## University of Hull

THE SILURIAN STRATA OF THE HOWGILL FEULS

```
being a thesis for the Degree of
```


## Doctor of Philosophy

in the University of Hull
by

Richard Barrie Rickards, B.Sc. (Hull)

August 1963

## PAGE NUMBERING AS

## ORIGINAL

# PAGE NUMBERS CLOSE TO 

## THE EDGE OF THE PAGE.

 SOME ARE CUT OFF
## TEXT IS CLOSE TO THE

 EDGE OF THE PAGE IN THE
## ORIGINAL

## IMAGING SERVICES NORTH

Boston Spa, Wetherby

West Yorkshire, LS23 7BQ
www.bl.uk

## CONTAINS

## PULLOUTS

Page
Chapter 1. Introduction and Acknowledgments ..... 1
Chapter 2. The Llandovery Series ..... 8
Chapter 3. The Wenlock Series ..... 31
Chapter 4. The Ludiow Series ..... 56
Chapter 5. General Distribution of Strata ..... 71
Chapter 6. Facies Types and Distribution ..... 85
Chapter 7. Sedimentary Structures ..... 104
Systematic Descriptions:
Introduction ..... 113
Genus Climacograptus ..... 124
" Diplograptus ..... 139
" Glyptograptus ..... 145
" Orthograptus ..... 158
" Petalograptus ..... 163
" Cephalograptus ..... 169
" Retiolites ..... 170
" Pseudoplegmatograptus ..... 173
". Gothograptus ..... 175
" Spinograptus ..... 176
". Dimorphograptus ..... 178
"...Akidograptus ..... 183
II. Rhaphidograptus ..... 185
" Monoclimacis ..... 187
Genus Pristiograptus ..... 201
" Group A ..... 201
" Group B ..... 208
" Group C ..... 215
" Group D ..... 227
". Monograptus ..... 230
" Group A ..... 230
" Group B ..... 237
" Group C ..... 242
" Group D ..... 247
" Graup E ..... 256
" Group F ..... 282
" Group G ..... 284
" Group H ..... 285
" Group I ..... 287
" Group J ..... 297
" Rastrites ..... 316
" Cyrtograptus ..... 324
" Barrandeograptus ..... 337
Incertae Sedia ..... 338
Evolution of some of the Forms Described ..... 344
Class Trilobita ..... 350
Delops Group ..... 350
Dalmanitina Group ..... 356
Genus Odontopleura ..... 360
Page
Notes on the Shelly Fossils ..... 363
Conclusions ..... 364
References ..... 368
Supplementary References ..... 391
Appendix 1 : Palaeocurrent Indicator Recordings ..... 407
Appendix 2 Plates and Plate Descriptions: following ..... 418

## INTRODUCTION AND ACKNOWLEDGEMENTS

The Howgill Fells form a most distinct topographical feature extending from N.W.Yorkshire into Westmorland. In plan they occupy a broadly triangular area with the town of Sedbergh at the southern apex. Tebay forms the north western limit of the fells and Ravenstonedale village the north east. The broad, flat Ravenstonedale valley between the village of the same name and Tebay in the west, bounds the northern edge of the hills whilst the deep valley of the R.Lune between Tebay and Sedbergh effectively demarcates the western margin. The Cautley valley in the east, which forms the pass through to Ravenstonedale from Sedbergh, is at a somewhat higher level than the Lune valley and has a watershed east of Harter Fell. The fells themselves stand out in marked contrast to the Carboniferous country to the east and north, and consist of deeply dissected rounded hills rising to well over 1500. in most cases, whilst Great Dummacks and The Calf exceed 2000'.

The writer has mapped in detail an area in the eastern half of the fells some 6 miles long by $3-4$ miles wide and has carried out reconnaisance mapping in the rest of the fells. $\because$ In the north the detailed map extends from the Cautley valley as far west as Bowderdale, and in the south almost as far west as the River Lune. The area is covered by the following Ordnance Survey 6 " sheets:- SD69 NW,NE,SW,SE; SD79 NW,SW; NY60 NE,NW,SW,SE and NY70 SW. Text fig.la illustrates the geographical and geological setting of the area. The Silurian rocks of the northern part of the Howgill Fells are overlain unconformably by Carboniferous conglomerates, limestones and shales, the actual unconformity being well exposed in several stream sections. To the east the Silurian and Ordovician are faulted against Carboniferous rocks along the line of the Dent Fault, whilst to the south the unconformable red conglomerate at the base of the Carboniferous forms a natural geological boundary. The Ordovician rocks are exposed in a series of complicated inliers in the Cautlej valley and these are succeeded to the north and west by successively higher Silurian divisions until the Bannisdale Slates are seen in the region of the R.Lune, N.W. of Sedbergh and in the gentle slopes into Ravenstonedale. To


Sketch-map showing the distribution of the pre-Carboniferous rocks of the Lake District.


Geological sketch-map of the Fell country between Tebay, Kendal and Kirkby Lonsdale.
the south of Sedbergh are the Barbon and Middleton Fells, again consisting predominantly of Silurian strata, and to the west the main Lake District outcrop of the Silurian.

The How gill Fells have received the attention of geologists since the first half of the nineteenth century but descriptions of the region are usually brief and included in works of a much greater scope. Thus, for example, the fells and their rocks are briefly mentioned by Phillips (1836) and a section given shows the undivided rocks of the Howgill Fells faulted against folded Carboniferous strata. Sedgwick (1846) in his account of the "Slate Rocks" of Cumberland, Westmorland, and Lancashire gives a lucid general study of the Howgill Fells and their environs and includes several sections. Sedgwick (1852) describes his "Ravenstonedale Section". and, like Phillips, includes a section from the Carboniferous across the Cautley valley to the Howgill Fells. The units recognized in this section ares Coniston Limestone, Coniston flags, Coniston Grits, Ireleth Slates and "coarse grit and slate, with calcareous concretions". In this work Sedgwick traced the Coniston Grits from Cautley Crags as far north as Ravenstonedale Common. Areas adjacent to the Howgill. Fells were described by Hughes (1866,1867) and in the latter work reference is made to the region of Cautley Crags.

The greatest advances; however, in the understanding of the geology of the region were made in later years particularly by the researches of Professor T.McK.Hughes. : Thus the Survey Memoirs by Aveline and Hughes (1872), and Aveline, Hughes and Strahan (1888) contained detailed descriptions of the strata, whilst the former work recognized the Stockdale Shales. All the strata from the base of these up to (and including) the Kirby Moor Flags were placed in the Upper Silurian. (The Survey workers did not at that time recognize Lapworth's divisions of Cambrian, Ordovician, and Silurian). More general works of the same period include Davis and Lees' "West Yorkshire" (1878) which gives a fairly comprehensive account of the distribution in York shire of the "Upper" and "Lower Silurians". A section included in this work differs little from that given by Phillips (op.cit.) except in being less accurate. Bird (1881) also makes brief reference to the Howgill Fells. Dakyns et al. (1891) in the "Mallerstang Memoir" gave a detailed account of the eastern parts of the Howgill Fells, much of the groundwork having been done by Professor Hughes prior to his retirement from the Geological Survey.

These workers follow Marr and Nicholson (1888) in their work on the Stockdale Shales of Spengill but in addition describe several less complete sections from other parts of the district. In the important paper by Marr and Nicholson (op.cit.) on the Stookdale Shales of the Lake District several pages are devoted to the Cautley area and the Stockdale Shales of Spengill are correlated with those of the Lake District. Further notes on the geology of the Howgill Fells were given by Hughes (1894) in his paper on "Observations on the Silurian Rocks of North Wales" where he defines the "Tebay Mudstones" included by later workers in the Coniston Grits.

Marr (1900) refers to the presence of "Upper Slates" (sensu Otley 1820) in the Howgill Fells. Marr and Fearnsides (1909) in a paper dealing mainly with the glacial geology describe and map a "shatter belt" in the north of the fells which seems to be equivalent, at least in part, to the Gais Gill Fault of the present work (p. 75). Misses G.R.Watney and E.G.Welch (1911) described the Salopian of the Cautley district and produced a map of the Zones which they established. In attention to detail this work ranks on a par with the study of Marr and Nicholson (op.cit.) though of course far greater thicknesses of rock were involved. Summaries were given by the same writers in the previous year (1910). Marr (1913) made a further contribution to the Silurian stratigraphy in his paper dealing mainly with the Ordovician strata, following a brief note by Marr and Fearnsides (1911).

In more recent years the Silurian rocks of the Howgill Fells received brief or incidental reference in many works (e.g. Marr 1916,1925,1927) but it was not until Dr.Wilson's unpublished work (1954) on the Upper Llandovery that the strata were subjected to further scrutiny. Dr. Wilson examined with the greatest care beds from the sedjwicki zone to the base of the Wenlock. Series, recognized and defined the crispus and griestonensis Zones, and described some of the species from the higher divisions.

There have been numerous works on the main Lake Distriot outcrop which have direct or indirect bearing upon the geology of the Cautley district but it would be superfluous to list these here since they have been made the subject of bibliographies on several occasions (e.g.Marr and Nicholson 1888; Dakyns et. al. 1890; Marr 1916; Wilson 1954; Mitchel 1956; and the Bullet ins of the Ludlow Research Group). Those which have a direct bearing are dealt with at the appropriate points in the text below.

In the present thesis work has been concentrated particularly on those beds which have not been the subject of modern treatment with a view to producing a detailed and accurate map along the line of the Dent Fault. The writer suspected that a certain amount of variation took place in the beds about the Ordovician-Silurian boundary. Such has proved to be the case although a decision on the exact base of the Silurian will have to be deferred until study of the brachiopod faunas (shown below to occur across the point taken for the present to be the boundary) has been completed by Dr. Lamont. From the Lower Llandovery and Middle Llandovery strata many more species have now been recorded than were listed by Marr and Nicholson (op.cit.) and the Survey workers. This has enabled subdivision of the Lower Llandovery "Dimorphograptus Beds" into three Zones which not only allow correlation with other regions but enable faunal studies in these beds to be put on a firm stratigraphical basis. : Throughout the district small outcrops of "Dimorphograptus Beds" occur, and these can now be placed more accurately thus assist ing both mapping and palaeontological studies. The boundaries between the Lower, Middle and Upper Llandovery are described.

A similar approach has been adopted in the case of the Wenlock Series where the faunal sequences shown by particular sections have enabled considerable subdivision of lithologically monotonous strata. Four faunal Stages are defined each being subdivided into Zones and some of the latter into Subzones. Wider correlation in the case of the Wenlock Series is more diffi cult than in earlier strata although the general sequence of faunas noted elsewhere can be recognized. The strata contain several species more cominonly recorded from the Continent. It is shown that in the Wenlock Series the base of Stage 4 cannot be defined at the present owing to the lack of exposure at this level.

The main purpose in examining the Ludlow Series has been to identify and map the lithological succession and to define by reference to particular horizons the major divisions. Faunal work on the Ludlow graptolites is only in its preliminary stages but has shown that some of the Zones identified elsewhere can be recognized. No vulgaris Zone occurs at Cautley and the Wenlock strata are followed immediately by beds yielding P.nilssoni and $M$. scanicus.

Faunal and stratigraphical studies are of necessity closely tied to the
recognition of facies types. In Chapter 6 the facies types and their vertical distribution are described, whilst Chapter 7 deals with a single facet of facies study, that of palaeocurrent indicators. . In this latter chapter the current variation throughout the Silurian is described as far as this is possible. The currents detected seem to fit in with the pattern of gradually changing environments of deposition which are suggested on independent grounds

In the palaeontological section of the work over one hundred species of graptolites are described and some short evolutionary steps are suggested. Few shelly fossils have been described, a study of the shelly faunas being beyond the scope of the present work, but of those trilobites dealt with two are considered to be new genera.

Finally it is suggested that the Silurian strata of the Howgill Fells would yield interesting results to studes directed at the following aspects: a) the shelly faunas b) the mineralogy of the constituent facies c) the structural geology.

The author's collection of some twenty thousand fossils collected from the Howgill Fells is deposited in the Department of Geology, University of Hull.

The figures in brackete following the description of a rock colour are those used by the Geological Society of Anerica Rock-colour Chart (1951).

## Acknowledgements

I should first of all like to record my thanks to the University of Hull Scholarship Committee for the award of the Reckitt Scholarship which made this research possible. My colleagues in the Department of Geology at Hull have given me a great deal of assistance and in particular thanks are due to my supervisor Dr.J.W.Neale for his invaluable guidance both in the field and in the laboratory; to Mr.L.F.Penny and Mr.M.A.J.Piasecki for their constant encouragement not only during the present research but in the preceding period when I studied the general geology of N.W.Yorkshire, and to Mr.R.Furness for many useful discussions, assistance with field work and examination of my rock. slides.

One of the most stimulating facets of this work has been the help I have received from workers in the same field both in this country and abroad.. I
should like to express my gratitude to Dr . I. Strachan of the Department of Geology at the University of Birmingham for many helpful suggestions, for the loan of material from the Geological Museum at Birmingham, for giving me the opportunity to examine some of the works in his exhaustive library of literature dealing with graptolites, and for his wholehearted support of the work. I am grateful also to Dr.A Lamont who has examined my collection of brachiopods; to Dr.J.K.Ingham of the Hunterian Museum, Glasgow for assistance in the field and many fruitful discussions and to Dr.K. Walton and Dr.S.Djulynski of the Department of Geology at the University of Edinburgh for their generosi ty during my visit to the sedimentological laboratory under their care.

For the loan of valuable museum material for the purposes of comparison I am indebted to Mr.A.G.Brighton of the Sedgwick Museum, Cambridge and to Dr.C.L Forbes of the same department for his hospitality during my visits to the Sedgwick Museum; to the late Dr.E.Currie for her help on my visit to the Hunterian Museum at Glasgow; to Mr.J.D.D.Smith of the Geological Survey and Dr.W.T.Dean of the British Museum both of whom gave up much of their valuable time to assist me, in addition to loaning me specimens; to Mr.R.Lister of the University of Sheffield for the loan of his personal collection; Dr. J.E. Hede of the Palaeontological Institute, Lund; Mr.J.M. Edmunds of the University Museum, Oxford and to M.W.A.Knaap, Compagnie des Petroles D'Algerie Algeria.

Many workers have very kindly provided me with off prints of their work thus making my task easier and in this context I should like to thank the following:- Prof. Dr.B.Boucek, Dr.W.B.N.Berry, Prof. A Desio, Mr.J.M.Edmunds Dr, C.H.Holland, Dr.J.E.Hede, Dr.S.C.Hsu, Prof. D.E.Jackson, Dr.H.Jaeger, Dr. W.G.Kuhne, Prof. R.Kozlowski, Mr T.H.Koregn, Dr.A.Lamont, Prof. D.Laursen, Mr.R.R.H.Lemon, Dr.A.T.Mu, Mr.E.Mirus, Marie L.Nirosia, Mr. R.Nilsson, Prof.A. Obut, Dr.A.Pribyl, Dr.G.H.Packham, Dr.I.Peltzmann, Prof.A.Philippot, M.C.Romariz, Marie-Louise Remack-Petitot, Dr.C.A.Ross, Mr.S.K.Skwarko, Kathleen M. Sherrard, Mr.J.D.D.Smith, Mr.J.S.Turner, Dr.A.Urbanek, Mr.J.H.McD.Whitaker, Dr.E.K.Walton, Dr.A.Weir.

The technical staff of the department have been most helpful and I should particularly like to thank Mr.B.Nettleton for the care with which he produced the reductions of all the plates in this thesis. My warmest thanks are prof fered to Mr.P.Sheldon and Mrs.P.Hurst of the University library staff who
have spared no effort to obtain the many old and foreign works which were not contained in the relatively young library.

Finally I should like to thank my wife for her assistance in the stratigraphic collection of material and for her tolerance in the typing of the thesis.

## THE ILANDOVERY SEPIES

## Introduction

The term "Llandovery Series" was first used on the Geolocical Survey I" sheets covering the Llandovery District (v. Challinor, J. 1951) and was later described by Murchison (1859) who divided it into Lower and Upper Llandovery. At a much later date the Series was redefined by Jones (1925, 1949) who recoenised the divisions Lower, Fiddle, and Upper Llandovery, each being separated by an unconformity. Jones (1925) included in his Upper Llandovery both Murchison's Upper Llandovery and this latter author's distinct division of the Tarannon or Pale Shales. Terms synonymous with Llandovery Series and used at a later date in different areas are "Stockdale Shales" and "Valentian". Both were erected for the graptolitic facies, the former by Aveline and Hughes (1872) and the latter by Lapworth (1876). A sumnary and discussion on the usace of the above terms and their subdivisions is given by Curtis (in Whittard 1961, chart p.132). In view of the fact that "Llandovery Series" has priority over Valentian etc. (Whittard 1961, p.128) and that the succession of zones recocnized in the Howfill Fells can be equated with those established in Wales it is both correct and convenient to use the term.

It was thoucht at one time that in part of the Lake District at least, the Silurian strata rested unconformably upon the Ordovician (Aveline 1872, 1876, 1888 (in Aveline and Hughes); Marr 1876) not so much because of anculan discordance between the two, though Aveline ( $1872, \mathrm{p} .442$ ) implied this, but because of the conspicuous chance in lithological and faunal characters which invariably took place at the boundary. Thus Aveline (1872 p.442) writes "..for there is not the slichtest passaze, either straticraphically or palaeontolocically, from the Coniston Limestone series into the lower division of the Upper Silurian.." He also believed that in one locality the Silurian completely overlapped the Ordovician. Other workers at the same time (e. E. Nicholson 1872) did not acree with the conclusion reached by Aveline. In the Cautley district itself Dakyns et al (1891 p.28) writes "... there is an abrupt chance from the fauna of the Ashgill Shales to that of the graptolitic

Mudstones, without, however, any straticraphic uriconformity."
In the followine paragraphs the nature of the chance from Ordovician to Silurian is examined particularly with recards to the variation shown by certain beds.
The hichest Ordovician Strata and the Rasal Beds of the Silurian
The Asheill Shales Grit of Spencill was first recorded by Narr and Nicholson (1888 p. 700 ), the discovery being attributed to Professor T. Mck. Hughes who, until his retirement from the Survey, worked on the Quarter Sheet 97NW which was subsequently described in 1891. The locality civen by the above authors is " a few yards below the ford" which is located on the junction of Stockless Gill and Spengill. Dakyns et.al. (1891 p.25) write "A few yards below the forking of the beck and on the west bank a hard calcareous grit was noted by Professor Hughes ..." Marr and Nicholson (op cit. ) record the following fossils:- Cornulites, Orthis, nrotensa, Sow, Orthis biforata, spiloth., Stronhomena siluriana, Dav., Meristella crassa, Sow? Of these all except the last were considered to be typical Ordovician fossils. Marr ( 1913 p .7 ) whils examining the Ashgill Shales Grit of Watley Gill makes further reference to the grit on Spengill but notes that it seemed, by that time, to be covered over. The present writer has examined the Ashgill Shales inch by inch below the junction of Stockless Gill and Spengill and concludes that no crit exists in that part of the succession. However, some yards above the junction are several bands of silty and eritty mudstone and associated with them an $8^{\prime \prime}$ medium grey (N5) calcareous grit (see text fiss.2a and $b, c$ ). This is overlain by $6^{\prime \prime}$ of arcillaceous and critty limestone followed by 2'1" of typical Ashefill Shales mudstone. The followinc 12" contain two thin, hard limestones (see text fič. 2a) containing numerous brachiopods and trilobites (e.c. Dalman, itina mucronata). Trenching has been carried out above this point and has shown that the succession is continuous and uninterrupted by faults until the strata described below as the Basal Beds of the Silurian are reached. Exactly $40^{\prime}$ of strata are now exposed upstream of the $8^{\prime \prime}$ grit and below the Basal Beds, but above the two thin limestones just mentioned the beds are non-calcar. eous and only sparsely fossiliferous. The following have been obtained:crinoids, Phyllonorina hisinceri, Dalmanitina mucronata.

The Ashzill Shales Grit was recorded in two further localities by the Survey workers. On Taithes Gill (= Ecker Secker Beck) it was described as a

## TEXT FIG. $2 a$

> Ashgill Shales exposed at the junction of Stockless Gill and Spengill. The numbers to the left of the column refer to lithological specimens contained in the Department of Geology, University of Hull.

calcareous, pyritous conclomerate about 6' thick containing fracments of Coniston Limestone and shale. The locality fiven is "just above where the footpath from Lower Beckside crosses to Foxhole Ricg." This exposure seems to be covered over at the present time but 150 yards upstream of the footbridze 19' of conclomerate are exposed (697, 956). In addition to the Taithes Gill looality the grit was noted on Birksfield Beck.

A further five localities have been found by the present writer. Their distribution is illustrated in text fig. $2 b$, and two features of interest immediately emerge, firstly that the grit thins considerably both to the North and South from Ecker Secker Beck, and secondly that there is a remarkably constant thickness of Ashgill Shales mudstones above the grit in some of the sections.

On Ecker Secker Beck $(697,956)$ the grit is exposed in a low cliff on the richt bank. Underlying the grit in the stream are typical Ashgill Shales, and beds of the same-litholocy can occasionally be seen high in the bank and above the grit. Much of the 19' division is coarsely conglomeratic and current bedding can be detected and measured with some difficulty. : It will be noticed that the bed is much thicker than the 6 ' recorded from only 150 yards downstream by the Survey workers. Such a rapid chanfe in thickness is not impossible since a similar change is seen between Rawthey Bridce $(714,977$ ) and Wards Intake $(716,976)$ a distance of only two hundred yards, but it is equally possible that the Survey workers may not have included beds of non-conclomeratic texture (grit) particularly if the exposure was not good.

The Birksfield Beck locality $(693,949)$ shows no trace of the conglomerate seen on Ecker Secker. Instead the bed is represented by 121 of fine grit, calcareous in places, and showing current bedding on a small scale. The best exposures occur in the stream bed and are overlain by 19' of mudstone before the Basal Beds are reached. A further reduction in thickness takes place to Crosshaw Beck where only 6' of grit is exposed low down in the left bank. (Nuch of this part of the section is almost inaccessible at the present due to recent lumbering activity. Further consequences of this are mentioned on p. 18, with respect to the Birks Wood Beck section). The base of the crit has a few larce pebbles and current bedding can be detected.

North of Ecker Secker Beck there is a considerable distance in which the beds at this level are not exposed and the nearest locality is more than $1 \frac{1}{2}$ miles to the NE on the R. Rawthey near Rawthey Bridge $(714,977)$ and Wards Intake


Correlation chart showing the variations seen in the Ashgill Shales Grit based on the assumption that the grit is of approximately the same age
throughout the region.


TEXT FIG. 2c

Correlation chart showing variation of Ashgill Shales Grit based on the assumption that equal thicknesses of fine-grained Ashgill Shales mudstones represent approximately equal periods of time.

$a-i \quad$ as on textfig. $2 b$
graptolitic mudstone
T Basal Beds
$\square$ Ashgill Shales

$$
\text { feet }\left.\left.\right|_{-30} ^{-20}\right|_{-10} ^{-0}
$$

$\%$ grit \& conglerate
mhelly bed
(716,976). The former shows good exposures of Asheill Shales passing up to the Basal Beds of the Silurian and the grit itself is superbly exnosed in a low cliff on the left bank. The base of the grit is conclomeratic for a few inches and pebbles are distributed sparadically throuchout. Current bedding can be detected rather more easily at this locality than at any other. A total of 1616 " of beds crop out here whereas at the Wards Intake outcrop only a short distance upstream the same bed has thinned to $6 \%$.

On Watley Gill the erit is fairly well exposed in the richt band (v.text fic. 2 h ) and measures 211". It is overlain by 35 of mudstone and then the Silurian strata. A little over 2 miles to the ENE the Five Gills locality (725,999) shows a small thickness ( $6^{\prime \prime}$ ) of hard calcareous grit, itself contain inc pebbles of crit, at the top of several feet of silty beds. It is overlain by only 11' of mudstone before the Basal Beds are reached. It is not certain, therefore, what relationship holds, if any, between this erit and those described above from Spencill, Watley Gill; Wards Intake, and Fawthey Bridge where the grit is invariably overlain by aproximately $40^{\circ}$ of mudstone. If it is assumed that the fine crained Ashgill Shale mudstone does not vary creatly in thickness over the area it will be seen that there may be as many as three sets of crit deposits, each of local extent:-
a) The crit of Spencill, Watley Gill, Wards Intake, and Rawthey Bridef follow ed by about $40^{\prime}$ of mudstone.
b) The grit' of Birksfield Beck and (?)Ecker Secker overlain by about 20' of mudstone.
c) The Five Gills grit overlain by only 11' of mudstone.

Most of the exposures do not allow easy measurement of the current beddine foreset beds but those which have been measured sucgest a current source from the $S E$ quadrant (see text fig. 7 cl , and inset on test fic. 2 b ). The rapid chance in thickness as seen at two localities, (Rawthey Bridee to Wards Intake and Ecker Secker Beck to Crosshaw) the probable current direction, coupled with the seneral decrease in thickness and grain size to the north and northwest stronely suggests eully-like deposits originating from the $S$ to $S E$, and it is thought that the most likely form would be submarine chanmels related to a river draining a nearby landmass. The changing direction of distribution could result in either more than one deposit of grit or transeression of
the deposit caused by Eradual shift of the distributary.
At the very top of the overlying mudstones Wilson (1954) recorded small scale current bedding actually truncated by the Basal Beds of Watley Gill. The present wirter did not detect this on Watley Gill but noticed a similar phenorenon on Spencill. The significance of such a feature is debateable since small scale truncated current beddine can be detected at various levels in the Ashgill Shales. : If it is assumed that the Asheill Shales Grit is approximately contemporaneous at all its localities then the variations in thickness of the fine erained mudstones which overlie it micht be taken to indicate an unconformable relationship between the Silurian and Ordovician. In this event the above feature of truncated current bedding would not be surprisine but taken by itself cannot be recarded as significant. The writer considers that the assumption just mentioned is probably invalid. Whatever the interpretation the Basal Beds of the Silurian are not markedly different, licholoEically, from the Asheill Shales mudstones, ( $c f$ Aveline 1872) particularly from those portions which are hard, calcareous and fossiliferous. Sedimentation is thought to have continued without interruption until the top of the Basal Beds are reached, when influx of carbonaceous material takes place to add to the supply of mechanical detritus.

The Basal Beds of the Silurian, composed in part of limestone, can usua1ly be distinguished in the first instance by their hard, massive nature in contrast to the softer Ashgill Shales below and dark graptolitic mudstones above. They were first described by Marr and Nicholson (1888 p.700) from the Spenfill section, where they recorded a very hard limestone $6^{\prime \prime}$ thick and containing a few crinoids, which they took to be equivalent to the Atrypa flexuosa Band of Skelgill and Diplosraptus acuminatus Zone of Browgill. Dakyns et. al (1891 p.29) follow Narr and Nicholson by using the same bed as the base of the Stockdale Shales. Marr (1913 p.11) again mentioned the Spengill exposure and.recorded the following fossils:- Encrinurus nunctatus var arenaceus Marr and Nich?, Cheirurus bimucronatus, Murch. var?, Phacons mucronatus, Leptaena of quinquecostata, Orthis two spp., Stronhomens two spp., Byolithus. In the same publication he records the same bed from Birks Beck and Watley Gill and from the latter locality collected the following assemblase:Cyphaspis of rastritum Torn., Acidaspis, Phacons mucronatus, Hyolithus. Wilson (1954) was the first to accurately measure the beds of Watley Gill and Spercily
but he disacreed with Marr, Dakyns et al. in considering the limestone to be non-crinoidal.

A further eight localities have been unearthed since the above works. These show that in Eeneral the Basal Beds increase in thickness to the south (see text fig.2d) and that the components of the beds - limestone and pale, non-calcareous mudstone - vary in thickness and position ( $v$. text fig. 2e). On Five Gills (725,999) the Basal Beds are usually poorly exposed on the left bank several feet above the stream at the base of a small cliff of dark graptolitic mudstones. The exposure prior to diceing out showed only the top of the $9 \frac{1}{4}$ limestone overlain by a few inches of shale which were apparently unconformably overlain by the mudstone above. Trenching alone the foot of the cliff showed that in fact the limestone is broken in several places (see text fig. $2 f$ ) and the beds rotated to simulate unconformity. The top of the limestone is marked by a thin bed of clay indicating bedding plane shear. Underlying the limestone are $3 \frac{7}{}=1$ of hard, non-calcareous mudstone and, dividinc the mudstone from the Ashgill Shales below is a soft brown clay which again sugees ts bedding plane movement. Where the limestone is preserved as a rottenstone numerous fossils can be obtained, in particular:- Dalmanitina mucronata brevispina, Temple, small brachiopods and, more rerely, crinoid ossicles. In all the localities where the beds are sufficiently weathered crinoid ossicles have been obtained thus supporting Marr and Nicholson's oricinal contention that the limestone was crinoidal.

The Ordovician strata in the recion of Rawthey Bridce (714,977) and Wards Intake (716,976) have already been mentioned, Upstream of the grit at each locality are $42^{\prime}$ of Ashgill Shales followed by the Basal Beds. Both exposures are, however, permanently underwater and though they can be very clearly seen (weathering yellowish) sampling is only carried out with difficulty. The thickness in each case is about $2^{\prime} 6^{\prime \prime}$ and most of this, to judee by the nature of the weathering, is made up to limestone.

On Pickering Gill $(689,966)$ the Basal Beds are exposed hish in the left bank at the base of dark grantolitic mudstones. The beds are underlain by Asherill Shales but the grit is cut out by a fault. Most of the $5^{\prime \prime} 7^{\prime \prime}$ division is of limestone, only the top $6^{\prime \prime}$ being of hard, non-calcareous mudstone. On top of the whole bed is a thin clay. Few fossils were obtained from this locality.

TEXT FIG. 2d

Diagram illustrating the overall variation in thickness of the Basal Beds of the Silurian.




explanation in text p. 13

The Basal Beds also crop out on Birksfield Beck and Birks Wood Beck and, as in the case of Pickering Gill, are $5^{\prime \prime} 7^{\prime \prime}$ thick. Unlike the last locality the lime content is much less and the lowest bed consists of $2^{\prime \prime} 4^{\prime \prime}$ of hard, non-calcareous, barren mudstone which of ten shows mottline. This is followed by l' $^{\prime \prime}$ of pyritous limestone containing the usual fossils but in the case of the Birksfield Beck exposure these are difficult to extract owinc to the unweathered nature of the rock. Above the limestone is a l'g" bed of similar mudstone to the lowest bed. Whilst the Birksfield Beck exposure is easily located since it forms a prominent feature across the stream the Birks Wood Beck locality had to be duc out. Unfortunately the recent lumbering operations alluded to above have reburied the exposure under a larce pile of earth and logs and it will be some time before it becomes accessible acain.

The final locality of significance is the most southerly exposure on Cross haw Beck $(696,941)$. This shows a slicht diminution in thickness from the last described localities althouch the top of the beds have not been seen with certainty. A total of five feet were measured and although none of the beds are well exposed (once again a direct result of the lumberinct) some at least are calcareous. It is probable that the five feet do in fact represent the full thickness and that the overlying softer mudstones have been weathered back

The Basal Beds, situated as they are amonest relatively soft mudstones, act in a competent manner and upon folding the bedding planes demarcating the ton and bottom tend to suffer bedding plane shear. This is vsually represented by a small thickness of mylonite which at the surface weathers to olay. Davies (1929) who studied the faunal chances across the Ordovician-Silurian boundary dismissed the Cautley district as having the fossils in too bad a state of preservation. Wilson (1954) however, identified the A.acuminatus Zone on both Watley Gill and Spenyill and recorded the Zone fossil itself. In the former locality the Zone occurs as a $4^{\prime \prime}$ band of dark mudstone welded to the ton of the Basal Beds but at Spengill a thin clay, indicating some bedding plane movement, separates the two. All the other localities where the Zone might be expected to crop out have it removed by movement parallel to the beddine plane. Marr and Nicholson (1888) list the following fossils from the acuminatus Zone and its supposed equivalents such as the A.flexuosa Band:Dinlocrantus acuminatus, Nich. Climacocrantus normalis Lapw. Monticuliporoid? Homalonotus? Atrypa flexuosa n.sp.

Marr's recordings from the Basal Beds of Spencill and Watley Gill have already been mentioned. . The present writer has obtained the followinc fossils from the $4^{\prime \prime}$ mudstone:-
Akjdograntus a. acuminatus (Nicholson) A.a.praematurus Davies Climacocrantus normalis Lapworth Glyntocrantus sn. Climacograntus miserabilis (Elles \& Wood) Orthocrantus vesiculosus Nicholson Climacocrantus medius Tornquist. Diplocrantus m.modestus Lapworth worm tubes.

Graptolites do not occur in the Basal Beds and the presence or absence of the Glyptomantus persculptus Zone, widely recognized in wales carmot be proven. It is clear, however, that a faunal chance takes place in the Basal Beds from the Ashcill Shales below which contain D.m.mucronata, P.hisinceri and brachiopods. The Basal Beds are typified by D.m.brevisnina Temple and brachiopods. Those species of trilobites recorded by Marr (1913 p.11): with the exception of mucronata, have not been found by the prosent writer but they also indicate a chance in fauna. Since brachiopods are both common and occur across the chance, the exact ase determination of the Basal Beds probably at rests with them. The writer's collection of brachiopods is being studied at the present time by Dr.Lamont but unfortunately this work is not yet complete. The base of the Silurian is, for the present at least, drawn at the bottom of the Basal: Beds. . It.is probable that all the strata between this level and the top of the $4^{\prime \prime}$ mudstone are equivalent to the division Aal described by Marr and Nicholson from various parts of the Lake District. Davies (1929) records A.a.nraematurus from a slichtly lower level than A.a.acuminatus where as at Cautley the two occur together; the former albeit rarely.

## The Lower LI andovery

The zone of A.acuminatus has been considered above and its unfortunately localized geographical extent defined. Overlying this zone are the zones of atevus, acinaces, cynhus and trianculatus which are described below. The Monograptus atavus Zone

Marr and Nicholson (1888) and Dakyns et al (1891) record about $2^{\prime}$ of. dark craptolitic mudstone above the Basal Beds of Spencill which they attribute. to the zone of Dimornhograntus confertus (Aa2). Both groups of workers cive
the following faunal list:
Climacograptus normalis,
Monograntus revolutus
N.tenuis
M.attenuatus
M.sandersoni
D. Swanstoni (abundant)

Dimorphocraptus confertus (rare)
D.modestus?

Dinlograntus vesiculosus

The form described as M.tenuis Portlock has since been shown to be if. atavus Jones. M.attenuatus Hopkinson is considered to be synonymous with M. cemmatus Barrande by Elles and Wood but Boucek and Pribyl (1951) consider it synonymous with M. capillaris (Carruthers). No fossils of this type have been found in these beds by the present writer. Dimorphosrartus confertus swanstoni does not seem to be "abundant" since no specimens have been obtained and only a single specimensfrom Spengill has been seen in ruseum collections (Sedgwick Nuseum). On the other hand D.c.confertus is not uncommon. Bed Aa2 of Marr and Nicholson is 24'4" thick of which the lowest $4^{\prime \prime}$ belong to the acuminatus Zone. The fossils recorded by the above authors do not rance throuchout the 24' unit and the D.confertus Zone has been subdivided by the present author on the faunal changes which take place. The lowest 9' yield a fauna which links the beds with the M.atavus Zone as redefined by Jones (1909), following Lapworth's original usage (1900).

In a low cliff on the right bank of Spencill the acuminatus Zone is followed by five feet of dark crey (N3-N4) rusty-weathering, graptolitic mudstone. The same beds crop out hich on the left bank above poorly exposed Basal Beds. In both exposures the mudstones are thinly bedded, cleaved into small subquadrangular fragments, but quite hard. The following fossils have been ob-tained:-

Climacograntus miserabilis (Elles \& Wood)
Climacograntus normalis Lapworth Climacomrantus medius Tornquist
Diplocmantus modestus diminutus Elles \& Wood
Diplosraptus modestus tenuis subsp. nov.
Orthograptus vesiculosus Nicholson
Dimorphocraptus c.confertus (Nicholson) $\quad \frac{\text { Fhaphidocrantus toernauisti }}{\text { and Wood) }}$ (Elles
Monograptus atavus Jones.
C.rectangularis ( $M^{\prime} \mathrm{Coy}$ )
C.aff minutus Carruthers

Above this are four feet of similar beds, asain represented in both banks yielding all the above species with the exception of D.yodestus tenius. In addition there are two further dimorphograptids: Dimorphocraptus erectus nicholsoni subsp. nov. and D.epiloncissimus sp. nov. The whole fauna of the nine feet of strata is very similar to that which Jones (1909) used to define the atavus Zone at Pont Erwyd and differs only in the lack of D.cf.extenuatus Elles \& Wood, and in the presence of some new forms. The atavus Zone of Spencill may be contrasted with the underlyinc A.acuminatus Zone in the absence of the latter fossil and in the presence of M.atavus and D.confertus. Confirmatory Sections: The Watley Gill section shows 15' of beds above the acuminatus Zone before a fault (represented by a crush zone) brincs down hicher strata. The lower beds are exposed in the left bank forming a low cliff and again, but less completely, in the richt bank. Litholocically the strata are identical to those of Spengill and are similarly cleaved. From the lowest foot ( 2 Wa ) above the acuminatus Zone the following assemblace was collect-ed:-

Climacograntus miserabilis Elles \& Food M.atavis Jones Climacocraptus medius Tornquist Climacocraptus normalis Lapworth Climacograntus i. innotatus Nicholson

The locality is important in showing that M.atavus appears very quickly after the onset of the graptoljtic mudstone conditions, and in recordine the presence of c.innotatus. Above locality 2 Wa collection was made from $4^{\prime}$ of similar beds (3Wa) which yielded the following:-
O.vesiculosus (Nicholson)
C.rectancularis (M'Coy)
C.miserabilis (Elles \& Wood)
C. normalis Lapworth
C.medius Tornquist D.modestus diminutus (Elles \& Wood) M.atavus Jones

The strata between this level and the above-mentioned fault (10 feet, 4 Wa) do not yield cood fossils readily since the rock is cleaved into very small pieces. O.vesiculosus was not found, but in addition to the other species recorded from 3 Wa D.e.nicholsoni and R.toernouisti were collected. All the fossils were obtained from the uppermost 6' of the $10^{\prime}$ of beds. The fauna of $2-4 W a$ is typical of the atavus Zone and it is of interest that the

Zone is 6' thicker at this locality than on Spengill which is rather less than one mile to the NE.

The fact that the Birks Wood Beck section is obscured in the recion of the Basal Beds has already been mentioned. As a result the lowest $4^{\prime}$ of strata overlying the Basal could not be collected. Immediately above, however, are five feet of dark grey mudstones rather poorly exposed in the left bank (1Bi) but yielding numerous well preserved graptolites. The following were obtained:-
C.miserabilis (Elles \& Wood) PDiplograptus rarus sp . nov.
C. normalis Lapworth
C.rectangularis (M,Coy)
C. aff minutus Carruthers
C.innotatus exquisitus subsp. nov. D. modestus diminutus Elles \& Wood

The presence of D.e.nicholsoni succests that $1 B i$ is at the top of the atavus Zone. C.innotatus expuisitus, ?D. rarus, and ?D. sn. A have not been recorded from the Spengill and Watley Gill sections. A further $2^{\prime}$ of beds are exposed (2Bi) before the section is obscured again and these are thought to represent the base of the succeeding Zone (see p. 19 ). Therefore, on Birks Beck there is a similar thickness of deposits in the atavus Zone as on Spencill

The following sections have yielded typical atavus Zone assemblages immediately above the Basal Bed but with the fossils less well preserved:- Five Gills (fautted after 14' of mudstone); Birksfield Beck. Other less complete sections and exposures are described in the chapter dealine with the map (p. 71 et. seq.).
The Pristiograntus acinaces Zone
This zone is the least well defined of the Lower Llandovery Zones and is probably rather thinner than the atevus and cynhus Zones winich occur respectively below and above it. : Some of the characters of the previous zone are retained, particularly in the lower beds, whilst the first appearance of monocraptids other than atevus is typical.

Downstream of 1Bi on Birks Wood Beok (which yields an atavus Zone fauna) are two feet of dark mudstone exposed in the left bank of the stream (2Bi). Fossils are well preserved, abundant and the followine were collected:-
C.normalis Lagworth
C.miserabilis (Elles \& Wood)
C. aff medius Tornquist
C.rectangularis (M'Coy)
C. aff minutus Carruthers
D.m.diminutus Elles and Wood
?Diplocrantus rarus sp. nov. ?Dinlosrantus sn. A

Dimorphocrantus e. nicholsoni subsp. nov. Monocrantus atavis Jones
Climacocrantus nsuecionormalis sp. nov. Glyntograntus tamariscus Nicholson s.1.

All these species except the last two were recorded from the preceding zone but the presence of G.tamariscus s.l. must be reģarded as indicative of a hicher level. Monograptids other than atavus have not yet appeared, however, in these lowest two feet.

On Spengill where collection was made from the lowest four feet of the Zone (S9-13) the following fauna was obtained:-
C.normalis Lapworth $\quad$ R.toernquisti (Elles \& Wood)
C.miserabilis (Elles \& Wood)
C.medius Tornquist
C.rectengularis (r'Coy)
C. aff. minutus Carruthers
O.vesiculosus (Nicholson)
R.toernquisti (Elles \& Wood) M.atavus Jones
G.tameriscus Nicholson s.l.

Pristiograntus cynhus Lapworth
P. aff acinaces Tornquist
P.incomirodus Tornquist

This assemblage is similar to that of 2 Bi but differs in having other monograptids. : A single proximal end of P.cyphus has been obtained and the forms listed as P.aff acinaces are always flattened thus makine identification difficult. However, the presence of these forms and G.tamariscus s.l. is indicative of the P.acinaces Zone. Locality S9-13 is best exposed in the steep richt bank immediately above the atavus Zone. The same strata are only poorly exposed in the left bank.

Upstream of the poor left bank exposures are good exposures of S13-17 cropping out as a small spur which deflects the stream some yards to the west. Unlike the lower strata these beds are not so closely cleaved and clearly illustrate the true nature of the hard mudstones. The word "shale" (as in "Skelcill Shales") is an inadequate descriptive term. Fossils are fairly well preserved and the following collection was made:-
C.miserabilis (Elles \& Wood) D.enilongissimus sp. nov. C. normalis Lapworth
M.atavus Jones *
C.rectangularis (M'Coy)
C.medius Tornquist
O. vesiculosus (Nicholson)
R.toernquisti (Elles \& Wood)
D.c.confertus Nicholson
D.e.nicholsoni mut *

Whilst many of these species occur in lower strata some (marked with an asterisk) have shown slight changes which are dealt with in the systematic descriptions.: The presence in abundance of P.cyphus taken together with the occurrence of P.gregarius, and M.revolutus sugcests that the 3' bed from which collection was made contains a mixture of acinaces and cyphus Zone forms and the boundary between the two cannot, therefore, be placed more accurately. On Spengill the acinaces Zone is between $4^{\prime}$ and $7^{\prime}$ thick.

The acinaces Zone was defined by Jones (1909) at Pont Erwyd and whilst the Cautley Zone has a very similar fauna it differs in its lack of C.hurhesi and O.mutabilis. It is possible that the C.hushesi of Pont Erwyd is replaced at Cautley by the form described here as C.aff minutus. The two may be very close buttso far no specimens of the latter have been obtained in relief. The Pristiocrantus cyphus Zone

Above the acinaces Zone of Spengill are $7^{\prime}$ of strata (S17-20 \& S20-24) identical in lithology to the beds below and rather better exposed hirch in the right bank than in the scree slopes of the left. From S17-20 the following assemblace was obtained:C.miserabilis (Elles \& Wood)
C. normalis Lapworth
C.aff. minutus Carruthers C.rectangularis (M'Coy)
M.incommodus Tornquist
P.aff. acinaces Tornquist
P.cyohus Lapworth
R.toernguisti (Elles \& Wood)
C.medius Tornquist
O.vesiculosus (Micholson)?

The species listed in the left hand column are now far less common than in earlier beds and C.normalis, the most abundant of these, is represented by only seven specimens. C.miserabilis and o.vesiculosus are not found above this level. P.cyphus is quite common but there is a temporary aosence of
P.erectarius and M.revolutus which occur in S13-17. Locality S20-24 has yield-ed:-
C. normalis Lapworth
C.rectancularis (M'Coy)
C.medius Tornquist *
R. toernquisti (Elles \& Wood)
G.tamariscus Nicholson s.l.

Those species marked with an asterisk do not survive into the succeeding Zone. The sincle specimen of M.t.trianculatus was obtained in the top few inches of S20-24 and it is probable that these beds should be included in the succeeding Zone. Further collecting at more closely spaced intervals will be necessary to determine this.

The cyrhus Zone was first used by H. Lapworth (1900) but redefined at Pont Erwyd by Jones (1909). At Cautley C.huchesi, O.mutabilis, O.v.cf. nenna have not been obtained but common presence of P.cyphus and the appearance in S13-17 of P.cregarins and M.revolutus illustrates the equivalence in age between the two localities. In view of the fact that P.aff. acinaces is recorded from SI7-20 it is interesting to note that Jones (op. cit. table 2) records the presence of $\mathbb{N}$. ?rheidolensis ( $=$ P.acinaces) in his cyphus Zone. Zone of M.trianculatus

Marr and Nicholson (1888 p.701) thoucht it probable that their fimbriatus shales of Spengill followed the Dimornhocrantus Beds quite nommally and that the two groups were not fault bounded. The succession is now completely exposed, though poorly on the junction and the interpretation of the above authors' can be seen to be correct. They also note (op. cit. p.702) that a crush zone divides the fimbriatus shales from the higher beds upstream (sedrwicki Zone) and that the top is, therefore, not seen. 'This is also true, and, what is more important, the top of the "fimbriatus" shales has not been seen with certainty anywhere in the Cautley district that has so far been examined in detail. The thickness of strata at this horizon as seen on Spengill is not given but Marr and Nicholson record the following specieciM.fimhfiatus Nich., M.cresarjus Lapw., M.attenuatus Hopk., M.triangulatus Harkness, Rastrites nerecrinus Barr., Dinlocrantus sinatus Nich., Clinacograptus normalis Lapw..

Between the cyphus Zone and the fault unstream there are $16^{\prime} 4^{\prime \prime}$ of very dark Eraptolitic mudstones followed by $10^{\prime \prime} 7^{\prime \prime}$ (minimum) of non-graptolitic mudstones. The latter were clearly not exposed in the past but are now well exposed hich in the richt bank where continuous succession can be traced down to the graptolitic beds below. The non-民raptolitic mudstones closely resemble the finer Asheill Shales mudstones in many respects (see p. 88) and represent the first major intercalation of non-Eraptolitic rock in the succession. This is also the case on Skelgill (Marr and Nicholson 1888 p.661, fiz.l) but at Pont Erwy the craptolitic mudstone occurs as relatively thin bands in unfossiliferous mudstones (see for example Sudbury 1958, p.448, fi天.1)

The 16'4' division of graptolitic mudstone has been divided into approximately $4^{\prime}$ units and collection made from these. Of these beds the lowest (S24-28) are the most fossiliferous and these yielded the followinc species:C. normalis Lapworth M.atavus Jones
C.aff. minutus Carruthers C.rectancularis (M'Coy)
G.tamariscus (Nicholson)s.l.
G.sinuatus (Nicholson)

Petalocrantus sp.
Petalorantus minor Elles R.toernguisti (Elles \& Wood)
M.incomrodus Tornquist M. sandersoni Lapworth
P. mrecarius Lapworth
M.revolutus Kurck s.l.
M.t.trianulatus (Harkness) Rastrites Ioncispinus Perner Rastrites snina Richter

Whilst containing elements of the cynhus Zone the incoming of several new forms clearly distincuishes the two Zones. Of particular importance is the presence of the first species of Rastrites and Petalocrantus which do not occur in the lower beds. The recording of M.t.triangulatus slichtly below this level has alteady been mentioned and it is certain that detailed collection across this junction will show that this species precedes R.loncispinus thus confirming the order of appearance maintained by Sudbury (1953) at Pont Erwyd.

The overlying divisions of $528-32$ and $532-36$; whilst being less fossiliferous generally, contain the same species and see the first appearance of several others. Thus C.huchesi and C.extremus were found in S28-32 and above, whilst D.macnus occurs in $532-36$. In the succeeding units ( $\mathrm{S} 36-39,7$ and $\mathrm{S} 39,7-\mathrm{S} 40,4$ ) several more species are found for the first time: O.cyperoides, P.ovatoelonsatus, Petalosraptus ss. M.limatulus.

Above the craptolitic mudstones the $1^{\prime} 7^{\prime \prime}$ unit contains only a sparse and stunted fauna of small brachiopods and trilobites.

On Watley Gill three feet of the triangulatus Zone ( 5 Wa ) is contained between two faults. Downstream of one fault is the atavus Zone (desoribed above p.17) and upstream of the other are Middle Llandovery Beds. The locality 5Wa cave the following assemblace:P.grecarius Lapworth
G.sinuatus (Nicholson)
R.toernquisti (Elles and Wood) G.t.tamariscus (Nicholson)
C.huchesi (Nicholson)
O.cyneroides (Tornquist)
M.trianmulatus separatus (Sudbury)
G.tamariscus aff. linearis (Perner). M.aff. arcutus Lapworth

The presence of M.t.senaratus sucgests that the beds are pre-macnus Zone in ace and the fauna as a whole is typical of the trianculatus Zone.

Two important considerations result from the above description. Firstly in none of the sections examined at Cautley, is the Lower Llandovery-Middle Llandovery boundary exposed, and the full characters of the trjanmiatus Zone cannot yet be determined. Evidence is adduced below to show that the macnus Zone is present on the Birks Beck section. The second point is that the hich. est known Eraptolitic beds of the trianculatus Zone on Spergill cannot be xegarded as exhausted from the point of view of collecting. Fossils are not readily obtained from the small, cleaved fracments of rock and it is particularly difficult to obtain well preserved specimens. However, some of those which have been obtained e.e. M.limatulus and D.mgenus are succestive of hiche er horizons, and it is not impossible that the mamus Zone is incorporated in the top of the "fimbriatus" beds.

The trianculatus Zone was fully defined by Jones and Puch (1935) after an earlier less clear definition by Jones and Pugh (1916). Nany of the forms listed by these authore have already been found but notably absent are M.communis and M.fimbriatus both of which occur at a hicher level (see below). The latter species is recorded from Spencilil by Sudbury (1958) but only doubtful fracments have been obtained from there by the present writer. The species probably occurs in the hicher beds of the trianculatus Zone on Spencill since it certainly seems to be absent from $524-28$.
The Wards Intake Section (716,976)
Mention of the Wards Intake and Pickering Gill Section has been withield
until this point since both show some differences from the succession outlinea above. The Basal Beds of Wards Intake have already been described. They are overlain in the richt bank by dark eraptolitic mudstones which are continuously exposed either beneath the water or low down in the bank. The succession is apparently quite uninterrupted by faults and reaches a thickness of $57^{\prime}$ in which there are no intercalations of non-exaptolitic mudstone. On Spencill 40'4' of Eraptolitic mudstones are exposed prior to the first bed of non-craptolitic mudstone. Thickness chances have already been noted in the case of the atavus Zone which is thicker on Watley Gill than on Spencill so that the thickness of $57^{\prime}$ is not, in itself, abnormal. The faunal content, however, indicates a relatively low horizon.

The most unfortunate feature of the section is the difficulty of obtaining fossils mainly because of the hardness and problem of splitting the rocs parallel to the bedding plane. The hardness is almost certainly a result of baking by the Bluecaster diabase sill which crops out slichtly upstream where it is intruded at a slichtly hicher horizon.

In spite of the difficulty graptolites have been collected. A $3^{\prime}$ bed (15Wi) between 26' and 29' above the top of the Basal Beds yielded: G.miserabilis, C. ?normalis, Dimornhorrentus sn., M. Patavus. On Speñill the last occurrence of miserabilis is $20^{\prime}$ above the base. At a point between 38' and 40' above the Basal Beds (14Wi) the following assemblace was ob-tained:- M.atavus, C.ex. er. rectanmularis, M. ?incommodus, Locality llWi (46'-48' above the Easal Beds) yielded M.aff. incommodus, C.normalis, C. ?rectangularis and C. ?medius, whilst immedjately above this horizon C. Prectancularis: C.?medius, R.toernouisti, Monocrantus snn. and G.tamariscus s.I. were collected from $6^{\prime}$ of strata (13Wi). The hichest level at which fossils were obtained (12Wi) is between 54' and 57' above the top of the Basal Beds. Fossils were rather better preserved here and the followinc species obtained: R.toernquisti (Elles \& Wood) P. cyphus Lapworth G.tamariscus (Nicholson) C. Pmedius Tornquist C. aff. minutus Carruthers
C. Prectancularis (M'Coy)
M. incommodus Tornquist
?O. Vesiculosus (Nicholson)

The whole fauna is indicative of a pre-trianculatus Zone ace, and the full $57^{\prime}$ is assigned to the atavus to cynhus zones. The inconing of M.incors
modus and G.tamariscus and finally of P. cyphus shows that the chances in the "Dimorphocrantus Beds" observed in other sections will also operate in this case.
Pickerinc Gill Section $(689,966)$
This section is similar to that of Wards Intake in that a considerable thickness (approximately 60') of dark mudstone is seen above the Basal Beds. The locality has yielded fossils even less readily then the previous section but the following were obtained (ficures are in feet above the top of the Basal Beds):-

| 60 | R.toernguisti (Elles \& Wood) | Glyptoyreptus en. |
| :---: | :---: | :---: |
| $53^{\prime}$ | O.verjcriosus (aicholson) | R.toernguisti (Elles \& Wood) |
|  | G.t.tamariscus (Nicholson) | C. ? medius Tornquist |
|  | G. cuneatus sp. nov. | O. attenuata sp. nov. |
|  | G.tamariscus ?subsp. | C. ? tanashanensis linearis Packham |
|  | P. acinaces Tornqui | P. ? cynhus Lapworth |
| 481 | M. aff. incommodus Tornquist |  |
| 361 | C. miserabilis (Elles \& Wood) | C. aff. medius Tornquist |

As in the case of Wards Intake these beds clearly represent a thickened pre-trianculatus Zone succession.

Conclusions:
a) The Dimornhocrantus Peds of Marr and Nicholson can be subdivided into three zones ( atavus, acinaces, and cynhus) which are at least aproximately equivalent to a similar zonal sequence established in Wales (The correlation throuchout the Cautley area, and of the Cautley area with other recions is summarized in text figs. $2 g$ and 2 m ).
b) The atavus Zone. M. atavis appears within a foot of the base, and the zone is broadly divisible into a lower, portion with a typical assemblace, and an upper part which sees the aprearance of D.erectus nicholsoni, D. epiloncissimus, ?Dinlocrantus rarus, C.i.exquisitus, and ?Dinlocrantus sn. A.
All except the last of these persists into hicher strata.
c) The acinaces Zone is also divisible into lower and uper portions. The lower part has strong affinities with the preceding Zone but is identified by the presence of g.tamariscus whilst the upper part sees the appearance of monograptids other than atavus. Other species which first apnear in the atavus Zone have shown slicht chances by the time the upper part of the acin-

## TEXT FIG. $2 g$

Correlation of the Skelgill Succession, Lake District with the generalized Lower Llandovery succession at Cautley.


TEXT FIG. 2 m

Correlation throughout the Cautley District of the Lower Llandovery strata.

aces Zone is reached.
d) The cyhus Zone is fairly uniform but is distincuished from the acinaces Zone by the appearance of $P$.cyphus in abundance and by the presence of $P$. mresarius and M.revolutus s.l.
e) The Zones of atavus, acinaces and cyphus thicken from $24^{\prime}$ on Spencill to at least 57' on a line from Wards Intake to Pickering Gill. South of this line, on Birks Beck, the atavus Zone is demonstrably of the same thickness as on Spencill and it is possible that the ENE-WSW line is one upon which sreater deposition of eraptolitic muds took place. It is approximately alonc this line that Wilson (1954) deduced an axis of non-deposition durinc part of the U.Ilandovery.
f) The top of the triangulatus Zone, and hence of the Lower Llandovery, cannot be demonstrated on the information known at present, unless locality 7 Bi (see below p. 26) represents this topmost bed.
The Midale Llandovery
It will be demonstrated below that the beds above the convolutus Zone are always faulted so that the upper boundary of the Middle Llandovery cannot be defined. The argenteus and convolutus Zones were identified on Watley Gill by Marr ( 1913 p .11 ) but a more complete section is seen on Birks Wood Beck.

The last locality described from Birks Wood Beck was 2 Bi which yielded fossils indicating the base of the acinaces Zone. Downstream of 2Bi the strata are ooscurfed for about $50^{\prime}$ and the beds at both ends of this unexposed part dip downstream at $46^{\circ}$. There is room for approximately $38^{\prime}$ of beds between 2 Bi and the next exposure (7Bi). The localities of $7 \mathrm{Bi}, 8 \mathrm{Bi}$, and 9 Bi (the last being the younfest) consist of $4^{\prime}$ of black craptolitic mudstone made up of theee beds which are respectively $6^{\prime \prime}, 2^{\prime}$, and $1^{\prime \prime} 6^{\prime \prime}$ thick.

The assemblaces are as follows:-

|  | A | B | C |
| :---: | :---: | :---: | :---: |
| $78 i$ | M.t.senaratus | R.toernguisti | P. minor |
|  |  | P. crecarius |  |
|  |  | G.incertus |  |
|  |  | R. aff. Ioncisninus |  |
| 8 Bi |  | G.incertus | P.mregarius |


| G. ?enodis Iatus | R. longisninus | P. gregarius |
| :---: | :---: | :---: |
| M. fracilis | C. huthesi | D. masnus |
|  | G. tamariscus: | P. ovatoeloncatus |
|  | M. aff. argutus | M. pseudonlanus |
|  | G. sinuatus | M.t. fimoriatus |
|  | P. Jentotheca |  |
|  | R. toerrnquisti |  |
|  | C. extremus |  |
|  | M. aff. intermedius |  |

Those species contained in the richt hand column are those which were recorded by Sudbury (1958) from the D. macmus band of Pont Erwyd, whilst species in column $B$ are those which range both below and above the masnus Zone. Column A contains only premacnus species and new forms. Considerins the doubt about G. ?enodis latus localities, 8 Bi and 9 Bi are indicative of at least approximate equivalence with the mánus Zone. Locality 7Bi on the other hand contains M.t.senaratus which Sudbury (1958) did not record above horizon $C$ of the Rheidol Gorce. If the species is restricted to premacnus Zone beds then the macmus Zone follows lmmediately upon the trianculatus Zone in this district. Further collecting will be needed to settle this question.

On Watley Gill the presence of a fault-bounded, exposure of the triangilatus Zone (5Wa) has already been described. Imnediately upstream of 5 Wa , on the left bank, are $2^{\prime}$ of rather stripy mudstones ( $6 \mathrm{Wa}, \mathrm{V}$. text fig. 2h) which yielded the following assemblage:-
C. rectancularis ( ${ }^{\prime \prime}$ 'Coy)
G. tamariscus (Nicholson) s.l. ? Glyptograntus sy. A
C. extremus H.Lapworth
R. toernauisti (Elles \& Wood)
M. communis rostratus Elles \& Wood
M.t.fimbriatus (Nicholson)
M. aff. arcutus Lapworth

This fauna is not diacnostic of a particular level but in view of the succession above is probably equivalent to the macnus Zone of Birks Wood Beck

Above 6Wa are 22' of non-craptolitic mudstones yielding small brachiopods ( 7 Wa ) and above this trilobites such as Phacons slaber ( $\ell \mathrm{Wa}$ ). It is

## PLAN OF THE WATLEY GILL SECTION:

LIANDOVERY SERIES

| smmm | exposures |
| :--- | :--- |
| faults |  |

$\longrightarrow$ anticline
almost certainly from this division that Marr (1913 p.11) recorded his arcenteus Zone defined by the following assemblace:- M. arcenteus, M.lentotheca M. convolutus, M. nicoli, M. limatulus, M. communis, M. srecarius, R. hybridus, C. huchesi, D. sinuatus, D. bellulus.

This locality is not visible ${ }^{\text {it }}$ the present time owing to a considerable amount of scree but immediately above its probable position phacors claher can be obtained from calcareous nodules in the non-crrantolitic mudstone, and, upstream, at the top of a $g$ waterfall are grantolitic mudstones from which a convolutus Zone assemblaze can be obtained:-
C. extremus
C. hughesi
C. ex. gr. scaleris
M. convolutus
M. denticulatus
M. limatulus
R. snina

| 9wa | 117a |
| :---: | :---: |
| C. extremus | C. extremus |
| C. huchesi | C. bushesi |
| C. ex. cr. normalje | C.ex.er. scalarjs |
| C. rectangularis | C.ex.cr. normalis |
| G.t.linearjs | G.t.tamariscus aff. form B |
| O. cyperoides | O. insectiformis |
| O. beljulus | O. bellulus |
| P. lentotheca | P. lentotheca |
| M. limatulus | M. deciniens |
| M. lobiferus | M. lobiferus |
| M. aff. involutus | M. arcutus |
| M. ex. Er. sandersoni | M. ?convolutus |
| M. communis |  |
| M. argutus |  |
| M. decipiens |  |
| M. recularis |  |
| M. cf. concinnus |  |
| R. fugax |  |
| R. snine |  |

Upstream of these localities are 61 of non-craptolitic mudstone (seen in left bank only). A fault crosses the stream and is detected near the top of the waterfall, by the presence of a crush zone. The displacement seems to bring in the sedcwicki Zone since limestone blocks identical to the limestone seen in this zone on Spengill can be seen weathering out of the richt bank.

Marr (1913) mentions that this fault brings up Dimorphomantus Beds again but the writer can find no evidence for this.

Returnine to the Birks Wood Beck section it is seen that above the maenus Zone are 17' of non-graptolitic mudstones followed by a 6" graptolitic band from which the following species were obtained:-
M. aff argenteus, M. argenteus cysneus, P. gregarius, M. revolutus s.I., M. arsutus, M.lobifemus, M.denticulatus, M.aff undulatus, P.lentotheca, M.communis, M.c.rostratus, M.aff convolutus, P.concinnus, O.bellulus, G.t.aff varians, G.t.anculatus, G.t.tamarjscus, G.t. tamariscus aff form B, P. minor finitimus, gastropod.

This fauna is indicative of the areenteus Zone as defined by Marr (= lentotheca Zone as defined by Jones and Puch 1916). It is in a similar position to the arsenteus Zone of Watley Gill (Marr 1913 p.11). Overlying the 6" bed are 11'6" of non-craptolitic mudstone followed by 1' (seen) of dark craptolitic rock which is poorly exposed in the richt bank just above stream level. The following species, indicating correlation with the convolutus Zone of Watley Gill, were obtained:C.extremus, C.huchesi, C.ex. ©r. scalarjs, O.bellulus, M. dentioulatus, M. ?convolutus, P.lentotheca, M.lobiferis, Rastrites sn.

This bed is overlain by 18-23' of non-graptolitic mudstone before a fault brinçs down U. Llandovery mudstones.

## Conclusions:

a) The highest strata of the Middle Llandovery seen in the area are the nonEraptolitic mudstones immediately above the convolutus Zone. These reach a thickness of 18'-23' on Birks Wood Beck but, as on Watley Gill, they are fault bounded at the top and the sequence into hicher strata cannot be observed.

> Zone
b) The masnus $h^{i s}$ shown to exist below the arcenteus (= lentotheca) Zone and this might possibly be incorporated in the top of the fimbriatus beds.
c) The ceneral succession of magnus, argenteus and convolutus Zones is in accord with work done in Wales and with Karr and Nicholson's work in the Lake District though the number of species now known exceeds those recorded by the above authors, and particularly those listed for the Cautley district. The Upper Llandovery

These beds were studied in creat detail by Wilson (1954) who recoenized
and delimited the following Zones : sedwicki, maximus, turriculatus, crisnus, and griestonensis. It was shown that considerable variations in thickness occurred over the recion and that the "red" mudstones thinned out on an approximately NE-SW axis. Some of the Eraptolites of the hicher beds (crispus and criestonensis Zones) were described. The present writer has only examined the Spencill section in detail since it shows the sequence of faunasard litholocical types almost uninterrupted by dislocation and provides a useful basis both for description of the faunal content of the hicher beds and for mapping throughout the recion. The litholocical sequence, the faunas, and the plan of Spencill are shown respectively in text fics.i,j, k, and 1 , and need little in the way of explanation. In the systematic descriptions below only those species not dealt with by Wilson are described and in text fic. $2 k$ species recorded by the above author from the crisnus and rriestonensis Zones are omitted.

On text fi尺. $2 i$ those craptolitic bands marked with an asterisk are probably new bands but only one of these (S140,11) has zonal significance. This band yielded a specimen of Rastrites maximus end strata up to this level ought, therefore, to be included in the subzone of E.maximus. In addition to this species the following were obtained:C.extremus, P.obesus, Pristiograntus recularis,
nertinax subsp. nov., M.turriculatus, M. Mlanus, M.halli, R.linnaei. The thickness of the maximus Subzone is 25.9"1.

Intruded near the top of the turriculetus Zone is a felsito sill. Its upper boundary can be traced for some distence and is guite concordant with the bedding, occurring always beneath two prominent mudstone bands which underlie a 7 " $"$ ash. Treced downstream on the richt bank it thins rapidly and after a few yards dies out altozether. From this point to approximately fourty yards downstream the bedding plane upon which the sill is intruding is marked by a breccia which has a distinct "burnt" appearance. The position of both sill and breccia is shown on text fic. 21.




## TEXT FIG. 2 j

Range chart of graptolite species for the presedgwicki Zone strata of Spengill. The Slocality numbers correspond to the thickness in feet of the beds measured from the top of the acuminatus Zone which itself is $4^{\prime \prime \prime}$ thick.



Range chart of graptolite species from the posttriangulatus beds of Spengill. : Species recorded by Wilson (1954) from the crispus \& griestonensis Zones are omitted here but species which range into these Zones from below are marked with an asterisk.



## THE WENLOCK SERIES

The Wenlock Strata of the Cautley district have received incidental reference in several works but studies describing various aspects in detail are few. Priar to the naper by Harkness and Nicholson (1868) the term "Coniston Flacs" included the Stockdale Shales. Thus Sedewick (1851) in a paper on the Palaeozoic rocks of Westmorland described his "Ravenstonedale Section" in which the Coniston Flags overlie the Coniston Limestone on the south eastern slopes of Harter Fell without intervening rock units. Aveline and Huches (1872, 1888) described the Coniston Flacs in the reçion mainly south and west of the Cautley district but do make reference to the area. The presence of Coniston Flags on Hebblethvaite Hall Gill, for example, is briefly mentioned. In addition a section from Orton Scar across the R.Lune to Sedbergh is civen and of the slopes of Crool, Winder, and Knott they write that there is "... a belt of srit occurring between the Flass in the R.Fawthey and those on the fell side. There is strong evidence that these crits are faulted in, but whether they should be referred to the Coniston Grits or are a gritty series in the Coniston Flacs, there is not sufficient evidence to show. " Daryns et. al. (1891) gave a rather more lencthy description of the Coniston Rlacs and their general distribution along the valleys of the R.Rawthey, Crosshew Beck, Hebblethwaite Hall Gill, and Wandale Hill. "Watney and Welch (1911 A, B, 1910) were the first workers to attempt a detailed faunal study and in their loncer paper of 1911, following the summaries of 1910, divided the "Wenlock Series" into the following Zones:-

C4 'Zone of Cyrtosrantus lundereni Tullb.
03 Zone of Cyrtograptus rigidus Tulle. "
C2 Zone of Monocrantus riccartonensis Lanw.
Cl Zone of Crrtocrantus murchisoni Carr.
The Wehlock Series is said to crop out in three areas, (the Rawthey area, Wandale Hill, and Harter Fell), each beinc characterized by distinct ligholocies which are, respectively, blue flass, yellow sandy beds, and red flass and crits. The "yellow sandy beds" of Wandale Hill are lithologically iden-
tical in the writer's view to those of the R.Rawthey recion being merely more deeply weathered. In many localities the unweathered rock can be seen (e.c. Wandale Fill Gill B (706,984)). Similarly those beds on Harter Fell are secondarily stained red, presumably because of the proximity at one time of the Basal Conglomerate of the Carboniferous, and the normal "blue flag" litholocy is commonly observed. No grits of Wenlock age have been detected in the Harter Fell area.
The Lower Roundary of the Wenlock Series
Dakyns et al (1891 pp.30,37) mention the gradual chance from the Stockdale Shales into the Coniston Flass with particular reference to Spencill. Watney and Welch (1911) observe that the boundary is exposed in several localities but no details of the litholocical chances involved are given. Marr (1927 p.495) briefly described the litholosical changes and was clearly familiar with the details of many sections. Thus, writinc of the boundary, he remarks that it is characterised by "... by alternating stripes of ereen beds of the Broweill type and blue-crey beds of the Brathay type. This is seen in several places, and is well displayed in the stream section of Spencill, Cautley." This particular section is now rather obscured and the change is better seen, for example, at the mouth of Wandale Beck and on Pickering Gill. Wilson (1954) defined the base of the Wenlock Series by pinpointine a particular bed. He drew the boundary at the bottom of massive non-graptolitic mudstones which are distinct from the grey beds below in having a bluish tint and in the lack of thin ash bands. After a few feet these massive mudstones begin to alternate with very thin eraptolitic mudstone bands. The present writer has shown ( p .96 ) that the graptolitic mudstone was of ten in the process of beins destroyed by worms living on the sea bed, the result of complete reworking being a homogeneous non-banded mudstone with a faint bluish hue. It is sucgested that the blue tinge is a result of reworking of eraptolitic mud by worms. Graptolites are preserved in the earllest of the bands and the faunal content emphasizes the correctness of the position at which Wilson drew the base of the Wenlock Series.

In the description below the Wenlock Series is divided as follows:Stase 4 Zone of C.lundgreni (subzones)

$$
\text { Stace } 3 \text { ?Zone of C.ellesi }
$$

Stace $3 \quad$ Zone of C.rigidus mut.
Zone of M.flexilis belonhorus
Stage 2 Zone of M.antennulatus
Zone of M.riccartonensis (Subzones)
Zone of C.murchisoni
Stage $1 \quad$ Zone of $\frac{\text { c.centrifucus-c.insectus }}{(S u b z o n e s)}$

## Stage 1

a-

The first Wenlock Stage is exposed in many stream sections but is seen in its entirety only in the sections exposed on Hebblethwaite Hall Gill and neare the mouth of Wandale Beck. Others sections showing the strata in varying degrees of completeness are:- Stockless Gill (695,000); Spengill (700. 999); Pickering Gill (689,966); Wandale Hill Gills A and B (7040,9795; 706, 984); Five Gills (725,999); Wandale Beck (711, 997); mouth of Birksfield Beck (691,949); Whinny Gill (700,944); Gais Gill (710,010). The Near and Midde Gills sections which were dealt with by Watney and Welch (1911) have only poor exposures of this stage. Text fig. 3 a illustrates the decree of exposure at the junction of Middle Gill and the Roman Road, Clearly few deductions can be made from sections of this nature.

Text fic. $3 b$ is a detailed straticraphical column of the first Stace exposed on the R. Rawthey a little upstream of the mouth of Wandale Beck. The total thickness is $6^{\prime} 10 \frac{1}{2} \prime \prime$ of which the lowest $14^{\prime} 9^{\frac{1}{4} \prime \prime}$ contain no grantolitic mudstone and yield only worm tubes. The base is drawn at the position described above and is underlain by about $30^{\prime}$ of grey beds. Above the $14^{\prime} 91^{\prime \prime}$ unit graptolitic mudstones gradually become predominant after appearing first as thin bands.

The equivalent strata of Hebblethwaite Hall Gill, also underlain by about $30^{\prime \prime}$ of crey beds total $59^{\prime \prime} 0^{\prime \prime}$ in thickness showing a slicht decrease from further north. At the base are approximately 10 , of beds without creptolitic mudstone and the $5^{\prime}$ immediately above this have only thin banded mudstone streaks from which no fossils heve been obtained.

Almost at the top of Stace 1 is a 4 "limestone which, tocether with some thin bands of graptolitic and non-graptolitic mudstone can be traced over the

Exposures at the junction of Middle Gill and Roman Road


whole area (v. text fig. Sc). Above the 4" limestone is a bed varying from 1'4" to 1 'lo ${ }^{\prime}$ " which has the bottom $9^{\prime \prime}$ composed of non-sraptolitic mudstone. The top of Stare 1 is drawn at the top of this bed and above the strata are almost exclusively of the sraptolitic mudstone in which the fossils, are flattened and the fauna distinct from the underlying beds.

Fossils are not easily obtained from the water-nolished, unweathered mudstones exposed on Hebblethwaite Hall Gill and the mouth of Wanda le Beck and are more readily obtained from some of the less complete sections in which the strata are more deeply weathered (ecg. Wandale Hill Gill A). In view of this difficulty of collecting fossils from the most complete sections no subdivision of the Stare is attempted. The Pickering Gill section has been straticraphically collected for some distance above its base (v. text figs. Sd) but no obvious pattern of species distribution ha emerged. The following species have been collected from Stage 1 :Monoclimacis vomerina basilica (Lapworth) * $5 \mathrm{H}, ? 3 \mathrm{P}, 4 \mathrm{P}, 5 \mathrm{P}, 3 \mathrm{P}, 10 \mathrm{P}, 51 \mathrm{~W}$, $49 \mathrm{~W}, 37 \mathrm{~W}, 46 \mathrm{~W}, 47 \mathrm{~W}, 25 \mathrm{~W}, 26 \mathrm{~W}$, $28 \mathrm{~W}, 29 \mathrm{~W}, 8 \mathrm{Ra}, 3 \mathrm{Ab}, ? 12 \mathrm{~N}, 8 \mathrm{~N}, 1 \mathrm{NN}$, $1 \mathrm{M}, 4 \mathrm{M}, 51 \mathrm{~W}, 49 \mathrm{~W}, 9 \mathrm{Fi}$, ? 8 Ra, ? 8 N ?laN, ?IgN.
Monoclimacis vomerina vomerina (Nicholson) * $4 \mathrm{M}, 6 \mathrm{M}, 11 \mathrm{M}$. Monocljmacis shot toni sp. nov. $3 \mathrm{P}, 5 \mathrm{P}, 6 \mathrm{P}, 10 \mathrm{P}, 49 \mathrm{~W}, 5 \mathrm{~W}, 28 \mathrm{~W}$, ?Ra. Monoclinacis linnarssoni Tullbere $\quad 37 \mathrm{~W}, 4 \mathrm{M}$. Monoclimacis priestonensis nicoli subsp. nov. Prustiocrantus watneyi sp. nov. * 37W, ? 1 M . Monograntus nriodon (Aron) * 5P, 10P, ? $8 \mathrm{P}, 37 \mathrm{~W}, 46 \mathrm{~W}, 25 \mathrm{~W}, 26 \mathrm{~W}, 28 \mathrm{~W}, 29 \mathrm{~W}, 9 \mathrm{Fi}, ~ ? 8 \mathrm{Ra}$, Monocraptus minimus cautleyensis subsp. nov.10F, $49 \mathrm{~W}, 37 \mathrm{~W}, 28 \mathrm{~N}, 12 \mathrm{~N}, 8 \mathrm{~N}, 10 \mathrm{M}, 1 \mathrm{M}, 4 \mathrm{M}$ lM, 4M.
Monograntus danbyi sp. nov. 8 P.
Monocraptus simulates sp. nov. $28 \mathrm{~W}, 4 \mathrm{M}$. Monocrantus sn. A 5P,8Fi.
Cyrtocrantus centrifuges Boucek $10 \mathrm{P}, 8 \mathrm{P}, 28 \mathrm{~W}, 9 \mathrm{Fi}, 12 \mathrm{~N}, 8 \mathrm{~N}, 1 \mathrm{M}, 4 \mathrm{M}, 1 \mathrm{~F}, 29 \mathrm{~N}, ? 26 \mathrm{~W}, ? 46 \mathrm{~W}$, ?49W, ?51W.
Cyctocrantus of insectus Boucek * 28W,29W, ?26W.
Cyrtoxrantus murchison Carruthers * 37 W .
Retiolites e.-_reinitzianus Barrande. 28W, 26W,25W,29W,1M, 4M, 5H, 5P, 6P, 10P, 8P, 49W, $37 \mathrm{~F}, 47 \mathrm{~W}$.




Retiolites \&. augustidens Elles \& Wood 5P,9P, 8P,51W, 37W,25W,26W,28W,29W,7Ef, $8 \mathrm{~N}, 2 \mathrm{M}, 3 \mathrm{M}, 4 \mathrm{M}$.
Avlacon]eura sn.
orthocone cephalopods, small brachiopods, orinojds, conularids, phyllocarids crustaceans.

Of this faunal list only the six craptolites marked with an asterisk pass into the succeeding Stage, whilst of the ten remaining species only R.E.ceinitzianus was identified by Watney and Welch (1911). It is probeble thet the species recorded here as c.centrifucus Boucek was taken by Watney and Welch to be C.murchisonj var, crassinsculus Tullbere which Boucek (1933) considers to be synonymous with C.murchisoni bohemicus Boucek. C.centrifucus may precede C.aff. insectus on the evidence offered by the Pickering Gill section (v. text fig. 3d). As has been stated Stace l is not subdivided and the Zoral name of C.centrifumis-C.insectus is adopted.

On the mouth of Wandale Beck section locality 49 W has yielded the following assemblase:- Monoclimacis sbottoni, M. vomerina basilica, M.v.vomerina, Monomrantus minimus cautleyensis, Cyrtosrantus sn. and R. c.ceinitziarus,
whilst locality 51W which occurs some 12' below the top of the Zone contained: M.shottoni, M.v.basilica, M.v.vomerina, Cyrtomrantus sn. and R.g.augustidens.

The hichest beds of the Zone which have yielded fossils are exposed on Wandale Hill Gill. B. Here the typical assemblase of fossils is found in the lower horizons (localities 47 W and 46 W ) but just before the non-craptolitic mudstone dies out ( 37 W ) C.centrifucus is replaced by C.murchisoni. The other species are, however, typical of Stece 1 and include:-
M.minimus cautleyensis, M.vomerina hasilica, P.watneyi, M.nriodon, R.E.ceinitz ianus and R.e.aucusticens. . Upstream the next beds yielding eraptolites indicated the ricoartonensis Zone.

Wandale Hill Gill A has $16^{\prime \prime} 5^{\prime \prime}$ of the centrifumus-insectus Zone exposed. The lowest beds are separated from the grey beds by a small fault which cuts out the non-sraptolitic mudstones typical of the base of the Zone, whilst the top is faulted against the riccartonensis Zone. Graptolites are well preserv. ed, abundant, and because of the weathered nature of the rock can be collected easily. The species listed above as typical of the Zone ( $n .34$ ) were collected with the exception of C.murchisoni and P. Watneyi (known only from the top
of the Zone), M.danbyi (known only from the lower beds) and M.linrarssoni.
The Hebbletbwaite Hall Gill section, thouch well exposed in both banks, is not easy to collect partly because of the water-smoothed, unweathered rock in some places and the cleaved and jointed nature of the rock away from the stream: - The beds below the $4^{\prime \prime}$ Iimestone have rielded (at 5H):-R.E.ceinitzinns, M.v.vomerine, M.v.basilica, Cretorrantus sn. Upstream are the rurchisont and rionntonensis Zones.

- The centrifums-insectus Zone is also exposed on Whiniot Gill where the stream bends to the NW on meeting High Pasture Wood. . Two small faults iring down the crey beds against the red beds and then $S$ tace 1 against the crey beds. The Zone is poorly exnosed either lov in the right bank or beneeth the water uritil the stream turns sharply to the $S H$. Localities $3 W h-5 h h$ contain a tyoical assemblase of C.centrifunas, M.shottoni, M.v.basilion, Monindon and R.g.ausustidens. At the bend localities 2 Wh and 12 Wh have a murohisoni fauna of M.oriodon, C.murchisoni Carruthers and M.v.basilica whilst a short distance downstream locality lih contains nunerous spocimens of M.riccar. tonensis.

Other sections and exposures, cenerally less complete, are described in the chanter dealing with map description.
Stage ?

The base of Stace 2 is an described for the top of Stase l. Above the junction is a marked chance in faunal content and slicht but important chances in litholozy. The deposition of graptolitic mudstone now takes place to the almost complete exclusion of other rock types, and coincides with a eradually increasine grain size, lime content and bottom current activity tocether with a decrease in primary pyrite content. The fossils are usually preserved as flattened films in the rook. Generally soeaking the variety of species found in this Stafe is less than both above and below, each Zone beine characterized by a small but tynical assemblage. ... The top of the Stage is drawn at the base of the flexilis belonhorus Zone which sees the incomine of a distinctly more varied fauna containing species which reach predominence in higher Zones. Stace 2 is divided into three Zones:

> Zone of Monomrentus antennulatus
> Zone of Monocrantus riccartonensis
> Zone of Cyrtocrantus murchisoni

The murchisoni Zone is one of the thinner but most conspicuous Zones. Its base is marked by the disappearance of the following species which were characteristic of the precedinc Zone:- M. shottoni, M.minimus cautleyensis, Monograntus sn.A, R.g.ceinitzianus, R.E.aucustidens, C.centrifucus, M.simulatus, M.linnarssoni, M.eriestonensis, nicoli and M.danbyi. The top of the Zone is marked by the appearance of M.riccartonensis. M. Mriodon and M.v. basiljca are the two most common species of the murchisoni Zone but many of the beddinc planes are crowded with flattened proximal ends of cyrtocraptids. Occasional specimens with secondary cladia show that these are C.murchisoni Carruthers and that the species which comes in first at the top of the centri-fucus-insectus Zone is now relatively common.

A single bedding plane some $2^{\prime}$ above the base contains numerous adult cyrtocraptid. rhabdosomes but often so crowded together that little detail can be ascertained. This bedding plane is typically slightly calcareous and contains specimens of C.aff insectus and probably also of C.murchisoni Carruthers. The former species has not been found above this point, and cyrtofraptids cenerally are restricted to the bottom half of the zone. The complete fauna is:-
C. murchisoni Carruthers $50 \mathrm{~W}, 68 \mathrm{Bf}, ? 9 \mathrm{H}, 12 \mathrm{~Wh}$.
C.aff. insectus Boucek $50 \mathrm{~W}, ~ ? 9 \mathrm{H}$.
M. V. vomerina (Nicholson) ?53W, ?54W.
M.V.basilica (Lapworth) 53W,9H,6Bf.
M. nriodon (Bronn) • $53 \mathrm{~W}, 9 \mathrm{H}, 6 \mathrm{Bf}, 12 \mathrm{~Wh}$.

This assemblace differs from that defined by Elles (1900) only in the lack of M.riccartonensis, R.geinitzianus, and Stomatorrantus sn. The species M. Hisinceri var. recorded by Elles may be synonymous with P. watneyi which could be expected in the Cautley murchisoni Zone since it occurs both ajove and below.

The murchisoni Zone is seen in its entirety at the mouth of Wandale Beck section where it overlies the centrifucus-insectus Zone of Stace 1. The strata are well exposed in the left bank and in the river bed where they strike across to the mouth of Wandale Beck. Any single bed.may be traced for as much as twenty yards, but from the water-smoothed rock fossils are not
easily obtained．Locality 50W（ $2^{\prime}$ to $6^{\prime}$ above the base of the Zone）yields M．nriodon，M．v．basilica，C．aff．insectus and C．murchisoni．A 2＇3 ${ }^{2}$＂bed imm－
 tids．This is followed by a bed of exactly the same thickness from which no fossils were obtained，but the succeeding bed（l＇II＂，53W）contains M．rico－ artonensis，M．v．vomerina，M．v．basilica，and M．priodon．The thickness of the murchisoni Zone is，therefore， $10{ }^{\prime \prime}$＂．

On Hebblethwaite Fall Gill the strata near the top of the centrifucus－ insectus Zone are well exposed in the stream bed and richt bank．Immediat－ ely overlyinc this Zone are two beds totalline $5^{\prime} 6_{\sim}^{7 \prime \prime}$（ 9 H ）which yielded M ． v．basilica，M．nriodon，？C．murchisoni，diminutive brachionods and a crinoid bed．Overlying 9 H are two beds resnectively $\mathbf{2}^{\prime} 7{ }^{\prime \prime}$ and $\mathbf{2 ' 8 \prime \prime}^{\prime \prime}$ thick from which fossils were not obtained，and immediately above these are 2＇of strata from which M．riccartonensis，and M．irfonensis inclinatus were collected．The total thickness of the murchisoni zone is lo＇9⿱⿱一口䒑寸＂，that is slichtly thicker than on the mouth of Wandale Beck section．

Some distance south of the mouth of Birksfield Beck $(691,949)$ the murchi－ soni Zone is exposed overlying the centrifugus－insectus Zone．Locality 6Ef contained M．v．basilica，M．Driodon，and C．murchisoni，whilst 5 Bf which is loc－ ated 51 yards upstream of the footbridee and 11＇above the base of the murchi－ soni Zone yielded abundant M．riccartonensis．At this locality therefore，the murchisoni Zone is of similar thickness to the above described localities． Zone of M．riccartonensis

The base of this Zone has been defined above and must correspond at least approximately with that chosen by Watney and Welch（1911）．The upper limit of the Zone is marked by the disappearance of the name fossil．It can be distincuished from the preceding Zone not only by the presence of riccarton－ ensis but by the absence of cyrtocraptids．M．priodon has only been doubt－ fully recorded excent at the very base and is larcely repiaced by M．riccart－ onensis．This latter species is extremely comron and often occurs to the ex－ clusion of other forms．M．v．basiljca，however，is also fairly common and the two species are tyrical of much of the Zone．The ricoartonensis Zone can be conveniently subdivided into three subzones：－
Subzone 0 （appearance of several forms for first time e． $\mathcal{E}$ ．P．dubjus．
Subzone B（M．riccartonensis and M．vomerira basilica．）
Subzore A（incominc of M．riccartonensis，presence of M．priodon）

Subzone A contains M. nriodon which is far more aburdantin lower strata and has been only doubtfully recorded above this point. On the mouth of Wandale Beck section the subzone is only l'll' thick. M.irforensis inclinztus subsp. nov. has been recorded from this position on the Eebblethwaite Hall Gill section.

Subzone B forms the bulk of the Zone and is characterized by the typical association of N.riccartonensis and the less common M. v.basilica. The same two species are found in Subzone $C$ but M.v.basjlica is much less common. In addition, however, are P.dubius, M.antennulatus, S.spinosus nraesnirosus, and rarely, M.sedberchensis, M.irfonensis inclinatus, M.flexilis belonhorus, and flemingii-like fracments.

This pattern of subzones can be demonstrated on several stream sections and holds good throughout the recion. Thus goove Subzone A on the mouth of Wandale Beck section are $48^{\prime}$ of beds yielding M.riccartonensis commonly and M. V.besilica more rarely (localities 54 W to 62 W ). Subzone C , fault-bounded at the top, is only $10^{\prime}$ thick and contains M. riccartonensis, M.antennulatus, and P.dubius (localities 63 W to 65 W ). The total thickness of the riccartonersis Zone on this section is $60^{\prime \prime} 4^{\prime \prime}$ (top not seen)

Immediately above the fell road on Wandale Hill Gill B Moriccartonensis can be obtained in abundance from the poor exposures in the stream bed (38W). There are no exposures for a short distance where there is room for about 6 ' of strata. Ten feet of weathered mudstone are then exposed downstream of a small fault (localities 39-40W) which yield M.riccartonensis, M.irfonensis inclinatus, M, antenmulatus, M. sedberchensis. "Aoove the fault are 15' of mudstones (41-42W) containing M.ricoartonensis, M.irfonensis inclinatus, S. sninosus praespinosus, P.dubius, and small brachiopods. Unstream is a recion of poor exposure where there is room for 22' of beds and above this the Zone of M. flexilis belorhorus. The total thickness of the ricoartonensis Zone is about 66'.

The stream section of Niddle Gill is better exposed in Stace 2 than in Stage 1 and the pattern of Subzones is maintained. Thus the lower beds of Middle Gill (6M) yield only M.riccartonensis and M.v.basilioa with the latter fairly common upon some bedding planes, whilst the hicher strata (11M-13M) c tain M.riccartonensis, P.dubius, M.antenmulatus, M.flexilis belonhorus, and flemincii-like fragments. : These beds are overlain by the M. antennulatus

Zone contaning only the name fossil, P. dubins, and rarely v.basilica. On Near Gill the hicher beds of the riccartonensis Zone are not well exposed but the overlying antermulatus Zone is present and will be described below.

On Hebbletrwaite Hall Gill the ton of the Zone is not seen but 68' of strata are exposed. At the base locality 8 H yields M.riccartonensis and M.irfonensis inclinatus. Locality 6 H twenty feet above the base contains numerous specimens of M. riccartonensis whilst 7H, in the highest 6'-7' seen, contains M.ricoartonensis and P.dubius in association suecesting that Subzone $C$ is present.

In interesting feature of the riccartonensis Zone is the resence of a z' calcareous crit which is remarkably widespread and constant in thickness. It occurs in Subzone B and at the nouth of the Wandale Beck section is 14'11 $\frac{1}{2}$ ' above the base. On the Hebblethwaite Hall Gill section it is twenty feet above the base and immediately underlies locality 6H. It is clear, therefore that a ceneral expansion of the beds takes place to the south in this Zone. The same grit has also been observed on the Wardale Beck section (711, 997) and south of the mouth of Birksfield Beck.

The complete faunal list of the riccartonensis Zone is as follows:Subzone C. M.riccertonensis Lapworth
M.ontennulatus Menechini
M.i.inclinatus subsp. nov.
P. dubius (Suess)
S.2.s.praespinosus subsp. nov.
M. sedner hensis sp. nov. 40W only
M.v.basilica (Lapworth)
M. watneri Sp. nov.
M.flexilis belophorus (rare) 13 N only

Subzone B M.ricorentonsis Iapworth
M.v.besilica (Iapworth)
B.pulchellus 30 W only

| Subzone $A \quad$ | Miriccartonengis Lapworth |
| ---: | :--- |
|  | M.nriodon (Bronn) |
|  | M.v.basilica (Lapworth) |

Subzone A M.irfonensis inclinatus subsn. nov.
M.v.vomerina (Nicholson)

Zone of Monosrantus antennulatus
The anternulatus Zone was almost certainly included by Hatney and Welch (1911) in their ricoartonensis Zone but neither this Zone nor the overlyinc one of flevilis belonhorus contains M.riccartonensts M.antennulatus and P. dubius are the two typical species of the Zone with W. V.basilioa now only rarely recorded. The base of the Zone is taken at the unger limit of $\frac{10}{}$. ridoertonensis. M.antennulatus arid P. Nubius both apyear in the ricoartonnensis Zone (Subrone C) but are now quite common. The fanal list is as fol\}-ows:-
M.antennulatus Menechini
P. dubjus (Suess)
M.kingi sp. nov. 14N only, two specimens M.v.bosilica (Iarworth)
P. menechini merechini (Gortani) 13 N only, one srecimen.
S. Sninocus praserinosus subsp. nov. 13 N
flemineji-like fracments $13 \mathbb{N}, 14 \mathrm{~N}$.

This asesmblace is not dissinilar to that recorded by Elles (lo00) from the riccartonensis Zone of the Welsh Borderland but lacls W.riccartonenais and others, and in addition contains P.m.mene phini and S.s.nreesninosus:

The antennulatus Zone is invariably present between the ricortonensis Zore below and the flexilis belorhorus zone above and rerresents a reriod of denosition of rather poorly fossiliferous strata characterised by the two species antennulatus and dubius. The lother listed species have either been recorded from 13 N only or are rare. The ton of the Zone is defined by the appearance of several forms in abundance which were recorded rarely from lower down (M.kinci, M.flexilis helonhorus) and by the anpearance of others for the first time (II.f.flemingii, P.dubins, seudolazus). Near Gill, Vidale Gill the R.Fawthey (mouth of Wandile Beck) are the three sections where the beds are best displayed (v. text fics. $3 f, g-j$, ).

- The Near Gill and Middle Cill sections are illustrated on text fie $6, \mathrm{~h}$, i, and $j$. On the R.Rawthey downstream of the mouth of Wandale Beck


24'9' of strata are exposed in a cliff on the left bank above the riccartonensis Zone. They are overlain by $15^{\prime}$ of cleaved mudstones from which no fossils could be obtained but localities 64 W and 65 W in the $249^{\prime \prime}$ unit yielded M.antennulatus and P.dubius. The top of the Zone cannot be defined on this section in view of the cleaved and poorly exposed nature of the overlying strata.

## Stace 3

The third Wenlock Stace is typified by the presence of several species for the first time and the increased abundance of some forms recorded from earlier strata. M.kinci is a characteristic species of Stase 3 whilst $\mathcal{F}$. dubius, P.m.mencchini and M.f.flemingii etc. become far more common. Other species (e. g. M.antennulatus) only survive for a short time in Stage 3 baving reached their acmes at lower levels. Above the lowest beds of Stace 3 . . rigidus mut., M.flexilis, and C.linnarssoni all appear for the first time and are typical of the second Zone. Stace 3 is divided as follows:-

```
?Zone of Cyrtograntus ellesi
    Zone of Cyrtocrantus rioidus mut.
    Zone of Monocrantus flexilis belonhorus
```

Nowhere in the Cautley district has the top of the C.ricidus mut. Zone been seen and there is sove evidence to sugcest that strata equivalent to the ellesi Zone of the Welsh Borderland exist, Similarly the top of the Stase cannot be defined since the samll thickness of the ?Zone of C.ellesi located on Ecker Secker Eeck is also fault bounded. Zone of Monocrantus flexilis belonhorus.

Watney and Welch (1911) marked the top of their M.riccartonensis Zone by the incoming of C.ricidus and the Zone here described as flexilis belonhorus was, therefore, included by them in their riccartonensis Zone. These authoresses record the following species from the riccartonensis Zone:- M.riocartonensis, M.vomerinus var.x, M. vomerinus var. $\beta$, Retiolites sninosus, M. canillaceus, M.dubius, M.hisinseri (Comon), M.flexilis (very rare). Clearly most of these species reflect collection from the author's ricoartonerisis and antennulatus Zones but the recording of M.flexilis as "very rare" suegentcollection from the flexilis belonhorus Zone. The fauna recorded from the flexilis belophorus Zone is listed below.
M.flexilis belophorus Menechini 16m,18M,19M.
M.ex. or. flexilis 43W
M.kingi sp. nov. $10 \mathrm{~N}, 18 \mathrm{~N}, 16 \mathrm{M}, 18 \mathrm{M}, 43 \mathrm{~W}, 44 \mathrm{~W}$.
P. dubius dubius (Suess) $19 \mathrm{~N}, 18 \mathrm{~N}, 16 \mathrm{M}, 17 \mathrm{M}, 18 \mathrm{M}, 43 \mathrm{~W}, 44 \mathrm{~W}$.
P.dubius nseudolatus subsp. nov. 18N, 10 N .
M.antennulatus Meneghini $18 \mathrm{~N}, 17 \mathrm{M}$
P.m.menechini (Gortani) $1 \in M$
S.sninosus raesninosus subsp. nov. 43W,44W.
M.flemincii flemingii 19 N .
flemincij-like fracments.

This faunal assemblace retains some of the characters of the earlier beds particularly in the continued appearance of some of the less common species such as S.s.praesninosus, P.m.menechini, M.f.belonhorus and fleminciilike fracments. M.antennulatus, however, is less common than in earlier beds and is last seen in locality 17 N on the Near Gill section. P. d. dubivs is now abundant and occurs with P.d.pseudolatus which appears for the first time. M. kinci appears for the first time in abundance and is one of the most characteristic species of Stage 3, surviving into Stace 4 only in a rodified form. The base of this Zone is taken at the point of appearance of all these species together and can be strongly contrasted with the relatively barren Zone at the top of Stace 2. The top of the Zone is very easily defined and taken at the point which sees the influx of M.f.flexilis, C.ri.rigus mut. and C.linn arssoni.

The presence of M.f.flemingii, flexilis-like and flemingii-like species in the flexilis belonhorus Zone, taren in conjunction with the absence of riccartonensis, murchisoni, nriodon etc. suesests that these beds are of later ace than the riccartonensis Zone as defined in the Welsh Borderland by Elles (1900).

On Near Gill the Zone is represented by 22' of strata (18N,19N) exposed in the stream bed and low in the left bank. Exposure is not quite continuous and there is room for $3^{\prime}$ of beds between 18 N and 19 N and also between 18 N and the ton of the preceding Zone (15N). Locality 18 N yielded the follow species:- M.antennulatus, M.Finsi, P.d.dubius, P.d.nseudo latus, f.flexil helonhorus. Moving downstream and up the succession there is a short cap
the exposures at the head of the waterfall followed by $2^{\prime}$ of beds exposed under water and in the left bank (IGN) imediately underlyjne locality l6 . From 19N the following species were collected:- M. Finci, P.d.dubius, F.d. nseudolatus, M.f.helonhorus, M.f.flemincii and flemincii-like forms. Locality 16 N sees the appearance of M.f.flexilis, C.linnarssoni, C.ricidus mit. etc.

The liddle Gill section yields fossils less prolifically but they heve been collected from three localities (16m, 17 M and 12 M ). Immediately over lyine 18M are beds yieldine M.f. $\mathrm{Pl}^{2} \mathrm{exiljs}$, C.ricidus mut. etc. and below 16\% are the relatively berren strata of the entennulatus Zone. The beds are not completely exposed and 17 M and 18 M are separated by a éap with room for $9 \cdot$ The maximum thickness, assuminc no fault repetition, is $30^{\prime}$. This ficure is rather hicher than obtained for Near Gill but in this section also the beds are not completely exposed. Locality l6it contains P.d. anhius, M.flexilis belonkorus, M.kinci, M.antennulatus, P.m.menechini, and flemincii-like forms. Immediately above are 1]' of mudstones exposed above the stream in the richt bank, in which the ton $2^{\prime}$ are the most fossiliferous (17M). P. d.dubius, and M.antennulatus have been collected. Locality lif at the top of the Zone also yields fossils snarincly but P.d.dubius, M. kinci, and M. Pv.basilica were obtained. (It is possible that recordincs of 10. ?v. hasilica made from Stage 3 represent extrene distal fracments of M. kinci particularly in view of the fact that no proximal encs have been obtained). .

On Wandale Hill Gill $B$ the base of the flexilis helonhomus cannot be seen because of the decree of exposure but localities 43 W and 44 W inmediately underlie beds containing C.rixidus mut., M.f.flexilis, and contain the following species:

44W M.kingi, P.d.dubius, S.s.mraesninosus.
43W M.kingi, P.d.dubius, S.s.nraesninosus.
M.ex. cr. flexilis, (?flexilis helophorus see p.269)
p.ex.esr. dubius.

The Zone here comprises approximately $30^{\prime}$ of strata compared with $30^{\prime}$ and 22' obtained for Fiddle Gill and Near Gill respectively. Zone of Cyrtograntus rigidus mut.

The ricidus mut. Zone commrises the greater part of the known thickness of Stace 3 and is characterized by craptolites of the flemincii croun, C.ric- )
idus mut, M.f.flexjlis, and M. vinci. The lower boundary and distinction from the flexilis belonhorus Zone has already been nentioned and is well defined. On the other hand the upner boundary cannot be defined at all since the strata are either faulted acainst hicher beds or obscurfed by drift. The faura of Stace 4 so far as it is known seems quite distinct from that of 5 tace 3 and will be described below. The fauna of the Zone of c.ri-idus mut. is as foll-ows:-
C.rigidus mut. $16 \mathrm{~N}, 17 \mathrm{~N}, 20 \mathrm{~N}, 21 \mathrm{~N}, 22 \mathrm{~N}, 19 \mathrm{M}, 30 \mathrm{M}, 45 \mathrm{~W}, 48 \mathrm{~W}, 6 \mathrm{Cr}$.
M.antennulatus 16 N
M.kinci $16 \mathrm{~N}, 17 \mathrm{~N}, 20 \mathrm{~N}, 21 \mathrm{~N}, 22 \mathrm{~N}, 23 \mathrm{~N}, 19 \mathrm{M}, 20 \mathrm{M}, ? 21 \mathrm{M}, ? 22 \mathrm{M}, 23 \mathrm{M}, 25 \mathrm{M}, 26 \mathrm{M}, 27 \mathrm{M}, 28 \mathrm{M}, 29 \mathrm{M}, 30 \mathrm{M}$ $45 \mathrm{~W}, 48 \mathrm{~W}, 67 \mathrm{~W}, 68 \mathrm{~W}, 68 \mathrm{~W}$.
S.spinosus nraesninosus $16 \mathrm{~N}, 17 \mathrm{~N}, 20 \mathrm{~N}, 67 \mathrm{~W}$.
P. dubjus dubius $16 \mathrm{~N}, 17 \mathrm{~N}, 20 \mathrm{~N}, 21 \mathrm{~N}, 19 \mathrm{M}, 20 \mathrm{M}, ? 26 \mathrm{~N}, ? 27 \mathrm{~N}, ? 28 \mathrm{M}, 48 \mathrm{~N}, 67 \mathrm{~W}, 69 \mathrm{~W}, 5 \mathrm{Cr}, 4 \mathrm{Cr}$ P. dubius nseudalatus 16 N
P.m.menechini $16 \mathrm{~N}, 17 \mathrm{~N}, 20 \mathrm{~N}, 21 \mathrm{~N}, 22 \mathrm{~N}, 23 \mathrm{~N}, 21 \mathrm{~N}, 22 \mathrm{M}, 26 \mathrm{M}, 30 \mathrm{~N}, 6 \mathrm{~W}$.
M.f.flexilis $16 \mathrm{~N}, 17 \mathrm{~N}, 19 \mathrm{M}, 20 \mathrm{M}, 21 \mathrm{M}, 23 \mathrm{M}, 26 \mathrm{M}, 27 \mathrm{M}, 45 \mathrm{~W}, 67 \mathrm{~W}, 68 \mathrm{~W}, 5 \mathrm{Cr}, ? 3 \mathrm{Cr}$.
M.flffemincii $16 \mathrm{~N}, 21 \mathrm{~N}, 22 \mathrm{~N}, 2 \mathrm{~N}, 24 \mathrm{~N}, ? 21 \mathrm{M}, 22 \mathrm{~N}, 29 \mathrm{~N}, 30 \mathrm{~N}, 5 \mathrm{Cr}, 33 \mathrm{Cr}, 2 \mathrm{Ba}$.
C. Iinrarssoni 16 N
?M.v.basilica ?(1CN, $17 \mathrm{~N}, 19 \mathrm{M}, 20 \mathrm{M}, 22 \mathrm{M}, 23 \mathrm{~N}, 24 \mathrm{M}$ )

Of this faunal list M.antennulatus and P. dubius nseudoletus are found only at the base (16N) and are not typical whilst ?M.v.basilica very probably represents extreme distal fracments of M.kingi. In contrast to earlier strat--ak M.kinci and P.d.dubius are now very common srecies whilst P.m.mencehini, S.s.nraesninosus, and M.f.flemincii are quite common havinc occurred only rarely in the lower beds. C.linnarssoni has not been obtained with certainty above the lowest bed. Of those srecies listed only P.d.dubius and M.f.flemincii persist unchanced into Stace 4.

The Near Gill section provides the best exposures throuch the lowest part of the zone and in all there are 69' of strata exposed. A fault cuts out approximately $30^{\prime}$ of strata between 23 N and 24 N whilst $10^{\prime}$ a ove the $2^{\prime}$ limestone of 24 N is a fault alone which a lamprophyre dyke is intruded. This brincs down beds containing c.lundereni etc. and the top of the c.ricidus mut. Zone is not, therefore, exposed on Near Gill.

A short distance upstream of Handley's Bridse on the R. Ravihey (7065,9770)




the $2^{\prime}$ limestone of the rigidus mut. Zone is exposed and here is underlain by 30' of strata before a fault brings up lower beds. Above the limestone are about 15 ' of beds followed by a fault which brings down Stace 4 yielding . . lundsreni etc.

On the Middle Gill section there is in all a thickness of 100 ' of beds but once again a fault cuts the section between 21 N and 22 m so that the exact thickness between the base and the 2 ' limestone cannot be determined. A succested correlation of strata is shown in text fig. $3 f$ and if correct only about 10' are missinc on Middle Gill. One quarter of the total thickness seen is found on top of the limestone where, above locality 30 M , the section finally peters out under the drift-covered lower part of the valley. The fauna throughout this l10' of strata is given in the faunal list above and in text fic. $3 j$ and shows mhor acnes of some species at certain horizons. ?Zone of Cyrtosrantus ellesi

The section in Ecker Secker Beck near its confluence with the R.Rawthey may provide a clue as to the nature of the strata between the highest beds of Stage 3 so far described and the lowest beds of Stace 4 (described delow). The hichly faulted succession exposed in this stream is illustrated in text fics. 3 k and 3 l . Locality 8 Ra is located a few yards downstream from the main road where the stream flows parallel to the strike. The fauna indicates Stace 1 and the centrifucus-insectus Zone (M.nriodon, Res.ceinitzianus, M.v. basilica, ?M.v.vomerina, ?M.shottoni). The stream then bends and flows to the NW at richt ancles to the strife and, after a çap in which 65' of beds could be present, 47 ' of strata containing localities 9Ra and 10Ra are exposed. M.kingi is found at loRa and M.kingi, P.d.dubius, M.flexilis, and C. ricidus mut. at 9Ra. These strata must belons to Stace 3 and not to the riceartonensis Zone as stated by Watney and Welch (1911, p.221). Locality llRa yields hundreds of specimens of M. kingi and locality l3Ra specimens of P.d. dubius. A few yards upstream of the mouth of Ecker Secker Beck locality 12 Ra yields the following species:- P.d.dubius, M.flemincii primus, C.of ellesi and M.kingi. This fauna clearly has affinities with Stace 3 but the presence of C.of. ellesi and Mf. primus succests that the strata may be hicher than the rigidus mut. Zone. From the base of locality 9 Ra to the top of 12 Fia about $167^{\prime}$ are exposed though the section is cut by several faults. The major fault at the mouth of Ecker Secker Beck brincs down Ludlow strata and

## Ecker Secker Beck Section(693.954)



therefore has a vertical component of several hundred feet with a downthrow to the West. The smaller faults a few yards upstream of the main road bridee over Ecker Secker Beck also throw down to the West and it is likely that between localities 8 Ra and 9 Ra there is a fault bringing in hicher beds to the West. If the several faults along this stream continuously bring in higher strata to the west, perhaps as step faults connected with the major dislocation at the stream mouth, then it is sucgested that a considerable thickness of strata may separate the C.ricidus mut, and c.lundgreni Zones and that some of these beds may be assicmed to the C.ellesi Zone. Finally Whilet a painstakine re-examination of the Ecker Secker Beck section might detect the ton of the C.rigidus mut. Zone it is unlikely that it will reveal the base of Stacge 4 .

## Stace 4

As has been pointed out above the base of this Stace cannot be fixed on the evidence available. At the upper limit, however, the change into the Ludlow Series has been observed and a definite line can be drawn between the two Series. No single section shows the Stage in its entirety and the cener al sparsity of fossils (or at least the difficulty of obtaining them) has made correlation between the various fault blocks difficult. The litholocy is very uniform throughout and there is a lack of both palaeontolocical and lithological marker horizons. Four broad divisions can, however, be recornized to each of which the title "Subzone" has been tentatively civen.

|  | Subzone d approx: 25' |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Subzone $c$ | " | $180^{\prime}$ |  |
| Stare 4 | Subzone b | " | 200' |  |
| Stafe 4 | Subzone a | " | $50^{\prime}$ | 1 |

The fauna obtained from the respective Subzones is as follows:Subzone d: P.nseudodubjus (Boucek): M.f.flemincii Salter, P.dubius (Suess), Gothocrantus nassa (Holm), Delons obtusjcavdatus howcillensis, subsp. nov., brachiopods, castropods, and orthocone cephalopods.

[^0]Subzone b: P.dubius dubius (Suess), P.aff nseudodubius (Eoucek), M.f.f]emingii Salter, M.kingi sp. nov., C. lundereni Tullb., C.carruthersi?

Subzone a: C.lundyreni Tullb., P.d.dubjus (Suess), P.nseudodubius (Boucek), M.kinci sp. nov., M.f.flemincii Salter, M.f.nrimus Elles and Wood, Favosites sp.

It is not proposed to consider these broad subzones in straticraphical order but to describe first those divisions which can be most easily related to established horizons. In view of the fact that Stace 4 is not complete]y known it is not subdivided into Zones althouch it is known that C.Jundereni is restricted to the lower half of the strata examined so far. Subzone a

Although the Near Gill and Handley's Bridge sections throuch Stace 3 are faulted at the ton it is thoucht that the strata broucht down by these faul ts are if relatively low in Stace 4. These beds are the most richly fossiliferous of Stace 4 and in the case of the two localities mentioned the rock splits fairly well along the bedding planes. At the Handley's Bridce locality in particular the bedding planes are well defined possibly as a result of some centle folding which occurs here (72W). The species collected at 72 W were C.lundereni, M.f.flemingii, P.ex.cr. dubius, and Favosites sp. Immediately downstream of the fault and lamprophyre dyle on Near Gill are several fossiliferous localities in fairly well bedded rock containing numerous small calcareous nodules. Localities 25 N to 30 N yield the followins species:- C.lund $=$ greni, M. Kinci, M.f.flemincii, M.f.orimus, P.dubius, P.oseudoतubius. In each case there is about 50 , of fairly well bedded mudstone overlain by unfossiliferous, harder mudstone. On Near Gill there is room for a further $80^{\prime}$ of beds before the tear fault on the R.Rawthey. The Middle Gill section may at one tine have shown the chance from Stage 3 to Stace 4 but at the present the whole of the lower part of the valley is drift covered and there have been recent mud slins down the valley sides. Between the last exposure of Middle Gill (30M) and the road there is room for approximately $125^{\prime}$ of strata. At the road itself Watney and Welch (1911) obtained the following species:- C.Inndsreni, M.dubrius, and M.flemingii var $\delta$. These beds are probably part of Subzone "b" of the present description. Other localities
with strata equivalent to those of Handley's Bridce and Near Gill have not been seen.

## Subzone d

The top of this Subzone is well defined beine the ton of Stace 4 and of the Wenlock Series and capped by the basal Ludlow limestone. The 25' of beds comprising the Subzone are seen beneath the basal limestone in the followinc sections: Mouth of Backside Becl: (700,971); mouth of Eoker Secker Beck; Hobdale Beck and Spencill.

At the mouth of Ecker Secker Beck to the west of the main N-S dislocation the basal Ludlow limestone can be seen beneath the water where it weathers to a yellowish hue. Aproximately $9^{\prime}-12$ ' below its base, on the left bapk of the R.Rawthey, are some small exposures (2Ra,3Ra) which yield P.nsendodubius and M.f.flemingii. Altocether some 220 of beds are exposed between the lirestone and Cock's Dub (691, 951) before the rain w-S fault acain cuts the Rawthey to bring up lower strata to the east. Localities 5Ra and 6Ra are located about $170^{\circ}-180^{\prime}$ below the limestone and yield M.f.flomincii in abundance despite the proximity of 6Ra to a larce fault breccia. A short distance upstream locality 4 Ra contains a crinoid bed with the fossils more or less in the place of growth and with the arms orientated parallel to each other. These beds downstream from 2 Ra and 3Ra are placed in Subzone c. The Hobdale Beck section (6805,9455) is very similar. Locality 2Bd is found about $20^{\prime}$ below the top of Stace 4 (thouch most of the calcareous beds appear to be cut out by a fault) and yields numerous specimens of M.f.fleminعji whilst locality 3 Bd at a slichtly hicher level contains P. nseudoduhius.

On Spencill (6995,0020) specimens of M.f.flemincii have been obtained within 3'-4' of the base of the calcareous beds.

A few yards downstream from the mouth of Backside Beck (7000,9705) the basal ludlow limestone is exposed at the top of a low cliff in the richt bank and just to the east of the Rawthey Tear Fault. Twenty two feet of beds are exposed below the limestone and these have rather more calcareous nodules than usual. At various points shelly fossils can be obtained:- D.obtusicaudatus. howgillensis (hypostome), tocether with brachiopods, castropods and orthocone cephalonods preserved in full relief in pyrite. Graptolites have not been found from this locality.

The faulted sliver of Vienlock beds (4W) on the slones of Wandale HilI
(see text fiç. 5b ) most probably belons to Subzone d since, in addition to M.f.flemingii and P.dubius, it has yielded G.nassa. Subzones b and c

Between Subzones "a" and "d" is a considerable thickness of poorly fossil iferous strata. It has already been mentioned that the mouth of Middie Gill may represent a position about 125' above the base of Stace 4 , and here . lundereni is still present. Similarly the Crosshaw Beck section which also seems to represent the lower half of Stace 4. to judce by its litholocy (Subzone $b$ is partly recoçnizable by the hard, barren, and relatively coarse grained nature of the mudstones) contains at 1 Cr and 2 Cr the followinc forms:C.lundcreni ?, P.aff nseudodunius, and M.kinci. The last fossil has not been found in the hicher strata of Stace 4 and is taken, with C.lundereni, to be an indicator of Subzones $a$ and $b$. Subzones $a$ and $b$ are, therefore, separated from one another mainly on the grounds of lithology and the relative abundance of the contained fossils. Apart from its occurrence on Crosshaw Beck. Subzone $c$ seems to cron out between Handley's Bridce and the mouth of Backside Beck, and acein between Low Wardses and Beck Side (6925,9950).

It has been shown above that in the cases of Hobdale Beck and Ecker Secker Beck the beds below the Subzone dare typified by the acundance of M.f. flemingii. Locality llP on Pickering Gill also seems to be about this horizon and it yields M.f.flemingii and P.nseudodubius. Shelly fossils occur occasionally in Subzone $c$ such as the crinoid bed of 4 Ra , ( a specimen of Favosites sp. was obtained from a nodule slichtly downstream of 4Ra), but are more oommon in Subzone $d$ as at the mouth of Backside Beck.

A locality on the slopes of Wandale Hill ( $3 \mathrm{~W}, 7000,9820$ ) has yielded obscure fracments of a form possibly referable to C. carruthersi Lapworth. Other species from the same locality, succestine Subzone b, are: C.lundereni, P. dubius, M.f.flemincii and M.f.primus.

## Thickness of the Wenlock Series

Watney and Welch (1911 p.217) give the following thicknesses for the various Zones:

| Zone of C.lundmreni | $300^{\prime}-400^{\prime}$ |
| :--- | ---: |
| Zone of C.rieidus | $178^{\prime}$ |
| Zone of M.riccartonensis | $160^{\circ}$ |
| Zone of C.murchisoni | $100^{\prime}$ |
|  | $738^{\prime}-838^{\circ}$ |

The centrifucus-insectus Zone measured at the mouth of Wandale Beck is 65'lo ${ }^{\prime \prime}$ " thick and on Hebblethwaite Hall Gill some three miles to the SSW is 59'等" showing a slicht thinnine to the south. The murchisoni zone on the other hand thickens slichtly to the south from $10^{\prime \prime} 7$ " at the mouth of Wandale Beck to lo'g ${ }^{\frac{1}{2} " 1}$ on Hebblethwaite Hall Gill. The two Zones are equivalent to the murchisoni Zone of Watney and Welch and thickness, therefore, is actually rather thinner than succested by them being $76^{\prime}$ in the north and $70^{\prime \prime} 7^{\prime \prime}$ in the south.

The riccartonensis Zone is not usually fully seen but at the mouth of Wandale Beck it measures $60^{\prime} 4^{\prime \prime}$ ( $14^{\prime} 1 \frac{1}{2} \prime \prime \prime$ between the base and the $\frac{3}{3}$ " calcareous grit) whilst on Hebblethwaite Hall Gill it is at least 68' (20' between the base and the $\frac{3}{c}$ " calcareous grit). Clearly the Zone is thickening to the South. Neasurement of the antennulatus Zone is more difficult but it seems to be about 20' thick in the north but has not yet been seen in the south. Equally difficult to measure is the flexilis belonhorus Zone but measurements on Wandale Hill Gill B, Near Gill etc. (v. text fig. $3 f$ ) succest a thickness of approximately 30'. The three Zones (riccartonensis, antennulatus, and flexilis belonhorus) are equivalent to the riccartonensis Zone of Watney and Welch, and the total thickness in the north is little more than llo' which is acain rather less than that assicned to it by Watney and Welch. In the south it may be rather thicker if the tendencies'seen in the murchisoni and riccartonensis Zones are continued into the antennulatus and flexilis helonhorus Zones.

In view of the faulted nature of the top of the C.ricidus mut. and ?C. ellesi Zones only minimum thicknesses can be fiven. Thus the Middle Gill section shows a thickness of 100' whilst a small thickness (about 10') may be faulted out giving a total of 110'. The Ecker Secker Beok section stroncly suçests that there may be a much creater thickness of beds and on this section a mimimum of $18^{\prime}$ can be assicned to the ?Zone of c.ellesi giving a minimum total for the two Zones of 128'. A value of 200' is probably nearer the actual ficure in view of the strata between $9 R a$ and 12R3 on the Ecker Secker Reck section (v. text fig. $3 \mathrm{k}, \mathrm{l}$ ). In the Hich Pasture - Crosshaw area the strata are folded and apnear to be coarser crained. As in the case of some of the earlier beds it is thought thet thickening takes place in this direction.

Finally Stase 4 has a thickness of about $450^{\prime}$ but accurate measurement is
impossible due to exposure failure.
A minimum ficure for the thickness of the wenlock Series is approximately 760' and a maximum figure in the region of 850. . These ficures acree quite well with those obtained by Watney and Welch (op. cit.) but it is important to realize that the earlier Zones of Staces 1 and 2 are much thinrer than succested by their work.

## Conclusions

a) The Wenlock Series can be conveniently divided into four faural Staces each retaininc features of the preceding Stace in its lowest beds but having distinct characteristics of its own.
b) Althouch litholocically very uniform the Series contains some marker band (e.g. the sequence at the boundary of Staces 1 and 2) and come ceneral chances (see chapter 6.) which can be used to sunplement the faunal succession.
c) The Staces can be subdivided into Zones but for the reasons stated this is not done in the ceses of Staces 1 and 4 except in a ceneral way in order to cuide further work upon them.
d) There may be a عeneral increase in thickness of the sedimente towards the south above Stace 1. This has been shown in the murchisoni and ricnartonensis Zones and the increase in crain size to the South in the hicher Zones (seen in the Crosshaw - Hich Pasture area) may reflect the same process at higher levels.
e) The base of Stace 4 cannot be determined and in Stace 3 the succession is incomplete.

## Reference Sections

Stace 1: Base of Stace 1 (= Base of Wenlock Series), mouth of Wandale Beck section on the R.Rawthey, exposed in richt bank (7070,9780), details see text and text ficures.
Stace 2: Base of Stace 2 ( $=$ top of Stace 1), mouth of Wandale Beck seotion on the R. Rawthey, exposed in left bank and streari bed (7065,9780).
Stace 3: Fase of Stace 3 ( $=$ top of Stace 2), Near Gill section at the base of locality $18 \mathrm{~N}(7045,9710)$, strata exposed in left bank.
Stace 4: Base of Stace 4 and nence top of Stace 3, cannot be defined. The top of Stage 4 (= base of Ludlow Series and top of Wenlock Series), mouth of

Ecker Secker Beck on the R.Rawthey. Boundary exposed in stream bed, and richt bank of river ( 6915,9535 ).

## Correlation of Strata

The table below (t.f.3m)shows the correlation of the Zones and Staces established with those described by Watney and Welch (1911).

Stage 1 (= centrifucus-insectus Zone) is equivalent to strata described by Shotton (1935) from the Cross Fell recion as the Zone of Mocreruletus, Brathay Flacs (locality " $£$ ", Swindale Beck). Thus the form described here as M. Shottoni sp. nov. is the same as the form listed as "M.vomerinus ver crenulatus (Tornquist); common", and the species listed as "Monosrantus dextrorsus Linnarsson, var." is synonymous with the form described here as 1. minimus cautleyensis subsp. nov. Other specimens in the Sedewick Nuseuir collected from this locality (" $\varepsilon$ ") are of M. danbyi sn. nov. and M. simulatus sp. nov. type. Both Retiolites ceinitaiams quanistidens and M.nriodon found at Cross Fell have been recorded from Cautley whilst the form listed by Professor Shotton as M. Dendus (Lanworth) was possibly identified from those specimens of priodon which have been flattened and compressed (see text fic. 8d). Since 1935 cyrtograptids have also been found at Cross Fell. (Strachan 1960) and these recordings possibly account for the forms listed by Shotton as M.sniralis (Geinitz). The whole fauna is clearly identical with the centrifugus-insectus Zone of Cautley.

Text fig. $3_{m}$ illustrates the suscested correlation of the Cautley sequence with that of the WelSh Borderland established by Elles (1900). The centri-froms-insectus and murchisoni Zones at Cautley are probebly equivalent to the single Zone of murchisonj at Pencerrig etc. Of the species listed by Elles C.murchisoni var crassiusculus ( $=$ C.m.bonerjcus Eoucek), N. vomerinus var. $\beta$ (= M.v.aracilis) and Stomatocrantus sn. have not been recorded by the present writer thouch the first two were listed by Watney and Welch (1911). Unfortunately it has proved impossible to trace Watney and Welch's collection but C.m.var. crassiusculus is probably symonymous with C.centrifucus whilst as succested dolow ( p .188 ) their $\mathbb{M}$. vomerinus var $\beta$ is the form described in this work as N.V.basilica (Lanworth). Anart from these differenes the fauna civen by Elles is close to that at Cautley but, as has been shown, it has been found convenient to divide the oricinal zone of murchisoni into two.

The faunal chances into the riccartonensis Zone criven by Elles (1900)
include the appearance in abundance of the name fossil tocether with M.oanillacequs (\#N.antennulatus) and, rarely, P.dubius. In the Cautley Wenlock the last two species occur pather uncomonly in the Subzone $c$ of the riccartonensis Zone but then trmily the overlying Zone of antemulatus where ricoartonensis is absent. The species M.nriodon and M.vomerinus var. $X$ ( $=$ M.v.vorierina) recorded by Elles from the riccartonensis Zone do not rarce above the base of the riccartonensis Zone at Cautiey and even here are not common. The c. symetricus Zone ( $=$ C.rjxidus) was definediby Elles as contaninc in addition to the name fossil, M.dubius, M.hisinceri var, M.vomerinus var. $\alpha$ M.V.var. and M.priodon. Elles and Wood (1912) record also M.fleminti nrimus: The Zone of flexilis belonhorus has more affinities with kicher strate then the riccartonensis Zone in particular the presenoe of M.f.flemincij, flem-incii-like forms, flexilis croun species end F.kingi on the continent P.m.menechinf is only found in hicher strata (v. Pribyl 1944) whilst flexilis belonhorus is recorded from the zone of M.flexilis (v. Prib, 1 1042). Further more the top of the flevilis belonhonus zone is marked by the aptearanco of C. 1 innarssoni and M.flexilis (considered by Elles(l900) and Elles and Food, (1912) to be typical of the limmarssoni Zone) and what is probably a late mutation of C.rigidus. Considering these facts the flexilis belonhorus zone is equated with the C.rigidus Zone of the Welsh Borderland (thouch lackinc the name fossil) and the rigidus mut. Zone with that of C.Jimarssoni. Correlation further afield is more difficult but the presence, forexample, of some Continental species may provide a clue for at least ceneral correlation. The term centrifupus-insectus zone is not intended to imply equivalence with the zones of centrifucus and insectus recocnized in Bohemia but is used in a purely descriptive manner. Nevertheless the presence of $C$. centrifurus at tre base of the Wenlock Series sücests at least approximate equivalence. Other specie. recorded from the centrifucus Zone in Bohemia and found in the oentrifugus-insectus zone at Cautley are: M.v.vomerina and R.C.ceinitzianus Neither species is diacnostid and others recorded from tre Cautléy Zone"(e.g. N.linnarssoni and R. C. augustidens) appear to be more typical of lower horizons in Bohemia. The situation is made more difficult by the fact that the species C. murchisoni described from Bohemia may not be conspecific with Carruthers'species and thus casts some doubt unon the supposed equivalence of the murchisoni Zones of the two countries. What is clear,

| Elles \& Wood <br> (1901-18) | Zones established in <br> present work | Watney \& Welch <br> (1911) |
| :--- | :--- | :--- |
| Zone of C. lundgreni <br> Zone of C.rigidus <br> (= ellesi) | Zone of C. lundgreni | Zone of C. Iundgreni |


however, is that a general sequence of similar faunas is found in both recions Other species more commonly recorded from the Continent are: P. $\mathrm{n} . \mathrm{mene-}$ chini, P.nseudodubius, M.minimus and C.insectus. The latter is described here as C.aff insectus although it is not completely known and may show some differences from Boucek's species. The Cautley specimens of N.minimus are sufficiently distinct to warrant description as a new subspecies, cautley ensis, and is therefore of little use as a stratigraphic indicator. P.m. menechini is recorded from the M.flexilis Zone of Bohemia and doubtrully from the C.ricidus Zone. At Cautley it appears first in the antennulatus Zone and continues into the flexilis belonhorus Zone (equivalent to the ricidus Zone of the Welsh Borderland) but becomes nost common in the ricinus mut. Zone (equivalent to C.linnarssoni Zone, Wales and M.fleyilis Zone, Bohemia) P.nseudodubius is recorded from the lundgreni Zone at Cautley and is found at a similar level in Bohemia.

## CHAPTER 4

## THE TUDTON SERTFS

Previous work on the Ludlow Series of the Cautley district follows much the same pattern as work on the Wenlock Series, most workers havinc considered the two Series at the same time. Sedgwick (1852) in his "Ravenstonedale Section" recognized the following divisions overlying the Coniston Flacs: " b. coarse hard frit, alternating with thin bands of slate and flacstone ( $=$ Coniston prit). a' Slate, with conclomerate and calcareous concretions ( = Ireleth slates) and a. Coarse grit and slate with calcareous concretions. Graptolites Ludensis" His divisions $a^{\prime}$ and a are approximately equivalent to beds later known as Bannisdale Slates. Sedewick (on. cit.) was also the first worker to trace the Coniston Grits through the Cautley district. Thus he writes "... traciñ it from Cautley Cracs throuch the south end of the Screes; thence, across Winsterdale, to a high mountain ridee called Adamthwaite Bank; and lastly to the north flank of Harter Fell. It is chiefly composed of hard frey erits, which alternate with thin bands of slate and flacstone..." Sedswick's description of the litholocical nature of the rocke and the alternation of facies was not bettered by later workers in the same region.

Aveline and Huches (1888) recognized two divisions above the Stockdale Shales, the Coniston Flass and Grits and the Bannisdale Slates. The Coniston Flags and Grits were cowsidered to be Wenlock in ace and the Bannisdale Slates in nart Wenlock and in rart Ludlow. In this work they also refer to the Riccs south of Sedberch, and to Cautley Cracs and Cautley Spout where Cardiola interrinta, Pterinea tenuistriata, Orthoceras subundulatum, and Iftuites cicanteus were collected. A description is civen of the Winder Grit and its position noted as within 1200' of the base of the Coniston Orits.

Dakyns et al. (1891) described the Coniston Grits and Bannisdale Slates with particular reference to the Cautley district. Tocether with the Coniston Flacs and Stockdale Shales these divisions were included in the Upper Silurian. The Coniston Grits were divided into three litholorical urits but the present writer has been unable to recognize these. The total thich
ness of the Coniston Grits was thought to be not less than 3000'. The distribution of the Rannisdale Slates in the Ravenstonedale area is given and from Wyegarth Gill they recorded Grantolites, Acidasnis, Cardiola, Pterinea Orthoceras.

The Ludlow rocks of the district were acain examined by Watney and Welch (1911) who laid emphasis on the faunal content of the rocks and did not establish a detailed litholozical succession. On the question of the passace between the nilssoni ard leintwardinensis Zones (which were identified by ther them) they write "... but, since the watershed occurs in the Iudlow rocks, no complete seation is found, and hence it has not been possible to trace the passaye between the Nilssoni and the Leintwardinensis Zones." It was considered that the Zone of phacons obtusicaudatus might possibly be equivalent to the M.vularis Zone of the Welsh Borders.

Since this'work the Ludlow strata of the Cautley area have received mention in several papers (e.c. Marr 1913,1916) but no further detailed work has been undertaken. The nature of the Wenlock-Ludlow boundary is described in detail below and a stratigraphical succession overlyine the "Phacons ohtusicaudatus" Beds is established.

> The Pase of the Ludlow Series

Watney and Welch (op. cit.) place tre "Phacons obtusicaudatus" Bed at the base of the Ludlow Series and describe it as a jellow, sandy bed. As will be posnted out below (p. 93) the litholocy is in fact limestone. Text fic. 4 a shows the variation of the basal limestone throuchout the recion. Where it is well exposed it is clear that the limestone is binartite and contains a thin bed of crantolitic mudstone. This is best seen on Ashbeck Gill, Knott, and Spencill but has also been observed south of the rezion in the Barbon Fells. It has been shown aoove that M.f.flemincij and P.nseudodubius occur commonly only a few feet below the base of the limestone and that $\mathbf{G}$. nassa probably occurs here more rarely.

The craptolitic mudstone within the basal limestone contains graptolites and has yielded the followine assemblace:-
Pristiocrartus nilssoni (Barrande) 2 S
Ponowrantus scanicus Tullberc IRa
Monocraptus C.chimaera Barrande. 5Bd
Nonocrantus colonis comnactus Wood 5 Bd

| Monocrantus chimaera salwevi (Lapworth) | IRa |
| :--- | :--- |
| Monograntus varians Wood | $2 S$ |
| Pristiosraptus vicinus (Ferner) | IAs, $2 S$ |

This assemblace is clearly a nilssoni Zone fauna and the basal limestone cannot, therefore, be equivalent to the vulcaris Zone of the Welsh Borderlends as succested by Watney and Welch, unless the lowest part of the bipartite limestone be placed in this position. The fauna beneath the limestone is indicative of the Wenlock Series and the lower part of the limestone is the only bed which micht be attributed to the vulcaris zone. The actual recocnition of such a Zone by name is, however, quite unnecessary and would contribute nothing to the elucidation of the straticraphy of the recion.

The presence of M.scanicus so close to the base of the Ludlow Series is of interest and because of its occurrence both here and at hicher levels the lowest Ludlow crantolite Zone is termed the nilssoni-scanicus Zone.

Ashbeck Gill and Knott (v. text fic. 4a) both show the same pattern of denosition, and, though the exposures in each case are not perfect, a lower limestone ( $10^{\prime}$ thick on Knott) is separated from an upper limestone (20' thick on Ashbeck Gill) by a thin band of graptolitic mudstone. The overlyine beds on Ynott seem to be about 22' of grantolitic mudstone before the first of the Ludlow ereywackes come in.

A similar sequence is seen on Spengill though here the relative thicknesses of the limestones are reversed. The lowest is a poorly calcareous, pyritous limestone about 15' thick which has usually to be dug out. This is followed by about 6' of erantolitic mudstone containine P.nilssoni, P.vicinus and M.varigns. Above this bed are of poorly exposed pyritous limestone. The limestone at this locality seems to be only locally hichly calcareous and only fracmentary fossils were obtained. Watney and Welch, however, record P.obtusicandetus. This section differs from those just described in that the upper limestone is immediately followed by 8 ' of creywacke. Even further north (Gaisgill) limestone (presumed to be the upper limestone) is followed directly by creywacke. In both instances however, this thin ereywacke is followed by craptolitic mudstone. In the case of Spencill a fault brincs down creywackes after only 12' of these latter mudstones but on Gaiscill the Eraptolitic mudstone is followed by 401 of coarse greywacke before a thin ( $4^{\prime}, 3 \mathrm{Ga}$ ) crantolitic mudstone band is seen.

On Stockless Gill there are at least 501 of crantolitic mudstone overlriry the basal Iudlow limestone, and a similar thickness is represented in the cully draining the western slopes of wandale Hill, and on Screes Gill. The mouth of the Eoker Secker Beck section nrovides another feature of interest with respect to the basal limestone. At this locality the lowest limestone is $4^{\prime}-5$ ' thick and is overlain by about 6' of srantolitic mudstone (1Ra) containinz M.scanicus and M.chimaera selweri. The unrer limestone is missine and coarse crevwackes follow directly unon the eraptolitic mudstone for a thichnese of atheast lo' after which a thin craptolitic mudstone band is found intercalated in the reawackes. A considerable thickness of roof is missing since the unper nart of the limestone, the second Ludlow rreptolite band, and much of the overlyinc crevwacke are absent. The slumped bedr north of Cross Hew and exposed on the P. Raw they end the slumped beds of the Cross Keys recion are thoucht to rencesent masses of sediment slumped respectively south and north off an axis in the recion of Eoker Secker. Such strata (100' - at Crosshaw and 60-70' at the Cross Keys) are ceen nowhere else in the recion and at the northern locality are known to overly the lowest. prart of the basal limestone. Furthermore, whilst measurement of the direction of slumping is not easy, those beds in the southern outcrop appear to have noved from the north and those in the northern outcron from the south (v. text fic. $4 b$ ) At each locality the slumped unit consists of beds of undisturbed or relativ. ely undisturbed craptolitic mudstones alternating with obvious slumped beds and homoreneous strata in which no internal features can be seen.

The development of the basal Ludlow linestone and its associated beds is sumnarized in text fics. 4 a and 4 b . Several conolusions may be drawn:a) The basal beds of the Ludlow Series are composed of a bipartite limestone in which an intercalated craptolitic mudstone yields a nilssoni-soanirus Zone fauna. The beds are underlain by the Wenlock Series.
b) The lowest limestone bed is of variable thickness and is thinnest in the recion of Ecker Secker Beck and increases from 4 '-5' to $15 \%$ on Spercill to the north.
c) The unper limestone bed decreases in thickness to the north and in this latter area is overlain by a thin creywacke.
d) The besal limestone is overlain by the second Ludiow sraptolite band which varies from about $20^{\circ}$ in the north and south to about 50 or more in


the centre of the district.
e) A minor axis or upwarp existed in the Ecker Secker region from which unconsolidated sediments slumped.

The Wilssoni-scanicus to Leintwariinensis Zones
The establishment of a stratigrarhical succession in the Iualow Series has been a task of creat difficulty, firstly because the fossils rance throuch considerable thicknesses of strata and secondly because stream sections usually show only relatively small parts of the succession. Great Dummacke, Cautley Crags, The Screes and Bram Ricg Beck are the key areas for the rect ocnition of the succession which explains why Watney and Welch (1911) were unable to describe a detailed sequence from the area they chose for study. Sedewick (185.2) clearly realized the importance of the Cautley Cracs recrion and was able to trace the Coniston Grits for some distance. Tert fig. 4c shows a ceneralized stratieraphical succession for the Iudlow strata.

The lowest 1000 ' consists of alternatinc units of craptolitic mudstore and greywacke. The former are relatively thin and averace 10'-15' in thiclness, whilst the latter are each abont 100'. Above this are 1500 of strata consisting of alternations of rather thicker units (each approximately 250 , thick) of Ereywacke and the Banded Unit Facies. Finally there are at least 1500' in which the predominant rock type is the Banded Unit Facies (description see p. 99 et seq.) and in which greywacke units are subordirate. The last division is placed in the Bannisdale Slates and the lower two in the Coniston Grits.

Text fic. 4dis a correlation chart of the many relatively short sections which have been measured. It is noticeable that, considerine the amount of ereywace present in the succession, the thicknesses of the various units show remartably little lateral variation. There is a sirple explanation for this fact. . It is shown in chapter 7 that the عreywackes are derived from the north west and that the sediments thicken in this direction. Since most of the measurements carried out have been rade between Ravenstonedale in the NE and Sedberch in the Sw they clearly lie in a line at richt ancles to the direction of supply of sediment and hence on the line in which least variation in thicknese is to be expected.

The first exposures on Screes Gill are of 15 ' of craptolitic mudstone


containins very larce nodules of calcareous mudstone from which only shelly frogments could be obtained. It is propably this stratum to which Marr (1913 p.12) refers and considers "... is probobly, however, very low down in the Ludlow succession." ..This is confirmed by the present writer who considers the bed to be only a short distance above the basal Ludlow limestones. It is overlain by 23' of eraptolitic mudstone ( 1 Sc ) containing no calcareous material and which yielded the following assemblace:-
P.nilssoni (Barrande)
P. dubius (Suess)
M.varians Wood
M.chimaera salweyi (Ianworth)

Above ISc are 107' of freywackes containing a four foot greptolitic mudstone band 20', above the base. No fossils were obtained from this band but a $4^{\prime}$ band in the same position on Gaiscill yielded M.leintwardinensis inciniens? At the ton of the $107^{\prime}$ Ereywacke unit is a $15^{\prime}$ frantolitic mudstone containjes some calcareous beds (2Sc) and which yielded the following species: P.vicinus, M. varians, M.leintwardinensis incinjens. The presence of M.I. inciniens low down in the njlssoni-soanicus Zone sunports a similar record by the writer from locality $2 W(700,982$ ) on Wandale Hill. This locality yields a nilssoni-scanicus Zone fauna but contains inciniens in abundance. Its stratigraphical position cannot be proven but by the nature of the litholocy and the preservation of graptolites in full relief it was thousht to represent part of either the lst or 2nd Ludlow Eraptolite bands. The fauna of 2 W is as follows: P.bohenicus, P? wandalensis, P.ex. ©r. dubius, M.haunti, M.chimaera aft salweyi, M. Varians pumilis, M.c.colonus, M.l.inciniens, Slava interrunta, crinoids, orthocone cephalopods, pbyllopods, and Snirorbis sn. Watney and Welch (1911) record P.nilssoni from the same locality. M.leintwardinensis inciniens also occurs at a much hicher level and will be dealt with below.

Overlyine 2Sc is a 115' sreywacke unit before a further craptolitic mudstone band (10, 3Sc) yields P.nilssoni. Unstream of this bed the strata continue to be well exposed in the narrow, corce-like valley and a further 84' of creywacke were measured. The decree of exposure then becomes tempor\&illy rather poor and there mar be some graptolitic mudstone at this level. Measurement is continued ber climbing out of the richt bank of Screes Gill ar
onto the face of The Screes itself. A further 80 ' of massive, Eenerally uncraded creywacke were measured before the next fossiliferous locality, 4Sc, was reached. P.boremicus was obtained from this locality which consists of about 30 of well bedded rock of which only a subordinate amount is crantolitic mudstone. The rest is composed of fine-craired non-craptolitio mudstone and the bed as a whole is clearly intermediate between the "pure" crantolitic mudstone facies and the Banded Unit facies. Whilst the Banded Unit Facies is typical of the Bannisdale Slates it makes its first anyearance as thin beds much lower down in the succession. It is comrosed of thin erartolitic mudstone beds set in unbanded, fine-crained mudstones and siltstones of a darkish crey hue in which ealcareous nodule bands are not infrequent and laminations of ripyle drift bedding fairly common. The facies is fully described on 9.99 et. ser.) Worline westwards alone the face of The Screes a further 75' of crevwackes are seen. These contin sole markincs and often have the calcereous nodules mentioned by Sedcwick which weather to a brown rottenstone. At the tor of this divisjon is a three foot bed showinc slumning which is the only evidence of slumpinc detected by the writer excert for the case already described above. The exposures are rather poor for a few yards but then a $90^{\prime}$ creywacle unit, excentionally massively bedded and coarse in crain, crops out alonc about one hundred yards of the face. Overlyine this unit are $38^{\prime}$ of creyweckes containing two thin craptolitic mudstone bands (5Sc, 2'; 6Sc, 6'). Both have yielded only fracments of craptolites. Eramination of the Screes succession on text fic. 4 d shows that above this noint the beds are not well exposed, fbut that the creywackes contain a Eanded Unit of about 30' followed by a $40^{\prime}$ greywacke unit before the exnosures become too poor for direct measurement. There is room west of this rosition for about 230 of beds most of which, to judce by the poor exnosures, are of the Banded Unit Facies. Tris is the first thick bed of this facies and is equivalent to an identical bed on Cautley Cracs (which can in fact be traced round Cautley Cracs throuch Cautley Spout to the appropriate point on the Screes. Further consideration of the succession is best taken up on Cautley Crass but it is as well to note that up to the base of the thick Banded Unit almost 1000 of strata have been measured. The typical succession of thin crantolitic mudstone units alternatine with thicker creywacke units is well shown on several other sectin such as :- Yarlside, Gaiscill, Knott, Ashbeck Gill etc. (v. text fic. 4d).

On Cautley Crags (Section 3) the first major Randed Unit has a thickness of 246' and contains only rare greywacke beds. About $30^{\prime}$ from the top at locality ICC $(6825,9630)$ the beds are very fossiliferous and have yielded complete specimens of Odontonleura huchesi Salter, Pterinea sp. and orthocone cephalopods. At the same level locality 8 Cc on The Screes contained O.hryhesi, Pterinea sn. and S.interrunta. Overlying the thick Banded Unit is a 54' greywacke unit followed by a further 27 ' of Banded Unit facies. No fossils have been collected from this latter horizon from any part of the district but it invariably occurs at the same point above the thick Banded Unit. This is then followed by a thick greywacle unit of which 170 are seen on Section 3 before exposnres peter out. Measurement is continued on Section 5 of Cautley Cracs since Section 4 does not show the top (though 220' of greywacke are exposed). Section 5 shows 270 of greywacke overlain once acain by 50 , of Banded Unit facies of which the top is not seen. Locality 70 ch hes yielded M.varians numilis and Pterinea sn. in abundance. This is the highest horizon seen on Cautley Cracs and further measurement must be continued on the streams which drain Great Dummacks and enter Cautley Spout (Swere Gill, Red Gill and Force Gill Beck)

The last mentioned Banded Unit is exposed on Swere Gill and measures 140'-150' in thickness. No further fossiliferous localities were found. It is overlain unstream by a 250 greywacke unit topped by 12 ' of eraptolitic mudstone from which numerous lamellibranchs and a coral were obtained. A further 100' of creywacke separate this bed from a 6' bed of fraptolitic mudstone (4Cc) which yielded:- P.nilssoni?, P.bohemicus, M.v.varians, the last two species beine very common. Above 4 Cc is a $75^{\prime}$ greywacke unit followed by $40^{\prime}$ of Banded Unit Facies. Exposures then become rather noor but are invariably of creywacke before the stream section finally becomes obscured by arift.

Until this point exposures have been fairly continuous and there has been little difficulty in tracing beds but as the watershed is approached exposures are very poor. Between here and the head of Bram Ricer Beck there is room for approximately 650 of strata of which the lowest beds are greywackes (described above from the last exposures of Swere Gill) and the hichest beds of Banded Unit Facies. Locality 6Cc on Little Dummacks is in these latter beds and shows a considerable thickness of them. The following fossil were collected:-
N. Varians
M.V.Dumilis
M.aff. tumescens
M.leintwardinensis inciniens?

Calymene sn.
orthocone cephalonods
lamellibranchs

The fauna, therefore, is still indicative of tre nilssoni-somicus Zone. Elles and Wood (1913) record M.v.varians from the nilssoni Zone and M.v. vumilis from both this and the scanicus Zone but not from higher levels.

From the head of Bram Rice Beck the strata are well exposed until the junction with Rowantree Grains Gill is reached, and the beds are almost exclusively of the Banded Unit Hacies. Between the stream source and the point 6645,9600 620 of beds have been measured. Fossils are not easily obtained but locality $1 \mathrm{Br} 394^{\prime}$ above the base of this 620 division yielded numerous specimens of M.leintwarinensis inciniens but no other species. These beds are overlain by 150' of creywacke which form the hichest greywacke unit in the area examined. Downstream of this unit 220 of the Banded Unit Facies are exposed by the time the junction with Rowantres Grain Gill is reached thouch in this section the decree of exposure becins to deteriorate. Locality 4 Br yields M.leintwardinencis inciniens asain to the exclusion of other species. A further thiolmoss of approximately 2401 is exposed rather sporadically between the mouths of Rowantree Grains Gill and Swarth Creaves Eeck. The strata are unfoided and dip zently downstream at ancles of between $30^{\circ}$ and $12^{\circ}$ until a fault brings in hicher strata about one hundred yards downstream of the mouth of Swarth Greaves Beck. Localities ${ }^{2} \mathrm{Br}$ and 5 Br each yield M.l. leintwardinensis quite abundantly from very thin beds of graptolitic mudstone contained in a predominantly unfossiliferous succession. No specimens of M.l.incipiens were collected. The hicher strata exposed downstream are of the Banded Unit Facies but no contained Eraptolitic mudstone was found in spite of exhaustive examination.

The succession outlined above is summarized in text fig. 40 . If the Barnisdale Slates are to represent a distinct facies, and the base a facies change, then the boundary with the Coniston Crits should be drawn below locality 6Cc but above the greywackes which form the lower half of the 650 thick section. This is the procedure which the Survey workers followed but they did not clearly designate the actual beds at which the line should be draw.
in any particular area, thouph deductions may be made from the nublished sheets (Aveline, Hughes and Tiddeman 1872; Aveline and Huches 1872; Aveline Hughes and Strafnan 1888). Marr (1892) showed that in the Lake District the bannisdale Slates were equivalent to the leintwardinensis Zone. If the base of the division is drawn at the base of the leintwardinensis Zone in the Howcill Fells then the Bannisdale Slates would be an unnatural division and this nrocedure is not, therefore, adonted. The palaeontological divisions do not quite correspond with the litholocical units, and all beds from locality 6Co downwards should be referred to the nilssoni-scanicus Zone. The nilssoni-scanicus Zone extends, therefore, into the lowest 350 ' of the Bannisdale Slates as defined at Cautley. The thickness of the Coniston Grits is thus approximately 2,500 feet and the thickness of the nilssoni-scanicus Zone is $2,850^{\prime}$.

Above the nilssoni-scanicus Zone are $990^{\circ}$ of strata yieldinc only $\mathbb{M} .1$. inciniens followed by at least $240^{\prime}$ containine only M.l. leintwardinensis. Since M.l.inciniens has been shown to occur in the nilssoni-scanicus Zone its presence cannot be taken to indicate the leintwardinensis Zone. Wood (1900) in describinc the Zone of M.I. incipiens in the northern part of the long Mountain district writes "It is probable, however, that the horizon marked by the typical form is here unfossiliferous, and that M. Jeintwardinensis var. incipiens occupies a lower position in the succession". The thickness of the I. inciniens Zone is giver as $900^{\circ}$. In the same recion Wood does not recocinize either the scanicus or tumescens Zones, but considers that the 1.incipiens Zone is probably equivalent to the tumescens Zone elsewhere.

Thus at Cautley the Ludlow Series is best divided into the following.

## Zones:-

Zone of M .leintwardinensis $\quad 240^{\prime} \mathrm{min}$.
Zone of M.leintwardinensis inciniens $990^{\circ}$
Zone of M.nilssoni-M.scanicus 2850

The leintwardinensis Zone, with a minimum thickness of 240 on Framm Ricy Beck, probably reaches a maximum thickness of about 500 ' before the hicher, unfossiliferous Bannisdale Slates are reached. Whether it recurs at a hicher level cannot be determined in the region under examination.

This order of Zones is similar to that obtained by Wood in the northern
part of the Lone Rountain district and the leintwardinensis inciniens Zone occurs rouchly in the position of the tumescens Zone of other recions. Watnevi and Welch (1911) thoucht that strata between their Zones of leintwarainensis and nilssoni micht be equivalent to the scanicus and tumescens Zones of the Welsh Borders, and it is probably these which are equivalent to the Zone of M. . inciniens described here. In the area which they examined suich a Zone could not be identified because of the cenerally poor exposure at this level. Strata yielding M.l. leintwardinensis in other parts of the area also contain M.I.aff inciniens and P.Welchi sp. nov. P. Welchi occurs at a lower level in association with M.chimaera salweyi (locality lWe) whilst M.l.aff. inciniens is probably the form described by Watney and Velch as M.l.incinfens and may be a descendant of M. Inciniens recoried from a lower level by the writer.

Several other sections in the recion show the succession of the Ludlow Series to varying decrees of completion. These are sumarized on text fics. $4 d$ and $e$ where they can be compared with the most complete successions. On Spencill the 2nd Ludlow craptolite band is exposed above the basal limestone and thin creywacke. Twelve feet of beds were measured before a fault brince dorn ereywacke, and from this point upstream the poas are poorly exposed and quite pheasurable. The locality (3S) contains abundant graptolites and the following species were collected: P.? wandalensis?, M. roemeri, M.V. varjens, M.v.pumilis, M. Ieintwardinensis incioiens. Stockless Gill (6940, 0025) has the strata similarly poorly exposed but above the basal 11 mestone aref at least 50' of graptolitic mudstones containing the following species: P.? wandalensis?, P.auctus sp. nov. M. chimaera salwevi, M.scanicus?, M.c. chinaera?

The similar thickness of craptolitic mudstone seen on the western slopes of Wandale Hill (localities 5W-10W, totalling at least 40') are probably of the seme horizon. The following species were obtained:p.dubius, P.auctus, P.vicinns, P.bohemicus, M.colonus, roeneri, Morianssnmilis, G.rassa, S. sninosus, Phacons stokesi, cystids, crinoids, brachionos, orthocone cerhalopods, corals (rare).
: Above the basal IMalow limestone of Gaiscill is a thin bed of creywace as on Spencill, and above this 16 of craptolitic mudstones are exposed thouch there is room for rether more. This locality (3Ga) yielded P. duhjus, P.vic-

gnus and a single beddire plane with M.fritschi. A further 125' of creywacke containinc a $4^{\prime}$ bard of craptoljtic mudstone can be measured cownstream of 3 Ga firstly in the richt bank and then in the left leavinc the stream end measuring up to the road. The hicher beds are poorly exposed but are topped by about 15' of grantolitic mudstone exposed in a small querry by the side of the road. Further downstream the exposures fail and it is clear that a fault passes throuch this recion since the next beds seen are of a much hicher level. Locality la on the road south of Ranks Farm yields srecimens of M. leintwardinensis (v. Watney and Welch 1911, p.231). Between locality 1A and the last beds seen on Artlegarth Beck near the footbridge due sonth of Bank Farm there is room for at least 400 of strata. Those beds exposed upstream of the footbridge are of two greywacke units respectively 120 and 169' thick separated by a 75' Banded Unit. The creywackes may be aproximately equivalent to the $150^{\circ}$ of creywackes seen on Pramm Rics Beck upstream of locality 4 Br , but if the species recorded by Watney and Welch is in fact M. I. jnoiniens then the sequence seen in this recion may be of a lower horizon. The writer's few specimens from locality lA were more succestive of aff. incir iens than the type subsrecies, but were not sufficiently well preserved to ellow a definite specific determination.

In the recion of Adamthwaite Bank (709,005) locality lab yields numerous specimens of M.lejntwardinensis and M.l.affinciriens. As in the case of the Banks Farm area just described the fossiliferous locality is surrounded by an area of no exposure but seems to be underlain on Stonely Gill by beds consistinc in the main of greywackes. Two greywacke units can be recocnized, a lower one of $1^{\prime} 7^{\prime}$ and an upper one of 159' thick, serarated by a Banded Unit of at least 40'. The succested correlation of the Eanks Farm-Artlegarth Beck and Adamthwaite Bark-Stonely Gill succession with that established on Bramm RiEE is summarized in text fig. 4 e

In view of the decree of exposure in the Bowderdale Beck section exact measurement of the beds is not possible but the same pattern as observed on Bramm Riç Beck can be seen here also. Thus there is an upper thick Banded Unit (400') yieldine M.]. leintwardinensis and Odontonleura huchesi at locality lBo, underlain by a greywacke unit (150') which in turn is underlain by an apnreciable thickness of the Banded Unit Facies. This last division can be seen to be underlain by creywacke at $(6775,0120)$ before a fault cuts acr-
oss the valley and brines up lower strata to the south.
The Dale Gill - Greenside Beck section is not cenerally well exposed but has Coniston Grits exposed sporadically at least as far downstream as locality 2Da. Downstream from the waterfall (7050, C225) is a 260 thick Banded Unit which is probably equivalent to the unit of similar thickness seen on Cautley Crass and described above. Locality 2Da is thought to be equivalent to the Winder Grit of Settlebeck Gill ( 6600,9315 ) and like this latter bed is overlain and underlain by considerable thicknesses of creywacke. Downstream from 2Da a locality lGr yields M.l.inciniens, Odontonleura huchesi, and Pterinea sn. but exposure is not continuous between the two localities. The horizon of 2Da is clearly near the summit of the Coniston Grits. The Winder Grit of Settlebeck Gill and the slones of Winder cannot be accurately placed in the succession but acain it seems probable that it is near the sumit of the Coniston Grits.

Wycarth Gill is similar to the Dale Gill - Greenside Beck section in that exposures are not continuous and that downstream are Rannisdale Slates overlying Coniston Grits which cron out snoradically nearer the stream source. The relationships between the two cannot be adduced and no attempt can be made to estimate the thickness involved in view of the decree of exposure. Locality lWy has yielded numerous specimens of M.l.leintwardinensis and M.l.iff. inciniens whilst 2 Wy, slichtly unstream contains lamellibranchs, orthocone cephalopods and O.huyhesi.

- Other less complete sections are included in the correlation charts of text fics. 4 d and 4 e or are dealt with, where necessary, in the following chapter. The followinc is a complete faunal list of the graptolites found in the three zones recoenized:-
Zone of M.1.leintwardinensis
M.l.leintwardinensis Lapworth
M.1.aff incipjens Wood
P.welchi sp. nov.
$\frac{\text { 2one of M.1.inoiniens }}{\text { M.1.inciniens Wood }}$

Zone of nilssoni-scanicus
P.nilssoni (Barrande)

```
P. bohemicus (Barrande)
P. dubius (Suess)
P.vicinus (Perner)
p. 3uctus sp. nov.
P. Welchi sn. nov.
P.? Wandalensis (Watney and Welch)
P. aff tumescers (hood)
M.haunti (Kuhne)
M.colonus colonvs (Barrande)
M.c.comnactus Wood
M.chimzera chimaera (Barrande)
M.c.salweyi Lanworth
M.v.varjans Wood
M.v. numilis Wood
M.roemeri (Barrande)
M.Ieintwardinensis incinjens Wood
M.fritachi Boucek
M.scanicus Tullbere
```


## Conclusions

The Ludlow Series is divisible into three Zones: nilssoni-scenicus, Jeintwardinensis inciniens and leintwardinensis, which are resrectively 2850', 990', and 240' (scen) thick. The ton of the Ludlow Series is not seen and the beds above the lowest 240 ' of the leintwardirensis Zone have not been examined in detail. A vulcaris Zone has not been recocnized and beds equivalent to this Zone as described elsewhere cannot be identified.

On a lithological basis the Series can be conveniently diviced into Coniston Grits below (2:5001) and Banngadale Slates above (1,580' seen). The Coniston Grits can be brocdly divided into an unper division consistinc of elternations of thick crevacke units and Banded Unite each aproximately 250' thick and a lower division some 1000' thick composed of alternations of creywacke units (each about 100') and thin craptolitic mudstones bends.

Both crantolites and shelly fossils seem to rance throuch arnreoiable thiclonesses of sediment but S. interrunta has not been found above the lovest beds of the Bannisdale Slates and is restricted to the nilssoni-scenicus Zone.
0. huchesi on the other hand apnears near the base of the upper division of the Coniston Grit and continues throuch into the Bannisdale Slates. Lamellibranchs of the Pterinen tennustriata type seem to have a similar rance to 0.huchesi and both are tyrical of the Banded Unit Facies. The lowest crantolite bands contain more craptolites and a creater variety of fossils but many of the species of craptolites rance throughout the nilssoni-scanicus Zone.

Correlation with other recions is imnlied rawthe usace of the Zonal names. The l.incipiens and l.leintwardinensis Zones combined might be equivalent to the leintwardinensis Zone of the Lake District recoenized by Marr and also to the Zone of the same name described by Watney and Welch from Cautley. The scanicus Zone cannot be recoenized as a distinct Zone and is best included with nilssoni as the nilssoni-scanjcus Zone. Beds equivalent to the thmescens Zone of the Welsh Borderland have not been identified but it is possible that the l.inciniens Zone is in this position. A similar interpretation was fiven by Wood (1900) for the nortnern part of the lonclountatn district. The same writer considered Marr's Lake District leintwardinensis Zone to be the I. incinions Zone and to overlie the nilssoni Zone direstly.


## GENERAL DISTRIBUTION OF STRATA

One of the objectives of this work has been to produce an accurate and detailed geological map. The first Survey map to cover part of the Cautley district was Sheet 98NE (1879, drift 1887, New Series Sheet 39) on the scale I" to 1 mile which extended as far to the east as Bowderdale, Cautley Crags, and Hobdale Beck. It did not, therefore, include the Ordovician inliers and the region of the Dent Fault. In 1889 the Survey Sheet 97NW (New Series Sheet 40) was published and extended across the Dent Fault and well into Carboniferous country. A map on the scale $3^{\prime \prime}$ to 1 mile accompanied the paper by Watney and Welch (1911) on the Salopian rocks of the Cautley district. This map is little different from the Survey Sheets and the authoresses themsslves write "Beds other than Salopian and Upper Stockdale, and faults traver-, sing these, are copied from the 1" Geological Survey Map, Sheet. 97 NW ". .... In view of the nature of the palaeontological study undertaken by these workers the production of only a general map is surprizing since the recognition and mapping of relatively thin faunal Zones goes hand in hand with the identification of fault patterns etc. It is the purpose of this chapter to describe: some of the features of the area which have not been dealt with in previous chapters and in particular to consider the effects of faulting upon the distribution of strata.

Watney and Welch (op.cit. p.216) were correct when they described the region as one which had undergone relatively simple folding, subsequently complicated by faulting. In comparatively few parts of the area do the dips in the Lower Palaeozoic rocks approach the vertical and the folds are only rarely isoclinal. ... Thus the northwestern slopes of Bluecaster (7120,9685) are composed of Wenlock strata striking constantly NE-SW and dipping to the NW at angles only occasionally in excess of $50^{\circ}$ - and this in an area within half a mile of overturned and strongly folded beds of the Carboniferous Limestone Series. It might be argued that the intrusion of the Bluecaster Diabase sill prior to the Hercynian earth movements had reinforced this particular region, but the same general rule applies to strata quite close to the Carboniferous
rocks along the whole length of the district. It is clear that the effect of the Hercynian earth movements has been to superimpose a system of faulting sub-parallel to the Dent Fault upon folds of an open nature. Local instances of high dip and tight folds of small magnitude are often the result of fault dragging but the introduction of an Hercynian set of folds has not taken place.

## Caledonian Folds and Faults

To the west of the Cow Pasture - High Pasture area ( 696,$936 ; 699,939$ ) the strata are prominently folded on ENE-WSW lines, whilst the fold axes show no relation to the fault pattern. The most southerly pair of the four folds form an anticlinal hill and a synclinal valley and an examination of the topography further south suggests that several more such folds may exist before Hebblethwaite Hall Gill is reached. That the folds are tightest in the region of the wood and barn $(693,937)$ is shown by the distance apart of the fold axes as one moves away from this point, and by the time Crosshaw Beck (to the north) and Hebblethwaite Hall Gill (to the south) are reached the fold pattern, fortuitously exposed in small streamlets near the wood and barn, is lost. Localities 3 Cr -6Cr yield a fauna typical of the C.rigidus mut. Zone of Stage 3 and may be considered to overlie Stages 1 and 2 of Hebblethwaite $H_{a l l}$ Gill and to underlie Stage 4 of Crosshaw Beck.

About half a mile to the west of the High Pasture - Cow Pasture area similar tight folding is seen on the R.Rawthey at Cross Haw (687,939). Further upstream near St. Marks $(691,946)$ and upstream on Hobdale Beck $(682,942)$ the folding is gentle and thereplunges to the west and west-south-west. As one travels towards the junction of Hobdale Beck with the R.Rawthey at Hobdale Bridge the strata, well exposed on the Rawthey in a gorge-like section, become involved in isoclinal folds. The fold axes are horizontal and are directed ENE-WSW. Text fig. 5aA is a section showing the nature of some of these folds and quite clearly illustrates that they are not simple isoclinal folds. The folding becomes very gentle again quite abruptly a few yards south of Hobdale Beck mouth. The strata involved in the folding are Ludlow greywackes and in some localities the fine grained tops of graded greywacke beds can be seen to be completely sheared out by movement parallel to the bedding plane. This is indicated by the slickensided and brecciated junctions between beds. Bounding the greywackes to the west is the Sedbergh Fault which cuts Hobdale

## TEXT FIG. 5aA

Sketch section of the Ludlow strata exposed west of Cross Haw in the R. Rawthey.

## TEXT FIG. 5aB

Sketch of slumped beds seen west of Cross Haw in water-smoothed surfaces of the exposures.


Beck at $(6825,9410)$ and to the east the Rawthey Fault brings up Wenlock strata If the strike of the axial planes of the isoclinal folds is followed away from the Crosshaw region it is seen that the folded region lies in structural discontinuity with the surrounding areas. It shows, in fact, more of the characters of the Cow Pasture - High Pasture district and it appears that these rocks have been brought into their present position from further south by northward movement of a tear fault rather than by vertical displacement bringing different structure levels into juxtaposition.

Folding of the type just described is seen at no other localities in the strata which have been examined (i.e. up to the lowest beds of the leintwardinensis Zone). However, the higher Bannisdale Slates in the immediate vicinity of the Carboniferous unconformity of Ravenstonedale also appear to be strongly folded, and, in some localities at least, the folds are isoclinal. The Weasdale $(691,038)$ and Bowderdale $(675,039)$ areas show strongly folded beds. - In the western Howgill Fells the Coniston Grits are also folded isoclinally as can be seen on Carlingill Beck $(645,992)$. The fold axes in this region are directed E-W and the fold cores are often broken and quite commonly faulted. In these instances the E-W faults appear to be of the same age as the folds i.e. Caledonian. It will be shown later in this chapter that E-W faults closely connected with an E-W pattern of folds can still be identi fied in the eastern Howgill Fells despite the superimposed pattern of Dent Line dislocation.

The nature of the folding characteristic of the Ludlow Series in the eastern and south eastern parts of the Howgill Fells can best be deduced in the Bramm Rigg area west of Great Dummacks. Examination of the 6" map shows that a major anticline extends from Cautley Crags $(988,660)$ along Bram Rigg, to as far west as Castley Knotts (645,961). To the southis a complimentary syncline of Brant Fell. The plunges of these major folds are variable in degree but invariably to the west. . Generally speaking the plunge is greatest in the region of Cautley Crags, that is immediately adjacent to the west-erly-throwing Hercynian $\mathbb{N}-S$ faults. It is possible, therefore, that the weaterly plunges were increased during the Hercynian orogeny. ...The two major folds described above are puckered on their limbs by oblique folds of small amplitude but moderate wave length. These minor folds originate on the crests of the major folds as, for example, at Seevy Rigg $(653,962)$ where the
major Bram Rigg anticline has two diverging synclines. . One of these extends W.N.W. from Seevy Rigg to Long Rigg Beck $(647,964)$ and the other W.S.W. from Seevy Rigg to east of Ivy Crag $(6450,9575)$. . The crest of the major anticline in the Seevy Rigg area is almost flattened out (almost synclinal in, fact) as is shown by the strikes of the strata on Calf Beck $(655,963)$ and Bram Rigg Beck. If the fold axes in a system of this type are plotted indis criminately then there will appear to be two sets of folds whose axes are slightly oblique to each other. : It is, therefore, better to consider such a system as one set of major folds containing lesser oblique folds upon the limbs. Both types of fold must have formed simultaneously. As can be seen from the map the dips on the limbs rarely exceed $50^{\circ}$. The writer considers that it is this type of non-isoclinal folding which persists eastwards into the Cautley valley (its presence at Cautley Crags is undisputed). Naturally as the Dent Line is approached the number of faults increases though this may also be in part a reflection of a change to a lower, less competent, tectonic level. : The Lower Llandovery dark mudstones are, for example,far more dislocated than other rock types above. The effect of increased dislocation upon the fold style described above will be to alter the angles of plunge (in this case tend to increase them to the west), to change the angle of dip upon the limbs, and make less easily recognizable the major fold trends particularly if some faults have a horizontal component. Examination of the fol ds along the Cautley valley shows that the axes vary between ENEWWW and ESEWNW. In addition a few major axes lying approximately E-W can be discerned. Thus in the NE Ordovician inlier the upper reaches of Sally Beck cut through an anticline and the lower reaches near Rawthey Bridge cut through higher strata held in a syncline.

There is yet another point of interest to be gleaned from the Bramm Rigg anticline. Cutting obliquely across the folds described above are a series of small scale plunging monoclines. These are exposed at the head of Bramm Rigg Beck $(6695,9620)$, Rowantree Grains Gill (664,955) and Swarth Greaves Beck ( 6525,9550 )... Their magnitudes and cross cutting nature suggest that they are later than the main folds whilst their approximate parallelism to the Hercynian faults in the $S E$ indicate that they may be of the same age as the faults - indeed that they may be the first stage of such faults.

It has been thought in the past that isoclinal folding occurred in the
watershed between the Cautley valley and Ravenstonedale. Thus Watney and Welch (1911 p.231) postulated such a state of affairs on the Gais Gill section (715,010). In fact the strata can be demonstrated to young to the north down the whole of the Gais Gill section from the point where Long Gill joins it, to the part where the exposures fail on Artlegarth Beck $(722,015) . \quad$ The change in horizon along the Gais Gill section can be explained simply and solely by the means of E-W and NNW-SSE faults. Thus at the point where the Adamthwaite road crosses Gais Gill (7170,0110) Wenlock strata are exposed yielding M.f. flemingii and PMonoolimacis sp, at 1Ga. A short distance downstream these beds are overlain by the basal Ludlow limestone and the lowest strata of the Ludlow Series and less than 300 yards to the NE Bannisdale Slates appear.

Between the two outcrops of low and high Ludlow strata no amount of isoclinal folding could bring down such high beds (without faulting) so that a fault must pass through the region of no exposure. (In consequence, unlike most of the faults on Gais Gill, this one is not exposed). The fact that sole markings show that the beds young continuously to the north confirms this This fault is probably the same dislocation which separates the greywackes of Three Gills (721,997) from the Wenlock Series on Five Gills (725,999).

A short distance to the south of locality lGa greywackes are onoe again exposed. The E-W fault (Gais Gill Fault) which occurs between the two localities is exposed on Gais Gill at the point $(7135,0105)$ where it is also cut by a NNW-SSE fault with a well developed fault breccia. This latter fault brings down Ludlow greywackes to the west, whilst a NNE-SSW fault at the point (711,011) brings up Wenlock strata once again. At the junction of Long Gill and Gais Gill Wenlock beds are well exposed and both the lithological character and faunal content prove them to belong to Stage 1 . The strata dip to the NNE and, therefore, whilst moving upstream one moves down the succession. A short distance upstream the same E-W Gais Gill Fault as previously noted brings in higher Wenlock strata to the south but these unfortunately are not well exposed.

At several points on the stream sections in this area-"monoclinal" folding is seen, which probably represents folds of small amplitude on the limbs of major folds. An example is seen in the Bannisdale Slates just mentioned where, in less than one hundred yards, the dip increases from $26^{\circ}$ to $76^{\circ}$ and then abruptly back to 30 . 'In this northern part of the Cautley district
the major folds described above have not been identified and the "monoclinal" type is most comron. Faulting on the middle limb of these structures is to be expected and can be seen in several instances (e.g. Greenside Beck, 706, 024). The "monoclines" themselves are parallel to the strike which is here approximately E-W, and therefore parallel to the E-W faults of which the Gais Gill Fault is but one example. Other examples are: the Storiely, Gill Fault (7115,0015); the Randy Gill Fault (6825,9950); the Bowderdale Fault (679, 998) and the Five Gills Fault $(717,996)$. The most southerly of these are difficult to trace for long distances since the amount of cross faulting increases considerably.

As in the case of the western Howgill Fells mentioned above this E-W faulting is closely connected with the E-W Caledonian folding. Both folds and faults of this type are cut by Hercynian faults which greatly complicate the picture and make the recognition of the earlier structures very difficult in the southern and eastern parts of the Howgill Fells.
Hercynian Faulting
Having thus summarized the main Caledonain fold types and their distribu tion together with their associated faults, it remains to examine the complic ated pattern of Hercynian fractures. These are concentrated in a belt some 6 miles long and 2 miles wide to the west of the Carboniferous strata. The general trend of the fracture belt is NNE-SSW and whilst some faults are parallel to this direction (e.g. Rawthey-Wandale Hill Fault) many others are oblique to it (e.g. the Murthwaite Fault). Broadly speaking three main directions of strike of the fault planes can be distinguished:
a) NNE-SSW e.g. Rawthey-Wandale Hill Fault
b) NE-SW e.g. Murthwaite Fault, Sedbergh Fault
c) NNW-SSE e.g. Harter Fell Fault

In addition to these main types there are numerous small faults often striking at high angles to the direction of the major faults and which are clearly accommodation features formed simultaneously with the latter.

It has been suggested at various times in the past (e.g. Marr 1916) that the dislocations in this region might be tear faults. If each of the main categories of faults ( $a, b, c$, above) are examined it will be seen, firstly, that the NNW-SSE faults canrot be tear faults, at least not in the region of Gais Gill. In this region two such faults crop out from Earter Fell to Wy -
garth Gill, both cut the Caledonian Gais Gill Fault, yet neither displaces it. Nor is there any evidence further south that faults of this trend have a horizontal component.

Those in the first category (a) are parallel to the Dent Fault and have the greatest length of outcrop of the three groups. The outcrop of the Dent Fault in the region of Fell End $(725,991)$ is flexuous and cannot, therefore, have a horizontal component unless the fault plane is corrugated and has a considerable vertical component or, alternatively, unless the "fault" is form ed by a series of fault slivers. This last interpretation is a possibility and can be easily envisaged in the High Pasture -Blake $\operatorname{Rigg}(705,942)$ Taythes Gill $(708,953)$ region to the south. North of the point where the Dent Fault outs the R.Rawthey $(718,974)$ exposure is not sufficient to determine this degree of detail and the "fault" is merely the line separating carboniferous (vertical beds) from older strata.

It has already been suggested that the position of the Ludlow strata in the region of Crosshaw might be due to a tear fault. This would involve hos izontal movement along either the Sedbergh Fault or the Rawthey Fault. The Sedbergh Fault has a very prominent curved outcrop and, as far as can be as certained, its fault plane is vertical. It is unlikely, therefore, that this fault is a tear fault. The Rawthey-Wandale Hill Fault on the other hand has a remarkably straight outcrop for almost six miles, and conceivably has a horizontal component. This is supported by the fact that several strua tures to the west of the line cannot be traced to the east (e.g. the Bram $\mathrm{R}_{1}$ e - Cautley Crags anticline).

It will be appreciated that in an area of faulting of this nature some of the usual means of identification of tear faults (such as manner of displacement of outcrops) cannot be used. The later movement of fault blocks and slices quite independant of each other renders any general deductions on the manner of displacement of outcrops extremely difficult. Nevertheless in the case of the Murthwaite Fault (category:"b") sinistral movement seems to have torn the Ordovician strata and associated Silurian beds to the SW. The anticline on the upper reaches of Sally Beck (mentioned above) is not repres ented directly to the west of the Murthwaite Fault but has been displaced to the region west of Murthwaite Park. Thus the strike seen on Three Gills ( 722,997 ) is broadly maintained until Wandale Hill ©ill B $(705,984)$ but at

Wandale Hill Gill A $(705,979)$ it has changed to approximately 130. The anticline plunges at about $25^{\circ}$ to the west.

If the strike of the Murthwaite Fault is followed to the SW past Handley's Bridge it would be expected to cut Backside Beck in the region of the footbridge ( 7000,9825 ), and such is the case. The fault cannot be traced any further to the SW and whether it displaces the Rawthey-Wandale Hill Fault or is displaced by it cannot be ascertained with certainty. Since it does not cut the Pickering Gill region however, it is assumed that the latter is the case.

A fault striking parallel to the Murthwaite Fault can be traced in the R.Rawthey from the point where Middle Gill enters to the mouth of Backside Beck. $\quad . \quad$ It is almost continuously exposed for a distance of 400 yards and is represented by a considerable fault breccia. The most interesting locality along its course is seen at the mouth of Backside Beck. Here the strata adjacent to the fault are tightly folded and have their fold axes plunging quite vertically. It is difficult to conceive any other origin for such'. folds than formation adjacent to the fault plane of a tear fault. The south westerly termination of this fault remains in as much doubt as the Murthwaite Fault.

It would seem, therefore, that there is evidence to sugeest that some faults in categories "a" and "b" above are tear faults. Assessment of the amount of horizontal movement is, extremely difficult however, but in the casa of the Murthwaite Fault it may be up to half a mile in a sinistral sense. If the folded strata of Cross Haw have been positioned by tear faulting this would probably involve dextral tear. The occurrence of sinistral and dextral tear together on a small.scale can be observed at the mouth of Wandale Beck where mudstones of Wenlock Stage 1 yielded long, badly preserved specimens of M.V.basilica which had been displaced in both senses on the same slab

It is inevitable that the recognition of the structural pattern outlined above, and the mapping of it in the field will result in modifications of previous concepts of stratal distribution. The fault shown by Watney and Welch (1911) and the Survey workers (1889) as cropping out from the mouth of Backside Beck to Watley Gill for example, does not exist. However at the mouth of Backside Beck there is a very small fault which can be seen striking in the direction of Ben End but it cannot have a downthrow of more than a few
feet since the horizon is the same on both sides of a very small breccia. At the summit of Ben End $(695,976)$ a fault with a similar trend may separate the Ordovician rocks of Westerdale from the Silurian to the SW. Apart from these however, the strike of faults on Ben End is NNE-SSW and not NW-SE. Differences compared with past work

Watney and Welch show an area of "Unmapped" Wenlock bounded on the north. by Stockdale rocks. In fact the whole of this area is occupied by Ludlow strata except on Watley Gill where Wenlock rocks can be proven in the position in which those workers place "Stockdale". Some of the highest Llandovery rocks are cut out on Watley Gill by a fault striking along the slopes of Yarlside and Kensgriff but to the west of the fault some grey beds are seen overlain by the lowest Wenlock. Between this point and Yarlside crass no exposures are seen but at the latter locality the Ludlow succession can be established.ifa,

The same writers show an area of "Stockdale" between the footbridge near the Cross Keys $(6985,9695)$ and the mouth of Cautley Holme Beck $(6930,9675)$. Strata are exposed for about one hundred yards downstream of the footbridge and consist entirely of Ludlow greywackes. Furthermore a similar exposure of greywacke is seen about one hundred yards downstream of the mouth of Cautley Holme Beck. There is, therefore, no evidence whatsoever for the presence of Llandovery rocks in this area, nor indeed for the presence of Ordovician strata bounding themimedathe NW.

The lowest half mile or so of Backside Beck is shown as forming the boundary between Wenlock and. Ludlow rocks with the Zone of C.lundgreni to the east and Zone of M.nilssoni to the west. An examination of the writer's map will show that the manner of folding of the greywackes along this stream section precludes the occurrence of Wenlock strate either in the left bank or upon the slope of Wandale Hill. This can be confirmed in the field where the stream section as far upstream as the point 6985,9780 cuts through greywackes of Ludlow age which are at least $50^{\prime}$ above the base of the Ludlow Series. At the above grid reference a fault brings up Wenlock strata between here and the locality upstream where the Wandale Hill Fault crosses Backside Beck ( 6980 9805).

Text fig. 5t, illustrates the Wandale Hill Fault from the above locality to the most southerly of the scree-filled gullies on Wandale Hill. The str
ata exposed in the small stream draining from Narthwaite quarry may be continuous with those beds on Backside Beck just described. At locality 3W they yield C.lundgreni, P.dubius, M.f.flemingii, M.f.primus, and ?C.carruthersi and dip downstream at 560 . As one approaches the Mountain View road the dip lessens to $35^{\circ}$ but throughout this stretch younger stratarare exposed downstream. Consequently as one works upstream one cannot pass normally-into Ludlow rocks. Locality 19 W is Wenlock in age (of. Watney and Welch 1911, p.229) yielding M.f.flemingii, whilst locality $2 W$ contains a large Ludlow. fauna of, P.bohemicus etc. : The two localities must be separated by a fault, whilst in Narthwaite Quarry itself a small fault is exposed which brings greywacke against the graptolitic mudstone of 2 W . Below the Nountain View road Wenlock beds are exposed for some distance before a fault brings up L. Llandovery mudstones into which is intruded a thin representative of the Bluecaster Diabase. A few yards further downstream the main Wandale Hill Fault brings up Ordovician beds. .

Several further discrepencies between the present work and past work can be seen by reference to the writer's $6^{\prime \prime}$ map which will be discussed in due course, but requiring immediate attention is the distribution of Stage 1 of the Wenlock Series on the NW slopes of Bluecaster.

Watney and Welch (op.cit.) depict their C.murchisoni Zone as extending * from the old road up to 150 yards above it in the region of Middle Gill, Far Gill and Near Gill. . Their text, however, (p. 218 et. seq.) describes the Zone as croppins out below the road and only occurring above it in the region of Far Gill. On Far Gill no further exposures are found after 50 yards above the road. As it is, therefore, the width of outcrop of the rocks bel onging to Wenlock Stage 1 can be proved to be at least 50 yards. Since in this area the thickness which can be assigned to this stage is a little over 70', the base must be very close to the last exposures some 50 yards above the road and certainly cannot be in the region of 150 yards above the road as suggested by Watney and Welch. : On Far Gill the upper boundary of Stage I occurs at the old road which agrees with the position mapped by Watney and Welch for the top of their C.murchisoni Zone but on Middle Gill and Near Gill the upper boundary of Stage 1 lies a considerable distance below the road which agrees with the text but not with the map of Watney and Welch. On the Middle Gill section grey beds of the U. Llandovery are exposed a
few yards above the road just above a felsite sill, whilst on Near Gill similar beds are seen just below the road. The whole of Stage 1 must, therefore, lie below the old road on the Middle and Near Gill sections. Areal Distribution of the Strata
: The writer would like to draw attention in this section to the general distribution of strata and particularly to mention those sections and localities which it has not been possible to discuss above, or elsewhere.

The most southerly exposures of the L.Llandovery beds are on Whinny Gill (696,941; 698,942) where a small thickness of dark grey mudstone overlies poor exposures of Basal Beds of the Silurian. Graptolites such as C.normaIis, C.medius, M.atavus etc. have been obtained though the A.acuminatus Zone could not be identified. In the case of the most northerly of these two localities the exposures peter out up a small gill which enters Whinny Gill from the SE. The southerly exposure is cut off after a few feet ( $315^{\prime}$ ) by an E-W fault which brings down U.Llandovery beds exposed in a cliff in the left bank. The latter are faulted against a thick felsite sill near the junction with Cross Haw Beck.

Further exposures of L.Llandovery beds are found on Marsh Lane (6930, 9425) and at locality 1 Ma R.longispinus was obtained. Most of the exposures are of crushed mudstone and are overlain upstream firstly by a diabase sill, presumably part of the Bluecaster sheet, and secondly by badly disturbed U.Llandovery mudstones. Into the latter beds is intruded a thick felsite sill which is almost certainly the same bed as the sill on Crosshaw Beck. The distribution of Wenlock Stages $1,2,3$, and 4 between Hebblethwaite Hall Gill and Crosshaw Beck has already been mentioned but the former section is also of importance in furnishing a superb exposure of U.Llandovery rocks which are not intruded by felsitic material. "The felsite sill described above, therefore, has either thinned out or occurs at a lower level than the turriculatus Zone which comprises the lowest Llandovery beds seen on Hebblethwaite Hall Gill. To the west the U.Llandovery is faulted against the Wenlock Series. Locality 10H yields a riccartonensis Zone (Subzone C) faung of M.riccartonensis, M.antennulatus, and P.dubius whilst 11 H contains M.rice artonensis. Higher beds are exposed downstream but no fossils were obtaine $Q$ The Wenlock strata are faulted in the west against the basal Carboniferous conglomerate, the boundary between the two being marked by a considerable
fault breccia. It is this fault which appears to terminate the Rawthey Fault.
Upper Llandovery strata are again seen in Lat Gill $(692,945)$ further north where they crop out high in the left and right banks. "Red" beds and grey beds are seen underlying Stage 1 of the Wenlock which is exposed in the old pine wood.

On Ecker Secker Beck rather more than half a mile to the north both $L$. and U.Llandovery rocks are exposed upstream of the main road in a very dislocated and intruded section. Felsites and lamprophyre dykes cut the beds every few yards so that where the rock has not been crushed by fault movements it is baked hard. Fossils have not been obtained.

Finally the Llandovery rocks are exposed, generally rather poorly, around the western and north western periphery of the northeastern Ordovician inlier. The degree of faulting dictates that the exposures are usually of little use stratigraphically whilst the beds are often so crushed that fossils are not obtained readily.

The distribution of the Wenlock Series has been largely described but a few sections of interest remain. An inlier of Wenlock rocks is een on the R.Rawthey at Rake Wood $(6850,9335)$ where it is almost surrounded by conglomerate and faulted against Ludlow rocks. The beds are quite well exposed but are strongly stained by iron derived from the conglomerate above. Although the bedding is usually difficult to discern the strata appear to form a gentle anticline.

Stage 4 of the Wenlock Series is exposed between the Sedbergh Fault and the basal Ludlow limestote on Ashbeck Gill.: The beds are extremely cleaved and it is almost impossible to split the rock parallel to the bedding plane so that no fossils were obtained. On lithological grounds however all the rocks exposed should be assigned to the fourth stage whilst a certain amount of repetition by folding and faulting may occur.

A short distance to the north of Stage 4 of Pickering Gill the Stage is also exposed beneath poor exposures of the Ludlow Series. Unlike the Pickering Gill sections fossils could not be obtained, but both localities clearly represent the highest Wenlock beds exposed in the core of the Bram Rigg -Cautley Crags anticline.

Further north Stage 4 is again exposed underlying the basal Ludlow limestone on Bowderdale Beck and Great Randy Gill. The rocks are folded into a
series of E-W folds and are so cleaved that fossils could not be obtained. At the point 679,998 the mudstones are overlain, however, by the basal limestone of the Ludlow. Series and a few feet (3') of greywackes before a fault lets down higher greywackes.

On Wandale Beck Stages 1 and 2 are exposed overlying grey beds of the U.Llandovery but upstream of 7115,9980 is a region of no-exposure until the bridge over the stream at Adamthwaite Farm is reached. These beds were ascribed to the Zone of C.Iundgreni by Watney and Welch but the present writer could obtain no fossils either here or in the poorer exposures west of the farm. Some distance along Stonely Gill highly disturbed Ludlow greywackes are exposed. Though not seen in juxtaposition with the Wenlock Series they are assumed to be faulted against the latter since these greywackes belong to the Bannisdale Slates (leintwardinensis incipiens Zone) and not to the nilssoni Zone as mapped by Watney and Welch.

The strata between Stockless $(695,005)$ and Bowderdale directly to the west probably all belong to the nilssoni Zone. They are clearly disturbed by several faults but within a few feet of one of these fossils were obtained (1We) indicating the nilssoni Zone: M.chimaera salweyi, P.welchi sp. nov. To the north a westerly extension of the Gais Gill Fault brings down Bannisdale Slates whilst to the south normal passage takes place into Wenlock strata (as on Stockless) or the Bowderdale Fault brings up the lower beds. Between the Stockless - Grere Fell region and Greenside Beck of Ravenstonedale a considerable amount of fault repetition must occur since the Winder Grit is not exposed until locality 2Da. Apart from one minor erumple there is no evidence of folding.

A further region of Ludlow strata is deserving of mention. Watney and Welch (1911) were the first workers to detect the presence, on Wandale Hill, of Ludlow rocks. These workers described the fossiliferous looalities of the western slopes and noted a "grit" on the summit. It is also worthy of note that two localities in the basal Ludlow limestone occur at 23W (701,984) and 706,994. The former is a small sheep "scratch" of poorly calcareous beds yielding trilobite fragments whilst the latter, now almost overgrown, is of similar rock from which no fossils could be obtained. The northerly locality is the only one in a large area of course grass and it almost certainly was here that the Survey workers (1889) record a dip to the SE of $65^{\circ}$.

This is significant in showing the synclinal nature of the beds on Wandale Hill (whether fault formed or not) and allows the base of the Ludlow Series to be tentatively sketched in round the hill - for it is not exposed except at these two localities. Other sections of import in the Ludlow Series have been described above or are summarized in the text figs. $a, b, d, e$.

In view of the stratigraphical succession now known, as well as the general distribution of the strata and major faults it is clear to the writer that the region would benefit from a study directed primarily at the structural geology. Such a work could be extended to the western half of the Howgill Fells where the effect of the Dent Line Hercynian activity is less strongly felt, and where, because of this, the full effects of the Caledonian movements in the region might be deduced.


## CHAPTER 6

## FACIES TYPIES AND DISTRIBUTION

In the discussion following the valuable paper by Watney and Welch (1911, communicated by Dr.J.E.Marr) Professor T.McKenny Eughes, a very experienced worker on Lower Palaeozoic rocks in the Lake District, said "... that the parts under observation consisted of rocks differing little in detail of lithological character through great thicknesses, while fossils were scarae and badly preserved." Watney and Welch had contributed to the elucidation of the facies types as had the workers of the Geological Survey a few years earlier (Dakyns et. al. 1891), and Marr and Nicholson (1888). Later work, notably by $\operatorname{Marr}$ (1913, 1925, 1927A) and Wilson. (1954), has made the succession of rock types still more decipherable. In the following paragraphs nine facies are distinguished. Each has its own distinctive characters uhich make it easily recoenizable in the field and of ereat assistance to mapping, particularly when taken in conjunction with the vertical facies distribution pattern (v.e. $\mathcal{E}$ text fig. 4c) and the faunal succession. It is sugcested below that several of the facies evolve with time and reflect distinct and gradually changing environments of deposition. Broadly speaking the facies of the Silurian may be regarded as the result of interplay between reducing and oxidizinc conditions superimposed upon a mode of deposition of mechanical detritus which chanced but slowly.

1. Conclomerates and Grits

An interesting feature of the region is the influx at long intervals of coarse sediment into environments of provable quiet deposition (v.p. 95 ) These coarse rocks are composed of either conglomerate and grit which probably represent a near shore environment (Group A below) or fine grained calcareous grit the origin of which is more doubtful (Group B below).
Group A: The Ashgill Shales Grit is an example of the first type. Its variations in thickness throuchout the region are discussed above (pp. 9-12 text fic. 2 b ) where it is interpreted as a submarine distributary of a river draining a nearby landmass in the south east. The grit thins to the north west where it is only a few inches in thickness whilst in the south east it is conglomeratic and exhibits current bedding on all scales. Marine fossils such as bryo-
zoans, brachiopods and trilobites are common.
Overlying and underlying the grit are fine grained Ashgill Shales mudstones which suggest quiet conditions of deposition. The overlying mudstones are almost 40' thick so that the grit itself occurs some considerable time before the onset of the Silurian conditions of deposition.

The Winder Grit is not dissimilar to the Ashgill Shales Grit in that it is a highly calcareous fossiliferous deposit. It differs, however, in its lack of large rounded pebbles and boulders, in the predominance of angular fragments particularly of mudstone, and in its considerable areal extent. At the most northerly outcrop (Greenside Beck, 2Da) it is at least 30! thick and consists of finer parts as well as conglomeratic strata in which the most conspicuous frasments are large angular pieces of mudstone. The exact relationship between the corglomeratic and gritty portion is not certain. They may be either interbedded or mixed is a more complicated manner. The whole is calcareous and fragmentary shelly fossils including Odontooleura hughesi are abundant. The southerly outcrop on Settlebeck Gill (660,931) is rather thinner (about 20') and whilst it lacks the conglomeratic beds with large mudstone fragments, it is equally calcareous and contains numerous shelly fracments. A nearby exposure on the southern slopes of Winder $(654,927$ ) appears to be, even thinner. The underlying and overlying rocks are greywackes.

There is, therefore, a decrease in thickness of the bed and a Eeneral decrease in grain size from north to south. The presence of larce ancular mudstone frafments in the northerly outcrop suggests a source not far removed but there is no indication as to whether this lies to the northwest or the northeast Perhaps the most puzzling feature is the occurrence of such a erit in a part of the succession that consists entirely of unfossiliferous ereywackes. There is no sugeestion, that the greywackes are shallow water deposits and yet the grit with its coarse ancular grains, hieh lime and shell content is suggestive of shallow water. It is possible, however, that the whole bed is derived by redeposition from further afield and that the mudstone fragments represent disrupted finer beds originally interbedded with the coarse beds. . Supporting this to some extent is the greywacke-like texture of the rock, the presence of crading, and the lack of large scale current bedding and rounded pebbles which are found for example in the Ashgill Shales Grit. Group B: These are fine Erained grits on a much smaller scale than those of

Group A, and the best developed (sedgwicki zone, Spencill) is only $8 \frac{1}{2}$ " thick. The other four beds are found in the Wenlock Series and rance from threeeighths to one inch in thickness. Each is highly calcareous and usually weathers to a rottenstone on its exposed surface although the fresh surfaces have a distinctive medium grey to greenish grey colour (N5 or N6 to 5CB 5.5/1). They are composed of ancular fracments of quartz, rock fragments, and rather weathered orthoclase and plagioclase. One of the thicker beds (1") is graded from coarse grit at the base to finegrit at the top. The three-eighths of an inch grit occurring in the riccartonensis Zone is extremely persistent and is constant in its thickness. Thus it is found in the northernmost point where these beds crop out (Wandale Beck, SSE of Adamtbwaite Farm 711,997) and as far south as Hebblethwaite Hall Gill (691,932) over four miles away. Its base of ten shows small scale load moulds. It must be stressed that these five beds occur in a total of well over 1000! of fine grained mudstone and, that like the Winder Grit, they are quite atypical. Clearly they represent rare influxes of coarse material from a distant source into a quiet environment of deposition, a fact which is supported by the weathered nature of the constituent grains.
2. Asheill Shales Mudstone Facies

The Ashgill Shales sometimes known as the Fencil Slates on account of their characteristic cleavage, constitute one of the most distinctive litholog ies of the region. They overlie the alternating mudstone and nodular limestone facies of the lower beds of the Ordovician and inmediately underlie the basal limestone and the graptolitic mudstone of the Silurian. The facies, however, occurs in a modified form at a hicher level, particularly in the Middle Llandovery where it alternates with graptolitic mudstones. The "typical" Ashgill Shales are described first.

These consist of fine grained medium dark grey mudstone (N4) with rare calcareous nodules and occasional calcareous beds. The fauna is sparse except in the calcaveous beds and consists of brachiopods, bryozoans (e. ©. Phyllo porina hisingeri), trilobites (e.g. Dalmanitina mucronata) and, less commonly, crinoids. None of the fossils are dwarfed and some of the brachiopods and trilobites reach a large size. Towards the top of this division, as the Ashgill Shales Grit is approached, the grain size increases locally to give thin silty lenses ( $v$. text fig. 2a). These are also found above the grit, partic-
ularly in the lowest few feet of the $40^{\prime}$ division.
In the Llandovery Series a very similar rock type is found firstly in the triangulatus Zone. The fine grain size and complete lack of siltstone lenses links this type with that of the lower Ashgill Shales. Calcareous nodule beds occur and it is in these that the fossils are found. "Again the fauna consists of brachiopods and trilobites butother fossils are less common. The noncalcareous fractions of the facies contain only rare fossils and in some instances at least these prove to be dwarfed forms. It is certain that these beds which alternate with graptolitic mudstones, are essentially the same facies as the Ashgill Shales. They differ in being finer grained, in having a high proportion of iron carbonate compared with calcium carbonate; in their blocky cleavage as opposed to "pencil" cleavace, and in beinc slightly darker in colour (dark: grey, N3, to medium dark grey N4). Wilson (1954) considers that the iron carbonate was precipitated directly (cf. Marr 1925) and it would certainly be difficult to envisace Marr's process of replacement in view of the fact that prinary limestones exist within the iron carbonate-rich mudstones.

The facies is last seen in the Zone of M.sedewicki where occasional thin beds with calcareous nodules occur. The nodules yielded shelly fossils to the Survey workers (e. \&. Phacops elegans, Cheirurus bimucronatus, Illaenus bowmanni Leptaena quinquecostata, Favosites sp. , Lindstroemia sn.). In this zone the beds alternate not only with graptolitic mudstone but with the first of the fine grained, unfossiliferous mudstones (described below) and with thin calcareous grits of Group B (described above).

The conditions of deposition of these beds are difficult to envisace. Marr (1925) examined them in some detail (terming them "blue muds" since, althouch grey, they have a faint bluish hue) and concluded that the sparse benthonic fauna existed with some difficulty under semi-toxic conditions. He pointed out (op. cit. p.127) that the pyrite content of these rocks is far less than in the dark graptølitic mudstone and that free carbon is absent. A carbon analysis carried out for the present writer on a sample from Spengill (trianmlatus Zone) showed $0.27^{\circ}$ \% of free carbon which compares favourably with the figure of 0.340 o obtained for the Ashgill Shales of Spengill and strongly contrasts with the much higher value (up to $3.68 \%$ ) obtained for the dark graptolitic mudstone (see also text fig. 6a) with which these beds alternate. It is clear that the change from one facies to the other, whilst ocurring
quite suddenly, must take place without disrupting the environment of mechanical deposition, since the grain size remains unaltered and the two facies are often welded together in a manner which in itself sugcests continuous deposition of the mechanical detritus across the chance. Wilson (1954) reaches the important conclusion that the craptolites and carbonaceous colouring matter arrived at the sea bed from a source independent of that supplying the mechanical detritus. Thus in the Broweill Beds which he examined he proved, in effect, that if the succession of mudstone at $A$ is twice as thick as at $B$, ther a contained thin band of graptolitic mudstone which can be traced from $A$ to $B$ will also be twice as thick at $A$ as at B. From these facts, it is tempting to conclude that the eraptolite rhabdosomes and free carbon arrived at the sea bed by sinking from an algal-graptolite association at the surface which periodically drifted into an environment of quiet deposition. The bottom conditions would become anaerobic and the beuthonic fauna, already struccling for existence, would micrate or be killed off. This picture agrees with the alternation of facies and associated faunas and is basically the same conclusion arrived at by Narr (op. cit.). It does not explain, however, why the Ashcill Shale Mudstone Facies dies out in the sedcwicki Zone and is replaced by the fine grained, unfossiliferous mudstone which, in the U. Llandovery, alternates with the graptolitic mudstone. This fact is indicative of a change, perhans a chemical change as sucgested by Marr, in the depositional environment. It is at least clear that in Upper Llandovery times before the onset of red mudstone deposition, the sea was unconducive to life even when the craptolitic mudstone was not being deposited.
3. Fine Grained Unfossiliferous Mudstone

This facies is the predominent rock type between the Zones of M.sedswicki and M. Griestonensis (sensu Wilson 1954) and is equivalent to the "Green Beds" of $\operatorname{Narr}$ (1925). The latter author recarded them ( $\mathrm{pp} .114,116$ ) as the fine grained equivalents of the "Erauwacke-Erits" typical of many Lower Falaeozoic rocks, and"the normal deposits of the period in this area, owing their characters solely to the nature of the mechanical detritus which forms them...." According to Marr they differ from the dark graptolitic shales only in the absence of graptolites, free carbon, and primary iron sulphide. This paucity of free carbon is confirmed by an analysis carried out for the present writer which showed only $0.14 \%$ compared to as much as $3.68 \%$ in the fraptolitic

mudstones. The lack of eraptolites, and indeed all fossils, can be confirmed in the field and the small amount of pyrites can be deduced both from the hand specimen and from thin sections. The rock is composed essentially of a fine grained aggregate of quartz, altered felspar, and micaceous material together with considerable quantities of clay grade chloritic matter.

Marr ( 1925 p .130 ) records that benthonic oreanisms are "very rare in the Ereen (mude)" and on p. 127 writes that these consist of a few minute brachiopods. The present writer has been unable to find any fossils in the beds under discussion and neither Dakyns et al. (1891) nor Wilson (1954) record any from the Cautley district. A few small brachiopods have been obtained, however, from a $5^{\prime \prime}$ light olive grey band ( $5 \mathrm{Y} 5 / 2$ ) from Watley Gill (7Wa) which occurs below the convolutus Zone associated with mudstones of the Ashgill Shale type ( $=$ Narr's blue beds), and yielding Phacons glaber. . Since Marr records his green muds from the Skelgill Beds it seems likely that it was from these beds just below the convolutus Zone that he obtained the brachiopods. The light olive grey mudstones are distinct from the above-described beds and moreover are not common. They differ in being softer, and nore closely resemble the ashes studied by Wilson (1954) than the fine grained, unfossiliferous mudstones.

Marr used the term "Ereen beds" and whilst when weathered the fine grained barren mudstones do have a distinct green or olive green tinge, it is interesting to note that fresh surfaces are usually various shades of grey (e. $\mathcal{E}$. medium grey, N5) although the faintest of green hues is sometimes discernible.

The most puzzling feature of this facies is its barren nature and in this respect at least it resembles the creywacke facies described below. Indeed, as has already been pointed out, Narr resarded it as a fine grained variety of the latter and some modern workers consider it to be a lateral equivalent of coarse greywacke. The same author (1925, p.l28) concluded that iron was pres ent in the sea water as a hydrate but that "... as the conditions were not then favourable for its conversion into sulphide as in the case of the dark fraptolitic muds, nor for its subsequent replacement in calcium carbonate by metasomatic action as in that of the blue beds, it remained in solution." Whether this explanation is correct or not the fact remains that the facies is barren of fossils. - Perhaps an important point is that it differs from the Ashgill Shale Mudstone Facies mainly in the absence of iron and calcium carbonates.

The possibility that the fine erained barren mudstones may be the lateral equivalent of coarse creywackes is feasible since they differ mineralogically in having a lack of rock fragments, less felspar (which is more hichly altered and a higher proportion of clay-grade chloritic matter as a groundmass. 4. The Fied and Grey Mudstone Facies

These facies occur between the griestonensis Zone (sensu Wilson, 1954) ano the Wenlock Series and must be approximately equivalent to the crenulata Zone. The "red" mudstones are greyish red (10R4/2) in colour and are interbedded in places with greenish grey mudstones (5G6/I). Both are of similar grain size and differ only in their colour: Above the "red" mudstone facies are the grey mudstones (5GY5/1) discovered by Wilson (1954) and studied in detail by him.

Both Narr and Wilson (op. cit.) mentioned that a small beuthonic fauna had been obtained from the "red" mudstones and the present writer has obtained phacopid thoracic segments from beds slightly more calcareous than usual. Specimens of Phacons s.s. from-the "red" mudstones of Spengill are deposited in the Sedgwick Museum, Cambridge. From the grey mudstone facies Wilson found trilobite fragments and it is from these beds that the writer has obtained the ostracod Kloedinella sp. Therefore, although fossils are rare, the rocks are not barren and none of the specimens are dwarfed. The carbon content of the rock is low ( $0.11 \%$ ). The problems concerned with the deposition of these facies are discussed by Wilson and are not further debated here. . He has shown that the "red" mudstones are not continuous throughout the Cautley area and that upon the axis where no deposition takes place the beds show no signs of oxidation, whereas away from this axis the conclusion seems inescapable that they were deposited under oxidizing conditions which resulted in the presence of red iron oxides.

The greyish red mudstones need never be confused with the red stainine caused by proximity to the basal Carboniferous conglomerate. In these instances the secondary staining can always be proved as for example by the presence of Leisefcanc's Rings seen at Rake Wood ( 685,935 ). 'Other cases show a more uniform staining (e.g. the Ludlow Series on Stockless Gill and Harter Fell) but by breaking cleavage blocks to the core the oricinal colour can be seen. Watney and Welch (1911) undoubtedly fell into error here since their "red flacs and grits" ( p .217 et seq.) can easily be demonstrated in the field
to be the result of secondary staining. 5. Limestones

At many horizons the beds are slichtly calcareous but only occasionally is the concentration of lime sufficiently Ereat to warrant the name limestone. Three types can be distinguished:
a) thin, relatively pure unfossiliferous limestone
b) thick shelly limestones
c) highly calcareous graptolitic mudstones.

Since the last of these types c) is essentially part of the graptolitic facies it is considered under that heading. A single limestone of the first type occurs in the Zone of M.sedgwicki (see text fig. 2il). It is l'2" thick, massive, light grey to very licht grey in colour (N7.5) and weathers with a pitted surface. No fossils have been obtained up to the present. The most important limestones are those of the second group which is represented by the basal Silurian limestone and the basal Ludlow limestone.

It has been shown (pp.12-14 ) that the basal Silurian beds are rather variable in thickness and conposition but that generally they thicken to the south. Limestone is a major component and is closely associated with a hard, pale coloured, non-calcareous mucstone (see text fig. $2 e$ ). The beds are underlain by Ashgill Shales and overlain by black graptolitic mudstones of the A. accuminatus Zone. Shelly fossils including brachiopods, trilobites and crinoids are abundant in the linestone but none are preserved complete. The fossils seem to occur in pockets or lenses in which the frasmentary organic remains are crowded together. This sugeests rather turbulent conditions of deposition in which the shells were washed into, and held, in hollows upon the sea bed. Some parts of the limestone show bandine very similar to that of the Asheill Shales mudstones and these are usually less calcareous and less fossiliferous than the lenses mentioned above. On fresh surfaces the fossiliferous lenses show only faint traces of the contained shells and the absence of banding can be demonstrated. The occurrence of a hard non-calcareous mudstone in such intimate association with the limestone is a puzzline feature. It is possible that decalcification of some of the muds took place at an early stage and that the lime tended to become reconcentrated around the lenses of fossil fragments. This is strongly sucgested by similar calcareous beds which occur 2'3" above the Ashgill Shales Grit on Spengill (see text fig. 2a).

In this case two bedding planes separated by $6^{\prime \prime}$ of sediment are crowded with brachiopoos, trilobites and crinoids. For a thickness of five-eighths of an inch on either side of the lower of these bedding planes, and $1 \frac{1}{2} "$ on either side of the upper, the mudstone, in which the typical banding is clearly discernible, is highly calcareous and much harder than the surroundinE uncalcified mudstone. The calcareous nodules described below (p. 99) are probably of similar origin since they often surround, for example, an orthocone cephalopod shell, or a coral growth.

The bipartite basal. Ludlow Limestone is similar in many ways to the basal Silurian limestone. :Thus the fossils are also, preserved in lenses as aggreEates of dissociated fracments. Proetid cranidia, for example, are common but complete cephala have not been found. Lateral equivalente of the limestone (which is medium grey, N4.5, in colour with a faint bluish hue) may be non-calcareous or only poorly calcareous but equally pyritous, and with only occasional fossil fragments. All the strata above, separating, and below the bipartite limestone are of graptolitic mudstone. Those beds below the limestone have calcareous nodules and in places yield gastropods, brachiopods, trilobites and cephalopods.

In view of the similarities between the basal Silurian limestone and the basal Ludlow limestone a similar mode of origin is sugsested. The presence ir each case of numerous shelly fossils sugeests conditions more amenable to beuthonic life. Both limestones and associated non-calcareous mudstones are hichly pyritous but none of this seems to be primary and it usually ocours as small cubes or large nodules. It is possible that both limestone beds would act as repositories for secondary deposition of pyrite.

Watney and Welch (1911,p.223) described this basal Ludlow limestone as "yellow and sandy when fresh". In fact it is medium grey with a bluish tince. It seems certain that those authoresses have taken the "intermediate" rottenstone to be the fresh rock:. This of course is virtually non-calcareous and. quite hard in contradistinction to the final rottenstone which is very much softer and ginger in colour.

## 6. Graptolitic Mudstone Facies

From the stratigraphic and palaeontological point of view this facies constitutes the most important rock type. In the L.Llandovery and Wenlock Series it is also the predominent rock type but in the M. and U. Llandovery and Ludlow

Series it occurs as relatively thin bands in a generally unfossiliferous succession. The first bed of graptolitic mudstone follows immediately above the basal beds of the Silurian and is equịalent to the A.acuminatus Zone (identified by Wilson 1954) whilst the last beds occur in the leintwardinensis Zone (as seen in the Howgill Fells).

This facies occurs over a long range in time and throughout it is composed of clay to silt grade angular fracments of quartz, altered felspars, mica, iron minerals, carbonaceous material and a considerable quantity of fine grained chloritic matrix. The beds are calcareous in places. The texture is relliniscent of the greywackes (v. text fig. 6c) but the grain size less and the amount of weathered and clay grade material greater. Sedimentary structures such as current bedding, ripple drift lamination, convolute bedding etc. are absent although in thin section some small scale graded bedding has been observed in which each graded unit occupies only a few millimetres Superimposed upon this typical mudstone is a characteristic and prominent bandine caused by the occurrence parallel to the bedding plane of carbonaceous matter and primary ferruginous material usually consisting of pyrite. For the sake of brevity the banding is referred to below as "carbonaceous banding."

No preference for association of the carbonaceous banding with any particular grain size has been observed and Wilson's work (v. p. 89) sugests that the carbonaceous matter came from a source independant of that of the mechanical detritus. This accords with the widely held opinion that the graptolites and the carbonaceous matter (representing decayed algae) sank from the upper layers of the ocean where they lived in symbiotic association. The banding, clear in the hand specimen, is much less distinct in thin section where the "bands" can be seen to consist of numerous very thin layers of opaque matter. In the hand specimen some bands are thicker and darker than others and these occur at fairly regular intervals. This is particularly true of the higher Wenlock and Ludlow beds but less true of lower horizons. The "bands" do not "cross cut" each other but have the appearance in thin section of lenses of opaque material wrapping round the coarser mineral grains (v. text fig. 6 b no. 7). Consequently they cannot be counted with any pretence of accuracy and whilst they may represent annual deposition as some workers have claimed (Marr, 1927 \& Cope 1951) this is impossible to prove. The darker bands may, in fact, represent one of several things:-

## TEXT FIG. 6b1

Dark graptolitic mudstone from Lower Llandovery.

## TEXT FIG. 6b2

Graptolitic mudstone from thin bed in Upper Llandovery.

TEXT FIG. 6b3
Red mudstone from Upper ilandovery.

TEXT FIG. 6b4
Graptolitic mudstone, Wenlock Stage l, overlain by non-graptolitic mudstone. :

## TEXT FIG. 6b5 \& 6b6

Respectively graptolitic mudstone from Stage 1 and worm tubed graptolitic mudstone from same horizon.

TEXT FIG. 6 b 7
Graptolitic mudstone from the Ludlow Series, second graptolite band.

## TEXT FIG. 6 b 8

Slide of the Banded Unit Facies from beds yielding 0. hughesi.
all figs $\times 7$


4


3


2



8


7


6


5
a) periods when death of aleal material reached a peak - possibly an annual feature.
b) periods when more alcae than usual covered the area in question - not necessarily an annual feature
c) periods when decay of algae took place at a different rate than usual possibly an annual feature but not necessarily synonymous with a) above d) periods when the deposition of the mechanical detritus was retarded, but when deposition of carbonaceous material took place continuously.

If the last possibility was the case one would expect to find concentrations of carbonaceous matter at the top of each, or some, of the minute graded units described above. This has not been established and succests that the last possibility is not operative. . The writer feels that any one or all of the first three may be factors and that any annual feature of one micht be obliterated by the operation of either of the other two factors. He envisaces an almost continuous "rain" of carbonaceous natter with concentrations at particular levels as a result of any of a number of controlline factors. Conditions of deposition of the grantolitic mudstone: The almost exclusive occurrence of fine grained muds from the base of the Silurian to the top of the Wenlock Series in itself suggests quiet conditions in the basin of deposition. The succession of over 1000 ' of such sediment must have been built up by almost continuous influx of fine muddy material and the presence of small scale graded bedding, as well as the general texture, suggests that this might have been achieved by the means of low density turbidity currents. These might be connected laterally with high density deposition of coarse greywackes such as those found in North Wales (e.g. the Deribigh Grits). These have been shown to flow from south to north in Wenlock times (Cummins 1957, map p.435).

Independant evidence exists concerning the calm'conditions of deposition. Text fig. 6d shows an orthocone cephalopod shell embedded in graptolitic mudstone. It depresses the carbonaceous banding along about 15 mms of its length whilst abowe this the bands pass almost unaltered around the shell. The specimen illustrates the following points:-
a) that the topmost 15 mms of the mud must have been quite soft to allow the penetration of the point of a relatively buoyant cephalopod shell, (not allowing for diagenetic compression which would reduce the depression of the laminae)

## TEXT FIG. 6aA

# Layers of primary pyrite showing slumping prior to deposition of later layers. 

## TEXT FIG. 6dB

Orthocone cephalopod seen depressing the banding of the graptolitic mudstone in which it is embedded. Full explanation in text p.95.

b) that conditions of deposition subsequent to the penetration must have been quiet otherwise the shell would have been uprooted from its precarious position (burrowing organisms also might have acheived this end).
c) the banding is a primary depositional feature.

Some workers have discussed the possibility that the carbonaceous banding micht be the result of orcanisms (e.e. worms) reworkine the surface layers of the mud and that the lenses of coarse material surrounded by carbonaceous films might be compressed faecal pellets. A critical horizon for the discussion of this idea is at the base of the Wenlock Series where the graptolitic mudstone reappears after its absence during the Zone of M.crenulata. It alternates at first with thin bands of non-carbonaceous mudstone whose detrital components are similar to those of the graptolitic mudstone. The noncarbonaceous mudstone has a benthonic f'auna of brachiopods and trilobites and in this respect resembles the underlying grey beds in which Wilson (1954) obtained trilobite fragments. Graptolites appear almost immediately in the banded mudstone but in some cases the carbonaceous banding can be seen to be obliterated by worm tubes. It is clear then that where bottom working organisms can exist they obliterate, not cause, the sraptolitic banding. Indeed much of the non-carbonaceous mudstone at this horizon is the result of destruction and complete reworking of original graptolitic mudstone to form a homogeneous mass. It is also apparent that at these times conditions were not entirely adverse to benthonic life as evidenced by the diminutive brachiopods and trilobites. However, that anaerobic conditions eventually took over is illustrated by the disappearance of non-carbonaceous mudstone and its associated benthos and its eventual, almost total replacement, by conditions in Which eraptolite rhabdosomes were infilled with pyrite and preserved in full relief. These conditions continued until the onset of the G.murchisoni Zone. Evolution of the Graptolitic Mudstone Facies: It will have become apparent from the above discussion that this facies is remarkably long ranging and of distinctive character. It has been observed, however, that gradual changes take place from the lowest beds to the highest beds. The most obvious of these is a gradual increase in the grain size of the mechanical detritus (see text fie. $6 \mathrm{~b}, 1,2,4,5,7,8$ ). Thus fig. 1 is a slide of black mudstone from the L.Llandovery. There is a very slight increase in grain size in the graptolit-
ic mudstone of the U.Llandovery (fic. 2) followed by a further increase in the Wenlock Series (figs.4,5). Throughout the Wenlock Series the increase is gradual until the rather coarse mudstone of the Ludlow Series craptolite bands is reached (fic.7). At this latter horizon the mudstone is not continuously banod and small lenses and thin bands of silt grade material bezin to aprear separating the more typical banded mudstone. These increase in number up the Ludlow succession until ultimately the carbonaceous banded mudstone is restricted to thin beds of $\frac{1}{4}$ " to $1 "$ in thickness in much greater thicknesses of silt and unbanded mud. It is considered that this last facies is sufficiently distinct, and so easily recognizable in the field, to warrant further description. (see below under Banded Unit Facies).

Coupled with the increase in grain size there is a concomitant decrease in the percentage weicht of free carbon (see text fig. 6a). Analyses of four samples of dark caroonaceous mudstones from the L.Llandovery gave the following percentage weights: $1.28 \%$; $2.77 \%$; $3,62 \%$; $3.68 \%$. A single analysis in one of the U.Llandovery (crispus Zone) thin sraptolitic mudstones shows a rather low figure of $0.81 \%$ but examination of the rock in this section shows that pyrite is as much a cause of the distinct bandind as the carbonaceous matter. This is true of many of the very thin eraptolitic mudstones of the U. Llandovery Zones. In the lower Wenlock beds (murchisoni Zone) a figure of $1.55 \%$ has been obtained but thereafter a rapid decrease of carbon takes place with the increasing grain size: $0.30 \%$ (Zone of c. rigidus mut.); $0.47 \%$ (Zone C.Iundreni); $0.09 \%$ (2nd graptolitic band in Ludlow); $0.48 \%$ (Zone M.leintwardinensis). Examination of the slide of the second Ludlow graptolite beds shows that the bands here, as in the case of the U. Llandovery, contain as much ferruginous matter as carbonaceous material and it is the combination of the two which gives the rock the distinctive banded appearance. It.is interesting to note that the ferruginous matter consists of haematite and magnetite and that pyrite is rare. This point will be considered further later. (A value of $0.40 \%$ might be taken as about averace for the hicher Wenlock and Ludlow.)

An important chance in the conditions of deposition of the Eraptolitic mudstones takes place with the onset of the C.murchisoni Zone. Prior to this, from the base of the Silurian upwards the graptolitic mudstones had been deposited in what was clearly an anaerobic environnent devoid of benthonic life
and preserving only those planktonic or pseudoplanktonic forms which sank into it. Graptolites, orthocone cephalopods, and phyllocarid crustaceans come in-. to this category. The graptolites are often preserved in relief after being infilled with pyrites.

In the murchisoni Zone and above the graptolite rhabdosomes are preserved as flattened films in the rock (exceptions are described above p. 99) and coincidentwith this change is the incoming of calcareous material. Some of this is resolved into bands (e.g. the $4^{\prime \prime}$ limestone, v.p. 33 and text fig. 3 c ) and some into calcareous nodules. The lime content of the rock continues to increase throughout the Wenlock Series. Small nodules are fairly common in the Zones of murchisoni, riccartonensis and antennulatus (Stage 2) whilst in Stage 3 the nodules are larger and thicker limestones may occur (e.g. the 2' limestone in the Zone of C.rigidus mut.). Nodules several feet across are found in Stage 4 in addition to very numerous small nodules, and the basal Ludlow limestone represents the culmination of the increase in lime. At this horizon conditions were very favourable to benthonic life and a larce shelly fauna is found. Shelly fossils, however, first make their appearance at the same time as the calcareous material. Thus a crinoid bed with the fossils in the place of growth has been found in the murchisoni Zone and identical beds occur in the riccartonensis and lundereni Zones. A bed of small brachiopods occurs in the riccartonensis Zone and small colonies of Favosites so. are not uncommon in the calcareous nodules of the lundcreni Zone. Gastropods, brachiopods, orthocone cephalopods, and trilobites are found a few feet below the basal Ludlow limestone.

The graptolitic mudstone facies in the Ludlow Series contains shelly fossils far more commonly than the Brathay Flass. Crinoids, phacopid trilobites, lamellibranchs, brachiopods, cephalopods, and rare corals have all been obtained. The beds are often slightly calcareous but the lime is disseminated and only occasionally concentrated in nodules.

The paucity of primary pyrite above the murchisoni Zone, taken in conjunction with the factors just discussed indicates that conditions gradually became less deleterious to benthonic life. The final stace may be reached in the Kirby Moor Flags where the benthos is well established and graptolites apparently absent.

It has been pointed out that the critical point is the change in bottom
conditions in the murchisoni Zone where increase in grain size, appearance of lime, decrease in primary pyrite, and appearance of shelly fossils are approximately coincident. Shortly after this (in the riccartonensis Zone) is the first evidence of stronger current activity. Thus in the lower beds orientation of graptolite rhabdosomes is not common whereas in the riccartonensis Zone and above this feature occurs sufficiently of ten to allow the recognition of a current running in an E-W direction though the source is not indicated. The thin calcareous grits (described above p. 86) are also a probable result of increased activity of bottom currents.
Origin of the calcareous nodules: The calcareous nodules contain gfaptolites preserved in full relief in contrast to the immediately adjacent mudstone in which the rhabdosomes are flattened. It is clear from this that deposition of the lime must have occurred almost contemporaneously with deposition since only a small thickness of sediment would be required to flatten the delicate polyparies. The common presence of shell fracments within the nodules succests that precipitation of lime took place around them and not at random points upon the sea floor. The fact that the nodules invariably depress the bands below them yet at the same time have bands passinf through them proves that deposition of the lime took place after the deposition of the surface layers of mud but before any diacenetic compaction of the sediment. It also proves beyond all doubt that the nodules are not late secondary features. Similar nodules have been described by Whitaker (1962).
Banded Unit Facies
This name is used to describe generally fine grained rock (mud to silt grade) which in the field, and particularly in large exposures, have a characteristically banded apyearance and an obvious fine grain as indicated by the closely spaced cleavace. In some cases the rock is so cleaved as to approximate to the term "slate".

The facies evolves during the U.Silurian from the graptolitic mudstone by the expansion of the thin lamellae of mud or silt which separate the carbonaceous banding in the lower beds of the Ludlow Series. Every gradation can be seen between the two facies but the typical Banded Unit, which characterizes the leintwardinensis Zone, contains only very thin (often only $\frac{1}{4}$ " to $1^{\prime \prime}$ ) beds of eraptolitic mudstone set amid a muddy or silty mass of much creater thickness. In the higher beds the thin beds of Eraptolitic mudstone dissappear.

Apart from the graptolitic mudstone the Banded Units (from ters to hundreds of feet thick) consist of a medium dark grey mudstone (N4 with a bluish hue), thin calcareous nodule beds, thin beds of often calcareous ripple drift bedding, and occasional beds of lighter or darker coloured, more homoceneous mudstone than the mediun dark grey mudstone. The first mentioned is the predominant rock type but is only rarely more than a foot or two in thickness without several of the other rock types being present. It is clear from both the hand specimens and thin section that the medium dark grey mud is reworked by worms and faint tubes and contortions can of ten be seen It is possible that much of the graptolitic mudstone in this facies is destroyed by worms and text fig. $6 b 6$ is a section cut at right angles to the bedding plane showing some Eraptolitic mudstone in the process of being contorted and obliterated. It is also likely that some of the homogeneous mugdstones of lichter and darker hue represent a stage of complete destruction of the oricinal banding. This conception of cradual destruction of original carbonaceous banding by the activity of worms is in agreement with the work of Moore and Scruton ( 1957 ) who showed that all intermediate staces existed between completely undisturbed banding and complete homogeneity. The same process has been alluded to lower down the Wenlock Series (p. 96).

An interesting feature is that the Banded Unit medium dark grey mudstone has a free carbon percentace of 0.25 ( $v$. text fig. 6a) whilst the value of the associated graptolitic mudstone is $0.480 / 0$. On destruction of the carbonaceous banding there is, therefore, a probable loss of carbon though whether or not the worms themselves contribute carbon upon their death and decay is not known. This mudstone, in contrast to the graptolitic mudstone, has a rich fauna of lamellibranchs (Pterinea sp.) and trilobites (Odontopleura huchesi) with the former often crowded in their hundreds on the bedding planes. That these organisms: would also help to rework the sediments and to destroy any original features is clear.

Although typical of the Bannisdale Slates (particularly the Zone of M. leintwardinensis) it is important to realize that the facies first appears low down in the nilssoni-scanicus Zone (see test fig. 4c) and that thick units occur before the Bannisdale Slates. These lower units have rather thicker beds of graptolitic mudstones from which it is necessary to obtain graptolites to determine the approximate ace. The shelly fossils are of little help at
present since both the lamellibranchs and trilobites seem to be lone ranging. Odontopleura hughesi for example appears in one of the early, thick Banded Units and is still found apparently unchanged in the Bannisdale Slates. 8. The Greywacke Facies

Examination of text fig. 40 shows that the greywacke facies is dominant in the nilssoni-scanicus Zone but that it is not entirely replaced by the Banded Unit Facies until the leintwardinensis Zone is reached. Outside the area it recurs in higher strata but these beds have not been examined in any detail. Each sreywacke unit, usually bounded by graptolitic mudstone or Banded Units, is from about $50^{\prime}$ to $250^{\prime}$ thick with the thinner units usually lower in the succession. Individual beds vary from a few inches to ten feet in thickness but are usually of the order of $1 \frac{1}{2}-3 \frac{1}{2}$ feet and may be either graded or ungraded. Graded beds are usually detectable in the first instance by the cleavace which is closely spaced and inclined to the bedding at a low angle in the fine grained top of a bed and more widely spaced, and at a hich ancle, in the coarse grained lower part of the bed. Either graded or ungraded beds may have sole markings if they follow a fine mudstone but when uncraded bed follows ungraded bed sole marks are not developed.

A minor greywacke development is of a rather more thinly bedded facies which often tops a whole unit for ten or twenty feet. No wholly satisfactory explanation can be offered for this type but it does seem to show current bedding rather nore commonly than the thicker greywackes which only show current bedded tops occasionally. Sometimes, but not always, such a facies is followed by a graptolitic mudstone or a Banded Unit and in these cases at least may represent lower density turbidity currents heralding a temporary change in depositional environment. At no horizons have indicators of shaldow water, deposition been found and the writer acrees with the sugeestion by Norman ${ }^{\prime}$ that deposition took place well below the wave base level.

The modal analyses (test figs. 6e,f ) show that the facies falls within the usual concept of a greywacke whilst the slide (v. text fif. 6c) illustrates the typical texture of one of the coarser beds. The grain size never rises above "sandstone" grade and the term "grit" cannot be applied (except in the cases described above pp. 85-87, , whilst to the south of the Howgill Fells the grain size of the lower greywackes seems to be even less. A thorouch mineralogical study has not been undertaken.

## TEXT FIG. 6c1

Slide of base of thin calcareous grit from the sedswicki Zone of Spengill. Unpolarized light. Rounded grains may be contrasted with those of typical greywacke, TEXT FIG. 6c2 of Ludlow age (locality Bowderdale Beck, Upper Coniston Grits)
Both X 1+


## 2



The facies types recognized and the eeneral results given by palaeocurrent indicators agree with results obtained by other workers in the Lake District. Llewellyn* (1960) working in the Shap area observed a predominant NW sourcョ for the palaeocurrents whilst Norman* (1961) obtained both a NW and a NE sourca. The former worker does not seem to have obtained a NE current source and the present writer has detected currents from this direction only in one instance. It would seem likely then that throughout the Lake District outcrop a NW current source is the dominant one. In the case of such a current supplying sediment it might be expected that the beds thin from NW to SE . Norman observed this, and facies changes, in his own area and his succession prior to the Bannisdale Slates of almost 6000' (base not seen) is considerably thicker than the succession in the eastern part of the Howeill Fells (less than 3000'). If the Lake District outcrop represents a single basin of deposition of the Ludlow creywackes then one of the suggestions made by Norman that the basin might be a broad and relatively flat-bottomed trough seems to agree best with the . known distribution of currents. When more is known of the palaeocurrents of other parts of the Lake District and more detail available on the thickness of sediments in these regions then a more accurate picture will be obtained of the form of the basin. The rather more variable current directions in the lower part of the succession in the Howeill Fells, namely $S W$ and NE, prior to the establishment of a dominant NW current may simply reflect the relative instability as the basin became established.
Conclusions
la. It is considered that Marr's "blue beds" are basically of the same facies as the Ashcill. Shales mudstones but that iron carbonate has been precipitated more often than calcium carbonate. The bottom conditions were rather less tolerant of benthonic life, whilst still supporting it either in more limerich times or in a stunted form. The facies is replaced in the sedewicki Zone by the fine grained barren mudstone facies.
b. The fine grained barren mudstone facies typical of the U.Llandovery may be the lateral equivalent of a coarse freywacke facies and could be deposited by low density turbidity currents.
c. The red and erey mudstones represent a return to more oxidizing conditions and contain a small benthonic fauna. They are replaced in the lowest Wenlock beds by the establishment once again of anaerobic conditions.

* Ph. D. thesis, Cambridge University.
** Ph.D. thesis, Birmingham University.
d. The limestone facies are thought to fit clearly into the pattern of alternating reducing and oxidizing conditions and that the major basal limestones each represent a local acme of oxidizing conditions when the benthos thrived in force.
e. The Graptolitic Nudstone Facies shows a cradual chance during the Silurian to bottom conditions more amenable to bottom livine organisms. It is not succested, on the evidence available, that the increase in grain size, current activity, lime content etc. reflect a change to shallow water conditions. f. The Banded Unit Facies evolves directly from the Graptolitic Mudstone Facies by increase in the amount of extraneous silt and mud which "spreads" the carbonaceous banding. The increased erain size reflects increased activity of bottom currents which probably also "freshened" the conditions thus enabling benthos to move, survive, and themselves help in the destruction of much of the carbonaceous matter which found its way to the sea bed.
g. The Greywacke Facies represents periodic influx into the area of hich density turbidity currents. Although calcareous these beds are unfossiliferous and it does seem possible that any vierorous process of redeposition might comminute and dissolve the shells. The Greywacke Facies is replaced in the lower Bannisdale Slates by the Banded Unit Facies.

2. Basin of Deposition Durins the Silurian

There are few indications in this recion of the lateral limits of the basin of deposition. The Ashcill Shales Grit sugcests a land mass to the SE immediately prior to the onset of the Silurian but the System itself seems to have been marked by widespread development of the dark graptolitic shales. A local thickening of the dark shales in the L.Llandovery has been detedted ( $r$. 23) and it is in a similar position that an axis of non-deposition was located in the U.Llandovery (Wilson 1954). In the Wenlock Series there is a slight thickening of the sediments towards the south (at least in the lowest beds) and indications of an E-W current. The outstanding feature of the Llandovery and Wenlock Series is the remarkable constancy of grain size and nature of the mechanical detritus. At the beginning of the Ludlow Series a certain amount of movement is indicated by the local unconformity and slumpine off an axis in the region of Ecker Secker Beck (691,954 ). Hieher in the Ludlow it is probable that a land mass existed far to the NW approximately in the position indicated by Wills (1952).

# Distance between points $=1 / 6 \mathrm{~mm}$ <br> Distance between traverses $=1 \mathrm{~mm}$ <br> Number of traverses $=6 \frac{1}{2}$ of 25 mms <br> Number of grains counted $=1000$ <br> Magnification $=$ X 300 

## TEXT FIG. $6 e$

Slide no. 8; section at right angles to bedding plane; Cautley Crags; horizon, Upper Coniston Grits, nilssoni-scanicus Zone, immediately above first thick (260') Banded Unit.

TEXP FIG. 69
Slide no. 2Bo; section at right angles to bedding plane; Bowderdale Beck; horizon, Upper Coniston Grits.

TEXT FIG. 6e

| MINERAL | VARIETIES | NO OF GRAINS | \% of total MINERAL | $\begin{gathered} \text { F OF THE } \\ \text { ROCK } \end{gathered}$ | total no of GRAINS | \% OF THE ROCK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| QUARTZ | PLUTONIC | 469 |  | $46 \cdot 9$ | 469 | $46 \cdot 9$ |
|  | VOLCANIC |  |  |  |  |  |
|  | KETANORPHIC |  |  |  |  |  |
|  | VEIN |  |  |  |  |  |
| FELSPAR | ORTHOCLASE | 206 | $94 \cdot 4$ | 20.6 | 218 | $21 \cdot 8$ |
|  | MIGROCLINE |  |  |  |  |  |
|  | $\begin{array}{ll} \text { PLAG } & \text { ACID } \\ \text { BASIC } \end{array}$ | 12 | $5 \cdot 6$ | $1 \cdot 2$ |  |  |
|  |  |  |  |  |  |  |
| MICA | MUSCOVITE | 65 | $98 \cdot 5$ | $6 \cdot 5$ | 66 | $6 \cdot 6$ |
|  | BIOTITE | 1 | $1 \cdot 5$ | 0.1 |  |  |
| HEAVY <br> MINERALS | ZIRCONS AND OTHER HEAVIES | 3 | $37 \cdot 5$ | 0.3 | 8 | 0.8 |
|  | OPAQUES | 5 | $62 \cdot 5$ | 0.5 |  |  |
| ROCK <br> FRAGIENTS |  | 93 |  | $9 \cdot 3$ | 93 | $9 \cdot 3$ |
| MATRIX |  | 146 |  | 14.6 | 146 | 14.6 |
| OTHERS |  |  |  |  |  |  |
| TOTALS |  | 1000 |  | 100\% | 1000 | 100\% |


| MINERiL | VAIIETIES | NO OF GRAINS | $\%$ OF TOTAL MINERAL | $\begin{aligned} & \% \text { OF THE } \\ & \text { ROCK } \end{aligned}$ | total no of grains | $\begin{aligned} & \text { \% OF THE } \\ & \text { ROCK } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GUARTE | FLU'PONIC | 473 |  | $47 \cdot 3$ | 473 | $47 \cdot 3$ |
|  | VOLCANIC |  |  |  |  |  |
|  | YETAMORPHIC |  |  |  |  |  |
|  | VEIN |  |  |  |  |  |
| FELSPAR | Orpoclise | 165 | $94 \cdot 8$ | 16.5 | 174 | $17 \cdot 4$ |
|  | ORTHOCLASE |  |  |  |  |  |
|  | MIGROCLINE |  | 52 | 09 |  |  |
|  | $\begin{array}{ll} \text { PLAG } & \text { ACID } \\ & \text { BASIC } \end{array}$ | 9 |  |  |  |  |
|  |  |  |  |  |  |  |
| MICA | IUSCOVITE | 66 | 100 | 6.6 | 66 | 6.6 |
|  | BIOTITE |  |  |  |  |  |
| HEAVY <br> MINERALS | ZIRCONS AND |  |  |  | 21 | $2 \cdot 1$ |
|  | OTHER HEAVIES |  |  | $2 \cdot 1$ |  |  |
|  | OPAQUES | 21 | 100 |  |  |  |
| FOCF: <br> FRAGMLNTS |  | 15 |  | 1.5 | 15 | $1 \cdot 5$ |
|  |  |  |  |  |  | 25•1 |
|  |  | 251 |  | $25 \cdot 1$ | 251 |  |
| Mateix |  |  |  |  |  |  |
| OTHERS |  |  |  |  |  |  |
|  |  | 1000 |  | 100\% | 1000 | 100\% |

## SEDIMENTARY STRUCTURES

During the course of this work the writer has recorded data giving indications of current activity. A total of 691 readings have been taken of the more commonly accepted indicators such as flute and groove moulds. The nature and distribution of these is shown in fig.7a l. Other types of sedimentary structures (e.g. L - ridge moulds) have been observed in the Ludlow Series but these have been neither studied nor utilised.

The recording method used (pp. 406-18) is that suggested by Norman * (1960). It has been realized for a considerable time (e.g. H. Cloos 1938) that folding of the strata alters the original azimuth of a linear feature. If the induced fold has no plunge then correction can be carried out by rotation to the horizontal plane about the strike as an axis. The true bearing is then given by the formula $90-f+\varphi($ Wood and Smith (1958 p.169)). Here, $\theta$ $=$ angle between lineation and dip direction (measured in the bedding plane) and $\phi=$ strike in degrees east of north. In this method there are two theoretically possible positions but simple inspection in the field gives the correct value.

Some workers prefer to measure the azimuth of the lineation directly i.e. in a vertical plane containing the angle of plunge of the lineation as opposed to the angle of pitch in the bedding plane. (Phillips 1954 p .10 ). This is particularly difficult in the case of a steeply-dipping bed, or when examining the sole of a greywacke in an overhanging cornice. Some of the first recordings taken were done in this manner; but one can be converted to the other if neccessary either stereographically (e.g. Phillips $1954 \mathrm{pp} .10-11$ ) or geometrically:-

In fig. $7 a 2 \operatorname{Tan} x=a / k ; \quad \operatorname{Tan} y=b / k ; \quad \operatorname{Tan} x / \operatorname{Tan} y=a / b$ and $b / a=\cos z, \quad \cdot \operatorname{Tan} y / \operatorname{Tan} x=\cos z, \therefore \operatorname{Tan} x=\operatorname{Tan} y / \cos z$

$$
\begin{aligned}
& \therefore x=\operatorname{Tan}^{-1}(\operatorname{Tan} y / \cos z) \\
& \therefore x=\operatorname{Tan}^{-1}(\operatorname{Tan} y \cdot \operatorname{Sec} z)
\end{aligned}
$$

* Geol. Mag. v.97, pp.338-343.


# TEXT FIG。7al <br> Distribution of palaeocurrent indicators. 

## TEXT FIG. 7a2

Full explanation in text p. 104 et seq. (Alternative calculation involving $u$ is:-

$$
\begin{gathered}
\frac{\sin u}{\sin z}=\frac{h / c}{h / a}=\frac{a}{c}=\sin x \\
x=\sin ^{-1}\left(\frac{\sin u}{\sin z}\right)
\end{gathered}
$$


$\mathbf{x}=$ pitch of lineation in bedding plane
$z=a n g l e$ of dip
$u=$ angle of plunge of lineation
$y=$ angle between strike and lineation in the horizontal plane
$z$ and $y$ are known directly from field observation and $u$ is easily found by a simple alignment method (e.g. Billings 1954). It has been found that the stereographic method is quicker and quite accurate.

Norman arrives at a similar formula to that obtained by Wood and Smith but points out that such methods are only applicable to non-plunging folds. He then applies a correction factor, $\omega$, giving the formula $\beta+y-90 \pm \omega$ $\beta$ is the observed azimuth of the dip and $y$ the observed pitch of the linear feature, measured clockwise as seen from above. The value of $\omega$ is given by a chart which plots the degree of dip against the plunge of the fold, whilst the sign is tve when the worker looks down the plunge of an anticline with the lineation on the left hand limb.

Norman's method is based on four ascumptions:-
a) folds are geometrically perfect bodies
b) non-plunging folds attain a plunge by rotation about a horizontal axis which is at right angles to the fold axis
c) No appreciable ratation of fault blocks has taken place about vertical axes
d) No distortion within the bedding plane has occurred.

He suggests that the validity of these assumptions will depend upon individual cases and that the method, although derived for similar folding, holds equally well for concentric folds. The writer considers that assumption a) is probably basic to any method of correction used; and that in the Cautley district c) is generally valid. In the graptolitic mudstone facies crustal shortening is indicated by the distorted fossils and a compression up to 25$30 \%$ seems not improbable in some cases. The compression has not been related to any major tectonic stress field and both the stratigraphical and geographical distribution of such compressed strata is obscure. The only point emerging at the moment is that it does not seem to affect the relatively competent greywacke beds or, as a corollary, the sole markings on them. The com-
pression is confined, therefore, approximately to the Wenlock mudstones and "shales" of the Llandovery Series. doubt about assumptions d) or c) no readings have been taken.

In the case of the second assumption the position is rather more difficult. Clearly, in a region where prominent phases of later folding have occurred newly formed plunging folds need not have attained their form by rotation in the manner sugeested. (e.g. fig. 7b l\&2) The writer was earlier of the opinion that there were two distinct and prominent phases of folding in the area but is now inclined to the view that two sets of folds, whose axes are slightly oblique to each other, were formed simultaneously (fig. 7b. 3). Fold axes at a high angle to the general trend are uncommon and any such folds have a small amplitude (e.g. 706,984 )

Ramsay (1961) suggested methods of correction for plunge bases upon a distinction between concentric folding, and similar folding caused by shearing phenomena. Finn (1962) on the other hand discounts shear as a formative process during folding. In view of this controversy, at present in the process of being resolved, and the above discussion, it is thought that the method devised by Dr. Norman is best applicable to the Cautley area and that the results obtained support this contention.

The actual recordings and calculations are plotted in the appendix (PP. 406418) and rose diagrams with the results plotted in $10^{\circ}$ groupings form fig. 7 c . No two readings have been taken from the same bedding plane in one locality except in the following circumstances:-
a) When two possible directions of current flow occur e.g. when groove moulds, occurring with flute moulds, are slightly oblique to the axes of the latter. b) When the bedding plane is again exposed some distance away, as, for example, further along a crag outcrop.
It is often found that at one locality yielding, say, flute moulds, bed upon bed will have sole markings with an approximate parallelism. In these cases the measurements are grouped in five degree batches and either recorded in that way on the recording sheet or alternatively the average is taken and a single figure recorded on the sheet. At some stage in the calculations the average must be taken and it is now considered that the latter method is probably more accurate.

Diagram 1 (fig.7c) consists mainly of readings taken on the foreset beds of

## TEXT FIG. 7 bl \& 2

Sketch illustrating the formation of a small cross fold whose axis is oblique to that of the earlier major fold. Such a minor fold does not attain its plunge by rotation about a horizontal axis which is at right angles to the fold axis, and correction for any primary linear feature must first unfold the smaller fold and then the earlier fold.

TEXT FIG. 7b3
Sketch of the fold style in the Bram Rigg Seevy Rigg area.

a Angle of dip on limb of large non-plunging fold
b Angle of plunge of smaller cross fold

Text Fig. 7b3


$$
L=\frac{T E X T \text { FIG。 } 7 c}{} \quad \text { cad casts; each division }=2 \text { readings. }
$$

1. 33 readings taken on the Ashgill Shales Grit: 6 orientations of brachiopod hinges; 27 current bedding readings.
2. 74 readings mainly on orientation of graptolite rhabdosomes; from the Wenlock Seriss.
3. 34 readings on orientation of graptolite rhabdosomes; those from bed b (Gaisgill, 2nd Ludlow graptolite band) indicate a current source in the NE.
4. 63 readings ( 39 flute moulds, 24 groove moulds) from the first greywacke unit, Ludlow Series; a south westerly source is indicated.
5. 82 readings ( 13 flute mould, 52 groove mould, 16 load moulds and 1 current bedding); a south westerly current source is indicated; horizon is lower half of the second Ludlow greywacke unit.
6. 53 readings ( 11 flute mould, 40 groove mould, 2 load mould) from upper half of Second Ludlow greywacke unit, a north westerly current source is indicated.
7. 73 readings ( 13 flute moulds, 45 groove moulds, 15 load moulds) from Lower Coniston Grits above the first two greywacke units; a north westerly current source is indicated.
8. 120 readings ( 73 flute moulds, 47 groove moulds) from Upper Coniston Grits; current source lies in the north west.
9. Load moulds (18) and current bedding (56) readings from the Upper Coniston Grits. The latter agree with figure 8 in suggesting a north westerly source. .....
10. Load moulds (37) from the Bannisdale Slates; they show no variation from the load moulds of earlier Ludlow beds.

current bedded Ashgill Shales grit. This grit has been shown to thin to the north and west (PP. 9-12 and fig. 2b) and possibly represents the coarse infilling of a submarine channel with currents flowing from the south east quadrant. The degree of exposure and weathering does not permit many observations but it is considered that the total of 33 readings taken on foreset beds and orientation of brachiopod hinges fits in with a derivation of the sediments from the south east. A certain amount of variability is noted. The grit in Wards Intake (716,976) for example indicates the source of the current as beine $185^{\circ}$ east of north, (P.416). This variability is to be expected and there is even a slight suggestion of a "fanning out" in the area as a whole. It would, however, require many more readings to determine whether this is real or apparent.

With the exception of seven readings (see PP. 408,416 ) those taken on orientations of graptolite rhabdosomes are confined to the Wenlock and lower part of the Ludlow Series, and are plotted on diagrams $2 \& 3$ (fig.7c). It has been shown that compression of the rock can exaggerate the parallel alignment of the graptolites but the writer is quite certain that his observations taken in the Cautley area represent true current sorting of the fossils particularly in view of the fact that some readings were taken on bedding planes showing no signs of compression whatsoever.

The information recorded on diagram 2 can be broken down if the recording tables (P.407) are consulted. No graptolite orientation has been detected in the Wenlock Series prior to the onset of the M. riccartonensis Zone. The majority of the readings are taken from this and the lower half of the succeeding zone. In stage 4 (approximately equivalent to the C. Iundgreni zone of Watney and Welch 1911) only six readings on the orientation of crinoid arms have been possible. This is due firstly to the fact that it is almost impossible to split the rocks along the bedaing plane for more than an inch or two, and secondIy to the fact that the fossils are less common and only rarely occur in groups of more than two or three.

On diagram 2 a further possible bias may exist in that 37 . of the readings Were taken at one locality ( $30-33 \mathrm{w} 704,979$ ) where the type of weathering and exposure facilitated both detection of orientations and measurement of them. The beds at this locality do, however, comprise $36^{\prime}$ of strata and orientated graptolites were found not only to occur commonly throughout but to show a rem-
arkable parallelism.
The paucity of orientation readings in Stage 4 disallows any detection of changes in current direction as the end of Wenlock times are approached but the 2nd and 3rd graptolite bands of the Ludlow Series have yielded 34 readings. Thirteen readings in the 2nd band on Gaisgill (718,012) show a pronounced derivation from the N.E. This is the very antithesis of the current source indicated by flute moulds in the lst greywacke unit which immediately overlies the second graptolite band. (fig. 70 diagram 4). Twenty-one readings from the 3rd graptolite band show but little difference from diagram 2 and the source is not indicated. Further discussion on possible interpretations of this variability in the lowest beds of the Ludlow Series appears in Chapter 5 .

Eighty two readings have been obtained from the lower half of the 2nd greywacke unit and these agree well with those from the Ist showing a derivation of currents from the S.W. (diagram 5, fig.7c). The upper part of the unit, sometimes separated from the lower by a thin bed of graptolitic mudstone, shows a distinct change which is then maintained throughout the rest of the Ludlow Serier (diagr. 6, fig.7c). Five flute moulds readings indicate a current source in the west and may represent a gradual swing of the current direction from S.W. through W. to N.W.

The situation obtaining in the upper part of the 2 nd greywacke unit is maintained in the greywackes lying between this and the first major Banded Unit (the 260' unit). Seventy three readings have been taken; thirteen flute moulde again indicate a current source in the N.W.

Diagram 8 (fig.7c) shows flute and groove moulds only; load moulds and foreset bed readings from the same horizon are recorded on diagram 9. A total of 194 readings have been taken on beds between the 260. Banded Unit and the first beds of provable'M. leintwardinensis Zone age. Thirty six of the 47 groove moulds shown on diagram 8 are recorded immediately above the $260^{\circ}$ Banded Unit on Dalegill (706,024) and perhaps show more relation to the beds below (diagram 7 , fig. 7 c ). The current bedding foreset bed readings agree with those obtained from flute moulds and point to a north westerly current source. Load moulds are oblique to this direction and lie approximately east-west.

The Mo leintwardinensis Zone following is composed almost wholly of the Banded Unit facies and no flute or groove moulds have been observed. Load mould occur rather uncommonly and when plotted (diagram 10) show little change from
those of the previous division, being aligned very prominently east-west.
It is not the writer's intention here to describe the sedimentary structures in detail but mention must be made of the main types utilized in this survey. Groove and flute moulds occasionally occur together particularly in the lower units of the Ludlow Series. The most common combination of the two takes the form of numerous, small, V-shaped flutes in association with a much smaller number of grooves. The latter may be several feet long and slightly oblique to the axes of the flutes. A second fairly common occurrence is when a sole is poor in number of moulds but has some small groove moulds and rather ill-defined, sparse flutes. Groove moulds have not been found associated with the larger type of flutes described below.

The fan-shaped, bulbous and V-shaped flute moulds described by Norman (19 $\left.6 l_{1}^{7}-91\right)$ have all been found, and in addition a much larger and less-sharply defined type. These are shown on fig.7e 1 where they can be contrasted with very large fan-shaped flutes (fig.7e 2). The current source is still quite clear and the upstream end of the flute is generally bulbous and deep (up to 4') with a vortex at the bottom. end where it may be up to two feet wide. Thus far it would merely be a very large bulbous flute but very commonly a secondary, deep channel occurs almost at right angles to the main line of current movement. This is thought to represent scouring by a prominent vortex and it is considered that all parts of the flute were formed simultaneously. The fluted surface of the underlying finer grained mudstone must have been extremely irresular and it is not surprising that secondary vortices occur between the main flutes (see fig. 7 e 1 ).

Current bedding is only common at certain horizons. Very occasionally the top of a greywacke bed may show current bedded mudstone for a thickness of some inches but more commonly it is restricted to the top twenty feet or so of a whole Greywacke Unit, At these levels the current bedding is confined to beds from a few inches in thickness up to about 18 " i.e. rather more finely bedded than the greywacke beds as a whole which are roughly 2'-3' thick. In this position also they often precede the graptolitic mudstone and immediately below the junction the rock becomes more thinly bedded. This is a generalization and it is possible to find such a current bedded unit in the middle of a Greywacke Unit with no graptolitic mudstone present.

The Banded Units themselves also show current bedding on a very small


TEXT FIG. 7e2

TEXT FIG. 7el

scale. Most of the beds showing this are lenticular and may be as thin as half an inch. No readings have been taken on this type of structure since it appears to be merely the infilling of shallow hollows and would probably give no definite indication of the keneral current source.

## Conclusions

1. A changing pattern of current directions is discernible throughout the Silurian strata, although in some of the lower divisions (Browgill and Wenlock Stages $1 \& 4$ ) it was not possible to amass a number of readings sufficient to make a determination of current direction. Even if work were concentrated entirely on this aspect of sedimentary structures it is doubtful whether sufficient data would be forthcoming to enable current directions to be determined in the case of the Browgill Beds and Wenlock Stage 1.
2. The foreset beds of the current bedded Ashgill Shales grit agree with other evidence which suggests a derivation from the S.E. quadrant.
3. During Wenlock Stages 2 and 3 and possibly 4 the current direction was approximately W.N.W. - E.S.E.
4. Clear evidence in the case of the first, and the lower part of the 2nd, Greywacke Unit shows the current source to lie in the S.W., whilst during the deposition of the 2nd graptolite band the current came from the N.E.
5. Above the lower part of the 2nd Greywacke Unit the current source is constantly from the N.W. the only perceptible change being a slight northerly swing higher in the succession.
6. The current directions agree in some respects with those obtained by Norman (1961) in the Blawith Area near Coniston. At Cautley however a dominant N. E. source has not been detected anywhere in the succession above the 2nd graptolite band. In the Blawith Area such a source supplies sediment at the same time as a dominant N.W. current. The possible reconcilfiation of this anomaly is discussed in Chapter 6 ( $P$ 。102) .
7. It is considered difficult to place any interpretation on the load mould readings. During much of the Silurian they are aligned approximately east west but in the upper part of the 2nd Greywacke Unit, and between these beds and the 260' Banded Unit, they lie in a N.E. -S.W. direction.
8. Since this is in the nature of a preliminary study it is pertinent to suggest lines of approach for further work. Firstly, during the writer's ex-
amination of the western portion of the Howgill Fells it became clear that the sediments were much thicker and the exposures of the greywacke facies rather better. (e.g. Carling Gill 645,992 ). It is suggested that a study of the sedimentary structures there would provide more fruitful results than in the easter Howgill Fells where exposures are generally poorer. Secondly a mineralogical study of the type carried out by Norman in the Blawith Area and at present being done by Mr. R. Furness in the Barbon area would perhaps help to explain some of the outstanding problems, particularly those connected with provenance and depositional environments. Thirdly the Howgill Fells have, in the Ludlow Series, many other less well known types of sedimentary structures (e.g. those of Craig and Walton 1962) which would benefit from specialized study.

Further conclusions to be drawn from the results of this surtey are discussed in Chapter 6 where facies types and conditions of deposition as a whole are dealt with.

## INTRODUCTION

## Classification of the Graptolites

At the present time there is considerable controversy over the classification of craptolites, which is not restricted to the definition of genera and subgenera alone, but affects all taxa. Obut (1957), for example, introduces new suborders, families, and subfamilies following the Treatise classification by Bulman (1955) which was deliberately intended to be simple in nature. Because of the disagreement amongst the leading workers, in dealing with supraEeneric units the writer has decided to follow the classification of major taxa adopted in the Treatise. This is summarized below:-

> Class Graptolithina Bronn, 1846
> Order Graptoloidea Lapworth, 1875
> Family Diplofraptidae Lapworth, 1873
> Subfamily Climacograptinae Frech, 1897
> Subfamily Diplograptinae Lapworth, 1873
> Subfamily Petalograptinae Bulman, 1955
> Family Retiolitidae Lapworth, 1873
> $\quad$ Subfamily Retiolitinae Lapworth, 1873
> Subfamily Plectograptinae Boucek \& Munch, 1952
> Family Dimorphograptidae Elles \& Wood, 1908
> Family Monograptidae Lapworth, 1873
> Subfamily Monograptinae Lapworth, 1873 Subfamily Cyrtograptinae Boucek, 1933

The erection of genera and subgenera within the subfamilies listed above is equally controversial. Pribyl (1947) raised a new subgenus Paraclimacograptus within the genus Climacograptus to accommodate forms such as C.innotatus Nicholson, and in 1948 he split the genus still further by defining the subgenus Pseudoclimacograptus in which he included C.scharenberci Lapworth, C.huch esi, (Nicholson), C.extremus H.Lapworth, etc. These two subgenera are considered synonymous with Climacograptus by Bulman (1955). Both Pribyl (1947,1948) and Bulman (op. cit.), however, recognize only one Eenus in the subfamily Climacograntirae. Obut (1949) on the other hand grouped his genus Hedrograptus
with Climacograptus and Diplograptus in the family Diplograptidae, and then later (Obut 1957 p.29) placed it in the subfamily Climacograptinae. Subsequent workers do not seem to have recognized the genus Hedrograptus, and it receives no mention in the Treatise.

Orthograptus Lapworth, 1873 has received similar attention. Thus Hundt (1942) recognized Cystograptus as including those forms having vesicular bodies of various types as part of the rhabdosome. Pribyl (1949) raised the genus Rectograptus with 0.truncatus Lapworth as its type, for those species having straight, tubular thecae unadorned by spines. Bulman (op. cit.) regarded both these genera as synonymous with Orthocrantus.

The subgenera Bulmanograptus and Metadimorphograntus were named by Pribyl (1948) to include, respectively, forms such as D.confertus Nicholson and those with climacograptid thecae. The latter is synonymous with Rhaphidocraptus Eulman, 1936 and the former with Dimorohograptus Lapworth (Bulnan op. cit. p. v90).

In view of the difficulty of ten experienced in placing some species in the genera Climacograptus Hall 1865, Amplexograptus Elles and Wood, 1907, Lasiograntus Lapworth, 1873, Glyptograptus Lapworth 1873, etc. it is perhaps debateable whether further splitting of these genera should take place at present. Thus Bulman (1955 p. V 85) writes of Climacograptus Hall "Distinction from Amplexocraptus and Lasiograptus not always easy, especially if apertural excavations are relatively wide or thecae less angularly siemoidal or bear mesial spines." Similarly Packham (1962) found it difficult to decide whether to place some species in Climacograptus Hall or Glyptograptus Lapworth and eventually adopted an arbitrary rule of convenience which is also used in this work.

There are, therefore, two points of view. One is that further splitting of genera and grouping of species into subgenera based on similarities of morphology will help to unravel the evolutionary relationships. The other view is that this approach will not neccessarily improve the situation and that to refrain from subdivision at the present will mean, ultimately, a lesser amount of revision of earlier works and reduce the possibility of almost wholesale transfer and retransfer of numbers of species from one group to another. This latter view is held by the present writer and the species described here under the fanilies Diplograptidae, Retiolitidae and Dimorphograntidae are included in the genera defined by Bulman (1955 pp. V84-91).

## The Family Monograptidae

It is in the consideration of the family Monograptidae Lapworth that the greatest difference of opinion has arisen. Nost Continental, Russian, and Chinese workers favour the recognition of numerous genera and subgenera whilst workers in Britain and the United States continue to use the simpler classification. Urbanek (1958) has summarized the main steps in the erection of these genera and subgenera up to the year 1958. The work of Urbanek (1954, 1958) has shown that if the morphological characters are worked out in detail for suitably preserved material then the separation of new genera from Monograntus may be justified. Thus his eenera Cucullocraptus and Lobograptus are well defined. It has been pointed out, however, (Bulman 1955 p. V69) with eegard to similarly careful and accurate work by Eisenack (1951) that ". . the application of such improved classification may remain impracticable simply because it cannot be applied to normal imperfectly preserved specimens in shale". The erection of other genera such as Pernerorraptus Pribyl (1941) and Carnocraptus Obut (1949) merely upon general form is less sound. The lack of knowledje for many years in the case of the genus Demirastrites Eisel (1912) has been amply demonstrated by Sudbury (1958), whilst the complications involved in the definition of Spirocraptus Gurich (1908) were covered by Mu (1955) in an attempt to solve the situation. This was only partially successful since it transpires that Oktavites Levina (1928) has priority over Obutograptus Mu (1955). In this instance two new names (Tyrsograptus Obut and Obutograntus Mu) were incorrectly introduced into the nomenclature which added to the confusion. Thus Romariz, as late as 1962, includes Monograptus spiralis Geinitz ( the type species of Oktavites alis (Ceinitz). The type species of Spirocraotus is M.turriculatus (Barrande) (subsequently designated by Bulman (1929)) - a form whose thecal characters are still not known in any detail ( v . Urbanek 1958 p .11 ).

From the brief discussion above it can be seen that if Monograptus Ceinitz is to be split up there are, broadly, two ways of achieving this end. Firstly species of apparently similar general form may be grouped together and described as genera or subgenera (e.. . Campograptus Obut). The disadvantage of this procedure is that as more information on morphological details is made available the definition of such groups requires constant revision and the species within each group needs to be perpetually reshuffled. It is inevitable that
the literature becomes excessively complicated. The alternative process is that which has been followed, more or less, by Urbanek and involves splitting off from Monograptus only those groups in which the detailed morphology and perhaps evolutionary relationships are known. One disadvantage of this procedure is that the details may be so delicate as to be unrecognisable in most material (see above) but it is at the same tine technically and scientifically sound. : Urbanek (1958 pp.11-13) classifies the family Monograptidae Lapworth as follows:-

> Subfamily Monograptinae Lapworth, 1873 genus Monograptus (Monograptus) Geinitz, 1852 genus Monograptus (Streptograptus) Yin, 1937
> Subfamily Saetograptinae Urbanek, 1958 genus Colonograptus Pribyl, 1942a genus Saetograptus Pribyl, 1942a
> Subfamily Cucullograptinae Urbanek, 1958
> genus Lobograptus Urbanek, 1958,
> genus Cucullograptus Urbanek, 1954
> Subfamily Pristiograptinae Gurich, 1908
> genus Pristiograptus Jaekel, 1889
> genus Monoclimacis Frech, 1897
> Subfarily Pernerograptinae Pribyl, 1946
> genus Pernerograptus Pribyl, 1941
> Subfamily Demirastritinae Pribyl, 1946
> Genus Demirastrites Eisel, 1912
> Subfamily Rastritinae Pribyl, $1946:$
> genus Rastrites Barrande, 1850

All except the last three subfamilies were represented in the material studied by Urbanek and each genus (except the last three) was carefully defined on detailed morphological characters. The subfamilies group together forms considered to be phyl/ogenetically related. Urbanek is unable, however to place in this classification such groups as Spirograptus, Monocrantus (G]obosograptus), and Monograptus (Mediograptus). In the Cautley material it has not yet been possible to recognise the details necessary for the different. iation of Colonocraptus, Saetograptus, Lobograptus and Cucullocrantus and the
writer finds that the cenera Pernerograptus and Demirastrites appear to serve no useful purpose.

In Urbanek's classification, however, the genera Pristiograptus, Monoclimacis and Rastrites can be recognised both on general form and detailed morphology, but for the reasons stated above ( p .113 ) they are not described under his respective subfamilies and for taxa above generic rank the Treatise classification is adopted. The classification used is summarized below:-

Family Monograptidae Lapworth, 1873
Subfamily Monograptinae Lapworth, 1873 genus Pristiograptus Jaekel, 1889; (Groups A-D) genus Monoclimacis Frech, 1897
genus Monograptus Geinitz, 1852; (Groups A-J)
genus Rastrites Barrande, 1850
Subfamily Cyrtograptinae Boucek, 1933
genus Cyrtograptus Carruthers, 1867
genus Barrandeograptus Bouček, 1933.

## Incertae Sedis.

Discussion

1. The Genus Pristiograptus

In the author's opinion the morphology of Pristiograptus is sufficiently well defined to justify its erection as a full genus within the subfamily Monograptinae. As in the case of Nonoclimacis Frech (1897) its early date of recofnition supports this contention and both have been accepted perhaps more widely than any other subdivisions of Monograptus except Rastrites. Ellea and Wood in their Monograph, althoush fully aware of Jaekel's work, did not incorporate the genus in their classification although they did include Barrande's genus Rastrites as a subgenus of Monograntus. In his original definition Jaekel considered certain species with hooked thecae (e.g. M.colonus) to belong to Pristiograptus as well as some with spinose thecae (M.testis). These are now excluded by most modern workers and Jaekel's definition is amended accordingly. In its original conception Pristiograntus was approximately equivalent to Group I of Elles and Wood, and in the present writer's concept is equivalent to the above authoress' Group 1 A .

Pribyl (e.g. 1955) includes under Pristiograptus such forms as M.arsutus Lapworth and M.atavus Jones and gives them the title Pristiograptus (Subgen?) in spite of the fact that in 1954 he draws attention to the great differences between the two groups. Thus he writes (op. cit. p.118) "... in the shape of the thecae, which in the species of the type of P.arcutus, are of Dicellograptid type, (introverted or introtorted), whereas in the species of the type of P.dubius they are entirely straight." A further major point of difference is the presence of sigmoidal curvature of the thecal tube in monograptids of the argutus type. Species closely related to M.argutus cannot, therefore, be included in Pristiograntus.

Some species of Pristiograptus (e.g. P.nudus, P.bohemicus) show a slight expansion of the free ventral margin which, if it breaks outwards upon flattening, gives the appearance of a slight excavation of the thecal marein. Such species are almost the only ones which might be confused with Monoclimacis Frech. Urbanek (1958) considers the two genera to be closely related and includes them both in the subfamily Pristiograptinae Gurich (1908).

Four groups are recognised within Pristiograptus and these are defined in the systematic descriptions below.
2. The Genus Monoclimacis

Like Pristiograptus this genus is made up of many species and its biocharacters are considered to be sufficiently well defined to justify its separation from Monograptus as a distinct genus. Monoclimacis is equivalent to to Group 3 of Elles and Wood
3. Genus Monograptus Group A

Although the characters of the apertural region are little known at present, when taken in conjunction with the flowing siEmoidal curvature of the thecal tube and the slender nature of the rhabdosome they are sufficient to distinguish the Group from any other described genera, or subgenera. The introversion of the apertural margin seems to reach a maximum in M.argutus (v. pl.26,fig.7) but in other forms usually grouped here (e.g. M.atavus) this may be completely absent in the distal thecae. When such forms are flattened they may assume a general pristiograptid appearance particularly if the degree of sigmoidal curvature is slight. Monocraptus Group A is the only monograptid group in which introversion of the apertural margin takes place. The reverse is far more common (e.g. M. priodon).
4. Genus Monograptus Group B

This scroup is equivalent to Group 1B1 of Elles and Wood and was described as a new genus, Pernerograptus, by Pribyl (1941).
5. Genus Monograptus Group C

These forms were grouped as Pristiograptus (Colonorraptus) by Pribyl (1942) Urbanek (1958) considers that Colonograptus is not only a distinct genus but that it should also be separated from the pristiograptids. He shows that the proximal thecae are relatively simple tubes with paired, lateral, ear-like processes. In the Cautley specimens such details cannot be ascertained and the proximal thecae usually appear to be slightly hooked.

This is a case where the erection of the name Colonograptus could profitably have been delayed until the details of the thecal apertures had been solved. When this was finally acheived it was realized that the forms bre little relationship to the pristiograptids but were more closely related to monograptids of the priodon type. The literature is now irretrievably burdened with numerous references to the supposed affinities of M.colonus with the pristiograptids. Examples are:-

Monograptus. (Fristiograptus) colonus Obut (1949)
Pristiograptus (Colonograptus) colonus Munch (1952)
Monograptus (Pristiograptus) colonus Bodilevsky (1953)
(The confusion and diversity of opinion which invariably follows the immature splitting of groups (cenera or subgenera) from Monocrantus can be appreciated even from the three examples quoted in this case. A similar picture can be obtained by a study of the synonomies of many of the species described below) 6. Genus Monocraptus Group D

The species grouped here have simple thecal tubes adorned with spines. Many of the remarks under Group $C$ above also apply to this group. 7. Genus Monograptus Group E

Species in this group are those having hooked thecae throughout the rhabdosome and are referred by some authors to lionograptus (wonograptus). The type species of Nonograptus Ceinitz, (Lomatoceras priodon Bronn), is contained here. Most of the included species have thecae in which the dorsal marcin rapidly outgrows the ventral margin to produce a book of the priodon type whilst in a few species both margins continue to grow at more or less the same rate
but the resultant tube is also hooked. The recurved portion in these latter cases may be either adpressed to the earlier part of the thecal tube as in Mi.knockensis or completely free as in M. cemmatus. Both these groups are dealt with by Pribyl and Boucek (1951). M. cemmatus is described as Monograntus (Subgen?) gemmatus, whilst M.knockensis is regarded as synonymous with Morograptus (Globososraptus) singularis singularis Tornquist (1892)...The last species, however, seems to be ruch more flexuously curved than M.knockensis though the distal thecae at least are similar.

The Cautley specimens of M.barrandei show that the thecal hook is similar to that of M. eemmatus and consists of a completely free hook bent in such a manner that the apertures face the proximal end of the polypary. They are, therefore, clearly different from forms included under Monorraptus (Globosograptus) as defined by Boucek and Pribyl (1951).: These authors describe barrandei as Monograptus (?Globosograptus) barrandei.
8. Genus Monograptus Group F

This group includes those species with spirally coiled rhabdosomes and hooked, spinose thecae such as M.turriculatus and M.discus. 9. Genus Monocraptus Group G

Monograptus minimus cautleyensis is the only form described here. The group is roughly equivalent to Monograntus (Mediocraptus) Boucek and Pribyl in which the species are small and slender with stiff dorsal curvature and small thecal lobes closely adpressed to the rhablosome. The details of the apertural lobes are not known and even the Cautley specimens, which are preserved in relief, shed no lisht on the matter. Boucek and Pribyl (op. cit.) include M.remotus in their subgenus Mediocraptus but these forms appear to have hooked rather than lobed thecae.
10. Genus Monograptus Group H

This group is approximately equivalent to M. (Globosocraptus) Boucek and Pribyl (1951) and is characterised by species in which the lobed portion of thecae is well removed from the axis of the rhabdosome and the prothecae are of axially elongated triangular shape. M.crispus a typical example, is the species described here ( $p .286$ ). The details of the apertural lobes are not fully known and it is debateable whether M. (Globosograptus) should be distinguished from Streptograptus Yin. Indeed Mu (1963) figures Streptograptus nanshanensis Lee which falls within the definition of M. (Globosograptus) as
envisaged by Boucek and Pribyl. Mu (op. cit. p.358) recognizes two groups within Streptocrantus: " in one group the thecae are rolled for a greater part in contact with the "main axis" of the stipe (nodifer group) whereas in the other group only the apertural region is rolled (nanshanensis group): 11. Genus Monograptus Group I

The species included here are equivalent to those usually described under Monograptus (Streptograptus) Yin and included by Elles and Wood in their Group $\underline{V}(a)$. The thecae are lobed and the lobe closely adpressed to the rhabdosome which is usually small, relatively slender and with variable curvature. 12. Genus Monograptus Group J

Sudbury (1958) dealt in considerable detail with the species described here and the sub-grouping used by her is also utilized here. The species have been variously described under Demirastrites Eisel (1912), Spirograptus Gurich (1908), Obutograptus Mu (1955), Oltavites Levina (1928) and Campograptus Obut (1949). These are not recognized by Sudbury (op. cit.) whilst Campocraptus and Oktavites do not receive mention by Bulman (1955). Urbanek (1958 p.6) regards Campograntus as a very doubtful genus.

## Distortion of Grantolite Rhabdosomes

That tectonic compression of the rock distorts the contained graptolite rhabdosomes has been known for many years. Tornquist (1907), however, was one of the first to indicate the direction of compression on his figures, which he did by the use of arrows. More recently Jaeger (1959) drew a line on each figure parallel to the tectonic "b" direction and a similar procedure has been adopted by the present writer. Sudbury (1958) dealt in some detail with the effects of primary and secondary compression. . The former is a diacenetic flattening of the rhabdosome which takes place soon after deposition, whilst the latter is caused by crustal shortening in the tectonic "a" direction during orogenesis. (It is possible that the degree of crustal shortening might be more accurately measurable by means of distorted graptolites rather than by brachiopods, trilobites etc. whose gross morphology is more variable). Primary compression is referred to throughout the following descriptions by the word "flattening", and secondary compression simply by the word "compression".

As in the case of the Rheidol Gorge specimens (Sudbury op. cit. p.493) secondary compression can always be detected by the presence on the bedding plane of a lineation which is presumed to lie in the "b" tectonic direction. The lineation takes the form of minute ridges which are clearly small scale folds. Cleavage is developed in the rock and the cleavage planes are often seen to be approximately parallel to the lineation and subnormal to the bedding plane.

In the case of specimens which have previously suffered prinary compression and are preserved as little more than films on the rock several general rules may be applied to deduce the effect of any secondary compression. On the other hand specimens preserved in full relief in pyrites seem to have. more resistance to secondary compression and whilst the factors listed below may be expected to operate it is desirable to treat each case on its own merits.
A. Ineation at right angles to the length of a straight, flattened polypary.

The lineation on the bedding plane might be interpreted as being either parallel or at right angles to the direction of compression depending upon the structural view held by the particular worker. Therefore, whilst the phrase "direction of compression" is admittedly ambiguous the word "compression" is used in the systematic descriptions below in one sense only. A graptolite is described as having suffered "compression at right angles to the leneth of the polypary" only when the lineation upon the bedding plane is also at right angles to the length of the polypary. Similarly "compression parallel to the length of the polypary" is used when the lineation is parallel to the length of the polypary.

1) The width of the rhabdosome, already increased to some extent by primary compression, is further increased.
2) The thecae become more closely packed i.e. the thecal count is increased.
3) The angle of inclination of the thecal tubes seems to be increased.
4) Any slicht flexuous curves are accentuated.
5) Thecal hooks tend to be flattened, whilst everted apertural margins are rotated to appear sub-horizontal.

## B. Lineation parallel to the lensth of a straisht, flattened polypary. <br> In these cases the opposite of 1) to 5) above takes place. As a rule

 the most noticeable effect is the decrease in width of the rhabdosome and theflattening out of any curves. Further examination shows a decrease in thecal count and an accentuation of everted and introverted apertural margins C. Lineation oblique to the lencth of a straicht, flattened polypary.

This seems to have little effect upon the width or thecal spacing but it does alter the shape of the thecae. Thus in the case of a biserial craptolite having horizontal apertural margins one series will become introverted and the other everted (v. pl.18,fic.ll).

Good examples of $A$ and $B$ are illustrated on pl. 20 (figs.l,2) and pl.19 (figs.7,8,9). On pl.19, fig. 8 is a relatively undistorted form of intermediate proportions. Nany other examples can be seen throughout plates 1-38.

The effects of primary compression are not discussed here since they have been dealt with by other workers notably by Sudbury (1958) and Packham (1962 p.499). One of the most important considerations to bear in mind is whether the ventral margin of the thecal tube breaks outwards or inwards upon flattening.
Morpholopical terms used
Standard descriptive terms are used throughout the systematic descriptions, and at all times the writer has tried to take into account the effects of distortion, and to record in each description the state of preservation of the material being described. When such a descriptive term as "width" is employed it is stated in some part of the description whether it applies to specimens in relief or otherwise. The term "width" also requires further explanation. It is used to describe the full extent of the rhabdosome from the dorsal margin to the most ventral extremity of hook or spine (except where it is stated to the contrary) and may be measured at any point along the polypary. The word "breadth" is occasionally used and may be regarded as synonymous with "width".

The methot of thecal count adopted is that utilized by Packham (1962).

## SYSTEMATIC DESCRTPTTONS

> Class GRAPTOLITHINA Bronn, 1846 Order GRAPTOLOIDEA Lapworth, 1875 Family DIPLOGRAPTIDAE Lapworth, 1873 Subfamily CLIMACOGRAPTINAE Frech, 1897 (nom. transl. Pribyl, 1948 (ex Climacograptidi Frech 1897)) genus CLIMACOGRAPTUS Hall 1865

Type Species: Graptolithus bicornis Hall, 1848
Generic diagnosis: Thecae with angular sigmoidal curvature, part of free ventral wall often parallel to axis of rhabdosome, occasionally spinose. Apertures situated in short, deep excavations, and apertural margins usually horizontal.

The " rule of convenience for present purposes." adopted by Packham (1962) is also used here and forms are retained in Climacograptus if the infragenicular wall immediately below the geniculum is inclined to the length of the rhabdosome at $45^{\circ}$ or more.

Climacocrantus normalis (Lapworth)
Plate l, fig. 3 ; Plate 15, fig.9; Plate l6, fig. $10 ;$ Plate 19, figs.l,2

1877 Climacograptus scalaris var. normalis Lapworth p.138,P1.6,fie. 31.

| 1906 | " | " | (Hisinger) var. normalis, Lapworth. Elles and |
| :---: | :---: | :---: | :---: |
|  |  |  | Wood p.186, Text fig. 119a-d,P1.26,figs. 2a-g. |
| 1924 | 11 | " | normalis Elles \& Wood. Eundt Pl.l,figs.28-31. |
| 1929 | " | " | var. normalis Lapw. Davies fig. 29 (not described |
| 1945 | 11 | " | " " " Waterlot Pl.4,fig. 92. |

Material: Over 100 specimens, mostly flattened but some in low relief. Horizon and Localities: Zone of M. atavus - M. triangulatus; Spengill (Sl-5 to $\mathrm{S} 20-24, \mathrm{~S} 24-28, \mathrm{~S} 28-32$, $3 \mathrm{~S} 36-39,7$ ); Birks Beck (1Bi,2Bi); Wards Intake (15Wi,llWi); Watley Gill (1Wa, 2Wa, 3Wa, 4Wa).
Diagnosis: Rhabdosome long, parallel-sided for much of its length, reaching a width (flattened) of 1.5 mms fairly quickly, thecae numbering $11-7$ in 10 mms, excavations deep.
Descrintion: C. normalis is the abundant climacograptid in the $L$. Llandovery. It reaches a length of several centimetres and a width of 1.5 mms . The virgella may reach 10 mms long in some specimens.

At the proximal end the thecae usually number 11 in 10 mms , but this value falls rapidly to $10-9$ in 10 mms a density which is maintained throughout the first few centimetres. Distal fragments commonly show $8-7$ in 10 mms . A sicula has not been seen.

Thecal excavations are deep, typically climacograptid and may occupy almost one third of the width of the polypary.
Remarks: This species becomes gradually less common upwards and is rare in the lower part of the M. trianculatus Zone. No changes have been noted throughout its vertical range.
Material seen: Specimens in H.M.Geological Survey Museum (e.g. Zi 7144) and in the Sedgwick Museum, Cambridge.

## Climacocraptus miserabilis Elles and Wood

Plate l, figs.l,4,5; Plate 12, fig.9; Plate 14, fig. 8; Plate 15, fig.7; Plate 17, fig.l,2

1906
Climacograptus scalaris (Hisinger) var. miserabilis, var. nov. Elles \& Wood pp.186-7,Text fig.120a-c,P1.26,fig. 3a-h.
?1924 Climacograptus miserabilis Elles \& Wood. Hundt Pl.1,figs.20-21,26. 1929 Climacograptus scalaris var. miserabilis Elles \& Wood. Davies pp.7-8 (pars) fig. 27.
1945 11 11

11
11
E. \& W. Waterlot Pl.4,fig. 91.

Material: Over 100 specimens, all flattened.
Horizon and Localities: Zone of M. atavus - P. cyohus; Spengill (Sl-5 to Sl720); Watley Gill (lWa,2Wa,3Wa,4Wa); Birks Beck (1Bi,2Bi); Pickering Gill ( P ) ; Wards Intake (15Wi, 14Wi).
Diacnosis: Rhabdosome sometimes approaching 2 cms in length, always less than lmm width. Thecae indistinct as regards degree of sigmoidal curvature, excavations usually small but not long, thecae numbering l0-11 in 10 mms .
Description: This species differs little from the original material described by Elles and Wood (1906). Its most characteristic features are the short, small excavations and short, narrow rhabdosome... Occasional specimens from the lower beds have the virgella and nema preserved, but in the higher beds (e.g. P. cyphus Zone) most specimens have a long virgella and prominant nema (seefig.l, Pl.17) although the species is less common.

The sicula has been seen in one specimen where it is "pressed through" and it seems to be short ( 0.65 mm ) and relatively broad. Its apex does not reach the lst thecal pair.

In one specimen (fig. 4 P1.l) the excavations are rather less than one third the width of the polypary but eenerally they are about one quarter or less.

The rhabdosome width varies from $0.7-0.9 \mathrm{~mm}$.
Remarks: The Cautley specimens show more variability in rhabdosome width than is indicated in Elles and Woods original description and several specimens (e.g. Pl.l,fig.l) appear to be rather more slender. The vertical range is also greater although specimens are rare in the P. cyphus Zone, and may perhaps be regarded as representatives of a late mutation which has a prominant virgella and nema.
Material seen: Specimens in the Sedgwick Museum, Cambridge and in H.M.Geological Survey Museum (e.g. Flett Collection No. 21573 from Anglesey).

Climacograptus ex. Er. scalarjs (Hisinger)
Plate l,fig. $6 ;$ Plate $16, f i g .8$

1837 Prionotus scalaris Hisinger p.113, P1.35,fi\&.4. text fig.118a-b,PI.36,figs.la-c.

Material: Several fracmentary specimens in full relief from Zones of M. conVolutus (Birks Beck, 5Bi) and Mo sedswicki (Spengill) and M. turriculatus (Spengill).
Descrintion: Unfortunately no good specimens of this form have been obtained, but those fragments which do show a few well preserved thecae suggest affinities with C. scalaris scalaris. The thecae are strongly sigmoidal and have a sharp almost ridge-like geniculum. In the apertural view (v. fig. 6, PI.1) the marcin is even but has a distinct lip similar to that seen in $P$. bohemicus (v. Pl.26,figs.1,2). A septum is present but may not be entirely complete at the extreme proximal end. The thecae are not closely spaced and range from 11 in 10 mms proximally to 9 in 10 mms distally.
Remarks: It can be seen that the distal details so far obtained asree with C. scalaris but equally olearly more material is required before a complete description can be attempted.
Material seen: Similar specimens are recorded from the Skelgill Beds, Ambleside (S.M. no. A20240-1).

Climacograntus simnlex sp. nov.
Plate 16,fig.9,11
" $11, \cdot 6$
Holotype: HUR./S75,9.4/33.
Horizon of Holotyne: Zone of M. sedewicki.
Derivation of name: simplex, $L$, simple, referring to nature of thecal apertures.

Material: 3 proximal ends in full relief.
Horizon ond Localities: Zone of M. sedswicki; Spengill (S75,9.4). Diacnosis: Proximal end rounded in profile and cross section. Sicula free for 0.5 mm of its length. Septum complete. Thecae number 15-14 in 10 mms at extreme proximal end but only 12 in 10 mms at 6 mms . Thecal apertures
with a slight lip.
Descrintion: The loncest specimen is 6 mms long and has a width of lmm at its distal extremity. In cross section all three specimens are circular and the thecal tubes semicircular.

The sicula is exposed for 0.5 mm of its length and th. 1 (I) arises 0.3 mm above its base. Th.l(I) then grows downwards to the base before turning upwards and opening 0.65 mm above the base of the polypary. Throughout the thecae are markedly alternate in their arrangement and at th.1(1) - 2(1) number 15 in 10 mms . At th. 2(1) - $3(1)$ this has dropped to 14 in 10 mms and distally decreases further to 12 in 10 mms .

Thecal overlap is small and whilst the apertural margins are almost horizontal they have a slight lip in the mesial region particularly on the prozimal thecae. The excavations occupy one quarter of the total rhabdosome width whether viewed from the obverse or reverse side. In the ventral view, however, they occupy well over half of the total ventral margin.

The septum is complete and begins on the obverse side at the level of the aperture of th.l(1). On the reverse side it appears about 0.4 mm above this level.
Remarks: This species is clearly close to C. scalaris but differs in the spacing of the thecae and the nature of the apertural margin. Viewed from the ventral position the excavation also occupies considerably more of the width (over one half compared with one quarter to one third in C. scalaris). The proximal end of C. simplex sp. nov. also appears to have no virgella and is rounded though it is possible that the virgella is broken off since the base of the sicula has worn appearance on the one specimen where this could be seen.

Holotyoe: HUR./2Bi/4, flattened specimen, well preserved, distal end missing. Horizon of Holotype: Zone of M. acinaces.

Derivation of name: "latinized" to indicate distinctness from cl. normalis. Material: One specimen, (the holotype) and other more doubtful material. Description: The flattened rhabdosome is 9 mms long and distally reaches a width of 1.3 mms . The width at the level of the first thecal pair is 0.7 mm . There is a trace of a septum throughout the length of the polypary and because of this the depth of the excavations may be reduced. The latter are deep. rather than semicircular, distinctly climacocraptid, and remain unchanged distally. The thecal apertures are opposite.

The sicula can be faintly seen where it is "pressed throuch" and is approximately 1 mm long, its apex almost reaching the second thecal pair. It is furnished with a short virgella. Thecal spacing is close and alters only slightly down the length from 15 in 10 mms proximally to $13 \frac{1}{2}$ in 10 mms distall: Remarks: This seems a distinct species. It has a certain resemblance in size to C. normalis but the latter has more widely spaced thecae and the first few are markedly alternate, only becoming sub-opposite distally.

## Climacomrantus medius Toernquist Plate I,fig.l2; Plate 12,fig. 3

1870 Climacograpsus teretiusculus Nicholson (pars) p.373,figs.la,b,f. 1872 1873 1897 1906 Climacograptus scalaris Malaise p.104,P1.6,fies.5-6. " medius n. sp. Tornquist p.7-8, Pl.1,figs.9-15.
" "
${ }^{\prime}$
Elles \& Wood pp.189-190,P1.26,
figs.4a-f,text fig. 122a-c.
?1924
" . "
Tornq. Hundt Pl.1,figs.22-23,35,36.
1933 Climacograptus medius, Tornquist. Sun p.23, Pl.4,fig. 2.


Material: About 30 specimens, flattened or low relief.

Horizon and Localities: Zones of M. atavus to M. triangulatus; Spengill (Sl5, S20-24, ?S $36-39,7$ ); Watley Gill (1Wa-4Wa); Birks Beck (2Bi).
Diagnosis: Full grown rhabdosome very similar to C. rectanqularis, attains a width of 2.5 mms (flattened), $12-10$ thecae in 10 mms , proximal end rounded and very blunt, conspicuous virgella, excavations typically climacograptid. Description: This species can only be distinguished with certainty from $C$. rectengularis on the characters of the proximal end. The virgella is a conspicuous feature of the polypary and is usually long and straight, whilst the initial part of the rhabdosome is broad and may measure lrm at the level of the first pair of thecae.

Excavations are deep and in flattened material a "biscalariform" view is common suggesting that the apertural region is sufficiently thickened to be "pressed through".

Compression at right angles to the length of the polypary has the effect of closing the excavations which are then represented as a line. If compres. sion is stronger the whole length of the polypary is marked by transverse corrugations and the thecal apertures are difficult to make out. In these cases the thecal spacing is considerably decreases and specimens having a thecal count of 20 in 10 mms have been obtained.
Material seen: Specimens in the Drew and Salter Collection, H.M.Geolorical Survey Museum. Sedgwick Museum, Cambridge, collection.

$$
\frac{\text { Climacograptus rectangularis (M'Coy) }}{\text { Plate } 12, \text { fig. } 5 ; ~ P l a t e ~ 19, f i g .3 ~}
$$

1850 1851 1906 Diplograpsis rectangularis, M'Coy p. 271 .

| $n$ |  |
| :---: | :---: | :---: |
| Climacograptus rectangule |  |
| $n$ | $n$ |

" p.8,Pl.1,B,fig.8.
(M'Coy). Elles and Wood pp.187-8, Text fig. 121a-b, Pl.26,figs.5a-e.
1924
$? 1945$
1949
"

M Coy. Hundt. P1.1,figs.8-10.
11
Waterlot P1.6,fig. 111
(M'Coy). Obut p.12.P1.1,figs.2a,b.

1955 Climacograptus rectangularis (M'Coy). Bulman fig.631c. (not described)
"
"
" Ross p.1386, text figs.1F,I,J,M.

Material: About 50 specimens, invariably flattened.
Horizon and Localities: Zone of M. atavus - M. trianculatus; Spengill (Sl-5 to S24-28, ?S28-32 to S36-39,7); Watley Gill (3Wa); Wards Intake (?l4Wi, ?ll Wi, ?13Wi); Birks Beck (1Bi,2Bi).
Diagnosis: Rhabdosome often more than 2 cms long, 2.5 mms wide, vireella conspicuous occasionally fairly long. Thecae $12-10$ in 10 mms , typically climacograptid, relatively narrow proximally for a few mms after which it begins to broaden.
Description: For the first few millimetres the proximal region is relatively narrow but then broadens quickly to reach its maximum width which varies between 2 and 2.5 mms .

The virgella is usually short and conspicuous, but is occasionally rather longer (see fig.5,P1.12), in which case the extremity is very fine.

At the proximal end the thecae number 11-12 in 10 mms decreasing distally to 10 in 10 mms . Stroncly compressed specimens show higher and lower values.

The thecal excavations are deep and similar to those in C. normalis and C. medius. A septum is present - this can be ascertained even in the flattened specimens - and it may be complete.
Remarks: The only form which C. rectancularis might be confused with is C. medius. Whilst having the same thecal spacing and general size, the latter species has a blunt, rounded proximal end. . The general form of specimens preserved in compressed rock may be altered to approach that of the other species. Thus specimen of C. medius compressed parallel to length of the rhabdosome would be narrower throuchout and the blunt proximal end might become sharper. It is not easy therefore to distinguish the two species even on the character of the proximal end.
Material: Specimens in Drew and Salter Collection, H.M.Geological Survey Collection (Zi 7183).

1955 Climacograptus rectangularis (M'Coy). Bulman fig. 63,1c.(not described)
"
11
11 Ross p.1386,text figs.1F,I, J,M.

Material: About 50 specimens, invariably flattened.
Horizon and Localities: Zone of M. atavus - M. triangulatus; Spengill (Sl-5 to S24-28, ?S28-32 to S36-39,7); Watley Gill (3Wa); Wards Intake (?l4Wi,? ?ll Wi, ?l3Wi); Birks Beck (1Bi,2Bi).
Diagnosis: Rhabdosome often more than 2 cms lone, 2.5 mms wide, virgella conspicuous oocasionally fairly long. Thecae 12-10 in 10 mms , typically climacograptid, relatively narrow proximally for a few mms after which it begins to broaden.

Descrintion: For the first few millimetres the proximal region is relatively narrow but then broadens quickly to reach its maximum width which varies between 2 and 2.5 mms .

The virgella is usually short and conspicuous, but is occasionally rather longer (see ficg.5, Pl.12), in which case the extremity is very fine.

At the proximal end the theae number ll-12 in 10 mms decreasing distally to 10 in 10 mms . Strongly compressed specimens show higher and lower values.

The thecal excavations are deep and similar to those in C. normalis and C. medius. A septum is present - this can be ascertained even in the flattened specimens - and it may be complete.
Remarks: The only form which C. rectangularis might be confused with is C. medius. Whilst having the same thecal spacing and general size, the latter species has a blunt, rounded proximal end. The general form of specimens preserved in compressed rock may be altered to approach that of the other species. Thus specimen of C. medius compressed parallel to length of the rhabdosome would be narrower throughout and the blunt proxinal end might become sharper. It is not easy therefore to distinguish the two species even on the character of the proximal end.
Material: Specimens in Drew and Salter Collection, H.M.Geological Survey Collection (Zi 7183).

Material: A sincle, flattened, but well preserved specimen. Horizon: Zone of P. cyphus; Spencill (14P). Descrintion: The rhabdosome is incomplete and has a length of 5 mms (excluding virgella). It widens gradually throughout its length to 1 mm at th. $7(1)$ (flattened). A virgella projects $1 \cdot 7 \mathrm{mms}$ below the base of the sicula which is just discernable. The aperture of th. 1 (1) opens 0.4 mm above the base of the sicula.

Throuchout the specimen the excavations are semicircular but quite deep, occupying between one quarter and one third the total width of the polypary. At the level of th. 1 (1) and 2(1) the thecae are closely spaced ( 15 in 10 mms ) but distally become widely spaced (13 in 10 mms ).
Remarks: The specimen is placed in the genus Climacograptus since the excavations remain deep and the geniculum more climacograptid than glyptograptid. It has a certain resemblance to Packham's subspecies C.t.linearis but has a slightly higher thecal count and a more prominant virgella, whilst the marfins are tapering rather than subparallel.
Material seen: Holotype of Packham's Climacograptus tancshanensis linearis (S.N. no A51448) figured Packham 1962, text fig.3j; Pl. 72 fig. 3.

1853
1869
1871
1882
1890
1893
1897
1906
?1924

Diplograpsus teretiusculus Richter p.456,P1.12,fig.11-13.
" Hughesi, Nich. Nicholson p. 234. Diplograptus teretiusculus Richter Pl.5,figs.5-7. Climacograptus undulatus Kurck p.303,P1.14,fig.11. " internexus Toernquist p.25,Pl.2,figs.8-9.
"
" p.6,figs.23-27.
"
p.9,Pl.1,figs.22-24. Huchesi (Nicholson). Elles and Wood pp. 208-210, text fig.14Ca-d,Pl.27,figs.1la-e. hughesi Nicholson. Hundt. Pl.l,figs.8-10.

Naterial: About 30-40 specimens in relief.
Forizon and Localities: Zone of M. trianculatus, Zones of D. macnus - M. sedrwicki; Spengill (S75,9•4-80,8•4); Birks Beck(9Bi, 6Bi,5Bi); Watley Gill (5Wa, 9Wa-1lWa); Spengill (S28-39,7)
Diagnosis: Rhabdosome up to 1 cm long and almost lmm broad. Proximal end round with small prominant sicula which is free for 0.65 mms of its length. Septum undulating, conplete. Thecae with strong sigmoidal curvature, numbering $16-12$ in 10 mms , with introverted and introtorted apertural margins.
Description: C. hughesi is superficially like C. extremus but has a considerably longer rhabdosome and the sicula is visible for some distance. In C. extremus the sicula appears to be completely enveloped.

Th.l(1) grows downwards for $0.25-0.3 \mathrm{~mm}$ before turning upwards. Its complete length is 0.9 mm . Th. $1(2)$ grows across the back of the sicula and its aperture opens 0.13 mm above the aperture of th.l(1). The septum separates the two series throughout growth and undulates throughout.

Specimens preserved in relief show the thecal apertures to be introtorted and introverted, the former perhaps being more strongly developed than the latter. Thus a specimen in full relief showing both series of thecae will have one series displaying distinct excavations whilst the other will have the excavations filled by the most distal extremities of the introtorted thecae. (see fig.5,Pl.17), and also Elles and Wood 1906, text fig.140c.).

The specimen figured by Elles and Wood as text fig. 140 c seems to display sinistral torsion of the aperture whilst the Cautley specimen figured on P1.17 (fig.5) shows dextral torsion. At present it is impossible to say whether the direction of torsion is constant.
Material Seen: Specimens in the Sedewick Museum, Cambridge.

# Climacograntus extremus H.Lapworth Plate l,fig.8; Plate l2,fi天.6; Plate 17,fic. 3 

1900 Climacozraptus extremus, sp. nov. H. Lapworth p.134-5,fies.22A-B.

| $1906 " \quad " \quad$ H.Lapworth. Elles and Wood pp.210-11, text |  |
| ---: | :--- |
|  | fig.l4la-c,Pl.27,fies.13a-b. | 1945 " " Lapw. Waterlot P1.8,fiE. 132.

Naterial: Over 30 specimens, some in full relief. Horizon and Localities: ?Zone of M. trianculatus, Zones of D. macnus to M. turriculatus; Spengill (?S36-39,7; S75,904-S172,0.5); Birks Beck (9Bi,5Bi); Watley Gill (9Wa-llWa).
Diagnosis: Rhabdosome very small and narrow rarely exceedine 5 mms in length and never more than 0.5 mm in width except when flattened. Septum undulating complete. Sicula not seen. Nema lons, slender. Vircella short. Thecae number $15-20$ in 10 mms .
Descrintion: The rhabdosome of this species is most distinct by virtue of its small size and slenderness. A short virgella is usually found and in one specimen an extremely fine nema has been detected (pl.17,fig.3). In flattened specimens little can be said about the nature of the thecae, but in material preserved in full relief they are seen to be very small, overlarpinc about one third, and have their marcins certainly introverted and probably introtorted. They number $15-20$ in 10 mms .

The undulating septum is a conspicuous feature of the rhabdosome as it swings with the sigmoidal curvature of the alternatinc thecae.
Remarks: Rather doubtful specimens have been obtained in the M. triangulatus Zone but the species is certainly present in the D. macnus Zone. Elles and Wood (1906) give its rance as sedswicki-turriculatus Zones but Sudbury (1958 p.487) also records it throughout her M. Sregarius Zone of the Rheidol Gorge. This latter observation also sugsests that the species comes in earlier than was supposed by Elles and Wood.

Plate l,fig.ll; Plate 17,fig.4; Plate 12,fig.7.
aff.
1868. Climacocrraptus minutus Carruthers p.132,P1.5,figs.10a-b.

1906 " ". . Elles and Wood pp.2ll-2,text fig. 142,P1.27,figs.12a-c.

Material: About 15 specimens.
Horizon and Localities: Zone of M. atavus - M. trianulatus; Spencill (Sl-5 to S24-28).
Diacnosis: Rhabdosome small and slender, usually about 0.7-0.8mm wide. Nema projects beyond distal extremity. .Thecae with deep, narrow excavations, numbering 14-16 in 10 mms.
Description: The rhabdosome is always less than lom long and has a breadth (flattened) of less than 1 mm . Nost commonly specimens are about $5-6 \mathrm{mms}$ lone and $0.7-0.8 \mathrm{~mm}$ broad. The short, fine virgella and distal nema are not generally preserved.

Throughout the rhabdosome the thecae are closely spaced at 14-16 in 10 mms thoufh lower densities are occasionally obtained.

The proximal end is rather blunt and of ten the base of the sicula and most proximal point of th.l(1) can be seen (v. fig.ll, Pl. $1 \%$. There is no trace of a septum in this flattened material.
Remarks: The species closest to these forms seems to be Cl⿳ minutus Carruthers. It can be distinguished from C. extremus by virtue of its greater width and there is no resemblance to $C$. humesi that can be detected in flattened specimens.
Material Seen: Specimens in Sedgwick Museum, Cambridge.

Holotype: HUR./S73,11•4/81, a specimen in full relief, but broken. Horizon of Holotype: Zone of M. sedowicki.
Derivation of Name: retroversus, L. turned backwards.
Material: 7 specimens in full relief, others flattened. Horizon and focalities: Zone of M . Sedowicki; Spencill (S73,11•4, to $580,8 \cdot 4$. Diąnosis: Rhabdosome up to 2 cms long, slender, elliptical to circular in cross section, septum undulating, complete. Thecae with retroverted apertural marcins, numbering 10 in 10 mms distally, and up to 12 in 10 mms proximally.
Descrintion: This species is superficially like c. hughesi but differs in all the measurable features as well as in the nature of the thecae. The rhabdosome in ?C. retroversus sp. nov. reaches 2 cms lone in some specimens and is therefore much longer than in huchesi. The septum is complete and undulating but distally the undulation is reduced. The rhabdosome width is variable, being less than 1 mm and usually about 0.8 mm . Occasionally there is a reduction in width distally.

The position of the sicula can be detected in the holotype and in obverse view it is free for 0.8 mm of its total length, of about 1.3 mms . The apex is circular in cross section whereas the rhabdosome in the same recion is elliptical although this might in part be due to flattening.

The thecae are strongly siemoidal and overlap for approximately one third their length. The supragenicular walls slope inwards towards the axis and as the thecal tube approaches the sigmoidal curve of the succeeding theca its dorsal margin begins to outgrow the ventral margin resulting in what appears to be a narrower aperture facing outwards or towards the proximal end (i.e. retroverted). In no view therefore, is there an excavation proper " even though the thecae are very strongly sigmoidally curved. Remarks: C.huchesi is the only species at all resembling ?c. retroversus sp. nov. but the two differ in the following respects:-
a) ?c. retroversus sp. nov. is much longer though about the same breadth.
b) Although both have an undulating septum, in ?C. retroversus the undulation is much less distally.
c) The thecal spacing is different (16-12 in 10 mms in C . huchesi of.12-10 in 10 mms .
d) The characters of the thecae themselves are different.

This species is doubtfully referred to the genus Climacograptus in view of
the double sigmoidal curvature exhibited by the thecal tubes.

## Climacosrantus innotatus innotatus Nicholson Plate 15,fig. 8 .

1869 Climacograptus innotatus Nich. Nicholson p.238, P1.11,fig.16-17.

1870
1876 b
1877
1906

1924
1945 1955
" " " p.384.
" Nich. Lapworth Pl.2,fig.54.
" " " p.140,P1.6,fiを.37.
"
"
"
"
Nicholson.
Elles \& Wood pp.212-213, text fic. 143a(?b), Pl.27,fiEs.10a-e.
Nicholson. Hundt P1.1,fies. 14-15,24-25. innotatus Nich. Waterlot. Pl.3,fig. 87.
" Nicholson. Bulman fig. 63,Id. (not described).

Materjal: A single specimen preserved in low relief.
Forizon and Locality: Zone of N. atavus; Watley Gill (2Wa).
Descrintion: The rhabdosome is 2.8 mms long and 1 mm broad (excluding spines) and comprises 5 thecae in each series. Thecae closely spaced numbering 19 in 10 mms .

The sicula which is completely free on one side, is 0.9 mm long and its apex reaches to the level of the aperture of th. $1(2)$. Theca $1(1)$ arises 0.09 mm above its base and erows downwards for $0.26-0.3 \mathrm{~mm}$ before turning and growing upwards. Its total lencth is 0.8 mm . Subsequent thecae increase to a length of 1.04 mms and overlap up to a maximum of one half their length. The excavations which are deep and occupy almost one third the width of the polypary, are also rather long giving an almost semicircular profile. The apertural marcins are very slichtly everted. Thecal spines are not conspicuous but they arise from the geniculum. In obverse view the septum is complete and appears to be slightly flexuous.
Remarks: This specimen differs from other described material only in beine ather narrower and in having a hicher thecal count. It is r由tained in this species until the full rance of intraspecific variation is known.

Material Seen: A collection from Dobb's Linn contained in the Sedswick Museum which show the species to be much larger than Climacosrantus innotatus exquisitus subsp, nov.
Specimens figured by Elles and Wood Pl.27,figs.10a,b; d.

$$
\frac{\text { Climacograptus innotatus exquisitus }}{\text { Plate } 1, f i \varepsilon \cdot 7 ; \text { Platel4,fiç. } 9}
$$

Eolotyne: HUR. $/ 1 \mathrm{Bi} / 26$, and counterpart. Horizon of Holotype: Zone of M. atavos. Derivation of name: exquisitus, L. delicate. Material: Two specimens.
Diagnosis: Rhabdosome small and narrower than C. i.innotatus, vireella conspicuous, thecae spinose, numbering $15-13$ in 10 mms . Nema slender projectine beyond polypary.
Descriotion: Althouch the holotype is flattened it is compressed parallel to the length of the rhabdosome and the width is probably close to that of the undistorted specimen. Its length is 4.5 mms (excluding vircella and nema) and its width only 0.65 mms .

A slender virgella projects beyond the proximal end and may be bent back to lie parallel to the polypary. The nema is slender and extends for 1.7 mas beyond the distal marcin of the rhabdosome.

The sicula is approximately 0.9 mm long and its apex reaches to the level of the aperture of th. $1(2)$. At the extreme proximal end the thecae are closely spaced ( 15 in 10 mms ) being rather less. so distally ( 13 in lomms). The thecal apertures are slightly everted and set in semicircular excavations which occupy one fifth of the width of the polypary. Projecting from the geniculum of each theca is a short stiff spine averaging 0.19 mm in length. Remarks: This subspecies is very closely related to C. i. innotatus particularly in size and form, the presence of thecal spines, and the size and position of the sicula. It is, however much more slender being about one half of the width of Nicholson's species..

Subfamily DIPLOGRAPTINAE Lapworth 1873
(nom. transl. Pribyl 1948 (ex Diplocraptidae Lapworth 1873))

Eenus DIPLOGRAPTUS MיCoy 1850 (=Mesograptus Elles \& Wood, 1907)

Tyoe Snecies: Prionotus pristis Hisinger, 1837; S.D.Gurley, 1896. Generic diagnosis: Thecae strongly sigmoidal with apertures in broad semicircular excavations, amplexograptid at proximal end, gradually becoming more cently sigmoid (Elyptograptid) and almost straicht distally; periderm attenuated and with apertural lists proximally; cross section ovoid or nearly rectangular.

## Diplograntus magnus H.Lapworth

Plate l,fig.14; Plate 20,fič. 10

1900 Diplograptus magnus, sp.nov. H.Lapworth. p.132-4,fig.2la-d.
1907 " (Mesograptus) magnus, H. Lapworth. Elles and Wood pp.266-7, text fig. 183a-b, P1.31,figs.14a-c.
1945 Diplograptus (Mesograptus) magnus Lapw. Waterlot Pl.17,fig. 216. 1961 Mesograptus magnus (Lapw.). Romariz Pl.2,fig.2, not described.

Material: Several specimens.
Horizon and localities: Zone of M. triangulatus - D. macnus; Spensill (S32-36 Birks Beck (9Bi).
Diacnosis: Polypary robust, lone, reaching a maximum width of almost 4 mms. Septum almost complete, thecae $15-12$ in 10 mms , long, strongly sicmoidal proximally with conspicuous excavations more "glyptograptid" to almost straight distally.
Description: D. Macnus is not a common fossil at Cautley. and the writer's distal fragments are poorly preserved. They do, however, show the usual thecal characters, and the thecae themselves number about 12 in 10 mms in this
region and are almost straight tubes. A maximum width of nearly 4 mms is reached.

The proximal thecae have strong sigmoidal curvature and the apertures are situated in deep, long excavations which occupy one quarter of the width of the polypary. In this region the thecae number $14-15$ in 10 mms , are inclined to the axis at $35^{\circ}$, and overlap for one half their length. At a distance of 7.5 mms from the proximal end width of over 2 mms is acheived (relief). From here the polypary widens more gradually to its maximum breadth.

The sicula has not been seen. A septum is visible throughout even in the reverse aspect.
Remarks: The Cautley specimens differ in no way from other described British material. It occurs rarely in the top of the M. trianculatus zone but more commonly in the D. magnus zone following.
Material Seen: Specimens in the Elles and Wood Collection, Sedgwick Museum.

## Diplorrantus modestus modestus Lapworth Plate 19,fig. 6

1876
1877
1897
1900
1907

1924
?1929
1933
1934
1940

1945
1962

Diplograptus nodestus Lapworth P1.2,fig. 33 confertus Lapworth Fl. 4,fig. 8 modestus Perner p.5, Pl.10,fig. 8
" , Lapw。 H.Lapworth p. 135
"...(Mesograptus) modestus, Lapworth. Elles and Wood pp.263-4, text fig.180a-d, Pl.31,fig.11a-e.
" modestus Lapworth. Hundt, Pl.l,ficcs.46-49 Mesograptus of. modestus. Davies p.l-3,fig.l Diplograptus (Mesograptus) modestus Lapworth. Sun p.30, Pl.5,figs.3a-c Mesograptus modestus Lapworth. Hsu pp.82-3, Pl.6,figs.7a-b Diplograptus modestus Lapwo Desio p. 25, P1.1,fiE.18, P1.2,figs.1,5,6,10, 12.
. "
"
(Mesograptus) modestus Lapw. Waterlot. Pl.17,fiec. 206 modestus Lapw. Romariz P.236, Pl. $22, f i g .1$

Material: 6 specimens, poorly preserved.
Horizon and Localities: Zone of M. atavus; Spencill (Sl-5); Watley Gill (1Wa,4Wa); Zone of A. acuminatus.
Diacnosis: Rhabdosome up to 2 cms long with a breadth of 2.5 mms distally (though this may be an increased value due to compression). Thecae almost "orthograptid" distally, 14-12 in 10 mms , but strongly sigmoidal proximally. Description: This species is usually identified from the general form of the polypary since the thecal characters are difficult to discern. The specimen figured on PI. 19 (fig.6), however, shows the strongly sigmoidal proximal thecae and deep excavations. The excavations are here deeper than long but the rhabdosome is compressed at right ancles to the line of the polypary. At the proximal end the thecae are usually closely spaced numbering up to 14 in 10 mms but this value falls quite rapidly to 12 in 10 mms distally.

Distal thecae are almost "orthocraptid" in shape. The degree of overlap and ancle of inclination of the thecae cannot be satisfactorily ascertained. A vireella is prominent and robust and extends for lmm below the relatively pointed proximal region.
Remarks: D.modestus modestus is restricted to the lowest beds (M. atavus zone) and is far less common than D.m.diminutus.
Material Seen: Specimens in Sedgwick Museum, Elles and Wood Collection, togetk er with varieties; Drew and, Salter Collection (Zi 7144), H.M.Geological Survey Museum. Specimens in H.M.Geological Survey Collection (Pg607) from Nant Nod, a specimen in full relief; (3368) collected by J.E.Marr from Skelgill section (M. fimbriatus Zone), a specimen in low relief.

Diplorraptus modestus diminutus Elles and Wood Plate 2, fig. 2; Plate 14, fig. 2

1907 Diplocraptus (Mesograptus) modestus, Lapworth, var, diminutus, var. nov Elles and Wood p.265,Text fig.182,P1.13a-c
?1945 Diplograptus (Mesograptus) modestus var. diminutus E. \& W. Waterlot Pl.17,fig. 208.

Material: About 20 specimens mostly flattened.

Horizon and Localities: Zone of M. atavus; Spengill (Sl-5,S5-9); Birks Beck (1Bi,2Bi); Watley Gill (3Wa); zone of P. acinaces.
Diagnosis: Smaller in lensth, width, and with smaller, more closely spaced thecae than D.m.modestus. Thecae number 15-17 in 10 mms .
Description: This subspecies shows little variation from the original material described by Elles and Wood. The usual lencth of the polypary is about Icm and the maximum width approximately 1.5 mms .

At the extreme proximal end the thecae number 17 in 10 mms and nore distally 15 in 10 mms . The characters of the thecae are similar to those described under D.m.modestus but the distal thecae are less "orthograptid" and more "glyptograptid" in form.: In short, the ontogenetic changes typified by this genus are less well shown in this particular subspecies.

A short and slender vircella projects from the proximal extremity. The sicula has not been seen.
Remarks: This subspecies is more common than D.m.modestus but is restricted also to the M. atavus zone.
Material Seen: Specimens in Elles and Wood Collection, Sedgwick Museum, Cambridge.
$\frac{\text { Diplograntus modestus tenuis }}{\text { subsp. nov. }}$
Plate 1 , fig. $13 ;$ Plate 12,fig.1; Plate 20 , fie. 8

Holotyne: HUR./Sl-5/18, a flattened but well preserved specimen. Horizon of Holotype: Zone of M. atavus.
Derivation of Name: tenuis, L. fine, slender.
Material: Only one definite specinen, the holotype.
Descrintion: The rhabdosome is 1.3 cms lond but incomplete at its distal extremity. Since the specimen is both flattened and compressed at right angles to the polypary the width should be exaccerated but still only reaches a maximim of $1 \cdot 3 \mathrm{mms}$.

The sicula is not visible but a short, slender vircella similar to that seen in D.m.diminutus extends below the proximal end. At the level of the first thecal pair the width is 0.52 mms . The most proximal thecae show distinct, but small, excavations but at 5 th - 7 th thecal pairs they are al:
ready beginning to look more "glyptocraptid" in form. Distally the thecae are typically those of flattened "orthograptids".

At the proximal end the thecae number $14-15$ in 10 mms , decreasing distally to 11-12 in 10 mms .

Remarks: This subspecies is probably closer to D.m.modestus than D.m.diminutus in view of the similarity of the thecae and their change throughout the polypary. It differs in being far more slender.

$$
\frac{\text { ?Dinlocrantus rarus sp. nov. }}{\text { Plate } 14, \text { fig. } 4 ; \text { Plate } 20 \text {;fic. } 9}
$$

Holotyne: HUR./ $\mathrm{Bi} / 139$, a lon , complete flattened specimen. Horizon of Holotyoe: Zone of M. atavus. Derivation of name: rarus, L. thin. Material: One complete specimen, the holotype, and other fracments of both proximal and distal regions.

Horizon and Localities: Zone of M. atavus; Birks Beck (lBi,2Bi).
Diacnosis: Rhabdosome up to $1 \frac{1}{2} \mathrm{cms}$ long, slender, and with an attenuated periderm. Proximal thecae with relatively deep excavations, distal thecae definitely "orthograptid", alternating and with no sign of a sicmoidal curvature. Robust, distally projecting, nema and prominent, robust virgella. Thecae number 13-10 in 10 mms .

Descrintion: The most striking feature of the rhabdosome is the attenuated periderm which, upon compression, produces the merest film in the rock. It strongly recalls Orthocrantus attenuicutis sp. nov. in this respect. The nema on the other hand is strongly chitinized for it is the most conspicuous feature of the rhabdosome, running the full length and then projecting distally. The virgella though short, is also robust and together with the first few thecae and the nema seems to be more strongly chitinized than the rest of the polypary.

A sicula has not been seen. Up to the 5 th thecal pair the siemoidal curvature is conspicuous and the excavations deep, rather than long. The thecal apertures in this region are almost opposite and approximately horizond tal. The thecae number 13 in 10 mms .

Distally the thecal chance is quite complete. The apertures are distinctly everted and alternating whilst the thecal tubes show no sich of sicmoidal curvature. Overlap is less than one third and the thecae number 10 in 10 mms.
Remarks: This form has been included in the eenus Dinlograntus on the eviden ce of the complete change of proximal to distal theca characters - the latter being "orthograptid". It should be pointed out, however, that the proximal excavations are similar to those borderline cases (mentioned by Packham 1962) between "climacograptid" and "diplograptid".
?D. rarus sp. nov. is quite unlike any of the described species of Dinlograntus (or Glyntograntus) and is a relatively rare form. Occuring on the same slab as the holotype is a specimen of ?D.sp. A.

## Dinlocrantus sn. A

Plate I, fic.16; Plate 15,fiz. 3

Material: A few flattened specimens. Horizon and Localities: Zone of M. atavus; Birka Beck (1Bi,2Bi). Description: This form appears to bear the same relationship to D. modestus diminutus as D.m.tenuis subsp. nov. does to D.m.modestus. It is more slender, reaching only fractionally over 1 mm in breadth and has $15-16$ thecae in 10 mms throuchout its length. The thecae are also more uniform throughout as in D.m.diminutus, although there is a certain amount of doubt about their nature since it cannot be ascertained from the material whether the thecae are "climacograptid" like, or whether they are "glyptograptid" throughout with merely a slight change in sicmoidal curvature. The extreme proximal end, however, is very reminiscent of D.m.diminutus.

## cents GLYPTOGRAPTUS Lapworth, 1873

Tyne species: Dinlocransus tamariscus Nicholson, 1868.
Generic diagnosis: Thecae with moderate to gentle sigmoidal curvature, avertural margins commonly undulate, horizontal, or averted; supragenicular wall vertical or inclined away from the axis; infragenicular wall immediately below the feniculum is inclined at less than $45^{\circ}$ to the axis, (this last featuse is an arbitrary line drawn only for the sake of convenience); gradual change in the decree of sigmoidal curvature of the thecae may take place along the rhabdosome - becoming less sicmoidal distally - but the extremes of climecograptid and orthograptid are not seen.

Glyotograntus tamariscus tamariscus (Nicholson)
Plate 18, fig. 2,6,5

1868 1907

Diplograptus tamariscus Nicholson, p.526,(pars)P1.19,figs.10,11,?13, (non 12).
?1924
" tamariscus Nicholson. Hundt. P1.1,figs.38-40.
?1934 Glyptocraptus tamariscus Nicholson. Usu p.76, Pl.6,figs.la-f. ?1949 Diplograptus (Glyptograptus) tamariscus (Nicholson). Obut pp.14-15, PI.1,fics. 6a-b.
1962 Glyptograptus tamariscus tamariscus (Nicholson). Packham pp.504-6, text figs. $1 g-j, m-u, P 1.71, f i g s .1-4,11,13$.

References of more doubtful synonymy can be seen in Packham, 1962, p.501, p. 504 .

Lectotype: Nicholson (1868) Pl.19,fig. 10.
Material: About 50 specimens in varying states of preservation, either flatten
ed or in full relief.
Horizon and Localities: Zone of P. cyohus to Mn sedowicki; Spencill (?S9-13, S24-28, S32-36,S73,11•4-S94,7.4); Birks Beck (9Bi.6Bi); Pickering Gill (?14P); Watley Gill (5Wa,?6Wa,llWa); Birks Beck(?2Bi). Diasnosis: Rhabdosome "thorn-like", usually quite short, maximum width $1 \cdot 3$ mms in flattened specimens, or specimens in low relief compressed at right angles to the polypary. Thecae alternating, excavations both long and deep infragenicular walls typically clyptograptid, supracenicular walls inclined and the whole polypary slightly tapering. $15-9$ thecae in 10 mms . Descrintion: The Cautley specimens differ in no way from the material described in detail by Packham (1962). Since the material is not generally well-preserved, however, his forms $A, B$, and $C$, have not been easy to reco $\mathbb{C}^{-}$ nize. The specimen figured on Pl. 18 (fig. 2) is close to G.t.t. form B, and has $15-14$ thecae in 10 mms at the extreme proximal end decreasing to 11 in 10 mms at th.4-5. Fig.6, (PI.18) closely resembles G.t.t. form $C$ in having a thecal spacing of 11 in 10 mms at the proximal end and 10 in 10 mms at th. 4-5, though its stratigraphic level is a little lower than recorded by Packham.

Remarks: Packham recorded G.t.t. form A from the lower beds of the total range of the species but it is in these beds at Cautley that the specimens are least well preserved and forms definitely assicnable to form A have not been identified.
Material Seen: Sedewick Museum Collection, including Packham's (1962) figured specimens.

## Glyotograntus tamariscus angulatus Packham

Plate 2, fig. 7

1962 Glyptograptus tamariscus angulatus subsp. nov. Packham p.510-11, text figs.3a-c, Pl.71,figs.7-8.

Holotyne: Specimen figured by Packham 1962, Pl.71,fig.8,text fig. 3b. Material: One flattened specimen, almost complete. Horizon: Zone of P. lentotheca; Birks Beck (6Bi).

Descriotion: The polypary is 7.5 mms long and widens steadily from 0.39 mms to 0.58 mms distally, so that it is almost parallel-sided. There are 9 thecae in 10 mms throughout the rhabdosome. Thecal excavations are deep (about one half the width of the polypary) and the supragenicular walls long (averase 0.78 mms , whilst the geniculum of each theca is abrupt. The interapertural distance is a little over lmm.
Remarks: This specimen agrees very well with Packham's original description. It differs from G.t.tamariscus in being too narrow, particularly for a flattened specimen, in having deeper excavations and in its lower thecal count. From G.t.distans it can be distinguished by its more ancular geniculum and its deep excavations.
Material Seen: Sedewick Museum Collection of gaterial figured by Packham 1962.

## Glyptosraptus tamarisous linearis (Perner) <br> Plate 15, fig.6; Plate-19, fig. 4

1897 Diplograptus tamariscus Nich. var. linearis Perner, p.4,text fig. 2 (?Pl.9,fig.23).

1907

1962 11
(Glyptofraptus) tamariscus Nicholson. Elles and Wood pp.247-8, (pars) Pl.30,fig.8c (non text figs.167a-d,P1.30, figs.a,b,d).
Glyptograptus tamariscus linearis Perner. . Packham pp.506-7, text fie. lv, Pl. 172,fiç. 8.

For other references of more doubtful symonymy see Packham $1962, p, 506$.

Lectotype: Specimen figured by Perner 1897 p.4,text fic. 2. Material: Two specimens in relief, but weathered.
Horizon and Iocalities: Zone of M. convolutus; Watley Gill (9Wa). Diacnosis: Rhabdosome long, parallel-sided, tapering quickly at the extreme proximal end. Maximum breadth 1.56 mms . Thecal spacing $13-9$ in 10 mms . Descrintion: The rhabdosome is long and parallel-sided. One distal fragment has a length of nearly 4 cms whilst the proximal end (fic. 6, Pl.15) widens to 1.3 mms within 6 mms of the base of the polypary.

The sicula is notseen. The reverse aspect of the proximal end has a complete septum which suggests that it will probably be complete for the rhabdosore as a whole. The first few thecae number 13 in 10 mms but this falls to 10 in 10 mms by th. 6-7 and distally is about $9-9 \frac{1}{2}$ in 10 mms .

The thecal excavations are characteristically deep (over one third the rhabdosome width) and long. The apertural mareins are horizontal. Overlap is very small.

Th.1(1) opens 0.65 mms above the base of the polypary and th.1(2) at $0 \cdot 91 \mathrm{mms}$ above the same point. The full length of th. $1(1)$ cannot be determined since the sicula and downward-growing portion of the first thecae are not seen.
Remarks: This subspecies was recorded by Packham (1962) from the Zone of P. cynhus whereas Perner's original specimen is from $M_{\text {n }}$ convolutus Zone, The only difference between Packham's specimen and the Cautley specimens is that the latter have an initial thecal spacing of 13 in 10 mms . Material seen: Specimens in Sedgwick Museum figured by Packham(1962).

## Glyntograntus tamariscus aff varians Packham <br> Plate 18, fig. 9

1962 Glyptograptus tamariscus varians subsp. nov. Packham pp.509-10, text fies.la-f,Pl.71,fies.14-17.

Holotype: Specimen figured by Packham 1962, P1.71,fic.5,text fig.1d. Material: One snecimen flattened.
Horizon and Locality: Zone of P. lentotheca; Birks Beck (6Bi).
Descrintion: This specimen is a fracment 5.85 mms lone with a maximum breadth of 0.78 mms (flattened). The periderm is very thin and the nema prominent. The thecae number 10 in 10 mms . and the thecal excavations are deep and lonc; the geniculum is flowing rather than ancular.
Remarks: The specimen is very close to G.t.varians Packham, and resembles his text fig. If especially in the nature of the thecae and the ceneral dimensions.
Material seen: Specimen ficured by Packham 1962, text fig.If and others.

> Glyptomrantus nackhami sp. nov. Plate 2, figs. 5,$6 ;$ Plate 16, fig. 6

Holotyne: FUR./S73,11.4/6, a proximal end in full relief, obverse view. Horizon of Holotyne: Zone of M. sedewicki.
Derivation of name: After G.H.Packham author of "Some Diplograptids from the British Silurian".
Material: Two specimens in full relief; the holotype and a more distal fragment.

Horizon and Localities: Zone of M. sedrwicki; Spencill (S73,11•4 and S80,8•4). Diagnosis: Rhabdosome slender, probably over lom long and reachine a width of 0.78 mms . Thecae with eentle siemoidal curvature, Elyptogrartid, numbering 10-9 in 10 mms and inclined to the axis at a very low ancle. Sicula free for almost the whole of its length (about 1.5 mns ). Septum present. Descrintion: The form and size of the rhabdosome is highly characteristic. It has an inferred lencth of a little more than lom and a width (relief) of only 0.78 mms (At the level of the aperture of th.l(1) the width is 0.32 mms .)

The sicula appears to be almost entirely free and is approximately l. 5 mms long. Its apex reaches to the level of the top of th.l(2). Th.I(1) is 1.04 mms long and its aperture onens 0.4 mms below the apex of the sicula. The thecae are, therefore, alternating and continue to be so throughout the polypary.

The thecal spacing increases distally to 9 in 10 mms from 10 in 10 mms proximally. Thecal overlap is fractionally over one quarter in both proxinal and distal thecae. The geniculum is flowing, and the supragenicular wall parallel to the axis and approximately $0 \cdot 65-0 \cdot 70 \mathrm{mms}$ long in both proximal and distal thecae.

The apertural marcins are everted and in profile view sometimes appear very slightly concave. There is a slight narrowing of the thecal tube toward the aperture.

The excavation is long and shallow. It occupies one third of the rhabdosome width in the proximal thecae but only one quarter distally.

A septum is visible on the whole of the obverse side but it is not present at th. $8(1)$ on the reverse side. In cross section the rhabdosome is elliptical (seen at th. $7(1)$ with the short axis of the ellipse in the plane of
the median septum.
Remarks: In seneral appearance G. nackhami resembles G. tamariscus distans Packham but it differs in the following points:-
a) In the presence of a median septum throughout the obverse side.
b) In its closer spaced proximal thecae ( 10 of $8-9$ in 10 mms ).
c) In having a less angular ceniculum to its thecae.
d) In being more slender at the extreme proximal end.
e) In the shorter suprasenicular wall ( 0.7 max. of 0.8 mms ).

The two forms must be closely related however, since both the thecal and rhabdosome forms ascee very closely.

Packham (1962) records Got.distans from the Zone of M. cyphis (Dobo's Linn) and M. grecarius (Rheidol Gorge)whilst the Cautley species occurs in the Zone of Mosedswicki. If G. nackhami is developed from G.t.distans then the change would involve the rrowth of a median septum. Davies (1929) showec that in some climacograptids loss or reduction of the median septum occurred in later representatives.

From G.t.anculatus Packham, G. packhami differs mainly in being broader, in its less abrupt geniculum, and in the narrower proxinal end. G.t.acutus Packham and G.t.tamariscus (Nich.) have much more closely spaced thecae.

## Glvotocraptus aff incertus Elles and Wood <br> Plate 18, fiE. 3

aff
1907 Diplograptus (Glyptograntus) tamariscus var. incertus var. nov. Elles and Wood, p.249,text firc.168a-b,P1.30,figs. 9a-d.
1922 " tamariscus incertus Elles and Wood. Gortani p.104,P1.17, fig. 24 .
?1962 Glyptograptus tamariscus incertus (Elles and Wood). Romariz p. 236,P1.

$$
22, f i g \cdot 5
$$

1962 Glyptograptus incertus Elles and Wood. Packham pp.518-9,text figs.4a-

$$
d, P 1.72, f i g s .6-7
$$

Lectotype: The specimen figured by Elles and Wood $1907, \mathrm{Pl} .30$, fif. 9 c . refigur-
ed by Packham 1962, text fif.4a, Pl.72,fig.6.
Material: A sincle well preserved proximal end, tocether with others which are less well preserved.
Horizon and Localities: Zone of D. mačnus; Birks Beck (7Bi,8Bi).
Descrintion: This specimen has the general form and appearance of a proximal end of $G$. incertus but is rather better preserved than the material described by the above authors.

The sicula appears to be almost completely free and is 1.3 mms lone, its apex extending fractionally above th. 2(l). Th. 1 (I) emerces from the sicula only 0.13 mms above its base and crows downwards for a distance of 0.26 mms before turning upwards and onening 0.68 mms above the base of the polypary. The apertural margins in this region are very slightly everted, and are set in deep excavations. The thecae number 15 in 10 mms .

At the aperture of th. 2(1) the rhabdosome width is 0.7 mms . This increases to 1 mm by the level of th. 5(1). A septum is present in the obverse but not in the reverse view.
Remarks: Whilst the specimen accrees with G. incertus in the characters of the thecae, as well as in the general proportions and degree of sicmoidal curvature, it has a slightly higher thecal count. More specimens showing the distal end are required before a definite comparison can be made. Material seen: Specimens in Sedewick Museum, Cambridge.

## Glyptograptus ?enodis latus Packham Plate 16, fig. 4

1962 Glyptograptus enodis latus subsp. nov. Packham p. \$l8, text fic. 4 e,fie.

$$
20, P 1.71
$$

Holotype: The specimen figured by Packham 1962 as text fig. 4 e, Pl. 71, fig. 20 , the only specimen known.
Material: One specimen in full relief without proximal end, from Zone of D. macnus; Birks Beck.

Description: This specimen is 7 mms lons but has the proximal end missing. There are 10 thecae in 10 mms and at its distal extremity (about the 11 th thecal pair), it is 1.3 mms broad. In the distal region the common canal
occupies one half of the total width of the rhabdosome but proximally the proportion is much less.

The degree of sigmoidal curvature is considerable but not climacocrantid and the depth of the excavations is rather less than one third of the rhabdosome width.
Remarks: This form resembles G. enodis latus Packham in the rhabdosome width, thecal count, and nature of common canal but differs in havine rather more sigmoidal curvature of the thecae, and a roughly circular cross section. Furthermore there is a septum which may be complete in one view - presumed to be the obverse view.

## G1 yntograntus cuneatus sn. nov. <br> Plate 3, fiE.I.

Holotrpe: $H U R . / 14 \mathrm{P} / 20$, the only specimen, complete and well preserved, but flattened.
Horizon: Zone of P. cyohus, Pickerinc Gill (14P).
Derivation of name: cuneatus, L. wedee-shaped.
Descrintion: The rhabdosome is flattened and slichtly compressed at right ancles to its length, with consequent increase in thickness. The leneth is 6.25 mms and the thickness, distally, 1 mm . At the level of the aperture of th. 1(1) the width is 0.5 mms and the maximum width is achieved in such a manner that the whole polypary is wedee-shaped. The sicula has not been detected with certainty. A short, fine vireella projects from the proximal extremity.

The thecal spacing is constant at 15 in 10 mms . The geniculum is probably not as angular as it appears in the sfeeimen since it will have been accentuated by compression. Nevertheless it does not approach the climacograptid degree of ansularity. The supragenicular wall is inclined away from the axis and averaces 0.52 mms in length. The excavation is only 0.2 mms deep throughout the specimen and consequently only occupies a small proportion of the width of the distal part of the rhabdosome.
Remarks: In this last respect, as well as in ceneral form, this species is similar to G. tamariscus mut. fasticans Haberfelner, and Packham's G.sp.of
G.t. fasticans. On the other hand the thecae are closely spaced and the rhabdosome is less tapering than both forms. G. cuneatus sp. nov. has a less robust polypary than Packham's specimen.

$$
\frac{\text { Glvotograntus sinuatus sinuatus (Nicholson) }}{\text { Plate } 16, \text { fig. } 5}
$$

1869 Diplograntus sinuatus, Nich. Nicholson p.235,P1.11,fig.11.


$$
\text { fiع. } 140
$$

1962 Glyptograptus sinuatus (Nicholson). Romariz p.236, Pl. 22,fiz. 4 •

Material: Many specimens, mostly in full relief.
Horizon and Iocalities: Zone of M. trjanculatus to P. Ientotheca; Spengill (S24-28 to S36-39,7); Watley Gill (5Wa); Birks Beck (9Bi,6Bi).
Diacnosis: Rhabdosome between $I$ and 2 cms lone, initially relatively narrow, then widenine to 2 mms (relief). :Virgella and nema conspicuous when preserved. Thecae 15-10 in 10 mms , alternate with strong sigmoidal curvature, supracenicular walls inclired, cenjculum flowine, thecae inclined at $30^{\circ}$.. Descrintion: The form of the polypary is very distinctive in beinc broad, short, and with an initial portion of relatively narrow width which flares after th. $4(1)$ to 1.43 mms and ultimately, more eradually, to 2 mms . At the level of the aperture of th.l(1) the width is 0.52 mms . Both a vircella and nema are often present and each may measure more than 10 mms . Both are very slender.

At the extreme proximal end the thecae number 15 in 10 mms , and 14 in 10 mms at th. $4(1)$. Immediately after this narrow portion there is an increase in the size of the thecae, in their angle of incliration to the axis, and in the thecal spacing itself which falls to $13-10$ in 10 mms . After th.

9(1) or thereabouts the thecae are spaced constantly at 10 in 10 mms . It is interesting to note that the septum begins on the reverse side after the initial narrow portion, and not immediately as it does on the obverse side.

The distal thecae are distinctly sigmoidal; but are inclined to the axis at approximately $30^{\circ}$, whilst the initial thecae, by contrast, are inclined at a low ancle and show a certain resemblance to those of G.tamariscus tamariscus They differ, however, in having shorter, narrower excavations.

The distal thecae expand as the aperture is approached giving the supragenicular wall a slichtly rounded appearance. The actual thecal, margin has a distinct lip caused by slight outward erowth at this point. Overlap is pronounced distally (one half) having increased from one third in the proximal recion. The thecae seem to show torsion of the thecal axis but the actual amount and kind cannot be estimated in the writer's material. Remarks: G.s.sinuatus is a very distinctive fossil and can only be confused with G.s.crateriformis subsp. nov. (described below) from which it differs in the points enumerated on $p$.

$$
\frac{\text { Glyntograntus sinuatus crateriformis subsp. nov. }}{\text { Plate } 16, \text { fig. } 3}
$$

Holotyne: HUR./S75,9.4/74, a specimen in full relief; somewhat pyritised so that the proximal extremity is destroyed.
Horizon of Holotype: Zone of M. sedewicki. Derivation of name: crateriformis, L. cup-shaped. Material: 3 specimens in full relief, but incomplete. Horizon and Localities: Zone of M. sedcwicki; Spencill (S75,9.4). Diagnosis: General form and size very similar to $G_{o}$ s.sinuatus but thecae inclined at a lower ancle even in the distal parts and the thecae more widely spaced (10-8 in 10 mms ). ... Maximum breadth 2 mms . Thecae strongly sicmoidal, alternate, mpertural margins sliehtly everted and expanded into a lip or flange.
Description: The proximal end of this subspecies is not known. The distal fragments in all their ceneral characters as well as thecal form agree with Nicholson's species but the two can be distinguished on the followine erounds:
a) The thecae of G. sinuatus crateriformis are widely spaced distally (8 inlo mms ) and even near the proximal end number 10 in 10 mms .
b) The thecae are inclined to the axis at only $20^{\circ}$.
c) The amount of overlap is less and the thecal tubes appear altocether more robust.
d) The degree of expansion approaching the aperture, and particularly the apertural lip or flange, is much greater.
Remarks: Only a few specimens have been obtained but they are sufficiently distinct to warrant description as a new subspecies. Elles and Wood (p. 257 and $p .520$ ) restrict G.s.sinuatus to their zone of M. grecarius and in view of its obvious affinities it is probable that G.s. crateriformis subsp. nov. has developed from the earlier form.
Material seen: Specimens in the Sedewick Museum labelled Glyptocrantus of sinuatus (A23692 a and b, A23691) seem to be synonymous with G.s.crateriformis subsp. nov. They are recorded from the "H. cyphus Zone, Great Rundale Beck Cross Fell Inlier".

## G1 yptocrantus sn. 1

Plate 18, fiç. 8

Material: A single flattened specimen, HUR. $/ 1 \mathrm{Wa} / 37$ and counterpart HUR/IWa/22. Forizon: Zone of A.acuminatus; Watley Gill (1Wa). Descrintion: The rhabdosome of this specimen is nearly 6 mms lone and 1 mm wide, though this latter figure is increased by flattening and strong compression. The periderm is very thin but a conspicuous feature is the presence of a strongly chitinized nema which swells distally and projects beyond the end of the rhabdosome.

The thecae are distinctly glyptograptid and number $14-12$ in 10 mms . A short vircella can be seen.
Remarks: The specimen is imperfectly preserved and no comparison with other described species is made at the moment. .

## Glyntosrantus sn. 2 <br> Plate 18, fig. 4

Material: A single specimen almost flattened.
Horizon and Locality: Zone of M.sedswicki: Spengill (S80,8.4).
Descrintion: This specimen is a glyptograptid of tamariscus - like arpearance which differs from those described above in having its thecae very closely spaced and in the presence of a very stout vircella. The thecae number over 20 in 10 mims and the vircella actually swells slightly in the part most removed from the proximal end.

The specimen is almost flattened and is compressed obliquely to the lencth of the rhabdosome. The latter has accentuated the ancularity of the ceniculum in the thecae of the first series, but does not seem to have greatly increases the thecal count.

In spite of the distortion of this specimen it resembles G. serratus Elles and Wood and may represent a proximal end of this species. The distal parts are not seen but after 4 mms a thickness of 1 mm is reached.

$$
\frac{\text { Glyptosrantus sn. } 3}{\text { Plate } 16, \text { fig. } 7}
$$

Material: A single specimen in full relief but with the proximal end missing. HUR./S75,9•4/153.
Horizon and Locality: Zone of M. sedrwicki; Spengill (S75,9.4). Description: The rhabdosome is small and reaches a width of 0.82 mas. When complete its length is probably $5-6$ mms. : The thecae show tyoical glyptograptid: sigmoidal curvature with the infragenicular wall inclined to the axis at about $40^{\circ}$. The distal extremity of the supracenicular wall is inclined away from the axis and measures approximately $0.78-0.90 \mathrm{mms}$ in length. The geniculum is ancular.

Each theca has a maximum lencth of 1.5 mms and a slightly everted apertural marcin. The thecae which number 9 in 10 mms are strongly alternate in their arrangement and the common canal extremely narrow.
Remarks The strongly alternate arrangement of the thecae sugeests affinities
with G.tamariscus tamariscus but the wide spacing of the thecae so close to the proximal end differentiates this specimen from that subspecies.

From G. t.distans, G.t.anculatus, G.t.acutus and G.t.varians it differs in havins an inclined supragenicular wall.

Glyntocrantus sn. 3 is almost certainly a new form but more material is required before a diagnosis and detailed description can be given.


Material: Several specimens in full relief, but fragmentary. Horizon and Localities: Zone of M. trianeulatus; Watley Gill (6Wa). Descrintion: This form is retained, doubtfully, in the cenus Glvotocrantus on the grounds that the geniculum, though ancular, is not quite climacosraptid in form and that the supragenicular wall is unusually bent.

This latter phenomen is the most characteristic feature of the thecac. The suprasenicular wall continues to grow upward from the geniculum but it is inclined slightly inwards towards the axis so that the thecal tube becomes constricted as the aperture is approached. "Immediately beyond this constriction, however, there is a sudden expansion of the tube producing a broad aperture which is also strongly everted.

The rhabdosome reaches a width (in relief) of $1 \cdot 7$ mas and even proximally is quite robust ( $0.8-0.9 \mathrm{mms}$ at level of th. $1(1)$ ). Proximally the thecae are spaced at $9 \frac{1}{2}$ in 10 mms and distally at $8 \frac{1}{2}$ in 10 mms . The degree of overlan is approximately one half the length of the thecae.
Remarks: The characters of the thecal tubes appear to be unique; the only. species possibly having similar thecae being ?Climacosrantus retroversus sp. nov. (see p. ). The two are possibly related.

## genus ORTHOGRAPTUS Lapworth, 1873

## (=Cystograptus, Hundt 1942; Glossocraptus Ruedemann, 1947 partim (non Emmons, 1855); Rectograptus Pribyl, 1949)

Type snecies: Graptolithus quadrimucronatus Hall, 1865
Generic diagnosjs: Thecae straight throuchout the length of the rhabdosome though occasionally very slicht sicmoid curvature; paired apertural spines in one group, large basal spines not uncommon.

Orthosrantus vesiculosus (Nicholson)
Plate 3,fig. 3; Plate 15,figs.1,2,3

1868 Diplograpsus vesiculosus Nicholson pl.3,fig. 11


Material: Over 30 specimens, all flattened, all growth stages represented. Horizon and Localities: Zones of M. atavus to P. cynhus; Spengill (Sl-5 to S13-17, ?Sl7-20); Birks Beck (1Bi); Watley Gill (1Wa,3Wa); Pickering Gill (14P).

Diagnosis: Rhabdosome long, broad with a prominant vircella and a characteristic vesicle. Sicula large, thecae about 10 in 10 mms .

Description: All the diacnostic characters of this form are creatly altered by compression (see P1.15,fics.1-3) but the rhabdosome is usually broad and over 2 cms long.

The orthocraptid thecae in flattened specimens are best seen in the younc stages of growth. Th.l grows downwards to the base of the sicula, or beyond before growing upwards (Pl.3,fig.3). The sicula in the Cautley specimens is at least 6.5 mm lond and th.l, which originates 2 mms above the base of the sicula, is fully 2.5 mms in length.

Distal thecae usually have their characters obscured in flattened material and the pseudo-"biscalariform" views mentioned by Elles and Wood are common.

The virgella is long and usually about 5 mis. A vesicle is developed and in the Cautiey specimens this usually begins within the rhabdosome. It is clearly visible for example in fig.l (Pl.15), but distal extremities which show it extending beyond the rhaodosome have not been observed with certainty. Remarks: This species was first reported from Cautley by members of H.M. Geolocical Survey (Dakyns et.al. 1891). Elles and Wood on p. 230 state that the Lake District specimens are usually poorly preserved but the specimens fieured here are in good condition. (cf. Pl.15,fics.l-3, with Elles and Wood 1907, text figs.la-f).

To judge by the figures of Elles and Wood (Pl.28,figs.a-d) there is a certain amount of variability in the breadth of the rhabdosone. The Cautley specimens approach the narrower variants but are distinct from O.V.nenna Elles and Wood.
Material seen: Specimens in Sedewick Kuseum Collection, Cambrider.

$$
\frac{\text { Orthograntus cyperoides }}{\text { Plate } 20, \text { fiE. } 6}
$$

1897 1007

1924
1945

Diplograptus cyperoides Tornquist p.16,P1.2,fies.30-32.
" (Orthograptus) cyperoides, Tornquist. Elles and Wood, pp.238-9, text fig.158a-b,Pl.29,figs.8a-c.
" cyperoides Tornquist. Fundt, Pl.l,fiE. 50.
" (Orthograptus) cyperoides Tornq. Waterlot P1.Il,fig.160.

Material: Several specimens in relief.
Horizon and Localities: Zone of M. triansulatus, ?Zone of M. convolutus;

Spengill (S36-39,7); Watley Gill (5Wa,?9Wa).
Diacnosjs: Rhabdosone short and narrow with a characteristic proximal region and a relatively long sicula.
Description: The maximum length noted for the polypary of this species is about 6 mms , and the maximum breadth (low relief) is 1.3 mms .

A remarkable feature of 0 . cyperoides is its sicula of $2 \cdot 3 \mathrm{mms}$ length, which reaches to the level of the 3rd thecal pair. At its base the sicula is 0.15 mms broad and is, therefore, almost 15 times longer than it is broad.

The thecae are simple overlapping tubes reaching a maximum length of 1.3 mms distally and overlapping from one third to one half their length. Throuchout the rhabdosome the thecae are slightly alternating. In the obverse view a septum extends the whole length of the polypary but it has not yet been determined whether it is equally developed upon the reverse side.
Remarks: The Cautley specimens agree in most respects with other described British material (Elles and Wood 1907) but have the thecae rather more closely spaced at 14 in 10 mms (cf. 12 in 10 mms for the Scottish and Welsh material) and a breadth slightly in excess of lum. Like this material the writer's specimens have a septum which may be complete and are therefore a little different from Tornquist's Swedish specimens. The form briefly described below as aff. cyneroides however has no septum at all. Material seen: Specimens in Elles and Wood Collection, Sedewick Museum, Cambridce.:

Orthosrantus aff cyneroides (Tornquist)
Plate 20,fic. 5
aff.
1897 Diplograptus cyperoides Toernquist p.16,Pl.2,figs.30-32.

Material: A single specimen (HUR./S36-39,7/30) preserved in relief in pyrites but weathered out leaving a mould.
Horizon: Zone of M. trianculatus; Spengill (S36-39,7).
Descrintion: This specimen has the proximal end obliterated but must be less than 1 cm long. It is almost parallel-sided with a maximum width (full relief) of 1 mm .

The thecae are simple, straight tubes about lmillone which overlap for one third of their leneth. The thecal court shows 13 in 10 mms . There is no trace of a septum.
Remarks: This form is very close to the previous species and, may be an extreme variant of it.

$$
\frac{\text { Orthocraptus bellulus (Toernquist) }}{\text { Plate } 15 \text {, fic. } 4}
$$

1890 Diplograptus bellulus Toernquist p.28,P1.1,figs.25-29.

| 1893 | $"$ | $"$ | $"$ | p.10,fies.42-44. |
| :---: | :---: | :---: | :---: | :---: |
| 1897 | $"$ | $"$ | $"$ | p.17,Pl.2,figs.20-25. |
| 1907 | $"$ | (Orthocraptus) bellulus, Tornquist. Elles and Wood pp.231-2, |  |  |
|  | text fig.152a-c,P1.29,fig.2a-e. |  |  |  |

1924 Diplograptus bellulus Tornquist. Hundt Pl.2,fiعs.14-16.
1945 . " (Orthocraptus) bellulus Tornq. Waterlot Pl.ll,fiع. 158.

Naterial: A single flattened speciren with proximal end nissinc, tocether with other more doubtful specimens.
Forizon and Locality: Zone of M. convolutus and P. lentotheca; Watley Gill (llWa); Birks Beck (5Bi,6Bi).
Description: This specimen has the typical rhatdosome and thecal form of Toernquist's species. The rhabdosome is flattened and compressed at right ancles to its length thereby increasing its width to 2.5 mms . At the same time the density of the thecae has been increased to $15-16$ in 10 mms . The total length of the rhabdosome is probably about 1 cm , and the thecae, despite compression are distinctly orthograptid.

Material seen: Specimens in Sedewick Museum Collection, Cambridece.

Orthograntus attenuatussp. nov.
Plate 3,fig.2; Plate 20,fic. 7

Holotype: HUR./l4P/7, the only specimen, preserved as a film in dark grey shale, complete and well preserved.

Horizon of Holotyne: Zone of P. cyphus; Pickering Gill (14P). Derivation of name: attenuatus, I. attenuated refers to nature of periderm. Descrintion: The rhabdosome has a lencth of 5.46 mms and widens steadily from 0.5 mms at the level of the first thecal pair to 1.17 mms distally. It is, therefore, wedge shaped. Eight thecae are developed in each series and these are distinctly orthocraptid in form.

A sicula can be detected, and thouch not accurately meacurable, it is certainly less than 1 mm long and probably reaches to about the level of the distal extremities of the first thecal pair.

Throughout the rhabdosome the thecae number 15 in 10 mis and overlap for approximately half their length. The apertural marcins are more or less horizontal.

A nema projects beyonc the distal extremity and can be traced down to the sicula as a thickening chitinous thread. No septum is apparent thouch in such a flattened snecimen it could have been obliterated.

By comparison with other fossils on the same slab it can be seen that the chitinous test is extremely thin.
Remarks: The tiny wedee-shaped nolypary and attenuated periderm serve to distinguish this form from other orthograptids. The close thecal spacing is also a distinctive feature.

## Orthocraptus of. insectiformis (Nicholson) <br> Plate 18, fjes.10,11.

1869
1876
1877
1907

1924
1945

Diplograpsus insectiformis Nicholson p.237,P1.11,fic. 13. Diplograptus

Lapworth Pl.2,fic. 40.
" "
" Pl.6,fis.15.
" (Orthocraptus) insectiformis, Wicholson. Elles and Wood pp.228-229, text fict.150a-c, P1.28,fics.7a-c.
". Vinsectiformis Nicholson. Hundt Pl.2,fics.20,21.
" (Orthograptus) insectiformis Nich. Waterlot Pl.10,fie. 150.

Material: 3 specimens, flattened.
Horizon and Locality: Zone of M. convolutus; "Watley Gill (IIWa).

Diacnosis: Rhabdosome short, relatively broad, with a rrominent and robust vircella, and spinose thecae numberine $20-15$ in 10 mins (compressed). Descrintion: This species is almost certainly the same as Nicholson's but the state of preservation does not nermit a full assessment of the biocharacters.

The length of the rhabdosome, excluding the vircella, is about 1 cm though the specimens may be incomplete. "A width of 1.5 mms is acheived but is probably accentuated by a combination of flattening and compression. (value exclusive of spines).

The sicula cannot be detected but a robust vircella extends for 5 mm below the proximal end. Thecal spacine is clearly reduced by stronc compression and at the extreme proximal end the thecae number about 20 in 10 mms . Distally this value falls to 15 in 10 mm . Each theca throughout the rhabdosome is provided with a spine. The mode of origin of the spines cannot be determined and it is unfortunate that the lineation in the rock is parallel to them. This has the effect of obscuring both the detail and length.

From the size of the polypary, the shane and spinose nature of the thecae the Cautley specimens seem closest to 0 . insectiformis (Nich.) Material seen: Specimens in H. M. Geolocical Survey Collection.
subfamily PETALOGRAPTINAE Bulman 1955
genus PETALOGRAPTUS Suess 1851
(pro Diprion Barrande 1850 and Petalolithus Suess, 1851)

Tyoe Snecies: Prionotus folium Hisinger, 1837; SD Lapworth 1873.
Generic diagnosis: Rhabdosome foliate, thecae at a considerable anele to axis of rhabdosome. Thecae lons, nearly straight or with gentle ventral curvature, with large overlap; th.l(1) and $1(2)$ with pronounced upward direction of crowth, leavinc sicula much exposed; in cross section rhabdosome is exaçeratediy rectangular; septum partial or absent.

Plate 3, fič. 5

1850 Graptolithus palmeus Barrande Pl.3,fi๕.7.
1851 Petalolithus palmeus Suess Pl.8,fič.l.
1868
Diplograptus palmeus Nicholson $\mathrm{p} \cdot 523, \mathrm{Pl} .19, f i g \cdot 2-3$.
1876
1882
Cephalograptus ovato-elongatus n.sp. Kurck p.303,P1.14,fig.10.
1890
Diplograptus
" Kurck. Geinitz Pl.A,fig. 40.
1897 Petalocraptus palmeus var. ovato-eloncatus Kurck. Elles p.197, P1.14, fics.11-14.


1945 Petalograptus palmeus var. ovato-eloncatus Kurck. Waterlot Pl.19,fiE. 231.
non.
1897 Diplograptus palmeus var. ovato-elongatus Perner p.6,Pl.9,fig. 6,8.

Material: 2 good specimens in full relief, preserved in pyrites. One showinc the sicula.
Horizon and Locality: Zone of M. triangulatus; Birks Beck (9Bi). Descrintion: The rhabdosome is robust and distinctly ovato-eloncate in form. A maximum breadth of 4.3 mms is reached in the ovate portion of the polypary and the species narrows to 3.25 mis in the elongate portion. The length is 1 cm .

The sicula is 2 mas long and its apex reaches the level of the apertures of the first thecal pair. Th. 1 is 2.5 mms long and subsequent thecae, though about the same length, grow out at a hich angle to the axis thus increasinc the width since th. 1 is pressed to the sicula for 0.8 mms of its lencth.

All the thecae show a mean apertural expension to 0.6 mms . The apertural marcin itself is concave in profile view and the ventral marcins of the thecae are also concave. In cross section the thecae are rectangular. Thecal spacing is close (13-15 in 10 mms ) at the proxinal end, but decreases to 12 in 10 mms distally. The angle of inclination also changes from anproximately 450 proximally to about 300 distally (see fig.5, Pl.3). All the thecae have growth segments which are rather broader in the distal than the proximal thecae, and also in the anertural rather than the axial region. They number epproximately 35 to each theca.

The septum in one specimen is complete and in the other (obverse view) can only be partial or may be absent entirely.
Remarks: The specimens described here agree with Kurck's original specimen in having an ovato-eloncate outline. Elles and Wood (1908) also took this as a character of specific importance. Other forms, however, have been described by Roucek and Pribyl (1941) which, thouch having the general dimensions do not show the above feature. These authors extend the snecific definition to include the more parallel-sided forms, and consider synonymous many forms previously described under a variety of names.

The writer refers the Cautley species only to those forms havins an ovato-elongate profile.
Material:seen: Specimens in H.N.Geological Survey Collection.

Petalosrantus minor minor Elles Plate 3 , fig. 6

1893 Diplograptus palmeus Toernquist Pl.1,figs.29-31.
1897 Petalograptus minor Elles p.201,P1.14,figs.17-21.
$1908 \quad " \quad$ Elles. Elles and Wood pp.279-281, text fiç.193a-b,
P1.32,fics.5a-e.
1920. Diplograptus (Petalocraptus) minor Gortani p.23, P1.1,fiE. 37.

1933 Petalograptus minor Elles. Sun p.33,P1.5,figs.5a-b.
?1934 " patulus Schwarzbach, p.4-6,fie.3.
1941 Petalolithus minor (Elles 1897). Boucek and Pribyl pr.5-6,text fif.

$$
\text { lf,E, Pl.l,fic. } 3
$$

1945 Petalocraptus minor Elles. Waterlot Pl.19,fiç. 234.
1949 Diplograptus (Petalograptus). minor Elles. Obut p.15,Pl.1,fies.ga-b. non.

1923 Petalograptus minor Gortani Pl.4,Pl.l,fie.5.

Moterial: Several specimens in full relief.
Forizon and Localities: Zore of Motrjancilatus; Birks Beck (7Bi); Spencill (S24-28, S32-36, S36-39,7).
Diacnosis: Rhabdosome short, about 7.5 mms , relatively broad ( 3 mms ) and oblone in outline. Thecae reachinc a maximum of a little over 2 mms and number ing 12-15 in 10 mrs .

Descrintion: The rhabdosore is very distinctive in size and outline. Asicula has not been observed.

The thecae are lonc tubes averacinc approximately 2 mu in lencth and overlapping for more than three ouarters of this. They have concave apertural marcins in profile view and the ventral marcin of each theca is also concave. Proximally the thecae are inclined to the axis at $45^{\circ}$ but nore distally this value lessens. Throughout the lencth the thecal spacine is close and they number 12-15 in 10 mms 13-14 in 10 mms is the usual figure.

The specimen figured on Pl. 3 (fic.6) is 2 mould of a reverse view and it shows a septum extending sorne way down the polypary. Remarks: P.minor at Cautley is identical with the material described fully by Elles (1897) and Elles and Wood (1908) except that at least in some specimens the septum is partially developed on the reverse side.

The apparantly hich thecal count is not unusual since the ficures of Elles and Wood (Pl.32) show considerably more than the 12 in 10 mms given in their diagnosis. A figure of $13-14$ in 10 mms seems more usual in their fics. 5a,5c,5d, and 5e. Boucek and Pribyl (1941) record 12-14 in 10 mms (i.e. 6-7 in 5 mms see p .5 ).
Material seen: Specimens in Sedewick Museum, Cambridge.

Petalosrantus minor finitimus subsn. nov.
Plate 3, fic.4; Plate 14, fics.6,7.

Holotune: $H T R / 6 \mathrm{Bi} / 41$, complete specimen in full relief, preserved in pyrites, reverse view.
Horizon of Holotyne: Zone of P. Ieptotheca.
Derivation of name: finitimus L. 'near'.
Material: 6 specimens, four of which are complete and preserved in full relief Horizon and Localities: Zone of D. magnus; Birks Beck (6Bi). Diacnosis: Rhabdosome small, oval, reachinc 6 mms . in length and almost 4 mms in width. Proximal end pointed. Thecae number $14-15$ in 10 mms , inclined to the axis at 400 , 2mns long (maximum). No septum. Sicula immeasurable Descrintion: The rhabdosome is characteristically small and oval in outline, except for the proximal end which is bluntly pointed. A maximum lencth of 6 mms . and width of almost 4 mms is reached in the largest specimen, but the others are all rather shorter and narrower than this.

Because of the mode of preservation the sicula cannot be seen in the one specimen exhibiting the obverse side of the rhabdosome. On the reverse side no specimens show a septum, whilst one (PI.3,fic.4) partially broken specimen suecests that there is no septum on the obverse side. This same specimen also shows that the sicula cannot be longer than 1 mm .

The thecae are closely spaced ( $14-15$ in 10 mms ) and reach a maximum len$\varepsilon^{t h}$ of almost 2 mms. Each has its ventral marcin concave in profile view and its apertural resion expanded. The arertural marcin is even, to slightly concave.
Remarks: The only described British species with which P.minor finitimus can be compared is F.minor minor. It is clearly close to this subspecies but is distinctly smaller, has no septum, and probably has a much smaller and less conspicuous sicula. P.m.finitimus also differs from P. praecursor Boucek and Pribyl in being broader and in having its thecae inclined at a hioher angle to the axis. The thecal count, however, is the same and the sicula must be of a similar size. All three species occur at the same horizon.
$\frac{\text { Petalograntus kurcki sn. nov. }}{\text { Plate } 20, f i g s .1,2,3 .}$

Holotype: HUR./S73,11.4/40, a specimen in full relief but compressed, obverse view.
Horizon of Holotyne: Zone of M. sedcwicki; Spencill (S73,11.4).
Derivation of name: "Latinised" after C.Kurck.
Material: Six specimens preserved in full relief.
Horjzon and Localities: Zone of M. sedcwicki; Spencili (73,11.4).
Diacnosis: Rhabdosome small, short, and narrow; more or less parallel-sided. Sicula long and free for a considerable distance in the obverse view. Thecae small, numberinc 18 in 10 mms (allowing for compression).
Descrintion: The rhabdosome is very short and in all cases is less than 6 mos. A maximum width of 1.4 mms is reached almost imnediately.

The sicula is free for almost the whole of its length when viewed from the obverse side. It is at least 1.7 mms long having an apex well above the level of the apertures of the second pair of thecae. The base is 0.2 mms in diameter.

The thecae themselves are small with a maximum lencth of 1 mm and overlap for one half of their length. They are closely spaced numbering 16-20 in 10 mms . The highest of these figures (20) was obtained from specimens compressed at right angles to the length of the polypary and the smallest (16) for those affected in the opposite way. A thecal count of 18 in 10 mms will be near the true ficure for uncompressed specimens. The thecal tubes do not expand in the recion of the anerture. Growth secments, number approximately 25 per theca and show an increased width towards the distal end of each theca and towards the distal end of the rhabdosome.

No septum is present.
Remarks: The specific characters of this species are sufficient to distinguish it from other forms. Particularly striking is the small size of the rhabdosome, small and closely spaced theae and the complete lack of a septum. The six specimens occur on a sincle slab in association with a prritous flobule showing concentric rincs.

Trne snecies: Diplograpsus cometa Ceinitz, 1852
Generic diacnosis: An extreme development of Petalocrantus; rbabdosome more or less triangular, composed of a few elongate thecae.

Cenhalograntus aff cometa extrema Boucek \& Pribyl
Plate 20, firg. 4
aff.
1941 Cephalocraptus cometa extrema n. subspec. Boucek \& Pribyl pp.14-15, P1.1,fie. 10 , text fic. 21-m.

Holotyoe: The specimen ficured in text fis. 21.
Material: A single distal fracment in low relief. (FUR./575,9.4/32).
Horizon and Locality: Zone of f. sedwicki; Spengill (S94,7•4).
Descrintion: This small fracment is easily placed in the senus Cenhalocrantus by the presence of long thecae and a rapidly-narrowing proximal part. The relative narrowness of the polypary ( 0.78 mms ) and the small number of thecae (3-4 on each side of axis) succests affinities with C.c.extreme rather than with C.c.cometa (Geinitz). The rhabdosome may not, however, be fully developed and more material is required before a diagnosis and full description can be given.

A nema projects 2 mms beyond the distal extremity of the polypary.
subfamily RETIOLITINAE Lapworth, 1873
(nom.transl. Boucek \& Munch, 1952 (ex Retioiitidae Lapworth 1873))

## Eenus FETIOLITES Barrande, 1850 .

(nom. conserv. (ICZN Opinion 199)) (= Gladiolites Barrande, 1850; Gladiocraptus Lapworth, 1875; Dimykterocraptus Haberfelner 1936; Pseudoretiolites Boucek \& Munch, 1944).

Type Species: Gladiolites ceinitzianus Barrande, 1850
Generic diagnosis: Reticula on strongly developed clathria of parietal, pleural, apertural, and aboral lists, with vircula rapidly incorporated on one side and dorsal list ("ziczag vircula") on other.

## Retiolites geinitzianus ceinitzianus Barrande Plate 16, fig. 1

1850
(Gladiolites) Retiolites Geinitzianus Barrande p.69,Pl.4,figs.16-33
1851
1852
1868
1882
1890
1908

1929 Retiolites Geinitzianus Barrande. Suess p.95,Pl.7,fics.ld-e. " " $"$ Geinitzp.52,Pl.6,figs.1-8. " " " ....Nicholson p.530, Pl.19,fics.19-20.
"
" "
" (Gladiograptus) Geinitzianus, Barrande. Elles and Wood pp. 336 8, text fige.220a-f, PI.34,figs.8a-d. geinitzianus Barrande. Glemerec pp.134-7, Pl.3, fics.9a-e.
1944 " (Retiolites) geinitzianus geinitzianus Barrande 1850. Boucek. and Munch pp.566-9, Pl.3,figs.2-5, text figs. $13 \mathrm{c}-\mathrm{h}$ \& $14 \mathrm{c}-\mathrm{d}$.
1945 " (Gladiograptus) Geinitzianus Barr. Waterlot Pl. 20,fig. 237.
?1947 " geinitzianus Barrande. Ruedemann pp.466-7, plate 83,figs.l-2.
?1953 " geinitzianus Barr. Kuhne p. 444,fič. in text.

Lectotrne: Specimen ficured by Barrande Pl.4,fiés.17-19.
Material: Many specimens with some well preserved proximal ends, mostly in relief.

Horizon and Localities: "Reçeinitzianus and vars" recorded by Wilson (1953) from his M.greistonensis Zone but these have not been examined by the writer; Zone of C.centrifugus - C.insectus: Bluecaster Gills, Near Gill (8N); Middle Gill (1M, 4N); Wandale Hill (47W,37W,25W,26W,28W,29W); Pickerinc Gill (5P,6P, 10P, 8P); Hebblethwaite Hall Gill (5H).
Diasnosis: Fhabdosome lonc, broad, sword-shaped, blunt proximally. Well developed and striking reticula, thecae at a high angle to the axis numbering 19-10 in 10 mms. Clathria well developed. Thecae inclined at $60^{\circ}$. Descrintion: Althouch specimens from $1-2 \mathrm{cms}$ are the commonest, fracments up to 5 cms long have been obtained. The maximum breadth is about $4-5$ mis. A breadth (relief) of 4 mms is reached $1 \frac{1}{2} \mathrm{cms}$ from the proximal extremity and thereafter the rhabdosome is more or less parallel-sided. Some idea of the rapid increase in width can be obtained from the widths measured at the levels of the lst, 2nd, and 3rd thecal pairs. They are, respectively:- 0.78 mms , $1 \cdot 17 \mathrm{mms}, 1 \cdot 43 \mathrm{mms}$.

At the proximal extremity the thecae are closely spaced and nay number 19 in 10 mms . Away from this point the thecal tubes, thouch maintainine approximately the same angle to the axis, increase in length and width so that at $1 \frac{1}{2} \mathrm{cms}$ they number 15 in 10 mms at the most. Distally a further reduction in density takes place down to 10 in 10 mms .

The clathria is well developed, each of the strands and lists being about $0.05-0.06 \mathrm{mms}$ thick. Various clathrial elements can be identified in relief specimens, particularly those which are split into two halves.

The reticula is very striking consisting of a chitinous network whose threads are about half the width of the clathrial elements. There are 9-11 "rneshes" along the length of each thecal tube and 3-4 across the width. Remarks: R.s.ceinitzianus is a very characteristic fossil of the lowest zone of the Wenlock Series. It has not been found in the Zone of C.murchisoni (as here defined) although it was recorded in 1911 by Watney and Welch from their murchisoni zone.
?1852 Graptolithus venosus Hall p. 40, Pl.17A,fics.2a-c.
1908 Retiolites (Gladiocraptus) feinitzianus, Barrande. var. augustidens sp. nov. Elles and Wood D.338,Pl.34,fics.9a-c.
1936 Dimykterocraptus bončevi Haberfelner p.92,fig. 5.
?1944 Retiolites (Retiolites) Eeinitzianus aucustidens Elles and Wood 1908 Boucek and Munch pr.563-6, Pl.2,fies.l-4, text figs. lla-e, and $12 b-e$.
?1945 " (Glad.)Geinitzianus var. Venosus Hall. Waterlot Pl. 20,fie. 238.
?1947 " geinitzianus Barrande var. venosus (Hall). Ruedemann p.467-8, Pl.83,fics.4-9.
?1949
"
"
Barrande var. augustidens Elles. Obut p.16, P]. 2,figs. 2a-b.

Material: Less comnon than R.c.ceinitziamus but about 20 specimens in relief. Horizon and Localities: Zone of C.centrifuphs - C.irsectus; Wenlook Series; Bluecaster Gills, Near Gill (8N); Middle Gill (2N, 4M); Wandale Hill (5lW, 37W,25W,26W,29N); Pickerine Gill (5P,8P,9P); Birksfield Beck (7Bf). Diacnosis: Rhabdosome up to 3 cms lone, paralle?-sided or slowly wideninc. Proximal end rounded. Clathria and reticulum prominent. Thecae inclined at $40^{\circ}-50^{\circ}$, numbering $15-10$ in 10 mms .

Descrintion: Occurine at the same horizon as R. ©. ceinitzianus is a narrow form which does not exceed 3 cms in length and which has a maximum width of 2.5 mms. These characters themselves are sufficient to distinguish it from R.c.ceinitzianus.

The thecae throughout are inclired to the axis at $40^{\circ}-50^{\circ}$ and at the proximal end usually number 15 in 10 mms . Their density falls rapidy to 10 in 10 mms at a little over one centimetre from the proximal extremity. The "mesh" of the reticulum is very similar to R.E. ceinitrianus and the clathrial elements are equally distinct.

Remarks: This subspecies is also restricted to the lowest zone of the Wenlock (Stase 1) and is common enouch to be recarded as a characteristic fossil of it

The Cautley specimens are identical with the described British specimens of the subspecies and are clearly close to those described by Boucek and Munch (1943). The only noticeable difference from the latter material is in breadt and thecal spacing ( 2.5 mms of. 3.4 mms , and 15 in 10 mms of 1]-12)

A narrow form of R.ceinitzianus was not detected by Watney and Welch (1911).

In view of the fact that R. ©. aumustidens occurs at the same horizon and the same geographical locality as R. Pecinitzianus (thouch not on the same bedding plane) there may be a case for raisine the former to specific status. Material seen: Specimens collected by Professor Shotton from Swindale Beck IIr. Knock. Some of these (e.c. S.M. no. A23714 a-b) are R. ©.avoustidens whilst others are R. ©. ceinitzianus.

Specimen no. A35825 (Sedewick Nuseum) labelled R. C. ?var. augustidens is R. E. aumustidens (Locality, Whinny Gill, Cautley below High Pasture Wood, probably l-5 Wh. collector unknown.).

Other specimens in Sedewick Museum.
genus fsEUDOPLEGMATOGRAPTUS Pribyl 1948

Tyne snecies: Retiolites perlatus obesus Lapworth, 1877 Generic diagmosis: Like Retiolites but with somewhat ill-defined clathria and well developed lacinia.

Pseudonlegmatosrantus obesus obesus (Lapworth)
Plate 19,fig. 10

1876 Retiolites perlatus Lapworth Pl.3,fig. 61.
1877
1890 1908
" var. obesus Lapworth p.137,F1.6,fig. 26.
" obesus Lanworth. Toernquist p.10, Pl.2,fiç. 24-5.
" (Plegmatograptus) obesus (Lapworth). Elles and Wood nn.342-3
text fis. 223a-c, Pl. 34,figs.12a-c.
?1924 Retiolites obesus Lapworth. Hundt p.80, Pl.11,figs.28-31.
?1939 " " " Münch p.23,fic. 38.
?1944 Plesmatograntus obesus obesus (Japworth). Bovćek and Münch pp. 532-535, text fig.la-s, 2a-b, Pl.1,fies.l-2.
1945 Retiolites (Plegmatograptus) obesus Lapw. Waterlot Pl. 20, fig. 242 . 1949 Plegmatograptus obesus (Lapworth). Obut pp.17,P1.2,fics.5a,b.

Material: About 7 specimens, one complete, one in relief.
Horizon and Localities: ?Zone of M. sedewicki, Zone of Monocrantus turriculatus; Spengill (?S94,7•4; S124,10•25; S140,11; Sl66,8.5; S196,9•25; Sl97, 5.5).

Diagnosis: Rhabdosome about 2 cms lone, overall width of the order of 6 mirs. Thecae fairly distinct numbering 13 in 10 mms at the proximal end. Clathria probably poorly developed if at all, lacinia present.
Description: This species fits the diagnostic features enumerated by Elles and Wood (1908) in their detailed description of the British specimens rather more closely than it does those listed by Boucek and Münch (1943) for the Central European material. The reticulate pattern of the flattened rhabdosome is, however, similar in all cases.

The Cautley specimens are at least 2 cms lone and possibly more, havinc an average (adult) width of 6 mms . At the proximal end thecal counts of 13 in 10 mms are common but at 1 cm this has fallen to 9 in 10 mms which is then maintained.

The reticulate pattern is very similar to that ficured in text fic. 233 a by Elles and Wood and text fig. $2 b$ by Boucek and Nünch. Whilst the various elements of the rhabdosome are not easily identified a clathria does not appear to be developed.
Remarks: The thecal spacing (13-9) compares well with the fieures siven by Elles and Wood (12-9) and rather less well with the $11-12$ in 10 mms given by Bouček and Münch. The breadth of the polypary (6mrs) is intermediate to those quoted by the above authors ( 8 mms and $4-5 \mathrm{mms}$ respectively.)

The nature of the reticulum seems sufficient to distinguish this subspecies from the subspecies of Boucek and Münch P.o.reticulatus, P.o.heraranalis and P.o.relictus.
Material snen: Specimens in Elles and Wood Collection, Sedowick Museum.

Trne snecies: Retiolites nassa Holm 1890
Generic diacnosis: More or less circular in cross section, theoal apertures connected by ventral instead of pleural lists, reticula fairly well developed; rhabdosone tapering distally and terminatinc in a tubular appendix; vircula; central in the corona, later incorporated in lateral wall.

Gothocrantus nassa (Holm)

## Plate 3,fic. 7

1890 Retiolites nassa Holm p.25,P1.2,fics.12-14.
1895 Cothosraptus nassa Frech p. 670.
1897 Retiolites nassa Holm. Perner p. 36, PI. 17, fics. 20-21, text fis. 32a, b.
1900 " (Gothocraptus) nassa Wood p.486, Pl. 25,fie. 30, text fic. 27.
lo08 " " " (Holm). Elles and Wood text fic. 225,

$$
\text { Pl. } 34, f i \operatorname{cs} .15 \mathrm{a}-\mathrm{d}
$$

?1909 " " Holm. Noberg and Tornquist p.19,Pl.1,fig.14.
1938 Gothocrrantus nassa (Holm). Bulman P.D.80,fic.40d, (non 40e)
1945 Retiolites (Gothograptus) nassa Holm. Waterlot p. 65, P1. 20, no 244.
?1948 Gothograntus nassa (Holm). Pribyl p.21, (not ficured)
1952 Cothoçraptus nassa (Holm,1890). Boucek and Munch pp.11-15,P1.1,fics.
9-11, text figs.2a-i, 3a-d.

Material: A few specimens, flattened and not well preserved.
Horizon and Iocalities: top of Stage 4, Wenlock Series, P.nilssoni Zone Ludlow Series; Wandale Hill (4W, 8 W ).
Diacnosis: Polypary small, narrow. Sicula not seen; thecae 14-15 in 10 mms , nature obscure. Nema present. Conspicuous reticulum, clathria not well. developed.

Descrintion: The rhabdosome is less than lom long and almost narallel-sided A maximum width of 0.78 mms is reached almost immediately and the thecae are uniformly spaced at 14-15 in 10 mms. Details of the thecal tubes cannot be made out but the apertures are represented by tiny excavations of the mereins Thickenings near the aperture probably represent those described by Elles and Wood (1908, p.344). The reticulum is formed of a tiny mesth-work which is rectanzular in outline in these compressed specimens.
Remarls: This is a rare form in the Wenlock Series at Cautley but it has been found at locality $4 W$ (Wandale Hill) in association with M.flemingii and P. dubius. The former fossil has not been found above the Brathay Flars. Further discussion on the straticraphic nosition of this fossil takes place on p .

Material seen: Specimens figured by Elles and Wood Pl. 34,figs. 15 b , d, in the M. vulgaris Zone exhibit, Sedewick Museum (S.M. nos. A22489-90)

## genus SPINOGRAPPTS Boucek \& Munch, 1952

Type Species: Retiolites spinosus Wood, 1900
Generic diarnosis: Like Plectooraotus but with better developed reticula and paired apertural spines:

## Spinograptus sninosus spinosus (Wood)

 non.figured Retiolites spinosus, sp. nov. Wood pp.485-6, fic.26, Pl.25,figs.29A-B.Material: A few flattened specimens, fairly well preserved. Horizon and Localities: Zone of P. nilssoni, Ludlow Series; Wandale Hill (8W) Diagnosis: Rhabdosome short, spinose, and relatively broad. Clathria conspicuous, reticula coarse and apparently irregular in flattened specimens. Description: These specimens occur fairly commonly, but not abundantly, in the second graptolite band of the Ludlow Series. They differ in no way from the material described by Wood (1900) and Elles and Wood (1908) but they are usually less well preserved.

The rhabdosome is about 1 cm long, has a width of nearly 2 mms (exclusive of spines) and thecae spaced at $10-11$ in 10 mms .

The clathrial elements are not easily identified but can be seen, to be made up of slender threads. A reticulum is developed but is coarse and irregular. Flattening of all the specimens has obscured the pattern of the reticulum.

Material seen: Elles and Wood Collection, Sedgwick Museum.

$$
\frac{\text { Spinograptus spinosus praespinosus subsp. nov. }}{\text { Plate } 19, \text { fig.ll }}
$$

$? 1911$ Retiolites spinosus Wood. Watney and Welch text and tables, non fig.

Holotype: HUR/20N/40, distal fragment showing spines, among a cluster of proximal fragments (Pl.19,fig.11)
Horizon of Holotype: Zone of C. rigidus mut.
Material: 30-40 specimens, all flattened, some showing clathria only. Horizon and Localities: Zone of M. riccartonensis to Zone of C. rigidus mut. Wenlock Series; Near Gill (17N,16N,19N,20N).
Diagnosis: Rhabdosome longer than 2 cms , width at least 2 mms , thecae with short stiff spines, numbering $8 \frac{1}{2}-9$ in 10 mms .
Description: This form from the Wenlock Series is very close to Wood's species particularly in the nature of the clathria and reticulum which are indistinguishable from those of the type species.

The detailed measurements, however, show that S. $\mathrm{s}_{\text {. praespinosus subsp. }}$ nov. is quite distinct." A rhabdosome length of at least 2 cms is commonly ach
ieved althouch young specimens are not uncommon... The width is very often over 2 mms and the ceneral form is parallel-sided. Projecting from the margins of the rhabdosome, and invariably at right angles to it, are short stiff spines. These reach a maximum length of 0.5 mms :

The thecal spacing is constant at $8 \frac{1}{2}-9$ in 10 mms which is rather less than in Wood's species.

As in the case of the previously described species the clathrial and reticulate elements cannot be easily pictured. The reticulum however, seems to become less prominent in the distal part of the polypary and is completely absent on some specimens. One specimen over 2.6 mms broad had only clethrial elements and was without spines.

Remarks: In is certain that the Wenlock form is distinct from the Ludlow species but it seems likely that the latter evolved from the former. Only fracments of retiolitids have been obtained from Stace 4 and S.s.srinosus Wood has not been obtained above the lowest beds in the Ludlow Series. The time gep, therefore, is not as creat as might at first be supposed. Certainly it is no ereeter than that between Werlock and Ludlow representatives of $E$. dubius s.1.

Family DIMORPHOGRAPIIDAE Elles and Wood, 1908
genus DIMOREHOGRAPTUS Lapworth, 1876
(= Bulmanocraptus Pribyl, 1948)

Tyne Snecies: D.elongatus Lapworth 1876; SD Bassler, 1915
Generic diacnosis: Proximal portion of rhabdosome uniserial with loss of th. $l$ (2) and cenerally further thecae of the secondary series, becomins biserial distally; biserial portion usually with partial septum; aeveloment more or less of monograptid type; thecae orthograptid or slyptocraptid with a tendency in some species toward isolation of the apertural region; uniserial portion of varying length; initial bud upwardly-directed at origin.

$$
\frac{\text { Dimornhoorentus confertus confertus (Nicholson) }}{\text { Flate } 4, f i g .1}
$$

1868 Diplograpsus confertus Nicholson p.526,P1.19,figs.14-15.

1888 1897 1908

1945
 Dimorphograptus confertus Narr and Nicholson.p.707. " Swanstoni, var. Kurcki. Teernquist p.19,P1.2,figs.3433 " confertus (Nicholson). Elles and Wood pp.349-350, text fic. 227a-b, Pl. 35,figs. $3 \mathrm{a}-\mathrm{d}$.
Nich. Waterlot P1.21,fig. 247.

Material: About 12 specimens, all flattened, most showing the proximal end. Horizon end Localities: Zones of M.atavus to P. cyphus; Spengill (SI-5 to s20-24).
Diacnosis: Rhabdosome short, straight, relatively broad. Uniserial portion short, stiff, with three thecae and a prominent sicula. , Thecae in biserial portion number 14 in 10 mms , overlap two-thirds.
Descrintion: The biserial portion of the rhabdosome may reach 2 cms in lencth but most specimens are shorter. Thecal spacing in this recion is rather closer than proximally and they number anproximately 14 in 10 ms . fost of the specimens are compressed and readings from $11-16$ in 10 mms are not uncomron. The compresion however does not radically alter the typical appearance of the flattened thecae. They are relatively simple tubes with the ventral margin perhaps concave, or at least with apertural exnansion. Overlap is always of the order two-thirds and the margins of the apertures vary between even and slightly everted. : It is difficult, however, to asses the effect of flattening unon the apertural characters.

The uniserial portion is short and stiff and has a prominent sicula. This is at least 1.7 mms long and 0.5 mms wide, (at the base) though this latter feature is probably increased by flattening and compression. Its apex reaches almost to the level of the aperture of th. 2. There are three thecae in the uniserial portion which differ from those of the biserial part only in beinfinclined to the axis at a lower ancle. Overlap is considerable. At the level of the aperture of th. 2 a width of 0.6 mms is usual.
Remarks: D. confertus is not as common as one is led to suppose by the account
of the Geological Survey workers (Dakyns et al. 1891).
It is however, restricted to the D.confertus Zone of Marr and Nicholson (1888) and in this sense is a useful stratigraphic indicator. D.confertus swanstoni (Lapw.) has not been found.
Material seen: Speciren figured by Elles and Wood Pl.35,fiç.3a (S.M. no A20699) - a specimen which is conpressed at right ancles to the length of the polypary. Other specimens in the Sedewick Huseum Cambridee.

Specimen 3363 from Hatch Collection (H.M.Geolocical Survey, collected by Marr) D.confertus Zone, Skelgill.

Specimens of D.c.swanstoni in Sedewick Museum, Cambridge.

$$
\frac{\text { Dimornhograntus enilongissimus }}{\text { sp. nov. }} \text { Plate } 22 \text {,fig. } 1,2,36 .
$$

? 1882 Dimorphograptus cfr. Swanstoni Lapw. Kurck p. 300, Pl.14,fies.5-7.

Holotype: HUR./S20-24/, long, flattened specimen complete except for sicula Horizon of Holotyne: Zone of P.cynhus.
Derivation of name: epi, close upon, prefixed to "longissimus".
Material: About 7 specimens, proximal ends.
Horizon and Localities: Zone of M.atavus to P. cyohus, Spengill (S5-9, S13-17, s20-24).
Diagnosis: Rhabdosome long, robust with a relatively slender proximal end. Uniserial portion 4 thecae, sicula of diminutive width. Thecae, distally nurber ll-9 in 10 mms , and proximally less than 8 in 10 mms .
Descrintion: The distal part of the rhabdosome may be up to 3 cms in lencth and is parallel-sided. Depending upon the compressional direction the thecae number $12-8$ in 10 mms but in undistorted snecimens there are about 11 in 10 mrs in the early part and 9 . in 10 mms in the most distal. The slender and eracefully curved uniserial portion has less than 8 in 10 mms.

The sicula is small and barely reaches the aperture of th.l. At the level of th. 2 the width of the rhabdosome is 0.52 mms and the thecae in this recion are relatively simple tubes of the orthocraptid type. Distal thecae, which show overlap up to one half of their lencth, are also of orthograptid appearance but like D.c.confertus appear to have an apertural expansion.

In this case however, the apertural features might also be explained by the presence of a thickened lip which on flattening produced a definite "list" or denticle. The apertural nargins are probably horizontal to sliehtly everted.
Remarks: D.enilongissimus sp. nov. is easily distinguished from D.cfr.loncissimus Elles and Wood by its longer, more slender, uniserial portion which has 4 thecae instead of $2-3$. The size and position of the sicula is, however very similar.

Kurck in his original description of Dinlograntus (?) longissimus did not figure a proximal end but the similarity of the distal thecae led Elles and Wood to the conclusion that it was in fact synonymous with their Dimornhograntus.

It is possible that a similar relationship exists between D.cfr. longissi mus and D.enijoncissimus sp. nov. as has been observed between D.e. Micholsoni subsp. nov. and D.e.erectus Elles and Wood. Material seen: Specimens of D.cfr. longissimus in Elles and Wood Collection, Sedgwick Museum, Cambridge. (ficured Elles and Wood Pl. 35,figr.8d).

Specimens in Sedewick Museum labelled as D.erectus Elles and Wood (S2O, 795-8) are synonymous with the form described here as D.epilongissirus sp. nov and are quite distinct from D.ereotus.

> Dimornhograntus erectus nicholsoni subsp. nov.
> Plate 4,fis.2; Plate 2l,fics.1,2; Plate 22,fie. 3 a

Holotype: HUR./1Bi/64, flattened specimen preserved as a silvery film in dark Grey shale, proximal end and sicula intact.
Horizon of Holotype: Zone of M.atavus; Birks Beck. Derivation of name: After H.A.Nicholson, one of the foremost of early workers on Lower Palaeozoic rocks.
Material: About twenty specimens, all flattened.
Horizon and Iocalities: Zones of M.atavus, P.acinaces, and P.cynhus; Spencill (S5-9, S13-17, S20-24); Birks Beck (1Bi,2Bi).

Diagnosis: Polypary small and narrow with a short, slender, and slichtly curved uniserial portion comprising either 2 or 3 thecae.
Descrintion: The rhabdosome is typically short and slender though occesional specimens up to nearly 2 cms lonc have been obtained. A maximum width of 1.43 - 1.5 mms js reached distally. In this recion the thecae are closely spaced at $12-14$ thecae in 10 mms . They show slicht sicmoidal curvature and the decree of overlap is not ereat. This latter fegture is difficult to * assess accurately for in snecimens compressed at right angles to the polypary it appears greater. It is probably about one third. The thecal tubes in this region are almost 1.3 mms . long.

The uniserial portion, thouch short, is gently curved and about 0.54-005 mms broad at the level of th. 2, The sicula is fully $1 \cdot 7-1 \cdot 8$ mms long and its apex reaches almost to the level of th. 2. This is significant since it almost reaches the biserial portion and thus makes an otherwise slender uniserial part quite robust.

In the lower beds (N.atavus Zone) this subspecies invariably has only 2 thecae in the uniserial part but in slightly hieher beds (P.acinaces Zone) it has either 2 or 3 thecae, more commonly the latter. The thecae number 11 in 10 mms in this region.

Remarks: D.e.nicholsoni closely resembles D.e.erectus in cenerat form, size, and thecal characters. Those fossils from the M.atavus Zone are distinct in their closer thecal spacing and by having only two thecae in the uniserial part. However in the Pacinaces Zone speoimens having 3 thecae in the uniserial part of the rhabdosome are more common. This form is clearly intermediate between the two subspecies and is only kept in D.e.nicholsoni on the grounds that it occasionally has 2 such thecae and never 4.

A sincle specimen from the P.cyohus zone (HUR./S20-24/ Pl.22,fig. 3e) of Spencill (S20-24) is quitfindistinguishable from D.e.erectus. It has 3 thecae in the uniserial part, is over lom long, and has a distal width of 2 mm . This width of 2 mms does not seem to be umsual for D.e.erectus (see Elles and Wood Pl.35,fic.9a).

It is almost certain therefore that within the limits of the Dimorphograntus confertus Zone there is an evolutionary line; D.e.nicholsoni - D.e.nicholsoni mut. - D.e.erectus.
Material seen: Specimens figured by Elles and Wood Pl35, fic. ga, text fig. 233 b
(S.M. no.A20,779); Pl.35,9d (S.M. no.A20,783) and specimens figured Pl. 35 figs. $9 \mathrm{~b}, \mathrm{c}$, and text fig. 233 a . These specimens are described by Elles and Wood ( $\mathrm{np} \cdot 355-356$ ) and have three thecae in the uniserial portion. None of the specimens in the Sedewick Museum collection has four thecae in the uniserial portion (cf. Elles and Wood p. 355 and Bulman 1960,p.69) and this fact has since been confirmed for the writer by Professor Bulman (personnel communication). One specimen has only two thecae in this position (S.M. no A20,785, figured Bulman 1960, p. 69 text fig. 2 d as D.erectus). Another specimen (A20 $002 \mathrm{a} \& \mathrm{~b}$ ) also has two thecae in the uniserial portion but unfortunately is from a loose block.

Specimens A20,795-8 (collected by J.E.Narr from the D.confertus Zone, Spengill Head) have four thecae in the uniserial portion but these are distinct from D.eredtus Flees and Wood and are synonymous with the species here describeed as D.enilonrissimus sp. nov.
$\qquad$
genus AKIDOGPAPTUS Davies, 1929

Tyne Snecies: A.ascensus Davies 1929.
Generic diagnosis: Thecae climacograptid or orthograntid; proximal end characterized by loss or reduction of th. $1(2)$; but owing to shortening of th. 2(2) there is no apparent uniserial portion; initial bud downwardly directed at origin.

Adidograntus acuminatus acuminatus (Nicholson)
Plate 21,fiঞ. 3 .

1867 Diplograptus acurinatus Nicholson p.109, Pl.7,fizs.16-17.

1908 Cephalograptus (?) " (Nicholson). Elles and Food pp. 289 and 295, text fisc. 199, Pl.32,fiss.11a-d

Diplograptus acuminatus Nicholson. Hundt Pl.2,fiess.9,10,17. Akidocraptus acuminatus (Nicholson). Davies p.9.fig. 32, (no. 10 schematic).

Material: A few well preserved specimens, several framents.
Horizon and Localities: Zone of A. Acuminatus; Watley Gill (1Wa); Spencill (4" band at base of dark Erey shales).
Diacnosis: Rhabdosome short, wedce-shaped, with a very prorinent sicula and Iong "orthocraptid" thecae, numbering 7 in 10 mms.
Descrintion: The rhabdosome rarely reaches lom in length, and most commonly is $5-6 \mathrm{mms}$ long with a breadth of 1 mm . A few fracments, however, succest, that a greater lencth and width (up to 1.5 rms ) may be reached.

The sicula is lons (at least 2 mms ) and completely free on one side. Th. 1 oricinates 0.71 mms above its base and the base of tre polypary is typified by the projectinc lower portion of the sicula. Th. 1 (I) is 2 mms long and gives rise to th. 2(2) almost immediately. At a distance of 2.5 mms above the base of the sicula th. 2(1) is already develored as a bud and the septum is formed. Th. 2(1) appears to rrow from th. 2(2) as does th. 3(2). Th. 2(1) and $3(2)$ are therefore adjacent at their proximal ends but immediately separated by the septum.

The thecae in the proximal region number approximately 7 in 10 mas but more distally where the thecal tubes are shorter a higher count is obtained. Remarks: The thecal tubes are orthosraptid rather than diplocraptid but any such comparison with thecae of other genera can only be approximate.

The species was first recorded from the Cautley district by Wilson (1953) who identified and delimited the A.acuminatus Zone. Material seen: Specimens in Sedgwick Nuseum, Cambrid己e.

## Akidosraptus acuminatus praematurus Davies

Plate 2l,fig. 4

1929 Akidocraptus acuminatus mut. praematurus nov. Davies pilo,fig. 25

Material: A sincle proximal end and other more doubtful frasments. Horizon and Localities: Zone of A.aouminatus; Spencill (4" band at base of dark crey shales).
Diamosis: Rhabdosome short, straicht, with a similar, but blunter, proximal end to A.g.anuminatus. Thecae of "orthorraptid". type numbering $11 \frac{1}{2}-14$ in 10 mms .

Descrintion: The best specimen is preserved as a mould in such a manner that the lenfth of the sicula cannot be determined. Compression can be observed in this specimen and the lineation is at richt ancles to the polypary; but whilst this may have accentuated other features it cannot be the cause of the blunt proximal end.

Th. 1(1) is only 0.8 mms long and th.2(2) 1.3 mms . They are more closely spaced ( $11 \frac{1}{2}-14$ in 10 mms ) in this resion then in snecimens of A.a.acuminatus (7 in 10 mms ) and the thecal tubes are much shorter. In all its characters the Cautley subspecies resembles fje. 25 (Davies 1929) except in having a slichtly hicher thecal count ( $11 \frac{1}{2}-14$ in 10 mms of. 11 in 10 mms )
Remarks: This subspecies was recorded by Davies as an early form of A.a.acumjnatus but at Cautley it occurs in the same $4^{\prime \prime}$ band and may represent a late survival. It is, however, rarer than the typical form.

> Eenus RHAPHIDOGRAPTUS Bulman, 1936
> $(=$ Metadimorphograptus Pribyl, 1948 )

Tyne Snecies: Climanoeraptus tornquist Elles and Wood,1906.
Generic diacnosis: Like Dimornhorantus but with thecae of climacocraptid trpe; initial bud downwardly or upwardly directed at orisin.

# Rhanhidograntus toernquisti (Elles \& Wood) <br> Plate 19, fies.7,8,9 

| 1876 | Climacograptue | rectancularis Lapworth Pl. $2, f i$ fe 50. |
| :---: | :---: | :---: |
| 1877 | " | scalaris ver. rectangularis Lepworth p.138, Pl.4,ficr. 32. |
| 1897 | " 3 | rectancularis Toernquist p.8,Pl.1,fig.16-21. |
| 1906 | " | Tornquisti, sp. nov. Elles and Wood pr.lgo-l91, text fic. $123 a-b$, P1.26, fics.6a-f. |
| 1924 | " | " Elles and Wood. Hundt Pl.1,figs.32-34. |
| 1936 | Rhaphidosraptus | tornuisti (Elles and Wood). Bulman text p. 19 et seq. and text fisfla-e, schematic text fic. $2 a$. |
| 1945 | Climacosraptus | Tornquisti Elles and Wood. Waterlot Pl.6,fié.ll2. |
| ?1949 | " | tornquisti Elles and Wood. Obut p.13,PI. 1 ,fics.4a-b. |

Material: Several hundred specimens, many flattened, some preserved in full relief, many specimens showing sicula.
Horizon and Localities: Zones of Matavus to M.sedswicki; Spengill (Sl-5 to S73,11.4); Birks Beck (1Bi,7Bi,9Bi); Pickering Gill (14P,1P); Wards Intake (13Wi); Watley Gill (4Wa,5-6Wa).
Diamnosjs: Rhabdosome up to 4 cms long, maximum breadth in relief, about 2 mns. Sicula long and prominent, uncovered along almost the whole of one side. VirEella lone, swelling away from the sicula to become more robust. Thecae of climacograptid type with deep excavations, numbering 12-10 in 10 mms . Descrintion: The Cautley representatives of this species from the zones of M.atavus to M.trianmulatus differ in no way from previously described material. Compression, however, has a considerable effect on flattened specimens which take on either a very broad or a very narrow appearance (see Pl.19,figs. 7 \& 9). Thecal counts of up to 20 in 10 mms may be observed in material conpressed at right angles to the polypary, whilst the breadth is greatly increased. Specimens in relief which are affected by this compression often show a crumpling of the proximal end similar to the specimen ficured by Bulman (1936,text fic.ld)

On the other hand compression pariallel to the length of the rhabdosome produces a narrow form with a reduced thecal count. This might be mistaken for a new species were it not for the fact that it is always possible to detect the lincation upon the bedding plane.
R.tornquisti is not so well represented above the zone of M.trianculatias but forms acain occur in some abundance in the lowest bed of the M. sedcwicki Zone. Nore material will have to be examined before it can be decided whethea these are identical with earlier forms or whether there have been chances. The septum may not develop until further alons the rhabdosome but the general size and proportions of the polypary appear to be very similar. Material seen: Snecimens in Sedewick Nuseum, Cambridee.

Family MONOGRAPTIDAE Lapworth, 1873
Subfamily MONOGRAPTINAE Lapworth, 1873 (nom. transl. Yin, 1937 (ex Monocraptidae Lapworth 1873))

## Eenus MONOCLTMACIS Frech 1897

Tye Snecies: Craptolites vomerinus Nicholson, 1872
Generic diacnosis: Rhabdosome often lonc and more or less straicht thouch slicht curvature is common proximally and rarer distally; ventral wall of each theca subsequent to th. 1 has a distinct excavation which contains the apertural region of the preceding theca; apertural recion often appears to be "hooked" but in some Ludlow representatives it has been shown that a "hook" effect can be caused by an independant monofusellar structure which grows from the ceniculum of the suceeding theca; the amount of ventral excavation in these later forms may be less than in the earlier ones.

Monoclimacis vomerina basilica (Ianworth)
Plate 4, fiçs.3-6; Plate 13, fic.l; Plate 22, fig.l2; Flate 23, fics.l, 2;
Plate 24, fics. 6,7

1880 Monocraptus ealaensis var. basilicus nov. Lapworth p.152, Pl.4,fje. 6a-b. 1910 " vomerinus (Nicholson) var. basilicus Lapworth. Elles and Wood text fiz. 276b (?276a), Pl.41,fics. 2b-c, (? 2a and 2d).
?1911 " " Nich. var. B Elles. Watney and Welch (pars) in text. non fic.

Holotyne: Specimen ficured by Larworth (1880) P1.4, fics.6a-b, now in Lanworth collection at Birmincham University (B.U.1548). Fict. here on F1.22, fic. 12 and PI.4,fic. 3 .
Material: Over 100 specimens usually in full relief.
Horizon and Looalities: Zones of C.centrifums - C.insectus to Zone of U.f. belonhorus, ?Zone of C.ricidus mut.: Bluecaster Gill, Midile Gill (1M, 4 m, ? 6 , $14 \mathrm{M}, 15 \mathrm{~K}$, ? above this); Near Gill ( $8 \mathrm{~N}, 10 \mathrm{~N}, 11 \mathrm{~N}, 16 \mathrm{~N}, 17 \mathrm{~N}$ ); Whinny Gill ( 6 Wh ); Hebblethwaite Hall Gill (5H,9H); Birksfield Beck (6Bf); Hobdale Beck (1Bd); Wandale Hill, Gill A (25W, $26 \mathrm{~W}, 28 \mathrm{~W}, 29 \mathrm{~W}, 30 \mathrm{~W}, 34 \mathrm{~W}$ ), Gill B $(47 \mathrm{~W}, 46 \mathrm{~W}, 37 \mathrm{~W})$; R.Rawthey ( $8 \mathrm{Ra}, 9 \mathrm{Ra}$ ): Pickering Gill (3P,4P,5P,?6P,7P,8P); R.Rawthey, Nouth of Wandale Beck ( $49 \mathrm{~W}, 51 \mathrm{~W}, 50 \mathrm{~W}, 53 \mathrm{~W}, 54 \mathrm{~W}$ ).
Diagnosis: Rhabdosome very lone and almost straight attaining a breadth of 3 mes distally. Proximal end slender; thecae number $10-7 \frac{1}{2}$ in 10 mms. Sicula small.

Description: Lapworth in his original description figured only a distal ffacment (B.U.1548) but the thecal characters were so distinct as to make them unmistakeable. He mentioned that the proximal end was more slender than in M. vomerinus Nicholson. Elles and Wood (1910) also figure a distal fracment (text fig. $276 b$ and Pl.41, fic. $2 c$, actually from lapworth's type specimen). They also figure (text fig. 276a) a poorly preserved proximal end from Lapworth's collection but do not described it adequately.

Distal fracments are up to 3 mm broad (relief) and are invariably straicht The thecae are long, overlapping tubes in which the sigmoidal curvature is not always clear. The decree of overlap is at least two-thirds.

Assocjated with these distal fragments of M.v.basilica are forms referable
to M.v.vomerina, and in addition proximal ends which are straisht and more slender than those of the latter species. They are also quite distinct from M.V.sracilis and are thought to be the proximal ends of M.v.basilica.

The sicula is $1 \cdot 3-1.5 \mathrm{mms}$ long and its apex reaches to just below the level of the aperture of th.l. Occasional specimens occur in which the apex of the sicula ends about 0.06 mms above the distal extremity of th.l.

Theca 1 originates 0.3 mms aove the base of the sicula and is approxivately 1.17 mms long. The proximal end involving about 5 thecae has a characteristic "thorn-like" appearance (see Pl.4,fig.4) and widens steadily from 0.320.39 mms at th. 1 to 0.65 mms at th. 5 . Thereafter the rhabdosome widens more gradually to $1.1-1.2$ nms at th.16. Th. 16 is the last measurable theca seen on these proximal ends.

Thecal spacing is fairly constant at $9 \frac{1}{2}-10$ in 10 mms over the first 1 cm but by th. 16 ( $1 \frac{1}{2} \mathrm{cms}$ from the sicula) it has dropped to $8 \frac{1}{2}$ in 10 mms . Remarks: M.V.basilica differs from M.v.vomerina in the characters of both its proximal and distal regions. The sicula is slimmer, and extends less far along the nolypary, whilst the whole "thorn-like" nature of the proximal end is thinner.

Watney and Welch (1911) do not record N.v.basilica (nor M.heminristis (Menefhini)) but they may have mistaken the proximal ends here described for M.v.var. $\beta$ which appears in their text and tables.. Elles and Wood(p.411) include M.v.var. $f$ in their synonymy of var. gracilis but the proximal end of besilica is distinct from this.

The specimen of M.v.var.cracilis figured by Elles and Wood as fig. 3 a (Pl.41) is now contained in the Birmingham University Collection as B.U.1549. This occurs on a slab with many other specimens all apparently identical. In spite of the fact that they are flattened they appear more robust than M.v. basilica but agree in thecal count (10 in 10 mms ). The craceful, recurvature of the proximal end mentioned by Elles and Wood ( $p .41$ ) does not seem to be a constant feature and many of the specimens on the same slab as B.U.l549 are quite straight. Furthermore the sicula on these specimens is 2 mms long and the author has been quite unable to differentiate these and the probable lectotype of M.v.vomerina (B.U.1542) which is identical in size, appearance of thecae, and size and position of the sicula (see discussion under M.v.aff vomerina) Thus M.vomerina basilica (Lapworth) as redefined here is quite distinct
from other described species in Eritain.
Pribyl (1940) includes N.v.basilica in his synonomy of N.heminristis (Nenegini) but does not figure or desoribe this latter fossil. The writer cannot be certain from the published figures of whempristis that it is symonymous with Lapworth's basilica and the latter is retained here as a separate species.
M.v.basilica is the common monoclinacid of the zones c.centrifugus C.insectus to C.murchisoni but is less common above.

Naterial seen: Specimens from Pencerrig. Distal fracments from this locality approximate closely to Lapworth's type specimen of M.v.basilina whilst the associated proximal ends are very similar to M.v.basilica as described from Cautley, being rather slender and either straight or with slicht dorsal curvature. Examnles:-
proximal end - S.M. no A22,125, Fopkinson Collection, Pencerric
distal fracment S.M. no. A22,123 " " "
Snecimens from "West of Wharfe" (e. Z. S.M. no. A22,095) are distal frag゙ments probably referable to M.v.basilica thouch labelled M.vomerinus.

Specimens from Trecoed (Zone of C.murchisoni). These are identical to those from Pencerric (S.M. A22,129-30 listed as M.vomerinus var. by Elles 1900 p. 375). M.basilicus is in fact listed from Builth (Elles 1900 p .384 , locality 14, S.M. no. A22141 a-b) but from the Zone of C.ricidus.

Two cood sfecimens (the best preserved of those in the Sedewick luseum Collection) occur on a slab labelled C.murchisoni (S.M. no. A23571) from the Salopian of the Cwm Cignent stream ESE. of Llanidloes. (The cyrtograptids were listed by Jones 1945, n. 328). Both these vomerine monocrantids have the sicula and proximal end preserved and are identical with the species here defined as M.v.basilica Lapworth.

Specimens of M.v.cracilis. Five syntypes occur on slab S.M. no. A51065 one specimen of which is figured by Elles and Wood as text fic.277. These specimens are almost straicht and are close to M.v.basilica beino perhans fractionally more slender.

Monoclimacis vomerina aff vomerina (Nicholson)
Plate 13, fic. 3; Plate 23, fic. 3; Plate 24, fic. 8,5; (Plate 13, fic. $2=$ Elles \& Wood 1910, Pl.41,fig.3a; Plate 4, fig. 7 = Flles \& Wood 1910, Plate 4l, fic.lb; fic. 3 , Plate $24=$ Elles \& Wood 1910 Pl. 41 , fic.la, the probable Iectotype)
aff.
1872 Graptolites vomerinus Nicholson p.53,fiE.21.
1876 Monograptus " , Nich. Lapworth p.353, P1.12,fis्ss.6a-e. 1900 " " (Nich) var.x Elles pp. $403 \& 405, f i$. 45. 1910 " "... (Nicholson). Elles and Wood pp.409-411, text fio. 275 a-f,Pl.41,fics.la-e.

Lectotype: Not yet designated but Dr.I.Strachan, Birmincham University is considering designating the specimen figured by Elles and Vood (1910) Pl. 4l, fié.la, a flattened but complete specimen, described by Elles and Wood as "Typical specimen impression, (?) figured Lapworth, Geol. Nag., 1876, P1. Xii, fig. 6a". This is refered to, hereafter, as the "probable lectotype". Material: Several specimens in full relief, and other more doubtful fracments, Horizon and Localities: Zones of C.centrifugns - C.insectus to M.riccartonensis; Bluecaster Gills, Middle Gill ( $6 \mathrm{M}, 4 \mathrm{M}, 11 \mathrm{~N}$ ); Near Gill (12N, $8 \mathrm{~N}, 10 \mathrm{~N}, 11 \mathrm{~N}$ ); Hebblethwaite Hall Gill (5H); Wandale Hill Gill A (26W,28W,29W); R.Rawthey (?8Ra), Mouth of Wandale Beck (49W,51W,?53W,?54W).
Diagnosjs: Rhabdosome long, more or less straicht, reaching about 2 mms in width distally. Proximal end usually straicht and robust. Sicula up to 1. 5 nims long. Thecae number 1l-7 in 10 mms . Descrintion: The rhabdosome is lonc, straicht and stiff trouch the proximal end may be straight or show slight dorsal curvature.

The sicula is about the same leneth as in N.v.basiljca but is more robust and its apex usually reaches above the aperture of th.1.. At the extreme proximal end the thecae usually number 11 in 10 mms , althouch readincs up to 13 in 10 mms are not uncommon. The specimen figured by Elles and Wood (P1. 41 fic. 16) has $12 \frac{1}{2}$ in 10 mms , whilst one on the same slab has 13 in 10 mms . Distally counts down to 7 in 10 mme are fairly common.

The whole proximal end is robust and widens rapidly from 0.52 mms to lmo
after 1 cm and 1.5 mms after 2 cms.
Remarks: M.v.aff vomerina is not a common fossil at Cautley.
The probable lectotype (B.U.1542) is a flattened specimen about $6 \frac{1}{2} \mathrm{cms}$ long. At its distal extremity it has a breadth of only 1.69 mris and a thecal spacinc of $8 \frac{z}{z}$ in 10 mms . The sicula may be fully 2 mins lonc with its afex reaching to the level of th. 1 which is rather lonc. In this recion the thecae number 11-10 in 10 mms .

Elles (1900) in her description of Nomerinus (Nich.) vara gives the sicula as nearly $2 \cdot I$ mms long and shows it reaching to about, or just above the aperture of th.l which again is rather lone (fic.15, p. 405).

It is clear that the description of Plles and Wood (1910) is not fully diacnostic of the specimens which they fieure. A thecal count of 11-10 in 10 mms is riven in the diacnosis yet all their figured specimens on Pl. 41 show less than this. The specimen figured as fig.lc on Pl. 4l, for example has $7 \frac{1}{2}$ in 10 mms (Birmincham University Specimen No.B.U.1544). Figures 275 a and $b(p .410)$ on the other hand are two specimens which fit very well into the description. It is specimens such as these to which the Cautley material is referred, and in fact to which the oft-described H . vomerinus of other workers seems to be referred.

As has been mentioned below the probable lectotype of M.v.vomerina eppears to the writer to be synonymous with the type specimen of M.v. macilis (B.U. 1549).

In view of the facts described above it appears that a revision of the species groun with a redefinition of its members must be undertaken before any further prouress can be made. Material seen: Specimens figured by Elles and Wood as text fis. 275 a (S.M. no. A22,094). This is very close to M.v.aff vomerina.

Specimens from Cfrwen (Denbich Flacs) are also close to M.v.aff vomerina (e.g. S.M. no.A22,107).

Specimens from Crumack Beck. These are vomeriniform distal fracments possibly referable to M.v.eff vomerina.

$$
\frac{\text { Monoclimacis shottoni }}{\text { Plate } 23, \text { fic. } 5}
$$

Holotyne: HUR. $/ 28 \mathrm{~W} / 76$ a complete specimen in full relief. Horizon of Holotine: Zone of C.centrifucus - C.insectus. Derivation of name: After Professor Shotton.
Material: Mumerous specimens in full relief, all proximal ends. Horizon and Looalities: Zone of C.centrifumas - C.insectus; Tandale Hill Gill A, (28W), Mouth of Wandale Beck (49W,51W); Pickering Gill. (3P,5P, 6P, 10P); R.Rawthey (?8Ra).

Diagnosis: Rhabdosome short (?), with slight ventral curvature, narrowins distally. Sicula prominent. Thecae with distinct sigmoidal curvature numberinc 12-13 in 10 mms .

Descrintion: No specimens over 7 mins lone have been obtained and since these narrow towards their distal extremities it is thought that they are probably full grown. The maximum width is reached at th. 4 and rarely exceeds 0.71 mm . At th. 7 the width has decreased to. 0.58 mm and the distal narrowing is very conspicuous:

The sicula is 2 mms long and its apex invariably reaches the level of the second thecal aperture. ... It is 0.29 mm wide at the base and shows a faint ventral curvature. Th.l arises 0.20 mm above the aperture of the sicula. Thecal lengths are as follows:- th. $1,0.9 \mathrm{mf}$; th. $2,0.9 \mathrm{~mm}$; th. $3,1.17 \mathrm{~mm}$; thl4, $1.23 \mathrm{mms} ; \quad$ th. $5,1.3 \mathrm{mms}$.

Growth segments are usually visible on the thecae but not on the sicula. As in the case of Mohaunti (Kuhne) there is an increase in thickness of these segments from the rroximal to the distal thecze. In M. shottoni sp. nov. there are over 20 growth segments in th. 1 (7-8 in the metatheca) but each theca beyond only has 14-15 such segments (6-7 in the metatheca). There is no diminution in width of the rings in the region where the rhabdosome becins to narrow (th. 5-7).

- The thecal margins are not "hooked" but appear to be slichtly everted. Remarks: M.shottoni sp. nov. closely resembles those specimens figured by Elles (1900) as M.vomerinus var _and included by Elles and Wood (1910) in their synonomy of M.crenulatus Tornq. These, which are figured natural size, are rather broader than the Cautley specimens, however, but have the same
sized sicula ( 2 mms ) and the same thecal count (12-13 in 10 mms ), similar ceneral size, and are recorded from the murchisoni Zone. (Reference to their table $X, p .406$, sucgests that the figures may be more than natural size.)

No other figured proximal ends of M.crenulata resemble the Cautley species. . Dr. Hede informs the writer that Tornquist's original niaterial may have been lost since he has found no trace of it in the Lund Palaeontolocical Wuseum and it does not appenr to be in the Museum of the Geolocical Survey (Stockholm).

The specimen figured by Elles and Wood (1910, text fic. 278 a now in the Dept. of Geolocy, Birmingham, spec. no. B.U.1555) appears to be little different from their M.cfr. Ereistonensis (text fig.280a, Pl.41,fig.6a-b). This latter species has been more fully described by Wilson (1953) from material obtained from his M.greistonensis Zone in the Cautley district (cf. their fief. 280a with Wilson's fig.26). The diacnostic characters are:- a) sicula 1.5 mms apex midway between th. 1 and th. 2 ; b) thecae numbering $12-9$ in $10 \mathrm{mms} ; \mathrm{c}$ ) th. 1 and th. 2 "hooked". Specimen B.U. 1555 has a 1.5 mms lone sicula whose apex reaches midway between th. 1 and th. 2 but the thecal count of $14-13$ in 10 mms proximally is rather higher. The rhabdosome widths are very similar with the Cautley specimens perhaps a fraction narrower.

Pribyl (1940) includes F.cfr. Ereistonensis Elles and Wood in his synonomy of M.linnarssoni Tullberg, but this in the author's opinion this is a more doubtful sten since the thecal spacing is distinctly less (Tullberg 1833 sives $8-9$ in 10 mms , Pribyl $10-8$ in 10 mms ).
M.crenulatus (Elles and Wood fig.278a only), M.ofr. ©reistonensis (Elles and Wood lglo, fic.280a), and Wonoclimacis sn. (Wilson 1953, figs.25-26), are therefore considered to be synomymous and quite distinct from M.crenulata, M. areistonensis and M.linnarssoni.

Material seen: M.shottoni sp. nov. was first recorded by Professor Shotton (1935 from his locality " $\mathcal{E}$ " Swindale Beck as M. Vomerinus var. crenulatus (Tornquist). Some of these specimens are now contained in the Sedowick Museum, Cambridee and are identical with the Cautley species. The associated assemblage is also the same (for further discussion see p.53).

Specimens of Mocrenulata from Llanidloes, Montfomeryshire, listed Jones 1945 p. 327 (S.M. no A23574, and A23573). The former has a more slender proximal end than M.v.basilica and has a sicula whose apex extends to ridway between the apertures of th. 1 and 2. The specimen listed by Jones 1945 p. 325
(S.M. no. A23568) is recorded from $40^{\prime}$ above the base of the Salopian. It differs little, if at all, from the form here described as M•v.basilica.

Specimens of M.crenulata from the Zone of M.crenulata, Denbich Shales, Penarth Uchaf (N.W. of Pen-y-clog). These are median fragments labelied M. crennlatus Tat. (S.M. nos. A22023-4).

## Monoclimacis linnarssoni (Tullberg) Plate 24, fics.l,2

1883 Monocraptus Linnarssoni n.sp. Tullberg p. 20,P1.2,figs.5-9.

Naterial: A sincle distal fracment, low relief, $5 \frac{7}{2}$ cms long, one nroximal end in full relief, other more doubtful fracments.
Horizon and Localities: Zone of C.centrifugus - C.insectus; Middle Gill (4r). Descrintion: The distal fragnent of the rhaodosome is quite straight and fully $5 \frac{1}{3} \mathrm{cms}$ long. At the most proximal point seen, the width is 0.91 mm . The rhabdosome is almost parallel-sided since at the dist:l extremity it is still only 1.17 mms wide.

The thecae are sicmoidally curved tubes, inclined at a low andle to the axis (approximately $20^{\circ}$ ) and numbering 9 in 10 mms throughout the whole lengtr Excavations of the ventral margin are conspicuous and deep, occupying almost half the width of the polypary. The lencth of the excavations is 0.4 mms .

The proximal end has thecae which are identical in their general characters to those of the distal fragment. They number 10 in 10 mms . The sicula is long and slender measuring slightly over 2 mms and reaching midway between th. 1 and 2. In this respect it is very similar to Tullberg's oricinal figure of the proximal end.
Remarks: The thecal characters distinguish this rare species from all others occurring at Cautley. It closely resembles Tullberg's oricinal ficures, the only difference being that the Cautley specimen has a slightly loncer excavation. Tullberc ( p .20 ) gives a thecal count of $7-8$ in 10 mms but Pribyl (1940) cives a rance of $10-8$ in 10 mms . Material seen: Specimen from Grieston \&uarry (S.M. no. A: 2017) labelled M.linnarssoni. This, however, seems indistinguishable from M.erjestonensis which occurs in abundance at the same locality.

Monoclimeois sriestonensis nicoli subsp. nov.
Plate 21, figs.7.8. (Pl.21, fics.9,10 = Elles and Wood 1910, text fic. 279a, and Pl.41, fig.6a).

Holotwe: HUR./8P/I9, a proximal end in full relief with sicula preserved. Horizon of Holotyne: Zone of C.centrifucus - C.insectus. Derivation of name: "Latinised", after Nicol author of M. criestonensis. Material: About 5 specimens in full relief. Horizon and Localitjes: Zone of C.centrifugns - C.insectus. Diacnosis: Rhabdosome probably quite short, slender and fraeile. Maximum breadth seen 0.3 mm . Thecae lonc, narrow tubes closely adpressed to the axis numbering 92 in 10 mms .
Descrintion: The only parts known of this subspecies are proximal ends and fragments of proximal parts. The maximum observed width is 0.3 mm which is achieved 5 mms from the base of the sicula.

The sicula is prominent, 1.5 mms long, and its apex reaches almost to the level of the aperture of th.1. It is furnished with a short slim, vircella at the aperture which measures 0.2 mm across. Th.l arises 0.4 mm above the base of the sicula and is 1.17 mms lone. Thecal overlap is slicht (one quarter).

Each thecal tube çrows parallel to the axis for a distance of 0.5 mm and then takes a small but slight bend towards the ventral surface resulting in a shallow excavation. Thereafter the thecae grow inclined to the axis at a very low ancle indeed.
Remarts: In ceneral form this subspecies is closely related to fossils of the M.rriestonensis Groun. : The diacnostic features outlined above fall within the rance of those in the detailed description by Elles and Wood (1910), How ever, fic. 279 of these authoresses has 13 thecae in 10 mms in both the figure and the specimens (B.U.1556). The specimen figured on their Pl. 41 (fic. 6 ), which occurs on Nicol's tyoe slab, has 14-12 thedae in 10 mrs. (Occurring on the same slab are two specimens of M.sniralis s.l. and one bady preserved specimen which micht be M. erjestonencis).

It is clear from these snecimens that M. criestonensis nicoli subsp. nov. is more robust at the proximal end and has a much larcer sicula. (The sicula on their fig. 279 a is 0.7 mm long). The degree of sicmoidal curvature of the
thecae is also slichtly less in the Cautley subspecies and the excavation smaller.

Pribyl (1940) describes a new subspecies 何. ©. minuta and redescribes Boucek's M. N. kettneri. M.s.nicoli subsp. nov. ssems to be quite distinct from these forms thouch it resembles M.c.minuta in the narrow width of the rhabdosome.
Materjal seen: Specimens of M.E.Eriestonensis recorded Elles and Wood r. 414 from the Talerddig Grits (Al673-6, Sedewick Museum). Specimen listed Jones 1945 r. 327 (S.M. no. A23576).

Specimens of M. S. criestonensis in H. Geolocical Survey Vuseum.
Specimens figured Elles and Wood Pl.41, fic. 6 a and text fic. 27Ga (Birmincham University Collection nos. 1559 and 1556 respectively ) The former occurs on the same slab as a specimen of M.spiralis s.l.

> Monoclimacis kinci sp. nov.
> Plate 22, fics.5-10; Plate 11, fig.

Holotyne: FUR. $/ 19 \mathrm{~N} / 70$, a flattened proximal end 3 cms lone, with sicula intact Horizon of Holotyne: Zone of N.flexilis belophorus Near Gill (19N).
Derivatjon of name: In honour of the late Professor W.B.R.King contributor for many years to the problems of Lower Palaeozoic straticraphy.
Material: Several hundred snecimens, all flattened, many well preserved. Horizon and Localities: Zones of M.riccartonensis (Stace 2) to C.lundcreni (Stage 4); Bluecaster Gills, Middle Gill (16m,19M,20M,?21M,23M,25-30M); Near Gill ( $14 \mathrm{~N}, 18 \mathrm{~N}, 19 \mathrm{~N}, 16 \mathrm{~N}, 17 \mathrm{~N}, 20-23 \mathrm{~N}, 25-29 \mathrm{~N}$ ); Wandale Hill Gill B ( $43 \mathrm{~N}, 44 \mathrm{~W}$, 45-46W); R. Rawthey (11 Ra, 10Ra,9Ra); Mouth Wandale Beck (67-69W). Diafnosis: Full lenfth unknown but probably more than 30 cms. Distally reaches 2 mms (flattened) from 0.3 to 0.5 mm proximally (flattened). Dorsoventral curvature. Thecae number 10-8 in 10 mms .
Descrintion: The rhabdosome has a very characteristic anpearance widening from a slender and craceful proximal end, which alnost invariably shows distinct dorsal curvature, to a long and variously curved distal recion. Whilst many are almost straicht, equally as many chow sljcht ventral or dorsal curvature and the complete rhabdosome would nrobably show variable curvature.

For the first $3-5 \mathrm{mms}$, the proximal end is sharply recurved and the sicula prominent. In relief it must be extremely slender.

The sicula is 2 mms long and its apex is above the level of the aperture of th.l. Occasional specimens show a slichtly shorter sicula but this reaches only just to the level of the anerture of th. I and ite true ancx may be hidden

Th. 1 oricinates fully 0.4 mm above the base of the sicula which is therefore consnicuous with its short vircella. The sicula is rarely curved. At the proximal end the thecal sracing is rost constant at 10 in 10 mms . The chance distally is very credual and even the most distal fracments do not show less than 8 thecae in 10 mms.

The excavation is well marked throuchout the polvnary but distally it often iroreases in lencth. As a rule it occupies about one-third of the width of the polypary.
Bemarls: M.v.basiljea is the only form with which M.finini sp. nov. micht be confuced in the proximal region. In reality however the latter epecies is distinct in beinc far more slender, in lackinc the "thorn-like" appearance, in havinc a loncer sicula, and in bejnc recurved nroximally. The distal thecae are quite different.

It is this subspecies which Watney and Welch probebly mistook (in part) for their hicher recordings of M.v.var. B. (In the lowest beds they mrobably confused M.V.basilica for their M.V.var $\beta$ ).

The presence of a pristioform view of M.kinej sn. nov. possibly explains their hich recording of M .Hisingeri Carr. var. ( $=$ P.watneyi sp. nov. ).

Specimens of M.kingi sp. nov. obtained from the Zone of C.lundcreni (Stace 4) are even more slender than those from Staces $2-3$. The thecae are more closely spaced and often number 11 in 10 mms at the proximal end. Thecal counts of 10 in 10 mms often extend for several cms.along the rhabdosone. Thus whilst the species has a long rance, the latest representatives are of stratigranhic importance. : Since they are easily separable from those below, they might perhaps, merit descrintion as a new subspecies.

# Monoclimacis haunti (Kuhne) <br> Plate 23, fic. 4 

1955 Monocraptus haupti-n. sp. Kuhne pr. 365-8, Fişs. 3A-F.
1958 Konoclimacis haupti (Kuhne). Urbanek np.88-92, Text fies.59-65, P1. IV, fié5.

Holotyne: Specimen ficured by kuhne (1955) fic.3A-F.
Material: A sincle specimen preserved in full relief, proximal end. Forizon and Localities: Ludlow Series; Zone of P. nilssoni, ?lst grantolite band; Wandale Hill (2W).
Diacnosis: Rhabdosome short, probably almost straight, sicula consnicuous and ventrally curved. Thecae with distinct sigmoidal curvature numbering 12-1.4 in 10 mms .
Descrintion: The sicula has a mininum length of 1.43 mms . Its apex is hidder but probably extends to the level of the second thecal aperture. In spite of the fact that the specimen has been displaced at the level of th. 3 (givine an apparent dorsal curvature) the sicula is clearly curved ventrally. Three distinct rings are present on the upper half of the sicula which are thoucht to be equivalent to the "peridermal rings" described by. Urbanek (1958 p.58). At the base the sicula is 0.32 mm across and between this point and the lowest peridernial rinc there are about 35 , growth seements. This fieure acrees very closely with fig. 6lc (ürbanek 1958, p.90). The midale peridermal rinc is 0.26 mm akove the lower, and the top one 0.13 mm above the middle.

Theca 1 originates $0 \cdot 1 \mathrm{mn}$ above the base of the sicula and has a lencth of 0.7 mm . Succeeding thecae increase slowly in length up to th. 5 (the last measurable thecae.) which is 1.3 mas long. At this point the width of the rhabdosome is 0.71 mm .

Each protheca has apnroximately 14-15 crowth segments (counted in profile view) and the metathecae $8-9$ segments. There is a distinct and cradual increase in the width of the growth segments (measured in the same plane as the lencth of the rhabdosome) from the sicula, where they are very closely spaced, to th. 5 where they measure 0.05 mm accoss.
Remarks: Urbanek (1958) showed that Kuhne's species was in fact a lonoclimacis in view of the strong sicmoidal curvature of the thecae.
cests ( 0.90 ) that Mounti may be consnecific with Monocrantus nraeultimus Munch. M. rraeultimus has thecae of the "ultimus" type, attains a length of $4.5-7.5 \mathrm{mms}$ long and has a thecal spacing of $12-14$ in 10 mms . Its maximum breadth is 1.1 mms . M.ultimus Perner is also considered by Urbanek to be referable to Monoclimacis Frech.

The specimens described by Kuhne (1955) and Urbanek (1958) were obtained from erratic boulders.


Material: 2 flattened proximal ends, both obliquely compressed.
Horizon and Tocalities: 5233,3 M.crispus Zone, Spencill.
Description: This rare form has a distinct appearance of the thecal aperture (fig. 6 Pl.21) which is seen as a small semicircular excavation beneath a "flance" on the geniculum of the succeeding theca. The "flange" is thought to be the compressed appearance presented by a monofusellar structure of the type described by Urbanek (1958). All the thecae on both specimens show this feature.

The sicula may reach 1.82 mms in one specimen and is 1.7 mms in the other. In both cases the apex of the sicula reaches the level of the aperture of th. 2 . Proximally the thecae number 12-13 per om. By the time th. 6 and th. 7 are reached the thecal count has dropped to 11 per cm.

The width of this form may be increased by the flattening and compression Which it has undercone but rances from 0.32 mm at the proximal end, to 0.52 mm at a distance of $6-9 \mathrm{mms}$ from the base of the sicula. These ficures exclude the "monofusellar" structure which at th. 7 (the most distal theca seen) is 0.19 wide. A slicht dorsal curvature is seen at the extreme proxinal end of the rhabdosome but this is effected purely by the addition of the sicula to a perfectly straight dorsal margin.
Remarls: The thecal count is similar to that found in M.cfr. Mreistonensis Elles and Wood (1910) and Monoclimacis sn. Wilson (1953) but it differs from these in havine a longer sicula reachine further alone the rhabdosome, and in having more "hooked" thecae. The eeneral dimensions, however, are very similer
and it is possible that this form, occurring as it does at a lower horizon, may be a forerunner of Nonocrantus ofr. eriestonensis flles and Wood.

There is little doubt that Monoclimacis sn. Wilson is synonymous with Monocrantus ofr. Erjestonensis Elles and Wood. Furthermore Pribyl (1940) includes the latter in his synonomy of Monoclimacis linnarsoni (Tullberc). The validity of this last sten is more doubtful since Pribyl gives a thecsl count for 1 .linnarsoni of $10-8$ per or. Whilst Tullbers 1883 wives $7-8$ thecae per cm. Monoolimacis linnarsoni (Tullhers) may occur at a slightly hicher horizon, than Monoclimpcis sn. Wilson and M.ofr. eriestonensis Elles and Wood.

## genus PBISTIOCRAPTUS Jaekel, IB:9

Tyne Snecies: P. frenvens Jaelrel, 1889
Generic diecnosjs: Rhabdosome of very variable lencth and curvature but commonly almost straicht; thecae are straight, simple tubes throuchout the lenctr of the rbabdosome, and have varyinc decrees of overlan, and inclination; siculae from small to very large; flattened srecimens may occasionally be confused with Monoclimacis Frech.
cenus PRISTIOGRAPMFTS, GROUP A

Diamosis: Rhabdosome usually with strong dorsal curvature proximally and, perhaps related to this, a tendency of the thecal apertures to expand; distal parts more or less straicht and in this recion thecae are lone, narrow tubes often with great overlap; ancle of inclination cenerally low; siculae very lonc.
Horizon: tynically the Lower Llandovery.

1851 1868 $1876 a$ $1876 b$ 1877 1892 1897 1899 1910
?1924
?1931
1940
?1945
1947
?1962

Graptolites Nilssoni, Barr.
" Monosraptus creca
"
"
Pristiocraptus Monograptus " "

11

11
"
"
"
"

Harkness p.61,Pl.1,fies.7a-d.
Nicholson p.537. (nars) P1.20,fie.19. . Lapworth F.317,Pl.10,fics.12a-c. Lapworth PI.l,fic.7.
Lapworth p.131,P1.5,fic.4. .
Lanworth. Toernquist p.8.
Frech p. 660,fis.215, Pl.1,fie.3-5.
Lapworth. Toernquist p.4-5, P1.1,fies.1-6.
Elles and Wood pr.365-6,P1.36,fics. 3a-d, text fig. 238a-b.
Hundt PI.5,fig. 4.
Haberfelner Pl.l,fie.l.
Desio. p. 37, Pl.2,fics.16,17.
Waterlot Pl.23,fig. 260 .
Ruedemann $\mathrm{r} .481, \mathrm{Pl} .84$,fic. 1. Pristiograntus © creçarius (Lapworth). Romariz p. 282 (not figured)

Material: Many specimens usually in low relief preserved in pyrites, occesionally in full relief.
Horizon and Lonalities: Zones of P.cynhus, M.triangilatus, D.masturs, P.lentotheoa up to M.sedewicki; Spengill (S9-13 (?), S13-17, S24-28, S28-3\%, S3639, $575,9.4$ (?)); Birrs Beck ( $7 \mathrm{Bi}, 8 \mathrm{Bi}, 9 \mathrm{Bi}, 6 \mathrm{Bi}$ ); Pickering Gill (14. ); Watley Gill (6Wa).
Diacnosis: Rhabdosome dorsally curved throughout, usually only a centimetre or two lone, Sicula extremely long and prominent. Thecae simple tubes of very characteristic appearance.
Descrintion: The most characteristic feature of this species is a lons sicula. In most of the Cautley specimens this is about 5 mms long and its apex reaches to at least the level of the aperture of th.3, and usually to that of th. 5 . This latter feature, besides showing considerable varjation, is also often difficult to determine since the anex often passes quite impercentably into the dorsal margin. The base of the sicula (relief) is 0.19 mm across and it
maintains this width until th.l orisinates 1.3 mas above its base. At the point of oricin of th. 1 the rbabdosome is $0.36-0.27 \mathrm{~mm}$ broad, but at the aperture of th. 1 this has increased to 0.58 mm . Th. 2 arises only a short distance above the base of th. 1 so that there is considerable overlap even at this stace (two-thirds). The thecal lencth remains constant at least up to th. 7 ( 2.2 mms ) but the overlap bezins to decrease slightly.

Distally the thecae are little different and the rhabdosome does not exceed about 0.7 mm (in relief) whilst some snecimens show a slicht decrease in width immediately the sicula is passed. Throuchout the rhabdosome the thecae number $9-10 \frac{1}{2}$ in 10 mms and the apertural marein is at right angles to the axis.

Specimens recorded from hicher levels do show some differences. Those from the P.lentotheca Zone (e. . . 6Bi, Birks Beck), whilst having a typical nroximal end, are associated with lonc distal framents which may be conspecific. These show typical thecae with un to about two-thirds overlap. The common canal is very wide in proportion and the thecae show a distinct sicmoidal curvature not disimilar to that seen in Moroclimacis. A slicht sismoidal curvature is sometimes seen in the proximal thecae.

Waterial from the Zone of M.sed wicki, whilst similar to P. rrecarius in most characters, seems to have a hich thecal count of 14-15 in 10 mes. The apertures in these specimens have an appearance of introversion but tris almost certainly is due to crushing.

Further material may show that there are several varieties of this onecies perhaps with straticraphic importance, and perhaps also showing some link with P.crmhus.

Material seen: Specimen thoucht to have been figured by Harleness (1851) on Pl. 1 fiç. 7 a (H.M. Geolovical Survey Collection).
Snecimen in Sedswick Museum, Cambridge.

# Pristioxrantus cynhus (Lanworth) <br> Plate 4, fics.10,12,13. 

1876 Monograptus cyphus, sn. nov. Lapworth p.352,P1.12,fics. 3 a and 3c, (non 3 b and d ).

| 1910 | " | " | Japworth. | Elles and Wood pp.362-4, te |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | d,P1.36,ficss.la-c. |
| 1924 | " | " | " | Hundt P1.4,figs.24,30-33. |
| 1945 | 1 | " | " | Waterlot P1.22,fič258. |

Material: At least 20 specimens, usually fracmentary, none in relief. Horizon and Iocalities: Zone of P.cymhus, ?Zone of M.triangulatus Spencill (S9-13, S13-17 (common), S17-20 (common), S20-24); acinaces Zone; (12Wi) Diacnosis: Phabdosome with conspicuous dorsal curvature throughout. Proximal end slender with long sicula. Thecae long, simple, overlappinc tubes numbering annroximately 10 in 10 mms .
Desorintion: Because of its considerable lencth the rhabdosome is invariably fracmentary in the Cautley specimens. Nevertheless, these usually show the dorsal curvature and the characteristics of the thecae.

The proximal end is slender and has a width of 0.39 mm at the level of th. I (in flattened material). The apex of the lonc sicula extends almost to the level of the aperture of th. 2. Theca 1 is almost 2 mms long and overlaps th. 2 for about one quarter of its lencth. Compression distorts the characters of most specimens to a certain extent but the thecal apertures seem to be very slightly everted, Naturally oblique compression at one ancle will accentuate this, whilst at another it will subdue it, and the theoae may appear to have horizontal apertures.

More distally the thecae increase in lencth, overlan, and ancle of inclination to the axis. Here they measure anout 2.5 ms long, occasionally more, and are relatively narrow ( $0.4-0.5 \mathrm{~mm}$ ). The ancle of inclination is $10^{\circ}$ $20^{\circ}$ and they overlan for two thirds of their leneth.
Remarks: P.cynhus is common in its own zone but may extend a little above into the Zone of M.trianculatus. It is distincuished from most forms by its proximal end. From P.cregarius it differs in having a shorter sicula which only extends to midway between th. 1 and 2 .

The distal thecae could be confused with other types havinc lone, simnle overlarnind tubes, but from F.lentotheos, and P.acinaces it is fairly distinct Material seen: Specimens in Sedswick Museum, Cambridee.

$$
\frac{\text { Pristiocrantus aff. acinaces (Tornquist) }}{\text { Plate } 4, \text { fiç.11; Plate } 24 \text {, fic. } 11}
$$

aff.
1899 Monograptus acinaces n. sp. Tornquist p.5,P1.1,fics.7-8.
1909 . $\quad$ " rheidolensis sp. nov. Jones r.535,fics.19a-c.
1910 " acinaces, Tornquist. Elles and Wood pp.364-5,text fic.

$$
237 \mathrm{a}-\mathrm{d}, \mathrm{Pl} \cdot 36, \text { fics. } 2 \mathrm{a}-\mathrm{e} \text {. }
$$

Material: About 50 specimens, always flattened.
Horizon and Localities: Zones of P.acinaces - P.cynhus; Spencill (S13-17, S17-20., S9-13); Pickering Gill(14P).
Descrintion: This species has resemblences to both P. acinaces and Moincommodus Toernquist. The reason for this is partly a matter of preservation since only the outline of the fossil can be dotermined. It differs from $M$. incommodus in the apparent lack of sicmoidal curvature of the thecae, the everted anertural margins, the greater thickness, the greater rance of thecal spacing, and an apparent increase in thecal overlap distally.

No extreme proximal ends have been found but several slender and slowly widening specimens occur. The most slender of these has a width of 0.5 mm , whilst the distal fragments are 1.3 mms wide. The thecal spacinc varies from $5-7$ in 10 mms proximally, to 12 in 10 mms distally. Coincident with this increase in thecal count is a slicht increase in ancle of inclination coupled with an apparent increase in overlap of the thecal tubes.

These specimens seem to show neither the width of rhabdosome (though distal fracments may be lacking) nor the apertural expansion of p.acinaces. This latter feature may possibly be obliterated by flattenine althouch the opposite would be expected.

The exact length and overlap of the thecae cannot be determined but both values appear to be less if the anrle of inclination is any cuide.

A further point is that the proximal regions of all these specimens are sently curved dorsally, not moderately recurved as figured by Jones (1909) and Elles and Wood (1910) for the Rheidol Gorge specimens.

On ceneral form and outline P. aff. acinaces bears a superficial resemblance to other forms. From P.concinnus and M.sandersoni it diflers in its invariable dorsal curvature. Another species of similar dimensions is M. atavas Jones and it is possible that the form here called P. aff. acinaces is in reality a variant of the former but lackince the simmoidal curvature (it micht be obliterated upon compression), and with a low angle of thecal inclination.
Remarks: M. aff. acinaces occurs in S13-17 in what appear to be loose (or collansed) "colonies" of rhabdosomes.
Material seen: In E.W.Geological Survey kuseum, specimen ficured Elles and Wood Pl.36,fic.2b, cited p. 364-5; specimen ficured Jones 1909 fic. 19 c and açain by Elles and Wood Pl.36,fic.2d; specimen figured Jones 1909 fig.19a and again by Elles and Wood Pl.36, fic.2a and text fig. 237 b ; specimen ficured Jones 1909 fig. 19 d and ačain by Elles and Wood as text fic. 237 .

## Pristiocrantus lentotheca (Lapworth)

Plate 4,fic. 8,$9 ;$ Plate 13,fic.10; Plate 23,fic.6,7; Flate 24,fig.12.

?1961 Pristiocrantus leptotheca (Lapworth). Romariz in text, not figured or
?1962 Monocrantus leptotheca Iapworth. Pomariz n. 383; not.figured.

Materjal: Many specimens, always fracmentary, but oreserved in full relief in pyrites.

Horizon and Iocalities: Zones of M.trianculatus, D.macnus, P.lentotheca and M.sedowicki; Birks Beck (9Bi,6Bi,5Bi); Spencill (S75,9.4, S80,8.4); Watley Gill (IIWa, gWa).
Diagnosis: Proximal end unknown, but specimens close to it have been obtained. Rhabdosome more or less straicht throuchout. Thecae characteristically of extreme lencth and tenuity (in profile). Maximum width over 2 mms. Thecae number $8-10$ in 10 mms .
Description: Usually only short fracments of the rhabdosome are obtained but the thecal characters are so distinct that confusion with other forms is not likely. - The rhabdosome is more or less strajcht and distally reaches a thickness of over 2 mms and perhaps nearer 2.5 mms . The thecae are so long and thin in profile, however, that they easily slide over one another on compression to produce a displaced, or a sinuous dorsal marein (see fie. 8 , P1.4).

At a width of 2 mms (on the rhabdosome) the thecae have a length of up to 6 mis and more distally may be even longer. In these areas the overlan is of ten more than three-quarters of their lencth. There is often a pronounced exnension in the region of the aperture. The apertural nareins appear to be quite even and at right angles to the length of the thecae. Because the thecae are inclined at a low ancle to the axis (100) the apertural marcin anpears to be anproximately horizontal.

A proxinal end with sicula attached has not been found, but specimens showing the typical thecae down to a breadth of less than 0.5 mm have been obtained. On these the thecae are over 3.25 mms long and still overlap for more than half their length.
Remarys: Elles and Wood (1910) place this speoies in their Gp.lA 2. along with M.remularis, M.iaculum etc. In view of the continued eloncetion of the proximal theore the writer takes the view that it may have more affinities with forms like M.acinaces Toern. which El]es and Wood place in Gn. lAi (a). The whole form of the thecae is close to M.ecinaces and the proximal end may well turn out to be of that type rather then the stiff "nudus" type with its short.
thecae and small sicula. P. Tentotheca is here, therefore, included in Pristiograntus Group A.
Material seen: Specimens in H.M.Geological Survey Museum, figured Elles and Wood Pl.37,fics.2d,e.

Specimens in Sedwick Ruseum; Cambridge.

## genus PRTSTIOGRAPTITS, GROTIP B

Diagnosis: Proximal end usually straicht, slender, with short thecae of small overlan; sicula small its apex not extendind to the level of the aperture of th.2; distal thecae variable, either long tubes with considerable overlan or short, broad tubes with much less overlap.
Horizon: Typically Middle and Unper Llandovery.

Pristiozrantus nudus (Lapworth)
Plate 5,fic.2.

1852 1853 1876 Monograptus Fisinceri, Carr. sp. Lapworth pp.350-1, Pl.12,fics.1a,lb, ld, le,?lf.

| 1880 | $"$ | $"$ | $"$ var. nudus var. nov. Lapworth. p.156, Pl.4, |
| :--- | :--- | :---: | :---: |
| fics.7a-c. |  |  |  |

1910 Monocrantus nudus (Lapworth). Elles and Wood pr.375-6, text fic.246a-d,
PI.37,fies.6a-e.
?1931 " cf. nudus Lapworth. Aicner fic.4.

1940
1945 1948 1949 1950 Monograptus
" Pristiograntus (Pristiocraptus) nudus (Lapworth 1880). Pribyl p.74, non fic.
"

> "
"
" "
" (Lapworth). Obut p.21,P1.3,fic. 8a-c.

Obut p.21, PI. 3,fics.
8a-c.

1052

1954
1955
1962
Pristiocraptus (Pristiograptus) nudus (Lapworth). Munch p.92, Pl. 21,
fijes.la-lb.

Monograptus nudus (Lanworth). Wilson, in text and tables. Pristiograntus (Pristiocraptus) nudus (Lanworth 1880). Pribyl and Snasov. P.193,non fic.
Pristiograntus nudus nudus (Lapworth). Romariz p.284,?P1.13,figs.4,5, Pl.16,fǐ.1.

Lectotyne: Snecimen ficured by Lapworth (1876) P1.12,fig.la.
Material: Over 100 specimens, invariably flattened but some well preserved. Horizon and Localities: ? Zone of M.sedswioki, Zone of M.turriculatus, M. crisnus and M.criestonensis (in the sense of Wilson 1953); Speneill (?S73, 11.4-S80,8•4, $5197,5 \cdot 5-\mathrm{S} 259,1 \cdot 25, \mathrm{~S} 264,5$ ); Wards Intake (5Wi). Diacnosis: Rhabdosome straicht, with slicht ventral curvature at the proximal end in some specimens. Thecal tubes characteristically inclined up to $40^{\circ}$, and numberinc $12-8$ in 10 mms .
Descrintion: The rhabdosome usually reaches a lencth of $3-4$ cms but may be longer. Typically it is stiff but material from the hicher zones of ten shows a slight ventral curvature at the roximal end.

The sicula is small and its apex only reaches to the level of the aperture of th.l. Proximally the thecae are closely spaced, particularly over the first few mms where they number 12 in 10 mms . Their density rapidly fall to $9-10$ in 10 mms , which is maintained throuchout much of the lencth, although
occasional distal reedings of 8 in 10 mms are obtained．
At 3 cms from the sicula a width of $1.43-1.5 \mathrm{mms}$ is reached．From this point the increase in width is slow but the final width may approgeh 1.7 rms．

The thecae in the adult portions are almost 2 ms long and overlap app－ roxinately for one half of treir length．A．characteristic feature of this species is an expansion in the free ventral rerein which，on compression，may give rise to a slicht excavation．The angle of inclination is about $30-40^{\circ}$ and only rarely exceeds this value．

Pemarks：The Cautley specimens do not differ aprreciably from other described material．
Material seen：Specimens in H．F Geolocical Survey Collection and the Sedowick Museum，Cambridse．

$$
\frac{\text { Pristioxmatus wotneri }}{\text { Plate } 23, \text { fics. } 7,8 .} \text { nov. }
$$

？l⿹勹口O Monocraptus Hisinceri Carr．var．Elles in tables and text，non fic． ？1917＂hisinceri＂＂Watney and Welch in text and tables， non fic．

Holotyne：HUR．／37v／19 and counterpart／$/ 7$ ，specimen in full relief with a total Iencth of about 14 cms．
Horionn of Folotyne Zone of C．centrifucus－C．insectus． Derivation of name：After G．F．Vatney joint authoress of＂The Zonal Classificat ion of the Salonian Rocks of Cnutley and Ravenstonedele＂191．．
Material：One well preserved snecimen（the holotype），and another framentary but well preserved specimen．Other doubtful snecimens．
Horizon and I，ooalities：Zones of C．centrifums－C．insectus to Zone of M．ricc－ artonensis；doubtful above this latter pone；Wandale Hill Gill B（37W）；Hob－ तale Beck（lHd）；Blueofster Gills（？Middle Gill and Near Gill）．
Diacnosis：Fhabdosome long and quite straight，reaching a distal breadth of $2 \cdot 3 \mathrm{mms}$ ．Thecae simple overlapping tubes numbering $13-7$ in 10 mms ．Ancle of inclination up to $40^{\circ}$ ．

Description: (Drawn mairly from the holotype). The rhabdosome is lons and straicht with perhaps a very centle dorsal curvature at the proximal end, the Whole being similar to P.recularis.

The sjcula has a lencth of 1.43 mms and is quite inconspicuous. Its aper reaches 0.15 mm above the level of the anerture of th.1. Th. $1-3$ number 13 in 10 mms and are inclined to the axis at a very low ancle (5-10 $)$. Both the thecal spacinc and ancle of inclination increase rapidly so that they number 9 in 10 mms inclined at 200 , only lom from the sicula. The overlay at this point is rather less than one half.

There is no chance in the thecal characters distally but they are less closely spaced ( 7 in 10 mms ) whilst the angle of inclination increases to 30-40 . The thecal overlap is rather more than one half and the tubes therselves have a lencth of 2.5 mrs.

Remarks: The species recorded as M.hisinceri Carr. var. by Watney and Welch (1911) was probably in part P.watneyi for the latter certainly welong to P.nudus Groun. On the other hand Watney and Welch record their variety throuchout the Wenlook Series but state that it is rare in their lowest and topmost zones. The writer feels that they may have confused pristioform views of M. Winci sp. nov. with P.watneyi. M. kingi is common in their zones of M.riccartonensis and C.risidus and rare in their highest zone of C.lundcreni (as they record for M.h.Carr. var.). It is absent in their c.murchisonj Zone where P.watneyi occurs rarely.

The two species, P.watneyi and Mokingi, thouch superficially resemblinc each other in size, are quite distinct. The latter, quite apart from the ventral excavation of the thecal merein, has a distinct dorsal curvature at the extreme proximal end, a prominent sicula, is nore slender, and the rhabdosome as a whole often shows dorso-ventral curvature.

From members of Pristiomrantus Group $C$, P. watneyi differs in the slender and slowly widening proximal recion. The closest species is probably p. nudus. From this it differs in the followinc points:-
a) The distal thecae are long rather than broad, but there is an almost imper ceptible expansion in the region of the apertuee.
b) The rhabdosome is broader distally and nore slender proximally.
c) Thecal spacing both proximally and distally is different.
d) The sicula is loncer and its anex extends further.
e) The angle of inclination distally (30-40) is less than in P. nudus.

# Pristiocrantus reaularis remilaris (Tornquist) Plate 5,fig.l; Plate 24, ficss.13,14. 



Iectotyne: Specimen figured by Tornnuist (1899) Pl.l,fic.9.
Material: Over 200 specimens invariably flattened.
Horizon and Localities: ?Zone of M.sedowicki, Zone of Jurriculatus to M. Eriestonensis (in the sense of Wilson 1953); Spengill (?S75,9.4; ?S124, 10.25 to S131, 10.25; S136,1•25 to S264,5 except S145,0•75; S210,8; S217,6.25; S252,3.5 to $5254,7 \cdot 25 ; ~ S 258,9$ to $S 260,5 \cdot 5)$.
Diagnosis: Rhabdosome straicht, long, and, more slender proximally than P.nudus. Thecal tubes simple, long, quite slender and inclined to the axis at a low angle. $\quad 7 \frac{1}{2}-9$ in 10 mris distally.
Descrintion: The rhabdosome is stiff and straicht throuchout. Distal fracments over 7 cins long are commonly found which show no diminution in breadth and sugcest that the complete rhabdosome was very long indeed.

The proximal end is slender and bears an inconspicuous sicula which has
a maximum lencth of lmm. Its apex reaches to the level of the aperture of th. I. At the aperture of th. 1 the rhabdosome width is 0.39 mms (flattened) and must be even more slender in specimens preserved in relief. "Over the first on the thecae are closely spaced and ${ }^{n}$ Gumber $13-10$ in 10 mms . Thereafter this value falls very quickly to 9 in 10 mms . Distally the thecae become even more widely spaced and the count is often as low as 7 C in 10 mms . The maximum breadth of the rhabdosome (flattened) is 1.5 mms .
The thecal tubes show a slight expansion of the free ventral marcin, as in the case of P.nudus, and upon flattening this is reflected in a slight excavation. Overlap of the thecae increases distally to a maximum of twothirds.
Remarts: Specimens occurring rarely in the zone of M.sedickicki are similar but smaller and have the thecie more closely spaced, ( 15 in 10 mms ). The width at the level of th. 1 is 0.26 mm . These forms may bear some relation to P.regularis solidus Pribyl.
Material seen: Snecimens in F.M.Geolosical Survey Museun and the specimen ficured by Elles and Wood as text fig. 2420 (Sedcwick wuseum, Cambridee.

## Pristiograntus aff. variabilis (Perner) <br> non fis.

aff.
1897 Monogrartus jaculum, Lanw. var. variabilis mini. Perner p.12,P1.13,fics. 10-15.

Material: 44 badly rreserved, flattened specimens from Zones of M.turriculatus and M.crisnus; Snemcill.
Descrintion: These rather badly preserved snecimens are referred to p.variabil is on ceneral grounds only. The rhabdosome is straient and about lmm broad (flattened).

The thecae have little overlep throuchout, whilst the arertural marcins vary between horimontal arid slichtly introverted. These characters are similar to the proximal regions of P.jaculum (Lapw.) but in all the Cautley specimens there is a lack of width and thecal overlan. It is this which distir-
cuiches Lapworth's from Perner's species, and sugeests that the Cautley specimens have more affinities with the latter rather then the former.
Material seen: Snecimens in the Sedewick Museum ficured by Elles and Wood Pl. 37,fic.5a, text fie. $245 \mathrm{a}, \mathrm{b}$.
$\frac{\text { Pristiocrantus concimnus }}{\text { Plate } 5, f i c \cdot 3 .}$

1876 Nonomraptus concinnus, sp. nov. Lapworth pp.20-21,F1.11, ficms.la-e. 1910 " " , Lapworth. Elles and Wood pro368-9,text figs.

$$
240 a-d, F l .36, f i c s .5 a-f
$$

1934 " concinus Lanworth. Hsu p.91,PI.7,fics.2a-b.
1945 " " Waterlot pl.23,fie゙.264.
1049 " (Pristiocrantus) concinnus Lapworth, Obut p.2l,fics.7a,b.
?1962 Pristiograntus concinmus Larworth. Romariz n.279,P1.3,fig.4.

Naterjal: A few srecinens in full relief, others flattened.
Horizon and Iocalities: ?Zone of P.cynhus, Zone of M.sedwicki; Spencill (?S 13-17,575,9 4).
Diasnosis: Ventrally curved rhabdosome, but short frasments eppear almost straight. Width (in relief) about 1 mm . Thecae simple tubes with a slicht expansion of the free ventral marcin, numbering about 8 in 10 mrs .
Descrintion: The specimen figured on Pl.5 (fig.3) is almost identical with the snecimen ficured by Elles and Wood (p.369, text fic. 240 d ). Both have the same thecal lencth and count and both are preserved in full relief. The Cautley specimen is fractionally narrower, and the thecze ere inclined to the axis at a smaller ancle.

Specimen सUR./S75,9.4/123 also shows the expancion of the free ventral margin which, unlike the interthecal septur, is convex. The interthecal septum is flat excent for a shallow croove runnine obliquely across it. This does not seem to be a feature caused by flattening or compression sjnce the crantolite is not distorted in any way, and the croove does notilie parallel to the bedding plane but in a plane very slichty obligue to it.

The fact that the interthecal sentum is essentially flat, and the free
ventral margin convex cives the apnearance of a slicht excavation of the ventral marcin. Tinon being flattened this will be accentuated and is well seen in the snecimens ficured by Lepworth and Elles and Wood (both in specimens in relief and in flattened material).

Other more doubtful specimens (S13-17) seem to.show these characters but are too badly preserved to make a definite identification and M. concinnus can only be recorded with certainty from the zone of M.sedowicki. Material seen: Specimens figured by Elles and Wood Pl.36,fics.5d and f. and text fice.240d. (H.M.Geological Survey Museum).

Specimens in the Sedcwick Museum, Cambridce.

Eenus PRISTTOGRAPTITS GROIP C

Diasnosis: Proximal regions relatively robust and commonly with a distinct ventral curvature over the first few thecae; sicula prominent often extendinc to the second thecal aperture; rhabdosome usually straieht or with very eentle flexures.
Horizon: Typically Wenlock and Lower Ludlow.

$$
\frac{\text { Pristiosrantus dubius dubius }}{\text { Plate } 5, \text { fic. } 4,5 ; \text { Platess } 25, f i c \cdot 1,5 ; 7}
$$

1850 Grantolithus colonus Barrande p.43,P1.2,fic.5.

$$
\text { fis. } 10
$$

1880
"
1883
1890
"
"
serra Hopkinson MS.Lanworth P1.4,figs.6c-d.

$$
\begin{aligned}
& \text { dubius Tullberc p.29,Pl.1,fjcs.28-29,Pl.2,fijes.20-21. } \\
& \quad " \quad \text { Holm p.16,Pl.1,fic..18-26. }
\end{aligned}
$$

1893
Monocraptus dubius Wiman p.2,P1.7. -
1899
"
"
Suess. Perner r.9,Pl.14,fics.8, O a-b, Pl.17,fics. 17a-b.
1900
1.908

1910
.

Horizon and Looalities: Wenlock Series, Zones of Montennulatus, to C.lundgreni; Bluecaster Niddle Gill (11M,12-20N, ?27-2ON), Near Gill (13N,14-21M): Birksfield Beck ( 8 Bf ); Whinny Gill ( 7 Wh , OWh ); Eoker Secker Beck ( 9 Ra , 12 Ra , 13na); Hobdale Beck (IBd); Hebblethwaite Hall Gill (7H,1OH); Wandale Hill ( $3 \mathrm{~W}, 4 \mathrm{~W}, 6 \mathrm{~W}$ ), Gill A (34W), Gill B(41W, $42 \mathrm{~W}, 44 \mathrm{~W}, 48 \mathrm{~W})$, R. Rawthey, Fouth of Wandale Beck ( $65 \mathrm{~W}, 66-67 \mathrm{~W}, 69 \mathrm{~W}$ ). Ludlow Series, Zone of P.ni]ssoni; ( $2 \mathrm{~W}, 7 \mathrm{~W}, 8 \mathrm{~W}$ ). Diagnosis: Rhabdosome of variable lencth, conspicuous ventral curvature at proximal end, and delicate dorsal curvature throuchout the mesial recions. Maximum breadth $1.9-2.0 \mathrm{mms}$ (flattened). Theoae simple tubes, numbering $10-8$ in 10 mms inclined at $30-35^{\circ}$.
Descrintion: The most tynical shane of the polypary is seen in fic.l (P1.25). At the proximal end there is almost invariably a slight ventral curvature involvinc 4-5 thecae. Mesial fraements often show a gentle dorsal curvature whilst distal portions may be quite straicht. The maximumidth of the rinabdosome (flattened) which is $1.9-2.0 \mathrm{mms}$ is achieved within 3 cms of the proximal end. The width at the level of th. 1 is $0.6-0.65 \mathrm{~mm}$.

The thecal spacine in this species is one of the most constant of all the species examined. Proximally there are 10 in 10 mms and distally this falls to 8 in $10 \mathrm{mms}$. Adult thecas are 2.5 mms lons and overlap bere is rather more than half.
Remari-s: P.d.dubius differs in no way from other British material dexcribed most fully by Elles and Wood (1910). Specimens from the fudlow Series are, however, a little loneer and more slender and may have some affinities with P. d. Iud]owensis(Bouc.).

In contradistiaction to the situation in the Wenlock; P.d.dubius is not particularly common in the Ludlow Series but of those specimens examined there is no difference in thecal spacinc or angle of inclination to distincuish them from P.d.dubius and they are here retained in this subspecies. The only detectable difference is a slicht shorteming of the thecal tube resultine in a more slender rhabdosome.
Material eeen: Specimens in Sedcwick Museum, Cambridce.
$\frac{\text { Pristiomrentus dubius nseudolatus subsp. nov. }}{\text { Plate } 25 \text {, fig. } 2 .}$

Holotvne: HUR./18N/53a, specimen well preserved as an impression, complete proximal recion but short, about 4 cms .
Horizon of Holotyne: Zone of Moflexilis belorhorus.
Derivation of name: "Latinised" to indicate that it is distinct from P.d. 7 atus (Bouc.).
Material: 31 specimens, proximal and distal fracments, all flattened. Horizon and Localities: Zones of M.flexilis belontorus - C.ricidus mut. (rare at basey Near Gill (18N,19N,16N).
Diamosis: Rhabdosome several cms long, proximally with dubius-like ventral. curvature, but distally quite straight. Maximum width 2.7 mms. Thecal tuhes simple, inclined to the axis at: 20-30 and numberinc $10-7$ in 10 , ms. Descrintion: This subspecies is sunerficially very similar to P. d. dubius but the rhabdosome, whilst showing the same ventral curvature at the proximal end, is distally straicht and broader. A width of 2 mms is reached at only 1.5 cms from the proximal end, which, at the level of th. 1 is 0.75 mms broad. At $3 \frac{1}{2}$ cms the width has increased to $2 \cdot 34-2 \cdot 47 \mathrm{mms}$ and in the most distal froements seen reaches 2.7 mms.

Initially P.d.nseudolatus has the same thecal spacing as P.d.dubius (10 in 10 mms ) but at $1 \frac{1}{2} \mathrm{cms}$ the count has already fallen to 7 in 10 mms . This is then maintained to the distal extremity.

The ancle of inclination of the thecae is considerably less than in P.d. dubius and ranges between $20-30^{\circ}$ beins usually nearer $20^{\circ}$.

The sicula is over 2 mms lonc, usually $2 \cdot 3 \mathrm{mms}$ and its apex reaches to the level of the second thecal aperture.
Remarts: Many of the beddinc planes at the locality of the holotype show no sichs of compressional activity and this subspecies is clearly not the result of compression. If compression at right angles to the polypery had taken nlace (neccessary to increase the rhabdosome width) then the angle of inclinat. ion would have been increased (whereas in fact it is less) and the theare would be more closely packed (in fact they are less closely spaced). At the same time any curvature would be accentuated and the sicula reduced in lencth; the opnosite is true in both cases.
P.d.nseudolatus bears some ceneral resemblance to P.d.]atus Bouc. In this latter species however the angle of inclination appears to be higher even than in P.d.dubius (see e.c.Pribyl 1943 Pl.l,fic.7).

From P.menechini gisanteus (Gortani) the Cautley subspecies differs in having a hicher thecal count, and from P.sardous sardous (Cortani) in beinc rather more slender and in having a lower ancle of inclination.

Pristiosrantus menerrini meneshini (Gortani)
Plate 25,fics. $\%$, 6 .

1857 Grantolithus (Monocrapsus) colonus (non. Barrande) Menechini (pars) p. 164.
1922. Monocraptus menechini Gort. Gortani r.47,P1.8(1),fics.3-8, Pl.12(5);fie.


Lectotyne: Specimen figured by Gortani (1922) P1.8(1),fic.4.
Material: About 50 specimens, all flattened, several proximal ends, but distal fragments are more common.
Horizon and Localities: Stages 2 and 3 (Wenlook Series); Bluecaster Near Gill ( $16 \mathrm{~N}, 17 \mathrm{~N}, 20 \mathrm{~N}, 21 \mathrm{~N}, 22 \mathrm{~N}, 23 \mathrm{~N}$ ), Middle Gill (16N), Wandale Hill (68W).

Diagnosis: Phabdosome similar in appearance to but broader than P.nseudodubius (Bouc.). The proximal recion shows distinct ventral curvature but distal fragments are straicht. A maximum width of $1 \cdot 6-1 \cdot 7$ mms is attained. Thecal count $9-7$ in 10 mms .
Descrintion: The rhabdosome is rather longer than that of P.nsendodubius and may reach 5 cms whilst a breadth of $1.6-1.7 \mathrm{mms}$ is reached in some specimens.

The sicula is full 2 mrs lonf and its apex extends to about the level of the second thecal anerture. At the level of th. l the rhabdosome has a breadth of 0.65 mm (flattened) which increases distally to $1.43-1.5 \mathrm{mms}$ in most specimens. ${ }^{\text {s }}$ Some snecimens, however, from the ton of Stage 2 (Zone of M. antennulatus) are rather broader, $1 \cdot 6-1 \cdot 7$ mns and in this respect acree with the Bohemian forms described by Pribyl (1943). Specimens in Stage 3 (Zones of M.flexilis belonhorus - C.ricidus mut. ) have a maximun width of 1.43-1.5 mms .

There is a difference also in the theal spacine between specimens from the two horizons. Those from the lower horizon (Stace 2) have thecal counts 9-7 in 10 mms - acain acreeinc with Bohemian material - with occasional readings of 10 in 10 mms at the proximal end. In stace 3 readincs of 10 in 10 mos are more common and the full rance is $10-8$ in 10 mms. The most usual value obtained is 9 .

The anspe of inclination in most specimens is $30^{\circ}$ or rather less. Bemarls: The slicht shift in diacnostic characters from Stace 2 to stace 3 of this species is recarded as eradual change which would, if continued, cive rise to P.nseudodubius. Thus those specimens from stare 2 are identical with P.m.menechini whereas specimens from Stace 3 are narrower and have a elichtly increased theoal count.
$\frac{\text { Pristiograntus rsendodubius }}{\text { Plate } 25 \text {, fics. } 8,9}$

1932 Monosprantus neeudodubius Boucek pr.1-2,Pl.2e-f.
194.4 Pristiocrantus pseudodubius(Boucek 1932). Pribyl po.8-9,P1.1,fic. 8 , text fie. I, 3 .
1945 Nonocraptus pseudodubius Boucek. ... Waterlot nl.26,fic. 288 .
?1962 Pristiocraptus pseudodubius (Boucek). Romariz PI.16,fic. 3.

I,ectotyne: Specimen ficured by Boucek in fic.2e, and refigured by Pribyl, teyt. fic.I. 3.
Naterial: About 30 snecimens, invariably finttened, usually noorly preserved. Horizon and Iocalities: Stece A, Zone of C.Iundsreni; Near Gill (25N-28N); Hobdale Beck (3Bd.); R.Rawthey (2Ra).
Diesnosis: Fhabdosome short, narrow, with gentle ventral curvature throughout. Raximum width 1 mm , thecae number 10 in 10 mms .
Descrintion: The rhabdosome is typically short and slender, aprearine cently arched with the thecae on the concave side. Snecimens over 2 ams long have not been observed. Flattened snecimens, compressed at richt ancles to the nolypary, show thicknesses up to $1 \cdot 17$ mms.

The conspicuous sicula is 1.5 mms long, with its arex reachine almost to the level of th.2. A short, stout vircella is present.

Proximally the thecal spacinc is rather closer (11-70 in 10 mms ) falline to 10 - 0 in 10 mms mesially and distally. The thecal tubes have a meximum lencth of 2 mms and overlap throughout the rhabdosome for one half of their lencth. They are inclined to the axis at $20-30^{\circ}$.
Remarks: In all their diacnostic features the Cautley sreaimens agree with P.nseudodubius (Bouc.). The Cautley material is however, closer in general appearance to other material ficured by Pribyl (1943, Pl.l,fic. 8) than to the oricinal figured by Boucek (1932,fic.2e) and Pribyl (19,43, text fic.I3) which aprears to be a rather broad variant. Pribyl (n.9) does mention that rather broad forms can occur.
P.nseudocimbins has a superficial resemblance to P.m.meneshini (Gortani). It differs from the letter in heinc even narrower ( 1 mm of. $1 \cdot 5-1.7 \mathrm{mms}$ ) and in havinc a hicher thecal count. P. P.menechini has been found at Cautley in Stage 3 and it may have civen rise to P.nseudodubius which is typical of Stace 4, since both forms are obviously closely related.

The same order of apearance is maintained in Bohemia (Prjkyl 1943, p.44). Material seen: A speci:en labelled M.dubjus from C.Iundcreni Zone in Sedcrict Museum ( $\mathrm{S} 22,008$ ). This srecimen is close to the form here described as E . nseudodunjus.

# Pristiocrantus vioinus (Perner) <br> Plate 25,fiç.3; Plate 23,fig.ll. 

1899 .. Monorrantus vicinus n.sp. Perner n.22,P1.14,fices.2ja-b.
1900 " comis, sp. nov. Wood r.459,Pl.25,fics.8a-b,text fic.12.
1910 " " Wood. Elles and Wood p.381-2,P1.37,fic.9,text fic. 251.

1936 " vicinus Perner. Boucek p.7,non fic.
1936 " compressus Boucek p.7-8,P1.1,fics.11-12.
1943 Pristiograptus vicinus (Perner 1899). Pribyl pr.15-18, P].1,fic.10-11, text fics. 12, and II, N, 0, P.
1945 Monocraptus vicinus Perner. Waterlot P1.23,fic.263.
$1945 \quad " \quad . \quad$ comis Wood. Waterlot Pl.26,fic.283.

Holotyne: Specimen ficured by Perner Pl. 14,fics.25a-b.
Material: About 30 specimens, all flattened.
Horizon and Incalities: Ludlow Series, Zone of P.nilssoni: Wandale Hill (7W, 8N).
Diagnosis: Polypary slender, almost straicht to sljehtly curved (ventral), short, maximum breadth 1.3 mms. : Thecae simple, overlapping tubes numbering about 10 or 11 in $10 \mathrm{mms}, 2 \mathrm{mms}$ long (max.), overlap about one half. Descrintion: The rhabdosome varies from almost straicht to specimens which, comonly show a ventral curvature of the proximal end. Only rarely does this snecies exceed 2 cms in length. The maximum breadth of flattened snecimens occurs at the distal extremity, and is 1.3 mms . This is achieved by slow and steady wideninc from a breadth of 0.5 mms at the level of th. 1.

The sicula merces inconspicuously into the polypary and its apex can only be detected by the presence of a slicht indentation in the dorsal marcin of the rhabdodome. Its length is 1.5 mms and it extends above the level of the aperture of th. 1. The sicula aperture has a short proninent vircella.

The theas are not uniformly spaced throughout the rhabdosome. They number 11 or 12 in 10 mms proximally, 11 in 10 mms mesially, and 10 in 10 mm distally. The ancle of inclination increases to 250-300 distally.

Remarks: Perner's original specimen shows considerable ventral curvature of the type shown by P.bohemicus, and it is not surprising that Wood (1900) Eave
the Eritish form a new name (H.comis). Pribyl (1943) however, redescribes and ficures Bohemian material and consjders that H . comis Wood and P. vicinus Perner are synonymous.
Materjal seen: Specimens in Wood Collection, Sedewick Nuseum, labelled M.onmis.

> Pristiocrantus auctus $£ n$. nov. Plate 5 ,fics. 6-9; Plate 25 , fic. 4.

Holotyme: FUR. $/ 7 \mathrm{~W} / 62$ almost complete, flattened impression.
Forizon of Holotyne: Ludlow Series, Zone of P.nilssoni, 2nd graptolite band; Wandale Hill ( $7 \mathrm{~W}, 8 \mathrm{~W}$ ).
Derivation of name: auctus, L. 'increase',' wrowth'.
Naterial: About 40 specimens, all flattened.
Horizon and Iocalities: Zone of P.nilssoni, 2nd crantolite band; Wandale Hill (7W, 8W).
Diacnosis: Rhabdosome lonc, broad, and stiff. Proximal end invariably with slicht ventral curvature, distal parts usually straicht. Thecae lone, simple overlappinc tubes numberinc $18-11$ in 10 mms . Sicula lonc", vircella short and transversely (?) expanded.into a disc.
Descrintion: The rhabosome is about 4 ms lone and usually straicht distally though some specimens show a gentle dorsal curvature. . The proximal end is invariably ventrally curved to the extent that 6 thecre are involved. A maximum width (flattened) of rather less than. 2 rms is achieved within 2 ors of the sicula but srecimens compressed at right ancles to the line of the polypary show values of slichtly over 2 mms . At the level of th. 1 the rhabdosome width is $0.7-0.75 \mathrm{~mm}$.

The sicula is not always conspicuous but has a leñth of $2 \cdot 3$ mms. Its apex reaches to the level of the aperture of th. 3 . Thecal spacinc over the first, few, mms of the polypary is very close and varies from $17-20$ in 10 mm . denendinc upon the direction of compression. A value of 18 in 10 mms is the most constant. At a distance of $4-7 \mathrm{mms}$ from the base of the sicula the theca: count has fallen to $13-18$ in 10 mms, 15 in 10 mss being the usual figure, winist distally $10-14$ is the total range encountered.

The thecae are simple tubes which reach a maximum lencth of 2.5 mms in
the distal recion. Here the overlan has increased to three-quarters from two-thirds proximally, and the thecal tubes are inclined to the axis at up to $45^{\circ}$.

One of the most striking features of the specimens is the presence of a short vircella ( 0.6 mm ) which swells out into a bulb-like shape and has the appearance of a clobule hancinc from the proximal end of the rhabdosome. This is anproximately $0.4-0.5 \mathrm{~mm}$ in diameter. Thicening of the virgella in this manner is invariably present but one specimen, less exponded than the others succests the possibility that the vircella is transversely exnanded, and that only upon compression does it rotate to the bedding plane. If this is the case specimens with the swelling half buried are to be expected.

It is not nossible to decide whether this feature is one of specific importence or whether it is a parasitio phenomenon. In support of the former interpretation are the facts that it is invariably present in Pauctus and that it does not appear on other species from the same horizon. Remarks: P.euctus is clearly close to such species as P.vulgeris (Wood) and P.tumescens (Hood). The decree of curvature of the proximal end is interinediate between these two species, whilst the width of the rhabdosome is nearer P.tumescens. The combination of characters described above serves to distinguish P.gactus from both these species.

Elles and Wood ( $1910, p \cdot 380$ ) describe forms of P.tumescens from the Lake District which are shorter, broader, and have a hicher thecal count (13-12 in 30 mms ) than those from the type area. It is possible that these are related to the species here described althouch P. auctus is loncer than P.tumescens.

> Pristiomrantus welchi sp. nov.
> Plate 23 , fier.10; Plate 25, fis.ll

Holotyne: Specimen HUR. $/ 1 \mathrm{Ab} / 22$ and counterpart 22 a . Horizon of Holotyne: Zone of M.leintwardinensis, in association with M.l.aff. lejntwerdjnensis Hopk. 付.S. and M.I.aff. inciniens Wood.
Iocality of Holotyne: IAb, Adamthwaite Rank, Favenstonedale, Westmorland. Material: A few more fragmentary and less well-preserved specimens. The holo-
*in width.
Derivation of name: After F.G.Welch who, in conjunction with Watney, produced a valuable paper (191]) on the Salopian fauna of the Cautley area.
Diagnosis: Very small, nerrow rhabdosome with only a few thecee. Iencth about 5 mms , width (flattened) 0.65 mm to 0.7 mm . Proximal end with slicht ventral curvature. Sicula about 1.2 mms long; thecal count 14 in 10 mms .
Description: The tiny polypary is most characteristic and specimens reserved in relief must be very narrow, possibly of the order of 0.5 nm . Some specimens slichtly exceed 5 mms in lencth and the holotype is 5.33 mms . The maximum breadth in flattened specimens is about 0.7 rms and this is achieved by the fourth or fifth theca.

The sicula is not prominent but has a lencth of 1.2 mms . Its arbx reaches to the level of the aperture of th. $1 . \quad$ About $6-8$ thecae may be present on the rhabdosome and these are all of simple pristiosraptid type wi.th a maximum length of $1 \cdot 3-1.4$ mms, and a width of 0.2 to 0.22 mm (flattened snecimens). Distally the thecae overlap for one half their length, but rather Jess than this proximally.

The thecae number 14 in 10 mms , throughout the rhabdosome and are inclined at a low ancle to the axis of the rhabdosome - about $20^{\circ}$ distally and less at th. 1 and th.2.

Remarls: The only form approaching this snecies in dimensions is P. praeultimus Funch from the nilssoni-scanicus Zone of Thuringia. This is of similar lencth but rather broader (1.0-1.] mms compared with 0.7 mm ). The thecal count is similar ( $12-14$ in 10 mms compared with 14 in 10 mms ). However the thecae are of P.ultimus (Perner) type and in flattened specimens a slicht excavation of the ventral marcin is seen sugeesting that the thecae are not of simple pristiograptid form.

This is a rare species at Cautley and it was not recorded by Watney and Welch (1911) in their work on the Salopian rocks.

[^1]
## PPristiocreantus wandalensis (Watney \& Welch)

Plate 26,fic. 4 ; Plate 25,fic.10; Textfic. $\boldsymbol{\delta}^{8}$

1911 Nonocraptus wandalensis sp. nov. Watney \& Welch pp.235-6,fic. $4 \mathrm{~A}-\mathrm{C}$. ?1924 " " Vatney \& Welch. NcLearn nf.35-6, Pl.1,fig.7. ?1947
" "
"
" . . Ruedemann p.491,P1.85,fics.1516.

Material: Several specimens preserved in full relief, none as flattened impressions.
Horizon and Iocalities: Iudlow Series; Zone of P.nilssoni, ?lst crantolite band; Wandale Hill (2W).
Diamosis: Rhabdosome short, less than 2 cms lone, straicht, to dorsally curved. Maximum width (relief) $1 \cdot 43-1 \cdot 5 \mathrm{mms}$. Thecae number $19-13$ in 10 mms . Sicula 1.43 mms . Ancle of inclination decreasing distally to $35^{\circ}$. Descrintion: Watney and Welch in their original description give the curvature as dorsal. The author's material shows that the curvature varies between straicht and dorsal and one specimen even shows ventral curvature. The sicula is very prominent, 1.43 mis lone and with its apex reaching well above the level of th. 2 . Th. 1 and 2 are very short ( 0.6 ms ) and are inclined to the axis at $50^{\circ}$, whilst the apertures of both thecae narrow consid. erably. Later thecae becone inclined at a lower ancle and eventually remain constant at $35^{\circ}$. Here the thecal tubes are almost 2 mms lons and overlan for two-thirds their length.

In profile view the thecal apertures anpear to be slichtly concave, thouch this feature is not obvious in all specimens. The tendency to nerrow aperturally, described by Watney and Welch, is not a nrominent feature and seems restricted to the proxiral thecae. The arnearance of jsolation of the apertural region, coupled with narrowing of the aperture, figured by these authors (fic.4C) is a common feature caused by obscuring of the aperture by chloritic material. Fic.4A cives a more accurate nicture of the thecae. Remarks: The exact character of the first theca of the rhabdosome is still not known with any certainty. It nerrows to 0.13 mms and is rounded in profile, whereas th. 2 is 0.3 mms across the aperture and is similar to succeedin thecae. Th. 1 may not in fact, be pristiocraptid at all.

## TEXT FIG. 8a.1-8

1. Pristiograptus? wandalensis (Watney \& Welch), HUR/2W/7; partially destroyed or being taken apart.

3 \& 4. Sections across the rhabdosome as shown in fig. 2 .
6. Section along the line abod shown on fig.5.
7. Similar section to line abc of figure 5 but at a more distal part of the rhabdosome.
8. Dorsal view of proximal thecae with metatheca removed (shown by dotted lines).

TEXT FIG. 8bl-8
(specimen HUR/2W/7)

1. Key to figs. 2-7.
2. Sketch showing growth rings of interthecal septum.
3. Sketch showing growth rings of free ventral wall.

5,6. Sketch showing growth rings on part of protheca and metatheca.
7. As figs. 5,6 but with key to fig. 8 .
8. Section along the line abc of fig.7, distal part of rhablosome.


Diacnosis: Rhabdosome with strong ventral curvature becoming straighter distally; thecal tubes with small amount of overlan, and slight expansion in recion of free ventral marin; aperture may have a "lip". Horizon: Lower Ludlow.

Pristiocrantus bohemicus (Rarrande)*
Plate 26, fics.1-3; Plate 28, fis.13.


1920 ? 1924 1928
1929
1931
1933
1935
1936
1936
1937
1939
1939
1942
1945
1947
1947
1948 1949

1951

1952

1955

1955
1958

1962

Worograptus bohemicus (Barrande). Gortani p.26,Pl.2,fics.9-10.


Monograptus " " (Barrande). Obut r.20,P1.3, fics. $4 \mathrm{a}-\mathrm{b}$.
" bohemicus (Barrande). Sherrard p.130,Pl.8,fig.d,e; text fig. $2 d$.
Pristiocraptus (Pristiograptus) bohemicus bohemicus (Barrande, 1850). Pribyl pr.23-26, P].2,fics.5-6.
" "
" bohemicus (Barrande,1850).
Pribyl and Spasov p. 191.
Monocraptus bohemicus Barrande. Kuhne pr. 382-4, text fic. 9, A-I.
Pristiocraptus bohemicus (Farrande),1850. Urbanek pr.77-80, pl.4,fics. 1-3, text fics.46-51
Monograntus bohemicus (Barrande). Ross p. 64-65, text fics. 50, $\mathrm{H}, \mathrm{J}$.

Material: Many snecimens preserved in relief and as flattened impressions the latter as a rule being more complete.
Horizon and Localities: Ludlow Series, Zone of P.nilssoni.
Diagnosis: Rhabdosome with characteristic ventral curvature, almost straight
distally, and un to $3-1$ cms in length. Maximum width approximately 1.5 mms. Thecae number $12-8$ in 10 mms and are simple tubes.
Descrintion: The actual form of the rhabdosome with its constant and conspicvous ventral curvature is hicly characteristio and it may be immediately distinguished from P.nilssonj by its complete lack of dorsal curvature and the more robust nature of the nolynary.

The sicula is arnroximately $1 \cdot l 7$ mms long and its apex extends almost to the level of thecae 1...... At the base it'is 0.4 mm across (flattened) and is nrovided with a short virgella.

Closer packinc of the thecae is seen at the extreme proxirel end where they usually number 10 or 11 in 10 mms , but some readincs of 12 in 10 mms have been noted. The width of the rhabdosome at the aperture of th. 1 (flattened) is $0.52-0.55 \mathrm{mms}$. The early the cae increase quickly in lencth and overlan: thil, 1 mm lone; th.2,1.3 mms long; th. 3, 1.43-1.5 mms lone. Overlap at this position on the rhabdosome is from almost nil at th:l-2 to one quarter of the thecal lencth at th. 3-1.

The most distal fracments obtained attain a breadth of 1.5 mms (relief) and the thecae overlen for about half their lencth. They are inclined to the axis at $25^{\circ}$ and are over 2 mms long. The thecal count regularly drops to 8 in 10 mms .

There is a slight ohange in the nature of the thecal tube from the nroximal to the distal recion. Distally, where the rhabdosome is straight the tube appears to be quite simple and the apertural marcins everted. At the proximal end however, where the thecae invariably occur on a ventral curve, the apertural margins are at right ancles to the line of the nolynary and the free ventral marein shows an expansion immediately on becoming free. This continues almost to the aperture where there is a sudden, slight, and temporary contraction resultinc in a distinct "lip".

This feature of exnansion of the thecal tube is clearly not a result of breaking outwards of the free ventrsl marcin upon compression since it is equally prominent in spedimens preserved in relief. Upon compression the "lip" may appear as a short denticle on the ventral extremity of the aperture. Remarks: The Cautley specimens have a slightly creater rance of thecal count than is usually civen for British specimens (see Elles and Wood 1910, 0. 367; Wood $1900, n .483$ ) and no specimens have been found whose thickness reaches 2 mms

Material seen: Snecimens in Sedcwick Nuseum, Cambridece.
Specimens from Hassi Bedda - IA well, Alceria (provided by W.A.Knaap, Compacnie des Petroles D'Alcerie).
genus MONOGRAPTUS Geinitz, 1852 emend.
(pro Lomatoceras Bronn, 1835; Nononrion Barrande, 1850; ICzN Opinion 198)
(= Pomatograptus Jaekel, 1899; Spirocrantus Gurich,1008; Demirastrites Eisel, 1912; Oktavites Levina,1928; Streptocrantus Yin, 1937; Pernerocraptus Pribyl, 1941; Colonocrantus, Pribyl,ig42; Saetocraptus Pribyl,1942; Globosozrantus Boucek \& Pribyl, , 1948; Mediocraptus Boucek \& Pribj, 1948; Campocraptus Obut, 1949; Tyrsocraptus Obut, 1949 (= Srirocrantus); CuculloEraptus Urbanek, 1954; Obutocrantus Mu, 1955 (=Olavites); Iobocrartus Urbaner, 2959).

Tyne S-ecies: Lomatoceras priodon Bronn, 1835; subsequently desicnated Bassler, 1915.
Generic diamnosis: emended only to exclude Fastrites Parronde 1850 (as was also done, for example, by Rulman, 1955), Prjstiomrantus Jaekel 1889, and Nonoclimacis Frech, 1897; thecal tubes hichly variable; in wany species two. thecal types in the same rhabdosome, ane proximally and the other distally; curvature of rhabdosome hichly variable.
genus MONOGRAPMUS GROUP A

Groun diacnosis: Rhabdosome slencer, variously curved but usually dorsally; proxinal end often very fine; thecal tubes long in proportion to width, closely admressed to the axis, showing varyinc decrees of sigoidal curvature; apertural marcins everted to introverted most commonly the latter.

These forms do not fit conveniently into any of the above crouns concider-
ed synonymous with Monorrantus Ceinitz.

## Nonocrantus atavus Jones

Plate 5,fičs.l0,11; Plate 26,figs.5,6; Plate 28,fics.?,3


Material: Several hundred snecimens, usually flattened or in low relief, but some in full relief. Always fracmentary; polvary of great lencth.
Horizon and Localjties: Extremely common from a few feet above the base of the Silurian to the base of the M.trianquatus zone. Rare in this latter zone and does not occur above; Speneill (S1-5 to :S24-23); Birks Beck (1Bi, 2Bi); Pickering Gill
Diegosis: Curvature variable but usually with slicht dorsal curvature proximally, stiff and straicht distally. Maximum breadth 1•1-1•2 mns. Anertures may be slichtly everted distally but usually show slicht introvertion. Thecae with flowing sigmoidal curvature. Overlay up to one half. Desorintion: The polypary is of ereat length and distinctly more robust then in M.sandersoni and M.incommodus. At the proxiral end the curvature is almost always cently dorsal whilst distally it is more variable and may be ventral, straicht or dorsal. Dorsal curvature is more usual however.

The number of thecae in a civen unit of lencth varies between 5-7 in 10 mms in snecimens compressed parallel to the length of the rolypary, and 12-14 in 10 mms in those compressed at richt ancles to the length. In the uncompressed state they usually number $7-11$ in 10 mms. The chart (text fig. 8 c ) shows the rance of thecal count obtained for specimens suffering varying degrees of compression. The tables for horizons S1-5, and 55-9 show that in specimens relatively unaffected by corpression (i.e. those which have suffer-

## TEXT FIG. 8 C

$A=$ Measurements taken on specimens having lineation parallel to the length of the rhabdosome.
$B=$ Measurements taken on specimens having lineation oblique to length of rhabdosome
$C=$ Measurements taken on specimens having lineation at right angles to length of rhabdosone.


VARIATIONS OF THECAL SPACING IN M.ATAVUS JONES.
( no . of thecae per cm .)

ed oblique compression) the usual thecal count is $7 \frac{7}{2}-9$ with occasional variants showing 10. (The very hich thecal counts of 13 in 10 mos may have resulted from corncession of these extreme variants at richt ancles to the len th of the polynary). The tables for horizons $59-13$ and $513-17$ show a slicht shift in values and lower counts of 5 and 6 are seen. These figures agree with those civen by Jones (1909) and Elles and Wood (1910) but succest a creater range of variation.

The thecae show a variable amount of sicmoidal curvature but this is usually less than in M.aroutus Lanw. Proximal thecae show the greatest sismoidal curvature and also the greatest amount of introversion of the anertural marcin. This latter feature becomes less distally where slisht evertion can often be seen. Naturally certain directions of compression will accentuate both evertion and introversion of the marcin.

The angle of inclination of the thecae to the axis is greater in M.atavis than in M.sandersonf and M.jncommodus but in the Cautley specimens this angle is less than for the figured Welsh specimens (Jones lyog), Elles and Wood (1910) succestins a tendency towards M.incomrodus. Overlap increases distalls to a maximum value of about one half the lencth of the thecae. Remarls: M.atavus Jones is the first monograntid to appear in the Silurian strata. It may sive rise to M.incommodus Toern. Which first appears in the zone of M.cynhus (S13-17). This would involve the loss of the everted anertural marcins seen in M.atavis, a decrease in the ancle of inclination, and a lessenins of the overlap; in short, loss of the characters typical of the distal parts of M.atavis. The same tendencies carried to a greater decree would result in M.sondersoni Lanw. Material seen: Specimens of M.tenuis (Portlock) (=atavus) from Spencill (S.M. nos. A21069-71).

Specimens in H. M. Geological Survey Museum.
Specimens ficured Jones 1907 fig. 18 a (syntype) and 18 b . Figure 18 a is very similar to the specimen in relief figured here on Pl. 26 (fic. 5 ). Specimens figured Elles and Wood Pl.39,fics.la, b, d and text fig.270c-d.

Plate 26, fie. 7

1876 Monocraptus armutus, sp.nov. Lapworth nn. 318-319, Pl.10, fies.13a-c.
$? 1924$
? 933
?1934
? 1945
? 2948 ?12055 "

Japworth. Files and Wood nn.408-g, text fiss. 274 a-f,P1.40,fics. $3 \mathrm{a}-\mathrm{c}$.

$$
a-1,+1 \cdot 40,+10 \cdot 5 a-c
$$

Material seen: Specimens in Sedcwick Museum, Cambridge.
Specimens figured Elles and Wood Pl. 40 ,fisc. $3 \mathrm{~b}, \mathrm{~d}$, and text figs. 274 a .

## Monomrantus argutus segues subs. nov.

Plate 27,fic. 4 .

Holotype: $\mathrm{HUR} \cdot / \mathrm{S} 73,11 \cdot 4 / 73$.
Horizon of Holotwne: Zone of M.sedowicti.
Material: Rare, one well preserved specimen as a mould and other fragmentary specimens from the same horizon; (S73,11•4), Spencill.

Derivation of name: sequens, Latin, meaning "following".
Description: This subspecies is very close indeed to m.arghtus aroutus Lapw. but is distinctly narrower and more stiffly curved whilst the thecae are more closely set.

In most characters the thecae agree with those of M.a.aratus but they are shorter (maximum 1.1-1.2 mms ) and number $13-15$ in 10 mms compared with 12-8 in 10 mms in the case of M. 7. arbutus.

The thickness of the rhabdosome reaches a uniform thickness of about 0.5 mms and is distinctly narrower then $\mathrm{M} \cdot$ arbutus. Remarks: M.a.arcutus Law. is recorded by Ellis and Wood ( D .522 ) from the zones of M. crecarius and M.convolutus. It seems likely that M.a.sequens subs. nov. is a direct successor of the earlier form.
$\frac{\text { Monomrantus ionesi }}{\text { Plate } 27, f i E \cdot 1}$

Holotype: HUR./6Bi/76.
Horizon of Holotyne: P.lentotheca Zone.
Material; Horizon and Tooalities: Rare, one specimen 2 cos lone, well preserved, other fragments from same horizon and locality. Birks Beck (6Bi) zone of P.lentothecs.
Derivation of name: After Jones, author of M.atavus.
Descrintion: The rhabdosome is slender, fragile and shows dorsal curvature in
all the fracments seen. The thicrness of the nolypary does not exceed 0.3 rims and the minimum value observed is 0.25 mms . A uniform thickness, therefore, prevails throughout the lencth.

In the most proximal portion the thecae number 11 in 10 mms . Distally this falls to about 10 in 10 mms although the thickness of the rhabdosome has increased but slichtly.

The thecae are long, narrow tubes closely adpressed to the axis and showinc distinct sigmoidal curvature a short distance above their oricin. Overlap is small and always less than one quarter of the thecal leneth. Apertural details cannot be ascertained but they-annear to be of the M.arcutus Lanw. type.
Remarls: The species with the closest affinities to M. ionesi sr. nov. are undoubtedly M.atavus Jones and M.arsutus Lapw. From these forms it differs in beinc more uniformly slender, in having its thecae inclined to the axis at a very low ancle, and in the number of thecae in a diven unit of lencth. In M.sandersonj Lanw. the thecae are different and the curvature usually ventral, thouch the width of the proximal region is similar. The slender polypary of N.incommodus is also comnarable but the "arcutus"-live thecae and degree of overlap distinguish it from this species.

$$
\frac{\text { Monograntus sandersoni }}{\text { Plapworth } 27, \text { fic. } 2}
$$

1876. Honograptus Sandersoni, sp. nov. Lanworth p.320, Pl:11,fige.2a-e. 1910 ".... ". Lapworth. Elles and Wood pr.404-5, tert fics. 271a-d,Pl.39,fics.10a-e.


Material: Poorly preserved fracments.
Horizon and Iocalities: M.triang. Zone, Spencill.
Descrintion: Only a few fracments which are referable to this snecies have been found. These show slicht sicmoidal curvature of the thecae, which are
adpressed to the rhabdosome, and whose apertures are introverted. The snecimen figured on Pl.27, (fig.2) has a theol count of approximately 6 in 10 mms Whilst a thickness of 0.52 mms is attained. All the fragments are of insufficient length to determine the overall degree of curvature of the polypary. Remarks: M.Sandersoni Law is recorded from Spengill section by the workers of H.M. Geological Survey (Dakyns et al. 1891) but it is possible that some of. their specimens were Tornquist's species M.inconmodus.
Material seen: Specimens figured Elles and Wood Pl. 39 fig. 10 and text fig. 2170 (H. M. Geological Survey Museum). Specimens in Sedcwick Museum, Cambridge.

## Monocrantus inonmmodus Toernguist

Plate 27,fig.3; Plate 28, fie. 1

1890 Konomantus incomodus n. sp. Toernquist p.ll,P1.2,fics.l-5.
1910 ". " , Toernquist. Ales and Food n. A06, text ic. $2720-$ : o, Pl. 10,fiss.1n-e.

| $? 1924$ | $"$ | $"$ |
| :--- | :--- | :--- |
| $? 1931$ | $"$ | $"$ |
| 1933 | $"$ | $"$ |
| $? 1945$ | $"$ | $"$ |
| $? 1947$ | $"$ | $"$ |

Hunt Pl. 6,fic. le.
Haberfelner PI.I,fic.lo.
Tornquist. Sun p. 38, Pl.6,fičn.
Torn. Waterlot Pl. 30, fig. 320.
Tornquist. Ruedemann p.481, Pl. 85,fic. 26.

Material: Many specimens, preserved as impressions, fragments of varying lengths Horizon and Localities: Very common in the zone of P.crnhus: Spencill. (S13-17, S17-20, S20-24). Pickering Gill (12P).
Diagnosis: Long, very slender and fragile, often with dorsal curvature: maximum breadth about 0.7 mm . Thecae number down to 7 in 10 mms .
Descrintion: The rhabdosome is extremely long, slender and fragile. Complete specimens have not been obtained. The proximal end is so slender that details cannot usually be determined, though in suitable specimens the thecae are seen to be identical with those of the distal portion, whilst the overlay is rather less. Overlap reaches one half in the distal thecae.

Throughout the polypary the ventral marcins of the thecae are almost perallen to the dorsal margin so that in poorly preserved material it may be
irnossible to see the theoae at all. This is particularly true when the fossil is compressed parallel to the lencth of the polyrary. Compressjon in the opnosite direction inoreases the width of the rhabdosome and at the same time makes the thecal aperture more visible.

Allowine for comnressional effects the thecal count falls within the rance given by Tornquist ( 7 in 10 mms ) and Elles and Wood ( 8 to 7 in 10 mms ).

The thecal anertures are at richt anclos to the dorsal marcin of the rhabdosome and are quite even. . There seens to be no evertion, introvertion, or torsion.

Whilst sigmoidal curvature of the the cae may be discerned it is less well develoned than in any other species of this croun. Remorks: M.jroommodus is very distinctive and can be distinguished from M. sandersoni lanw. by its dorsal curvature and lack of introversion of the thecal arerture. In the Cautley specimens, however, the proximal end may be just es slender as in M.sandersoni.
Material seen: Specimens figured Elles and Wood Pl.40,fie.la (S.N. no S210267); fic.lc and text fie. 272 C (A21029); specimen S.M. A21051 from Srencill. Snecimens ficured Elles and Wood Pl. MO, fic.ld (H. H. Geolofical Survey Collection)
cenus INOTOGRAPTUTS GROUP B

Groun diamosis: Rhabdosome with dorsal curvature proxinally and more or less straicht distally; proximal end usually slender and sicula very small; bjform, with hooked thecae proximally and straicht, simnle thecal tubes distally.

$$
\frac{\text { Marcenteus aff arcenteus (Nicholson) }}{\text { Plate } 28, \text { fic. } 6}
$$

| 1869 | Graptolites | nteus, | Nicholson n.239, Pl. Xl, fiç.19. |
| :---: | :---: | :---: | :---: |
| 1910 | Monosraptus | " | $\begin{aligned} \text { (Nicholson). } & \text { Elles and Wood pr.388-389, text fic. } \\ & 257 a-d, P l .38, \text { fics.5a-d. } \end{aligned}$ |
| ?1931 | " | 11 | Haberfelner Pl. 1 ,fig. 5. |
| 1945 | " | " | Nicholson. Waterlot P7.27.fig.293. |

non.
1924 Monograptus arcenteus Hundt Pl.3,fig.13.

Material: One fairly well preserved specimen in low relief and other more doubtful fracments.
Horizon and Localities: P.lentotheca zone, (6Bi) Birks Beck. Diagnosis: Curvature typical; rhabdosome widens abruptly to over 1.5 mms irmediately after the sharp dorsal bend, widening more gradually distally from this point. Thecae number 12 in 10 mms and become less nromirently hooked in the distel region and finally becomincs simple tubes. Descrintion: These forms asree in general form and dimensions with Hearcenteus described by Nicholson (1869) and Elles and Wood (1910) except that the ancle of inclination of the thecae and mode of overlan is more akin to M.cyoneus Toernquist (here described as M.arcenteus cyeneus). It is not impossible that such specimens represent material compressed at richt angles to the distal part of the polypary (parallel to the proximal part). This would increase the thecal count, and would also increase the thickness of the rhabdosone and angle of inclination of the thecae. On the other hand the rock containing the fismed specimen (Pl.28,fig.6) only shows evidence of a small amount of compression in the diredtion requisite for the above interpretation. Rouchly parallel distal fragments on the same slab show a maximum thickness of only 1.69 mms which compares rather better with M. cyeneus Toernquist. Remarks: Whilst this form acrees in dimensions with Marcenteus (Ficholson*) it may nrove to be synonymous with M.a.cyeneus (Toernquist).

The latter fossil occurs at the same locality and horizon, whilst the rest of the assemblage is indicative of the P.lentotheca Zone.

Material seen: Snecimen A20953-4 (Sedcwick Museum) seems rather slender and cyoneus-like; specimen figured by Elles and Wood fic. 257a (S.M. no.A20941) from Llanystwmaw, near Criccieth; specinens in H. V. Geoloyical Survey.

## Monocrantus arcenteus cysneus (Toernouist)

 Plate 27,fis. 5; Plate 28,fiss.5,7; Plate 29,fjc. 61892 Nonosraptus cycneus n. sn. Toernquist p.16, P1.1, fics.28-31. 1910 " arcenteus var. cycneus (Toernquist). Elles and Wood np.38.g390, text fie.258a-b, P]. 38,fics.6a-d.
" ...........ycneus Haberfelner Pl.l,fiç.6.

Material: Many cood polyparies in low relief, and fracments of both nroximel and distal rarts. One well preserved distal fracment in full relief. Horizon and Tocalities: P.Jentotheca zone (6Bi) Birks Beck and Mosedewicki zone ( $575,9.4$ ) Spengill.
Diacnosis: Rhabdosome long, distally straicht but with characteristic dorsal provimal curveture with hooked theose in this recion. . Thecae number 10-12 in 10 rms. Naximum thickness of rhabdosome is $1 \cdot 2-1 \cdot 3 \mathrm{mms}$.
Description: Tynically the rhabdosome has a lone, straicht distal portion witl simple tubular thecae, and a dorsally curved proxinal end with hooked thecae.

A maximum width of $1 \cdot 2-1 \cdot 3 \mathrm{mms}$ is achieved distally where the thecae number 10 in 10 mms . The single srecimen from the N. sedowicki Zone has 9 thecae in $10 \mathrm{mms}$. . At the proximal end the thecae are more closely snaced and number 12 in 10 nms.

Distally from the abrunt bend the lencth of theca involved in the hook becomes less and less until the thecae are quite sinple and tubular. In some snecimens this occurs after only a few mms.

The maximum overlan of one half is reached just prior to the bend and is maintained to the distel extremity. Throughout the rhabdosome the ancle of inclination is low and distally it is annroximately $20-25^{\circ}$.

Fracments showinc the sicula have been found and show it to be 1 mm .lonc reeching to just above the level of the anertume of th. 1.

Pemarks: This species at Cautley differs in one of its diacnostic dimensions from the forms described by Elles and Wood from other British localities. The thecal count is hicher ( $12-10$ in 10 mms as compared with 8 in 10 mms ) whilst the thicrness is rather less than that given on their $2.389 .$. In cteneral form and size, however, the Cautley specimens are so close to those ficured by files ard Wood that they must be consrecific.

## Monowrantus limatulus Toernquist Plate 28,fic. $4 ;$ Plate 29 ,fig. 7

1892 Monocrantus Iimatulus n.sn. Toernnuist p.9, Pl.l.fies.6-8.

| ?1897 | " | " | Tornquist, Perner p.10, P1.13, fic. 9 |
| :---: | :---: | :---: | :---: |
|  | " | " | " . Tornquist p.14,Pl.2,fics.18-20. |
| 1910 | " | " | " <br> Elles and Kood pr.300-391, text fic. $259 a-c, \text { Pl. } 38 \text {,fics. } 7 \mathrm{a}-\mathrm{d} .$ |
| 1924 | " | " | Hundt PI.5,fic. 16. |
| ? 1931 | " | " | Haberfelner Pl.l, tix. ${ }^{\text {c }}$ |
| 1945 | " | " | Tornaist. Water]ot Pl. $27, \mathrm{fi}$ c. 296. |
| 1948 | Pernerocrrantus | I inatu | lus (Tornquist). Pribyl f .65, listed. |
| 1052 | . | " | Nurch f .99, Pl. $25, \mathrm{fig} 4$. |
| ?1955 | " cf. | " | (Tornquist, 1892). Pribyl and Srasov f.lgo, listed. |

Material: No specimens have been found which show both distal extremities and proximal portions, but many characteristic proximal ends, and fracments occur Horizon and Lncalities: N.convolutus zone, gwa Watley Gill, Diacmosis: Very characteristic curvature where the species broedens sudienty from a proximal end no wider then 0.26 mms to a distol width of 1 mm . Thecee number 3.1 in 10 mms (distally). Sicula not seen.
Descrintion: Rhabdosome with a highly characteristic curvature from a lone slender proximal region to a distal region of the order of lum wide. Fost sperimens are small, showing at the most lcm of the distal nortion.

The sicula has not been seen and the characters of the proximal thecae cannot be ascertained. These early thecae are lons slender tubes, seerincly
without overlap, and nerhans with "hooked" apertural recions. The arertures are more distant from each other than in the distal nart of the rhabcosome, Where they number 11 in 10 mms .

Distally the thecae show overlap of up to nearly one balf the thecal length. Here they are relatively simnle tubes showine no anertural adornments but there may be slicht sicmoidal curvature. One of Toernquist's (1899) fieures also suceests this (P].2,fig.20).

Remarks: The decree of comparity between the cautley materjal and that described by Toernquist (1892,1899) is very remarkable. Elles and Wood (1910, n. 300) record thecal counts of 12 in 10 mms sucestinc slichtly smaller trecae and variation from Poernquist's original material; but this is not found in the writer's raterial.
Material seen: Snecimen figured Elles and Wood Pl. 38, fic. 7 b , text fiç. 259 b (Sedgwick Museum) and specimen ficured Elles and Wood text fič. 2590 (K.N. Geolosical Survey); others from Pary's Kountain, Ancleser (H. V.C.S.Museum).

## Monocrantus difformis ?subsp. <br> Plete 34 ,fig. 8

Material: Single specimen with sicula, showing proxinal curvature and prox-

## imal theoce.

Horjzon and Localit,y: M. sedzwickt Zone; ( $580,8 \cdot 4$ ) Spencill.
Descrintion: The rhabdosome is curved in the manner trpical of the species, M.difformis Tornquist, and in this feature only it closely resembles the specimen ficured by Elles and Wood (Fl.38,fic.46). It differs in beinc simall er whilst the "fish-hook" is only 2.5 mms across the care.

The sicula is 0.78 mm lone (lencthened by compression) and its anex reaches to the level of the top of th.l. At the level of th. l the thickness of the rhabdosome, again reduced by compression, is $0 \cdot 4$ mms and it is, therefore, rather more robust than Modifformis Tornguist. Furthermore only four thecee are found proximal to the point of maximum curvature.

Distally a thickness (reduced) of 0.52 mm shows that the rhabdocome does not creatly increase in width in this direction. All the thecae on the onecimen are hooked, but the distal ones less prominently so. Allowing for comness.
ion the thecal count is approximately 15-16 in 10 mas.
Overlan of tre thecal tubes in the Cautley specimen is only slicht. Romarks: This fossil occurs at a hicher level than that from which it was recorded by Elles and Wood $(1.387, p .523)$ and thouch nossessing the general form of the M. difformis polynary it is distinct in most of its characters:-
a) The sicula is smaller ( 0.78 comnared to 7 mm .)
b) the recurved proximal portion is shorter and smaller
c) the proximal end is more robust
d) the thecal count is distinctly hisher.

Other fossils with a similarly shared rhabdoscme are M.clincani (Carr.) and N.milleneda (M'Coy) but the theoae of these forms are different. Material seen: Srecimen of M.difformis ficured Elles and Wood Pl. 38, fic. 4 b . Sederick Museum; specimen of M.olincani and Mnmiljenera in H. W. Geolowical Survey Museum.

Monorrantus revolutus Kurck sensu lato not fisured

Snecimens of M. revolutis undoubtedly occur in abundance at some horizons at Cautley but so far the writer has obtained only short fracments. None of the forms distincuished by Kurck, Elles and Wood, and Sudburys can therefore be recognised. Fragments have been found from the followinc localities and horizons:- S13-17; S24-28; 68i; Spencill etc.
genus MONOGPAPTUS GROIPC.

Groun diacnosis: Rhabdosome robust, more or less straicht; thecae are simple overlepping tubes distally but the first few thecae are hooked; hooks have been shown to consist of lateral, naired, ear-like nrocesses projectine from the anerture thouch this cannot be determined on the cautley material.

```
Monocrantus colonus coloms (Parrande)
    Plate 28,fic.8; Plate 29,fic.5
```

1960 Monocraptus colonus (Barrande). Berry p.1160, text fig.2f.

1850 ? 1852 1880 9
$? 1883$
$? 1890$
1897
1809

1000

1908
1910

1920
1924
1936
1942

1945 1949

1952

1955
1058
? 1962
? 1062

Graptolithus colonus; Barrande p.42, P1.2,fics.2,3 (non fics.1,4,5)
Barr. Geinitz p.38, P1.2,fics.33-36.
Monocraptus roemeri Barr. Iarworth p.151, Pl.1,fics.5a-e (non fies.3ad).


Pristiograntus (Colonocraptus) colonus (Barrande). nunch p.96, P1.23, fics.la-b.
Monocrantus colonus (Barrande): Kuhne rn. 370-2,text fic.5A-R. Colonocrantus colonus (Barr.)1850. Urbanek pr.5-53, pl. 1 ,fics.4-5; text fics. 23-25.
"
"
"
Ross R.71, text fige.30.F,J; 5A, B, F. Colonocraptus colonus colonus (Barrande). Fomariz p.289, Pl.13,fic.9.
non. 1876

Nonocraptus colonus, Barrande. Lanworth pp.505-6, P1.20,figs. Qa-d.

Lectotune: fic. 2,Fl.2, of Barrande's oricinals, refimured ana desoribed by Perner 1809.
Material: Several flattened specimens and two well preserved snecimens (in relieŕ). V.colonus colonus is not a cormon fossil.
Horizon and Jocalities: Ist and 2nd craptolite bends of the Ludlow Series, zone of M.nilssoni, Wandale Hill, Hobdale Beck.
Diamosis: The first three or four theose arrear to be hooked whilst distal thecae seem to be simple tubes of the pristiocrantid type. Sicula at least 1.3 mms lone, extendiny to the level of the second thecal aperture. More or less uniform width with a raximum of 2 mns (relief). Thecae number 1516 in 10 mms at the extreme proximal end and 10 in 10 mms distally. Ancle of inclination about $40^{\circ}$.
Descrintion: The Cautley forms of this species are not laree and rarely attair a length of more than 2 cms. . Otherwise their ceneral form is typical and shows a slicht, but characteristic, amount of ventral curvature at the provimal end. Distally the rhabdosome is more or less straight but often shows slicht dorsal curvature.

Thickness of the rhebdosome, ancle of inclination of the thecae to the axis, and thecal count each vary with the disposition of the fossil to the direction of compression in the rock. This descrintion is drawn, however, from naterial preserved in relief which does not seem to heve been distorted in any way.

The thecal count over the first four or five thecae varies between 15 thecae in 10 mms and 13 in 10 mms but hereafter falls rapidly so that at 1.5 cms from the sicula 10 in 10 mms is the usual figure. At 2 cms the rhabdosome thickness is about 2 mms and the thecae are inclined at about $40^{\circ}$.

The first four rroximal thecae aprear to be slightly hooked, thouch th. 3 and 4 are distinctly less so than th. and.2. The distal theoae are about four or five times as lonf as broad and reach a meximum length of 2.5 mms . Overlan; distally is aoout three quarters of the thecal lencth. Remarls: The Cautley snecimens differ slightly from Barrande's original Bohemian material (redescribed by Perner $1899 \mathrm{pr} .9-10$ ) in being rather shorter and narrower. Perner gives a thecal count of 10 in 10 nms which may be for the "mature" thecae.

If this is so, the forms from both aress agree in
this respect.

Elles and Wood (1,10) sive a thecal count of 12-10 in 10 mms which also acrees with the specimens in the writer's collection excent that at the extreme proximal end 15 in 10 mms is commonly recorded. If fics.Ea-d (F1.38) of Elles and Wood are netural size (see note on plate descrintions of Fl.36) then they show a thecal count over the first few thecae of more than 1.5 in 10 mis. On p. 392 these writers point out that a certain amount of variation exists in the British material. The Cautley specimens are shorter and narrower than the forms described by then in their ceneral diacnosis.

Urbanek (1958) has described the apertural processes of h.colnos from material extracted from calcareous erratic boulders. The "hook" described here is ectually composed of paired, lateral ear-like processes cornosed of A monofusellar structure. Distajly these processes are cradually lost. Such detail cannot be ascertained on the writer's material. In seecimens preserved in relief in mudstones it is conceivable that these processes could either be broken off or bent out of sicht. In such ceses the "hooked" anertures of the proximal thecae would be missine and it would be difficult to distinguish this species from some pristiocrantid species.

Urbenek's material shows a straicht proximal end (2.50) with a thecal count of 15 in 10 mms proximally. He points out that the first 5 rams contain 8-9 thecae. This, on the writer's method of measurement, would be eiven as $16-18$ th. in 10 mms proximally which azees closely with Files and Woods figs.8a-d. Urbanek's fics. 4,50 (Pl.1) do seern to show a slicht ventral curvature. Material seen Specimens in Sediwick Museum, Cambridee.

$$
\frac{\text { Monocrantus roemeri (Barrande) }}{\text { Plate } 28, \text { fig. } 9}
$$

1850 Graptolithus Roemeri Barrande n.4], Pl. .2,fics.9-17.

1897 Pristiograntus " " . Frech n.656,fic.210.
1809 Monocrantus " " Perner np.16-17,Pl.14,fies.l, 10,18,24, (non 7); text fig.ll.
" (Rarr.).
Wood rr.470-1, text fic. 17, Pl.25,fies. $13 \mathrm{~A}-\mathrm{B}$

1910 Monocraptus Roemeri (Barrande). Elles and Wood nn.397-308, text fiç. 265a-b, PI. 39, ficrs. 2a-d.

1936. Monocrantus roemeri (Barrande 1850). Boucek Pl.2,fics.4-6,fics.2; k 1942 " 11

1.4.42 Pristiosraptio (Colonograntus) roemeri (Barrande 1850). Pribyl p.8,70,

1945 Wonocrantus Roemeri Barr. Waterlot P1.28,fic. 305.
". . roemeri (Barrende).
Brown and Sherrard $0.133, P 1.8, f i c \cdot 9$. text fiě.2,fič.f.
1952. Pristiograptus (Colonograntus) roemeri (Barrande). Munch o.96.P1.23, fiE.4.

Material: Several frasmentary and flattened specimens with any snecimens, narticularly of distal thecae, preserved in relief.
Horizon and Localities: 2nd crantolite band, Ludlow Series, zone of V.nilssoni possibly lst drartolite band and hicher beds. Wandale Hill, Yarlside. Digmosis: At least 4 cms lons and 3 rms wide (relief). Thecae number 10 in 10 mms distally and un to 16 in 70 mms at the prorimal end. Sicule about 1.8 mms lonce reachinc about the level of enerture of thecae 2 . Th. 1 and th. 2 are hooked.
Deccription: The nolypary shows slicht ventral curvature at the proximal end and fairly strons dorsal curvature distally. . The first two theore seem to be recurved into a hook whilst distally the thecae are relatively simple tuhes. The ancle of inclination of the thecae to the aris is always hich and nven distally is about $50^{\circ}$. In the Cautley snecimens the decree of overlen slichtly exceeds three quarters in the distal thooae, which as a ceneral rule do not reach a length of 3 mus. At the same point on the rhabcosome they are five times as lone as wide.

Distal thecae isolated from the matrix can be seen to be transversely expanded throuchout their lencth. (Pl. 28,fic.9). When the common canal is reached the nolypary narrows cuickly to the dorsal mergin. Theose havine
a lencth of 2.6 mms and a thickness, in profile, of 0.52 mm are trensversely exnanded to 1.43 mns. At the juncture with the common canal this value has fallen slichtly to 1.17 mms . The anertures which are simple and rectangular in outline, face in the direction of the lencth of the tube. :The oommon. canal has a breadth, in profile view, of 0.78 nim. An intertheoal groove hes been observed but this may be a feature of comression, or flatteninc. Remarks: The Cautley snecimens differ from those described by Elles and Wood only in having shorter thecae inclined at a hicher angle to the dorsal maryin thus maintaining the same overall breadth. The material also shows that a thecal count of 10 in 10 mos, is achjeved distally but otherwise they olosely resemble fics.2a-d (P1.39) of the above authors.

In his redescription of Rarrande's orjcinal snecimens (1899) Ferner cives a. thecal count, mesially and djstally, of 11-12 in 10 mms and a thickness of of 3.2 mms. Apart from these small differences the forms are very similar. Material seen: Specimens in Sedcwick Museum, Cambridere.
genus Momorradputs grotrp in

Groun diacrosis: Rhabdosome usually small, stiff; thecae relatively sinple overlappinc tubes but spinose either throuchout rhabdosome, or nroximally; in some species snines have been shown to be tubes formed by enrolling of ear-like lateral nrocesses, but this cannot be determined in Cautley material.

1850 Grantolithus chimaera, Barrande n.52, n].1V,fics. 34,35 .
?1880 Pristiograptus colonus Barr. sn. Jaekel p. 674, nl.28,fice.8.
1899 Monorrentus Chimaera, Barr. Perner p.14, pl.17,fic.18a-b.

1900 Monograntus chimaera, (Barr.). Wood p. 47, , nl. 25,fifs.18A-D.

1910

1929
1.936

1942 .

1945 1949

1952

1553 1955
1958 Saetogrartus chimaera

$$
\text { 2,fics.l-1; nl.3,fies.1-3; text plates } 2,3 \text {. }
$$

Material: One complete, fairly well preserved specimen and other more fragmenttary specimens.
Horizon and Localities: lIst crantolite band, Ludlow Series, zone of M.nilssoni 6 Bd. Knot near Sedoerch.
Diagnosis: Rhabdosome probably un to 2 cms lone, with slight ventral curvetuse proximally, otherwise stiff and broad. Sicula prominent. Thecae theout shout the rhabdosome have spines developed from the lateral margins of the

## there.

Desorintion: The Cautley specimens are preserved in low relief but are conpressed at rich angles to the length of the rhobdosomes. This has caused distortion of several measurable biocharacters but the general form of the polypary and details of the thecae can still be made out.

Thecal counts, increased by compression, of 20 in 10 mas have been observed. The thickness of the rhabdosome, 2 mms must also be increased. The sicula is ?m ms lone and reaches to the level of the aperture of th. 3 .

Spines can be detected throughout the length of the fossil but distally they are shorter and blunter. Invariably they arise from the lateral mercinc
of the thecal apertures, and, in these forms which ere preserved in low relief, only one set can be seen in each srecimen.
Remarks: Urbenel (1953 and 1958) has described the detailed structures of the snines from material etched out of limestone erratics. There is no nossibility of reonchizing such structures in the Cautley snecimens so far ottained.
Meterial seen: Snecimens in Wood Collection, Sedewick Wuseum (includinc i.c. semisninosus.)

$$
\frac{\text { Mnograntus chimgera salwoyi (Lapworth) }}{\text { Plate } 29, \text { fie.l }}
$$

| 1880 | Monocrantus Salweyj, Honkinson MS. Lanworth p.150, Pl. $4, f i$ cs. 2 c -b. |
| :---: | :---: |
| 1884 | chimaera IaTouche n.77, Pl. 18, fic.571. |
| 1900 | $\begin{aligned} & \text { " var. Salweyi (Fopkinson ms.) Wood r.472, text fic. } \\ & \text { I8,P1.25,fics.19A,B. } \end{aligned}$ |
| 1910 | " var. Salweyi (Hopkinson M.S.) Elles and Vood n. 400 , text fies. $267 \mathrm{a}-\mathrm{b}, \mathrm{Pl} .3 \mathrm{f}, \mathrm{figs} .5 \mathrm{a}-\mathrm{d}$. |
| 1938 | " . cf. uncinatus var. orbatus. Munch nr.6日-6l, Pl. 5,fics.l-2. |
| 1942 | ```Pristiocrantus (Saetograntus) chimaera salweyi (I,apworth 1880. Honkinson lis.) Pribyl pp.14,16, text fic.l, no.1; text fig.3,nos.4-8.``` |

1945 Monocraptus chimaera var. Salweyi Hopk. Waterlot Pl.29,fic.308.
?1951 "....salwevi (Honlinson). Brown and Sherrard P.132,P1.8,fice. $a, b$, text fics. $2 b, c$.
1958 Saetocrantus chimaera salweyi (Barr.). Urbenek p.56, pl. 2,fics. 3a, w.

Moterial: One cood syecimen in relief but with the spines only poorly preserved, other fragmentary snecimens.
Horizon and Looslities: 2nd crantolite band, Iadlow Serjes, M.nilssoni zone 2W, Wandale Hill; lWe, West Grain.
Diacnosis: Like M.c.chimeera this form has sninase thecae throuchout, the snines arising from the lateral marcins of the thecae. Polynary short, usually less then lom, and rarrow, in relief often less then lmo.

Doserintion: The rhabiosome is short and narrow, with a stiff mroximal end. At the level of the anerture of th. 2 the thickneen is 0.78 mm . This credually increases to about 1 mm at the distal extremity so that the polynery is more parallel-sined than wedre-shaned.

The theose number $10-20$ in 10 mms over the first three or four thecae but then the count falls rapidly to 15 in 10 rms after about 5 mms. At the proximal end the theose are short - about 0.52 mm long but inorease in lencth to $1 \cdot 4$ mms distally (exclusive of soines).

The sicula is 1.9 mms long and reaches well above the aperture of th. 3 , and almost to thet of th. 4 .

Spines are not well seen on the specimens in relief but they can be deteoted throuchout the polypary. The length assicned to the spines of this snecies by Elles and Wood has not been observed but this may be a reflection of the mode of preservation.

Thecal overlap is fairly constant at ahout half the thecal lencth even in the proximal portions where very slicht excavation of the ventral marcin can be detected.
Remaris: This subspecies is distinct from N.c.chimaera (Barrande) but in ceneral size it anproaches M.Jeintwerdinensis Horkinson M.S. It differs, howeter, in the stiffer proximal end, narallel-sided nature of the rhabdosome and position of oricin of the spines.
Material: Specimen in Wood Collection, Sedewick Museum.

Nonocrantus leintwardinensis leintwardinensis Lapworth

1880 Monocraptus leintwardinensis, Hopkinson (WS) Lapworth p.149,fic.l, P]. IV 1884
1897 Pristiocraptus uncinatus, Frech p. 658,fie. 213.
$1900 \%$ Monocraptus leintwardinensis, Hopk. MS. Wood n. 474, text fic.19, Pl.25, 11
1910
"
Honkinson MS. pp.401-402, text fig.268a-c, Pl. $3 \mathrm{~g}, \mathrm{fi} \mathrm{Cs} .8 \mathrm{Ba}$.
1942 Fristiorraptus (Saetocrantus) leintwardinensis leintwardinensis (Lan-
worth 1880 Hopkinson MS.). Pribyl f.18, text fic.3, nos.11-]2.
?1945 Nonosraptus leintwarainensis Honk. Waterlot Pl.28,fie. 311 .

Material: About fifty specimens in varying states of preservation, but visually flattened and distorted.
Horizon and Localities: Zone of M.leintwardinensis associated with M.I.aff. inciniens and P.welchi sp. nov. in the lower part. and on its own in the higher beds; Adamthwaite Bank, Aram Rice Beck, Wycarth Beck, Artlecarth Beck, Bowderdele.
Diagnosis: Polypary short and stiff, about 5 mms lone but occasionally longer. Thickness uniform, about 1 mm with a maximum of a little more then this. Sicuna prominent, $1 \cdot 3 \mathrm{mms}$ lone reaching to the level of the second thecal areuse. Thecal count 15 in 10 mms except at the extreme proximal end where it rises above this figure.
Description: These forms are smaller in all dimensions that those described by the above authors but otherwise resemble them closely. The same relationShip is also seen in the case of K.l.Aff. inciniens (p.254) and the writer believes that the dwarf size may be a reflection of envirormentel conditions. The comparison of dimensions is best made in tabular form:-


Remarks: This form could possibly be described as a separate subspecies since it mows constant and strong differences from the type material obtained in the Welsh Borderlands.
Material seen: Specimen no A23991 (Sedewick Museum) is a slab from Aberedw, Nr Built (presented by Wood) with many specimens very close, if not identical: to the Cautley species; specimens from Tebay Gill (Westmorland) (ec. S.M. no A24035) are all semispinose.

Monocrantus Jeintwardinensis inciniens Wood
Plate 28, fies.11,12? No .
30 frog 3,4
1900 Nonocraptus leintwardinensis var. incipiens, nov. Wood n. 475,P1.25. ficss.22A-B.
$1970 \quad "$
" incipiens, Wood. Elles and Wood p. 402, text fig. 269, Fl. 39, fies.9a-d.
1942 Pristiocrantus (Saetograptus) leintwardinensis incipiens (Wood 1900). Pribyl p.19, text fig. 3, no. J3.

Lectotyne: Specimen fica. by Wood fie. 22A and a ain by Files and Wood fie. 9a.
Material: Several hundred specimens, mostly well preserved tut flattened, occuring densely upon the bedding planes.
Horizon and Jocaljties: P.nilssoni zone, exact level of some not known but probably quite low down. 2 W (Wandale Fill). In addition $1 \mathrm{Br}, 4 \mathrm{Br}$, (Pram Rices) immediately below zone of M.leintwardinensis.
Diagnosis: First 3-5 proximal thecae spinose. The extremities of the lone spines are usually directed towards the proximal end and apparently originate near or at the dorsal margin of the aperture. Distal thecae non-sninose, simple tubes with overlap up to and over two-tbirds. Sicula prominent reaching to the level of aperture of th. 3 .
Description: The polypary has the typical appearance described and figured by Wood (1900) and Elles and Wood (1900 and 1910). The maximum width is about 1.8 mms to 1.9 mms , ie. fractionally narrower than the diagnosis riven by Ales and Wood. The type specimen, however, only reaches a width of 1.95 mms distally and 2 mms (e.c. the specimensficured 9 bod) seems a more usual thickness.

As a rule four proximal thecae are spinose but specimens with three and five are not uncommon. The thecae number 15 in 10 mos and this figure is often maintained throughout the short polypary.

The type specimens in both figures have 15 in 10 mms proximally falling to 14 in 10 mms distally; but other figured specimens have as few as 11 in 10 mas.

The sicula is prominent and gives the proximal end a stiff appearance
not unlike that of M.c.salweyi, but unlike that form the distal thecae are free of spines. A maximum length of 1.8 mms has been measured, and the anex extends to the level of the arerture of th. 3 . The base of the sicula is 0.44 mm broad and nossesces a short vircella and a dorsal flance or sine.
Remarks: M.?.incinjens Wood differs from H.C.semispinosus Elles and Vood not only in the point of orixin of the spines which ally it with the M.leintwariinensis species croin - but in the ceneral dimensions. M. T. inoiniens is much narrower and shorter. From M.t.nrimus (Boucek) it differs in havine a longer and more prominent sicula and in its lack of dorsal curvature at the proximal end. The thickness is very similar, but M.1.nrimus seems to have far nore sninose thecae (e.g. Pribyl 1942 obr. 3 figs.l9-21). From M.l. Ieintwardinensis Lapworth it differs in the manner desoribed by Wood (lano n . 475).

This subspecies was probably mistalen for lonograptus chimaera s.]. by Watney and Welch (1911) who may have been misled by its occurrence at a low horizon. The subsnecies listed by those vrjters as M.l.inciniens Wood and ocourring at rouchly the same level as M.l. leintwardinensis is here des-
 P.450) and Elles and Wood (1910 p .102 ) mention the occurrence of M. Inniniens in Teber Gill Westmorland. This mar be llaffinginiens.

Mood (10no p.176) also noints out that M.l.incinions occurs at a lower horizon than f. l. Jeintwhainencis and that it may have civen rise to the fatter. This is a very feasible internetation and the anvearance of M.l.incinjens at Cautler at an even hower level does not precluge this. "In the Welsh Borderlend this subspecies ocours with Moltimis Perner, whilst at Coutley it oncure vith P. hoheminers, P.nilesnin, and other forms indicative of a lowner horizon.
Mat,orial seen: A snecimen presented by Wood to the Sedgwick luseum (A24046-7) is identical to the cautley snecimens recorded from the P.nilssoni Zone; specimen figured Elles and Wood Pl. 39,fic. 90 (S.M. no. A244l2) is also identioal to the Cautley specimens.

Plate 30,fics. 3, 4.

Material: Fairly common in the zone of M.leintwardinensis with P.welchi sp. nov. Tsually badly nreserved in low relief. M.l.leintwarijnersis occurs at the same localities if not on the same bedding planes.
Desorintion: This form does not exceed a thickness of about $1 \cdot 2$ mos nor a lencth of 'lom. The nrovimal end is stiff or even with a very slicht dorsel cirvature whilst the rroximal thecae are spinose. Distally the thecae have no spines and are simple tubes. Four or five proximal thecae bear spines. The sicula may reach 1.3 mrs in lencth and its apex reaches the level of the anerture of th. 3. Thecal counts can only be annroximate because of the compression cenerally undercone by the rock but values of under 15 in 10 mms heve not been obtained. At the extreme proximal end 20 the cae in 10 mms is more common.
Remarks: In ceneral form the species is very close to M.l.jnciniens Food and was termed such by Watney and Welch (197!) and probably also by Wood (1900 2.476, and facing n.450). It differs however, in beinc both narrower and shorter and in actual size comes within the rance of M.l. peintwardinensis Iapiorth. From this latter species it is distinct in havinc only the rroximal thecae sninose.

The writer has hesitated to suciest a subspecific neme for this fossil since it may be merely a dwarf form of M.l.inciniens Wood whose size is dictated by the onset of unfavourable environmental conditions (thouch this in itself could constitute crounds for erection of a subspecies). (see also 0.252). This is also succested by the forms here described as M.1. Ieintwardinensis and P. welchi sp. nov.

Monotrentus varians numilis Wood
Plate 29,fic. 3,$4 ;$ Plate 30, fig. 5

1900 Monoerantus varians var. pumilis mov. Wood n. A69, text fis. 16, Pl. XXV, fige. 17A,17B.

$$
\text { fic. } 264 \mathrm{a}-\mathrm{c}, \mathrm{Pl} \cdot 39 \text {, fics. } 7 \mathrm{a}-\mathrm{c}
$$

1942 Pristiocrantus (Colonograntus) varians numilis (Wood looo). Pribyl n.7; text fie.2, no. 9.
?1947. Monocraptus varians var. pumilis Wood. Ruedemann p.489, F1. 85, fjcs.11-14. ?1962 " " " " ?" Foss P. 67,text fics.3D, E.

Material: Several srecimens in low relief and flattened, usually noorly nreserved, an excention being HUR./ $3 \mathrm{~s} / 6$.
Horizon and Localities craptolite bands $1,2,10,12,13,15$ and 16, Ludlow Series M.nilssoni zone. Spengill, Wandale Hill; 2W,3S, Cautley Crags (Cc) Diagnosje: A little over lcm lone wjeth a meximum breadth of $1 \cdot 9-2 \cdot 0$ mms. in flattened srecimens and about 1.4 mms in those preserved in relief. Two to three "hooked" thecae occur at the proximal end where the thecal count is 19 in 10 mms . Distal thecae simple tubes, thecal count 15 in 10 mrs. Sicula about 1.7 mms lone, apex reaching to level of anerture of th. 3 . Overlar reaches a maximum in the distal thecae where it is about two-thirds of the thecal lent th.
Descrintion: In forms preserved in relief M.v.numilis is typically very short and narrow. At th. 7 for example the thiclness is only rarely more than 1 mm . About 6-7 mins from the proximal end there may be a rather ranid expansion of the rhabdosome (fig. 3 Pl .29 ) but snecimens lacking this are more comion and in them the maximum known breadth is not attained.

The proximal end is straight and the sicula prominent. A length of $1 \cdot 7$ mos has been noted in some specirens of the sicula end the apex is invarjanly about the level of the aperture of th. 3. Usually th. 1 and 2 show the "hooved' form of the aperture but occasionally th. 3 does also.

The actual nature of the "hook" is not clear.but in one specimen (FUR./ 2W/134 ficured Pl. 29 fic. 3 the "hook" seems to form from the lateral wall of the theca, as in the cases of M. chimaera and. M. colonus and it seems to be more spine-like than would be the case were it merely due to retroversion of the thecal aperture. The srecimen on Flate 30 (fic. 5 , HUR./3S/6) also shows this on th.l, but in the case of th. 2 the spine seems to have its oricin on the dorsal marcin of the theca. The four thecae subseguent to these all show what is eitner a slight erowth on the lateral marsins of the thecae or a constriction of tre aperture.

Remarls: M. varians numilis itself is not a common fossil, thoush the specinens obtained agree cloeely with the descriptions and figures of Wood (1900) and Blles and Hood (1970).

Moterjal seen: Specimens of M.varians numilis and V.v.varians in Sedcwiok Fuseum.
senus MOROGEAPME GROIP E

Groun diacnosis: Contains the forms attributed by some authors to Nonocrantus (Monocrantus); rhabdosome smaly to larce, usually more or lass straicht, but often vith a centle flexuous curvature; theoae distinctly hooked, ocosionally spinose; hook either free (as in rermetus) or adnressed to metatheca (as in knockoncic) or with excessive erowth of doreal merin compared to ventral (as in nriodon).

Monomrantus nriodon (Rronn) ©.I.


$$
32, \pm i<\cdot 4
$$

1835 Iomatoceres priodon Bronn n.56, D7.1, fje.13.
1912 Monocrentus priodon (Bronn). Elles and Hood nr.418-420, text fics.282a-

$$
b, 292 c-d, P 1.42, f i c s .2 \mathrm{a}-\mathrm{e}
$$

(A more comrlete sunonomy of this species un to 1912 can be found in Elles ard Wood 1912).

Material: Over 100 specimens preserved in full relief, low relief or flattened. Fnrizon and Incalitiss: Fairly common in zones c.centrifums - C.insectue to
C.murohisoni. Not known with certainty above the latter zone. Pickerinc Gill. (5P, 10P, RP); R.Rawthey, Mouth of Wendale Boor (50W,52W, ?53W); Wanda?e Hill (46\%, 37W, 25N, 26W, 2RW, 29W); R.Rawthey (2Ra, 68f); Hebblethwaite Hall Gill (OH); Bluecaster, Midde and Near Gills ( $12 \mathrm{~N}, 8 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{M}, 1 \mathrm{M}, 4 \mathrm{~N}$ ). Diamosis: Rhabdosone very lonc, anproximately straicht: with a movimum breacth of 3 mms . Thecal count 11-13 in 10 mms proviraily, falline to 9-1] in 10 mes distally. Ancte of inolination nroximally low, anout $20^{\circ}$, increasing distally. Overlap plso increases distally to about two-thirds. Thecal tubes booved.
Desorintion: The Cautley spooimens differ considerably from the material described, for eymmle, by Flles and Wood. (1912). A combination of flattering and compression has profound effects unon such measurements as thecal count, width etc. end the descrivtion below (and diacnosis above) is drawn from material preserved in full relief in which there is little sign of distortion.

Tullberc (1893 PI.2,fics. 23 and 25) ficures two proximal ends of M . nriodon Bronn; and these seem to bear the same relationship to each other that the undistorted specimens at Cautley bear to the flattened and corpressed specimens. His fig. 25 is probably a flattened specimen whilst fig. 23 is shaded in the menner of a specimen in relief.

The rhabdodome is aprroxirately strajeht but does show slisht dorooventral curvature, which can be exaccerated by compression at richt ancles to the line of the nolypary. At the level of the hook of th.l. the width of the rhabdosome is 0.52 mr . From this point it widens gradually so that at $2 \frac{2}{2}$ cos from the sicula width of 1.8 mms is reached. Distally a maximum of about 3 mps is attained.

The sicula is rather small measuring from 0.78 mm to 7.55 mms . These two ficures are extremes caused by varyine comrression and the undistorted siculae are usually from 1.04 mms to 1.3 mms lonc. The apex barely passes the level of the hook of th. l.

The length of th. 1 (exclusive of the extroverted nortion) likewise varies from 0.65 nr to 1.17 mms but the undistorted snecimens have a lencth of 0.9 mms. Th. 1 buds from near the base of the sjoula.

In the first few nims the the cae number ll-12 in 10 mms with one recorded instance of 13 in 10 mms . At 7.5 mms from the sicula this has fallen slicht-

Histograms illustrating the effect of flattening and compression upon some
measurable biocharacters of Monograptus priodon (P)ronn).

thecal spacirrg, proximal end (per cm.)specimens flattened and compressed at right angles 20 length of polypary

$\square$ undistorted specimens


Iy to 10-12 in 10 mms . Distally counts rancine from 9-11 in 10 mms are obtained.

Specimens which are flattened and compressed at richt ancles to the Dolynary give much increased values: 13-17 in 10 mms proximally, 14-15 mesially and rather less distally (see text fis.8d).

A chance in the ancle of inclination of the thecae to the axis of the rhabdosore also tekes place distally. The chance is very cradual from $20^{\circ}$ or less at th. 1 -th. 5, to $40^{\circ}$ at th. 23-27. The ancle continues to increase throuchout the rheidosome (see PI.6,figs.3,4).

* Overlap of the thecal tubes is almost nil at th. 1-th. 3 (see Pl.6,fig.3) but slowly increases in amount to about two-thirds in the distal region.

Nore than one-half of the thecal tube is involved in the hook at the nroximal end and this ficure is maintained distally. "In this part of the rhabdosome the hook is much less prominent and is enrolled to a smaller decree. Whereas at the proyjmal end the anerture may face the dorsal marin of the polynary, in the distal region it is merely turned back to face the prorimal end.
Remarks:Whist the Cautley specimens acree in ceneral form with M.nrinतin (Bronn) they differ considerably in detail. The main points of difference are summarized as follows:-

1. The sicula is smaller and its apex barely surpasses th.l.
2. The proximal end is nerrower.

3: The early thecae are inclined at a lower ancle to the dorsal marcin.
4. The degree of overlap is less in the early thecae.
5. The hook is more prominent proximally and the aperture enrolled further. The degree of difference between the proximal ends can best be appreciated by comparing Pl. $6, f i g s .3,4$ with text fic. $282 \mathrm{a}-\mathrm{b}$ of Elles and Wood p. 419 . The writer has been unable to plece the Cautley form in any of the described subspecies of M.priodon. It is quite distinct from $\underset{\text { V. } n \text {. var. rimatus }}{ }$ Perner and M.n.var. validus Perner. Material seen: Snecimens in Sedswick Nuseum, Camoridce, and H. W. Geolocical Survey Museum.

1876 Vonocrantus Riccartonensis, sp. nov. Lanworth pn.355-6,P1.13.fics.2a-e.

| 1877 | 11 | " | Lapw. Lapworth Pl.5,ficc. 23. |
| :---: | :---: | :---: | :---: |
| 1880 | " | riccartonensis | Ienworth. Ienworth p.155,Pl.4,fic.ec. |
| 1883 | 11 | Riccartonensis | Lasw. Tullbere ma 23-24, P1.2,fic.26-27. |
| 1912 | " | riccartonensis figs | Lapworth. Elles and Wood pn.424-425, text .286a-c, P1.42,figs.8a-c. |
| 31924 | 1 | " | Lenworth. Fundt Pl.5, tics. $8,9$. |
| 1934 | " | " | " 1876. Peltzmann $\mathrm{n} .204, \mathrm{Pl} .1 . \mathrm{fie.6}$. |
| 1945 | 11 | " | Lanw. Waterlot Fl.34,fig. 345. |
| 1958 | 11 | " | Lapworth. Obut p.62,F1.4,fig.12; P1.5, figs.l,2; text fig.ll. |

Material:Over 100 specimens all preserved as films on the bedding nlane. Horizon and Localities: Restricted to the M.riccertonensis Zone (as defined at Cautley) i.e. lower rart of M. ricoartonensis Zone as recognised elsewhere; R. Rawthey, Mouth of Wandale Beck ( $53 \mathrm{~W}, 54 \mathrm{~W}, 55 \mathrm{~W}, 56 \mathrm{~W}, 57 \mathrm{~W}, 59 \mathrm{~W}, 60-63 \mathrm{~W}$ ); Wandale Hill Gill B (38W-40W); Gill A (30W-34W): Wandale Beck (70W); Whinny Gill (6Wh-7Wh,lWh); Hebblethwajte Hall Gill (6H-8H); R.Rawthey (5Bf, 8Bf-9Bf); Bluecaster, Near Gill (10N,11N,13N?); Middle Gill (6M,11M,12M,13M). Diacnosis: Rhabdosome characteristically stiff with uniform width of 1.5 mms and very slight dorsal curvature at the proximal end. Thecae $10-8$ in 10 mms Hooked thecae with typical bead-like shape in flettened material. Sicula prominent. Overlan one-third to one half.
Descrintion: The Cautley specimens do not differ in any way from previously described material. It is extremely abundant on some bedding planes and often shows narallel orientation of the rhabdosome due to sortine by currents

The maximum breadth of the rhaiodosome is achieved very quick? (see fic. 7, Pl.6) and is then maintained. The thecae seem to be uniform throuchout the rhabdosome and no chance in the nature of the book hes been detected. Theca 1 is annarently rather shorter thon those imnediately following it. It, arises near the base of the sicula.

Remaris: The sicnificance of the vertical distribution of this form js הis-
cussed in detail (nn.38-4i). It suffices to mention here that it does not occur in the C.murchisoni Zone at Cautley and it is restricted to the lower nart of the wonocrantus ricoartorensis Zone recognized by Watney and Welch. Material soen: Specimens in Sedewick Museum, Cambridce.

## Manocrantus irfonensis inclinatus subse. nov. Plate 3l,fic.12; Plate 10,fic.l.

Holotrne: HUR. $/ 39 W / 3$ a flattened proximal end and unaxial thecae. Hnrizon: Zone of M.rionartonensis, ton. (39W) Wandale Hill. Material: Six specimens, includince holotye, on a sincle sleb. All flattoned specimens but quite well preserved.
Derivation of name: inclinatus, l. inolined towards. Diamosis: Distal pert of nolypary similar to M. riconetonensis, but much more slender. Proximal nart, showing initial dorsal curvature followed by ventral curvature. Thecae in this region lite those of M.irfonensis. Maximum thickness 1.2-1.3me. Thecae number 9?-11 in 10 mms .
Descrintion: The rhabdodome sbows dorsal curvature proximally (over the first 2 cms ) followed by ventral curvature for a similar jencth. Distel fracments seem to be more or jess strajcht. The decree of curvature has rrobably been slichtly lessened by compression. All the snecimens are current sorted and lie parallel to the direction of eloneation of the rock. However, since the srecimens are flattened (tendinc to increase the width) ard at the sane time compessed rarallel to their lengths (tending to decrease the width) the two effects nrobably cancel out leavine a rbabdosome similar in width to the oricinal. Under such circumstances distortion of the thecal characters is to be expected but in fact their aprearance sugcests that this has not occured to any great extont. The thecal hooks, for examrle, are not noticahly adpressed to the rhabdosome.

The sicula is nearly 1.7 mms long and 0.3 mm across the base. Its ariex reaches to the level of the hook of th. l. The early thecae number 11 in 10 mms and are very similar to the thecae of M.irfonensis Elles (figured by Elles 1900 fic. 19 and Elles and Wood 1912 text fig.292). They are anproximately l. 5 mms lone with a small hook in the apertural region, and heve slicht sjen-
moidal curvature very close to that on fie. 292 of Elles and Wood. Overlen of the thecal tubes is rather lese than half.

The distal thooae are rather more distant (at in 10 mms ) and the overlan is about half. There is also a sljcht chance in the angle of inclination from $10^{\circ}-15^{\circ}$ in the proximal region to $20^{\circ}$ distally. The characters of the thecal hook do not chance.
Remarks: On almost all counts this subspecies is intermediate between N. riccartonensis Ianw. and M.irfonensis Elles. The shape of the thecae is, however closer to the latter and it is here included as, a subspecies of that form. It differs from M.jrfonensis in being rather broader distally and in havine more closely set thecee. The flexuous curvature of the rhabdosome is very similar.

From M. riccartonensis Lanw. which it resembles in generil form of the thecae, nature of the hook, and the uniformity of the thecee throuchout the rhabdosome, it differs in the followine aspects:-

1. The sicula is shorter, and reaches less far alone the polyrary.
2. The rhabdosome is flexuous and the proximal end has promirent doreal curvature.
3. The rhabdosome is narrower: the thecae are inclined to it at a smaller ancle and they are more closely sraced.
M.Irfonensis inclinatus subsn. nov. separated from M. riccartonensis before the top of the M. riccartonensis Zone (as here defined) and probably Eave rise to M.irfonensis irfonensjs miles which anyears in both Ceutley end Shronshire in the C.lund creni Zone (see Elles 1900, and Watney and Welch 1911) Both forms are rare and at Cautley the writer hes found only a single undounted specimen of M, i.irfonensis. (This was found in the Harter Fell area durine undercraduate mapping and has since been mientaced). Its horizon was, as noted by Watney and Welch, the zone of C.lundcreni. Meterial seen: Snecimen of M.irfonensis figured Elles and Wood Pl.43,fie. 3 (S.N. no. A22303 a and b).
```
Monomentus flemincij fleminepi (Salter)
    Plate 32,fic.8; Plate 13,fie.5
```

| 1852 | Graptolites |  |
| :---: | :---: | :---: |
| 1876 | Monocraptus | " Salter, sp. Lanworth np.504-5, Pl. 20, fi.era-d. |
| 1883 | " | Selt. Tullhers r.23, PT. ?,fic. 25. |
| 1900 | " | " (Salt.) var. $\mathrm{\beta}$ ¢ $\delta$ Eles nn.402-3,figs.l2 and 14. |
| 1972 | " | (Salter). Elles and Wood nr.425-6, text fig. 287 $a-d, P 1.42, f i c s .5 a-d$. |
| ?1911 | " | flemincij Salt. var. $\beta$ S Watney and Nelch text and tables. |
| ?1924 | " | Flemminci. Hundt Pl.5,fiç. 22 . |
| ?1940 | " | Flemmincii Selter. Laursen r. 26 , text fic.l7. |
| 1945 | " | flemingji. Salter. Waterlot Pl. 34, fic.347. |
| 1952 | " | (Wonocrantus) flemingi flemingi (Salter l852). Pribel rn. 5-7, PI.1,fic. 6. |
| 1062 | " |  | Pl. 15, fic. 3.

Tectotyme: Specimen ficured Selter 1852, Pl.21,fic.5a.
Materjal: Many snecimens, some in relief but mainly in low relief or flattened.

Forizon and Incalities: Staces 3 and 4, zones belophorus - lundgreni. Blvecaster Midale Gill (?27M,22m,2am, 30M); Near Cill (19N, $16 \mathrm{~N}, 21 \mathrm{~N}, 22 \mathrm{~m}, 23 \mathrm{~N}$, $24 N, 25 N-26 N, 20 N$ ); Wandele Hill ( $3 W, 4 W, 72 W, 24 W$ ); Pickering Gill (11P); Fobdale Beck (2RA); R.Rawthey (l2Ra); Birksfield Beck (?llPf); Jwo Gills: Ferter Fell (lTw); Near Gill (19N).

Diasnosis: Rhabdosome slichtly flexed, very long, slicht dorsal curvature at extreme proximel end. Maximum width 2.5 mis. Thecae hooked, numberiñ $16-$ 19 in 10 mms .
Doscrintion: The polypary is very lone and robust but slichtly flexuous. Dorsal curvature is almost always present at the proximal end but distal fracments, whilst often showing slicht ventral curvature, are usualy straicht. As hes been noted with other snecies from Cautley the desree of curvature varies considerably with the direction of compression.

The sicule is anproximately 1.5 mms lone and is very prominent.
anex reaches to about the level of theof two, whilst the base hes a short vircella.

Close sracing of the proximal thecae is typical. The usual theorl count is 16 in 10 mms though ocesionally more are noted in the same length.

This falls distally to a minimum of around 9 in 10 mms .

In the cautley specimens the hoor occupies one guerter of the width of the polyrary in the proximal recion and rather more distally. As in the cese of M.nrionon Fronn the distal honks are Iess recurved then the provimol end.

The ancie of inclination is about $30^{\circ}$ throuchout the polypery. Pemarks: The Cautley snecimens show no variations from earlier described material. The apparently hich thecal count at the proximal end ( 16 in 10 mm ) is also shown by the figures of Elles and Wood (1912 Pl. 42,fice.5a-d) and Lenworth ( $1876 \mathrm{Pl} .20, f i$ ©.8a).

Salter (1852) called this species Grantolites Finemincii not, es recorded by Pribyl (1948, 1952) Grantoljtus fleminci.

The writer has examined the localities from which Watney and Welch (1971) obtained M.fleminuif vary and has obtained many specimens. Althouch these resemble in ceneral form those ficured by Elles and Wood (Plaf2,fics. 7 b and 7d) thot are indistinguishable from nroximal ends of M.f.flemincii being equal in all dimensions. Furthermore adult rhabdosomes at the same localities also belong to the latter. No specimens have been obteined which could definitely be assigned to M.fleminoii comnactus Elles and Wood. Meterial sen: Specimens from Mouchton Whetstones (S.M. nos. A51198-511803) labelled "M.vilcaris Zone"; sceoimens from Dooree Common Tinnerary (S.l.nos. A51183,2 presented by Sir R.Griffiths to the Sedcwick Museum).

## Monocrantus flemincii nrimus Elles and Wood

1900 Nonocrantus Flemingii (Salt.) var. $x$ Elles p.402,text fic. 11.
 $1012 \ldots$

Salt. var. $\alpha$ Watney and Welch, in teyt $\&$ tables (Salter) var. primus, nom. nov. Elles and Wood, nn.426-487, text fie. 288, Pl.42, fics.6a-d.

1045 Monocrantus flemingii var. primus E\& W. Waterlot Pl.34,fig. 348 . 1952 " (Monocrantus) flemingi primus Elves and Wood 1913. Pribyl ?] $96 ?$
" fleming primus wElles and Wood. Romariz $\mathrm{n} .248, \mathrm{Pl} .7, \mathrm{fig} .9$; Pl. l].fice.ll.

Holotype: Elles and Wood (1912) Pl.42,fic.6a.
Material: Only a few specimens definitely assignable to this species.
Horizon and Localities: Zone of C.lundereni, Stare 4, (rare) Wandale Hill (3 3 m ); Near Gill, Eluecaster (26N); R.Rawthey (IRa); Stage 3. Diacmosis: Shorter and stiffer than M.flemingij, flares more rapidly to a maximum breadth of 2.5 mms . Thecal count $14-8$ in 10 mm . Descrintion: This species is very similar to M.f.flemingij (Salter) but has a broader and stiffer proximal end with the thecae more spaced. Specimen TOR. $/ 3 W / 34$ is compressed at rich angles to the polypary yet the thecae at the proximal end number only 14 in 10 mms . These proximal characters are critical in identification and distal fragments may be indistinguishable from Salter's species.
Remeris: This is a rare fossil at Cautley though Watney and Welch (19].) record it as common in their c.rixidus Zone. It is possible that some of the fossils described below as M.flemingij-nriodon are referable to this species. Material seen: Specimens of M.f. primus figured Flies and Wood Pl. 42, fics.60d (S.M. nos. A22,289-90); specimens of M.f.comnactus figured Flies and Food Pl.42,fiçs.7c-d (Ales Collection S.M.nos. A22,299-300).

## "Monomrantus flemincii-nrjodon" <br> Plate 31,ficr. 2

Material, Horizon and Localities: Very badly preserved, flattened rhebdosomes, from zone of M.flexilis belonhorus (i.e. Watney and Welsh Zone M. riccartonensis Bluecaster Middle Gill (13W, 14M). Description: These are distal fragments, flattened, and havinc anrearances intermediate between M. priodon Brown and M.flemincii (Salt.). The thecae usally number about 10 in 10 mms and are inclined at rather a high angle to the
the axis as in distal thecae of M.nriodon. The apertural hooks, on the others o hand, are very reninescent of Wi.flemingij and the specimens may represent early forms of this species. The rather hich thecal count may be a compessional feature. More material is required before definite conclusions can be drawn but the writer feels that this material may turn out to be synonymous with Miflemingji nrimus Elles and Wood.

## Monocerentus sedierghensis sp. nov. <br> Plate 31,fis. 10

Holotyne: FUR./40W/1 comnlete but flattened specimen. Horizon of Holotvpe: Ton of the M.riccertonensis Zone. Material and Tocalitw: Single but corplete specimen, preserved as a flattened impression: Wandale Hill Gill B (40W). Derivation of name: After the nearby town of Sedberch. Diagnosis: Rhabdosome with centle dorso-ventral curvature, widening from 0.6 mas to 2 mms at 4 cms from the sicula. Thecae with small hooks numbering 14-15 in 10 mms over first few mms and 12 in 10 mms distally. Overlap about one-half, increesing distally.
Descrintion: The rhabdosome is not robust but reaches a maximum width (flattened) of 2 mrs at a distance of 4 cms from the sicula. The proximal end shows ventral curvature for a length of about lom when a chance to centle dorsal curvature occurs and is maintained throughout the remainder of the polymary.

The sicula is small and not prominent. Its lencth is 1.2 mas and the arex barely reaches the level of the hook of th. 3 . . The dorsal mergin of the sicula is continvous with the dorsel margin of the polypary. This arrancement is the primary reason for the slicht proximal ventral curvature.

The proximal thecae are closely spaced numbering $14-15$ in 10 mms but this figure falls ranidly to 12 in 10 mms after 1 cm . No further change in snacinc takes nlace and at the distal extremity the thecae also number 12 in 10 mis.

Thecal overlan increases slichtly to rather more than half in the distal portion but the thecae themselves are uniform throuchout. There is no anrerent chance in the neture of the hook vhich always involves only the tor of the thecal tube and closely resembles that of M.riccartonensis lanw. A max-
imum lencth of apnoximately 2.5 mis is reached in the distal thecae. Throuchout the rhabdosome the thecae are inclined to the axis at $30^{\circ}$.
Remarls: M.sedberchensis sn. nov. is extremely rare and a most mazlinc fossil. The theoal hooks (and ceneral thecal form as far as this can be ascertained in flattened specimens) resemble those of M. ricoartonensis Ln w. and M.irfonensis inclinat,us subsn. nov. but the slight ventral curvature of the proximal end and dorsal curvature of the mesial parts distingaishes it from these snecies. If the rroximal end were straicht there would be a certain resemblance to M.flemincif (Salter) but the rhendoscme is altocether too slender for any of the described form of that species.
M.sednergensis also resembles, at least in ceneral form, M.uncinatus uncinatus Tullbery and M.uncinatus orbatus Wond. Roth these forms are from the Lower Ludlow. The Cautley specimen is porticularly close to the orizinal snecimen figured by Tullberc ( 1882 PI. $1, f j c$ - 24 ). Thjs sreciren shows the slicht dorso-ventral curvature of the rhabdosome, and 57 thouch slichtiy over natural size, seeme to have the same dimensjons and thecal count (althouch in his decoription n. 30-31 he vives a ficure of only 9 in 10 mos; presumanty for the distal recion). Tullberg's srecies, however, has a more prominent and recurved hook and the thecal tubes are broader and inclined to the ayis at a hicher ancle (PI.1,fič.25).

The Eeneral form is also close to the subsnecies M.ronhotws Wood rortin-l) ularly the snecimen fioured by wood (]ano Pl. 25,fice.23B). This snecimen has similar curvature, and dimensions (even to thecal count and thickness). Again however, as with M.uncinatus Tullberg, the hook is very different and its resemblance to these forms is probably a case of convergence.
M.tariconi Gortani is probably the snecies closest to Mosherchencis sn. nov. The Cautley species agrees with Grtani's in the size and position of the sicula, the noture of the proximal end and snacing there of the thecae, and the actual nature of the hook. From M.tarjocoi it differs in beinc chorta er,more fleyed, rather more slender, and in having a closer spacing of the thecae distall. Gortani's snecies is a Wenlock form but seems to ocur at a slichtly hicher horizon with C.ricidus Tullbere (Gortani 1922,1934).
M. seriberchensis sr. nov. does suceest sore connection between M.rjecartonensis Lerworth and M.taricooi Gortanj.

```
Monograntus flexilis flevilis Elles
Plate 6,f゙içs.8,g; Plate 9,fisf.5.
```

1900 Monocrantus flexilis, sn. nov. Flles nn. 405 \& 7 , text fic.l8.
1912 " " Elles. Mlles and Wood nn.430-1,text fig.293, Pl. 43, fics.42-e.
1942 " flexilis flexjlis Elles looo. Pribyl np.426, text fic.l: 1-5, Pl.1, fics.7-3, Pl.2, fics.2-3.
$1045 \quad \therefore " \therefore$ flexilis Files. Waterlot Pl. $35, f i g \cdot 360$.
1962 " " " $"$ Romariz n.249; Pl.8,fič.8; ?Pl.15,fic. 7

Holotyne: Snecimen figd. Files 1900 p. 4J. fig. 18 and reficmred Elles and Wood (1912) Pl.43,fic.4a.

Material: Several hundred snecimens, all flattened.
Horizon and localities: Zones of C.rigidus nut. to RC.ellesj; Near Gill ( $10 \mathrm{~N}, 16 \mathrm{~N}, 17 \mathrm{~N}$ ); Middle Gill (19m,20N, 21N, 22N, $26 \mathrm{M}, 27 \mathrm{~m}$ ); R.Rawthey (?17Br); Ecker Secker Eeck (9Ra); Wandale Hill Gill B (45W); R. Rawthey, Mouth of Wandale Beck ( $67 \mathrm{~W}, 68 \mathrm{~W}$ ); Crosshow (5Cr).
Diasnosis: Characteristic curvature, and hooked thecae upon dorsal surface. Vircella and nema usually well seen. Sicula prominent. Naymum breadth 2 mms . Thecae number. 12-9 in 70 mms . Thecal hooks typical and usually dis-n tinct from those of M.flemingii and M.nrindon.
Tescrintion: The Cautley specimens are quite typical; no variations with time have been noted.

The rhabdosome is of considerable lencth and distal framents several inches long have been found. Ghese usually show ventral curvature at some stace thouch the nroximal roxions are invariably dorsally curved. It is clear that in adult rhabdosomes an S-shane is the usidal form. The actual dee ree of curvature varies with the compression which the fossil has undercone but at the proximal end the first few theoae are often in a line at rijut ancles to that taken by the distal part of the nolynary.

The sicula is prominent measures annroximately 2 mrs in lensth and its anex is usually almostiat the level of th. 2. Very occacionally it extends beyond this. Most specimens have a long and exceptionally robust vircella. Rare srecimens at Cautley have two spines in the position of the vircella.

## TEXT FIG. Pea

Histogram of rhabdosome width of the species $M$. flexilis measured at the level of the aperture of the.

+ = specimens figured by Elles \& Wood from Welsh Borderland.
$\mathbf{x}=$ specimens figured by Elles \& Wood from Cautley.


## TEXT FIG. 8 eb

Histogram of rhabodosme width of the species M. flexilis measured at 2 cos from the proximal end.

+ = specimens figured by Elles \& Wood from Welsh Borderland.
$\mathbf{x}=$ specimens figured by Elles \& Wood from Cautley.

TEXT FIG. 8 ec
Histogram of thecal spacing of the species C. rigides mut.
$1=$ thecal count immediately prior to cladium.
$2=$ thecal count distally.
3 = thecal count over first few thecae.


Both certainly originate from the ventral side of the sicula aperture and in one specimen (THR. $/ 16 \mathrm{~N} / 386$ ) the vircella actually arnears to biturcate.

Bemaris: This is a common fossil on some beddinc planes throuchout the zone desicnated as c.ricidus by Watney and Welch (1911).
$\frac{\text { Whnograntus flerilis nelonhorus (Menechini) }}{\text { Plate } 31, f i e^{s} \cdot 3,8}$

1857 Grantolithus (Nonograpsus) belophorus Menechini (Pers) p.166, tab. B, 1857 " " Gonii Fenechini (rars) p.172, tab. B, P1.11, " 1857 . "

1922 Monocrantus belophorus Nich. en. Gorteni n.17(57), F1.10, (3), fics.0-15, Pl.12(5),fjcs.3b,14, P1.13(6),fic.1.
 18(4),?fics.12A, Pl.19(5),fic.4. ballessus Gort. p.10-71(94-45),P1.16(2),fics.12-18, Pl.18(4) fics.11A, Pl.19(5), fics.2A, 3, 6C. flexilis belophorus (Meneghini 1857, em. Gortani 1922). 1942

1985
" belonhorus kenechini. Waterlot P7.35,ficc. 361 .

Lectotve: Example figured by Gortani (7922) on Plllo (3), fic. 9 . Naterial: Nany frasments and some fairly well preserved proxinal ends. Horizon and Incalities: Occurs in the author's zone of M.f.nelonhoriss (in the top of the M. riccartonensis zone as defined by Vatney and Velch lyll); Vidrle Gill (16 1 , 13 V ). Fracmente probaniy referable to this form have been seen at the same level in other localities. Diacnosis: Maximum thicunese 2.5 mme of a rhahidosome showing dorso-ventral curvature. Proximal end with तowsal curvature. Theose number $70-7$ in 10 mms. Sicula 2 mms .

Descrintion: The rhabdosome has the typical S-shaped curvature of the M, f'leyilis Group and widens cradually from a thickness of $0.6-0.9 \mathrm{~mm}$ to a probable, maximum of 2.5 mms . The proximal dorsal curvature is stiff.

The broad sicula is $1.5-2 \mathrm{mms}$ long, and the apex only reaches to the level of th.1. Throuchout the rhabdosome the thecae are unjform and number 10-7 $\frac{1}{2}$ in 10 mms . This varies somewhat with the compression and both hiciner and lower values have been obtained. The actual hook is between h.riccartonensis and $\mathbb{H}$.floxilis in form, being rather beak-like.
Remarks: The number of badly preserved frasments obtained surests that this fossil is quite common at the above horizon. Fossils, hovever, are usually difficult to obtain wherever this horizon is encountered, due to the cleavace.

Those snecimens which have been obtained compare well with forms fiured by Pribyl (1.942, text fig.l, no. 7 and 6) but the Cautley material shows a slicht difference of thecal count ( $10-7 \frac{1}{2}$ in 10 mms of. $9-5$ in 10 mms ). Well preserved distal fracments have not yet been obtained by the writer and it is possible that in such srecimens the thecae might be more distant from eoch other than $7 \frac{3}{2}$ in 10 mms .

The sicula is also rather shorter but on the specimen figured as no. 6 (text fig.l Pribyl 1942) the sicula seems to be only lmm lons and its anex reaches to aoout th. I. The specimen ficured as no. 7 (text fic.l) apnears to have considerably more then the 9 in 10 mms given in the description ( $n .7$ ) for a proximal fragment.

From M.flexilis falcatus (Menechini), M.f.belorhorus differs in being far more slender, and less recurved proximally. It is smaller in all dimensions.

It is equally distinct from M.f.fexilis Elles. The proximal end is less recurved, more slender, and has $a$ very short sicula reaching only to th.].

$$
\frac{\text { Monocrantus ex. gr. flexilis }}{\text { Plate } 7, \text { fie.l }}
$$

Material: Sincle proximal end with sicula from Wandale Hill Gill B (43w), Zone of M. flexilis belophorus, Wenlock Series, Stage 3. Specimen flattened.
Descrintion: The form of the thecae, seneral form of the rhabdosome, and rres-
cence of a lone vircella ally this srecimen with the fossils crouned about M.flexilis. Its slender nature and stiff dorsal curvature however distinglish it from N.flexilis flexilis Elles.

The sicula is 1.56 mms lone and its apex reaches to the top of th. 1 . Both these facts also distingish it from M. riexilis flerilis. The thecae number 14 in 10 mrs over the first few theore but this decreases to 10 in 10 mms after rather less than lom. The thecal aperturas seen to be more "beaklike" than in M.flexilis flexilis and are perhans closer to those of flemjnaji (Salter).

There is but slight increase in width from 0.78 mas at the level of th. 1 to 0.97 m at the distal extremity (inclusive of hools).
Feraris: Moex. cr. flexilis has the same ceneral form as M.flexiliss helomhorus (Meneghini)but the thecae are more closely spoced ( $14-10$ in 10 mms of. $9-5$ in 10 mms ). W. inflevis Pribut has a simitar theont count (77-9 in lomms) but the prowimal end is not well figured end does not seem to be dorsally curved. In addition the sicula is long, its anex reaching to the level of th. 3 (Pribyl 1942, 2.11).
T. suhfleyilis pribyl also has a thool count of $21-9$ in 70 mma and has thecze of the fleminyif tyne. Although the distal parts are ventraller purved the proximal end shows dorsal curvature (see Pribyl, 1947, Pl. , tics. 3 \& ). The short sicula and hich theosl count of the proximal part distinguish M.av. r. fleyilis from this form.

The closest form is nrobebly M. fleyilis belonhoris (Veneghini).... The form ficured by Gortani (l922) as M.ballaesus is very close indeed in all characters excent spacing of the thecae. One specimen (Pl.16(2) fic.14), has a thecal count proximally of 14 in 20 mms al thouch it enpears that this is a distorted specimen.

## Nonocrantus marrj Perner sensu loto

Plate 8,fic.4; Plete 37,fic.A; Plate 32,fic.7; Plate 33,fig. A.

" Perner. Elles \& Wood pr.42?-3, text fig. 2 \&4a-b, pl.

$$
M_{2}, f i c s \cdot A a-d
$$

?1. 933 Nonocrantus marri Perner. Sun p.38; PI.6,fiç.1. 1945 " Marri Ferner. Waterlot n.78.p7.33,fis.336. ?l949 " (Poratogrentus) marri Perner. Obnt r.23; n?.4, piss.5a,b.

1952

1958 1962
(Monocrantus) priodon marri Perner. Munch r.loo, Pl. 26, fics. 2a-b.

Tectotyne: Snecimen figured hy Perner (1897), Pl. 1l, fje. 7 . Haterial: Many specimens, usually well preserved as impressions.
Horizon and Iocalities: Subzone of R.maximis, Zone of M. turriminatus, Zone of M.crismis and Zone of M. Eriestonensis (in the sense of wilson 1953): Snencill (S124,10•25-S264,5); Wards Intake (all localities in above zones): Hebblethwajte Hall Gill; Stookloss Gil?.
Descrintion: The cautley forms from the lower beds (subzone R.mayimus and Zone of M.turriculatus) resemble nreviously described material in all essential characters. Comnression causes rather hicher and lower thecal counts than the 10 in 10 mms civen by Perner (1897, 1.21 ) and Elles and Wood (1912, n.422). However in snecimens which ere undistorted there is no noticeable deviation, and even in compressed snecimens the thecal count is uniform throuchout the rhabdosome.

Naterial from the zones of M.orisnus and M. Criestononsis was termed M. marri-nriodon hy Wilson (1953) but not described. These snecimens have a hicher thecal count in the proximal recion of un to 12 in 10 mms and occasionally a lower one distally of 9 in 10 mms . (Distorted specimens show even more variabilityr). In all other characters, narticularly the nature of the hook, they seem quite indistincuishable from M.marri Perner.

Other snecimens occur havinc a "nendus" - lite appearance (see Pl. 32,fic. 7). These are invariably compressed at richt ancles to the nolypary and probably represent distal fracments of M.marri Perner.

It is nossible that a direct line of evolution exists between Momarri Perner and M.nriodon (Mronn), and it is unfortunate that at Cautler beds nrobably equivalent to the zone of M.crenulata are unfossiliferous.


Which resemble M.nraecedens Roucek. Trey differ from M.marri in havinc a creater degree of overlap of the thecae. has not yet been determined.
Materjal seen: Srecimens in Elles and Wood Collectior, Cambride.

## Nonorrantus knockensis Elles and Wood <br> Plate 6,fig. 6; Plate 3l:fic.l

?18,2 Fonocrantus sincularis Tornguist. R.22, Pl. 2,ficcs.o-11.
1912 " knockensis, sp. nov. Elles and Wood nn.462-3, text fie. 32la-b, Pl. 46, fics. ©a-b.
1945 " $"$ Eles S Vood. Naterlot Pl.40,fic.404.

Naterial: Five fracmentary specimens preserved in relief, renlaced hy nurites. Horizon and Localities: Zone of M.sedswioki (580, 8.4) Snencill. Jiacnosis: Proximal end unknown. Distal part of polynary with variable curvature, as componly ventral as dorsa]. Width 1.5 mms . Thecae with a unique lobation, and more or less isolated from each other, mumbering $7 \frac{1}{2}$ in 10 mms .
Descrintion: The larcest fragent of rhabdosome observed is over 4 cms lone and ventrally curved. (see fic. 6, Pl.6).

The thecal tubes show no overlar but widen from a narrow protheon 0.26 0.3 mm in dianeter. This js annoxiretely circular in cross section and after 0.26 mm begins to widen to 0.4 mm at the distal extremity. The metatheoa crows away from the axis at about $80^{\circ}$ and its width in profile is 0.5 ? mr . This value is slichtly reduced as the point of recurvature is anproached. It is clear, however, that a certain amount of transverse exnansion has occurred in this part of the metatheca.

After crowinc outwards for 7 mm the metatheca is suddenly recurved so thet the distal nort, almost 0.8 mn long, is adyressed to the early nart of the metatheca. The theoal aperture faces the dorsal nsrt of the rhabdocomo. It is also nlain that there is considerable torsion of the thecae to the obverse side.

Some specimens (PI.3],fic.I) show more isolation of the retatheca then

HUR./S80, $8 \cdot 4 / 144 a$ end $b(P 1.6, f i g .6)$ and these seem to be rather more proximal fracments.
Remar's: Elles and Wood (r.463) describe the thecal Johe as bein- coiled almost in a horizontal $n$ lene. This is rather ambieuous and nay mean either the bedding plane (i.e. dorso-ventral plane) or the plare at right angles to the bedding nlane and at right ancles to the line of the nolyary. Only occasionally is the torsion so great that the lobe lies arnroximately in the latter nlane. Anart from this no differences rave been noted from Flles and Wood's descrintion.

On p.448 (1012) whes and Wond inclune M.harracn Torng in their sunonomor of M .lobiferus. Whilst most of Tornquist's figures are almost certainly lobiferve the specimen figured on PI.3, (fig.7) seems much neerer to M. knonensis Elles and Wood. Fis descrintion (p.116-17) also tallies closely, nerticularly his description of the adult thenae, whioh mmer $7-8$ in 10 rms.

In the text (Elles and Wood 1912), M.lnogronsis is recorded from the Zone of M.crisnus but in the distribution table ( $\mathbf{n}$. 523) its ocourrence here is questioned. Toerriquist records his material from the Zone of P.folium.

It is fitting to mention here that snecimens with a lobiferus-like apnearance are common throughout the zone of M.seduricki, and are even found in association with M.knockensis. Because of their cenerally imperfect preservation they are not described here.
Material seen: Srecimen labelled M.knockensig (S.W. ro. A23826) colleoted hy Professor W.B.R.King from Spencill, Cautley; snecimens in the Sedswick Fuseum labelled. M. lobiferus, harnaco view" (A21, l9, and b) which seem to the writer to be tynical specimens of M.lobiferus; snecimens ficured fles and Wood Pl.46,figs. 8a,b; text figs. $321 a-b$ ( $\$ 2197$ a,b and A21973a and syntype A22019 a and b); specimens in H. W. Geolo yical Survey Collections.

As has been pointed out above the Cautley material fits the descrintion of Elles and Wood and in addition closely resembles some of their figured srecinens (Pl.46,fics. $8 \mathrm{a}, \mathrm{b}$, text fie. $321 \mathrm{a}-\mathrm{b}$ ). Some of the syntymas, however, contained in the Sedswick Museum (e.c. A22019 a and b) have even more isolated metatheoal parts than those specimens figured. Each of these syntyres is recorded from the M.erisnus Zone (Swindale, Knock) and it is possible thet the Cautley forms represent an early offshoot from M. Johiferus (or even, possibly extreme variants of a lobiferus ponalation).

If M. Tobiferus did give rise to M-knockensis then a tendency to isolation of the thecae would be involved - a tendency which has been noted in other groups.

Vonocrantus halli (Barrande)
Plate 31, fics.11,13.

1850 Graptolithus Halli Barrande n.48, Pl. 2, fiss.12-13
1876 Nonocrantus Halli, Barr. sp. Lapworth pp.354-5, Pl. 13, fics.la-d.

1880
1897
$197 ?$

1919 1929

1931
1931 1045
1952 1957 1962
crassus Lanw. sn. nov. Lanworth $2.155, \mathrm{Pl} .4, \mathrm{fi} \mathrm{c} \cdot 8 \mathrm{~b}$. Halli Barrande. Perner 2.13,PI.13,fie.20.
Halli (Barrande). Elles \& Wood, PP.443-5, text fic.305a-e. PT: 44,fies.8a-f.
"
Kirste r.164, P1.2,fics.32. Rarrande. Glemerec nr.701-103,Pl.1,fics.7a-c. Aicner fics.l4a-b, 15. Haherfelner Pl.l,fics.22z-b. Barr. Waterlot P1. 37,fic. 378 . halli Perner. Tunch 0.105, P1. 30, fics. 3a-b. Falli. Fomariz Pl. 4 ,fic. 2 , not described. "

Lectotyne: Snecimen ficured by Barrande (1850) Pl.2,fic.]2. Saterjal: Mostly framentary material, but many snecimens. Forizon and Localities: Zone of M.turriculatus (including the whole of the subzone R.maximus);
( $S 115,5-5195,9 \cdot 25$, common in $S 117,3$ and $S 124,10 \cdot 25$ )
Snencill.
Diamosis: Fracments of rhabdosome ricid and attaining a maximum width of 3 mms. Theore rooked and srinose, and thecal tube twisted towards the reverse sjde. Thecal count a-8 in 10 mms in distal fracments. Overlan less than one half.
Descrintion: The leck of complete specimens and proximal ends does not permit a detailed description of this species. The fracments are, however, cuite cornon at some horizons and oan only be confused with M.sedwidy (Portlock).

From this species it can he distineuished by its small spines and torsion to the reverse (rather than the obverse) side. The specimen fidured on Pl. 31 (fic.ll) is a reverse view of a snecimen with snines clearly visible yet these measure no more than 0.4 m lonc.
Remarks: Forms referahle to this species have only been found above the zone of M.sedwicht.
Material seen: Snecimens in H.N.Geolorical Survey Museun, and Sedsuick Museum.

$$
\frac{\text { monerantus sed wicis }}{\text { plate } 32 \text { fig. } 6} \text { (Portlock) }
$$

1843 Graptolithus (Prjonotus) Sedgewickii Portlock p.318, Pl.19,fig.1.
1912 Monograptus Sedewickii (Portlock). Elles and Wood pr. 141-443, text figs. 304 a-e.

Holotyme: Specimen ficured by Portlock (1843), Pl.19,fic.I and further described by Elles (1912).
Descrintion: This species is not ficured since no sufficiently well-nreserved material has been obtained. Fracments probably referable to the species have been obtained throughout the Zone of M.sedowicki but they are not commor Other slichtly larger fracments belong to this species but uritil further material is forthcoming a detailed description is omitted.
Remarks: H. M. Geological Survey workers (1891) record M.sninizerus ( - I.sedowickij) from the Spencill Section and Wilson (1953) records this fossil from the same beds but more accurately delimits its rance.
Material seen: Specimen ficured Portlock 1843 Pl.19,fig. 20 (Geological Survey Museum).

$$
\frac{\text { Monomantus Cemmatus (Barranae) }}{\text { Plate } 30, \text { fics.7-11. }}
$$

1850 Rastrites cematus Barrande n. 68, Pl.4,fis.5.
1897 Monorantus (Rastrites) cemmatus Barr. sn. Perner p.23, P7.11,fig. 33, text fig. 26.
?1807 Monozraptus attenuatus Hopkinson. Perner p.10.P1.11,fies. 30,32 (non 31).
?1933 " cermatus (Barrande). Sun p. 35, Pl.5,fic.8.
1951 " (?subcenus) cematus (Barrande,1850). Boucek and Priby] .pr.20-22; Pl.3,fic.13; text fics.4a,b,c.
non;
1913. Nonograntus gemmatus (Barrande). Elles and Wood np.436-7, P1.XLII1,fics.

| 1924 | $"$ | $"$ | Barrande. Hundt Pl.5.fiz. 20. |
| :--- | :--- | :--- | :--- |
| $? 1931$ | $"$ | $"$ | Haberfelner Pl.1,fic.19. |

Holotyne: Specimen ficured by Barrande (1850) Pl.4,fic.5. Zone of R.limnaei. Zelkovice, black shale.
Diacnosis: Rhabdosome frail, thin, with a meximum width of only 0.26 mr . Usually fracmentary. Thecal count varies from $5 \frac{3}{\text { a }}$ in 10 mrs to 10 in 10 mms. Thecal hook is loose and the aperture which shows no diminution in width, faces the proximal recion of the rhabdooome.
Whterial: Eicht fracmentary specimens each only a few mis lone, and a few more doubtful fragments.
Horizon ant Localities: Zones of $H$. sedewioki and Durricmatus ( $591,7 \cdot 4$ and S219:0-25).
Descrintion: The rhabdosore is alweys found in a fracmontary condition with two or three thecae to each fraument. The overall width never exceeds 0.25 mm in the Cautley material and half of this is taken $u n$ by the hook itself. The protheose, in some of the later material (TMT./210,0.25/12, Pl.30,fics.11) is initially thread-lile ( 0.03 mm ) but widens after about 0.5 mm to reach a maximum of 0.13 mm immediately prior to the hook. The whole prothecal portion is 1.5 mms long. Thecal counts in this srecies seem to be quite variable. Perner (1897) records 14 thecae in 10 mms ( 7 in 5 mms ) whilst Bowcek and Pribyl (1951) record 10 thecae in 10 mms ( 5 in 5 mm ). Those specimens from the zone of N. Sedewicki at Cautley have a thecal count of 10 theoge per om. (PT. 30, fics. 7 \& 8) but other material from the Zone of . turrimpetis shows only $5 \frac{1}{2}$ and $6 \frac{1}{2}$ thecae in 10 nms - thouch these are strongly compresser ramaliol to the rhabosome. Farlier forms also differ from later ones in
the Cautley material in havinc a longer and freer hook which js turner back more at its anerture thus becoming less distant from the precedine theca. The specimen figured on Fl. 30 ,fic. 9 cloarly lacks a prothecal thread-like portion.
Remaris: The distinct nature of the hook in this snecies places it firmy in Barrande's Rastrites commatns. Boucek and Pribyl (1951) consider the fact that the anertural recion does not become norrow to he a distinctive featrom. The Cautley snecimens acree in this resnect and in fact a slicht exnension is indicated in sore onses (Pl.30,fic. 8 ). Compression at richt ancles to the rhahrosome may blunt the hook (Pl.30,fig.17) and s"ecimens of this type closely resemble Perner's fics. 30, 32 , (P7.11) and the snecinen reficured by Boucelc and Pribyl (1951) as text fic. 4 b and c .

It is possible that those forms from the Sed swinki Zone are distinct from later forms, but more materjal, examined with due recard to compressional features, will be needed before this can be determined. Moterial sean: Specimens ficured by Elles and hond text fic. 3000, Pl.43,fie. 50 ( $=$ M. canillaris).

In their synonomy of M.semratus ( $=$ M.capjllaris) Elles and Wood include Grantolites attennatils Honkinson. Specimens labelled under this last name in the Sediwict Wuseum (A21,119, Honlinson Collection) are neither cemmatus nor canilleris but have introverted not hooked thecae and are close to the form here described as M.ancmstus sp. nov. (n.338).

Snecimens from Rastrites Shales (Hesedwicli Zone) Kongslena, Scania (e. . S. N. no. A23383 a-b); some forms in this colloction (e.c. S.v. no. 23327) do not seem to be true M. cemmatus (Barrande).


Material: Many fracmentary snecimens in relief from $5166,8.5$ Snencill. Ioserintion: This material may renresent the extreme proxinal end of $M$ commatus (Parrande). It possesses the same ceneral dimensions and thecal count but does not seem to have the hook turned back as far. This, however, may be a feature of the preservation. One of the specimens (not ficured) bears
? sicula which is fully 0.9 mm lone but has an injtial hreadth of only 0.06 min. The thecal characters on this specjren cannot be determined.

$$
\frac{\text { Nonorrantus karrandei (Suess) }}{\text { Plate } 32, f i c s .1,2}
$$



Material: Three snecimens quite well reeserved as impressions. Horizon and Iocalities: Very hiohest heds of Miturriculatus Zone; Spenojl] (S210, 8 and Sér9,0.25).
Diacnosis: Rhabdosome straisht, with a fairly uniform breadth of $0.6-0.65$ $m m$ distally. Lobes prominent. Thecae numer enrrozimately g-g. in 10 mms. Descrintion: One specimen 4 cms lone shows no curvature whatever and other smaller pieces are zuite straicht. On the other hand all the specimens are compresed narallel to their lengths and this could onliterate any original centle flexuring. At the same time such compression may have reduced the width of the rhabdosome and the thecal count.

The rhabdosome width is uniform? $0.6-0.65$ mm onposite the lobes but ore specimen (PI. 3 , fig. 1 ) thins provimally to $0.39-0.4 \mathrm{~mm}$. Throughout the snecimens the thecae number g-gt in 10 mms .

The apertural lobes annear to be sirnle recurvings of the thecal tubes, and there is certainly no ohvious diminution in breadth as the arerture is
aproached. Noreovor in one specimen the recurved nortion of each theon is not quite adpressed to the axis succestinc that this latter feature is a compressional one.
Remaris: The Cautley specimens differ from those described by Blles and Wood (from Scotland and Co. Down) in heinc straichter, hroader, and in having? hicher thecal count. They are, however, recorded os synonymous since the whole polynary of the species is not krown. The Cautley snecimens mav simnly represent more distal fracments.

The thecal lobe is clearly very sirfler to that of cemmatus (Barrande) and the two must be regrded as being in the same croun.

$$
\text { Plate } 31 \text {, fics.6,7; Plate } 32, \text { fic. } 9 \text {; toxt fic. }
$$

Holotre: WH. $/ 2 \mathrm{~F} / 25$, lonc srecimen preserved mainly as a mould. Horigon of Holotwre: Zone of C.centrifucus - C.insectus. Material: Two well preserved syecimons.
Horizon and Lonalities: Both snecimens from Zone of C.centrifugus - C.insectm us; Wandale Hill, Gill A (28w) and Bluecaster Mindle Gill (4N). Derivation of name: simulatus; L. feioned.
Diecnosis: Rhabdosome showinc dorso-ventral curvature, slender. Thecae lonc. narrow, anertural hont, no overlan. Width of rhabdosome $0 \cdot 3$ mm. Trecae number 6-5 in 10 mms . Sicula not known.
Desorintion: This rere fossil has a hichly characteristio polynory. In the most proxinal part known it shows dorsal curvature. Fore distally this hecomes ventral and then once acain dorsal. It widens almost imperceptibly from 0.26 mm to 0.3 mm (both readincs includin) the hook).

The thecae are widely snaced rumbering 6 in 10 mas proximally, fallinc to 5 in 10 mms distally. Throuchout most of their length the thecae are adnressed to the axis but at their extreme distal end the arerture turns oven in a small but prominent hook. As far as can be ascertained the hook is formed quite simply hy the retroversion of the dorsal lin. There is no torsion of the thecal axis. The hook occupies about one-third to one-haif of the width of the nolypary at that level.

There is no overlan. The protheca arises as a slender tuce aporoxirate? 40.07 to $0.0, \mathrm{~mm}$ in diameter and at this initial point of ten shows a crumpiny similar to that figured by Wilson (1953) in the case of IT. sartorius Tornquist. The protheca widens steadily throughout its leneth to a maximum of. Igmn imediately prior to the hook itself. Thus the whole protheon takes the form of an axially eloncated triangle.
Remarks: The form of the thecae and nolynary is so distinctive as to enable separation fmeriately from other slender forms such as . (Strentomrantus) Yin and M. (Wediomartus) Boncel and Pribyl.

A form similar in ceneral outline and thecal size is M.canillaris (Carr., but in this species the hook is more prominent, the rhabdosome wider and the thecae more closely spaced.

Another similar form is the snecies M.orinitus which Wood (1900) recorded from the Ludlow Series (H. nilscont Zone). This form has a similar theca. count, ceneral size, and hook but is rather more robust, and the protheca has not the same distinctive shape. This snecies does, however, seem to be very close to f.simulatus sp. nov. thouch its ocourrence at a very much hicher level itself poses problems. :
Monamentus ev. mr. el onmatus Tornquist
text fij. 8fl
Plate 30, fig. 6

1899 Nonograntus elongatus n. sn. Toern2uist nn.17-18, P1.3,figs.12-18.

Material: Several frasments.
Horizon and Iocality: Zone of M.sedswicki: Snencill (75,9.4); Moturricylatur Zone, Spencill (S159,8.75).
Descrintion: A few proxinal fracments each showine only two thecae, have been obtained but these were corsidered so striking as to be worthy of descrintion. (one of the thense was unfortunately destroyed but not before the specimen had been fully measured and drawn).

The form is similar to M.elonontus Toernquist and Mof. elonatus Eles and Wood in that a long proxinal thread-like part precedes a sudden expansion as the thecal lobe is approacher. In the Cautley specimens however, the
thecae number only 5 in 10 mms and the thread-like nortion is twice the lencth of the thecae themselves ( $I_{t}$ is assumed here thet the thecae are completel isolated from each other).

Each "thread" is 0.04 mm wide (in relief) and $1.2-1 \cdot 3 \mathrm{mms}$ lons. Each theca is 0.65 mm lons and 0.32 mn wide at the maximum breadth. The thecae are triancular, inclined at a low ancle to the dorsal "thread" and enrolled in their anertural recions.

呯.er.cr. elonsotus differs from M.elong tus itself in the following roints:-
a) The thread-live nortion is twice as lonc as the isolated thecal tubes, not equal in lencth to ther (see Tornquist 1899.P1.3, fic.14).
b) The thecae numer 5 in 10 mos although Tornquist's fig. 14 (Pl.2) has $6 \frac{1}{2}$ in 10 mms .
c) The ventral marcin of each theca is convex, not concave.
d) The thecae are enrolled into a distinct lobe (comnare Pl. $2, f i$. .14 of Tornquist).
 Elles and Wood. This has a distinct, but shorter and thicker, thregd-life portion. The thecae are very similar to those described above - triancular adpressed to the axis, and with hooked apertural recions. They number 10 in 10 mrs thouch this value is slichtly increesed by compression. The width of the rhabdosome is slender and not more then 0.45 mm .
Remaris: The two types of Cautley snecimens occur at different horizons and cannot definitely be assigned to the same species. If they do in fact belonc to one species then the chance throughout the polypary of the thecal tyme would be similer to Tornquist's interpretation of M.eloneatus, and furthermore: a parallel micht be found with the trianculate monorentids some of which also have isolate proximal thecae and more triancular distal thecae inclined at a lower ancle to the aris of the rhabdosoee.
Foterial seen: Snecimen ficured by Elles and Wood text fic. 342 and PI. Ag, fig. 5a; snecimen in Flles Collection (S.M. no. A23095) from the zone of M.trianmulatiss Temarp.
$\frac{\text { Monocrantus s.. A }}{\text { Plate } 32, f i c \cdot 3 .}$

Material: Three snecimens in relief, two showinc the sicula and th. 1 and 2, the third showirg two nroximal thecae.
Horimon and Tocalities: Iow down in the C.centrifume- insectus zone; Pickering Gjll (5P); Five Gills (2Fi).

Descrintion: The prominently hooked thecae of this snocies ally it with Wonocrantus Groun E. Whjlst it resembles M. nrionon (Bronn) in some resnects the thecal hooks are guite different and the proxinal end straight.

The sicula is prominent and is at least 1.43 mas lone but merces into the nema in such a manner that exact measurement is not possible. At its base the sicula is nerrow being only ollg firn wide but it widens ranidly so that at a distance of 0.4 mm from its arerture it measures 0.32 mm across, and here cives rice to th. 1. The anex of the sicula reaches midray between the anertiures of th. 1 and th. 2 .

Th. 1 is 1.3 rms long, of which 0.4 mare irvolved in the hook. Thl2 is the same lencth and has the same pronortion involved in the hoole. The thecal count is 12 ? in 10 mms . At the aperbure of th. ? the total width of the rhadosome is 0.52 mms of which the hook occuries 0.15 mm or roughly between one quarter and ore third.

Pemarys: This spacies is rare but has distinct characters of its own. It is perhans closest to M.rjcogrtonencis Iorw but is narrower, has loss overlar, and the thecae are smaller. The hook itcelf is very airilar.
cenus mitnchpmis cpotp $F$

Groun dignnosis: A somewhet artificiat crounine of convenierce containing of those species described, only M. discus (description below): srecimens of this species flattened from the dorsal side show that the thecae moses fine snines; the fact that disous can be flattered in this way talen tocether

With the fect that occasional $\alpha$ - shaned specimens are found cuccests thet there may be a slispt tendency to swiral coiljng and that the soecies may not be dissimilar in some recpects to M. turrjculatus (Barrande).

## Monomentus discus Toernquist not figured

1883 Monocrantus discus $n$. sn. Toernnuist pr.24-25.

| 3892 | " | " | Toernnuist n.39, Pl. 3, fics.27-29. |
| :---: | :---: | :---: | :---: |
| 1912 | " | " | Toernquist. Elles and wood rn.439-440, text fices. 302 a-c, Pl. 41, fics.5a-d. |
| 1940 | " | " | Tht. Leursen n. 26; P1.l.fic.9; text fis.]. |
| 19.45 | " | 11 | Tornc. Waterlot P1. 36, fis. 376. |
| 1950 | 11 | Crono | raptus) discus Torrguist. Gortani Pl. $1, \mathrm{fi} \mathrm{Cs} .1,7 \mathrm{c}, 110$ | text fics. $\uparrow$, 5.

Matifial: Many specimens, al] flattened and mostly complete. Horjzon fend Iocolitios: Zones of H.crisnus to rioriostonensis (sensu Wilson 1953): S231,2 to S259,1-25 Spencill; Wards Intake; Hebbletrvejte Hall Oill etc.

Diamosis: Rhabdosone small, coiled into a ticht plane sniral of very cheracteristic aprearance. Theoal count hich, aproximately 20 in 10 mms . Descrintion: The Cautley snerimens of this snecies seem to be oujte typical and no variations from the material descrined by the above authors has been noted. The writer's srecimens, however, are not as well nueserved as those ficmired by mles and Wood (D.439) for example end the details of the thecae and sicula cannot always be made out.

Most of the Cautley specimens are sub-elliptical in outline (see Elles and Kood f.439) but this js clearly due to comprossion of the rock. The .. lors axis of the ellipse is invariably parallel to the lineation present on the beddinc plane surface. (i.e. the direction of eloncation of the rock or the tectonic $l$ direction.)
in those forms flattened dorsally instead of laterally short snines nroject on either side of the axis sucresting that paired anertural sinas ore prosent Material geen: Snecimens in the Sedonick Museum: Cambridee.
cenus pnouncrapmit groitp $g$

Grnun diagnosis: Polynery small, slender, with doreal curvature; thecae lobed and eessile to rhahdosome: detajls of anertural coilinc not clear.

$$
\frac{\text { Ponorentus minimis callterensis subsn. nov. }}{\text { Plate } 33 \text {, fies.l, } 2 ; \text { Plate } 32, \text { fic. } 5}
$$

Holotume: HUR./1M/50, a snecimen in low relief, almost comalete, but lacirje the sicula, proserved partly as a onst.

Material: About twentr srecimens; not rare but ant to be overlooked because of its diminutive annearance.
Horizon and Tocalitios: Restricted to the C.centrifugus - C.insectus Zone; Wenlock Series, Bluecaster ${ }^{*}$ Gills (Near and Middle Gill): Wandale Hill Gilla (29W, 28W); R.Rewthey, Nouth of Wandale Reck (19W); Wandale Hilu Gill B (37W) Diagnosis: Slender, dorsal curvature throuchout. Widens very slowly indeod from a smaj] sicula. Thecae inconspicuous, on the wepert side of the rhaodosome, apertural recjons coiled, and closely sessile on the rhaodosome. Thecae number 9 in 10 mns. Max. breadth about 0.4 mm . Descrintion: The rhabdosome is characteristic and oanonly be mistaken for forms included by Boucek and Pribyl (7951) under Monowrantins (Nediograptus). Proximally the polypary has prominent dorsal curvature which becomes less as the distal end of the snecies is apmrozched. The distal extremities may appeer elmost strajcht.

A cradual widening takes place from $0.19 \mathrm{~mm}-0.2 \mathrm{~mm}$ at the level of the
lobe of th. I, to a maximum brearth of $0.4 \mathrm{~mm}-0.5 \mathrm{~mm}$ after 2 cms .
The sicula is small ( 0.8 mm ) but prominent and its apex almost reacbes the Iobe of th.].

The thecae thenselves are long and their apertures are coiled into a lobe which is adnressed to the rhabdosome. Details of the aperture cannot be seen and in many snecimens it is inpossible to detect the presence of a coiled arerture.

The presence of a slight overlap can be detected in the better preserved snecimens. Throuchout most of the polynary the thecae number 9 in 10 mms , but this value increases over the first half dozen thecee to 1 ? in 10 mms . Femarks: The closest relatives of this form are Monocrantus volinai (Ronceir) and Fonocrantus Fodrmi (Boucek.) From F.Folihae kolihai and M.kolihaiminor Boucer, M. minimu cantlerensis subsn. nov. differs in $t$ ts thecal count (6-7 in 10 mms as compared with $12-9$ in 10 mms ) and in the less prominent lobation. In M.minimus cautleyensis subsn. nov. the lobe ocounies only one gunter to one fifth of the total breadth of the rbabiosome.

The Cautley form is, however, extremely close to W. (Mediormantus) minimus Roveer and Pribyl, from which it differs only in width and thecal count. M.m.minimus has a thecal count of ll-l? in 10 mms whilst W.m.cautlevensis has a count, throuchout most of the rhabdosome of 9 in 10 mms and only at the proximal extremity is 12 in 10 mms reached. The usual width in Boucer and Pribyl's species is 0.2 to 0.3 mm (max. 0.4 mm ) whilst the Cautley form is usually 0.4 mm and often more.

The Eohemian specjes is recorded from the C.murchisoni zone whereas the Cautley meterial is restricted to the preceding zone of C.centrifums - C. insectus.
gemus Monocraprud ghotrp h

Grom difunosjs: Rhabdosome variously curved, slender; thecae axially elonatod, triancular with arertural recion of metatheca lobed so that the lohe stands well clear of the rhabdosome excent in proximal thecae.


Hn otyme: Snecimen figured by Jonworth 1876 , fig. 7 a and reficured by Elies and Wood 1912, P]. 45,fic. 6a.

Material: Many specimens in low reliet or tlatened, fracments commor. Horigon and Tonalities: Zone of Morionin and base of zone of Meriestonensis (sensu Wilson 2958); Llandovery Series. S231,2-S248, 10.25, Snengill; Werds Intake; Five Gills eto.

Diamosis: Distinctive curveture, extreme proximal end dorselly curved end extremejy slender, mesial portion almost straisht and still slender, distal nerts ventrally curved and showing ranid widening to about Immbrendth. Theose enrolled at the aperture throumhout, but sessile on the rhabosome proximally and removed from it distally.

Deancintinn: The degree of curvature presents varying apnearances depending unon its nosition with respect to the direction of eloncation of the rocl. In consequence features such as thickness and thecal size are very variable but cenerally fall within the rances riven by Janworth (1876) end Hlles and Wood (1912).

Ianworth records $20-30$ therae to the inch (i.e. rather more to rather
less than 10 in: 10 mrs). Elles end. Wood on the other hand wive $7-9$ in 10 mis whilst Boucek and Pribyl (1951, p.9) observed 11-7 thecae in 10 mrs in tbeir material. The figured snecimen from Cautley (P].35,fig. 10 ) shows. 9 thecae in 70 mms at the proximal end. Compression will have reduced the $\therefore$ value slichtly for the distal thecse and increased it for the proximal theoge.

This ficure also shows that the typical curvature described above is reduced tn the distal nortions and accentuated nroximally due to the comreesion, whifst the straicht mesial rart is now non-evistent.

The strikine contrast between proxiral end distal thecae is also clear on the same sfecimen. Over $50 \%$ of the thecal twhe is irvolved in the free portion of the distal thecae and about $30 \%$ in the actual lobe. The provinel thecae show only about $10 \%$ involved in the lobe which is presed tichtIt acainst the rhabdosome.

The thecal overlap is nil throurhout the polypary. Naterie? seen: Specimens in the Sedcwick luseum, Cambridce.
cenus MOIOMRAPTUS GROTTP I

Groun diasrosjs: Rhebdosome slender, of ten small, and with dorsal or ventral curvature ( or both); thecsl tubes uniform, closely adnressed to the rhabdosome and metatbeca wholly enrolled into a prominent lobe.

Morocrantus anternulatus (Nenechini)
Plate 35,fics.5,9

1857 Graptolithus (Fonocrarsus) Antennulatus Menechini n.]56, PI. B, I, IA-b.
1883 Monomaptus capillaceus n. sp. Tullberc n.24, Pl.2.fic.28-29.
1912 " " Tullberc. Elles and Wood rp.458-9, text figs. 316 a-c. PI. $46, f i \varepsilon s, 4 a-d$.
$1922 \quad " \quad$ antennularius Menechini. Cortani P.156,P1. R,figs.l, nos.

1942 Monograptus (Streptograptus) antennularius (Meneghini 1857). Boucek and Pribyl pp.14-15,Pl.3,figs.6-8; text fig.5,1-p.
1945 "
1952. " antennularius Meneghini. Waterlot p.83; Pl.38,fig. 389 . ( $($ treptograptus) antennularius Meneghini. Munch p.112,PI.

$$
35, f i g .7
$$

Lectotype: Menechini's specimen on Table B,fig.I,la.
Material: Many specimens, all impressions.
Horizon and Localities: Zones of M.riccartonensis (top few feet), and M.antennulatus; Near Gill, Middle Gill, Hobdale Beck, R.Rawthey (mouth of Wandale Beck), Wandale Hill (Gill A, Gill B).
Diagnosis: Rhabdosome slender, flexuous, exhibiting double curvature. Thecae pressed to the rhabdosome but coiled into a lobe in the apertural region. Dorsal curvature at proximal end, and ventral curvature distally. Maximum width 1 min. Thecae number $10-7$ in 10 rims.
Description: The length and form of the rhabdosome is very distinct. The proximal recion shows a strong dorsal curvature over the first centimetre or two but then changes, in the mesial and distal regions, to a pronounced ventral curvature. A second phase of dorsal curvature is seen occasionally but more usually the distal extremities are straight, by which tine a breadth of the order of 1 mm has been attained. A length of 10 cms is achieved in adult rhabdosomes.

The sicula is 1 mm long and $0.26-0.3 \mathrm{~mm}$ wide at the aperture. Its apex reaches almost to the level of the lobe of th.l. In individual specimens the thecal count does not vary greatly throughout the polypary unless one portion of the curve lies parallel to the direction of compression and another part oblique to it. Elles and Wood (p.438) describe forms in which the proximal thecae have their apertural regions more widely spaced. Whilst a fall in thecal count has been observed in the proxinal parts of some Cautley specimens it is more usual to find a slight drop distally. . The specimen figured on P1.35,(fig.5), for example, has $8 \frac{1}{2}$ thecae in 10 mms at the proximal end and $7 \frac{1}{2}$ in 10 mms distally. It should be pointed out, however, that the direction of compression is more parallel to the distal thecae and more nearly at right angles to the length of the proximal thecae. In this particular specimen a thecal count of 8 in 10 mms throughout would probably be the case
in the uncompressed state.
The thecae are coiled into lobes at their apertures and the lobe itself is about one-third the breadth of the polypary. Details of the coiling are not easy to unravel in this flattened material but in some cases it seems to be relatively simple with the aperture facing the dorsal side of the rhabdosome. Torsion of the thecal axis clearly occurs as in forms like Monodifer Tornquist. A slight amount of overlap exists.
Remarks: This is a common species in its own zone (see p4l) where it occurs in association with Monoclimacis vomerina basilica and Pristiograptus dubius.

Boucek and Pribyl (1942) in their detailed analysis of the subgenus Streptograptus (Yin) name this form Streptograptus antennularius (Neneghini) but in Neneghini's original (1857) description the specific name used is antennulatus.
Material seen: Specimens in Sedgwick Museum, Cambridge.

> Monograntus exi guus (Nicholson)
> Plate 7 , figs.6,7; Plate 33, fig. 11.

1868

## 1871

1876 Monograptus exiguus, Nicholson, sp. Lapworth p.503,P1.20,fig.6.
 7 a Streptograptus exiguus (Nicholson). Obut p.63,P1.5,figs.3-4,text fig. 13.

1962
1111 exiguus (Nicholson). Romariz pp.263-4, Pl.22, figs.13,17, and?7.

Lectotype: Specimen figured by Nicholson (1868) on Pl.19,fig. 27. Material: Several hundred specimens, many well preserved, all flattened. Horizon and Localities: Zone of M.turriculatus, except for the bottom two bands of the R.maximus subzone; Zone of $\frac{\mathrm{M} . \text { crispus; Zone of } \mathrm{M} \text {.griestonensis }}{}$ (sensu Wilson 1953); Spengill (S123,7•25 to S264,5); Wards Intake, Hebblethwaite Hall Gill, Five Gills, Stockless Gill,etc;
Diagnosis: Rhabdosome small, hook shaped and relatively robust. Extreme proximal end shows slight dorsal curvature, and the rest of the polypary very prominent ventral curvature. Distal fragments may be almost straight. Description: The "hook" at the proximal end of the rhabdosome has variable acuteness depending upon the direction of compression of the fossil. All other measurable characters vary in a like manner.

Thecal counts of up to 20 thecae in 10 mas have been obtained where the specimen has been squashed at right aneles to the line of the polypary. On the other hand counts of less than 12 in 10 mms have not been observed even on specimens squashed parallel to the line of the polypary, which sugeests a cenerally high figure for the Cautley material. Elles and Wood (p.453) zive a rance of $14-12$ in 10 mis in their detailed analysis of the species. The sicula is always prominent though quite small. Its apex reaches to about the level of the first thecal lobe.

In all other respects the Cautley specimens are close to those described by the above workers, perticularly as regards general form and size. Material seen: Specimens in Sedewick Museum, Cambridge.

$$
\frac{\text { Monograptus pseudobecki }}{\text { Plate } 33 \text {, figs.7-10 }}
$$

1876. Monograptus Becki, Barrande, sp. Lapworth pp.500-501,F1.20,f1g.2a-b. 1912 " ( 12 ). Elles and Wood pp.452-3, text fig.311a-b Pl.45,flgs.4a-f.
1877. Monograptus becki (Barr.). Gortani p.12,Pl.1,figs.21-22. $1942 . .$. (Streptograptus) pseudobecki n. sp. Boucek and Pribyl, p.18, text fig. 42 b .
1950 " becki (Barr.). Gortani Pl.l,figs.7b-e, 8 text fig. 8.
?1962: Streptograptüs pseudobecki Boucek \& Pribyl. Romariz p. 264, Pl. 22,fig. 14.

Lectotype: Specimen figured by Lapworth (fig.2a) and refigured by Elles and Wood (text fig. 31la and P1.45,fig. 4a).
Material: About 15 specimens, mostly in low relief and in varying states of preservation and fragmentation.
Horizon and Localities: First appears at the base of the R.maximus subzone in Sl15,5 Spengill and then sporadically throughout the zone of M. turriculat us.
Diagnosis: Very slicht but distinctive double curvature, distal fracments almost straight. Proximal end extremely slender and complete specimens, with sicula attached, are not common. Thecae tightly coiled in apertural region and proximal thecae seem to be more closely pressed to the rhabdosome. Thecal count 14 to 15 in 10 mms at th. 1 to th. 2 , rapidly falling to 12 in 10 mms at about th. 7 and distally to 10 in 10 mms .
Description: The slight double curvature and very slender proxinal end is very characteristic and distinguishes it from all other species having similar thecae. In specimens compressed parallel to the length of the rhabdosome the polypary may appear almost straight. Conversely specimens compressed at right angles to this line show excessive double curvature and appear rather more robust.

The sicula is small and slender and its apex reaches to the level of the coiled apertural region of th.1. At the base it is 0.12 mn across, and the maximum length is 0.78 mm . The thickness of the rhabdosome at the level of lobe of th. 2 is 0.19 mm to 0.21 mm .

At the extreme proximal end the thecal count is high and numbers $14-15$ in 10 mms (th. 1 to th.2). It then falls rapidly as the thecae become lareer until at th. 7 to th. 8 they number 12 in 10 mms . Following this there is a slower reduction as the rhadosome widens and although the thecal tubes actually lengthen, a greater length is involved in the lobe of the apertural
region. In the most distal parts the thecae number 10 in 10 mms .
Distally a greater length of the thecae is involved in the lobe thourh, in the Cautley material, this is not as pronounced as described by Lapworth (1876). Throughout the rhabdosome the lobe projects from the ventral margin to approximately the same extent.

The apertural characters of the thecae cannot be ascertained in creat detail. They appear to be relatively simple and not as tightly coiled as in M.nodifer Tornquist for example.

Remarks: Lapworth (1876 P1.20,fig. 2 b ) figures a diversiform specimen but Strachan (1952 p.366), who examined the Lapworth Collection at Birmineham University, found no bilateral specimens and considered that further material would be required to confirm this point.

Elles and Wood (p.452) had no extreme proximal portions and pointed out that the sicula was unknown : It has not previously been described, although in the Cautley material such specimens with the sicula intact are not rare. Material seen: Specimen labelled M.becki (S.M. no. A21895 Elles Collection); this specimen has a sicula and is from the Tarannon Shales, Forge Corner, Conway.

$$
\frac{\text { Monograptus (?) }}{\frac{\text { Plancinatus pseudopertinax }}{} 33, \text { fiss } \cdot 5,6}
$$

Holotype: HUR./S140/5, a proximal end in moderate relief having 7 thecae anc sicula intact.
Horizon of Holotype: top of R.maximus subzone, zone of M.turriculatus, Spengill (Westmorland) (Sl40).
Material: About a hundred specimens mostly in low or moderate relief.
Horizon and Localities: From the base of Romaximus subzone to near top of the M.turriculatus zone; Spencill (S115,5-S209,0.5).

Derivation of name:
Diacnosis: Proximal end straight, more distal portions show very slight ventral curvature. Sicula 1.17 mms lone, apex reachins to the top of the lobe of th. 1 . Thecae number $14-12$ in 10 mms proximally, falling to about 11 in 10 mis distally. Thecae are enrolled in the apertural region after the manner of M.nodifer Tornquist.

Description: The rhabdosome in this species resembles that of M. runcinatus. pertinax Elles and Wood in being stiff rather than with the flexuous curvature of M.r.runcinatus Lapworth. It is, however, much more slender than M.r. pertinax and has more closely spaced thecae.
$\therefore$ The sicula is $1 \cdot 17-1 \cdot 2$ mas long and its apex reaches to the top of the lobe of th. 1 and not beyond. In some specimens the sicula barely reaches this level. The holotype shows a slight constriction of the sicula at 0.06 mm above the aperture. A virgella and short dorsal spine are present on the aperture of the sicula.

At the extreme proximal end the thecae commonly number 13 in 10 mms but fail within the range $14-12$ in 10 mms . This value falls quickly to 12 in 10 mis (after 5 mms ) and then more gradually to 11 in 10 mms throughout the remainder of the rhabdosome. It is possible that the number of thecae per cm . actually exceeds the ranges given since most of the good specimens examined were compressed parallel to the rhabdosone.

The apertural loke is of the Monodifer Tornquist type and, as in M, $\mathbf{M}_{\text {. }}$. pertinax, the walls of the thecae are distinct. It may be contrasted in this respect with M.r.runcinatus. The early portion of each theca is broader than the part imuediately preceding the lobe, and the lobe itself is not as promiment as in some other species. As a rule it occupies one-quarter to onethird of the total width of the rhabdosome, though this varies with the view presented to the observer.
Remarks: Strachan (1952) includes M.r.runcinatus Lapw. in the genus Diversograptus Manck since two s.tipes are developed which grow in opposite directions from the sicula. This material was found in the Lapworth Collection and Lapworth himself (1876, fig.4g) figures a bilateral M.runcinatus.

The material from Cautley should perhaps be included in the genus Diverso. Erantus Manck but no diversiform specimens have been obtained and it is here retained, with reservations, in Monograntus.
M. (?)runcinatus pseudopertinax subsp. nov. differs from M.r.runcinatus Lapw, in the following points:-
a) The size and position of the sicula
b) the curvature of the rhabdosome
c) the more closely spaced thecae throughout the polypary,
d) the distinct nature of the thecal walls.

Material seen: M.runcinatus pertinax figured Elles and Wood fig. $310 \mathrm{a}-\mathrm{b}, \mathrm{PI} .45$ figs. $3 a, b, c$ and specimens of M.r.runcinatus in the same collection (Sedgwick Museum)
M.r.runcinatus figured Elles and Wood Pl. 45,figs. $2 \mathrm{f}, \mathrm{g}$ and text fig. 309 b (H.N.Geological Survey Museum)
$\frac{\text { Monograptus danbyi sp. nov. }}{\text { Plate } 33, \text { fig. } 3}$

Holotype: HUF. $/ 8 \mathrm{P} / 4$ and counterpart /l well preserved specimen in relief, with proximal recion and sicula intact.
Horizon of Holotype: C.centrifugus - C.insectus Zone.
Locality: Pickering Gill (8P).
Derivation of name: After the writer's colleague the late Mr.C.M. Danby.
Material: One well preserved specimen, the holotype.
Description: The rhabdosome is dorsally curved throughout and is particularly strong in the initial few millimetres, where the sicula and th. 1 and 2 lie in a line at right angles to the general trend of the more distal parts. Monograptus (Nediograptus) minimus Boucek and Pribyl is a species with similar curvature (see Boucek and Pribyl 1951 Pl.3,fig.9) but Monograptus danbyi sp. nov. has a much shorter recurved portion and is altogether stiffer. A maximum breadth of 0.52 mm is reached by th. 8 or 7 and is maintained to the distal extremity.

The sicula is prominent, measures 0.9 mm in length and has a breadth at the base of 0.13 mm . Its apex reaches well above the apertural lobe of th. 1 . At the proximal end the first few thecae are more closely spaced and, allowing for compression, number 11 in 10 mms . Distally this value falls to 10 in 10 mms and $99_{4}^{3}$ in 10 mms .

The species has uniform thecae, the lobes of which occupy approximately half the breadth of the rhabdosome. A distinctive feature of the thecal tubes is the relatively broad initial part of each protheca which measures 0.26 mm in width. This narrows conspicuously as the lobe is approached and at its distal extremity the protheca is only 0.19 mm wide. A rapid narrowing then follows and the early part of the metatheca is 0.06 mm wide in profile
view. However, it is clear that at this point the tube is transversely expanded and may be 0.2 mm wide in this direction. Thus whilst the initial part of each protheca is probably expanded in the dorso-ventral plane, the initial part of each metatheca is transversely expanded.

The metatheca is then coiled into a tight lobe. Torsion of the thecal tube begins in the initial part of the metatheca and can easily be detected where the succeeding protheca has been removed. (It is also apparent that at these points the initial bud of each theca must be extremely narrow in profile The apertural region seems to be twisted more to the obverse side than the reverse side. In the case of M.nodifer the opposite appears to be true (Elles and Wood 1912, text fig. 313 a-d; Boucek and Pribyl 1942, text fig. 2 ). Remarks: The thecal characters described above ally this species with those monoeraptids Erouped by Yin (1937) into Monograptus (Streptocrantus) and dealt with in more detail by Boucek and Pribyl (1942). On the other hand the continuous dorsal curvature of the rhabdosome suggests closer affinities with the group Monograptus (Mediograptus) Boucek and Pribyl 1948. These authore (1951.p.14) consider that M. (Mediograptus) is distinguished from M. (Streptopraptus) Yin "only by the less coiled ends of the thecae, which are appressed to the axis of the rhabdosome, and by their occurrence on its dorsal side". Yin (1937) in his diagnosis of Streptograptus writes "Folypary with dorsal, ventral curvature".

On this basis M.danbyi sp. nov. is in an intermediate position between the two subgenera.: Whilst the thecae are enrolled in a manner similar to M. (Mediograptus) the lobe.itself is more pronounced than in any of the described species of the subgenus. It is interesting to note that M. (Med.) kodymi, M. (Med.) kolihai, and M. (med.) remotus Boucek and Pribyl seem to have thecae showing torsion towards the obverse side (Eoucek and Pribyl, 1951, text fic.3d $f, h, i, j)$.

Other thecal characters, particularly the distal diminution in breadth of the protheca, suEgest a link with M. (Streptoffaptus) Yin. : This feature is well illustrated by species such as M.runcinatus Lapw. and M.nodifer Tornquist. Dorsal curvature occurs proximally in some of the later species of M. (Streptograptus) as for example, in those of the M.(S) antennulatus Group. Boucek and Pribyl (1951, p.27) suggest the possibility that it was from such a group that M. (Mediograptus) may have separated.

The situation is further complicated by the fact that most of the material figured by Boucek and Pribyl seens to be preserved as impressions. If the distal part of the protheca in M.danbyi were transversely expanded to any degree (it must be at least slightly so) then upon being flattened it would produce a prothecal tube with approximately parallel sides and, at the same time, the conspicuous nature of the lobe would, at least in part, be lost. On the other hand the somewhat similar M.minimus cautleyensis subsp. nov. is preserved in low relief ( ? full relief) and the prothecal tube is uniform throughout its length being elliptical in cross section with the long axis of the ellipse in the dorso-ventral plane.

On balance the writer feels that M. danbyi sp. nov. is best considered as an intermediate form, at least from the morphological point of view, between M. (Streptograptus) Yin and M. (Mediograptus) Boucek and Pribyl, being perhaps closer to the former. The fact that it occurs in the C.centrifugus-insectus zone supports the possibility that it is close to an evolutionary line leading from the group M.(S) antennulatus to M. (Med.)

The stratigraphical distribution of this group is given below (Boucek and Pribyl zones of C.centrifugus and C.insectus are here grouped together):-

Post- C.murchisoni Zone;
C. murchisoni Zone;
C. centrifugus-C.insectus Zone;

Pre-C.centrifugus-insectus Zone;
antennulatus, retroflexus, floridus (M.antenulatus Group)
kolihai, minimus minimus, remotus (all Mediograptus) flexuosus (antennulatus Gp.)
kodymi, inconspicuous, minimus cautleyensis (Mediograptus); danbyi (uncertain position); (?) flexuosus (antennulatus Gp.)
runcinatus, retroversus, pseudobecki, extenuatus (all M.antennulatus Gp. )

Group diagnosis: Rhabdosome with varying degrees of dorsal curvature, usually strong in the proximal regions and gentle distally; proximal end may be enrolled into a plane spiral or a "fish hook" shape; distal thecae triangular, hooked and aperture either simple or with a dorsal lip and a pair of horns; often transversely expanded in the apertural regions; proximal thecae are triangular, triangular and axially elongated, or rastritiform.
Subgroup J.A: forms with at least a few rastritiform thecae at the proximal end, usually passing into distal trianguler ones.
Subgroup J.B: forms with axially elongated thecae at the proximal end, giving place to triangular distal thecae.
Subgroup J.C:forms with triangular thecae throughout the length of the rhabdosome.

## GROUP J.A

## Monograptus triangulatus trianculatus (Harkness) Plate 35,fig. 11

1851 Rastrites triangulatus, Harkness. Harkness pp.59-60, (pars) P1.1.
?1945 Monograptus triangulatus Harkness. Waterlot Pl.43,fig. 429.
?1957 " $" \quad$ Romariz Pl.l,fig.5; Pl.2;fig.2; Pl.4,fig.1.
1958 - " separatus triangulatus (Harkness). Sudbury pp.503-6, P1.20, figs.52-63.
1959 " triangulatus triangulatus (Harkness, 1851). Sudbury p.172, non fig.
31962 Demirastrites triangulatus triansulatus (Harkness). Romariz pp.273-4, P1.

$$
\text { 1,fig.7; Pl.19,fig. } 3 .
$$

Lectotype: The specimen figured by Harkness (1851) Pl.l,fig. 3a (is 3b) designatec by Pribyl and Munch (1942,p.4).

Material: Both distal and proximal fragments of variable length, preserved in relief, or flattened and compressed.
Horizon and Localities: Zone of M.triangulatus; Spengill (S24-28).
Diagnosis: Rhabdosome with dorsal curvature throughout, but only gently curved in the distal region. Proximal end hook-shaped. All thecae hooked, with a pair of horns. Proximal thecae rastritiform, distal thecae triangular. No overlap. Th. 2 to th. 11 rastritiform in most extreme cases; th. 2 - th. 8 is minimurn of rastritiform thecae.
Description: The preservation of the Cautley material is not ideal but the species can usually be distinguished on the character, and number, of its rastritiform proximal thecae.

The shape of rhabdosome is similar to other fossils in the same group, è.g. M. t.separatus, M.t.fimbriatus, and the proximal end is sharply recurved. Distal fragments may appear more or less straight.

The sicula has not been observed, but proximal ends with th.l preserved show that this is not rastritiform. It is adpressed to the axis for much of its length but the metatheca is higher than is the case in M.t.separatus.

Beyond th. ll the thecal tubes are always triangular, but measurement. of height, thecal count etc, is always difficult because of compression. The.. distal thecae clearly expand transversely towards the aperture which consists of a pair of horns.
Remarks: M.t.triangulatus is distinguished from M.t.separatus in having rather more rastritiform proximal thecae. The rastritiform thecae themselves are different in being higher, and thinner, and the parallel-sided portion of the protheca is narrower.

Bearing in mind the general preservation, the only form with which this species might be confused is M.t.predecipiens (Sudburg).
M.t.triangulatus is recorded from S24-28 in Spengill (i.e. collection was made from a $4^{\prime}$ bed). Occurring quite commonly in the same bed is R.longispinus (Perner). As the collection was made, without discrimination, from the whole of this $4^{\prime}$ bed, this occurrence does not preclude the evolutionary interpretation of Sudbury 1958 (M.t.triangulatus - M.t.extremus - R.longispinus) particularly in view of the fact that extremus-like forms occur in addition. (These, however; are badly preserved and more material is required before a diagnosis can be made).

Material seen: Specimens in Sedewick Museum, including specimens figured by Sudbury 1958; specimens in H.M.Geological Survey Museum.
N.E. A single specimen of M.t.triangulatus has now been obtained from the top few inches of the preceding zone (S20-24, Spengill, Zone of P.cyphus) and, it seems certain, therefore, that this species precedes R.longispinus.

$$
\frac{\text { Monograptus triangulatus separatus Sudbury }}{\text { Plate } 34 \text {,figs.2,3; Plate } 35, \text { fig. } 13}
$$

1958 Monograptus separatus separatus var. nov. Sudbury pp.496-499, P1.19, figs.33-39.
1959 " triangulatus separatus Sudbury, 1958. Sudbury $1959 \mathrm{pp} .171-$ 2,fig. non.
( see Sudbury $1958 \mathrm{pp} .496-7$ for further references)

Holotype: The specimen figured as fig. 37,Fl. 19 by Sudbury 1958.
Material: Many fragmentary specimens and several well preserved specimens. Horizon and Localities: Zones of M.trianculatus, ?D. magnus; Spengill (S36-39) 7); Watley Gill (5Wa).

Diagnosis: Triangular, non-overlapping, distal thecae, and rastritiform proximal thecae numbering 2-8. Rhabdosome dorsally curved, hook-shaped proximally and with gentle dorsal curvature distally.
Description: The Cautley $\operatorname{fpecimens~of~this~species~agree~with~the~description~}$ Given by Sudbury (1958), though generally they are less well preserved.

The sicula is approximately 0.9 mm long and $i t s$ apex does not reach the level of the aperture of th.l. The first theca is non-rastritiform, small in height, and is adpressed to the sicula for most of its length of 1 mm . (increased by compression). whilst the metatheca is at least 0.2 mm long. Height, is much affected by compression in the Cautley material. Figure 13, (P1.35) for example has th. 1 compressed towards the succeeding protheca; an original height of about $0.25-0.3 \mathrm{~mm}$ is reduced to less than $0.2 \mathrm{~mm} \cdot$

Succeeding thecae are rastritiform up to, in extreme variants, about th. 8 Figure 3 (Pl.34) shows a specimen with 7 or 8 rastritiform thecae. The subspecies is distinguished from M.t.triangulatus in these cases by the lower
height and more robust nature of the thecae.
Remarks: All except extreme variants are distineuished from M.t.trianculatus in having a smaller number of rastritiform thecae. From M.triangulatus fimbriatus it is distinguished by having at least two rastritiform thecae. M.t.predecipiens Sudbury has more slender rastritiform thecae and attenuated common canal regions. M.denticulatus is distincuished by its distal thecae which, although triangular, have parallel-sided common canals.

The species has been referred, in the past, to various other species, (see Sudbury 1958, p. 499 "Remarks").
Material seen: Specimens figured by Sudbury (1958) contained in Sedéwicli Museurn, Cambridge.

$$
\frac{\text { Monograptus trianculatus major }}{\text { Plate } 35 \text {,fig. } 8}
$$

1913 Monograptus triangulatus var. major var. nov. Elles and Wood pp.472-3, (pars) P1.47,fig.5c, text fig. 328b, PP1.47,fig.5a, non figs. 5a, b, text fig.328a.
1945 " 1958 triangulatus var. major E \& W. Waterlot Pl.43,fig. 430. , 10.
1959 " triangulatus najor Elles \& Wood. 1913. Sudbury p.172, non, 31962 Demirastrites " " (Elles \& Wood). Romariz p.274, not -figured.

Lectotype: Species figured by Elles and Wood text fig. 3283 (not Elles and Wood 1913; Pl.47,fig.5a as was sugeested by Pribyl and Munch 1942, since this specimen is M.t.triangulatus (see Sudbury 1958;p.507)).
Material: A single definite specimen preserved in relief, but as a mould. Horizon and Localities: Zone of M.trianculatus; Spengill (S36-39,7) Description: The rhabdosome is dorsally curved in the manner illustrated by Sudbury (text fig. 10, 1958) and Elles and Wood (1913, text fig. 328b = same specimen as figured by Sudbury, but less completely figured). Eighteen thecae
preserved as moulds of thecae in relief, are present on the Cautley specimens. These show the typical decrease in height as the proximal end is approached but the highest thecae are $2 \cdot 21 \mathrm{mms}$. This figure compares well with those given by Sudbury ( 2.25 mms ). The most proximal theca seen is only $1 \cdot 17 \mathrm{mms}$ and the succeeding theca $1 \cdot 3 \mathrm{mms}$ hich.

Throughout the fragment the thecae are uniform and are long, narrow, triangular tubes showing no overlap and only a slight tendency to be rastritiform at the proximal end. They are distinotly hooked at the aperture and the hook may take the form of paired horn, though this cannot be ascertained in a specimen preserved in this manner.

## Monograptus convolutus (Hisinger) <br> Plate 35,fig. 7

1828 Krotka Éraptoliter from Furudal, Hisinger p.169,Pl.4,fig.1c.
1837 Prionotus convolutus Hisinger p.114,P1.35,fig. 7
1912 Monograptus convolutus (Hisincer). Elles and Wood pp.467-9,text fig. 324a-b, P1.47, fiEs.la-d.
1945
" "
Hisinger. Waterlot Pl.43,fig. 426
1949
Demirastrites "
1958 Monograptus "
(Hisinger). Obut p.27,P1.5,fig. 5 .
" : Sudbury pp.511-3, text fig.13,Pl.21,
figs.76-78.
?1962 Demirastrites " . ". Romariz p.271, not figured.
(further references Pribyl and Munch 1941,pp.15-16.

Holotype: Specimen figured by Hisinger (1837,Pl.35,fig.7), refigured by Tullbdre (1882,P1.2,fig.13).
Material: A few fragmentary specimens preserved in low relief or flattened. Horizon and Localities: Zone of M.convolutus; Watley Gill (10Wa); Birks Beck (?5Bi, 6Bi).
Description: All the fragments found show strong dorsal curvature even on short pieces. Examples have been found of the rastritiform proximal thecae and triangular distal thecae described by other workers, and both are figured (P1.35,
fig.7). These two specimens occur in close association suggesting spiral curvature of the rhabdosome, though this cannot be proved in any of the Cautley specimens.

The proximal rastritiform thecae are quite short (up to 2 mms ) and six are seen on fig. 7 (Pl.35). More distal thecae are usually 2.5 mms high and occasionally more. These have a very characteristic appearance in the flattened form being long, narrow, and tapering to a point which clearly represents a slightly recurved hook. The thecal count is very variable depending upon the direction of compression in relation to the fossil.

The sicula has not been seen.
Material seen: Specimens figured by Sudbury 1958 and contained in the Sedgwick Museum, Cambridge; specimens in H.M.Geological Survey Fuseum, (e.g. specimen figured by Elles and Wood as text fig. 324b, Geol. Survey no. 26314.

## Monograptus decipiens Tornquist Plate 34,fig.ll; : Plate 35,figs.2,3,4

1899. Monograptus decipiens n. sp. Toernquist pp.20-21, P1.4,figs.9-14.

1912 " " Tornquist. Elles and Wood pp.469-70, text fig. 325a (non b-d) P1.47,fics. 3a, (?b,e) (non c-d)
?1941 Demirastrites ". $\because$ decipiens (Tornquist 1899). Pribyl and Munch pp.1314, text fig. 1, no. 6.
1945 Monograptus " Tornq. Waterlot Pl.43,fig. 427.
1958
1962
Demirastrites
Tornquist. . Sudbury pp.510-11,P1.21,fiess.74-75.
decipiens (Tornquist). Romariz p.272; Pl.2,fiË. 3.

Leototype: Specimen figured by Tornquist (1899,P1.4,fig.10).
Material: Several fairly complete rhabdosomes, all with proximal ends. Horizon and Localities: Zone of M.convolutus; Watley Gill (9Wa,11Wa). Diamosis: Rhabdosome coiled, possibly spirally, with a slender proximal end which has rastritiform thecae, and a quite robust distal portion with triangular thecae.

Description: The rhabdosome has a characteristic curvature. In some the coiling is simple and could result from an originally plani-spiral rhabdosome whilst
the sigmoidal curvature of others suggests that the original coiling was in the form of a helical spiral (see Pl.35,fic.2).
;The sicula is slender and 0.8 mm long. Its apex does not reach the level of the metatheca of th.l. The protheca of th.l occupies about two-thirds of the length of the whole theca but the metatheca is also quite long ( 0.52 mm ) and slender so that it appears rastritiform. The width of the metatheca is about 0.08 mm narrowing (in profile) towards the aperture. The succeeding prothecae is parallel-sided and about 0.04 mm wide (in relief) and very long in proportion ( 052 mm ). Theca 2 is 0.65 mm high showing a slight increase from th. 1 though the width and distinct rastritiform appearance is similar. The succeeding thecae increase slowly in height and remain rastritiform separated by long prothecae, until about th. 7-10 when the very gradual change to a broader base and lower inclination to the axis becomes apparent. The thecae are about 1 mm high at this point although distally they reach 1.3-1.4 mms. All these triangular thecae have concave ventral nargins in profile view and in most specimens the apertural hook cannot be seen. They number, distally, about $8-11$ in 10 mus thouch this value is quite variable and depends upon the direction of compression.
Material seen: Specimens in H.M.Geological Survey Museum.

$$
\frac{\text { Monograptus denticulatus denticulatus Tornquist }}{\text { Plate } 34, \text { figs.6,10 }}
$$



Lectotype: The specimen figured by Tornquist (1899, P1.3,fig.19).

Material: Fairly numerous fragments and some well preserved proximal ends. Horizon and Localities: Zones of M.leptotheca - M. convolutus; Birks Beck (6Bi, 5Bi); Watley Gill (10Wa).
Diagnosis: Rhabdosome is hook-shaped and relatively small. Dorsally curved throughout, particularly so at the proximal end. First few thecae small and rastritiform; distal thecae with a prominent hook whose aperture faces the dorsal side of the polypary.
Description: This species is a highly characteristic form and is recognized more upon the characters of the gradually changing proximal thecae than upon the general shape of the rhabdosome which is similaf, but smaller, to those of the M.t.triangulatus Group.

The sicula is about 0.78 mm long and its apex does not reach the metatheoal portion of th.1. Theca 1 is about 0.58 mm high. There is a gradual increase following th. 1 (th. $2,0.65 \mathrm{~mm}$; th. $3,0.78 \mathrm{~mm}$ ) to a distal maximum in the region of 1.3 mms . As a rule the first few thecae are rastritiform but even.th. 4 is sometimes slightly triangular. The long, parallel-sided prothecal parts are characteristic.

These distal thecae still have distinct parallel-sided prothecal portions about 0.26 mm wide and up to 0.39 mm long. The dorsal margin of each mesial theca is at right angles to the general line of the polypary. From the authors material it is not certain whether the thecae become inclined at a lower ansle to the axis distally, though fig. 6 ( Pl .34 , Spec, HUR./6Bi/42) suggests this. Remarks: M.d.denticulatus can be distinguished from most triangulate monograptids by the srall size and number of the rastritiform proximal thecae, and the characters of the distal thecae which are small and prominently hooked.

The proximal thecae also distinguish it from M. commis sl. M.planus and M.pseudoplanus whilst the distal thecae enable easy separation from M.decipiens The small number of proximal thecae also distinguish it from this latter species

$$
\frac{\text { Monograptus sp. D }}{\text { Plate } 36 \text {,fig. } 7}
$$

Material: A single specimen $2 \frac{7}{2}$ cms long with several thecae preserved in pyrites in full relief.

Horizon and Locality: Zone of M.sedgwioki; Spengill (S73,11-4).
Description: The specimen shows gentle dorsal curvature and is about $2 \frac{1}{2} \mathrm{cms}$ long. The thecae are 1.95 mms high and clearly have paired horns of the type described by Sudbury (1958) for the M.t.trianzulatus Group. The apertural region, however, is not recurved into a prominent hook and.only shows a very slight recurvature of the kind shown by M.convolutus. . Each theca is distinctly triangular, broad based, but at the same time relatively, narrow in the later metathecal portion. There is a clear, but short, parallel-sided prothecal part about 0.4 mm wide." The thecal count is $8 \frac{1}{2}$, in 10 mms .
Remarks: The general form of the thecae is very similar to that shown by M. convolutus to which species this specimen probably has the closest affinities. With a length of almost 2 mms the thecae are not particularly short, and are longer, for example than those in M.t.triangulatus, M.t.separatus etc. Material seen: Specimens of the form described as M.knockensis occur in assooiation with M. comvolutus (e.g. figured specimen of Elles and Wood text fig. 324b; Geol. Survey no. 26314). This particular specimen of M. convolutus is very similar to Monograptus sp. D.

## GROUP J. 3

## Monograptus communis conmunis Lapworth Plate 34,figs.5,7; Plate 36,fig. 8

1876 a Monograptus convolutus, Hisinger, sp. Var (a) communis. Lapworth p. 358 Pl.13,fig.4a, (non 4b).
1876 b " spiralis $\operatorname{Var}(\mathrm{b})$ communis. Lapworth p.128, Pl.5,fig.16.
1876 c "
?1897 " communis, Lapworth. Perner pp.15-16,text fig.14,F1.12,fie. 20, (non Pl.11,figs.18a-b,P1.12,figs.5,6a-b,7-9)

| 1912 | $"$ | $"$ |
| :--- | :--- | :--- |
| 1920 | $"$ | $"$ |
| $? 1929$ | $"$ | $"$ | (Lapworth). Elles and Wood pp.480-I (pars) text fig. 336 (non b), Pl.49,figs.latc (non b, $d, e$ ) Gortani p.45, Pl.3,fig. 31 (non 32).

Haberfelner p.119, Pl.11,figs.10a-b.

| $? 1933$ | Monograptus communis |  | (Lapworth).. Sun p.40, Pl. 6,fig. 6. |
| :---: | :---: | :---: | :---: |
| 1944 | Spirograptus | " | communis (Lapworth 1876). Pribyl pp.29-30 (pars), |
|  |  |  | $\therefore \mathrm{Pl}$. $8, \mathrm{figs} .1, \mathrm{non}$ figs.2,3.... |
| 1945 | Monograptus | " | Lapw. Waterlot Pl.42,fig. 418. |
| ? 1947 | " | 1 | Lapworth. Ruedemann p.477,P1.86,figs.42-43. |
| ? 1949 | Campograptus | "11 | ( " ) . Obut p.24,P1.4,fige.ea-b. |
| 1958 | Monograptus | " | communis Lapworth. Sudbury pp.520-2,Pl.23,figs. 97-101. |
| 1962 | Spirograptus | " | " (Lapworthi. Romariz p. 267,P1.14,figs. |
|  |  |  | - 3-4. |

Lectotype: The specimen figured by Lapworth (1876a, Pl.13,fig.4a). Material: Mainly poorly preserved fragments.

Horizon and Localities: Zones of M.trianculatus, M.leptotheca, and M.sedewicki; Spengill (S36-39,7; S73,11•4-S75,9•4); Birks Beck (6Bi); Watley Gill(?9Wa. Diagnosis: Dorsal curvature throughout. .. Thecae triangular, axially elongated proximally, inclined at a higher angle distally with a-characteristic hook. Description: The fragments obtained were identified with difficulty but appear to be identical with M. c.communis. The detailed description by Sudbury (1958: has faoilitated the placing of these fossils. They are distinct from N. ... . rostratus in having rather lower thecae irclined at a lesser angle to the axis and can only be confused in this respect with M. communis obtusus subsp. nov. from the Zone of M.sedjwicki.
Remarks: This is not a common fossil at Cautley. Distal fragments occur in the M.sedrwicki zone but these may be synonymous with M.c.obtusus subsp. nov. Material seen: Specimens in H.M.Geological Survey Museum (e.g. specimen figured by Elles and Wood, text fig. 336 a ); specimens in Sedgwick Museum.

## Monograptus communis rostratus Elles and Wood Plate 35,fig. 6

1912 Nonograptus communis (Lapworth) var. rostratus var. nov. Elles and Wood pp.481-2 (pars) text fig. 337, Pl.49,fig. 2 b (nor $a, c)$.

non.
1945 . Spirograptus communis rostratus Pribyl, p.30-31.

Lectotype: Specimen figured by Elles and Wood Pl.49,fig. 2 b , and text fig. 337 . Material: Numerous well preserved distal fragments.
Horizon and Localities: Zones of M.triangulatus to P.leptotheca; Birks Beck (6Bi); Watley Gill (6Wa).
Diacnosis: The rhabdosome, as in M.c.communis, is dorsally curved throughout with a loose hook-like recurvature at the proximal end. Distal thecae are higher, than in M.c.communis and the spacing rather closer, i.e. they appear to be more "upright".
Description: As in the case of M.c.communis distal fragments are most common, but a few specimens which almost reach the proximal end have been found. The thecae throughout are exactly as described by Sudbury (1958) and show no transverse expansion of the aperture. The thecal hook is prominent but the recurved apertural region does not face the dorsal margin. It is, therefore rather an open hook with the aperture directed, in the most extreme cases towards the proximal end.
Remarks: M.c.rostratus is the common form in the Cautley beds although the proximal end has never been identified with certainty.
Material seen: Specimens in H.M.Geological Survey Nuseum, and Sedgwick Museum, Cambridge.

$$
\frac{\text { Monograptus communis obtusus subsp. nov. }}{\text { Plate } 7 \text {,fig. } 2 ; \text { Plate } 34 \text {,fig. } 12 \text {. }}
$$

ved in full relief in pyrites.
Horizon of Holotype: Zone of Monograptus sedswicki; Spengill (S80,8.4). Derivation of name: Obtusus: L. "blunt".
Material: Several specimens preserved in full relief:
Diagnosis: Curvature of rhabdosome as for M.c.communis and thecae throughout very similar, but the proximal end has no elongated thecae of the type seen in M.c.communis or M.c.rostratus.

Description: The rhabdosome is curved in a similar manner to the other two subspecies of M.communis but distal fragments.may be almost straight.

The most distinctive feature is the absence of any axially elongated thecac at the proximal end. Theca 1 resembles about th. 4 on M.c.communis and th. 2 or 3 on M.c.rostratus.

The sicula is 0.91 mm long and its apex reaches fractionally above the level of th.1. At the base the sicula is 0.13 mm across and th. 1 seems to arise almost at its base.

Thecae 1-4 all occupy an identical length of the axis ( 0.78 mm ) but their height increases gradually as follows:- th. $1,0.39 \mathrm{~mm}$; th. $2,0.52 \mathrm{~mm}$; th. 3 , $0.78 \mathrm{~mm} ; \mathrm{th} .4,0.91 \mathrm{~mm}$.

Distally a maximum height of 1.17 mms has been observed, and here each theca accupies $1 \cdot 3 \mathrm{mms}$ of the axis so that the thecae are rather loneer than high.

The hook itself is quite typical of the species and its aperture is directed proximally.
Remarks: M. communis obtusus subsp. nov. is clearly distinguished from N.c.communis and M.c.rostratus by the smaller height of the distal thecae and the lower angle of inclination of the ventral margin to the axis. The proximal end is quite distinct.

Sudbury (1958, p.539) suggests an evolutionary line from M.c.communis to M.c.rostratus involving the loss of two axially elongated thecae. M. c.obtusus subsp. nov. could be a further stage in this process when all such proximal thecae are lost and its occurrence in the Zone of M.sedgwicki strongly supports this.

1850 Graptolithus proteus var. plana Barrande p.58, P1.4,fie. 15 . 1912 Monograptus planus (Barrande). Elles \& Wood text fig. 340,Fl.48,figs. 6a-d.
…" " Haberfelner Pl.3,fig. 3.
1944 Spirograptus (Barrande 1850). Pribyl pp.33-5,Pl.4,fig.1,8, Pl.8, fiǵc.6-e, P1.11,figs.5-6.
?1949 Camporraptus " (Barrande). Obut p.24,Pl.4,figs.9a-b. 1958 .. Monozraptus "
Sudbury pp.524-5,P1.22,figs.92-93, fig. 22 b .
(further references may be found in Pribyl 1944, p.33)

Holotype: Specimen figured by Barrande (1850,Pl.4,fig.15).
Material: About 40 flattened specimens, mostly of proximal regions.
Horizon and Localities: M.turriculatus Zone including R.maximus subzone; Spesgill (S117,3-S176,2•5).
Diagnosis: Rhabdosome dorsally curved throughout but only gently so in the distal regions. Sharply recurved proximally but actual proximal extremity may be straight.
Description: Most of the specimens obtained are typical small proximal ends resembling, in outline, that specimen figured by Sudbury (1958, P1.22,fig.93). The proximal end has not been found attached or is so badly preserved and slender that detail cannot be made out.

Although the proxinal end is slender there is a rapid widening near the point of maximum curvature to give, at about the $7 \mathrm{ih}-9$ th triangular theca, a width of 1 mm (see specimen fig.9,Fl.34). The most proximal thecae are axially elongated.

The apertures of the distal thecae cannot be seen in compressed specimens but there is no suggestion of their being horned as in the case of M.pseudoplanus Sudbury.

## Monograptus pseudoplanus Sudbury <br> Plate 8,fig. 6

1958 Monograptus pseudoplanus sp. nov. Sudbury pp.523-4, P1.22,figs.94-96, fig. $22 a$ in text.

Holotype: The specimen figured by Sudbury (1958,P1.22,fig.96). Material: Several specimens preserved in full relief in pyrites but no complete specimens.
Horizon and Localities: Zone of D.marnus; Birks Beck (9Bi). Diagnosis: Rhabdosome dorsally curved throughout but more strongly so at proximal end, curvature similar to that in M.planus (Barr.). Early thecae axially elongated; distal thecae high, triangular. Thecal apertures hooked throughout with transverse expansion and paired horns.
Description: No specimens show the sicula and only one specimen shows the prozimal axially elongated thecae. The most proxinal theca has a prothecal lengtr of about 1 mm and a height of 0.39 mm . Succeeding thecae increase rapidly in height to 0.78 mm 5 thecae beyond the lowest. In this region, about the point of maximum curvature, the prothecal portion decreases to $0.65-0.78 \mathrm{~mm}$. The thecae are becoming higher than long.

The distal thecae reach a length of $1 \mathrm{~mm}-1.04 \mathrm{mms}$ (prothecal length) and a height of 1.3 mms . They number $9 \frac{1}{2}-10$ in 10 mms . Hence from the point of maximum curvature there is a slight increase in prothecal length similar to that of the initial region, and an increase in heisht sufficient to make the thecae higher than long.

The thecae are hooked and seem to have paired horns of the type figured and described by Sudbury (1958 p. 524,P1.22,fig. 95).
Remarks: The Cautley specimens have the distal dimensions of the higher thecal types described by Sudbury ( $p .524$ ) and the characters of the thecae of these specimens, preserved in relief, are sufficient to distinguish them from M. planus, M.communis etc.
Material seen: Specimens in Sedewick Kuseum, Cambridge.

## Monograntus proteus (Barrande)

Plate 34,fig. 4


Material: More than 20 specimens, more or loes incomplete, flattened and compressed together with better preserved fragments.
Horizon and Localities: M.turriculatus and M.crispus Zones; S174,10.5 to S231,2 Spengill.

Description: The Cautley forms of this species show close agreement with material described from other localities. The rhabdosome is spirally coiled and often only a small proportion of the specimen is:seen on any one bedding plane, the rest being buried both above and below the plane along which the rock is split. More favourably flattened specimens show the typical curvature of the species from an extremely slender proximal region to a more robust distal portion. The thecal apertures are more distant proximally but the thecal count as a whole is extremely variable depending upon the disposition of the fossil with regard to the direction of compression. Readings from 7 thecae per cm to 15 per om have been made. . The thickness of the rhabdosome is likewise very variable but the distal portions may reach 1.5 mms in breadth. The sicula has not been seen.

The exact nature of the hook and the thecal aperture cannot be ascertained from the Cautley material. The early thecae have a small hook in proportion to the length of the protheca. Distally the angle of inclination of the thecaf increases and the free, hooked portion is proportionately greater.
Remarks: Barrande in his original description gives a thecal count of 11-12 thecae per cm as does Pribyl (1944). Elles and Wood (p.477) bive a thecal count of 7-10 thecae per cm for the British specimens, though their figures on Pl.XLVIIl (figs.8a-c) show a greater range than this. Material seen: Specimens in Sedgwick Museum, Cambridge.

## Monograptus aff. intermedius (Carruthers) not figured

aff.
al868 Graptolithus intermedius, sp. nov. Carruthers p.126, P1.5,fig.18. 1876 Monograptus $"$ Carr. Lapworth pp.316-7,P1.10,figs.10a-c.
1912 " " (Carruthers). Elles and Wood pp.485-6,text figs.

$$
341 \mathrm{a}-\mathrm{d}, \text { PI. } 49, \text { figs. } 3 \mathrm{a}-\mathrm{c} .
$$

Material: A few flattened proximal frasments. Horizon and Localities: Zone of M.convolutus; Birks Beck (5Bi).
Description: Some fragmentary specimen's have been obtained which have affinities
with this species, particularly the forms fisured by Elles and Wood (1912, text fig. 34la-d).

The thecae are similarly spaced, triangular, with free apertural refions and resemble closely fic. $341 \mathrm{c}-\mathrm{d}$ of Elles and Wood (1912). Dorsal curvature is shown throughout. The paucity of material precludes a full description.

## Monograptus sp. B <br> Plate 35,fig. 12

Material: Two flattened specimens associated with M.exiguus. Description: The two rhabdosomes, one parallel and one at right angles to the direction of compression, are curved in a manner similar to M. planus (Barr.) One of the two has a poorly preserved proximal end which is similar in shape to that of Barrande's species and the thecae may become axially elongated in this region.

The distal thecae are non-overlapping, triancular, and hooked quite distinctly, and the eeneral form is close to M.planus. The distal width of the rhabdosome even where flattened and compressed at richt angles to the polypary only reaches a maximum of 0.9 mm . In this region the thecae number 12 in 10 mms allowing for compression.

Another species which M.sp. B resembles in general form of polypary and thecae is M.tullbergi Boucek although once again the rhabdosome seems to be narrower ( 1 mm cf. $1 \cdot 2-1.4 \mathrm{mms}$ ).

## GROUP J. C

Monograptus triangulatus fimbriatus (Nicholson)
Plate 34,fig. 1
?1853 Monograpsus pectinatus Richter p. 461 (pars) Pl.12,fig.26, non 27. ?1868 Graptolithus convolutus, His. Carruthers p.127, (pars) non Pl. 5,figs.

1868 Graptolites fimbriatus Nicholson p.536,Pl.20,fig.5,?figs.3,4.

| $? 1945$ | $"$ | $"$ | Nichols. Waterlot Pl.42,fig. 416. |
| :--- | :--- | :---: | :---: |
| 1958 | $"$ | separatus fimbriatus (Nicholson). Sudbury pp.499-501, text |  |

fig.5,Pl.19,figs.40-51.

1959 " triangulatus fimbriatus (Nicholson). Sudbury p.172,non fig. ? 1962 Demirastrites pectinatus pectinatus (Richter). Romariz p.272-3; Pl.5,fie. 8.
(further references see Sudbury 1958, pp.499-500, Boucek and Pribyl 1941,p.8).

Material: Several good proximal ends showing the sicula, and numerous less well preserved fraćments.
Horizon and Localities: Zone of M.triansulatus; Watley Gill (5Wa); Birks Beck (9Bi).
Diagnosis: Rhabdosome with dorsal curvature throughout, this is particularly strong proximally where it is hooked. Thecae triangular and with paired horns Description: The curvature of the rhabdosome is similar to other trianculate monograptids and the hooked proximal end is typically small.

It is distinguished frommany forms by the lack of rastritiform proximal thecae, and from extreme variants of M.t.separatus by the hicher th. 1 and more robust sicula.

All the thecae are triangular. The most proximal thecae (th.2-4) have no parallel-sided prothecal portion; instead this widens continuously from its initial portion.

The distal thecae are broad-based, triangular and with very short initial prothecal parts. An averafe height is approximately 1.5 mms to 1.6 mms . They may number less than 8 in 10 mms in badly compressed specimens.
Remarks: No differences have been noted from the detailed descriptions given by Sudbury (1958). At Cautley, as in the Rheidol Gorge section, M.t.fimbriatus follows M.t.trianoulatus in time and it may have a longer vertical range than in the Welsh locality.
Material seen: Specimens in Sedgwick Museum, Cambridge.

Monograptus spiralis (Ceinitz) sensu lato
Plate 13,fig. 11

(further references in Tornquist (1912,pp.615-7) and Pribyl (1944,pp.6-7))

Lectotype: The specimen fisured by Geinitz (1842,Pl.10,fig.26) and again in 1852 (Pl.4,fig.32) as Honocrapsus convolutus.
Material: Many specimens showing curvature and typical thecae but none showing the full form of the rhabdosome.
Horizon and Localities: Zones of M.crispus and M.Griestonensis; Wards Intake (5Wi); Spengill (S209,0.5-S210,8 and S255,3.25).
Description: A full description is not attempted in view of the paucity of good material. The rhabdosome appears to be spirally coiled and twisting of the thecae (on the bedding plane) from the dorsal to the ventral surface is common. Fig.11,P1.13, shows characteristic adult thecae, compressed with the apertural regions tilted so that part is hidden (see also Sudbury 1958, Pl. 21, fig.81). This figure also shows the very wide common canal which in this particular specimen (HUR. $/ 5 \mathrm{Wi} / 8$ is 1.3 mms across.
Remarks: The material often mentioned from "Rawthey Bridge" (Elles and Wood p.476, and Sudbury p.513) is probably from Wards Intake (716, 976) since Rawthey Bridge itself is on Ordovician strata. Wilson (1953) distinguished M.sniralis var. contortus (Perner) in the Cautley material.
Material seen: Specimen collected by T.Mck. Hughes from "Hall Intack, Raw they Bridge", Geological Survey no 525.
genus RASTRITES Barrande, 1850
( = Rastograptus Hopkinson \& Lapworth, 1875)

Type species: R.peregrinus Barrande, 1850; SD Miller, 1889
Generic diagnosis: Rhabdosome curved or hook-shaped, common canal thread-like, thecae widely spaced, straight, isolated, with tiny hooked apertures, extending from common canal at high angles; thecal apertures with paired horns in some species.

> Rastrites maximus (Carruthers)
> Plate $8, f i g .8 ;$ Plate $37, f i g s .6,7$.

1867 Rastrites maximus Carr. Carruthers p.541, Fossils (90), fig. 6
" p.13, P1.5,fig.14.

Material: Many specimens, all fragmentary, but some showing thecae near the proximal end.

Horizon and Localities: Subzone of R.maximus, (Zone of Moturriculatus), Spengill (Sll5,5 to S136,1•23; S140,11).
Diasnosis: Rhabdosome long, variably curved, common canal very slender and thecae, in contrast, robust. Thecal tubes long, up to 14 mms hooked apertur--al region, numbering $1-3$ in 10 mms in the distal region, and as many as $6 \frac{1}{2}$ in 10 mms at the extreme proximal end.

Description: The rhabdosome is highly characteristic, even in the fragmentary state. Only extreme proximal ends might be mistaken for R.linnaei. In the Cautley material the distal thecae are occasionally seen spaced as widely as 1 in 10 mins but usually there are two or three. The thecal tubes reach a length of 14 mms in some instances and the base (i.e. the protheca) may be 2 mms long. In the proximal region the thecae are proportionately smaller in all dimensions and may number up to $6 \frac{1}{2}$ in 10 mms .
Remarks: The Cautley specimens of this species do not differ in any way from previously described material. It was first recorded by H.M. Geological Survey workers (Dakyns et al. 1891) who identified two bands containing this species. Wilson (1953) recognised several more bands and the writer records another probable occurrence in bed S140,11.
Material seen: Specimen from Belcraig Burn ficured by Elles and Wood Plate 50, fig. 6 (S.M. no. 22032).

## Rastrites linnaei Barrande

Plate 37,fig. 5

1850 Rastrites Linnaei Barrande p.65,P1.4,figs.2,4.

?1924 Rastrites Linnaei Barrande. Hundt Pl.11,figs.9-14.
1931 " " " Haberfelner p.160-161,P1.3,fig.12.
1939 " " Hundt p.268,fig. on p. 224.
1941
Iinnaei, Barrande 1850. Pribyl pp.10-11, P1.2,figs.1-2,P1.3,
figs.1-8, text fig.1,figs.1-3.
1945 Monograptus (Rastrites) Linnaei Barr. Waterlot Pl. 44,fig. 438.

Material:Many specimens, some in full relief.
Horizon and Localities: ?Zone of M.sedwwicki to Zone of M.turriculatus (lower
part but outlasts R.maximus) Spengill (?S $94,7 \cdot 4$; S $\mathrm{S} 123,7 \cdot 25$ to Sl72,0.5; ?S176,2.5; ?S197,5.5; ?S131,10.25; ?S167,11•75; ?S169,6.5; except S145, $0 \cdot 75$ and $5165,2 \cdot 25$ ).
Diagnosis: Rhabdosome usually dorsally curved, thecae shorter and more closely spaced than in R.maximus, numbering 8-4 in 10 mns.
Description: The general form of the polypary and thecae is close to R.maximus but, the thecae are shorter and more closely spaced throughout. Th. Tis 1.3 ums long, th.2, ?l. 43 mms and thereafter follows a rapid increase in length to $4 \cdot 5 \mathrm{mms}$ at th.4. The"base" of the thecae reaches about $1 \cdot 3$ to 1.5 mms in width. An interesting point is the distal extension of the protheca to produce the broad triangular "base". The protheca is, infact, extended distally past the general line of each metatheca for a greater distance than it occupies proximally. This also appears to be the case in R.maximus.
Remarks: The Cautley specimens are quite typical and the high thecal count recorded at the proximal end does not seem unusual. The specimens found in the Zone of M.sedgwicki, however, are rather doubtfully assigned to this species.
Material seen: Specimens in the Sedewick Museum, Cambridge

$$
\text { Plate 8,fig.9; Plate 10, fig.4; Plate } 37 \text {,fig. } 10 .
$$

1297 Rastrites peregrinus var. longispinus Perner p.9,text fig. 7, P1.13,figs. 32 and 35.
1907 " longispinus Tornquist p. 10.
1913 Nonograptus (Rastrites) longispinus (Perner). Elles and Wood pp.489-490, Text fig. $344 \mathrm{a}-\mathrm{b}, \mathrm{Pl} .50$,figs. $2 \mathrm{a}-\mathrm{g}$ (?fig. 1 d ).
1941 Rastrites longispinus Perner 1897. Pribyl pp.6-7,text fig.1,no. 4, Pl.1 figs.1-3,Fl.2,fig. 3.
1945 Monograptus (Rastrites) longispinus Perner. Waterlot Pl.44,fig. 434.
?1949 Rastrites longispinus (Perner). Obut p.37,Pl.5,fig. 7
1958 " ". " Sudbury pp.525-6,text fig.23,P1.21,fig.

Lectotype: Specimen figured by Perner 1897,p.9,text fig.7.

Material: Many specimens either in full relief or flattened. Horizon and Localities: Zone of M.trianculatus, D.magnus; Spengill (S24-28, S32-36); Birks Beck (9Bi, ?7Bi); Marsh Lane (1Ma); ?Zone of M.sedswicki, ( $573,11 \cdot 4$ ).
Diagnosis: Rhabdosome hook-shaped. Thecae short and more broadly spaced proximally; up to 3-4 mris long and rather more closely spaced distally; hooked, and transversely expanded towards the aperture. Thecal spacing varies greatly with the compression.
Description: The Cautley specimens agree more closely with the material described by Perner (1897) and Sudbury (1958) than they do with that described by Elles and Wood (1913). In particular the thecae are $3-4 \mathrm{mms}$ long and none have been observed above 4 mms in length. The proximal thecae are much shorter and more widely spaced and the chance from these to the distal type, coupled with the hook-shaped rhabdosome is the easiest means of identifying the species. Because of the amount of compression undergone by the specimens in the writer's collection it has not been possible to determine the degree of intraspecific variation but in some specimens the maximum length of the thecae does not seem to be reached for a considerable distance and fracments with thecae under 3 mrs long are not uncomion.

From the M.sedewicki Zone a few specimens preserved in full relief and relatively undistorted (see fig.4,P1.10) have been obtained. In these the distal thecae are only 2.6 mms long and their proximal ones approximately 1.1 $1: 4 \mathrm{mms}$. They resemble a small R.longispinus (Perner) in all respects. Remarks: Further discussion on the lowest. stratigraphical limit of R.lonisispinus takes place on pp. Material seen: Specimens in H.M.Geological Survey Museum.

Rastrites equidistans spengillensis subsp. nov. Plate 37,fig. 4

Holotype: HUR./S197,5•5/11.
Horizon of Holotype: Zone of M.turriculatus.
Derivation of name: After the locality of the holotype, Spengill, Westmorland. Material: 17 specimens, none in relief.

Horizon and Localities: Zone of M.turriculatus (higher beds) to M.crispus (lower beds); Speñ̆ill (S172,0•25; S173,6; S197,5•5; ?S219,0•25; S231,2; S233,3).
Diagnosis: Rhabdosome variously curved. Thecae long tubes projecting almost at right angles to the polypary gradually increasing in length distally, but invariably shorter than the length of the adjacent interspaces which also increase in length distally. Th.2-5 in 10 mms.
Description: The rhabdosome is variously curved, and most commonly has ventral curvature. It resembles closely R.e.equidistans (Lapw.) but differs in the constant increase in length of the thecae and interspaces and in having the thecal tubes invariably shorter than the lengths of the adjacent interspaces. The maximum thecal length observed with certainty is 2 min (see fig. $4, P_{1}$. 37). Here the thecae are rather more than half the length of the interspace. The interspace itself is 3.5 mms long and the thecae, therefore, number a little over 2 in 10 mms . In most of the distal fragments observed, the thecae are under 2 mis in length but the spacing remains fairly constant at 2 in 10 mms. As the proximal end is approached the thecal spacing decreases and readings up to 5 in 10 mms are obtained. Again, however, the thecal tubes are less than the length of the interspaces. Occasional fragments have been seen which resemble fig. $2 e$ ( Pl .51 ) of Elles and Wood but these are so poorly preserved as to be unidentifiable. They also show a higher thecal count of $3 \frac{1}{2}-4$ in 10 mms and may represent distal fragments of R.linnaei which has been doubtfully recorded from $S 197,5 \cdot 5$.
Remarks: H.M.Geolocical Survey Workers recorded R.distans from the Spengill section and Elles and Wood (1913) mention R.equidistans from Spengill. The other localities listed by these writers are all in Southern Scotland. As has been shown above although R.e.spengillensis has the same general form, it is distinct in detail and should be regarded as a separate subspecies. It may represent a case of geographical subspecific variation.

Elles and Wood (p.500) propose the specific name "equidistans" to replace Lapworth's name "distans" in order to avoid confusion with M. distans (Portlock) Pribyl (1941 and 1942) on the other hand implies that no confusion can arise since the two are very distinct and are now placed in separate genera. He therefore, resurrects, Lapworth's name "distans".

The change in name proposed by Elles and Wood is here considered to be
valid in view of both the situation at the time it was made (1913), and the acceptance of the name by later authors (e.g. Gortani 1923, and Haberfelner 1931).

Material seen: Specimens of R.e.equidistans in the Sedgwick Museum, Cambridge.

Rastrites spina (Richter)
Plate 36,fig. 12 ; Plate 37 ,fig. 3

1853 Monograpsus spina, Richter p.462,P1.12,figs.32-33.
1912 Rastrites spina Eisel p.4,Pl.l,figs.3,9, (non 4,5,7).
1913 : Monograptus (Rastrites) fugax (Barrande). Elles and Wood p. 493(pars), Pl.50,fiess.7a, $\mathrm{d}, \mathrm{?b}$, (non c ), ?text fié. 348.
?1919 Rastrites spina Kirste p.203,Pl.3,fig. 41.
?1924 " " Kirste. Hundt Pl.10,figs.7-11.
1942. " " (Richter 1853). Pribyl pp.5-6,Pl.1,fies.20-21.

1945 Monograptus (Rastrites) fugax Barr. Waterlot Pl.45,fig. 449.

Lectotype: Specimen figured by Richter (1853, Pl.12,fig. 32).
Material: Several good specimens in relief, showing proximal end and sicula; other fragments.
Horizon and Localities: Zone of M.convolutus; Watley Gill (9Wa,loWa). Diagnosis: Rhabdosome short and inconspicuous with an extremely slender thread like portion connecting the short, stout thecal tubes which project at tight angles. Dorsal curvature at the extreme proximal end, which terriinates in a relatively prominent sicula. Thecae number 13-10 in 10 mms proximally down to 5 in 10 mis more distally.
Description: The nature of the polypary is highly characteristic. It shows distinct dorsal curvature involving th. 1 - th. 3 and terminates in a prominent sicula.

The sicula is $0.78-0.91 \mathrm{~mm}$ long and $0.13-0.20 \mathrm{~mm}$ broad at the base. Its apex does not reach to the top of th.1. Th. 1 arises near the top of the sicula and although fully 0.5 mm in length its height is only 0.32 mm . It does not project at right angles to the line of the polypary. The threadlike portion immediately following th. 1 is quite short ( 0.4 min ) and the pro-
theca of th. 2 relatively long. The protheca grows in contact with the thread for a short distance before giving rise to. the metatheca. The metatheca projects at a higher angle to the dorsal surface than does that of th. 1 and reaches:a greater height ( 0.52 mm )

All succeeding thecae project at right angles to the line of the polypary and have'very minute prothecal portions. A height of 0.52 mm is rarely exceeded. The thecae become rapidly more distant so that at th. 4 the spacing is 5 in 10 mms as compared to $13-10$ in 10 mms at th.1-2.
Remarks: The Cautley.specimens differ from those described by the above authors only in having shorter thecae.
Material seen: Specimen in the Sedswick Museum on the slab (A21508) collected by Dr.J.E.Marr from the tamariscus band, M. convolutus Zone, Skelgill.

## Rastrites fugax Barrande <br> Plate 37,fig. 8

1850 Rastrites fugax Barrande p.66,Pl.4,fig. 1
1913 Monograptus (Rastrites) fugax (Barrande). Elles and Wood p. 493 (pars) PI.50,fig.7c (non a,t,d, or text fiç.348).
1924 Rastrites fugax Barrande. Hundt P1.10,fig. 6.
 10-12.
1945 Monograptus (Rastrites) spina Richter. Waterlot P1.45,fig.450.

Material: A single badly preserved specimen.
Horizon and Locality: Zone of M. convolutus; Watley Gill (9Wa).
Description: The rhabdosome has slight dorsal curvature and the thecae are short pointed, and directed backwards. They number $8 \frac{1}{2}$ in 10 mms and have a length of $0^{\circ} 9 \mathrm{~mm}$.
Remarks: A full description cannot be given but the general form of the specimen as well as its thecal form and spacing resembles Barrande's species. Elles and Wood record M.(R) fugax from the Zone of M.sedswicki whereas the Cautley specimen occurs in the Zone of M. convolutus.

Plate 37,fig. 12

Material: A single flattened specimen showing the sicula and th.1-4. Horizon and Locality: Zone of M.sedgwicki; Spengill (S75,9•4). Description: This specimen is unusually small. The sicula is 0.65 malong and its apex reaches midway between the base of th. 1 and th. 2 . All three visible thecae are completely rastritiform and th. 2 has a length of about 0.8 mm. The thecae are slender and pointed with the apertures obscured. At this point on the rhabdosome the thecae number approximately 28 in 10 mms . Remarks: This specimen is probably the proximal end of a form whose proximal characters are not known. From the material available however, an alliance cannot yet be suggested.

$$
\frac{\text { Rastrites sp. B }}{\text { Plate } 37, \text { fig. } 11}
$$

Material: One flattened specimen, and two more doubtful larce specimens preserved in relief.
Horizon and Localities: Zone of M.trianzulatus; Speneill (S24-28, ?S36-39,7). Description: The smaller specimen, comprising 9 thecae, occurs on a slab with several specimens of R.longispinus (Perner). From this latter species it may be distinguished by its more slender thecae, even though these are flattened. On the other hand the specimen has been compressed parallel to the length of the thecae and this has had the effect of making them appear nore slender than they really are. They are about 4 mms long and project at right angles to the dorsal surface. The thecae number 20 in 10 mms but this high ficure is almost certainly a result of compression since a specimen of R.longispinus (Perner) lying in the same position also has 20 in 10 mms .
Remarks: The specimen from S36-39,7 has 14 in 10 mms and thecae almost 5 mims Iong. Once again, however, the specimen has suffered considerably from com pression though not, in this case, flattening. This form may simply be a distorted specimen of R.longispinus and like this species, differs from Rastrites sp. $B$ in having more robust thecae.

Material seen: Rastrites sp. B may prove to be synonymous with R.setiger Elles and Wood since some of the figured specimens of this latter species are very close to the Cautley forms. (e.g. specimen ficured by Elles and Wood Pl.50,fig. 3b)
subfamily CYRTOCRAPTINAE Boucek, 1933
(nom transl. Yin, 1937 (ex Cyrtograptidae Boucek, 1933))
cenus CYRTOGRAPTUS Carruthers, 1867
(= Lapworthograptus Boucek \& Pribyl, 1952)

Type snecies: C.murchisoni Carruthers 1867
Generic diagnosis: Rhabdosome more or less spirally coiled, usually helicoidally at proximal end, with cladia developed on main stipe (primary cladia) and in many species on the cladia themselves (secondary and hisher orders); thecae biform, proxinally triangulate (at extreme proximal end may be axially elongated) with lateral apertural spines, becoming simpler distally.

Cyrtograptus murchisoni murchisoni Carruthers Plate 9,fig.l; text fig. $\delta f_{:} \|$.

| 1867 | Cyrtograpsus | Murchisoni | Carruthers p. 541, Fossils 90,fig.l |
| :---: | :---: | :---: | :---: |
| 1868 | "- | " | " p.127,r1.5,fig.17. |
| 1869 | " | C | Carr. Hopkinson p.8, P, 8, fig. 6. |
| ?1899 | Cyrtograptus | Murchisoni, | Carr. Perner p.21,text fig. 28 (non cetera). |
| 1900 | " | " | Elles p.413, P1. 24 ,fiE.6. |
| 1913 | " | " | Carruthers. Elles and Wood pp.515-7,text fig. 352a-b, Pl. $51, f i g s .3 a-c$. |

non.
1883 Tullberg p.35,P1.4,figs.9-11.
1889: Perner text fig.29,Pl.14,fiE.5,Pl.16,figs.18,20a-b.
1921 Hundt p.190, Pl.5.figs.6-7.
1924 Hundt p.75,P1.8,figs.13-14.
1929 Averianow p.106,P1.34,figs.6a,b
1933 Boucek pp.30-32,Text fig.5e,f,Pl.2,figs.l-3.

Folotype: The specimen figured by Carruthers 1867, p.570, Fossils 90,fice.1 Material: One very large and almost complete specimen and several other specimens showing secondary cladia.
Horizon and Localities: Zone of C.murchisoni as here defined and rarely in the top of the Zone of C.centrifusus - C.insectus; Wandale Hill, Gill B (37W); R.Rawthey, Mouth of Wandale Beck (50W); Birksfield Beck (6Bf); Hebblethwaite Hall Gill (?9H); Whinny Gill (12Wh).
Diagnosis: Rhabdosome large with both prinary and secondary branches. Proximal end coiled eccentrically into a helicoid spiral.
Description the helical spiral coiling of the proximal end and the general form of the rhabdosome, with its secondary, as well as primary, cladia are the most characteristic features of the species.

Because of the fact that the proximal end is coiled in a helical spiral the sicula and adjacent thecae bave not been, seen attached to a specimen showing nore distal features. The large specimen figured on Pl.g, (fig.l) has its proximal end deeply buried in the rock and it is clear that the distal parts all lie in one plane - or at the most in a very low cone. Those specimens occuring in the c.murchisoni Zone which do show siculae and proximal thecae are tabulated below:

| Specimen No. | $\frac{\text { Thecal count }}{\text { HUR. } / 50 \mathrm{~W} / 6}$ | 14 in 10 mms |
| :--- | :---: | :---: |
| HUR. $/ 50 \mathrm{~W} /$ | 15 in 10 mms | $1 \cdot 25 \mathrm{mms}$ |
| HUR. $/ 12 \mathrm{~Wh} / 1$ | 13 in 10 mms | 1.25 mms |
| HUR. $/ 37 \mathrm{~W} / 1$ | 15 in 10 mms | $1 \cdot 3 \mathrm{mms}$ |

C.murchisoni is the most cominon cyrtograptid in the murchisoni Zone (C.aff insectus being rare here) and it is likely that the $1 \cdot 25-1 \cdot 3 \mathrm{mms}$ long sicula
belongs to this species. Its apex does not reach the top of th. 1 . The first few thecae are axially elongated though distinctly hooked, but by the time the first coil has been formed they are much higher and more triangular. Even the most distal thecae on the polypary are hooked and triangular, and at the same time are more widely spaced (12-10 in 10 mms cf. $15-13$ in 10 mms proximally). The maximum width of the rhabdosome is approximately $1.7-1.8 \mathrm{mms}$ (in relief).

There are 6 primary arms and 8 secondary arms on the best specimen although this is not complete. This specimen covers an area of over 100 sq . cms and the rhabdosome when complete would occupy an elliptical area on the bedding plane, though this is clearly a result of compression. Compression may also have increased the curvature of some of the arms. Fragments in the rock at locality 37 W , apparently belonging to the same specimen, suggest that the rhabdosome might well cover an area of about one square foot when fully developed.

The spacing of both the primary and secondary arms increases distally. Listed below are the numbers of thecae between the primary arms. The first value is the number of thecae separating the first and second primary branches: 5; 5; 9; 9; 13. The corresponding figures quoted for a specimen by Elles and Wood (1913,p.506) are: 5; 5; 5; 8.
Remarks: A single specimen, the best, has been obtained from the top few feet of the preceding zone but the species is fairly common, in its own zone where it occurs with an essentially different fauna.

Boucek (1933) describes C.murchisoni murchisoni from Mala Chuchle but these specimens differ in having a very open coil at the proximal end, and are probably closely related to C.m.bohemicus Boucek which also has an open coil but no secondary arms. (Dr. Strachan, personal communication).

Carruthers' species is probably most closely related to c.centrifucus Boucek which at Cautley predates' C.m.murchisoni Carr. Naterial seen: Specimen from Crosshaw Beck, Cautley (S.M.no A22419 collected by J.E.Marr). This has closer spacing of the arms than C.insectus and may have secondary arms.

1919 Cyrtograptus centrifugus Perner and Kodym p. 12 not described.


Holotype: The specimen figured by Boucek in 1931 (text fig. $14 \mathrm{a}-\mathrm{d}$ ), and again in 1933 (Pl.3,fig.2, Text fig. 3a-b).
Material: Many specimens in full relief, none showing the proxinal end and sicula attached, but several showing three cladia.
Horizon and Localities: Stage 1 Zone of C.centrifueus - C.insectus; Bluecaster Gills, Middle Gill (1M,4M); Near Gill 912N, 8N); Far Gill (1F); Wandale Hill, Gill A, (?26W,28W,29W); Gill B (?46W, $\therefore, 7$ ); Mouth of Wandale Beck (?49W,?51W); Pickering Gill (10P,8P).
Diagnosis: Rhabdosome larce when fully developed, with two or three cladia of great length. Proximal end enrolled into a helicoid spiral. Thecae number 10-9 in 10 mms.
Description: This species is the most common cyrtograptid in Stage 1 but is only rarely seen in any degree of completeness (see specimen Huk./5Wh/i figured on P1. 38 fig. 2,3 ). When fully developed there are three primary branches the positions of origin of branches 1 and 3 being at 1800 to each other. The extreme proximal end and sicula are not known actually attached to the distal part of the polypary since, as in the case of C.murchisoni Carr. this is coiled into a helicoid spiral which is either buried in the rock or broken off. Those siculae which have been observed are noted below, together with the thecal spacing of the first few thecae:

Specimen No.
a). HUR. $/ 28 \mathrm{~W} / 82$
b) HUR. $/ 28 \mathrm{~W} / 54$
c) HUR. $/ 28 \mathrm{~W} / 42$
d) HUR. $/ 28 \mathrm{~W} / 50$
e) $H L R . / 4 M /$

Thecal Count
13 in 10 mms
$10 \frac{1}{2}$ in 10 mms
$12 \frac{1}{2}$ in 10 mms
10 in 10 mms
10 in 10 mms

Sicula lencth

$$
\begin{gathered}
1.3 \mathrm{mms} \\
/ \\
0.75 \mathrm{mms} \\
/ \\
1.23 \mathrm{mms}
\end{gathered}
$$

Specimen No.
f) HUR. $/ 4 \mathrm{M} /$

Thecal Count
$10 \frac{7}{2}$ in 10 mms

Sicula length
1.23 mms

The proximal end, if these specimens do belong to C.centrifusus is very similar to that of C.m.murchisoni Carr. and differs only in having a more widely spaced thecae ( $13-10$ in 10 mms of. $15-13$ in 10 mms ). The size and position of the sicula is the same. (In the above list c. may be a different species).

The table below records the position of the arms; the actual figures being the number of thecae between the arms:-


Correspondins figures taken from Boucek's holotype are:
In his description Boucel (1933) Eives:

$$
\begin{array}{l}25-28\end{array}
$$

In his description Boucel (1933) Eives:

$$
\begin{array}{l}25-28\end{array}
$$

In his description Boucel (1933) Eives:

$$
\begin{array}{l}25-28\end{array}
$$

In his description Boucel (1933) Eives:

$$
\begin{array}{l}25-28\end{array}
$$

25

6

In his description Boucek (1933) Eives:

$$
\begin{aligned} 25-28\end{aligned}
$$

The Cautley specimens, therefore,
spaced but it is interesting to note that in Boucek's specimens with four branches (exceptional) the arms are more closely spaced and have 5-6 thecae between them. (Boucek 1933 p .28 ). They agree, however, in having 1 to 3 branches (see Boucek 1933 p.28) with the lst and 3rd at 1800 to each other. The main stipe reaches a maximum width (relief) of about 2 mas and has been found up to 23 cns in length. In this particular instance it had two arms developed, both in the normal positions, and a length of 21 cms with no branches at all. Branches have been found up to 12 cms long but are undoubtedly much longer when complete. Their maximum width is rather less than that achieved by the main stipe. The branches are rather stiff. Remarks: The Cautley specimens are clearly conspecific with C.centrifugus Boucek since they agree in all essential characters of coiling, and branch type and spacing. The helical spiral of the proxinal end distinguishes them from C.m.bohemicus Boucek which has an open coil, more branches, and branches 1 and 3 separated by less than $180^{\circ}$. From C.m.murchisoni Boucek it can also be distinguished by its proximal spiral coiling, paucity of primary arms, and lack of secondary arms; and from C.m.murchisoni Carruthers in the two latter features and in addition by its stiffer primary arms. C. Centrifucus Boucek is closest to C.momurchisoni Carruthers.
Material seen: Specimens in the Sedgwick Museum from Professor Shotton's locality "g" (1935,p.661) resemble C.centrifucus but none of the specimens which the author has, seen has more than two arms.

Cyrtograptus aff. insectus Boucek Plate 9,figs.3,4; Plate 38,fig.7; text fig. Rf.
aff.
1919 Cyrtograptus insectus Perner Kodym p.12, not described.
1922
1931
1933
$"$
$"$
" " p.58, "
n.sp. Boucek p.304,Text fig. 12

Boucek 1931. Boucek pp.37-39,text fig.7,P1.2, figs.4-8,Pl.6,fig. 1

Holotype: The specimen figured by Bouceik 1931, text fig.12a.

1. Monograptus ex. gr. elongatus Tornquist, sedgwicki Zone, Spengill; two thecae in full relief; (description p.280), HUR/S73,9•4/79.

2-3 \& 5-9, Cyrtograptus centrifugus Boucek, general form sketches of specimens in relief from localities $4 \mathrm{M}, 1 \mathrm{M}$, and 5Wh, Wenlock Series Stage 1 , All $\times \frac{1}{2}$ (p.327).
4. Cyrtograptus centrifugus Boucek, proximal end associated with other more complete specimens from locality 1 M , Wenlock Series, Stage 1.
10. Cyrtograptus linnarssoni Tullberg, general form of specimen HUR/16N/153, approximately natural size. (p.333)
11. Cyrtograptus murchisoni Carruthers, general form sketch, $x$ 咅, Wenlock Series, Stage 1, locality 37 W . (p.324). (drawn from specimen HUR/37W/1.)
12. Cyrtograptus aff. insectus Boucek, general form sketch, $x \frac{1}{2}$, Wenlock Series, Stage 2, murchisoni Zone, locality 50W (p.329) (drawn from HUR/50W/20a).


Material: About 12 specimens in full relief with proximal ends invariably broken off or deeply buried.
Horizon and Localities: Fairly common in the Zone of C.centrifugus - O.insectus, rare in the Zone of C.murchisoni; R.Rawthey, Mouth of Wandale Beck (50W); Wandale Hill Gill A (28W,29W, ?26W).
Diagnosis: Rhabdosome large when fully developed but small specimens in full relief showing only a single cladium are most common. Secondary and possible tertiary cladia occur on the adult. Proximal coil is large and open with only a slight tendency to helical coiling. The maximum width of about $1 \cdot 8 \mathrm{mms}$ is achieved quite rapidly. The thecae number 11 in 10 mms in the region of the first cladium.
Description: This species is similar in its width, thecal type, and thecal spacing to the Cautley specimens of C.centrifugus but it differs in having a much larger and more open coil. The first branch, which is the only one seen in small specimens, arises usually from the point of maximum curvature. No definite proximal end and sicula has yet been seen but the earlier thecae are less high and are axially elongated. The proximal end shows a slight tendency to coil out of the main plane of the rhabdosome and is usually buried or broken off.

The largest specimen is one showing secondary and possible tertiary branches and was obtained from the Zone of C murchisoni. This shows a badly preserved primary stipe giving rise to the first and second cladia. Each of these has 2 and probably 3 secondary branches. The point of origin of the lst and 2nd primaries agrees with Boucek's large figured specimen (1933, Pl. 6 fig.1) as does the point of origin of the first secondary branch. A tertiary branch may originate in a similar position to the only tertiary branch figured by Boucek (1933, Pl.6,fig.1).
Remarks: The spacing of the cladia in C.aff. insectus is much greater than in C.m.murchisoni Carr. and the whole rhabdosome is probably larger. More material is needed before a complete description of this species can be given but it has distinct affinities with C.insectus Boucek and may be conspecific with it.
Material seen: A large slab (S.M.no. S22425) in the Sedewick Museum collected by J.E.Marr from Hebbletkwaite Hall Gill (Cautley) has numerous small cyrtograptids and some larger specimens resembling C.insectus. The small specimens
seem to have arms rather too closely spaced for C.insectus and may represent C.murchisoni Carruthers. . The appearance of this slab suggests that the beddIng plane containing the fossils is the same as that found by the writer on the R.Rawthey (Mouth of Wandale Beck, locality 50W) in the C.murchisoni Zone. This bedding plane is slightly calcareous and is crowded with specimens including c.aff.insectus (see text fig. 8 f )

Cyrtograptus rigidus Tullberg mut.
Plate 38,figs.4,5,6

1857 Graptolithus (Monograpsus) colonus? Menechini p.83,P1.B,fis.2,no.3.
1883 Cyrtograptus rigidus n. sp. Tullberg p.38-9,P1.4,figs.12-14.
$\begin{array}{lcc}1897 & " & " \quad \text { Tullb. Frech.p.653, Text fig. 206/4. } \\ 1900 & " & \text { symmetricus, sp. nov. Elles p.410-11,P1.24, fiss.4A-B }\end{array}$


Holotype: The specimen ficured by Tullberg Pl. 4,fig. 12.
Material: Many specimens, all flattened.
Diacmosis: Rhabdosome similarly curved but more robust than C.linnarssoni, with a single arm arising from th. 7 or 8 . Sicula prominent, reaching almost to the end of the protheca of th. $1,1 \cdot 3-1 \cdot 4 \mathrm{mms}$ long. Thecae number $10-8$ in 10 mms.
Description: The sicula is $1 \cdot 3-1.4 \mathrm{mms}$ long and its apex reaches almost to the top of the protheca of th. . Th. 1 arises approximately 0.4 ma above the base of the sicula which possesses a short, slender virgella. The height of th. 1 is $0 \cdot 4-0.6 \mathrm{~mm}$ and like succeeding thecae it of ten appears to have a short
spine at the aperture. Later thecae are more triangular and higher, with a greater proportion of their lencths involved in the hook. Near the position of origin of the cladium the rhabdosome breadth is $1.1-1.3 \mathrm{mms}$. Distally the thecae are relatively long, overlapping tubes with short hooks and the width both on the main stipe and the arm reaches a maximum of 1.3 mms in these regions. There are 8-10 thecae of the proximal type, but the change to the distal type is gradual and takes place in the region of maximum curvature. (The arm also usually arises in this latter position).
Remarks: The Cautley specimens were first described in 1911 by Watney and Welch who considered them intermediate between C.rigidus Tullb. and C.symmetricus. Elles (two forms which are now considered synonymous). In 1910 they used the specific name "symmetricus" but in 1911 changed it to"rigidus."

Elles and Wood (1913) point out that specimens from the Welsh Borderland give rise to the cladium at th. 6 but that in the Lake District specimens the corresponding position is at th. $7-8$. In this sense the Cautley specimens are intermediate between C.ricidus Tullb. ( $=$ C.symetricus Elles) and C.ellesi Gortani. Furthermore the actual rhabdosome is less robust than the Welsh material for which Elles (1900) records a distal width of 1.587 mms whereas the writer's specimens do not exceed 1.3 mms. In this latter respect also they begin to approach the more slender C.ellesi, and it is possible that there is an evolutionary line:- C.rigidus Tullb. - C.rigidus Tullb. mut. (Cautley) C.ellesi Gort. This interpretation is supported by the stratigraphy which is discussed on $p$.
Material seen: C.symmetricus ( $=$ C.rigidus) figured Elles and Wood Pl. 5l,fig. 50 (S.M. no. A22,444). This specimen is certainly broader than the Cautley specimens.

Specimen from Cautley (S.M. no. A224578 presented by Dame Ethel Shakespear) labelled "C. symmetricus mut. cautleyensis Blles MS"

$$
\frac{\text { Cyrtograptus cf. ellesi }}{\text { Plate } 37, f i g .13}
$$

cf.
1900 Cyrtograptus rigidus, Tullb. Elles pp.409-410,Text figs. 23-24, Pl. 24,

## TEXT FIG. 8 g

Suggested evolution and migration of some C. rigidus group forms.

: $\because$ figs.2A-C.
1913 Cyrtograptus rigidus, Tullberg. Elles and Wood pp.5-8-9, Text fig. 354a-b,Pl. 52,figs.2a-c.
1922: ". ellesi Gortani pp.60-61.

Material: A single flattened specimen, showing the cladium but with the extreme proximal end missing, and two fragmentary specimens.
Horizon and Locality: ?Zone of C.ellesi, the sigmificance of this fossil is discussed fully on p. 46 ; Ecker Seoker Beck (12Ra)
Description: This specimen is not well preserved but is sufficiently intact to show an unusual number of thecae prior to the cladium. Eight thecae prior to the one giving rise to the cladium can be quite easily seen since they are well preserved and at least a further 5 can be detected. The cladium, therefore, arises at least as distally as th.14. A sicula is not seen.

At the proximal end the rhabdosome is slender and the thecae number 8 in 10 mms . Distally the spacing of the thecae decreases and immediately before the arm they number 10 in 10 mms . A width of 1 mm is reached at the point of maximum curvature near the arm.
Remarks: In all the characters so far ascertained the specimen agrees with C.ellesi Gortani ( $=$ C.rigidus of Elles and Wood).

Material seen: C.risidus ( $=$ C.ellesi) figured Elles and Wood Pl. 52,fig. 2 b , and text fig. 354a. The width of this species is close to that of the Cautley specimens described here as C.rigidus mut. but the number of thecae prior to the arm is sreater in the Builth specimen, and is in fact close to C.cf. ellesi

## Cyrtograptus linnarssoni Lapworth <br> Plate 38, fiçs. 8,$9 ;$ text figs.

1880 : Cyrtograptus Linnarssonisp. nov. Lapworth p.158, P1.4,figs.12a-b. 1900 " " Lapw. Elles Pl. $24, f i g .3 A$, not described. $1913 \%$ ". $", \quad$ Lapworth. Elles and Wood pp. 511-12, text fig. 357a-b,P1.51,fig.4.

Holotype: The specimen fiefured by Lapworth 1800 , Pl.4,fig.12a; reficured by Elles 1900, Pl. 24,fig. 3A, and again by Elles and Wood 1913, Text fig. 357a-b, Pl. 51,fig.4. Specimen in the Lapworth Collection, Birmingham University no. B.U. 1707 and counterpart.

Material: Many specirens, all flattened and generally not as well preserved as other fossils from the same horizon. .
Horizon and Localities: Zone of C.linnarssoni; Near Gill (16N). Diagnosis: Rhabdosome very large with at least two cladia. Width of rhabdosome not great ( 0.9 to 1.0 mm ) but both main stipe and cladia very long giving a slender appearance to the whole. Thecae number $10-9$ in 10 mms , triansular and hooked proximally, more tubular and slightly hooked distally. The proximal recurved portion is short and open but still shows strong traces of helical spiral growth.
Description: The slender appearance and large size of the rhabdosome is very characteristic. A maximum width of 0.9 to 100 mms (flattened) is achieved almost imediately, and invariably bu th. 6 .

The sicula is quite prominent and measures up to $1 \cdot 7 \mathrm{mms}$ long. Its apex reaches to about the level of the distal extremity of th. 1 There is a short slender virgella. Thil arises approximately 0.3 mm above the base of the sicula, is fully 1.6 mms long, and is axially elongated. As a result of this last feature, its height is lower than succeeding thecae, which are more triangular and have a greater proportion of their length involved in the hook.

The first branch usually grows from the aperture of th. 7 and is itself as gracefully curved as the rest of the polypary... On the main stipe the change to the distal type of theca takes place gradually but the thecre of the first cladia are typically "distal" although growing from a pronounced triangular th. 7. The second branch has not been seen on a specimen showing the proximal end and cladium 1, and it undoubtedly occurs at a great distance from the proximal end. Specimens showing 15 cms of the main stipe have shown no traces of cladium 2 but distal fragments showing branches are common. No secondary branching has been detected. The full spread of the rhabdosome may well be over two feet.
Remarks: The holotype figured as text fig. 357a by Elles and Wood (1913) is drawn showing the cladium emerging from th. 5 and a sicula at the proximal end. In actual faot the specimen may have no sicula and has two more thecae develop:
ed giving at least 6 prior to the appearance of an arm. It would appear that there is a certain amount of variability in the position of origin of the first cladium since in their description (drawn from material from the Welsh Borderland and the Dee Valley) Elles and Wood give it as "commonly five or six thecae before the first cladium is given off".

Each time the holotype has been figured it has been depicted with the second cladium arising at no great distance from the first-at about 2 cms in fact." "This may be the case, but the arm in question has the appearance of being in accidental juxtaposition since it approaches the main stipe at a sllghtly lower level. On the other handit does not, apparently pass under the main stipe as the specimen has been "dug out" here and no trace detected.

In all characters, therefore, except the position of the second cladium the Cautley specimens agree with the type specimen and the detailed description of Elles and Wood.

Cyrtograptus Iundrreni Tullberg Plato 9,fig. 2.
1850. Graptolites nilssoni Barrande P1.2,fig. 17.

1850 Fragment de Graptolites priodon? Barrande Pl.2,fig. 18.
1883 Cyrtograptus Lundgreni sp. nov. Tullberg p.39, P1.3,figs.8-11.

| ?1883 | $"$ | Carruthersi Lapw. Tullbere Pl.3,fig.25. |
| :--- | :--- | :--- |
| 1899 | $"$ | Lundgreni Perner p.19,P1.16,figs.13-16,P1.17,figs.16,text |

 Pl.4,figs.4-6.

Holotype: Specimen figured by Tullberg (1883, Pl. 3, figs.18).
Naterial: Numerous flattened and fragmentary specinens, but one well preserved specimen showing two cladia.

Horizon and Localities: Stage 4, Lower beds of Zone of C.lundgreni; Bluecaster Gills, Near Gill (?25N,26N,27N,29N); R.Rawthey, Mouth of Wandale Beck (72W).

Diagnosis: Rhabdosome slender, thecae small, hooked, appearing on both concave and convex sides, numbering 10 in 10 mms on the main stipe and rather less on the cladia.
Description: When fully developed the rhabdosome has a very characteristic "open" curvature and in the best specimen has two arms developed.

The thecae on the proximal parts of the main stipe number 10 in 10 mms and are small and hooked. Thecal overlap in this region is negligdble but distally - and throughout the cladia - the thecae are rather longer, overlapping tubes with small hooks.

The rhabdosome does not exceed a width of 0.8 mm and the proximal regions are very slender. The sicula has not been seen.
Remarks: C.Iundereni was first recorded at Cautley by Watney and Welch (1911) but it seems to be absent from the upper part of their zone of the same name. Further discussion takes place on p. 47
Material seen: Specimens fiçured Elles and Wood Pl. 52,figs.ld,la,lb, and text fig. 353 a (Sedgwick Museum Collection); specimens obtained by R.N.Cope from the Devilsbit Mountains, Tipperary (Sedswick Museum Collection).

Cyrtograntus ?carruthersi Lapworth
not figured.

1876 Cyrtograptus Carruthersi Lapworth pp.321,544,P1.10,fies.6a-c.
1900
1913
" "

Lapw. Elles p.408,text fig. 21.
Lapworth. Elles and Wood pp.512-13, text fig. 359, Pl.52,figs.4a-c.

Note: A few fracments have been found from Wandale Hill (locality 3W) of a form resembling C.carruthersi Lapw. The thecae do not appear to be hooked but the apertural margin is somewhat pointed as in Elles and Woods text fig. 359,p.513). Cladia are developed, the nature of whose origin is obscure and at their point of origin are extremly slender.

Loc. 3 W is fault bounded both upstream and downstream. The associated fossils are: M.f.flemingii, M.f.primus, P.dubius and C.lundgreni. This association has not been detected elsewhere.
Material seen: Specimens of C.carruthersi in the Sedewick Museum;

## genus BARRANDEOGRAPTUS Boucek 1933

emend Boucek and Pribyl 1952

Type species: Cyrtocraptus pulchellus Tullberg 1883
Generic diagnosis: Rhabdosome slender, thecae non-spinose, coiled inwards (i.e. introverted) at.their apertures.

Barrandeoeraptus pulchellus (Tullberg)
Plate 38,fig. 1

1883 Cyrtograptus pulchellus n. sp. Tullbere pp.36-37,P1.3,figs.12-13.
1883
1897
1933
$\qquad$
1938

1940 1940 1952 Barrandeograptus pulchellus (Tullberg 1883). Boucek and Pribyl text figs 5a-d,Pl.3,figs.3; Pl.4,figs.1-3.

Material: A single well preserved, but flattened specimen. Horizon and Locality: Zone of M.riccartonensis; Wandale Hill (30W).

Description: The specimen is $3 \frac{1}{2} \mathrm{cms}$ long with gentle ventral curvature and a maximum width of 0.65 mm . The thecae number $6+$ in 10 mms and are long tubes With little, if any, overlap. The apertural regions are free but the characters not easy to ascertain. They are not simple tubes, nor are they hooked, whilst there is a distinct introversion in some of the thecae. These thecae closely resemble some of those figured by Laursen (1940,p.13) and which Boucek and Pribyl (1952) regard as synomymous with B.pulchellus. If the apertural coil is twisted away from the observer in a flattened specimen as may be the case here, then the nature of the coil is bound to be obscure. Remarks: This specimen is indistinguishable on its general form, size and thecal characters from B. pulchellus Tullb. whilst the probable nature of the apert ure agrees with the generic redefinition of Boucek and Pribyl (1952). Material seen: Specimen listed Elles 1900, p. 396 as Cyrtograptus flaccidus Tullberg ( $=$ Barrandeograntus pulchellus), Zone of M.riccartonensis, Walcott Quarry, Chirbury.

## INCERTAE SEDIS

Konograptus ancustus sp. nov. Plate 36,figs.5,6

Holotype: HUR./S140,11/1 a proxinal end with the sicula preserved intact. Horizon and localities: Subzone of R.maximus, Sl40,11 Spengill.
Other material: More distal fracments, thoucht to be referable to this species, from the zone of M. Sedewicki (HUR./S73,11•4/58) and a more doubtful distal fragment from the zone of M.turriculatus (FUR./S173,6/7 and counterpart). Derivation of name: Ancustus: L. "narrow". Diasnosis: The extreme tenuity of the proximal end and the form of the thecae are characteristic. Initial breadth is about 0.1 mm which is maintained until at least th. 6. Thecal count, proxinally, rather less than 7 thecae in 10 mms . Description: The holotype is the only proximal end known, and this is 10.5 mms

Iong comprising 7 complete thecae and a portion of the eichth protheca. The sicula is relatively robust being 0.9 mm long and 0.13 mm broad at the base. Th. 1 seems to emerge near near its apex and the aperture of th. 1 is 0.78 mm above this point.

In spite of the fact that the specimen is preserved in low relief the characters of the thecal apertures are not easily discerned. They do, however seem to be distinctly introverted so that the aperture faces the dorsal marsin of the rhabdosome (pl.36,fig.5). It is not possible to say whether there is any introtorsion involved.

The thecae do not overlap and the protheca, at its inception, is 0.06 mm wide, thence widening Eradually until the maximum width is achieved in the region of the aperture.

Distal fragments, probably referable to this species, have been found. The specimen figured on plate 36 (fig. 6) seems to show overlap of the thecae but this may be due to compression of the apertural region against the rhabdosome. : The thecae otherwise show the same characters and number $8 \frac{?}{2}$ in 10 mms . A width of 0.26 mm is reached.

Specimen HUR./Sl73,6/7 is only doubtfully referred to this species since there is an abrupt expansion in the region of the aperture to give a maximum width of 0.45 mm . It is possible that this is a compressional feature, the compression and direction of elongation being oblique to the rhabdosome. Obscure though the thecal characters are, there does seem to be introversion of the apertural margin.
Remarks: In some respects this form approaches members of Monograptus GD. A but there is a complete lack of sigmoidal curvature and overlap of thecae, whilst even M.sandersoni Lapw. appears to be more robust.

This species shows characters similar to Barrandeograptus as redefined by Boucek and Pribyl (1952) particularly in the introversion of the apertural margin and the general form of the thecae. It is not impossible that it is inter mediate in form between Monograotus Gp. A and Barrandeograptus. Further material will be required however, before this species can be placed in a group other than "Incertae Sedis".

## Monocraptus fragilis sp. nov. <br> Plate 36,figs.1-4

Holotype: HUR./S24-28/29, specimen on a small slab with several thecae preserved in relief, among fragments of less well preserved specimens.
Horizon and Localities: M.triangulatus zone, Spengill S24-28.
Other material: The above-mentioned fracments on the same slab and others from the same horizon and locality; a few specimens showing more proximal fragments from 9Bi, Birks Beck.
Derivation of name; fracilis, L. "frail".
Diaधnosis: Width distally about 0.26 mm , proximally a breadth of 0.06 mm has been noted. Sicula unknown. Thecae number 8 in 10 mis proximally, and less than 7 in 10 mms more distally. Apertural margin may be slightly everted. Descrintion: This species is even more slender in the proximal region that the previously described M.ancustus sp. nov. The general form of the rhabdosome is similar, and equally fragmentary. Specimens from Birks Beck (9Bi) show that the proximal end is at least as narrow ( 0.06 mm ). The sicula and adjacent thecae have not been found. Distally a width of 0.26 mm is achieved in some specimens. Curvature, as might be expected in so slender an organism, is variable.

Throughout the rhabdosome the thecae are simple, straight tubes which widen gradually from a narrow prothecal portion to reach their maximum width in the region of the aperture. Early prothecal portions are about 0.04 mm wide at their inception, and in the broadest distal parts are 0.08 mm .

The thecal tubes overlap slightly. This does not seem to be a compressional feature since all specimens show the same degree of overlap - about onetwelth the thecal length. "The characters of the apertural regions are, as in the case of M.angustus sp. nov., difficult to unravel. Generally the apertures appear to be slightly everted and there is no sugcestion of complications In the specimens examined.

The thecae number 8 in 10 mms proximally and rather less than 7 in 10 ms distally.
Remarks: In the general form of the rhabdosome this species is close to M. angustus sp. nov. but differs in the following respects:-
a) The thecal tubes show overlap in M. frasilis.
b) Thecal apertures are simple and everted in fragilis but introverted in angustus.
c) The proximal end in fragilis is even more slender than in angustus. Like M. ancustus sp. nov. this species shows similarities with Monograptus Gp. A and is perhaps even closer to this group in that a certain amount of overlap does occur. Those members of Monograptus Gp. A which show evertion of the aperture, low amounts of overlap, and small amounts of sigmoidal curvature may be considered closest to M.fracilis at least from a morphological point of view.

Being closer to Monograptus Gn. A, M. fragilis is further removed from Barrandeograptus (Boucek 1933 emend. Boucek and Pribyl 1952) than is M.angustus although it is similar in the general form of theca and rhabdosome to that Eroup.

Monograptus aff. involutus (Lapworth)
Plate 37,fig. 2

1876 Monograptus intermedius var. involutus, Lapworth, p.316, PI.X,fig.ll. 1912 " involutus (Lapworth). Elles and Wood p.478-9, Pl. XLIX,figs. 4a-c.

Material: One specimen associated with doubtful fragments, loc. 9Wa, Watley Gill. All poorly preserved. Specimen no. HUR./9Wa/87, Zone of M. convolutus. Description: In the general form of the polypary and thecal characters this form is close to Monograptus intermedius var. involutus Lapworth and the material described by Elles and Wood as M. involutus (Lapworth). The Cautley specimen is associated with similarly curved, but extremely tenuous, fragments. The thecae number 6-11 in 10 mms depending upon the attitude of the rhabQosome with respect to the direction of compression. All the material is poorIy preserved but as far as can be ascertained the thecae agree in character withe those described by Elles and Wood.
Remarks: Neither Lapworth nor Elles and Wood describe the characters of the proximal part of the rhabdosone and no mention is made of the sicula. Elles and Wood (p.479) do point out, however, that the proximal end is very slender
and the thecae minute.
It is possible that the fragmonts associated with the Cautley specimen represent the proximal portions. The thecae on these are long, narrow tubes ( 0.03 mms wide) showing no signs of hooked apertural resions. They are closely adpressed to the axis and the whole rhabdosome in this region is only 0.06 mrn wide. Other than this nothing can be said.

## Monocraptus sp. C.

Plate 36,fig. 10

Description: A single flattened specimen of an indeterminate species has been obtained from S219,0.25, Spengill. The thecae are hooked and beak-like but closely adpressed to the axis. They number 15 in 10 mms proximally and 14 in 10 mms more distally, although the specimen is compressed at right angles to the rhabdosome. This compression will also have increased the width which at its maximum is only 0.19 mm . A sicula is present and measures about 0.78 mm long, its apex reaching above the aperture of th.l. There may be slight overlap of the thecae. The prothecal portion widens gradually to reach its maximumprior to the hook. This form bears a certain resemblance to M. dextro. . asus figured by Elles and Wood (1912, p.460, text fig. 318a).

$$
\frac{\text { Monograptus sn. G }}{\text { Plate } 36, \text { fig. } 9}
$$

Description: This form is represented by a small specimen so poorly preserved as almost to defy description. A description is attempted here only because of its apparent unusual nature. The speciment has a small rhabdosome, dorsally curved and forming a "fish-hook" about 2 mms across. Several thecae can be seen and the first two appear to be hooked. The second of these gives rise to a slender, ventrally-curved branch about $2 \frac{1}{2}$ mms long. This branch has four thecae which rapidly increase in size from a slender thread-like origin, so that the fourth is about 0.26 mm broad. The apertures are not clear but the thecae upon the cladium do not appear to be hooked.

This specimen is associated with a specimen probably referable to M. angustus sp . nov.

## EVOLUTION OF SOME OF THE FORMS DESCRIBED

In spite of the fact that the Cautley material is generally poorly preserved and that no one group has been studied in more detail than any other (, the main object being to secure the broad stratigraphy and succession of faunas rather than the minutiae of evolutionary plexuses), several short evolutionary steps have been observed and are listed below.

## Glyptograptus

The stratigraphical recordings of the species under this genus support the detailed analysis undertaken by Packham (1962). A specimen close to Glypto graptus tamariscus tanariscus form $C$ has been recorded from the D.magnus Zone at Cautley sucgesting that the postulated root for the form (Packham 1962, p. 524 text fig.6) is correct.

Glyptograptus packhami sp. nov., recorded from the Zone of M. sedewicki, is thouzht to have evolved directly from Glyptocraptus tamariscus distans Packham which it closely resembles. The latter species occurs in the zones of cyphus and gregarius (Packham 1962,p.524, text fig.6). Such a change, howr ever, would involve the growth of a median septum, whereas Davies (1929) has shown that in some climacograptids and glyptograptids loss of the median septum takes place as the species evolve. On the other hand Packham (op. cit.) found that the position of the median septum in Glyptocrantus elegans and Glyptograntus sinuatus bears no relation to stratigraphic horizon.

A further change in this step is the loss of angularity of the geniculum coupled with a shortening of the supragenicular wall. : In general terms the result is to make the thecal tubes physically more independent of each other, though the step in this direction is admittedly small.

A similar change has been noticed in the proposed step from Glyptograntus sinuatus sinuatus (Nicholson) to Glyptograptus sinuatus crateriformis subsp. nor As in the above case this is also an instance of a new form appearing in the Zone of M.sedewicki, the type subspecies having been detected in the Zones of M.trianculatus to P.leptotheca. The change towards physical independence of the cells is greater than in G.packhami sp . nov. Thus the thecal tubes are
more robust, show less overlap, are inclined at a lower ancle to the axis and are widely spaced. No chance in either the position or nature of the median septrim has been detected.

## Spinograptus

An evolutionary line is suggested from S. spinosus prespinosus subsp. nov. (Wenlock Series) to S.s.spinosus (Ludlow Series) involving a decrease in size and increase in length of the spines. Decrease in size and increase in spinosity are two features commonly expressed by the graptolites of the Ludlow Series, and the proposed lineage is not abnormal in this respect. The presence of S.s.nrespinosus in the Zone of M.riccartonensis was first noted as long aco. as 1911 by Watney and Welch as Retiolites spinosus Wood, but seems to have been ignored by Boucek and Munch (1952). In their seneric distribution chart (p.8) they record a minimum in the M.riccartonensis Zone with no retiolitids recorded and on $p .109$ state "....at any rate we do not so far possess any representative of the family from this period". Whilst S.s.prespinosus is therefore of interest in filling this gap it does not affect the double maximum concept of these authors and, as pointed out, it has close ties with the youncer of the two groups of retiolitids.

## Dimorphocraptus

The subspecies defined here (pp.181 ) as D.e.erectus and D.e.nicholsoni subsp. nov. seem to represent the only case in dimorphograptids where strati-. Eraphical collecting has shown a chance in the number of thecae contained in the uniserial portion of the rhabdosome. Thus D.e.nicholsoni in the M. atavus Zone has two such thecae whilst in the upper part of the P.acinaces Zone forms of similar dimensions have either two or three with the latter number predominating. It remains to be seen (by further collecting) whether specimens in the P.cyphus Zone invariably have three thecae in the uniserial portion or whether they show occasional specimens with two. On consideration of size and thecal spacing alone material from the P.cyphus Zone can be separated as D.e.erectus The fact that dirorphograptids can increase the length of the uniserial portion step by step does not prove that they gave rise to monograptids in this manner. Clearly, in this case, the time taken to increase the uniserial portion by one theca is almost equal to the length of time occupied by the whole genus. Such a process would have to be greatly accelerated (see also Bulman, 1960, p. 67,et. seq.) if it were to result in monograptid graptolites.

## Monoclimacis

The author's definition of the vomerine species in this genus (pp.188 is built up mainly on a basis of the Cautley specimens. This is admittedly incomplete since it fails to take full account of M.crenulata (the holotype of which is lost) and of M.v.gracilis. But it is considered more appropriate to explore evolutionary possibilities here, in thesis form, than in other media, particularly as a considerable amount of information is known upon which the above definitions are based.

Pribyl (1940) includes M.cfr. Eriestonensis Elles and Wood in his synonymy of M.linnarssoni (Tullberg). Although these two forms are distinct (v.p. 201.) they are in fact closely related and the former ( $=$ Monoclimacis sp . Wilson 1953) may have given rise to M.linnarssoni which occurs at a slightly higher level (Fribyl, 1940,p.16). Elles and Wood record M.cfr.griestonensis from just below the Zone of M.crenulata and Wilson noted Monoclimacis sp. from his M.griestonensis Zone. The specimens described here as ?Monocliracis sp.A, if truly monoclimacid, could be the root of the series:-

## ?Monoclimacis sp.A M.cfr. griestonensis <br> M. linnarssoni

This lineage would involve gradual loss of "hooked" thecae from completely "hooked" in the case of ?M. sp. A, to two or three in M.cfr. griestonensis, and finally none in M.linnarssoni. The proximal ends remain similar throughout and are characterized by a long sicula which reaches well above the aperture of th. 1 and in the case of ?M. sn. A even to the aperture of th. 2. An increase in the thecal spacing also takes place.

Elles and Wood ( $p .414$ ) consider M.ofr. griestonensis "intermediate in character between Monogr. griestonensis and M.vomerinus var. crenulatus..." The distinctive characters of the first of these seems to the writer to exclude it from a direct relationship with M.cfr. griestonensis but it is conceivable that M.crenulata evolved from a ?M. sp. A - M.cfr. griestonensis line. This change would involve loss of "hooks" and increase in rhabdosome size. Increase in gross rhabdosome size is probably a common trend at this time culminating in such forms as M.v.basilica in the Wenlock Series. Elles and Wood went as far as to think (p.412) it probable that M. crenulata then gave rise to M.v.vomerina.

In the lowest Wenlock beds consideration of evolutionary trends becomes more difficult in view of the fact that several forms require re-examination and definition.

The origin of Mokingi sp. nov. is not clear, but its large sicula and distinctive proximal end may furnish a clue when a revision of the earlier forms is complete. The degree of excavation of the ventral margin of the thecae is rather less than normal and it resembles some of the Ludlow species in this respect. By the time Stage 4 is reached it has certainly chanced to an even more slender and graceful form (v. p. 197). Pristiograptus

It seems probable that the representatives of P.gregarius from the M. sedEWicki Zone are distinct from earlier forms and have evolved directly from them.

The Wenlock subspecies P.dubius nseudolatus subsp. nov. is defined on p. . This form has almost certainly evolved from P.dubius dubius and it is interesting to note that broad forms of P.dubius, such as P.d.latus (Boucek) have been recorded from other regions at about the same stratigraphical level. These may be early reflections of the tendency of some Pristiograptids to increase their width, a process which resulted later in P.vulgaris etc.

At the same time there are instances of decrease in width of pristiograptids. At Cautley for example, P.m.menechini shows slight changes in time (p. 219) which if continued would result in P.pseudodubius. The lineage $\underline{P}$. menechini - P.pseudodubius is supported by these changes as well as by the occurrence of the latter fossil at a higher horizon.
Monograntus Group A
Another evolutionary change detectable in the Zone of M.sedgwicki is that from M.a.argutus (M.trianculatus to M. convolutus Zones) to M.argutus sequens subsp. nov. (M.sedgwicki Zone). The main change involved is one of size. In M.a.sequens the polypary is narrower and the thecae smaller and closely spaced. Monograptus Group E

An evolutionary line is suseested from M.riccartonensis to M.irfonensis with M.irfonensis inclinatus subsp. nov. as an intermediate form (p260). If this is the case then the new characters are introduced at the proximal end, as has been noted in other species. : Thus N.i.inclinatus has a proximal region similar to M.i.irfonensis and a distal end reminiscent of M.ricoartonensis.

Loss of these distal characters would give rise to M.i.irfonensis. Monograptus Group J

Sudbury (1958) suggests the change: M.c.communis to M.c.rostratus. This involves the loss of some axially elongated thecae. M.c.obtusus subsp. nov. from the M.sed wicki Zone may represent a further staEe in this series in which the last of the axially elongated proximal thecae has been lost.

## Cyrtograptus

The evolution of some rigidus Group fossils has already been discussed ( $p .332$ ) and is summarized in text fig. $8 g$.
C.centrifugus Boucek, as recorded and described from Cautley, may give rise to C.m.murchisoni Carruthers. C.centrifucus precedes Carruthers' species which appears for the first time at the very top of the C.centrjfucus - C. insectus Zone, this zone being defined on the whole fauna and not merely on the presence or absence of particular cyrtograptids. No specimens of c.centrifugus have been obtained at, or above, this horizon. The change from centrifugus to murchisoni would involve a slight increase in the curvature of the cladia, the development of more primary cladia, and the growth of secondary cladia. Thus the derivation of murchisoni directly from centrifucus requires a considerable amount of rapid change. At Cautley murchisoni follows so closely upon centrifugus that either this rapid change has taken place or the former species has arrived by influx from another recion.

## Conclusions

a) It is considered that collection of the Llandovery at closer stratigraphic intervals will yield further information on the evolution of some graptolites. The change from Middle to Upper Llandovery (i.e. into the M. sedewicki Zone) merits closer attention since the Zone of M.sedcwicki is particularly well exposed for collecting. Clearing of the Birks Beck Section would greatly facilitate study of the faunas of the Lower and Middle Llandovery, since it appears to be relatively undisturbed and the graptolites are well preserved. b) It is perhaps surprising that more lineages have not been detected in the Wenloc\& Series which compreses at least 800 of strata apparently uninterupted by unconformities or rajor facies changes. There is no doubt, however, that few forms have evolved actually in the Cautley region. Thus M.riccartonensis M.f.flexilis, C.risidus mut., C.linnarssoni, and C.lundgreni etc. all make their appearance quite suddenly. In addition it has been shown that Stages 3
and 4 are not complete and it is particularly difficult to obtain fossils from the latter. In spite of these disadvantaces further examination of the higher beds of the Wenlock Series might give useful clues as to the nature of the roots of the Ludlow faunas.

# Class TRILOBITA Wal ch, 1771 <br> Order PHACOPIDA Salter, 1864 <br> SubOrder PHACOPINA Struve, 1959 Superfamily DALNANITACEA Vogdes, 1890 <br> Family DALmANITIDAE Vogdes, 1890 <br> Subfamily ZELISZKELIINAE Delos, 1935 

DELOPS GROUP nov.

Group diagnosis: Prominent transgression of the anterior margin by a swollen frontal lobe distinguishes these forms from the subfamily Dalmanitinae Vogdes, and shows their affinity to the subfamily Zelisakellinae Dell. From the Zeliszkella Group of this latter subfamily the Delos Group differs on the following points:-
a) In the zeliszkella Group the cephalic martin is entire and the anterior border visible in front of the glabella.
b) The members of the Delops Group have prominent genal spines.
c) The pygidium is larger in proportion to the cephalon than in the zeliszkella Group.
d) The eyes are situated at a greater distance from the anterior border furrow and are larger.
e) The glabellar lobation is quite distinct.

The Delons Group differs from the Dalmanitina Group of the Zeliszkellinae in the following respects:-
a) The genal spines may be larger and are of different shape than in the Dalmanitina Group.
b) The eyes are larger and are situated closer to the glabella.
c) The $2 p$ glabellar furrows do not reach the axial furrows.
d) The pygidium is non-mucronate and the posterior extremity of the pygorachis does not reach the posterior margin of the pygidium.

Struve (1959 p.0475) considers that "With little doubt the Dalmanitinae are descendants of the Dalmanitina group of the Zeliszkellinae." If this is
the case then cortain major changes in morphology have taken place. These include a distinct increase in the size and chance in position of the eyes, a tendency to enclose the frontal lobe within the cephalic margin, an increase in the size of the genal spines, and modification of the glabellar furrows. The Delops Group may be regarded as a descendant of the Dalmanitina Group in which only a few of these tendencies have become manifested. Thus, while the lp furrows retain traces of the adaxial bifurcation typical of members of the Zel iszkellinae, the $2 p$ furrows have become modified and do not reach the axial furrows. Similarly the frontal lobe has remained swollen and protrudes beyond the anterior border but the eyes have grown larger and have moved away from the anterior border furrow to a more central position.

Genus DFLOPS EEn. nov.

Type Species: Phacops (Odontochile)' Obtusicaudata Salter, 1855
Derivation of name: In honour of D.M. Delo.
Generic diagnosis: Exoskeleton moderately large and tuberculate; cephalon semicircular in outline with prominent genal spines; border furrow well developed except anteriorly where it, and the margin, is transgressed by a swollen frontal lobe; eyes large crescentic, close to glabella and extending from 3p almost to lp. furrows; glabilla club-shaped, axial furrows moderately divercing lp furrows with traces of adaxial bifurcation; $2 p$ furrows transversely straicht, deep, but do not reach axial furrows resulting in fusion of the $2 p$ and $3 p$ lobes; $3 p$ furrows well defined, directed anteriorly; facial suture distinct, cuts the lateral cephalic border approximately opposite the $2 p$ furrows; pygidium in the shape of an obtuse añled isosceles triangle, non-mucronate, pygorachis strongly convex, 9-13 axial rings, 6-9 pygidial pleurae; pygidium margin wither entire or with slicht lateral denticles seen both on internal and external moulds. Remarks: The peculiar association of biocharacters, some primitive and others advanced, is sufficient to distincuish Delops from other described Eenera. Delons almost certainly represents a specialized late offshoot from the Dalmanitina Group. It differs from Dalmanitina (Dalmanitina), D (Chattiaspis), and

Eudolatites in the lobation of the Elabella. There are superficial resemblences to several other genera, but the complete lack of an anterior border makes for easy distinction from Dalmanites and Odontochile whilst the pyidial characters are quite unlike any of the Dalmanitinae. Some of the later genera such as Greenops, Neometacanthus etc. have similar posterior lobation of the glabella but the nature of the frontal lobe in Delops, as well as the unusual pygidium, is sufficient to distinguish it from these forms.

$$
\frac{\text { Delops obtusicaudatus obtusicaudatus (Salter) }}{\text { Plate } 40, \text { figs.1,3,4a,4b }}
$$

1845 Asaphus caudatus Sedgwick p. 446 not figured or described 1849 Fhacops obtusicaudatus Salter p.7, not figured
1851 " (Odontochile) obtusi-caudata Salter. McCoy p. 161 not figured 1855 " ( " ) obtusicaudata Salter sp. n. Salter Pl.ii, arpendix ?1864-1883 " " Salter Pl.1,figs.42-45.

Lectotype: Headshield figured by Salter, 1855, Pl.IG,fiE. 15 and refigured here Pl.40,fig.1. The specimen is now housed in the Sedswich Museum, Cambridge, S.M. no. A38,682.

Horizon and Locality of Lectotype: Coldwell Beds, Coldwell, Westmorland. Horizon and Localities: Middle Coldwell Beds, Upper Coldwell Beds, Lake District: Coldwell Quarry; West of Hundreds Road, nr. Skelgill; Troutbeck, Westnorland; Coniston, Lancashire.
Diagnosis: Exoskeleton moderately large, tuberculate, and with a prominent doublure; cephalon semicircular, anterior border interrupted by protruding frontal glabellar lobe, genal spines present, border furrow well developed except anteriorly; eyes laree, crescentic, extending from top of 3 p lobes to midway between $2 p$ and $1 p$ furrows; cephalic axial furrows widen steadily from occipital ring; $1 p, 2 p$, and $3 p$ lobes graduated and increasing in size anterior$1 y, 2 p$ and $3 p$ lobes fused abaxially so that $2 p$ furrows do not reach furrows; frontal lobe large, swollen, protruding beyond anterior cephalic margin, with a posteriorly-positioned pit; whole cephalon ornamented with coarse tutercles;
pygidium relatively large, well segmented, pygorachis with ll-l3 axial ringe, and pleural regions with about 9 pleurae; pygidial margin entire and doublure *ell developed.
Description: D. o.obtusicaudatus does not. seem to occur outside the Lake District and the headshields obtained from Coldwell etc. and contained in the various museums are not well preserved. Nevertheless the general pattern of a coarsely tuberculate semicircular cephalon can usually be ascertained and in occasional better preserved specimens the nature of the various biocharacters can be seen.

The genal spines are relatively short reaching a length equal to about half that of the glabella, whilst the lateral margin is a direct continuation of the posterio-lateral cephalic margin. Both the cephalic marsin and the border furrow are transgressed by the frontal lobe of the glabella, but otherwise the border is a distinctive feature and is ornamented by the same kind of tubercles as the rest of the cephalon. Details of these tubercles are not easily ascertained since they are usually "streaked out". The eyes are larce and similar to those in Dalmanites but are not as centrally situated and are positioned rather more anteriorly. The posterior branch of the facial suture is directed forwards and cuts the lateral cephalic margin at a level midway between the $2 p$ and $3 p$ furrow.

A most distinctive feature of D.o.obtusicaudatus is the glabellar lobation. Owing to compression the fusion of the $2 p$ and $3 p$ lobes is only occasionally seen, but the graduation in size from the $1 p$ to $3 p$ lobes is always discernable. The $1 p$ and $2 p$ lobes are quadranguler and the $3 p$ lobes trianeular. The $3 p$ furrows diverge anteriorly and bound the swollen frontal lobe. In most of the specimens examined the frontal lobe just transeresses the frontal cephalic margin but the nature of preservation of ten makes it difficult to assess the part played by distortion. The frontal lobe is collapsed in several instances, and in these cases the anterior cephalic margin is visible from above.

Thoracic segments have not been seen.
The pyeidium is relatively large, has ll-13 axial rings on the pyerachis, and about 9 pleurae in each of the pygidial pleural fields. Both pleural and interpleural furrows are well developed. An important feature of the pysidium is the entire margin and broad doublure (v. Pl.40,fics.3.4). At the anterior end, the pygorachis is approximately one third of the total width of the pycid-
fum, and its posterior extremity reaches to the margin. None of the specimens examined show any signs of tuberculation upon the pygidium and may be contrasted in this respect with the cephalon which, in spite of its generally poor preservation, shows the tubercles. This suggests that lack of tubercles on the pygidium is not merely a result of their obliteration by compression. Remarks: The specimen originally figured by Salter (1855,Pl.1G,fig.15), and designated here as thelectotype, was not included by him in his 1873 catalogue of the fossils contained in the then Cambridge Museum. As a result the fossil was missing for many years and in fact was only found by the writer in 1963 in another tray of specimens. The pycidium figured at the same time as the headshield could not be found and it may be either a composite drawing or an idealized drawing.

Delops obtusicaudatus howcillensis subsp. nov. Plate 40, figs. 2,5,6; Plate 41,figs.1,2,3; Plate 42,figs.5,6,8,10,11; text fig.
?1911 Phacops obtusicaudatus. Watney and Welch, mentioned in text
?1913 " (D.) " Parr mentioned in text
?1913 " (Dalmannites?) sp. 1 Var p.17, not figured.

Holotype: HUR./ID/384, the headshield figured Pl.41,fig.l, internal mould of almost complete cephalon. Horizon and Locality of Holotype: Basal Ludlow limestone, Zone of P.nilssoni; Bluecaster (1D).
Horizon: Rare in the top few feet of the Brathay Flags (Stage 4) and common in the bipartite limestone immediately overlying the Brathay Flags. Localities: Bluecaster, (1D); Mouth of Backside Beck ( $2 \mathrm{Ck}, 3 \mathrm{Ck}$ ). Diagnosis: Exoskeleton moderately large with a very narrow doublure; cephalon semicircular, anterior border interrupted by protruding frontal glabellar lobe; Eenal spines long and robust; border furrow well developed except anteriorly; occipital ring with mesial tubercle; eyes large crescentic, extending from top of $3 p$ lobes to $1 p$ grooves; cephalic axial furrows widen steadily from ocipit$a 1$ ring; $1 p, 2 p$, and $3 p$ lobes graduated and increasing in size anteriorly, $2 p$
and $3 p$ lobes fused abaxially so that $2 p$ furrows do not reach axial furrows; frontal lobe large, swollen, protruding beyond the cephalic margin, and having a posteriorly-positioned pit; whole cephalon ornamented with large tubercles interspaced with more numerous smaller ones; pycidium well sesmented, tuberculate, pygorachis with 9-10 axial rings and pleural recions with 6-8 pleurae; pygidium margin showing at least three lateral denticles, doublure very narrow; hypostome tuberculate, with three denticles along posterior margin, anterior wincs and maculae similar to Chattiaspis. Description: The subspecies D.O.howeillensis can be distineuished from D.o.o. on the following criteria:-
a) the margin of the pygidium is not entire but denticulate
b) the doublure is very narrow
c) the pygidium shows the same tuberculate ornamentation as the cephalon but to a slightly less degree
d) the pygorachis has 9-10 axial rings (cf. 11-13)
e) the pygidial pleural regions have 6-8 pleurae
f) the pygorachis does not reach the posterior border of the pyeidium
©) the pygidium is probably smaller in proportion to the cephalon
h) the genal spines are longer and more robust
i) the eyes are larger
j) the posterior branch of the facial suture cuts lateral cephalic margin at the level of the $2 p$ grooves.
It is possible that when further material becomes available the ornamentation of the cephalon may be seen to be different on the two subspecies.

Delops nobilis (Thomas)
not figured

1900 Phacops (Dalmania) nobilis, sp. nov. Thomas pp.617-618, P1.34,fies.1-3
Remarks: The species described by Thomas (1900) is a typical Delops and is very closely related to the species D.obtusicaudatus (Salter). It differs, however, from both D.o.obtusicaudatus and D.o.howsillensis in several small, but sienif-

TEXT FIG. 8ha
Delops obtusicaudatus howgillensis gen et subsp. nov. reconstruction of headshield approximately X 2 .

Struveria torvus gen.et sp. nov. reconstruction of headshield approximately $X 2$.

icant characters. The headshield is very close to howgillensis but the eyes are rather larger and their posterior extremities reach midway between the occipital furrow and the lp furrow whilst the palpebral area is slightly tuberculate in contrast to the smooth area of howcillensis. In his reconstructThonas show the $2 p$ furrows as extending abaxially to the axial furrows. This is incorrect and is clearly based on the type specimen (Pl.34,fig.l) which has the $2 p$ furrow crushed. Other specimens contained in the University Museum, Oxford (e.g. C558) show the typically deep 2p furrows which fade out before the axial furrow is reached. The frontal lobe is possibly even larger than in . how cillensis.

The pygidiun has 9 rings on the pygorachis as has D.o.howrillensis but the doublure is broad, rounded, and very similar to that seen in D.o.obtusicaudatus. There is a faint tendency to deticulation of the anterior-most pleural segment of the pygidium margin.

Thomas records nobilis from the Wenlock Shale and the figured specimens are labelled "l ml. E. of Builth, 150 yds from Bank of Wye". This is probably in the zone of C.lundsreni and may be near the summit ( $V$. Elles, 1900, map p.385). It is possible, therefore, that D.nobilis precedes D.o.howillensis and it seems likely that it gave rise directly to the latter mainly by reduction of the doublure and increased denticulation of the pysidial marcin.

DALMANITINA GROUP

Genus STRUVERIA gen. nov.

Type Species: Struveria torvus sp. nov.
Generic diagnosis: Cephalon semicircular, genal spines long and robust; border furrow distinct but unlike cephalic margin does not pass in front of frontal clabellar lobe; eyes large and are positioned near the anterio-lateral border furrow as in other members of the Dalmanitina Group; posterior branch of facial suture cuts lateral cephalic margin opoosite $2 p$ furrows, and anterior
portion can be seen passing round front of glabella in suitably preserved specimens; glabellar lobation very similar to Dalmanitina (Dalmanitina), D. (Chattiaspis) and Eudolatites with $1 p$ furrows adaxially bifurcating; $1 p$ and $2 p$ furrows converge towards axial furrows; axial furrows only slightly divergent until $2 p$ furrows reached when they flare suddenly to produce a club-shaped glabella; $1 p$ and $2 p$ lobes of similar size but $3 p$ lobes much longer and frontal lobe dominant, but not transgressing anterior cephalic margin; pygidium relatively large, moderately convex, very similar to Eudolatites, margin entire, indistinct, non-mucronate; 9-10, ? 11 axial rines on pyeorachis, 7 or 8 pyeidial; pleurae.
Remarks: From Dalmanites and Odontochile, Struveria can be distinsuished on the characters of both the pygidium and cephalon. It lacks the ornate cephalic features of the other genera in the Dalmanitinae. Struveria differs from Dalmanitina (Dalmanitina) in having larcer eyes, a non-mucronate pygidium and in having the whole of its frontal lobe contained within the cephalic margin. Dalmanitina (Chattiaspis) lacks the club-shaped glabella and also has a mucronate pygidium. The pygidium of Struveria is very similar in appearance to that of Eudolatites but has a smaller number of axial rings and pleural segments. The glabellae are also similar in general shape but the frontal lobe in Eudolatites transgresses the anterior cephalic margin. In spite of these differences the writer considers that Eudolatitis Delo is the closest genus. If there is a tendency in later representatives of the Dalmanitidae to enclose the frontal lobe within the anterior border of the cephalon then it is conceivable that Struveria has evolved from Eudolatites which ranges from the Ordovician to $\mathbb{R}$ Middle Silurian. Such a change would also involve a fall in the number of pyeorachial segments from a minimur of 11 (in Eudolatites) to 9 or 10.

Struveria torvus gen. et sp. nov.
Plate 39,figs.4-9; Plate 41,figs.4-9; Plate 42,figs.9-12; text fig.
?1913 Phacops (Dalmannites) sp. 2 Marr p.17, not figured.

Holotype: HUR./ 1D/ 260 and 260 a , internal and external moulds of almost coinplete cephalon; latex cast of external mould fig. 1 Pl.4l,fie. 4 .

Horizon of Holotype: Basal Ludlow limestone, Zone of P.nilssoni.

## Locality: Bluecaster, 1D

Material: Over 100 headshields and pyexidia.
Horizon and Localities: Restricted to the bipartite basal Ludlow limestone, Zone of P.nilssoni; Bluecaster (1D); Mouth of Backside Beck (3Ck).
Diacnosis: Cephalon semicircular, genal spines rooust, border furrow absent anteriorly; eyes large positioned antero-laterally; slabella club-shaped, prominent frontal lobe, lp grooves adaxially bifurcating, 2 p erooves directed slightly posteriorly in abaxial region, $3 p$ lobes laree and roughly triangular; pygidium relatively large, pygorachis with 9-10, $? 11$ rings, $7-8$ pyoidial pleurae; pygidium margin entire, hardly reached by interpleural grooves.
Descrintion: The cephalic outline varies somewhat with the direction of compression but is approximately semicircular with nrominent genal spines which are only occasionally longer that the glabella length. Immediately in front of the glabella the border is extremely narrow and only occasionally can the facial suture be traced in this region (v. Pl.39,fig. 8). Laree crescentic eyes and palpebral lobes dominate the cheeks. The eyes extend from the most anterior point of the 3 p lobes almost down to the level of the $1 p$ furrows whilst the posterior branch of the facial suture extends in an anterior direction along the base of the sub-vertical lensed surface of the eye and then curves outwards to cut the lateral margin of the cephalon almost opposite the 2p furrows.

The axial furrows are approximately parallel from the ocipital croove to the $2 p$ furrows but then diverce strongly, boundine a swollen frontal lobe, and giving the whole glabella a club-shaped appearance. This feature is very typical of the Dalmanitina Group. Adaxial bifurcation of the lp grooves is shown by most of the specimens and in some instances is accentuated by compression (v. Pl.4l,fig.4). A more typical instance is shown by the specimen figured on Pl. 41 as fig. 8. This would seem to be a prinitive feature which is not shown by members of the subfamily Dalmanitinae. Convergence of the $1 p$. and $2 p$ furrows is also typical of the Dalmanitina Group and in S.torvus is usually detectable (Pl.41, figs.4-9). The 3p furrows are not straicht but convex towards the posterior thus resulting in only an approximate trianjular sh- $e$ ape to the 3 p lobes. In this respect S.torvus may be contrasted with D.obtusIcaudatus. The sharp contrast in size between the 3 p and posterior lobes also
serves to distinguish S.torvas from the species included in the Dalmanitinae. The frontal lobe is elliptical in outline and has the long axis of the ellipse directed transversely. It occupies up to half the total width of the cephalon but in neither transverse nor sagittal sections is it strongly convex, whilst most specimens show a shallow pit situated on the sagittal line in a posterior position. The occipital ring is of the same convexity as the glabella except for the presence of a short mesial tubercle.

Only fragments of thoracic segments have been found.
The pyeidium is relatively large with an entire margin completely devoid of spines or protruberences whilst the broad pyeorachis does not reach the posterior vorder. Nine or ten axial rines are usually prescnt and possibly eleven in some specimens. Of these rines the anterior three show the articulating half rings very clearly but the posterior rings are more closely packed. At its widest point the pysorachis occupies fractionally less than one third of the total width of the pyeidium. Seven or eicht pleurae are developed, each with a distinct pleural groove which, however, does not reach as far towards the border as the interpleural furrows. The whole appearance of the pycidium, and particularly of the axis, is reminiscent of some species of Dalmanites but is distinct in having few axial rings and more pyeopleurae. Some hypostoma have been obtained in association with S.torvus and these are similar to the hypostome of Chattiaspis except that three posterior denticles are developed.
Remarks: S.torvus is a more common fossil at the same horizon than D. O. howcillensis but unlide this latter species has not been obtained below the limestone. Marr (1913) briefly describes a form as Phacons (Dalnannites) sp. 2 which is almost certainly synonymous with S.torvus. It is also mentioned by Marr (op. cit. p.17) as occurring in the "Obtusicaudatus Beds of Lakeland". This he call. ed Ph.torvus Wyatt-Edgell but goes on to say that "I cannot find the specimen of Wyatt Edgell which led me to make this identification". A tray in the SedEwick Museum, Cambridse was labelled by Marr as "Phacons torvus (Edcell MS) NE. side of Helm Knott, Coniston Flacs". All these specimens except S.M. no. A37158 ( a headshield) are D.o.howeillensis. It appears then that Marr was not altogether clear in his mind as to the biocharacters which defined the form he called Ph . torvus.

The writer has examined many specimens from the Sedewick Museum, Cambridge, the Geological Survey Museum, and the British Museum, and
all the specimens referable to S.torvus were obtained either from the Howgill Fells or the nearby Helm Knott etc.

In view of the fact that the specific name "torvus" has not been used in publication and that it was probably oricinally applied to the form described here, the name is retained.

Order ODONTOPLEURIDA Whittington, 1959
Family ODONTOPLZURIDAE Burmeister, 1843
Subfamily ODONTOPLEURINAT Burmeister, 1843

Genus ODONTOPLEURA Emmrich, 1839

Type species: O.ovata Emmrich, 1839
Generic diacnosis: Glabella with relatively larce lateral lobes; median part of occipital ring elevated and produced into long pair of occipital spines, also with faint occipital lobes; small eye lobes situated opposite basal elabellar furrows, ansle between anterior and posterior sections of facial sutures $120^{\circ}$, slender librigenal and anterior pleural spines and long posterior pleural spines. Pygidium relatively wide, posterior part with long pair of major border spines.

Odontopleura huchesi (Lake)
Plate 42, figs. $1,2,3,4$, and 7

1873 Acidaspis huçhesii sp. n. Salter p. 93 not figured.
" huchesi Salter. Woods not figured.
" hughesii Salter ms. Hughes p. 154 not figured.
" hughesi Lake ex Salter ms. Lake p.242,Pl.8,fig.4.

Lectotype: The specimen figured by Lake, 1896, P1.8,fig.4; and refigured here Pl.42,fic. 4 ; now contained in the Sedswick Museum, Cambridge as specimen no. A37135a and b.
Horizon and Locality oflectotype: Bannisdale Slates, Casterton Low Fell, Westmorland (? Gale Garth).
Material: Several complete specimens and many fragments.
Horizon and Jocalities: O.huchesi appears first of all quite low down in the zone of P. nilssoni towards the top of the $250^{\circ}$ Banded Unit (containing Graptolite Band no. 12), and continues throuch into the zone of M.leintwardinensis and the higher Bannisdale Slates. It is a characteristic fossil of the Banded Unit facies. Cautley Cracs (1Cc,8Cc); Clough River (1C); Wygarth Gill (2Wg); Greenside (1Gr); Bowderdale (IBo); Dale Gill (2Da).
Diacnosis: Exoskeleton small, oval, only the axis strongly convex; cephalon sub-rectancular in outline with prominent, obliquely directed genal spines, and numerous, slender librigenal spines; occipital ring elevated with a pair of occipital spines and rudimentary occipital lobes; border furrow distinct; lateral glabellar furrows occupying one quarter of the glabellar width; eyes small, opposite basal pair of slabellar lobes; cephalon covered with small tubercles; axis of thorax occupies only one quarter of the total width of the thorax, shows paired tubercles upon each axial ring; pleurae each with a major tubercle situated midway between axial furrow and lateral border of exoskeleton, small tubercles on either side of the main tubercle, long posterior spine and short slender anterior spines; pygidium short, broad, pygorachis with two distinct axial rings and traces of a third, all three having a pair of tubercles but much reduced on the posterior ring; pygorachis does not reach posterior border; pair of long posterior spines have their origin at the anterior ring of the pygorachis and cross the pleural field as paired ridees; between pair of long posterior spines are four shorter spines, and in an anterior position to the long pair are five pairs of short, slender spines; the anterior most of these spines is small and apt to be overlooked.
Remarks: Lake in his oricinal description ficured four pairs of spines in an anterior position to the long pair of posterior pygidial spines, but in the description wrote "... 4 or perhaps 5 outside each of the larger spines". The lectotype ( $p l .42, f i E .4$ ) is not well preserved and does not show the pycidial characters adequately. All the other specimens examined by the writer have
five pairs of spines in this position though the anterior pair is of small spines which can be easily overlooked. Specimens have been seen from: Casterton Low Fell; Pont Lawnt, Dencigh; Howgill Fells.
O.huchesi is very similar to 0.prevosti (Barrande 1846), a likeness which was realized by Elles (1900) when she named fossils from the Wenlock Shale by the former name. The specific name hugnesi is retained here pending further investigations.

## Notes on the Shelly Fossils

It is beyond the scope of this work to describe in detail all the shelly fossils of the region. The presence of shelly fossils, particularly at certain horizons such as the basal Silurian limestone, has been known since the earliest work in the region and the members of H.M.Geological Survey made perhaps the greatest contribution to our knowledee in this direction. Text fig. $8 i$ shows the distribution of various fossils other than graptolites against the stratigraphical colum worked out on a combination of lithological crounds and succession of Eraptolite faunas. It is considered that upon the basis of the stratigraphy outlined in this thesis the shelly fossils can now be studied more fully. Many forms (e.e. O. hurhesi, S.interrupta) are long ranging species upon which the stratigraphic succession could not initially be built up, particularly in view of the fact that considerable thicknesses of rock contain such fossils only at long intervals.

Orthocone cephalopods occur throughout the succession but only at certain horizons are these preserved in three dimension ( $v$. text fig. 6d). They might however, provide a useful confirmatary zonal scheme if studied with this object in mind. Most of the other fossil groups(e.g. trilobites) occur only at certain levels, or are rare (e.g. phyllopods) and at best can be used only as marker horizons. This is not to say, however, that they are unimportant from the point of view of palaeontology or, occasionally, long range stratisraphic correlation.

## TEXT FIG. $8 i$

Showing general distribution of shelly fossils in the Silurian strata.


## CONCLUSIONS

Little modern work has been done on the Silurian rocks of the Howgill Fells and details of the succession have been singularly lacking. A most valuable contribution was that of Misses G.R.Watney and E.G.Welch (1911) on the Salopian rocks but prior to this date only Marr and Nicholson (1888) had examined the Llandovery Series. A further note on the Silurian rocks was published by Marr (1913). Perhaps the most important work has been that of Wilson (1954) who examined the Middle and Upper Llandovery strata in great detail. This work unfortunately is not yet published. In the present thesis the Lower Llandovery strata are described throughout the region and particular attention has been paid to the nature of the change in conditions in passing from the Ordovician to the Silurian. The Salopian strata have been similarly examined. As a result of this, and the work by Dr.Wilson, the Silurian succession is known in some detail and it has been possible to produce a map of the district which takes into account the numerous dislocations. A sumary is given immediately below of the various general conclusions. A. The Ashgill Shales Grit has been shown to be variavle throughout the area and to decrease in grain-size and thickness from SE to NW. Measurement of current bedding foreset beds suggests a source of supply in the SE.
B. It was concluded that the Basal Beds of the Silurian were probably conformable upon the Ordovician. The Ashgill Shales Grit may be a single transgressive grit and alternatively it may consist of two or three grits occupying different horizons.
C. The Basal Beds thicken to the south. The distribution of the limestone and shelly fragments suggests deposition under rather turbulent conditions. D. The overlying Lower Llandovery can be conveniently divided into the following Zones:
M.triangulatus
P.cyphus
P.acinaces
$\frac{\text { M.atavus }}{\text { A.acuminatus }}$

The top of the Lower Llandovery cannot be proven.
E. There is a distinct thickening of the middle three Zones of the L.Llandovery Series from the Spengill area in the north to the Pickering Gill - Wards Intake line further south. This line may represent an axis of thickening since the atavus Zone on Birks Wood Beck even further south is the same thickness as on Spengill.
F. The Middle Llandovery Zones of masnus, leptothoca ( argenteus) and convolutus have been identified and it is possible that the magnus Zone is incorporated in the top of the "fimbriatus shale". The top of the Midale Llandovery is faulted wherever these beds are seen.
G. Four Stages have been recognised in the Wenlock Series:-

Stage 4 (Zone of C.lundgreni

Stage $3 \quad$| ?Zone of C.ellesi |
| :--- |
| Zone of C.rigidus mut. |
| Zone of M.flexilis belophorus |

Zone of M.antennulatus
Stage 2 Zone of M.riccartonensis
Zone of C.murchisoni
Stage 1 Zone of C.centrifugus-C.insectus

Stages 1 and 4 are probably divisible into further Zones but this has not been attempted in the present state of knowledge. Although the total thickness of the Wenlock Series is similar to that recorded by Watney and Welch 1911 the older Zones are much thinner than suggested by those workers. There is a general thickening of the Wenlock Series to the south which is proved in the lower Zones and probably also occurs at higher levels. The succession in Stage 3 is not completely established and the nature of the boundary between Stages 3 and 4 is not known.
H. The base of the Ludlow Series is formed by a bipartite limestone which varies in thickness throuchout the area and the upper limestone has been removed fromplocality by slumping. $\because$ Within the limestone is a graptolitic mudstone bed yielding P.nilssoni and M, scanicus and an associated nilssoniscanicus zone fauna. A vulgaris Zone is not recognized and, indeed, strata
equivalent to the vulgaris Zone of other regions cannot be identified with certainty, though it is not impossible that the lowest part of the bipartite limestone is of this age.
I. The detailed succession of the Ludlow Series consisting of alternations of greywacke, graptolitic mudstone and the Banded Unit Facies, is demonstrated and the following major subdivisions defined.

Bannisdale Slates
$\frac{\text { Ieintwardinensis Zone }}{\text { I.incipiens Zone }}$
$\frac{\text { nilssoni- }}{\text { scanicus }}$ Zone
Coniston Grits
Upper

The whole succession (v.text fig. 4c) consists of rythmic alternations of the above facies in which the graptolitic mudstone and greywacke units are gradually, but not entirely, replaced by the Banded Unit Facies. The Lower Coniston Grits consist of 1000 of thin graptolitic mudstone units and thicker (approximately 90') of greywacke units, whilst the Upper Coniston Grits contain less, but thicker, greywacke units and Banded Units. Finally the Bannisdale Slates are composed of thick Banded Units and subordinate greywacke units. J. The distribution of facies types has been discussed and it has been shown that graptolitic mudstone facies evolves during the Silurian in response to changing conditions. Generally the change is towards more aerated bottor conditions in which the current activity is demonstrably greater from riccartonensis Zones times onwards. The changing conditions are more conducive to benthonic life and this is reflected in the gradual appearance of shelly fossils.
2 It is concluded that the Ashgill Shales mudstones continue into the Silurian in a modified form where they alternate with graptolitic mudstones. The problems of the fine grained barren mudstones of the Upper Llandovery and the barren greywackes of the Ludlow are discussed.
K. The structural geology of the region is extremely complicated but consiste basically of Caledonian folds and faults with an approximately E-W trend upon which a Hercynian fracture pattern has been superimposed. Evidence has been adduced to show that some of the faults are tear faults.
L. It has been demonstrated that palaeocurrent indicatore suggest an $E-W$ current in Wenlock times changing firstly to a current from SW to NE in the
earliest Ludlow beds and then to a current from NW to SE through most of the nilssoni-scanicus Zone.

## Suggestions for Further Research

During the progress of this work the present writer has become aware of several promising lines of research which have so far not been followed up due to the limitations of time, imposed upon the present study. Thus whilst the main purpose, that of establishing a detailed stratigraphical and palaeontological succession in those beds where this had not been done has been achieved there remain several aspects of the geology which could only be touch ed upon. It is suggested, for example, that in view of the succession now known the shelly faunas might be more profitably studied and those apparently long ranging species such as S.interrupta, 0 .hughesi etc. might be subjected to close examination.

It is equally clear that a mineralogical study of the sediments would do much to solve some of the problems left unanswered in this work. The author feels strongly, however, that it would be short-sighted to confine such a study to but one Series of the Silurian but that in view of the comformable succession and gradually changing environments of deposition all three Series should be examined and compared with their lateral equivalents.

The present work has allowed the recognition of certain aspects of the structural geology of the area. It is suggested that work with a structural analysis as the main objective would achieve valuable results.

Finally it is clear that the graptolite faunas themselves are worthy of further examination particularly since several Continental species such as P.m.meneghini and M.haupti have been found. Stratigraphical collection from the Wenlock Stages 1 and 4 is certain to be a laborious and difficult task but it is equally certain that Stage 1 will prove capable of subdivision and that Stage 4 will yield further records of graptolite species. Faunal work on the Ludlow Series is at present in a preliminary stage and further work on both the shelly and graptolitic faunas should provide interesting results.

AIGNER, G. 1931, Eine Graptolithen fauna aus Granwacken zone von Fieberbrunn in Tyrol. S.B. Akad. Wiss. Wien. Abt.1, v.140.

ALLAHVERDJIEW, D. 1908, Contribution a l'etude du Systeme Silurien en Bulgarie. Bull. Soc. Geol. Fr. ser.4,t.7.

AVELINE, W.T. 1872, On the Continuity and Breaks Between the various Divisions of the Silurian Strata in the Lake District. Geol. Mag. v.9,p.441.

AVELINE, 1876, Absence of Llandovery Rocks in the Lake District. Geol. Mag. Dec. 2. V.3. p. 282.

AVFIINE, W.T. et. al. 1879, Map. Sheet 98NE (1879; drift 1887; New Series Sheet 39), 1" to l. mile. Mem. seol. Surv. G.B.

AVELINE, W.T. \& T.McK. Hughes, 1872, The Geology of the country around kendal, Sedbergh, Bowness, and Tebay. Mem. Geol. Surv. G.B.

AVELINE, K.T. \& T.McK. Hughes, 1888, The Geology of the Country around Kendal, Sedbergh, Bowness, and Tebay. Mem. geol. Surv. G.B. 2nd Edit.

AVELINE, W.T., T.McK. Hughes, \& R.H.Tiddeman, 1872, The Geology of the Neighbourhood of Kirkby Lonsdale and Kendal. Mem. geol. Surv. G.B.

AVERIANOW, 1929. Graptozoidea der obersilurischen Schiefer a Ostturkestan. Bull. du com. ge ol. XLV1ll Leningrad 1929.

AVERIANOW, B. 1931, "Graptoldidea from the river Kuragan (Western slope of South Ural)." Bull. Geol. Serv.U.S.S.R.,1,1931, 129-134.

BAILY, W.H. 1871, Mem. Geol. Surv. Ireland. Sheets 49/50.

BARRANDE, J. 1846-56, Notice preliminaire sur le Systeme Silurienne et les trilobites de Boheme (Leipzic). Nouveaux Trilobites. Supplement a la notice preliminaire (Prague). Systeme Silurien du centre de la Boheme vol.l Prague 1852, 935 pp., 51 pls., Parallele entre les depots Siluriens de Boheme et de Scandinavie; Prague 1856.

BARRANDE, J. 1850. Graptolites de Boheme. Praha

BARROIS, C. 1892, Memoire sur la distribution des Graptolites en France. Annales de la Societe geologique du Nord, T. XX.p. 75 , Lille, 23 mars. 1892.

BASSLER,R.S. 1915, Bibliographic Index of American Ordovician and Silurian Fossils. U.S. Nat. Mus., Bull. 92, Washington.

BERRY,W.B.N. 1958, Late Silurian Graptolites in N.America (Abstract). Bull. geol. Soc. Aner. v.69,p. 1534.

BERRY, W.B.N. 1960, Early Ludlow Graptolites from the Ashland Area, Maine. J. paleont. v. 34, no.6,p.1158-1163, 2 text figs. Nov. 1960.

BIRD, C. 1881, A Short Sketch of the Geology of Yorkshire. Simpkin, Marshall, \& Co. London.

BONCEV, C. 1931, Graptolites from the defile of the Iskar (Bulgaria). Bulg. geol. Soc. vol.111, pt.3, Sofia 1931.

BOUCEK, B. 1931, Preliminary report on the new species of graptolites from the Gothlandien of Bohemia. Vest geol. Ust. csl r. 8 c. 3.

BOUCEK. Bedrich 1933, "Monographie der obersilurischen Graptoliten aus der Familie Cyrtograptidae." Karlovy Univ. Praha Geologicka paleontologickeho ustav. cislo $1, p .1, p 1.1-7$.

BOUCEK, B. 1936, La faune graptolitique du Ludlowien inferieur de la Boheme.
Bull.Int. Acad. Prague.

BOUCEK,B. \&, A.MUNCH. 1944, Retioliti stredoevropskeho Llandovery a spodniko Wenlocku. Hozpr. 11. tr. Ces. Akad. 53, C.41.

BOUCEK, B. \& A.MUNCH. 1952, Central European Retiolites of the Upper Wenlock and Ludlow. Sbornik ustredniho ust. Geologickeho, Sv.19,p.104. 151. (in Eng.) pl.1,figs.1-14.

BOUCEK, B. \& A.PRIBY工. 1941a, Orodu Petalolithus Suess z Ceskeho siluru Prague. . Rozpr. 11.tr. Ces. Akad. 51, 2.

BOUCEK, B. \& A.PRIBYL. 1941b, Uber Petalfthen aus der Gruppe P.folium (His) und uber Cephalograptus Hopk. Rozpr. 11 tr. Ces. Akad. 52, c31. (Mitteil. der Tschech Akad. der Wissen).

BOUCEK, B. \& A.PRIBYI, 1942, Uber bohmische Nonograpten aus der Untergattung Streptograptus Yin. Rozpr. 11. tr. Ces. Akad. 52, c.1. (Mitteil. der Tschech Akad. der Wissen).

BOUCEK, B. \& PRIBYI, A. 1951, Onekterych tenkych druzich rodu Monograptus Geinitz, zvlaste $z$. podrodu Globosograptus a Mediograptus. Rozpravy 11. Tr. Ceske Akad., 61, c. 13." (Mitteil. der Tschech Akad. der Wissen).

BOUCEK, B. \& PRIBYL, A. 1952, Contribution to our Knowledge of the Cyrtograptids from the Silurian of Bohemia and on their Stratigraphical Importance. Bull. Int. Acad. Prague no. 9.

BRONN, H. G. 1835, Lethaea Geognostica v.l.
BRONN, H.G. 1846, Index Palaeontologicus, B. Enumerator; Stuttgart 1846.
BROWN, I. \& K.M. SHERRARD, 1951; Graptolite Zones in the Silurian of the Yass-Bowning District of New South Wales. Journ. \& Proc. Roy. Soc. N.S.W. v. 85 p. 122.

BULMAN, O.M.B. 1929, The Genotypes of the Genera of Graptolites. Ann Mag. Nat. Hist. 10, v.4, no20. 1929.

BULMAN, O.M.B. 1936, Rhaphidograptus, a new Graptolite Genus. Geol. Mag. v. 73,p.19.

BULMAN, O.F.B. 1938, Graptolithina in Schindewolf's 'Handbuch der Palaozool- r ogie,' vol. 2D. pp. Dl-D92, Berlin Gebruder Borntraeger.

BULMAN, O.M.E. 1955, Treatise on Invertebrate Paleontology. Part V Graptolithina (Editor R.C.Moore). Geological Society of America and University of Kansas Press.

BULNAN, O.M.B. 1960, Some Morphologically Intermediate Genera in Graptolite Phylogeny. Intern. Geol. Congress, Report of the 21 st Session, Norden. Denmark. Finland. Iceland. Norway. Sweden 1960. Pt. XXIl Proceedings of the International Paleontological Union. Det Berlingske Bogtrykkeri Copenhagen 1960.

BULMAN, O.M.B. 1962 , On the Genus Amplexograptus Lapworth, Elles \& Wood. Geol
Mag. XC1X.No.5,p.459. Sept.-Oct. 1962....
BURMEISTEF;H. 1843, Die Organisation der Trilobiten, aus ihren lebenden Verwandten entwickelt, etc. pp.1-147, plates 6. Berlin.

CARRUTHERS,W. 1867 A Graptolitess their Structure and Systematic Position. Intellectual Observer $11(4) \& 11(5)$ nos. $64 \& 65$.

CARRUTHERS, W. 1867 B in Nurchison's Siluria, Appendix D. London 1867.
CARRUTHERS, 1868, A Revision of the British Graptolites. Geol. Mas. Vol.V, 1868, p.126, 127.

CHALLINOR, J. 1951, Geological Research in Cardiganshire, 1842-1949. Ceredigion, 1, no. 2 p.144.

ClOOS,H. 1938, Primare Richtungen in Sedimenten der rheinischen Geosynkline Geol. Rund. v.29,p.357.

COPE, R.N. 1954, The Silurian Rocks of the Devilsbit Mountains. Ph.D. Thesis, Liverpool University.

$$
g_{0}+\operatorname{rin}_{2}
$$

cox, 工. 1934, On the Structure of Monograptus dubius Suess. Ann. Mag. Nat. Hist. (10). 14, p. 421.

CUMMINS, W.A. 1957, The Denbigh Grits: Wenlock Greywackes in Wales. Geol. Mag. v. 94, p. 433.

DAIRON, J. 1874, Notes on the Silurian Rocks of Dumfrieshire and their fossil remains. Trans. Geol. Soc. Glasg. 5, 176-184.

DAKYNS, H.R. et. al. 1890, The Geology of the Country around Ingleborough. Mem. Geol. Surv. G.B.

DAKYNS, et. al. 1891, The Geology of the Country around Mallerstang. Mem. Geol. Surv. G.B.

DAVIES, K.A. 1929, Notes on the Graptolite Faunas of the Upper Ordovician and Lower Silurian. Geol. Mag. v.66, p.l.

DAVIES, J.W. \& F.A. LEES, 1876, West Yorkshire. Reeve \& Co. London.

DECKER, CHARLES E. 1935, Graptolites from the Silurian of Oklahoma. J. PaleontVol.9, No. 5, pp.434-446, July 1935.

DELO, D.M. 1935, A revision of the Phacopid trilobites. Paleont. v. 9, p. 402.:
DESIO, A. 1940, Fossili neosilurici de Fezzan occidentale. Inst. di Geol., Paleont. e. Geog. Fisica della R. Univ. di Milano.

EISEL, R. 1912, Uber zonenweise Entwicklung der Rastriten und Demirastriten Jahresb. d. Gesell. d. Freunde d. Naturwiss. in Gera, 53-54, 1912.

ELLES, G.L. 1897, The Sub-genera Petalograptus and Cephalograptus. Quart. Journ. Geol. Soc. Lond. v. 53.

ELLES, G.L. 1900, The Zonal Classification of the Wenlock Shales of the Welsh Borderland. Quart. Journ. Geol. Soc. Lond. v.56, p. 370.

ELLES, G.L. \& E.M.R.HOOD, 1901-18, Monograph of British Graptolites (Edited Charles Lapworth). Monograph of the Palaeontographical Society Lond.

EMMONS, E. 1855, American Geology, v.l.pt. 2.

ERRICH, H.F. 1839, De Trilobites: Dissertatio petrofactologica etc. 56 pp . 1 pl. Berolina 1839.

FLINN, D. 1962, On Folding during Three dimensional progressive Deformation. Quart. Journ. Geol. Soc. Lond. v.118, p. 385.

FRECH, F. 1897, "Lethaea Geognostica", in continuation of Roemer's Lethaea Palaeozoica" vol.l Graptolithen. Stuttgart.

GEINITZ, H.B. 1842-46, Uber Graptolithen, p. 700 Neues Jabrbuch fur Mineralogiests. Stuttgart 1842. - Uber Vesteinerungen des Herzogsthums Altenburg 1842 - Grundriss der Versteinerungen 1846.

GEINITZ, H.B. 1852, Die Versteinerungen der Granwacken formation. (Die Graptolithen). Leipzič.

GEINITZ, H.B. 1890, Die Graptolithen des k. Mineralog. Mus. in Dresden. Mitteil. d. Kgl. mineral-geol. und naturhist. Niuseums in Dresden.

GEOLOGICAL SOCIETY OF AMERICA, 1951, Rock-Color Chart.

GLEMAREC, L. 1929, Etude de la faune graptolitique des Ampelites de Palique (Ille-et-Vilaine). Bull. Soc. geol. et min. de Bretagne, 10 (1929).

GORTANI, M. 1920, Contributo allo studio del Paleozoico Carnico. pt. G. Faune a Graptoliti. Paleontographica Italica, Mem. di Paleont. v.26, Pisa.

GORTANI,M. 1922, Fauna paleozoic della.Sardegna. Graptoliti di Goni. I. Graptoliti della Sardegna orientale. 2. Paleont. Italica, v. 28. Nem. di Paleont.

GORTANI, M. 1924, Contribuzioni allo studio de Paleozoico Carnico, 7, Graptoliti del Monte Hochwipfel. Palaeont. Italica v.29, Mem. di Paleont.

GORTANI, Michele 1925, La Serie Graptolitica delle Alpi Carniche. Bologna Cooperativa Tipografica Assoguidi.

GORTANI, Michele 1950, Graptoliti di Rigolata (Carnia). Societa Cooperativa Tipografica.

GURICH, G. 1908, Leitfossilien, 1: Kambrium und Silur, pp.1-95 Berlin.

HABERFELNER, E. 1929, Ueber das Silur in Balkan. Nord von Sofia, Bulganien. Mitteil. Naturwiss Ver. f. Steiermark, LXVI, Graz. 1929.

HABERFELNER, E. 1930, Uber das Silur in Balkan, nordilch von Sofia, Mitteil. naturwiss. Ver. 1. Steiermark, p.104-149. Graz 1930.

HABERFELNER, E. 1931, Graptolithen aus dem Obersilur der Karnischen Alpen 1. S.B. Akad. Wiss. Wien. Abt. 1, h.2, pp.89-168.

HABERFELNER, E. 1936, Neue Graptolithen aus dem Gotlandium Bohmens, Bulgariens und der Karnischen Alpen. Geologica Balkanica, Bd.2, Sofia.

HAUPT, K. 1878, Die Fauna des Graptolithengesteines. Neues Lausitzisches Nag. v. 54 .

HEIDENHAIN, 1869, Ueber Graptolithenfuhrende Diluvial Geschiebe der Norddentschen Ebene. Zeitschr. d. Deutsch. Geol. Gesell bd. 21.

HALL, J. 1848/52, Graptolites of the Inferior Strata of the New York System. Palaeontology of New York. v.l. Palaeontology of New York.v.2.

HALL,J. 1865, Graptolites of the Quebec Group. (Geol. Surv. Canada). Canadian Organic Remains. : dec. 2, Montreal.

HABKNBSS, 1850, "On the Silurians of Dumfrieshire" 1850 pp.47-65 lpl. Quart. Geol. Soc. Lond. v. 7.

HARKNESS, R. 1851, Description of the graptolites found in the Black Shales of Dumfrieshire. Quart. Journ. Geol. Soc. Lond. v.7. p. 58.

HARKNESS, R. \& H.A. NICHOLSON, 1868, On the Coniston Group. Quart. Journ. Geol. Soc. Lond. v.24. p. 296.

HARRIS, W.J. \& D.E. THOMAS 1937, Victorian Graptolites (New Series). Pt.4, Minig. a Geol. Journ. v.l.

HISINGER, 1828, Krotka graptoliter fran Furudal. Anteckningar Physik och geognosi, b. 4 .

HISINGER, W. 1837, Lethaea Suecia seu Petrifacator, iconibus et characteribus illustrata.

HOLM, G. 1890 , Gotlands Graptoliter. Bihang K. Svenska Vet. - Akad. Handl. bd. 16, af. 4, nol7.

HONG, Y.C. 1958, Ludlovian Graptolites Faunas of the Yangtze Garges District and Their Stratigraphical. Acta Pal. Sinica, 6. No.1, pp.91115. Nanking.

HOPKINSON, J.. 1869, On British Graptolites. Journ. Quekett Microsc. Club, 1 Lond on 1869.

HOPKINSON, J. \& C. LAPLORTH, 1875, The Graptolites of the Arenig and Llandei: lo Rocks of St. Davids. Quart. Journ. Geol. Soc. Lond. V. 31

HSU, S.C. 1934, The Graptolites of the Lower Yangtze Valley. Mon. Nat. Research Inst. Geol., Ser. A, V. 4, p.1-106, pl.1-7,fig.1-36.

HUGHES, T. McK. I¢66, Note on the Silurian Rocks of Casterton Low Fell, Kirby Lonsdale, Westmorland. Geol. Mag. v. 3, p. 206.

HUGHES, T. McK. 1867, "On the Break between the Upper and Lower Silurian Rocks of the Lake District, as seen between Kirby Lonsdale and Malham near Settle." Geol. Mag. v. 4, p. 346.

HUGYES, T: MoK. 1994, Observations on the Silurian Rocks of North Wales. Proc. Chester Soc. Nat. Sci. no. 4, p.141.

HUCHES, T. McK. et. al. 1889, Nap Sheet 97NW (New Series Sheet 40) 1 " to 1 mile Mem: Geol. Surv. G.B.

HUNDT, Rudolph, 1920, "Studien au deutschen Funden des Gattung Monograptus Geinitz." Centralbl. Min. Geol. Paleont. p.148-158.

HUNDT, R. 1921, Beitrage zur Kenntris der Graptolithen fauna Deutschlands (West Thuringisches Schiefergebirge, Kellerwald, Katzbachgebinge). Jahrb. Preuss. Geol. Landesanstalt, f. 1920, vol.41, pp.148-207.

HUNDT, Rudolph, 1924, "Die Graptolithen des deutschen Silurs." Leipzig. HUNDT, R. 1939, Mitteldeutsche Graptolitheumeer (M. Boerner Verlag). Hallea S 1939.

JAEGER, H. 1959, Graptolithen und Stratigraphie des jungsten Thuringer Silurs. Abhandl: Deutsch. Akad. der Wissen Berlin 1959; no. 2.

JAEKEL, 0. 1889 , Uber das Alter des sogenannten Graptolithengesteins. Ztschr. deutsch. geol. Ges. v. 41, p. 635.

JONES, O.T. 1909, The Hartfell-Valentian Succession in the District around Plynlimon and Pont Erwyd (North Cardiganshire). Quart. Journ. Geol. Soc. Lond. v.65, p. 463.

JONES, O.T. 1925, The Geology of the Llandovery Districts Part.1 - The Southern Area. Quart. Journ. Geol. Soc. Lond. v.81,p.344.

JONES, O.T. 1949, The Geology of the Llandovery District: Part 2, 年 The Northern Area. Quart. Journ. Geol. Soc, Lond. v. 105,p. 43.

JONES, O.T. \& PUCH W.J. 1916, Geology of the Country around Machinleth and the Llyfnant Valley. Quart. Journ. Geol. Soc. Lond. v. 71 p. 343.

JONES, O.T. \& W.J.PUGH. 1935, The Geology of the districts around Machynlleth and Aberystwyth. Proc. Geol. Assoc., v.46,p.247.
Joms, 1/3.17, 175.
KEBLE, R.A. \&W.N. BENSON. 1939, Graptolites of Australia: Bibliography and History of Research. Mem. Nat. Mus. Melb, 11, p.11.

KIRSTE, E. 1919, Die Graptolithen des Altenburger Ostkreises. Mitteilung aus dem Osterlande, Bd. 16.

KUFNE, W.G. 1953, The Prosicula of Retiolites geinitzianus Barr. Geol. Mas. v. 90 no.6, p.444.

KUPNE, W.G. 1955, Unter Ludlow-Graptolithen aus Berliner Geschieben. n N. Jb. Geol. Palaeont. Abh. 100, 3, pp.350-401. Stuttgart.

KURCK, C. 1882, N Gra nya Graptolitarter fran SKane Geol. Foren. Stockh. Forh. v.6, p.294.

LAKE, P. 1896, The British Silurian species of Acidaspis. Quart. Journ. Geol. Soc. Lond. v. 52 p. 235, plates.

LAPWORTH, C. .1873, On an Improved Classification of the Rhabdophora. Geol. Maฐ., v. 10, p.500, p. 555.

LAPWORTH, C. (in Hopkinson \& Lapworth) 1875, The Graptolites of the Arenig and Llandeilo Rocks of St. Davids." Quart. Journ. Geol. Soc. Lond. v. 31. .

LAPWORTH, C... I876a, On Scottish Monograptidae. Geol. Mag. Dec. 2, v. 3.

LAPWORTH, C. 1876b, Catalogue of the Western Scottish Fossils. Glasgow.

LAPWORTH, C. 1876c, Appendix in Swanston and Lapworth; On the Silurian Rocks of Co. Down. with Appendix. Proc. Belf. Nat. Field Club.

LAPWORTH, C. 1877, On the Graptolites of County Down. Proc. Belf. Nat. Field Club, 1876-77. Hppendix Belfast 1877.

LAPWORTH, C.H. 1880, On new British Graptolites. Ann. Mag. Nat. Hist. vol.v. ser. 5, London, 1880.

LAPWORTH, C. 1880, On the Geological Distribution of the Rhabdophora. Ann. Mag. Nat. Hist. Ser. 5, Vol.5, 1880.

LAPWORTH, H. 1900, The Silurian Sequence of Rhayader. Quart. Journ. Geol. Soc. Lond. v. 56, p. 67.

La TOUCHE, J.D. 1884, Handbook to the Geology of Shropshire.

LAURSENT, Dan, 1940-43, Cyrtograptusskifrene pan Bornholm 1, 11: Danmarks Geol. Unders. no. 64, p.1-39, pl.1-5,figs.1-29: no. 70, pl.19,pl.1-3, fig.1-3.

LAURSEN, D. 1940 and 1943, Cyrtograptusskifrene pan Bornholm, 11. Nr. 64. Danmarks Geol. Unders. Kobenhavn 1940.

LEVINA, E.F. 1928, Graptolity ie Ak-Tengi v Turkestanskom khrebte. Tr. Sr.-Az. Un-Ta. ser, 7a. Geologiya, Byp.5, 1928.

MALAISE, C. 1873, Note sur la description du terrain Silurien du centre de la Belgique. Ann. Soc. Malacologique de la Belgique, t. 8

MARR, J.E. 1876, On some well-defined life-zones in the lower part of the Silurian of the Lake District. Quart. Journ. Geol. Soc. Lond. จ. 34, p. 871.

MARR, J.E. 1892, On the Wenlock and Ludlow strata of the Lake District. Geol. Mag. (n.s.3), 9, p.534.

MARR,J.E. 1900, Notes on the Geology of the English Lake District. Proc. Geol. Assoc. v. 16, p.449.

MARR, J.E. 1913, The Lower Palaeozoic Rocks of the Cautley District (Yorkshire). Quart. Journ. Geol. Soc. Lond. v.69,p.1.

MARR, J.E. 1916, The Geology of the Lake District and the Scenery as influenced by Geological Structure. Cambridge.

MARR, J.E. 1925, Conditions of Deposition of the Stockdale Shales of the Lake District. Quart. Journ. Geol. Soc. Lond. v.81,p.113.

MARR, J.E. 1927, The Deposition of the Later. Silurian Rocks of the Engliel Lake District. Geol. Mã̃. v.64, p.494.

MARR, J.E. \& W.G. FEAFNSIDES. 1909, The Howgill Fells and their Topography. Quart. Journ. Geol. Soc. Lond. v. 65, p. 587 .

MARR, J.E. \& W.G. FEARNSIDES, 1911, Notes on the Lower Palaeozoic Rocks of the Cautley District, Sedbergh, Yoaks. Rept. Brit. Assoc. Adv. Sci. 1910.

MARR, J.E. \& H.A. NICHOLSON 1888, The Stockdale Shales. Quart. Journ. Geol. Soc. Lond. v.44, p. 654.
Mc.LEARN, F.H. 1924, "Paleeontology of the Silurian rocks Arisaig". Geol. Survey Canada. Mem. 137. 180 pp., 30 pls.

M'COY, F. 1850, On some New Genera and Species of Silurian Radiata in the Collection of the University of Cambridge. Ann. Mas. Nat. Hist. ser.2, v. 6.

M'COY, F. 1851, see Sed

MENEGHINI, G. 1857, Palaeontologie de l'ile Sardaigne (Voyage en Sardaigne par A. Lamarmara. Part 3. Description geologique) 1. Turin 1857.

MILLER, S.A. 1889, North American Geology and Paleontology Cincinnati.

MITCHELL, G.H. 1956, The Geological History of the Lake District. Proc. Yorks. Geol. Soc. v. 30, p. 407.

NOBERG, Y.C. \& S.I. TORNQUIST 1909, Rэtioloidea fran Skanes Colonusskiffer Sverig. Geol. Unders., Arsb., 2, no.5.

MOORE, D.G. \& P.C. SCRUTON 1957, Minor Internal Structures of Some Recent Unconsolidated Sediments, Bull. Amer. Ass. Petr. Geol. V.41, No.12, p. 2723.

MOORE, R.C. 1955, Treatise on Invertebrate Palaeontology. Part V, GraptoIithina. Geological Society of America and University of Kansas Press.

MOORE, R.C. 1959/61, Treatise on Invertebrate Palaeontology. Part 0. Arthropoda 1, 1959. Part Q. Arthropoda 3, 1961. Geological Society of America and University of Kansas Press.

MU, A.T. 1955, On Spirograptus Gurich. Acta Palaeontologica Sinica v.3, no.l, p.l.

MU, A.T. 1963, Research in Graptolite Faunas of Chilianshau. Scientia Sinica v. 12, no.3, 1963.

MUNCH, A. 1939, Die Graptolithen des Wachtelberges bei Ober muhlbach. 25 Bericht d. Naturwiss. Ges. zuchemnitz.

MUNCH, A. 1942, Die Graptolithen fauna des unteren Ludlow von Ronneburg und . Ungebung. Beitr. zur Geol. v. Thuringen. Bd. 6

MUNCH, A. 1951, Graptolithen von Fabrik berg bei Berthelsdorf (sudlich Eainichen i. Sa). Hallesches Jahrb. fur Mitteldeutsche Erdeeschiche, Bd.1, H. 2 Halle.

NUNCH, A. 1952, Die Graptolithen aus dem austeheude Gotlandium Deutschlands und der Tschechoslowakei. Geologica, Bd.7, Schrift, d. Ged. Instit. d. Univ. Berlin, Greifowald, Halle, Rostoch. p.1-157, p1. 1-62.

MURCHISON, R.I. 1859, Siluria, 2nd Ed. London, p. 94 et seq.

NICHOLSON, H.A. 1866, "On some Fossils from the Craptolitic Shales of Dumfrieshire." Geol. Mag. Vol.11. 1866. p.488-489. pl.XV11.

NICHOLSON, H.A. 1867, "New graptolites from Dumfrieshire." Geol. Mag. v.4, p. 107.

NICHOLSON, H.A. 1868a, On the Graptolites of the Coniston Flags; with notes on the British Species of the genus Graptolites. Quart. Journ. Geol. Soc. Lond. v. 24, p. 521.

NICHOLSON, H.A. 1868 b , On the nature and Zoological Position of the Graptolitidae. Ann. Mag. Nat. Hist. ser. 4, v. 1.

NICHOLSON, H.A. 1869, On some new species of Graptolites. Ann. Nag. Nat. Hist. ser.4. v.4.

NICHOLSON, H.A. 1870, Revision of the Genus Climacograpsus with notes on the British species of the Genus. Ann. Mag. Nat. Hist., ser.4, v. 6.

NICHOLSON, H.A. 1872, On the Silurian Rocks of the English Lake District. Proc. Geol. Assoc. v.3, p. 105.

NORMAN, T.N. 1960, Azimuths of Primary Linear Structures in Folded Strata. Geol. Mag. v. 97, pp.338-343.

NICHOLSON, H.A. 1872, "Monograph of the British Graptolitidae pt.1."

OBUT, A.M. 1949, Polevoi Atlas rukovodiascich iskopaemych graptolitov verchneg̃o silura Kireizkoj SSR. 1-29, Frunze.

OBUT, A.M. 1950, Semejstva i nekotorye rody od moriad-mych graptolitov. Vopr. paleont. XI, pp.264-272, Moskva - Leningrad.

OBUT, A.M. 1957, Klassifikatsiya i ukazatel Rodov Graptolitov. Ezhegodmik Vsesoy us nogo Palaeont. OB-VA T. XVI, 1957, pp.11-47.

OBUT, A.M. 1958, Graptolity Silura v Kerne Burovoy Skvazhiny 64-R Aluksne (Severnaya latriya). Akademiya Nauk Latviyskoy SSR. Riga 1958.

OTLEY, J. 1820, Remarks on the Succession of Rocks in the District of the Lakes. Lonsdale Magazine, v.1, p. 433.

PACKHAM, G.H. 1962, Some Diplograptids from the British Lower Silurian. PalaeontoloEy, v.5, pt.3,p.498.

PELTZIFANN, I. 1934, Graptolithen aus dem Gotlandium der Karnischen. Alpen. S.B. Akad. Wiss. Wien. Abt. 1934.

PERNER, J. 1894-1899, Etudes sur les Graptolithes de Boheme. Palaeontogr. Bohemiae, 1,3, Praha.

PERNER, J. KODYM, O. 1919, O rozcleneni svrchniho siluru v Cechach. Cas Musea kral. ceskeho, r. 1919.

PERNER, J. \& O. KODMM, On the zonal Division and Correlation of the Silurian of Bohemia. Amer. Journ. Sci. v.4, p. 53.

PHILIPPOT, A, 1950, Les Graptolites du Massif Amoricain. Mem. Soc. Geol. et Min. de Bretagne t. 8 .

PHILLIPS, F.C. 1954, The Use of Stereographic Projection in Structural Geology. Arnold. London.

PHILLIPS, J. 1836, The Geology of Yorkshire. Part 2, The Mountain Limestone District. John Murray, London.

PRIBYL, A, 1940a, Revision der bobmischen Vertreter der Monograptidengattung Monoclimacis Frech. Rozpr. 11,. Tr. Ces. Akad., 50,16, pp.I-19. (Mitteil. der Tschech. Acad. der Wissen).

PRIBYL, A. 1940b. O ceskych za stupcich monograptidu ze skupiny Pristiograptus nudus. Rozpr. 11 Tr . ces Akad. r. 50, c.16.

PRIBYL, A. 1941, Pernerograptus nov. gen. und seine Vertreter aus dem bohmischen und aus landischen Silur. Vestn. Kraal. ceske spol. nauk Tr. mat - prir., 8-15, Praha.

PRIBYL, A. 1942a, Revise Pristiograptu z podvodu Colonograptus nov. subgen. a Saetograptus nov. subgen. Rozpr. 11 Tr.Ces. Akad. 52, c. 15.

PRIBYI, A. 1942b, Von bohmischen und freunden Vertreten der Gattung Rastrites Barrande 1850. Rozpr. 11 Tr.Ces. Akad. 51, No. 6.

PRIBYL,A. 1942c, Prispevek k'poznani nemeckych zastupcu rodu Rastrites Barrande. Rozpr.ll Tr.Ces: Akad. 52, no.4. (Mitteil der Tschech. Akad. der Wissen).

PRIBYL, Alois 1942,D, Prispevek k poznani monograptidu zeskupiny druhu Monograptus flexilis. Rozpr. 11, Tr.Ces. Akad 52, no. 5

PRIBYL,A. 1944, Revision aller Vertreter der Gattung Pristiograptus aus der Gruppe $P$. dubius und $P$. vulgaris aus dem bohmischen und ausland ischen Silur. Rozpr. 11 Tr. Ces. Akad. 53, no.4.

PRIBYL, A. 1944, The M. European Monograptids of the genus Spirograptus Gurich. Bull. Int. Acad. Prague, 44-45, 1943-44, p.185232.

PRIBYI, A. 1946A. The Middle European Monograptids of the genus Spirograptus Gurich. Bull. Int. Acad. Prague 1944, v.57, no.la, p.l Praha.

PRIBYI, A. 1946B, Contribution to a new systematic of the Graptolites of the family Monograptidae. Vestn. Stat. Geol. Ust. v. 21, p. 281, Praha.

PRIBYL, A. 1947, Classification of the genus Climacograptus. Bull. Int. Acad. Prague, v.48, no.2.

PRIBYI, A. 1948, Bibliographic Index of Bohemian Silurian Graptolites. Vestn. Stat. Gcol. Ust. v.22, 1948.

PRIBYL, A. 1949, Revision of the Diplograptidae and Glossograptidae of the Ordovician of Bohemia. Bull. Int. Acad. Prague, n.l.

PRIBYL, ALOIS. 1952, Contribution to the knowledge of the Silurian Graptolites of Bulgaria: Bull. Int. Acad. Prague, 53 Annee, no. 8, p.1-37, pl.1-2.

PRIBYI, A. 1954, Phylogeny and the Taxonomy of the Graptolites. Proposal for a revision of their System. Congress Geologique International Alger, 1952, fasc. 19. p.115.

PRIBYL,A. \& A. MUNCH, 1941, Revise stredoevropskych zastupcu rodu Demirastrites Eisel. Rozpr. 11 Tr. Ces Akad. v.52, No. 30. Praha 1941.
? on
PRIBYL, A. \& C. SPARAV, 1955, Bibliographic Index of Bulgarien Upper Silurian Graptolites. Bulgarksa Akademiya na naukite, Safiya, 1955.

QUENSTEDT, F.A. 1879-1881, Petrefacten kunde Deutschlands v.6, Graptolithi.

RANSAY, J.G. 1961, The Effects of Folding upon the Orientation of Sedimentary Structures. Journ. Geol. v.69, p.84.

RICHTER, R. 1850, "Aus der Thuringischen Grauwacke". Ztschr. deutsch. geol. Ges. Bd. 11.

RICHTER,R. 1853, Thuringische Graptolithen. Ztschr. deutsch. geol. Ges. 5. p.439.

RICHTER,R. 1871, Aus dem thuringischen Scheifergebirge. Ztschr. deutschr geol. Ges. 23.

ROMARIZ, C. 1961, Graptoloides das formacoes ftaniticas do silurico portugues. Boletim da Sociedade Geologica de Portugal, v. 14; p.17.

ROMARIZ, C. 1962, Graptolitos do Silurico Portugues. Revista da Faculdade de Ciencias de Lisboa, 2 Serie, C, v.10, Fasc.2, p.ll5.

ROSS,C.A. ${ }^{2}$ 1962, Silurian monograptids from Illinois. Palaeontology v. 5 pt. 1, p. 59.

RUEDEWANN RUDOLF, 1908, "Craptolites of New York; pt.2, graptolites of the higher beds". New York State Mus. Mem. 11.

RUEDEMANN,R. 1947, Graptolites of North America: Geol. Soc. Amer. Mem. 19, Baltimore.

SALTER,J.W. 1849, Figures and descriptions lllustrative of British Organic remains. Mem. Geol. Surv. U.K., Dec. 2, London:

SALTER, J.W. 1852, "Descriptions of some graptolites from the south of Scotland". Quart. Journ. Geol. Soc. Lond. v.8, p. 388.

SALTER, J.W. 1855, see Sedswick \& M'Coy 1851-55.

SALTER, J.W. 1864-1883, A monograph of the British trilobites from the Cambrian, Silurian and Devonian Forms. Mon. Falaeontog. Soc. pp.1-224, pls. 1-30.

SALTER, J.W. 1873, A catalogue of the collection of Cambrian and Silurian fossils contained in the geological museum of the University of Cambridge. pp.i-xlviii, l-204.

SCHARENBERG, W. 1851, Ueber Graptolithen, mit besonderer Berucksichtigung der bei Christiana vorkommenden Arten.

SCHROCK, R.R. 1928, "A new graptolite fauna from the Niagarian of northern Indiana". Am. Journ. Sci. ser. 5, vol.16. pp.1-38.

SEDCWICK, A. 1845, On the comparative Classification of the Fossiliferous Strata of Wales, with the corresponding deposits in Cumberland; Westmorland, and Lancashire. Quart. Journ. Geol. Soc. Lond. v. 1 p. 442.

SEDGWICK, A. 1846, "On Classification of Fossiliferous Slates of Cumberland, Westmorland and Lancashire". Quart. Journ. Geol. Soc. Lond., vol.2, p.106.

SEDGWICK, A. 1852, On the Lower Palaeozoic Rocks at the Base of the Carboniferous Chain between Ravenstonedale and Ribblesdale. Quart. Journ. Geol. Soc. Lond. v. 8, p. 35 .

SEDCWICK, A. \& F. M'COY, 1851-55, A synopsis of the classification of the British Palaeozoic Rocks, with a systematic description of the British Palaeozoic Fossils in the geological museum of the University of Cambridge. 1851: pp.i-iv, 1-184, 11 plates; 1852 pp.i-x, 185-406, pls. $1 \mathrm{H}, \mathrm{I}, \mathrm{K}, \mathrm{L}, 2 \mathrm{~A}, \mathrm{~B}, 1855 \mathrm{pp}$. i-xcviii, 407-662, pls.2C,D,3A-I,K. London and Cambridge.

SHERRARD, K.M. \& I.BROWN. 1951, Graptolite Zones in the Silurian of the Yass-Bowning District of New South Wales. Journ. \& Proc. Roy. Soc. N.S.W.

SHOTMON, F.W. 1935, The Stratigraphy and Tectonics of the Cross Fell Inlier. Quart. Journ. Geol. Soc. Lond. v. 91 p. 639.

STRACHAN,I. 1960, The Ordovician and Silurian Graptolite Zones in Britain. Intern. Geol. Congr. 2lst Session Norden part 7. p.10S

STRUVE, W. 1959, In Moore: Treatise on Invertebrate Palaeontology. Part 0. Arthropoda 1.

SUDBURY, M. 1958, Triangulate Monograptids from the Monograptus gregarius Zone (Lower Llandovery) of the Rheidol Gorge (Cardigan-. shire). Phil. Trans. Roy. Soc. Lond. B, v. 241, p. 485.

SUESS, E. 1851, Ueber Bohmische Graptolithen. Naturwissensch. Abhandl. von Haidinger Bd. 4 , Abth. 4 .

SUN,Y.C. 1933, Ord. \& Sil. Graptolites from China. Paleontologia Sinica. Peking 1933. Ser.B, 14, fax.1.

SCHWARZBACH,M. 1934, Beitrage zur Geologie des Bober-Katzbach-Cebirges. Centralbl. f. Min. etc. 1934, Abt. B, 10, p.401.

THONAS,D.E. \& R.A.KERLE. 1933, Proc. Roy. Soc. Vict. v. 45 (n.s.) pt. 2. p. 50 .

THOMAS, H.H. 1900, Fossils in the Oxford Museum, lV: Notes on some undescribed Trilobites. Quart. Journ. Geol. Soc. Lond. v. 56, p. 616.

TOMCZYK, Henryk, 1956, Wenlock and Ludlow in the Kielce Synoline Swiety Krayz Mountains. Inst. Geol. Prae, t.XV1 p.104.

TOPNQUIST, S.L. 1890/92, Undersokninger ofrer Siljansomradets Graptoliter 1/11. Lunds. Univ. Arsskr., v.26,28, Lund.

TORNQUIST, S.L. 1890, Siljan somradets Graptoliter, i, Lunds, Univ. Arsskr,26. TORNQUIST, S.L., 1893, Observations on the Structure of some Diprionidae. Lunds Univ. Arsskr., 29.

TORNGUIST, S.L. 1897, On the Diplograptidae and the Heteroprionidae of the Scanian Rastrites Beds. Äcta Reg. Soc. Physiog. Lund. v. 8.

TORNQUIST, S.L. 1899, The Konograptidae of the Scanian Rastrites Beds. Acta Univ. Lund. v. 35 .

TORNQUIST, S.L. 1907, Observations on the Genus Rastrites and some allied sps. of Monograptus. Lunds. Univ. Arsskr. N.F. Afs. 2, Bd.3, No.5, Iund. 1907.

TULLberg, S.A. 1882, On the graptolites described by Hisinger and the older Swedish authors. Bih. t. kgl. svenska vet. acad., hadl. 6, Ns. 13 Stockhoim, 1882.

TULLBERG, S.A. 1883, Skanes Graptoliter, 2. Sver. Geol. Unders., ser. C, no. 55. Stockholm.

URBANEX, A. 1953, 0 dwoch gatunkach Monograptidae. Acta Geol. Pol. v.3, no. 2, p.277, Consp. 100-107.

URBANEK, A. 1954, Obserwacje nad morfologia pewnych Monograptidae. Acta Geol. Pol. v.4, no.2; p.291, Consp. 78-88.

URBANEK, A. 1958, Monograptidae from Erratic Boulders of Poland. Palaeontologia Polonica no.9. 1958.

VODGES, A.W. 1890, A bibliography of Palaeozoic Crustacea from 1698 to 1889 including a list of North American Species and a systematic arrangement of genera. U.S. Geol. Súrv. (Washington) Bull. 63, pp.1-177.

WALCH, 1771, Naturgeschichte der Versteinerungen zur Erlauterung der Knorr'schen Sammlung von Merkwerdigkeiten der Natur' suppl.

WALKER, M. 1953, The development of Monograptus dubius and M. chimaera. Geol. Nag. v.90, p. 362.

WATERLOT, G. 1945, Les Graptolithes du Maroc; premiere partie: generalities sur les Graptolithes. Serv. geol. Maroc. Notes et Memoires. Man. No. . 63 (1945).

WATNEY, G.R. \& E.G. WELCH. 1910, The Graptolite Zones of the Salopian Rocks of the Cautley Area near Sedbergh, Yorkshire (Summary) Geol. Mag. (5) 10 p. 473.

WATNEY, G.R. \& E.G. WELCH, 1911 A, The Zonal Classification of the SalopIan Rocks of Cautley and Ravenstonedale: Quart. Journ: Geol. Soc: Lond. v. 67, p.215.

WATNEY, G.R. \& E.G. WELCH, 1911B, The Graptolite Zones of the Salopian Rocks of the Cautley Area near Sedbergh, Yorkshire. Rep. Brit. Assoc. Adv. Sci. 1911 p. 603.

WHITAKER, J.H. MCD. 1962; The Geology of the Area Around Leintwardine, Herefordshire. Quart. Joutn. Geol. Soc. Lond. v. 118 p. 319.

WHITTARD, W.F. 1961, Lexique Stratigraphique International Part 3a V, Silurian. Centre National de la Recherche Scientifique.

WHITTINGTON, H.B. 1959, see Moore R.C. 1959.
WILLS, J.W. 1952, A Palaeogeographical Atlas of the British Isles and adjacent parts of Europe. Blackie \& Son Ltd. London \& Glasgow.

WILSON, D.W.R. 1954, The Stratigraphy and Palaeontology of the Valentian Rocks of Cautley (Yorks. W.R.). Unpublished Ph.D. Thesis, University of Birmingham.

WIMAN, C. 1893, Ueber Monograptus Geinitz. Bull. Geol. Instit. Upsala no. 2, v.l.

WIMAN, C. . 1895, Ueber die Graptolithen. Bull. Geol. Instit. Upsala art.no. 6. WOOD, A. \& A.J.SMITH, 1958, The Sedimentation and Sedimentary History of the Aberystwyth Grits (Upper Llandoverian). Quart. Journ. Geol. Lond. v. 114, p. 163.

WOOD, E.M.R. 1900, The Lower Ludlow Formation and its Graptolite Fauna. Quart. Journ. Geol. Soc. Lond. $v .56$, p. 415.

WOOD, H. 1891, Catalogue of the Type Fossils in the Woodwardian Museum, Cambridge. pp.i-xvi, 1-180.

WORDSWORTH, W. 1842, Scenery of the Lakes of England. Ist Edition, Kendal (Three Letters on the Geology of the Lake District by Rev. A. Sedgwick, pp.181-225).

WORDSWORTH, W. 1853, Scenery of the Lakes of England. 5th Ed. Kendal. (Lett- if ers by Rev. A. Sedgwick).

YIN, T.H. 1937, Brief description of the Ordovician and Silurian Fossils from Shihtien. Bull. Geol. Soc. China. v.l6.

ALIMEN, H. 1952, Monographie Regionales $1^{\text {ere }}$ Serie: Algerie No.15, Les Chaines D'Ougarta et la Saoura. XIX emeCongress Geologique International.

BAFRANDE, J. 1860, Colonies dans le basin silurien de la Boheme. Bull. Soc. • geol. Fr. ser.11,17, pp.602-666. Paris 1860.

BARRANDE, J. 1865, Defense des Colonies 111 Etude generale sur nos etages G-H avec application speciale aux environs de Hiubocep, pres Prague. Prague 1865.

BARRANDE, J. 1870, Defense des Colonies IV, Description de la Colonie d'Archiac. Prague, 1870.

BJERRING, PEDERSEN, Th., 1922, Rastrites skiferen pa Bomholm. Medd. Geol. Foren, Bd.6, No.11, Kobenhavn.

BLACKIE, R.C. 1933, "Silurian Rocks of the Kentmere District." Proc. Liverp. . Geol. Soc. Vol.16, pp.88-105.

BOSWELL, P.G.H. 1945, The occurrence of the Zone of C.rigidus (Wenlock Series: in North Wales with notes on the age of the Denbigh Grit Series. Proc. Liverp. Geol. Soc. v. 19, pp.72-96.

BOSWELL, P.G.H. 1949, The Middle Silurian Rocks of North Wales. Arnold, London.

BOHLEN, BIRGER, 1950, The affinities of the graptolites. Geol. Inst. Univ. Upsala Bull. v.34, pp.107-113, ( \& personal letter to Decker etc.).

BOUCEK, B. 1934, Bernerkungen zur Stratigraphie des bohmischen Cotlandien und seinen Faziesverhaltnissen. Centralblatt f. Miner. etc. Abt. B, pp.477-494. 1934.

BOUCEK, Bedrich. 1943, "Uber einige gedornte Diplograptiden des bohmischen und sachsischen Silure.". Bull. Intern. Acad. Prague, 44-45, 1943-44, pp.352-357.

BOUCEK, B. 1958, Graptolitove fauny ceskeko siluru a jejich biostratigraficky vyznam. Pracovni sjezd ostratigrafii siluru adevonu praha.

BOUCEK, B. 1960, Einige Bemerkingen zur Entwicklung der Graptolithen fauner in Mitteldeutschland und Bohmen. Geologie, J.9, H.5.p.556, Berlin.

BULMAN, O.M.B. 1931, South American Graptolites. Arkiv. f. 2001., Band 22A No.3, p.1-12, fig.1-41.

BULMAN, O.M.B. 1932, 1936, On the Graptolites prepared by Holm, I-V11. Arkiv. f. zool., vol.24A, (1932) vol.26A (1934); vol.28A (1936).

BULMAN, O.M.B. 1937, "Carl Wiman's Work on the structure of the graptoloidea." Bull. of Geol. Inst. of Upsala Vol. XXVIl.

COZ, I. 1933, "On Climacograptus sp. nov. and its develonment." Geol. Mas. Vol.LXX, No.823, pp.1-19.

CoX, I. 1934, "On the structure of M.dubius(Suess)." Ann. Nag. Nat. Hist. Ser.10, VoI.XIV, p. 421.

CUMINS, W.A. 1959, The Ludlow Grits in Wales. Proc. Liverp. \& Manchr. Geol. Soc. 2, pp.168-179.

DAS GUPTA, T. 1932, "The Salopian Graptolite Shales of the Long Mountain and similar Rocks of Wenlock Edee." Proc. Geol. Assoc. V.43,pp.325363.

DAS GUPTA, T. 1935, The Zone of Monograptus vulgaris in the Welsh Borderland and North Wales. Proc. Liverp. Geol. Soc. v.16,p.109.

DECKER, C.E. 1942, A Silurian graptolite zone in Crane County, Texas. Bull. Amer. Ass. Petrol. Geol. 26, 851-60.

DECKER, Charles E. 1954, A New Graptolite from S., Dakota. J. Paleont. v.28, pp.208-209, figs.1-5.

DECKER, Charles E. \& Neal Hassinger 1958, What Higher Magnification is doing for the study of Graptolites. J. Paleont. 1958, v. 32. No. 4, p.687-700, pls. 95-97.

DELO, D.M. 1935, "The genotype of Dalmanites". Paleont. v.9,p.424-6.

DEHLO, D.M. 1940, Phacopid Trilobites of North America. Geol. Soc. Amer., Special Papers 29.

DELO, D.M. \& J.R. Ball, 1940, New Species of Silurian Dalmanites from. S.E.Missouri. Aner. Mid. Nat. v.24, no.2, p.407.

DeSITTER, L.U. 1959, Structural Geology. McGraw-Hill. pp.1-552.

EASTWOOD, J. 1935, Eritish Regional Geology. Northern England. Ist Ed. etc. London.

ELLES, G.L. 1909, "On the Relation of Ordoxician \& Silurian Rocks of Conway". Quart. Journ. Geol. Soc. Lond. v.65, p. 169.

ELLES, G.L. 1919, The Graptolite Subfaunas of Anglesey. The Geology of Anglesey. Mem. geol. Surv. G.B. vol.2, pp. 414417.

ELLES, G.L. 1922, The Graptolite Faunas of the British Isles. A study of evolution. Proc. Ceol. Assoc., vol.33, pp.168-200.

ELLES, G.L. 1933, "Graptolite Assemblages and the dootrine of Trends". Geol. Mag. v. 70 No. $830 \mathrm{pp} .351-354$. .

ELLES, G.L. 1939, Factors Controlling Graptolite Successions and Assemblages" Geol. Mag. v.76, 1939, pp.181-187.

ELLES, G.L. 1940, "Graptogonophores." Geol. Mag. v.77, no.4, pp.283-289.

ELLES, G.L. 1942, "The type specimen of M.sedgwicki (Portlock)." Geol. Mag. v.79, No.79, pp.31-33.

ELLES, G.L. \& I.D.SLATER, 1906, The Highest Silurian Rocks of the Ludlow District. Quart. Journ. Geol. Soc. Lond. v.62, pp.195-222.

ELLES, G.L. \& E.M.WOOD, 1922, "The Graptolite Faunas of the British Isles." P.G.A. v.33, pp.168-200 1922.

ELLES, G.L. \& E.M.R. WOOD, 1925, The Characteristic Assemblages of the Graptolite Zones of the British Isles." Geol. Mas. v. 62, pp.337-47. 1925.

FEARNSIDES, W.C. 1912, Report of an excursion to the Porthadoc and Criccuth district of South East Caernarvonshire. Proc. Geol. Ass. 23, 199-217.

FOLLOT, J. 1952, AHnet et Mouydir. Monogr. Regionales $I^{\text {ere }}$ Serie: AlgerieNo.1, XIX eme Congress Geologique Internat.

GENTIL, L. 1905, Sur la presence de schistes a Graptolites dans le Haut-Atlas morocain. C.R. Akad. Sc.t. 140, p. 1659.

GORTANI, M. 1934, Successione di faune a Graptoliti rei duitorni di Goris (Sardegna). Reudic. R. Accad. Lincei, Cl.Sc.fis. mat e nat.,19, ser.6. (1934).

GRABAC, A.W. 1929, Origin, distribution and mode of preservation of the graptolites. Inst. Geol. Nat. Res. Council, China, Mem.V11, 52 pp.

GRABAU, A.W. \& O'CONNEL M. 1917, Were the Graptolite Shales, as a rule Deep or Shallow water Deposits? Bull. Geol. Soc. Amer. vol. 28, pp.959-964.

GURLEY, R.R. 1896, "North American graptolites". Journ. Geol. vol.4, pp.63-103. 291-311.

HAEERFELNER, ERICH, 1931, Craptolithen aus dem Obersilur der Karnischen Alpen 11. Unter-Llandoverylydite vom Polinik und von der Weidegser Hoke. S.B. Akad. Wiss. Wien. Abt. 1. 10.

HALL, J. \& CLARKE, J.M. 1888, Nat. Hist. of New York Paleontology. Containing descriptions of the Trilobites and other Crustacea of the Oriskany etc. Albany. Vol. Vll text and plates.

HALL, T.S. 1899, "The graptolite bearing rocks of Victoria (Aust). Geol. Mag. n.ser. dec. 4,vol.4, p. 438.

HARPER, H.C. 1948, The Ordovician and Silurian Rocks of Ireland. Proc. Liverp. Geol. Soc. 20, 48-67.

HARKNESS; 1855, Anthracitic Schists and Fucoidal Remains in the Lower Silurian Rocks of South of Scotland. Quart. Journ. Geol. Soc. Lond. V.II.

HEDE, J.E. 1915, Sk nes Colonusskiffer 1. Kgl Fysiogr. Sallsk Hand. N.F. Bd. 26. No.6. Lund.

HEDE, J.E. 1941, On the Correlation of the Silurian of Cotiand.Medd. Geol Min. Inst. 101, pp.1-25. Iund.

HENIMAN, M. 1941, Cyrt. praecursor, C.elegans, B. gracilis und einige Neuheiteu aus dem Downtonian von Ronneburg. Beitrage, zur Geologie v. Thuringen, Bd. Vl Jena.

HERITSCH, F. 1928, Das Silur von Bohmen. Geol. Rund. Bd. 19, p.321-344.

HERITSCH, F. 1934, The Graptolite Faunas of the Cothlandian in the Eastern Alps and their Relationships. Geol. Mag. v.71,pp.268275.

HICKS, H. 1976, Llandovery rocks in the Lake District. Geol. Mag. Dec. 2. v.3. pp. 335 \& 429.

HOLLAND, C.H. 1960, Load-cast terminology \& origin of convolute bedding: Some comments. Bull. Geol. Soc. America. v.71. No.5, May $1960 \mathrm{pp} .633-634$.

HOLLAND, C.H. J.D.Lewsun \& V.G.Walmsley 1959, A revised classification of the Ludlovian Succession at Ludlow. Nature, Land. 184, 1037-9.

HOLLAND, C.H., J.D. LAWSON \& V.G. WALMSLEY 1962, Ludlovian Classification A reply. Geol. Mag. V. 99 No.5, p.393. Sept.-Oct. 1962.

HOLLINGNORTH, S.E. 1955, Geology of the Lake District - a Review. Proc. Geol. Assoc. v.65, pp.385-402.

HOLM, G. 1890, "Gotlands Graptoliter", Bihang Till K.Șv. Vet. Akad. Handl. Band 16, Afd. iv. no.7. p.161, Taft.1, fiEs.18-26. Stockholm, 1890.

HORNY, R. 1955, Studie o vrstvach budnanskych v zapadri casti barrandienskeho siluri. Sbor. Ustr. Ust. Geol. sv. XXl, pp.315-409, Praha.

$$
1567 \text { 1.en } 160
$$

HUGHES, T. McK. 1866, "Note on the Silurian Rocks of Casterton Low Fell, Kirkby Lonsdale, Westmorland". Geol. Mag. v.3, p. 206.

HUNDT, R. 1935, Die Graptolithen fauna des obersten Obersilur Thuringens. Zeitschrift fur Naturw., Band 91, Heft. Hallea. A.. 1935.

HUNDT, B. 1943, Graptolithen Probleme Der Biologe, mars. 1943, pp. 65 a.70. JACKSON, E.D. \& A.C. LENZ 1962, Zonation of Ordovician and Silurian graptolites of Northern Yukon, Canada (Mar. 171961 m.s.). Bull. Amer. Assoc. of Petr. Ceol. Vol.46,No.l (Jan 1962) pp.3045, 2 fgs. 2 tabs.

JAEGER, H. 1955, "Uber die Silur/Devon - Grenze in Thuringen". Geologie Akademie-Verlag Berlin. Band 4 Nr.4. 416-32.

JANISCHENSKI, M. 1918, "On some representatives of the Upper Silurian fauna of the Caucasus". Annuaire Soc. paleont. Russie, ii, 1918, 47-64.

JONES, O.A. 1927, Silurian Graptolites from Studley Park, Melbourne, Australia. Geol. Nag. V.64. 1927. pp.101-105 pl.V.

JONES, O.T. 1921, The Valentian Series. Quart. Journ. Geol. Soc. Lond. v. 77, p.144.

JONES, O.T. 1927, Foundations of the Pennines, Journ. Manchester Geol. Assoc. V1. Pt. 1 pp.5-14.

JONES, O.T. 1938, Evolution of a Geosyncline. Quart. Journ. Geol. Soc. Lond. v.94.

JONES, O.T. 1939. "The Consolidation of Muddy Sediments." Geol. Mag. V.76, 1939 pp.170-172.

JONES, O.T. 1940, "Geol. of the Colwyn Bay District: a study of submarine slumping during the Salopian". Quart. Journ. Geol. Soc. Lond. v. 95 pp.335-376.

KELLING, G. \& WALTON, E.K. 1957, Load Cast Structuress their relationship to upper surface structures and their mode of formation. Geol. Mag. v.94, p.481-490.

KELLING, G. \& E.K. WALTON, 1961, Flow Structures in Sedimentary Rocks. - A discussion. Journ. Geol., vol 69, no.2.

KENDALL, P.F. \& H.E. WROOT, 1924, "Geology of Yorkshire."

KIAER, J. 1908, "Das Obersilur in Kristianiagebiete". Videns.- Selsk. Skr. 1 Math-Nataru. Kl., fur 1906,i1.

KING, W.B.R. \& W.H.WILCOCKSON 1934, The Lower Palaeozoic Rocks of Austwick. Quart. Journ. Geol. Soc. Lond. v. 90, p.7.

KNOB, 1908, Neues Jahrb. f. Miner., Beil. Bd. XXV, 1908, t. xxi, fig.4. KOZLOWSKI, R. 1947, Les Affinites des Graptolithes. . Biol. Rev. Cambridge. 22: 93-108.

KOZLOWSKI, R. 1949, Decouverte du Pterobranche Rhabdopleura a l'etat fossile dans le bretace superieur en Pologne. C.R. Acad. Sci. Paris, 228: 1505-1507.

KRAFT, P. 1926, "Ontogenetische Entwicklung und Biologie v. Diplograptus \& Monograptus" Pal. Zeitschrift. Bd. vii. 1926. p. 223.

LANONT, A. 1952, Ecology and Correlation of the Pentlandian, a new division of the Silurian of Scotland. Intern. Geol. Congress. Rept. 18th Session pb. 10, pp.27-32.

LAPWORTH, C. 1872, "Researches among the graptolithic black shales of South Scotland". Geol. Mag. n. ser. Dec. 2, vol. 9 p. 533

LAPWORTH, C. 1876, "Llandoverian rocks of Lake District". Geol. Mag. v.3, dec. 21876.

LAPWORTH, C. 1878, The Moffat Series. Quart. Journ. Geol. Soc. Lond. v.34. p. 240.

LANSON, J.D., 1956, The Ludlovian Rocks of the Welsh Borderlands. Adv. Sci. v.12, pp. 563-570.

LAWSON, J.D. 1960, The Succession of shelly faunas in the British Ludlovian. Report of the Intern. Geol. Congress, XXI session, Norden, 1960 pt.V11, 114-125.

LINNARSSON, G. 1876, On the vertical Range of the Graptolitic Types in Sweden. Geol. Mag. Dec.2, V.3, p.241.

MARR, J.E. 1880, On the Predevonian Rocks of Bohemia. Quart. Journ. Geol. Soc. Lond. 36, 591-619.

MARR, J.E. 1887, "The Lower Palaeozoic Rocks near Settle." Geol. Mag. Dec. 3, v.4, pp.35-38.

MARR, H.E. 1907, The Ashgillian Series. Geol. Mas. 1907, pp. 59-69.

MARR, J.E. \& W.G. FEARNSIDES, 1910, Notes on the Lower Palaeozoic Rocks of the Cautley District, Sedbergh, Yorkshire. Geol. Mag. 1910, p. 474.

MARR, J.E. 1921, The rigidity of North West. Yorkshire. Naturalist p.63.

McCONNELL, R.B. 1939, The Relic Surfaces of the Howsill Fells. Proc. Yonks. Geol. Soc. V. XXIV. Pt.111, pp.152-164.

NITCHELL, G.H. 2956, The Geological History of the Lake District. Proc. Forks. Geol. Soc. 30, 407-463.

MOBERG, J.C. 1910, Guide to the Principal Silurian Districts of Scania: Geol. Foren. Band. 32, p.45-194, pl.1-5, fig.(many)

MURCHISON, R.I. 1839, The Silurian System. Vols.1 \& 11. John Marry, London.

NICOI, J. 1850, On the Silurian Strata of the S.E. of Scotland. Quart. Journ. Geol. Soc. Long. v. 6 1850. pp. 53-65.

NICHOLSON, H.A. 1868, "An Essay on the Geology of Cumberland and Westmorland".

NICHOLSON, 1872, On the Migrations of Graptolites. Quart. Journ. Geol. Soc. Lond. v.28, p. 217.

NICHOLSON, H.A. \& J.E. MARR 1895, Notes on the Phylogeny of the Graptolites. Geol. Mag. v.42, p.529-539.

NIKIFOROWA, O.I. 1958 \& A.M. OBUT. Parallelisierung des Silurs im europaischen Teil der UdSSR und Mitteleuropa: Die Arbeitstagung uber die Stratigraphie des Silur und Devon Praha.

OBUT, A.M. 1950, Polevoj atlas rukovadjascish graptolitov verchnego silura kigizskoj'SSR. Kirgiz. Fil. Akad. nauk SSSR, Geol. Inst. Frunze.

OBUT, A.M. 1950; Semeistva"i nekotoryje rddy odnorjadnych graptolitóv. V. Paleont. 1, 1950 Moskva.

OBUT, A.M. 1959, Silurian Zanality Dismembershipan Graptolites in the USSR. Sow. Geol. No. 2, pp.38-47. Moskwa.

OBUT, A.M. 1960, Zonale Einteilung des Silurs in der UdSSR nach Graptolithen: Prager Arbeitstagung ii ber die Stratigraphie des Silurs und des Devons (1958). U.U.G., Praha c.t.p. 269-276.

PEACH, B.N. \& J. Honne 1899, The Silurian Rocks of Britain. Vol. 1 Scot1and. Mem. Geol. Surv.

PHILIPPOT, A. 1944, Trois nouvelles especes de Graptolites du Gothlandien de Bretagne. Bull. Soc. Geol. France. Ser. 5. 14. 1944.

PHILIPPOT, Andre. 1950, Les Graptolites du Massif Armoricain. Etude Stratigraphique et Paleontologique. Mem. de la Soc. Geol. et Min. de Bretagne. Tonie Vlll 1950.

PHIPPS, C.B. 1962, The Revised Ludlovian Stratigraphy of the Type Area - A discussion. Geol. Mag. Vol. XCIX No.5, Sept.- Oct. 1962, p. 385.

POULSEN, C. 1943, "A New Graptolite from the Lower Silurian of Bornholm. Procyrtograptus Garboel". Geol. Foren. Bd.10, Hefte 3. Kobenhavn.

PRANTL, FERDINAND \& ALOIS PRIBYL, 1949, A Study of the superfamily Odontopleuracea nov. superfamily (trilobites): Czechoslovakia, Statni Geol. Ustav, Rozpravy (Praha), v. 12, 221p., 1lpl.,

PRENTICE, J.E. 1956, "The Interpretation of Flow Markings and Load Casts". Geol. Mag. V. 93, p. 393.

PRENTICE, J.E. 1960, Flow Structures in Sedimentary Rocks. Journ. Geol. V. 681960 Mar. No. 2 pp.217-224.

PREMTICE, J.E. \& P.H. KLUNEN 1957, Flow Markings \& Load Casts. Geol. Mag. v. 94. pp.173-174.

PRIBYL, A. 1940, Graptolitova fauna ceskeho stredniko ludlow (Die Graptolithenfauna des mittleren Ludlow von Bohmen). Vest. geol. Ust. csl. Praha 1940.

PRIBYL, A. 1942, 0. nekolika novych druzich graptolitu z ceskeho siluru. Rozpr. 11, Ces Akad. r. 51, c.7.

PRIBYL, ALOIS 1942, 0 stratigrafickych ponerech siluru a devonu $\nabla$ podolsk cementarne v Praze. Rozpr. 11 Tr. Ces. Akad, 52, no.27.

PRIBY, A. 1943, 0 nekolika novych graptolitech $z$ ceskeho a nemecheho siluru. Vest. Kral. Ceske Spol. Nauk. Prague.

PRIBYL, ALOIS. 1946, 0 nekolika novych trilobitouych rodech $z$ ceskeho siluru a devenu. Priroda, v.38, No.5. Brno.

RICH, J.L. 1950, Flow markings, groovings, and intra-stratal crumplings as criteria for the recognition of slope deposits, with illustrations from Silurian rocks of Wales. Bull. Am. Assoc Petroleum Geol. vol. 34, p.717-741.

ROLFE, W.D.I. 1961, The Geology of the Hagshaw Silurian Inlier, Lanarkshire. Trans: Roy. Soc. Edin. vol.18, Pt.3, 1961.

RUEDEEAMT, RUDOLF. 1895 (1897), "Development and mode of growth of Diptograptus Mc'Coy".New York State Mus., Ann. Rept. 48, vol. 2, p.217-249.

RUEDEANN, R. 1908, "Graptolites of N. York, Graptolites of the Higher Beds". Mems. N.Y. State Mus., 11, pt.2, 583 pp. 31 pls. 482 text figs.

RUEDEMANN, R. '1911, "Stratigraphical Significance of the wide distribution of graptolites". Bull. Geol. Soc. Amer. V.22, pp. 231-237. June 1911.

RUEDENANN, RUDOLF. 1925, "Some Silurian (Ontarian) faunas of New York." New York State Mus., Bull. 265.

RUEDEAANN, R. 1947, "Graptolites of N. America.". Geol. Soc. Amer. Nem. No.19, 1947.

SALTER, J.H. \& PHILLIPS, J. 1849-1864, Mem. Geol. Surv. U.K. Dec. 11. Lond. 1949; Dec. Vll, Lond. 1853; Dec. Xl,Lond. 1864.

SEDCWICK, A. 1845, "On the Comparative Classification of the Fossiliferous Strata of North Wales, with the corresponding deposits of Cumberland, Westmorland and Lancashire. Quart. Jour. Geol. Soc. Lond. vol.l, p. 442 .

SHIMER, H.W. \& R.R.SHROCH 1944, Index Fossils of N. America". New York John Wiley \& Sons, Inc.; Cambridge, Mass., The Technology Press. pp.64-77.

SINCLAIR, G.W. 1948, The Affinities of the Graptolites. Amer. Journ. Sce., vol.246, pp.526-528.

STøRNER, LEIF. 1937, To the Problem of Black Graptolite Shales Traces of Gas-bubbles penetrating the surface layers of the bottom. Norsk Geologisk Tidsskrift. Bind. XV1l, Argang 1937, h. 3. pp.173-176.

STRUVE, WOLFGANG, 1958, Beitrage zur Kenntris der Phacopacea (Trilobita): ; . ..1. Die Zeliszkellinae. 2. Acastavinae n. subfam. 3. Treverspyge n. gen. und Comuval (Delocare) n. subgen. (Aster opyginae): Senckenberg. Iethaea (Frankfurt a. M. ), v. 39.

SWARTZ, C.K.et. al. 1942, Correlation of the Silurian formations of North America. Bull. Geol. Soc. Amer. 53, 533-8.

TEIXEIRA; C. 1943, O problema das Graptolites. Bol. Soc. Geol. Portugal, vol. 3, fax. 1-2 pp.109-112.

TEMPLE, J.T. 1952, A Revision of the Trilobite Dalmanitina mucronata (Brongniart) and related species. Acta Universitatis Lundensis n.s. avd. 2, 48, 1952.

TEMPLE, J.T. 1956, Notes on the Cheiruracea and Phacopacea. Geol. Ma.c. p.418-430.

TEN HAAF, F. 1956, Significance of convolute lamination. Geol. en Mijnb, v.18, p.188-194.

THOMAS, H. DIGHTON, \& A.G. DAVIS, 1949, "The Pterabranch Rhabdopleura in the English Eocene". Bull. of the Brit. Mus. (Nat. Hist.) Geology vol.1, No. 1 London 1949.

TOMCZYK, H. \& TELLER,L. 1956, The Ludlow Deposits in Eastern Poland. Biul. PAN. Cl. 1ll, 4., No.8. pp.549-553 Warszawa.

TORNQUIST, S.L: 1881, Om nagra Graptolitarter from Dalame. Geol. Foren. Bd. V N.66, Stockholm.

TORNQUIST, S.L. 1910, Cyrtograptusarter fran Thuringen. Geol. Goren., Stockholm, Bd. 32.

TORNQUIST, 1911, Graptolitiske Bidrag lll-Vll. Geol. Foren Bd. 33.

TORNQUIST, S.L. 1912, Graptolitologiska bidrag, 8-10 (M. spiralis). Geol. Foren. Bd. 34, E.6. Stockholm 1912.

TORNQUIST, S.L. 1912, Graptolitologiska Bidrag. IX, M. discus Torn. elles M. veles Richt? Geol. Foren Forhandl., XXXIV, Stockholm, 1912.

QORNQUIST, S.L. 1913, Nagra anmarkninger inom Sverrigs Kambro-Silur. Geol. Foren Stockholm, Bd. 35 .

TORNQUIST, S.L. 1920, Tra Cyrtograptus - arter fran Thuringen. Geol. Foren. Bd. 32, H.7.

TULLBERG, S.A. 1882, Sranes graptolitepp, part 1. Sver. Geol. Unders. Ser. C, no.50. pp.1-44.

ULRICH, E.O. \& RUEDEMANN, R. 1931, Are the Graptolites bryozoans? Geol. Soc. Amer., Bull. 42, 589-604.

URBANEK, A. 1959, Studies on Graptolites 1. Development and Structure of Pristiograptus gotlandicus (Perner). Acta Pal.Pol. vol.

1V. No.1.pp.11-26

URBANEK, A. 1960, An attempt at Biological Interpretation of Evolutionary Changes in Graptolite Colonies. Acta. Pal. Pol. v.5, no.2,p. 127

WALKER, M. 1953, "The Sicula of M.scanicus Tullberg. Geol. Mag. Vol.90,No. 3 May-June 1953, p.224.

WALTON, E.K. 1955, Silurian Greywackes in Peebleshire. Proc. Roy. Soc. Edinb. B, 65, 327-257.

WHITTARD, W.F. 1927, On the Structure of Glyptograptus aff tamariscus, Nich. Ann. Mas. Nat. Hist. ser.9, v.19, pp.47-477.

WILLIAMS, A. 1951, Llandovery Brachiopods from Wales, with special reference to the Llandovery district. Quart. Journ. Geol. Soc. v.107, 85-136.

WILLIAMS, A. 1959, A Structural History of the Girvan District. Trans. Roy. Soc. Edinb. 63, 629-667.

WILLIAMS, G.J. 1907, Note on the Geological Ase of the Shales of the Parys - Mountain, Anglesey. Geol. Mag. 1907, pp.148-150.

WIMAN, C. 1893, "Ueber Nonograptus Geinitz." Bull. Geol. Inst. Univ. Upsala, vol.i, no.2, 1893, pp.113-117.

WIMAN, Carl 1895, Ueber die Graptolithen. Bull. Geol. Inst. Upsala, v.2, no.4, p.239-316, pl.9-15, figs.

WIMAls, Carl 1897, Uber deu Bau einiger gotlandischen Graptolithen. Bull. Geol. Inst. Upsala v.3, No.6, p.352-368. pl.11-14.

WIMAN, Carl 1901, Uber die Borkholmer Schicht im Mittelbaltischen Silurgebiet: Bull, Geol. Inst. Upsala v.5, No.10, p.149-222, pl.5-8, figs.1-11.

## Appendix 1

Palaeocurrent Indicator Recordings

Key to pp.407-418

S = Series
$T=$ Type ( $g=$ orientated graptolites; $g r=$ groove moulds; isl. = slumped beds; Lo = load moulds; fl =flute moulds; $c=$ current bedding forest beds; $b=$ orientated brachiopod hinges; $c r=$ orientated crinoid arms.)
L = locality
$0=$ observation number
$D=\operatorname{dip}$ of strata
$P=$ plunge of folds
$\mathrm{W}=$ correction factor
$C=$ corrected bearing
$\alpha=$ smallest angle between lineation and strike measured on the bedding plane.
$\beta=$ bearing to dip direction in degrees east of north
$Y=$ pitch of lineation measured clockwise as viewed from above.

| S | T | L | 0 | $\alpha$ | $\beta$ | $y$ | $\beta+Y$ | -90 | D | P | $\pm$ | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W | $g$ | 18 N | 1 | 28SW. |  |  |  |  | 35NW 552 |  |  |  | 80 |  |
| " | $\cdots$ | " | 2 | 68WNW |  |  |  |  | " |  |  |  | 120 |  |
| " | " | " | 3 | 32SW. |  |  |  |  | " |  |  |  | 84 |  |
| " | " | " | 4 | 30SW. |  |  |  |  | " |  |  |  | 82 |  |
| 11 | " | " | 5 | 385w. |  |  |  |  | " |  |  |  | 80 |  |
| " | " | " | 6 | 68WNh |  |  |  |  | " |  |  |  | 120 |  |
| " | " | 19 N | 7 | 80knw |  |  |  |  | 37NW S40 |  |  |  | 120 |  |
| " | " | 20 N | 8 | $45 \% \mathrm{Nk}$ |  |  |  |  | 37NW S50 |  |  |  | 95 |  |
| " | " | " | 9 | 22Sn. |  |  |  |  | " |  |  |  | 28 |  |
| " | " | " | 10 | 45 WN\% |  |  |  |  | " |  |  |  | 95 |  |
| " | " | " | 11 | 45 man |  |  |  |  | " |  |  |  | 95 |  |
| " | " | " | 12 | $\therefore 5 \mathrm{kNH}$ |  |  |  |  | " |  |  |  | 95 |  |
| " | " | 11 N | 13 | TCEme |  |  |  |  | 25SNE S128 |  |  |  | 58 |  |
| " | " | 1 mh . | 14 | 88 Nk |  |  |  |  | 26\%in S48 |  |  |  | 270 |  |
| " | " | * | 15 | 71 Fin |  |  |  | , | " |  |  |  | 157 $i$ |  |
| " | " | " | 16 | k? : |  |  | . |  | " |  |  |  | 20 |  |
| " | " | " | 17 | 30 x |  |  |  |  | 220n S35 |  |  |  | 5 |  |


| 5 | $T$ | $L$ | 0 | $\alpha$ | $\beta$ | $Y$ | $\beta+\gamma$ | -90 | D | $P$ | $\pm$ | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W | E | 1 kh. | 18 | 21 N |  |  |  |  | 22NW S35 |  |  |  | 14 |  |
| I.1. A. acum. | 1 S | Spen | 19 | 18SE |  | - |  |  | 34NE SI34 |  |  |  | 296 | . |
| Lu. B.U. | c | $\begin{aligned} & \text { Bowder- } \\ & \text { dalel Bo } \end{aligned}$ | 20 | [12NW | 250 | 118 | 368 | 278 | 29SW S160 | 30 | + | 0 | 278 | SE |
| * | " | " | 21 | 116 W | " | 116 | 366 | 276 | - 11 | " | + | " | 276 | SE |
| " | " | " | 22 | 78E: | 11 | 78 | 328 | 238 | " | " | + | " | 238 | NE |
| " | " | " | 23 | 86SW | " | 86 | 336 | 246 | " | 11 | + | " | 246 | NE |
| " | " | " | 24 | 785 | " | 78 | 328 | 238 | 11 | 14 | + | " | 238 | NE |
| " | " | " | 25 | 6017\% | " | 120 | 370 | 280 | " | 11 | + | " | 280 | SE |
| " | " | " | 26 | 55NW | " | 125 | 375 | 285 | " | " | + | " | 285 | SE |
| " | " | $\cdots$ | 27 | 70NN | " | 110 | 360 | 270 | " | " | + | " | 270 | E |
| " | sl. | - 1 | 28 | 55NW | " | 125 | 375 | 285 | " | " | + | " | 285 | SE |
| " | c | " | 29 | 64:N | " | 116 | 366 | 276 | 29W S160 | " | 4 | " | 276 | SE |
| " | " | " | 30 | $64 \times \%$ | " | 116 | 366 | 276 | " | " | + | " | 276 | SE |
| * | " | " | 31 | 64.7 iri | " | 116 | 356 | 276 | " | " | * | " | 276 | SE |
| " | " | " | 32 | $565 \%$ | " | 94 | 346 | 256 | " | " | + | " | 256 | NE |
| " | " | " | 33 | S5E\% | 11 | 94 | 3:6 | 256 | " | " | + | " | 256 | NE |
| . $"$ | " | " | 3.1 | $76: \%$ | " | 76 | 326 | 236 | " | " | + | " | 236 | NE |


| S | $T$ | L | O | $\alpha$ | $\beta$ | Y | $\beta+Y$ | -90 | D | P | $\pm$ | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! u. B.U. | c | $\begin{aligned} & \text { Bowder- } \\ & \text { d1. } 1 \mathrm{Bo} \\ & \hline \end{aligned}$ | 35 | 765i | 250 | 104 | 354 | 264 | 29\% S160 | 30 | + | 0 | 264 | IVE |
| n | $\cdots$ | . ${ }^{\prime}$ | 36 | 60\% | " | 120 | 370 | 280 | " | " | + | " | 280 | SE |
| W |  | ot. Rand $y$ Gill | 37 | 12SW | 117 | 168 | 285 | 195 | 37SE S27 | 24 | - | 6 | 189 |  |
| $\begin{gathered} \text { ishgill } \\ \text { grit } \end{gathered}$ | ${ }^{-}$ | Ecker Secker | 38 | 35NW | 335 | 35 | 370 | 280 | 39NW S65 |  |  |  | 280 | SE |
| $\cdots$ | $\cdots$ | - | 39 | 45\%W | 335 | 45 | 380 | 290 | " |  |  |  | 290 | SE |
| $\begin{aligned} & \text { Lu.2nd } \\ & \text { bottom } \end{aligned}$ |  | Cautley | 40 | 70SW | 230 | 70 | 300 | 210 | 25SW Sl40 | 28 | + | 2 | 212 |  |
| " | $\cdots$ | $\cdots$ | 41 46 | 705w | 230 | 70 | 300 | 210 | " | 28 | + | 2 | 212 |  |
| $\cdots$ | " | " | 47 <br> 48 | 83SW | 230 | 83 | 313 | 223 | " | 28 | + | 2 | 225 |  |
| " | $\cdots$ | Screes | 49 <br> 54 | 80SW | 275 | 80 | 355 | 265 | 28NW S5 | 28 | - | 0 | 265 |  |
| " | " | " | 55 <br> 58 | 615W | 295 | 61 | 356 | 266 | 25NW S25 | 28 | - | 4 | 264 |  |
| " | $\begin{array}{\|l\|} \hline \mathrm{fl} \\ \mathrm{gr} \\ \hline \end{array}$ | " | 59 <br> 65 <br> 66 | 8 N | 295 | 172 | 467 | 377 | 1 | " | - | " | 15 | Sk |
| " | gr. | " | 66 69 | 2 N | 295 | 178 | 473 | 383 | " | " | - | " | 21 | SW |
| Lu. 2 nd gran | 8. | " | 70 <br> 73 | 76 NH | 295 | 104 | 399 | 309 | " | " | - | " | 30 |  |
| " | 8 | " | 74 <br> 78 | 87NW | 295 | 93 | 388 | 298 | " | " | - | " | 296 |  |
| " | 8 | " | $\begin{array}{r}79 \\ 83 \\ \hline 8\end{array}$ | 84NW | 295 | 96 | 391 | 301 | " | " | - | " | 299 |  |
| $\begin{aligned} & \text { Lu. 2nd gra } \\ & \text { bottom } \end{aligned}$ | Le | " | 84 86 | 88W | 260 | 92 | 352 | 262 | 43W S170 | " | - | " | 258 |  |
| " | " | n | $\begin{aligned} & 87 \\ & 92 \end{aligned}$ | 55NA | 260 | 125 | 385 | 295 | 30 W S170 | " | - | " | 224 | SW |


| S | T | $L$ | O | $\alpha$ | $\beta$ | $Y$ | $\beta+Y$ | -90 | D | P | $\pm$ | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Su zra Srap Dottoz | 0 - | Screes | 93 | 5ssio | 260 | 58 | 318 | 228 | 30\% 5170 | 28 | - | 4. | 22. | Ein |
| Lu. top. 2nd Grap. | 8 H | $\qquad$ Beck | 94 | 78ネ\% | 299 | 102 | 401 | 311 | 4CNT 529 |  |  |  | 311 |  |
| $\cdots$ | 1. | " | 95 96 | 78NW | 299 | 102 | 401 | 311 | " |  |  |  | 311 | IV |
| Ludlow | Br | $\begin{aligned} & \text { Hob- } \\ & \text { dale } \mathrm{B} \\ & \hline \end{aligned}$ | 97 <br> 98 | 90NW | 299 | 90 | 389 | 299 | 40NW S29 |  |  |  | 299 |  |
| " | " | " | 99 | 89N4 | 299 | 91 | 390 | 300 | " |  |  |  | 300 |  |
| $\cdots$ | L. | " | $\begin{aligned} & 100 \\ & 101 \end{aligned}$ | 32SW | 299 | 32 | 331 | 241 | " |  |  |  | 241 |  |
| " | S1 | $\cdots$ | 102 | 56SW | 270 | 56 | 326. | 236 | 59W S0 |  |  |  | 236 | SW |
| $\cdots$ | - | " | $\begin{aligned} & 103 \\ & 107 \\ & \hline \end{aligned}$ | 80NH | 290 | 100 | 390 | 300 | 43NW S20 |  |  |  | 300 | NH |
| " | " | n | $\begin{aligned} & 108 \\ & 113 \\ & \hline \end{aligned}$ | 86NW | 290 | 94 | 384 | 294 | " |  |  |  | 294 | NW |
| n | ET | " | $\begin{aligned} & 114 \\ & 120 \\ & \hline \end{aligned}$ | 78NW | 314 | 78 | 392 | 302 | 53NiN S44 |  |  |  | 302 |  |
| " | " | " | $\begin{array}{r} 121 \\ 122 \\ \hline \end{array}$ | 85NW | 314 | 85 | 399 | 309 | " |  |  |  | 309 |  |
| " | g. | $\begin{array}{\|c} \hline \text { Knott } \\ 8 \mathrm{Bd} . \end{array}$ | $\begin{array}{r} 123 \\ 129 \\ \hline \end{array}$ | 72NW | 315 | 72 | 387 | 297 | 55NH S45 | 0 |  |  | 297 |  |
| " | c | $\begin{aligned} & \text { Caut. } \\ & \text { Crags } \end{aligned}$ | 130 | 12NW | 239 | 12 | 251 | 161 | 32SW S149. | 18 | - | $5 \cdot 5$ | $155 \cdot 5$ | NW |
| " | 11 | " | 131 | 88NW | 239 | 92 | 341 | 251 | " | 18 | - | $5 \cdot 5$ | $246 \cdot 5$ | SE |
| " | Er | " | $\begin{aligned} & 132 \\ & 138 \\ & \hline \end{aligned}$ | 38NW | 270 | 142 | 412 | 322 | 27W SO | 18 | - | $5 \cdot 5$ | $316 \cdot 5$ |  |
| " | " | " | 139 143 | 33NW | 270 | 147 | 17 | 327 | " | 18 | - | $5 \cdot 5$ | $321 \cdot 5$ |  |
| " | 11 | $1{ }^{\prime}$ | 1144 <br> 150 | 45NW | 247 | 7135 | 382 | 292 | 44SE S157 | 18 | + | $5 \cdot 5$ | $297 \cdot 5$ | NW |


| S | $T$ | $L$ | $\bigcirc$ | $\alpha$ | $\beta$ | $Y$ | $\beta+Y$ | -90 | D | P | $\pm$ | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ludlow | c ${ }^{\text {c }}$ | Caut. <br> Crags <br> 1 | $\begin{array}{r} 150 \\ 153 \\ \hline \end{array}$ | 14NW | 247 | 166 | 413 | 323 | 44SE S157 | 18 | + | $5 \cdot 5$ | $328 \cdot 5$ | NW |
| " | " | " | 154 | 6NW | 247 | 174 | 421 | 331 | " | 18 | + | $5 \cdot 5$ | 336.5 | NW |
| " | f1. | " | 155 | 18SE | 247 | 18 | . 265 | 175 | " | 18 | + | $5 \cdot 5$ | $180 \cdot 5$ | NW |
| " | 8 gr . | " | 56 169 | 30NW | 230 | 150 | 380 | 290 | 40SE S140 | 18 | + | " | 294•5 |  |
| " | " | " | $\begin{aligned} & 770 \\ & 175 \\ & \hline \end{aligned}$ | 62SW | 230 | 118 | 348 | 358 | " | 18 | " | " | 265.5 | WSW |
| " | f1. | " 1 | 176 | 60NW | 230 | 120 | 350 | 260 | " | 28 | " | $7 \cdot 5$ | $270 \cdot 5$ | WNW |
| " | gr. | . $"$ | 177 182 | 89Nw | 297 | 89 | 386 | 296 | 35NW S27 | 30 |  | 5 | 291 |  |
| " | " | " |  | 86NW | 297 | 94 | 391 | 301 | " | " |  | 5 | 296 |  |
| " | Er. f1. | $\begin{aligned} & \text { Rsige } \\ & \text { Gill } \\ & \hline \end{aligned}$ | 186 | 48N' | 355 | 48 | 403 | 313 | 39NW S85 |  |  |  | 313 | ?SE |
| " | L. | - " | 187 | 90NK | 352 | 90 | 422 | 332 | 46N S82 |  |  |  | 322 |  |
| " | " | " | 18.8 | 86NW | 352 | 86 | 418 | 328 | " |  |  |  | 328 |  |
| " | E1. | . 1 | 189 | 9xW | 359 | 9 | 368 | 278 | 42N-S89 |  |  |  | 278 | NH |
| " | " | " | 190 | 181\% | 359 | 18 | 377 | 287 | " |  |  |  | 287 | ETH |
| " | $f 1$ | $\text { I } \begin{aligned} & \text { Settle } \\ & \text { beck G } \end{aligned}$ | $\begin{array}{c\|c} \hline \text { e } & 191 \\ \text { C } & 198 \\ \hline \end{array}$ | 20 Ni | 207 | 20 | 227 | 137 | 69SW S117 |  |  |  | 137 | N0 |
| " | " | " | 199 | 40Nn | 207 | 40 | 247 | 157 | " |  |  |  | 157 | NW |
| " | " | " | $\begin{aligned} & 205 \\ & 209 \\ & \hline \end{aligned}$ | 56 | 207 | 56 | 263 | 173 | " |  |  |  | 173 | NW |
| " | " | " | 210 | 68 | 207 | 68 | 275 | 185 | $\cdots$ |  |  |  | 185 | N |


| S | $T$ | L | O | $\alpha$ | $\beta$ | Y | $\boldsymbol{P}+\mathbf{Y}$ | -90 | D | P | $\pm$ | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tucior | Fi | Setile <br> beck: 0 | $\begin{aligned} & 211 \\ & 213 \\ & \hline \end{aligned}$ | 4 | 0 | 176 | 176 | 86 | 68: 590 |  |  |  | $(200)$ 80 | hEw ${ }^{\text {b }}$ |
| " | n | " | 214 220 | 70.in. | 0 | 70 | 70 | 340 | " |  |  |  | 340 | NK |
| $\cdots$ | " | " | $\begin{aligned} & 221 \\ & 223 \\ & \hline \end{aligned}$ | 8CTin | 0 | 80 | 80 | 350 | " |  | . |  | 350 | NW |
| $\cdots$ | " | " | $\begin{aligned} & 224 \\ & 226 \\ & \hline \end{aligned}$ | 801: | 0 | 80 | 80 | 350 | $\cdots$ |  |  |  | 350 | NH |
| $\cdots$ | 10 | " | $\begin{array}{\|l} 227 \\ 229 \\ \hline \end{array}$ | 3654 | 232 | 144 | 376 | 286 | 25SW S142 |  |  |  | 286 |  |
| " | " | " | 230 232 | 32mk | 232 | 148 | 380 | 290 | " |  |  |  | 290 |  |
| " | 7 | ${ }^{\prime \prime}$ | 233 | 50NW | 232 | 130 | 362 | 272 | " |  |  |  | 272 |  |
| " | ${ }^{\prime \prime}$ | " | 234 235 | 175E | 42 | 163 | 205 | 115 | 50NE S132 |  |  |  | 115 |  |
| ${ }^{\prime \prime}$ | 11 | " | $\begin{aligned} & 236 \\ & 241 \end{aligned}$ | 58NW | 6 | 58 | 64 | 334 | 62NE S96 |  |  |  | 334 | NW |
| " | " | $\left\|\begin{array}{l} \text { Hob- } \\ \text { dale_ } \end{array}\right\|$ | 242 | 46NW | 314 | 46 | 360 | 270 | 53NW S44 |  |  |  | 270 | W |
| " | ?L | $\begin{aligned} & \text { Arthle } \\ & \text { garth. } \\ & \hline \end{aligned}$ | 269 | 12NW | 15 | 12 | 27 | 297 | 401E S105 |  |  |  | 297 |  |
| " | " | Guityes | 243 | 18SW | 302 | 18 | 320 | 230 | 50NW S32 |  |  |  | 230 |  |
| " | f1 | " | $\begin{aligned} & 244 \\ & 245 \\ & \hline \end{aligned}$ | 50N | 302 | 130 | 432 | 342 | " |  |  |  | 342 | ? ${ }^{\text {WW }}$ |
| " | " | $\begin{aligned} & \text { Stone } \\ & \text { Gill } \\ & \hline \end{aligned}$ | $\begin{aligned} & 246 \\ & 248 \\ & \hline \end{aligned}$ | 10NW | 50 | 10 | 60 | 330 | 24NE S140 |  |  |  | 330 | NW |
| " | B. | $\begin{aligned} & \text { Gais } \\ & \text { gill } \end{aligned}$ | $\begin{aligned} & 249 \\ & 250 \end{aligned}$ | 50SW | 10 | 130 | 140 | 50 | 56NE S100 |  |  |  | 50 | NE |
| " | " | " | $\begin{aligned} & 251 \\ & 254 \end{aligned}$ | 45SW | 10 | 135 | 145 | 55 | " |  |  |  | 55 | NE |
| " | " | " | $\begin{aligned} & 255 \\ & 261 \\ & \hline \end{aligned}$ | 40NE | 10 | 140 | 150 | 60 | " |  |  |  | 60 | NE |


| S | T | L | O | $\alpha$ | B | $Y$ | $\beta+Y$ | -90 | D | P | $\pm$ | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iudlow | ET | $\begin{array}{\|l\|} \hline \text { Gais } \\ \text { gill } \\ \hline \end{array}$ | $\begin{aligned} & 262 \\ & 268 \end{aligned}$ | ONW | 10 | 0 | 10 | 280 | 75NE S100 |  |  |  | 280 |  |
| " | c | $\begin{array}{\|l} \text { Arthle } \\ \text { garth } \\ \hline \end{array}$ | $\begin{aligned} & 268 \\ & 290 \\ & \hline \end{aligned}$ | 30NW | 16 | 30 | 46 | 326 | 29NE S166 |  |  |  | 326 | NW |
| " | c | " | $\begin{aligned} & 291 \\ & 296 \end{aligned}$ | 23NW | 16 | 23 | 39 | 319 | " |  |  |  | 319 | NW |
| " | c | " | $\begin{array}{\|l\|} \hline 297 \\ 301 \\ \hline \end{array}$ | 33NW | 16 | 33 | 49 | 329 | " |  |  |  | 329 | NW |
| " | L. | " | $\begin{aligned} & 302 \\ & 305 \\ & \hline \end{aligned}$ | 26SE | 16 | 154 | 170 | 80 | " |  |  |  | 80 |  |
| " | L. | " | 306 310 | 14SE | 16 | 166 | 182 | 92 | " |  |  |  | 232 |  |
| " | f1 | " | $\begin{array}{\|l\|} \hline 311 \\ 318 \\ \hline \end{array}$ | 40 NW | 16 | 40 | 56 | 326 | " |  |  |  | 326 | NW |
| " | c | $\begin{array}{\|l} \mathrm{Wy}- \\ \text { garth } \end{array}$ | 319 <br> 324 <br> 325 | 45NK | 18 | 45 | 63 | 333 | 48NE Sl68 |  |  |  | 333 | WW |
| " | c | " | 325 326 | 54E | 50 | 94 | 144 | 54 | 31NE S140 |  |  |  | 54 | WSW |
| " | f1 | " | 327 <br> 334 | 4NH' | 45 | 4 | 49 | 319 | 46NE S135 |  |  |  | 319 | W7 |
| " | gr | " | 335 | 4NW | 45 | 4 | 49 | 319 | ${ }^{11}$ |  |  |  | 319 |  |
| " | " | [ale | $\begin{aligned} & 336 \\ & 339 \\ & \hline \end{aligned}$ | 22NW | 350 | 22 | 372 | 282 | 80N 580 |  |  |  | 282 | $!$ |
| " | gr | " | $\begin{aligned} & 340 \\ & 343 \\ & \hline \end{aligned}$ | 18NW | 350 | 18 | 368 | 278 | " |  |  |  | 278 . |  |
| " | gr | " | $\begin{aligned} & 344 \\ & 349 \\ & \hline \end{aligned}$ | 5NW | 350 | 5 | 355 | 265 | 70N 580 |  |  |  | 265 |  |
| " | Er | ${ }^{\prime \prime}$ | 350 357 | 18NW | 350 | 18 | 368 | 278 | " |  |  |  | 278 |  |
| " | gr | " | 358 <br> 362 | 9NW | 350 | 9 | 359 | 269 | " |  |  |  | 269 |  |
| " | Er | " | 363 <br> 371 | 28NW | 350 | 28 | 378 | 288 | " | 0 |  |  | 288 |  |


| S | T | L | O | $\alpha$ | $\beta$ | $Y$ | $\beta+Y$ | -90 | D | P | $\pm$ | $\omega$ | c | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luaint. ${ }^{\text {Le }}$ : | c | $\begin{array}{\|l\|} \hline \text { Swarth } \\ \text { Gill } \\ \hline \end{array}$ | $\begin{aligned} & 372 \\ & 375 \\ & \hline \end{aligned}$ | 14SE | 42 | 166 | 268 | 118 | 4ANE S132 | 0 |  |  | 118 | NV |
| " | $f 1$ | Settle <br> Beck G | $\begin{aligned} & 376 \\ & 379 \\ & \hline \end{aligned}$ | 13SE | 217 | 13 | 220 | 130 | 69 SW S117 | 0 | + | 0 | 130 | N ${ }^{\prime}$ |
| $\begin{aligned} & \text { Lu. Pre- } \\ & \text { Leintw. } \mathrm{Z.} \end{aligned}$ | f1 | Winder | $\begin{aligned} & 380 \\ & 383 \end{aligned}$ | 20SE | 207 | 20 | 227 | 137 | 56SW S117 | 0 |  | 0 | 137 | IW |
| " | c | Bram Ricg | $\begin{array}{r} 384 \\ 387 \\ \hline \end{array}$ | $\begin{gathered} 65-70 \\ \mathrm{NNW} \\ \hline \end{gathered}$ | 310 | $\begin{array}{\|l\|} \hline 110 \\ 115 \\ \hline \end{array}$ | 423 | 333 | 76NW S40 | 40 | + | 28!: | $361 \frac{1}{2}$ | N |
| " | c | " | $\begin{aligned} & 388 \\ & 395 \\ & \hline \end{aligned}$ | $\begin{gathered} 70-75 \\ \mathrm{NNW} \\ \hline \end{gathered}$ | 310 | $\begin{aligned} & 110 \\ & 105 \\ & \hline \end{aligned}$ | 418 | 328 | " | " | + | " | 365z | NW |
| $\begin{gathered} \text { Lu. Leintw. } \\ \text { Zone } \end{gathered}$ | L. | $\begin{aligned} & \text { Brant } \\ & \text { Fell } \end{aligned}$ | $\begin{aligned} & 396 \\ & 403 \end{aligned}$ | $\begin{gathered} 65-70 \\ \text { WSW } \\ \hline \end{gathered}$ | 240 | $\begin{aligned} & 115 \\ & 110 \end{aligned}$ | 363 | 273 | 215W S350 | 20 | + | 0 | 273 |  |
| " | " | 1 | $\begin{array}{r} 404 \\ 405 \\ \hline \end{array}$ | $\begin{aligned} & 6-65 \\ & \text { WSW } \end{aligned}$ | 240 | $\begin{aligned} & 115 \\ & 120 \end{aligned}$ | 358 | 268 | 26EV S150 | 20 | $+$ | 0 | 268 |  |
| " | " | " | $\begin{aligned} & 406 \\ & 420 \\ & \hline \end{aligned}$ | $\begin{gathered} 65-70 \\ \mathrm{wSh} \\ \hline \end{gathered}$ | 240 | $\begin{aligned} & 115 \\ & 110 \\ & \hline \end{aligned}$ | 363 | 273 | 21S\% S150 | 20 | + | 0 | 273 |  |
| " | " | " | $\begin{aligned} & 421 \\ & 424 \end{aligned}$ | $\begin{aligned} & 60-65 \\ & \text { wSk } \end{aligned}$ | 240 | $\begin{aligned} & 115 \\ & 120 \end{aligned}$ | 358 | 268 | 21Sin S150 | 20 | + | 0 | 268 |  |
| " | " | " | $\begin{aligned} & 425 \\ & 431 \\ & \hline \end{aligned}$ | $\begin{gathered} 25-3 C \\ \mathrm{~h} \end{gathered}$ | 215 | $\begin{aligned} & 150 \\ & 155 \\ & \hline \end{aligned}$ | 368 | 278 | 26Si: S125 | 22 | + | 0 | 278 | - |
| " | " | $\begin{array}{\|l\|} \hline \text { Bram } \\ \text { Rigg } \\ \hline \end{array}$ | $\begin{aligned} & 432 \\ & 433 \end{aligned}$ | $\begin{array}{\|l} 70-75 \\ \text { WSW } \\ \hline \end{array}$ | 256 | $\begin{array}{\|l\|} \hline 110 \\ 105 \\ \hline \end{array}$ | 364 | 274 | 215in S166 | 0 |  |  | 274 |  |
| " | " | " | $\begin{array}{r} 434 \\ 438 \\ \hline \end{array}$ | 55NW | 324 | 55 | 379 | 289 | 30\%\% 554 | 15 | + | $4 \cdot 5$ | 293.5 |  |
| $\begin{aligned} & \text { Lu. 1st } \\ & \text { grw. Unit } \end{aligned}$ | f1 | $\begin{array}{r} \text { Yarl- } \\ \text { side } \end{array}$ | $\begin{aligned} & 442 \\ & 439 \\ & \hline \end{aligned}$ | 70Sí | 260 | 70 | 330 | 240 | 335W S170 | 35 | - | $6 \cdot 5$ | 233.5 | Si |
| " | " | " | 443 | 80Sh | 260 | 80 | 340 | 250 | " | 35 | - | $6 \cdot 5$ | $243 \cdot 5$ | Sh |
| " | " | " | $\begin{array}{r} 444 \\ 454 \\ \hline \end{array}$ | 80Sk | 250 | 80 | 330 | 240 | 40SN S1 60 | 35 | - | " | $233 \cdot 5$ | SW |
| " | gr | " | $\begin{aligned} & 455 \\ & 459 \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline 50-55 \\ \mathrm{Sk} \\ \hline \end{array}$ | 250 | 50-5s | 303 | 213 | " | " | - | " | $206 \cdot 5$ |  |
| " | fl Er | " | $\begin{aligned} & 460 \\ & 462 \\ & \hline \end{aligned}$ | 50-55 | 250 | $\begin{aligned} & 50- \\ & 55 \end{aligned}$ | 303 | 213 | " | " | - | " | " | SW |


| S | T | L | 0 | $\alpha$ | B | $Y$ | $\beta+Y$ | -90 | D | P | $\pm$ | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Iu. Ist } \\ & \text { grw. Unit } \\ & \hline \end{aligned}$ | fl | Yarl- <br> side | 463 <br> 473 |  | 250 | 5-5-60 | 3!8 | 1218 | 40sh S160 | 35 | - | $6 \cdot 5$ | $211 \cdot 5$ | Si |
| " | " | " 47 | 474 <br> 477 | $60-65$  <br> $S^{\prime \prime}$  <br> 10  | 250 | 60-65 | 313 | 223 | " | 35 | - | " | $216 \cdot 5$ | Sii |
| Lu. top Ist Erw. Unit | fl | 17 47 | $\begin{aligned} & 478 \\ & 482 \end{aligned}$ | 70: $\quad 12$ | 230 | 76 | 300 | 210 | 2651.140 | 35 | - | 4 | 206 | Ein |
| $\begin{aligned} & \text { Lu. Tst } \\ & \text { Erw. Unit } \end{aligned}$ | $E T$ | " 4 | $\begin{array}{l\|l} \hline 483 & 5 \\ 484 & \\ \hline \end{array}$ | 50¢ ${ }^{\text {a }}$ | 230 | 50 | 280 | 290 | 38Ew 5140 | 35 | - | 4 | 184 |  |
| $\begin{aligned} & \text { Lu. top Ist } \\ & \text { grw. Unit } \end{aligned}$ | " |  | $\begin{array}{\|l\|l} \hline 485 \\ 495 \\ \hline \end{array}$ | $\begin{gathered} 50-55 \\ \mathrm{NH} \end{gathered}$ | 270 | $\begin{aligned} & 125 \\ & 130 \\ & \hline \end{aligned}$ | 398 | 308 | 37\% 50 | 35 | $+$ | 3 | 311 |  |
| " | " | " 4 | 496 <br> 499 | $\begin{gathered} 40-45 \\ \mathrm{Na} \\ \hline \end{gathered}$ | 270 | 135 140 | 408 | 318 | 11 | 35 | + | 3 | 321 |  |
| " | " | 5 | $\begin{array}{r} 500 \\ 503 \\ \hline \end{array}$ | $\begin{gathered} 55-60 \\ \mathrm{Nb} \end{gathered}$ | ¢ 270 | $\begin{aligned} & 120 \\ & 125 \end{aligned}$ | 393 | 303 | 38in S0 | 35 | + | 4 | 307 | NH |
| " | gr fl | " 1 | $\begin{aligned} & 504 \\ & 508 \\ & \hline 501 \end{aligned}$ | \|cc| $\begin{gathered}45-50 \\ \text { SW } \\ 85-90\end{gathered}$ | 213 | $\begin{aligned} & 130 \\ & 135 \\ & \hline \end{aligned}$ | 346 | 256 | 635 w 123 | 26 | + | 14 | 270 | * |
| " | ${ }^{\text {Er }}$ | 5 | $\begin{aligned} & 513 \\ & 509 \\ & \hline \end{aligned}$ | $\left\lvert\, \begin{gathered} 85-90 \\ \mathrm{NW} \end{gathered}\right.$ | 323 | 85 <br> 90 | 411 | 321 | 39NW S53 | 35 | - | 65 | 3145 |  |
| $\begin{aligned} & \text { Lu. 2nd } \\ & \text { Erw. Unit } \end{aligned}$ | L | " | $\begin{aligned} & 514 \\ & 520 \\ & \hline \end{aligned}$ | $\begin{gathered} 85-90 \\ \mathrm{~W} \end{gathered}$ | 268 | 85 90 | 360 | 270 | 33 W S178 | 35 | - | 0 | $\frac{370}{}$ |  |
| " | $\begin{aligned} & \mathrm{Er} \\ & \mathrm{fl} \end{aligned}$ | 11 | $\begin{aligned} & 521 \\ & 526 \\ & \hline \end{aligned}$ | $\begin{gathered} 30-35 \\ \mathrm{sW} \end{gathered}$ | 270 | 30-35 | 303 | 213 | 35i so | 35 | + | 0 | 213 | SW |
| " | gr | 11 | $\begin{array}{r} 527 \\ 537 \\ \hline \end{array}$ | $\begin{gathered} 45-50 \\ 5 W \\ \hline \end{gathered}$ | 270 | 45-50 | 318 | 228 | " | " | + | 0. | 228 |  |
|  |  |  | $\begin{aligned} & 538 \\ & 540 \\ & \hline \end{aligned}$ | $\begin{gathered} 65-70 \\ 5 \mathrm{w} \end{gathered}$ | 270 | 65-70 | 338 | 248 | " | 35 | + | 0 | 248 |  |
|  | " | " | $\begin{array}{r} 541 \\ 550 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 30-35 \\ 56 \\ \hline \end{array}$ | 270 | 30-35 | 303 | 213 | " | 35 | + | 0 | 213 |  |
| " | " | " | $\begin{aligned} & 551 \\ & 555 \\ & \hline \end{aligned}$ | $\begin{aligned} & 35- \\ & 40 \mathrm{SW} \end{aligned}$ | 270 | 35-40 | 308 | 218 | " | 35 | + | 0 | 218 |  |
| $\begin{array}{r} \text { Asheill } \\ \text { Grit } \end{array}$ | c | nr. 11 hr Crossh. | $\begin{array}{r\|l} 556 \\ \text { i. } & 561 \\ \hline \end{array}$ | $\begin{array}{l\|l} \hline 60- \\ 1 & 455 \\ \hline \end{array}$ | 215 | $\begin{aligned} & 140 \\ & 135 \end{aligned}$ | 353 | 263 | 40SW Sl25 | 24 | + | $6 \cdot 5$ | $270 \cdot 5$ | E |
| " | c | " | 562 <br> 565 | $35-40$ <br> SE | 215 | $1 \begin{aligned} & 140 \\ & 145\end{aligned}$ | 358 | 268 | " | 24 | + | 65 | 2755 | ESE |


| S | T | $L$ | O | $\alpha$ | $\beta$ | $Y$ | $\beta+Y$ | $-90$ | D | P | 土 | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Ashgill } \\ \text { Grit } \end{gathered}$ | c | Nr .1 Bf | $\begin{aligned} & 566 \\ & 568 \\ & \hline \end{aligned}$ | 30SW | 260 | 150 | 410 | 320 | 545w 5170 | 30 | ＋ | 14 | 344 | SSE |
| 1 | c | Nr． | $\begin{aligned} & 569 \\ & 573 \end{aligned}$ | $\left.\begin{gathered} 75-80 \\ S \end{gathered} \right\rvert\,$ | 190 | 75－80 | 268 | 178 | 42S ．S100 | 35 | ＋ | 7 | 185 | S |
| ＂ | c | ＂ | 574 | 10\％ | 190 | 170 | 360 | 270 | ＂ | 35 | ＋ | 7 | 277 | 3S |
| Ludlow | Lo | $\begin{gathered} \text { Ivy } \\ \text { Crag } \end{gathered}$ | 575 | 0 | 183 | 0 | 183 | 93 | 27SW S93 | 10 | ＋ | 2 | 95 |  |
| ＂ | Lo | $\begin{gathered} \text { Bram } \\ \text { Ri:g } \\ \hline \end{gathered}$ | $\begin{aligned} & 576 \\ & 580 \\ & \hline \end{aligned}$ | 0 | 183 | 0 | 183 | 93 | ＂ | 10 | ＋ | $\cdot 2$ | 95 |  |
| $\begin{aligned} & \text { Ashgill } \\ & \text { Grit } \end{aligned}$ | b． | Spen－ gill | $\begin{aligned} & 581 \\ & 585 \end{aligned}$ | $\begin{gathered} 15-20 \\ \mathrm{NW} \end{gathered}$ | 0 | 15－20 | 18 | 288 | 20N 590 |  |  |  | 288 |  |
| ＂ | ＂ | 1 | 586 | ． | ＂ | ＂ | ＂ | ＂ | 11 |  |  |  | ＂ |  |
| Llandovery | ？ 1. | 4 Bf | $\begin{aligned} & 587 \\ & 591 \\ & \hline \end{aligned}$ | $\begin{aligned} & 30-35 \\ & 5 \mathrm{SW} \\ & \hline \end{aligned}$ | 262 | 30－35 | 295 | 205 | 10\％S172 | 30 | ＋ | 0 | 205 |  |
| ＂ | ＂ | ＂ | $\begin{aligned} & 592 \\ & 595 \\ & \hline \end{aligned}$ | $\begin{gathered} 29-33 \\ \mathrm{~W} \end{gathered}$ | 262 | 29－33 | 293 | 203 | ＂ | ＂ | ＋ | 0 | 203 |  |
| ＂ | g． | 5 Bi | $\begin{aligned} & 596 \\ & 600 \end{aligned}$ | $5$ | 270 | 50－55 | 323 | 233 | 40\％ 50 | 40 | － | 9 | 223 |  |
| ＂ | ＂ | 2 Bi | 601 | $\begin{aligned} & 55-60 \\ & \text { SW } \end{aligned}$ | 270 | 55－60 | 328 | 238 | ＂ | ＂ | ＂ | ＂ | 228 |  |
| Wenlock | ＂ | $\begin{gathered} 30-33 \\ w \end{gathered}$ | 602 | 40－ | 232 | 132 | 364 | 274 | 33Sk S142 | 26 | ＋ | 5 | 279 |  |
| ＂ | ＂ | ＂ | 603 | $\begin{aligned} & 45- \\ & 50 \mathrm{~W} \\ & \hline \end{aligned}$ | ＂ | ＂ | ＂ | ＂ | ＂ | ＂ | 1 | ＂ | ＂ |  |
| ＂ | ＂ | ＂ | 604 | $\begin{aligned} & 50- \\ & 55 \mathrm{~W} \end{aligned}$ | 1 | 127 | 359 | 269 | ＂ | ＂ | ＂ | ＂ | 274 |  |
| ＂ | ＂ | ＂ | 608 | $\left[\begin{array}{l} 15- \\ 20 S E \end{array}\right.$ | ＂ | 15－28 | 250 | 160 | ＂ | ＂ | ＂ | ＂ | 165 |  |
| ＂ | ＂ | ＂ | 609 | 55－ | ＂ | 122 | 344 | 254 | ＂ | ＂ | ＂ | ＂ | 259 |  |
| ＂ | ＂ | ＂ | 610 | 年年－ | ＂ | 137 | 369 | 279 | ＂ | ＂ | 1 | ＂ | 284 |  |


| S | TT | $L$ | 0 | $\alpha$ | P | $Y$ | $\beta+Y$ | -90 | D | P | $\pm$ | $\omega$ | $C$ | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wenlock | g. ${ }^{3}$ | $30-$ $33 W$ | 615 4 <br> 621 50 | $45-$  <br> 50 W  | 232 | 132 | 364 | 274 | 335N S142 | 26 | +' | 5 | 279 |  |
| " | " | * | 622 4 <br> 631 50 | $\begin{aligned} & 45- \\ & 50 \mathrm{~W} \end{aligned}$ | " | 113 | 364 | 274 | " | 26 | + | " | " |  |
| " | " | " | 632 " | " | ' | " | " | " | " | 26 | + | " | 1 |  |
| " | * | " | 633 <br> 637 | " | " | 137 | 369 | 279 | " | 26 | + | " | 284 |  |
| " | " | " | 638 | $55-$ $60 W$ | " | 122 | 344 | 254 | H | 26 | + | " | 259 |  |
| " | " | 39W | $\begin{aligned} & 639 \\ & 642 \end{aligned}$ | 85 2 <br> WNW  | 288 | 85 | 373 | 283 | 22NW S18 | 26 | + | 0 | 283 |  |
| " | 11 | 11 | $\begin{aligned} & 643 \\ & 646 \\ & \hline \end{aligned}$ | (190 | 14 | 90 | 378 | 288 | 11 | 26 | + | 0 | 289 |  |
| " | " | " | 647 649 | $\left\{\begin{array}{l} 5 \mathrm{O}-55 \\ \mathrm{Nh} \end{array}\right.$ | " | $\begin{aligned} & 135- \\ & 130 \\ & \hline \end{aligned}$ | 410 | 320 | " | $26^{\circ}$ | + | 0 | 320 |  |
| " | " | 1 Wh | 650 | $5-10$ NE | 290 | 192 | 482 | 32 | 32NW S20 | 10 | + | $2 \cdot 5$ | $34 \cdot 5$ |  |
| " | " | " | $\begin{array}{\|l\|} 651 \\ 552 \\ \hline \end{array}$ | (15-20 | 290 | 162 | 452 | 2 | " | 10 | + | " | 4-5 |  |
| 11 | " | " | 653 <br> 655 | $35-40$ <br> SW | 290 | 35-4C | 328 | 238 | " | 10 | + | " | $240 \cdot 5$ |  |
| 18 | " | " | 656 | $65-$ <br> $70 N$ | 290 | 65-70 | 358 | 268 | 11. | 10 | + | 1 | $270 \cdot 5$ |  |
| " | " | 53W | 657 | 15-20 |  |  |  |  | 31SW S115 | 0 |  |  | $90-95$ |  |
| " | L | 57 h | 658 | - 0 |  |  |  |  | $1{ }^{\prime \prime}$ | 0 |  |  | 125 |  |
| " | " | " " | 659 | 90 |  |  |  |  | ${ }^{\prime \prime}$ | 0 |  |  | 115 |  |
| " | 5. | - $58 \%$ | 660 | c $40-45$ |  |  |  |  | " | 0 |  |  | 1550 | - |
| -" | L | $6:$ | 661 | 15 |  |  |  |  | $35 \% 3.7$ | C |  |  | 2 |  |


| S | Ti | $L$ | O | $\alpha$ | $\beta$ | ; Y | $\beta+Y$ | -90 | D | P | $\pm$ | $\omega$ | C | source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wenlock | I. | 10H | 662 | 45-50 |  |  |  |  | 8inn 544 | 0 |  |  | 89-94 |  |
| " | " | " | 663 | " |  |  |  |  | " | 0 |  |  | " |  |
| " | cr | $\begin{gathered} \mathrm{Nr} .5 \\ \mathrm{Bf} \end{gathered}$ | $665$ | $\left\|\begin{array}{c} 30-35 \\ \mathrm{w} \end{array}\right\|$ | 301 | 30-35 | 334 | 244 | 30Ni: S31 | 30 | + | 0 | 244 |  |
| " | " | 4Ra | $\begin{aligned} & 667 \\ & 669 \\ & \hline \end{aligned}$ | 90MNK | 316 | 90 | 406 | 316 | 40Nu: S46 | 30 | - | $7 \cdot 5$ | $308 \cdot 5$ | ?17n |
| " | " | " | 670 | $\begin{gathered} 80-85 \\ \mathrm{WNW} \end{gathered}$ | 316 | 80-85 | 399 | 309 | " | " | - | " | 301.5 | ? NW |
| " | " | " | 671 | $70-75$ <br> hNH | " | 70-75 | 329 | 299 | " | " | - | " | 291.5 | ?NW |
| Ludlow | Er | $\begin{aligned} & \text { Kens- } \\ & \text { Eriff } \end{aligned}$ | $\begin{aligned} & 672 \\ & 673 \\ & \hline \end{aligned}$ | $\begin{aligned} & 50-55 \\ & 5 W \end{aligned}$ | 299 | 50-55 | 35 | 26 | 33N4 529 | " | - | 3 | 259 |  |
| " | Le | " | $\begin{array}{r} 674 \\ 675 \\ \hline \end{array}$ | $\begin{gathered} 60-65 \\ \mathrm{NW} \end{gathered}$ | 272 | $\begin{aligned} & 115- \\ & 120 \\ & \hline \end{aligned}$ | 80 | 300 | 33W S2 | " | + | 3 | 302 $\frac{1}{2}$ |  |
| " | sl | Rawth. Crossh | $\begin{array}{r} 676 \\ 677 \\ \hline \end{array}$ | 10-15 |  |  |  |  | 33N\% S57 | 0 |  |  | 42 | NE |
| " | " | " | $\begin{aligned} & 678 \\ & 683 \\ & \hline \end{aligned}$ | 40-45 |  |  |  |  | " | 0 |  |  | 12-17 | NE |
| " | L. | " | $\begin{aligned} & 684 \\ & 689 \\ & \hline \end{aligned}$ | 65-70 |  |  |  |  | 11SW S165 | 0 |  |  | $\begin{aligned} & 100- \\ & 105 \end{aligned}$ |  |
| Wenlock | ? 1 | $\begin{aligned} & \text { Hob- } \\ & \text { dale } \end{aligned}$ | 690 | 2 | 252 | 82 | 334 | 244 | 31 S6 S162 | 30 | + | 0 | 244 |  |
| " | " | " | 691 | 83 | 313 | 83 | 396 | 306 | 50Nw S43 | 30 | - | 12 | 294 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 |  | 1 | 1 |  |  |  |  | 1 |  |  | 1 |  |  |

## PLATE 1

$$
\text { all figs. x } 5
$$

> Fig. 1 Climacograptus miserabilis (Elles \& Wood), HUR./S5-9/125; Zone of M. atavus, Llandovery Series, Spengill; narrow form, flattened and compressed. (p.125)

Fig. 2 Climacograptus medius Tornquist?, HUR./SI-5/73; Zone of M. atavus, Llandovery Series, Spengill; flattened and strongly compressed. (p.129)

Fig. 3 Climacograptus normalis Lapworth, HUR./2Bi/96; Zone of P. acinaces, Llandovery Series, Birks Wood Beck; flattened and compressed with a bent virgella. (p.124)

Fig. 4 Climacograptus miserabilis (Elles \& Wood), HUR./2Bi/44; Zone of P.acinaces, Birks Wood Beck; flattened specimen of typical proportions with both nema and virgella well preserved. (p.125)

Fig. 5 Climacograptus miserabilis (Elles \& Wood), HUR./1Bi/35; Zone of M. atavus, Birks Wood Beck; flattened specimen (p.125)

Fig. 6 Climacograptus ex. gr. scalaris (Hisinger), HUR./S73,11.4/3; Zone of M.sedgwicki, Spengill; apertural view of one series of thecae of a specimen in full relief. Zigzag suture visible and "cup-like" nature of thecal aperture displayed. (p.126)

Fig. 7 Climacograptus innotatus exquisitus subsp. nov., holotype, HUR./1Bi/26i Zone of M. atavus, Birks Wood Beck; flattened and compressed, showing virgella and thecal spines. ( p .138 )

Fig. 8 Climacograptus extremus H.Lapworth, HUR./S75,9.4/222; Zone of M. sedgwicki, Spengill; flattened and compressed specimen. (p.134)

Fig. 9 Climacograptus ?tangshanensis linearis Packh. HUR./14P/4 and 7a;


1


2



4


5


6


7


9


10


11


14


16

Fig. 9 I. Llandovery, Zone of P. cyphus, Pickering Gill; flattened but uncompressed, with virgella preserved. (p.131)

Fig. 10 Climacograptus pseudonormalis sp. nov. Holotype. HUR./2Bi/4; Zone of P. acinaces, Birks Wood Beck; flattened and compressed. (p.128)

Fig. 11 Climacosraptus aff minutus Carruthers. HUR./S9-13/101; Zone of P. acinaces, Spengill; specimen flattened and compressed. (p.135)

Fig. $12 \frac{\text { Climacograptus medius Tornquist. HUR. } / 3 \mathrm{Wa} / 25 \text {; Zone of M. atavus }}{\text { Watley Gill; specimen flattened and strongly compressed. (p.129) }}$

Fig. 13 Diplograptus modestus tenuis. subsp. nov. Holotype HUR./S1-5/18; Zone of M. atavus, Spengill; specimen flattened and compressed; showing proximal excavations and distal thecae with flowing sigmoidal curvature. (p.142)

Fig. 14 Diplograptus magnus H.Lapworth. HUR./9Bi/26; Zone of D.magnus, Birks Wood Beck; external mould of specimen in moderate relief. (p. 139)

Fig. 15 Diplograptus modestus tenuis subsp. nov.? HUR./S9-13/102; Zone of P.acinaces, Spengill; flattened, compressed, with virgella and nema well preserved. (p.142)
$\begin{aligned} & \text { Fig. } 16 \text { Diplograptus sp.A } \text { HUR. } / 1 \mathrm{Bi} / 3 \text {; Zone of M. atavus, Birks Wood Beck; } \\ & \text { specimen flattened, compressed, with pema preserved. (p.144) }\end{aligned}$

## PLATE 2

All figs. $\mathbf{x} 10$

# Fig. 1 Climacograptus psoudonormalis sp. nov. paratype. HUR./2Bi/11; Zone of P. acinaces, Birks Wood Beck; flattened and more strongly compressed than P1.I, fig.10. (p.128) 

Fig. 2 Diplograptus modestus diminutus Elles \& Wood. HUT./2Bi/32; Zone of P. acinaces, Birks Wood Beck; flattened and compressed. (p.141)

Fig. 3 Glyptograptus t. tamariscus (Nicholson) aff form B. Packham. HUR./ 6Bi/41; Zone of P. leptotheca ( P argenteus), Birks Wood Beck, specimen in relief, external mould. (p.145)

Fig. 4 Climacograptus pseudonormalis sp. nov. paratype HUR./2Bi/84; Zone of P. acinaces, Birks Wood Beck; flattened and strongly compressed. (p.128)

Fig. 5 Glyptograptus packhami sp. nov. paratype. HUR./S80,8.4/62; Zone of M. sedcwicki, Spengill; distal fragment well preserved in full relief...(p.149)

Fig. 6 Glyptograptus packhami sp. nov. holotype. HUR./S73,11•4/6; Zone of M. sedgwicki, Spengill; proximal end in full relief with sicula preserved, obverse view. (p.149)

Fig. 7 Glyptograptus tamariscus angulatus Packham, HUR./6Bi/63; Zone of P. leptotheca (= argenteus), Birks Wood Beck; specimen flattened, incomplete. (p.146)

Fig. 8 PGlyptograptus sp.A HUR./6Wa/27; Zone of D. magnus, Watley Gill; fragmentary specimen in full relief, apertural view showing the outward-facing apertures. (p.157)


## PLATE 3

All figs. $\times 10$

Fig. 1 Glyptograptus cuneatus sp. nov., holotype, HUR./14P/20; Zone of P. cyphus, Pickering Gill; specimen well preserved, but flattened, uncompressed. (p.152)

Fig. 2 Orthograptus attenuatussp. nov.; holotype, HUR./14P/7; Zone of $\underline{P}$. cyphus, Pickering Gill; specimen well preserved, but flattened, uncompressed. (p.161)

Fig. 3 Orthograptus vesiculosus Nicholson. HUR./3Wa/29; Zone of M. atavus, Watley Gill; proximal end showing sicula, and first two thecae. (p.158)

Fig. 4 Petalograptus minor finitimus subsp. nov. paratype HUR./6Bi/23; Zone of P. leptotheca ( $=$ argenteus), Birks Wood Beck; specimen in part external mould, full relief. (p.167)

Fig. 5 Petalograptus ovatoelongatus Kurck. HUR./6Bi/43; Zone of P. leptotheca, Birks Wood Beck; specimen well preserved in full relief. (p.164)

Fig. 6 Petalograptus minor minor Elles. HUR./7Bi/12; ?Zone of M. triangulatus, Birks Wood Beck; . external mould of specimen in full relief. (p.165)

Fig. 7 Gothograptus nassa Holm HUR. $/ 4 \mathrm{~W} / 3$; Zone of C. Iundgreni, Wenlock SerLes, Wandale Hill; complete specimen, well preserved. (p.175)


## PLATE 4

All figs. 55

Fig. 1 Dimorphograptus confertus confertus Nicholson. HUR./S13-17/1; Zone of P. acinaces or P. cyphus, Spengill; specimen flattened and compmessed. (p.179)

Fig. 2 Dimorphograptus erectus nicholsoni subsp. nov., paratype, HUR./2Bi/22; Zone of P. acinaces, Burks Wood Beck; typical specimen strongly compressed. (p.18I)

Fig. 3 Monoclimacis vomerina basilica (Lapworth), part of specimen figured by Lapworth (1880) pl.4. figs.6a,b, retouched. (p.188)

Fig. 4 Monoclimacis vomerina basilica (Lapworth), HUR./8P/7; Zone of C. cen-trifugus-C. insectus, Pickering Gill; proximal end in full relief showing sicula, and typical "thorn-like" appearance of proximal end. (p.188)

Fig. 5 Monoclimacis vomerina basilica (Lapworth), HUR./28W/29; Zone of C. centrifugus-C. insectus, Wandale Hill; distal specimen (part of) in full relief except proximally where the increase in width due to flattoning is seen. ( $p$.188)

Fig. 6 Monoolimacis vomerina basilica (Lapworth), HUR./28W/2; Zone of C . centrifugus-C. insectus, Wandale Hill; proximal end with sicula (pale coloured) and mesial portions.(p.188)

Fig. 7 Monoclimacis vomerinus vomerinus (Nicholson) figured Elles \& Wood Pl. 41, fig. lb. specimen in relief.

Fig. 8 Pristiograptus leptotheca (Lapworth), HUR./S75,9.4/55; Zone of M. sedgwioki, Spengill; specimen of distal thecae, somewhat distorted, in full relief. (p.206)


Fig. 9 Pristiograptus leptotheca (Lapworth), HUR./S75,9.4/223; Zone of M. sedgwicki, Spengill; distal fragment with thecae preserved in full relief. (p.206)

Fig. 10 Pristiograptus cyphus (Lapworth). HUR./S13-17/2; Zone of P. acinaces or P. cyphus, Spengill; specimen near proximal end, flattened, compressed. (p.204)

Fig.ll Pristiograptus aff acinaces (Tornquist). HUR./S13-17/3; Zone as fig.10; flattened and compressed specimen. (p.205)

Fig. 12 Pristiograptus cyphus (Lapworth) HUR./Sl3-17/4; Zone as figs.10,11; flattened and compressed. (p.204)

Fig. 13 Pristiograptus cyphus (Lapworth) HUR./S13-17/5; Zone as figs.10-12; flattened and compressed. (p.204)

## PLATE 5

Fig. 1 Pristiograptus regularis (Tornquist), HUR./S140,11/2; Zone of M. turriculatus (Subzone R. maximus), Spengill; specimen flattened, compressed proximal and mesial portion, sicula intact. x 5 (p.212)

Fig. 2 Pristiograptus nudus (Lapworth), HUR./5Wi/6; Zone of M. crispus, Wards Intake; specimen well preserved but flattened. $x 5$ (p.208)

Fig. 3 Pristiograptus concinnus (Lapworth), HUR./S75,9.4/123; Zone of M. sedgwicki, Spengill; fragmentary specimen in full relief. x 5 (p.214)

Fig. 4 Pristiograptus dubius dubius (Suess), HUR./44W/2; Zone of M. flexilis belophorus, Wenlock Series, Stage 3, Wandale Hill; proximal end with sicula, flattened. $\times 5$ (p.215)

Fig. 5 Pristiograptus dubius dubius (Suess), HUR./7W/25; Zone nilssonisoanicus, Ludlow Series; proximal end, flattened. $\times 2 \frac{1}{2}$ (p.215)

Figs.6,7,8, Pristiograptus auctus sp. nov. respectively HUR./7W/43, HUR./7W/ 46 , and the holotype HUR. $/ 7 \mathrm{~W} / 62$; Zone of nilssoni-scanicus, Ludlow Series; all flattened specimens in very low relief. $x 5$ ( p .223 )

Fig. 9 Pristiograptus auctus sp. nov. paratype HUR./7W/34., Zone nilssoniscanicus, Ludlow Series, Wandale Hill; specimen flattened and showing globule-shaped virgella. $x 2 \frac{1}{2}$ ( p .223 )

Fig. 10 Monograptus atavus Jones, HUR./2Bi/26, Zone of P. acinaces, Birks Wood Beck; fragmentary flattened specimen. x 5 (p.231)

Fig. 11 Monograptus atavus Jones, HUR./1Bi/149, Zone of M. atavus, Birks Wood Beck; fragmentary, flattened. $\times 5$ (p.231)


## PLATE 6

All figs. x 5


#### Abstract

Fig. 1 Monograptus leintwardinensis incipiens Wood. HUR./2W/137; Zone of nilssoni-scanicus, Ludlow Series, Wandale Hill; specimen, complete flattened, uncompressed and showing proximal thecal spines. (p.252)


Fig. 2 Monograptus varians Wood s.l., HUR./3S/6; Zone of nilssoni-scanicus, Ludlow Series, Spengill., flattened. (not described)

Fig. 3 Monograptus priodon (Bronn) s.1. HUR./28W/69; Zone of C.centrifu-gus-C.insectus, Wenlock Series, Stage l, Wandale Hill; specimen well preserved in full relief, extreme proximal end less well preserved. (p.256)

Fig. 4 Monograptus priodon (Bronn) s.1. HUR./28W/22; Zone as fig.3; specimen in relief - contrast with fig.5.(p.256)

Fig. 5 Monograptus priodon (Bronn) s.l. HUR./1M/75; Zone as figs.3,4, ; specimen flattened. (p.256)

Fig. 6 Monograptus knockensis Elles \& Wood. HUR./S80,8.4/144; Zone of M. sedgwicki, Spengill; specimen in full relief. (p.272)

Fig. 7 Monograptus riccartonensis Lapworth, HUR./32W/26; Zone of riccartonensis, Wandale Hill; specimen showing rather proximal dorsal curvature than usual; robust nature of proximal end well displayed. (p.259)

Fig. 8 Monograptus flexilis flexilis Elles. HUR. $/ 16 \mathrm{~N} / 202 \mathrm{a}$; Zone of C . rigidus mut., Wenlock Series Stage 3, Near Gill; specimen well preserved, flattened. ( p .267 )

Fig. 9 Monograptus flexilis flexilis Elles, HUR./17N/179; Zone as fig.8; specimen well preserved, flattened. (p.267)


## PLATE 7

All figs. x 10

> Fig. 1 Monograptus ex. gr. flexilis Elles. HUR./43W/8; Zone of M. flexilis belophorus, Wenlock Series Stage 3, Wandale Hill; specimen flattened. (p.269)

Fig. 2 Monograptus communis obtusus subsp. nov. holotype, HUR./S80, 8.4/90; Zone of M. sedgwicki, Spengill; specimen in full relief, proximal end with sicula, preserved partly as an external mould. (p.307)

Fig. 3 Monograptus communis communis Lapworth. HUR./6Bi/38; Zone of $\underset{\text { P. }}{ }$ leptotheca ( $=$ argenteus), Birks Wood Beck; specimen of distal thecae in full relief. (p.305)

Fig. 4 Monograptus(?) runcinatus pseudopertinax subsp. nov? HUR./S162,10. 25 /23; Zone M. turriculatus, Spengill; specimen very strongly compressed and flattened both acting to increase the width. (p.292)

Fig. 5 Monograptus pseudobecki Boucek \& Pribyl, HUR./S219,0.25/3; Zone
M.turriculatus, Spengill; specimen flattened. (p.290)
Fig. 6 Monograptus exiguus (Nicholson), HUR./S231,2/142; Zone of M. crispus, Spengill; flattened specimens associated with a new species of climacograptid (Wilson's species), specimens appear to be orientated. (p.289)

Fig. $7 \frac{\text { Monograptus exiguus }}{\text { specimen flattened. }} \quad(\mathrm{Nicholson)}$ ), HUR./S231,2/145; Zone as fig.6;


## PLATE 8

All $\times 5$ except fig. 3

Figs.l, 2 Monograptus priodon (Bronn) s.l., respectively HUR./10P/17 and /16; Zone of C. centrifugus-C.insectus, Pickering Gill; specimens of distal thecae in full relief. (p.256)

Fig. 3 Monograptus riccartonensis Lapworth. HUR./32W/17; riccartonensis Zone, Wenlock Stage 2, Wandale Hill, specimen flattened. (p.259) $\times 2 \frac{1}{2}$.

Fig. 4 Monograptus marri Perner s.1. HUR./4Wi/56; Zone of M. crispus, Wards Intake; specimen flattened. (p.270)

Fig. 5 Monograptus denticulatus Tornquist. HUR./6Bi/42; Zone of P. lepttheca ( $=$ argenteus Zone), Birks Wood Beck; specimen in relief). (p.303)

Fig. 6 Monograptus pseudoplanus Sudbury. HUR./9Bi/11; Zone of D. magnus Birks Wood Beck; specimen in relief. (p.310)

Fig. 7 Monograptus triangulatus fimbriatus (Nicholson) HUR./6Wa/2; ?Zone of D. magnus, Watley Gill; specimen partly flattened and compres sed, extreme proximal end missing. (p.313)

Fig. 8 Rastrites maximus (Carruthers) HUR./S117,3/122; Subzone of R.maximus, Spengill; two fragmentary, flattened thecae. (p.316)

Fig. 9 Rastrites Iongispinus (Perner) HUR./9Bi/11; Zone of D.magnus, Birks Wood Beck; specimen in relief. (p.318)


## PLATE 9

Fig. 1 Cyrtograptus m.murchisoni Carruthers (non Boucek); HUR./37W/1; Zone of C.eentrifugus-C.insectus (topmost beds), Wandale Hill; specimen in full relief. $\times 1$ ( p .324 )

Fig. 2 Cyrtograptus lundgreni Tullberg. HUR./27N/23a; Zone of C.lundgreni (Stage 4), Near Gill; specimen flattened $x 2 \frac{1}{2}$. (p.335)

Fig. 3 Cyrtograptus aff insectus Boucek, HUR./28W/78; Zone of C.centri-fugus-C.insectus, Wenlock Stage l, Wandale Hill; specimen in full relief. (p.329) $\times 2 \frac{1}{2}$

Fig. 4 Cyrtograptus aff insectus Boucek, HUR./28W/84; Zone as fig.3; specimen in full relief. x 5 ( p .329 )

Fig. 5 Monograptus f.flexilis Elles, slab HUR./17N/179 of several specimens, all flattened; Zone of C.rigidus mut. Near Gill. $x 1$ ( p .267 )


## PLATE 10

Fig. 1 Monograptus irfonensis inclinatus subsp. nov. slab of several specimens, orientated parallel. HUR./39W/3, approximately $x 2$ (p.260)

Fig. 2 Slab with roughly orientated specimens of M.kingi sp. nov. x 2 . (p. ) HUR./10Ra/3.

Fig. 3 Monograptus riccartonensis Lapworth, HUR./32W/17; riccartonensis Zone, Wandale Hill; long flattened distal fragment, approximately x 2. (p.259)

Fig. 4 Rastrites aff longispinus (Perner), HUR./S73,11 4/74; Zone of M. sedgwicki, Spengill; specimen in full relief. $x 10$ ( p .318 )


## PLATE 11

Fig. 1 Slab showing variously orientated specimens of M.kingi sp. nov. from same locality as Pl.10, fig.2. HUR./10Ra/2 x 2 (p.197)

Fig. 2 Monograptus priodon (Bronn) s.l. HUR./10P/17; Wenlock Stage 1, Pickering Gill; specimen in full relief. $\quad \mathbf{x} 2$ ( p .256 ).


PLATE 12
All figs. $\times 10$

Fig. 1 Diplograptus modestus tenuis subsp. nov. holotype, HUR./S1-5/18; see also pl.1,fig.13. (p.142)

Fig. 2 Diplograptus magnus H.Lapworth. HUR./9Bi/26; see also pl.l,fig. 14. (p.139)

Fig. 3 Climacograptus medius Tornquist HUR./3Wa/25; see also pl.1 fig. 12 . (p.129)

Fig. 4 Climacograptus pseudonormalis sp. nov. HUR./2Bi/4, holotype. see also pl.l,fig.10. (p.128)

Fig. 5 Climacograptus rectangularis (M'Coy). HUR./S9-13/103; Zone of P. acinaces, Spengill; specimen flattened, virgella preserved. (p.130)

Fig. 6 Climacograptus extremus H.Lapworth. HUR./S75,9.4/222; see also pl. 1,fig. 8 (p.134)

Fig. 7 Climacograptus aff minutus Carruthers. HUR./S9-13/101; see also pl.1,fig.11 (p.135)

Fig. 8 Climacograptus ?tangshanensis linearis Packham HUR./14P/7; see also pl.1,fig.9 (p.131)

Fig. 9 Climacograptus miserabilis (Elles \& Wood). HUR./1Bi/35. see also pl.1,fig.5. (p.125)


Fig. 1 Monoclimacis vomerina basilica (Lapworth). HUR./28W/91; Wenlock Stage 1, Wandale Hill; specimen of distal thecae in full relief. (p.188)

Fig. 2 Monograptus vomerinus var. Gracilis Elles \& Wood. fig. Elles \& Wood pl.4l,fig. 3 a .

Fig. 3 Monoclimacis vomerina aff vomerina (Nicholson). HUR./4M/71; Wenlock Stage I, Middle Gill; specimen in relief. (p.191)

Figs. 4 Monograptus priodon (Brown) s.I. HUR./28W/40a; Wenlock Stage 1 , Wandale Hill; specimen in full relief preserved partly as an external mould ( p .256 )

Fig. 5 Monograptus f.flemingii Salter. HUR./1Tw/l; Wenlock Stage 4, Two Gills; specimen of distal thecae in full relief obtained from a calcareous nodule. (p.262)

Fig. 6 Monograptus priodon (Bran) s.l. HUR./1M/32; Wenlock Stage 1, Middie Gill; flattened specimen of proximal end. (p.256)

Figs.7,8, Pristiograptus watneyi sp. nov. holotype, HUR./37W/17; Wenlock Stage 1, Wandale Hill; specimen in full relief; fig. 7 shows proximal end and situla, fig. 8 distal thecae. (p.210)

Fig. 9 Monograptus ?marri Perner. HUR. $/ 5 \mathrm{Wi} / 7$; Zone of M.crispus, Wards Intake; specimen flattened and showing peculiar arrangement of thecal hook mentioned in description of M.marri Perner s.I. (p.270)
$\begin{aligned} \text { Fig. } 10 & \begin{array}{l}\text { Pristiograptus leptotheoa } \\ \text { M.sedgwicki, }\end{array} \text { (Lapworth), HUR./S75,9.4/142; Zone of } \\ \text { (pill; distal fragment in full relief. } & \text { (p.206) }\end{aligned}$

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |

Fig. 11 Monograptus spiralis (Geinitz)s.1., HUR./5Wi/8; Zone of M.criepts Wards Intake; specimen flattened. (p.315)

Fig. 13 Glyptograptus ?enodis Packham, HUR./S73,11 4/43; Zone of M. sedgwicki, Spengill; specimen in full relief. (p. )

Fig. 1 Pseudoplegmatograptus obesus (Lapworth), HUR./S124,10.25/1; Subzone of R.maximus, Spengill, fragmentary specimen in full relief. (p.173)

Fig. 2 Diplograptus modestus diminutus Elles \& Wood HUR./2Bi/32; see also pl.2,fig. 2 (p.141)

Fig. 3 Diplograptus sp. A HUR./1Bi/3; see also pl.1,fig. 16 (p.144)

Fig. 4 ?Diplograptus rarus sp. nov. holotype HUR./1Bi/139; Zone of M.atavus, Birks Wood Beck; long specimen showing proximal end and proximal thecae with excavations; virgella and nema present. (p.143)

Fig. 5 Climacograptus pseudonormalis $s p$. nov. paratype HUR./2Bi/ll; see also pl.2,fig.1 (p.128)

Fig. 6,7. Petalograptus minor finitimus subsp. nov. respectively the holotype HUR. $/ 6 \mathrm{Bi} / 41$ and a paratype HUR. $/ 6 \mathrm{Bi} / 15$; Zone of P.leptotheca ( $=$ argenteus Zone), Birks Wood Beck; specimens in relief. (p.167)

Fig. 8 Climacograptus miserabilis (Elles \& Wood) HUR./2Bi/44; see also pl.1,fig.4. (p.125)

Fig. 9 Climacograptus inotatus exquisitus subsp. nov. holotype, HUR./1Bi/ 26; see also pl.l,fig.7. (p.138)


## All figs. x 10

Figs.l,2,3. Orthograptus vesiculosus (Nicholson) respectively HUR./S5-9/ 229, HUR. $/ 1 \mathrm{Bi} / 61$ and HUR./S9-13/104; fig. 2 from Zone of P.acinaces, others from atavus Zone. (p.158)

Fig. 4 Orthograptus bellulus Tornquist HUR./11Wa/3; Zone of M.atavus, Watley Gill; specimen flattened and compressed.(p.16I)

Fig. 5 Glyptograptus ?eñodis latus Packham, HUR./9Bi/52; Zone of D.magnus Birks Wood Beck; specimen in full relief but fragmentary, subapertural view. (p.151)

Fig. 6 Glyptograptus tamariscus linearis (Perner), HUR./9Wa/67; oonvolutus Zone, Watley Gill; specimen in low relief, reverse view. (p.147)

Fig. 7 Climacograptus miserabilis (Elles \& Wood). HUR./S5-9/125; see also pl.1,fig. 1 (p.125)

Fig. 8 Climacograptus i.innotatus Nicholson. HUR./2Wa/23; Zone of M . atavus, Watley Gill; small specimen in low relief, spines not clearly visible. (p.137)

Fig. 9 Climacograptus normalis Lapworth HUR./2Bi/96; see also pl.1,fig. 3. (p.124)


## PLATE 16

All figs. x 10

Fig. 1 Retiolites g.geinitzianus Barrande, HUR./25W/6; Wenlock Stage 1, Wandale Hill; specimen in full relief. (p.170)

Fig. 2 ?Glyptograptus sp.A, HUR./6Wa/17; ?magnus Zone Watley Gill; fragmentary specimen in full relief. (p.157)

Fig. 3 Glyptograptus sinuatus crateriformis subsp. nov., holotype, HUR./ S75,9.4/74; sedgwicki Zone, Spengill; specimen in full relief but with extreme proximal end missing. (p.154)

Fig. 4 Glyptograptus ?enodis latus Packham, HUR./9Bi/41; magnus Zone, Birks Wood Beck; specimen incomplete, in full relief. (p.151)

Fig. 5 Glyptograptus sinuatus sinuatus (Nicholson), HUR./6Bi/30; Zone of P.leptotheca ( $=$ argenteus Zone). Birks Wood Beck; specimen complete, in full relief, with nema and virgella preserved; reverse view. ( p .153 )

Fig. 6 Glyptograptus packhami sp. nov., holotype, HUR./S73,11•4/6; see also pl.2,fig.6. (p.149)

Fig. 7 Glyptograptus sp.3, HUR./s75,9.4/153; sedgwicki Zone, Spengill; specimen fragmentary but preserved in full relief. (p.156)

Fig. 8 Climacograptus ex.gr. scalaris (Hisinger), HUR./S73,11•4/3; sedgwicki Zone, Spengill; specimen fragmentary but in full relief. (p.126)

Fig. 9 Climacograptus simplex $s p$. nov. paratype, HUR /S75,9•4/12; Sedgw icki Zone, Spengill; proximal end in full relief, sicula visible. (p.127)

Fig. 11 Climacograptus simplex sp. nov. holotype HUR./S75,9.4/33; Zone as

| N सtry |  |
| :---: | :---: |
|  |  |
| $0$ <br>  |  |
|  | $\checkmark$ 为 9 criti |
| - |  |

fig. 9; mesial specimen in full relief showing characters of thecal tubes. (p. 127)

Fig. 10 Climacograptus normalis Lapworth HUR./S17-20/I; cyphus Zone, Spengill; mesial fragment, flattened. (p. 124)

Fig. 1 Climacograptus miserabilis (Elles \& Wood)? HUR./Sl7•2/3; cyphus Zone, Spengill. (p.125)

Fis. 2 Climacograptus miserabilis (Elles \& Wood), HUR./lBi/35; see also pl.1, fis.5. (p.125)

Fig. 3 Climacograptus extremus H.Lapworth, HUR./9Bi/23; magnus Zone, Birks Wood Beck; well preserved specimen in full relief, nema preserved. (p.134)

Fig. 4 Climacograptus aff minutus Carruthers, HUR./S9-13/101; see also pl.1, fig. 11 (p.135)

Fig. 5 Climacograptus huchesi (Nicholson), HUR./9Bi/24; magnus Zone, Birks Wood Beck; proximal end in full relief showing sicula. (p.132)

Fig. 6 Climacograptus simplex sp. nov. paratype, HUR./S75,9.4/12; see also pl.16,fig.9. (p.127)

Fig. 7 Climacograptus medius Tornquist? HUR./S1-5/73; see also pl.l,fig. 2. (p.129)

Figs. 8,9,10. ?Climacograptus retroversus sp. nov., respectively HUR./S80, 8.4/119; the holotype HUR./S73,11•4/81 and HUR./S80,8•4/119 (same slab as fig.8); all specimens from sedgwicki Zone, Spengill; preserved in full relief but usually fragmentary. (p.135)

PLATE 18

## All figs. $x 10$

Fig. 1 ?Climacograptus retroversus sp. nov. paratype HUR./S80,8.4/119; Zone as pl.17,figs.8,10. (p.135)

Fig. 2 Glyptograptus tamariscus tamariscus (Nicholson) aff form B Packham HUR. $/ 6 \mathrm{Bi} / 41$; Zone of P.leptotheca (= argenteus Zone), Birks Wood Beck; specimen in full relief, obverse view showing sicula (p.145)

Fig. 3 Glyptograptus aff incertus (Elles \& Wood), HUR./7Bi/1; ?machus Zone, Birks Wood Beck; proximal end in relief with sicula. (p.150)

Fig. 4 Glyptograptus sp.2, HUR./S80,8.4/44; sedswicki Zone Spengill; specimen in low relief. (p.156)

Fig. 5 Glyptocraptus t.tamariscus (Nicholson), HUR./S32-36/112; trianeu1atus Zone, Spengill; specimen in full relief, compressed. (p.145)

Fig. 6 Glyptograptus t.tamariscus (Nicholson) aff form C Packham, HUR./ 9B1/18; magnus Zone, Birks Wood Beck; fragmentary specimen in full relief. (p.145)

Fig. 7 Glyptograptus elegans Packham?, HUR./6Bi/81,(not described); Zone P.leptotheca, Birks Wood Beck; specimen in relief.

Fig. 8 Glyptograptus sp.1, HUR./1Wa/37; acuminatus Zone, Watley Gill; flattened specimen with attenuated periderm but a prominent nema. (p.155)

Fig. 9 Glyptograptus tamariscus aff varians Packham, HUR./6Bi/37; P.leptotheca Zone, Birks Wood Beck; specimen flattened. (p.148)

Fig.10,11. Orthocraptus aff insectiformis (Nicholson), respectively HUR./ 11Wa/18 and /8; convolutus Zone, Watley Gill; specimens flattened and compressed. (p.162)


PLATE 19
All figs. $x 5$

Fig. 1 Climacograptus normalis Lapworth, HUR./S17-20/1; see also pl.16, fig. 10. (p.124)

Fig. 2 Climacograptus normalis, Lapworth, HUR./IWa/3; acuminatus Zone Watley Gill; specimen flattened. (p.124)

Fig. 3 Climacograptus rectangularis (M'Coy), HUR./S9-13/103; see also Pl. 12,fig.5. (p.130)

Fig. 4 Glyptograptus tamariscus linearis (Perner), HUR. $/ 9 \mathrm{Wa} / 67$; convolutus Zone, Watley Gill; specimen in relief but weathered. (p.147)

Fig. 5 ?Diplograptus rarus sp. nov.?, HUR./S9-13/105; acinaces Zone, Spengill; flattened distal fragment with long nema. (p.143)

Fig. 6 Diplograptus m.modestus (Lapworth), EUR./4Wa/52; atavus Zone, Watley Gill; specimen flattened and compressed. (p.140)

Fig.7,8,9. Rhaphidosraptus toernquisti (Elles \& Wood), respectively HUR./ S20-24/31; HUR./9Bi/14; HUR./S13-17/2; fig. 8 is from the magnus Zone, Birks Wood Beck and is preserved in relief; Figs. 7 \& 9 are flattened and compressed. (p.186)

Hig. 10 Pseudoplegmatograptus obesus (Lapworth), HUR./S140,11/3; Subzone of R.maximus, Spengill; specimen flattened, not well preserved. (p.173)

Fig. 11 Spinograptus spinosus prospinosus subsp. nov. four specimens on a slab HUR. $/ 20 \mathrm{~N} / 40$, the holotype is the left hand specimen showing thecal spines. (p.177)

PLATE 20
All figs. x 10

Fig.1,2,3. Petalorraptus kurcki sp. nov., HUR./S73,11.4/40 holotype, fig. 1; sedewicki Zone, Spengill; specimens in full relief but strongly compressed. (p.167)

Fig. 4 Cephalograptus cometa aff extrema Boucek \& Pribyl, HUR./S94,7.4/ 32; sedgwicki Zone, Spengill; small badly preserved fragment, in relief. (p.169)

Fig. 5 Orthocraptus aff cyperoides (Tornquist), HUR./S36-39,7/30; triangulatus Zone, Spengill; specimen in relief but weathered. (p.160)

Fig. 6 Orthograptus cyperoides (Tornquist), HUR./5 Wa/ 16 ; Zone of M. triangulatus, Watley Gill; specimen in full relief obverse view. (p.159)

Fig. 7 Orthograptus attenuatassp. nov. holotype, HUR./14P/7; cyphus Zone, Pickering Gill; flattened specimen with an attenuated periderm and prominent nema. (p.\$61)

Fig. 8 Diplograptus modestus tenuis subsp. nov. holotype, HUR./Sl-5/18; see also pl.l, fig.13. (p.142)

Fig. 9 ?Diplograptus rarus sp. nov. holotype HUR./ $\mathrm{Bi} / 139$; see also pl. 14,fig.4. (p.143)

Fig. 10 Diplograptus macnus H.Lapworth, HUR./9Bi/26; see also pl.l,fig. 14. (p.139)


PLATE 21

## All figs. $\mathbf{x} 10$

Fig. 1 Dimorphograptus erectus nicholsoni subsp. nov., holotype, HUR./1Bi /64; atavus Zone Birks Wood Beck; specimen complete but flattened. (p.181)

Fig. 2 Dimorphograptus erectus nicholsoni subsp. nov., paratype, HUR./2Bi /22; acinaces Zone (base), Birks Wood Beck; specimen complete but flattened. (p.181)

Fig. 3 Akidograptus a. acuminatus (Nicholson), HUR./S/1; acuminatus Zone, Spengill; specimen in relief. (p.183)

Fig. 4 Akidograptus a. praematurus Davies, HUR./S/2; acuminatus Zone, Spengill; specimen in relief. (p.185)

Fig.5,6. ?Monoclimacis sp. A respectively HUR./S233,3/21 and 22; crispus Zone, Spengill; both specimens flattened and not well preserved. (p.200)

Fig. 7 Monoclimacis griestonensis nicoli subsp. nov. paratype, HUR./28W /86; Wenlock Stage 1, Wandale Hill; specimen in low relief, sub-dorsal view. (p.196)

Fig. 8 Monoclimacis griestonensis nicoli subsp. nov. holotype, HUR./8p /19; Wenlock Stage 1, Pickering Gill; specimen in relief preserved partly as an external mould. (p.196)

Fig. 9 Monoclimacis griestonensis (Nicol), figd. Elles \& Wood text fig. 279a.
Rig. 10 Nonoclimacis/griestonensis (Nicol), figd. Elles \& Wood pl.4l,fig. 68.

$$
\therefore \text { I1d. } 4 \mathrm{man}^{\prime} \cdot 8 \cdot 194 .
$$

$\left\{\begin{array}{c}5 \\ 2\} \\ 1\end{array}\right\}$


Kinn

Fig. 1 Dimorphograptus epilongissimus sp. nov. holotype, HUR./S20-24/32; cyphus Zone, Spengill; flattened, proximal end broken. (p.180) $\times 5$.

Fig. 2 Dimorphograptus epilongissimus sp. nov. paratype, HUR./S20-24/33; Zone as fig.1 (p.180) $工 5$.

Fig. 3b Dimorphograptus epilongissimus sp. nov. paratype, HUR./S20-24/32; Zone as fig.1" (p.180) $\times 5$.

Fig. 3a Dimorphograptus erectus erectus Nicholson, HUR./S20-24/32; Zone as fig.l, specimen flattened. $\times 5$.

Fig. 4 Retiolites geinitzianus augustidens Elles \& Wood, HUR./25W/3; Wenlock Stage 1, Wandale Hill; specimen in full relief. (p.172) $\times 5$

Figs.5-10. Monoclimacis kingi sp. nov., holetype fig.10,HUR./19N/70; others respectively HUR./17N/244; HUR./17N/232; HUR./17N/216; HUR. /17N/19; HUR./17N/10; Wenlock Series, Near Gill; all are flattened, and figs. 5 \& 10 show a characteristic slight double curvature. $(\mathrm{p} .197) \times 5$.

Fig. 11 Monograptus vomerinus var. crenulatus Tornquist. figd. Eiles \& Wood, text fig. $278 \mathrm{a} . \times 5$

Fig. 12 Monoclimacis vomerina basilica Lapworth, specimen figured by Lapworth; see also pl.4,fig.3. $\times 2$ (p.188)


PLATE 23
All figs. $x 10$ except fig. 11

Fig. 1 Monoclimacis vomerina basilica (Lapworth), HUR./3P/1la; Wenlock Stage 1, Pickering Gill; specimen in low relief. (p.188)

Fig. 2 Monoclimacis vomerina basilica (Lapworth), HUR. $/ 5 \mathrm{Kh} / 22$; Wenlock Stage 1, Whinny Gill; specimen in low relief. (p.188)

Fig. 3 Monoclimacis vonerina aff vomerina (Nicholson), HUR./28W/76; Wenlock Stage l; Wandale Hill; distorted specimen in low relief. (p.191)

Fig. 4 Monoolimacis haupti (Kuhne), HUR./2W/35; nilssoni-scanicus Zone, Wandale Hill; specimen in relief, a little distorted. (p.199)

Fig. 5 Monoclimacis shottoni sp. nov., holotype, HUR./28W/76; Wenlock Stage 1, Wandale Hill; specimen complete, well preserved in full relief. (p.193)

Fig.6,9. Pristiograptus leptotheca (Lapworth) respectively $575,9 \cdot 4 / 58$ \& 19; sedewicki Zone, Spengill; proximal fragments in full relief. (p.205)

Fig. 7 Pristiograptus cyphus (Lapworth), HUR./9-13/106; acinaces Zone, Spengill; fragmentary, flattened, proximal end. (p.204)

Fig. 8 Pristiograptus gregarius (Lapworth), HUR./6B1/33; leptotheca Zone, Birks Wood Beck; proximal end in full relief. (p.202)

Fig. 10 Pristiograptus welchi sp. nov. holotype, HUR./1Ab/22; leintwardinensis Zone, Adamthwaite Bank; flattened specimen. (p.224)

Fig. 11 Pristiøeraptus vicinus (Perner), HUR./8W/59; nilssoni-scanicus Zone, Wandale Hill; flattened specimen. $x$ 2t $\frac{1}{2}$ (p.222)


$$
\text { All figs. } \frac{\text { PLATE } 24}{5 \text { except fig. } 3}
$$

Fig. 1 Monoclimacis linnarssoni (Tullberg), HUR./4M/72; Wenlock Stage 1, Middle Gill; long distal fragment in relief. (p.195)

Fig. 2 Monoclimacis linnarssoni (Tullberg), HUR./lop/41; Wenlock Stage l, Pickering Gill; proximal end with sicula, in relief. (p.195)

Fig. 3 Monograptus vomerinus Nicholson, figured Elles \& Wood, pl.4l,fig. 1a, $\times 2 \frac{1}{2}$

Fig. 4 Monograptus vomerinus Nicholson, same slab as the specimen figured by Elles \& Wood as pl.4l,fig.lb.

Fig. 5 Monoclimacis vomerina aff vomerina (Nicholson)?, HUR./30W/8; compressed and flattened specimen, ? sub-dorsal view. (p.191)

Fig. 6 Monoclimacis vomerina basilica (Lapworth)?, HUR./4M/56; Wenlock Stage 1, Middle Gill; crushed specimen in relief. (p.188)

Fig. 7 Monoclimacis vomerina basilica (Lapworth), HUR./28W/24; Wenlock Stage 1 , Wandale Hill; sicula and proximal end in full relief, small specimen. (p.188)

Fig. 8 Monoclimacis vomerina aff vomerina (Nicholson), HUR. $/ 5 \mathrm{~Wh} / 6$; Wenlock Stage 1, Whinny Gill; proximal end in full relief. (p.191)

Fig. 9 Pristiograptus cyphus (Lapworth); HUR./S17-20/4; cyphus Zone, Spengill; straight distal fragment, flattened. (p.204)

Fig. 10 Pristiograptus gregarius (Lapworth), HUR./8Bi/1; magnus Zone, Birks Wood Beck; proximal end with sicula, in relief. (p.202)

Fig. 11 Pristiograptus aff acinaces (Tornquist), HUR./S13-17/3; acinaces or cyphus Zone, Spengill; specimens flattened. (p.205)


Fig. 1 Pristiograptus dubius dubius (Suess), HUR./18N/6; Wenlock Series, flexilis belophorus Zone, Near Gill; almost complete but flattened specimen. (p.215) $x 2 \frac{2}{2}$

Fig. 2 Pristiograptus dubius pseudolatus subsp. nov., holotype, HUR./18N/ 53a; Wenlock Series, Near Gill; almost complete but flattened specimen. (p.218) $\times 2 \frac{1}{2}$

Fig. 3 Pristiograptus vicinus (Perner), HUR./8W/85; nilssoni-scanicus Zone Wandale Hill; flattened specimen with distal extremity missing. (p.222) $\times 2 \frac{1}{2}$

Fig. 4 Pristiograptus auctus sp. nov. HUR./7W/25; nilssoni-scanicus Zone, Wandale Hill; flattened specimen. (p.223) $\times 2 \frac{1}{2}$

Fig. 5 Pristiograptus d.dubius (Suess), HUR/21N/9; Wenlock Series, C.rigidus mut. Zone, Near Gill; flattened proximal end. (p.215) 55

Fig. 6 Pristiograntus m.meneghini (Cortani), HUR./17N/46; Wenlock Series, C.rigidus mut. Zone, Near Gill; flattened specimen. (p.219) 5

Fig. 7 Pristiograptus d.dubius (Suess), HUR./16N/9; Wenlock Series, C.rigidus mut. Zone, Near Gill; somewhat narrow, flattened specimen, (p.215) $\times 5$

Fig.8,9. Pristiograptus pseudodubius (Boucek), HUR./28N/1 and HUR./26N/11; Wenlock Series, Stage 4, Zone of C.lundgreni, Near Gill; fig. 9 is a particularly typical specimen, both are flattened. (p.220) $\times 5$

Fig. 10 Pristiograptus wandalensis (Watney \& Welch), HUR./2W/203; distal thecae in full relief, showing slight ventral curvature of rhabdosome. $(\mathrm{p} .226) \times 2 \frac{7}{2}$


Fig. 11 Pristiograptus welchi sp. nov. holotype, HUR./1Ab/22; see also pl. 23, fig.10. (p.224) $\times 5$

Fig. 12 Monograptus incommodus Tornquist, HUR./S17-20/5; cyphus Zone, Spengill; incomplete flattened, proximal fragment. (p.236) $\times 5$

Fig. 13 Monograptus atavus Jones, HUR./S5-9/35; atavus Zone Spengill; specimen flattened. (p.231)

Fig. 14 Monograptus atavus Jones, HUR./S5-9/68; atavus Zone, Spengill; proximal fragment showing ventral curvature. (p.231)

## All figs. $x 10$

Fig. 1 Pristiograptus bohemicus (Barrande), HUR./2W/173; nilssoni-scanicus Zone, Wandale Hill; fragmentary specimen in full relief, showing cup-like nature of thecal tubes. (p.227)

Figs.2,3. Pristiograptus bohemicus (Barrande), HUR./2W/176 and 172; nil-ssoni-scanicus Zone, Wandale Hill; fragmentary specimens in full relief. (p.227)

Fig. 4 ?Pristiograptus wandalensis (Watney \& Welch), HUR./2W/4; nilssoniscanicus Zone, Kandale Hill; small straight specimen in full relief. (p.226)

Fig.5,6. Monograptus atavus Jones, HUR./2Bi/95 and 72; acinaces Zone, Birks Wood Beck; fragmentary specimens in full relief showing sigmoidal curvature of thecal tubes. (p.231)

Fig. 7 Monograptus argutus Lapworth, HUR./9Bi/27; magnus Zone, Birks Wood Beck; fragmentary specimen in full relief showing peculiar character of thecal apertures. (p.233)

PLATE 26


PLATE 27
All figs. 10

Fig. 1 Monograptus fonesi sp. nov. holotype, HUR./6Bi/76; leptotheca Zone, Birks Wood Beck; specimen fragmentary but in relief. (p.234)

Fig. 2 Monocraptus sandersoni Lapworth, HUR./S24-28/510; triangulatus Zone, Spengill; flattened fragment showing thecal characters. (p. 235)

Fig. 3 Monograptus incommodus Tornquist, HUR./S13-17/4; acinaces or cyphus Zone, Spengill; small flattened fragment. (p.236)

Fig. 4 Nonograptus argutus sequens subsp. nov. holotype HUR./S73,11.4/73; sedgwicki Zone, Spengill; external mould of specimen in full relief. (p.234)

Fig. 5 Monograptus argenteus cygneus (Tornquist), HUR./6Bi/3; leptotheca ( $=$ argenteus Zone), Birks Wood Beck; apecimen in low relief. (p.239)

PLATE 28
All figs. $\times 5$

Fig. 1 Monograptus incommodus Tornquist, HUR./S17-20/6; acinaces Zone, Spengill; flattened fragment. (p.236)

Fig. 2 Monograptus atavus Jones, HUR./S13-17/5; acinaces or cyphus Zones; Spengill; flattened fragmentary specimen. (p.231)

Fig. 3 Monograptus atävus Jones, HUR./S5-9/27; atavus Zone, Spengill; flattened and compressed specimen superficially resembling M . incommodus (of. fig.1). (p.23I)

Fig. 4 Monograntus 11 matulus Tornquist), HUR./9Wa/99; convolutus Zone, Watley Gill; proximal end in relief. . (p.240)

Fig. 5 Monograptus argenteus cygneus (Tornquist), HUR./6Bi/58; leptotheca Zone (- argenteus Zone) Birks Wood Beck; mesial fragment in low relief. (p.239)

Fig. 6 Monograptus argenteus aff argenteus (Nicholson); HUR./6Bi/17; leptotheca ( $=$ argenteus Zone), Birks Wood Beck; specimen in low relief, but compressed. (p.238)

Fig. 7 Monograptus argenteus cygneus (Tornquist), HUR./6Bi/13; leptotheca Zone ( $=$ argenteus Zone), Birks Wood Beck; specimen in relief with proximal extremity missing. (p.239)

Fig. 8 Monograptus colonus colonus (Barrande), HUR./2W/128; nilssoniscanicus Zone, Wandale Hill; specimen almost complete, in full relief. (p.243)

Fig. 9 Monograptus roemeri (Barrande), HUR./IY/14; nilssoni-scanicus Zone, Yarlside; fragmentary specimen in full relief. (p.245)




# Fig. 10 Monograptus c.chimaera (Barrande), HUR./6Bd/1; nilssoni-scanicus Zone; specimen in low relief, compressed. (p.247) 

Fig.1l,12 Monograptus leintwardinensis incipiens Wood, HUR./2W/125 and 211; nilssoni-scanicus Zone, Wandale Hill; specimens flattened. (p.252)

Fig. 13 Pristiograptus bohemicus (Barrande), HUR./2W/198; nilssoni-scanicus Zone, Wandale Hill; large, well preserved but flattened specimen (p.227)

## PLATE 29

## All figs. $x 10$

# Fig. 1 Monocraptus chimaera salweyi (Lapworth), HUR./2W/28; nilssoniscanicus Zone, Wandale Hill; specimen in relief but spines poorly preserved. (p.249) 

Fig. 2 Monograptus leintwardinensis incipiens Wood, HUR./2W/133; Zone as fig.l; specimen flattened but showing proximal spines well developed. (p.252) ..

Fig. 3 Monograptus varians pumilis Wood, HUR./2W/134; Zone as fig.l; specimen in relief but poorly preserved. (p.254)

Fig. 4 Monograptus varians pumilis Wood, HUR./2W/144; Zone as fig.l; specimen flattened and somewhat compressed. (p.254)

Fig. 5 Monograptus colomus colonus (Barrande), HUR./9W/6; Zone as fig. I; specimen well preserved and in full relief. (p.243)

Fig. 6 Monograptus argenteus cygneus (Tornquist), HUR./S75,9 4/224; sedgWicki Zone, Spengill; distal frasment in full relief; (p.239)

Fig. 7 Monograptus limatulus Tornquist, HUR./9Wa/58; convolutus Zone, Watley Gill; proximal end in full relief. (p.240)



5


## Plate 31 (continued)

Fig.ll Spengill; badly preserved specimen but showing full degree of spinosity. (p.274)

Fig. 12 Monograptus irfonensis inclinatus subspl nov., holotype, (proximal end) HUR./39W/3; Wenlock Stage 2, riccartonensis Zone; specimens flattened and somewhat compressed. (p.260)

Fig. 13 Monograptus halli (Barrande), HUR./Sl40,ll/4; R.maximus Subzone, Spengill; specimen flattened. (p.274)

## PLATE 30 <br> All figs. $\times 10$

Fig.1,2. Monograptus 1. leintwardinensis Lapworth, HUR. $/ 1 \mathrm{Ab} / 60$ and 21 ; leintwardinensis Zone, Adamthwaite Bank; small flattened and compressed specimens. (p.250)

Fig.3,4. Monograptus 1. aff incipiens Wood, HUR./1Ab/21 and 44; leintwardinensis Zone, Adamthwaite Bank; compressed specimens in full relief. (p.254)

Fig. 5 Monograptus varians pumilis Wood, HUR./2W/243; nilssoni-scanicus Zone, Wandale Hill; flattened specimen. (p.254)

Fig. 6 Monograptus ex. gr. elongatus Tornquist, HUR./S159,8 75/52; turriculatus Zone, Spengill; small fragment, flattened. (p. )

Fig. $7,8,9,10,11$. Monograptus gemmatus (Barrande), HUR./S94,7•4/40\& 17; HUR./S219,0.25/22; EUR./166,8.5/113; HUR./S219,0.25/12; sedgwicki and turriculatus Zones, Spengill; all fragments either flattened or in low reliof. (p.275)


1


## PLATE 31

Fig. 1 Monograptus knockensis Elles \& Wood, HUR./S80, $84 / 231$; sedgwicki Zone, Spengill; specimen in low relief. (p.272) 55

Fig. 2 Monograptus "flemingii-priodon", HUR./15M/22; Wenlock Series, StaEe 2, antennulatus Zone; poorly preserved, flattened and compressed fragment. (p.264) 55

Fig. 3 Monograptus flexilis belophorus (Meneghini), HUR./16M/20; f. belophorus Zone, Wenlock Stage 3, Middle Gill; flattened fragment. ( p .268 ) $\times 5$.

Fig. 4 Monosraptus marri Perner, HUR./4Wi/56a; M.crispus Zone, Wards Intake; well preserved specimen in low relief. (p.270) $\times 2 \frac{1}{2}$

Fig. 5 Monograptus priodon (Bronn)s.1. HUR./IM/75; Wenlock Stage 1, Middle Gill; specimen in low relief and compressed. (p.256) $\times 2 \frac{1}{2}$

Fig.6.7. Monograptus simulatus sp. nov. holotype (fig.7) HUR./28W/25, fig. 6 is HUR. $/ 4 \mathrm{M} / 62$; both from Wenlock Stage 1 ; preserved in relief. (p.279) $\times 5$.

Fig. 8 Monograptus flexilis belophorus (Meneghini), HUR./13M/74; Wenlock Stage 2, riccartonensis Zone; proximal end without sicula, badyy preserved. (p.268)

Fig. 9 Monosraptus flemingii primus Elles \& Wood, HUR./3W/34; Wenlock Stage 4; flattened and compressed specimen. (p.263)

Fig. 10 Monograptus sedberchensis sp. nov. holotype, HUR./40W/l; Wenlock Series, riccartonensis Zone; flattened specimen but not strongly compressed. (p.265)

Fig. 11 Monograptus halli (Barrande), HUR./SI15,5/3; R.maximus subzone, piote description continued price to P1.30
为

## PLATE 32

All figs. $x 10$ except fig. 9

Fig.1,2. Monograptus barrandei (Suss), HUR./S210,8/3 and HUR./S219,0.25 /18; turriculatus Zone, Spengill; both specimens flattened. (p. 278)

Fig. 3 Monograptus sp. A HUR./5P/13; Wenlock Stage 1, Pickering Gill; specimen well preserved in full relief. (p.282)

Fig. 4 Monograptus priodon (Aron) s.l. HUR./28W/58; Wenlock Stage 1, Wandale Hill; specimen in full relief, shows unusually enrolled hooks. (p.256)

Fig. 5 Monograptus minimus of cautleyensis subsp. nov. HUR./1M/116; Wenlock Stage 1, Middle Gill; specimen in relief preserved partly as an external mould. (p.284)

Fig. 6 Monograptus sedgwicki (Portlock), HUR./S94,7.4/54; sedgwicki Zone, Spengill; proximal end with situla. (p.275)

Fig. 7 Monograptus marci Perner, HUR./S233,3/23; crispus Zone, Spengill; specimen showing "pandus"-like appearance as a result of compression. (p.270)

Fig. 8 Monograptus flemingii flemingii (Salter), HUR./3W/33; Wenlock Stage 4, Wandale Hill; well preserved but flattened proximal end. (p.262)

Fig. 9 Monograptus simulatus sp. nov. HUR./28W/25, holotype; see also pl. 31,fig.7. $\times 7$ approximately. (p.279)


## PLATE 33

All figs. except $9, \times 10$

Fig. 1,2. Monograptus minimus cautleyensis subsp. nov. holotype (fig.1) HUR /1M/50; fig. 2 HUR./1M/117, paratype; Wenlock Stage 1, Middle Gill; specimens in relief. (p.284)

Fig. 3 Monograptus danby sp . nov. holotype, HUR./8P/1; Wenlock Stage 1, Pickering Gill; specimen in relief. (p.294)

Fig. 4 Monograptus marri Perner, HUR./4W/15; crispus Zone, Wards Intake; flattened proximal end. (p.270)

F'ig. 5 Monograptus? muncinatus pseudopertinax subsp. nov. holotype HUR. /S140,11/5; Subzone of R.maximus, Spengill; specimen in relief. (p.292)

Fig. 6 Monograptus r.pseudopertinax subsp. nov. paratype, HUR./S115,5/24; Subzone R.maximus, Spengill; somewhat robust specimen in low relief. (p.292)

Figs.7-10. Monograptus pseudobecki Boucek \& Pribyl, HUR./S115,5/31; HUR. /S115,5/12; HUR./S115,5/ ; R.maximus Subzone, Spengill; specimens in relief. (fig. 9 about $\times 20$ ) (p.290)

Fig. 11 Monograptus exiguus (Nicholson), HUR./S197,5.5/11; turriculatus Zone, Spengill; specimen flattened and compressed. (p.289)


PLATE 34

## All figs. $\times 10$

Fig. 1 Monograptus triangulatus fimbriatus (Nicholson), HUR./9Bi/33; magnus Zone, Birks Wood Beck; proximal end in low relief, with sicula. (p.313)

Fig. 2 Monograptus triangulatus separatus (Sudbury), HUR./7Bi/2; ?triangulatus Zone, Birks Wood Beck; specimen in low relief preserved in part as an external mould. (p.299)

Fig. 3 "Monograptus triangulatus separatus (Sudbury), HUR./S24-28/511; triangulatus Zone, Spengill; variant approaching M.t.triansulatus; preserved in relief partly as an external mould. (p.299)

F1g. 4 Monorraptus proteus (Barrande), HUR./S231,2/11; crispus Zone, Spengill; specimen flattened and compressed. (p.311)

Fig. 5 Monograptus c.communis Lapworth, HUR./6Bi/38; Zone of leptotheca, Birks Wood Beck; specimen in full relief. (p.305)

Fig. 6 Monograptus denticulatus Tornquist, HUR. $/ 5 \mathrm{Bi} / 35$; convolutus Zone, Birks Wood Beok; specimen in low relief. (p.303)

Fig. 7 Monograntus c.communis Lapworth, HUR./S73,11•4/11; sedswicki Zone Spengill; distal thecae in full relief, strongly compressed. (p. 305)

Fig. 8 Monograptus difformis ?subsp., HUR./S80,8.4/261; sedgwicki Zone, Spengill; proximal end in low relief. (p.241)

Fig. 9 Monograptus planus (Barrande), HUR./S159,8•75/37; turriculatus Zone, Spengill; specimen flattened and compressed. (p.309)

Fig. 10 Monograptus denticulatus Tornquist, HUR./10Wa/4; convolutus Zone,




3;


Watley Gill; proximal end in full relief. (p.303)

Fig. 11 Monograptus decipiens Tornquist, $\mathrm{HUR} . / 9 \mathrm{Wa} / 60$; convolutus Zone, Watley Gill; proximal fragment in low relief. (p.302)

Fig. 12 Monograptus communis obtusus subsp. nov. paratype, HUR./S73,11.4/113; sedgwicki Zone, Spengill; specimen in relief, somewhat compressed. (p.307)

PLATE 35
All figs. $\times 5$

Fig. 1 Monograptus proteus (Barrande), HUR./Si77,8.25/6; turriculatus Zone, Spengill; mesial compressed and flattened fragment. (p.317)

Fig.2,3. Monograptus decipiens Tornquist, HUR. $/ 11 \mathrm{Wa} / 3$; HUR. $/ 9 \mathrm{Wa} / 3$; convolutus Zone, Watley Gill; specimens in low relief. (p.302)

Fig. 4 Monograptus decipiens Tornquist, HUR./9Wa/65; Zone as figs.2,3; thecae partialiy flattened. (p.302)

Fig.5,9. Monosraptus antennulatus Meneghini, HUR./7Wh/15 \& 5; Wenlock Series, Whinny Gill; specimens flattened. (p.287)

Fig. 6 Monograptus communis rostratus Elles \& Wood, HUR./6Wa/l; ?magnus Zone, Watley Gill; specimen preserved in relief. (p.306)

Fig. 7 Monograptus convolutus (Hisincer), HUR./10Wa/4; convolutus Zone, Watley Gill; proximal rastritiform fragment associated with a distal fragment. (p.301)

Fig. 8 Monograptus triangulatus major Elles \& Wood, HUR./S36-39,7/68; trianculatus Zone, Spengill; somewhat distorted specimen in relief but preserved as an external mould. (p.300)

Fig. 10 Monograptus crispus Lapworth, HUR./S248,10.25/20; crispus Zone, Spengill; flattened specimen. (p.286)

Fig. 11 M.t.trianculatus (Earkness), HUR./S24-28/224; trianculatus zone, Spengill; flattened and compressed specimen. (p.297)

Fig. 12 Monograptus sp. B, HUR./S197,5.5/11; turriculatus Zone, Spengill; specimen preserved as a flattened and compressed film. (


## Fig. 13 Monograptus triangulatus separatus (Sudbury), HUR./S24028/512; triangulatus Zone, Spengill. (p.299)

## PLATE 36

All figs. $\times 10$

Figs. 1-4 Monograptus fragilis sp. nov. holotype (fig.l, longest fragment) HUR./S24-28/29; others HUR./9Bi/25; holotype, Zone of triangulatus, Spengill; others magnus Zone, Birks Wood Beck; all specimens in low relief. ( p .340 )

Figs.5-6. Monograptus angustus sp. nov. holotype (fig.5) HUR./S140,11/4; Subzone of R.maximus, Spengill; specimen in relief; fig. 6 HUR./ S73,11•4/58; sedewicki Zone, Spengill; specimens in relief. (p.338)

Fig. 7 Monograptus $\mathrm{sp} . \mathrm{D}, \mathrm{HUR} . / \mathrm{S} 73,11 \cdot 4 / 42$; sedgwicki Zone, Spengill; specimen in full relief. (p.304)

Fig. 8 Monograptus c.communis Lapworth, HUR./S73,11.4/15; sedewicki Zone, Spengill; speoimens preserved in relief. (p.305)

Fig. 9 PMonograptus sp. G, HUR./S75,9.4/47; sedewicki Zone, Spengill; very poorly preserved flattened fragment. (p.342)

Fig. $10 \quad$ Monograptus $\mathrm{sp} . \mathrm{C}$, HUR./S219,0.25/18; turriculatus Zone, Spengill; badly preserved specimen preserved as a flattened film. (p.342)

Fig. 11 Rastrites of. hybridus Lapworth, HUR./s80, $8 \cdot 4 / 110$; sedswicki Zone, Spengill; fragmentary specimen preserved in relief.

Fig. 12 Rastrites spina (Richter), HUR./9Wa/45; convolutus Zone, Watley Gill; proximal end in full relief with sicula preserved. (p.321)

PLATE 37
All figs. $x 5$ except fig. 12

Fig. 1 Monograptus sp. (not described), HUR./S173,6/7; turriculatus Zone, Spengill; flattened specimen in which apertural region appears to be isolated but not hooked.

Fig. 2 Monograptus aff involutus (Lapworth), HUR./9Wa/87; convolutus Zone, Watley Gill; associated with proximal slender fragments passibly assignable to same form. (p.341)

Fis. 3 Rastrites spina (Richter), HUR./10Wa/4; convolutus Zone, Watley Gill; proximal end in relief. (p.321)

Fig. 4 Rastrites equidistans spengillensis subsp. nov. holotype HUR./S197, 5 5/ll; turriculatus Zone, Spengill; part of a long specimen preserved as a film. (p.319)

Fig. 5 Rastrites Iinnaei Barrande, HUR./S136,1 25/2; Subzone of R.maximus Spengill; specimen flattened. (p.317)

Fig.6.7. Rastrites maximus (Carruthers), HUR./S115,5/46 \& HUR./S123,7.25/ 19; Subzone of R.maximus, Spengill; specimens preserved in low relief. (p.316)

Fig. 8 Rastrites fugax Barrande, HUR./9Wa/102; convolutus Zone, Watley Gill; very poorly preserved specimen. (p.322)

Fig. 9,11. Rastrites sp. B, HUR./S24-28/513 and HUR./S36-39,7/36; triangulatus Zone, Spengill; strongly compressed specimens; fig.9flattened and fig. 11 in low relief. (p.323)

Fig. 10 Rastrites Ioncispinus (Perner), HUR./S24-28/514; triangulatus Zone Spenfill; specimen flattened and compressed. (p.318)

Fig. 12 Rastrites sp. A, HUR./S75,9 4/225; sedgwicki Zone, Spengill; small proximal end $x 20$ approximately. (p.323)

Fig. 13 Cyrtograntus of. ellesi Gortani, HUR./12Ra/11; Wenlock Series, ?Zone of C.ellesi, Ecker Secker Beck; badly preserved, flattened specimen. (p.332)

## PLATE 38

Fig. 1 Barrandeograntus pulchellus (Tullberg), HUR./30W/6; Wenlock Series, Stage 2, Wandale Hill; specimen flattened. $\times 5$ (p.337)

Fig.2,3. Cyrtocraptus centrifugus Boucek, HUR./28W/115 and 109; Wenlock Stage l, Wandale Hill; specimens in relief. $x{ }^{2} \frac{1}{2}$ (p.327)

Fig. 4 Cyrtograptus rigidus mut. HUR. $/ 16 \mathrm{~N} / 289$; Zone of C.rigidus mut. Near Gill; spesimen flattened. $x 2 \frac{1}{2}$ (p.331)

Fig.5,6. Cyrtograptus rigidus mut. HUR./16N/307; Zone as fig.4; proximal ends showing early thecae and sicula. $\times 5$ (p.331)

Fig. 7 Cyrtocraptus aff insectus Boucek, HUR./28W/35; Wenlock Stage 1, Wandale Hill; specimen in full relief but with proximal end missing. $\times 2 \frac{1}{2}$ ( p .329 )

Fig. 8 Cyrtograptus linnarssoni Tullberg, HUR./16N/153; Zone as fig.4; specimen showing branching. $x 10$ (see also text fig. no.10) (p.333)

Fig. 9 Cyrtocraptus linnarssoni Thわlberg, EUR./16N/177; Zone as fig.4; sketch of general form XI. (thickness of line not to scale). (p.333)


## PLATE 32

Fig. 1 "Phacops" sp. HUR./1D/307; Basal Ludlow Limestone, Cross Keys; internal mould of large glabella and portions of fixigenae, dorsal view. x 2 ${ }_{2}^{2}$

Figs.2,3, ?"Phacops" sp. HUR./ID/43a, and HUR./1D/222; locality as fig. 1 ; internal moulds of pygidial fragments. $\times 2 \frac{1}{2}$

Figs.4-7,9 Struveria torvus gen. et sp. nov. pygidia variously flattened and distorted, respectively HUR./1D/161a (internal mould), HUR./ ID $/ 161$ (latex cast, external mould); HUR./1D/382 (internal mould of fragmentary pygidium); HUR./DI/197 (internal mould of compressed pygidium); HUR./1D/383 (internal mould); all figs. $\times 2 \frac{1}{2} .(p .357)$

Fig. 8 Struveria torvus gen et sp. nov., HUR./1D/1; incomplete headshield, latex cast of external mould $\times 2 \frac{1}{2}$ ( p .357 )



4


5


6


Fig. 1 Delops o. obtusicaudatus (Salter), gen. nov. lectotype, Sedgwick Museum, A38682; internal mould of incomplete, badly preserved ephalow; figured by Salter (1855) as pl.1G, fig.15. xu (p.352)

Fig. 2 Delops obtusicaudatus howgillensis gen. et subsp. nov. paratype, well preserved internal mould of incomplete cephalon; Sedgwick Museum A38678; locality: north side of Helm Knotty. x 3 (p.354)

Fig. 3 Delops o. obtusicaudatus (Salter); gen. nov. badly preserved internat mould of pygidium; British Museum specimen number In 55901. $\times 3$ ( p .352 )

Fig. Aa, b. Delops o. obtusicaudatus (Salter) gen. nov.; pygidium (4a) associated with pygidium of fig. 3 but compressed in a different sense. Fig.4a is a latex cast of an external mould. B.M. no. In 55901. xu (p.352)

Figs.5,6, Delops 0. howgillensis gen et subsp. nov.; respectively internal mould (HUR./1D/177a) and external cast (latex cast of HUR./ ID/ 177); Basal Ludlow limestone, Cross Keys, Cautley. $x$ 2 $\frac{1}{2}$ ( p .354 )


6

## PLATE 41

Fig. 1 Delops o. howgillensis gen. et subsp. nov. holotype, HUR./1D/384; almost complete head shield, internal mould. $\times 2 \frac{1}{2}$ (p.354)

Fig. 2 Delops o. howgillensis gen. et subsp. nov. plasto-type; latex cast of external mould showing eye lenses and glabellar furrows. HUR./ID /6; x $2 \frac{1}{2}$ (p.354)

Fig. 3 Delops o. howgillensis gen. et subsp. nov. paratype; external mould showing nature of tuberculation and $1 p$ and $2 p$ furrows. HUR./1D/385; $\times 2 \frac{1}{2} \quad(\mathrm{p} .354)$

Figs.4-9 Struveria torvus gen. et sp. nov. holotype is fig.4, latex cast of external mould of HUR./2D/260; figs.5-9 are respectively: HUR. /1D/192 (internal mould); Sedgwick Mus. A41025a; HUR./1D/193 (internal mould of almost complete cephalon); HUR./ID/208 (internal mould); HUR. $/ 1 D / 301$ (internal mould). $\times 2 \frac{1}{2}$ (p.357)


## PLATE 42

Fig. 1 Odontopleura hughes (Lake), HUR./1C/1; internal mould of complete specimen; nilssoni-scanicus Zone, Clough River; $x 2 \frac{1}{2}$ (p.360)

Fig. 2 Odontopleura hughes (Lake), S.M. A35521 (counterpart of A373,66); internal mould of glabella showing pair posterior spines. x $2 \frac{1}{2}$ (p.360)

Fig. 3 Odontopleura hughes (Lake), S.M. A35519a; internal mould of thorax. $\quad x 2^{\frac{1}{2}}$ (p.360)

Fig. 4 Odontopleura hughesi (Lake), lectotype, S.M. A37135a; badly preserved internal mould figured by Lake (1896) pl.8,fig.4. $\times 2 \frac{1}{2}(p .360)$

Fig.5,6. Delops o. howgillensis gen. et subsp. nov. HUR./1D/19; young specimen, internal mould of cephalon; fig. 5 dorsal view; fig. 6 anterio-lateral view showing manner in which frontal lobe transgresses frontal margin. $x 2^{\frac{1}{2}}$ (p.354)

Fig. 7 Odontopleura hughes (Lake), S.M. A35516a; internal mould of almost complete specimen showing an abnormal pygidium in which a thoracic pleural segment is developed. $x 2 \frac{1}{2}(p .360)$

Fig. 8 Delops o. howgillensis gen. et subsp. nov. HUR./1D/7; young specimen showing glabellar tuberculation, latex cast of external mould. $x 2 \frac{1}{2}$ ( p .354 )

Fig. 9 Struveria torvus gen. et sp . nov. HUR. $/ 1 \mathrm{D} / 3$; young specimen showing typical glabellar furrows. $=2 \frac{1}{2}$ ( p .357 )

Fig. 10 Delops o. howgillensis gen. et subsp. nov. HUR./1D/258; latex cast of external mould of young pygidium. $x 2 \frac{1}{2}$ ( p .354 )

Fig. 11 Delops o. howgillensis gen. et subsp. nov. HUR./1D/18; glabella of


Fig. 11 young specimen, latex cast of external mould; tuberculation may be contrasted with fig.8. $x 2 \frac{2}{2}$ (p.354)

Fig. 12 Struveria torvus gen. et sp. nov. HUR./1D/35; latex cast of external mould of young individual showing fine tuberculation. $x 2 \frac{1}{2}$ ( $p .357$ )

Fig. 13 Decoroproetus sp. HUR./ID/305, not described; internal mould of glabella. $\times 2 \frac{1}{2}$

## PLATE 43

Figs.1-5,9 Decoroproetus sp. (not described), 1-5 are internal moulds, 8 an external mould of 5 ; specimens are, respectively, HUR./ ID /386; HUR./1D/387; HUR./1D/388; HUR./1D/389 \& a; HUR./1D/ 390 and 390 a.

Fig. 6 ?Decoroproetus sp. HUR./1D/97; internal mould $x 5$.
Fig. 7 Miraspis sp. HUR./1D/391; internal mould. x 5

Fig. 9 Miraspis sp. HUR./1D/392; internal mould showing eye stalks. $\times 5$.

Fig. 10 Miraspis sp. HUR./1D/393; internal mould of pygidium. x 5

Fig. 11 ??Homalonotus sp. HUR./1D/394; ?glabella, internal mould.






Note: To avoid complexity all boundaries, including inferred boundarie are drawn in solid lines. In cases where doubt exists this is indicated by means of question marks.


[^0]:    Subzone c: M.f.flemincij Salter, M.f.primus Elles \& Wood, P.d. dubius (Suess) Fevosites sp. crinoids.

[^1]:    * Other material from locality lWe,nilssoni-scanicus Zones.

