a cycle of length one. Essentially the source and

sink of a single edge is a single node.

Definition 2.4.8. The eccentricity of a node is the longest shortest path for that

node to any other node in a graph. It is denoted as e(N).

47

It is worth noting that the terminology used in the different fields can vary. The

term nodes is most commonly used in the graph database field, whereas in graph

theory they are more commonly referred to as vertices. As well as that, edges are

referred to as arcs. Certain graph database systems refer to edges as relationships.

2.4.1 Complexity

A defining problem within computer science as a field is the P verses NP problem.

Which essentially asks can every problem that can be verified in polynomial time be

solved in polynomial time? (Cook, 1971; Biggs et al., 1986)

A problem can typically be classed into three different types of complexity;

Polynomial (P), Non-deterministic Polynomial-time Completeness (NP-Complete)

and Non-deterministic Polynomial-time Hardness (NP-Hard). While this is a gross

simplification as there are other classifications, these are most common and can apply

to the algorithms found in this thesis.

Definition 2.4.9. A Non-deterministic polynomial time (NP) is a set of

problems where a solution to the problem can be found in polynomial time. Within

NP comes P and NP-Complete.

Definition 2.4.10. A problem defined as Polynomial time (P) is one where an

optimal solution can be found and verified to be the “best” solution in polynomial

time. For example, the shortest path problem finds the shortest path between two

nodes in polynomial time, and the solution found will always be the “best” solution.

48

Definition 2.4.11. A problem found with the Non-deterministic Polynomial

Completeness time (NP-Complete) is one where a solution can be found in

polynomial time, however it cannot be verified to be the “best” solution. For

example, a solution to the minimum dominating set problem can be found in polynomial

time, but it is not necessarily the best set, as another run of the same algorithm

could provide a different set of nodes. Should a single problem in NP-Complete have

a polynomial solution, all of the problems NP-Complete can be solved in polynomial

time, and thus P = NP.

Definition 2.4.12. All Non-deterministic Polynomial Hardness time (NP-

Hard) problems are at least as hard as the hardest problems in NP. NP-Hard

problems may not be in NP, as solutions may not be found in polynomial time.

The definitions found in 2.4.9, 2.4.10, 2.4.11 and 2.4.12 provide an overview of

the P=NP problem. The diagram in figure 2.4 shows how the complexity area would

be if P 6= NP and the diagram in figure 2.5 shows P = NP .

2.4.2 Shortest Path and the All-Shortest Path problems

Definition 2.4.13. The Shortest Path Problem consists of finding the shortest

possible path p1 between any two given nodes (n1, nn) such that the path pn =

n1....nn. It can be denoted by sp(N).

There have been multiple algorithms used to solve this problem. One of the most

famous is (Dijkstra, 1959). Dijkstra’s original algorithm is a greedy algorithm, and

has the complexity of O(n2). However this can be improved with the addition of a

49

Polynomial (P)

Non-Deterministic
Polynomial Time (NP)

Non-Deterministic Polynomial
time completeness (NP-
Complete)

Non-Deterministic Polynomial
time hardness (NP-Hard)

Figure 2.4: A diagram representing the NP Problem. The above scenario would be
the case if P 6= NP .

50

Polynomial (P)

Non-Deterministic
Polynomial Time (NP)

Non-Deterministic Polynomial
time completeness (NP-
Complete)

Non-Deterministic Polynomial
time hardness (NP-Hard)

Figure 2.5: A diagram representing the NP Problem. The above scenario would be
the case if P = NP .

51

priority queue. In algorithm 2.4.2, a pseudo code of the algorithm is given.

Algorithm 5 Dijkstra’s original algorithm. This has a runtime complexity of O(n2)
(Dijkstra, 1959). However, this can be reduced to O(n) by using a priority queue.

1: function DijsShortPath(Graph,Source)
2: Create node set Q
3: for all nodes in Q do
4: dist[n]←∞ . Set all Distances to Infinity
5: prev[n]← null . Set all of the Parents to Infinity
6: add n to Q
7: end for
8: dist[source]← 0 . Set the distance of the source-source to 0
9: while Q is not empty do

10: u← node in Q with min dist[u]
11: remove u from Q
12: for all neighbour v of u do
13: alt← dist[u] + length(u, v)
14: if alt < dist[v] then
15: dist[v]← alt
16: prev[u]← u
17: end if
18: end for
19: end while
20: return dist[], prev[]
21: end function

An example of the shortest path algorithm in an instance can be found in figure

2.6. The orange coloured nodes are part of the shortest path.

The shortest path algorithm then leads to a more computationally complex

algorithm. The all shortest paths algorithm finds all the shortest paths between

any two nodes.

Definition 2.4.14. The All-Shortest Path Algorithm finds all of the shortest

paths between two nodes (n1, nn). The fastest algorithm for this is currently the

52

B

D

F

C

E

A
G

I

N

K

H J

M

L

Figure 2.6: A solution for finding the shortest path between nodes A - N. The nodes
coloured in orange are part of the shortest path

53

Floyd-Warshall algorithm, which can be found in algorithm 6 (Floyd, 1962).

Algorithm 6 The Floyd-Warshall Shortest Path Algorithm. It has a complexity of
O(n3) and is generally considered the fastest algorithm in calculating all the shortest
paths between two nodes as well as calculating the graph diameter (Floyd, 1962).

1: function FloydWarshall(Graph g)
2: dist[][]←∞ . Initialise minimum distances to infinity
3: for all nodes n in g do dist[v][v]← 0
4: end for
5: for all edge (u, v) in g do . Set the weights for each edge
6: dist[u][v]← w(u, v)
7: end for
8: for k in g do
9: for i in g do

10: for j in g do
11: if dist[i][j] > dist[i][k] + dist[k][j] then
12: dist[i][j]← dist[i][k] + dist[k][j]
13: end if
14: end for
15: end for
16: end for
17: end function

The all shortest path algorithm returns all shortest paths between two nodes of

the same length. An example of this can be found in figure 2.7. The nodes coloured

green are part of at least one single shortest path between nodes A and M.

2.4.3 Graph Radius and Diameter

Definition 2.4.15. The Graph Diameter problem comprises of finding the maximum

length of any shortest path of a graph i.e. max(e(N)). The Graph Radius is the

shortest length of any shortest path of a graph i.e. min(sp(N)). The Floyd-Warshall

54

B

D

F

C

E

A
G

I

N

K

H J

M

L

Figure 2.7: A solution for finding all of the possible shortest paths between nodes
A - M. The nodes coloured in green are part of at least one of the shortest paths.
There are two possible paths - (ABDIKM) and (ABDHKM).

55

shortest path algorithm is considered the optimal route to finding this as it has a

run time of O(n3). Algorithm 6 gives the pseudocode for the algorithm.

2.4.4 Betweenness Centrality

gk =
∑
i 6=j

ck(i, j)

c(i, j)
(2.1)

The Betweenness Centrality is a measurement of the centrality of vertices in

a graph based on shortest paths. It is useful in finding the vertices that are the

most “central” and therefore could be the most critical nodes in a graph (White

and Borgatti, 1994; Freeman, 1977, 1978). The Betweenness Centrality problem was

found to be NP-Complete by Opatrny (1979).

Equation 5.1 gives a formulae for Freeman’s Betweenness Centrality. Let G =

(N,E) be either an undirected or directed where N is a non-empty set of nodes and

E is a set of edges subject to N x N.

Given two nodes, say i and j, both of which are in N, we find all possible shortest

paths in between i and j. The count of these are denoted as c(i, j). Within the

paths, the immediate nodes are denoted as ck(i, j). The weight given to each of

the immediate nodes is 1/c(i, j). This means that the more possible shortest paths

between two nodes, the less important the immediate nodes are, as there are other

possible routes (Freeman, 1977).

For example, given nodes i and j, and the count(sp(i, j)) = 1, then each of the

immediate notes in sp(i, j) are each given a weighting of 1. Should count(sp(i, j)) =

2, then each of the immediate notes in sp(i, j) are each given a weighting of 1/2.

56

This process is repeated for every single shortest path in the graph, with all of

the weights added up. The node with the highest weighting is the most “critical”

node in the graph.

Algorithm 7 A high level implementation of the betweenness centrality algorithm.
It is assumed that an allshortestpaths algorithm that returns all shortest paths for
two specific nodes exists.

1: function BetweennessCentrality(Graph g)
2: double[][] nodeList
3: for all Node i in g do
4: for all Node j in g do
5: List <Paths> p = AllShortestPaths(i,j)
6: int numberOfPaths ← p.size;
7: for all paths k in p do
8: currentpath ← k
9: currentpath.remove(0) && currentpath.remove(size(currentpath)-

1) . Remove the first and last node of the path to leave the immediate
nodes

10: for all Nodes n in currentpath do
11: oldweight ← nodeList.at(n)
12: newweight ← (oldweight + (1 / amountOfPaths))
13: nodeList.at(n) ← newweight
14: end for
15: end for
16: end for
17: end for
18: end function

Algorithm 7 gives a high-level implementation of Freeman’s betweenness centrality

algorithm (Freeman, 1977, 1978). Figure 2.8 gives an example of betweenness centrality

when it has been run on an instance. Each of the nodes in the graph are given a

ranking, which is displayed to the right of each of the nodes.

57

B

D

F

C

E

A
G

I

N

K

H J

M

L

73.33

51.66

52.99

35.99

15.66

11.66

7.3

30.33

13.33

0

0
0

0

27.66

Figure 2.8: The numbers next to each of the nodes represent the “ranking” of the
nodes as calculated by the betweenness centrality algorithm. From this we can see
that D is ranked the highest, followed by I and then E.

58

2.4.5 The Minimum Dominating Set

Let G = (N,E) be either an undirected or directed (digraph) were N is a non-empty

set of nodes and E is a set of edges subject to N x N.

Definition 2.4.16. A dominating set in a graph G is a subset S of nodes such that

every node in G is either in S or is adjacent to a node in S (Gross et al., 2013). A

node is said to dominate itself, as well as its adjacent nodes. The dominating set of

a graph is referred to as γ(G).

Finding the minimum dominating set of a graph is a classical NP-Complete

problem (Garey and Johnson, 1990). Therefore, there are no efficient algorithms

to find the smallest dominating set of a graph.

However, some heuristics exist that can find a minimal dominating set, but not

the guaranteed optimum. One such heuristic is the greedy algorithm. (Chvatal,

1979) This is defined in algorithm 8.

Algorithm 8 The greedy heuristic algorithm for finding a minimum dominating set
of a graph

1: S := ∅
2: while ∃ white nodes do
3: choose v ∈ {x|w(x) = maxu∈V {w(u)}}
4: S := S ∪ v
5: end while

All nodes in the graph are initially coloured white. Every isolated node is then

coloured black. After this, a calculation is run to find the node with the most white-

node connections. This calculation includes the current node. The chosen node’s

adjacent nodes are coloured grey, with itself then coloured black. This process is

59

repeated until all nodes are either grey or black.

The final dominating set are all of the nodes which are coloured black. Algorithm

9 gives an implementation in a high level language of the heuristic. Figure 2.9 shows

an example of the dominating set in an instance. The nodes coloured blue are part

of the minimum dominating set for the instance.

The dominating set algorithm has been useful in many different application areas.

They have been used to find positive influence in social networks (Dinh et al., 2014),

as well as efficient routing in wireless networks (Wu and Li, 1999).

The minimum dominating set is covered in more detail in chapter 4.

2.4.6 Component Labelling

The component labelling problem is one that occurs in many different application

areas. The problem finds the a cluster, or components, of nodes within a graph

(Vincent and Soille, 1991). A cluster refers to a group of nodes with the same label

after a n hop of the algorithm.

To begin with, each node is given a unique numerical ID (essentially its label).

To begin with, a random node v1 is chosen. This is the starting node. For every

neighbour of v1, the “label” of the node is compared against the starting node. The

node with the lowest label then replaces the node with the higher label. This process

is repeated for every node in the graph.

The algorithm is essentially performed in time-steps. In an un-directed graph, if

the algorithm were to continuously run, it will eventually label all nodes the same.

Whereas in a directed graph, the starting node is key to the outcome of the algorithm.

60

B

D

F

C

E

A
G

I

N

K

H J

M

L

Figure 2.9: The above instance gives an example of the minimum dominating set of
the instance. The nodes coloured blue are part of the dominating set.

61

Algorithm 9 A high level language implementation of the greedy heuristic
algorithm. In the end, every node with weighting 1 is a grey node, and every node
with weighting 0 is a black node.

1: function DominatingSet(Graph g, nodeList[])
2: blackNodes[]
3: whiteNodes[] ← nodeList[]
4: weightings[] ← 0

. Find all Isolated nodes and make them black
5: for all node in whiteNodes do
6: if deg(node) < 1 then
7: blacksNode.add(node)
8: whitesNodes.remove(node)
9: weighting[node] ← 0

10: else
11: weighting[node] ← 2
12: end if
13: end for
14: while whiteNodes.size > 0 do
15: highestweight ← 0
16: curHighNode ← null
17: for all node in nodeList do . Find the node with the most white-node

connections
18: if weightings[node] != 0 then . If not a black node
19: totalweight ← weightings[node]
20: for all neighbour n of node do
21: totalweight += weightings[n]
22: end for
23: if totalweight > highestweight then
24: highestweight ← totalweight
25: curHighNode ← node
26: end if
27: end if
28: end for
29: blackNodes.add(curHighNode)
30: whiteNodes.remove(curHighNode)
31: for all (neighbour n of curHighNode) do
32: weighting[n] ← 1
33: whiteNodes.remove(n)
34: end for
35: end while

return blackNodes[]
36: end function

62

Algorithm 10 The component labelling algorithm.
1: Input: G
2: for all Nodes k in G do
3: k.colour = k.id . Give a unique numerical ID value
4: end for
5: Node h = RandomNode() . Choose a random starting node
6: for all Nodes l in Neighbourhood(h) do
7: if l.colour ¡ h.colour then
8: h.colour ← l.colour
9: end if

10: end for

It is worth noting that other algorithmic implementations of the algorithm exist.

They involve a GPU-implementation (Hawick et al., 2010a; Playne and Hawick,

2018).

2.4.7 Longest Simple Cycle

A computationally expensive problem is the Travelling Salesman Problem (TSP).

The TSP asks, given a set of cities, what is the shortest distance between each pair

of cities. Each city can only be travelled to once, and the origin city must also be

the final city. It is an NP-Hard problem. The TSP problem can be solved by using

an Integer Linear Programming (ILP) program (Little et al., 1963). ILP is explored

further in section 2.5.

Definition 2.4.17. A simple cycle is a closed path without repetition of nodes or

edges apart from the starting or ending node. Hence the longest simple cycle is a

maximisation of the simple cycle.

A generalisation of the TSP is finding the longest simple cycle in a graph (Miller

63

et al., 1960). Finding the longest simple cycle in a graph is a NP-Complete graph

problem. It consists of finding the longest cycle in a graph without repeat of edges

or nodes. Figure 2.10 shows the longest cycle in an instance, with all of the nodes

coloured purple which are part of the longest cycle.

In chapter 3, we create an exact algorithm using an ILP formulation to find the

longest simple cycle of a graph. As well as that, we create a heuristic which initially

finds a cycle with a simple Depth-First Search (DFS) and then improved the found

cycle by using perturbation operators.

2.4.8 Depth-First Search

Depth-First Search (DFS) began as an investigation in the 19th century as a strategy

for exploring a maze (Tarry, 1895; Gross et al., 2013). A DFS search begins from a

starting node, and builts up a tree. The tree contains every possible node in g that

is reachable from the starting node. In a fully connected undirected graph, every

node in g would be present in the tree.

Algorithm 11 A simple Depth-first search algorithm (Gross et al., 2013)
.

1: Input: G
2: v as a starting node
3: for all v,w ∈ E do
4: if w has not been discovered yet then
5: Make w the child of v
6: DSF(w)
7: end if
8: end for

As DFS produces a tree, it can be used as a base for approximation heuristics.

64

B

D

F

C

E

A
G

I

N

K

H J

M

L

Figure 2.10: The above instance shows the longest simple cycle. The nodes coloured
purple are part of the longest cycle.

65

Some approximation algorithms use DFS to produce a base tree and then use procedures,

such as dynamic programming, to improve this (Bodlaender, 1993). In chapter 3 we

create an approximation heuristic of the longest cycle. We do this by creating a base

cycle by using DFS, and then improving this with perturbation operators.

2.5 Integer Linear Programming

ILP is a mathematical optimisation that reduces a problem into purely integers (Land

and Doig, 2010). As well as that, the objective function and constraints are all linear

(Papadimitriou and Steiglitz, 1982). A special case of ILP, which is the 0-1 integer

linear, is famously one of Karp’s 21 NP-Complete problems (Karp, 1972).

ILP programs can be used with branch and bound techniques to provide exact

algorithms for computationally hard problems. At the time of writing, it is the most

common tool used to solve NP-Hard problems (Clausen, 2003). ILP has been used to

solve the TSP (Little et al., 1963), k-Nearest Neighbours (Fukunaga and Narendra,

1975), prediction in computer vision (Nowozin and Lampert, 2011) and others.

2.6 Conclusion

In this chapter we have drawn into aspects of Graph Databases and Graph Theory.

We have found a considerable overlap, which was to be expected. However it is clear

that there are further routes of exploration. One of which is combining the graph

problems with graph databases.

As discussed in section 2.1, there seems to be limited study into combining

66

complex problems in graph theory and graph databases. This could be because

of the relative infancy of graph databases as a whole.

Another exploration avenue is finding the longest simple cycle in an undirected

graph problem, which is one that has also had limited studies. While some heuristics

have been created for problems with similar aspects, they do not tackle the longest

cycle in an undirected graph problem directly.

67

We’re kept from our goal not by

obstacles, but by a clear path to

a lesser goal.

The Bhagavad Gita

CHAPTER 3

Finding Long Simple Cycles in undirected Graphs

Finding the longest simple cycle in a graph is a Non-deterministic Polynomial-time

Hardness (NP-Hard) problem. The longest simple cycle in a graph can be defined

as a cycle beginning with node n1 and ending with the same node, with no repeated

edge or node.

This chapter builds upon the work that has been previously published by the

author in the journal Knowledge-Based Systems (Chalupa et al., 2017).

68

3.1 Introduction

There is a growing volume of information available as connected data. As such, the

need for efficient algorithms to solve graph problems has increased (Gross et al.,

2013).

The decision problem of finding if a Hamiltonian cycle exists within a graph

(Karp, 1972) has been widely studied (Bianconi and Marsili, 2005; Ejov et al., 2004;

Wagner et al., 1999). The longest simple cycle is a generalisation of this problem.

There have been some studies in statistical mathematics in finding the longest

cycle in a graph, with an example study based on message passing and Monte Carlo

procedures (Marinari et al., 2007). However exact and heuristic approaches have

been limited.

Some applicational uses of the longest simple cycle include automatic drawing

of planar graphs (Tamassia, 2013) and layout algorithms for metabolic pathways

in bioinformatics (Becker and Rojas, 2001). There is also a close resemblance

to community structure (Liu et al., 2015), its hierarchy (Chen and Li, 2015) and

propagation processes in real world networks (Yang et al., 2016).

Previous studies into the longest cycle problem have been focused on the theoretical

properties. These include the complexity and approximability of the problem in

sparse graphs (Feder et al., 2002), bounded degree graphs (Chen et al., 2005),

triangle-free graphs (Aung, 1989) and small graph classes (Uehara and Uno, 2007).

Superpolylogarithimically long cycle detection (Gabow, 2007), treewidth-based

approximation (Arnborg and Proskurowski, 1989; Bodlaender, 1993) and matrix-

based approximation (Monien, 1985) have been explored as potential avenues for

69

efficient finding of approximate solutions of the problem.

Exact methods for the longest simple cycle problem include enumerative techniques

(Hawick and James, 2008; Johnson, 1975; Tarjan, 1973) and a brand and bound

algorithm, which is based on a Integer Linear Programming (ILP) formulation of the

problem (Dixon and Goodman, 1976).

These techniques allow exploration of the distribution of the cycle numbers as

a function of the cycle length. This has been successfully explored for Kauffman

networks (Hawick et al., 2007; Leist and Hawick, 2009). The techniques used are

computationally demanding. An interesting problem is scaling these up for larger

sized graphs.

The longest simple cycle problem is a generalisation of the Hamiltonian cycle

problem. As this is the case, we explore the literature associated with the Hamiltonian

cycle problem as it may be relevant. Some approximation algorithms for maximal

planar graphs have been explored (Nishizeki et al., 1983). Some heuristics exist.

These include some that have been ant-inspired (Wagner et al., 1999) or have an

interior point (Ejov et al., 2004). Finding the Hamiltonian cycle in a scale-free

network has also been explored (Bianconi and Marsili, 2005).

Another similar area to the longest simple cycle problem is the longest path

problem, for which some efficient algorithms (Uehara and Uno, 2007) and approximations

(Karger et al., 1997) exist. Other studies have explored directed longest cycles

(Björklund et al., 2004).

The main contribution of this chapter is in proposing a new ILP formulation for

the longest simple cycle problem. We also design a pipeline for an efficient exact

70

approach to find the longest cycle. In addition, a hybrid heuristic is proposed which

combines the construction of a long cycle using depth-first search with four local

search operators to improve the initial cycle found.

3.2 Exact Approach to the Longest Simple Cycle

problem

Firstly, we review the current ILP formulation for the longest simple cycle problem

with a fixed initial node (Dixon and Goodman, 1976). Following on, we introduce

our own formulation of this problem. We also introduce a pipeline that creates a

sequence of ILP problems to efficiently solve the problem solving of the problem.

3.2.1 Dixon and Goodman’s formulation of the Longest Simple

Cycle problem

The formulation created by Dixon and Goodman finds the longest cycle in a graph,

given a fixed initial node (Dixon and Goodman, 1976). The formulation uses a

“trick” in that a dummy node is created. this dummy node has the same adjacencies

as the fixed node, and rather than searching for the longest cycle from this node, the

longest path between the fixed node and the dummy node is then found.

Dixon and Goodman’s ILP formulation of the longest cycle problem with

a fixed initial node (Dixon and Goodman, 1976) Define an undirected graph

G = [V,E] without loops, with vertices v1, v2, ..., vn, and assume that the starting

71

node for our cycle is known. This starting node is referred to as v1. Consider a graph

obtained from G by adding node vn+1, which is a “copy” of node v1, i.e. in that it

has the same adjacencies as the fixed node. Let xij ∈ {0, 1} represent the transitions

from the node vi to vj, i.e. xij = 1 whenever the edge {vi, vj} is in the cycle and

xij = 0 otherwise. Then, we solve the following problem to obtain the longest cycle,

which includes v1:

max
n∑
i=1

n∑
j=1

cijxij, (3.1)

where cij = 1 if vertices vi and vj are adjacent and cij = 0 otherwise:

cij =

1 {vi, vj} ∈ E

0 {vi, vj} /∈ E
, (3.2)

subject to:

n+1∑
i=1

cikxik = Fk, k = 2, 3, ..., n, (3.3)

n+1∑
i=1

ckjxkj = Fk, k = 2, 3, ..., n, (3.4)

n∑
j=2

c1jx1j =
n∑
i=1

ci(n+1)xi(n+1) = 1, (3.5)

yi − yj + nxij ≤ n− 1, i, j = 1, 2, ..., n+ 1, (3.6)

72

yi ≤ n+ 1, i = 1, 2, ..., n+ 1, (3.7)

where:

Fi =
1 if vi is used in the longest cycle

0 otherwise
. (3.8)

In this formulation, yi are dummy integer variables introduced for each node vi.

Constraints (3.6) and (3.7) ensure that one cycle is detected, instead of a set of

disjoint cycles. Dixon and Goodman state that the formulation has a highly constrained

feasible region of search space. This means that the formulation can struggle with

instances that stretch to tens of nodes. The formulation was tested on graphs with

at most 40 nodes. In the results section of this chapter, we show that the problem

can be formulated more efficiently.

3.2.2 Our formulation of the Longest Simple Cycle problem

We now present our ILP formulation of the longest simple cycle problem. The

formulation adapts a flow-based formulation of the Travelling Salesman Problem

(TSP) (Gavish and Graves, 1978).

The Integer Linear Programming formulation of the longest simple cycle

problem with an initial fixed node To begin with, we define an undirected

graph G = [V,E] without self-loops. A self-loop is defined as a node with a edge to

itself. Nodes are defined as v1, v2, ..., vn, and that the starting node for our cycle has

73

been defined. The known starting node is referred to as v1. Let xij ∈ {0, 1} represent

the transitions from the node vi to vj, i.e. xij = 1 whenever the edge {vi, vj} is in

the cycle and xij = 0 otherwise. Then, we solve the following problem to obtain the

longest cycle, which includes v1:

max
n∑
i=1

n∑
j=1

cijxij, (3.9)

where cij = 1 if vertices vi and vj are adjacent and cij = 0 otherwise:

cij =

1 {vi, vj} ∈ E

0 {vi, vj} /∈ E
, (3.10)

subject to:

n∑
i=1

xij −
n∑
i=1

xji = 0, j = 1, 2, ..., n, {vi, vj} ∈ E, (3.11)

n∑
i=1

xij +
n∑
i=1

xji ≤ 2, j = 1, 2, ..., n, {vi, vj} ∈ E, (3.12)

n∑
i=1

n∑
j=1

cijxij ≥ 3, {vi, vj} ∈ E, (3.13)

yij ≤ (n− 1)xij, i = 2, 3, ..., n, j = 1, 2, ..., n, {vi, vj} ∈ E, (3.14)

74

2
∑

j=1,j 6=i

yij − 2
∑

j=2,j 6=i

yji −
∑

j=1,j 6=i

xij −
∑

j=2,j 6=i

xji = 0, (3.15)

i = 2, 3, ..., n, {vi, vj} ∈ E,

where yij ≥ 0. Values yij represent a flow on the edges of the graph, which is used

to ensure that the resulting subgraph is a single cycle, rather than a union of several

disjoint cycles.

The ILP problem can be adapted to multiple starting nodes. We now prove that

this ILP formulation corresponds to the problem of the longest cycle containing v1.

Theorem Let the nodes of an undirected graph G = [V,E] without self-loops be

v1, v2, ..., vn. Then, our ILP formulation of the longest simple cycle problem with

a fixed initial node corresponds to the problem of finding the longest simple cycle

C = [VC , EC] such that v1 ∈ VC .

Proof Let C = [VC , EC] be a simple cycle of length k in graph G, with nodes

ordered vc0 = v1, vc1 , vc2 , ..., vck−1
. This means that constraints 3.11, 3.12 and 3.13

are met. This is because that for each v ∈ VC , there is exactly one transition from

v and one transition to v in our ordering. There are no transitions from and to vi if

vi /∈ VC , which also meets the constraints (3.11) and (3.12). In addition, constraints

3.11 and 3.12 ensure that the flow of the cycle are of a single flow line. It follows a

one edge in, one edge out flow that ensures that a cycle without repetitions of nodes

and edges is found. Constraint 3.13 ensure that the length of the final cycle found

is greater then or equal to 3 i.e. k ≥ 3.

75

It is worth noting that constraints 3.11, 3.12 and 3.13 are used to define the cycle

that is to be eventually found.

Constraint 3.14 is a capacity constraint that ensures k−1 ≤ n−1.. A flow on the

edges of G such that ycici+1
= i for each i = 0, 1, 2, ..., k−2 and yij = 0 if {vi, vj} /∈ EC

ensures that this is met. For the constraint (3.15), consider the transitions for a node

vi ∈ VC first. Let vi = vc` , i.e. let it be the (`+ 1)-st node in the ordering of vertices

in the cycle. Then, the difference in the flow out and in the node is:

∑
j=1,j 6=i

yij −
∑

j=2,j 6=i

yji = `− (`− 1) = 1, (3.16)

which is equal to:

1

2

[∑
j=1,j 6=i

xij +
∑

j=2,j 6=i

xji

]
=

1

2
(1 + 1) = 1. (3.17)

Every single cycle that is found meet the constraints of the ILP program.

Inversely to this, the constraints (3.11) and (3.12) can only be met if two situation

takes place.

In the 1st situation follows that if there is exactly one j′ and one j′′ such that

xij′ = 1 and xj′′i = 1, with other values xij and xji = 0 for our node vi and for

j /∈ {j′, j′′}.

The 2nd situation is that all values xij and xji = 0 for the node vi. We can

assume that xij′ = 1 and xj′′i = 0 for some j′ and j′′, this could satisfy constraint

(3.12) but would not satisfy constraint (3.11). We are able to find all of the nodes

that are leaf nodes.

76

As all simple cycles must have minimum of 3 transitions, we have introduced

constraint (3.13). The first three constraints are combined and with an assignment

of values to xij , can lead to a simple cycle in G or a union of multiple disjoint simple

cycles in G.

For the flow-based constraints 3.14 and 3.15, we first consider a union of two

disjoint simple cycles of lengths k and t such that k + t ≤ n and node v1 belongs to

the cycle of length k. Consider the ordering vc0 = v1, vc1 , vc2 , ..., vck−1
of nodes in the

cycle of length k. Then, a flow i ≤ ycici+1
≤ n− 1, with each node incrementing the

flow by one for each i = 0, 1, ..., k − 2, will fulfil both of the flow-based constraints,

similarly to the arguments above.

However, we can explore a simple cycle of length t, with the ordering

vck , vck+1
, ..., vck+t−1

of its nodes. Then, we have that i ≤ yck+ick+i+1
≤ n− 1 represent

the feasible values of flow for this cycle, with each node incrementing the flow by one.

However, this means that the difference between the incoming and the outcoming

flow for vck will be:

∑
j=1,j 6=i

yckj −
∑

j=2,j 6=i

yjck = t− 1 > 1, (3.18)

since each node on the cycle adds one to the flow. This is in contradiction with our

original premise of no repeated nodes and edges, apart from v1. �

The formulation establishes that our ILP formulation is correct for the variant of

the longest simple cycle problem that has a fixed initial node. The general longest

simple cycle problem will then be solved as a sequence of consecutive ILP problems

77

with different fixed initial vertices. Finding the longest simple cycle in an undirected

graph is NP-hard. Therefore the computational complexity of this approach is,

in worst case scenario, exponential. The maximum possible feasible and infeasible

assignments of binary values to xij are 2m, where m is the number of edges in the

graph.

A general formulation to solve the Longest Cycle problem

An item of note is that it is possible to change the formulation presented above,

and extend it so that a general ILP for the longest simple cycle problem can be

solved. However, we found that the ILP solver seems to be more efficient when

solving a sequence of ILP problems with a fixed initial node. This is probably due to

the fact that large infeasible regions are induced in the search space by the addition

of more constraints.

Dixon and Goodman’s formulae introduces a dummy node which acts as a source

for the flow, and therefore the cycle. We extend this to our formulation. Using this

dummy node, we are able to search for the longest cycle from this source. A long

cycle that contains the source node can be transformed into the longest cycle of the

original graph. This is only the case if the neighbours of the source node on the cycle

are adjacent, thus forming a triangle.

Let the source node be v0 and let it be adjacent to all other nodes. Then the ILP

problem can solve the graph with the initial node v0 and introduce dummy variables

zij ∈ {0, 1}. These variables represent the choice of the single edge, which ensures

that our longest cycle in the modified graph can be transformed into the longest

cycle of the original graph by substituting transitions x0j and xi0 with transition xij,

78

for which zij = 1. The additional constraints, which assure that v0, vi and vj form a

triangle, are the following:

n∑
i=1

n∑
j=1

zij = 1, (3.19)

x0j + xi0 − 2zij ≥ 0, i, j = 1, 2, 3, ..., n. (3.20)

Because of the dummy variable, the length of the cycle found by this formulation

is higher than the actual optimal longest cycle by one.

3.2.3 Pipeline design for the exact approach

After the creation of the general formulation for the longest cycle problem, we found

that this approach was less efficient at finding the longest cycle that the ILP program

with a fixed initial node. As the fixed initial node formulation finds the longest cycle

for the starting vertex, and not necessarily the longest cycle for the instance, a

pipeline was created. The pipeline would handle a sequence of ILP programs that

used our fixed initial node formulation above.

Definition 3.2.1. Pruning the leaves of a graph is a process that essentially finds

all of the nodes on the “outskirts” of a graph, essentially the nodes with a degree of

1 or less. A leaf node is a node with degree 1. These nodes cannot be part of any

cycle in a graph, as a node requires a degree of 2 or more.

Figure 3.1 shows the process describing the data mining pipeline. Algorithm 12

shows the data mining pipeline as an algorithm. Firstly, we prune the leaves of the

79

Figure 3.1: The pipeline approach for finding the longest cycle with a fixed initial
node. Firstly, the leaves of the graph are pruned as they cannot be part of the
longest cycle. We then generate a sequence of ILP instances for fixed nodes that are
randomly chosen.

80

graph, as a node must have a degree of at least two be a part of the longest cycle.

We then check for any unprocessed nodes, should none exist then a suboptimal cycle

has been found. This is possible in a instance where all nodes have a max(deg(2)).

If an unprocessed node has been found, we pick a random node from the remaining

unprocessed nodes to be our fixed initial node.

We used the same methodology for our fixed initial node and Dixon and Goodman’s

formulations.

We then create an ILP instance with the randomly selected fixed initial node

based on either our formulation, or on Dixon and Goodman’s formulation. A branch-

and-cut solver is used to solve the instance created. We then read the output from

the solver. The may contain three different outcomes:

• An optimal cycle , i.e. the longest simple cycle where the starting node is part

of the cycle is found

• A sub-optimal cycle may be found

• A time-out has occurred

Definition 3.2.2. When an optimal cycle has been found,it is the proven longest

cycle for the fixed initial node. A optimal solution is where the longest cycle for the

whole instance is found.

An optimal cycle is one that is proven to be the longest possible for the fixed

initial vertex. A sub optimal cycle is where a cycle has been found, however it

cannot be proven to be the longest for that vertex because a search for a larger cycle

81

Algorithm 12 The data mining pipeline algorithm. It is assumed that the instance
has already been pruned prior to this. generateInstance is a method call that creates
a generated instance that can be passed into CBC to solve.

Timelimit = 1
startingNode, currentLongestCycle, remainingNodes = -1
int[] nodeList, edgeList
provableOptimum = false
nodeList ← g.N(), edgeList ← g.E()
for all i in nodeList do

startNode = random.next(0, nodeList.size())
output = generateInstance(startNode, Timelimit) . Create CBC instance

with startNode and time limit
. The output of the instance is a String with a result, and the longest cycle

found
outputString, outputLongestCycleFound ← output
if outputString.equals(”Optimal Cycle Found”) then

. Reduce the amount of remaining possible nodes that can be part of the
longest cycle

remaining–
end if
if outputLongestCycleFound > currentLongestCycle then

currentLongestCycle = outputLongestCycleFound
end if
if remaining <= currentLongestCycle then

. If the amount of nodes remaining is less that the optimum longest cycle
found, then a provable longest cycle has been found

provableOptimum = true
break

end if
end for

82

has caused the solver to time-out. A time out is one where a single cycle for that

fixed initial vertex cannot be found at all.

We mark the initial node as processed. We then check for an optimal solution,

which may be possible at this stage. Should the optimal solution not be found, we

process the next available node, should the list not be empty.

Throughout the process, we check for an optimal solution. Once found, we check

the outcome of the instance and compare its findings with the highest length found

so far. If it is higher, we replace the current best cycle. After this, the remaining

nodes to process count is decreased. The count is then compared to the current

longest cycle length. If it is less than the current longest cycle length, a provable

optimum has been found and the process ends. Otherwise we continue to process

the next available node, should one exist.

3.3 Heuristic methods for the Longest Cycle problem

While the exact approaches provide a solution to finding the longest simple cycle in

a graph, the methods are very computationally demanding. This is expected,as they

are attempting to solve a NP-Hard problem. A high interest area would be creating

a new heuristic, or an approximation algorithm. Some aspects of approximation

algorithms in other areas use recursive disjoint cycle detection procedures (Björklund

et al., 2004). They also may employ detection of cycles to enlarge other cycles. These

methods used previously can possibly be used in an iterated way (Gabow, 2007).

Some earlier approximation algorithms have used two phases, combining Depth-

83

First Search (DFS) for sampling of the initial solution with dynamic programming

as the second phase (Bodlaender, 1993).

Combining these different approaches, that have been proven to improve a given

function within there respective areas, allows for a novel implementation of a search

heuristic for the simple longest cycle problem.

In the following section, we present an approximation algorithm which uses a

DFS procedure to sample an initial long cycle. The cycle that has been found can

be improved with four perturbation operators.

To begin with, a DFS is used to sample long paths. In each of the branching

steps of the DFS search, we scan the neighbours in a random order. This means that

the use of DFS is in a randomised algorithm. The paths found by the previous step

are then filtered to those which can be “closed”. A closed path representing a cycle.

The pseudocode of our approximation algorithm can be found in algorithm 13.

Firstly, we start with an empty cycle C and set the initial cycle length l to 0. An

iterative procedure over all nodes follows.

We choose a fixed initial node, which is shown as vcentral. A cycle is then

constructed by using this initial fixed node. Function d(v) denotes the distance

of v from vcentral, while function p(v) is a binary value that indicates if the node

has already been processed by DFS. The nodes of the instance are put into a stack

S. We begin by popping the current node from the stack. If it has not yet been

processed, we then scan the neighbours of the node.

Let w be the neighbour that is currently being scanned. Then, if the path from

vcentral from v to w is longer than the one previously sampled, then w is moved to

84

the top of the stack S. This change brings a preferential for longer paths. The array

parent is used to record predecessors of nodes in DFS. This allows the final long

cycle to be traced. The current longest cycle C if vcentral is updated if a cycle is

reached and tyhe length of the cycle dc is the highest length found so far.

This initial long cycle is then improved using a selection of perturbation operators.

We use a selection of local search approaches to enlarge the initial long cycle.

These search approaches become our perturbation operators. In total. we use

four perturbation operators to improve the cycle. Two of these operators serve

as improvement operators. These enlarge the current found cycle by substituting

subpaths of length 1 with subpaths of length 2 or 3 by identifying triangles or

rectangles with each node pair in the cycle. The plateau exploration operators

substitute paths in the longest cycle.

Definitions 3.3.1, 3.3.2, 3.3.3 and 3.3.4 formally define the perturbation operators.

Before this, we provide some terms for all operators. Let C = [vc1 , vc2 , ..., vck] be a

cycle of length k of nodes on graph G = [V,E]. Let VC be the set of nodes in C and

let EC be the set of edges in C.

Definition 3.3.1 gives the formal definition of the triangular improvement operator.

The rectangular operator is defined in definition 3.3.2. The plateau exploration

operators are in definitions 3.3.3 and 3.3.4.

Definition 3.3.1. Perturbation operator 1 (triangular improvement operator) - If

there is a node w ∈ V \VC such that for some i it holds that {vci , vci+1
} ∈ EC and

vertices vci , w, vci+1
form a triangle, then G also contains a cycle C ′ = {vc1 , vc2 , ..., vci ,

w, vci+1
..., vck} of length k + 1. This allows for high improvements in instances with

85

Algorithm 13 The heuristical algorithm for finding a long cycle in a graph using
DFS.

G
C = [], I = 0
for all vcentral ∈ V do
∀v ∈ V let d(V), p(v) = 0
S = [vcentral]
while S contains at least one node do

v = pop(s)
if p(v) = 0 then

dc = d(v), p(v) = 1
for all w such that v, w ∈ E in a random order do

if p 6= 0 ∧ w 6= vcentral ∧ d(w) ≤ dc + 1 then
remove w from S if w ∈ S
S = push(w)
d(w) = dc + 1, parent(w) = v

end if
if w then = vcentral ∧ dc ≥ 2 ∧ l ¡ dc + 1

l = dc +1
use array to update the current longest cycle C to vcentral

end if
end for

end if
end while

end for
return C

86

Figure 3.2: The figure above shows the Perturbation operator one. This represents
the triangle improvement operator. If an edge exists between two nodes in a cycle,
and if a further node connects to these two to form a triangle, then the found node
must be part of the longest simple cycle.

a high level of triangles. Figure 3.2 shows a representation of this.

Definition 3.3.2. Perturbation operator 2 (rectangular improvement operator) - If

there are nodes w1, w2 ∈ V \VC such that {w1, w2} ∈ E and for some i it holds that

{vci , vci+1
} ∈ EC and the sequence [vci , w1, w2, vci+1

] represents a cycle of length 4,

then G also contains a cycle C ′ = {vc1 , vc2 , ..., vci , w1, w2, vci+1
..., vck} of length k+ 2.

This allows for improvement in instances that are grid based. Figure 3.3 explains

the operator in further detail.

Definition 3.3.3. Perturbation operator 3 (plateau exploration operator 1) - If there

is a node w ∈ V \VC such that for some i it holds that {vci−1, vci} ∈ EC and

{vci , vci+1
} ∈ EC , then if {vci−1, w} ∈ E and {w, vci+1

} ∈ E as well, then G also

contains a cycle C ′ = {vc1 , vc2 , ..., vci−1
, w, vci+1

, ..., vck} of length k. This allows

further avenues of the instance to be explored. Figure 3.4 explores this in detail.

Definition 3.3.4. Perturbation operator 4 (plateau exploration operator 2) If there

87

Figure 3.3: The figure above shows the Perturbation operator two. This represents
the rectangle improvement operator. In a similar fashion to the triangular operator,
If an edge exists between two nodes in a cycle, and if two further nodes connects
to these two to form a rectangle, then the found nodes must be part of the longest
simple cycle.

Figure 3.4: The figure above shows the Perturbation operator three. This represents
the plateau exploration operator 1. As the heuristic is an iterative process, one such
way of exploring the search space of the instance is by identifying other paths that
can exist between two nodes in the cycle. This then opens up the opportunity for
the improvement operators to find a larger cycle.

88

Figure 3.5: The figure above shows the Perturbation operator four. This represents
the plateau exploration operator two. In similar vein to the plateau exploration
operator one, a way of exploring the search space of the instance is by identifying
other paths that can exist between two nodes in the cycle. This then opens up the
opportunity for the improvement operators to find a larger cycle.

are vertices w1, w2 ∈ V \VC such that and edge exists between them; {w1, w2} ∈ E

and for some i it holds that {vci−2
, vci−1

} ∈ EC , {vci−1
, vci} ∈ EC and {vci , vci+1

} ∈ EC ,

then if {vci−2
, w1} ∈ E, and {w2, vci+1

} ∈ E as well, then G also contains a cycle

C ′ = {vc1 , vc2 , ..., vci−2
, w1, w2, vci+1

, ..., vck} of length k. This allows further avenues

of the instance to be explored.

The perturbation operators shown above use a variety of properties from real

world sourcers to improve the long cycle. Operator one and two uses the properties

of real-world complex networks, such as the clustering coefficient metric or grids.

This metric is defined as finding the ratio of the number of triangles to the number

of all connected triplets of nodes (Barabási and Albert, 1999). The computational

complexity of DFS is O(|V |+ |E|) (Gross et al., 2013). For every node in the graph

we are running a DFS search, therefore the computational complexity of the heuristic

is O(V*E).

89

Many real world networks have high clustering coefficients. The property also

holds for generated graphs, either the Watts-Strogatz model (Watts, 1999; Watts

and Strogatz, 1998), or by the Barabási-Albert model (Barabási and Albert, 1999;

Albert and Barabási, 2002).

For grid-based networks, the rectangular operator seems to be a much more valid

choice. The underlying structure of these networks rely on a mesh-like instance.

For these networks, triangular connections will be rare, therefore a rectangular

perturbation operator will be used.

The exploration operators exploit different properties of different kinds of complex

networks. Operator three substitutes one triplet with another, while operator four

substitutes a 4-tuple with another.This allows an exploration of the instance in a

new area.

3.4 Results

The following section presents the results from the computational experiments performed.

Firstly, we explain the experimental design, then the numerical results. In this

section, we compare the longest cycle found and the time taken to find these results.

We compare Dixon and Goodmans’s ILP program with our exact solver and our

heuristic.

90

3.4.1 Experimental design

For our and Dixon and Goodman’s ILP approaches, we have used an open-source

branch-and-cut ILP solver CBC from the COIN-OR package (Bonami et al., 2008;

Linderoth and Lodi, 2011). By combining the approaches with the pipeline, we were

able to solve the problem as a sequence of programs. The programs were solved using

CBC with a predefined time limit.

We applied 3 different time limits. 1 minute per node, 10 minutes per node and

1 hour per node.

For each of the separate integer programs with the fixed initial node, the ILP

can:

• Find an optimum cycle

– This is the longest possible cycle for that fixed initial node.

– However, it is not necessarily the longest cycle in the graph.

• Obtain a timeout

– This is due to the time limit restriction.

• Obtain a sub-optimal solution

– A long cycle was found, but within the time limit it could not guarantee

that this is the longest cycle for that node.

From this, we can deduce that if the number of vertices which can still potentially

form a cycle is not higher than the best sub-problem solution found so far, then this

91

solution can be deemed optimal. These time limit restrictions allow us to categorise

the problem instances:

• Easy instances are those where the optimal longest cycle was found with a 1

minute time limit

• Medium difficulty instances are those where the optimal longest cycle was

found with a 10 minute time limit

• Hard instances are those where the optimal longest cycle was found with a 1

hour time limit

Any instance that could be solved with a 1 minute time limit was declared easy.

Similarly any that could be solved in 10 minutes was declared medium. The rest of

the instances were classified as hard.

The pipeline was implemented as a Python script. This script chooses an initial

node, and handles the ILP program generation. The handling includes launching

CBC and maintaining if the optimum has been found.

The heuristic approach was implemented in C++ using the Qt toolkit. Similarly

to the exact approach, the heuristic was also applied to the graphs obtained by

iterative pruning of the leaves.

All experiments were run on an Apple Mac Pro running OS X El Capitan with

a 3.5GHz 6-Core Intel Xeon E5 CPU and with 16 GB 1866 MHz DDR3 RAM.

As leaf nodes cannot be part of the longest cycle, we prune them. This can reduce

the size of an instance quite significantly. For example, the instance gplus 200 of

92

200 nodes representing the public circles data from Google+ was reduced from 200

to 118 nodes.

Table 3.1: A table to show a summary of the data sets used. For each of the data
set, we show the name, the amount of nodes and edges inside of the instance and
the type.

Instance Nodes Edges Type of Instance
gplus 200 200 527 Social Media
gplus 500 500 1346 Social Media
pokec 500 500 1276 Social Media
soc 52 52 822 Social Media
adjnoun 112 425 Adjective-noun adjacencies for David Copperfield
football 115 616 American college football network
lesmis 77 254 Coappearance network for Les Misérables

netscience 1589 2742 Network science collaborations,
zachary 34 78 Social network of a karate club

celegansneural 297 2359 Neural network for nematode worm Caenorhabditis elegans
dolphins 62 159 Social network of bottlenose dolphins
polbooks 105 441 Network of books about US politics

Celeg20160114CR 198 155 A protein-protein interaction network for Caenorhabditis elegans
Dmela20160114CR 584 627 A network for the fruit fly, Drosophila melanogaster.
Ecoli20160114CR 1091 1639 A protein-protein interactions for Escherichia coli
Hpylo20160114 700 1372 Network for Helicobacter pylori, a bacterium associated with chronic gastritis

Hsapi20160114HT 342 436 A High-throughput human protein-protein interaction network
Mmusc20160114CR 2127 2283 Protein-protein interaction network for the house mouse

anna 138 986 Network for Anna Karenina
david 87 812 Coappearance network for David Copperfield
homer 561 3258 Network for Iliad and Odyssey
huck 74 602 Network for Huckleberry Finn.

We have used a wide range of real-world networks with varying sizes. These are

shown in table 3.1. The type of the network is also described in the table. We now

describe the data in more detail.

We have a selection of social media networks. A small-sample instance is soc 52.

Some of the larger samples include data from Google+ and a slovak social network

from Pokec (Takac and Zabovsky, 2012). A larger snapshot of the data comes from

the SNAP data set (Leskovec and Krevl, 2014). We also use various networks

from Newman’s data repository. These include a adjective-noun adjacencies for

93

David Copperfield (Newman, 2006), an American college football network (Girvan

and Newman, 2002), a coappreance network for Les Misérables (Knuth, 1993) .

Other networks within the repository include netscience which is a representation

of network science collaborations Newman (2006). The network zachary is a social

network of a karate club (Zachary, 1977). Another network, Celegansneural is a

neural network for nematode worm Caenorhabditis elegans (Watts and Strogatz,

1998) while dolphins is a social network of bottlenose dolphins (Lusseau et al., 2003).

Finally, polbooks represents a network of books about US politics.

The next subset of instances are the protein-protein interaction networks from the

UCLA database of interacting proteins (Salwinski et al., 2004; Xenarios et al., 2000,

2001, 2002). The networks can represent two different states of the data. Either it

is the full data set, which is represented by the CR suffix, or it is a high-throughput

data, which is represented with a HT suffix.

The network Celeg20160114CR is a representation of a protein-protein interaction

network for Caenorhabditis elegans. Dmela20160114CR is a network for Drosophila

melanogaster, the common fruit fly. Ecoli20160114CR represents the protein-protein

interactions for Escherichia coli. There is also a network for Helicobacter pylori,

Hpylo20160114.This is a bacterium associated with chronic gastritis. Hsapi20160114HT

is a high-throughput human protein-protein interaction network. The final instance

is a protein-protein interaction network for the housemouse, Mmusc20160114CR.

The last group represents the coappearance networks for several literary classics

from the DIMACS graphs (Johnson and Trick, 1996). Anna is a network for Anna

Karenina, david is a coappearance network for David Copperfield, homer is the

94

network for Iliad and Odyssey and huck represents the network for Huckleberry

Finn.

3.4.2 Results of the comparison between Dixon and Goodman’s

and our own ILP formulation

To begin with, we compare our approach with Dixon and Goodman’s formulation.

The approach to finding the longest cycle from a fixed initial node are the same for

both of these approaches. We set the time limit per node to 1 minute as an initial

comparison. The results of this comparison can be found in table 3.2.

Each of the rows in the table represent an instance. And the data in the columns

is the longest cycle found, with the time taken (in seconds) to find this. If the result

is a number, then the proven optimum has been found. If the number begins with a

≥, then a sub-optimum result has been found. Essentially this is when a cycle has

been found, but it cannot be proven to be the optimum. If N/A is the result, then

no cycle has been found within the time limit.

The results of the comparison can be found in table 3.2. We find that our

formulation significantly outperforms Dixon and Goodman’s. Out of the 22 instances,

our formulation found a solution for 11, however Dixon and Goodman’s found only

3. Our formulation also took significantly less time. Our flow based constraints allow

for a constrained search space, which could explain the difference in time. We have

also performed equivalent experiments with 10 minute time limit.

The results for these can be found in table 3.3. In these results, the formulation

led to 5 out of 22 solutions being found. This is still considerably less successful than

95

Table 3.2: A table to show a comparison of our formulation and Dixon and
Goodman’s formulation (Dixon and Goodman, 1976) set with a 1 minute time limit
per node. A N/A indicate that a result has not been found. A ≥ indicates that
a sub-optimal solution has been found. The results indicate that our formulation
outperforms Dixon and Goodman’s.

Graph CBC CBC
(1 min / node) (1 min / node)

our ILP Formulation Dixon and Goodman’s
ILP Formulation

optimum time optimum time
Social networks

gplus 200 ≥ 70 5117 s ≥ 60 6887 s
gplus 500 ≥ 8 16353 s N/A 18375 s
pokec 500 ≥ 127 17485 s N/A 20005 s
soc 52 51 15 s 51 2034 s

Graphs from Newman’s network data repository
adjnoun 101 207 s ≥ 100 6063 s
football 115 4 s ≥ 113 7147 s
lesmis 49 490 s ≥ 49 3683 s

netscience ≥ 88 25495 s N/A 66573 s
zachary 20 19 s ≥ 20 1616 s

celegansneural ≥ 279 17959 s N/A 17150 s
dolphins 53 ≤ 1 s 53 22 s
polbooks 105 60 s ≥ 103 6003 s

Protein-protein interactions from UCLA database of interacting proteins
Celeg20160114CR 6 ≤ 1 s 6 199 s
Dmela20160114CR 14 49 s N/A 5342 s
Ecoli20160114CR ≥ 8 18380 s N/A 21695 s
Hpylo20160114 N/A 26484 s N/A 25364 s

Hsapi20160114HT 64 1959 s ≥ 61 5167 s
Mmusc20160114CR ≥ 170 22012 s N/A 32981 s

DIMACS graphs
anna ≥ 77 6490 s ≥ 75 6522 s
david ≥ 72 4621 s ≥ 66 4685 s
homer ≥ 114 18309 s N/A 19412 s
huck 48 858 s N/A 3734 s

96

our approach with 1 minute time limit.

3.4.3 In-depth results of our ILP formulation and our heuristic

We now explore the numerical results of our own ILP formulation. Table 3.4 presents

the results we obtained. We split the three time limitations in separate columns,

with 1 minute, 10 minute and 1 hour time limit being put into different columns.

The meanings of numerical values and symbols in the table are equivalent to their

respective meanings in table 3.2.

We use the results of the experiment to categorise the instances. We categorise

them into easy, medium and hard. The results from table 3.4 show that for the 22

networks we studied, eleven of the instances were classified as easy. Only three of

the instances were classified as medium difficulty. Eight of the instances were put

into the hard category. In the table, if an instance has been solved within a time

limit that is less than the higher time limits, then we omit results with a higher time

limit.

The instances that were classified as easy are soc 52, adjnoun, football, lesmis,

zachary, dolphins, polbooks, Celeg20160114CR, Dmela20160114CR, Hsapi20160114HT

and huck. This is because the longest simple cycle can be found in these instances in

less than a hour. All four types of networks have a representative between the easy

instances. From these results we can determine that there seems to be no correlation

between the application domain from which the instance comes and the difficulty of

the instance.

Once we reduce the time limit to 10, we are able to solve three more instances.

97

Table 3.3: Following on from table 3.2, the time taken to find a long cycle using
Dixon and Goodman’s formulations with a time-out of 10 minutes. For results found
with a one minute time-out, they are coloured red. Any result with a > symbol
states that a provable optimum has not been found.

Graph CBC CBC
(10 min / node) (10 min / node)

our ILP Formulation Dixon and Goodman’s
ILP Formulation

optimum time optimum time
Social networks

gplus 200 70 30850 s ≥ 65 52660 s
gplus 500 ≥ 202 157858 s N/A 111007 s
pokec 500 ≥ 163 168396 s N/A 141220 s

soc 52 51 15 s 51 2034 s
Graphs from Newman’s network data repository

adjnoun 101 207 s 101 8468 s
football 115 4 s ≥ 114 53762 s
lesmis 49 490 s ≥ 49 27692 s

netscience ≥ 104 194185 s N/A 428665 s
zachary 20 19 s 20 6432 s

celegansneural 280 2785 s ≥ 273 85522 s
dolphins 53 ≤ 1 s 53 22 s
polbooks 105 60 s 105 2425 s

Protein-protein interactions from UCLA database of interacting proteins
Celeg20160114CR 6 ≤ 1 s 6 199 s
Dmela20160114CR 14 49 s N/A 10381 s
Ecoli20160114CR ≥ 242 179389 s N/A 63888 s
Hpylo20160114 ≥ 291 260322 s ≥ 271 119186 s

Hsapi20160114HT 64 1959 s ≥ 64 48469 s
Mmusc20160114CR ≥ 256 215912 s N/A 173966 s

DIMACS graphs
anna ≥ 79 64498 s ≥ 78 42979 s
david 72 4714 s ≥ 72 31221 s
homer ≥ 223 171157 s N/A 78549 s
huck 48 858 s ≥ 46 26986 s

98

These are classified as medium. They include gplus 200, celegansneural and david.

Instances that could not be solved regardless of the time limit were classified as

hard. They include gplus 500, pokec 500, netscience, Ecoli20160114CR,

Hpylo20160114, Mmusc20160114, anna and homer.

From these results we can speculate that the structure of the instance seems to

be the main factor that influences the difficulty. Anna is a instance that has a low

number of nodes, however it has been classified as a hard instance.

Social networks instances where quite interesting. The instances with 200 nodes

where solvable with a time limit of 10, while the larger instances with 500 nodes where

not solvable. The size of the instance may be a way of determining the difficulty of

solving the instance, but it is not the sole factor.

In summary, by using the exact ILP program combined with the pipeline, we

were able to find the optimal solutions for 14 instances.

In table 3.5, we include the results of the heuristic approach. We have split the

heuristic into two different variants. Variant one is with perturbation operators one,

two and three, which is under the column named MSLS-10000-III. Variant two is the

heuristic with all four perturbation operators , which is represented by MSLS-10000-

IV.

Each version of the heuristic was run over 10000 consecutive runs with many

different starting nodes. We found that for some instances, operator 4 (MSLS-10000-

IV) provides better results. However, the majority of instances had better results

with perturbation operator 3 (MSLS-10000-III). We then extended the amount of

consecutive runs to 100000. However, only perturbation operators 1 - 3 were used

99

due to the previous findings.

For 8 of the instances categorised as easy, the heuristic found optimal solutions.

In these cases, both MSLS-10000-III and MSLS-10000-IV found the optimum. For

the instance Hsapi20160114HT, MSLS-100000-III was able to find the longest cycle.

For adjnoun and polbooks, only suboptimal solutions were found by the heuristic

approach.

However, for the medium classified instances, the heuristic produced cycles with

varied lengths. For two instances, gplus 200 and david, the length of the found cycle

where close to the optimum. For the instance celegansneural however, the found

cycle was still 9 nodes shorter than the provable optimum.

In contrast to the easy instances, the cycles found by the heuristic for the hard

instances were all suboptimal, even when compared to the solutions found by the

exact solver. The only instance where this wasn’t applicable was for netscience.

The gaps between the lengths found by the heuristic and the exact solver varied

by the instance. For the smaller instance, anna, the difference is 2. Whereas for

Hpylo20160114, the difference is 58 nodes.

One instance that bucks the trend is netscience. The heuristic found a cycle of

length 108, whereas the exact approach, even with a time limit of 1 hour, found only

107. This seems to be related to the structure of the graph, and is quite surprising.

It is worth noting that the two heuristics MSLS-10000-III and MSLS-10000-IV where

able to find the cycle of length 107 in minutes, rather than the week needed by the

exact solver. This indicates that the heuristic can perform surprisingly well in some

instances.

100

Table 3.4: A table to show the numerical timings of our ILP approach used with
CBC. Three versions of the approach were used with time limits of 1 minute, 10
minutes and 1 hour per node for each instance. If a instance has been solved
with a lower time limit, we have omitted the higher time limit results as the result
would be the same, or similar in time. This strategy allowed us to categorise the
instances to easy, medium and hard. Such a categorisation is based on whether the
more restrictive versions of the exact approach were successful in finding the proven
optimum or not. N/A indicates that no cycle has been found within the time limit.

graph CBC CBC CBC
(1 min / node) (10 min / node) (1 hour / node)

optimum time optimum time optimum time
Social networks

gplus 200 ≥ 70 5117 s 70 30850 s
gplus 500 ≥ 8 16353 s ≥ 202 157858 s ≥ 206 942816 s
pokec 500 ≥ 127 17485 s ≥ 163 168396 s ≥ 166 1003664 s
soc 52 51 15 s

Graphs from Newman’s network data repository
adjnoun (Newman, 2006) 101 207 s

football (Girvan and Newman, 2002) 115 4 s
lesmis (Knuth, 1993) 49 490 s

netscience (Newman, 2006) ≥ 88 25495 s ≥ 104 194185 s ≥ 107 868606 s
zachary (Zachary, 1977) 20 19 s

celegansneural (Watts and Strogatz, 1998) ≥ 279 17959 s 280 2785 s
dolphins (Lusseau et al., 2003) 53 ≤ 1 s

polbooks* 105 60 s
Protein-protein interactions from UCLA database of interacting proteins (Salwinski et al., 2004; Xenarios et al., 2000, 2001, 2002)

Celeg20160114CR 6 ≤ 1 s
Dmela20160114CR 14 49 s
Ecoli20160114CR ≥ 8 18380 s ≥ 242 179389 s ≥ 244 1068437 s
Hpylo20160114 N/A 26484 s ≥ 291 260322 s ≥ 299 1551768 s

Hsapi20160114HT 64 1959 s
Mmusc20160114CR ≥ 170 22012 s ≥ 256 215912 s ≥ 267 1282218 s

DIMACS graphs (Johnson and Trick, 1996)
anna ≥ 77 6490 s ≥ 79 64498 s ≥ 79 387458 s
david ≥ 72 4621 s 72 4714 s
homer ≥ 114 18309 s ≥ 223 171157 s ≥ 234 1015438 s
huck 48 858 s

* Network polbooks has not been published in a past paper. It is available from Newman’s network data repository:

http://www-personal.umich.edu/∼mejn/netdata/.

101

Table 3.5: A table to show the results of the heuristic. We show Variant 1, which
uses only perturbation operators 1,2 and 3 as MSLS-10000-III and Variant 2 which
uses all 4 operators as MSLS-10000-IV. We run these both 10000 times. We find that
Variant 1 out-performs Variant 2, and thus run 100000 trials of this variant, which is
displayed as MSLS-100000-III. Their comparison to the proven longest cycle lengths
(or their lower bounds) found by the exact approach based on CBC is included.

graph CBC MSLS-10000-III MSLS-10000-IV MSLS-100000-III
cycle time cycle time cycle time
length length length

Social networks
gplus 200 70 67 65 s 66 50 s 68 729 s
gplus 500 ≥ 206 186 606 s 186 560 s 192 6891 s
pokec 500 ≥ 166 155 663 s 151 598 s 159 7158 s
soc 52 51 51 25 s 51 23 s 51 280 s

Graphs from Newman’s network data repository
adjnoun (Newman, 2006) 101 91 78 s 92 62 s 93 967 s
football (Girvan and Newman, 2002) 115 115 103 s 115 93 s 115 1246 s
lesmis (Knuth, 1993) 49 49 18 s 49 14 s 49 204 s
netscience (Newman, 2006) ≥ 107 107 531 s 107 524 s 108 5944 s
zachary (Zachary, 1977) 20 20 4 s 20 2 s 20 52 s
celegansneural (Watts and Strogatz, 1998) 280 270 2147 s 267 1960 s 271 27953 s
dolphins (Lusseau et al., 2003) 53 53 7 s 53 7 s 53 94 s
polbooks* 105 104 73 s 103 65 s 104 802 s
Protein-protein interactions from UCLA database of interacting proteins (Salwinski et al., 2004; Xenarios et al., 2000, 2001, 2002)
Celeg20160114CR 6 6 1 s 6 6 s 6 5 s
Dmela20160114CR 14 14 3 s 14 3 s 14 43 s
Ecoli20160114CR ≥ 244 207 894 s 205 849 s 211 11208 s
Hpylo20160114 ≥ 299 239 1818 s 235 1674 s 241 21357 s
Hsapi20160114HT 64 63 22 s 63 17 s 64 253 s
Mmusc20160114CR ≥ 267 243 728 s 248 712 s 246 8353 s

DIMACS graphs (Johnson and Trick, 1996)
anna ≥ 79 76 96 s 77 112 s 77 1316 s
david 72 71 50 s 70 45 s 71 608 s
homer ≥ 234 206 1508 s 205 1468 s 209 17981 s
huck 48 48 24 s 48 21 s 48 284 s

102

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

5000

10000

15000

20000

25000

30000

40 42 44 46 48 50 52
cycle length

soc_52

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

5000

10000

15000

20000

70 75 80 85 90 95
cycle length

adjnoun

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

20000

40000

60000

80000

100000

112 113 114 115 116
cycle length

football

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

5000

10000

15000

20000

25 30 35 40 45 50
cycle length

lesmis
nu

m
be

r
of

 c
yc

le
s

sa
m

pl
ed

0

10000

20000

30000

40000

50000

14 15 16 17 18 19 20 21
cycle length

zachary

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

5000

10000

15000

20000

25000

40 42 44 46 48 50 52 54
cycle length

dolphins

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

5000

10000

15000

20000

85 90 95 100 105
cycle length

polbooks

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

20000

40000

60000

80000

100000

11 12 13 14 15
cycle length

Dmela20160114CR

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

2000

4000

6000

8000

10000

12000

14000

40 45 50 55 60 65
cycle length

Hsapi20160114HT

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

5000

10000

15000

20000

25000

30 35 40 45 50
cycle length

huck

Figure 3.6: Distributions of cycle lengths sampled by the multi-start local search
approach MSLS-100000-III for the easy instances.

3.5 Discussion

As the heuristic has a sequence of samplings of long simple cycles using DFS, we

are able to plot the distribution of lengths sampled in each of these runs. We have

explored these distributions for MSLS-100000-III.

Figure 3.6 illustrates the distributions we obtained for the easy instances. Most of

the instances that fall into the easy category show that the peaks of the distributions

are near the far end of the distributions. It seems that the probability of sampling

a cycle which is longer than the peak declines quite rapidly. As such, we have

measured the statistical properties of the distributions. These properties include the

mean, standard deviation, skewness and kurtosis.

103

Table 3.6: Statistical properties of cycle length distributions obtained by MSLS-
100000-III. This includes the longest cycle length found, the average cycle length
µ, the standard deviation σ, the skewness γ1 and the “excess” kurtosis γ2 for each
distribution.

graph optimum MSLS-100000-III
best µ σ γ1 γ2

Social networks
gplus 200 70 68 59.46 2.8421 -0.42985 -0.040028
gplus 500 ≥ 206 192 161.33 7.2337 -0.031828 -0.083499
pokec 500 ≥ 166 159 130.83 8.1637 -0.41967 -0.058592
soc 52 51 51 46.202 1.5434 -0.15057 -0.44118

Graphs from Newman’s network data repository
adjnoun (Newman, 2006) 101 93 83.852 2.3339 0.0088051 -0.066728
football (Girvan and Newman, 2002) 115 115 114.96 0.19147 -5.313 28.502
lesmis (Knuth, 1993) 49 49 43.772 2.5782 -0.67178 -0.27657
netscience (Newman, 2006) ≥ 108 108 92.438 5.4751 -0.21830 -0.25129
zachary (Zachary, 1977) 20 20 18.684 0.74029 -0.15538 -0.053173
celegansneural (Watts and Strogatz, 1998) 280 271 260.33 2.884 -0.11364 0.005146
dolphins (Lusseau et al., 2003) 53 53 49.323 1.6584 -0.30721 0.081956
polbooks 105 104 97.632 2.1877 -0.54051 -0.058592
Protein-protein interactions from UCLA database of interacting proteins (Salwinski et al., 2004; Xenarios et al., 2000, 2001, 2002)
Celeg20160114CR 6 6 6 0 N/A N/A
Dmela20160114CR 14 14 13.943 0.23244 -3.8124 12.548
Ecoli20160114CR ≥ 244 211 183.21 6.1459 -0.01982 -0.013013
Hpylo20160114 ≥ 299 241 214.22 5.2453 0.23223 0.10657
Hsapi20160114HT 64 64 55.581 2.8587 -0.17028 -0.30979
Mmusc20160114CR ≥ 267 246 207.74 9.4577 0.077919 -0.074851

DIMACS graphs (Johnson and Trick, 1996)
anna ≥ 79 77 67.081 3.1581 -0.41567 0.243
david 72 71 63.918 2.5469 -0.61604 0.54436
homer ≥ 234 209 183.03 6.457 -0.045365 -0.0058615
huck 48 48 45.273 1.6975 -0.85419 1.6703

104

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

2000

4000

6000

8000

10000

12000

14000

45 50 55 60 65 70
cycle length

gplus_200

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

2000

4000

6000

8000

10000

12000

14000

245 250 255 260 265 270 275
cycle length

celegansneural

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

5000

10000

15000

20000

50 55 60 65 70 75
cycle length

david

Figure 3.7: Distributions of cycle lengths sampled by the multi-start local search
approach MSLS-100000-III for the medium difficulty instances.

Table 3.6 presents these properties for each distribution X obtained for each

graph. The columns of the table represent the optimum, the best result obtained

by MSLS-100000-III, the mean (µ), the standard deviation (σ), the skewness (γ1 =

E[(X − µ)3]/σ3) and the “excess” kurtosis (γ2 = E[(X − µ)4]/σ4 − 3).

The table shows that distributions with a low value of γ1 and a high value of γ2

indicate an easy instance. However, adjnoun has a low value for γ1 and γ2, which

seems to buck this trend. Since adjnoun was the only easy instance for which MSLS-

100000-III was relatively far away from the optimum, a distribution close to a normal

distribution may indicate that the heuristic is less efficient. It is also worth noting

that apart from adjnoun, γ1 < 0 for all easy instances.

On a related note, the distributions seem to differ from instance to instance. The

profile for polbooks suggests that sampling of the longest cycle may be possible with

an increased number of runs.

Following on, figure 3.7 shows the distributions obtained for all of the medium

instances. The plots for these seems to be more fine grained than the easy instances.

For all of these instances we have that γ1 < 0. Similar to the easy instances, there is

an outlier to this. Instance celegansneural has a γ1 and γ2 close to 0. In similarity to

105

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

1000

2000

3000

4000

5000

6000

7000

60 70 80 90 100 110
cycle length

netscience

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

1000

2000

3000

4000

5000

6000

120 130 140 150 160 170 180 190 200
cycle length

gplus_500

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

1000

2000

3000

4000

5000

6000

90 100 110 120 130 140 150 160
cycle length

pokec_500

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

1000

2000

3000

4000

5000

6000

7000

150 160 170 180 190 200 210 220
cycle length

Ecoli20160114CR
nu

m
be

r
of

 c
yc

le
s

sa
m

pl
ed

0

1000

2000

3000

4000

5000

6000

7000

8000

190 200 210 220 230 240 250
cycle length

Hpylo20160114

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

500

1000

1500

2000

2500

3000

280 300 320 340 360 380 400 420
cycle length

Mmusc20160114

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

2000

4000

6000

8000

10000

12000

14000

50 55 60 65 70 75 80
cycle length

anna

nu
m

be
r

of
 c

yc
le

s
sa

m
pl

ed

0

1000

2000

3000

4000

5000

6000

7000

150 160 170 180 190 200 210
cycle length

homer

Figure 3.8: Distributions of cycle lengths sampled by the multi-start local search
approach MSLS-100000-III for the hard instances.

adjnoun, the heuristic has not managed to find the optimum for this instance. This

indicates that a more sophisticated approach may be more suitable for this type of

difficulty.

A further avenue of exploration could be combining the heuristic with swarm

intelligence as evolutionary algorithms as a tool to overcome the optima found. It is

also worth noting that the distributions obtained by different heuristics can be used

as a promising tool to compare the efficiency of different approaches.

These algorithms could also be beneficial for hard instances. We show the

distributions of the hard instances in figure 3.8. The distributions again seem to

be fine-grained, however there is an outlier in instance anna. The cycles found for

hard instances are quite moderate. The results of the exact approach indicate that

providing significantly longer cycles seems to require quite extensive computational

efforts.

106

An item of note is that the perturbation operators contributed to the final

long cycle found quite significantly. When DFS was used as an initialisation, the

cycles found were of a moderate size. Perturbation operator 1 seems to be at its

most advantageous when the instances have a high community structure. Whereas

perturbation operator 2 is more advantageous for instances that have an underlying

structure of a grid. Operators 3 and 4 were used to expand the search space of the

DFS algorithm to find more nodes. We found that for majority of the instances,

perturbation operator 3 was more efficient in finding the longest cycle.

3.6 Conclusion

In this chapter we have proposed two approaches to find the longest simple cycle in

instances. The first approach is an exact solver based on the fixed starting node. This

is an ILP formulation combined with our data mining pipeline. This pipeline solves

the problem by sequencing different ILP problems for different fixed initial nodes.

Our experiment results have shown that our approach outperforms a previous ILP

formulation of the longest simple cycle problem. The approach can be extended to

find a probable longest cycle for larger instances, while being able to solve smaller

instances.

The second approach is a DFS-based heuristic. We create an initial long cycle

through a DFS search. This initial cycle is then improved with four perturbation

operators. We show that multi-start versions of the heuristic provide relatively

long cycles in a mostly shorter time in comparison to the exact solver. For easy

107

and medium instances, the heuristic was able to produce optimal or near-optimal

solutions to the longest cycle problem. Where the heuristic shines is with larger

instances. The exact solve can require weeks, or months of computation to solve

large instances, whereas the heuristic is able to produce a non-optimal result in a

fraction of the time. For these instances the heuristic approach is much more valuable

for real-world applications.

The study of long cycles in this chapter can form a basis for further exploration

of the problem area. Applicational use in social and biological is one such area. For

large scale instances of the problem new heuristics combining different ideas and

operators may contribute to develop more scalable approaches suitable for finding

even longer cycles.

One such area of exploration is introducing evolutionary algorithms to the problem.

An ant-based evolutionary search improvement was introduced, and thus the work

in this chapter has been built upon by the authors in (Chalupa et al., 2018).

Further avenues of exploration of this chapter include topics such as layout

algorithms for social and biological networks (Becker and Rojas, 2001; Girvan and

Newman, 2002), drawing of planar graphs (Tamassia, 2013) or the closely related

longest path problem (Karger et al., 1997; Uehara and Uno, 2007).

In summary this chapter has laid down the fundamental ideas for practical

algorithms which can be used to find long cycles in real-world networks.

108

First learn computer science

and all the theory. Next develop

a programming style. Then

forget all that and just hack.

George Carrette

CHAPTER 4

An exploration of graph databases by implementing the

Minimum Dominating Set problem

As discussed in chapter 2, many different application areas are finding relational

databases to be limited in a number of different areas. As graph databases focus

on graph data (Yannakakis, 1990), the opportunity to implement and apply graph

algorithms within these databases has occurred.

This graph-like structure allows the implementation of various computational

algorithms that would have been difficult to implement into a relational database.

These algorithms can be created using query methods provided by graph database

systems, or through a combination of a high level language and query methods. In

109

this chapter we take a computationally demanding problem, such as the Minimum

Dominating Set and implement an unoptimised greedy heuristic into two different

graph database systems. This chapter builds upon the work covered in (Balaghan

et al., 2017).

The main contribution in this chapter is a novel exploration of graph database

systems when the minimum dominating set algorithm is implemented. This shows

how efficient the back-end of the graph database systems are in relation to the

implementation of the problem and the limitations of query methods provided by

these systems. With these limitations, workarounds may need to be applied. The

impact of these workarounds on timings or on efficiency of the systems are evaluated.

Section 4.1 introduces the topic of discussion, followed by a introduction to

the systems used in the experiments in section 4.2. Some repetition of previous

information given in chapter 2 may occur in those sections. Sections 4.3 and 4.4

give an in-depth evaluation of the Minimum Dominating Set problem by providing

three different implementations. Finally, results and further discussions are given in

sections 4.5 and 4.6 which are then concluded in 4.7.

4.1 Introduction

Classic relational databases use the relational data model. This model stores data

in the form of records in stores. Relationships between objects are between primary

and foreign keys. If a relationship between two tables exists, a JOIN is used.

JOIN commands are typically very computationally inefficient. Ironically, relational

110

databases found querying data which required a lot of relations are very computationally

expensive and sometimes infeasible (Robinson et al., 2013).

Storing data in a graph-like structure was explored in the 1980’s, where a selection

of data models were introduced (Angles and Gutierrez, 2008, 2005). This tended to

slow down in the 1990’s, with the focus being on relational databases. But once the

limitations of relational databases were realised, storing data in a graph-like form

became more popular. Big companies like Google, Facebook and others noticed

this limitation and created their own graph-like data storage (Bronson et al., 2013;

Malewicz et al., 2010). At the same time, graph gatabase systems were forming.

There has been some comparison between relational and graph databases (Vicknair

et al., 2010; Jouili and Vansteenberghe, 2013; Robinson et al., 2013). They generally

show that graph databases are more efficient in simple relation queries. These are

queries that focus on “hops”. For example, searching the neighbourhood of a node,

or the neighbourhood of the neighbourhood of the node.

Graph databases have also found many different applicational areas. They have

been used to find terrorist networks (Gutfraind and Genkin, 2016), rogue behaviour

detection (Castelltort and Laurent, 2016) and identify users with limited data (Vesdapunt

and Garcia-Molina, 2015). And more recently, have been used to analyse the Panama

Papers that have been released (Neo4j, 2017a).

The graph structure of graph databases opens up the possibility of performing

computationally complex algorithms on the database. These could include finding

long cycles (Chalupa et al., 2017), node failure (Hawick and James, 2007; Hawick,

2012b), Betweenness Centrality (Freeman, 1977, 1978) and many others.

111

The most prominent model used by graph databases is the property graph model.

The property graph model has been built upon a selection of previous graph models,

which have been explored in detail by Angles (Angles and Gutierrez, 2008).

It is worth noting the increase in popularity of Multi-Modal databases. Multi-

modal databases support either two or more database models while keeping a single

integrated backend. An example of this would be OrientDB which combines a graph

database with a document database (OrientDB, 2017). A selection of systems which

encompass graph and multi model databases have been explored in Lissandrini et al.

(2017). In this paper we focus on “pure” graph databases.

The contributions that can be found in this chapter are that we evaluated the

general efficiency of implementing the dominating set algorithm into the different

types of databases. From this, we found that the methods of querying provided by the

database systems does not provide the means to efficiently implement the algorithm.

We also found that the expressiveness of the graph database languages are not as

concise and expressive as expected. We evaluated the contributions by implementing

an unoptimised greedy heuristic of the Minimum Dominating Set problem into graph

database systems.

4.2 Graph database systems

As previously discussed , graph database systems can typically be sorted into two

different types of models. The first model is a client-server model. A client typically

sends a query request to a server. An example of such systems would be Neo4j

112

(Neo4j, 2017c) and OrientDB (OrientDB, 2017).

At the time of writing, Neo4j (Neo4j, 2018) is the most popular client-server graph

database according to a database ranking website (DBEngine, 2017b,d). It is an

open-source JVM-based database system. It fully supports Atomicity, Consistency,

Isolation and Durability (ACID) transactions.

The second model is an embedded model. The database is created and stored

locally, typically through library calls in a high-level language. An example system

of which would be Sparsity. Sparsity is a system written in C and C++.

Sparsity is one of the more popular embedded graph databases. It began life as

DEX (Mart́ınez-Bazan et al., 2007) where it then re-branded as Sparsity. It does not

currently have a dedicated query language, instead the database can be queried by

using some of the in-built library function when combined with a high-level language.

It also fully supports ACID transactions, with the ability to disable if necessary.

Each of the different models have provided different methods to query a database.

Client-server databases typically provide a query language. In contrast, embedded

databases tend to provide a selection of library calls which act as query replacements.

At the time of writing, a formalised query language for graph databases does not

exist. This is because querying graph patterns is computationally hard (Barceló

et al., 2011) and thus querying graph databases are also computationally hard

(Barceló Baeza, 2013). Although there have been attempts at countering this (Lee

and Chung, 2014), there are some unavoidable overhead when querying graphs

(Stonebraker and Cattell, 2011). There have been some methods to efficiently query

subgraphs (Zheng et al., 2014), but the problem still remains hard.

113

In response to this, a selection of different query languages have been created.

These include G (Cruz et al., 1987), G+ (Cruz et al., 1988), Gram (Amann and

Scholl, 1992), Gremlin, Cypher, openCypher (Marton et al., 2017), SLQ (Yang et al.,

2014), ProGQL (Tausch et al., 2011), PGQL (van Rest et al., 2016), GOQL (Sheng

et al., 1999), GraphQL (He and Singh, 2008) and others (Angles and Gutierrez,

2005). A survey on the functionality of these has been explored by (Wood, 2012).

There has also been an attempt to compare the languages, however the study is now

quite dated (Holzschuher and Peinl, 2013). It is worth noting that there has been

some attempt at formalising a query language, such as openCypher (Marton et al.,

2017) and SPARQL (Seaborne and Prud’hommeaux, 2008). These languages have

either not been or have partially been adapted by graph database systems.

Neo4j only officially supports a single query language. This language is called

Cypher. Cypher is a declarative scala-based language. Cypher has been proven to

be quite versatile, being used as a back-end of a DSL for querying source code data

(Urma and Mycroft, 2015).

An example of a basic Cypher query is given in algorithm 14. Within the

algorithm, keywords are shown in capitals. Optional clauses are surrounded by square

brackets. To begin a query a MATCH clause is required. This is then followed by

a pattern that represents what is being queried. An optional WHERE clause can

be given to restrict the query. The final clause of a query is the RETURN clause.

This can also be limited by the optional clause LIMIT and sorted by the ORDER

BY clause. Cypher queries were covered in more detail in chapter 2.

The Cypher query can be “extended” to include multiple MATCH clauses by

114

using the optional clause WITH. The WITH clause allows the user to store variables

from the previous MATCH clause. After the WITH, a MATCH clause can then be

used to start a new query.

Algorithm 14 A Cypher query in its most basic form. Items in capital letters are
key words. Optional clauses are surrounded by []. Adapted from (Drakopoulos,
2016).

1: MATCH <pattern>
2: [WHERE <restriction>]
3: RETURN <expression> | <pattern>
4: [ORDER BY <pattern> [DESC/ASC]]
5: [LIMIT <number>]
6: [WITH <variables>]

As a representative of client-server databases, we have used Neo4j and as a

representative of embedded databases, we have used Sparsity. There has been some

previous comparisons between these two databases. One such study focused on

the scalability of the systems by implementing the HPC scalable graph analysis

benchmark (Dominguez-Sal et al., 2010), which found Neo4j and DEX (now Sparsity)

to be the most efficient. As well as this, there has been an attempt to benchmark

both DEX and Neo4j (Macko et al., 2013) for simple graph procedures.

4.3 The Minimum Dominating Set problem

While some repetition of sub-section 2.4.5 may occur in this section, the Minimum

Dominating Set problem is explored in more detail in this chapter. To begin, we give

some definitions of G. Let G = (N,E) be either an undirected or a digraph where N

is a non-empty set of nodes and E is a set of edges subject to N x N.

115

Definition 4.3.1. A dominating set in a graph G is a subset S of nodes such that

every node in G is either in S or is adjacent to a node in S (Gross et al., 2013). A

node is said to dominate itself, as well as its adjacent nodes. The dominating set of

a graph is referred to as γ(G).

Definition 4.3.2. The neighbourhood of a node n is the subset of nodes in graph

G which are directly adjacent to node n. In a digraph, this is the out-set of a node

n (i.e. all out-going edges for n).

Definition 4.3.3. An isolated node is a node without any edges. It has a degree of

0.

Finding the minimum dominating set of a graph is a classical Non-deterministic

Polynomial-time Completeness (NP-Complete) problem (Garey and Johnson, 1990).

An efficient solution to finding the optimum minimum dominating set of a graph

is currently not available. However, some heuristics exist that can find a minimal

dominating set, but not the guaranteed optimum. One such heuristic is the greedy

algorithm (Chvatal, 1979). This is defined in algorithm 15.

Algorithm 15 The greedy heuristic algorithm for finding a minimum dominating
set of a Graph

1: S := ∅
2: while ∃ white nodes do
3: choose v ∈ {x|w(x) = maxu∈V {w(u)}}
4: S := S ∪ v
5: end while

To begin with, all nodes in the graph are initially coloured white. After this, a

calculation is run to find the node with the most white-node connections, including

116

itself. This node is then coloured black, and each of its adjacent nodes are coloured

grey. This is repeated until no white nodes exist. Finally, all of the nodes which

are black are the final dominating set. Algorithm 16 gives an implementation in a

high level language of the heuristic. Any isolated nodes are also eventually coloured

black.

The dominating set algorithm has been useful in many different application areas.

They have been used to find positive influence in social networks (Dinh et al., 2014),

as well as efficient routing in wireless networks (Wu and Li, 1999).

One difference to the greedy heuristic in the high level implementation is that all

isolated nodes are coloured black at the beginning of the algorithm’s run. This allows

some time to be saved, and less nodes to be processed as the nodes that are isolated

and their neighbourhoods are already coloured and are therefore in the dominating

set.

4.4 Implementing the Minimum Dominating Set

problem into graph database systems

We implement the greedy heuristic algorithm using the query methods provided by

Sparsity and Neo4j. For Neo4j we use the query language Cypher, and for Sparsity

we use libraries supplied with the API. As well as that, we implement the high-level

algorithm 16 in C++ as a direct comparison.

The Cypher query in algorithm 17 shows how to run one iteration of the greedy

algorithm. In lines 2-4, we are setting up the graph by initialising every node to white.

117

Algorithm 16 A high level language implementation of the greedy heuristic
algorithm. In the end, every node with weighting 1 is a grey node, and every node
with weighting 0 is a black node.

1: function DominatingSet(Graph g, nodeList[])
2: blackNodes[]
3: whiteNodes[] ← nodeList[]
4: weightings[] ← 0

. Find all Isolated nodes and make them black
5: for all node in whiteNodes do
6: if deg(node) < 1 then
7: blacksNode.add(node)
8: whitesNodes.remove(node)
9: weighting[node] ← 0

10: else
11: weighting[node] ← 2
12: end if
13: end for
14: while whiteNodes.size > 0 do
15: highestweight ← 0
16: curHighNode ← null
17: for all node in nodeList do . Find the node with the most white-node

connections
18: if weightings[node] != 0 then . If not a black node
19: totalweight ← weightings[node]
20: for all neighbour n of node do
21: totalweight += weightings[n]
22: end for
23: if totalweight > highestweight then
24: highestweight ← totalweight
25: curHighNode ← node
26: end if
27: end if
28: end for
29: blackNodes.add(curHighNode)
30: whiteNodes.remove(curHighNode)
31: for all (neighbour n of curHighNode) do
32: weighting[n] ← 1
33: whiteNodes.remove(n)
34: end for
35: end while

return blackNodes[]
36: end function

118

Algorithm 17 The greedy heuristic algorithm in Cypher - One Step. At the end,
every node with blackness = 1 is in the dominating set, and every node with whiteness
= 0 and blackness = 0 is a grey node.

1: function CYPHERGreedyAlgorithm
2: MATCH(h)
3: SET h.whiteness = 1
4: SET h.blackness = 0
5: WITH h
6: OPTIONAL MATCH(j) . Find all Nodes without any Edges(i.e. with a

degree of 0)
7: WHERE NOT (j)–>()
8: SET j.blackness = 1
9: SET j.whiteness = 0

10: WITH j
11: . This is where the repeated part of the query begins.
12: MATCH (n)–>(m)
13: WHERE n.blackness <> 1
14: WITH collect(m) as neighbourhood, n
15: WITH reduce(totalweight = n.whiteness, j in neighbourhood — totalweight

+ j.whiteness) as weightings, n
16: WITH n, weightings
17: ORDER BY weightings desc limit 1
18: . This is where the repeated part of the query ends.
19: MATCH(n)–>(m)
20: WHERE m.blackness <> 1
21: SET n.blackness = 1
22: SET n.whiteness = 0
23: SET m.whiteness = 0
24: WITH n
25: MATCH (k)
26: WHERE k.whiteness = 1
27: RETURN count(distinct(k)) as countOfRemainingWhiteNodes
28: end function

119

Then an OPTIONAL MATCH is used to find any isolated nodes. The OPTIONAL

MATCH, as opposed to a MATCH is required as the query can return a NULL value

should the graph be a fully connected graph.

The “bulk” of the query begins from line 11. At first, every node that is not

currently black is found. Then by using the in-built reduce function in Cypher,

we are able to find the most white neighbours. The nodes are then sorted by the

weightings found in line 16. Finally, by using this node, we are then able to find its

adjacent neighbours in lines 17 and 18.

An issue we encountered when implementing the algorithm into Cypher was the

inability to iterate a part of the query. In order for the heuristic to find a dominating

set for the graph, iteration is required for the query in lines 11 to 21. This must be

repeated until all nodes in the graph are either black or grey. The only iterator that

we are aware of is the in-built FOREACH function. However this function can not

be paired with any MATCH query.

Because of this, we created a pipeline which would build a single Cypher query

that could find the dominating set. As far as we are aware, the length of a Cypher

query is limited by the size of a string. By using the process shown in fig 4.1, we

were able to create this Cypher query. We used Python as a method of building this

query.

The original query in algorithm 17 is split into three separate queries. The first

of which is the “set-up” graph query. This encapsulates lines 2 to 10. This would

only need to be run once per query, as it colours all nodes white and then colours all

isolated nodes black. The “bulk query” encapsulates lines 11 to 22. And finally the

120

Figure 4.1: A diagram showing how the one Cypher query is built. A first iteration
of the greedy algorithm is run. If any white nodes remain, then another iteration of
the bulk query is added onto the original query, and the whole query is re-run.

121

“end” query is the query to find how many white nodes remain in lines 23 to 25.

In order to build the single Cypher query we would first run the “set-up” query.

Then the “bulk” query and finally the “end” query to check to see if any white nodes

remain. If any white nodes remain, we add an iteration of the bulk query to the

overall query. It should be noted that the variable names are changed when the

bulk query is added. For each variable in the query, such as (n) or (m), its name

is changed to (n(n+1)) or (m(n+1)) (i.e. (n1),(m1),(n2),(m2).....(nn)(mn)). This is

to ensure that the previous variables in the query are not effecting the new query.

This is repeated until no white nodes remain. An example final cypher query can be

found in algorithm 18.

This has the potential to be a computationally costly program. Therefore we

decided to create a wrapper in a high level language that encapsulates around the

“bulk query”. We would essentially be adding something similar to a for loop.

To do this, we split the query in algorithm 17 into two sections. We ran the “set-

up” query, which was from lines 2 to 9. As the query sets up the graph by setting all

nodes to white, and finds all nodes which are isolated and sets them black, it only

needs to be run once. Then the “end” query, which essentially finds any remaining

white nodes from lines 23 to 25. The next section is the iterated section, from lines

11 to 25.

It is worth noting that a final query, as shown in algorithm 19, returns a list of

the final dominating set. This is run once there are no remaining white nodes.

In comparison, we then replicated the same tests in Sparsity. Sparsity uses an

imperative query language. All of the query functionality are defined in different

122

Algorithm 18 An example final Cypher query for finding the minimum dominating
set.

1: function CYPHERGreedyAlgorithm
2: MATCH(h)
3: SET h.whiteness = 1
4: SET h.blackness = 0
5: WITH h
6: OPTIONAL MATCH(j) . Find all Nodes without any Edges(i.e. with a

degree of 0)
7: WHERE NOT (j)–>()
8: SET j.blackness = 1
9: SET j.whiteness = 0

10: WITH j
11: MATCH (n)–>(m)
12: WHERE n.blackness <> 1
13: WITH collect(m) as neighbourhood, n
14: WITH reduce(totalweight = n.whiteness, j in neighbourhood — totalweight

+ j.whiteness) as weightings, n
15: WITH n, weightings
16: ORDER BY weightings desc limit 1
17: MATCH (n1)–>(m1)
18: WHERE n1.blackness <> 1
19: WITH collect(m1) as neighbourhood, n1
20: WITH reduce(totalweight = n1.whiteness, j in neighbourhood — totalweight

+ j.whiteness) as weightings, n1
21: WITH n1, weightings
22: ORDER BY weightings desc limit 1
23: MATCH(n1)–>(m1)
24: WHERE m1.blackness <> 1
25: SET n1.blackness = 1
26: SET n1.whiteness = 0
27: SET m1.whiteness = 0
28: WITH n1
29: MATCH (k)
30: WHERE k.whiteness = 1
31: RETURN count(distinct(k)) as countOfRemainingWhiteNodes
32: end function

123

Algorithm 19 The final Cypher query to find all black nodes in the graph

1: MATCH(n)
2: WHERE n.blackness = 1
3: RETURN n

libraries, which can be called in-line.

Algorithm 20 Setting up the graph in Sparsity

1: function SetUpGraph(Graph g, int EdgeID, nodeIDs[])
2: whiteNode = new Attribute()
3: blackNode = new Attribute()
4: for all id in nodeIDs do
5: degree = g.degree(id, EdgeID, EdgeDirection.Any)
6: if degree > 0 then
7: g.setAttribute(id, whiteNode, 1)
8: g.setAttribute(id, blackNode, 0)
9: else

10: g.setAttribute(id, whiteNode, 0)
11: g.setAttribute(id, blackNode, 1)
12: end if
13: end for
14: end function

The equivalent queries in a single Cypher cannot be replicated using just the

libraries in Sparsity. Therefore, we implemented a direct comparison to the Cypher

and wrapper. We combined a high level language and the equivalent query calls

to Cypher in Sparsity. Algorithm 20 gives the equivalent “set up” queries used in

Algorithm 17. We assume the Sparsity graph object is called g.

Each node, edge and attribute type is given a unique ID. In algorithm 20, we

first set the attributes of the nodes to white and black depending on whether they

are an isolated node.

In order to find the node with the most white node connections, we use the

124

function defined in algorithm 21. The wrapper language holds the values of the

current HighestNode and HighestWeight. All of the current white nodes are stored

into a Sparsity object on line 4. The g.select call is used, where the white node

attribute we created at the beginning of the function limits the query call.

On line 6, we check to see whether the current node is already in the dominating

set. A g.getAttribute call is used to find the value of the selected attribute. After this,

we create another Sparsity object that stores the neighbours of the current node. A

g.neighbours call is used.

To find the total weight of white nodes, an object.intersection call can be used

by finding the intersection between the neighbourOfNodes and AllWhiteNodes such

as on line 9 in algorithm 21.

The C++ implementation is the same as defined algorithm 9. To ensure accuracy

of the C++ implementation, we compare the results of the implementation with the

same datasets in other literature, such as in (Chalupa, 2017). It is worth noting that

other, more efficient approximation algorithms for finding the dominating set exist.

These include an order based algorithm (Chalupa, 2017), a hybrid genetic and local

search algorithm (Hedar and Ismail, 2010), an ant colony optimisation (Potluri and

Singh, 2013) and many others.

We focus on the unoptimised greedy algorithm as the optimisations required by

these algorithms may themselves be a challenge for the query methods. Therefore,

the c++ implementation is also the unoptimised greedy algorithm to allow for a fair

comparison.

In the following paragraph we define terminology to be used in this section.

125

Algorithm 21 Find the node with the most connected white nodes in Sparsity

1: function GetWeightings(Graph g, int BlackNodeAtt, int WhiteNodeAtt, int
edgeID, nodeIDs[])

2: HighestNode ← ∞
3: HighestWeight ← 0
4: AllwhiteNodes = g.select(WhiteNodeAtt, Condition.Equal, true)
5: for all id in nodeIDs do
6: isBlack = g.getAttribute(id, BlackNodeAtt)
7: if isblack == false then
8: neighbourOfNodes = g.neighbours(id,edgeID,EdgeDirection.Any)
9: long weight = neighbourOfNodes.intersection(AllWhiteNodes)

10: val = g.getAttribute(i, WhiteNodeAtt) . Checks the weight of the
current node

11: if val = true then . If White, add 1 to it’s weighting
12: weight++
13: end if
14: if weight > HighestWeight then
15: HighestWeight ← weight
16: HighestNode ← id
17: end if
18: end if
19: end for

return HighestNode
20: end function

126

Building a Cypher query is the process whereby the pipeline builds a long cypher

query in order to solve the instance. The built query is the final query from this

process. Cypher with a wrapper is where the iterative part of the cypher query

is instead replaced with a for loop in a high level language. Similarly, Sparsity

with a wrapper is also where high level language featrures are used in conjunction

with the sparsity query calls. The c++ implementation is an implementation of the

unoptimised greedy heuristic.

4.5 Results

We ran four varieties of the greedy heuristic. We created a Python program that

creates a single Cypher query by following the process in fig 4.1. For the iterative

Cypher program, we created a wrapper in Python. For the implementation in

Sparsity we used Java as the high level language. And finally we also implemented

the algorithm into C++ to represent the high level language.

These algorithms have been run on a selection of real-world graphs as well as

a selection of modelled graphs based on the Barabási-Albert model (Barabási and

Albert, 1999). We used the preferential attachment property, and gave each graph

either 100, 1000 or 10000 nodes. The initial seed number is always 2. The 2, 3 and 4

represent the amount of edges added each time step. The real world graphs include a

selection of real-life snapshots of real-world social networks (Chalupa, 2017; Chalupa

et al., 2017).

Table 4.5 shows the results of the different runs. The first column shows the

127

amount of time taken for the program to create the single Cypher query. The second

column shows the amount of time taken for the final single query to run. The third

column shows the time taken for the Cypher with wrapper, the fourth column shows

the time taken for Sparsity with wrapper and the final columns shows the equivalent

in C++. N/A represents the database crashing or being unable to complete the

query due to any restrictions.

The experiments were run on a Mac Pro with a 3.5GHz 6-Core Intel Xeon E5

Processor. We used Neo4j 3.2 Alpha 8 Enterprise Edition. The client requests were

sent from an internal machine to limit the effect of network lag. For Sparsity we used

version 5.2 with a High and Large accessibility license. For all of the implementations,

we took an average of three runs.

The results in table 4.1 show that when building a single Cypher query, 5 out of

the 22 instances could not be solved due to a database error in Neo4j. The database

error occurs due to the database running out of heap memory. However, once a

wrapper is introduced, this is reduced to only 3 instances. The two instances that

were solved by the introduction of a wrapper were Barabasi 1000 2, and gplus 2000.

pokec 2000 is a similar graph size, but a dominating set could be found without a

wrapper.

Figure 4.2 has two plots that show the results of all the experiments. The left

hand plots the raw data, whereas the right hand plots the data to a log scale in

terms of time taken. The plots have been sorted by the time taken by the high-level

language. In the plots the red line represents the last single Cypher query, the yellow

line represents the Cypher with a wrapper, the blue line represents Sparsity with a

128

Table 4.1: The results show how long it took to run one instance of the greedy
algorithm to find the dominating set of a graph. The first column named “Cypher”
is how long it took to build the single Cypher query. The second column is how long
it took the single Cypher query to run. The third column is Cypher with a wrapper.
The fourth column is Sparsity with a wrapper. And the final column is a high-level
language implementation of the heuristic.

Data Set Cypher without wrapper Cypher Sparsity C++
Whole Program Final Query with wrapper with wrapper Implementation

Barabasi 100 2 16.05s 1.28s 0.45s 0.03s <1ms
Barabasi 100 3 7.27s 0.63s 0.43s 0.02s <1ms
Barabasi 100 4 6.27s 0.89s 0.46s 0.02s <1ms
Barabasi 1000 2 N/A N/A 20.87s 2.28s 0.1s
Barabasi 1000 3 9305.22s 245.01s 23.1s 1.74s 0.01s
Barabasi 1000 4 5696.14s 63.91s 27.24s 1.42s 0.01s
Barabasi 10000 2 N/A N/A N/A 238.21s 8.94s
Barabasi 10000 3 N/A N/A N/A 188.52s 9.52s
Barabasi 10000 4 N/A N/A N/A 157.77s 10.04s

adjnoun(Newman, 2006) 20.54s 1.48s 1.17s 0.03s <1ms
anna(Johnson and Trick, 1996) 31.46s 3.35s 1.36s 0.02s <1ms
Dolphins (Lusseau et al., 2003) 3.05s 0.22s 0.22s 0.01s <1ms

polbooks 11.91s 1s 0.55s 0.02s <1ms
homer (Johnson and Trick, 1996) 7108.54 92.77 42.58s 0.57s 0.05s
huck (Johnson and Trick, 1996) 7.98s 1.24s 0.52s 0.01s <1ms

lesmis (Knuth, 1993) 3.89s 0.66s 0.29s 0.01s <1ms
soc52 (Chalupa, 2017) 0.28s 0.28s 0.27s <1ms <1ms

pokec 500 (Chalupa, 2017) 122.21s 9.87s 5.10s 0.1s <1ms
pokec 2000 (Chalupa, 2017) 11175.53s 198.71s 91.89s 1.90s 0.13s
gplus 200 (Chalupa, 2017) 27.86s 1.89s 1.16s 0.05s <1ms
gplus 500 (Chalupa, 2017) 363.64s 11.21s 5.76s 0.25s 0.01
gplus 2000 (Chalupa, 2017) N/A N/A 94.83s 4.26s 0.26s

129

wrapper and finally the black line represents the high level language implementation.

The first item of note is that pure Cypher queries take longer to complete than

any other method. This could be due to the overheads and declarative style of the

language which itself brings in overheads that Sparsity and C++ implementations

do not have. As well as that, not using a wrapper causes the query to struggle with

instances that had more than 2000 nodes, failing on gplus 2000, barabasi 1000 2,

barabasi 10000 2, barabasi 10000 3 and barabasi 10000 4.

Once a wrapper has been introduced, it is still quite inefficient when compared

to C++ and Sparsity. With the addition of the wrapper however, more instances

were able to be solved. This could be due to the memory build up with the larger

instances being severely reduced by the introduction of a loop. As well as that, the

database may be more optimised to work with a quick succession of short queries,

rather than a single long one. barabasi 1000 2 and gplus 2000 were solvable with

the introduction of a wrapper. Noticeably, the bigger barabasi 10000 instances could

not be solved due to the system running out of cache space in the JVM.

To follow on from that, the plot in figure 4.3 shows only the graphs that took

the C++ implementation <1ms to complete. The key is the same as the key in

figure 4.2. Cypher and Sparsity take more time to find the dominating set than the

C++ implementation, apart from the instance soc52 in which Sparsity equals C++.

This could be due to the overheads the databases invariably have in comparison to

a vanilla implementation.

It is also worth noting that for the dolphins, soc52 and adjnoun instances, Cypher

as a single query and Cypher with a wrapper both find the dominating set in a very

130

barabasi_10000_4
barabasi_10000_3
barabasi_10000_2
gplus_2000
barabasi_1000_2
pokec_2000
hom

er
barabasi_1000_3
barabasi_1000_4
gplus_500
pokec_500
anna
gplus_200
adjnoun
barabasi_100_2
huck
polbooks
barabasi_100_4
lesm

is
barabasi_100_3
soc52

dolphins

All Results

C++ Implementation
Cypher without Wrap
Cypher with Wrap
Sparsity

Ti
m

e T
ak

en
 (s

)

0

50

100

150

200

250

barabasi_10000_4
barabasi_10000_3
barabasi_10000_2
gplus_2000
barabasi_1000_2
pokec_2000
hom

er
barabasi_1000_3
barabasi_1000_4
gplus_500
pokec_500
anna
gplus_200
adjnoun
barabasi_100_2
huck
polbooks
barabasi_100_4
lesm

is
barabasi_100_3
soc52

dolphins

All Results

C++ Implementation
Cypher without Wrap
Cypher with Wrap
Sparsity

Ti
m

e T
ak

en
 (s

)

10−3

0.01

0.1

1

10

100

1000

Figure 4.2: The above plots show all of the results combined and sorted by the time
taken in C++. The plot on the left are the raw results, whereas the plot on the right
shows the results in a log-log scale.

similar time. This shows that for smaller instances, introducing a wrapper does not

effect the time taken.

In general, the single Cypher query is rather inefficient when finding the minimum

dominating set, even with the introduction of a wrapper. When Sparsity is compared

to the C++ implementation, it is slower. This was to be expected as the multiple

over-heads which come with a graph database may effect the time it takes to query

the graph. For the instance soc 52, Sparsity and C++ had the same time taken, but

for all other instances it was slower.

4.6 Discussion

Table 4.2 gives a summary of the implementations when compared to the size of the

instances.

131

pokec_500

anna

gplus_200

adjnoun

barabasi_100_2

huck

polbooks

barabasi_100_4

lesm
is

barabasi_100_3

soc52

dolphins

Graphs c++ found in <1ms

Cypher without Wrap
Cypher with Wrap
Sparsity
C++ Implementation

Ti
m

e T
ak

en
 (s

)

0

2

4

6

8

10

pokec_500

anna

gplus_200

adjnoun

barabasi_100_2

huck

polbooks

barabasi_100_4

lesm
is

barabasi_100_3

soc52

dolphins

Graphs c++ found in <1ms log-log
Cypher Without Wrap
Cypher with Wrap
Sparsity
C++ Implementation

Ti
m

e T
ak

en
 (s

)

10−4

10−3

0.01

0.1

1

10

100

Figure 4.3: The above plots show the graphs that took <1ms in C++ to complete.
The plot on the left shows the raw results, whereas the plot on the right shows the
results to a log scale.

all barabasi_100

barabasi_100_4
barabasi_100_3
barabasi_100_2

Ti
m

e T
ak

en
(s

)

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations
0 5 10 15 20 25

all barabasi_100 log-log

barabasi_100_4
barabasi_100_3
barabasi_100_2

Ti
m

e T
ak

en
(s

)

1

0.5

Iterations
1 10

Figure 4.4: A comparison of the three different barabasi 100 instances and the
iterating time taken to find a dominating set with the Cypher and wrapper. The
left plot shows the raw results, whereas the right plot shows the results to a log-log
scale. Each iteration is the addition of a node into the dominating set.

132

barabasi_1000_3

Ti
m

e T
ak

en
 (s

)

0

50

100

150

200

250

Iterations
0 25 50 75 100 125 150

barabasi_1000_4

Ti
m

e T
ak

en
 (s

)

20

30

40

50

60

70

Iterations
0 25 50 75 100 125

barabasi_1000_3 log-log

Ti
m

e T
ak

en
 (s

)

100

20

50

200

Iterations
1 10 100

barabasi_1000_4 log-log

Ti
m

e T
ak

en
 (s

)

50

Iterations
1 10 100

Figure 4.5: The increase in time for each iteration of the single Cypher query in the
barabasi 1000 plots that finished. The two left plots show the raw results, whereas
the two right plots show the results to a log-log scale. Each iteration is the addition
of a node into the dominating set.

133

gplus_200

Ti
m

e T
ak

en
 (s

)

0.75

1

1.25

1.5

1.75

2

Iterations
0 5 10 15 20

gplus_500

Ti
m

e T
ak

en
(s

)

4

6

8

10

12

Iterations
0 10 20 30 40

pokec_500

Ti
m

e T
ak

en
(s

)

3

4

5

6

7

8

9

10

Iterations
0 2.5 5 7.5 10 12.5 15 17.5

pokec_2000

Ti
m

e T
ak

en
(s

)

75

100

125

150

175

200

Iterations
0 20 40 60 80

Figure 4.6: The increase in time for each iteration of the single Cypher query in the
social media graphs. Each iteration is the addition of a node into the dominating
set.

134

gplus_200 log-log

Ti
m

e T
ak

en
 (s

)

1

Iterations
1 10

gplus_500 log-log

Ti
m

e T
ak

en
(s

)

10

5

Iterations
1 10

pokec_500 log-log

Ti
m

e T
ak

en
(s

)

10

5

Iterations
1 10

pokec_2000 log-log

Ti
m

e T
ak

en
(s

)

100

Iterations
1 10 100

Figure 4.7: The increase in time for each iterations of the single Cypher query in
the social media graphs displayed in log-log plots. Each iteration is the addition of
a node into the dominating set.

135

lesmis

Ti
m

e T
ak

en
 (s

)

0.2

0.3

0.4

0.5

0.6

0.7

Iterations
0 2.5 5 7.5 10 12.5

adjnoun

Ti
m

e T
ak

en
(s

)

0.8

1

1.2

1.4

1.6

Iterations
0 5 10 15 20

anna

Ti
m

e T
ak

en
 (s

)

1

1.5

2

2.5

3

3.5

Iterations
0 2.5 5 7.5 10 12.5

dolphins

Ti
m

e T
ak

en
(s

)

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Iterations
0 2.5 5 7.5 10 12.5 15 17.5

polbooks

Ti
m

e T
ak

en
(s

)

0.4

0.6

0.8

1

1.2

Iterations
0 2.5 5 7.5 10 12.5 15

homer

Ti
m

e T
ak

en
 (s

)

50

60

70

80

90

100

Iterations
0 20 40 60 80 100

huck

Ti
m

e T
ak

en
(s

)

0.4

0.6

0.8

1

1.2

Iterations
0 2 4 6 8 10

Figure 4.8: The increase in time for each iteration of the single Cypher query in
Newman’s repository . Each iteration is the addition of a node into the dominating
set.

136

lesmis log-log

Ti
m

e T
ak

en
 (s

)

0.5

Iterations
1 10

adjnoun log-log

Ti
m

e T
ak

en
 (s

)

1

Iterations
1 10

anna log-log

Ti
m

e T
ak

en
 (s

)

1

2

Iterations
1 10

dolphins log-log

Ti
m

e T
ak

en
(s

)

0.2

Iterations
1 10

polbooks log-log

Ti
m

e T
ak

en
(s

)

1

0.5

Iterations
1 10

homer log-log

Ti
m

e T
ak

en
 (s

)

100

Iterations
1 10 100

huck log-log

Ti
m

e T
ak

en
(s

)

1

0.5

Iterations
1 10

Figure 4.9: The increase in time for each iteration of the single Cypher query in
Newman’s repository displayed in log-log plots. Each iteration is the addition of a
node into the dominating set.

137

barabasi_1000_2

Ti
m

e T
ak

en
(s

)

0

2500

5000

7500

104

1.25×104

1.5×104

Iterations
0 50 100 150 200

gplus_2000

Ti
m

e T
ak

en
 (s

)

0

200

400

600

800

Iterations
0 25 50 75 100 125 150 175

barabasi_1000_2 log-log

Ti
m

e T
ak

en
(s

)

10

100

1000

104

Iterations
1 10 100

gplus_2000 log-log

Ti
m

e T
ak

en
 (s

)

100

200

500

Iterations
1 10 100

Figure 4.10: The increase in time for each iteration of the single Cypher query in
each of the graphs that were not found. The plots show both the raw and the log-log
plots for the instances. Each iteration is the addition of a node into the dominating
set.

138

Table 4.2: A table showing how well the different systems coped with four different

categories of graphs. An ‘x’ represents that the dominating set of the majority of

the graphs in the category were not found. A ‘∼’ represents that the dominating

set for most of the graphs in the category were found. A ‘X’ represents that the

dominating set for all of the graphs in the category were found.

Implementations Large Medium Small

Instances Instances Instances

Cypher One Query x ∼ X

Cypher With Wrapper x X X

Sparsity With Wrapper X X X

C++ Implementation X X X

The graphs were categorised into large, medium and small instances, the instances

categorised as large are barabasi 10000 2,barabasi 10000 3,barabasi 10000 4, pokec 2000

and gplus 2000. The instances categorised as medium include barabasi 1000 2, barabasi 1000 3,

barabasi 1000 4, pokec 500 and gplus 500. And the instances categorised as small

are barabasi 100 2, barabasi 100 3, barabasi 100 4, adjnoun, anna, dolphins, polbooks,

soc52, huck and lesmis.

For the small instances, all of the implementations could find a dominating set

using the greedy algorithm. For the medium instances, all of the implementations

apart from the single Cypher query could find a dominating set. Cypher as a single

query could not find the dominating set for the instance barabasi 1000 2. For the

large graph, the single Cypher query could only find a dominating set for pokec 2000.

139

For the larger barabasi 10000 instances, a single node for the dominating set could

not be found. This was also the case for Cypher with a wrapper.

The results in table 4.6 describe the different slopes of the plots in figures 4.2,

4.3, 4.4, 4.5, 4.6, 4.8 and 4.10 by using the Least Squares Linear Fit Equation. The

first four columns are for the raw data, with the final four columns for log-log graphs.

The slope columns are the calculation of the full slope, the error is the standard error

of the slope, the first slope is the either the first half of the slope, or the point on

the slope at which the slope has a significant change and finally the second slope is

the rest of the slope after the first slope.

Figure 4.2, gives the plot of all results combined. Almost instantly we can observe

that Cypher without a wrapper takes the longest time to complete, with the C++

implementation taking the least amount of time. The instances that cause both

Cyphers to crash have a spike in time for both C++ and Sparsity, which implies

that Cypher struggles with larger instances.

Following on from this, figure 4.3 shows the plot of the C++ implementations

that took less than 1ms to complete. This provides a deeper insight for the smaller

instances. From the log-log plot, we can see that all implementations rise in a similar

fashion. One interesting detail is that Cypher with a wrapper, and Cypher without a

wrapper both have similar starting times. However, once the instances become larger,

Cypher without a wrapper starts to take longer. Another interesting feature is for the

instance soc52, Sparsity takes the same amount of time as the c++ implementation.

This could because the instance is relatively small.

Figure 4.4 shows the increase in time for each of of the Cypher queries created

140

for the barabasi 100 instances. A feature that instantly stands out is that for the

instance barabasi 100 3 the final created query takes less time than the previously

generated query. It could be that in generating the final query, a function within

Cypher isn’t called, thus reducing the run-time of the algorithm. This characteristic

is also shared with barabasi 100 2, although not to the same extent.

In figure 4.5, we explore in similar fashion, the time taken for each iteration of the

generated cypher without a wrapper query to process the barabasi 1000 instances.

These instances did find a result. This could be because of the increased search space

for edges in comparison to the barabasi 1000 2 instance. Instance barabasi 1000 3

rises at what could be seen as an exponential rate in time taken, whereas for

barabasi 1000 4 it is in a more linear fashion.

Figures 4.6 and 4.7 explores how Cypher without a wrapper processes the social

network instances. The gplus 200 instance is interesting in that the timing fluctuate

with each generation of the cypher query. As the heuristic is not guaranteed to find

the same solution in each run, it could be that the generated solutions are causing the

time fluctuations. The genral trend for all instances is an increase in time, however

there does seem to be a number of fluctuations.

The figures 4.8 and 4.9 explores Newman’s data repository and how Cypher

without a wrapper interacted with these data sets. The fluctuations identified with

the social networks are clearly present here also. Especially instance homer, where

the closer the query got to finding a minimum dominating set, the more fluctuation

in timings.

Finally, the plot in figure 4.10 shows the networks that caused Cypher without a

141

wrapper to crash. One item in common with all ofthe instances is that there seems

to be a certain point that causes the timings to increase exponentially. For the social

media instances, this seems to be after the 100th generated query, and for the other

instances this seems to be after 150 generations. This implies the graph engine begins

to be effected by memory limitations at these stages.

For all of the instances apart from two, the second slope of the log-log graphs

is higher when compared to the first slope, sometimes significantly higher than the

first slope as shown for barabasi 1000 3. This implies that Cypher does not scale

well. However, for two of the instances this was not the case, for barabasi 1000 4

and anna.

In general, the log-log slopes are generally around the 0.3 - 0.4 mark. For

barabasi 1000 2, the slope is above 1. However the first part of the slope is 0.4,

while the second half, where the slope exponentially increases, the slope increases to

a factor 8. For the instances barabasi 100 4, barabasi 1000 2, barabasi 1000 3, lesmis

and gplus 2000 the second part of the slope is greater than 1.

One item of note is that both graph databases relied on an external ”wrapper”

to iterate functions within the query methods. One reason for cypher is that due to

the declarative nature of the language, introducing a for loop may clash with other

internal features that rely on recursion. For sparsity, this is less of an issue, due to

the imperative nature of the query language. The introduction of an in-built iterator

for functions within the libraries may increase the efficiency of algorithms.

Considering that Cypher is a declarative expressive language, our implementation

has only two lines of code less in comparison to the C++ implementation. This is

142

Table 4.3: The table shows the slope of the plots for the raw data and log-log graphs
in figures 4.2, 4.3, 4.4, 4.5, 4.6, 4.8 and 4.10

Graph Raw Data log-log
Slope Error First Slope Second Slope Slope Error First Slope Second Slope

barabasi 100 2 0.04 0 0.04 0.06 0.56 0.04 0.24 0.92
barabasi 100 3 0.03 0 0.02 0.05 0.33 0.04 0.25 0.95
barabasi 100 4 0.05 0 0.05 0.08 0.39 0.04 0.33 1.04
barabasi 1000 2 9.27 1.38 1.77 294 1.09 0.08 0.4 8.12
barabasi 1000 3 1.03 0.06 0.5 6.43 0.54 0.03 0.27 2.38
barabasi 1000 4 0.26 0.01 0.7 0.14 0.23 0 0.25 0.19

adjnoun 0.04 0 0.03 0.06 0.23 0.04 0.06 0.58
anna 0.19 0.03 0.4 0.07 0.49 0.04 0.7 0.2

dolphins 0.01 4.07 0.01 0 0.2 0.01 0.13 0.21
polbooks 0.05 0.01 0.08 0.05 0.46 0.04 0.3 0.34

homer 0.39 0.02 0.75 0.19 0.16 0.01 0.09 0.17
huck 0.1 0.01 0.13 0.05 0.53 0.04 0.64 0.47

lesmis 0.03 0.01 0.01 0.17 0.29 0.09 0.15 3.46
pokec 500 0.36 0.02 0.53 0.21 0.33 0.01 0.33 0.33
pokec 2000 1.68 0.03 2.28 1.15 0.3 0.01 0.18 0.38
gplus 200 0.06 0 0.07 0.03 0.31 0.02 0.28 0.37
gplus 500 0.16 0.01 0.24 0.12 0.3 0.01 0.22 0.33
gplus 2000 2.13 0.16 0.79 21.5 0.38 0.03 0.24 7.66

also only the case if the size of the dominating set is 1. If it is greater, then the size

of the query itself grows by the size of the dominating set. One might have expected

the language to be more concise and expressive.

4.7 Conclusion

In summary, we found that graph databases are not yet reaching their full potential

when implementing computational algorithms using the toolsets provided by the

databases.

We found the query tools in both client-server and embedded databases are

missing some fundamental features which means that there is a reliance on a high-

level language to fill in the gaps. For Neo4j in particular, a simple loop procedure

that can allow a part of the query to be repeated is a feature that could make

143

the algorithm more efficient when implemented using Cypher. As well as that, the

ability to hold the state of a variable inside of a query seems a feature that is currently

missing from the query languages.

One of the major advantages of graph databases over other database families

is the graph structure. This should allow an efficient implementation of a variety

of graph algorithms. While the current query methods do allow this to an extent,

there are some key features , such as looping functions, that are missing. We believe

this deficiency represents a significant opportunity for graph database systems to

implement and address these issues. From this, we propose that a way of iterating

functions within a query would be an useful addition for the query methods provided

by graph databases.

144

In a gentle way, you can shake

the world.

Mohandas Karamchand Gandhi
CHAPTER 5

Further implications of other problem implementations

Chapters 3 and 4, explored Non-deterministic Polynomial-time Hardness (NP-Hard)

and Non-deterministic Polynomial-time Completeness (NP-Complete) problems. In

this chapter, we explore problems that fall into NP-Complete and Polynomial (P)

classification. As shown inthe previous chapter, Graph database systems are found

to be inefficient when given a NP-complete problem that relied on looping functions.

This gives us a chance to explore the effectiveness of graph database systems when

given problems that can be found within graph database query search spaces.

The contribution that can be found in this chapter is a further exploration

of graph database systems by having novel implementations of the Betweenness

Centrality, Graph Diameter and the Component Labelling algorithms. This allows

145

an in-depth investigation of built-in functions of the query methods provided by the

systems.

The chapter is structured as follows; section 5.1 introduces the topics and problems

discussed in the chapter, section 5.1.1 gives a review of the literature (some repetition

of chapter 2 may occur here), section 5.2 explains some of the procedures used in

the query languages for this chapter and the following section gives some high-level

implementations of the problems used. Section 5.4 then gives the implementations

of the problems in the graph query languages. The results of the experiments are

then given in section 5.5 followed by a discussion and conclusion.

5.1 Introduction

Heuristical algorithms are difficult to implement using the query methods provided

by database systems, as shown by the previous chapter. Declarative query languages

such as Cypher can potentially hinder complex scenarios, and imperative query

languages do not provide enough functionality for the processes used by the Minimum

Dominating set problem. We can investigate how well database system can efficiently

perform algorithms from different complexity classes that do provide a consistent

solution.

Firstly it is worth recapping that finding patterns within a graph is computationally

hard (Barceló et al., 2011), thus querying graph databases are computationally

hard (Barceló Baeza, 2013). With the addition of Atomicity, Consistency, Isolation

and Durability (ACID), there is a danger that the graph database systems cannot

146

efficiently run algorithms. As well as that, a graph query language has not yet been

formalised.

Data is coming from all sorts of places (Hawick, 2014). Different algorithms give

different insights to each of these data sets. With all of this extra data, the definition

of a “large” database has changed (Waltz et al., 1987). Some graph algorithms can

be parallelised (Hawick et al., 2010b; Dineen et al., 2011; Gebremedhin and Manne,

2000) for use on GPUS (Leist and Hawick, 2011; Gallian, 2005). Graph metrics allow

complexities within data to be found across mutltiple types of data sets. For example,

graph metrics have been used for accessing electrical grids (Hawick, 2012b,a) as well

as water networks (Hawick, 2012c) and biology data analysis (Hawick, 2011).

In this chapter we focus on three different problems where common algorithms

produce results that do not alter in different runs. The first problem is Betweenness

Centrality. It is a highly computational algorithm, with a complexity of O(V 3).

Betweenness centrality has been used in electricity networks (Hawick, 2012b,a) and

for protein-protein interaction (Hawick, 2014). We will focus on the unoptimised

version as a comparison.

The second problem is the Graph Diameter problem. This is described as finding

the “longest shortest path” in an instance, or the longest eccentricity. While it is

similar to the betweenness centrality algorithm in that every shortest path in a graph

can be visited, it requires less computational power. This is because a solution can

be found with a more efficient algorithm; the Floyd-Warshall algorithm, which has

a complexity of O(|V |3).

The final problem we explore is Component Labelling. The components of an

147

instance are labelled, using the one pass method. The label is a unique integer that

indicates if the node is part of larger “component” in a graph. This is an interesting

problem in that in an undirected graph, should the algorithm run to its end, every

node would be labelled the same. Therefore, this problem is best explored in time-

steps.

The three problems provide a unique perspective on algorithms, providing unique

search spaces and each taking advantage of different procedures inside of graph

database systems.

5.1.1 Graph databases

To recap from previous chapters, limitations of relational databases are widely known.

This limitation led to the creation of Not Only SQL (NOSQL) database families.

NOSQL databases focus on the scalability of data. One of the database types within

this family are graph databases, a unique family that provides a graph-based engine

for storage of data.

Graph theory has benefited from decades of research. This has allowed it to

produce a selection of algorithms which can be used in data. These algorithms could

potentially be applied across a variety of graphs and graph models.

As the underlying nature of graph databases are graphs, it allows the possibility of

combining graph algorithms and graph databases. Graph Databases use the property

graph model to store data. Previous graph database models such as GROOVY,

GOOD and others are known and are reviewed in (Angles and Gutierrez, 2008;

Angles, 2012). The flexibility of the property graph model allows for a wide range

148

of data to be imported into a database.

Typically, graph databases can be defined into two separate types; they can be

either embedded or client-server.

An embedded database is stored local to a machine. Queries to the database are

typically made by in-code library calls supplied by the database systems. At the

time of writing, the most popular embedded database is Sparsity (formerly DEX).

A client-server database uses an external server engine which can be queried by

a client. An example of a popular client-server database system is Neo4j. Embedded

database systems typically do not have a query language, as opposed to client-server

database systems, which typically do.

Other graph database systems have been reviewed in Buerli (2012). For experiments

in this chapter, representing embedded databases is Sparsity, and representing client-

server databases is Neo4j. They have been compared in previous literature (Beis

et al., 2015; Vicknair et al., 2010), as well as in the previous chapter.

5.2 Query languages

As stated in previous chapters 2 and 4, client-server databases typically provide

a query language to query a database. At the time of writing, there is not a

standardised query language for graph databases.

One such query language that has gained protraction is Cypher. Cypher is a

declarative scala-based query language created by Neo4j. It heavily uses ASCII-

like symbols to represent query expressions. For example, a () represents a node

149

in a query. Two versions of Cypher exist, Cypher and openCypher. openCypher is

an attempt to standardise a query language for graph databases, and is essentially

Cypher, with some features excluded.

Cypher has been found to have some limitations, such as the inability to hold

state or allow parts of a query to be re-cursed (Balaghan et al., 2017), as shown in

the previous chapter. This inability effects the implementations of some algorithms

within Cypher, such as finding the minimum dominating set in a graph, or others

which require state. The query language Cypher has some in-built functions that

are some famous graph algorithms. Some of these are the shortest path and the all

shortest path algorithms.

In contrast, embedded databases typically provide imperative-based libraries as

functions to query the databases. These have some calls within the libraries which

act as the functions found within query languages.

5.3 Exploration of problems

Betweenness Centrality, Graph Diameter and the Component Labelling problems

have been implemented in Sparsity and Neo4j. The implementations take advantage

of built-in functions such as finding the shortest path between two nodes. This allows

us to explore how reactive the graph database engines are to pre-built functions when

used as part of a bigger algorithm.

To begin with, we recap some features of graph G. In this section, a graph is

assumed to be a simple, undirected without self-loops. A digraph is referred to as

150

G = (N,E) whereby N is a non-empty set of nodes (n1, n2...nn) and E is a set of

edges such that E = NxN . A directed edge between two nodes is depicted as [a, b],

and [a, b] ∈ E. A graph is directed if E is a set of ordered pairs. The digraph may

contain multiple edges and self-loops. However they do not contain dangling edges.

A path p is a sequence of nodes that lead from a source node v1 to a sink node vn.

The path contains a set of nodes (v1, v2...vn) and a set of edges ([v1, v2], [v2, v3]....[vn−1, vn])

subject to vn ∈ N and [vn, vn+1] ∈ E. The immediate nodes in a path refer to the

nodes that do not include the source or sink of the path.

Finding the shortest path between two nodes is a well known, and well researched,

graph theory problem. The most famous algorithm for finding the shortest path is

the one created by Dijkstra (1959). Dijkstra’s original algorithm had a complexity of

O(|V 2|) however improvements have been made to eventually give the complexity of

O(|E| + |V |log|V |) (Fredman and Tarjan, 1987). It finds the shortest possible path

between two given nodes d(x, y).

Another method of finding the shortest path between two nodes in a graph is

by using the Floyd-Warshall algorithm (Floyd, 1962). A single run of the algorithm

returns the lengths between all of the pairs of nodes in a graph.

A metric that build on top of the shortest path is the Graph Diameter problem.

The diameter of the graph is the “longest shortest path”, i.e. maxd(x, y) also, the

max eccentricity. The graph diameter can be found with a complexity of O(|V 3|)

using Floyd-Warshall’s algorithm (Floyd, 1962).

Another variant of the shortest path is the all shortest-paths algorithm. The

all shortest-path algorithm finds all of the shortest paths between two given nodes,

151

Algorithm 22 The Floyd-Warshall shortest path algorithm (Floyd, 1962)

let dist be a N x N array of distances, init set to ∞
for node n in N do

dist[n][n] ← 0
end for
for edge e in E do

dist[e.source][e.sink] ← weight(e) . In an unweighted graph set to 1
end for
for int k to N.size() do

for int i to N.size() do
for int j to N.size() do

if dist[i][j] > dist[i][k] + dist[k][j] then
dist[i][j] ← dist[i][k] + dist[k][j]

end if
end for

end for
end for

should multiple paths exist. It tends to return a list of possible paths, all of which

are the same length.

This variant can be used to find the betweenness centrality of a graph. The

Betweenness Centrality problem finds the most “critical node” in a graph. This can

be found in equation 5.1 (Freeman, 1977, 1978).

gk =
∑
i 6=j

ck(i, j)

c(i, j)
(5.1)

One particular item of note is that the all shortest path algorithm, rather than

the shortest path is used to find all of the shortest paths between two nodes. This

allows for multiple short paths to be found between any two nodes.

If a shortest path is found, any immediate nodes are then given a weighting. The

152

weighting is calculated by dividing 1 by the number of shortest paths found. For

example, if a single shortest path is found, then each of the immediate nodes will add

one onto their weights. If two paths exist, then 1/2 is added onto the weights. The

node with the highest weighting in the graph is deemed the most “critical” node.

Finding the Betweenness Centrality of a graph is a very computationally demanding

algorithm, as every shortest path in a graph must be found in order to give the correct

weightings to the nodes, as opposed to the other two problems being investigated in

this chapter.

The Component Labelling problem find clusters in a graph. The pseudocode

can be found in algorithm 23. To begin with, all nodes in the graph are given a

unique “label”. In this instance, the label is a unique integer value. Beginning with

a starting node n , check the neighbourhood of n, if any of the “label”s of the nodes

in the neighbourhood are lesser than n, then set the label of n equal to the label of

the neighbour.

Algorithm 23 The Component Labelling Algorithm

1: Give all nodes a unique label
2: while There are label changes do
3: for Node n in G do
4: for Neighbourhood l in n do
5: if l then.label < n.label
6: n.label = l.label
7: end if
8: end for
9: end for

10: end while

153

5.4 Problem implementions

The algorithms in the previous section have been implemented into Sparsity and

Neo4j. They have been implemented into Neo4j using Cypher and Sparsity using Java

with the libraries supplied by Sparsity. We have also implemented these algorithms

into C++ as a comparison.

5.4.1 Implementations in Neo4j

Cypher has an inbuilt function call which provided the shortest path between two

given nodes. The query in alg. 24 gives a usage example of the shortest path

algorithm. Within the MATCH clause, the shortest path is given as a in-built

function.

Algorithm 24 A Cypher query to find the shortest path between two nodes.

1: MATCH (n), (m), p = shortestpath((n)-[*]->(m))
2: WHERE ID(n) = i and ID(m) = j
3: RETURN p

The shortest path algorithm is an in-built function in Cypher. It can be implemented

by using the query in alg. 24. The shortest path query in Cypher differs from

Dijkstra’s algorithm in that it starts from both the source and destination node. In

the MATCH clause in alg. 24, p is finding the shortest path between nodes n and

m. The result is then returned as a Path.

By using this in-built shortest path function, we can find the Graph Diameter

algorithm in Cypher. The query in alg. 25 shows how we can achieve this. Line one

of the query essentially states find every single shortest path possible in graph g.

154

Algorithm 25 A cypher query to find the diameter of a graph.

1: MATCH p= shortestpath((n)-[*]->(m))
2: RETURN length(p)
3: ORDER BY length(p) DESC
4: LIMIT 1

The remainder of the query essentially states return all of the found paths, and

order them descending by length and then to reduce this list to the top result. The

result is limited to one as only the first item in the list would give the longest shortest

path, and thus the graph diameter. This optimisation also reduces the search space

required by the query.

A separate function that builds upon the shortest path is the all shortest-path

function. The all shortest-path function finds all of the shortest paths between two

nodes. An example of the call can be found in algorithm 26.

Algorithm 26 The all shortest-path function in a Cypher query

MATCH p=allShortestPaths((a)-[*]->(b))
WHERE a <> b
RETURN p

This can be used to find the Betweenness Centrality. Building upon the query

created by Münch (2017) in his blog, algorithm 27 gives the query that can be used

in Cypher to find the Betweenness Centrality. It firstly finds all of the shortest paths

between a and b. It then collects the paths and puts them into a list. The count

of the size of the list is the total count of shortest paths and is saved as allcount.

UNWIND is used to split the list into separate entities. UNWIND is then again used

to remove the first and last nodes in each of the paths, giving the immediate nodes

a specific weighting. The two WITH clauses allow the sum of immediate nodes to

155

be kept for each individual node in the query. Finally, an ordered list of every node

with its weighting is returned.

Algorithm 27 The betweenness centrality algorithm in Cypher. Adapted from
(Needham, 2013).

1: MATCH p=allShortestPaths((a)-[*]->(b))
2: WHERE a <> b
3: WITH a,b,collect(p) AS allpaths,
4: count(p) AS allcount
5: UNWIND allpaths AS p
6: UNWIND nodes(p)[1..-1] AS n
7: WITH n,a,b,1/tofloat(allcount) AS fraction
8: RETURN ID(n), sum(fraction)
9: AS betweenness centrality

10: ORDER BY betweenness centrality DESC

The component labelling algorithm can be defined as a query in algorithm 28.

The algorithm sets each node to a unique “label” by using its unique database ID.

Then every single pair of nodes in the graph are compared, with the label property

being compared and the lower label being set.

Algorithm 28 The component labelling algorithm in Cypher.

1: MATCH (n)
2: SET n.label = id(n) . Set the label to the Unique Database ID as a Float
3: WITH n
4: MATCH (m)–>(j)
5: WHERE tofloat(j.label) > tofloat(m.label)
6: SET j.label = m.label

An interesting feature of Cypher with the component labelling in algorithm 28

is that the algorithm automatically recurses through until the “final” time-step of

the algorithm is complete. For a graph this will mean that the label of each node

156

in the graph will be the same. While for a digraph, clusters will be found. This is

because the directions of the edge will not always allows for the smallest label to be

swapped. An item of note is recursion in the queries. Recursion is limited to what

can occur within a query statement in Cypher, rather than a function. As shown in

algorithm 28, setting the labels of all of the nodes can be complete in a single line of

code. However, expanding this into a function is limited by Cypher. While recursion

is possible on singular statements, entire functions require more.

5.4.2 Implementations in Sparsity

The three problems were implemented into Sparsity. The first item of note is that

there are very few in-built procedures in Sparsity libraries. A lot of the algorithms

had to be programmed with the external language.

Algorithm 29 The all shortest-paths problem in Sparsity.

1: Objects neightbourOfNode;
2: neighbourOfNode = g.neightbours(currentnode, GenericEdge,

EdgeDirection.Any)
3: ObjectsIterator it= neighbourOfNode.iterator();
4: while it.hasnext do
5: alt = distance[currentverrtex]
6: neigh distance = distance[it.next]
7: if alt <= neigh distance then
8: . Then update the distance,and check if it is longer than the previous

shortest path, if so, end algorithm
9: end if

10: end while

Algorithm 29 shows how the inner core of the all shortest-path algorithm has

been implemented using Sparsity’s libraries, as it does not have this function built-

157

in. Therefore for the implementation of the Betweenness Centrality problem, the all

shortest-path algorithm has been manually created. All of the graph logic is done

by the libraries inside of Sparsity.

Algorithm 30 shows the implementation of the component labelling algorithm in

Sparsity. The in-built neighbours function is used to find the neighbours of the nodes

in the graph. The attributes within the graph are set using the library calls as well.

Algorithm 30 The component labelling algorithm in Sparsity.

1: AllNodes = getAllNodes(); Graph g; change = false
2: for long j : AllNodes do
3: g.setAttribute(j, LabelAttrib, new Value.setInteger(id))
4: end for
5: while change do
6: for long i : AllNodes do
7: Objects neighbourOfNode
8: neighbourOfNode ←g.neighbours(i,GenericEdge,Edgedirection.Any)
9: currentLabel ← g.getAttribute(i,labelAttrib)

10: original ← currentLabel
11: ObjectsIterator it ← neighbourOfNode.iterator;
12: while it.hasnext do
13: currOID ← it.next
14: neighbourLabel ← g.getAttribute(currOID, labelAttrib)
15: if currentLabel >neighbourLabel then
16: currentLabel ← neighbourLabel
17: end if
18: end while
19: if currentLabel != original then
20: g.setAttribute(i, labelAttrib,new Value.setInteger(currentLabel))
21: change = true
22: end if
23: end for
24: end while

158

Finally, the graph diameter algorithm uses the same functions as the component

labelling algorithm. As the fastest solver of the Graph Diameter problem is the

Floyd-Warshall algorithm, most of the solution has again been programmed in the

third party language.

5.5 Results

We have taken the various graph algorithms in section 5.4.1 and have implemented

them into Neo4j, Sparsity and our own C++ implementations. The algorithms have

been implemented in Neo4j using the queries in section 5.4.1, in Sparsity using the

code shown in 5.4.2 and as a direct comparison, the same algorithms implemented

in C++ by ourselves. We compared the results of the implementations to ensure

accuracy.

The data sets used to create the graphs include a karate network (Zachary,

1977), a dolphin social network (Lusseau et al., 2003) , a political book network

, a political blog network (Adamic and Glance, 2005), a yeast protein interaction

network (Xenarios et al., 2001) and a arxiv general relativity collaboration network.

As well as that, some real-world social networks were used (Chalupa, 2017; Chalupa

et al., 2017).

We have also created some instances based on the Barabási-Albert model (Barabási

and Albert, 1999). For the Barabási-Albert instances we have used the preferential

attachment property, and gave the instances either 100, 1000 or 10000 nodes. For

each of these instances, they had either a seed number of 2, 3 or 4. The same instance

159

that was created was used for each of the algorithms.

Sections 5.5.1, 5.5.2 and 5.5.3 give the results for the Component Labelling,

Betweenness Centrality and Diameter implementations respectively.

5.5.1 Component Labelling

Table 5.1 gives the raw results for the component labelling implementations. The

full raw data plotted results are shown in figure 5.5.1. For a clearer comparison,

Sparsity and the C++ implementation have been plotted into figure 5.5.1. For both

of the plots, the x-axis has been sorted in the order of time taken for Cypher. This

was to make the plot more clear. The order in which the plots are sorted can be

found in table 5.2.

The timing results for the component labelling algorithm are very interesting.

To begin with, the C++ implementation completely outperforms the other two

implementations. For C++, all instances apart from barabasi 1000 4 and netscience,

were solved in less than 0.01 seconds. Sparsity also performs quite well, with three

instances equalling C++, and for every other instance it is quicker than Cypher.

Interestingly, there seems to be a spike for Sparsity and C++ when it comes to the

netscience instance, something that does not occur for Neo4j. As Neo4j goes to

the final state of the instance instantly, it could be that a certain timestep in the

algorithm run could cause a spike in time for the other implementations.

For Sparsity and C++, it is clear that the additional complexities that arise with

database queries have effected the performance of Sparsity. When the performance

results of sparsity are compared with Cypher, it is significantly faster. However,

160

Figure 5.1: Results of the component labelling problem. For both of the plots, the
labels for the data sets on the x-axis can be found in table 5.2. The first plot shows
the raw data results, and the second shows the log-log results.

161

when compared to our C++ implementation, it is significantly slower.

In comparison to the other two algorithms, Cypher is significantly slower than

the other implementations for all instances. An interesting feature of Cypher’s

implementation of how the engine handles the component labelling query is that

all iterations of the loop are run in one go. This means that for undirected graphs,

the “label” of all of the nodes will be the same. This takes away the information

that the algorithm could potentially give about the instances.

5.5.2 Betweenness Centrality

The raw results of the Betweenness Centrality problem implementations can be found

in table 5.5.2. A N/A signifies that the instance in that implementation did not finish

within a reasonable time-frame (>a weeks computation) or it caused an internal

database crash. The raw and log-log plot of this data can be found in figure 5.3. The

x-axis has been sorted to time taken for Cypher, and then time taken for Sparsity.

The order in which the data has been sorted can be found in table 5.4.

For the results given a N/A, this could either be a Java out of memory exception,

or crashes Neo4j without giving a response.

The first item of note is that apart from the instance dolphins and the instances

that did not finish, Neo4j outperforms the Sparsity and the C++ implementations.

Neo4j was the only system vendor to have an in-built allshortestpath function. This

implies that the allshortestpath function within Neo4j is efficient.

Another interesting finding from the Betweenness Centrality problem results is

that many instances did not finish for Neo4j. Instances barabasi 1000 4, homer and

162

Figure 5.2: A comparison of Sparsity and C++ of the Component Labelling. For
both of the plots, the labels for the data sets on the x-axis can be found in table 5.2.
The first plot shows the raw data results, and the second shows the log-log results.

163

Figure 5.3: Plot results of the betweenness centrality implementations. For both of
the plots, the labels for the data sets on the x-axis can be found in table 5.4. The
first plots shows the raw data results, and the second shows the log-log results.

164

pokec 2000 crashed Neo4j, but a result was found for Sparsity. This implies that the

procedure used by Neo4j is memory heavy, and would not scale above these instance

sizes, or it would scale, with more memory becoming available.

Sparsity’s implementations were faster than our own implementations. Sparsity

even found a result for instance pokec 2000, when neither the C++ nor the Neo4j

implementations could find one. This implies that Sparsity can be efficient for larger

instances.

5.5.3 Graph Diameter

Table 5.5 has the raw data results for the graph diameter implementations. A N/A in

the table signifies an out-of-memory exception. The raw data and the corresponding

log-log points have been plotted into figure 5.5.3. For the x-axis of these plots, the

data has been sorted by time taken in Neo4j, and the order of the instances can be

found in table 5.6.

dolphins, lesmis, huck, barabasi 100 2, barabasi 100 3, barabasi 100 4, polbooks,

gplus 200, gplus 500, barabasi 1000 2, barabasi 1000 3 and barabasi 1000 4 plots

indicate that the C++ implementation is more efficient. These instances are generally

small in nature. It is worth noting that for two small instances, adjnoun and

pokec 500, Sparsity is faster than the C++ implementation.

As the size of the instances grow, the more efficient Sparsity becomes in comparison

to C++.

It is worth noting that for the larger barabasi 10000 instances, Sparsity crashes

with an out-of-memory exception. Something that does not occur in Neo4j or

165

in the C++ implementation. For these instances, Neo4j outperforms the C++

implementation. This implies that even for larger instances, the shortest path

function in Neo4j is efficient for large data sets.

5.6 Additional discussion

From the results found in the previous section, some interesting features appear.

It is clear that the shortest path and the all shortest paths algorithms built into

Cypher are highly optimised. The timings of the betweenness centrality problem

show this. However, the use of these algorithms rely on having a amount of memory

available. Should it be available, it is fair to say that the algorithm would be quicker

than an unoptimised betweenness centrality algorithm written in C++.

When the component labelling algorithm is implemented into Cypher, we found

that it completed the algorithm to its final step. In an undirected graph, the final

step of the algorithm will give all of the nodes in the graph the same label. While

in a directed graph this could be useful, in an undirected graph the algorithm would

not produce results that are noteworthy.

The diameter algorithm results are very interesting. There are a few different

cross-overs when observing the log-log plots. To begin with, Neo4j is slower than the

other implementations, however once the instances became larger, it became quicker

than the C++ and the Sparsity timings. For the very small instances, the C++

implementations are quicker. As Graph Database systems have additional overheads

within queries to maintain ACID, the time increase could be because of this. Once the

166

Figure 5.4: Plot results of the graph diameter implementations. For both of the
plots, the labels for the data sets on the x-axis can be found in table 5.4. The first
plot show the raw data results, and the second shows the log-log results.

167

instances become larger, the timings of the Sparsity and the C++ implementations

become closer to each other. Sparsity crashes once the largest instances were loaded,

which is interesting as this does not occur on the other two instances.

A difference that can be seen almost immediately is the difference in amount of

lines required to complete each feature. Sparsity uses an imperative query language

style, whereas Cypher is a declarative language. For example, completing the single

shortest path algorithm in Sparsity uses 13 lines of code in comparison to Cypher,

which only uses 3.

The expressiveness of Cypher shines in some of the algorithms explored in this

chapter. For example, the graph diameter query only requires 4 lines of code. The

declarative style allows Neo4j to choose the most efficient method to run the query. In

the cases of betweenness centrality and the graph diameter problems, this is shown.

However, there is an issue. For the component labelling algorithm, it is most

beneficial when each loop of the algorithm can be stopped so that the components

can be studied. However, Cypher runs the algorithms until it has finished. For a

directed graph this would be less of an issue as some components would still occur

based on the start node. For an undirected graph, all of the nodes will have the same

label once the algorithm has finished its run, thus deeming the use of the algorithm

irrelevant.

168

5.7 Conclusion

Graph databases provide an unique opportunity for graph algorithms to be applied

to a database structure. Hence why having highly computational and optimised

algorithms is useful, as well as having an efficient graph engine to process said

algorithms. In conclusion to this chapter, the in-built functions within the languages

tend to be efficient time wise but there there are some features that could be

improved.

The in-built algorithms provided by the graph database system, tend to be

very optimised speed wise and can even outperform our own code. However, these

functions rely on a high amount of memory being present. This indicates that the

functions can be unoptimised, which can be seem form the performance results of

Betweenness Centrality.

If the amount of memory required is available, Neo4j’s performance in finding the

betweenness centrality of an instance was impressive. It seemed to be more more

efficient than Sparsity and maybe even a vanilla C++ implementation.

There is a function within Cypher that is missing but would be useful. Being able

to break within an inbuilt function would allow algorithms such as the component

labelling algorithm to be complete. We propose that a looping mechanism with the

ability to break out once a condition has been met would be a useful function for

query methods.

One item of note is Sparsity’s library functions calls were less than expected, and

that it was generally impressive in how efficient the basic graph functions were inside

of sparsity. The general expressiveness of cypher was also very impressive, with some

169

algorithms being expressed in a small number of lines of code.

To conclude, the query methods given by the graph database systems currently

rely on high memory usage, which implies the engines could be more efficient when

given a highly computational problem. As well as that, we propose an additional

function for the query methods. This function would build upon the loop function

proposed the previous chapter by allowing a state of the iteration to be stopped once

a given condition has been met. The instance that has been built at that time is

then to be returned.

170

Table 5.1: A table to show the time taken for Cypher, Sparsity and our own C++
implementations to find a solution for the component labelling algorithm against the
networks.

Graph CYPHER Sparsity Our Implementation
barabasi 100 2 2.92 <0.01 <0.01
barabasi 100 3 2.95 0.01 <0.01
barabasi 100 4 2.95 0.01 <0.01
barabasi 1000 2 33.86 0.04 <0.01
barabasi 1000 3 35.38 0.04 <0.01
barabasi 1000 4 37.51 0.05 <0.01
barabasi 10000 2 888.93 0.41 <0.01
barabasi 10000 3 1098.77 0.70 <0.01
barabasi 10000 4 1316.69 0.73 0.01

adjnoun 3.34 0.01 <0.01
anna 3.92 0.01 <0.01

dolphins 1.84 <0.01 <0.01
polbooks 3.74 0.01 <0.01

homer 20.45 0.04 <0.01
huck 2.76 <0.01 <0.01

lesmis 2.72 0.01 <0.01
pokec 500 20.82 0.02 <0.01
pokec 2000 115.32 0.09 <0.01
gplus 200 6.3 0.01 <0.01
gplus 500 16.74 0.02 <0.01
gplus 2000 95.21 0.09 <0.01
netscience 74.42 0.2 0.13

171

Table 5.2: The order of which data sets are shown in the Component Labelling result
graphs. They have been sorted by time taken for the Neo4j results from table 5.1.

Place Name of Data Set
1 dolphins
2 huck
3 barabasi 100 2
4 barabasi 100 3
5 barabasi 100 4
6 lesmis
7 adjnoun
8 polbooks
9 anna
10 gplus 200
11 gplus 500
12 homer
13 pokec 500
14 barabasi 1000 2
15 barabasi 1000 3
16 barabasi 1000 4
17 netscience
18 gplus 2000
19 pokec 2000
20 barabasi 10000 2
21 barabasi 10000 3
22 barabasi 10000 4

172

Table 5.3: A table to show the time taken for Cypher, Sparsity and our own C++
implementation to find a solution for the betweenness centrality algorithm against
the networks. N/A signifies that the instance did not finish in a reasonable time-
frame (> week computation), or caused a database crash.

Graph Cypher Sparsity C++ Implementation
barabasi 100 2 3.83 8.42 13.58
barabasi 100 3 3.85 8.58 13.78
barabasi 100 4 3.9 8.71 14.04
barabasi 1000 2 152.44 22241.86 147981
barabasi 1000 3 155.53 22695.89 147818
barabasi 1000 4 N/A 23024.58 148677
barabasi 10000 2 N/A N/A N/A
barabasi 10000 3 N/A N/A N/A
barabasi 10000 4 N/A N/A N/A

adjnoun 5.05 12.92 22.99
anna 5.1 22.01 57.08

dolphins 2.32 1.87 2.42
polbooks 2.23 10.32 19.38

homer N/A 2486.17 15026.1
huck 1.28 2.91 4.09

lesmis 0.97 3.73 4.85
pokec 500 33.85 1731.49 8710.89
pokec 2000 N/A 307704.41 N/A
gplus 200 5.61 76.21 226.04
gplus 500 40.08 1752.33 8891.7
gplus 2000 N/A N/A N/A
netscience 68.42 7195.34 14546.2

173

Table 5.4: This tables gives the order of data sets in the x-axis in figure 5.3. They
have been sorted by time taken for the Neo4j results from table 5.5.2.

Place Name of Data Set
1 lesmis
2 huck
3 polbooks
4 dolphins
5 barabasi 100 2
6 barabasi 100 3
7 barabasi 100 4
8 adjnoun
9 anna
10 gplus 200
11 pokec 500
12 gplus 500
13 netscience
14 barabasi 1000 2
15 barabasi 1000 3
16 barabasi 1000 4
17 homer
18 pokec 2000
19 gplus 2000
20 barabasi 10000 2
21 barabasi 10000 3
22 barabasi 10000 4

174

Table 5.5: A table to show the time taken for Cypher, Sparsity and our own C++
implementation to find a solution for the diameter of the instance. A N/A indicates
that an out of memory exception occurred.

Graph CYPHER Sparsity Our Implementation
barabasi 100 2 3.84 0.17 0.02
barabasi 100 3 3.74 0.06 0.02
barabasi 100 4 3.73 0.14 0.02
barabasi 1000 2 78.39 22.8 18.55
barabasi 1000 3 80.25 21.78 18.52
barabasi 1000 4 84.75 22.96 18.56
barabasi 10000 2 9150.55 N/A 18304
barabasi 10000 3 9031.16 N/A 18301.8
barabasi 10000 4 9587.51 N/A 18357.2

adjnoun 4.54 0.16 0.03
anna 5.48 0.09 0.6

dolphins 2.32 0.03 <0.01
polbooks 4.13 0.15 0.03

homer 33.96 4.19 3.32
huck 3.00 0.07 0.01

lesmis 2.83 0.07 <0.01
pokec 500 28.78 2.27 2.34
pokec 2000 586.76 84 148.11
gplus 200 8.54 0.36 0.15
gplus 500 30.8 3.27 2.33
gplus 2000 295.18 111.18 148.24
netscience 104.39 21.19 74.47

175

Table 5.6: The order of labvels on the x-axis in the Graph Diameter figures 5.5.3.
They have been sorted by time taken for the Neo4j results from table 5.5.

Place Name of Data Set
1 dolphins
2 lesmis
3 huck
5 barabasi 100 4
6 barabasi 100 3
7 barabasi 100 2
8 polbooks
9 adjnoun
9 anna
10 gplus 200
11 pokec 500
12 gplus 500
13 homer
14 barabasi 1000 4
15 barabasi 1000 3
16 barabasi 1000 2
17 netscience
18 gplus 2000
19 pokec 2000
20 barabasi 10000 4
21 barabasi 10000 3
22 barabasi 10000 2

176

My soul is painted like the

wings of butterflies, Fairy tales

of yesterday will grow but never

die, I can fly, my friends...

Freddie Mercury

CHAPTER 6

Conclusion

The overarching aim of this thesis was to explore a variety of graph problems in the

form of graph algorithms and graph algorithms in graph databases. A method for

this is by exploring algorithms with a varying complexity, from Non-deterministic

Polynomial-time Hardness (NP-Hard) to Polynomial (P). We begin with a NP-

Hard problem; the Longest Simple Cycle. We then went into depth with a NP-

Complete problems: Minimum Dominating Set and the Betweenness Centrality

problem; implementing this into graph database systems. We finished by exploring

P problems; the Graph Diameter and the Component Labelling algorithm.

Graph databases allow for a type of storage that should be able to combine

the mathematical field of graph theory and database literature. By exploring certain

177

algorithms that come from a wide variety of complex classes, we were able to understand

how graph engines react. In the following sections, we conclude the thesis and explain

some of the contributions found in the previous chapters.

6.1 The Longest Simple Cycle problem

The first algorithm that was explored in depth was the Longest Simple Cycle problem.

Two novel approaches to finding the longest simple cycle were proposed. One is an

exact solver based on a Integer Linear Programming (ILP) formulation, and the

second a heuristic that improves a simple Depth-First Search (DFS) search.

The Longest Simple Cycle problem is a known NP-Hard problem. Finding a fast

and efficient exact solver was always going to be extremely unlikely. However, an

ILP formulation was created. The base of the formulation uses a flow mechanic. It

was compared to a previous formulation. It was found that the new formulation was

significantly faster than previous formulations. However, in large instances it was

found to take too long to find a solution. As well as this it struggled with instances

that contained a complex branch structure.

Following on from the exact solver, a heuristic based off a simple DFS search was

created. The simple DFS search was improved with 4 perturbation improvement

operators. The original simple DFS search finds a cycle c. The first perturbation

operator goes through each pair of nodes ((n1, n2)...(nn, nn+1) in cycle c and checks

for a triangle. If a triangle exists, then the third node (n3) must be part of the longest

cycle and is added (...n1, n3, n2..). The second operator follows the same procedure,

178

but instead finds rectangles. The third operator looks for a different path. For

example, if (n1, n2, n3) is part of a long cycle c and the path (n1, n4, n2) also exists,

then the original path can be replaced, and the first two perturbation operators can

be run against the new pathway. The fourth operator is a repeat of the third, except

pathways of length two are found.

We compared the heuristic against the exact solver. The optimum results were

found for some of the easy and medium instances. As well as that, the heuristic

found long cycles that were close to those found by the exact solver for the larger

instances, in a fraction of the time.

We then explored implementing the heuristic and exact approaches into database

systems. An exact algorithm was created using the query language Cypher, however

even for small instances the amount of computational time required was over a week.

We found that creating a heuristic was essentially the same as bringing the instance

into memory and running the algorithm using a high level language, which is not

different to the method above. This was because the in-built functions of DFS search

can not be tinkered with using the query languages.

6.2 The Minimum Dominating Set problem

The Minimum Dominating Set problem is a known Non-deterministic Polynomial-

time Completeness (NP-Complete) problem. The dominating set of a graph G is a

subset S of nodes such that every node in G is either in S or is adjacent to a node

in S. There exists a simple greedy heuristic that can find a solution.

179

The unoptimised greedy heuristic for the minimum dominating set was implemented

into two database systems using the query methods provided by the database systems.

We used Neo4j and the query language Cypher to represent client-server database

types. For embedded database we used Sparsity and the library calls supplied.

Cypher is a declarative query language whereas Sparsity uses an imperative approach.

This implementation allowed us to investigate the efficiency of the back engines in

the systems, the functions provided by the systems and how well the algorithms can

be expressed with the given instruments.

It was found that the system engines were not efficient when it came to implementing

the greedy heuristic. Cypher is missing some basic fundamental functions, such as

a loop mechanic that finishes when a certain condition has been met. In order to

compensate for this, a pipeline that handled missing functionality was created. The

pipeline was written using an external high-level language.

The results show a noticeable difference in performance of Neo4j when compared

to Sparsity and C++. This is likely due to the missing functionality and the pipeline.

Larger instances caused Neo4j to crash with an out of memory exception, which

shows a reliability on a large amount of memory being present for the algorithms.

The expressiveness of the written algorithm was also disappointing; the amount of

lines taken to write the algorithm was close to, or even exceeding (depending on the

size of the dominating set) to Sparsity’s amount of lines.

In contrast to Neo4j and Cypher, Sparsity’s query language uses an imperative

model. Therefore any functionality that was not present in the libraries was naturally

filled in using a high-level language. For a base, a high-level language implementation

180

of the greedy heuristic written in c++ was used as a comparison.

The results show that Sparsity’s database engines were also inefficient when

compared to the high level language implementation. The lack of functionality within

Sparsity’s library meant that there was a dependency on the high level language.

However, this is to be expected due to the imperative nature of the language. The

library functions that were tested seemed to struggle with larger instances.

6.3 Exploration of other algorithms

The problems covered above do not have any exact solutions, which is expected

due to the classification of the problems themselves. A further route of exploration

exists with problems that have known efficient exact solutions. The Graph Diameter,

Betweenness Centrality and Component Labelling are problems which have consistent

solutions, as well as allowing for different sub-tasks within the problems.

All three problems were implemented into Neo4j using the declarative query

language Cypher, Sparsity using the imperative libraries supplied and in C++ as

a comparison technique. The implementations of the problems took advantage of

any in-built functions supplied by the systems.

The shortest path algorithm is a said in-built function of Cypher and Sparsity.

The all shortest-path is another function built into Cypher. The Graph Diameter

takes advantage of the shortest path function, and the Betweenness Centrality problem

takes advantage of the all shortest-path function.

It was found that for procedures that are in-built into the languages such as

181

the shortest path algorithms are very efficient. This was shown especially in the

betweenness centrality results. Simple queries in graphs can be considered NP-Hard,

therefore even for some of the smaller instances in the performance results for the

diameter problem, it was slower than the high-level implementation. But as the

instances grew in size, the efficiency of the in-built functions are shown as the time

decreases in comparison to the high-level implementation.

For the consistent algorithms, the expressiveness of Cypher is impressive, with

some of the algorithms being written in significantly less amount of lines of code

when compared to the imperative implementations in Sparsity.

One drawback found in the experiments was that the systems generally rely on

a large amount of memory being available. For some of the larger instances, both of

the database systems crashed as not enough memory was available.

6.4 Additional Discussion

The outcomes found in chapter 3 concluded that a heuristic could be created to

find a long cycle. An interesting follow up experiment would be implementing the

heuristic into the graph database systems in the same manner as in the previous two

chapters.

6.4.1 Finding the Longest Cycle in graph database systems

One of the major drawbacks in declarative languages is that internal procedures

cannot be altered. Cypher uses exact algorithms to find the results for queries. As

182

was shown with the component labelling algorithm, procedures cannot be stopped

mid-way.

The heuristic created in chapter 3 modifies an existing DFS found cycle. Due to

the declarative nature of Cypher, the in-built DFS function is not modifiable using

Cypher alone. The perturbation operators cannot be added into the query.

This is an expected outcome. Heuristics that do not provide a consistent answer

to a given question, such as the ones in chapter 3 and 4 are difficult to query.

Databases must be consistent in data returned when queried. When assuming the

data hasn’t changed, database queries must produce the same results each time a

query has been sent. Implementing heuristic algorithms into graph databases would

require this constraint to not exist.

Rather, a query that find the exact solution can be created in cypher. Algorithm

6.4.1 gives an exact solution to finding the longest cycle in an instance written in

Cypher for Neo4j.

The MATCH clause is used to find a cycle beginning with node n and ending with

n. For the edge, an edge type must be given. The instances are given a generic edge

type, and thus LINKS TO is used. The two magic numbers 1 and 100 represent the

lowest and highest cycle to find, not specifying these numbers will cause a Cypher

error to occur. For optimisation purposes the MATCH clause is saved into a variable

p. This allows the ability to sort and limit the final query result.

In an undirected instance, this algorithm would find the longest cycle up to the

maximum given magic number. It would be preferable to use the maximum size of

the instance. Logically a previous MATCH clause to find the size of the instance

183

could be combined with a WITH statement. However, an issue arises when Cypher

only allows an unsigned integer for the second magic number. The number could be

given programatically with an external language to provide further optimisation.

It was found that none of the instances tested in chapter 3 produced a query

result in a reasonable time. The query produces a large search space even with

small instances. Another drawback of the algorithm is with a directed graph. As a

directed graph involves having two directed edges between nodes, the algorithm can

have repeated nodes in the final result.

Algorithm 31 The exact Cypher query for finding the Longest Cycle in a graph.
It should be noted that a magic number has been used after the LINKS TO on the
first line. This is because an unsigned integer is expected here, Cypher did not allow
any variable names to be used.

MATCH p = (n) -[:LINKS TO:1*100]->(n)
RETURN P
ORDER BY length(p) DESC

For Sparsity, it is more complicated. While in spirit it uses an imperative query

language, the shortest path algorithm is, in essence, a declarative function call. The

shortest path algorithm is built into Sparsity libraries. The implementation of the

heuristic in Sparsity would be the same as the one explored in chapter 3. The

solution would rely solely on memory, and would not interact with the Sparsity’s

graph backend.

One outcome of the previous chapters is how graph database systems handle

algorithms that do not provide consistent results. For example, the minimum dominating

set heuristic can provide two solutions to one problem, as shown in figure 6.1. This

would explain why the heuristic could be difficult to implement into the query

184

Figure 6.1: The minimum dominating set of the same graph. The nodes coloured
green are both different solutions of the Minimum Dominating Set problem, in
accordance to the greedy heuristic.

language.

6.5 Further avenues of exploration

This thesis explores the beginnings of implementing highly computational algorithms

into graph database systems. There is scope to further enhance the research in

multiple areas. It is relevant to evaluate other types of other hard algorithms. In

the case of the longest simple path, further optimisation to the ant-based heuristic

could be provided.

Not only that, the two approaches can be applied to a variety of fields, such

as biological networks. This allows real world data to be used in evaluating the

185

performance impact of the algorithms.

As touched upon briefly in chapter 5, parallelisation of graph algorithms is

becoming more popular, especially with the rise of computation on GPUs. Being

able to parallelise queries and procedures inside of algorithms could speed up query

times.

A significant shortcoming found in this thesis is that graph database query

methods lack certain instrumentation or functions. This was the case in both client-

server and embedded databases. Further research into the effects of these additional

procedures would be interesting.

Parallelising graph algorithms inside of graph databases to make use of multi-

core GPU’s and CPU’s could also be further explored in the field. Another area

of exploration would be comparing graph database implementations with existing

graph libraries such as GraphML. In the graph libraries, similar implementations of

the algorithms studied in this thesis can be compared with the c++ implementations,

as well as the graph database systems to provide further performance analysis.

186

187

Acronym table

Term Definition

ACID Atomicity, Consistency, Isolation and Durability

NOSQL Not Only SQL

JVM Java Virtual Machine

SQL Structured Query Language

ILP Integer Linear Programming

P Polynomial

IOT Internet of Things

NP-Complete Non-deterministic polynomial-time completeness

NP-Hard Non-deterministic polynomial-time hardness

NP Non-deterministic polynomial time

TSP Travelling Salesman Problem

DFS Depth-First Search

BFS Breadth-First Search

DBMS Database Management System

188

Bibliography

Abreu, R., D. Archer, E. Chapman, J. Cheney, H. Eldardiry, and A. Gascon (2016).

Provenance segmentation. In 8th USENIX Workshop on the Theory and Practice

of Provenance (TaPP 16), Washington, D.C. USENIX Association.

Adamic, L. A. and N. Glance (2005). The political blogosphere and the 2004 u.s.

election: Divided they blog. In Proceedings of the 3rd International Workshop on

Link Discovery, LinkKDD ’05, New York, NY, USA, pp. 36–43. ACM.

Albert, R. and A. L. Barabási (2002). Statistical mechanics of complex networks.

Reviews of modern physics 74 (1), 47.

Amann, B. and M. Scholl (1992). Gram: A graph data model and query languages.

In Proceedings of the ACM Conference on Hypertext, ECHT ’92, New York, NY,

USA, pp. 201–211. ACM.

189

Andrews, T., I. Gershoni, R. Imhof, S. Kaufmann, J. Schaerer, T. Studer, and

S. Zumbrunn. Efficient stemmatology: a graph database application in the digital

humanities.

Angles, R. (2012). A comparison of current graph database models. In Proceedings

of the 2012 IEEE 28th International Conference on Data Engineering Workshops,

ICDEW ’12, Washington, DC, USA, pp. 171–177. IEEE Computer Society.

Angles, R., M. Arenas, P. Barceló, P. Boncz, G. H. L. Fletcher, C. Gutierrez,

T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, and H. Voigt

(2017, December). G-CORE: A Core for Future Graph Query Languages. ArXiv

e-prints .

Angles, R. and C. Gutierrez (2005). Querying RDF Data from a Graph Database

Perspective, pp. 346–360. Berlin, Heidelberg: Springer Berlin Heidelberg.

Angles, R. and C. Gutierrez (2008, February). Survey of graph database models.

ACM Comput. Surv. 40 (1), 1:1–1:39.

Arnborg, S. and A. Proskurowski (1989). Linear time algorithms for NP-hard

problems restricted to partial k-trees. Discrete Applied Mathematics 23 (1), 11–24.

Aung, M. (1989). Longest cycles in triangle-free graphs. Journal of Combinatorial

Theory, Series B 47 (2), 171–186.

Bachman, M. (2013). Graphaware: Towards online analytical processing in graph

databases.

190

Balaghan, P., K. A. Hawick, D. Chalupa, and C. Maddra (2017, August). Dominating

set algorithm implementation in graph databases. Technical Report CSI-0014,

Computer Science, University of Hull, Cottingham Road, Hull, HU6 7RX.

Barabási, A.-L. and R. Albert (1999). Emergence of scaling in random networks.

Science 286 (5439), 509–512.

Barceló, P., L. Libkin, and J. L. Reutter (2011). Querying graph patterns. In

Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, PODS ’11, New York, NY, USA, pp. 199–210.

ACM.

Barceló Baeza, P. (2013). Querying graph databases. In Proceedings of the 32Nd

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,

PODS ’13, New York, NY, USA, pp. 175–188. ACM.

Becker, M. Y. and I. Rojas (2001). A graph layout algorithm for drawing metabolic

pathways. Bioinformatics 17 (5), 461–467.

Beis, S., S. Papadopoulos, and Y. Kompatsiaris (2015). Benchmarking graph

databases on the problem of community detection. In N. Bassiliades, M. Ivanovic,

M. Kon-Popovska, Y. Manolopoulos, T. Palpanas, G. Trajcevski, and A. Vakali

(Eds.), New Trends in Database and Information Systems II, Cham, pp. 3–14.

Springer International Publishing.

191

Bianconi, G. and M. Marsili (2005). Loops of any size and Hamilton cycles

in random scale-free networks. Journal of Statistical Mechanics: Theory and

Experiment 2005 (06), P06005.

Biggs, N., E. K. Lloyd, and R. J. Wilson (1986). Graph Theory, 1736-1936. New

York, NY, USA: Clarendon Press.

Björklund, A., T. Husfeldt, and S. Khanna (2004). Approximating longest directed

paths and cycles. In Automata, Languages and Programming, pp. 222–233.

Springer.

Bodlaender, H. L. (1993). On linear time minor tests with depth-first search. Journal

of Algorithms 14 (1), 1–23.

Bonami, P., L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, J. Laird, C.

D.and Lee, A. Lodi, F. Margot, N. Sawaya, et al. (2008). An algorithmic framework

for convex mixed integer nonlinear programs. Discrete Optimization 5 (2), 186–204.

Bronson, N., Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,

A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,

and V. Venkataramani (2013). Tao: Facebook’s distributed data store for the social

graph. In Presented as part of the 2013 USENIX Annual Technical Conference

(USENIX ATC 13), San Jose, CA, pp. 49–60. USENIX.

Buerli, M. (2012). The current state of graph databases.

192

Bursztyn, V. S., M. G. Nunes, and D. R. Figueiredo (2016). How congressmen

connect: Analyzing voting and donation networks in the brazilian congress.

Castelltort, A. and A. Laurent (2016). Rogue behavior detection in nosql graph

databases. Journal of Innovation in Digital Ecosystems 3 (2), 70 – 82.

Chalupa, D. (2017, April). An Order-based Algorithm for Minimum Dominating Set

with Application in Graph Mining. ArXiv e-prints .

Chalupa, D., P. Balaghan, and K. A. Hawick (2018, Jan). A Probabilistic Ant-based

Heuristic for the Longest Simple Cycle Problem in Complex Networks. arXiv

e-prints , arXiv:1801.09227.

Chalupa, D., P. Balaghan, K. A. Hawick, and N. A. Gordon (2017). Computational

methods for finding long simple cycles in complex networks. Knowledge-Based

Systems 125, 96 – 107.

Chen, F. and K. Li (2015). Detecting hierarchical structure of community members

in social networks. Knowledge-Based Systems 87, 3–15.

Chen, G., Z. Gao, X. Yu, and W. Zang (2005). Approximating the longest cycle

problem on graphs with bounded degree. In Computing and Combinatorics, pp.

870–884. Springer.

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of

Operations Research 4 (3), 233–235.

193

Clausen, J. (2003). Branch and bound algorithms - principles and examples.

Codd, E. F. (1970, June). A relational model of data for large shared data banks.

Commun. ACM 13 (6), 377–387.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings

of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, New

York, NY, USA, pp. 151–158. ACM.

Corbellini, A., C. Mateos, A. Zunino, D. Godoy, and S. Schiaffino (2017). Persisting

big-data: The nosql landscape. Information Systems 63, 1 – 23.

Cruz, I. F., A. O. Mendelzon, and P. T. Wood (1987, December). A graphical query

language supporting recursion. SIGMOD Rec. 16 (3), 323–330.

Cruz, I. F., A. O. Mendelzon, and P. T. Wood (1988). G+: Recursive queries without

recursion. In Expert Database Conf.

Data, C. (1975). An introduction to database systems. Addison-Wesley publ.

DBEngine (2017a). Graph database usage.

DBEngine (2017b). Rankings.

DBEngine (2017c). Rankings of graph databases.

DBEngine (2017d). Rankings of graph databases.

194

Dijkstra, E. W. (1959, December). A note on two problems in connexion with graphs.

Numer. Math. 1 (1), 269–271.

Dineen, M. J., M. Khosravani, and A. Probert (2011). Using opencl for implementing

simple parallel graph algorithms. In Proc. PDPTA’11, pp. 1–6.

Dinh, T. N., Y. Shen, D. T. Nguyen, and M. T. Thai (2014). On the approximability

of positive influence dominating set in social networks. Journal of Combinatorial

Optimization 27 (3), 487–503.

Dixon, E. T. and S. E. Goodman (1976). An algorithm for the longest cycle problem.

Networks 6 (2), 139–149.

Dominguez-Sal, D., P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-Villamor,

N. Mart́ınez-Bazán, and J. L. Larriba-Pey (2010). Survey of Graph Database

Performance on the HPC Scalable Graph Analysis Benchmark, pp. 37–48. Berlin,

Heidelberg: Springer Berlin Heidelberg.

Drakopoulos, G. (2016, July). Tensor fusion of social structural and functional

analytics over neo4j. In 2016 7th International Conference on Information,

Intelligence, Systems Applications (IISA), pp. 1–6.

Ejov, V., J. Filar, and J. Gondzio (2004). An interior point heuristic for the

Hamiltonian cycle problem via Markov decision processes. Journal of Global

Optimization 29 (3), 315–334.

195

Elmasri, R. and S. Navathe (2010). Fundamentals of Database Systems (6th ed.).

USA: Addison-Wesley Publishing Company.

Euler, L. (1736). Solutio problematis ad geometriam situs pertinentis. Commentarii

Academiae Scientiarum Imperialis Petropolitanae 8, 128–140.

Feder, T., R. Motwani, and C. Subi (2002). Approximating the longest cycle problem

in sparse graphs. SIAM Journal on Computing 31 (5), 1596–1607.

Floyd, R. W. (1962, June). Algorithm 97: Shortest path. Commun. ACM 5 (6),

345–.

Francis, N., A. Green, P. Guargliardo, L. Libkin, T. Lindaaker, V. Marsault,

S. Plantikow, M. Rydberg, M. Schuster, P. Selmer, and A. Taylor (2018, February).

Formal Semantics of the Language Cypher. ArXiv e-prints .

Fredman, M. L. and R. E. Tarjan (1987, July). Fibonacci heaps and their uses in

improved network optimization algorithms. J. ACM 34 (3), 596–615.

Freeman, L. C. (1977). A set of measures of centrality based on betweenness.

Sociometry , 35–41.

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social

networks 1 (3), 215–239.

196

Fukunaga, K. and P. M. Narendra (1975, July). A branch and bound algorithm

for computing k-nearest neighbors. IEEE Transactions on Computers C-24 (7),

750–753.

Gabow, H. N. (2007). Finding paths and cycles of superpolylogarithmic length.

SIAM Journal on Computing 36 (6), 1648–1671.

Gallian, J. A. (2005, December). A dynamic survey of graph labeling. The Electronic

Journal of Combinatoris 16, DS6.

Garey, M. R. and D. S. Johnson (1990). Computers and Intractability; A Guide to

the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.

Gavish, B. and S. C. Graves (1978). The traveling salesman problem and related

problems.

Gebremedhin, A. H. and F. Manne (2000). Scalable Parallel Graph Coloring

Algorithms. Concurrency: Practice and Experience 12, 1131–1146.

Gemis, M. and J. Paredaens (1993). An object-oriented pattern matching language,

pp. 339–355. Berlin, Heidelberg: Springer Berlin Heidelberg.

Girvan, M. and M. E. J. Newman (2002). Community structure in social and

biological networks. Proceedings of the National Academy of Sciences 99 (12),

7821–7826.

197

Gray, J. (1981). The transaction concept: Virtues and limitations (invited paper).

In Proceedings of the Seventh International Conference on Very Large Data Bases

- Volume 7, VLDB ’81, pp. 144–154. VLDB Endowment.

Gray, J. and A. Reuter (1992). Transaction Processing: Concepts and Techniques

(1st ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Gremlin (2017). Gremlin home page.

Gross, J. L., J. Yellen, and P. Zhang (2013). Handbook of Graph Theory, Second

Edition (2nd ed.). Chapman & Hall/CRC.

Gutfraind, A. and M. Genkin (2016). A graph database framework for covert network

analysis: An application to the islamic state network in europe. Social Networks ,

–.

Güting, R. H. (1994). Graphdb: Modeling and querying graphs in databases. In

Proceedings of the 20th International Conference on Very Large Data Bases, VLDB

’94, San Francisco, CA, USA, pp. 297–308. Morgan Kaufmann Publishers Inc.

Gyssens, M., J. Paredaens, J. van den Bussche, and D. van Gucht (1994, Aug).

A graph-oriented object database model. IEEE Transactions on Knowledge and

Data Engineering 6 (4), 572–586.

Haerder, T. and A. Reuter (1983, December). Principles of transaction-oriented

database recovery. ACM Comput. Surv. 15 (4), 287–317.

198

Harrison, W. K. (2016). The role of graph theory in system of systems engineering.

IEEE Access 4, 1716–1742.

Hawick, K. and H. James (2007). Node importance ranking and scaling properties

of some complex road networks.

Hawick, K., H. James, and C. Scogings (2007, 4-6 December). Structural Circuits

and Attractors in Kauffman Networks. In H. A. Abbass and M. Randall (Eds.),

Proc. Third Australian Conference on Artificial Life, Volume 4828 of LNCS, Gold

Coast, Australia, pp. 189–200. Springer. 978-3-540-76930-9.

Hawick, K. A. (2007, August). Exploring data structures and tools for computations

on graphs and networks. Technical Report CSTN-043, Computer Science, Massey

University.

Hawick, K. A. (2011, 7-9 November). Applying enumerative, spectral and hybrid

graph analyses to biological network data. In Int. Conf. on Computational

Intelligence and Bioinformatics (CIB 2011), Pittsburgh, USA, pp. 89–96.

IASTED.

Hawick, K. A. (2012a, 25-27 June). Betweenness centrality metrics for assessing

electrical power network robustness against fragmentation and node failure. In

Proc. International Conference on Power and Energy Systems (EuroPES 2012),

Napoli, Italy., pp. 186–193. IASTED.

199

Hawick, K. A. (2012b, 12-14 November). Node-failure and islanding in national

grid scale electricity distribution networks. In Proc. Int. Conf. Power and Energy

Systems and Applications, Las Vegas, pp. 52–58. IASTED.

Hawick, K. A. (2012c, 3-5 September). Water distribution network robustness

and fragmentation using graph metrics. In Proc. Int. Conf. on Water Resource

Management (AfricaWRM 2012), Number 762-037, Gabarone, Botswana, pp. 304–

310. IASTED. CSTN-158.

Hawick, K. A. (2014, July). Middleware and software architectures for managing

irregular and dynamic crowdsourced data and sensor networks. CSI 0005,

Department of Computer Science, University of Hull, Robert Blackburn Building,

Cottingham Road, Hull, UK.

Hawick, K. A. and H. A. James (2008, 14-17 July). Enumerating circuits and loops

in graphs with self-arcs and multiple-arcs. In Proc. 2008 Int. Conf. on Foundations

of Computer Science (FCS’08), Las Vegas, USA, pp. 14–20. CSREA.

Hawick, K. A., A. Leist, and D. P. Playne (2010a). Parallel graph component labelling

with gpus and cuda. Parallel Computing 36, 655–678.

Hawick, K. A., A. Leist, and D. P. Playne (2010b, December). Parallel Graph

Component Labelling with GPUs and CUDA. Parallel Computing 36 (12), 655–

678.

200

He, H. and A. K. Singh (2008). Graphs-at-a-time: Query language and access

methods for graph databases. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’08, New York, NY,

USA, pp. 405–418. ACM.

Hedar, A.-R. and R. Ismail (2010). Hybrid Genetic Algorithm for Minimum

Dominating Set Problem, pp. 457–467. Berlin, Heidelberg: Springer Berlin

Heidelberg.

Hidders, J. and J. Paredaens (1994). Goal, a Graph-Based Object and Association

Language, pp. 247–265. Vienna: Springer Vienna.

Hölsch, J. and M. Grossniklaus (2016). An algebra and equivalences to transform

graph patterns in neo4j. In EDBT/ICDT 2016 Workshops: EDBT Workshop on

Querying Graph Structured Data (GraphQ).

Holzschuher, F. and R. Pein (2016). Querying a graph database – language selection

and performance considerations. Journal of Computer and System Sciences 82 (1,

Part A), 45 – 68. Special Issue on Query Answering on Graph-Structured Data.

Holzschuher, F. and R. Peinl (2013). Performance of graph query languages:

Comparison of cypher, gremlin and native access in neo4j. In Proceedings of

the Joint EDBT/ICDT 2013 Workshops, EDBT ’13, New York, NY, USA, pp.

195–204. ACM.

201

Howe, B., D. Halperin, F. Ribalet, S. Chitnis, and E. V. Armbrust (2013).

Collaborative science workfwork in sql. Computing in Science and Engineering 15,

22–31.

Iordanov, B. (2010). HyperGraphDB: A Generalized Graph Database, pp. 25–36.

Berlin, Heidelberg: Springer Berlin Heidelberg.

Johnson, D. B. (1975). Finding all the elementary circuits of a directed graph. SIAM

Journal on Computing 4 (1), 77–84.

Johnson, D. S. and M. Trick (1996). Cliques, Coloring, and Satisfiability: Second

DIMACS Implementation Challenge. Providence, RI: American Mathematical

Society.

Jouili, S. and V. Vansteenberghe (2013). An empirical comparison of graph

databases. In Social Computing (SocialCom), 2013 International Conference on,

pp. 708–715. IEEE.

Karger, D., R. Motwani, and G. D. S. Ramkumar (1997). On approximating the

longest path in a graph. Algorithmica 18 (1), 82–98.

Karp, R. M. (1972). Reducibility among Combinatorial Problems, pp. 85–103. Boston,

MA: Springer US.

Ke, Y., J. Cheng, and W. Ng (2008, Dec). Efficient correlation search from graph

databases. IEEE Transactions on Knowledge and Data Engineering 20 (12), 1601–

1615.

202

Knuth, D. E. (1993). The Stanford GraphBase: A Platform for Combinatorial

Computing. Reading, MA: Addison-Wesley.

Kuper, G. M. and M. Y. Vardi (1993). The logical data model. ACM Transactions

on Database Systems (TODS) 18 (3), 379–413.

Land, A. H. and A. G. Doig (2010). An Automatic Method for Solving Discrete

Programming Problems, pp. 105–132. Berlin, Heidelberg: Springer Berlin

Heidelberg.

Lee, C.-H. and C.-W. Chung (2014). Efficient search in graph databases using cross

filtering. Information Sciences 286 (Supplement C), 1 – 18.

Leist, A. and K. A. Hawick (2009, 13-16 July). Circuits as a classifier for small-

world network models. In Proc. WORLDCOMP 2009 International Conference

on Foundations of Computer Science (FSC 09) Las Vegas, USA, Number CSTN-

003.

Leist, A. and K. A. Hawick (2011, 18-21 July). Graph generation on gpus using

dynamic memory allocation. In Proc. International Conference on Parallel

and Distributed Processing Techniques and Applications (PDPTA’11), Number

PDP3939, Las Vegas, USA, pp. 229–235. CSREA.

Leskovec, J. and A. Krevl (2014, June). SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data.

203

http://snap.stanford.edu/data

Levene, M. and A. Poulovanssilis (1991, May). An object-oriented data model

formalised through hypergraphs. Data Knowl. Eng. 6 (3), 205–224.

Levene, M. and A. Poulovassilis (1990, Oct). The hypernode model and its associated

query language. In Information Technology, 1990. ’Next Decade in Information

Technology’, Proceedings of the 5th Jerusalem Conference on (Cat. No.90TH0326-

9), pp. 520–530.

Linderoth, J. T. and A. Lodi (2011). MILP software. Wiley encyclopedia of operations

research and management science.

Lissandrini, M., M. Brugnara, and Y. Velegrakis (2017). An evaluation methodology

and experimental comparison of graph databases.

Little, J. D. C., K. G. Murty, D. W. Sweeney, and C. Karel (1963, December). An

algorithm for the traveling salesman problem. Oper. Res. 11 (6), 972–989.

Liu, K., J. Huang, H. Sun, M. Wan, Y. Qi, and H. Li (2015). Label propagation based

evolutionary clustering for detecting overlapping and non-overlapping communities

in dynamic networks. Knowledge-Based Systems 89, 487–496.

Lloyd, J. W. Practical advantages of declarative programming.

Lusseau, D., K. Schneider, O. J. Boisse, P. Haase, E. Slooten, and S. M. Dawson

(2003). The bottlenose dolphin community of doubtful sound features a large

proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54 (4),

396–405.

204

Macko, P., D. Margo, and M. Seltzer (2013). Performance introspection of graph

databases. In Proceedings of the 6th International Systems and Storage Conference,

SYSTOR ’13, New York, NY, USA, pp. 18:1–18:10. ACM.

Malewicz, G., M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski (2010). Pregel: A system for large-scale graph processing. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’10, New York, NY, USA, pp. 135–146. ACM.

Marinari, E., G. Semerjian, and V. Van Kerrebroeck (2007). Finding long cycles in

graphs. Physical Review E 75 (6), 066708.

Marr, B. (2015). 20-mind boggling facts everyone must read.

Mart́ınez-Bazan, N., V. Muntés-Mulero, S. Gómez-Villamor, J. Nin, M.-A. Sánchez-

Mart́ınez, and J.-L. Larriba-Pey (2007). Dex: High-performance exploration

on large graphs for information retrieval. In Proceedings of the Sixteenth ACM

Conference on Conference on Information and Knowledge Management, CIKM

’07, New York, NY, USA, pp. 573–582. ACM.

Marton, J., G. Szárnyas, and D. Varró (2017). Formalising opencypher graph queries

in relational algebra. arXiv preprint arXiv:1705.02844 .

205

McColl, R. C., D. Ediger, J. Poovey, D. Campbell, and D. A. Bader (2014). A

performance evaluation of open source graph databases. In Proceedings of the

First Workshop on Parallel Programming for Analytics Applications, PPAA ’14,

New York, NY, USA, pp. 11–18. ACM.

Mendelzon, A. O. and P. T. Wood (1995, December). Finding regular simple paths

in graph databases. SIAM J. Comput. 24 (6), 1235–1258.

Miller, C. E., A. W. Tucker, and R. A. Zemlin (1960, October). Integer programming

formulation of traveling salesman problems. J. ACM 7 (4), 326–329.

Miller, J. J. (2013). Graph database applications and concepts with neo4j. In

Proceedings of the Southern Association for Information Systems Conference,

Atlanta, GA, USA, Volume 2324.

Münch, F. (2017). graph-processing-betweeness-centrality-neo4js-cypher-vs-

graphstream.

Monien, B. (1985). How to find long paths efficiently. North-Holland Mathematics

Studies 109, 239–254.

Needham, M. (2013). Betweeness centrality cypher vs graphstream.

Neo4j (2017a). Analyzing panama papers.

Neo4j (2017b). Cypher query language.

Neo4j (2017c). Home.

206

Neo4j (2018). Property graph.

Newman, M. E. J. (2006). Finding community structure in networks using the

eigenvectors of matrices. Physical Review E 74 (036104), 036104–1–036104–19.

Nishizeki, T., T. Asano, and T. Watanabe (1983). An approximation algorithm

for the hamiltonian walk problem on maximal planar graphs. Discrete Applied

Mathematics 5 (2), 211–222.

Nowozin, S. and C. H. Lampert (2011, March). Structured learning and prediction

in computer vision. Found. Trends. Comput. Graph. Vis. 6 (3–4), 185–365.

Opatrny, J. (1979). Total ordering problem. SIAM Journal on Computing 8 (1),

111–114.

OrientDB (2017). Property graph.

Papadimitriou, C. H. and K. Steiglitz (1982). Combinatorial Optimization:

Algorithms and Complexity. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Playne, D. P. and K. Hawick (2018, June). A new algorithm for parallel connected-

component labelling on gpus. IEEE Transactions on Parallel and Distributed

Systems 29 (6), 1217–1230.

Potluri, A. and A. Singh (2013). Hybrid metaheuristic algorithms for minimum

weight dominating set. Applied Soft Computing 13 (1), 76 – 88.

207

Rath, M., D. Akehurst, C. Borowski, and P. Mader (2012, February). Are graph query

languages applicable for requirements traceability analysis? In Joint Proceedings

of REFSQ-2017 Workshops, Doctoral Symposium, Research Method Track, and

Poster Track (REFSQ-JP 2017), pp. 1289–1292.

Robinson, I., J. Webber, and E. Eifrem (2013). Graph Databases. O’Reilly Media,

Inc.

Rodriguez, M. (2010). The graph traversal programming pattern.

Rodriguez, M. A. and P. Neubauer (2010). The graph traversal pattern. arXiv

preprint arXiv:1004.1001 .

Salwinski, L., C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg

(2004). The database of interacting proteins: 2004 update. Nucleic acids

research 32 (suppl 1), D449–D451.

Sarwat, M., S. Elnikety, Y. He, and G. Kliot (2012, April). Horton: Online query

execution engine for large distributed graphs. In 2012 IEEE 28th International

Conference on Data Engineering, pp. 1289–1292.

Seaborne, A. and E. Prud’hommeaux (2008, January). SPARQL query language

for RDF. W3C recommendation, W3C. http://www.w3.org/TR/2008/REC-rdf-

sparql-query-20080115/.

208

Shao, B., H. Wang, and Y. Li (2013). Trinity: A distributed graph engine

on a memory cloud. In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’13, New York, NY, USA, pp.

505–516. ACM.

Sheng, L., Z. M. Ozsoyoglu, and G. Ozsoyoglu (1999, Mar). A graph query language

and its query processing. In Proceedings 15th International Conference on Data

Engineering (Cat. No.99CB36337), pp. 572–581.

Stonebraker, M. and R. Cattell (2011, June). 10 rules for scalable performance in

’simple operation’ datastores. Commun. ACM 54 (6), 72–80.

Takac, L. and M. Zabovsky (2012). Data analysis in public social networks.

In International Scientific Conference and International Workshop Present Day

Trends of Innovations, pp. 1–6.

Tamassia, R. (2013). Handbook of graph drawing and visualization. CRC press.

Tarjan, R. (1973). Enumeration of the elementary circuits of a directed graph. SIAM

Journal on Computing 2 (3), 211–216.

Tarry, G. (1895). Le probleme des labyrinthes. Nouvelles annales de mathématiques:

journal des candidats aux écoles polytechnique et normale 14, 187–190.

209

Tausch, N., M. Philippsen, and J. Adersberger (2011). A statically typed

query language for property graphs. In Proceedings of the 15th Symposium on

International Database Engineering & Applications, IDEAS ’11, New York,

NY, USA, pp. 219–225. ACM.

Tomaszuk, D. (2016). RDF Data in Property Graph Model, pp. 104–115. Cham:

Springer International Publishing.

Uehara, R. and Y. Uno (2007). On computing longest paths in small graph classes.

International Journal of Foundations of Computer Science 18 (05), 911–930.

Urma, R.-G. and A. Mycroft (2015). Source-code queries with graph databases—with

application to programming language usage and evolution. Science of Computer

Programming 97, 127 – 134.

van Rest, O., S. Hong, J. Kim, X. Meng, and H. Chafi (2016). Pgql: a property

graph query language. In Proceedings of the Fourth International Workshop on

Graph Data Management Experiences and Systems, pp. 7. ACM.

Vesdapunt, N. and H. Garcia-Molina (2015, April). Identifying users in social

networks with limited information. In 2015 IEEE 31st International Conference

on Data Engineering, pp. 627–638.

210

Vicknair, C., M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins (2010). A

comparison of a graph database and a relational database: A data provenance

perspective. In Proceedings of the 48th Annual Southeast Regional Conference,

ACM SE ’10, New York, NY, USA, pp. 42:1–42:6. ACM.

Vincent, L. and P. Soille (1991, Jun). Watersheds in digital spaces: an efficient

algorithm based on immersion simulations. IEEE Transactions on Pattern

Analysis and Machine Intelligence 13 (6), 583–598.

Wagner, I., A. M. Bruckstein, et al. (1999). Hamiltonian (t)-an ant-inspired heuristic

for recognizing Hamiltonian graphs. In Proceedings of the 1999 Congress on

Evolutionary Computation, 1999. CEC 99, Volume 2. IEEE.

Waltz, D., C. Stanfill, S. Smith, and R. Thau (1987). Very large database applications

of the connection machine system. TMC Technical Note DR87-3, Thinking

Machines Corporation.

Watts, D. J. (1999). Small worlds: the dynamics of networks between order and

randomness. Princeton university press.

Watts, D. J. and S. H. Strogatz (1998). Collective dynamics of “small-world”

networks. Nature 393 (6684), 440–442.

White, D. R. and S. P. Borgatti (1994). Betweenness centrality measures for directed

graphs. Social Networks 16 (4), 335 – 346.

211

Wood, P. T. (2012, April). Query languages for graph databases. SIGMOD

Rec. 41 (1), 50–60.

Wu, J. and H. Li (1999). On calculating connected dominating set for efficient routing

in ad hoc wireless networks. In Proceedings of the 3rd International Workshop

on Discrete Algorithms and Methods for Mobile Computing and Communications,

DIALM ’99, New York, NY, USA, pp. 7–14. ACM.

Xenarios, I., E. Fernandez, L. Salwinski, X. J. Duan, M. J. Thompson, E. M.

Marcotte, and D. Eisenberg (2001). Dip: the database of interacting proteins:

2001 update. Nucleic acids research 29 (1), 239–241.

Xenarios, I., D. W. Rice, L. Salwinski, M. K. Baron, E. M. Marcotte, and

D. Eisenberg (2000). Dip: the database of interacting proteins. Nucleic acids

research 28 (1), 289–291.

Xenarios, I., L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and D. Eisenberg

(2002). Dip, the database of interacting proteins: a research tool for studying

cellular networks of protein interactions. Nucleic acids research 30 (1), 303–305.

Yang, F., R. Zhang, Y. Yao, and Y. Yuan (2016). Locating the propagation source

on complex networks with propagation centrality algorithm. Knowledge-Based

Systems 100, 112–123.

212

Yang, S., Y. Xie, Y. Wu, T. Wu, H. Sun, J. Wu, and X. Yan (2014). Slq: A

user-friendly graph querying system. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’14, New York, NY,

USA, pp. 893–896. ACM.

Yannakakis, M. (1990). Graph-theoretic methods in database theory. In Proceedings

of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, PODS ’90, New York, NY, USA, pp. 230–242. ACM.

Zachary, W. W. (1977). An information flow model for conflict and fission in small

groups. Journal of Anthropological Research 33, 452–473.

Zheng, W., L. Zou, X. Lian, H. Zhang, W. Wang, and D. Zhao (2014). Sqbc: An

efficient subgraph matching method over large and dense graphs. Information

Sciences 261 (Supplement C), 116 – 131.

Zhu, Y. and E. Yan (2016). Searching bibliographic data using graphs: A visual

graph query interface. Journal of Informetrics 10 (4), 1092 – 1107.

213

	Introduction
	Graph databases
	Graph algorithms and complexity
	Applying graph theory to graph databases
	Problem statement
	Contributions found in this thesis
	Structure of this thesis

	Literature Review
	Review of graph databases
	The Property Graph Model
	Types of graph databases
	Graph database popularity

	Graph query languages
	Cypher
	Sparsity's embedded library calls

	Current graph database literature
	Problems found in graph theory
	Complexity
	Shortest Path and the All-Shortest Path problems
	Graph Radius and Diameter
	Betweenness Centrality
	The Minimum Dominating Set
	Component Labelling
	Longest Simple Cycle
	Depth-First Search

	Integer Linear Programming
	Conclusion

	Finding Long Simple Cycles in undirected Graphs
	Introduction
	Exact Approach to the Longest Simple Cycle problem
	Dixon and Goodman's formulation of the Longest Simple Cycle problem
	Our formulation of the Longest Simple Cycle problem
	Pipeline design for the exact approach

	Heuristic methods for the Longest Cycle problem
	Results
	Experimental design
	Results of the comparison between Dixon and Goodman's and our own ILP formulation
	In-depth results of our ILP formulation and our heuristic

	Discussion
	Conclusion

	An exploration of graph databases by implementing the Minimum Dominating Set problem
	Introduction
	Graph database systems
	The Minimum Dominating Set problem
	Implementing the Minimum Dominating Set problem into graph database systems
	Results
	Discussion
	Conclusion

	Further implications of other problem implementations
	Introduction
	Graph databases

	Query languages
	Exploration of problems
	Problem implementions
	Implementations in Neo4j
	Implementations in Sparsity

	Results
	Component Labelling
	Betweenness Centrality
	Graph Diameter

	Additional discussion
	Conclusion

	Conclusion
	The Longest Simple Cycle problem
	The Minimum Dominating Set problem
	Exploration of other algorithms
	Additional Discussion
	Finding the Longest Cycle in graph database systems

	Further avenues of exploration

	Glossary

