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Abstract

Complex systems are arapidly increasing area of research covering numerous dis-
ciplines including economics and even cancer research, as such the optimisation of
the simulations of these systems is important. This thesis will look specifically at two
cellular automata based growth models the Eden growth model and the Invasion Per-
colation model. These models tend to be simulated storing the cluster within a simple
array. This work demonstrates that for models which are highly sparse this method
has drawbacks in both the memory consumed and the overall runtime of the system.
It demonstrates that more modern data structures such as the HSH tree can offer con-

siderable benefits to these models.

Next, instead of optimising the software simulation of the Eden growth model,
we detail a memristive-based cellular automata architecture that is capable of simu-
lating the Eden growth model called the MEden model. It is demonstrated that not
only is this method faster, up to 12,704 times faster than the software simulation,
it also allows for the same system to be used for the simulation of both EdenB and
EdenC clusters without the need to be reconfigured; this is achieved through the use
of two different parameters present in the model F,,,, and P.j4c.. Giving the model
a broader range of possible clusters which can aid with Monte-Carlo simulations of

the model.

Finally, two methods were developed to be able to identify a difference between
fractally identical clusters; connected component labelling and convolution neural
networks are the methods used to achieve this. It is demonstrated that both of these
methods allow for the identification of individual Eden clusters able to classify them
as either an EdenA, EdenB, or EdenC cluster, a highly nontrivial matter with current
methods. It is also able to tell when a cluster was not an Eden cluster even though it
fell in the fractal range of an Eden cluster. These features mean that the verification

of a new method for the simulation of the Eden model could now be automated.
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There are neither beginnings nor
endings to the turning of The
Wheel of Time. But it was a

beginning.

CHAPTER |

Robert Jordan,
The Eye of the World,

Book 1 of The Wheel of Time

Intfroduction

PTIMIZING both the runtime and memory consumption of complex

systems simulations is a fast-moving and highly impactful area of

computer science especially when the simulation itself is run in a

Monte Carlo fashion. Running these type of models in this fashion

requires that a large number of runs of the simulation to be performed and as such
can take a very long time and massive amounts of memory to compute. In this thesis,
the focus will be on the optimisation and new methods of analysis of growth models, a
subset of cellular automata that are used in many physical sciences, including physics
with the simulation of alloy cooling and dendrite formation. The models which will
be focused on here will be that of the Eden growth model, and the Invasion Percola-
tion model. Both of these models are used in the simulation of cancer, and as such
their optimisation could aid in the expansion of our current knowledge of cancer by
speeding up the rate at which it can be simulated. The Eden model is used for the sim-

ulation of the growth of a tumour whereas the Invasion Percolation model is used for



the growth of the blood vessels that a tumour grows when it goes through angiogen-
esis (a process which causes the formation of new blood vessels). Though these are
not the only uses of these models, and as such optimisations to them would also offer
benefits where ever they are used. It is also hoped that the results of the experiments
discussed in Chapter 5 could help inform where these different structures could offer

benefits outside of these specific models.

This work will not only investigate methods in software through the application of
more modern data structures such as an AVL tree as opposed to the commonly used
character array for the storage of these growth model clusters, which will be referred
to as the Lattice method. It will also investigate a hardware-based implementation of
the Eden growth model that makes use of a memristive agent based cellular automata
where a memristor is used for the storage of the state of the cell. It is a commonly
known fact that hardware implementations are often considerably faster than their
software counterparts, most of the time by thousands of times. Some reasons for this
are that 100% of the computational power available is put into the calculation of the
simulation also pathways for communication between parts of the system can be op-
timised for the required communication; this can also reduce the amount of energy

that the system requires to perform a calculation or in this case simulation.

Whilst analysing the results of the hardware-based version of the Eden model,
seen in Chapter 7 it very quickly became apparent that the use of the fractal dimen-
sion, a commonly used method for the validation of a new method for the simulation
of the Eden model, was not able to classify individual clusters and instead could only
be used to show that anew method produced the cluster within the same fractal range
as the old method. This becomes an issue as just because a cluster has a similar frac-
tal dimension does not mean that it is an Eden cluster, it also becomes an issue if
the fractal range produced by the new method differs meaning it could be producing
two types of Eden cluster or none at all. Therefore, this thesis also presents two new

methods for the classification of Eden clusters; these classification methods can be
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performed with a single cluster and not a range of clusters. The two methods that
have been developed make use of an element of Graph theory specifically Connected
Component Labelling and a Convolution Neural Network to help classify the cluster

and validate a new method.

1.1 Hypothesis

The main research questions that this thesis attempts to answer is whether the cur-
rent method for the storage of Cellular automata based growth model within the sim-
ulation is the most effective or whether the use of more modern methods could offer
speed or memory benefits. It also looks at if a memristive hardware-based imple-
mentation of the Eden growth model could not only be faster but could also offer

additional benefits over the restrictive software implementations of the model.

An additional question arose during this work that is also investigated; this being
whether the current methods for the analyses of these models are an effective method

and if not what other methods could be developed to solve this issue.

These questions have been summarised into three main hypotheses; these are as

follows:

H;) Modern data structures which are more sparse can offer both memory and

runtime benefits to growth models.

H.) Ahardware implementation of the Eden model using memristors can sim-
ulate the Eden growth model faster than the software-based version, and

the same architecture can simulate different versions of the model.

Hg3) The use of connected component labelling and convolutional neural net-
work improves that ability to analyse and classify individual clusters of the
Eden growth model into the three main classes more accurately than the

fractal dimension.
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1.2 Objectives

In order to prove the different hypotheses for this work a set of objectives were devel-

oped to help in their testing:

H; O;) Investigate the amount of the computational domain that the cluster
fills for the Eden and Invasion Percolation models as the size of the

cluster increases.

O,) Develop an optimal method for the implementation of each of the data

structures for the Eden and Invasion Percolation model.

Oj3) Investigate the effect on the runtime when making use of different data

structures.

0O,) Investigate the effect on the memory consumption when making use

of different data structures.

H-, O5) Propose a design for a memristive based agent for use in a cellular au-

tomaton for the simulation of the Eden model.

Og) Analysis of the fractal dimension of the Standard Eden growth model
and compare to that produced by the memristive based Eden growth

model.

H3; O7) Design connected component labelling for the analysis of the Eden growth

model.

Og) Test the validity of the connected component labelling for the analysis

of the Eden growth model.

Oy) Design convolutional neural network for the analysis of the Eden growth

model.

O;0) Test the validity of the convolutional neural network for the analysis
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of the Eden growth model.

1.3 Contributions

This section lists and details the specific novel contributions contained within the

pages of this thesis, these novel contributions are as follows:

Investigation into the possible benefits of modern data structures in the simu-
lation of the Eden and Invasion Percolation growth models this is discussed
in Chapters 4 and 5. This is an investigation into the use of more modern data
structure in growth models specifically the Eden growth model and the Inva-
sion Percolation model and the effect that they have in the total run time and
the memory consumption of the simulation. This work uses a range of differ-
ent models to show that there is a small set of variables for certain models where
the currently used method (an array that stores all the cell within the domain at
once including cells that do not contain an infected cell) is not the most optimal

method that can be used for the running of these model.

Design of amemristive based hardware implementation of the Eden growth model
this is discussed Chapters 6 and 7. This is involves the design of both a possi-
ble architecture for a hardware implementation of the Eden growth model that
makes use of a memristor the fourth fundamental circuit element to store the
state of each cell/agent, in addition to the development of a simulation de-
signed to simulate the architecture and allow for experiments into its validity
to be performed. The simulation was needed as it was not possible to obtain an

adequate number of memristors to fabricate this system.

Analysis ofthe fill density of Eden and Invasion Percolation growth models based
on the change in L size this is discussed in Section 3.4. In order to be able to

understand the effects of the size of the domain on the models and how this may
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affect the runtime of the models the percentage fill of the domain for each of the
models that have been used in the investigation allowing for a more detailed

understanding of how these model work.

Component Labelling for growth model analysis and classification this is discussed
in Section 7.2. With the limitations of the current method used to test the va-
lidity of new methods for the simulation of growth models, namely the fractal
dimension where in cases such as the EdenB and EdenC model where they are
highly fractally similar it becomes near impossible to be able to distinguish be-
tween these two model with this method. This contribution involves the use of
connected component labelling in a state assigned cluster for analysis of Eden
clusters to remove this limitation and to allow for the classification of individual

clusters even in a case where the cluster presented are fractally identical.

Image Classification for growth model classification this is discussed in Section 7.3.
Aswith the previous contribution, this is a method for the classification of growth
models when other methods, such as the fractal dimension, are unable to do so
based off of a single cluster, because of the large overlap in the possible ranges
produced by this method. This method makes used of convolutional neural

networks to perform image classification on Eden clusters.

Previous to this work the standard method for the storage of these models was that
of a dense lattice array in this work we demonstrate that for specific cases this is not
the ideal method to use and the different more sparse data structures offer benefits.
These benefits could aid the simulation of the model allowing for a version of the
model to be run in the same amount of time and memory space on a computer. These

results can be found in Chapter 5.

The thesis also demonstrates that significant benefits to the run time of the Eden
model, specifically the EdenB and EdenC varients, are able to be gained through the
use of anovel memristive architecture. An additional benefit can be obtained through

the use of this system, this being the ability to tailor the type of cluster produced
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through the manipulation of two variable that controls the operation of the model.

This is discussed in more detail within Chapter 6.

Previously to this work the method that was used for the analysis of a new method
for the simulation of a growth model was to check that the fractal dimension of the two
clusters was similar and that the clusters were visually similar too. Here we demon-
strate two new novel methods that allow for a more detailed analysis of a different
method for the simulation of a growth model. Additionally, this method allows for a
better method for the classification of a single cluster, here this allows for the identi-
fication of a EdenA, EdenB, or EdenC cluster which would not have always been pos-
sible through the use of the fractal dimension analysis. These methods are discussed

in Chapter 7.

1.4 Thesis Structure

This section will go into the structure of this thesis and will discuss what each of the
different chapters will contain. Chapters 2 and 3 of this thesis after this introductory
chapter will begin with a discussion on complexity and complex systems this will then
be followed by an introduction to the models that are used in this work. This chap-
ter will discuss in detail each of the models used, the algorithms that describe them,
and the implementation of the growth sites list used for each which will be key in the
selection of the next site to be infected. The final part of this chapter will discuss the
effect of domain size on the cluster specifically how much of the domain is filled by

the cluster taking into account the models specific stopping conditions.

Chapters 4 and 5 of this work will then go into the software-based experiments
for the simulation of the models where alternative data structures have been tested
for their suitability in their simulation. Chapter 4 will begin with an explanation of
the different data structures; this will include a discussion on the frequent uses of the

structures as well as a description of how they function. Chapter 5 will begin with
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the results for the effects on the runtime of the model that the data structures have;
this will be split into two different sections the first of these will concern itself with the
construction time of the structures, and the second part will discuss the total runtime
of the models both across a range of domain sizes. All models will be run until they

reach their model-specific stopping condition which is defined in Chapter 3.

Chapters 6 and 7 in this thesis will focus on the design and testing of the mem-
ristive based Eden growth model system which has been named the MEden method.
Chapter 6 will begin with a discussion on the history of the memristor as well as some
uses that it is currently being put to, this will then be followed by a discussion on the
implementation of the software used to simulate the memristor and its responses to
voltage including the equation that describes this behaviour. Next will be a discussion
on the design of the agent, along with the algorithm that governs the model. Chap-
ter 7 will begin by comparing the fractal dimension of the EdenA, EdenB and EdenC
models against the MEden model in order to demonstrate that this method can pro-
duce fractally similar clusters. This will then go into the demonstration of the Con-
nected Component Labelling method as well as the Convolutional Neural Network
method showing that these methods can give a better understanding of the clusters
that are being produced and can be used to classify individual clusters into one of the
three main Eden varients. In the case of the connected component labelling, it will
be shown that it can give a quantifiable difference between these models which is not

possible with the fractal dimension method.

Finally, in Chapter 8 this thesis will end with the conclusion, this will summarise
the contents of the thesis and identifying where within the work each of the objec-
tives is demonstrated to have been completed, and as such showing that the different
hypothesis has been proven or disproven. Following this will be a discussion on the
planned future work that will be carried out. In addition to the main body of work, this
thesis also contains three Appendices which contain the results of the statical analysis

performed on the data that makes up the basis of Chapter 5, Appendix A will briefly
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explain the different statical methods that are used and explain what these methods
show. Appendix B will look at the timing data, and Appendix C will look at the memory

data.



Progress is Man’s ability to

complicate simplicity

CHAPTER 2

Thor Heyerdahl

Complexity and Complex Systems

OMPLEX systems are an highly interesting area of research which present
many problems across a vast range fields such as the growth of do-
mains within cooling alloys (Hawick, 1991), Genetic Algorithms (Mitchell,
1998), the spread of an epidemic or violence within an urban area(Burke

et al., 2006, Epstein, 2002), and even economic systems such as Bitcoin (Dos Santos,
2017) more example of topics can be seen in Figure 2.1. The most famous of these
topics is probably Chaos theory, which studies complex systems that are highly sen-
sitive to changes in the environments of the system or its initial starting conditions,

this is often called the butterfly effect.

There are many misconceptions held about chaos theory the most common of
these is that it is the study of disorder, this is not true. Chaos theory is the study of
order from seemingly chaotic systems (Katherine, 1990). In a situation where a com-
plex system exhibits chaotic behaviours, it would be more accurate to describe the

system as a chaotic complex system, as chaos is not a necessity within the system for

11
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Figure 2.1: Diagram complex system broken down into seven different areas this is not an
exhaustive list (Sayama, 2015) but it does give an idea at the range of disciplines that are
involved in researching complex systems and complexity. The main areas in which this
thesis will focus itself with would fall under the umbrella of Non-linear dynamics and
Evolution and Adaptation.

it to be complex.

The study of these various systems falls under the umbrella of Complexity The-
ory which is a greatly interdisciplinary theory which originates from systems theory.
Because of the vast number of disciplines that have an interest in and are affected
by complex systems in one way or another the definition of these systems is a highly

non-trivial matter, this chapter will attempt to give an overview of what features a

complex system exhibits.

2.1 What is Complexity

One of the most common complex systems that we are all in constant contact with is

that of the human body. It is made up of a collection of organs each, in turn, is made
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up of billions of cells which perform various functions. Each of these cells is its self-
made up of numerous parts. From looking at the macro scale that of the body its self
itis a highly non-trivial matter to determine what is happening on the cellular level,
this is due to the nesting of complex systems involved, it took hundreds of thousands
of years of experimentation and analysis to begin to understand what is happening
within the human body. The brain alone is now considered in many circles to be a

complex system(Telesford et al., 2011) that may operate on a quantum level.

As this thesis is in the area of computer science and due to the topics discussed
referencing the computational complexity of various data structures. It is essential
to understand that complexity in the sense that it is discussed in this chapter does
not relate to the computational complexity of an algorithm which classes problems
according to their inherent difficulty to compute. There is no one concise definition
of what constitutes a complex system(Magee and de Weck, 2004); this is in part due to
the vast range of types of complex systems and the diversity of disciplines that study
them. Because of this, it is a highly non-trivial task to explain to a person what exactly
is meant when the term complex is used; this has lead to a large body of definitions
that attempt to solve this problem which seem to end up having more not in common
than actually in common with each other. A number of these alternative definitions
can be found in an article called What is a Complex System (Ladyman et al., 2012)

some of which are listed in Figure 2.2.

This makes clear the difficulty of defining complexity as each of these definitions
whereas they may be correct for the specific type of complexity that the author was
referring to they either require more information to complete the definition, or they
rely on other just as poorly defined terms to back them up the definitions never seem
to stand on their own or are uselessly vague. The definition of complexity itself is as
complex as the systems that the theory attempts to summarise and as such this work
does not attempt to give a definitive definition of complexity. It will merely give a brief

description of some aspects on which the majority of definitions agree.
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“To us, complexity means that we have structure with variations.” (Goldenfeld,

1999)

“Complexity in natural landform patterns is a manifestation of two key
characteristics. Natural patterns form from processes that are non-linear,
those that modify the properties of the environment in which they operate

or that are strongly coupled; and natural patterns form in systems that
are open, driven from equilibrium by the exchange of energy, momentum,

material, or information across their boundaries.” (Werner, 1999)

“Complexity starts when causality breaks down” (Editorial, 2009)

“In recent years the scientific community has coined the rubric complex
system’ to describe phenomena, structure, aggregates, organisms, or
problems that share some common theme: (i) They are inherently
complicated or intricate; (ii) they are rarely completely deterministic; (iii)
mathematical models of the system are usually complex and involve
non-linear, ill-posed, or chaotic behaviour; (iv) the systems are
predisposed to unexpected outcomes (so-called emergent

behaviour).” (Foote, 2007)

Figure 2.2: A selected of different definitions given to the term Complexity from a variety of
different academic fields
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For this thesis, a system may be considered to be complex if it consists of many
interacting agents (an agent is a a discrete object within the simulation that takes in
information and act based on a specific set of internal rules), whose properties cannot
be wholly understood merely by examining the behaviour of each singular agent; this
is due to the emergent properties that these systems often display. This description
though can lead to a variety of false conclusions that end up not holding true the first
of these is that just because a system contains many interacting parts; it is inherently
complex this, however, is not the case. Just because a system is made up of many
interacting parts on the microscopic scale that does not mean that it is impossible to
sum these interactions up into a much more straightforward system through global
quantities on the macroscopiclevel. Itis not necessary to simulate every air particle in
aroom to understand the system it can easily be significantly simplified and therefore

is not complex in nature(Charbonneau, 2017).

In this thesis the models that are to be dealt with could be considered to be Natural
Complex model in the way that Charbonneau (Charbonneau, 2017) defines the term,
this definition being idealisations of naturally occurring phenomena that whilst the
general pattern on the macroscopic scale they are not controlled from this level but
instead are the result of smaller individual agents interacting dynamically. A unifying
theory of complexity could have vast benefits to our understanding of the universe
aiding in the identification and implication of differing complex systems (Playne, 2011)
by giving a more concise and specific definition of complexity, as opposed to the
somewhat erratic and confusing theory that is currently used, where it could be ar-
gued that intuition is as important as part of identifying a complex system as any

other.

Below is a detailed description of various aspects that complex systems may ex-
hibit, this is by no means a definitive list more it is to give the reader an idea of some
features that make these systems such interesting an unpredictable. These aspects

are as follows:
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Decentralized Collective is the most common feature in these systems and means
that the system could also be considered a leaderless collective wherein the
decision-making is distributed out to each member of the collective, making
independent decisions based off of an internal rule set instead of following the
orders of a leader (Ladyman et al., 2012). The most widely known and encoun-
ters example of a decentralised collective would be that of an ant colony, which
is capable of incredibly complex global behaviour based upon nothing put sim-
ple local interactions. It is such a powerful example that the colony is often dis-

cussed as a single entity in and of itself instead of a collection of ants.

Non-Linear Relationships means that even a small change within the system could
have a sizeable disproportional response in the system or it is possible that it
will have no at all (Lea, 2015). This differs from a linear system where the effect
is always proportional to the change. When plotted on a graph, a non-linear
relationship is one which does not form a straight line in the positive or neg-
ative direction. This can make it very difficult if not impossible to predict the

outcome without actually running the system.

Emergent Behaviour which is often merely called Emergence, is when many en-
tities interact in an environment causing the formation of more complex and
somewhat unpredictable behaviours, in other words, the whole is greater than
the sum of its parts. The entities can vary widely from water freezing into a
snowflake or people going about the business movingin a crowd. G. H. Lewes (Lewes,
1875) first defined emergence. The base level mechanisms that cause these

emergent behaviours remains unknown.

Feedback can be a significant and useful aspect of a complex system. An entity re-
ceives feedback when the way its neighbours interact with it in the future de-
pends on the past interaction with the agent (Ladyman et al., 2012)it can come
in both negative and positive forms, which would have a dampening or amplify-

ing effect respectively on the system. Examples of feedback are Craig Reynolds
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boid system (Reynolds, 1987) wherein the speed and direction of a boid de-
pends on that of its neighbouring boids. The movement of that particular boid

will, in turn, affect the other boids in future iterations.

Spontaneous Order is the unforced emergence of order from whatis seemingly com-
plete chaos; it is also sometimes referred to as self-organisation. It can be seen
in numerous places from, the internet to even the very evolution of life itself (Dar-

win, 1909).

Hierarchical Organization is the idea that every entity in the system is subordinate
to that of a single other entity except for one, this is the same way that modern
businesses command structures are organised. Where the undertaking of the
task is performed by and under the control of the individual, but the assignment

of tasks is governed by a manager.

Nesting a complex system could also be nested this means that there are smaller mi-
cro complex systems contained within the larger macro system and that these
smaller systems will have an effect on the more extensive system though not all
the smaller system need to have the same level of influence as each other over

the more extensive system.

An additional interesting aspect of complexity comes in when you look at the sys-
tems that are considered to be complex and the fact that they are only able to be con-
sidered to be complex when the system has been run for a long time (Bennett, 1985,
1988, 1995, 2003). Regarding an ABM! which will be defined later on in this chapter,
this means many iterations or time steps have been performed. This again raises an-
other question how long of a history is required. For this reason, it can be necessary
to run these types of model for in some cases days and on as large a scale as possible
as in some cases certain features may only make themselves apparent in the result of
the system when it is simulated over a certain size, this adds an element of scalability

to the behaviour that they can display.

'Agent Based Model
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Figure 2.3: Game of Life example showing the model at intervals of 100 time steps from left
to right. The first image on the left is the initial starting condition for the simulation, and in
the final image on the right, the simulation has stabilised meaning that once reach the
model will remain identical for a consecutive iteration.

2.2 Agent-based Modelling and Cellular Automata

ABMs and CA?s are potent forms of computational modelling (Bonabeau, Macal and
North, 2006) and in the field of complexity science can be an invaluable tool in the
simulation of these systems. They give the ability to not only visualise the system but
allow for a more natural way to grasp the effect of changes to the systems. They also
give a way in which to analyse a system, which in reality is either infeasible or impos-
sible to measure. Take for instance in the case of an epidemic, in order to work out
the best way to help restrict the spread of the illness, it would require the process-
ing of massive amount of data regarding previous cases, which would require both
the data and computational power to be able to process what would be thousands of
terabytes of data. However, with ABM’s, it is possible to just run a few thousand simu-
lations of the epidemic each with different initial conditions and parameters that the
model may have and to see the results of any intervention. It should be noted that
the results from the simulation will only ever be as accurate as the simulation itself
and so the validation of these model is an essential aspect of a model and due to the
stochastic nature of these simulations will require many runs to get an idea of the

average behaviour of the system.

Both CA’s and ABM'’s can be traced back to the Von Neumann CA (Von Neumann,

1966) which was a theoretical idea of a robot that could build copies of its self. This

2Cellular Automata
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idea was later developed by Stanislaw Ulam who suggested that the Von Neumann
machine could be built on paper with the use of a collection of cells in a grid similar
to that of a chess board, this later became the first CA. One of the next advances in the
field was the zero-player game named Life or as it is more commonly known as Con-
way’s Game of Life (Gardner, 1970) an example of this can be seen in Figure 2.3. Four
straightforward rules govern the game of life. From these, a high level of complexity

emerges on the macroscopic level; these rules are as follows:

1. Anylive cell with fewer than two live neighbours dies as if caused by under pop-

ulation.
2. Any live cell with two or three live neighbours lives on to the next generation.
3. Any live cell with more than three live neighbours dies, as if by overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by re-

production.

The Game of Life emerged from Conway’s keen interest in Von Neumann’s idea
of a self-replicating machine, but he found that the system Von Neumann designed
was very complicated with numerous possible states. Conway wanted to see if he
could simplify the idea, and from that desire emerged the Game of Life. This was
different from the Von Neumann Machine in that whereas the Von Neumann Machine
consisted of a possible 29 states, the agents in the Game of Life could be in only be in
one of two possible states, dead or alive, and had straightforward rules to govern the
switching between these states. When this model was first devised Conway lacked
access to a computer with the ability to visualise it. Because of this, the Game of Life
was first simulated on a wéiqi board a game more commonly known as Go in the more

western parts of the world.

One of the first simulations to be noted as an actual ABM was thought up by
Schelling in his 1971 paper Dynamic models of segregation (Schelling, 1971). The

model involved the simulation of the dynamics in racially mixed neighbourhoods.
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Figure 2.4: The Schelling Segregation Model on lattice with a 30% threshold for neighbour
preference and 10% of the grid being empty to give the agents space to move in. The image
show the first four iterations, an iteration is considered as each agent making the decision as
the move or not. This already show the formation of spinodal like features in the simulation
similar to those shown in the Cahn-Hilliard-Cook Model (Hawick, 1991, Playne, 2011), which
is used to show domain growth with a quenched alloy.

The results of the simulation showed that even a low level of preference for neigh-
bours could lead to a high level of segregation. The model is defined by a simple rule
“If Neighbour count is higher than threshold move to random location otherwise stay
still". The model can be simulated both in a lattice and in a Euclidean space. An ex-

ample of the Schelling model in a grid-based environment can be seen in Figure 2.4.

Schelling’s model exemplified the idea of ABM be a collection of autonomous
agents interacting with one another in an environment within which they can move.
With the use of this model, Schelling showed that a small preference for your neigh-
bours to be similar to you in some way, in the case of the model the same colour could
if given enough time lead to total non-violent self-segregation. Later on, in 1980 a
Prisoners Dilemma tournament was held by a political scientist named Robert Axel-
rod to find the most effective strategy for the game. The prisoner dilemma is an in-
teresting piece of game theory where two people Mr A and Mr B get arrested, each of
them s held in solitary confinement and offered a deal giving them the opportunity to
either betray the other by testifying against him or to remaining silent(Mitchell, 1995,
Wooldridge, 2002) and refuse to testify in any way. The results of what will happen
in each of the possible outcomes can be seen in Table 2.1. The goal for each of the
agents is to attempt to minimise its loss; this is where the game theory aspect of the

model comes in to play, in attempting to figure out if it is worth the risk to stay silent.

In order to attempt to figure out the best way to minimise total prison sentence
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Mr. B .
Mr A Silent Betray

1 0
-1 -3

-3 2
0 -2

Silent

Betray

Table 2.1: Prisoners dilemma scoring showing the punishment received for each agent
when each combination of Silent and Betray are made. This show how there is no chance of
reward only to minimize loss.

over multiple occurrences of this dilemma, Schelling collected strategies from re-
searchers all over the world and pitted them against one another in a 2D spatial grid
to find the most effective strategy. One of the strategies that presented itself to be
highly effective also happened to be one of the simplest the tit-for-tat strategy (Ax-
elrod and Hamilton, 2008, Szilagyi, 2012) which Axelrod noted was an evolutionarily
stable strategy (Smith and Price, 1973). This strategy means that the agent remem-
bers what the other agent did last time they interacted and does that to them. In
other words, if the last time the two agents interacted Mr.B betrayed Mr.A, Mr.A would
now betray Mr.B. Like complex systems, ABM’s are utilised across numerous disci-
plines like the social sciences (Axelrod, 1997, Epstein, 2002, Epstein and Axtell, 1996,

Fukuyama, 1998).

After the work done with the Schelling model and the Game of Life, there was a
Cambrian-like explosion of models. More people realised how they could be benefi-
cial to them in their different areas of research. Due to the multi-disciplinary nature
of ABMs, it has become critical that highly intuitive, rapid, and simple ways to de-
velop these models where created, as not everyone can program to the level required
to allow them the quickly produce these simulations. To this end frameworks which
make use of a Domain Specific Language (DSL) such as NetLogo (Tisue and Wilensky,
2004a,b) and more recently Java Agent Development Framework (JADE) (Bellifemine
and Poggi, 2000, Bellifemine et al., 1999) and Multi-Agent Simulator Of Neighbour-
hoods (MASON) (Luke, 2005, Luke et al., 2004) have been made which further lead to

the rise in use and number of ABMs.
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Figure 2.5: An Example of a simple reflex agent showing the sensors taking in information
about the environment the agent the builds a view of the worlds applies its if-then rules and
then decides on an action which causes the actuators to act on the environment.

The section has discussed many different ABMs but what exactly is an ABM. To
define what precisely an ABM it is first necessary to define what an agent in and of
itself is. This is by no means as convoluted a definition as with that of complexity,
in its purest form an agent is an autonomous entity which observes its environment
through sensors and acts upon that same environment with actuators (Franklin and
Graesser, 1997). These agents are often called a SRA®. A diagram of the working of an
SRA can be seen in Figure 2.5, they contain no knowledge or memory of any kind, the
most common example of this type of agent is a thermostat, it’s sensors reads the tem-
perature of the environment, then the actuators turn on or off the heating. There are
other forms of agent such as utility-based agents, Goal-Based Agents, and Learning
Agents but all of these agents have the same basic set-up as the SRA with sensors and
actuators in one form or another the difference between them is the internal work-
ings of the agents, where or not they learn, have memory, interact with other systems

just to name a few.

CA and ABM’s are similar and are often confused though they do have differences

that make them different from one another. Both of them involve the use of individ-

3Simple Reflex Agent
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ual agents interacting with one another and or the environment, with the agent each
having an internal state that is often represented as a finite state machine. The most
significant difference between the two systems is in a CA the agent’s location is fixed
meaning that the agents’ neighbours will never change throughout the simulation
hence a simulation such as the Game of Life is a CA whereas as the Schelling model

where the agents move is classed as an ABM.

ABM’s are also very similar to MAS*. The main difference between them is their
focus (Niazi and Hussain, 2011). MASs focus on the agent design with the agents being
more intelligent but there being less of them, however, in an ABM the focus is put on
the interaction between agents which are less intelligent, but there is a vast number of
them. The difference between the two is very blurred with both having many aspects
in common making it often difficult to distinguish between the two, though for this

work these differences are not significant.

2.3 Neighbourhood Masks

With both ABMs and CAs actions having possible effects on their environment as well
as being based on the current state of the environment there needs to be a mechanism
for the agent to view its environment. In order to limit the amount of information that
the agent is reacting too as would occur in a real system, this area is referred to as the
agents neighbourhood. There are different forms that this neighbourhood can take,
this depends on the type of mask that is applied to the agent. There are two main

variants of domain grids, regular and asymmetric these can be seen in Figure 2.6.

On aregular Lattice, two masks are the most common one used when implement-
ing both CAs and ABMs (Hawick, 2013, Hawick et al., 2016b, Kehoe, 2015, Niazi and
Hussain, 2011). These are the Von Neumann and Moore Neighbourhoods, The Von

Neumann Neighbourhood is often called the nearest neighbour (NN) method and

4Multi-agent System
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Figure 2.6: Regular (left) and asymmetric (right) mesh/lattice computational domain.
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Figure 2.7: Neighbourhood examples in 2D for the Von Neumann and the Moore
Neighbourhoods with a view radius of one. Some models make use these neighbourhoods
with an increase view distance, such as the Civil Violence model (Epstein, 2002), but these

are the most common versions of these two neighbourhoods.

can be seen in Figure 2.7a this is the neighbourhood style used in the Game of life
which was discussed earlier on with this chapter and is also the neighbourhood that
is implemented in the models used for this work. The cell only looks at the cells di-
rectly above, below, to the left, and to the right of the cell in question in 3D, this adds
the cell in front and behind the cell making for a total of 6 neighbouring cells. Fi-
nally, the Moore neighbourhood adds in the diagonal cells forming a square around
the cell, and this can be seen in Figure 2.7b in question in 3D this square becomes a

cube surrounding the cell.

With asymmetric computational domains such as the one seen in Figure 2.6 it can
become challenging to predict how the mesh will look compared as so a simple mask
is not applicable. In the regular mesh, it is straightforward to predict the neighbour
count as shown in Figure 2.6 it will always be 4, if we consider the mesh to wrap, if not

only the edges and corners with have less, with three and two respectively, whereas in
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an asymmetric mesh the number of neighbours can vary greatly. For example in the
cluster highlighted in Figures 2.6 the total neighbour count is 5 and the position of
each neighbour is much less predictable. This would need to be taken into account
when designing the structure used with this type of mesh. The use of a graph sys-
tem would be the most applicable in the case of an asymmetric domain allowing for
straightforward neighbour communication. The models within this thesis make use
exclusively of the regular grid with a neighbourhood style of Von Neumann/Nearest

Neighbour.

2.4 Initial Conditions

With both ABMs and CA the initial conditions of the model can drastically affect the
end state of the model and as such could be considered to be just as important if
not more than each of the time steps. For example, in the case of Conway’s Game of
Life, some initial configurations will lead to an empty environment. Some will lead to
a completely stable unchanging environment, but it will still contain some cells that
exist within the alive state. Finally, there are even initial conditions that can lead to an
eternal Game of life that will never stop iterating with each time step being different

in some way from the previous one.

These initial conditions can consist of a number of things that include the posi-
tions and state of the agents within domain, the size of the domain, as well as an vari-
able use to tailor the behaviour of the agents within the model, and even the seeding
value for the random number generator that is used for stochastic selections within
the model. The storage of these initial condition enables a model to be re-run with-
out the need to store each of the specific steps. Also, but excluding the seeding value
from the stored initial is allows for the level of variance in the model to be calculated in
the case of stochastic growth models such as those discussed within this work. These

conditions can be either random such as with the Schelling Segregation model, or
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Figure 2.8: The first Garden of Eden for Conway’s Game of Life. Which was found in 1971 by
Roger Banks (Gardner, 1983).

they can be more predetermined as with the models that are discussed in Chapter 3.

An interesting aspect about initial conditions comes in with the study of con-
ditions that are unable to be produced from any previous time step given the rules
of the model. This means that this specific set up can only exist as an initial condi-
tion (Ceccherini-Silberstein and Coornaert, 2017, Gardner, 1983), this is called a Gar-
den of Eden. A Garden of Eden consists of the whole of the domain that the model is
running within and is not just a small subset of the domain, however for every garden
of Eden within that specific garden can be found a finite number of what are called
orphans, these also have no previous state within the model. An example of a Garden

of Eden for the Game of Life is shown in Figure 2.8.

Gardens of Eden are not only possible in 2D CAs they are also possible within
higher dimensions, but the discovery of them becomes increasingly difficult with each
increasing dimension. The Garden of Eden theorem of Moore and Myhill states that
any CA based on a square grid of N dimension has a Garden of Eden if and only if it
has twins. Which are two finite patterns that have the same successors whenever one
is substituted for the other one. These configurations not only exist in a grid-based
system but the can also exist of different network styles (Machi and Mignosl, 1992).
As mentioned earlier the cells within CA do not move this differs from ABMs, for this

reason, it is much less likely that a garden can exist within an ABM.

The search for these patterns is a non-trivial matter especially for CAs with more
than one dimension such as the Game of Life and Schelling’s segregation model for

one dimensional CA it is possible to find the garden of Eden for the model with a
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polynomial algorithm but for model with 3 or more dimensions there is no guaran-
teed algorithm that will terminate having found a Garden of Eden, but even so there

have been successful searches.

2.5 Boundary Conditions

When simulating these models the domain that the model exists in must at some
point have an end because even with methods that will be discussed here on the
growth of the domain the will reach a point where the computer that the simulation
is being run on is unable to store any more data. So in addition to the rules of the
model and the initial conditions, there must be rules that govern the boundaries of
the model. With models that can be classified under the umbrella of site exchange

models wherein the agents in the system can exchange states with one another.

The most commonly used boundary condition is that of a periodic boundary this
allows for the approximation of an infinite domain, this is achieved by wrapping the
boundary in all directions as seen in Figure 2.9c in one dimension this would mean
the array [A, B, C, D] would hit A again when it attempts to step past D this is very
easy to do with the application of the modulo function. By taking the modulo of the
index against the size of the dimension, this will wrap the index around the domain.
In a domain with size 128 if attempting to index cell 129 the modulo function will
wrap this around to 1 (129 % 128 = 1). One of the issues that can arise in the use
of the type of structure is with the self-interaction of the models this can lead to the
destruction of the patterns that can be formed within the model meaning that it no
longer represents accurately the system that attempted to be simulated. The easiest
way to deal with this is to increase the size of the domain to reduce the effect of this

self-interaction.

The next type of boundary condition is a non-periodic boundary condition; thisis

when there is no wrapping making a limited domain. There are many ways to handle



2.5. Boundary Conditions 28

A A B [¢] — - | —
A Alale]|c|c Al |=|A]B|C|=
B D|D E F F B = | D E F | w
¢} G|G|H | | c = | G| H || —
A G | H | — — | —

(a) Reflective Boundary in 1D on the left (b) Non interacting Boundary in 1D on
and 2D on the right where the red cells the left and 2D on the right where the red
show the cell that is access when itis cells show the cell that is access when it is
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(c) Periodic Boundary in 1D on the left periodic on the top and bottom and
and 2D on the right where the red cells Non-interacting on the left and right
show the cell that is access when it is where the red cells show the cell that is
index outside of its bounds. accessible when it is index outside of its
bounds.

Figure 2.9: These show an example of how the boundary differs for different conditions in
both 1D and 2D when a Von-Neumann neighbourhood is the one that is being used.
this two of which will be discussed here these being a reflective and non-interaction.
The first of these, the reflective boundary is used when the system being simulated
also has a boundary as this can imitate bouncing off of this boundary such as with
water in a jar, an example of this can be seen in Figure 2.9a. This can also be imple-
mented reasonably easily by merely checking that the index is higher than the bound-

ary of the domain and take the difference away from the index.

The final boundary condition is that of a non-interacting boundary method, in
this case, it is as if the model exists within a void and if it attempts to step outside
of this void nothing happens. It also is called an absorbing boundary as if an entity
crosses this boundary the boundary absorbs it and as such no longer exists for inter-
action within the domain. This condition can also be used in conjunction with the
stopping condition so that if the model meets the edge of the domain, the simulation

stops.
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Each of these different boundary conditions that have been discussed in this sec-
tion can be used together to form a hybrid boundary, an example of this can be seen
in Figure 2.9d. Where the top and bottom of the domain using a periodic-boundary

and the left and right using an absorbing-boundary.

2.6 Summary

This Chapter has discussed complex systems which are a rapidly growing multidisci-
plinary area of research; it also identifies aspects that a complex system would have,
though because of the vast area it doesn't attempt to give one definitive definition but
describes how it is used here. This was done because of the variety of definitions that
exist within the different domains that study these systems. It also contains a detailed
history of ABM as well as CA both of which are tools that are used in the simulation of
complex systems. They are tools that have many similarities between them, though
are distinct. The history included a few examples of some key CAs and ABMs such as

the Game of Life and Schelling Segregation model.

This is followed by a discussion on the way in which agents within these simula-
tions interact with one another this includes the neighbourhood masks, or topology
of the agents be this a four neighbour Von Neumann or an eight neighbour Moore
neighbourhood. Finally, the last part of this chapter discussed the boundary con-
ditions for a model and the importance and effect of these conditions which define

what type of interaction occurs at the edge of the domain if any.

Complex systems continue to inspire research interest all over the world with
more and more researchers coming to see the benefit of studying these systems, as
well and making use of the tools used to simulate them such as CA and ABMs. With
this increase in interest, it becomes increasingly important to ensure that the models
being run are doing so in the most time and memory effective methods possible as

this can lead to a significant increase in the speed at which this type of research that
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can be performed. It may not be possible to optimise for both memory and timing,
and as such, it is possible that a smaller memory footprint might have to be traded
for a faster runtime or vice versa, this all depends on the limitations that the person

running the model might face.

Growth models are a form of CA that are being used in a variety of different fields
the main one of concern for this work being cancer research with the application of
models such as the Eden Growth model and the Invasion Percolation model for things
such as tumour growth and when a tumour goes through angiogenesis and becomes
vascularized (this is when a tumour forms new blood vessels from already existing
ones, this is a critical step that transitions a tumour from being benign to being ma-
lignant). The following chapter will discuss these models in detail, focusing on some
specific applications of these models as well as the methods that can be used for there

simulations including the handling of background data that is required.



Those who cannot learn from

history are doomed to repeat it.

CHAPTER 3

George Santayana

Growth Models

N various scientific disciplines the study of growth in non-equilibrium sys-

tems is a highly interesting and active research area with many impact areas.

One of the most useful tools for this type of research is that of growth mod-

els. Hayes (Hayes, 1979) in an article on different growth models starts off

by quoting Douglas Adams Hitch-hikers Guide to the Galaxy “We have it on good au-
thority that the earth is a gigantic computer, built to calculate the answer to some
ultimate question (or vice versa)”. He then goes on to state that as you look around

the world, the idea seems a more and more plausible.

In the purest sense, there are two types of growth models the first is a model with
a purely stochastic mechanism behind them which will be the class of model that are
of concern within this thesis. The second class of growth model is ones with a more
energetic base such as temperature (Herrmann, 1986). This includes models such as
the Potts model which is a being a generalisation of the Ising model and used in the

study of ferromagnetism as well as in computational biology to model the collective
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behaviour of cellular structures (Szab6é and Merks, 2013).

Growth models can be asomewhat broad term that may require some more defin-
ing in order for it to be fully understood. Many fields make use of the term growth
model, the largest area in which it is used is in economics. In this field, they are used
to try to simulate and predict changes in the economy. In this thesis, the term growth
model will not refer to this type of model but instead will refer to models that are used
for the simulation of biological systems such as tumours, the roots of a plant, or other
similar systems. Many of these models have found numerous application across a

wide range of field separate from their intended purpose.

There where a large number of different models that could have been selected
for use in these test the reason for the selection of these two in particular other then
their use in the fields of cancer research. Comes down to the similarity between then
for all intents and purposes these models can be handled nearly identically with the
difference being how to handle to growth sites list in the adding to a removing from.
This means that the effect of change the storage of the cluster can be handled in the
same way between all of the different models with only a couple of differences such
as the use of an additional state as in the case of the EdenA model (this is discussed

in more detail later on within this chapter).

This chapter will start off with a discussion of the history of each model, along
with how they are currently being used in different fields. After which there will be
a description of the rules of each of the models along with the algorithm describing
the running of the model. The Eden and IP models ,both of which are asyncronous
in there infection steps, were selected because of their similarities; this meant that
the same types of data structure could be made to work with both of them with only
a little change to allow them to run as efficiently as possible. This will allow for the
identification of whether a particular data structure is better suited for a variety of
growth models or if it is just for one specific model that it stands out. Growth models

can have exciting features such as their asymmetries which can change as the model
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Figure 3.1: Eden growth model in 3D on a lattice with an L size of 128 at time steps 100,
200, 000, 400, 000, and 600, 000.

grows (Hawick, 2016).

3.1 Eden and Screened Eden Growth Models

The Eden growth model was first conceived of in 1961 (Eden, 1961); its intended pur-
pose was to simulate the growth of organic substances specifically bacteria within
a culture medium with adequate food for the cluster to grow. It differs from other
growth models such as Diffusion Limited Aggregation (Witten and L.M., 1981) and the
Ballistic Particle Deposition (Hayes, 1979). In that, whereas these models fire particles
into the domain and thus would be considered closer to an ABM with each particle
being a single agent. In the Eden growth model, however, the cells within the domain
are themselves agents and exists within one of two states without moving through the
system making Eden more of a CA than an ABM, and instead of adding agents the to

the domain the already existing agents instead switch their states.

Another feature of the model is the fact that the surface of the cluster exhibits
fractal-like properties (Jullien and Botet, 1985) making it interesting to various fields
within the physical sciences. One application of the model currently is in the simu-
lation of large-scale cancer like clusters (Hawick and Scogings, 2009). An interesting
piece of work done on this subject was published in Nature in 2015 (Waclaw et al.,
2015) wherein a large scale Eden Growth Model was developed. This model included

the way in which tumours can disperse within a short range, as well as including the
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Figure 3.2: Example of the probability distribution in the EdenA, EdenB, and EdenC show
the different probability distribution for each of the variant with the same cluster. These
different version of the Eden model where selected so give an understanding of how
significant the handling of the growth site is.
chance for the cell to mutate in different ways. Allowing for the researches to simu-
late the death of tumours with the chance that some of the cells would be immune to
the treatment; this allowed for the simulation of how tumours can become resistant
to treatments such as chemotherapy and radiotherapy as well as how the cluster may
grow after such treatments. The use of these simulations allowed them to conclude

that the restriction of cellular migrations in tumours could lead to improvements in

the battle against cancer significantly reducing the growth rate of tumours.

Another adaptation of the model (Wang and Bassingthwaighte, 1997) as the devel-
opment of an off-lattice version of the model. This simulated the growth of a Euclidean-
based (notlimited to a grid instead it has free movement within a floating-point based
euclidean space) Eden model on the surface of a sphere. This would make it possible
to simulate the way that tumours might grow on a curved surface such as the ball of a
joint or a person’s’ skull. It was also an attempt to deal with the inherent non-isotropic
nature of the model. Due to that fact that the model tends to live on a regular mesh
even with its stochastic nature, it tends to grow along the axis of the grid (Thompson,

1942) biassing the possible antisymmetry of the model.

The Eden model is most commonly represented on an M -site 3D matrix or Lattice
where M = L, x L, x L, and L represent the size of a specific dimension; with the

dimension being shown by the subscript by either the letter x, y, or z. The cells can be



3.1. Eden and Screened Eden Growth Models 35

in one of two possible states infected or empty within a more advanced version of the
simulation the infected sites could have the chance of having multiple possible values
depending on the type of infection present in the cell (Waclaw et al., 2015). There are
three main types of Eden models each with different ways of selecting which growth
site will be the next one to be infected by assigning a different probability to the cells
based on the method. This work will make use of three different standard Eden model

rule sets, the Eden A, B, and C rule sets.

The EdenA is the simplest of all three of the variants. In this version, each of the
neighbouring cells to the cluster has an equal chance of being selected for infection.
EdenB has it such that each of the edges of the cluster has the same chance of spawn-
ing a cell, meaning that if one uninfected cell has three infected neighbours, it will
have three times the chance to become infected as compared to a cell with only one
infected neighbour. The third and final variant of the Eden growth model that is used
within the set of Standard rules is the EdenC model, this version of the model can be
the most difficult to implement. In this version, one of the edge cells is randomly se-
lected, and one of its uninfected cells is then in turn randomly selected and set to be
infected. Examples of the probability distribution of each of these variants on iden-
tical clusters can be seen in Figure 3.2 and a 2D visualisation of the style of clusters

these rules produce can be seen in Figure3.3.

For all models that have been written for this work whenever a random number is
discussed this is obtained through the built-in rand method in the standard template
library of C++, this may not the best of the pseudo-random number generators that
are available, but it can generate a highly uniform distribution and is very commonly

used, hence its use here.

The main three variants of the Eden growth model the EdenA, EdenB, and EdenC
each produce quantifiably different clusters which can be seen in Figure 3.3 where
one of each of the cluster is shown in a 2D form. Each of these clusters where gen-

erated from the same initial infection seed (a single infected cell in the centre of the
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(a) EdenA (b) EdenB (c) EdenC

Figure 3.3: Examples clusters grown with the different rules sets for the Eden growth model
in the EdenA model, EdenB, and EdenC. All the clusters were grown with the same initial
conditions including the seeded value to the random number generator. The only difference
being the handling of the selection for the next site to be infected. The colours in this model
represent the time step at which each cell was infected with the colours starting with red this
shows the colours with nine different colours changes, with the colour change ever 500 steps.

show grid) with identical seeding values fro the random number generator used, Each
of the cluster where run to 2000 iterations and coloured to show the effect growth rate

with the cluster changing colour about every 335 iteration’s.

The EdenA rule set produces a cluster with the lowest density of the three the
change of the colour in this image shows the flow of time within the model with the
colours changing from Red to Green to Blue to Yellow to Cyan to Magenta and then
back around to Green as the simulation runs. This shows how some cells can remain
uninfected at the centre of the cluster for a considerably long time before eventually
becoming infected this is what leads to the lower density, with the clusters shown the
EdenA cluster having 58 uninfected internal cells compared to the EdenB’s 10 and
the EdenC’s 2. As the cluster moves through the rules from A to C the clusters that
are grown become increasingly dense with EdenC only having very minimal mixing
of the colour bands in the model showing that it grows much more uniformly than

the other two clusters especially the EdenA.

The Eden Growth Model follows a straightforward set of rule first an initial cell
within the computational domain is set as infected, this is placed in the centre of the
domain to give the maximum possible space for the cluster to grow within. The list

of possible growth sites is then built from uninfected cells with the neighbourhood
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Algorithm 1 Eden Growth Model

plant seed cell in the centre of an M matrix
check seed add its empty neighbour sites to growth sites list G
while current time-step < max time-step do

generate random integer R [0, size of )

set R cell in GG to infected

delete R cell from G

check neighbours of last infected cell and add empty cells to G
end while

range of infected ones. One of these sites is then selected and set as infected. The
process then repeats until some pre-set stopping condition is met. A pseudo-code

representation of the algorithm used for this work can be found in Algorithm 1.

An interesting feature of the Eden growth model is the surface of the model the
centre the model tends to be a solid especially in the case of the EdenC whereas as
stated earlier the surface of the models exhibits fractal-like properties(Freche et al.,
1985, Meakin et al., 1985, Wang and Bassingthwaighte, 1997); this means that as with
a dendritic or tree-like structure, such as the Invasion Percolation Model which is dis-
cussed in the following section of this chapter, it will exhibit self similarity(Sauer and
Schroer, 1987). This can be measured through the use of the calculating its fractal

dimension; this will be discussed in more detail ion Chapter 6.

One of the issues that can arise with the use of the square lattice-based grid for the
computational domain, this can cause the model to exhibit anisotropy meaning that
the model tries to growth along the axis of the domain (Freche et al., 1985, Meakin,
1988); this leads to the model itself being skewed in shape. Through the use of a noise
reduction algorithm it is possible to make this more evident (Meakin, 1988) this can
be seen in Figure 3.4. Even though this anisotropy affects the shape of the cluster
that is grown this does not mean that it is pointless to use and is still a widely used
domain for this style of model, so long as this issue is considered when making use of

the model its effect can be compensated for.

Aside from the three already discussed versions of the Eden growth model, there

is one additional version that will be included as it shows highly interesting behaviour
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Figure 3.4: Eden growth model run with the use of a noise reduction algorithm to emphasize
the anisotropy of the model. The picture shown above are obtained through the use of a
method discussed in (Meakin, 1988). this method makes use of a smoothing variable (m) the
picture above make use of different smoothing values from left to right of 0, 10, 100, 1000. All
the images where obtained by running the model to the same number of infected cells and
on the same size grid with the same initial seed value for each of the runs. The colours in the
images of the cluster represent different time steps the cells where infected on.

depending on the screening factor that is applied to it, it is this screening factor that
gives the model its name the Screened Eden growth model. The Eden growth model as
shown in Figure 3.1 tends to generate very similar clusters with relatively low variance
within the model. There have been many different methods for the screening of the
model in order to allow for a higher level of variance to the model have been thought

up over the years.

One of these methods involved the number of free paths to the edge of a do-
main (Jiang and Gang, 1989). In this method, the growth sites are considered to be
all sites that are the nearest neighbour to an infected cell and can be connected to the
edge of the domain with a straight line without obstruction from any infected cells.
Cells are then grouped by the number of these paths that they contain and then are
selected based off of the probability value for each cell. The method used here differ-
ent in that the growth probability is based on the distance a cell it from the centre of
mass of the cluster (Hawick, 2016, Hawick et al., 2016b, Xie et al., 2011); this is done
with Equations 3.1 and 3.2. This is an interesting version of the model as the clusters
that it is capable of generating can exhibit a wide range of different behaviours based
upon the specific beta value that is applied to it. The effect of different beta values

can be seen in Figure 3.5.

As this variant is so different from that of the Standard version of the Eden Model
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Figure 3.5: Screened Eden Growth Model grown on a (64 x 64 x 64) grid with different /3
values 0.1, 0.3, 0.7, and 0.9 from left to right respectively. Shown at the point when the cluster
first touches the edge of the domain. /3 represents the screening value for the model which
decides how much of an influence the radius of gyration has on the growth of the model

b= (rqmaz +1-— Tq)iﬁ (3.1)

p is the growth probability for the cell

Temaz 1S the distance of the further cell from the centre of mass
4 is the distance of the current cell from the centre of mass

( is the screening value for the model in the range [0, 1)

where:
rem represents the centre of mass
N is the number of cells within the cluster
r; is the 3D coordinate for the i‘h cell




© 00N bk Wi+~

3.1. Eden and Screened Eden Growth Models 40

Algorithm 2 Screened Eden Growth Model

1: plant seed cell in the centre of an M matrix
2: check seed add its empty neighbour sites to growth sites list G
3: while stopping condition not met do
calculate distances rq of Q sites to the centre of mass
randomly select cell i from Q with rq chance
set site i as infected
update growth sites list
recalculate the centre of mass
9:  check neighbours of last infected cell and add empty cells to G
10: end while

N2 9T

void update_cm(const int index) {

vec3 pos = fromK (index) ;

for (int i = 0; 1 < N_dims; ++1) {
cm[l] *= Nj;
_cm[i] += pos.v[i];
_cm[i] /= N + 1;

}

N++;

}

Figure 3.6: This shows the code used for the calculation of the centre of mass of the infected
cluster this is only used for the Screened Eden growth model. The D variable seen in the
code is equal to the number of dimensions, 3 for a 3D world 2 for 2D worlds. This means that
the same code can be used for an N-dimensional cluster. This code was specifically
extracted from the Lattice version of the Screened Eden model though it same algorithm is
used for all the different version of the model.

the algorithm used for its generation is more complicated, this algorithm can be seen
in Algorithm 2. The initial steps are mostly the same here as for the other 3 Eden
methods where this version is different is in the addition of the calculation of the
probabilities for each of the cells within the growth sites list and the section of the
next cell based off of these probabilities because of this the Screened Eden model is

much slower to calculate.

The most computationally expensive part of the Screened Eden model is the cal-
culation of the centre of mass of the clusters. The naive method would be to iterate
through all the items within the data structures each iteration and add together the
3D coordinates of the model and then divide each of the three values by the number

of infected cells that there are within the domain. The issue with this method is that it
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Figure 3.7: Standard IP model with the percolation threshold randomly assigned in 3D on a
lattice with an L size of 128 at time-steps 100, 10, 000, 20, 000, and 30, 000.
is very slow, especially with larger domains. Instead, the method that will be used here
will be to keep track of the centre of mass and then when a new cell has been infected
the code in Figure 3.6. This works by first converting the k-index of the cell into its 3D
coordinate, this is discussed in detail in Chapter 4 after this each of the 3 coordinates
of the centre of mass the x, y, and z are multiplied by the number of infected cells from
the previous iteration the respective coordinate from the newly infected cell is then
added to it and then the centre of masses value will be divided by the actual number
of infected cells. The final step of this method is to increment the number of infected

cells ready for the next iteration.

3.2 Invasion Percolation

IP model (Wilkinson and Willemsen, 1983) which can be seen in Figure 3.7 was devel-
oped to simulate the flow of immiscible fluid through a porous medium such as dirt,
stone, or sponge among other such media (Hawick, 2014, 2011), it is capable of sim-
ulating multiple different fluids at once. It was an advancement on a previous model,
RP! which has many connections to the Ising Model (J., 2016) as well as other Potts
models (Potts, 1952). The original method for this simulation was for that of static
mediums whereas IP explicitly took into account the transport process taking place

during the process of the event attempting to be simulated.

There are many applications that the IP model has been used for. One exam-

1Random Percolation
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Figure 3.8: Invasion percolation probability distribution with the invaded cells represented
in red and the probabilities for the neighbouring sites to become invaded shown. The green
cell indicates the next to be invaded.

ple application for the IP model is for the simulation of fracking (Norris et al., 2014),
which is the process of injecting liquid at high pressure into different mediums, for
example, subterranean rocks and boreholes. It is used for the extraction of oil and
to open fissures. Another interesting use of the IP model is that of the modelling of
coastal erosions (Hawick, 2014); this was done by combining the IP model with that
of the Kawasaki model for site exchange (Hawick et al., 2016a, Kawasaki, 1966). This
effect can have a significant impact on different environmental issues, and it can be
challenging to simulate with other methods. It can be expressed with a simple set of
rules; this makes it ideal for the use of CAs due to the simplicity and relatively com-

putationally inexpensive calculations that are required.

Another and more recent application of the IP model is in the same area as the
Eden Growth model that being cancer research. Unlike with the Eden growth model
though instead of simulating the growth of a tumour, the IP model is used for the
simulation of when a tumour goes through a process known as angiogenesis or vas-
cularisation (Baish and Jain, 2000, Dobrescu and Ichim, 2009) this is when new blood
vessels are formed from pre-existing blood vessels; this is a hazardous thing with can-
cer as this means that a tumour has a food source and can now spread throughout the
body with much greater ease. By being able to simulate this is is possible to figure out

ways to be able to slow down or even stop this process.
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The IP model has two main variations that being TIP? and NTIP3. The type that
has been implemented here is that of the NTIP. Regarding the IP, model trapping
means that while the simulation is run if at any point the invader encircles a section
of the defender this encircled an area of defenders becomes a forbidden zone to the
invader (Ebrahimi, 2010). TIP is a more complicated version of the model with it re-
quiring an additional check to identify if any part of the defender has become encir-
cled. This can be done on the Lattice with algorithms such as the Hoshen-Kopelman

(Al-futaisi and Patzek, 2003, Hoshen, 1997).

The difference in the models allows for the simulation of compressible defenders
in the case of NTIP and incompressible in the case of TIP. The inclusion of trapping
on IP can have a significant effect on the structure of the model when it is run in 2D
as it can significantly alter the long-range scaling and even the local structure of the
mode. However, this is not true for higher dimensions when the effect of trapping
becomes increasingly short range as such the experiment here. This version IP model
will not take into account trapping as in a 3D domain the chance of trapping occurring
is very low and only likely in small sections and as such only serves to slow down the

simulation due to the additional computation need to check for trapped cells.

The IP model like the Eden model has a straightforward set of rules. On each
iteration of the model, the cell with the highest probability that is a neighbour to a
currently invaded cell is set to be invaded. An example of an IP neighbourhood can
be seen in Figure 3.8. By changing how this probability is assigned throughout the
system, the shape and size of the cluster formed can be drastically altered allowing

for the simulation to mimics different mediums and fluids.

Algorithm 3 shows the method used for the simulation of the IP model the only
difference between the different IP models discussed here is the equation used to get
the percolation threshold value for a cell. With this algorithm, the domain is first gen-

erated, and then the seed is added to the domain this seed can consist of multiple

2Invasion Percolation With Trapping
3Invasion Percolation Without Trapping
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infected sites. After this, the growth sites list is then updated, the method for adding
to the growth sites list for the IP model is discussed in detail later on in this Chapter.
The simulation then iterates through each time step until the desired stopping con-
dition is met. A single time step involves a few operations the first of these is to select
the cell in the growth sites list with the highest probability and then set this cell to be
invaded, after this the nearest neighbours to the newly invaded are checked to see if
they are empty, if so they are then added to the growth sites list. The growth proba-
bility for the cells is assigned to the cell just before it is added to the growth sites list;
this means the cells that are never added to this list do not have an assigned growth
probability reducing the computation needed to compute the cluster speeding up the

overall simulation.

Algorithm 3 Invasion Percolation

1: plantinfected seed S in the centre top of M matrix
check S empty neighbour sites generate growth probability and add to growth
site list G
while stopping condition not met do
pick the highest probability cell C' from G and set as infected
delete C' from G
check C empty neighbour sites generate growth probability and add to growth
site list G
7: end while

N

The Initial conditions for the IP model can be one of two different styles the first
of them is with a single invaded cell at the top of the domain which will be the one
thatis used here. The second condition that is often used is that of a blanketing of one
side of the domain with a small amount of randomness to it; this randomness means
that there will be peaks to the seed and not just a uniform sheet of invaded cells. With
this version, every cell on that side would be iterated through a column of the invaded
cell would be placed here within a range of 0 and N, where N is the maximum number
of cells. The different starting conditions can have a drastic effect on the shape of the
cluster that is produced as the second method will have a large selection of initial

growth sites at the start allowing it to form multiple dendrites possibly.

One of the most critical aspects of the IP model is that of the invasion probability;
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(a) g = —0.01 (b) g = —0.001 (c) g = —0.0001 (d) g =0.0

Figure 3.9: The Invasion Percolation model with the Meakin method this shows the model
run until the stopping condition of touching the bottom of the domain is met. This also
shows how when a beta value of 0.0 is used the Meakin model produces a Random Invasion
Percolation cluster.

@ B8 = 0.15 (b) 3 = 0.30 (©) 8 = 0.60 (d) 8 = 0.90

Figure 3.10: The Invasion Percolation model with the Hawick method for the distribution of
growth probabilities for the cells. Showing the model run to till to stopping condition of
touching the bottom of the domain is met with the beta values 0.15, 0.30, 0.60, and 0.90

starting off in the top left and ending in the bottom right. It should be not that is all cases for

this version the domain is filled above the golden surface. This part of the simulation was
not shown as this allow for the roughness of the surface formed to be more easily seen. 3
here as with Screened Eden model is the bias values for the model and is in the same range
as for the Screened Eden model

this can have a significant effect on the structure of the model as such there as three
methods for the calculation of this value that have been used within this work in or-
der to give a broader understanding of the effects that these different data structures
have on this model. The different methods are first Random wherein each cells bond

threshold is randomly assigned within the range of [0, 1] to make the IPR* an example

of the cluster type of cluster produced by this method can be seen in Figure 3.7.

The second method used will be referred to as the Meakin Model or MIP°s method

for bond threshold and comes from a paper on the Invasion Percolation model in a

4Random Invasion Percolation
5Meakin Invasion Percolation Model
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where:
P; is the percolation threshold for the cell
U; is arandom number in the range of (0, 1)
y; is the current height coordinate
g represents the gravitational gradient within the simulation

P; is the percolation threshold for the cell

U; is arandom number in the range of (0, 1)
[ is the erosion coefficient in the range (0, 1)
L, is the total height of the domain

y; is the y coordinate of the current cell

destabilising gradient (Meakin et al., 1992). This can be seen in Equation 3.3, the spe-
cific effect of different g values can be seen in Figure 3.9 this forms the MIP. When the
Meakin Model is supplied with a g value of zero, it will produce standard Random In-
vasion Percolation clusters as when g = 0 the h; value is cancelled out leaving behind
only the random value U;, this can be seen in Figure 3.9 where the clusters increase

in size as g decreases.

The third and final method that will be used will be referred to as the Hawick
method the equation for this can be seen in Equation 3.4. This specific formula was
derived from one presented in a paper on flood incursion and coastal erosion (Haw-
ick, 2014). It should be noted that the coordinate system used in this implemented is
such that the top front left-hand corner is considered to be the origin of the simulation
at the coordinates (0, 0,0). The effect of various p values can be seen in Figure 3.10

this forms the final version of the IP model the HIP®.

6Hawick Invasion Peroclation Model
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3.3 Growth Sites

The growth sites list is a crucial aspect of the growth models discussed within this
work. The list is how the simulation stores all of the cells that are neighbouring to the
infected/invaded cells. The most brute force way in which this list can be handled is
foritto be rebuilt every iteration which is a highly computationally expensive method
with a computational complexity of O(/N) as it would have to look at every single cell
within the domain. Because of this more optimal methods have instead been selected
for use here where a persistent list will be updated by adding and removing cells as

needed.

The first of the methods that will be discussed is that of the simple growth sites
list. In the case of the Eden growth sites model the simple growth sites list consists of
a dynamic array that will store the k-index of the required cells, for the work discussed
here the dynamic array that will be used will be that of the C++’s Standard Template
Library Vector (Cppreference, 2017). New cells are then just added to the end of the
list. When taking a cell from the list in order to obtain the next cell that is going to
be infected a random integer in the range of [0, V) where N is the number of cells
contained within the list; is generated this is then used to index the list for the required

index. After this, the cell is removed from within the list.

3.3.1 Eden Growth Sites Handling

The three main variants of the Eden growth model the EdenA, EdenB, and EdenC
models each require a slightly different method for the handling of their growth sites
this is due to the different infection probabilities that must be made use of to be able

to simulate each of them.

The Eden A variant is the fastest of the three models that have been implemented;

this is due to a few optimisations that the model can make use of. The first of these



3.3. Growth Sites 48

is with the model being able to make use of an additional cell state giving a total of
three states for this model. These states represent Empty (an empty cell), Neighbour
(a cell that has already been added to the growth site list), and Infected (a cell that has
been infected). The addition of the Neighbour state allows for a fast way to identify
cells that have already been added to the growth sites list, this way it can be ensured
that every cell within the growth sites list is unique, an example of this can be seen in
Figure 3.11. This is handled through a different method for each of the data structures
that are used; this is discussed in more detail later on in Chapter 4 for each of the
different structures. This additional state is also applied to the Screened Eden growth
model as the growth probabilities are not based on the number of neighbouring cells
but instead are based on the position of the growth site relative to the clusters centre

of mass.

Because of this additional state guaranteeing that a cell can only exist within the
growth sites list once it is easy to optimise the removal process from this list. A graph-
ical representation of this process can be seen in figure 3.2. When getting the next
index to be infected the first step is to randomly select a cell from within the growth
sites list and store the value of the cell. Next step is to set this cell’s value to that of the
value of the last cell in the list and delete the last cell from the list. This method makes
use of the design of the C++ vector dynamic list and a feature that it has specifically
the pop_back function which is a fast method for the removal of the last cell in the list;
this function works by merely decrementing an iterator in the structure that indicates

the end of the list.

With the EdenB model, the optimal method for handling the growth sites is dif-
ferent from that of the EdenA variant. In the EdenA model there is the application of
an additional state to show that a cell has already been added to the growth sites list,
this additional state cannot be used in the case of the EdenB model; this is because
the addition of a single site multiple times allows for the chance of a cell being se-

lected from the growth list with chance proportional to the number of infected cells
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Figure 3.11: Example of a cluster grown with an additional state 0 shows empty cell state
two show an infected cell and state 1 shows a neighbour cell. The addition of the additional
state is used to avoid adding a cell to the growth sites list more than once. When a cell is
added to the list, its state is updated to 1 and then when infecting to 2. This method is used
in the EdenA model, The Screened Eden Growth Model and the Invasion Percolation Model.

that surround it as shown in Figure 3.2. This means that when removing a growth site
from this list unlike the EdenA model, there is a chance that it will be necessary to
remove more than one value. It is possible that there might be six entries in the list
that are in need of being removed as such the removal for a site is similar to that of
the EdenA, but it iterates through the list and checks if the current cell matches the
index of the cell that has been infected. If so it performs the removal process shown
in Figure 3.12 and discussed above. This iteration over the list means that the removal
process from the EdenB model is considerably slower than the EdenA version with a

computational complexity of O(N).

There is another method that could have been used which is similar to the method
used for the Screened Eden model, which is discussed in more detail later on within
this section. Briefly, the way this method would work is with the addition of an extra
variable which can be called e within the growth sites list cell which stores the number
of times this cell that has been added to the list. So instead of adding another version
of a cell that already exists within the list, this number would be increased this in
combination of the sum of this additional variable which can be call £ can allow for

the correct probability distribution within the list. When selecting a cell and random
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Updating Growth Site LiV\

HEERERRENE o
* Adding New Growth Site
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(a) Update (b) Add

Figure 3.12: The growth sites handling methods for the Eden a and the Screened Eden
models. The Update function is used to obtain the next site to be infected and the Add
function is to add a new possible growth site to the list.
number between 0 and F is generated and then you iterate through the list taking
each cells e values away from the generated value until it got below zero. This method
would also make use of the growth sites cell state, so it is apparent without always
having to search through the list that a cell has been added or not. This method was
not used in this work because it ended up being slower than the method that was
selected as it required not only a full search of the list when adding a new item but

also an iteration over this list when selecting the right cell.

The EdenC model is the slowest of the three unlike with the other two versions
wherein the growth site list would store the cells that are the nearest neighbours to the
cluster in this version the list stores that cells that are on the edge of the cluster. Hence
for this method, the growth sites list will be referenced to as an edge list. When a new
cell is infected, it is then added to this edge list, and the list is then updated to check
that the cells contained within are still on the edge of the cluster. The selection process
for the next cell to be infected is a bit more involved in this case than in the cases of
the EdenA and EdenB model. First, a random cell is selected from the edge list, then
the neighbour cells are checked to see if they are empty, and from this selection of

empty cells, a random cell is then selected to be infected.

The Screened Eden model makes use of the same additional cell state that the
EdenA model uses and as such the same removal process from the list. The only dif-

ference here is the selection of the growth site instead of it being randomly selected
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based on the number of cells in the list the random number U that is generated for
the selection is in the range of [0, P] where P is the sum of all the cells within this lists
probability. Once this number is gained the list is then iterated through with each of
the cells with the lists own probability being added to a checker variable, and the se-
lected cell is the first cell that causes the checker variable to become greater than or

equal to that of U.

3.3.2 Invasion Percolation Growth Sites Handling

In the case of the IP model the list is commonly stored sorted low to high by the growth
probability value that each cell, as the IP model always infects the cell with the highest
probability it is a waste of memory to store a cell within the growth sites list multiple
times as such IP makes use of the same 3 state system as with the EdenA model and the
Screened Eden Models. In the conventional method, a cell will be added to the end
of the growth site list and then sorted into its correct position within the list with the
cell with the highest probability at the bottom or top of the list depending on which
is the easiest to remove from. This method can be very slow as it is possible that a cell
will have to be compared against all other cells within the list to be sorted. Because
of this there is another method that can be used, this method was first thought up by
Masson (Masson, 2016, Masson and Pride, 2014) in this paper he makes use of a list
structure which is treated in a way similar to that of a binary search tree. This tree has

two functions that it can perform these are the Addition and Update functions.

The first of these functions to be discussed is Addition. This function allows for
a new cell to be added to the list. Once a cell is added to the list it is then sorted
comparing the current cell to its parent node and if its percolation threshold is higher
than that of the parent the two are swapped this process is then repeated until either
the cells becomes the root node in the list, or it meets a parent node whose growth
probability is greater than or equal to its own. A cell is considered to be the parent of

another cell based on a simple rule. If the current cell is N, then it has a left child at
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position 2N within the list, and right child at a position of 2NV 41 within the list and its

parentis at | (/N/2)]. This addition process can be seen in an example in Figure 3.13a.

The second function is the Update function, this function allows for the obtaining
of the index of the next cell to be invaded and removes the cell from the list. The
inner working of the Update function is a little more complicated than the Addition
function. As the tree is sorted based on the percolation threshold of the cell, the cell
with the highest probability always ends up being the first node in the list. So the
first step in this process is to store the value of the root element and remove it from
the list, next is to this space must be filled and so its children nodes are checked to
make use of the method mentioned before and the one with the highest chance is
placed in its new position. Then continue down the tree comparing parent to child
until it reaches a node with no child. At this point, the final cell in the list is then
placed into the final empty slot within the tree. This cell must then be sorted into its
correct position within the structure and so is compared with its parent and swapping
if need continuing up the list is the same manner as with the additional function until

it is correctly positioned. This process can be seen in Figure 3.13b.

In this tree the left child is found in the 2N cell where indez is the index of the
parent node, and the right node is found in the cell 2N + 1 because of the way in which
Fortran indexes its array, that being arrays start at one and not 0 as with languages
such as C++, when indexing these cells within the list it is necessary to minus one
from this index but when performing the test with the length of the array to determine
whether your current node has a child node you have to make use of the original index

value as would have been used in the Fortran version of the function.

3.4 Fill Density

When testing the effectiveness of the different data structures with these models, it is

essential to understand how these models are commonly run and to what extent the
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(a) Add

(b) Update (left to right)

Figure 3.13: IP Add Branch and Update Procedures procedure (Masson and Pride, 2014).
This method is only used for the Invasion Percolation model.

cluster will fill the computational domain, as this could help in explaining the differ-
ent results that are obtained in Chapter 5. With these models the likelihood that they
will be run to total grid completion is very low, in most cases, they have a stopping
condition that is not necessarily concerning the number of iterations for which the
model runs. For example with the Eden growth model, the most common stopping
condition is when the cluster reaches the edge of the computational domain; this is
because if it was allowed to continue to grow after this point, the cluster could begin
to interact with its opposite side causing a possible distorting of the result or with a
non-periodic boundary it would flatten out the cluster; this will be the stopping con-
dition that is used here for all the variants of the Eden model including the Screened
Eden model. The IP model has two common stopping conditions though one that is
used depends on the initial condition of the simulation if the initial condition has the
centre cell being infected then the IP model has the same stopping condition as the
Eden model, but this is not a common way to use this model in 3D. Instead, because

the initial condition that is used here where the first cell to be infected will be in the
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Figure 3.14: This shows the 5PL curve of best fit for the Eden growth model with the line
extended to the 2048 dimension size for all three versions of the model this shows an issue
with the predicted data due to the A-line overtaking that of the B and C this goes to show that
the 4PL data is underestimating the B and C fill levels.
top centre of the domain the stopping condition will be when the cluster has reached

the bottom of the domain, the model will also have a non-periodic domain boundary

on all sides of the domain.

This section will start with a discussion of the Eden Growth Model and its three
variants followed by the Screened Eden growth model. After with it will then move on
to discussing the IP model with the three growth probability methods the have been
discussed earlier on in this chapter these being the Random, Hawick, and the Meakin

variants of the IP model.

The Eden growth model shows an increase in the percentage fill of the domain as
the size of the domain increases, this effect can be seen in Figure 3.14. The clusters
that are grown on these larger grids also have a greater chance of becoming more
spherical than on a smaller grid. Due to the time required to run the EdenB and EdenC
model, there is a limit to the amount of data that can be discussed here as such the
dotted line that can be seen in Figure 3.14 represents the predicted curve past the

point of the measured data.

The Screened Eden Growth models fill density has a much more interesting range



3.4. Fill Density 55

Screened Eden Fill Density B Values

— 01
0.2
—— 03
—— 04
—— 05
—— 06
0.7
—— 08
0.9

(%)

Fill Density

\\M<7

1632 64 128 256 512

L Size
Screened Eden Fill Density L Values

1024

— 16
32
— 64

Fill Density (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Beta

Figure 3.15: Screened Eden Growth Model fill density graph. This shows the fill for a range
of beta values from 0.1 to 0.9 in increments of 0.1. A beta value of 0 has not been used as this
would must produce an EdenA cluster.

of variance to it then the unscreened versions of the Eden growth model. At the small-
est tested L size of 16, the screened Eden growth model closely relates to that of the
EdenA model of the growth sites. In these tests we ran the test for beta values from
0.1to 0.9 in increments of 0.1, the reason for not testing a beta value of 0.0 is because
this would produce the same results as that of the EdenA model this is due to the way
in which the growth sites are handled. The results for the fill experiments showing
the median for the range produced can be seen in Figure 3.15 where two graphs as
seen the top graph shows the fill density for different beta values plotted against the
domain size and the graph on the bottom shows the fill density for different domain

sizes plotted against the beta values.
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In order to compute these clusters in a manner that allowed for large enough
batches a HPC’, which is commonly called a Supercomputer, named VIPER which
is located at the University of Hull was utilised in order to compute the clusters in a
practical time frame but due to restrictions on the runtime of a program on this sys-
tem it was not possible to obtain a full range of fill data for the Screened Eden model
as with the EdenB and EdenC so the only thing that can be done is to make some as-
sumption on how these curve may act, but this will not be used in the actual analysis

as this could very easily mislead and lead to a highly incorrect conclusion.

The Screened Eden model is a fascinating model when looking at the domain fill
as with lower values of beta it starts off like the Eden model where they increase in
the size of the domain in fact when a beta value of 0 is used the model acts precisely
like that of an EdenA model only with much more computation going on within the
model slowing it down considerably. However, as soon as the beta value increases
from zero even to a value as low as 0.1 the change in the model is very apparent when
looking at the fill. At an L size of 256 the EdenA model takes up a median of 35.03% of
the domain, and the Screened Eden model takes up only 26.45% of the domain, and
this decrease in the fill of the domain continues as the beta value increases which can

easily be seen when looking at the bottom graph shown in Figure 3.15.

The Screened Eden model exhibits interesting behaviour for beta value in the
range on 0.2 to 0.5 wherein as the L size increases, though the fill first starts of in-
creasing eventually it begins to rapidly drop off in some instances such that by the
time the L size reaches 1024, meaning a domain of (1024 x 1024 x 1024), the fill per-
centage for the beta values that there is data for have already reached well below 1%.
Though from 0.6 and up it doesn’t have this initial increase in the fill. For the smaller
beta values of 0.1 to 0.3, it was only possible to obtain fill values for up to an L size of
256 due to the runtime of the model at this point. However, it can be assumed that
the 0.2 and 0.3 values would follow a similar pattern as the higher beta values slowly

decreasing past this point as the L size increases. Unfortunately, it is not possible to

"High Percomance Computer
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Figure 3.16: Graph showing the fill density for the Invasion Percolation model where the
percolation threshold is set by the random method.

gain to an understanding of how the 0.1 beta value will progress as the domain size
increases; it could very likely follow the general trend that the standard Eden model
does or at some point it could begin to decrease like with the higher beta values for

this model.

From here on the second model type, the IP model will be discussed, with each
of its different version discussed in the order of Random, Meakin, and finally Haw-
ick. The Random version and the Meakin model are the two that are most closely re-
lated to one another with the Meakin model able of reproducing the random model
by feeding it a beta value of 0. Unlike the Eden growth mode; as the L size increases
the fill percentage of the Random IP model decreases. At the smallest L size of size,
these versions of the IP model take up more of the domain then any of the different
versions of the Eden growth model. This model very quickly tends towards having a

fill percentage of less than 1%.

The Meakin version of the IP models was testing with the beta values —0.1, —0.01,
—0.001, —0.0001, —0.00001, and —0.000001. The fill density of each of the beta values
increases as the value tends to 0. This model gives the lowest of the fill values out of
all of the different models, and as such it will be interesting to see if this effect which

of the different data structures will be the best suited in this case
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Figure 3.17: Graph showing the fill density for the Invasion Percolation model where the
percolation threshold is set by the Meakin method. With the top graph showing the effect of
the g values of -0.1, -0.01, -0.001, -0.0001, -0.00001, and -0.000001. The bottom graph show
the effect of the change in domain size (L size shown in the ke

The Hawick method for the IP model is the final version that will be discussed
this version of the model acts much differently than all the other growth models that
have been discussed. This method was first used to simulate coastal erosion on a 2D
simulation. This means that the model wants to fill as much of the domain as it can as
it makes its way to the edge of the domain much more than the other version of the IP
model. The fill density for different beta values in the range of 0.1 to 0.9 can be seen
in Figure 3.18. This model gives the largest fill density of any other model discussed

within this thesis with a maximum fill density at an L size of 1024 with a beta value of

0.1 where the mean density is 95.7% with a minimum of 95.5% and a maximum value



3.4. Fill Density 59

IP Hawick Fill Density

90 4

e ////’, B Values
&2 8s0q //r/—"/ Oll
) | /-///’, 0.2

0.3
0.4
— 05
0.6
0.7
— 0.8
0.9

o
=]

Fill Density

40 1

1632 64 128 256 512 1024

L Size

IP Hawick Fill Density L Values

— 16
32

— 64
128
256
512
1024

90 1

(%)

Fill Density

w
3

40 4

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

Beta

Figure 3.18: Graph showing the fill density for the Invasion Percolation model where the
percolation threshold is set by the Hawick method. With the top graph showing the effect of
the 3 values in the range of 0.1 to 0.9 in increments of 0.1. The bottom graph show the effect

of the change in domain size (L size shown in the key)
of 95.9%. Though there is a broad range in the fill percentages for this model with a

beta value of 0.9 giving a mean value of 44.3% at a dim size of 1024 which is only 1%

more than the EdenA growth model.

The results in these experiments will be useful in the analysis of the various run
times of these models with the different data structures as it will allow for a prediction
on whether a different type of model that is not discussed here stands a chance of
benefiting from one of the methods discussed. The results here show that amount of

the domain that is filled but the cluster as the domain grows in size is considerably
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different for each of the model, whereas some increase as the domain grow as with
the Eden models, others decrease such as the Meakin model and in other cases more

interesting behaviour is exhibited as with the Screened Eden model.

3.5 Summary

This chapter has gone into the History of the different types of Eden growth model
and IP model that will be used for testing the effects of different data structures. It
also discussed how these models have been used in different fields including cancer
research where the Eden growth model is used for the simulation of a tumour its self
and the Invasion Percolation model is used for the simulation of when a tumour gores

through angiogenesis and starts to grow blood vessels.

This chapter then also discussed the different methods that have been imple-
mented for the handling of the growth sites of the different models including a method
that will be referred to as the Masson method (named after the person that invented
it (Masson, 2016, Masson and Pride, 2014)) for the simulation of the Invasion Perco-
lation model which involves the use of a binary tree inspired method for the storage
sorting and selection of the next cell that will be infected in the domain, this is the
method that is used for all the different variants of the Invasion Percolation model

that this work will concern itself with.

The final part of this chapter went into the effect that the domain size has on the
sparsity of the different models. This information is an essential part of the investi-
gation into the application of the different data structures as it will allow for a better
understanding of why a particular structure may be the best in one situation but not
in another. This will mean that the data here can be applied to a broader range of
models that are not discussed here if the model domain fill is known it could give a

good idea of which data structure might be the best to use.
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CHAPTER 4

Nate Silver

Data Structures

ATA structures are an abstract method for the storage of data in an

organised manner so that it can be used efficiently by the program.

Data structures make use of a variety of different abstract data types

depending on the type of structure in addition to the purpose for

which it will be used. These data types specify the multitude of operations that can be
performed on the data structure in addition to the computational complexity of the
structure, which is described with the aid of a form of notation call Big O notation. Big
O describes the number of actions performs in the worst case scenario of a specific
algorithm based off of the scaling of the data supplied to the algorithm. The effect that

different Big O values have on the runtime of an algorithm can be seen in Figure 4.1.

O(1) describes an algorithm that will always be executed at the same time re-
gardless of the size of the data that is input such as accessing a specific value from
an array. The notation means that the algorithm has a fixed complexity where only

one operation is needed to complete the task, though the 1 can be substituted for a

61
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Big O Notation
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Figure 4.1: Graph showing the effect that increases units of input on the number of
operations an algorithm has to perform for different Big O values. Big O notation is used to
describe the complexity of an algorithm as the size of the data input into it grows in size.

number, in this case, this would mean an increased number of fixed operations are
required. O(NN) describes an algorithm where the grows linearly in fashion with the
growth in the size of the input data, such as checking an array to see if it contains a
specific value. There is a wide range of different computational complexities such as

logarithmic and exponential.

One of the main areas of study within computational complexity concerns itself
with the problem of P vs NP which is a currently unsolved problem. It asks whether
every single problem which can be checked within polynomial time can also be solved
within polynomial time (is it P = N P or P # N P). An answer to this problem could
have a wide-reaching impact on the whole of society. If it was found that P = NP
this would have both beneficial and detrimental impacts on the world. One negative
drawback would be to encryption which relies on the fact that it is very complicated
to crack an efficient solution would make most of the currently existing cryptography
useless and would mean that the field would have to look into alternate solutions if it

was even possible to perform encryption anymore.

Different data structures are most aptly suited to various types of applications.

The specialisation of the data structure is highly dependent on the structure itself
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some are very highly specialised with very few other uses, and some are very gener-
alised. For instance, hash tables are a type of data structure which is very useful in the
field of compiler implementation for the lookup of identifiers but can be generalised

to many other tasks, such as is done here.

They provide a optimal means to store and organize data such as with databases
which can use numerous structures such as an SQL based databased which makes
use of the relational model, organizing the data into one or more tables with a unique
key identifying each row, rows represent instances while columns represent values
attributed to that entry. Another example would be a graph-based system such as
the one used but packages such as Neo4j which uses a property graph model, this is
a model in which the graph contains a collection of connected entities called nodes
which can hold any number of attributes and are represented in the system as key-
value-pairs these values are then connected to each other through the use edges to
demonstrate a relationship between the nodes which is determined by the label on

the edge.

Many data structures are designed to allow the system to access and store the data
from anywhere within the memory of the computer; this allows for the structure to be
made dynamic allowing it to grow and shrink in size as needed. This is often achieved
through the use of pointers which are an object whose value refers to the location of
another value, obtaining the value from the pointer is known as dereferencing the
pointer. There are a large variety of languages that support the use of pointers such
as C++ and Java, which are two of the most widely used programming languages to
date. The creation of all data structures requires the writing of a set of algorithms
to allow for them to be instantiated and manipulated through a set of functions that
govern adding to, removing from, and searching the data structure. The efficiency of a
specific data structure is intrinsically linked to these functions and as such the speed

of the structure is limited by these functions as well as the format of the structure.

There would have been a different path to the speed up of these simulations but
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Figure 4.2: Example of k-indexing from a 2D grid with an L size of 3 in both thexand y
dimensions over to a 1D array which shows the resulting k indexed values for each of the
coordinates. This method can be used for the flattening any N-dimensional array so long as
the size of each of the dimensions of the domain are known.

it would have come with what was felt to be a significant issue that of parallelization.
A GPU! based implementation of the system could have offered significant speed ups
over the methods investigated here. However there has already been work done in the
parallelization of this model (Machta and Greenlaw, 1994) but due the asynchronous
nature of the model moving to the GPU for speed up can significantly effect the re-

sulting structures even if the a fractally similar (this is discussed in Chapter) 7.

Even the highly specialised data structures which seem only to be fit for a sin-
gular purpose are sometimes able to be used in other situations and can even offer
great benefits such as a reduced memory consumption or a faster search time. This is
where the interest for the work done here comes in as if simulations can be sped up
through the application of these alternate data structures it could be of great benefit
to researches who make sure of these models, by allowing them to perform experi-

ments much more rapidly then before.

'Graphics Processing Unit
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4,1 Lattice

The Lattice structure consists of a simple character-based array and is the standard
data structure that is used for the simulation of growth models. It involves the use
of either an N dimension array or one vast array that is indexed in such a way to act
as an N-dimensional array. This can be done through the use of k-indexing, which
can take an N-dimensional, in this case a 3D coordinate, within the computational
domain and flatten it into a single dimension for indexing as well as take a k-indexed
value and convert it back into an N-dimensional coordinate which is useful in edge
detection in the models, a visualization of this method can be seen in Figure 4.2. The
equation for the flattening of an array from N dimensions to a k-index can be seen in
Figure 4.1 and the code that is used for reverting this flattened value from a k-index
to an N-dimensional coordinate can be seen in Figure 4.3, This method is also used
for all the other structures apart from the Octree the reason for this will be discussed

in Section 4.3.

x,y, 2z represent the 3D coordinates for the specific cell whose probabil-
ity is being generated
L, is the length of the x dimension

L, is the length of the y dimension

There are many benefits to the use of this method as opposed to the use of a 3-
dimensional vector storing the %, y, and z. The main benefit of this method is that it
does not matter how many dimensions there are to the grid; this will work just as well
with a 2D grid as it will with a 7D grid. An additional benefit is that in that case where

the index itself needs to be stored as with the AVL? tree (discussed in the following

2Adelson-Velsky and Landis Tree
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const int N_dims = 3;

int * fromK (const int k, const int = L) {
int *x = new int [N_dims];

int 1lp = L[O0];
1;

for(int i = i < N_dims; i++) lp*=L[il];

for (int i = N_dims - 1; i >= 0; —-—-1i) {
lp /= L;
x[i] = (k / 1lp);
k %= 1p;

return x;

Figure 4.3: The code used in the experiments to convert a k-index values into an N
dimension coordinate, where N_dim is the number of dimensions. In the case of these
models this is 3.

chapter) this method allows for the coordinate to be stored with a single value instead
of the multiple that would otherwise be needed reducing the memory consumption

for each new cell with the system.

The computational complexity of the search of a single neighbouring cell for each
of the data structures varies quite a lot. In the case of the lattice structure due to the
ability to index the array with 3D coordinate or a flattened version of these coordi-
nates into a single k value it has the lowest computation complexity being that of O(1)
this means that it only ever makes one check every time it needs to see if a cell is empty.
But this doesn’t mean that it will always be the fastest as it is possible for the grid and
the growth sites list to be of such a size that it may not all be contained within the
RAM of the system and so must be loaded back on to the RAM from virtual memory
before it can be checked which is a relatively slow process and could drastically slow

down the searching of the grid depending on how often this has to be done.
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4.2 Balanced Binary Search Tree

For the first of the tree based structures that we have implemented for this work, we
have made use of the Binary Search Tree (BST) (Knuth, 1998c, Leiserson et al., 2009)
seen in Figure 4.4 specifically a balanced binary search tree. In a BST each node con-
tains the nodes value and two pointers to other nodes; these are often called the left
and right child nodes. The left node will point to a node whose value is less than the
current nodes value and the right node with a point to a node whose value is higher
than the value of the current node. An example of the logical structure of a binary

search tree can be seen in Figure 4.4.

The binary search tree is probably one of the most widely used data structures
in computing and tends to be one of the first about which a computer scientist will
learn. A widespread use of BSTs that most people benefit from is within a router; here
they are used for the storage of the routing table which stores the different routes to
particular network destinations as well as values that can be of benefit such as the
distance. They are also used in a computers heap for the implementation of priority
queues (Garcia et al., 1999) which advise the scheduling process within an operating
system. The final method that will be brought up here is that of Binary Space Parti-
tioning (Naylor, 1998) which is a method that is used in 3D rendering algorithms; it
was used in Games such as Doom and Quake. This method involves the division of
space within the environment in half based off of the position of the walls; this is then
stored in a binary tree structure. This method allowed for an efficient method to avoid

overdrawing in a scene allowing for the rendering of more advanced graphics.

Figure 4.4 is an example of a balanced BST, meaning that no one side of the tree
being significantly large then the other. This balancing is a significant aspect of the
tree which can lead to an enormous impact in the performance of the tree when both
inserting into the tree and searching the tree for a value, in the worst cases this can

lead to the BST taking the form of a singularly linked list instead of a BST.



4.2. Balanced Binary Search Tree 68

Figure 4.4: An example of a simple binary search tree with 10 nodes and a height of 3.

A balanced BST has a computational complexity of O(log V) for both the search-
ing of the structure and the insertion into the structure. Whereas a singularly linked
list has a computational complexity of O (V) this can show the level of effect that this
can have on the performance of the tree if it is filled in an unbalanced manner. Due
to the way in which these clusters can grow this can mean that a standard binary
search tree can very quickly become unbalanced and thus lead to inflated insertion
and search times. This means that a balancing algorithm should be used in order
to ensure that the tree remains balanced and gives an optimal insertion and search
time, especially in the case that presents itself here where the cells that will be added
to the tree will have unpredictable values. When a balancing method has been imple-
mented the name of the tree changes the two most common are the Adelson-Velskii
and Landis (AVL) tree (Adelson-Velskii and Landis, 1962, Knuth, 1998a) and the Red-

Black tree (Knuth, 1998b, Leiserson et al., 2009).

Each of these two versions of a balancing BST takes a different approach. The
first of them the AVL tree makes use of the tree height to keep balance within the tree.
In an AVL tree, the height of the two child subtrees can differ by at most one. If at
any point this rule is not met the tree will begin to rebalance itself. This rebalancing
is done through the use of tree rotations; this can be done with single rotations or
double rotations. There is a simple set of rules for the AVL tree to help decide which

type of rotation should be performed. The algorithm that performs the sorting can
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Algorithm 4 This describes how the AVL is rebalanced so that it maintains its
O(log N) search time.
if tree is left heavy then
if trees left sub-tree is right heavy then
Do a double rotation
else
Do a single rotation
end if
else if tree is right heavy then
if trees right sub-tree is right heavy then
Do a double rotation
else
Do a single rotation
end if
end if

be seen in Algorithm 4.

A Red-Black tree is similar to an AVL tree in the way that it fixes an unbalanced
tree through the use of single and double rotations. The way in which these trees dif-
fer is in how they decide whether the tree is unbalanced Red-Black tree makes use
of a colouring mechanic with two colours, Red and Black which is where it gets its
name from. Each node can be one of these two colours; there are a few conditions
that are needed for a red-black tree to work correctly. The first is that the root node is
set to black (though this rule is sometimes omitted), all the nodes that do not contain
avalue a set to black. The next condition is that if a node is black, then both of its chil-
dren are red. The rule that decides if the tree needs to be rebalanced states that every
path from a particular node (N) to a descendant leaf must have the same number of

black nodes not including the N node.

Both of the trees have their benefits and drawbacks. For example because an AVL
is more rigid in the way that it manages the tree it is possible for it to offer faster look-
ups over a Red-Black tree this makes it a better choice for systems that are search
heavy, whereas the slightly more lax rules of the Red-Black tree make them more of
a benefit in insertion heavy situations. There is also the space difference between an

AVL tree and a Red-Black tree with the AVL tree it is needed to store the specific height
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inline int Masked_AVL::MASK (int x) {
return (x < 0 ? -x : X);

Figure 4.5: AVL Mask which is used to help in the handling of the additional state which is
stored as a negative value. This allows for this storage without increasing that memory
consumption of the data structure.

data of the node mean a significant increase in the amount of stored data. However,
with a red-black tree, there is a useful trick that can be used to avoid having to store
extra data to determine the colour of the node. If the data that is being stored in the
tree is always guaranteed to be higher than one the state of the node can be stored in
the sign bit of the value, this would mean for example a black node could be denoted
by a negative number and a red by a positive number or vice versa. In this case, the
AVL tree was selected as the growth models used here will be more search heavy then

they will be insertion heavy.

For the EdenA and the IP models, there is the requirement that a cell upon being
added to the growth sites list in order to ensure that each cell has only been added
to the growth sites list once this fact must be represented in the structure that stores
the cluster. In order to do this with an AVL, the state of the cell is stored within the
sign bit of the index value for the node. If a cell is negative, the cell is considered to
be an empty neighbour cell whereas if positive it is considered to be a filled infect-
ed/invaded cell. To make the correct comparison between the values in the tree, the
value must be positive this ensures that the node is inserted into the correct location
within the tree so that when it becomes infected and is set to a positive value, it does
not cause a significant change to the tree which could be a time-consuming process.
To this end the absolute of the value must be used in the comparison, a few different
methods for calculating this where tested, these included the std built in abs function
as well as bit shifting, But the fastest method that was tested ended up being a sim-
ple inline function that contained a ternary operator that checks if the value is less
than 0 and if so returns the positive else it just return the original value fed into it, this

function can be seen in Figure 4.5.
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There is one issue that arises from this use of the sign bit to store the state of the
cell (neighbouring or infected). Thisissue occurs if the number 0 is added to the struc-
ture as a neighbouring value; this is because it is not possible to store a negative 0
value in C++. The solution to this that has been implemented is a straightforward
one when adding a value to the structure it is incremented by one, and then if the
cell is a neighbouring cell it is set to the negative value after the correct position with
the tree has been found. However, this must be taken into account when searching
through the tree for a value, and this is done through the use of the same mask used

in the insertion.

Except for the initial seed and in the case of the EdenC model, every cell will be
added to the structure first as a neighbouring cell this allows for the code to be further
simplified for use in that the state of the cell need not be passed to the structure. When
inserting a cell if a null node is reached when searching for the values position the
negative of that value is added else if the negative of the value is found it is merely set

to be the positive version of itself.

4.3 Octree

Octrees (Meagher, 1980, 1982) are an example of a spatial data structure, similar to
that of kd-trees (Duncan et al., 2001, Husselmann, 2014) or R-trees (Guttman, 1984).
The Octree is the 3D equivalent of a quadtree which subdivides a 2D plan into four
quadrants recursively until the desired resolution is reached. In the case of the Octree,
a 3D space is subdivided into eight octant’s recursively until the desired resolution is
reached an example of this recursive storage with increasing resolution the further
down the tree it goes can be seen in Figure 4.6, the further down the tree a node is
smaller the amount of space it refers to. Each node refers to a specific 3D point which
is the centre of the octant. The octree was first discussed in 1980 (Meagher, 1980).

Since its conception octrees have become a common spatial structure used in many
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different areas.

In simulations such as flocking an example of which is the boids model (Hus-
selmann, 2014, Husselmann and Hawick, 2011, Reynolds, 1995) or other n-body style
simulations (Bédorf et al., 2012) they can be used to reduce the number agents within
the environment that need to be iterated through to calculate values such as the co-
hesion vector in the case of a boid simulation. This is be done by assuming that
agents who are outside of the same octant as the current agent are too far away to
have any significant effect on the current agent, this can be a considerable optimiza-
tion to these types of simulations allowing for thousands of individual agents to be
easily simulated in real time and with the addition of the massive levels of paralleliza-
tion that GPUs can supply this can become millions of agents. This same idea is also
used in video games to reduce the number of objects that the games have to calculate

collision detection with (Jime et al., 2001).

Another powerful use for octrees is in the rendering of 3D objects through the use
of ray-tracing (Laine, 2011). Ray tracing is a rendering technique that generates an
image by tracing the rays of light as pixels in an image it can produce very detailed
render with a high level of realism. But it is a very computationally costly method,
meaning that it can be challenging to use effectively in a real-time sense and tends
to be used for pre-rendered scenes such as with Disney films where they make use
of their Hyperion software as in the case of the film Big Hero 6 which required the
use of a compute-cluster without which the film would have been an impossibility to
render in a timeframe that would have made it feasible to make. Octrees can improve
the performance of this making it possible to render large volumetric data sets that
can consist of millions of voxels; a voxel is to 3D space what a pixel is in a 2D bitmap,
such as with the work in by Nvidia on GigaVoxels (Crassin et al., 2009). It is because
of things like this that octree is very popular in the field of volume rendering (Knoll,

2006) and 3D space carving (Kutulakos and Seitz, 2000).

As an Octrees is filled up, it is possible to be able to delete all child nodes from an
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Figure 4.6: An example of an octree in both a cubic grid based representation and a tree
based structure (Wikipedia, 2018). This shows how the further down the tree a node is the
higher the resolution of the node.

octant that is wholly filled allowing for a sizeable possible reduction in the amount
of memory consumed. The search time of the structure, as well as its memory usage,
differs from a lot of other structures because of this as is doesn’t grow consistently as
cells are added to the structure. For example, with the AVL the more prolonged the
simulation runs for and the more cells that are infected, the larger the tree becomes
increasing search time as well as memory usage. With an Octree, this memory con-
sumption and search time will reach a sort of critical mass where once this happens
the number of nodes within the structure will start to reduce as a culling of the data
points from the structure will begin until the entire domain is filled wherein the struc-

ture will consist of a single node.

Both the search and insert functions just like the with binary trees are recursive
functions. The search and insertion functions in the octree functions very similarly to
the AVL with one significant difference. This difference is in how the next child node
to visit is selected; this is done by making use of the function shown in Figure 4.7 this
allows for a quick and easy way to figure out which of the child octant’s contains or
would contain the cell being searched for. The function will fall down the structure
until it hits a null node meaning that the cell is not in the tree and in the case of the
insert function should be added as an infected node meaning the index is within the

tree. After a cell has been added to the octree it must go through what can be consid-
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int Octree::get_octant (const vec3 &pos, const vec3 &pos2) {
int oct = 0;
if (pos.v[0] > pos2.v[0]) oct | 4
if (pos.v[1l] > pos2.v[1l]) oct |= 2;
if (pos.v[2] > pos2.v[2]) oct | 1
return oct;

Figure 4.7: The method used for the selection of the correct child octant the searched for
point lays in the case of the search function in or should lay in the case of the insert function.

void Octree::calcualte_depth (cosnt int dim) {
int temp = 2, max_depth = 0;
while (temp != dim) {
temp = 2;
max_depth++;
for (int i = 0; i1 < max_depth - 1; ++i) temp *»= 2;
}
max_depth++;

Figure 4.8: Code used for the calculation of the max depth for the octree. This code requires
that the L size of the domain be not on the same on all sides but also that it is a power of 2
number such as 16 which is 2% or 128 which is 27.

ered and clean up phase where, as the recursive function start to go back up the nodes
each nod will check all of its child nodes, and if each of these nodes are infected then

the child nodes are deleted, and the current node is set to be infected.

When inserting a variable into the octree, this method keeps count of the current
depth of the tree and will only allow the cell to be added to the structure when the
depth has matched the max depth. This max depth variable is to ensure that when a
cell is initialised, it is at a point with the structure of the octree where that cell only
takes up one single cell. The calculation for the max depth is dependant on the L size
of the domain and can be seen in Figure 4.8. At an L size of 128 would give a depth of

8 and an L size of 1024 would give a depth of 11.

The additional state cannot be stored in the same way as with the AVL tree where
the negative of the index means that a cell is just a neighbouring cell. In the octree,
the cells centre point is stored in the form of a vector3, which is a structure containing

three values storing the x,y, and z coordinates of these centre point for the cell. Be-




4.4. Hash Table and Hash Set 75

cause of this, an additional value has been used to store this information, in this case,
a char has been selected to define the state. A boolean value could have also been
used instead as they both take up the same amount of space within the memory of
the system and the read-write times are no different. The only reason that a char was

selected over a boolean value was just down to simple preference.

4.4 Hash Table and Hash Set

Hash Table and Hash Sets are examples of a class of data structure that are commonly
used and only subtly different from one another. They work through the implemen-
tation of what is called an associative array; this structure maps keys to values within
itself. The hash table gets its name from the hash function that is used to work out
the index of the value within the structure making the decision which bucket to place
the value into. A bucket can be thought of as a collection of values whose hashes are
the same. If the hash function that is used were perfect every value within the table
with a different key value would be stored into separate buckets. However, the im-
perfection of these functions is why these collisions occur within the table causing
multiple items to be stored within the same bucket. An example of this can be seen

in Figure 4.9. The simpler the type of key that is used the easy it is to avoid collisions.

An analogy for the Hash Table that can make it easier to be able to visualise how
it works mentally is that of a filing cabinet. Think of the draws in the cabinet as the
buckets in the hash table, each of these draws can contain numerous files within it,
however, the more files that a draw contains, the harder it is to find the specific file
for which is being searched. The system for deciding which draw the files go in, be
that numerical or alphabetical is analogous for the hashing function. The Hash Set
is very similar only in their case the container cannot have duplicate keys which are
excellent for the use case here as this is not wanted in the first place. In a hash set, the

value of the element is its key instead of it being a key, value pair system.
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Figure 4.9: Visualization of the abstract structure of a hash table, showing how the key is
placed in a bucket and then into a linked list within the bucket. This shows what happens if
the hashing algorithm cases a collision and multiple items end up stored in the same bucket
this can be seen with items B and C.

To implement these structures in the models C++’s standard template library was
used. For the Hashtable the unordered map has been used in for models such as the
Eden-A and IP models when the state of the cells exist in three states instead of two
those three states being infected, uninfected, and neighbour, as it works through the
storage of a key pair value in the case < int, bool >, the integer is used in storing the
indexofthe cell, and the boolean is used to tell if the cell is a neighbour or infected if an
index is not found within the structure then it is considered to be in the non-infected
non-neighbouring state. This means that neighbouring cells can be ignored when

adding to the growth site to keep the correct probably in the growth sites structure.

The second type that has been used is that of an unordered set though this is used
for the Hash Set. The setis used for models such as the EdenB where the neighbouring
cells are being added to the growth sites structure multiple times, or in cases like the
Eden-C where the neighbouring cells are not added to the growth sites list instead the
edge cells to infected cells are, this means that there would not be multiple additions

of the same value because a cell can only be infected a single a time.

The selection of the hash function can have a massive impact on the efficiency

of the structure. There are a wide variety of hash functions that have been thought



QL = W N~

4.4. Hash Table and Hash Set 77

struct KeyHash/{
unsigned long operator () (const inté& key) const {
return reinterpret_cast<unsigned long> (key) % TABLE_SIZE;
}

1

Figure 4.10: An example of a possible hash function that can be used when the key in that
table or set is in the form of an integer as in the case that is discussed in this work.

up especially in the field of cryptography, but the functions used by Hashtables and
Hashsets are very different to these. The main reason for this is that the speed of the
function is critical and even in the case of some of the fastest cryptographic hashing
function these are very sluggish in comparison to the types used in hash tables the

reason for this is that the security of the data is not the focus.

In the case of the unordered map and set in C++’s standard template library the
hash function is decided on based on the type of key that is used. These functions
are different because as in the case of the key if it is a string, this would have to be
converted to a numerical value so that it can be used as the index. However, in this
case, the key value that is being used is already a numerical value with it being the
k-index of the cell in question, and as such, the hash function can be, and the index
value itself can be used without much if any processing. For example in the case of
a < string, string > unordered map the default hash function turns the string “Lee
Odiam" into the integer key value of 5, 280, 821, 831, 415, 455, 054, whereas in the case
of an < int, bool > the hash function only performs a modulo operation on the key
passed to it an example of the type of hash function that can be used to achieve this

can be seen in Figure 4.10.

A critical statistic with a hash table is that of the load factor the equation for this
can be seen in Equation 4.2. The load factor for a hash table can inform as to the
speed of the hash table, if the load factor is over one it means that there are buckets
contained within the table that contain multiple values and below that as the load
factor tends to zero the more empty buckets that are contained within the hash table.

It is ideal to use a hashing function that keeps the load factor as close to 1 without
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F
L, == 4.2
=3 4.2)
where:
Ly is the load factor
FE the number of entries
B the number of buckets
By
V==L 4.3
T (4.3)
where:
V' is the variance
By is the number of filled buckets in the hash table
FE is the number of entries in the hash table

ever going over it as possible, as when the load factor is over one this means that it is
certain that more the one entry is in a single bucket at some point in the table and if
the load factor is very low this means that the table is consuming a lot of unnecessary
data. One issue with the use of the load factor is that if it has a value of less then
one this might lead you to think that the hashing function is perfect and each filled
bucket has only one item in it, but this is not that case this is where the variance of

the hashtable comes into play.

Variance helps give a better understanding of the structure of the table as it can
identify situations such as where the table has 100 entries within it as well as 100 buck-
ets this would mean a load factor of one which would give the impression that it is
perfectly balanced, but it is possible that all of those entries are contained within a
single bucket meaning that the hash table is now just a linked list and would function
incredibly slowly. In this case, it would tell you that the hashing function that is being
used is not fit for purpose. Variance is calculated in a very similar way to the load fac-
tor, and this can be seen in Equation 4.3. In this case, a variance of one is ideal as this
would mean that every entry is in its own bucket and as such this would offer the best
possible search and insertion time. A variance of less than one says that collisions are

going on within the structure. If the variance of the structure is very low, it infers that
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Figure 4.11: Graphs showing the load factor and variance for the Invasion percolation
model as it is run for one million iterations. The load factor graph tells that each time the
hash table is resized the size that it is resized by increases

the hashing function currently in use is not ideal for the situation. Though it is not

always possible for the variance to be 1.0, this is however ideal.

A hash table can be thought of as having a O(1) insertion and search time, but
because it is needed to run a hashing function, this can still be slower the insertion
and time of an array. This O(1) search and insertion time can quickly change if the
hashing function that is used starts to assign the same index to different keys which is
possible this can be seen in Figure 4.9 where B and C are assigned to the same bucket,
this is often done with a linked list, in this case, all the entries must be iterated through
in order to find if the searched for entries exists or to add the new entry in the needed
position. It is easy to avoid this when the data that will be entered or the range of data
that will be entered is known as with the case being looked at here. In this case, it is
possible to make use of what is known about the data to allow for a perfect hashing

function.

In order to test whether the default hash function used by the unordered map
and set was perfect, it was essential to analyse the load factor and variance of the
structures when being used for this method. The results of the tests can be seen in
Figure 4.11. The Load factor of the table and set fluctuated when the structure ap-
proached aload factor of around 0.99 the structure would be resized reducing its load
factor to around 0.5. The highest the load factor ever reached was 0.99915, and the

lowest the load factor ever reached was 0.492581 this shows that the number of empty



4.5. Domain Resizing 80

cells within the structure is kept in balance with the time it would take to resize the
structure. The Variance for these implementations is a critical graph, and it can be
seen in Figure 4.11 it stayed perfectly flat meaning that each cell within the structure
will only ever contain one value. This data was gathered from 100 different runs of
different models, and the results had a standard deviation of 0 showing that this was

the case for all the models with which the structure is used.

4.5 Domain Resizing

One way in which to deal with the additional memory usage caused from having
empty cells when using of the Lattice structure is to make use of Domain Resizing;
this means that the structure would only start off small and would increase in size
when the cluster reaches the edge of one of the boundaries. This would mean that in
the case of a model such as the IP model with the Meakin method used for the calcu-
lation of the percolation threshold when the beta value become more lower and the
cluster stops coming close to the edge of the domain a large amount of space could
be saved. This section will discuss the two methods that have been developed for the
domain resizing, symmetrical and asymmetrical, as well as the type of data structure

that has been decided on for this and why it was selected.

The first of these two methods that have been developed is that of the symmetrical
domain resizing this is the method that is used for all of the Eden model variants (A,
B, C, and Screened). In this method when the cluster within the domain touches one
of the edges each of the sides of the domain have the same number of cells added to
them making the domain grow symmetrically; this means that the domain keeps its
cube shape. In order to achieve this the L sizes that describe the length of each of the
X, y, and z dimensions of the domain are doubled or in other words new;, = oldy, x 2

the structure that contained the cluster is the resized to this new size.

After the resizing of the structure is done it is necessary to recentre the cluster by
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repositioning all the cells within the domain to their new positions in order to avoid
over rewriting an already infected cell with an uninfected value and destroying the
cluster that has been formed it is best to start at the end of the structure and decre-
ment the index value for each cell until the beginning of the structure is reached. Be-
cause all the new instantiated cells are initialised with a zero value, it is only needed
that the infected cells go through this repositioning process and are then set to a zero
value. The code that is used to find the new position for a cell within the domain can
be seen in Figure 4.14. In this method the first step that must be performed it to ob-
tain the 3D coordinate of the cell within the domain before it had been resized; this
is why the initial;, value is passed through to the fromK method show in Figure 4.14.
After this, an offset value must be calculated this is easy to obtain in the case of the

initialp,

symmetrical resizing as it is merely =

The second type of resizing used is that of asymmetrical meaning that the result-
ing domain does not have to be a perfect cube and instead would be described as a
cuboid. This method is the one used in the case of the IP model for all of its variants,

Random, Hawick, and Meakin.

Unlike with the Symmetrical domain growth the calculation of the change to each
side it a more complicated process. The first step is to identify which side of the do-
main the cell is touching; this is then placed into an offset array which can be seen
in Figure 4.12. In this code depending on which side of the domain is being touched
the offset can be set to a negative or positive number the reason for this so that the
direction of the domain that needs to be altered can be easily identified; this aspect
of the code makes more sense when the positioning code that is seen in Figure 4.15 is
taken into account. Though in the case of the asymmetric resizing it must be ensured
that the domain does not grow too far in one direction as this can affect the clus-
ters grown, that is the purpose of the increase and max_increase arrays seen which
make sure that the domain is limited in each direction. This limit is not needed for

the bottom of the domain as the stopping condition of the model will make sure that
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Figure 4.12: Offset calculation for asymmetrical domain resizing. The negative values are
used to indicate the diferect of growth of the domain this is then combined with the code in
Figure 4.15 to reposition the cell with the newly sized domain. The negative numbers are
used to tell which side of the domain needs to be adjusted. This code only needs to be run
once per resize. The increase size, and maximum increase values are calculated in
Figure 4.13.
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Figure 4.13: This calculates the values for the increase and maximum increase array to stop
the domain becoming lopsided and growing too much in one direction as this would mean
that the seed location would no longer be in the centre of the domain top. This code is
designed in such a way that the minimum domain size if 16 and that all domain must be a
power of two which is how these models will be tested.

Figure 4.14: Code to calculate the new position in the domain for an infected cell after the
domain has been resized. In this case, the offset will be equal to half the resize value this is to
keep the cluster centred as both sided have grown by half the amount of the resize value.

Figure 4.15: This code is used in the case of the asymmetrical domain resizing to obtain the
new k index for the cell after the domain has been resized it works together with the code
shown in Figure 4.12. This code will be run for each of the cells within the domain that are
not set to zero/empty.
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it cannot overgrow in this direction.

The final step in the resizing of the domain process for both the symmetrical and
asymmetrical method is to reposition all the cells that are within the growth sites list,
as they currently store the indexes that they would have had in the smaller domain. It
is a merely a matter of iterating through the list and applying the same functions that
are used to reposition the cells that are within the domain. Other than the resizing
process used the different resizing versions will act identically to the standard Lattice

model in how it stores the state of the cells within the domain.

The resizing method is only needed for the Lattice version of the model as the
other data structure are inherently capable of handling the resizing by just setting
them to have a massive domain size from the start, even if this is not the full size of the
domain beingused. The onlylimiting factor would be the memory of the computer, as
through the use different variables for the storage of the state such as a unsigned long

long it would be possible to store a maximum index of 18, 446, 744,073, 709, 551, 615.

4.6 Summary

This chapter has detailed the different data structures that will be tested. It has dis-
cussed some of the common uses for the structures such as how binary search trees
are commonly used in scheduling within a computer or even in some games for a
method to reduce the amount of work done in rendering a 3D world. It has also dis-
cussed the algorithms that will be used and how they have been designed to take ad-
vantage of the knowledge of the specific domain, such as the hashing algorithm that is
used in the hash table and set. The final part of this chapter discussed the implemen-
tation for the domain resizing method that is used discussing both the symmetrical
method and the asymmetrical method for this along with in which model each of the

different methods will be used.
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In the following chapter, Chapter 5 the results from the experiments that have
been run will be discussed. The Chapter will go into the effect that the different struc-
tures have on the model and will aim to show points at which specific structures can
offer benefits through a comparison of the memory consumption and the runtime of

the models.



It is a capital mistake to theorize

before one has data.

CHAPTER

Arthur Conan Doyle

Data Structure Results

EFORE it can be stated whether a newly developed method is superior
or inferior to a previous method, whether that be regarding the run-
time of the method or in the memory consumption of this method it is
essential to perform much testing on the method. This involves gath-

ering data from multiple runs of the system to be able to identify general trends in the
effect of the new method; this is especially important with models such as those that
are used here which have a high level of randomness which can have a significant
impact on the runtime of the system. This chapter will demonstrate that in certain
situations there is a benefit in the application of alternate data structures to the stan-
dard Lattice method that is most commonly employed for the simulation of growth

model clusters.

With compilers becoming more and more intelligent such that they are now able
to attempt to minimise the computation time by taking advantage of language or pro-

cessor specific features and tweaking the code that has been passed into them. As
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Node Name CPU RAM MPI Version

. 2 x 14 Broadwell
Computing Node E5-2680v4 (2.4-3.3 GH2) 128 GB DDR4 (OpenRTE) 1.8.8

Table 5.1: The specification for the nodes on the University of Hull’s Viper HPC in the gather
of the data discussed within this chapter.

some of these features are highly processor dependent, the results that have been
gathered and that will be discussed in this chapter have been done with all compiler
optimisations turned off; this has been done in order to give a level a playing field
as possible making the results more generalisable allowing for the results to be as

broadly applicable as possible hopefully.

In order to obtain the results shown in this chapter in a decent time frame, a high-
performance computer was explicitly utilised, the University of Hull’s Viper HPC. This
system has been used in conjunction with OpenMPI, which is an open source mes-
sage passing interface that allows for these experiments to be run in parallel in an easy
to develop and efficient manner. The system distributes instances of the program to
different CPU’s, with multiple slave processes running the experiments and the mas-
ter process collecting and outputting all the data. The specification of the HPC node
thatwas used can be seen in Table 5.1. One issue did arise with an update to the VIPER

system the effect of this limited the range of L sizes that could be tested.

There will be some shorthand made use of for the representation of the different
data structures. LAT will be used to represent the array Lattice structure, AVL will rep-
resent the AVL tree, HSH' will be used for the Hashtable and the hash set the models
where each of these will be used is discussed in Section 4.4, OCT? will be used for
the octree, and finally RES will be used for the resizing domain system discussed in

Section 4.5 and will be used for both the symmetrical and asymmetrical.

In Section 3.4 the fill density of the various models at increasing domain sizes has

discussed. This aspect of the models will be key in the understanding of the results

1Hash Table
2Qctree
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discussed here. The aim of this chapter is to investigate two points whether or not
for a specific growth model as the size of the domain increases does the type of data
structure that is best suited for the storage of the cluster in terms of memory con-
sumption and/or run time also change. Also to investigate whether or not the Lattice
method for the storage of the cluster is the best method to use in the storage of these

sparse clusters

The reason for the use of the different models is due to two reason the first of these
is that in terms of the programming of the algorithms the only difference between the
models is the handling of the growth sites and the selection of the next infected cell
this different in the selection of the cells leads to different fill densities as shown in

Section 3.4.

These more modern data structures discussed in the previous chapter such as the
AVL have the benefit of only having to store the cells that make up the cluster itself and
not all of the empty cells in the domain. This theoretically offers the possibility for a
significant reduction in the maximum amount of memory that the simulation con-
sumes. Additionally, the aim is to show that as the fill percentage of the domain de-
creases even though these more modern data structures possibly have a slower search
and insertion time the lack of need to initialize all of the cells in the domain as with
the Lattice model means that they can still offer significant benefits in both memory

consumption as well as run time.
There are three main expected outcomes from this chapter these are as follows:

E1l It is expected that for models with a sparse domain fill such as the MIPs model
the LAT structure will become more and more of a hindrance to the run time
and memory consumption of the model whereas with mode the end up filling

more of the domain such as the HIP model the LAT remains the best choice.

E2 It is also expected that for models such as the HIPs model where the percentage

of the domain that is filled by the cluster it very high that the LAT structure will
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remain to be the best structure to use for the storage of the cluster whilst simu-

lating its growth.

E3 It is expected that the beneficial effect of the alternative modern data structure
should become increasingly pronounced especially for models such as the MIP
model where, as the size of the domain increases the percentage of the do-
main that ends up infected decreases meaning an increase in the sparsity of the
model increasing the beneficial effect of the more modern sparse data struc-

tures

These expectations will be refered to by their key (E1, E2, E3) in the summary of

this chapter.

The structure of this chapter will be start off the with a section discussing the ef-
fects on the total run time of the cluster that the data structure has; this section will
begin with the construction time for each of the data structure and will subsequently
be followed by a discussion of the overall runtime of the model in relation to the size
of the domain. The second part of the chapter will focus on the memory consumption
of the different data structures for the models and will be a compared to the timing
results to see where any possible speed increases offered by any of the structures also

give memory consumptions or come at the cost of using additional memory.

5.1 Timing Data

In this section, the timing results for the various data structures discussed in the pre-
vious chapter for all of the different models that have been discussed in Chapter 3
will be detailed. This section will discuss two main aspects involved in the runtime
of these models the first of these things that will be looked at is the construction time
of the individual structures for a range of domain sizes. The second aspect will be the

complete runtime of the models with the different data structures for the same range



5.1. Timing Data 90

Construction Times

LAT 0.000012
— AVL
2.01 0.000010
HSH
T_g OCT ©000008
c
8 1.54 —— RES o0.000006 4
(]
v 0.000004 4
()]
£ 1.0/ 0.000002 4
c 16 2 64 128 256 512 1024
&
0.5+
0.0+ . * - * * - -
16 32 64 128 256 512 1024

L size (log)

Figure 5.1: This graph shows the median of the construction time for the different data
structures each of the pointers are gathered from one thousand runs of the construction.
The line representing the construction time for the AVL tree lies underneath the orange line
for the Hash Table and due to the draw order is not visible. The Hashtable and hash set are
both represented with a single line as they both had the same construction time. The
floating box in the centre of each of the graph shows a zoomed in area sharing the same
units as the main graph for both the x and y axis

of domain sizes as in the construction time. In this work the domain sizes that will be
looked at will all be (L = 16), (L = 32), (L = 64), (L = 128), (L = 256), (L = 512),
and finally (L = 1024) and all of the data will be gathered from 100 runs of the sim-
ulation. It should be noted that there will be cases that due to the time it took to run
the models or the memory consumption of these larger domain sizes being so high it
became infeasible to run the experiments and some points may be predicted values.
All predicted values that are used will be represented by a dashed line in all graphs
instead of a solid line in order to avoid any confusion about computed and predicted
values. These predicted values will be obtained through the use of the inferp1d func-
tion that is built into SciPy and is an interpolation function used to perform a curve

of best fit.
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5.1.1 Construction Time

The construction times for the various data structures can be a critical part of the
total runtime of a model especially as methods used get faster, and it can become
a limiting factor. In some cases, it is possible for this part of the program to be the
most time-consuming aspect of the whole model. This section will discuss in detail
the construction time for the different data structures. A set of simple experiments
where run where the specific data structure was constructed 1,000 times in order to
gain an accurate measure of the range of the time it takes to construct each of the
data structures, in the case of the LAT structure this also requires an iteration over
the structure to zero out all the cells contained within it to ensure that there is no
conflicting data. The medians for each of the structures across a range of L sizes can

be seen in Figure 5.1.

As the size of the domain increases, it is evident that the size of the domain has
the most significant impact on the LAT model out of all the structures. This makes
perfect sense as when the LAT model has initialised it is necessary to mark out an
array vast enough to contain all the cells and also zero out each of these cells in order
to ensure that whatever memory is contained within doesn’t affect the growth of the
cluster; this gives the construction of the LAT method a computational complexity of
O(N). The LAT structure differs from the others in that they only have to deal with a
much smaller amount of memory, in the beginning, this is due to that way that the
structures grow as the simulation runs. There is only one of the other structures that
are also affected by the size of the domain, the OCT structure, this is not because it is
marking out additional memory as with the LAT but is instead due to that calculation

of the max depth for the tree, the method used for this is discussed in Chapter 4.

The AVL tree and the Resizing Domains methods both have the same median
construction time, however they do have completely different distribution popula-
tions which can be demonstrated through the use of a number of different statistical

test the Mann-Whitney U (Mann and Whitney, 1946) test the Kolmogorov—Smirnov
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test (Dodge, 2008) and the Vargha-Delane effect size (Vargha and Delaney, 2000) mea-
sure or A measure the results of these test can be seen in Appendix B in Tables B.3
along with a comparison for all the other structures and an explanation of the algo-
rithms can be found in Appendix A. In this case, they both have the same minimum
construction time of 1us this could be due to a limitation in the timing library that
was used (Standard Template Library chrono). The difference between these two is
that the AVL tree has a maximum of 3.6s, and the Resizing has a maximum of 4.6 5.
When this is taken into account along with the statistical tests to show that the dis-
tributions of the two are from different populations it is possible to assume that the
AVL tree is the better of the two in terms of construction time, this is also an excellent
example of how the medians of a distribution is not the be all and end all in terms of

analysing the difference between two distributions.

5.1.2 Standard Eden Growth Model

The focus in this section will be on the three main versions of the Eden growth model
the EdenA, EdenB, and EdenC models, and they will be discussed in that same order.
The Screened Eden model has been excluded from this section and will be discussed
within its own section due to the number of different variables within the system and
the vastly different results that the model can exhibit and possible exciting behaviour

depending on the /3 value and the structure used.

The runtimes for the five different data structure methods tested for the EdenA
model can be seen in Figure 5.2a, these results show shows that the LAT version of
the system is the fastest of the five different structures; this is true for all the tested L
sizes. The slowest data structure that was tested by a large margin was the AVL tree
with it being nearly 250 times slower than the LAT structure. The LAT model has a
median runtime of about 208 seconds for when the domain reaches an L size of 1024
with a median construction time of around 2 seconds at this size for this structure this

shows that most of the runtime for this model is spent in the actual simulation of the



5.1. Timing Data

93

Time (seconds)

3.0 4

Time (seconds)

I
o

0.54

0.0 4

0.8 4

o
o

Time (seconds)

0.2 4

0.0 1

leq

Eden A Run Times

1.775

7.750 1

7.725 4

7.700

550002 512

] —— AVL  2sg®
HSH
2.6+
—— LAT /
— ocT ]
— RES 221
2.0—//'
1.8+
1000 10‘24 1048
1‘5 3'2 6‘4 12‘8 2_';6
L size
(a) EdenA
- Eden B Run Times
—— AVL 2.958 12
HSH 2.956
[ LAT 2.9544
OCT 2.952 4
RES 2.9501
2.9481
2.946 1 r
2.944 4 t
256
1‘5 3‘2 6‘4 12'8 2!';6
L size
(b) EdenB
les Eden C Run Times
1 —— AVL 7.900 &2
— OCT 7.875 1
HSH 7.850 4
LAT 7.825 1
RES 7.800 4

Figure 5.2: Graphs showing the run times for the three main types of Eden model the
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Figure 5.4: EdenC L=512 Runtime boxplots for the LAT and RES methods. This shows that
there is significant overlap between these two methods though it is apparent that benefits in
the total runtime can be obtained through the use of the RES method over the LAT method.



5.1. Timing Data 95

cluster with the construction time taking less than 1% of the total runtime.

However, the median run time for the domain resizing method is very close to
that of the standard LAT with a runtime of approximately 255 seconds though there is
very minimal overlap between the two structures with only extreme values in the LAT
reaching high enough to match the resizing domain method and the results of stati-
cally test which can be seen in Tables B.4 and B.8 shows that the difference between
the Resizing at the LAT methods is statistically significant. This difference in speed
means if the aim of a run was to grow a cluster of a specific size instead of calculating
the specific size of the domain that would be needed the resizing method could be
used to ensure that the cluster is not affected by the edge of the domain while only

causing minimal effect on the runtime of the model.

The second of the three Eden model that will be discussed is the EdenB model.
The graph showing the runtime of this model can be seen in Figure 5.2b. The EdenB
model is an interesting example of the use of different data structures for the simula-
tion of growth models. When looking at Figure 5.2b it would be easy to conclude that
the Resizing method is the best, but this is not the case. As can be seen in the non-
zoomed-in section of the graph these run times are very similar to one another with it
being difficult to identify the difference between them only by zooming into the graph
the difference can be easily seen. The big question is whether these differences in the

medians is a significant difference or not.

In order to be able to answer this question, a few things will have to be looked at.
The first of these is the boxplot of the different data structure run times after this two
different statistical tools will be put to use the first is the Mann-Whitney U test which
is a non-parametric test that can be used to calculate the chance that two samples
are drawn from the same populations with the same median the results for this can
be seen in Table B.8 in Appendix B. The second of the methods that will be used is the
A measure which is a measure of the scientific significance what this allows for the

testing of whether the difference between two distributions with similar medians is
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significant. The results for this can be seen in Table B.7 in Appendix B.

When the box plots that are seen in Figure 5.3 are taken into account, a different
story from what the graph tells becomes evident. Whereas there is a slight difference
in the medians of the different data structures runtimes when the full range of the
data is taken into account this begins to look less significant and with the results of
the statistical analysis which is seen in Tables B.7 and B.8 becomes highly apparent
that it is not possible to state that a statistically significant difference exists between
any of the various the data structures in the case of the EdenB model. This means that
in the case of the EdenB model it does not matter which of the different structures are

used when looking at the at the EdenB model in terms of the runtime of the model.

The third and final version of the standard Eden growth model the EdenC will
now be discussed the result of the runtime experiments can be seen in Figure 5.2c.
The EdenC is more like the EdenA model than it is the EdenB model and it is possible
to draw a more specific conclusion from the data that was obtained than in the case of
the EdenB model. In this case, the RES method is the fastest of the five different meth-
ods that have been tested; this is closely followed by the LAT model with a difference
of 7.67 minutes for the median run times for an L size of 512. Even though this result
may seem like a good result when the full range of the data is taken into account and
statistically analysed it is shown that the difference between these to methods is only
small, this can be seen in Table B.10. What this means is that whereas the RES method
can run in a shorter amount of time with a lower median when the results are plotted
on a box and whisker system which can be seen in Figure 5.4, the high whisker of the

RES model does reach slightly passed that of the LAT model.

This doesn’t mean that the RES method is pointless even though the RES method
does only offer a small positive effect over the LAT version there is a positive effect
meaning that this method is a better method and will save time even if only a small
amount, when running the simulation of the model for the number of times that will

be needed to get a understand of the behaviour of the model in the use case even small
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savings in timing can eventually add to be a significant saving. For example, with this
work, the model was run 100 times if these methods where run serially it would have
taken a total of 89.72 days to run with the LAT model whereas with the RES method it
would have taken only 88.7 days. Though it is true that it is unlikely that these type of
models would be run serially, it is possible, this does go to show that the RES method
does offer a significant speed-up over the LAT method over many runs and this saving

will only increase the more times it is run.

5.1.3 Screened Eden Growth Model

The Screened Eden growth model is the most interesting of the Eden models that are
discussed here due to the possible behaviours that it is capable of displaying through
the tweaking of the beta value. This is the first of the model to be discussed that will
make use of a range of beta values in order to be able to give a good understanding
of the effect that this variable has on the runtime of the model and to see if different
setting have different optimal data structures, these values are § = 0.2, § = 0.5, and

B = 0.9 (defined in Chapter 3).

With Screened Eden model the higher the beta value used, the smaller the cluster
that can fit in the domain as it increases the clusters bias to grow along the radius of
gyration. Unfortunately due to an issue with the experiments timing out due to a time
limit that VIPER imposes on all jobs it was not possible to get a full range of data for
the 0.1 version of the Screened Eden growth model at the L size of 256 and so instead

the 0.2 was used instead.

The runtimes for the Screened Eden model with a beta value of 0.2 can be seen in
Figure 5.5a this cluster is the one that is the closest to that of the EdenA model out of
all the different beta values that are discussed. For this model, the order from fastest
to slowest of the data structures somewhat reflect that of the EdenA model, with the

LAT and RES methods being the two fastest with very minimal significance between
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Figure 5.5: The run time for the Screened Eden model with a range of 3 values these being

0.2, 0.5, and 0.9. These can be seen in this order from top to bottom respectively. The
floating box in the centre of each of the graphs shows a zoomed in area sharing the same

units as the main graph for both the x and y axis



5.1. Timing Data 99

the two distributions meaning there is a high chance that they come from the same
population. The HSH method is next in the lineup, and this structure only has a small
level of significance when compared to the AVL tree, all of the statistical tests showing
the significance of the result compared to each other can be seen in Tables B.13, B.14,
and C.12. Though the level of significance of these results is low, it was only possible
to get aresult for up to an L size of 256, and it is like that the spread of these results will

increase with high L sizes making the data structure decision more and more critical.

The runtimes for the 0.5 setting for the Screened Eden model can be seen in Fig-
ure 5.5b and this value does have a fascinating effect of the runtime of the model. At
this setting, the AVL version of the model appears to be the fastest of the five different
structures, followed closely by the RES and the LAT version at an L size of 512. How-
ever, it is essential to be able to tell whether this difference in the medians is actually
significant or not; this is where the data shown in Tables B.16, B.17, and C.15 comes
it. If this is taken into account it becomes apparent that the difference between the
LAT, RES, AVL, HSH is not very significant at all, even though the AVL has the lowest
of the medians; this means that is this case it will come down to the memory con-
sumption of the different structures to help decide which of the different structure
is the best suited here. As it is not possible to get the full population for these runs,
it is not an accurate measure to say that one of these methods would have a benefit
over the others for the larger domain sizes based on the distribution of data that is
here. The slowest of the structures was the OCT method which considering the extra
amount of organisation that goes into the storage of a value within the structure and
the extremely long runtime that is being dealt with here with the AVL method having

a median of approximately 3.3¢* seconds or 9.3 hours this was to be expected.

The final beta value to be discussed will be 0.9, the results of the experiments
for this setup can be seen in Figure 5.5c. Unlike with the previous settings the RES
and LAT methods alone are in this case clearly the fastest of the different structure,

with there being no real significance between these two different methods and a high
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chance that they come from the same population; this can be seen in Tables B.19,
B.20, and C.18, this means that in this case, it would be possible to make use of either
of these methods and gain a very similar runtime for the growth of the cluster. The
AVL method is now slower than the RES and LAT method, and there is a small level of
significance meaning that unlike with the 0.5 it would be a slower option even if only
slightly. The order of the two slowest methods is the same as before with the OCT and
HSH methods being the slowest with and a small amount of significance between the
AVL and the HSH method. Though runtime is not always the focus and there could
be significant memory saving to be made here due to the small size of the clusters

produced.

The Screened Eden model is an excellent example of a model where the beta value
has a significant impact on the best structure regarding the runtime of the system.
With the lower beta values, there is very little difference between the AVL, HSH, LAT,
and RES methods will offer benefits in the runtime of the model, meaning that there
are many choices here. However, as the beta values increase the AVL tree and the
HSH tree start to become slower, then that of the LAT and RES and in the 0.9 version,
they are the fastest of the structure. However, this speed could come at the cost of

significant memory consumption which might not be worth the trade off in runtime.

5.1.4 Random Invasion Percolation

The Random version of the IP model will be the first one to be discussed out of the
three IP models with which this thesis concerns itself. The graph showing the results
of the experiments for the runtime of this model can be seen in Figure 5.6. The IPR
model at an L size of 1024 has a very similar pttern to that of the EdenA model in terms
of the median runtime, with the fastest structure being the LAT; this had a median
runtime of 20.12 seconds at L = 1024. The slowest of the clustered results was the AVL
with a median runtime of 170.61 seconds at L = 1024 which is a much less significant

increase than in the EdenA model with it only being 8.5 times slower though this is
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still not an acceptable difference. As with the EdenA model the RES method is only
slightly slower than the LAT one, with a median runtime of 21.72 seconds at L = 1024
though when the results the statistical tests are taken into account, seen in Tables B.22
and B.23, and B.24), this difference is only with a small effect with an A-measure of
between 0.524 and 0.66 for the all the different L sizes tested as such it is not possible
to reject the hypothesis that the distributions of these two samples are the same. This
means that it is not possible for an accurate claim whether one of these methods is
better than the other, as statistically speaking with the results obtained here they are

identical; this is unlike the EdenA model where it was entirely possible to identify that

the LAT would be the fastest.

5.1.5 Hawick Invasion Percolation

The Hawick method is probably the least common of the methods out of all these
discussed here. It was used here due to the high percentage of the domain that is filled
to improve the fill percentage coverage that is shown in this work. The results for the
HIP model with three different 3 values, 0.1, 0.5, and 0.9, can be seen in Figure 5.7.

Due to the memory consumption of the AVL, OCT, and HSH, it was not possible to
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obtain a full range of data. The OCT version was only able to be run up to the L size
of 256 and the HSH, and AVL tree could only be run up to the 512 domain size. At the

larger domain sizes, these methods would run for a long time only to crash.

This model is the only one with a variable that can be changed to tailor the be-
haviour that doesn’t change which is the fastest of the version of the model between
different values given to it. This means that with a value of 0.1 or 0.9 the LAT version of
the model is the fastest of the different structures with the resizing method coming in
second. However unlike in other models where the different in the runtime between
the LAT and the RES method was minimal such as in the case of the EdenA model,
in this case with the fastest of the models the 0.9 version there is a time difference of
3.3 minutes and in the slowest case a time difference of 4.9 minutes which when the
time for the LAT version of the model is taken into account which is a 16.16 minute

run time for the 0.9 is a very significant result.

The significance of this can be seen in the result of the A-measure test which can
be seen in Tables B.34, B.37, and B.40. When these are taken into account, it is shown
that this difference has a substantial effect between the LAT and the RES versions as
well as with all the other different data structures. This means that it is easy in the
case of the HIP model to state that the LAT version of the model would be the best
structure to use as it is considerably faster especially compared to the AVL tree which
has a median runtime of 37.2 minutes which is more than double the median of the

LAT model.

This shows that in the case of models such as the HIPs model which are highly
filled the optimal choice for the storage in terms of runtime would be that of the LAT
structure and considering the fact that it was not possible to get timings for the larger
domains for the other structures this shows that this would also be the case in terms
of the memory that the model would consume, though this will be discussed in more

detail in Section 5.2.
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5.1.6 Meakin Invasion Percolation

The Meakin method for the calculation of the percolation threshold can give the most
sparely filled domain out of all methods used and discussed for both the Eden and IP
model that are detailed within this thesis. The MIP model has been tested for three
different g values; these being ¢ = —0.01, g = —0.001, and finally g = —0.0001, these
will be discussed in this order. As shown in Section 3.4 as the gravitational coefficient
used in the calculation of the percolation threshold tend to zero the fill of the domain
increases at with a g value of 0 the model being identical to that of the Random IP

model.

The MIP method produces some of the most interesting graphs out of all the dif-
ferent models that are investigated here. This is the model where the construction
time of the data structure used has the most significant impact on the runtime of the
model, more than that of the search and insert times. The reason for this is due to just
how sparsely filled the domain is filled, with the fill density for all the gravitational
coordinate tested having a fill of less than 1% when the L size reaches 1024 as seen in

Section 3.4.

The g = —0.01 version of the MIPs model displays a behaviour that is highly sig-
nificant, this being the runtime of the LAT method. Unlike with the other models that
were studied in this case the LAT method took significantly longer to run with a me-
dian run time of 3.12 seconds this is 17 times slower than the next fastest method
which is the RES method when the domain reaches an L size of 1024. The reason
for this is that the construction time of this data structure at this domain size is 2.37
seconds, which is considerably longer the total runtime of the other methods at this
L size. This leads to the conclusion that a high number of successful runs would be

able to finish before the LAT method has even initialised its data structure.

In this case the fastest method of the remaining three is that of the HSH method

this is followed by the OCT and AVL methods which overlap considerably on this
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graph making it hard to see the AVL method; this is because there is a difference in
the medians of only 1.9¢~* seconds, though before the L size of 1024 the AVL tree was
actually the faster of the two by a considerable margin. There is no crossover in the
runtime between the HSH and these two different methods this means that the speed
up offered by the HSH method is highly significant even when compared to the sec-
ond fasted methods for this gravitational coefficient; this is also demonstrated by the

statistical tests seen in Table B.25.

Even though the LAT method is the slowest, by a significant margin at an L size
of 1024, this is not the case for the lower L sizes that were tested. The first L size test
where the LAT model became the slowest of the five data structures was when an L
size of 256 is reached; This goes to so how significant in this case the construction
time of the data structure is on the total run time of the simulation. Though it might
not be evident in Figure 5.8 it is interesting to note that the OCT and HSH methods
both increase in runtime in a manner that could be considered to be linear though

more testing would need to be done on larger domain sizes in order to confirm this.

The next gravitation coefficient setting that was tested was that of g = —0.001,
and this is very similar to the previous setting that was discussed. However, it takes
up to an L size of 512 before the LAT model becomes the slowest of the different data
structures; this again goes to show how significant the domain size can be in the sim-
ulation of these models. The general order of slowest to fastest at an L size of 1024 is
very similar to that previous g value discussed above, with the HSH being the fastest
and this being followed by the OCT, the AVL, and finally the RES method. Unlike with
the previous setting, in this case, the AVL tree data points are not hidden behind the
OCT method in this case the AVL tree is noticeably slower than the OCT method, and

it becomes this way from an L size of 32.

The (g9 = —0.0001) version of the Meakin model continues the trend between the
previous two g values that have been used in that as this value decreases the runtime

of the LAT method merges more and more into the range of the other methods. In this
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case, the LAT method is only the second slowest at and L size of 1024 with a median
runtime of 3.74 seconds. The slowest of the method, in this case, is the AVL which
has a runtime of 4.03 seconds at the same L size. However, it is quite apparent that if
it was possible for the simulation to be run on a data structure that was larger than
the 1024 max size that was tested that the LAT model would very quickly become the

slowest of the different structures from the trend of the data that is shown.

As with the previous data g values that were tested the HSH method is the fastest
of the different method at the L size of 1024 with a median run time of 1.78 seconds,
which is 2.10 times faster than the LAT method and 2.26 times faster than the slowest
method in this case which is the AVL. The HSH method only became the faster of
the methods for the 1024 L size the previous test L size of 512 had it in third place
behind the LAT which is the fastest and the RES method. As with the LAT method,
it is quite apparent that the RES method would very quickly after the range of L size
tested become slower than the AVL method and that the timing graph, if tested with

large enough L sizes, begin to look more like the previous two g values tested.

As has been shown here as the L size increases with the Meakin method the LAT
and RES methods very quickly become the slowest of the five different methods that
are tested; this is due to the domain fill that this model exhibits which can be seen in
Section 3.4. With the model very quickly approaching less than 1% domain fill, and
due to the use of the Masson tree that is used for the handling of the growth sites being
so efficient, in this case, the construction time of the specific data structure has much
more of a significant impact on the total runtime of the model then the search and
insertion into the data structure. Though eventually with a small enough g-value,
this model would begin to act in the same manner as the random version of the IP
model. This does demonstrate that there are considerable benefits to the runtime
of the model to be gained from the use of more modern data structures for specific

growth models, especially with larger domain sizes.
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5.2 Memory Usage Data

One crucial aspect of any data structure is the maximum amount of memory that it
can consume, as this can mean that some data structures are not possible to make use
of due to out of memory exceptions. Unlike in the timing section, the data shown in
the graph here will not be the median value and will instead be the maximum memory
consumption of the system over the 100 runs. The reason for this is thatis doesn’'t mat-
ter if a data structure can use a minimal amount of memory if there is a high chance
that it could slip into a run that consumes so much memory that it causes the simu-
lation to crash. This section will look into the memory consumptions of the different
data structures, calculating the maximum memory consumption of these model is
not always a simple matter of keeping track of the number of cells that have been
added to the data structure and multiplying them by the node size. In the case of a
structure such as the Octree with its ability to cull nodes from its structure as it be-
comes increasingly filled is it possible for the number of nodes within the structure to
decrease between iterations. Also when a node is added to the Octree multiple nodes
can end up having to be created to allow for the value to be stored in the correct po-

sition within the structure.

With the domain resizing method the number of cells within the domain changes
each time the structure resizes itself; this also affects the amount of memory con-
sumed between iterations but depending on the model in question the structure could
end up being the same size as the Lattice version which would generate the full do-
main even though it is possible for a large portion of this never to be used. Because of
these issues along with the stochastic nature of the models themselves, it was neces-
sary to run many experiments to calculate a possible maximum memory consump-

tion of each of the structures; this will give an idea of any significant drawbacks.

The Hashtable might seem like it poses a bit of difficulty because the fact that
a single cell can hold a number values within it, this would mean that it would be

necessary to iterate through each bucket and work out its memory usage and add
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these together. However, in this use case it has been proven that each of the buckets
will only contain a single value, hence it is possible to merely multiply the bucket
count by the size of a size_t variable for the key and a void pointer for the value in the
bucket which works out to be about 16 bytes. The void pointer is a commonly used

estimate in the calculation of memory for the C++ std hash table the unordered_map.

The memory consumption discussed here is inclusive of the memory consump-
tion of the growth sites list and not just the size of the data structure as this is a critical
aspect of the simulation of these models and can itself end up consuming a consider-
able amount of memory. Unfortunately, due to a change in the way that VIPER han-
dles virtual memory it was not possible to be able to generate a cluster with an L size
of 1024 for the memory consumption experiments for some of the models for which
runtime data was able to be gathered. As such there are no 1024 data points for the

EdenA, HIP, and the IPR methods.

The structure of this section will be the same as the previous section with it first
discussing the three standard Eden methods followed by the Screened Eden method.
Then with be the three IP model in the order of IPR, HIP, and finally MIP method.
There will be references made the to runtime of the model within this section of the
chapter especially in cases where the fastest of the method consumes the most mem-
ory; this will be done in order to keep the data in the proper context. The data shown
here will make use of the same domain sizes as the timing section and each data point

will be gathered from 100 runs of the simulation.

5.2.1 Standard Eden Growth Model

The Eden model has two different types of growth site lists that are utilised for the
EdenA, and EdenC models the growth sites list that is used will only ever contain an
entry once due to the additional state labelling that is used. The EdenB model, how-

ever, doesn’'t make use of thislabelling system as having a single cell in the list multiple
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times is the easiest way to ensure that each cell has the correct probability for being se-
lected. Because of this, the Memory difference between the EdenA and EdenC model
is very minimal with the EdenC model consuming the most memory, which is to be
expected because it has a high fill percentage which can be seen in Section 3.4. The
EdenB model is different, though acrounding to the fill percentage the memory con-
sumtion of this model should be similar to that of the EdenA model it is signigicantly
larger, this is to be expected however when the method for the handling of the growth

sites is taken into account.

The general trend is the same for all three of the different Eden models with the
RES and LAT version of the models consuming the least amount, and identical amounts
of memory for all three versions of the model. The reason for this is that they both
make use of the same variable for the storage of a value, the char, which is the small-
est of the data type used. The filled percentage of the model also meant that the stor-
age of the empty cells was not as big of an impact in caparision to increased memory
consumption for a single infected cell of the other structure making them the least
memory hungry implementations of the model. The reason that the LAT and RES
use the same amount of memory is that of the stopping condition and the resizing
method that was used making the Resizing domain method eventually generate the
same number of cells as the Lattice version by the end. When the timing is taken into
account this means that for the Eden model there is no benefit is the selection of any
other data structure especially the OCT as this at an L size of 512 in the case of the
EdenA model consumes 4 times the amount of memory with only a decrease in the

total run time.

5.2.2 Screened Eden Growth Model

This section will discuss the memory consumption for the Screened Eden growth
model for the beta values 0.2, 0.5, and 0.9 for a maximum L size of 256, 512, and 1024

respectively due to the runtime of this model it was not possible to get up to the L size
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of 1024 for the lower beta value models.

The max memory consumption for the Screened Eden model with a beta value
of 0.2 can be seen in Figure 5.10a and as stated earlier this value is the closest to that
of the EdenA model and the memory consumption of this model demonstrates this
with the two least memory hungry method being the LAT and RES which due to the
RES method used here with them consuming the same amount of memory. Though

this is not always the case as the beta value used in the simulation increases.

The memory consumption for the 0.5 setting of the Screened Eden model can be
seen in the Figure 5.10b. In the case of runtime, this setting has the RES, LAT, and
AVL methods being highly tied regarding which one of the methods was the fastest;
this means that in this case, the memory consumption of the model could be a big
decision maker in the selection of the appropriate method. The two models that con-
sumed the least amount of memory where the HSH and the AVL methods with the
RES and LAT versions consuming only slightly less memory than the largest method
which in this case is the OCT method. What this means is that because there is very lit-
tle difference between the HSH and the AVL. method, it is possible that either of these
methods would be a good choice for the simulation of the model if only the memory
consumption were taken into account until the data in Tables C.13, C.14, and C.15 are
looked at. Here it can be seen that there is a small amount of significance for the AVL
over the HSH this would mean that even though it would be only slight, there would
be a benefit to the usage of the AVL method in this case and when the timing is also
considered this shows that the AVL tree is the best choice for minimising the both of

these aspects.

The memory consumption for the Screened Eden model with a beta value of 0.9
can be seen in Figure 5.10c. As the beta value increases the amount of memory con-
sumed but the more modern data structure slowly decreases until it reaches this point
where all of the structures consume considerably less memory then the LAT and RES

methods at an L size of 1024 this shows the benefit of the use of these structures on
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a sparsely filled model. In this case the method that consumes the least amount of
memory is that of the AVL. method and considering that fact that in terms of runtime
the AVL method is only slightly slower than the RES and LAT method the use of this
method could be a large benefit as it could allow for considerably more runs of the
model to be performed simultaneously on the same computer with only a slight in-

crease in the median runtime of each of the separate runs of the model. The results

of the statistical tests run on this data can be seen in Tables C.16, C.17, and C.18.

5.2.3 Random Invasion Percolation

The IP model is a useful model to show the possible memory benefits that can be
gained by utilising one of the alternative methods for the storage of the cluster that
are discussed within this work. Figure 5.11 shows the maximum memory consump-
tion for the IPR model for an increasing L size. In this system, it quickly becomes
apparent that the use of the OCT method for the storage of the IPR cluster would be a
highly ineffective method because the memory that the method consumes is massive
in comparison to the others. Though there might still be a specific situation where this

additional memory consumption would be an acceptable hit, such as in the case were
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only a single cluster is being grown for rendering and a method such as ray-tracing is
the desired method to perform this rendering. However, if the aim is to run as many of
these models as possible in series or parallel, especially in parallel, the results shown
here would suggest that the use of the OCT method would be a highly inadvisable
one, especially when the runtime of this model is taken into account as can be seen

in Figure 5.6.

The difference between the memory consumption of the LAT and the RES model
is quite an informing difference in the growth of the cluster in the domain, this shows
that even in the case of an IPR model the domain doesn’t actually require the full do-
main as the RES method doesn’t reach a full (1024 x 1024 x 1024) domain size which
is obvious considering that the only difference between the LAT and the RES is the ac-
tual resizing of the domain and the memory consumption of a single cell is identical.
The difference in the memory consumption between these two methods can be seen
in Figure 5.12. The statistical test showing that this is a significant difference and that
these boxplots are from different distributions can be seen in Tables C.19, C.20, and

C.21.

The method that consumes the least amount of memory in the case of the IPR

model turns out to be the AVL tree which is the slowest of the five different struc-
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tures; this is an excellent example of how when attempting to optimise a program
sometimes a trade-off between the runtime of the simulation and its memory con-
sumption must be made. It would be possible in specific situations for the saving in
memory, to be able to compensate for the increase in runtime by allowing for more
runs of the model to be simulated at the same time on a computer, however, it would
require thousands of runs to be able to compensate for the massive increase in run-
time especially if the aim was to run a simulation with an L size of more than that of

1024.

5.2.4 Hawick Invasion Percolation

The HIPs version of the Invasion Percolation model out of all the different models that
have been used here is the one that fills the domain the most and could in no way be
considered to be a sparse model and therefore it is expected that methods such as the
AVL and HSH will consume considerably more memory in comparison to the LAT or
RES method, the maximum memory consumption for the model with beta values of
0.1, 0.5, and 0.9 can be seen in Figure 5.13. The method which consumes the most
amount of memory, in this case, is that of the OCT. It was only possible to be able
to obtain the maximum memory consumption of this method up to an L size of 256

because of an out of memory exception.

The fact that the only two of the five structure consumed a small enough amount
of memory that they were able to be run to an L size of 1024, the LAT and the RES,
shows the efficiency of these methods. They also happen to consume the same maxi-
mum memory which because of how the model blankets the domain before it begins
to move down is to be expected. When the runtime is taken into account, this shows
that in the case of this model there would be no reason to make use of the other data

structures for its simulation.

As the beta value increased the number of runs that encountered out of memory
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MB. for beta values 0.1, 0.5, and 0.9. The floating box in the centre of each of the graphs
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exception increased. The reason for this is somewhat counterintuitive when the fact
that the higher betas value are more sparsely filled is taken into account. However,
itis a straightforward matter to explain and boils down to the fact that in order to be
able to ensure that a cell is not added to the growth sites list more than once it is added
to the structure in a neighbouring state, not an infected state. This along the much
higher surface areas of the 0.9 version means that the number of cells that are stored
in both the growth sites list and the cluster structure would be much higher and signif-
icantly affect the memory consumption of the model. This increased memory usage
is enough to cause program crashes at these larger domain sizes especially with the
OCT structure which consumes the most memory for a single out of all the structures
tested here. This is an exciting feature and shows how the different methods used in

the handling of certain features of a model can have unexpected and odd results.

5.2.5 Meakin Invasion Percolation

The MIPs model in the runtime section was one of the models where the more mod-
ern data structure was faster. In the case of this model, this is also the case for the
memory consumption where some more modern data structure that was tested this
can be seen in Figure 5.14. In this model, the OCT, AVL, and HSH methods consume
considerably less memory than the RES and LAT structures. The model that con-
sumes the least memory in the AVL method up to the point that (¢ = —0.0001) at
this point the structure that is the most efficient in term of the memory consumed

becomes the HSH method.

With a g value of —0.01, the LAT model consumes 617 times more memory than
the AVL tree at an L size of 1024 which consumes the least amount of memory. The
next best option in the HSH function, however, this may have an only slightly higher
median the spread of the memory is considerably larger and the data in Table C.22
shows the AVL method is at an L size of 1024 highly significantly better than the HSH

method in terms of the memory consumption. As the g value tends towards zero the
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spread between the AVL and the HSH memory consumption increases function caus-
ing the AVL method to be more and more effective until when (¢ = 0) and the model

become the IPR model and the spread between the two methods is at its maximum.

The MIPs method is a clear example of how highly sparse models (with a fill of less
than 1% for all the g values tested) can gain significant benefits from the application of
more modern methods. When the timing data is also taken into account, this shows
that for this model the worst method that could be used is that of the LAT method
which is the current method that is used. Moreover, the two fastest of the methods
being the HSH and the OCT method which are in turn the methods that used the
least and the 3rd least amount of memory showing considerable benefits and with the

Octrees benefits in ray tracing this could very quickly be a highly powerful application.

5.3 Summary

At the start of this chapter three expected outcomes where listed E1, E2, and E3. this
summary will refer back to the outcomes and will point out an example of where the

expectation can be found within this chapter to aid in the searching of the chapter.

It has demonstrated that in certain situations such as with the MIPs model with
the HSH structure and the Screened Eden model with the RES at specific beta values
where fill of the domain is very low, the standard method used for the simulation of
growth models the LAT method is not the best option, and more modern data struc-
tures are able to offer benefits in both the cases of the runtime of the model and or
the memory consumption of the model. This was listed as expected outcome E1 and

example of this can be seen in Figure 5.8

When the model in question is highly sparse, and the domain size it is being sim-
ulated within is unusually large, possible savings both in terms of the memory that

is consumed and the run times of the model are able to be obtained through the use
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of a more modern data structure, this can be due to the considerably large construc-
tion time of the different structures. However, this very quickly stops being the case
as the cluster fills more and more of the domain, which can be seen in the case of the
Standard Eden models and the HIPs model, this was an expected result and was listed
as E2 one example of where this can be seen is in Figure 5.7 where the LAT and RES

method are consitantly significantly faster the the otehr structures tested.

Expected outcome E3 was to do with the increase in the effectiveness of the mod-
ern data strcutres as the sparsity of the model increases due to the increase in the do-
main size this is demonstrate and in most easily visable in the timing graphs for the
Screened Eden Growth model, which can be seen in Figure 5.5. This shows that it is
the sparsity of the domain that is the critical aspect for the decision between structres

and not the size of the cluster itself.

The Screened Eden model is an excellent example of how sometimes the runtime
of these systems is not as crucial to the selection of the structure as the memory con-
sumption is, with the AVL and RES methods having a very similar runtime to that of
the LAT method, however the AVL method has a significant memory saving. Another
structure that offers a considerably memory saving in this case is that of the HSH
method even though it was a slower structure. This shows it is not simple matter to
decide whether one structure is the best for a particular model as it can depend on a
number of factors and in a case such as here where the model makes use of screening

values the ideal structure can change along with the screening value.

Additionally the Screened Eden model has also shown the need for a RES method
that is able to resize multiple edges simultaneously without having to resize of all the
sides based off of the position of the cell that is the reason that the domain needs to be
resized. The reason for this is that it could allow for a method that behaves more like
that of the one used for the MIPs model, this could allow for great saving in memory

and in turn improve the runtime of the model.

So far this thesis has only considered possible optimisations that can be gained



5.3. Summary 122

through the software-based version of growth models. However, itis commonly known
that hardware-based implementations of a simulation can often offer substantial ben-
efits to the runtime of the simulation. In the following chapters of this thesis discuss
a possible implementation of the Eden growth model that makes use of memristor’s,
the fourth fundamental circuit element, for the storage of the state of the cells. Ad-
ditionally new additional methods for the analysis of these models to confirm the

effectiveness of the memristive system that has been designed will be investigated.
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CHAPTER 6

Edgar Allan Poe

Memristors for Growth Models

HE memristor was first discussed in 1971 by Chua (Chua, 1971, 2011,

2014). In his first paper (Chua, 1971), Chua talked about a gap in the

then-trio of fundamental circuit elements and how a relationship be-

tween the magnetic flux and the charge passing through a device was

missing. He stated that a circuit element could close this gap that he named the mem-
ristor which would be the fourth fundamental circuit element alongside the Capac-
itor (discovered in 1745), the Resistor (discovered in 1827), and finally the inductor
(discovered in 1831). Its resistance unlike a resistor is based on the history of the cur-
rent that had flowed through it and would be fixed when a current was not flowing
through it (Chua, 2011, Kavehei et al., 2009, Trefzer, 2017); this was later generalised

in 1976 (Chua and Kang, 1976).

Each of the different fundamental circuit elements has different specific uses. The
first of these the Inductor is responsible for the storage of energy within a magnetic

field. Capacitors store energy within an electrical field and resistors dissipate electri-

123



124

Capacitor
dqg = Cdv

Resistor Memristor
dv = Rdj d® = Mdq

Inductor
d® = Ldi

Figure 6.1: The four fundamental circuit elements (Trefzer, 2017).

cal energy. The memristor completes the conceptual symmetry of the fundamental

elements a diagram of this can be seen in Figure 6.1.

There has been a fair bit of discussion over whether the memristors made by
people such as the researchers at HP Labs are actually a real memristor (Meuffels
and Soni, 2012, Stanley Williams, 2008, Vongehr and Meng, 2015). One of the argu-
ments against this being a genuine memristor states that what has really been made
is a chemical capacitor, and it will only be functionally correct until the chemical in-
homogeneity in the 770, is balanced out (Meuffels and Soni, 2012). Another argu-
ment (Stanley Williams, 2008) boils down to there having been two specific misunder-
standings made by HP Labs. The first being that they have overlooked the extra design
space that arises when working with non-linear circuit elements and the second one
she states is "more profound" this being that they misunderstand the mathematical
definition of the memristor. This work here will not answer this question and will act
as though the devices are real memristors. The simulation used here is to simulate

devices such as though made by HP labs and so it does not matter if the device does
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Figure 6.2: A pinched hysteresis loop. This is the iconic aspect of the memristor which
occurs when you plot the voltage against current with sinusoidal voltage wave.

not wholly fit the original definition of the memristor which Chua himself argued for

a change to in 2011 (Chua, 2011).

Chua famously can be often quoted saying, “If it’s pinched it’s a memristor” this
was also the title (Chua, 2014) of one of his papers which focused on the iconic aspect
of the memristor, the hystericloop. This is what is formed when a sinusoidal voltage is
applied to a memristor and the subsequent current against the voltage. A hysteretic
loop looks somewhat like a slanted infinity symbol, an example of this can be seen
in Figure 6.2. Exven before Chua’s paper, there are a considerable number of papers
talking about anomalous loops on IV graphs (Dearnaley et al., 1970); this could mean
that for years people were accidentally making a circuit with memristive properties

within them but were unable to identify them.

An important question that should be answered is why the memristor has been
selected for use here. The reason for this is that memristors offer highly interesting
behaviour that where as is not currently taken advantage here in future work could
lead to a more generalisable agent architecture for the simulation of growth models
and that is their non-linear behaviour (Wang et al., 2015) as seen in the iconic pinched
hysteresis loop which is discussed later on within this chapter. Even though is this
specific application the memristor is used more like a counter this inclusion of this

device offer substantial room for increasing the complexity of the models simulated.

The structure of this chapter will be as follows; first, there will be a discussion

on how the memristor works explaining how it is possible for the device not only the
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change it resistance but also to be non-volatile with this change. This will then be
followed with a discussion on some current uses of memristors in a few different ar-
eas including neuromorphic computing in order to give an idea of the wide-reaching
benefits that this device can offer. This will then be followed by a discussion on the
implementation of the memristor simulation including the differential equation that
was used to simulate what happens to a memristor when a voltage positive or negative
is applied to the device. The final part of this chapters will involve a description of the
hardware agent that has been designed for the simulation of the Eden growth model
as well as how the simulation works and the different variables that are used within
the simulation that allows for different behaviour to be gain from the model. In order
to be able to distinguish between the standard software implementation of the Eden
model and this memristive based hardware implementation, the hardware method

will be referred to a the MEden model which stands for Memristive Eden model.

6.1 How do Memristors work

The memristor can be written in terms of voltage and current without the need for
magnetic flux; this can be seen in Equations 6.1 and 6.2. This is a highly unusual as-
pect of memristor and shows that the change in the resistance of the device is not
due to magnetic flux. The change is instead an electrochemical process that affects
the actual structure of the material used in the device (in the case of HP Lab’s mem-

ristor that would be 77O, (Strukov et al., 2008)) which is only possible due to the size.
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v = R(w)i (6.1)
dw ,
at = f(7) (6.2)

R represents the generalized resistance

w represents the state variable of the memristor
¢ represent the current

v represents that voltage

dt represents the change in time

The easiest way of thinking of how the memristor works is to think of a pipe with
water flowing through it (Trefzer, 2017). If the water flows in one direction through
the pipe the diameter its increases which in turn reduces the resistance in the flow
of water through the pipe, however, if the water flows in the opposite direction the
pipe decreases in diameter which increases the resistance against the flow of water.
So long as there is no water flowing through the pipe, its diameter will remain fixed. In
this analogy, the memristor is represented by the pipe and the water flowing through
the pipe is representative the flow of charge through the memristor and the diameter
of the pipe in analogous of the resistance of the memristor changing based on the

direction of flow and staying fixed when there is no flow.

The first time that a memristor was intentionally created was in 2008 by HP labs
(Strukov et al., 2008). This memristor consisted of between 3nm and 30nm of titanium
oxide which can be considered to be a wide band gap semiconductor which is auto
doped; this is sandwiched between two platinum wires. When a current flows through
the memristors it alters the chemical composition of the titanium oxide spreading the
doped portion which is now 7iO,_, where x = 0.05 this means that about 0.5% of the
oxygen is now missing causing there to be bubbles of oxygen vacancies to be present

in one side of the memristor this is referred to as the doped side of the memristor.
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(Oxygen deficencies

Figure 6.3: Visualization of how to oxygen deficiencies flow through a memristor based on
the direction of the flow of current. (Tetzla, 2013, Trefzer, 2017).

The other side of the titanium is considered the undoped side of the switch which
is the standard "perfect" titanium oxide or 770, this can be thought of as the insulat-
ing side. When a current flows from the doped side of the memristor to the undoped
side the oxygen vacancies within the memristor are spread further into the memris-
tor this, in turn, lowers the resistance of the memristor. When it flows in the opposite
direction the oxygen deficiencies move back and the resistance of the memristor in-
creases; this works because these bubbles within the 770,_, carry a positive charge.
Just like with the water pipe analogy when the flow stops so does the movement of
the oxygen giving the device its non-volatile nature as an input of energy is required

for the vacancies to be moved. A graphical example of this can be seen in Figure 6.3.

The scale of these switches goes a long way in explaining why it took so long for
the memristor to be found and purposely fabricated as they need to be made in the
nanometre scale to be efficient enough to be practical. This is because the effects of
memristance follow that of an inverse square law, meaning that as the component
gets smaller the more significant the effect of memristance with it becoming almost
wholly unobservable in the millimetre scale as Stanley states (Stanley Williams, 2008)
"memristance is a million times as important at the nanometre scale as it is at the

micrometre scale, and its essentially unobservable at the millimetre scale and larger".
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6.2 Current Uses of Memristors

Memristors are a relatively new device but even still there is an extensive body of work
that makes use of them these include areas such as Cybersecurity, Big data, and they
have even been used in order to create reconfigurable logic circuits (Mazumder et al.,
2012). This section will go into a brief amount of detail on some of the areas in which
memristors are currently being used, this will be by no means an exhaustive list but is

intended to give an idea of the range areas in which memristors are finding a foothold.

The first of these is that of ReRAM, sometimes referred to as RRAM. This stands
for resistive random access memory which is a non-volatile form of memory and is
the area that will be discussed here that could have the widest reaching positive effect
to the world with it offering benefits to all computing with is small size low energy cost
and non-volatile nature. It shares many similarities to phase change memory (PCM)
in that they both have a level of non-volatility, and it is possible for them to be ar-
ranged in similar architectures such as the crossbar (El-Hassan et al., 2016, Hamdioui
et al., 2015, Vontobel et al., 2009, Yu et al., 2017) and it is not yet sure which of these

two technologies will take over the market.

There has been much discussion about whether RRAM could be the replacement
for flash memory which currently dominates the semiconductor memory market or
DRAM which is the current method for the handling of random access memory in
computers. Flash memory functions through the use of an array of memory cells for
the storage of data; these cells are made up of large numbers of floating-gate transis-
tors. Each is capable of storing one bit of data can require three different connection
to function, these connections being a bit line, a word line and ground. This makes
the amount of space required larger than that of the memristor the reason for this is
the architecture that the memristor would use, the crossbar which will be discussed
later on within this section. The way in which these gates function is by applying ei-

ther a large positive or negative voltage to the gate. The large voltage means that the
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Figure 6.4: HP memristor in a crossbar architecture. image obtained through the use of an
atomic force microscope. A total of 17 memristors are shown in this image.

transistors in the memory have a relatively short life with them only being capable of
100,000 P/E cycles before wear and tear being to deteriorate the storage device mak-
ing it increasingly inconsistent and unreliable. This is where memristors come in to
save the day so to speak. The most common architectures that are used for the de-
sign of RRAM systems is that of a simple crossbar system. This system consists of a
matrix of connected memristors which can be quickly indexed even in parallel de-
pending on the implementation. This design also allows for the stacking of layers for
a 3D crossbar which allows for a very high level of data destiny within the device. An
example of the crossbar can be seen in Figure 6.4. By used memristors to store this
data instead of capacitors as in DRAM is it no longer necessary to have to refresh the
memory continually so that it does not lose the stored data significantly decreasing
the energy consumption as they memristors only required energy to be read from or
written to and from. This memristive memory could also be used to replace flash
memory as it is much more data-dense meaning that more data can be stored in the

same size drive.

There is a wide range of different terms that are used by different manufacturers of
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Non-volatile RAM systems (Trefzer, 2017) these include RRAM, CBRAM, PRAM. There
is also Intel’s Optane which makes use of a 3D crossbar system which they have called
crosspoint. Optane is capable of read speeds of up to 1,450MB/s and write speeds of
up to 640MB/s. They have not as of the time of writing this stated what the system
is they have only said that it is not a phase-change memory which means it could
very well be the first example of a memristive based memory on the market that is

available to the public.

The second area is the one in which memristors have gained much traction, and
this is in the field of Neuromorphic computing which makes use of analogue circuits
in an attempt to mimic biological architectures such as the human brain. It was first
conceived of by Carver Mead in the 1980s. Since the discovery of the memristor, the
neuromorphic computing community has developed many systems making use of
this element (Kvatinsky et al., 2014a, Uppala, 2015, Yakopcic et al., 2011). The main
reason that these circuit elements are used in these types of systems is that of their
ability to easily store floating-point values in a non-volatile manner. A lot of the neu-
romorphic systems are used to implement neural nets (Bala et al., 2016, Trefzer, 2017,
Yuetal., 2017) for anumber of purposes including image recognition and natural lan-
guage processing. The non-volatile nature of the system means that when not in use

the network remains trained acting as its own storage system.

An additional reason that memristors are used in systems such as neural nets is
that they are capable of performinglogic operations they can be also be implemented
in such a way that makes then reconfigurable (Borghetti et al., 2010, Hamdioui et al.,
2017, Lehtonen and Laiho, 2009) allowing storage to become compute. It has been
shown thatit is possible to use them for the implementation of full logic gates (Kvatin-

sky et al., 2014b) and even a complete adder system (Gale, 2015).

Finally, the main application that the memristor has been put to that is of concern
within this thesis, and the final one that will be discussed is how they are used in the

simulation of cellular automata. There has already been a substantial volume of work
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undertaken to utilise memristors within agents of a cellular automaton for the storage
of the state of the cell. One being a minimalistic excitable cellular automaton that
works within a 2D environment (Adamatzky and Chua, 2011). In the model, each cell
can exist in one of three states resting, excited, and refractory. Each cell in the model
will update itself depending on the state of the neighbouring cells that it is connected
to, the connections between the cells can be altered to change the behaviour of the
model. This is not the only example of memristors being used for cellular automata;
there is a wide range of different current models that used this type of approach (Itoh

and Chua, 2009, Wang et al., 2015).

One example of a different implementation of a CA to solve a specific problem
using memristors is a shortest path solver (Pershin and Di Ventra, 2011, Stathis et al.,
2014, Ye et al., 2013), with these CAs a memristive network is used for the solving of
a shortest path algorithm such as what a Dijkstra’s or A-star algorithm does. One of
these pieces of work, in particular, was one of the key inspirations in the creation
of the MEden model that is the work done by Stathis et.al (Stathis et al., 2014). This
inspiration can be seen in the similarities in the design of the two agents, the agent

designed for the MEden model can be seen Figure 6.9.

6.3 Simulation of Memristors

Due to the high cost and the low yield of memristors currently, it was necessary to
build a simulation of a memristor in code in order to test the possible effectiveness
of this method for the simulation of Eden-like clusters. To this end, a bespoke C++
program was created that simulates the effects of a memristive network made up of
agents like the one shown in Figure 6.9, the design of this agent will be discussed in
more detail in Section 6.4. There where other method that could have been used for
the simulation of the model be the C++ simulation was selected as it allowed for an

easier method to control the output of the system allowing it to easily write out the
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clusters that are produced by the model. The first step in the development of this
simulation was to wirte a code based simulation of a memristor in that acts as closely
as possible to a real memristor. One thing that will not be within the scope of the
simulation is to simulated any possible flaws that a real memristor amy have and as

such the memristor that will be simulated will be a perfect memristor.

In order to achieve this, it is essential to understand the mathematical equations
that describe the processes going on within the memristor (Gomaa et al., 2016) these
where first proposed by Strukov et al. (Karamani et al., 2017, Strukov et al., 2008). The
first equation that is required to gain an understanding of the memristor is that of
Ohm’s law, this will allow for the calculation of the current that passes through the
memristor, based off of the devices current resistance and the voltage that is being
supplied. This can be seen in Equation 6.3 and is probably the most recognisable

equation in electronics.

Unlike with a standard resistor where the resistance is fixed, with the memristor,
the resistance of the component will continuously be changing as the current passes
through it. To this end, it is necessary to be able to calculate this change in resistance.
In order to be able to do this the first step is to understand what caused this change in
resistance which as stated earlier is the movement of the oxygen vacancies. Therefore,
the specific resistance of the memristor at a given time is proportional to the spread

of the oxygen ions throughout the memristor; Equation 6.4 describes this process.

The next step is to understand how the x in Equation 6.4 will change over time;
this value represents the rate of spread of the doped section of the memristor. This
is calculated through the use of Equation 6.5. This rate will depend on two different
things, the first being the dopant mobility and the second being the amount of charge
that is flowing through the memristor. Dopant mobility characterises the speed at
which the dopant, in this case, the oxygen vacancies move through the material. The
Dopant mobility is described with the units m?s~*V =1, In this case its value is

10~ %m?2s~1V~! which will be a constant applied in Equation 6.5.



6.3. Simulation of Memristors

134

where:
V' is the voltage
M is the internal resistance of the memristor
I is the current

M(:L') = Ronx + ROFF(I = $)

r=2¢€(0,1)

w is the width of the dopant spread in the memristor
D is the total length of the memristor

Ropn is the minimum possible resistance

Ropr is the maximum possible resistance

f(z) represents the window function
oy = 107Pm?2s7 1V~ this is the average dopant mobility

p is a positive integer
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Figure 6.5: Results for the window functions Biolek on the left and Joglekar on the right
where the x axis show the state variable in the range of 0 and 1 and the y axis represent the
return value from the window function. The Biolek model displays the value for positive and
negative I values for each of the p-values. The p-values that are shown are p = 2, p = 4,

p =6, p = 8, and p = 10. These functions can be seen in Equation 6.7 for the Biolek function
and Equation 6.6 for the Joglekar function. The y axis has no units as this value is just a
constant.

Equation 6.5 make mention of a window function, the job of this window function
is to simulate the non-linear nature of the dopant drift. Two window functions are
commonly used for this purpose both of which were tested. The first of these is the
Joglekar function (Joglekar and Wolf, 2008) which can be seen in Equation 6.6. This
method does have one major issue though this is known as a boundary lock; this is
where no external force can change the resistance of the memristive device when the
boundary is reaches meaning that with the Joglekar function once Roy or Ropp is
reached the memristor would be fixed at the resistance and just become a resistor.

That is where the second equation comes in the Biolek function which can be seen in

Equation 6.7.

This equation was created by Biolek(Biolek et al., 2009); it was found that it was
better as instead of only relying on a single value that is the state value or z the func-
tion makes use of a second value to describe the flow. So he added a dependency with
the current i. By depending on the current, this solves the boundary lock issue by al-
lowing the currents’ direction to pull the device out of this state. The results of both

of these equations for a variety of p-values can be seen in Figure 6.5.

In order to test that the bespoke memristor simulation which was written in C++
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and based on the Equations 6.7, 6.3, 6.4, 6.7, and finally 6.5 that has been devel-
oped functions correctly, it had to be tested against other accepted results for the
behaviour of this circuit element. To this end a SPICE' simulation (Batas and Fiedler,
2011, Vourkas and Sirakoulis, 2015) was written that allowed for confirmation that the
mathematical simulation in the C++ code was acting correctly. SPICE is known to be
able to handle the simulation of circuits with a high level precision and is widely used
in the world of electronics. SPICE is an open-source analogue circuit simulator, it al-
lows for the construction of a circuit on a computer with a schematic capture system,

the results of which can be seen in Figure 6.6a.

The SPICE model that has been used is a simplified version of a sub-circuit writ-
ten by Ykaopcic et al. (Yakopcic et al., 2011, Yakopic et al., 2012) and Biolek (Biolek
et al., 2009) this can be seen in Figure 6.6b and the circuit diagram can be seen in Fig-
ure 6.6a. The main difference between this version of the code and the one presented
in the paper is simply the summation of (uv* Ron/pow(D, 2)) with the variable K and
the removal of some additional calculations which were not needed such as the calcu-
lation of the flux. The variables that are used to define the memristor are the same in
both the C++ code and the SPICE model these being; Ron = 10082, Rorr = 16, 00012,

D =10nm, pr, = 17" m?s V-1 andp = 7.

The results for the SPICE version of the memristor simulation can be seen in Fig-
ure 6.7. The voltage was a pure 1Hz sine wave measuring a 1-volt peak the simulation
was run for a total of 3 seconds. It gave a high peak amperage of 129.171A, and a low
peak of —129u. A, the wave has a slight slant forward it is this slant that is responsible
for the pinched hysteresis loop that is shown at the top of Figure 6.7. The resistance
fluctuated smoothly between 10.99 K2 and around 4.48 K2 after the first sine wave
it never wholly reached the initial starting resistance again but came very close. With
these results, it is possible to check whether the memristor in the C++ program is ac-

curate enough to give a realistic response when used in the MEden model.

ISimulation Program with Integrated Circuit Emphasis
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(a) The circuit diagram for the circuit that is being tested with the memristor represented by
the pinched hysteresis loop on the right and the voltage source on the left.

.SUBCKT memristor Plus Minus PARAMS:

+ Ron=100 Roff=16K Rinit=11k D=10N uv=10F p=7

+K=(uv * Ron / pow (D,2))

Gx 0 x value={I (Emem) x K * f(V(x),I(Emem),p)}

Cx x 0 1 IC={(Roff - Rinit) / (Roff - Ron)}

Emem plus aux value={-I (Emem) * V(x) x (Roff - Ron)}
Roff aux minus {Roff}

.func f(x,1i,p)={1 - pow(x - stp(-1i), 2 * p)}

.ENDS memristor

(b) SPICE sub-circuit used for the simulation of a memristor within SPICE (Biolek et al.,
2009). This version of the memristor makes use of the Biolek window function. This code is
based on that shown in a paper (Yakopic et al., 2012)

Figure 6.6: The custom SPICE code and the SPICE circuit diagram for the simulation of the
memristor used to gather effects of a sinusoidal voltage that is applied to a memristor so the
C++ code version of the memristor can be tested.

When the results C++ implementation of the memristor is compared to the results
of the SPICE implementation, it can be seen that when they have the same sine wave
voltage applied to it in the simulations, that the SPICE simulation produces the results
this can be seen in Figure 6.8. The C++ version calculates the current to fluctuate in
the same manner as the SPICE version but between 129.47uA and —129.35uA and it
calculates the resistance to move between 11K2 and 4.46 K€2. This means that the
C++ code is off from the SPICE code by 0.471.A on the high peak current and —0.35.A
on the low peak. The resistance is only slightly off as well with the high peak being

0.01K€2 off and the low peak being 0.02K (2 off. Having said that the general trend
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Figure 6.7: Data from the SPICE simulation of the memristor the top graph shows the IV
graph showing the pinched hysteresis loop the second graph with the red line show the
change in the resistance of the memristor over time and the final graph show the voltage in
green and the current in blues over time.
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Figure 6.8: Graphs show the Current and the Resistance of the C++ simulated memristor as
a 1Hz wave voltage with a peak of 1 volt flows through it.
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between the two is the same with the same patterns being from and the differences

are only minimal; this means is that the C++ method can be used for this purpose.

6.4 MEden Agent

The most important aspect of the MEden model simulation is the actual agent itself,
this section will discuss the final MEden agent that is used for the majority of the ex-
periments which can be seen in Figure 6.9 as well as a previous design for the model
that was found to be unfit. This final design of the MEden agent can be seen in Fig-
ure 6.9, it has a single memristor within the state machine of the agent. This state
machine is responsible for storing the state of the agent and determining whether the

agent is infected and as such should be attempting to infect its neighbouring agents.

The memristor is set up with a Roy value of 1002 and a Ropp of 16, 000€2. The
agent is connected to its four neighbouring agents (north, east, south, and west) as
it is the 2D version of the MEden model that will be focused on here, it is possible
to make use of this same agent design for 3D by adding additional connections to
the front and back agents, however. Each of these neighbouring connections has its
own randomly pulsing voltage output, one for each of the neighbours. When the re-
sistance of memristor drops below the activation threshold, the state machine closes
the switches connecting the pulse generators to its neighbouring cells completing the

circuit allowing the agent to infect its neighbouring agents.

The first design for the MEden agent was set-up with all the memristors within
the network at the same initial resistance, and the pulse generators would be fixed
and pulsing constantly. The issue with this version of the MEden model was that in-
stead of resulting in the rough clusters it would generate clusters similar to that of a
noise-reduced Eden growth model. As shown in Figure 6.9 each of the neighbouring
cells is attached to a different pulse generator this was not initially the case in the ini-

tial design of the agent there was only one pulse generator. This change was made



6.4. MEden Agent 141

Input

Random Pulse Generators

r=--=--Lt-q----

\4 \4 \4 \

PG PG PG PG

el LEL

Output

1
Memristor Based State Machine

Figure 6.9: Diagram of the 2D memristor based cellular automata agent that is used in the
MEden simulation. The initial resistance for each memristor is set within a random range
based on the P,,,, of the run and the Random Pulse Generators will pulse the neighbouring
cells with a change between (0, P.jqnc) After the internal resistance of the state machine
reaches the activation threshold the switches connecting the random pulse generators to the
neighbouring cells are closed.

for two reasons, this first of these reasons was to ensure that when a pulse is sent
the same amount of voltage is supplied to each cell whereas if there was only one
generator connected to all four of the cells more the voltage would be split between
the four neighbouring cells in proportion to the internal resistance of the memristor.
This would mean that an agent with a lower resistance would receive a higher share of
the total voltage and as such, it would have its internal resistance lowered at a much
higher rate cuasing a biasing to the growth of the cluster. This could be used to allow
for a possible screening effect to be included in future work. The second reason has
to do with the Pulse Chance that is assigned to each of the generators, having four
generators means that when one of the generators pulses its neighbour, it is possible
for the other neighbour cell not to be sent a pulse, this increased the stochastic nature

of the model.

Two variables can be tuned, in the MEden model allowing for the type of clus-

ter that is produced to be more specifically selected to meet the user’s requirements.
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where:
P is the initial starting setting for the memristor at point (x, y)
X, is the activation threshold for the memristor in the range [0,1]
U is arandom value in the range [0,1]
P, is the maximum pulse count to activate the memristor
6 it the normalized quantity of resistance that a memristor will alter by
form a single pulse

T = Pchcmce (611)
C=Ux Pchance (6.12)

where:
C' pulse chance for the pulse generator (z, y)
U is arandom value in the range [0,1]
P.hance 18 the maximum chance a pulse generator has to send a pulse

The first of these variables P, relates to the random pulse generators that send
the voltage pulse to the neighbouring agents. This variable governs the maximum
chance that each generator has to send a pulse to one of the neighbours. There are
two different equations that will be tested to generate the pulse chance for each of the
random pulse generators; these can be seen in Equations 6.11 and 6.12. A version of
the MEden model that makes use of Equation 6.12 is denoted with the prefix RC and

in the case of when Equation 6.11 is being used it is denoted with the prefix FC.

The second of these two variables P,,,, concerns itself more with the initial resis-
tance of each of the memristor within the domain. Initially, the cell is set up with a
random memristance which is found through the use of one of two simple equations
which can be seen in Equations 6.9 and 6.10. Equation 6.10 has a random factor in-
cluded in it this means that the number of pulses required to activate each memristor
can vary between 1 and P,,,, adding a level of randomness to the simulation. A ver-
sion of the MEden model that makes use of Equation 6.10 is denoted with the prefix

RM and in the case of when Equation 6.9 is being used it is denoted with the prefix
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Name Acronym | Equations
Random P,,,, and Random P.;,,.. | RMRC | 6.10and 6.12
Fixed P,,,. and Fixed P.,qnce FMEFC 6.9and 6.11

Random P,,,, and Fixed P.j,qnce RMFC 6.10and 6.11
Fixed P,,,. and Random P.;,4,ce FMRC 6.9and 6.12

Table 6.1: The name of the four MEden models and the equations configurations that each
of them uses

FM.

The combination of these four equations means that there are four possible com-
binations of MEden that with be investigated in Chapter 7. These versions are FMFC?
which will make use of Equation 6.9 for initial resistance calculation and Equation 6.11
for the individual pulse generators chances, FMRC? will use Equations 6.9 and 6.10,
RMFC* will use Equations 6.10 and 6.9, and finally RMRC® will use Equations 6.10

and 6.10. All of these are also described in Table 6.1.

Algorithm 5 describes the simulation that has been written to test the MEden
model. The simulation will begin by initializing all the agents within the system’s
pulse generators and their initial resistance based on one of the set of equation in
Equations 6.11, 6.12, 6.9, and 6.10. Once all the cells have been initialised a seed is
“planted" meaning it is set as infected which closes the connections to its neighbour-
ing cells. In this case, the seed cell is the centre most cell in the domain, though it is
entirely possible for this seed cell to be any of the cells and for them to even be more
than one. The system is designed in such a manner that it can handle any seeding
that it is set up with, even in the case of multiple clusters that will end up interacting

with one another.

After the seed has been set it will begin to pulse the neighbouring cells, this is
where the main body of the simulation begins and where the software implemen-

tation it differs the most from the theoretical hardware based implementation. The

2Fixed P4, Fixed Pejance MEden Model
3Fixed P,,q, Random P, 4, MEden Model
4Random P, Fixed P.jance MEden Model
SRandom P,,,, Random P.j,4n. MEden Model
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Algorithm 5 Eden Growth model pseudo code for the memristor simulation

initialise the grid of memristors
set the initial memristance for the memristors
assign the random pulse chance in the range (1,MAX] to each of the pulse genera-
tors
set seed cluster memristor to on
while current time step is < max time step do
for all cells do
if cell is on then
pulse neighbouring cells
end if
end for
for all cells do
test memristance and update cell state to either on or off
end for
end while

cluster growth portion of the simulation can be split up into two phases the pulse
phase and the state update phase. The software implementation of the pulse phase
as a simplification, each cell is iterated over and checked for whether it is infected. If
itis then the agent will send a pulse to each of it connected neighbours this will con-
tinue until all the cells within the domain have gone through this process. Once this is
done the state update phase will begin, this phase will also iterate over all the cell, and
if they are not infected it will test the resistance of the memristor, and if it is below the
activation threshold it will set it to infected which will mean in the next pulse phase

that cell will begin to pulse its neighbouring cells attempting to infect them.

Atheoretical hardware implementation would be designed so that the initial steps
of the process would be identical to that of the software simulation; the difference is
in the growth portion. In the simulation, this portion of the model is done serially in
order to simplify the code and to allow for as many versions of the model to be run side
by side on an HPC. Whereas in the hardware simulation all the cells will pulse their
neighbouring cells simultaneously and then enter the state check phase and perform

this test at the same time as well.
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6.5 Summary

This chapter started off with a brief history of the initial conception of the memristor
in 1971 and its fabrication in 2008. The memristor is a relatively new circuit element
and as such is a thriving area of research in both industrial and academic realms. This

new element could lead to countless benefits in the realm of computing and beyond.

This was followed by a discussion of some of the current uses for memristors in
several areas including neuromorphic computing where they are being used in an
attempt to simulate how the human brain functions for the computation of neural
networks. Also, the shortest path solving system where a memristor-based CA is sim-
ulated for the computation of the shortest path within a maze with both a single and

multiple exit points.

In order to be able to simulate the memristor, it is essential to understand the
mathematical equations that describe the function of this unique circuit element these
equations are discussed in detail in Section 6.3. This section also goes into the SPICE
simulation which is a commonly accepted one and compares it to the ke C++ code
that was used for the simulation of the MEden agent and the SPICE model showing
that what differences there are between them are minimal and the purpose was to

copy the general behaviour, not the exact resistance drops.

The final section within this chapter was a discussion of the design of the MEden
agent focusing on where the inspiration for this agent came from and the changes
that have been made to make sure that this agent functions in the desired manner for
the running of the model. This section also goes into the design a previous version
of the MEden agent a discusses why it was unfit for the purpose it was intended for.
This is then followed by a description of both the algorithm for the running of the

simulation and how the actual hardware would function if fabricated.

Itis all well and good discussing the creation, and use of memristive-based agents

for the simulation of growth models and the clusters that are produced may to the
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naked eye even look similar to the actual cluster. However, growth models exhibit a
variety of complex physical characteristics that can be hard to identify by eye. As such
the following chapter will analyse the four different versions of the MEden model with
both the most commonly used method, the fractal dimension, and two new methods

for analysis; components labelling and convolutional neural networks.
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MEden Results and New Analytical Methods

EN attempting to develop a new algorithm or as in this case

a hardware-based implementation for the simulation of a cel-

lular automaton based growth model it is essential to compare

the behaviour and results of the simulation against the currently

used methods, in order to make sure that any differences can be quantified and un-
derstood. It is important to avoid the trap of just because they look the same to as-

sume that they are the same.

There may be certain situations where this approach is good enough, for example
if attempting to simulate the flight of birds for a film and the two methods are visually
similar but the new method is much faster and easier to work with. However, as in
the case here where these models are studied for particular behaviours that they may
exhibit it is essential that the new method acts as closely to the original as possible

and all differences are understood.
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Figure 7.1: Examples of the cluster generated by the MEden model specifically the RMRC
version of the MEden model where the stochastic processes are applied to both the P,,,,
and P,pance- These images have been gather from the images that are fed into the image
processing method disucssed in Section 7.3

This chapter will attempt to show that the MEden method for the simulation of
Eden like clusters, if it was to be fabricated it would be theoretically able to simulate
Eden clusters at not only a much faster rate then the current computational simula-
tions used, but also that it is possible for this method to move between the different
classes of the Eden model. This Chapter will also aim to find any limitations of this
method such as in the types of clusters that can be produced, seeing if it can consis-
tently produce EdenA, EdenB, and EdenC cluster or if it is only capable of producing

one or two of these cluster types.

This chapter will discuss the experiments that have been run to classify the MEden
growth model and compare it to the Eden growth model. It will begin with what can
be considered the common method used to show that a new method is producing
mathematically similar clusters, that being the fractal dimension. This section will
begin with an explanation of the fractal dimension along with how it is actually com-
puted. This will then go into the results obtained for both the standard Eden methods
in addition to the MEden methods. Summing up the section will be a discussion on
the limitation of this method showing the reason for the two alternate methods that
have been developed for this task. Finally, there will be a discussion of the two pro-
posed methods, these being the component labelling and the image classification.
These sections will follow a similar structure to that of the fractal dimensions section
beginning with an explanation of the implementation of the method followed by a

discussion of results harvested from the different methods.
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The MEden model can produce clusters that are very visually similar to that of
other methods for the simulation of Eden clusters. Some examples of the clusters
produced can be seen in Figure 7.1. But the question that is attempted to be answered
here is whether these clusters are representative of pre-existing Eden clusters and if
so how can we quantify this as well as any differences between them. This chapter
will have a very specific macro structure to it as it attempts to do two things. First
show that at least one of the four different MEden methods is capable of producing
Eden like clusters as well as demonstrate that two proposed analytical methods work
for the identification of Eden cluster from a single cluster. As such the four versions
of the MEden model (RMRC, FMFC, RMFC, and FMRC the difinitions for these can
be found in Table 6.1) will all start off being compared when a version of the model is
considered to be inadequate it will then be discarded and will not flow into the next

sections of the chapter.

7.1 Fractal Dimension

In order to classify these types of models, a measure known as the fractal dimension
of the object is often used (Ivanenko et al., 1999, Lahiri et al., 2015, Sauer and Schroer,
1987). This measure tends only to be used to classify algorithms for the simulation
of Eden models as Eden-Like but not to distinguish between the three version of the
Eden model. The term fractal itself often has some misconception surrounding it;
commonly it is thought that a fractal must be perfectly self-similar. This would mean
that the object can be subdivided into smaller parts that are the same as the whole
for example if you take the Sierpinski triangle and split it into three smaller Sierpinski
triangles each one of these is identical to the original and even to each other. This
could be considered to be a perfect fractal. However, this self-similarity is also present
in shapes that are not fractals such as a cube which can be subdivided into 8 smaller
identical looking cubes. This is where the fractal dimension of the cluster comes into

play with it an object can be thought of to be a fractal by the manner in which it scales
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M = 8, box count = 1940 M =16, box count = 661 M =32, box count = 226 M = 64, box count = 71

Figure 7.2: Four successive steps of the first part of the box counting method for the
calculation of the fractal dimension of a cluster. Where the grey boxes in the images
represent the boxes that are classed as having an infected cell within it when the domain it
iterated over checking areas of increasing size and the red cell are representative of cluster
that is being analysed (Charbonneau, 2017).

and the fractal dimension of the object is the measure of this.

What is the fractal dimension and what does it tell us, this can be a somewhat
abstract concept and is as such difficult to explain. One method to explain this is to
think of a square, if you were to scale the size of the square by a factor of £ then the
width and height of the square would each scale by a factor of £ which would mean
that the area of the square would scale by a factor of k2. If we took a 3D cubes and
again scaled this by a factor of k its height, width, and depth would all be scaled by a
factor of k each, and the volume of the cube would scale by a factor of k3. For regular
shapes such as the square and the cube, it is straightforward to work out the surface
area or volume as each scale by their dimension to the power of k or k. This is not
always the case though, if we take a 2D representation of the UK for example if we
were to scale the UK by a factor of £ how would the area of the UK change this is a
much more complicated question as the width and height of the UK are not uniform

and as such scale differently.

This is the problem that the fractal dimension aims to answer, for complex shapes
such as the UK when they are scaled what D is. Interestingly for the UK D ~ 1.21, this
means that when a 2D image of the UK is scaled by a factor of k its area will increase by
a factor of k2!, Therefore, the fractal dimension of an object can give an idea to the
effect that scaling may have on that object as well as the roughness of the object. It is

for this reason that the fractal dimension is used in the comparison of growth models
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such as the Eden growth model as it can show that the roughness and scalability of

the clusters are similar.

The method that has been used to calculate the fractal dimension of the Eden
clusters comes from Natural Complexity (Charbonneau, 2017). The method is called
box-counting and has been developed for use on a grid-based system; it is based on
the mass-radius method. The method can be split up into two different main parts,
the first of these parts can be thought of as the counting section this is where the
method gets its name from. This involves placing squares of increasing size across the
domain in a non-overlapping manner and if the box contains an infected cell inside of
it then the method increments the box count by one a graphical example of the box-
counting method can be seen in Figure 7.2 where the grey blocks represent boxes that
where found to have at least one infected cell within it. Once all the different sized

boxes have been checked its then time for the second part of the method.

The second part of this method is to calculate the slope of the line of best fit for
the point of M or the radius of the box which in this case will be treated as the height
and width of the box against the box count for each of the M sizes on a log-log graph.
Though if the data was to be put on a log-log graph, it would give a negative slope the
easiest way to fix this is instead of just calculating the log of the box size, to calculate
the log of the inverse or log(ﬁ). This slope value is the fractal dimension for the

cluster. The code used to obtain the fractal dimension can be seen in Figure 7.3.

7.1.1 Results

The first thing that must be looked at when analysing the fractal dimension of the
MEden model to see if it can produce fractally similar clusters to and of the three main
version of the Eden growth model, that is the fractal dimension for the Eden Growth
models themselves. In order to get this information the EdenA, EdenB, and EdenC

model where each run for 500, 000 times for 5000 iterations and the fractal dimension
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Figure 7.3: This is the C++ code that is used in this work for the calculation of the fractal
dimension of both the MEden and the Eden clusters this code is adapted from code
presented in Natural Complexity (Charbonneau, 2017) and is specifically designed for
calculating the fractal dimension for growth models that have been grown upon a square
lattice grid.
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Fractal Dimension for all MEden versions against Eden

1.72
1.71

1.70
1

1.69 l

1.68

1.67 i I
8

1.66

Fractal Dimension

MEden-FMFC MEden-FMRC MEden-RMFC MEden-RMRC Eden-A Eden-B Eden-C

Figure 7.4: Box-plots showing the range for the fractal dimension produced by all the Eden
and MEden models. The MEden models show the data from a range of different F,,,, in the
range of 1 to 50 in increments of 1 and P.j 4y in the range of 1 to 100 in increments of 1.
Each plot is a collection of 500,000 data points meaning that each of the mean graphs has
100 runs for each of the variables.

was calculated at the end of these iterations for each of the models. 500,000 may
seem like a vast number of runs, and this quantity of data is a lot over what may have
been needed to obtain an accurate understanding of the range of the models. The
reason thatitwas run so many times was to be able to make a fair comparison with the
MEden model. The MEden model has two different variables that can be manipulated
in order to give different results the P.,,. and the P,,,, when testing the MEden
model the variables would be used in the range of 1 to 100 for the P, and 1 to 50
for the P,,ax each for 100 times to allow for a distribution to be obtained as such it was
only fair to run the three different standard versions Eden models the same number

of times.

The range of the fractal dimension for the EdenA, EdenB, and EdenC models can
be seen in a box-plot diagram in Figure 7.4 on the right-hand side of the red line, some
additional data that gives a more detailed understanding of these plots can be seen in
Table 7.1. This shows that the EdenB and EdenC models have a large overlap in their
possible fractal dimension ranges with all the EdenC points being contained within

the range of the EdenB this would make categorising a single cluster from either of
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Model Type lower IQR upper IQR mean median skew

EdenA 1.706 1.710 1.708 1.708 -0.201
EdenB 1.681 1.684 1.683 1.683 -0.412
EdenC 1.679 1.681 1.680 1.680 -0.323
FMFC 1.671 1.675 1.672 1.672 -1.233
FMRC 1.675 1.677 1.676  1.687  0.311
RMFCn 1.677 1.679 1.678 1.678  0.675
RMRC 1.679 1.682 1.681 1.681 0.019

Table 7.1: the data for the fractal dimension for the three Eden variants (Eden A, Eden B, and
Eden C) and the MEden growth for P,,,,, from 1 to 50 in increments of 1 and P, from 1%
to 100% in increments of 1%. All have been done in 2D for the data shown here.

these methods based solely on this method next to impossible. However, in the case
of the EdenA model, this is not the case, with it have a significantly higher fractal di-

mension than the other two methods and very minimal overlap.

Now that we know the possible ranges for the three versions of the Eden model
the next step is to run the same test for the four versions of the MEden model (FMFC,
FMRC, RMFC, RMRC) and see if their range of fractal dimension overlap in any way
with the EdenA, EdenB, and EdenC model. This will show that the MEden model is
not only able to produce clusters that are visually similar to that of the Eden growth
model but that these clusters are also fractally similar to the Eden models and as such
can be considered to be producing Eden-Like clusters. As stated earlier the MEden
model will be run for a range of variables and the results from the run can be seen in
Figure 7.4 and as with the Eden models there is more data to help describe the box-

plots in Table 7.1.

The first thing that is noticeable when looking at the fractal range for the four
MEden models and the three Eden models in Figure 7.4 is that none of the four MEden
models come even close to being able to match that of the EdenA model. What this
means is that these methods will likely not be able to produce EdenA like clusters, this
will be a useful fact when attempting to clarify the results in the following sections.
However, this is not the case with the EdenB and EdenC models with there being a
decent amount of overlap between these models and the four MEden models though

it is clear that two of these models are a better representation than the others.
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Figure 7.5: KDE graphs showing the range for the fractal dimension produced by all the
Eden and MEden models. The MEden models show the data from a range of different P,
in the range of 1 to 50 in increments of 1 and P,y in the range of 1 to 100 in increments of
1. Each plot is a collection of 500,000 data points meaning that each of the mean graphs has
100 runs for each of the variables. The EdenA model has been removed as it didn’t overlap
with any of the MEden models. This shows which of the models are able reproduced the
EdenB and EdenC models more consistently. The versions that are the RMRC and the FMRC.
These KDE plots where made using matplotlib with default settings.

The easiest way to compare the MEden models to the Eden models and see which
versions can represent the EdenB and EdenC models more accurately is through the
use of a KDE! which is similar to a histogram this can be seen in Figure 7.5. This graph
makes identifying which of the MEden model are more consistent than the others
more accessible; it also shows that all of the methods can produce Eden like cluster

though not all as well as each other

Up until now all the MEden models data has been summed up for all the differ-
ent variables though this does give a decent understanding of the full range of the
model it doesn’'t however give an understanding of at what specific P, and P4,
settings the model generates a cluster with a certain fractal dimension. Figures 7.6
and 7.7 show all the data points generated by the simulation and the median fractal
dimension at that specific variable set-up respectively. The different colours of the

points represent which cluster they are most like Blue means that it falls below the

'Kernel Density Estimation
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EdenB and C’s fractal dimension. Green is representative of the fact that the point
falls in the IQR? of the EdenC clusters fractal dimension, red is used to represent that
same for EdenB. Finally, Grey is used for EdenA though no point reached this high, no
point reaches past the brown section of the colour-bar which is used to show points
in-between the whiskers of the EdenA and EdenB models. The same colouring has

been used for both Figures 7.6 and 7.7.

Figures 7.6 and 7.7 give further information on the applicability of the four version
of the model. The FMFC version of the model is the most different from that of the
others, even when looking at all the data point that where generated it becomes clear
that this method is too limited in production Eden-Like clusters. It often produces
clusters that would be too smooth for anything other than the lower end of the EdenB
and C clusters and below except for extreme case with a very low P,,,, with clusters
that fall even lower on the fractal dimension being produced at high P, ... settings.
The median clusters that are produced by this method are not able to reach into the

EdenC IQR except at a single point with a P4, 0f 100 and a P,,az of 1.

The remaining three versions of the MEden model are much less limited in the
production of Eden like clusters with the RMRC and the RMFC being the best of the
four this becomes very clear when looking at the data shown in Figure 7.7 with the
average fractal dimension produced. This shows that whereas the FMRC can pro-
duce clusters with a high fractal dimension similar to that of the IQR of the EdenB
and EdenC it is much more likely to produce clusters that have a fractal dimension
less than that of the EdenC IQR. However, the RMRC and the RMFC are consider-
ably more effective in the generation of the EdenB and EdenC like clusters, with the
RMRC never dropping lower than the EdenC cluster fractal dimension. This means
that both of the RMRC and the RMFC can be considered to be the most effective of
the four methods both of them have benefits over the other. For example, the RMRC
can give a better fractal representation of two of the Eden model and the RMFC be-

ing faster as such these will be the two version of the model that will be discussed in

%Interquartile Range
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Figure 7.6: These graphs show all the data points for the fractal dimension of four version of
the MEden model at each of the different P, and P, values tested.
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Figure 7.7: These graphs show the average fractal dimension for the four version of the
MEden model at each of the differen P.j . and Py, values tested. Each point is an
average of 100 runs of the simulation. This graph shows that the FCFC!“ and FMRC models
where as it is possible for them to produce Eden C like clusters it would be highly
inconsistent making them unreliable.
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Figure 7.8: The clusters shown here demonstrate one of the issues with purely trusting the
fractal dimension of a geometrical object to show that any possible new algorithm produces
similar clusters. Both of these clusters have a fractal dimension of approximately 1.6792.
However, it is obvious that the cluster on the left is not an example of an Eden like cluster
whereas the one on the right it to be precise the cluster on the right is generated through the
use of the Eden C method.

the following section. The FMRC and the FMFC will not be discussed in the following

section as the results here show that their fractal range is too limited to be considered

a possible replacement simulation for the Eden growth model.

7.1.2 Issues with the Fractal Dimension

This section will go into a few of the reasons that lead to the creation of an additional
method for the analysis of a growth model. The fractal dimension of an object is a use-
ful tool that can allow for a detailed understanding of an object and is of great benefit
in the classification and analysis of an alternate method for the simulation of a growth
model. However, it does have some drawbacks, the first of these is that is it not a scal-
able method especially in the analysis of a method such as the MEden growth model.
In the MEden growth model, two main variables can be tailored to produce different
styles of clusters. The issue comes in when it is needed to verify whether the clus-
ters produced conform to what would be produced by a more commonly accepted

method for the simulation of these models.

Through the use of the FMFC method, it is possible to produce clusters that have
a fractal dimension that falls within the range of the EdenB and EdenC models even

though is not comparable to an Eden cluster. The growth clusters that are produced
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have a fractal dimension of approximately 1.6792. Which lies at the lower end of the
interquartile range for the EdenC model but instead of looking like an Eden model
with arough, jagged perimeter with arounded shape, itinstead forms a perfect hexagon;
this can be seen in Figure 7.8. In order for this to be identified it would mean that the
cluster would have to be visualised and then manually identified by a human for the
range of possible variable this could be a very time-consuming thing to do. It would
mean that it would be impossible to automate this process in order to make sure that

the clusters that are produced are accurately representative of an Eden cluster.

The second problem with this method comes into play with the range of the frac-
tal dimension produced by the EdenB and EdenC models. The range of the fractal
dimension for both of the models has an A measure of 0.856 which was gained with
the use Vargha-Delaney’s method and a p-value of 6.8e—15 which was gain with the
Mann-Whitney U test. What this means is that there is a large significant difference
between the two distributions which might lead one to think that it would be easy
to identify which of the two models are being used to generate a cluster. However,
due to the overlapping between the two models which can be seen in Figure 7.4 and
Table 7.1, in order to be able to distinguish between the two models it would require
multiple runs of the model so that a method such as the Vargha-Dellany or the Mann-
Whitney U test can be used to determine the chance that one or the other has been
produced and it would only be able to tell if the new method produces the same range
of clusters. All of this means that whereas the fractal dimension is a very useful tool
and does have the ability to classify how close the results of the new method is to
the original it is useless in the classification of individual clusters when two methods
have a significant overlap such as is presented here or if a method produces a different

range of clusters.

Because of this, two new methods have been developed for the analysis and clas-
sification of clusters the following two sections of this chapter will go into these two

methods. The first of these methods can identify a quantifiable difference between
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the EdenB and EdenC clusters. The other method that will be discussed whereas it
does not come up with a quantifiable difference it still able to tell the difference be-
tween the Eden B and C methods of the clusters. The hope for these methods is that
they will aid in the classification of not just Eden model but growth models in general
in order to show how these methods would work the MEden model will be used as a

case study to demonstrate the methods.

7.2 Connected Component Labelling

The first of the two new methods that will be discussed makes use of CCL? an often
used method in the field of graph theory for understanding the structure of complex
graphs. The reason making use of this method here for this is that by labelling the cell
in-order as they are infected and then using this method, it would be possible to gain
a better understanding of how the cluster grows as the way that the cell fits together.
This method was designed as a better way to distinguish between clusters such as the
EdenB and EdenC as where with the fractal dimension there would need to be mul-
tiple runs of the model run into to tell which it would be and then it would only be
with a high probability if a cluster that falls outside of the range of the EdenC was pro-
duced indicating that it was an EdenB method meaning that it would be classifying
the method, not the clusters. With this method, it is possible to categorise individual

clusters.

CCLaims to find subsets of connected components, these components are uniquely
labelled and are based on a given heuristic. One common area other than that of
graph theory in which this class of algorithm is used is in computer vision (Davies,
2012, Dillencourt et al., 1992). In combination with image filters, it can allow a com-
puter to be able to pick out individual parts of an image and depending on the filter

that is used the type of object that will be picked out will change. This means that a

3Connected Component Labeling



7.2. Connected Component Labelling 161

program attempting to find red doors could use a filter to turn all pixels with a red
value over a certain level white and all over pixels black, allowing for a much simpler
image to be processed. Then the individual components can be labelled and subse-
quently be checked for a match to a door with the use of a convolutional neural net

or other such methods.

Algorithm 6 Two Pass Component Labelling

1: equivalences, labeledGrid, nextLabel=1
2: for x: row € grid do
3:  fory: columns € grid do

4: if grid[x,y] is infected then
5: Neighbours = cells within mask whose state match current cells state
6: if Neighbours is empty then
7: equivalences[nextLabel]= set(nextLabel)
8: labeledGrid[x,y] = nextLabel++
9: else if tree is right heavy then
10: s = smallest label € Neighbours
11: for L € Neighbours do
12: equivalences[L] = union linked[L] and L
13: end for
14: end if
15: end if
16:  end for
17: end for

18: for x: row € grid do
19:  fory: columns € grid do

20: if grid[x,y] is Infected then

21: labeledGrid[x,y] = find(labeledGrid|[x,y])
22 end if

23:  end for

24: end for

25: return labeledGrid

There are a large range of methods that can be used for CCL, a lot of the work on
these algorithms as of late has been to make use of the massive amounts of parallel
power that can be gained from the use of a GPU through the application of languages
such as CUDA and OpenCL (Hawick et al., 2010, Kalentev et al., 2011, Playne and Haw-
ick, 2018, Wu et al., 2005, 2009). For this work however the algorithms used all ran on
the CPU and in serial as it was not necessary that the component labelling be per-
formed in real time. Three main methods are commonly used for the computation

of CCL the one component at a time method, the two-pass method, and finally the
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Figure 7.9: Two pass component labelling image A shows the grid before the first pass image

B shows the state of the grid after the first pass and image C shows the state of the grid after

the second and final pass. The final image, image D shows a coloured version of the finished
grid to more easily identify the different components.

one-pass method. Whereas the one component at a time method is a very easy to
implement and understand variant of CCL it is very slow in processing the data as it
requires numerous passed through the data. Considering the size of the grid that is
being dealt computation speed is still somewhat relevant to be able to average out
as many results as possible in a reasonable time frame. The other two methods the
two-pass and the one-pass are both considerably faster especially in a case like the
one here where multiple different states can be touching each other that should be

classed as different components.

The two-pass method was the one that was selected for use with this work, this
was selected because even though the one pass method can run faster than the two
pass when an image consists of a high number of small components the speed in-
crease with the one pass method is negligible in comparison to the implementation
complexity of the algorithm for this specific use case. The first pass of the algorithm
assigns temporary labels and records the equivalences of these labels; this is done
through the use of a union-find type structure. On the second pass, each label is re-
placed with the smallest label within the table of equivalences. An example of the
steps of the component labelling can be seen in Figure 7.9, where image A represents
the initial state of the grid image B is the image after the first pass, image C is the
grid after the second pass, and the final image, image D is a coloured version of the
components to make it easier to see the different components. Algorithm 6 shows the

algorithm for the two pass CCL that has been used in this work.
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Masks are an important aspect of the CCL algorithm as they let the algorithms
know which of the neighbouring cell should be looked at for a specific cell when look-
ing for component labels to assign. There are two main types of masks use, one for
the Moore neighbourhood and one for the more common Von Neumann neighbour-
hood on a 2D grid; these are often called 8-connection and 4-connection respectively.
As the Eden model itself makes use of a Von Neumann neighbourhood when it grows,
that is the mask style that will be used. This mask looks at the cell north of the current
cell as well as the cell west of it in the 3D version it also looks at the cell behind the
current cell; the Moore version also takes into account the cells at the north-east and
north-west of the current cell. A graphical representation of the Von Neumann and

Moores mask can be seen in Figure 7.10.

s is the state of the cell
15 is the infection step of the cell
t is the total cells in the cluster

S is the number of states desired

In order to run the component labelling algorithm, the cells in the cluster must
be split into different groups with each group having a distinct state. The cells state
will be set equal to the time step that it was infected on in the case of the Eden model
and with the number of cells in the cluster at the time of infection in the case of the
MEden model. The issue arises here that if left untouched each cell would have a
different state and therefore would be labelled as having a component count equal to
the number of cells in the domain which would be entirely uninformative. The answer
to this can be seen in Equation 7.1, the total cells within the cluster are divided by the
total number of states to give a step value. If the state of the cell is greater than zero

it is then divided by this step value and has one added to it; this would mean that in
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Figure 7.10: This diagram is representative of the Von-Neumann neighbourhood mask used
for the component labelling on the left and the Moore neighbourhood mask on the right.
Because of the type of neighbourhood used with the Eden model the mask that will be used
for this work will be the Von-Neumann mask on the left.

a cluster of 1,000 cells with 5 states would have a step value of 200 and the ending
state of a cell that was infected on time step 300 would be given a state of 2 because
L% +1] = |2.5] = 2. The flooring of the value is dealt with by storing it as an integer
value, which will truncate the float causing it to be floored. The plus one is included
in the equation to deal with cells that were infected in a time step that is less than

the step value making sure that the minimum state value is one otherwise it would

become an uninfected cell.

One issue does arise with the labelling of the states of the cells in the MEden
model, and this is because of the way that the update state system iterates through all
the cells in order. This means that if two or more cells are infected on the same time
step (which happens very often) a cell with a larger k index would always be consid-
ered to be infected after cells that precede it in the domain; this would mean that
it would not be a fair comparison to the software Eden models and would alter the
results of the component labelling. To deal with this issue when multiple cells are in-
fected on the same time step at the end of the update function, all the cells that where
infected would have been stored in a list, and each of the states would be shuffled and
randomly assigned to each of the cells. This means that it would be possible for cells

further on within the domain to have a smaller infection step then cells preceding it.
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Figure 7.11: Boxplots showing the component count range for the EdenA EdenB, and EdenC
models for state count in the range of 1 to 10. Th state count defines the nunbe of distinct
states the the celles are divided into based on the timestep the where infect on, the equation
used for setting this state is defined in Equation 7.1

7.2.1 Results

The first step of testing is to get the component count for the three standard versions
of the Eden model for a range of different maximum states and to see if there is a
point at which the ranges of the component produced do not overlap so that it will be
possible to identify one cluster from another. This is a critical part of the method as if
itis not possible to get a distinct group for each of the models it will not be possible to
use this method to identify a single cluster and as such, it would be no better than the
fractal dimension is the analysis of clusters. The first decision to make is the range of
the state used. If the cluster was labelled with a single state then it would always have
a component count of 1, which is not useful so the experiment was run with a state
count from 2 to 10 and performing the component labelling on the model with this
range to see if the separation point between the component count can be found the

results for the EdenA, EdenB, and EdenC standard methods can be seen in Figure 7.11.

As the number of states within the cluster increase the EdenB and EdenC com-

ponent count ranges slowly start to separate until it reaches 7 states at which point
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Figure 7.12: KDE graphs for the component count of the EdenA (blue), EdenB (orange), and
EdenC(green) for state rangeing from 2 to 10. This graphs show that for a cluster of 5000
cluster it is possible to identify distinct section for the EdenB and EdenC cluster past 7 states.
KDE graphs were made using matplotlib pyplot with default settings.
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Figure 7.13: RMFC components counts for P.j,,.. in the range of 1 to 100 and F,,,, in the
range of 1 to 50 showing all the data points gathered for cluster with 7, 8, 9, and 10 state
counts. The colours represent the boxplot for the EdenC (red), EdenB (green), and EdenA
(blues) where the darker colour represents the interquartile range and the lighter colour
represents the whiskers.
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Figure 7.14: RMFC components counts for P.jq,ce in the range of 1 to 100 and P4, in the
range of 1 to 50 showing the median for each point for cluster with 7, 8, 9, and 10 state
counts. The colours represent the boxplot for the EdenC (red), EdenB (green), and EdenA
(blues) where the darker colour represents the interquartile range and the lighter colour
represents the whiskers.
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Figure 7.15: RMRC components counts for P,y in the range of 1 to 100 and F,,,, in the
range of 1 to 50 showing all the data points gathered for cluster with 7, 8, 9, and 10 state
counts. The colours represent the boxplot for the EdenC (red), EdenB (green), and EdenA
(blues) where the darker colour represents the interquartile range and the lighter colour
represents the whiskers.
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Figure 7.16: RMRC components counts for P,j .. in the range of 1 to 100 and P, in the
range of 1 to 50 showing the median for each point for cluster with 7, 8, 9, and 10 state
counts. The colours represent the boxplot for the EdenC (red), EdenB (green), and EdenA
(blues) where the darker colour represents the interquartile range and the lighter colour
represents the whiskers.
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two distinct sections emerge one for each of the clusters with only tiny cross over one
the extremes of the tails, points that exist outside of a 99% confidence interval. As
the number of states continues past this point to increase the separation continues
to increase. The EdenA cluster from the point of 2 states onwards was always dis-
tinctly separate from the other two versions making it very easily identifiable with
this method. A KDE showing the spread of the component counts for 7 states can be
seen in Figure 7.12 along with the graphs for from 2 to 10. This shows that is it pos-
sible to make use of component labelling for the classification of individual clusters
without the need for multiple runs. This means that if the distribution of the frac-
tal dimension of a new method doesn’t match that of the current methods, it would
be possible to see what type of clusters it can produce and classify the algorithm in

addition to single clusters.

The RMRC and the RMFC version of the MEden model were the two that most
closely matched the range of the fractal dimension of the standard Eden model, and
as such, they will be the two versions of the MEden model that will be discussed here.
The first of these two that will be discussed will be the RMFC Figure 7.13 shows a
3D scatter plot with all the data points gathered for state counts 7, 8, 9, and 10 in
the run the model for the same P.;,,,,.. and P,,.. values that where used in the fractal
dimension test this being 1-100 and 1-50 respectively with 100 runs for each point and
Figure 7.14 shows the median of these 100 runs for each point. The colours that are
used on the graphs are to represent the boxplot of the three different Eden models
component counts with the darker colour representing the interquartile range and
the light colour the whiskers of the boxplot these boxplots are shown in Figure 7.11.

The red is for the EdenC, green is for the EdenB, and finally blue is for the EdenA.

The RMFC version of the MEden model whereas in the fractal dimension test ap-
peared to be producing clusters that are very close to that of the EdenB and C model,
when the component labelling data is looked at this is not the case there is only a very

small range of variables that are able to produce something close to what could be
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considered to be an Eden model what this means is that the way in which the clusters
that grow are not similar to that of the Eden model, and they grow too uniformly to be
classed as Eden Models. This would have been a very time-consuming task to be able
to identify without the use of this method and might not have even been possible.

The RMRC version, however, is a different story.

Figures 7.15 and 7.16 show the same data as Figure 7.13 and 7.14 do but for the
RMRC version of the MEden model instead, with all the colouring representing the
same things. The RMRC version of the MEden model is much more able to recre-
ate the same component ranges of the Eden model with even in some case it being
able to generate clusters that could even be considered to be on the upper end of the
EdenB and lower even of the EdenA this can be seen in Figure 7.15 represented with
the yellow data points that pop up when the P, and F,,,. are set close to 1. Unlike
with the RMFC version of the MEden model as these two variables increase it is much

more able to produce EdenC clusters.

7.3 Image Classification

The final method for the classification of these model will be discussed is that of image
classification or image recognition. There is a range of applications that use this type
of image classification, they are used to different levels of specificity, for example, it
is now possible for these methods to be used to generate a sentence that describes
what is going on within an image (Karpathy and Fei-Fei, 2017). Though the method
that will be used here is much simpler than this and will involve the classification of
growth clusters into one of three categories EdenA, EdenB, and finally EdenC not into

sentences.

There are a number of different methods within topic image classification (Nath

etal., 2014) that are used, the specific one that has been selected for use here is called
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a CNN* which is an example of a SIANN®. CNN’s have managed to prove themselves
to be a highly effective solution for this problem (Alpaydin, 2016, Krizhevsky et al.,
2012, Simard et al., 2003). A CNN is an example of what is called a deep feed-forward
neural network this means that the connections with the network do not form any
cycles, they also fall under the umbrella of Deep Learning (Bengio, 2012, Lecun et al.,

2015).

Deep learning is a class of machine learning that has become highly popular in
recent years, it is used to do things including but not limited to automated driving,
medical research (detection of cancer cells (Sirinukunwattana et al., 2016) and even
in drug discovery (Chen et al., 2018)), and even in the speech recognition such as
that used by devices such as the Amazon Echo and the Google Home. The deep in
deep learning refers to the number of hidden layers in the network, in deep learning,
it is common for a network to have as many as 100 layers as opposed to 2 or three
which is more common in traditional neural networks. As such deep learning not
only requires a large amount of data for it to be trained on, but it also requires a large
amount of computing power which is why it has only gathered so much traction in
recent years. Additionally, because of tools such as TensorFlow (Abadi et al., 2015) and
PyTorch (Paszke et al., 2017), it is now straightforward for people to write and make

use of these complex systems.

CNN'’s were selected specifically for the image classification here due to there abil-
ity to classify complex images such as being able to identify shop fronts in images of
cities with ease, this is due to the fact that a CNN can learn specific patterns that cer-
tain class of images have and learn filters that can identify these patterns this allows
the network to generalize from the past set of images that the network saw during the
training process of the network, this allows the network to identify images that is has
never before seen. Additionally, there is the minimal amount of preprocessing that

the method requires. This section will begin with a brief description of what a CNN

4Convolutional Neural Network
SSpace Invariant Artificial Neural Network



7.3. Image Classification 172

is and how it is structured, in addition to how they function this will then be followed
with a discussion on the tools used to implement the CNN along with the code for
the specific CNN used. CNN’s are a form of machine learning which is a potent tool

as Alypaydin says:

“we use machine learning whe we believe that there is a relationship between

observations of interest, but we do not know exactly what” (Alpaydin, 2016)

This is exactly the situation that presents itself here with three classes of Eden
clusters which we can identify as being different even though they have a high level
of visual similarity. Without a decent level of experience with these models which
can take years to obtain, it can be difficult to tell the difference between an EdenB
or C cluster even when they are side-by-side and nearly impossible when they are
shown individually. However, it is possible to train a neural network to make expert

level decision in a fraction of the time a human might need to learn.

The first step in understanding what a CNN is in the gain an understanding of
what an NN or neural network is. A neural network often referred to as an artificial
neural network is a machine learning technique that is inspired by the biological net-
work with a brain and how it can change in order to learn and adapt these systems
are used to solve problems in the same way that the human brain would. A NN is
made up of a collection of nodes commonly referred to as a neuron, these neurons
are arranged into sets of layers with connections between them that allow one neu-
ron to communicate to another these connections are often referred to as synapses a

diagram describing this can be seen in Figure 7.17.

The main part of the neural networks functioning goes on within what is called
the hidden layers; this can be seen represented by the purple node in Figure 7.17. The
purpose of these hidden layers is to receive a piece of data most commonly this is in

the form of a real number then performs some form of calculation on all the values
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Output

Figure 7.17: This diagram shows an example of a neural network with 3 input neurons, two
hidden layers each containing four neurons, and finally a single output. This is an example
of a multilayer perceptron.
that are fed into it, and then an activation function is applied to be that through the
use of some non-linear. The product of this calculation the continues to flow through
the network until it finally ends up at the output layer which will perform the final
calculation and output a result. The number of output neurons would not be a fixed
value for example if you had a neural network whose job was to identify numbers in
the range 1 to 9 that have been handwritten and fed into the network. There could be
nine output neurons, and each neuron would spit out the chance that the input was
that specific value and the one with the highest probability would be the network’s

selection.

The name hidden layer comes from the fact that the output of these neurons is
unknown. This is because it is connected to the input of a consecutive hidden neu-
ron or to the output neuron which itself will perform some calculation that obscures
the initial input. Now this is not to say that it is impossible to find out what is going
on with the network, if the program that is running the neural network is bespoke
code all handwritten from scratch it is easily possible to insert logging layers into the
network so that the values passed between neurons in these hidden layers can be ob-
tained. However, due to the amount of time and effort that this would take to code
it all from scratch most researchers and developers are opting to use API tools such

as Keras (Keras, 2018), as we have here, to allow them to build a neural network as
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quickly as possible. It becomes a highly difficult task to looking into these hidden

layers, as API like Keras act somewhat like a black box.

The API used for the implementation of the CNN used here was Keras. It is able
to have one of three different backends; these are TensorFlow, Theano, and CNTK.
For this work TensorFlow was selected as it appeared to be the most commonly used
one of the three and as such have the widest range of information that was easily
accessible, making the implementation a much faster process. Though using Keras
does greatly reduce the amount of code needed to be written for the implementation
of the CNN this is at the sacrifice of the ability to fine tune all parameters offer by

Tensorflow.

CNN'’s are very similar to the standard NN in that they take an input, in this case,
an image and pass this through multiple hidden layers until it finally reaches the out-
put layer and a result is spat out. Though they differ from NN’s with the addition
of one key aspect, convolutional layers. These layers within exist the hidden layers
section of the network and are where CNN’s get there name from. It is these convo-
lutional layers within the network that gives the CNN its advanced pattern detection

capabilities, which make them perfect for image classification.

The convolutional layers act in a very similar way to the previously described hid-
den neurons, with them receiving an input transforming it and then outputting the
transformed data the difference is in what type of transformation goes on with the
neurons of the layer. Convolution layers get their names from this different type of
transformation that goes on within them, a convolution. When the data is passed to
the convolutional layer, each node within this layer will run a different filter over this
image to transform it in some manner. The purpose of these filters is to identify spe-
cific features within the data, each of these filters will be looking for different features
such as edges, squares, or circles to name just a few. As the data descends deeper into
the network and the amount of data has been greatly reduced it is possible for filters

to be able to identify more complex aspects of the data, in the case of a picture of a
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human this could be an ear for example. With CNN’s one image becomes many fil-
tered images equal to the number of nodes in the layer making them very memory
intensive, this gives an idea of why they have only become commonplace in recent

years.

In order to understand the CNN that is used here, there are four features in addi-
tion to the convolutional layers that should be discussed, these are activation layers,
pooling layers, dropout layers, and fully connect layers. The first of these is the Fully
connected layers. These are the simplest of the features to understand as these are
standard neural network layers where every layer where every neuron connect to one

in the consecutive layers.

Next feature that will be discussed is the activation layer; they layer applies an
activation function to the data that is past to it which in this case is the ReLU® function
or Rectified Linear Units function. An activation function is a form of normalization
and is used here for a straightforward purpose, to stop the maths going on within the
network from exploding. Only non-linear activation functions can allow the network
to compute complex nontrivial problems with minimal numbers of nodes, example
of other activation functions are TanH, Logistic Sigmoid, and Softmax (which is used
at the end of the network to extract the selection of the network) through the most
common one in use is the ReLU function. ReLU works by setting all values less the
zero to be zero this helps speed up the training of the CNN. It is similar to the stp

function discussed in the previous chapter and can be seen in a more mathematical

6Rectified Linear Unit
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form in Equation 7.2.

ReLU does have one problem that has been called the dying ReLU problem this
is when the output of the ReLU function is 0 which happens when the function has a
large negative bias; this means that the gradient will always be 0 and this will cancel
out the error value that is back-propagated. What this means is that earlier layers in
the network can’t work out the error; this has been attempted to be fixed by a method
called the Leaky ReLU (Xu et al., 2015). In Leaky ReLU a small gradient allowed for the
values that previously would have a zero gradient, this can be seen in Equation 7.3.
The o value is very commonly set as 0.01 though it is possible for this value to be differ-
ent and even to be trainable by the network when this is the case it is often referred to
a Parametrized ReLU or Trainable Parametrized ReLU respectively. This issue wasn’t

encountered here and as such the Leaky ReLU method was not needed.

Thirdly, adropoutlayeris use in order to help deal with overfitting and only comes
into effect while training the network. Overfitting is when a function is fit too close
to the training data making so even though in training the network has high accuracy
when the network is presented with unseen data is it unable to achieve comparable
accuracy at classifying it. There is also such a thing as underfitting, but this is dis-
cussed much less frequently then overfitting as underfitting is where the network gets
a very low accuracy with the training data, and this means that the design of the net-
work is most likely inappropriate for the job it is being used for. Dropout functions aid
in the reduction of overfitting by randomly selecting a fraction of the input units as
setting them to 0 each update during the training of the network. This stops the next
learning a specific feature of your training set too closely forcing it to look at different
aspects of the image in order to classify it making the network more general within

the domain.

Finally, there is Pooling; this is a significant aspect of CNN’s as it is how the net-
work can deal the vast amounts of data that can be generated from the output of con-

volutional layers as well as to help stop the network becoming overfit. The functioning
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of these layers is as such, if you have images with 128x128 as is the case here, if 500
features have been learned over 5x5 inputs each convolution results in an output size
of (128 —5+1)* = 15376 and with the 500 features this mean 124 x 500 = 7, 688, 000
which can lead to a number of issues. This is where pooling comes in, pooling works
by taking a window of a certain size and scanning over the image, this scanning is
based on a stride value which should never be greater than any of the dimensions of

the window to ensure that nothing is missed.

There are two main forms of pooling mean pooling (sum pooling can also be used
with a very similar effect to the mean pooling) and max pooling, in mean pooling all
the values in the window are averaged, this new value is used to represent all the cells
in that area so with a 3 x 3 window 9 values would become 1. Max pooling is very
similar only instead of taking the average the method extracts the maximum value
within the window. Max pooling is better suited to the extraction of more features
such as edges but does end up discarding a large portion of the data whereas with
average pooling all the data within the window is taken into account and it produces
a smoother representation, one is not better than the other they just better suited to

specific situations.

7.3.1 Network Design

The network that was implemented to perform the experiments here can be seen in
Figure 7.18 and a summary of the model including a parameter brake down can be
seen in Figure 7.19. The network consists of 3 main sections where a convolutional
layer making use of the ReLU function is followed by a pooling layer making use of
the max pooling method; this is finally followed by a dropout layer with a dropout
percentage of 25. There are three of these stacks the first containing 32 filters and
the second and third having 64 filters each. The final part of this network is a single
fully connected layer with 64 neurons within it, the dropout level used in this final

part of the network is 50%. The softmax function was used in the final layer for the
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Sequential ()

model.add (Conv2D (filters=32, kernel_size=(3, 3), input_shape=
<~ input_shape, padding=’same’, activation='"relu’))

model .add (MaxPooling2D (pool_size=(2, 2)))

model.add (Dropout (0.25))

model.add (Conv2D (64, (3, 3), padding=’'same’, activation=’'relu’))
model.add (MaxPooling2D (pool_size=(2, 2)))
model .add (Dropout (0.25))

model.add (Conv2D (64, (3, 3), padding=’'same’, activation=’relu’))
model.add (MaxPooling2D (pool_size=(2, 2)))
model .add (Dropout (0.25))

Flatten())

Dense (64, activation='relu’))

Dropout (0.5))

Dense (numClasses, activation=’softmax’))

Figure 7.18: This is the keras code that was used to build the Convolutional Neural Network
that was used for the classification of the Eden and MEden clusters.

Layer (type) Output Shape Param Count
conv2d; (Conv2D) (None, 128, 128, 32) 896
maxpooling2d, (MaxPooling2D) (None, 64, 64, 32) 0
dropout, (Dropout) (None, 64, 64, 32) 0
conv2ds (Conv2D) (None, 64, 64, 64) 18496
maxpooling2ds (MaxPooling2D) (None, 32, 32, 64) 0
dropout, (Dropout) (None, 32, 32, 64) 0
conv2ds (Conv2D) (None, 32, 32, 64) 36928
maxpooling2ds (MaxPooling2D) (None, 16, 16, 64) 0
dropouts (Dropout) (None, 16, 16, 64) 0
flatten, (Flatten) (None, 16384) 0
dense; (Dense) (None, 64) 1048640
dropout, (Dropout) (None, 32) 0
dense, (Dense) (None, 3) 195
Total params 1,105,155
Trainable params 1,105,155
Non-trainable params 0

Figure 7.19: This is the results of the summary function built into keras this shows the
number of parameters in the network as well as the structure of the network its self. The
None value appearers often throughout the list this value this is to represent the batch size of
used in the network but this is set to None as this means that the batch size is not fixed and
makes the training of the model simpler.
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(a) Eden-A (b) Eden-B (c) Eden-C

Figure 7.20: Examples of the images used in the training, validation, and testing of the
convolutional neural network used for the classification of Eden clusters. The cluster a one
solid colour as this means that the CNN doesnt have the infection step infection. The idea

behind this is to see if the shape of the clusters themselves are distinct enough to be
identified via a CNN. As can be seen in these images the difference between these clusters is
minimal especially in the case of the EdenB and the EdenC model where it can be difficult
for even the human eye to be able to tell the difference between them even when they are
correctly labelled as they are here.

classification. This thesis does not claim that this is the optimal design of a network
for this task the purpose here is to prove that CNN can be used in a highly effective

manner for this purpose.

Training is an integral part of the process this requires three things a training set, a
validation set, and a test set. The training set and validation set is used in the training
process the training set it what the neural net is trained against, the validation set is
used to attempt to test how generalisable the network is and help in the avoidance of
overfitting. After training is completed, it is a good idea to test the network against a
test set which will be a collection of data that the neural network has never seen to
ensure that it is still effective at identifying these images as has not become overfit,
this will show in the network has become overfit to the training and validation data.
If the network has a high accuracy on the test data as well as in training, then it can
be assumed that the network is effective. The training set used here contained 30, 000
images with 10, 000 images per class and then 9, 000 images for the validation set with

3,000 images per class.

Examples of the data used in the training validation and testing of the CNN can be

seen in Figure 7.20. These examples of the Eden clusters also go to show how difficult
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it can be for even for a human to classify them without reference to other clusters
at hand. Unlike with previous 2D Eden cluster shown these clusters consist of one
colour, this was done to minimize the number of features that the network would
have to tell the difference, as it has already been demonstrated that it is possible to
be able to identify Eden clusters with the additional state information with methods

such as component labelling.

7.3.2 Results

The first step in the testing of the neural network was to make sure that it hadn’t be-
come overfit during the training. Most of the time when dealing with neural networks
the most difficult part of the whole process is the obtaining of the data for training val-
idation and for testing, because of this it’s very common to see that people will take
all of their data and split it into three for training, validation, and testing. A common
split is a 6/2/2 split meaning, 60% of the data be used for training, 20% be used for
validation with the final 20% being held in reserve for testing the network. However,
as the data used here was computationally generated, this split was not needed as it
was possible to generate more data as and when it was needed. The validation set
used was just under a third of the size of the training set. For the final testing 150, 000
where used to give the best possible idea of the network’s effectiveness with 50, 000

images coming from each of the three different versions of the Eden growth model.

In order to represent the effectiveness of the network, a useful tool is a confusion
matrix, the confusion matrix for the trained network used here can be seen in Ta-
ble 7.2. This matrix shows that the network is highly capable of identifying the differ-
ence between the three different clusters with it being best at identifying EdenA like
clusters, this makes sense as the EdenA cluster is very different from the other two
clusters with a significant difference especially when looking at it fractally. When it
does make a mistake on this, however, it is only classified as an EdenB this also makes

sense as when the fractal dimension of the clusters was tested there was a small level
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n=150,000 | Predicted: EdenA Predicted: EdenB Predicted: EdenC

Actual: EdenA 49999 1 0
Actual: EdenB 0 49185 815
Actual: EdenC 0 23 49977

Overall Acurracy = 99.44%

Table 7.2: Confusion matrix for the CNN used for the classification of the Eden A, B, and C
model. This shows the nerual network tested against 150,000 completely unseen EdenA,
EdenB, and EdenC images with the being 50,000 images for each of the classes. This show
that a highly effective network but has more trouble with the classification of EdenB cluster
then it does with the EdenA and EdenC clusters.

EdenA CNN Guesses EdenB CNN Guesses

)
P_max P_max I

(a) EdenA guesses (b) EdenB guesses (c) EdenC guesses

Figure 7.21: Graphs showing the percentage of clusters formed by the RMRC model that are
classified as EdenA, EdenB, and EdenC for a range of different P,,,, in the range 1 to 50 and
P,hance in the range of 1 to 100, both in increments of one.

of overlap. The network has the most trouble with the identification of EdenB clus-
ters, but this still gives a 98.3%. This means that for every decision that the network
makes there is a 99.44% chance that it is the right choice which is a 66.11% better
chance then if it was guessing at random, this also give a Cohen Kappa of 0.992 with
a 95% interval of 0.991 to 0.992. This shows that the network is highly effective in the
classification of Eden-like clusters and confirms that there is a significant visual dif-
ference between the three types of clusters. This also shows that this network can be
effectively used in the classification of the clusters generated through the use of the

MEden method.

Now that the network itself has been tested and shown to be highly effective in the

classification of unseen data it is possible to use it to classify cluster the where gener-



7.4. Timing 182

ated by the MEden method of Eden simulation. Just as with the previous sections in
the chapter the MEden model will be run for a P,,4,cc from 1to 100 and a P,,,, from 1
to 50 both of which will increment in step of 1, this will allow for a surface analysis the
results of the model. Each of the variable settings was run 100 times, and the results
of the runs classified by the neural net. Figure 7.21 shows the percentage of each of
the runs that resulted in either an A, B, or C classification these graphs are the results
for the RMRC variant of the MEden model. These graphs conform to the general pat-
tern produced by both the analysis of the fractal dimension and the analysis of the
component labelling. This shows that as both or either of the P, or P.jq,cc increase
in values the closer towards the EdenC the system tends towards to. With a P,,,, of
1 the system will produce clusters that the network would classify as EdenB, up until
the point that P,.,,,.. gets too large. This method doesn’t tell whether a cluster is on
the lower end of the EdenB model it is only able to tell that it fits in the range of the

EdenB cluster.

7.4 Timing

Timing is not the focus of this work, as it is commonly known that a hardware-based
implementation will be inherently faster than a software-based approach. However,
it is essential to discuss the run time of the model as if the speedup could be consid-
ered negligible then it might not be worth going to the expense of fabricating such a
system. This section, therefore, aims to demonstrate that this particular method does
grant a substantial speed up making it worthwhile. There will be two different forms
of timing that will be discussed here, that of the theoretical runtime for the model if it
were to be fabricated which will be referred to as the hardware runtime. The second is
the run time for the simulation used for testing the MEden model and its architecture;

this will be referred to as the software timing.

As in the other sections in this chapter, the first step is to gather the data for
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Figure 7.22: Graph showing the results for the run time of the standard software
implementation of the EdenA, EdenB, and EdenC models.
the runtime of the three standard Eden growth models so that this can be compared
against the MEden method. The results of these experiments can be seen in Fig-
ure 7.22, here you can see that the EdenA is the fastest with a full range of between
4.61 x 10~*and 7.68 x 10~* seconds but this is with a very considerable positive skew
and a median of 4.47 x 10~* giving a skew of 1.298, this means that it is much more
likely that a run of the Eden model of fall in the lower end of this runtime. The EdenB
model is the slowest of the three models with a minimum run time of 1.903 x 1073
and a maximum runtime of 2.85 x 1073, but it too has positive skew with a median
of 2.321 x 1073 meaning a skew of 1.18. EdenC is the final of the three models and
is the second fastest of the three models with a range of 1.55 x 1073 and 2.17 x 1073
seconds and a median of 1.67 x 1073. The focus here will be on the EdenB and C
model as it has been demonstrated in the previous sections of this chapter these are
the only two versions of the Eden model that the MEden method can replicate con-
sistently with it only being able to get the lowest of the EdenA cluster with a very low

Pra and Py Very rarely.

The first set of timings concerning the RMRC model to be discussed will be the
software timing. It is not important that this is slower than the software version of

the standard Eden model as it is the timing for a software simulation of the hardware-
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MEden Simulation Timing

All Median

Figure 7.23: These graphs show the full range of the simulation run time for the MEden
model. The left graph shows all the 100 runs for each of the data points and the graph on the

right shows Median run for each of the data point.
MEden Simulation Timing < 7000ns
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Figure 7.24: These graphs show all the data points of the software simulation MEden model
where the theoretical runtime is less than 7pus this is based on the number of iterations that
are required to grow the model in the simulation. The left graph shows all the 100 runs for
each of the data points, and the graph on the right shows Median run for each of the data
points.

based system and as such is expected to be slower. The results for this can be seen in
Figure 7.23 where the full range of data is shown and Figure 7.24 where all the points
whose theoretical timing is less the 7 x 107 seconds. This ranges from a maximum
runtime of 0.977 seconds to a minimum of 0.0267 seconds; this is considerably slower
than even the slowest of the standard software Eden model which took 2.85 x 1073
seconds. This shows the general effect that the different P,,,, and P, setting can
have on the runtime of the simulation with it increase as the P,,,, and increases and

the P.;.nc decreases, which is to be expected.
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Next is the hardware timing of the RMRC model, this will be compared to the Eden
models timings to give an idea of the possible theoretical speed up that this method
could offer. The first step is to understand how long it takes the model to perform a
single update; there are two different states that the MEden model can exist within.
These are called the Pulse and Update states both of them are designed to follow one
another repeating until the stopping condition has been met, this could be one of
many things such as touching the sides of the domain or infecting a certain number
of cells as with the standard Eden model. Both the Pulse and the Update states last for
1 nanosecond; this time will allow for the updating of the cells to be performed easily
as it is based on timings used for RRAM (Sakib et al., 2016). This means that a sin-
gle time step of the MEden model should take around two nanoseconds to complete

theoretically.

Figure 7.25 showing the results for the full range of variable test and Figure 7.26
showing the run that have a runtime of less than 7 x 107% seconds. The was done
because most of the points on the graph fall under this boundary 79.86% to be ac-
curate and it can be difficult to tell if there is any difference between these points in
Figure 7.25 with most of them being the dark blue points. Interestingly enough it is
possible to the RMRC model to produce both EdenB and C model within the less than

7 x 107% seconds range.

With the full range of data, the slowest run took a total of 6.998 x 10~% seconds
this was with (P, = 50) and (P.panee = 1), the cluster that was produced could
be classified as an EdenC cluster. This works out to be approximately 221 times faster
than the fastest run of the EdenC model as shown in Figure 7.22. The fastest run of the
RMRC model also produced an EdenC like cluster and took only 1.22 x 10~7 seconds
which is a massive 12, 704 times faster the fastest of the software EdenC models. These
are even faster than the runtime for the fastest of the Eden models the EdenA which
has a fastest run time of 4.61 x 10~ the slowest of the RMRC model is approximately

66 times faster, and the fastest is approximately 3, 779 times faster than this EdenA
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Figure 7.25: These graphs show the full range of the theoretical hardware run time for the
MEden model based on the number of iterations that are required to grow the model in the
simulation. The left graph shows all the 100 runs for each of the data points and the graph
on the right shows Median run for each of the data points.
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Figure 7.26: These graphs show all the data points of the theoretical hardware MEden
model where the runtime is less than 7us this is based on the number of iterations that are
required to grow the model in the simulation. The left graph shows all the 100 runs for each
of the data points, and the graph on the right shows Median run for each of the data points.

run.

As shown in the previous sections of this chapter it is possible to produce EdenB
like cluster with the RMRC mode with a P,,,, of 1 and P4, of %. This would pro-
duce the highest end of the EdenB model and would be the slowest settings to pro-
duce this cluster. At this specific variable set-up run times range from a maximum
time of 9.554 x 107% seconds to a minimum time of 7.718 x 10~% seconds with a me-
dian run time of 8.415 x 107% seconds. This means that even with the slowest run

this method for the simulation of the EdenB model is nearly 200 times faster than the
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Figure 7.27: These graphs show the component range for the 7 state RMRC model for all the
run that took less than 7 x 10~ seconds. This show that is it possible to get the full range of
possible cluster produced by this method with a massive speed increase between 221 times
and 12704 times faster than the software version of the EdenB and EdenC models. The
image on the right shows a top-down view where the black cells are the cells that have a run
time greater than 7000ns.

fastest version of the software EdenB model as shown in Figure 7.22.

With 79.86% of the runs taking less than 7 x 10~ seconds and with its ability to
produce the full range of the MEden models cluster type production within this range
which can be seen in Figure 7.22. This shows that there would be no need the step
outside of this region in order to obtain the full possibilities from the MEden model
this would lead to a minimum increase in speed from the fastest of the EdenC model
by 221 times and for the EdenB model of 271 times faster. This method would make
the running of the EdenB and EdenC model considerably faster than even that of the

EdenA model which as a minimum run time of 4.47 x 104,

7.5 Summary

This chapter has demonstrated that not only is the MEden model capable of produc-
ing Eden like clusters that are comparable to the EdenB and EdenC clusters in a frac-
tion of the time that the standard software-based approach is able to do. But is it also
able to allow for a more fine-grained selection of the cluster produced through the

manipulation of the P4, and P,,,, variables within the system.

It has also demonstrated that whereas the fractal dimension is a useful tool in the
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analysis and classification of these types of clusters, it is not able to identify clusters
with the precision that would be necessary especially in a situation that is present here
where the range of the fractal dimensions overlap one another so heavily. To this end,
two additional tools for the analysis and classification of growth model clusters have
been presented and demonstrated to be effective in the classification of these clusters
even with the high level of fractal similarity. These methods being the use of a graph

theory tool component labelling and the use of Convolutional Neural Networks.

The final section of the work looked at the possible speed increase (an expected
occurrence when implementing a software-based algorithm in hardware) that this
model could theoretically offer to the system, as it would be pointless to develop this
type of system only for it to end up being slower. With a maximum increase of ap-
proximately 12,704 times for the EdenC and a maximum runtime of 7 x 10~¢ seconds
for both the EdenC and EdenB models. It has also been demonstrated that the full
range of clusters producible by the method can be obtained with this limitation of a
maximum runtime of 7 x 1079 this means a theoretical speedup of between 221 and

12, 704 which even on the lower end is a considerable speed-up.
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Conclusion

ROWTH models are a highly useful and widely used form of simula-
tion that offers many benefits to humanity as they enable the sim-
ulation of highly unpredictable systems such as cancer which can
lead to a better understanding of them. The work in this thesis has

explicitly focused on two growth models, the Eden Growth Model and the Invasion
Percolation Model, which are used in the simulation of cancer as well as for other
purposes. Here they are the primary models studied to investigate methods for the
optimisation of the runtime and memory consumption of a software-based imple-
mentation of these models through the use of alternate data structures. It also inves-
tigates a hardware-based implementation of the Eden growth model which is capable
of simulating both the EdenB and EdenC variants with a maximum possible speed re-
duction of 12, 704 times. Whilst testing the validity of the hardware implementation
of the Eden model it became apparent that the current method for the analysis and

classification of growth model clusters was not enough to accurately define the cluster

189



8.1. Summary of Thesis 190

that was produced by the hardware implementation, as such two additional methods
where developed which leveraged techniques from two different areas graph theory

and image classification too help with this issue.

This chapter is the conclusion of the work that has been discussed in the previous
chapters. The first section of this chapter will be a summary of the work contained
here, which will be broken down into the individual objectives described in Chapter 1
and will mention when in the thesis they can be found. This will then be followed by
a discussed on the contributions of this work and then a discussion of some possible

future work which could lead on from this thesis.

8.1 Summary of Thesis

The section will discuss the different hypotheses of this thesis and will go into where
they were proven or disproven along with details of the evidence that is supplied. The

three different Hypotheses which were first mentioned in Section 1.1, are as follows:

H;) Modern data structures such as the AVL and Hash Table can offer both
memory and runtime benefits to growth models.

H,) A hardware implementation of the Eden model using memristors can
simulate the Eden growth model faster than the software-based version,
and the same architecture can simulate different versions of the model.

H3) The use of connected component labelling and convolutional neural net-
work improves that ability to analyse and classify individual clusters of

the Eden growth model into the three main classes more accurately than

the fractal dimension.

In order to test the validity of these hypotheses, they were broken down into a set
of different objectives which could help in guiding the would and give manageable

milestones to achieve along the was. These objectives are first shown in Section 1.2,
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but the will also be listed here before a discussion on them.

8.1.1 H,

The objectives of this hypothesis are as follows:

7

O;) Investigate the domain fill for the various models as the size of the cluster
increases.

O,) Develop an optimal method for the implementation of each of the data
structures for the model in clusters the handling of the growth sites.

O3) Investigate the effect on the runtime when making use of different data
structures.

0,) Investigate the effect on the memory consumption when making use of

different data structures.

This set of objectives were aimed at testing the validity of Hypothesis 1. Objective 1
was fulfilled in Section 3.4, this showed that the effects of the domain size on these
models could have a variety of effects including in some cases such as with the MIP
model increasing the sparsity of the model as a whole. which could lead to a possible

significant saving in the memory consumption or runtime.

The fulfilment of Objective 2 can be seen in Chapter 4, the developed algorithms
for the data structure are discussed and in Chapter 3 where the methods for the han-
dling of the growth sites list is discussed. Model-specific changes that were made in
order to ensure that each of the models were running in a structure tailor-made for
it as also discussed one such example of this would be the negative mask for the AVL
tree in the case of the EdenA model in order to stop a cell being added to the growth

sites list more than once.

Objectives 3 and 4 are discussed within Chapter 5, this showed that the answer

for the best data structure is not a simple one. For models such as the MIP where the



8.1. Summary of Thesis 192

runtime is relatively short, with the slowest cases the median result is approximately
4 seconds, and the domain fill is very low, that a structure such as the hash table or
the AVL tree not only offer benefits to the runtime of the system, but they also offer
benefits to the memory consumption of the simulation especially at larger domain

sizes.

However, when the runtime of the simulation increases such as with the Screened
Eden model the difference in the runtime for higher betas values of the AVL tree does
not significantly differ from the Lattice and the Resizing method but the amount of
memory consumption of the AVL. method is considerable showing that it would be the
better choice. This is not always the case as the amount of the domain that is filled
by the cluster increases, as is the case in the standard Eden and HIP models which
have between approximately 40% and 96% fill, the Lattice method is still the fastest
and consumes the least amount of memory. This demonstrates that there are bene-
fits that are available to both the runtime and memory consumption of highly sparse
growth models, especially with larger domain sizes and that these difference can be

significant especially in the case of the amount of memory that can be conserved.

8.1.2 H,

The objectives of this hypothesis are as follows:

7

Os) Propose a design for a memristive based agent for use in a cellular au-
tomaton for the simulation of the Eden model.
Og) Analyse the fractal dimension of the Standard Eden growth model and

compare to that produced by the memristive based Eden growth model.

This set of objectives were aimed at testing the validity of Hypothesis 2. The fulfilment
of Objective 5 can be seen in Chapter 6. This Chapter detailed what a memristor is,

along with the specific implementation that was used for the simulation of the mem-
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ristive architecture that was developed. This chapter compares the C++ implementa-
tion to a SPICE implementation showing that the C++ memristor can reproduce the
effect of a memristor effectively even if not 100% perfectly. Also within this chapter is
contained a discussion on the design of the agent that was developed as well as the
equations that can be used for the tailoring of the clusters that can be produced by

the model.

Objective 6 was to make use of the current method for the testing of a new method
for the simulation of the Eden growth model, that being the fractal dimension and to
see if it was possible for the MEden method of the simulation of the Eden model was
able to produce fractally similar cluster the that of the standard Eden varients. Chap-
ter 7 shows that the range of the fractal dimension that is produced by the RMRC and
the RMFC versions of the MEden model can produce clusters that are fractally similar
to that of the EdenB and EdenC methods; they are however not able to produce EdenA
clusters; which is a limitation of this particular method. This demonstrated that this
method was able to produce clusters that by the current method would be classed as
Eden clusters and that it was able, through the manipulation of the two variables P,
and P.qnce, to tailor the specific type of cluster that was produced from the high end
of the EdenB model to the bottom end of the EdenC model giving flexibility to the
system that is not present in the current algorithms, widening the styles of clusters

that can be produced by a single system.

Unfortunately due to a lack of access to physical memristors the testing of this
method had to be done in silico. Though within Section 7.4 it was possible to demon-
strate that the theoretical speed up that could be obtained from the use of this method
ranged from 221 to 12, 704 times faster than the simulated versions of the Eden, growth
model. This speed-up is only theoretical and in order to be able to state for sure that
this is the range of speed increase that can be obtained through the use of this method
this architecture would have to be fabricated. Though this shows that there is a size-

able possible benefit in the simulation of Eden clusters through this method and that
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the fabrication of this system could be a worthwhile endeavour.

8.1.3 H;

The objectives of this hypothesis are as follows:

O7) Design connected component labelling for the analysis of the Eden
growth model.
Og) Test the validity of the connected component labelling for the analysis of
the Eden growth model.
Oy) Design convolutional neural network for the analysis of the Eden growth
model.
Oy9) Test the validity of the convolutional neural network for the analysis of

the Eden growth model.

This set of objectives were aimed at testing the validity of Hypothesis 3. They are dis-
cussed in Chapter 7. Objective 7 was to develop a CCL algorithm that would work
with the Eden growth model, setting the state of the cell based on the infection step;
this is discussed in Section 7.2. The first step of Objective 8 was to get the compo-
nent count for the three standard Eden growth models for a range of different state
counts in order to see if it was possible for them to separated, so it was possible to
identify individual clusters within these ranges. It was found that from a state count
of 7 and up the ranges of the component counts for the EdenB and EdenC where dis-
tinct. This meant that is possible to identify individual clusters produced by these
methods. This was then compared to the component counts of the RMRC and RMFC
version of the MEden model showing that the clusters produced by the RMRC version
of the MEden model where able to match this component count range however not
the RMFC showing that just because they are fractally similar doesn’t mean they are

the same.
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The first step in Objectives 9 and 10 was to develop a CNN that was able to distin-
guish between a different cluster of the Eden model that was produced by the software
method Section 7.3 shows that the CNN developed was able to do this with an accu-
racy of 99.44%; this showed that this method was highly useful in the identification of
these clusters even on an individual level unlike that of the fractal dimension. When
this method was used to test the clusters produced by the MEden method it showed
that the same trend that was present in the connected component labelling was also
present here with the lower P,,,, and P.j.,. values producing more EdenB cluster

and with the higher P,,,, and P,,,.. producing more EdenC like clusters.

8.2 Future Work

The work in this thesis is not the end of the work that can be performed in the ar-
eas discussed; many possible projects can emerge from the work that is shown here.
The first of these pieces of future work is to develop an asymmetric domain resizing
method for the Screened Eden model as it could offer significant benefits to runs of
the model especially those that make use of larger beta values. It would then be pos-
sible to develop a method that can switch between the two different resizing methods
depending on the beta value that is input into the simulation allowing for the mem-
ory consumed by the system to be minimised as well of the runtime of the system.
This would allow for a single computer to be able to run more instances of a single
model in parallel making better use of the resources that are available and speeding

up future research that makes use of models such as this.

Next is the development of a hybrid data structure management system that can
allow for in the case of a model such as the MIPs method to start off making use of a
data structure such as the AVL or HSH method which is considerably quicker to con-
struct, while generating the lattice structure in the background. Once the lattice is

constructed and while the simulation is running the system would copy all the data
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from one to the other and then switch to using the lattice or whichever structure was
decided to be best at that point. It is possible that a method such as this could be de-
veloped in such a way that it could balance out memory consumption with runtime
minimising any signification impact one may have on the other. This method could
have significant benefits to the Screened Eden growth model especially in cases where
the beta value used is high as the amount of the domain filled by the cluster in these
cases is very low and this would mean a significant reduction in the amount of mem-
ory that would be needed as well as possibly improving the runtime of the model but
before this type of claim can be made this would be needed to develop and test the

method.

The next set of future works revolves around the MEden method. The first and
most evident of these is to fabricate the architecture. Unfortunately, due to budget
constraints, it was not possible to do this for this work, and so the simulation dis-
cussed in Chapter 6 was developed to test the hypothesis that this system could sim-
ulate the Eden model. In order to take this forward, it would be needed first to be
able to gain access to enough memristors to be able to build the system on a small
scale, for example, on a 4x4 grid and then compare the result of this smaller grid to
the simulation and identify any differences between the two. This can then be used to
improve the simulation to give a better idea of the effectiveness of this method with-
out the need for a massive monetary investment. The development of this system as
shown here could offer significant benefits to the simulation of the Eden model both
in terms of the runtime of the simulation but also in terms of the versatility of the
model with a single system being able to produce a broader range of clusters than a
single algorithm which in the case of a Monte-Carlo style run allows for the simulation

to cover more ground.

Next is to investigate whether the Meden model with its current design is capable
of being used for the generation of 3D Eden clusters and if it differs in the type of

clusters that are produced by this method from when it is used to produce 2D Eden
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clusters. It is possible that the RMRC version of the MEden model which is the best
of the four for the simulation of Eden models in 2D would not be the best for the 3D
MEden model. It would also be interesting to investigate the effect that this scaling
has on the runtime of the system, as it is feasible that this increase in the dimension
count would speed up the simulation unlike with the 3D software version in which
it slows down considerably due to the increase in searches; this would be due to the

inherent parallelism of this system.

The final set of plans revolves around the analytical tools that have been devel-
oped and tested within Chapter 7 for the analysis of the Eden model. This first would
be to test the connected component labelling and the convolutional neural network
methods with a broader range of models such as the Invasion Percolation model or
the models such as the Kawasaki model as there might be limitations to the types of
models that these methods can be used for, and it would be essential to find rules
that can aid in the decision as to which method to use and when. This would allow
for a better understanding of the different methods that are used for the simulation
of these systems and allow for them to be more consistent and predictable and could
even lead to the identification of different classes of current models thereby expand-

ing our knowledge of these complex systems.
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APPENDIX A

Stafistical Tests Explained

Statistical test are very useful tools in the analysis of large quantities of data to gain
an understanding of the data especially in cases when a sample of data is drawn from
a population and used as a representation of the population. These test allow use to
be able to identify whether the sample is a good representation of the original popu-
lation as well as whether any changes to the population have an effect that could be

considered to be positive or negative to the overall population.

A.1 Non-parametric tests

There are three different statistical tests that are used in this thesis help inform on
the results shown in Chapter 5 these being the Mann-Whitney U test which is used to
calculate the probability that two samples are drawn from populations with the same

median. The Kolmogorov-Smirnoff test which is used to calculate the probability that
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two different sample are from populations with the same distributions. Finally, there
is the “A” measure which is used to measure the importance of scientific significance
orimportance. Both the Mann-Whitney U and the Kolmogorov-Smirnoff test are non-
parametric tests which means that the tests make no assumptions on the form of the
distribution. This means that these tests work as well for non-normally distributed

data as they do for normally distributed data .

The Mann-Whitney U test makes use of a null hypothesis that can be rejected
with a confidence level of 95% when the returned result of the test is less then 0.05,
however just because the result is greater then 0.05 that is not a confirmation of the

hypothesis. The hypothesis for this test can be seen below:

[ H_0: samples X and Y have the same medians

The Kolmogorov-Smirnoff test makes use of a null hypothesis that can be rejected
with a confidence level of 95% when the result of the test returns a value of less than
0.05 and as with the Mann-Whitney U test just because the result is greater then 0.05
that is not a confirmation of the hypothesis. The hypothesis for this test can be seen

below:

[ H_0: samples X and Y have the same distributions

The “A” measure returns a values between 0.5 and 1, the higher the value return
the higher the level of significance of the result. The boundary for the level of signifi-

cance can be seen below:

7

a == 0.50 means no effect (distributions have the same medians)
a >=0.56 means a small effect
a >= 0.64 means a medium effect

a >=0.71 means a large effect

Both the Mann-Whitney U and Kolmogorov-Smirnoff tests and very easy to im-
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plement with statistics library’s such as SciPy, a library for python, have built in func-
tions for the computation of these test. In the case of pyplot these functions are
mannwhitneyu and ksysamp. However, this is not the case for the “A” measure and
as such this method had to implemented specifically and the code used to calculates

the the “A” measure can be seen in Figure A.1.

def A_measure (X, Y):
equal = 0.0
greater = 0.0

for x in X:
for y in Y:

if x ==
equal += 1
elif x > y:
greater += 1
nm = len(X) % len (Y)
data = (greater / nm) + ((0.5 * equal) / nm)

if (data < 0.5):
return (1.0 - data)

cilfsier:

return data

Figure A.1: Code for the calculation of the “A” measure for two different distributions, X and
Y. A test used for the calculation of scientific significances. This implementation of the “A”
measure is able to deal with distribution of different sizes though all distributions in this
work are of the same size.

A.2 Boxplot

Figure A.2 shows an example of a boxplot which is a useful graphing tool that is used
through this work there are a number of features of this plot the show be explained
in order to full understand what and boxplots shown in the main body of this work

mean.

The first is this to mention are the two lines running through the box. The orange
line shows the median for the distribution and the green line shows the mean for the

distribution. It is helpful to be able to see both as this can be a good indication of the
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Figure A.2: Example boxplot use to help explain the different features of this type of diagram

skew of the data the close they are too one another the more normally distributed the

data will be.

The Notch in the box is another important aspect of the diagram this show the
confidence range for the median of the distribution as being in this work all of the
data will be a sample from a population and the the whole population it is possible

for there to be some error on the median. The narrower this notch is the better.

The main parts of the boxplot plot are the box and the whiskers. The box is used to
represent the Interquartile Range (IQR) this shows where the data that falls between
the 75th commonly called (3and the 25th percentiles commonly called ()1 lies the
range between these is the /() R. The whiskers of the diagram are calculate with Q1 —
(1.5 x IQR) for the lower and @3 — (1.5 x IQR) for the upper. The outliers these

are shown through the use a hollow circles and these are all the points that fall out of
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the the range of the whiskers of the diagram. All of these feature are labelled in on the

graph in Figure A.2.
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