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Abstract 

 
In today's world, because of developments in medical sciences, people are living longer, 

particularly in the advanced countries. This increasing of the lifespan has caused the 

prevalence of age-related diseases like Alzheimer’s and dementia. Researches show that 

ion channel disruptions, especially the formation of permeable pores to cations by Aβ 

plaques, play an important role in the occurrence of these types of diseases. Therefore, 

early detection of such diseases, particularly using non-invasive tools can aid both 

patients and those scientists searching for a cure. To achieve the goal toward early 

detection, the computational analysis of ion channels, ion imbalances in the presence of 

Aβ pores in neurons and fault detection is done. Any disruption in the membrane of the 

neuron, like the formation of permeable pores to cations by Aβ plaques, causes ionic 

imbalance and, as a result, faults occur in the signalling of the neuron. 

The first part of this research concentrates on ion channels, ion imbalances and their 

impacts on the signalling behaviour of the neuron. This includes investigating the role of 

Aβ channels in the development of neurodegenerative diseases. Results revealed that 

these types of diseases can lead to ionic imbalances in the neuron. Ion imbalances can 

change the behaviour of neuronal signalling. Therefore, by identifying the pattern of 

these changes, the disease can be detected in the very early stages. Then the role of 

coupling and synchronisation effects in such diseases were studied. After that, a novel 

method to define minimum requirements for synchronicity between two coupled neurons 

is proposed. Further, a new computational model of Aβ channels is proposed and 

developed which mimics the behaviour of a neuron in the course of Alzheimer's disease. 

Finally, both fault computation and disease detection are carried out using a residual 

generation method, where the residuals from two observers are compared to assess their 

performance.  
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1 Introduction 

1.1 Background 

Studies on the brain have become a highly interdisciplinary field which is no longer 

confined to medicine, neurophysiology and related fields. In fact, in our efforts to 

understand the functioning of the human brain, many concepts are taken directly from 

physics, mathematics, computer science (especially artificial intelligence, computational 

biology and computational neuroscience) and related fields. This list is not complete, but 

it indicates the concepts and computational techniques from these fields which enable a 

deeper understanding of the behaviour of large networks of neurons. 

The term neurodegeneration is an umbrella term for describing progressive disorders 

which lead to senile neurological disorders. Such kinds of diseases can show a variety of 

symptoms such as speech difficulties, cognitive impairment, and motor dysfunctions 

(Andreas & Bowser, 2017). The loss of neuronal populations in the central nervous 

system is the underlying pathological cause of the diseases. Parkinson’s disease (PD), 

Alzheimer’s disease (AD),  amyotrophic lateral sclerosis (ALS), multiple system atrophy 

(MSA), progressive supranuclear pols (PSP), spinal muscular atrophy, front temp 

dementia (FTD), spinocerebellar ataxia (SCA) disorders, and corticobasal degeneration 

(CBD) are some  of these diseases. This thesis focusses on the development of models 

which enable us to get an insight into the manner in which neuro-degenerative problems 

are propagated. The main focus will be on Alzheimer’s disease and its cause to opening 

of extra ionic channels. 



 18 

Alzheimer’s disease is the common neurodegenerative disorder; it is a chronic 

neurodegenerative disease that accounts for 60% to 70% of cases of dementia (Lewis, et 

al., 2014); (Serretti, et al., 2017). The disease usually starts very slowly in the onset 

process and gets worse over the time. The most common early warning sign is difficulty 

in remembering recent events and loss of the short-term memory (World-Health-

Organization, 2015). This stage is usually known as prodromal Alzheimer's disease. 

Alzheimer’s disease affects more than 35 million people worldwide and 5 million people 

in Europe, with the universal prevalence of Alzheimer's disease predicted to quadruple 

to more than 106 million by 2050 (Brookmeyera, et al., 2007). A financial review put the 

total cost of Alzheimer’s disease to the economy of Great Britain at over £26 billion per 

annum (Brookmeyera, et al., 2007); (Andlin-Sobocki, et al., 2005). In 2015, Alzheimer’s 

disease was the leading cause of death in both males and females over 80 years old, in 

the United Kingdom (Public-Health-England, 2017). Approximately 850,000 British 

people had Alzheimer’s disease in 2014. With the expected ageing of the British 

population, it is estimated that 2 million older British people will have Alzheimer’s in 

2050 (Gallagher, 2014). Given the predictions of an increase in cases of neuro-

degenerative diseases , it is estimated  that total health care costs for Alzheimer’s disease  

will  reach £59.4 billion by 2050 (Lewis, et al., 2014).  

 

1.2 Motivation 

The neurodegenerative diseases like Alzheimer’s disease can be seen as a fault accrued 

in the nervous system or neurons. In order to early detection of disease the detection of 

fault is needed. Study on computational model of nervous system can enable scientists 

to apply fault and fault detection on nervous system. The model of neuron as a basic and 

fundamental part of a nervous system can help scientist to study on the behaviour of 
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neuron during the faulty condition. The ability to simulate a neuron under different 

conditions allows scientists to study different diseases without recourse to the study of 

real neurons, this however, implies that the computational models are an accurate 

representation of the real neurons. The reason for this is that laboratory-based 

experiments can take weeks for the realisation of results, while computational 

experiments take remarkably less time. In addition computational simulations offer the 

advantage of flexible adjustment of environment variables to gather a broad range of 

data.  

The model of the neuron can be used to see how action potential will influence the neural 

signal and signal transaction. In some neurodegenerative diseases, like Alzheimer’s 

disease the disease can be seen as an ionic imbalances in the neuron. An ionic imbalance 

is the progressive damage of function of neurons, including the death of neurons. In 

Alzheimer’s disease the deterioration of neuronal function is a result of the accumulation 

of beta-amyloid (Aβ) plaques and neurofibrillary tangles associated protein 𝜏 in the some 

parts of the brain (Perez, et al., 2017). This accumulation causes some pores which are 

permeable to cations like sodium, potassium, calcium etc (Andreas & Bowser, 2017).   

 Today, Alzheimer’s disease is clinically diagnosed by complicated examinations and 

through neuropsychological and cognitive tests. In addition to these facilities, the latest 

guidelines for the diagnostics of Alzheimer’s disease (Frisoni, et al., 2017); (McKhannab, 

et al., 2011); (Kou & Chen, 2017); (Waldemar, et al., 2007) confirm the important role 

of several biomarkers. These include measures from Electroencephalogram (EEG), 

positron emission tomography (PET), magnetic resonance imaging (MRI), and 

cerebrospinal fluid (CSF) protein profiles, as well as any kind of genetic risk profiles. 

Detection of Alzheimer’s disease in the early stages is very difficult, because the rate of 

progression is slow in the early stage (Braak & Braak, 1991) ; (Sierpina & Kreitzer, 
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2012); (Hampel, 2011).  A solution to this problem of early detection is not clear, and 

requires more extensive studies. This thesis, develops a framework which will enable the 

development of strategies for early detection. Clinical studies are currently focussing on   

early detection and preliminary studies are yielding some interesting results.  However, 

the early diagnosis of Alzheimer's disease remains the most important and unresolved 

issues for national health services.  

A key to both understanding of and the development of computational methods for 

Alzheimer’s disease is to understand the various stages of progression. Alzheimer's 

disease progresses through various stages, early stage, middle stage, and severe or late 

stage  (Hampel, 2011). One possible approach would be to build on the advances in 

artificial intelligence in healthcare to modify the diagnoses of Alzheimer's (Jiang, et al., 

2017). This would make it possible for specialists to use artificial intelligence 

technologies in their medical develop and decision-making process using for instance 

pattern recognition through the data obtained from the nervous system to early detection  

(Obreja, et al., 2017). Since the definitive diagnosis of these diseases can be 

accomplished by examination of damaged tissues of brain after patient death, thus the 

research agenda is completely timely and appropriate (Mantzavinos, et al., 2017). There 

is another problem, as well. Clear symptoms of neurodegenerative diseases (for example, 

gait disorders) only occurred in the advanced stages of the disease exactly when there is 

no possible treatment available (Raggi, et al., 2017). This often puts the patient in a 

wretched state, waiting for his death. Thus, new methods for the early detection of 

symptoms are needed to either prevent or mitigate the disease process (Awasthi, et al., 

2017). 
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The motivation for this research arises from the existing knowledge of neural modelling, 

the computational ability to predict a neural response. This research study will contribute 

to a general foundation for recreating neural functions and the external stimulus with a 

view towards enhancing our understanding of neuronal degeneration in the case of 

Alzheimer's disease. It also contribute to the impact of ion gradients in exacerbating 

neurodegenerative diseases, defining a region for synchronicity in coupled neurons, 

finding the relation between coupling conductance and synchronisation between neurons, 

study about the computational model of amyloid channels and applying fault detection 

to identifying changes in action potential in neural disorder using a computational study 

of neural functions. 

 

1.3 Context of Research 

Computational neuroscience studies the brain function, the properties of information 

processing and the structures that make up the mechanism of nervous system. Its aim is 

to illustrate how electrical and chemical signals are used to process information by the 

neurons and the hence the brain. Despite the advances concerning the structure of the 

brain at the cellular and molecular levels, including learning and memory, taking place 

over the last several decades; several significant scientific problems remain to be solved. 

The first step to achieving diagnostic tools is detecting any faults in order to diagnose 

changes in the patient's neurological system before prodrome or at most at the beginning 

of the prodrome. This is because surveys show that usually the disease process has 

started, long time before any critical damage is done to the brain (Yang, et al., 2003). 

Therefore, early detection of the disease remains critical to preserving the brain before 

any severe damage due to Alzheimer’s disease occurs. 
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The neuropathological changes in Alzheimer disease, which include cognitive and 

behavioural changes in patients, are now well known. Despite this, little therapeutic 

advance can be found in the research on Alzheimer’s disease. One cause for this may be 

the unavailability of tools or methods for distinguishing other forms of primary 

degenerative dementia related to senescence from Alzheimer’s disease. Unfortunately, 

as mentioned before, distinct symptoms of Alzheimer’s disease are not shown until the 

course of the disease is relatively far advanced. In this stage, usually, major pathological 

degradation of the brain has already occurred (Geula, 1998). It is widely thought that 

early diagnosis of Alzheimer's disease might open the door to specifying drugs to delay 

the beginning of the disease by even a decade (Awasthi, et al., 2017). On the other hand, 

the chance of fully curing the disease is not completely denied (Geula, 1998); 

(Cummings, et al., 1998).  

According to research and existing literature (Kumar, et al., 2016); (Perez, et al., 2016); 

(Arispe, et al., 1993); (Ullah, et al., 2015) there is growing evidence that ion channel 

dysfunctioning has a direct impact on neurodegenerative disorders (NDDs). Many 

neurological disorders affecting the central nervous system, are caused due to alteration 

in the function of ion channels (Kumar, et al., 2016).  Here, ion channel dysfunctioning 

is one of the identifying characteristics of neurodegenerative disorders. Even though it is 

likely that such dysfunction can be an indicator of underlying pathological deviation 

associated with other biological disorders, the prodromal stages of neurodegenerative 

disorders are clearly recognisable from a set of control subjects. Studies show that 28.2% 

of patients who are affected by Mild Cognitive Impairment (MCI) were diagnosed with 

Alzheimer's disease in the period of 14.8 months (Soininen, et al., 1992); (Prinz & Vitiell, 

1989).This enhances speculation that mild cognitive impairment may be a precursor to 

Alzheimer's disease (Babilonia, et al., 2009); (Rossini, et al., 2006). 
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There is a general consensus among experts that ion channels play a crucial role in the 

maintaining of cell homeostasis. Further, ion channels are very significant as these 

channels specify the membrane potential and play a critical role in the secretion of 

neurotransmitter. In addition, ion channel abnormalities produce a range of symptoms 

which symptoms can include movement disabilities, memory loss, and neuromuscular 

sprains (Kumar, et al., 2016). A challenging problem for neuroscientists is the 

implementation of therapeutics for targeting neurodegenerative disorders. 

 

1.4 Aims and Objectives of this Research 

Ion channels have been characterized by their functional consequences in 

neurodegenerative disorders. This study will attempt to detect Alzheimer’s disease by 

applying the potential role of dysfunctions of these channels in the plasma membrane 

physiology and brain. In the first stage, finding predictive relationships from data plays 

a key role. For this reason, it is important to produce data which can be done by the 

Hodgkin-Huxley model.  

Since Alzheimer’s can be viewed as a fault in the neurons or a faulty signals being 

propagated, applying the Fault Detection (FD) method may prove that the disease has 

started, long time before damage is done to the brain. Therefore, in the next part of the 

research, FD methods will be applied to the data for detecting Alzheimer’s disease. Fault 

Detection has a wide area, and there are many kinds of classification in the literature 

(Khalastchi & Kalech, 2018). In section 2.5, a brief definition of FD methods is provided. 

The project aim is to develop accurate computational methods to analyse the effect of 

ion channel dysfunction and ion imbalances in the neuron, which are known to be directly 

affected and associated with Alzheimer’s disease. Such methods can be very important 

in studies of the dynamics of ageing and can be applied to support hypotheses that are 
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gained in experimental models involving patients with Alzheimer’s disease. These 

methods can lead to a better perception of these kinds of neurodegenerative diseases.  

The immediate focus of the project is the neurological modelling of ion channel 

dysfunctions in Alzheimer's disease. To achieve this aim the following objectives are 

considered:   

 

(a) Investigating the neuron and network of the neuron, looking at the signals 

being generated and propagated to obtain a better understanding of the 

neurophysiology model of the neuron. In addition analysing the different levels 

of ions and ion imbalances in a network and single neuron to understand the 

feedback mechanism. 

(b) Investigating the impact of coupling and synchronization in a neuronal 

network. 

(c) Computational modelling and analysis of the beta-amyloid hypothesis and 

Alzheimer's disease as an ion channel disease. 

(d) Investigating the relationship between fault detection for ion channel 

dysfunction and Alzheimer’s disease. The reason is that, because Alzheimer’s 

can be viewed as a fault in the neurons or a faulty signal being propagated, by 

applying fault detection methods on the functions of neurons, early detection of 

Alzheimer’s may be possible. 

 

1.5 Thesis Outline 

This research has demonstrated an initial framework for the early detection of 

neurodegenerative diseases using investigation of functional changes of ion channels and 

the appearance of ionic imbalances. This presented that the origin of these ion changes 



 25 

in the neuron and, consequently, in the nervous system, is the secretion of Amyloid beta 

plaques and, consequently, the creation of Amyloid beta channels. This study has 

mentioned some neurodegenerative disorders like Alzheimer’s disease start with 

epileptic seizures in the nervous system due to abnormal brain functionality. Therefore, 

this type of disturbance in the brain is considered as the first symptom of Alzheimer's 

disease as well as other neurodegenerative diseases like Parkinson’s. 

In order to retain all cases in a normal sequence and to present them so that they are easy 

to understand, this study divided the thesis into three main parts. The first part was 

focused on the role of ion channels and ion imbalances and their impacts on neural 

disruptions. The second part concentrated on the main cause of diseases, i.e. the amyloid 

beta plaques and their role in creating ionic channels which are permeable to cations such 

as sodium and potassium. These channel leakages cause ionic imbalances that disrupt the 

normal cell functions. The third part of the thesis was focused on fault detection. A fault 

detection approach was selected to complete this project in order to detect disease as a 

fault in the nervous system. A comparison of linear and nonlinear observers was provided 

based on visualisation analysis, which helps us to realise the difference between them. A 

summary of the thesis, along with the extracted results, is are presented briefly by below 

sections: 

 

Chapter 1: This chapter outlined the potential issues about neurodegenerative diseases 

along with challenges linked to computational neuroscience, neurology and medicine. 

This chapter discussed the potential of computational neuroscience to make remarkable 

advances in the early detection of neurodegenerative disorders. At the end of the chapter, 

the research aims and objectives are outlined. 

 



 26 

Chapter 2: This chapter gave detailed information about the nervous system and its 

functions. Neurodegenerative diseases were discussed and Alzheimer's disease was 

selected as an example of these diseases. A brief presentation was provided of its 

development stages with probable symptoms. The chapter also provided a background 

and preliminary information about fault detection and residual techniques. Matters like 

coupling and synchronisation are also discussed. 

 

Chapter 3: In this chapter, using computational modelling, the response of a neurone 

was investigated for different concentrations of sodium and potassium ions, and the 

resultant ion gradients, including the combination of imbalances in both sodium and 

potassium. It was shown that the responses to various concentrations are in line with 

current clinical thinking. The levels of the ions determine the characteristics of the 

response, namely, the resting potential, the magnitude of the spikes, and the inter-spike 

interval. It was shown that sodium and potassium are two physiologically essential 

electrolytes whose concentrations play an important role in nerve impulses and 

neurodegenerative disorders that affect the nervous system. The ability to represent 

changes in ion concentrations and the gradients across membranes will help in 

developing models for more complex networks of neurones. 

 

Chapter 4:  This chapter investigated the dynamics of a coupled neuron as ion changes 

occur. These changes were incorporated using the Nernst equation. It was shown that 

within the central and peripheral nervous system, signals and hence rhythms, are 

propagated through the coupling of the neurons. It is found that under certain conditions 

the coupling strength between two neurons can mitigate changes in ion concentration. 

By defining the state of perfect synchrony, it was shown that in coupled neurons the 
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effects of ion imbalance are reduced, while in uncoupled neurons these changes have a 

more significant impact on the neuronal behaviour. As most neurodegenerative diseases 

are a result of changes in the chemical composition of neurons these investigations seem 

important. For example, Alzheimer's diseases (AD) is the result of Aβ peptide deposition, 

which results in changes in the ion concentration. These changes in ion concentration 

affect the responses of the neuron to stimuli and often result in inducing excessive 

excitation or inhibition. 

 

Chapter 5: This chapter showed that the build-up of Aβ deposits during the onset of 

Alzheimer's disease has profound effects on the activity of the local community of 

neurons in the central nervous system. These effects can include enhanced neural 

activity, spontaneous epileptiform activity, and incidences of epileptic seizures. 

According to the results of the experiments, it can be well understood that the 

neurodegeneration observed in Alzheimer's disease is associated with the increase of 

toxicity of Aβ depositions. Aβ accumulation has been discovered to form large, relatively 

cation-permeable channels under physiologic conditions. Formation of channel in the 

membranes of a neuron could cause cell depolarisation, sodium and potassium 

dysregulation, depletion of neural energy stores, and other types of cellular dysfunction. 

 

Chapter 6: This chapter applied linear and nonlinear filters as an observer to track the 

dynamic behaviour of a neural model and to estimate the unknown parameters of the 

neuron. Then, by the residual observer-based method, fault investigation was applied to 

detect disease in our neuronal model. These three observers were applied both to track 

the states and estimate the parameters of our neuronal model. 
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2 Introductory Concepts 

2.1 Neuroscience background   

The human nervous system is the most complex and highly organized among the systems 

of the body. Study of neural systems encompasses a wide range of issues about the 

organization of the nervous system and its functions. These issues can be examined 

through the use of tools from physiology and biology and their translation to 

computational processes. The main challenge for a researcher is to integrate the variety 

of knowledge obtained from these different levels of analysis into a coherent 

understanding of the nervous system and its functions. This section provides an overview 

of the nervous system function and the structure of the neuron. 

The nervous system consists of two parts. These parts are the the Peripheral Nervous 

System (PNS) and Central Nervous System (CNS). The CNS includes all the nerves of 

the brain and the spinal cord. The nerves spreading out from the brain and the spinal cord 

constitute the PNS. The PNS usually connects the CNS to the organs of the body. 
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Figure 2.1 – a. the central nervous system. The central nervous system is the basis of all mental and behavioural 

activity. It consists of the brain and the spinal cord. b. the peripheral nervous system. Peripheral nervous system gets 

all information into the brain. The peripheral nervous system connects the senses to the central nervous system and 

also connects the central nervous system to the muscles and glands 

 

The neurons, which make up the neuronal system of human body are responsible for both 

the processing and transmission of neural messages though the body. Thus knowledge 

about the structure and the functioning of the nervous system will enable the development 

of tools to diagnose, manage and treat neurological diseases such as Alzheimer's disease 

or dementia. A fundamental building block of the nervous system is a neuron the 

collective properties of these neurons dictate the functioning of the nervous system. This 

chapter introduces some of the key concepts of neurophysiology and later one the 

coupling and synchronization phenomena for a collection of neurons are discussed.   
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2.1.1 Neurons 

Neurons are the functional units of the peripheral nervous system and central nervous 

system and have an ability to send and receive electrical signals. Nerves, which are a 

collection of neurons that transmit signals from the brain are called motor or efferent 

nerves, while those nerves that transmit information from the body to the central nervous 

system are called sensory neurons (Sarangdhar, 2010). Neurons are morphologically and 

functionally polarized so that information may pass from one end of the cell to the other. 

The basic neuron structure includes a cell body, axons and dendrites. 

The cell body (soma) contains the neuron's nucleus and produces all the proteins for the 

dendrites, axons and synaptic terminals. The principal function of neurons is to integrate 

synaptic messages and after that transmit this messages to other neurons which is done 

by the axon. The axons are usually extensions of neurons. Axon conducts signals away 

from the cell body to other neurons in nervous system. The original function of axon is 

to transmit electrical impulses. Another part of a neuron is the axon hillock. The axon 

hillock is a unique area within the cell body (or soma) of a neuron that connects to the 

axon. This section of a neuron is the last section of the soma, where membrane potentials 

propagated by synaptic inputs are aggregated before being transmitted to the next neuron 

through the axon of the current neuron. One of the important characteristics of the axon 

hillock is the existence of a specialised membrane that contains many ion channels. These 

ion channels are responsible for action potential initiation in nervous system. Dendrites 

which are extensions of neurons are another part of neuron structure. Dendrites receive 

all signals and lead them toward the cell body. The original function of dendrites is the 

handling of the signal input into the neuron. It can eventually result in an axon spike. In 

other words, dendrites generate and integrate postsynaptic potentials and intracellular 

signalling cascades. Both dendrites and axons can extend far away from the cell body.  
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Some human axons may reach lengths of more than three feet (Kumar, et al., 2013). The 

general structure of a neuron is shown in Figure 2.2 and different types of neurons are 

shown in Figure 2.3. 

 

 

 

 
Figure 2.2 – The structure of a neuron. Neurons in the nervous system have the same structure generally. The cell 

body has the nucleus, axons and dendrites which projected from axons. Axons transmit element of neurons, and they 

are of different lengths. Some of them are more than 2 m within the body. Both apical and basal dendrites with the 

participation of the cell body are the input elements of the neuron and receiving signals from other neurons. Adapted 

from (Barnett & Larkman, 2007) 
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Figure 2.3 – There are three kinds of neurons unipolar, bipolar, or multipolar. a. Unipolar cells have a single process 

and various segments serve. b. in the bipolar cells the dendrite receives electrical signals and the axon transmits 

signals to other cells, so it has two types of processes. c. Multipolar cells possess a single axon which is long. In this 

kind of neurons many dendrites, allow for the integration of a great deal of information from other neurons 

 

 

2.1.2 Voltage-Gated Channels 

The biophysical properties of voltage-gated ion channels is very important as these 

properties influence the shape of the action potential in nervous system. These channels 

are a class of transmembrane ion channels. These channels are embedded in a plasma 

membrane of a neuron. Changes in membrane potential activate voltage-gated ion 

channels. These types of ion channels open for few values of membrane potential, but 

for other values are closed (Brenowitz, et al., 2017). When the membrane potential is 

hyperpolarized, the gates of both channels are closed. Voltage sensors allow the channel 

gates to open just in the case of potential depolarization. Sodium channels are inactivated 

during prolonged depolarization. Voltage-gated ion channels play an important role in 

the process of action potential of the neuron. By the opening of ion channels, the 

membrane conductance changes to ionic current flow. Any change in membrane 

potential will open voltage-gated ion channels, increasing membrane conductance. 
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The electrochemical gradient will be changed by the inflow or outflow of ions which 

causes changes in membrane potential, and results in a change in ion current. An action 

potential occurs only if the potential of membrane reaches to a certain level. This is called 

'threshold potential'. Threshold level is the critical level at which the membrane potential 

rapidly increases. 

The schematic neuron shown in Figure 2.2, is an electrically excitable cell which is found 

in the nervous system. Nervous cells have three essential functions: a) to receive signals, 

b) integrate incoming signals and, c) to transfer signals to target neurons. In a neuron, 

signals are generated by a variety of membrane-spanning ion channels. These channels 

allow ions, mainly potassium, sodium, and chloride, to move in and out of the cell. These 

ionic channels can control the flow of ions by rapidly opening and closing in answer to 

changes of voltage in plasma membrane of neuron. The voltage changes are a result of 

both external stimuli and internally generated spikes. The electrical signals of relevance 

to the nervous system are the difference in potential between the enclosing extracellular 

medium and the interior of a neuron. 

Figure 2.4 shows the different phases of the membrane potential of a neuron. These 

phases are (a) resting potential phase, where the effects of the stimulus is not seen, (b) a 

depolarisation phase where the effect of the stimulus is such that the neuron acts like a 

capacitor storing charge, (c) a repolarisation phase where the neuron is discharging its 

potential, and (d) a recovery or hyperpolarisation phase where the neuron having 

discharged itself is returning to the rest state.  The changes in the potential are controlled 

by the ionic gradients, which in turn are regulated by the ion pumps. Sodium has a higher 

concentration outside the neuron than inside. Against, the concentration of potassium is 

significantly higher inside the neuron. Therefore, ions flow into and out of a neuron 

because of voltage and concentration gradients. The process in which negatively charged 
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ions flow into the cell and positively charged ions flow out of the cell via open channels 

creates a current. This current causes to makes the membrane potential more negative. 

Generally, this process called hyperpolarization. Flowing of current into the cell changes 

the membrane potential to less negative and this process called depolarisation (see Figure 

2.5). 
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By depolarising a neuron and bringing the membrane potential above a threshold level, 

a positive feedback process initiates. In this condition the firing neuron as shown in 

Figure 2.5 generates a spike. Generation of the spike is very dependent on the recent 

history of firing of neuron. Just the few milliseconds after a spike, it may be impossible 

to initiate a next spike. This called the refractory period. Spikes then regenerate actively 

along axon processes. Spikes can travel fast over long distances and without any 

attenuations.  The role of ions in neural communication is critical, and any imbalances 

can have harmful effects on the nervous system. Section 2.1.9 deals with ionic 

imbalances in the nervous system. Biologists such as Andrew Huxley and Alan Hodgkin 

(Hodgkin & Huxley, 1952) have mathematically modelled the electrical process of the 

nervous system with a set of differential equations, which deals in section 2.3. 

 

2.1.3 Ion Pumps 

A mechanism is needed to maintain a different ion concentration during the resting state. 

Ion pumps achieve this mechanism. Ion pumps are another types of transmembrane 

protein channel (See figure 2.5). The extracellular and intracellular environment have 

different ionic composition. The movement of ions is from areas of high concentrations 

to areas of low concentrations, and is so-called 'diffusion'. Diffusion will continue until 

equalisation of concentration on both sides (He, 2006). 

Just as Ion Pumps deal with ions of the same type, there is also the effect of the 

differences in electrostatic charges between positive and negative ions outside and inside 

the cell.  This allows movement of ions in a opposite direction which gives rise to the 

Nernst Potential. The ionic balances and the electrostatic charges which give rise to the 

potential is called the NERST effect.  
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Figure 2.5 – Ion Pump. Ion composition outside the cell differs from that inside. Adapted from (Barnett & Larkman, 

2007). 

 

 

2.1.4 Ion Channels 

In the nervous system, action potential and consequently, membrane potential is 

regulated by the voltage-gated sodium and potassium channels during a neuronal action 

potential. Sodium and potassium ions, along with other cations such as magnesium, 

calcium are responsible for the generation of the action potential in the neuron. In the 

main however it is the Sodium and Potassium ions which are responsible for the 

potentials. 

The nervous system consists of a vast number of interconnected neurons, which transmit 

signals using ion channels to generate potentials across membranes. As a result, the chain 

of neurons is activated by electrical signals generated at various points. When a stimulus 

occurs, the activation of the neuron results in an internal change in concentration of the 
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ions. These changes lead to a membrane voltage, which is dependent on the threshold for 

the particular cell. The first stage in this change is known as depolarization, after which 

an action potential is triggered (Frohlich & Jezernik, 2005). In response to depolarization 

in transmembrane voltage, ion channels allow an inward flow of sodium ions. This 

changes the electrochemical gradient, which in turn produces a further rise in the 

membrane potential, causing more channels to open and to generate further electric 

current throughout the cell membrane. The firing process continues until all of the 

available ion channels are open, causing a significant expansion in membrane potential. 

The rapid influx of sodium ions causes ion channels to rapidly deactivate because it 

reverses the polarity of the membrane (Figure 2.6.b phase 2 of action potential). 

 

 

 
Figure 2.6 – a. The membrane includes open or closed channels. These channels allow the polarity of the membrane 

to change near to -70 mV. The action potential passes -70 mV (a hyperpolarization) as the potassium channels stay 

open a bit too long. As ions pass through the channel. b. A stimulus forces sodium channels to open. About the 

potassium, it takes more time to open channels. When the potassium channels do open, reversing the depolarization 

and this is the time that sodium channels start to close. This leads the action potential to return. 
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These changes are shown in Figure 2.6.b. It shows the various stages of the response of 

a neurone to a stimulus. In the first instance, when a stimulus occurs, the sodium channels 

open, which results in depolarization and an increase in membrane potential. The rate of 

depolarization is dependent on the difference in sodium concentration inside and outside 

the cell. The magnitude of the response is also dependent on the concentration of these 

ions. The second stage occurs when the sodium channels close (Chappell & Payne, 

2016). As a result, sodium ions can no longer enter the neurone, and then they are 

transported back out of the membrane. Then the potassium ions affect the remainder of 

the response (Chappell & Payne, 2016). By activation of potassium channels and outward 

current of potassium ions, the electrochemical gradient returns to the resting state 

(Figure 2.6.b phases 2 and 3 of action potential). The action potential flows along the 

length of the axon by changing the states of the ionic channels in the membrane of the 

axon. 

 

2.1.5 Synapse  

Synapse structure allows a neuron to transmit a chemical or electrical signal to another 

neuron or an efferent cell. Nerve cells are not continuous entire the human body but they 

have communication with each other (Lorin & Deborah, 2006). This idea is known as 

neuron doctrine. This doctrine puts the neurons under the wider cell theory. For neuronal 

function, synapses are essential. In the nervous system structure, neurons are cells that 

transmit all neural signals. In the synaptic space, the presynaptic neuron comes into close 

apposition with the postsynaptic cell. Presynaptic and postsynaptic sites have a wide 

range of arrays of molecular machinery. These arrays link both membranes together and 

perform the signalling process. There are two different types of synapses: chemical 
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synapse and electrical synapse. Electrical activity in the presynaptic neuron in the 

chemical synapse changes into the release of the neurotransmitters, complex chemical 

messengers that transfer signals from one neuron to another neuron (Odish, et al., 2000). 

On the other hand, in the electrical synapse, both membranes are connected by gap 

junction that is capable of transiting the electric currents. This causes voltage changes in 

the presynaptic cell and as a result, induce electrical changes in the postsynaptic cell. 

Prompt transfer of signals from one neuron to another is the important advantage of the 

electrical synapse (Silverthorn, 2007). The neurotransmitter systems may be affected by 

neurological disorders, especially, certain neurodegenerative diseases. For instance, in 

one neurodegenerative disorder, like Parkinson's disease, there is a problem related with 

the predictive and secretion of a neurotransmitter which is called dopamine. This disease 

affects the ability of movement and its symptoms include stiffness, tremors or shaking 

(Lindemann & Hoener, 2005). 

 

Figure 2.7 – a. chemical synapse. A gap between two neurons. Information can only pass in the form of 

neurotransmitters b. electrical synapse is a gap which channels connect the two neurons. In this connection, the 

electrical signal can pass straight over the synapse. Adapted from (Barnett & Larkman, 2007) 
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2.1.6 Inhibitory and excitatory neurons 

Stimulus can generally be categorised as either being excitatory or inhibitory. All neurons 

can transmit either signal, but those that transmit the inhibitory signals are called 

inhibitory neurons and the others are called excitatory neurons. The neuron is called 

excitatory if the presynaptic neuron has excitatory behaviour that is it is transmitting an 

excitatory stimulus and it is called inhibitory if the presynaptic neuron has inhibitory 

behaviour. The main mechanism is the action of membrane potential of the target neuron 

in a positive (excitation) or negative (inhibition) direction. Its direction depends on the 

specific transmitter which opens or closes ion channels in the postsynaptic neuron. For 

instance, as sodium ions have a positive charge, they will change the membrane potential 

of that neuron in the positive direction and as a result, the neurotransmitter that opens the 

sodium channel would be an excitatory neurotransmitter. Similarly, the neurotransmitter 

that opens the chloride channel is an inhibitory neurotransmitter. 

 

Figure 2.8 – Axon hillock. The place of Axon hillock in the structure of a neuron. The last site in the soma is called 

the axon hillock. Adapted from (Boundless, 2105) 
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Axon collateral or recurrent inhibition is a particular case of postsynaptic inhibition. As 

shown in the Figure 2.9, the output of neuron 1 is conducted along its axon and out one 

axon collateral to excite an interneuron that inhibits another neuron of the same type, 

neuron 2. Neurons inhibit other neurons of the same kind. Therefore, neuron 2 is inhibited 

by neuron 1 and vice versa. This is a form of feedback inhibition in which the output of 

a neuron inhibits another point in the earlier route. 

 

 

 

Figure 2.9 – Axon collateral. The output of a neuron 1 is conducted along its axon and out one axon collateral to 

excite an interneuron that inhibits another neuron of the same type, neuron 2. Neurons inhibit other neurons of the 

same type. 
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2.1.7 Action Potential 

A spike of action potential is an electrical impulse. In the action potential, the electrical 

membrane potential of a neuron rapidly rises and then falls. The action potential is 

generated by a series of events and occurs in some cells, called excitable cells. An 

important features of the action potential is its initiation at a specific membrane potential, 

called the threshold. 

The Action potentials are divided into two types: (a) voltage-gated sodium channels 

(NaV) and (b) voltage-gated calcium channels (CaV). The main difference between these 

two types of action potentials is duration. Sodium based action potential lasts for a very 

short period, less than a millisecond, while the calcium-based action potential may last 

over a period of 100 milliseconds or even longer (Plonsey & Barr, 2007). The focus of 

this thesis and its modelling effort is on action potentials generated by voltage-gated 

sodium channels. 

 The potential of membrane is measured in millivolts. The static potential during the 

resting state of a cell, when potential of membrane is at equilibrium, is approximately -

70mV. This means the inside of excitable cells is approximately 70mV more negative 

than the outside of it. This value varies depending on neuron types and the species 

(Boundless, 2105). 

Action potentials only happen in the depolarising stimulus that starts the membrane 

potential to a particular value. Many different factors such as the type of neuron, 

temperature, location and many other parameters determine the threshold level. This is 

why that there is no particular level of membrane potential that specifies the threshold 

for a specific neuron in all circumstances (Carlson, 2007). 

The action potential is a single, transient reversal of membrane polarity. It is also an 

explosive all-or-none event with a threshold. The initiating current does not determine 
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the duration and amplitude of an action potential. The action potential has several phases 

or components (see Figure 2.10).  
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Depolarization is only possible when membrane potential reaches a certain threshold. 

Potential greater than 0 mV is termed the overshoot. This called repolarization. In this 

condition, the membrane potential returns to negative values,  which frequently become 

a little more negative than the resting potential of the axon membrane; so-called 

hyperpolarization. At resting potential state, the membrane is usually more permeable to 

potassium than to sodium. In initial depolarization of action potential and just before 

reaching the threshold, sodium channels open more rapidly than potassium channels. It 

means sodium permeability is greater than potassium permeability. Therefore, sodium 

ions move inside the cell and decrease the negative electrical potential inside the neuron. 

 

2.1.8 All-or-none law 

The all-or-none principle first time was established by physiologist, Henry Pickering 

Bowditch (Adrian, 1914) ; (Sadegh Zadeh & Kambhampati, 2017). The all-or-none 

principle in cell neurophysiology states that the strength with which a neuron responds 

to stimulus is fully independent of the strength of that stimulus. It means that the 

amplitude and velocity of an action potential are completely independent of the stimulus 

that created it.  This law states that if the stimulus was greater than the threshold potential, 

then the neuron will give a full spike to that stimulus, whereas the exciting stimulus under 

threshold strength fails to draw out a propagated action potential (Adrian, 1914). 
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Figure 2.11 – According to the all-or-none principle further increase in the stimulation current does not cause an 

increase in the strength of the spike. The other traces are on the same time scale. The dashed line shows the threshold 

voltage of the recorded neuron 

 

 

Despite the fact that the amplitude, velocity, and shape of an action potentials are 

consistent over a time period for a given axon, they differ from one neuron to another 

neuron. Thicker axons allow for faster conduction velocity of an action potential, which 

means the neuron can convey more action potentials per second.  The all-or-none 

principle puts constraints on how an axon can convey a signal. Figure 2.11 describes the 

concept of this principle more. 

 

2.1.9 Ionic Imbalances 

Ions play an especially critical role in lots of neuronal functions, from the largest to 

smallest scales. Ionic imbalances strongly affect neuronal activity and are a cause of cell 

death. Sodium and potassium ions are responsible for the generation of the action 
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potential and transmitting signals in the neuron. An imbalance in sodium and/or 

potassium, especially hyponatremia and hypokalaemia, are a common challenge in 

clinical practice (Whelton, 2016) . Excess of sodium ion concentration is known as 

hypernatremia and the converse is called hyponatremia. Similarly, excessive potassium 

ion concentration creates the situation known as hyperkalaemia, and the opposite is 

defined as hypokalaemia. These disorders are also commonly referred to as electrolyte 

disorders in the setting of CNS disease (Silva, et al., 2016). Ionic imbalances have a broad 

range of neurological effects. In these disorders, epileptiform seizures, muscle rigidity 

and tremor may occur. Imbalances depress the central nervous system and producing 

lethargy that progresses to coma. Permanent brain damage may result from severe 

imbalances, especially in children and other impacts of the disease may occur as a 

consequence of the ion imbalances. 

 

2.2 Ion channels in neurodegenerative disorders 

There is growing evidence that confirms the effect of ion channels disorder on 

dysfunctioning in neurodegenerative diseases.  Some neurological diseases and age-

related disorders like Parkinson's disease, Alzheimer’s disease, are caused by change of 

function in ion channels. Ion channels are large membrane protein which play a crucial 

role in determining the membrane potential and secretion of neurotransmitters. Faulty 

ion channels and losses of pathological proteins have been found to be a major cause of 

neurological disorders (Kumar, et al., 2016). The dysfunction of ion channels also causes 

some symptoms, including neuromuscular sprains, memory loss, and movement 

disabilities. However, the receptor and other factors in such disorders remain elusive 

because of the possible mechanistic played acted by aberrant ion channels. Therefore, 
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designing therapeutics for targeting or even treating neurodegenerative disorders is a 

challenging problem for the neuroscientist.  

Thus, it is necessary to understand how changes in the functioning of the ion channels 

lead to the development of diseases. In this thesis, the potential role of the ions and ion 

channels in the nervous system is addressed. Moreover, the role of disturbed ion channels 

in a common neurodegenerative disorder, Alzheimer's disease are discussed. 

 

2.2.1 Ion channels and the physiology of membrane 

Ion channels for ions such as potassium, calcium, sodium, and chloride make a passage 

to move through the lipid bilayer. In addition, they regulate various physiological 

functions including, the release of neurotransmitters, electrical conduction in the neurons 

(Lodish, et al., 2000). The ion channels control the four leading roles in membrane 

physiological regulation (Barnett & Larkman, 2007); (Strange, 2004); (Gouaux & 

Mackinnon, 2005): 1- Adjusting the potential of the membrane of cells, which is the 

movement of ions from the membrane. Ion channels determine the resting potential of 

the membrane and create the action potential. 2- Fast transmission of signals, which 

means closing and opening ion channels and creating action potentials. 3- Maintaining 

the electrolyte balance inside and outside the cell membrane to adjust the cell volume. 4- 

Producing regulatory signals in cells. Ion channels generate the signal flow in order to 

create electrical signals which result in the release of intracellular signalling cascades 

associated with neuronal release, hormonal secretion, and muscle contraction. Therefore, 

the study of ion channels will help to improve our understanding of cellular function in 

normal and diseased conditions. 
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2.2.2 Ion channels and brain homeostasis 

Homeostasis refers to stability and balance. This physical process correctly compensates 

for environmental stress to maintain internal consistency. Therefore, homeostasis keeps 

the balance of the body. It is the brain that performs this function. To keep physiological 

balance of the nervous system, appropriate ion channel functions are required. For 

example, retaining the balance of ions among postsynaptic the membrane of neuron. In 

addition, ion penetration through the channels adjusts several processes, including 

synaptic plastic and neural diffusion. Moreover, cell responses to synaptic inputs are 

specified by many ionic channels represented by a particular cell (Kurachi & North, 

2004). Activities of ion channels are adjusted by neurotransmitters. Neurotransmitters 

are involved in regulating the metabolism of the brain (Sohn, 2013); (Madry, et al., 

2010); (Weilinger, et al., 2013). Since ion channels are involved in regulating neuronal 

signalling, therefore, any changes in the structure of the ion channels have harmful results 

on the activity of the neurons. Therefore, increasing the level of intracellular ions 

frustrates the brain homeostasis and result in the development of neurological disorders. 

 

2.2.3 Impact of Ion channels on gap junctions 

Almost all multicellular organisms keep their homeostasis using cellular communication 

and they respond completely differently to any changes in any conditions. This cellular 

connection involves gap junctions. Gap junction is intercellular channel in the certain 

areas in the membrane of nervous cell (Mes¸e, et al., 2006). The channels of gap junctions 

mediate cytoplasmic connections between neurons. These channels prepare a medium 

for forwarding of different ions (Kanno & Loewenstein, 1964) (Lawrence, et al., 1978). 

The communication in gap junction controls many physiological processes like cell 

differentiation, cell synchronization, cell motility, and etc. (Vinken, et al., 2006) (White 
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& Paul, 1999). In a complicated system like the neuronal networks, gap junctions rectify 

electrical coupling upon different neuronal damages. 

 

 

 

Figure 2.12 – Electrically link in neurons. It is formed at a gap junction. Adapted from (Kurachi & North, 2004) 

 

The channels of gap junctions are responsible for the cytoplasmic link between neurons. 

They synchronize their electrical activities and they provide a diffusion pathway for ions 

(Figueroa, et al., 2014). Structural aberrations in the gap-junctional channels have been 

presented in different neurodegenerative diseases especially Alzheimer's disease 

(Mylvaganam, et al., 2014); (Quintanilla, et al., 2012); (Vega, et al., 2013). 

 

2.2.4 Alzheimer’s disease and ion channel hypothesis  

The hypothesis of ion channel first time was suggested by Arispe in 1993. He found that 

Aβ can form unregulated cation-selective channels in the plasma membrane of neurons 

(Arispe, et al., 1993).  Subsequent research showed that Aβ (25-35) inserts into planar 

lipid bilayers (Mirzabekov, et al., 1994). This membrane insertion situates irreversibly 
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along with a broad range of oligomer (Hyunbum, et al., 2013);(Suresh, et al., 2018). It is 

estimated that about 70% of the risk of Alzheimer's disease is genetically related to the 

many genes that are commonly involved (Ballard, et al., 2011). There are other factors 

such as a history of head injuries, hypertension, or depression (Burns & Iliffe, 2009). The 

process of the disease is accompanied by the accumulation of large amounts of plaques 

and tangles in the synaptic spaces (Ballard, et al., 2011). Currently, detection is based on 

the history of the disease and cognitive testing along with medical imaging, as well as 

blood tests (NICE, 2018). Early signs of disease are often mistaken for natural ageing 

but for a definite diagnosis, examination of the tissues of the brain is required (Ballard, 

et al., 2011). There is no treatment to stop or reverse the progress of the disease; however 

some treatments can improve the symptoms temporarily (Burns & Iliffe, 2009). The 

course of the disease can be divided into four separate stages, with a progressive pattern 

of functional and cognition disorders:  

1- Mild cognitive impairment (MCI)  

2-  Early  

3- Moderate  

4- Advanced 

In the early stage, the first symptoms are often mistakenly associated with stress or 

normal ageing. At this stage, very accurate neuropsychological tests can show mild 

cognitive impairments. Although these symptoms are very mild, these early and very 

critical symptoms affect the many activities of everyday life. In the next stages, with the 

deterioration of the disease process, ultimately the patient will not be able to perform 

everyday activities. In the final stages, the patient is entirely dependent on the caregiver. 

Speech will be limited to very simple phrases and ultimately it will lead to a complete 

loss of speech (Frank, 1994).  
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The main cause of Alzheimer's disease is still mostly unknown. However, in 1% to 5% 

of cases with genetic differences have been recognised (Reitz & Mayeux, 2014). On the 

other hand, there are various competing hypotheses which seek to explain the cause of 

Alzheimer's disease. These hypothesises are the genetic, the cholinergic hypothesis, the 

amyloid hypothesis, the tau hypothesis, and the neurovascular hypothesis (Reitz & 

Mayeux, 2014).  

The ion channel hypothesis proposes that the influx of cation ions interrupts cation ion 

homeostasis and finally induces apoptosis in nerve cells. The extracellular deposition of 

Aβ fibrils is not adequate to predict the onset of Alzheimer's disease. Moreover, so far, 

all clinical trials to target the Aβ fibrillization process have broadly failed. However, this 

hypothesis proposes novel molecular targets for Alzheimer's disease therapies and great 

understanding of the mechanism underlying the progression of Alzheimer's disease 

(Hyunbum, et al., 2013). 

The mechanism of action of Aβ ion channel is divided into three parts:  

1- Channel formation, which forms channels permeable to cations.  

2- Ionic leakage, which degrades membrane potential in neurons and rapidly 

disrupts cellular homeostasis.  

3- Mitochondrial pathway of apoptosis which triggers apoptosis through insertion 

in mitochondrial membranes (Kagan, et al., 2002). 

 

2.3 The dynamics of membrane potential 

In recent decades, much has been learned about the behaviour of biological neurons. Due 

to the electrical response of the mechanisms of processing the nerve impulses through 

the neural cells in the CNS, applying extracellular stimulation to affect the activity and 
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the responses of the human nervous system has been extensively explored. Activation of 

sodium channels leads to changes in the membrane potential in around 10^-3 second, and 

this sharp change of voltage causes an action potential. Action potentials are the method 

by which the nervous system receives, analyses, and transfers information. The core 

mathematical framework for advanced biophysically based neural modelling was 

developed half a century ago by Alan Hodgkin and Andrew Huxley.  

Several types of neurons have been studied and modelled e.g. squid axons (Hodgkin & 

Huxley, 1952a), frog (Dodge, 1967), dog (Matsuda, et al., 1958), rabbit (Amthor, et al., 

1984), cat (Ahmed, 1997) and purkinje cell (Raman & Bean, 1999).  The common 

specification of the models is that they are based on the membrane potentials of the cells, 

and the ion channel dynamics, originally formulated by Hodgkin and Huxley.  

There are many models to represent the excitable membrane of the neural cells. Including 

Izhikevich, CRRSS (He, 2005), Frankenhaeuser (FH) and Hodgkin–Huxley (HH) 

(Hodgkin & Huxley, 1952 a), most of which are developed based on the Hodgkin–

Huxley and Frankenhaeuser. The Frankenhaeuser model is based on the cell’s ionic 

permeability, while the Hodgkin–Huxley model is based on the electrical conductance of 

the ion channels of the excitable membrane. While, the Frankenhaeuser model was 

extracted from electrophysiological experiments on the myelinated fibres of the frog 

while that the Hodgkin–Huxley model was achieved by an elegant series of experiments 

on the nerve fibre of a giant squid. The unique feature of the axon of giant squid is its 

remarkable large diameter, is approximately 0.5 mm (He, 2005). This large size of axon 

lets the nerve fibre conduct the action potentials quickly. 

Since this vast diameter of nerve fibres is much thicker than other nervous systems, 

Hodgkin and Huxley were able to study and manipulate their model more easily than 

with other neural cell models. They applied voltage-clamp methods to collect large 
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quantitative experimental results. They presented a system of four-dimensional 

differential equations containing nonlinear functions. This model not only provides 

voltage-clamped experimental data but also is outstandingly successful in simulating the 

responses of action potential. It describes observed phenomena exactly and quantitatively 

analyse the change of currents and voltages on the membrane of cell. The Hodgkin–

Huxley equivalent electrical circuit is shown as follows. It is well known that the 

signals of neurons communication are achieved through electrical potentials. The 

cell membrane of a neuron creates an ionic potential by separating various ions 

across its membrane. Any construct that can separate an electric charge can be 

considered a capacitor, even the lipid bilayer membrane of a neuron. Various ion 

channels are utilized by neurons to maintain a transmembrane ionic gradient, 

which produces electric potential which assumed as a battery. The pumps can be 

described as the electrical properties of a neuron membrane in the physical terms 

of resistors. 

 

 
Figure 2.13 – Equivalent circuit of Hodgkin and Huxley. This circuit is a short segment of squid giant axon. Adapted 

from (Barnett & Larkman, 2007) 
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In general these models take the form 

 

 
𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼 − 𝑓(𝜃, 𝑉̅) 

(2.1) 

 

 

Cm is the capacitance of membrane, I is the current, V is the potential of membrane in 

mV, t is time. The various forms of the mathematical models are based on the structure 

and form of 𝑓(𝜃, 𝑉̅). This term is a function of (a) the probabilities of opening and closing 

of an ion channel, (b) the conductivity of the ion channel and (c) the potential difference 

between the membrane and the ion channel (given by V). In general, 𝑓(𝜃, 𝑉̅) is an 

algebraic sum of the currents associated with the various ion channels, and thus for a 

specific ion, i, this would take the form 

 

 𝑓𝑖 (𝜃𝑖 , 𝑉𝑖) = 𝑔𝑖(𝑉 − 𝑉𝑖̅) (2.2) 

 

 (𝜃, 𝑉̅) =  ∑ 𝑓𝑖 = ∑ 𝑔𝑖(𝑉 − 𝑉𝑖̅𝑖𝑖  ) (2.3) 

 

 

The variables gi are functions of the probabilities of the opening and closing of channels, 

and the conductance of that particular channel. (𝜃, 𝑉̅) is an algebraic sum of the currents 

associated with the various ion channels. The membrane potential dynamics around the 

activation and deactivation of the channels. Thus if the neuron dynamics are restricted to 

sodium and potassium channels, these become 
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 𝑑𝑛

𝑑𝑡
=  𝛼𝑛(𝑉)(1 − 𝑛) − 𝛽𝑛(𝑉)𝑛 

(2.4) 

   

 𝑑𝑚

𝑑𝑡
=  𝛼𝑚(𝑉)(1 − 𝑚) − 𝛽𝑚(𝑉)𝑚 

(2.5) 

   

 𝑑ℎ

𝑑𝑡
=  𝛼ℎ(𝑉)(1 − ℎ) − 𝛽ℎ(𝑉)ℎ 

(2.6) 

   

 

 

Where n, m, h (with range between 0 and 1) are representations of the properties of the 

open and closed channels for the different ions. Thus the membrane potential based 

model takes the form 

 

𝑑𝑉

𝑑𝑡
=  𝐼𝑖𝑛𝑗 +∑𝑔𝑖

𝑁

𝑖=1

𝜓𝑖(𝑦𝑖)(𝑉 − 𝑉𝑖) 
(2.7) 

 

 

where 𝜓 are given by n, m, h. 

This model, based on the Hodgkin-Huxley membrane dynamics, essentially describes 

the time behaviour of the intracellular membrane potential and the currents through the 

channels. For the channels under consideration, the parameters given in (2.4) to (2.6) are 

given by the following  

 

αn(V) =  
0.01 (V + 55)

1 − exp[−(V + 55)/10]
 

(2.8) 

 

βn(V) = 1.125ex p [−
V + 65

80
] 

(2.9) 

 

αm(V) =
0.01 (V + 40)

1 − exp[−(V + 40)/10]
 

(2.10) 

 

βm(V)=4exp [−(V + 65)/18] (2.11) 
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αh(V) = 0.07exp [−(V + 65)/20] (2.12) 

 

βh(V) =
1

1 + exp[−(V + 35)/10]
 

(2.13) 

 

 

Based on the relationships between permeability and conductance within the neuron 

(Hodgkin & Huxley, 1952a), the following can be obtained for the current generated 

within a particular ion channel: 

 

𝐼𝑖𝑜𝑛 = 𝑔𝑖𝑜𝑛. (𝑉𝑚 − 𝑉𝑖𝑜𝑛) (2.14) 

 

 

Therefore, the three states, for sodium, potassium and leakage are given by the following 

algebraic equations: 

 

𝐼𝑁𝑎 = 𝑔𝑁𝑎𝑚
3ℎ(𝑉 − 𝑉𝑁𝑎) (2.15) 

 

𝐼𝐾 = 𝑔𝐾𝑛
4(𝑉 − 𝑉𝐾) (2.16) 

 

𝐼𝐿 = 𝑔𝐿(𝑉 − 𝑉𝐿) (2.17) 

 

 

These equations represent a time-invariant system. In these equations, 𝑉 is the trans-

membrane potential. Iinj is the sum of external and synaptic currents. INa is the current in 

the sodium channel, Ik in the potassium, IL is the leakage current. 0 ≤ 𝑚 ≤ 1 and 0 ≤ ℎ ≤ 

1 are the gating variables indicating inactivation and activation of sodium ion current, 

respectively. 0 ≤ 𝑛 ≤ 1 is the gating variable showing activation of potassium ion current. 

𝑔Na, 𝑔K, and 𝑔𝑙 represent the maximal conductance of corresponding currents. 𝐶𝑚 = 1.0 
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𝜇F/cm2 is membrane capacitance. Iinj is the current injected into the neuron. VNa and VK 

are the equilibrium potentials for the sodium ions and potassium ions. For channels that 

transfer a single type of ion, the potential of equilibrium can be computed easily. This 

equilibrium potential point has a direct relation with the ionic species, and it can be given 

by the Nernst equation. This equation can be used to predict the membrane voltage of a 

cell in which the plasma membrane is permeable to only one ion only. 

 

𝑉𝑖𝑜𝑛 = 
𝑅𝑇

𝑧𝐹
ln
[𝐶]𝑜
[𝐶]𝑖

 
(2.18) 

 

 

where V is the potential for both sodium and potassium which measured in volts. R is the 

universal gas constant which is 8.314 joules·K−1·mol−1, T is the temperature measured in 

Kelvins K◦ = 273.16+C◦; F is the Faraday constant which is 96,485·mol−1 or J·V−1·mol−1 

; z is the valence of the ion i.e. for Na+, z = 1 and K+, z = -1; and [C]i and [C]o are 

concentrations of the ions inside  and outside the cell, respectively.  In equilibrium, the 

Nernst potentials of all the diffusing ionic species are the same and equal to the 

membrane potential. By internal and external ion concentrations, equation (2.18) and its 

properties it is easy to calculate the sodium, potassium and leakage potential at 

equilibrium point (i.e. VNa, VK and VL). This study supposes VNa =50 mV, VK=-71 mV, 

VL=-51 mV. The ions concentration at the equilibrium point can be calculated by equation 

(2.14). This study supposes 𝑔Na = 120 mS/cm2, 𝑔K = 36mS/cm2, and 𝑔𝑙 = 0.3 mS/cm2, 

which are the ideal experimental data.  

The Hodgkin-Huxley model is a phenomenological model of the generation of action 

potentials in neurons as a function of current injection or stimulus. The Hodgkin-Huxley 

model has a broad range of applications, for example, study of the impacts of ion 
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imbalances on a single neuron and its influences on synchronization in coupled neurons. 

The original Hodgkin-Huxley equations is a system with two channels, corresponding to 

Na+ and K+ ions and three gating variables for activation and inactivation for sodium and 

potassium ion currents. 

 

2.4 Coupling and synchronization phenomena 

Synchronization is effective in several fields of science. Generally, synchronization 

phenomenon is an adjustment of rhythms of oscillating objects because of their very 

weak interaction (Pikovsky, et al., 2003). Seventeenth-century, Christiaan Huygens first 

discovered the synchronization phenomenon (Pikovsky, et al., 2003). Huygens found that 

a couple of pendulum hanging from a common support area had synchronized. He 

observed that the oscillations of the pendulums coincided perfectly and they always 

moved in opposite directions. This discovery had a high impact on science and increased 

the accuracy of time. He discovered that the compatibility of the rhythms of the two 

pendulums was created by the invisible motion of the beam. What is really critical is that 

each pendulum moves through the supporting structure to the other pendulum. It means 

that both pendulums can feel each other. This phenomenon would mean that the clocks 

were synchronized because of coupling through the beam. 

Suppose that there are two no identical pendulums that interact weakly and are not 

independent and have different oscillation periods. Assume that the two pendulums are 

fixed on a common support, and it is not a rigid beam. Experiments prove that even a 

loose action can synchronize both pendulums. Then this coupling adjusts their rhythms 

so they begin to oscillate with a common period. In general, the phenomenon is explained 

in terms of coincidence of different frequencies. 
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2.4.1 Synchronization in the neural system   

The brain of human is the most complex system has been known. This system contains 

about 100 billion neurons that cooperate with a very complex complexity. In this project, 

the brain has been imagined as a physical system. This project, studies the neural network 

behaviour in the face of ionic imbalance. Neurons are nonlinear dynamical systems. They 

are able to transmit information between neurons by generating signals. An observable 

empirical phenomenon is the synchronization between the "firing" of neurons. It is now 

widely believed that correlation between spike trains plays a significant role in brain 

function. Synchronization is an essential mechanism that explains how our complex brain 

solves the problem. However, it should be noted that synchronization among a wide 

group of nervous cells can be harmful to healthy behaviour. For example, it is believed 

that tremor in Parkinson’s or epileptic seizures is caused by such a mechanism. However, 

understanding the concept of synchronization and desynchronization is a major concern 

in modern brain research. 

 

2.4.2 Synchronization of two coupled neurons 

The Chapter 4 will analyse the synchronization phenomenon in systems of coupled 

neurons. The synchronization between the two self-excited oscillatory systems is a 

classical problem in synchronization theory. For coupled neurons in a relaxation regime, 

mutual synchronization of two coupled cells was investigated as well. Although the issue 

of coupled oscillators was studied in the first of the twentieth century, various new studies 

demonstrate a serious interest in many open issues on this subject (Osipov, et al., 2007).  
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2.5 Fault Detection 

As the complexity of a system increases, the application of fault diagnosis methods to 

ensure tolerance to faults and reconfiguration becomes important (Isermann, 2005); 

(Poon, et al., 2017). The fault is the primary cause of changes in the structure or 

parameters of the system which finally leads to degraded system performance or even 

the loss of the system function. A fault is any external or internal event which changes 

the behaviour of a system, such that the system can no longer satisfy its purpose. In large 

systems, each component is designed to perform a particular function and the whole 

system works adequately only if all elements provide the service for which they are 

designed. Hence, a fault in a single component typically changes the performance of the 

whole system. To avoid any damage in the system, faults have to be found as soon as 

possible, and all decisions that stop the propagation of fault effects have to be made. 

These actions can be performed by control equipment, whose purpose is to make the 

system fault tolerant. In the case of success, the system function is satisfied also after the 

appearance of a fault, possibly after a short period of degraded performance. The control 

algorithm adapts to the faulty plant, and the overall system satisfies its function again. 

Generally, a fault in a dynamical system is a deviation of the system structure or the 

system parameters from the normal situation. In all these circumstances, the set of 

interacting components is changed by the fault. All these faults yield deviations of the 

dynamical input/output (I/O) properties of the plant from the normal ones and, hence, 

change the performance of the closed-loop system, which further results in a degradation 

or even a loss of the system function. 

In statistics, an observation point which is distinct from other views is called an outlier 

(Grubbs, 1969).  In data mining, the identification of observations that do not conform to 
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an expected pattern in the dataset is called outlier detection (or anomaly detection) 

(Chandola, et al., 2009).  
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Researchers have purposed different concepts from several fields such as statistics, 

machine learning, data mining, spectral theory, and information theory. They have 

applied them to particular problem formulations. An anomalous observations can be 

applied to various problems such as a structural defect, medical conditions, finding errors 

in text, bank fraud, etc.  

One such concept is abnormal event management (AEM), an execution flow that 

diagnoses and corrects abnormal conditions of faults in a process which requires accurate 

fault diagnosis and also a complete supporting system for making the right decisions. 

Another related concept is fault detection. Fault detection ensures continual acceptable 

function of a system when a fault occurs through fault detection. Fault detection also 

provides controller reconfiguration in response to the particular fault after detection. 

Fault detection makes a binary decision as to whether something has gone wrong or is 

operating normally, determining the location and nature of the fault. Specifically, fault 

detection techniques take advantage of the concept of redundancy which can be divided 

into two kinds. They are analytical redundancy and hardware redundancy. 

 

There are many kinds of classifications of fault detection in the literature, (Hwang, et al., 

2010); (Hodge & Austin, 2004); (Chandola, et al., 2009); (Isermann & Balle, 1997); 

(Venkatasubramaniana, et al., 2003); (Kleer & Williams, 1987), but this research need to 

summarise the models in order to choose a correct direction. The suggested classification 

of diagnostic methods is presented as Table 2.1. In this classification, fault detection 

methods are divided into two types: system model based methods (or Control Model-

Based) and data model based methods (or Artificial Intelligence Model-Based). 

Detecting faults in a system using a system model based methods is divided into two 
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categories, signal model and system model. On the other hand, there are data model based 

methods that deal with faults and outliers by two methods quantitative and qualitative 

models.  

 

2.5.1 Generation of residuals for fault detection 

The most recent fault detection methods apply system models for producing residuals 

(Korbicz, et al., 2012). A diagram for fault detection using residual generation is shown 

in Figure 2.16. The process of fault detection using this method consists of two parts. 

 

 

 

Figure 2.14 – Fault diagnostic diagram using residual generation 

 

 

In the first part, the residual value is generated according to a model of the system and in 

the second part the value is defined and finally, the diagnostic signal is produced by the 

algorithm. The residuals can be calculated as follows: 

1. The measured value obtained by using the difference between a process variable 

and its value estimated based on the model. 

2. The measured value obtained by using the difference between the right-hand and 

the left-hand sides of the system equation (Frank, 1990). 

Residual generation 
Residual value 

evaluation Residual Variables 
Diagnostic signal 
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3. The measured value obtained by using the difference between estimated and 

nominal values of the parameter of the model. 

Among the group of analytical methods used for detection of faults, the following 

diagnostics can be obtained (Korbicz, et al., 2012): 

1- Diagnosis using physical models 

2- Diagnosis using linear input-output-type models 

3- Diagnosis using state observers or Kalman filters 

4- Diagnosis using online based identification  

Residual generation methods and the algorithms for the evaluation the value of residual 

to making a decision on fault detection are briefly explained below.  

There are several methods for residual generation. These methods are as follows: 

1- Residual generation based on physical equations 

2- Residual generation based on system transmittance 

3- Residual generation based on state equations 

4- Residual generation based on state observers 

5- Residual generation based on neural and fuzzy models 

As this project has been used residual generation based on state observers this method is 

described in the below.  

 

2.5.1.1 Residual generation based on state observers 

Residual generation techniques based on Luenberger observers were developed by Clark 

(Clark, 1978), Frank (Frank, 1990) and Patton (Patton & Chen, 1993). In this technique, 

the output signal of the observer is compared with the real signal. The difference is 

considered as the residual (see Figure 2.15). 
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Figure 2.15 – Fault detection using state observer 

 

 

Use of observers in order to generate residuals has a wide range of applications from 

typical observer to automatic control and its task is the recreation of immeasurable state 

variables, not output signals. In the classical of residual generation, the system output is 

approximated based on the input signals (Korbicz, et al., 2012). In addition to input 

signals, measurable outputs are also applied by the observer to estimate outputs. An 

important idea in using observers is applying feedback from the difference between the 

estimated outputs and real outputs of the system in order to improve of the model by 

defining a suitable feedback matrix like H. Feedback is needed to compensate different 

initial conditions and to stabilize the observer of unstable systems. The observer 

guarantees estimation error convergence to zero for any initial conditions. 
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2.5.1.2 Algorithms for deciding on fault detection using the evaluation of the residual 

values 

Each fault detection algorithm contains a decision section in which the evaluation of the 

residual value takes place and the decision to detect the fault is made with the possible 

indication of the event in the form of an alarm. The simplest and most widely used 

decision algorithm is the comparison of the absolute residual value with its threshold 

value (Korbicz, et al., 2012). A diagnostic signal like d takes the value "1" if the threshold 

value T has been exceeded and it means the fault symptom is detected. 

 

𝑑(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗) {
0 𝑖𝑓 |𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗| ≤ 𝑇

1 𝑖𝑓 |𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗| > 𝑇
 

 

 

(2.19) 

2.6 Summary 

The neuron forms an important unit of the nervous system, so its understanding is 

significant for neural processing. The reaction of a neuron to external stimulation is in 

the form of spikes. The spikes present the basis of neuronal functions and activities. It is 

thought that the train of spikes plays an important role in neural processing. A neuron 

can be classified into three parts:  

1- The soma 

2- The axon 

3- The dendrites   

There is a synaptic transmission which occurs due to the release and binding of 

neurotransmitters. These neurotransmitters release between the pre-synaptic and post-

synaptic neurons which causes the neuron to generate spike. The study of 

neurophysiology showed that this electrical activity is due to the movement of charge 
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across the neuron plasma membrane. This flow in the membrane of a neuron is due to 

the ions that act as carriers of charge. 

A number of different types of neurons have been studied and modelled.  The common 

feature of these models is that they are based on the membrane potentials of the cells, 

and the ion channel dynamics, originally formulated by Hodgkin and Huxley. There are 

many models to represent the excitable membrane of the neural cells and most of which 

are developed based on the Hodgkin–Huxley. The Hodgkin–Huxley model is based on 

the electrical conductance of the ion channels of the excitable membrane.  

The coupling and synchronization phenomena have discussed in this chapter as well. 

Synchronization is an adjustment of rhythms of oscillating objects because of their weak 

interaction. These phenomena occur in the neural activities when two neurons are 

coupled with each other and have interactions.  

The concept of fault was also discussed in this chapter. A fault is an internal or external 

event which changes the behavior of a system, such that the system can no longer satisfy 

its purpose. The faults are the primary cause of changes in the parameters of the system 

which finally leads to degrade the performance of system or in some condition the loss 

of the system function. Since neurodegenerative diseases are a dysfunction in the 

function of neurons, it can be interpreted as a fault in the neuron.  
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3 The role of ion gradients in signal 

generation in neurons 

3.1 Introduction 

Description of a system using mathematical concepts and language called a mathematical 

model (Melnik, 2015). Applying the mathematical models in the experimental analysis 

has increased in recent years and they have many advantages (Mazur, 2006). Meanwhile, 

computational modelling is applying the mathematical model to computational science 

which needs considerable computational resources to investigate the behaviour of a 

complex system with a simulation (Melnik, 2015). Basically, models can be categorized 

into several classes. First of all, a model can be static or dynamic (Winkler, 2014). The 

static model defines the structure of a distributed parameter system which means that the 

system describes it in a specific time instant. In contrast, a dynamic model describing the 

behaviour of a system over time. This kind of model is applied when the behaviour of a 

system described as a set of conditions and this conditions occur in the sequences 

(Kemmetmüller, 2008). The mathematical equations of a model divide to linear and non-

linear. Research activities in the field of nonlinear models are very important, as the more 

demanding performance required in practical applications. Moreover, in the real world, 

the majority of systems are nonlinear in nature (Kugi, 2001). This chapter applied 

neuronal mathematical modelling along with computational modelling to investigate the 

electrolyte dysfunction following ionic channels disease. 



 72 

Electrolyte dysfunctions cause abnormal electrical conduction in the excitable cells of 

the heart and in general the nervous system.  These disorders can result in neurologic 

impairment and extreme cases cause death as a result of osmotic demyelination (Bacak, 

et al., 2016). Of the many electrolytes present in these cells, sodium (Na+) and potassium 

(K+) are two essential electrolytes which play a role in the generation of synaptic signals. 

Since the first publication of a neurone model (Huxley, 1952a), some simulated studies 

have been carried out investigating the various properties of the neurones. These studies 

range from modelling of potassium in the cells (Jensen, 2012); ion channels (E. 

Schneidman, 1998) (Izhikevich, 2003), the effect of noise on the dynamic behaviour 

(Kang, et al., 2016). The key elements of these studies are based on the initial Hodgkin-

Huxley model (LuWang, et al., 2016) (Mahmud & Vassanelli, 2016) (Brette, 2007), and 

the simulation of both the neurone and spiking neurones which are a simplified version 

(Izhikevich, 2003) (Brette, 2007) (Nygren, 1998). However, most of these studies, often 

separate ion imbalances from other effects and often do not investigate the combined 

effect of ion imbalances.  

The advantage of using a Hodgkin–Huxley model is that the dynamics are fast, and also 

it is a phenomenological model of action potential generation in nerve cells as a function 

of a given current stimulus. In this chapter, using the Hodgkin-Huxley model, the 

electrolyte imbalances are investigated from the tremors and seizures point of view. A 

result of this study is to determine if there is a limiting point that is a point beyond which 

there is no response to the stimulus.  At the same time, an investigation is carried out to 

determine the combinatorial effect of ion imbalances. The simulation studies show that 

the change in response is such that both the inter-spike interval and magnitude of the 

spikes change. These changes are different when a single ion imbalance occurs, and when 

combined ion changes occur it will be seen that the response is similar to the response 
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when there is an imbalance in the potassium ion.  An important consequence of these 

imbalances is that the responses of individual cells, when combined, are reflected in the 

manner in which muscles respond signals from the brain or external stimulation.   

Understanding the mechanisms underlying this type of the response of a neurone could 

contribute to early detection or even the treatment of some neural deterioration diseases 

and further promote the clinical application. Simulation analysis of ion channels using 

computer models gives some tools to uncover the potential unknown causes of ion 

channels related diseases and may help to design new experiments to further 

improvement or even curing. In this regard, recent research findings indicate that it may 

be possible to target the certain ion channel that drives specific disease and providing an 

illustration of the impact of the Hodgkin–Huxley model in the clinical domain (Waxman, 

2012). So, it will be increasingly beneficial for clinical scientists to keep in touch with 

biologists who studies on ion channels. 

 

3.2 Ion channels for generating signal 

In the nervous system, action potential and consequently, membrane potential is 

regulated by the voltage-gated sodium and potassium channels during a neuronal action 

potential. Sodium and potassium ions are responsible for the generation of the action 

potential in the neurone. The nervous system consists of a vast number of interconnected 

neurones, which transmit signals using ion channels to generate potentials across 

membranes. As a result, the chain of neurones is activated by electrical signals generated 

at various points. When a stimulus occurs, the activation of the neurone results in an 

internal change in concentration of the ions. These changes lead to a membrane voltage, 

which is dependent on the threshold for the particular cell. The first stage in this change 

is known as depolarization after which an action potential is triggered (Frohlich & 



 74 

Jezernik, 2005). In response to depolarization in transmembrane voltage, ion channels 

allow an inward flow of sodium ions. As a result of these changes the electrochemical 

gradient, which in turn produces a further rise in the membrane potential. It then makes 

more channels to open and to generate further electric current throughout cell membrane. 

The firing process continues as long as all of the existing ion channels are open. Therefore 

a significant expansion is caused in membrane potential. The mentioned process 

proceeds, explosively until all of the available ion channels are open, and thus significant 

increase is due to membrane potential. The rapid influx of sodium ions causes ion 

channels rapidly inactivate because it reverses the polarity of the membrane. When a 

stimulus occurs, the sodium channels open, which results in the depolarization and an 

increase in membrane potential. The rate of depolarization is dependent on the difference 

in sodium concentration both inside and outside the cell. The magnitude of the response 

is also dependent on the concentration of these ions. The second stage occurs when the 

sodium channels close (Chappell & Payne, 2016). As a result, sodium ions can no longer 

enter the neurone, and then they are transported back out of the membrane. Then the 

potassium ions effect the remainder of the response (Chappell & Payne, 2016). By 

activation of potassium channels and outward current of potassium ions, the 

electrochemical gradient returns to the resting state. 

 

3.3 Build the computational model  

As most models of neurones are phenomenological in that they often model flows of 

currents through, an ideal yet realistic representation of these neurones in the Hodgkin-

Huxley model. Here the flow of currents through ion-selective channels in the neural 

membrane allows us to investigate the effect of changes in the concentrations of various 

ions in the neurone. In this model, action potentials are generated as a function of current 
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injection or stimulus. Hodgkin-Huxley model has a broad range of clinical applications, 

for example, in the study on impacts of electrolyte diseases on nervous system using ion 

channels and different ion concentrations.  Another key feature of this model is that it 

also describes the time behaviour of the intracellular membrane potential and the currents 

through potassium (K+) and sodium (Na+) channels. As a result, it allows for an accurate 

explanation of the observed phenomena and enables the quantitative analysis of the 

effects of change of voltages and currents on the nerve cell membrane. The model 

consists of the four equations (2.4), (2.5), (2.6), and (2.7). The three states presented by 

the algebraic equations in the equations (2.15), (2.16), and (2.17). Where the nonlinear 

functions of V are as equations (2.8), (2.9), (2.10), (2.11), (2.12), and (2.13).  

 

3.4 Ion gradient and potential 

Currents are generated when ions flow across a membrane, from the higher concentration 

to the lower concentration. In other words when there is a concentration gradient. This 

process makes a voltage across the membrane that opposes the motion of ions. The flow 

of ions stops when the voltage reaches an equilibrium value. This process is usually 

called electrochemical gradient. A key element of this study is to investigate the effect 

of changing ion concentrations. These concentrations affect both the currents and the 

voltages in the model. The effect of the concentration of the ions on the voltages is given 

by the Nernst equation (Rossetto, 2016) and are as follows. 

 

 
𝑉𝑁𝑎+ = 

𝑅𝑇

𝑧𝐹
ln
[𝑁𝑎+]𝑜
[𝑁𝑎+]𝑖

 

 

 

(3.1) 

 
𝑉𝐾+ = 

𝑅𝑇

𝑧𝐹
ln
[𝐾+]𝑜
[𝐾+]𝑖

 
(3.2) 
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V is the potential for both sodium and potassium which measured in volts. R is the 

universal gas constant which is 8.314 joules·K−1·mol−1, T is the temperature measured in 

Kelvins; z is the number of elementary charges of the ion; Faraday constant F is 

96,485·mol−1 or J·V−1·mol−1. The extracellular concentration of potassium is [K+]o 

which measured in mol·m−3 or mmol·l−1. Intracellular concentration of sodium is [Na+]i . 

Extracellular concentration of sodium is [Na+]o which measured in mol·m−3 or mmol·l−1. 

[K+]i is the intracellular concentration of potassium. Therefore, increasing / decreasing 

the V, has direct relation with increasing/decreasing the [𝑁𝑎+]𝑜 and [𝐾+]𝑜. 

Hypernatremia (hyponatremia) and hyperkalemia (hypokalemia) are a high (low) serum 

sodium and potassium levels, respectively, so changing the potential of sodium and 

potassium means changing the [𝑁𝑎+]𝑜 and [𝐾+]𝑜  as  in equations (3-1) and (3-2)  

[𝑁𝑎+]𝑜, [𝐾+]𝑜 have direct relation to 𝑉𝑁𝑎+ and 𝑉𝐾+. 

 

3.5 Simulation 

As mentioned above, the Hodgkin-Huxley model can be used to simulate and study the 

impact of electrolyte imbalances on the nervous system. In this project, this is carried out 

using the ode45 algorithm.  The accuracy provided by this method is one of the main 

reasons for its use in the simulation of neurones, more specifically the Hodgkin-Huxley 

neurone (Dormand & Prince, 1980). Ode45 is based on an explicit Runge-Kutta method, 

and is essentially a one-step solver, in other words, it needs the numerical solution at the 

time, y ( tn−1 ) to determine y (tn). 

Two sets of experiments have been carried out. In the first set, an assessment of effect 

different single ion concentrations is made. The second set of experiments the 

combinatorial effect of different ion concentrations is studied. In general, the outputs of 

neurones are a set of spikes over a period of time, and a spike train can be characterised 
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by both the intervals between spikes, and the magnitude of the spikes (Sarangdhar & 

Kambhampati, 2008) (Sarangdhar & Kambhampati, 2011). Thus the analysis and 

assessment carry out in this project, is based on the changes in the mean interspike 

intervals and mean of the magnitude of the spikes trains. 

One of the key findings is that often the neurone responds in a zero stimulus condition 

when there is a particular concentration of ions present in the cell. This is a phenomenon 

seen in everyday situations; there is the tremor in the muscles even when there is no 

stimulus (Ha, et al., 2016). This then enables a proper analysis of the neuronal responses 

under a variety of different situations. Thus the stimulus current is not applied for the 

first 50 seconds of all tests. 

 

3.6 Results 

Figure 3.1 shows the responses of the neurone for the nominal set of values mentioned 

earlier. It can be seen that there is no response between 0 second and 50 seconds, and 

then once the external stimulus is applied the neurone response. There is no response 

between 0 second and 50 seconds to consider the behaviour of system during the non-

stimulating time. It can be seen that the response is a series of spikes, which have two 

characteristics, one is the magnitude of the spike and the other is the time between spikes, 

known as the inter-spike interval. This response is taken to the ideal response, and all 

comparisons are made to this response. The comparison is carried out for four different 

electrolyte diseases, i.e., hypernatremia, hyponatremia, hyperkalaemia, and 

hypokalaemia and combinations there off. 
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Figure 3.1 – The running of experiments for three neurones without any changes. All three graphs have been overlapped. VNa=50 

mV, VK= -71 mV. 

 

3.6.1 Changes in sodium ion concentration 

The first set of results show the responses of the neurone to different levels of sodium 

ion concentrations in the neurone. The values were changed so that both Hyper and 

Hyponatremia are present. These are shown in Figure 3.2 below. The nominal values for 

VNa=50 mV, VK= -71 mV which its result is presented in Figure 3.2. The sodium 

potential was changed in stages from 80 mV to 2o mV, with the nominal value of 50 mV 

being the median value. The graphs show the responses the nominal values in Figure 3.1 

and those for the different value of sodium Figure 3.2. It can be seen that as the sodium 

ion concentration is increased from its nominal value, the magnitudes of the spikes 

increase, while the inter-spike interval is reduced. In other words, neurone responds with 

larger spikes at a more rapid rate. As the sodium concentration is decreased, it can be 

seen that the magnitude of the spikes is suppressed to a point where there is no response 

from the neurone.   
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Figure 3.2 – Sodium changes and the responses of neurone in the course of hypernatremia and hyponatremia. The 

potassium value for all of these experiments remained as normal, VK= -71. 
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3.6.2 Changes in potassium concentration 

A similar set of results were obtained for the potassium ion concentration. These are 

shown in Figure 3.3. In the experiments, the effect of changes in potassium ion 

concentrations is more pronounced. Both a little increase and decrease in potassium ion 

concentration leads to no responses from the neurone. Thus, when VK is – 51 mV the 

magnitude of the spikes is zero, and there is no discernible interspike interval. A similar 

situation arises when VK is below -76 mV. It should be noted that these values are not 

that far from the nominal values of potassium which is -71 mV. This indicates that the 

neurone is more sensitive to potassium ion changes than to sodium ion changes. Of 

course, the limits of these ranges can change if the parameters of the neurone are 

modified.  

Deficiency of potassium typically occurs when the body loses a lot of fluid. Common 

signs and symptoms of potassium deficiency include weakness and fatigue, muscle 

cramps, muscle aches and stiffness, tingles and numbness, heart palpitations, breathing 

difficulties, digestive symptoms and mood changes. Signs of a potassium overdose 

include muscle weakness or paralysis, irregular heartbeat, confusion, tingling sensation 

in the limbs, low blood pressure, and coma. 

 

3.6.3 Combination of changes 

The next set of results is meant to changes combination of sodium and potassium in a 

single neurone. To investigate this particular situation, two different comparisons were 

carried out. In the first part, the sodium potential was changed at different stages from 61 

mV to 41 mV and the potassium potential was decreased from -61 mV to -81 mV, stage 

by stage. These results are shown in Figure 3.4 and Figure 3.5 below. From the results in 

these figures, it is apparent that the still it is clear that the both sodium and potassium 
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changes at the same time affected almost every element of the action potentials, i.e. 

interspike interval and magnitude of the spikes. Results from these two figures can be 

compared with the results in Figure 3.2 and Figure 3.3 which shows when combined ion 

changes occur in the neurone it can be seen that the response is similar to the response 

when there is an imbalance in the potassium ion. 

 



 82 

 

Figure 3.3 – Potassium changes and the responses of neurones in the course of hyperkalaemia and hypokalemia. The 

sodium value for all of these experiments remained as normal, VNa =50. 
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Figure 3.4 – Sodium and potassium changes and the responses of neurones in the course of hypernatremia-

hyperkalaemia and hyponatremia- hypokalaemia. 
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Figure 3.5 – Sodium and potassium changes and the responses of neurones in the course of hyponatremia-

hyperkalaemia hypernatremia-hypokalaemia. 
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3.7 Analysis of the responses  

The results of these experiments show that there is a significant relationship between 

sodium and potassium changes and the level of the action potential and resting potential. 

As mentioned earlier the concentrations of both potassium and sodium ions determine 

the characteristic of the spike train (Chappell & Payne, 2016). The results for the various 

values of potassium and sodium and their combinations are shown in Tables (3.1) – (3.4). 

These tables show both the mean interspike intervals and the average magnitudes of the 

spikes trains. 

From these results, it can be seen that although the magnitude of the spikes increases 

with an increase in sodium ion concentration, there is no proportional change in the 

resting response of the neurone. Another feature is that the rate at which spikes are 

generated increases, which is the interspike interval is reduced. This is in line with the 

common perception that sodium increase the rates of responses of neurones, and is often 

reflected in the way the heart rate changes with sodium (Walkowska, 2016). On the other 

hand for changes in potassium, it can be seen that there is a change in the resting response 

of the neurone. The resting potential is reduced at the same time, the magnitude of the 

spikes increases and then decreases and the interspike interval increases with an increase 

in potassium ion concentration. Again this is in line with a feature seen in neurones, 

where potassium causes weak responses in muscles as its concentration changes 

(Gijsbersa, et al., 2016). These results are summarised in Table 3.2. 

The impressive set of results occurs when both sodium and potassium are changing. 

These can be seen in Tables 3.3 and 3.4. What can be seen is that potassium ion 

concentrations dominate the responses, even when sodium concentrations change. 

Indeed, when sodium is low, it would be natural to expect a result which would reflect 

low sodium. However, the potassium ion dominates the nature of the response across all 
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the ranges. Even an increase in sodium is not reflected in the resting response of the 

neurone. At the same time, higher levels of both sodium and potassium indicate that the 

interspike interval is smaller than at the opposite end. 

 

3.8 Discussion 

The results in the previous sections can be summarised in the following figures (See 

Figure 3.6 - Figure 3.8). The interesting feature of the results is to see the combined effect 

of the concentrations of the two ions in the neurone. The results of the project, show the 

responses of a neurone when imbalances in both sodium and potassium occur. This 

should help, in the understanding of neuronal disorders e.g. tremors, motor neurone 

disease, amongst others. The reason for this is that intracellular and extracellular 

potassium and sodium concentrations play a vital role in the electrophysiological 

function of the body and neurones that control it.  These ions are essential in maintaining 

cellular homoeostasis, and most metabolic processes are dependent on or affected by 

these electrolytes (Chappell & Payne, 2016). 

The results show that the resting membrane potential of a neurone is dominated by the 

concentration of the potassium ion, and thus the potassium concentration gradient across 

the membrane (see equations (3.1), (3.2)). The results also show that when both the 

sodium potential and the potassium potential change simultaneously, the membrane 

experiences slightly stronger changes in resting potential (see Table 3.4). The results 

obtained from the hypernatremia and hyponatremia in Table 1 shows slight changes in 

resting potential with hypernatremia and hyponatremia. Therefore, changes in sodium 

ion concentration have a relatively minor effect on the resting potential. As the membrane 

of the resting neurone is more permeable to potassium than to any of the other ions 

present, and on the other hand, there is more potassium inside the neurone than outside, 



 87 

so this results can be acceptable. It is worth mentioning that the selective permeability to 

potassium is caused by potassium permeable membrane channels that are open in resting 

neurones. The results can be summarised as shown in Figure 3.6. Both the peak 

magnitude and the interspike intervals are dependent on polarisation and depolarising 

characteristics of the action potential and ion concentrations. These are now summarised 

in Figure 3.6 - Figure 3.8. 

The chapter presented results which indicate that responses to changes in the ion 

concentrations can be simulated. These results and the ability to represent changes in ion 

concentrations and the gradients across membranes will help in developing models for 

more complex networks of neurones. Such simulations would be of help in studying the 

physiological effect of ion concentration changes (which could be a reflection of diets). 

Such studies will assist in the development of an artificial human brain, and also increase 

our insight into various neuronal disorders, without the need of physical specimens. 

Ideally, these type of models would present an alternative to studying on some diseases 

process and increasing therapeutic efficiency or reducing the risk of side effects of drugs 

without any aggressive action on the human. In the future, it would be crucial to 

developing computational models to study diseases like Alzheimer’s disease (AD). 
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VNa VK Average of interspike intervals Average of spike amplitude Average of resting potential 

37 -71 14.8758 10.5017 -63.147 

39 -71 14.6256 12.7988 -63.0698 

41 -71 14.419 14.9694 -62.9902 

43 -71 14.2437 17.0482 -62.9082 

45 -71 14.0917 19.0959 -62.8236 

47 -71 13.9576 21.0912 -62.7366 

49 -71 13.8381 23.0628 -62.647 

51 -71 13.7303 24.9737 -62.5314 

53 -71 13.6328 26.9014 -62.4066 

55 -71 13.5434 28.7872 -62.2764 

57 -71 13.4618 30.6524 -62.1405 

59 -71 13.386 32.5133 -61.9995 

61 -71 13.316 34.3568 -61.8532 

63 -71 13.2507 36.2006 -61.7031 

65 -71 13.1902 38.0149 -61.5476 

67 -71 13.1332 39.8285 -61.3425 

Table 3.1 – The average of interspike intervals, spike amplitude and resting potential for sodium changes 
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VK VNa average of interspike intervals Average of spike amplitude Average of resting potential 

-54 51 8.9409 -29.4676 -43.4319 

-56 51 9.429 -20.1778 -45.7897 

-58 51 10.0725 -10.8664 -48.2264 

-60 51 10.7669 -2.0199 -50.6534 

-62 51 11.4796 5.4973 -53.0263 

-64 51 12.1655 11.8297 -55.3149 

-66 51 12.7091 16.7945 -57.5069 

-68 51 13.1191 20.5768 -59.5972 

-71 51 13.7303 24.9737 -62.5314 

-73 51 14.0605 27.1349 -64.3668 

-75 51 14.3446 28.8061 -66.1146 

-77 51 14.6 30.101 -67.7798 

-79 51 14.8463 31.0643 -69.3698 

-81 51 15.1144 31.6804 -70.8918 

-83 51 15.4791 31.8291 -72.3523 

-85 51 16.3436 17.8592 -73.7592 

-87 51 15.2674 -6.6938 -74.967 

Table 3.2 – The average of interspike intervals, spike amplitude and resting potential for potassium changes 

 

 



 93 

 

VNa VK average of interspike intervals Average of spike amplitude Average of resting potential 

61 -61 10.7507 9.15 -50.6863 

59 -63 11.5193 15.0944 -53.3364 

57 -65 12.2319 19.5401 -55.8509 

55 -67 12.7956 22.3954 -58.2245 

53 -69 13.2503 24.0747 -60.4547 

51 -71 13.7303 24.9737 -62.5314 

49 -73 14.1821 25.1313 -64.4641 

47 -75 14.655 24.6221 -66.2517 

45 -77 15.2735 23.2745 -67.9267 

43 -79 17.1933 22.2911 -69.5016 

41 -81 18.5022 12.8711 -70.9864 

Table 3.3 – The average of interspike intervals, spike amplitude and resting potential for comparing hypernatremia with 

hyperkalaemia and hyponatremia with hypokalaemia 
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VNa VK average of interspike intervals Average of spike amplitude Average of resting potential 

61 -81 14.2604 42.6119 -70.574 

59 -79 14.2584 39.5384 -69.0874 

57 -77 14.2096 36.2934 -67.5346 

55 -75 14.109 32.8513 -65.9258 

53 -73 13.9515 29.1059 -64.2593 

51 -71 13.7303 24.9737 -62.5314 

49 -69 13.4389 20.3621 -60.7339 

47 -67 13.0706 15.0905 -58.852 

45 -65 12.7161 9.244 -56.8996 

43 -63 12.2359 2.2251 -54.8835 

41 -61 11.6431 -5.9305 -52.8135 

Table 3.4 – The average of inter-spike intervals, spike amplitude and resting potential for comparing hypernatremia with 

hypokalaemia and hyponatremia with hyperkalaemia. 
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4 Ionic imbalances and coupling in 

synchronisation of responses in neurons 

 

4.1 Introduction 

In the nervous system, neuronal cells (neurons) communicate with each other via 

electrical events. These neurophysiological electrical events called action potentials. 

Action potentials within a neuron are generated because of both an external stimulus, and 

chemical diffusion of ions. This has been extensively studied, e.g. Squid Axons (Hodgkin 

& Huxley, 1952a), frog (Dodge, 1967), dog (Matsuda, et al., 1958), rabbit (Amthor, et 

al., 1984), cat (Ahmed, 1997), and the Purkinje cell (Raman & Bean, 1999). The common 

feature in all these studies is the close relationship between the ions within a neuron and 

the external stimulus. Neurones have three essential components: the soma, axon, and 

dendrites (see Figure 2.2).  

The external stimulus, when applied to a neuron, results in changes within the neuron 

which generate an action potential. This action potential, which is transmitted from one 

neuron to another, is characterised by the magnitude of the spikes and the interval 

between the spikes.  These characters following a principle in neurophysiology called 

All-or-None. All-or-none is a principle whereby the strength by which an excitable cell 

response to any stimulus is not dependent on the strength of that stimulus, given that the 

stimulus is of an adequate strength. More details about all-or-none principle are provided 

in section 2.1.8 and the work by Sadegh-Zadeh & Kambhampati (Sadegh-Zadeh & 
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Kambhampati, 2017). Although the effect of chemical imbalances on neuronal signals 

has been studied (Trenor, et al., 2017), (Cleeremans, 2014), these have not included the 

effect of chemical imbalances over a network of neurons. In coupled neurons, it is 

important to understand the manner in which the neurons work synchronously and the 

nature of the resultant spike train as an output. A chemical imbalance in one neuron 

changes the dynamics of other neurons connected to it; as a result, there are two kinds of 

effects in a chain of neurons, one is the loss of synchronicity, and the other is a change 

in an inter-spike interval and the magnitude of the spikes. A change in the chemical 

balance results in a change to the action potential.  

Synchronisation is the mechanism that maintains vital rhythms like that of respiration. 

The firing of many neurons, if they are synchronised, gives rise to measurable 

fluctuations of the electroencephalographical (EEG) signal. Synchronisation is also 

responsible for the generation of pathological tremors (Freund, 1983) and plays a 

significant role in several neurological diseases like epilepsy (Engel, et al., 2008). 

Spectral analysis of EEG shows that neurons can oscillate synchronously in various 

frequency bands from less than 2 Hz to greater than 60 Hz (Singer, 1999). Numerical 

experiments suggest that when two sets of equations, like the Hodgkin-Huxley model, 

are coupled, their solutions seem to synchronise. Experimental findings of 

synchronisation in excitable tissue provide these results. However, mathematical models 

for these systems are typically very complicated. For couplings between oscillators, two 

types of couplings can be found in the real nervous system:  

1) The chemical synapse  

2) The electrical synapse  

Chemical synapses contain nonlinear couplings; whereas electrical synapses have linear 

membrane potentials (see Figure 4.1) (Labouriau & Rodrigues, 2003). 
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In the recent years, several studies have been performed on investigating the various 

effects of coupling and synchronisation in neuronal systems. These studies range from 

effects of the spike plasticity on the synchronisation (Borgesa, et al., 2016), 

synchronisation in clustered networks (T. de L., et al., 2014), synchronisation in the 

different type of networks (Vladimir N., et al., 2008), (Hansel, et al., 1995), and dynamics 

of coupled neurons (Batistaa, et al., 2010), (HAN, et al., 2011). Studies have been carried 

out investigating responses to different classes of stimuli, e.g. visual (Gray, et al., 1989) 

odorous (Stopfe, et al., 1997), tactile (Steinmetz, et al., 2000) or synchronisation of 

neurons, as reported by Stern et al.  (Stern, et al., 1998). However, the majority of these 

studies often concentrate on either the theoretical or practical concepts of synchrony and 

most of them separate computational applications from the clinical point in their 

investigations. 

4.2 Neuronal dynamics 

A number of different types of neurons have been studied and modelled (Hodgkin & 

Huxley, 1952a), (Dodge, 1967), (Matsuda, et al., 1958), (Amthor, et al., 1984), (Ahmed, 

1997), and (Raman & Bean, 1999).  The common feature of these neurons is that they 

are based on membrane potentials of the cells and the ion channel dynamics. These 

dynamics were formulated by Hodgkin and Huxley. Thus the membrane potential based 

model takes the form 

 

 𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛𝑗 +∑𝑔𝑖

𝑁

𝑖=1

𝜓𝑖(𝑦𝑖)(𝑉 − 𝑉𝑖) 
(4.1) 

 

where 𝜓 are given by n, m, h and it has a value in [0,1] interval. The variable 𝑔𝑖 is a 

function of the probabilities of the opening and closing of channels and the conductance 
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of that particular channel. 𝐼𝑖𝑛𝑗 is the current, 𝑉 is the membrane in mV. 𝑉𝑖 the potential 

of specific ion. 𝑦𝑖 presents the channel status. This model describes the time behaviour 

of the intracellular membrane potential and the currents through the channels. It is 

possible to explain observed phenomena accurately, and the change of voltages and 

currents on the nerve cell membrane can be analysed quantitatively (Perez, et al., 2016). 

For the channels under consideration, the parameters as given in equations (2.4) to (2.6) 

are defined as equations (2.8) to (2.13).  

 

4.3 Generalized form of neurons 

In this section, a generalized form of a neuron is presented for N channels and m gates. 

The reason is rewriting a mathematically pure form. First, consider the equations (2.3). 

In this equation the part 𝑔𝑖(𝑉 − 𝑉𝑖) is common for all channels. When 𝑖 = 0 there is a 

leakage current. For ion currents the activation and deactivation gates can be rewritten as 

follow: 

 

 𝑚3ℎ =  𝑢𝑁𝑎(𝑚, ℎ) =  𝛾𝑚
3 (𝑣)𝛾ℎ(𝑣) =  𝜓𝑁𝑎(𝑦) (4.2) 

 

 𝑛4 = 𝑢𝐾(𝑛) =  𝛾𝑛
4(𝑣) =  𝜓𝐾(𝑦) (4.3) 

 

These equations calculate the probability of the opening/closing channel for sodium and 

potassium, respectively. Using this information the generalized form of a neuron with N 

channels and m ionic gates is of the form: 

 

 𝑑𝑉

𝑑𝑡
= I + 𝑔0(𝑉 − 𝑉0) +∑𝑔𝑖𝜓𝑖(𝑦)(𝑉 − 𝑉𝑖)

𝑁

𝑖=1

 

(4.4) 
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Where each part 𝑔𝑖𝜓𝑖(𝑦)(𝑉 − 𝑉𝑖) models specific ion channel. The channel status is 

denoted by variable 𝑦. In the original Hodgkin-Huxley model with two channels and 

three gates the variable y= ( 𝑦1, 𝑦2, 𝑦3) and the functions 𝜓 are the 𝜓1 = 𝑦2
3𝑦3 and 

the 𝜓2 = 𝑦1
4. These functions are defined as probabilities and are in the range of [0, 1]. 

Therefore, for this model  𝑦1 = 𝑛, 𝑦2 = 𝑚, and 𝑦3 = ℎ . 

From the equation in (2.4) get: 

 

 𝑑𝑛

𝑑𝑡
= 𝛼𝑛(𝑣)(1 − 𝑛) − 𝛽𝑛(𝑣)𝑛 = 𝛼𝑛(𝑣) − 𝑛(𝛼𝑛(𝑣) + 𝛽𝑛(𝑣))  (4.5) 

 

 

By dividing and multiplication the right side of (4.5) with 𝛼𝑛(𝑣) + 𝛽𝑛(𝑣): 

 

 
(

𝛼𝑛(𝑣)

𝛼𝑛(𝑣) + 𝛽𝑛(𝑣)
− 𝑛) (𝛼𝑛(𝑣) + 𝛽𝑛(𝑣)) 

(4.6) 

 

 

If 𝑦𝑖 = 𝑛 , 𝜎𝑖(𝑣) =
𝛼𝑛(𝑣)

𝛼𝑛(𝑣)+𝛽𝑛(𝑣)
 and δ𝑖(𝑣) = 𝛼𝑛(𝑣) + 𝛽𝑛(𝑣) the equation (4.5) is 

rewritten as follows: 

 𝑑𝑦𝑖
𝑑𝑡

=  (σ𝑖(𝑣) − 𝑦𝑖)δ𝑖(𝑣)  
(4.7) 

 

Finally, the generalized form of neuron model with N channels and m gates can be 

rewritten as follows: 
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{
 
 

 
 𝑑𝑉

𝑑𝑡
= I + 𝑔0(𝑉 − 𝑉0) +∑𝑔𝑖

𝑁

𝑖=1

𝜓𝑖(𝑦𝑖)(𝑉 − 𝑉𝑖) = 𝐿(𝑣, 𝑦, 𝑝),        𝜓𝑖: 𝔎
𝑚 → 𝔎

𝑑𝑦𝑗

𝑑𝑡
=  (σ𝑗(𝑣) − 𝑦𝑗)δ𝑗(𝑣) = 𝐾𝑗(𝑣, 𝑦𝑗),                                             

δ𝑗 , 𝜎𝑗: 𝔎 → 𝔎

δ𝑗 , 𝜎𝑗(𝑣) ≠ 0
.

 

(4.8) 

 

 

Where parameters p= (𝑔0, … , 𝑔𝑁 , 𝑉0, … , 𝑉𝑁, 𝐼). The dynamics of each gate variable 𝑦𝑗 

depends only on itself and the voltage 𝑉 by smooth function 𝜎𝑖and diagonal matrix 

δ𝑖(𝑣) with for all values of V. Each of the terms 𝑔𝑖 𝜓𝑖(𝑦𝑗)(𝑉 − 𝑉𝑖) in (4.8) with constant 

𝑔𝑖 refers to an ionic channel. It adjust the voltage 𝑉 across the nerve cell's membrane and 

makes the dynamics of the 𝑖th channel. Therefore, the generalized form of neuron model 

in (4.8) represents N channels and m gates where N and m are not necessarily equal. The 

model in (4.8) is suitable for shaping a single neuron behaviour. However, when two or 

more than neurons in a network work together, they are coupled by synapse spaces which 

are not referred to in equation (4.8). The missing link here is coupling phenomenon which 

is discussed in the next section. 

 

4.4 Coupled type equations 

Coupling in the neurons is done via synapses. An alive neuron as an oscillator can be 

coupled to the chain of neurons (see Figure 4.1). A synapse can be explained as a site 

where a neuron makes a communicating connection with the next neuron. On the one 

side of the synapse is a neuron that transmits the signal via axon terminal which is called 

the presynaptic cell and on the other hand is another neuron or a surface of an effector 

that receives the signal which is called the postsynaptic cell. In nervous systems, there 

are three general types of synaptic connections among neurons (College, 2015). 
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Figure 4.1 – The schemes of coupling in neural networks. a. Full connectivity: a network of 9 neurons with all-to-all 

coupling. The input links are shown for two representative neurons. Self-couplings are not indicated b. Random 

coupling with fixed connection probability. The input links are larger than in a network with the population of 9. c. 

Random coupling with a fixed number of inputs. The number of connections from input links to two representative 

neurons does not change when the size of the network is increased. 

 

 

All kind of synapses is shown in Figure 4.1.  Electrical connections are also known as 

gap junctions. Other forms of synapses are two types of chemical connections, excitatory 

and inhibitory. This study constructs neuron pair models by electrical synapse. The 

electrical connections are usually axon-to-axon, or dendrite-to-dendrite and are shaped 

by channel proteins that span the membranes of both connected neurons. Electrical 

coupling is ubiquitous in the brain, in particular among the dendritic trees of inhibitory 

interneurons. This kind of direct non-synaptic interaction allows for electrical 

communication between neurons. All models with electrical coupling necessarily involve 

a single neuron model that can represent the shape of an action potential. 
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Figure 4.2 – Neuronal circuitry with electrical and chemical synapses. a. A model of electrically coupled neurons b. 

A model of chemically connected neurons. 

 

 

The experiments in this study show that when two equations of neuron model are 

coupled, their solutions seem to synchronise. This project investigates two same action 

potential equations, coupled only with the electrical potential of each neuron. Choosing 

a large enough coupling strength forces the neuron to have the same behaviour regardless 

of the initial condition. Mathematical models for such systems are frequently very 

complicated. Consider a pair of equations for a neuron model with partial coupling and 

coupling constants p1, p2 ≥ 0, using the equation (4.8) (Labouriau & Rodrigues, 2003): 

 

 

(𝐻𝐻𝐶){

𝑑𝑣

𝑑𝑡
= −𝑝1(𝑣 − 𝑢) + 𝐿(𝑣, 𝑦, 𝑝)            

𝑑𝑢

𝑑𝑡
= −𝑝2(𝑢 − 𝑣) + 𝐿(𝑣, 𝑦, 𝑝)

𝑑𝑦𝑗

𝑑𝑡
= 𝐾𝑗(𝑣, 𝑦𝑗)                                    

𝑑𝑧𝑗

𝑑𝑡
= 𝐾𝑗(𝑣, 𝑦𝑗)                         

 

(4.9) 
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Later it will be shown that for sufficiently large p1 and p2 the solutions of above equation 

always synchronise.  Synchronicity is tackled in the next section. 

 

4.5 Synchronization in coupled neurones 

In this section, the mathematical background for synchronisation of coupled neurons is 

presented. Synchronisation is a phenomenon that can be seen in two or even more 

coupled neurons. It is achieved by an adjustment of rhythms of their oscillations. 

Synchronisation is one of the important features of nonlinear systems. Nonlinear systems 

can show behaviours that are impossible in linear systems (Pikovsky, et al., 2003). 

Synchronisation analysis is a principle to discover interactions between nonlinear 

oscillators (Pikovsky, et al., 2003). In synchronisation between two neurones, their action 

potentials have relatively equal frequencies. This closeness relies on the strength of the 

coupling. Therefore, spike synchronisation depends crucially on the interspike 

frequency. The general case of two coupled neuron can be characterised as follow: 

 

 𝑣 1 = 𝐿 ( 𝑣1, 𝑣2, 𝜆1)              𝑣 2 = 𝐿 ( 𝑣2, 𝑣1, 𝜆2),      𝑣1, 𝑣2 ∈  𝑅
𝑛 (4.10) 

 

which are dependent on parameter 𝜆, where 𝜆𝑖 = (g0,...,gN , V0,...,VN , I). Perfect 

synchronization happens when 𝑣1(𝑡) = 𝑣2(𝑡) for all times t (Labouriau & Rodrigues, 

2003). This coupled system is called symmetric if 𝜆1 = 𝜆2 and asymmetric if 𝜆1 ≠ 𝜆2. 

Perfect synchrony usually does not happen in asymmetric systems. Consider the equation 

(4.9). In this equation when p1 = p2 the coupled system is symmetric (Labouriau & 

Rodrigues, 2003). A solution for (4.10) is synchronised if 𝑣1(𝑡) and 𝑣2(𝑡) remain close 

to each other in the next periods of action potentials. It means that, if there is a constant 
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𝛾 > 0 and a continuous function like 𝑓(𝑡) ≥ 0 defined for 𝑡 ≥  𝑡0 which lim
𝑡 → ∞

𝑓(𝑡) = 0 

in a way that for all 𝑡 ≥  𝑡0, the following are true (Labouriau & Rodrigues, 2003): 

 

 |∆𝑣(𝑡)|  ≤  𝛾. 𝑓(𝑡). |∆𝜆| 
 

(4.11) 

 

After a short while of interaction between the two neurons the synchronicity becomes 

higher between them. Generally, for the symmetric case, there is an exponential decay to 

perfect synchronisation. (Labouriau & Rodrigues, 2003). 

 

4.6 The region of synchronicity 

Coupled neurons often possess symmetries; these behaviours are important for 

understanding dynamical effects in such systems. The simplest symmetric system 

contains two coupled neurons. Figure 4.3 presents two coupled neurons.   

 
Figure 4.3 – Couplings between neurons. Schematic representation of the signalling of electrical coupling in 

neurons. 

 

When the input current Iinj1 is applied, it integrates into the axon hillock of the first 

neuron. These synaptic inputs cause the membrane to depolarise; that is, they cause the 
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membrane potential to rise. If this polarisation causes the membrane potential to rise up 

to the threshold, an action potential V1 can be raised. When an action potential is 

triggered, it abruptly generates a dendritic current that flows through the axon Ic in the 

output of the first neuron. By considering equations (2.1) to (2.3) and equations (2.15) to 

(2.17), the output of the first neuron for original Hodgkin-Huxley model is: 

 

 
𝑉1 =

1

𝐶𝑚
[𝐼𝑖𝑛𝑗2 − 𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝐿 + 𝐼𝑐]  →  𝐶𝑚𝑉1 

=  𝐼𝑖𝑛𝑗1 − 𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝐿 + 𝐼𝑐 

(4.12) 

 

 

similarly, for the second neuron, the output is: 

 

 

 
𝑉2 =

1

𝐶𝑚
[𝐼𝑖𝑛𝑗2 − 𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝐿 + 𝐼𝑐]  →   𝐶𝑚𝑉2 

=  𝐼𝑖𝑛𝑗2 − 𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝐿 + 𝐼𝑐 

(4.13) 

 

In entirely normal conditions if the neuron number two is stimulated only by neuron 

number one and it does not get any other stimuli from other neurons, then the outputs of 

equations (4.12) and (4.13) should be equal. Therefore: 

 

 
 𝐼𝑐 ≥

𝐼𝑖𝑛𝑗1

2
 

(4.14) 

 

It means to make synchronisation between two neurons the minimum condition in (4.14) 

should be respected. 

 



 106 

4.7 Simulation and results 

4.7.1 Ion imbalances in neural network 

Two sets of experiments were carried out. The first set of these experiments compared 

the behaviour of the output of action potentials in the hyper/hyponatremia and 

hyper/hypokalemia conditions for a single neuron and the second set of experiments is 

done for coupled neurons. All the experiments are carried out at simulation time 1000.0s. 

The 1000-second time was obtained by using the trial and error method as the best time 

in the experiments. The injected current varies from 0 nA, between 0.0 to 50.0 seconds, 

and between 51.0 to 1000.0 seconds it is to 10 nA. The reason for considering two 

different injection currents was to have the behaviour of the system under both 

stimulation and non-stimulation. A key element of this study is to investigate the effect 

of changing ion concentrations. These concentrations affect both the currents and the 

voltages in the model. The effect of the concentration of the ions is given by the Nernst 

Equation (Rossetto, 2016) shown in equation (2.18) and rewritten as (3.1) and (3.2). 

Where [K+]o is the extracellular concentration of potassium. [K+]i is the intracellular 

concentration of potassium. [Na+]i is the intracellular concentration of sodium. [Na+]o is 

the extracellular concentration of sodium. Therefore, increasing/decreasing the V, has 

direct relation with increasing/decreasing the [𝑁𝑎+]𝑜 and [𝐾+]𝑜. Hypernatremia 

(hyponatremia) and hyperkalemia (hypokalemia) are a high (low) serum sodium and 

potassium levels, respectively, so changing the potential of sodium and potassium means 

changing the [𝑁𝑎+]𝑜 and [𝐾+]𝑜  as  in equations (3.1) and (3.2),  [𝑁𝑎+]𝑜, [𝐾+]𝑜 have 

direct relation to 𝑉𝑁𝑎+ and 𝑉𝐾+. For this reason in the experiments by increasing or 

decreasing  𝑉𝒊𝒐𝒏  the specific ion imbalances are simulated. 

Figure 4.4  shows the responses of the neuron for the nominal set of values. It can be 

seen that the response is a series of spikes, which have two characteristics. One is the 
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magnitude of the spike and the other is the time between spikes, known as an inter-spike 

interval. This response is taken to be the ideal response, and all comparisons are made to 

this response. The comparison is carried out for four different electrolyte diseases, i.e., 

hypernatremia, hyponatremia, hyperkaliemia, and hypokalemia and combinations 

thereof. 

 

 
Figure 4.4 –The running of experiments for three single neurons without any changes. All three graphs have been 

overlapped. VNa=50 mV, VK= -71 mV. 

 

Low levels of ions imbalances may lead to irregular heartbeat, confusion, blood pressure 

changes, nervous system or bone disorders. High levels of ions imbalances may lead to 

weakness or twitching of the muscles, numbness, fatigue, irregular heartbeat and blood 

pressure changes. 

 

4.7.2 Ion imbalances in coupled neurons 

Neural populations in nervous system consist of millions of individual neurons linked 

together through direct synaptic space. The action potential sent through the synaptic 
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connections instructs the connected neurons to change their behaviour so that effectively 

alters the phase of the connected neurons and brings them closer or further away from 

firing their signals (Sadegh Zadeh & Kambhampati, 2017).  It should be emphasised here 

that to simulate large-scale networks of spiking neurons the simple models are useful. 

Different level of ions and the structure of how neurons are connected in a network have 

a large impact on the multitude of synchronized behaviours. This set of experiments 

describes the nature of how ion imbalances affect the electrical dynamics of the 

connected neurons using modelling of two conductance-based neurons. Two neurons 

have the same properties but, the first neuron is suffering different kinds of electrolyte 

imbalance in each round of experiment. The second neuron is in the healthy condition. 

From the experiments, it can be said that the timings between coupled neuron’s firing 

with a high value of coupling conductance is fixed while this varies between uncoupled 

neurons or even between very weak coupled neurons. 

In the first experiment, the first neuron has sodium imbalances. In the second round, it 

has potassium imbalances. In the third round, it experiences both sodium and potassium 

imbalances, and finally, the fourth round is same as the third round, but in the reverse 

order for sodium and potassium imbalances. Some of the critical characteristics of action 

potential like the average of time intervals, the average of peak intervals, and the average 

of resting potential were investigated. For this reason, a train of action potentials for each 

round in the 1000 seconds was run on the model. The results for the various values of 

potassium and sodium and their combinations are shown in Table 4.1 to Table 4.4 and 

Figure 4.6 to Figure 4.9. The tables consist of three sections. The first part represents the 

results for changes in the single neuron.  The second section lists the results of the first 

neuron in the coupling condition. Finally, the third part of the table reveals the functions 

of the second neuron and the outputs of the system in the coupling state. 
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Figure 4.5 – In some diseases (like ALS, Multiple Sclerosis, Parkinson, and so on) the neuron(s) entire the neural 

networks in the brain or spinal cord do not work properly. The affected nerve cells have the problem to transmit 

signals from one area of the brain to another or even they can no longer do it. The model of this problem here is 

simulated on a very small scale. The first neuron works as a faulty neuron and the second one works as healthy 

neurons entire the neural network. 

 

The results for the coupled model for both Hyper and Hyponatremia are presented in 

Table 4.1 and Figure 4.6. The results for both Hyper and Hypokalemia are presented in 

Table 4.2, Figure 4.7. Finally the results for Hyper and Hyponatremia plus Hyper and 

Hypokalemia at the same time represented in Table 4.3 and Table 4.4. 

 

4.7.3 The Effect of Coupling Conductance on Synchronization 

How big should a coupling conductance be? Previously, in the section 4.6, the minimum 

current for synchronisation has been suggested. As is shown in the equation (4.14) the 

minimum current 𝐼𝑐 for the second neuron has to be at least 
𝐼𝑖𝑛𝑗1

2
. As 𝐼𝑐 = ∆𝑉 ∗ 𝑔𝑐 so the 

value of 𝑔𝑐 is crucial for the synchronisation. The experiments shown by increasing the 

𝑔𝑐 the synchronicity in coupling becomes more. Figure 4.10 shows the results.  As results 

show, further increasing the coupling parameter or coupling conductance leads to a 

globally synchronous regime.  
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As coupling conductance is increased, the synchronisation is more triggered (see 

Figure 4.10). After further coupling conductance increasing both action potentials 

coincide with each other’s, except for slight defects. As results show by picking 

sufficiently large coupling conductance, cell synchronisation occurred. The reason 

behind increasing the synchronicity of coupled neurons, by increasing the coupling 

conductance 𝑔𝑐 relates back to the nature of 𝑔𝑐. By considering the relation of 𝑔𝑐 with 

resistance which is 𝑔𝑐 =
1

𝑅
 someone can conclude that increasing the coupling 

conductance causes to decreases resistance between two neurons, and by decreasing 

resistance between two neurons; the neurons become more synchronized. 

4.8 Discussion 

The computational models applied in this chapter are simple circuits which integrate 

differential equations representing abnormalities in the different levels of electrolyte 

potential for coupled neurons. The model can easily set into a regime that reproduces the 

same action potential as the firing patterns observed in biological neurons. The 

preliminary results show that the fast and slow action potential are related to the 

properties of internal settings of the neuron. The range of observations for single neuron 

which shows the response and complexity of configurations presented in the last chapter. 

However, coupled neurons show more complex behaviour (See Figure 4.6 - Figure 4.10). 

Responses to the combined effect of the concentrations of the sodium and potassium ions 

in the neuron for coupled neurons are presented in Figure 4.8 and Figure 4.9. This 

understanding can help, in the understanding of neurodegenerative diseases, e.g. tremors, 

motor neuron disease, Parkinson, Alzheimer’s disease amongst others. The reason for 

this is that intracellular and extracellular potassium and sodium concentrations play a 

vital role in the electrophysiological function of the body and neurons that control it.  
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These two ions are essential in maintaining cellular homeostasis, and most metabolic 

processes are dependent on or affected by these electrolytes (Chappell & Payne, 2016). 

There is a significant relationship between sodium and potassium changes and the level 

of the action potential and resting potential. As the results of earlier experiments carried 

out on the model, it can be seen that increasing the concentration of potassium raises 

resting potential toward threshold and in contrast, decreasing the concentration of 

potassium lowers resting potential away from threshold. In the same way, increasing the 

concentration of sodium raises the level of action potential more positive. Inversely, 

decreasing the concentration of sodium reduces the level of action potential more 

negative. 

During the combination of sodium and potassium imbalances the conditions have led to 

the properties of potassium concentration (see Table 4.3 and Table 4.4). It means 

important features of an action potential like the rates of rising of the action potential, its 

peak amplitude, and duration are more dependent on properties of potassium. By pointing 

to the biological fact, a possible explanation for these observations could be related to 

the amount of concentration of sodium and potassium. The normal concentration of 

sodium in the blood serum is 136 -146 mMol /L and the normal potassium level is 3.5 -

5 mMol/L (Kashyap, et al., 2016). Therefore, It can be interpreted that as the amount of 

sodium is much more than the amount of potassium (around 39 times) so changing only 

a small amount of potassium can have a significant impact on the volume of its total 

amount, while the reduction of small volumes of sodium does not have a large impact on 

the total volume. For this reason, it can be seen that during the combination of sodium 

and potassium imbalances the impact of potassium on neuronal functions is much 

stronger than sodium. 
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Another characteristic which is interesting is the impact of coupling conductance on the 

synchronicity of coupled neurons. The results indicate how any changes in the coupling 

conductance can drive the neurons into different degrees of synchronisation. These 

results are displayed in Figure 4.10. In general, the experiments with the coupling 

conductance contribute directly to our understanding of the origin of synchronisation in 

a network of neurons through regularisation of the conductance. 

Some characteristics of action potential have displayed considerable changes during the 

experiments for coupled neurons in compare to firing the single neuron.  This model 

study has shown that electrical coupling can either increase or decrease the frequency of 

action potential. Results in Figure 4.10 demonstrates that coupling conductance, gc, and 

properties of the postsynaptic signal of membranes can greatly influence the frequency 

changes in the coupled neurons. The coupling between two neurons is variable; it 

increases any time that the two neurons are simultaneously active. From a computational 

point of view, this can be interpreted through equation (4.9). Two neurons are 

simultaneously active when in this equation, p1 = p2. Results demonstrated that coupling 

has effects on the average of spike amplitudes and the average of resting potential, as 

well. Table 4.1 to Table 4.4 show that after applying coupling parameters on the model 

the average of spike amplitudes and the average of resting potential became greater than 

the same condition in the single neuron. On the other hand, comparing the experiments 

of the single neuron presented in last chapter with coupled neurons in the Table 4.1 – 

Table 4.4 reveals that coupled neurons can shape the frequency and waveform of the 

action potential, as well. The experiments also reveal coupling maxima between neurons 

when both neurons have the same settings (i.e. same level of sodium and potassium ions).  
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5 A computational investigation of the role 

of Amyloid peptide channels   

 

5.1 Introduction 

Neurodegenerative diseases are a kind of progressive disease in which the structure or 

function of the neurons is gradually destroyed and ultimately leads to the death of 

neurons. The neurons cannot be replaced by the biological body system if they become 

damaged or even die. That's why such diseases are incurable (Andreas & Bowser, 2017). 

Alzheimer's disease is an example of a neurodegenerative disease that causes dementia 

with no known cure (Gallaway, et al., 2017). Following the Office for National Statistics, 

Dementia, including Alzheimer's disease, has overtaken heart disease and became the 

leading cause of mortality in the United Kingdom (Patel, 2017). This deadly 

neurodegenerative disease causes problems with mental functioning like cognitive, 

memory, and behavioural impairments. The most important Alzheimer’s disease 

symptoms can be intracellular neurofibrillary tangles and the extracellular deposition of 

beta-amyloid (Aβ) plaques (Suh, 2017), (Mattson, 2004). Therefore, it can be said the 

driving force for Alzheimer's disease pathogenesis on outside the cell is the accumulation 

of Aβ oligomers or plaques and as a result the formation of Aβ channels (Montoliu-Gaya 

& Villegas, 2018). This accumulation usually happens because of some imbalances 

between synthesis and clearance as a result of abnormal processing of amyloid precursor 

protein (Hardy & Selkoe, 2002). Extensive research shows the Aβ accumulation as an 
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important factor in the development of early cognitive impairment can be seen in the 

very early stages of Alzheimer's disease (Takahashi, et al., 2017). It has been discovered 

that Aβ peptide forms large permeable channels under physiologic conditions (Lee, et 

al., 2017). However, the exact mechanism is not fully understood (Perez, et al., 2017).   

The channels made by Aβ are selective for cations over anions and can be inserted into 

the cell membrane from aqueous solution. These channels are voltage-independent, and 

they can be very large. Different types of these channels are heterogeneous and allow the 

flow of physiologically relevant ions such as Na+, K+, Ca2+, Cs+, and Li+ across the 

cell membrane (Lee, et al., 2017). The discovery of Aβ channels hypothesis led to a wide 

range of research. The focus of most studies has been centred on the effects of these 

channels. So far, more than a dozen channels have been known to create these kinds of 

channels, and all have the same properties (Canale, et al., 2018). Investigation of Aβ 

channels has shown that approximately all of the properties of these channels are 

preserved in all Aβ channels forms. These properties explain the cause of the toxicity of 

amyloid peptides, and this can distinguish these kinds of channels from the regular 

voltage-gated ion channels in excitable neurons. According to the Aβ channels 

hypothesis, these channels create an unregulated ionic leakage pathway in the cell 

membrane. They lead to cell depolarisation and irregular flow of ions such as Na+, K+. 

Therefore, this procedure damages the cellular processes, specifically inhibitory neurons, 

and causes vital energy stores to drop since the cellular pumps try to leak. 

Various studies on the dysfunction of inhibitory neurons and Aβ channels have been 

published. Busche et al., (Busche, et al., 2008)  suggest that an impaired inhibitory neuron 

near amyloid plaques rather than the firing of an excitatory neuron underlies the 

hyperactivity in the neuronal network activity. Verret et al. (Verret, et al., 2012), 

evaluated inhibitory neurons and found that the disruption in the inhibitory neurons 
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causes spontaneous epileptiform activity and hypersynchrony in human Alzheimer's 

disease patients. In line with these studies, Hazra et al. (Hazra, et al., 2013), have recently 

shown the failure of inhibitory neurons leading to disruptions in Hippocratic circuit 

activity to fire action potentials in the aged mouse model of Alzheimer's disease. In their 

study, Perez et al. (Perez, et al., 2017) applied Hodgkin-Huxley model to use dynamic 

sodium conductance in the inhibitory neuron to find the pathways leading to impaired 

inhibitory neuronal activity in the hippocampus of aged mice model of Alzheimer's 

disease. Their observations indicate that inhibitory neurons in confronting with Aβ 

channels causing leakage of sodium cannot reliably fire action potentials and have higher 

resting membrane potentials. For this reason, they elevated the conductance of sodium 

leak channels to create conditions similar to Aβ channels in a single inhibitory neuron. 

As Aβ channels are permeable to all cations, this study considered both sodium and 

potassium as two significant cations in the neuronal process in a single inhibitory neuron. 

Therefore, the conductance of potassium leak channels in addition to the sodium leak 

channels elevated. This chapter organized as follows. Section 2 describes the 

pathological background. Section 3 introduces computational method. Sections 4 

presents the computational results, and finally, section 5 discusses the results of this 

study. 

 

5.2 Pathological background of Alzheimer’s disease  

Neurons during their processes, in addition to releasing neurotransmitters in synapse 

space, they release very tiny peptides which are called amyloid beta. Neurotransmitters 

or chemical messengers are released in the synaptic space in order to communication 

between neurons. In the very early stage of the disease, these spaces are targeted by 

Alzheimer's. These peptides typically clean microglia and are also metabolize by them. 
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For many decades, the action of microglia was completely unclear (Arcuri, et al., 2017). 

However, these days it is known that cellar debris from nervous tissue is cleared by the 

microglia.  Young et al (2014) showed that Alzheimer’s disease is predicated on the 

presence of amyloid beta protein and the channels it creates  (Young, et al., 2014). These 

additional channels allow for more NA+ and K+ to cross over, thereby creating a synaptic 

disorder. In general it takes about 15-20 years before Alzheimer’s disease becomes 

apparent. The reason for is that amyloid peptide forms a sticky aggregate called amyloid 

plaques which then leads to a molecular cascade (Cristina, et al., 2011). At this stage, the 

microglia cells become hyper-activated and release chemicals causing inflammations and 

neuronal damage. After the onset of the inflammation, an important protein which is 

called Tau becomes hyper-phosphorylated and twists itself into tangles (see chapter 2 – 

the membranes are formed by Phosphates). Tangles choke off the neuron from the inside 

and the neuronal apoptosis begins.  Therefore, in order to detect the disease at an early 

stage, the focus on Aβ peptide is very important. 

Aβ peptide is a small fragment of a more abundant protein called amyloid precursor 

protein. However, researchers have not yet distinguished the normal function of the 

amyloid precursor protein, but they know how it appears to work (Andreas & Bowser, 

2017). The amyloid precursor protein through the passage of the membrane around the 

nerve cell develops from the inner environment of the nerve cell to the outside. Then 

amyloid precursor protein is cut by other proteins into separate, smaller sections. It stays 

inside and outside the nerve cells. Under some circumstances, there are different methods 

for cutting amyloid precursor proteins. One of these produced cut-off pieces is called Aβ 

peptides.  

AS mentioned above, Aβ channels are permeable to cations including sodium and 

potassium  (Perez, et al., 2017), (MA, et al., 2008). In healthy neurons, there is a balance 
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in the inflow of NA+ and the out flow of K+, however with these additional channeles 

this balance is perturbed such that there is a reversal in the potential of the ionic currents 

which results in change of permeability for cation i.e. 𝑃𝐾 > 𝑃𝑁𝑎. Aβ oligomers increase 

the area per molecule of the membrane-forming lipids, accordingly thinning the 

membrane, and as a result, it lowers the dielectric barrier and increases the conductance 

of neuron (Arispe, et al., 2007). Therefore in general, it can be said that Aβ can assume 

a conformation that enables the molecule to enter the lipid bilayer plasma membranes 

and form cation-selective channels.  

Recent studies, (Vitvitsky, et al., 2012), (Perez, et al., 2017) have shown that abnormal 

levels of ions like sodium and potassium in neurons cause an ionic imbalance that is 

linked to Alzheimer's disease pathogenesis. To test their hypothesis, they analysed 

sodium and potassium in post-mortem brain samples of 12 normal and 16 Alzheimer’s 

disease individuals. They found ion imbalances in the cortical (sodium) and cerebellar 

(potassium) brain part of people with Alzheimer's disease. They suggested that the 

changes seen in tissue samples reflect the changes in the intracellular pool. Using the 

mathematical modelling of experimental data from ion concentrations between normal 

and Alzheimer's disease brain tissues they showed that the intracellular sodium increases 

by a 2-fold and the intracellular potassium increases 8–15% in cortical and cerebellar of 

Alzheimer's disease brain, respectively. 

5.3 Computational model for amyloid channels 

This section presents a computational model of a single neuron with Aβ plaques.The 

membrane potential, V, of a single neuron is modelled by: 

 
𝑉 =

1

𝐶𝑚
∫ ∑𝐺𝑗(𝑉𝑗 − 𝑉)

𝑗

+ 𝐼𝑖𝑛𝑗

𝑇

0

𝑑𝑡, 
(5.1) 
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Where,  𝑉𝑗 is the reversal potential for current 𝑗 which obtain from Nernst equation. (𝑉𝑗 −

𝑉) is driving force for current 𝑗. 𝐼𝑖𝑛𝑗 is external current. For original conductance-based 

model this equation is as follows: 

 
𝑉 =

1

𝐶𝑚
∫ (𝐼𝑖𝑛𝑗 +∑𝐼𝑗

𝑗

𝑇

0

)dt,  
(5.2) 

 

where 𝑗 = 𝑁𝑎+, 𝐾+, 𝐿, 𝑎𝑛𝑑 𝑒𝑡𝑐 and 

 𝐺𝑗 = 𝐺𝑗𝑝𝑗
𝑥𝑞𝑗

𝑦
,  (5.3) 

 

where 

 𝑑𝑝

𝑑𝑡
=  𝛼𝑝(1 − 𝑝) − 𝛽𝑝𝑝         and          

𝑑𝑞

𝑑𝑡
=  𝛼𝑞(1 − 𝑞) − 𝛽𝑞𝑞,  

(5.4) 

 

where p,q are gating variables. For instance, 𝑚3ℎ and 𝑛4  (See chapter 4) are gating 

variables for sodium  and for potassium. Therefore, for sodium and potassium the 

equation (5.3) is 𝐺𝑁𝑎 = 𝐺̅𝑁𝑎𝑚
3ℎ and 𝐺𝐾 = 𝐺̅𝐾𝑛

4. The following will show that amyloid 

aggregation will result in disruption of the sodium and potassium gate variables. The 

parameters α and 𝛽 are opening and closing rates of the ion channel state transitions that 

are dependent on V. For sodium and potassium these parameters are as equations (2.8) to 

(2.13). For sodium, potassium, and leakage the currents are as equations (2.15) to (2.17). 

Where 𝐺𝑁𝑎, 𝐺𝐾 , and 𝐺𝐿 are obtained from equation (5.3) and Nernst potential for sodium 

current (𝑉𝑁𝑎) is gained using Nernst equation in equation (3.1). Where [𝑁𝑎+]𝑜𝑢𝑡 

represents extracellular sodium concentration and [𝑁𝑎+]𝑖𝑛 represents intracellular 

sodium concentration. In normal conditions [𝑁𝑎+]𝑜𝑢𝑡 ≫ [𝑁𝑎+]𝑖𝑛. The extra channels 

produced by the Aβ deposits provides conditions for the amount of intercellular 𝑁𝑎+ to 

increase. It can be seen from Equation 3.1, that 𝑉𝑁𝑎 has direct relation with 𝑙𝑛 (
[𝑁𝑎+]𝑜𝑢𝑡

[𝑁𝑎+]𝑖𝑛
). 

Therfore by increasing the [𝑁𝑎+]𝑖𝑛 the amount of 𝑉𝑁𝑎decreases. Vitvitsky et al. 
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(Vitvitsky, et al., 2012) have shown that the amount of intracellular sodium in the 

competed Alzheimer’s brains changes by 2-fold. Based on (2.15) by decreasing 𝑉𝑁𝑎 the 

current flow of 𝑁𝑎+increases. Nernst potential for potassium current is gained by 

equation (3.2). Where [𝐾+]𝑜𝑢𝑡 represents extracellular potassium concentration and 

[𝐾+]𝑖𝑛 represents intracellular potassium concentration. Vitvitsky et al. (Vitvitsky, et al., 

2012) also have proven that the amount of intracellular potassium in the competed 

Alzheimer’s brains changes up to 15% of normal brain. Following the above equation 

and by considering the truth that the [𝐾+]𝑜𝑢𝑡 ≪ [𝐾+]𝑖𝑛 in confrontation with Aβ 

channels the amount of [𝐾+]𝑖𝑛 decreases. Therefore, unlike the sodium the value of 

𝑙𝑛 (
[𝐾+]𝑜𝑢𝑡

[𝐾+]𝑖𝑛
) increases. 

The Nernst potential for leakage current is: 

 

 
𝑉𝐶𝑙 =  26.6 ln (

[𝐶𝑙−]𝑜𝑢𝑡
[𝐶𝑙−]𝑖𝑛

),  
(5.5) 

 

 

 
𝑉𝐿 =  26.6 ln (

0.085[𝑁𝑎+]𝑜𝑢𝑡 + [𝐾+]𝑜𝑢𝑡 + 0.1[𝐶𝑙−]𝑜𝑢𝑡  

0.085[𝑁𝑎+]𝑖𝑛 + [𝐾+]𝑖𝑛 + 0.1[𝐶𝑙−]𝑖𝑛
) , 

 

(5.6) 

as can be seen, these equations are related to intercellular and extracellular ion 

concentrations. The Aβ peptides damage the membrane of neurons and it affects the total 

tissue sodium and potassium concentrations. The total tissue concentrations of sodium 

and potassium are described by below equations: 

 

 
[𝑁𝑎]𝑡𝑜𝑡 =

[𝑁𝑎+]𝑖𝑛[𝑉𝑜𝑙]𝑖𝑛 + [𝑁𝑎+]𝑜𝑢𝑡[𝑉𝑜𝑙]𝑜𝑢𝑡
[𝑉𝑜𝑙]𝑖𝑛 + [𝑉𝑜𝑙]𝑜𝑢𝑡

 
(5.7) 

 

 
[𝐾]𝑡𝑜𝑡 =

[𝐾+]𝑖𝑛[𝑉𝑜𝑙]𝑖𝑛 + [𝐾+]𝑜𝑢𝑡[𝑉𝑜𝑙]𝑜𝑢𝑡
[𝑉𝑜𝑙]𝑖𝑛 + [𝑉𝑜𝑙]𝑜𝑢𝑡

 
(5.8) 
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where [𝑁𝑎]𝑡𝑜𝑡 and [𝐾]𝑡𝑜𝑡 are total sodium and potassium concentration in tissue. [𝑁𝑎]𝑖𝑛, 

[𝑁𝑎]𝑜𝑢𝑡, [𝐾]𝑖𝑛, and [𝐾]𝑜𝑢𝑡are intracellular and extracellular sodium and potassium 

concentrations respectively. [𝑉𝑜𝑙]𝑖𝑛 and [𝑉𝑜𝑙]𝑜𝑢𝑡 show intercellular and extracellular 

volume in the tissue. The volume is total volume occupied by all neurons in the tissue 

sample. By considering the unit volume [𝑉𝑜𝑙]𝑖𝑛 + [𝑉𝑜𝑙]𝑜𝑢𝑡 = 1, the equations transform 

to: 

 

 [𝑁𝑎+]𝑡𝑜𝑡 = ([𝑁𝑎+]𝑖𝑛[𝑉𝑜𝑙]𝑖𝑛 + [𝑁𝑎+]𝑜𝑢𝑡(1 − [𝑉𝑜𝑙]𝑖𝑛))

= [𝑁𝑎+]𝑜𝑢𝑡 + ([𝑁𝑎+]𝑖𝑛 − [𝑁𝑎+]𝑜𝑢𝑡)[𝑉𝑜𝑙]𝑖𝑛 
(5.9) 

 

 [𝐾]𝑡𝑜𝑡 = ([𝐾+]𝑖𝑛[𝑉𝑜𝑙]𝑖𝑛 + [𝐾+]𝑜𝑢𝑡(1 − [𝑉𝑜𝑙]𝑖𝑛))

= [𝐾+]𝑜𝑢𝑡 + ([𝐾+]𝑖𝑛 − [𝐾+]𝑜𝑢𝑡)[𝑉𝑜𝑙]𝑖𝑛 
(5.10) 

 

these equations show that the total tissue concentrations of sodium and potassium are 

linear functions of the relative cell volume. It means that an increase in the cell volume 

makes a decrease in total sodium concentration and increase in total potassium 

concentration. These happen because 

 

 [𝑁𝑎+]𝑖𝑛 − [𝑁𝑎+]𝑜𝑢𝑡 < 0 (5.11) 

 

 [𝐾+]𝑖𝑛 − [𝐾+]𝑜𝑢𝑡 > 0,    (5.12) 

 

The relations (5.11) and (5.12) in the healthy neuron is always established. However, by 

increasing Aβ channels this relation changes to [𝑁𝑎+]𝑖𝑛 − [𝑁𝑎+]𝑜𝑢𝑡 → 0 and [𝐾+]𝑖𝑛 −

[𝐾+]𝑜𝑢𝑡 → 0 then following the Nernst equations in equations (3.1) and (3.2) for sodium 

and potassium ions 𝑉𝑁𝑎+ → 0 and 𝑉𝐾+ → 0 that cause neural deterioration. 
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The sodium and potassium ion concentrations inside and outside of the neuron can 

obtained as follow: 

 

 𝑑[𝐾+]𝑜𝑢𝑡
𝑑𝑡

=  
1

𝜏
 (𝛾𝛽𝐼𝐾 − 2𝛽𝐼𝑝𝑢𝑚𝑝 − 𝐼𝑔𝑙𝑖𝑎 − 𝐼𝑑𝑖𝑓𝑓) 

(5.13) 

 

 𝑑[𝑁𝑎+]𝑖𝑛
𝑑𝑡

=  
1

𝜏
 (−𝛾𝐼𝑁𝑎 − 3𝛾𝐼𝑝𝑢𝑚𝑝) 

(5.14) 

 

Where concentrations are calculated in millimolar (mM). 𝐼𝑝𝑢𝑚𝑝 is the current of the 

neuronal Na+/K+ pump. 𝐼𝑔𝑙𝑖𝑎 is the current associated with the glial buffering. 𝐼𝑑𝑖𝑓𝑓 is 

the K+ diffusion current. 𝛾 = 4.45 ×  10−2 is a unit conversion factor. This factor 

converts the membrane currents into mM/sec. 𝛽 = 7 is the ratio of the interacellular to 

extracellular volume. 𝜏 = 103 is the molar currents (mM/sec) and balances the time units. 

The pump, glia, and diffusion molar currents are as follow: 

 

 
𝐼𝑝𝑢𝑚𝑝 = 𝜌(1 + exp (

25 − [𝑁𝑎+]𝑖𝑛
3

))−1 (
1

1 + exp(5.5 − [𝐾+]𝑜𝑢𝑡)
)   

(5.15) 

 

 
𝐼𝑔𝑙𝑖𝑎 = 𝐺 (1 + exp (

18 − [𝐾+]𝑜𝑢𝑡
2.5

))

−1

 
(5.16) 

 

 𝐼𝑑𝑖𝑓𝑓 = 𝜀([𝐾+]𝑜𝑢𝑡 − 𝐾+
𝑏𝑎𝑡ℎ) (5.17) 

 

Where 𝜌 = 1.25
𝑚𝑀

𝑠𝑒𝑐
, 𝐺 = 66.666

𝑚𝑀

𝑠𝑒𝑐
, and 𝜀 = 1.333 𝐻𝑧. 𝐾𝑏𝑎𝑡ℎ is the potassium 

concentration in the reservoir and is 𝐾𝑏𝑎𝑡ℎ = 4 𝑚𝑀 for normal physiological conditions. 

To simplify the model and reduce complexity, this study decided to neglect pump, glia 

and diffusion currents in our experiment. The intracellular potassium and extracellular 

sodium concentrations are as follow: 
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 [𝐾+]𝑖𝑛= 140 +(18 - [𝑁𝑎+]𝑖𝑛) (5.18) 

 

 [𝑁𝑎+]𝑜𝑢𝑡= 144 - 𝛽 ([𝑁𝑎+]𝑖𝑛 − 18) (5.19) 

 

An ion channel transmits ions with a given conductance or in other words, resistance. By 

understanding the physical properties of Aβ channels someone can estimate the exact 

function of this channels and its deleterious effects on the neuron. It can be approached 

by getting the ion flux across the membrane. Following Arispe’s study (Arispe, et al., 

1993) the ion flux 𝜑 inside the membrane can be obtained using the following equations: 

 

 𝜑𝑖 = (𝜌𝑖𝐼𝑖)/𝐹 (5.20) 

 

where 𝜑𝑖 is the ion flux, 𝜌𝑖 is the fractional open time, 𝐼𝑖 is the ion current through the 

open Aβ channel, and F is the Faraday constant which is equal to 96.480 C/mole. 

Therefore, if a single 4 nS channel became active in a neuron of 25 𝜇𝑚 diameter, the 

sodium influx could be calculated as 0.6 fmol/sec, and the intracellular sodium 

concentration change would be 10𝜇𝑀/𝑠𝑒𝑐. By the equation (5.18) someone can say 

Alzheimer concentrates on the improper cation ions fluxes inside the nervous cells. The 

reason which are addressing this is as following computational reasons.  

Following equation (5.3) the conductance of sodium (𝐺𝑁𝑎) can represents as: 

 

  𝐺𝑁𝑎 = 𝐺𝑁𝑎𝑚
3ℎ    (5.21) 

 

As it is shown in the equations (5.3), (5.4), (5.7), (5.8), (5.9), and (5.10) the conductance 

of sodium is depended on the other variables i.e. 𝑚, 𝑛, 𝑉 then it can be rewritten as: 

 

 𝐺𝑁𝑎 = 𝐺𝑁𝑎𝑓(𝑚, 𝑛, 𝑉) (5.22) 
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On the other hand, the current of sodium in (2.15) following the equation (3.1) is 

depended on the 𝑁𝑎𝑖𝑛, 𝑁𝑎𝑜𝑢𝑡, and 𝑉. Therefore, the equation (2.15) can be written as: 

 

  𝐼𝑁𝑎 = 𝐺𝑁𝑎𝑓(𝑚, 𝑛, 𝑉). 𝜑(𝑁𝑎𝑖𝑛 , 𝑁𝑎𝑜𝑢𝑡 , V)  (5.23) 

 

Where 𝜑 is a function which represents (𝑉 − 𝑉𝑁𝑎) using Nernst equation in (3.1). 

Following these changes the sodium flux across the membrane which obtain from 

equation (5.20) is converted to 

 

  𝜑𝑁𝑎 = 𝜌𝑁𝑎(𝐺𝑁𝑎𝑓(𝑚, 𝑛, 𝑉). 𝜑(𝑁𝑎𝑖𝑛 , 𝑁𝑎𝑜𝑢𝑡 , V))/𝐹 (5.24) 

 

If 𝑁𝑎𝑖𝑛 increases and 𝑁𝑎𝑜𝑢𝑡 remains stable (like the condition which occurred in 

accumulation of A𝛽 deposition) then one or more variables like 𝜌𝑁𝑎, 𝑚 and ℎ are 

changed. 𝜌𝑁𝑎 is the fractional open time and it is representing the fraction of the time 

that channel is open. It’s modulated by the 𝑁𝑎𝑖𝑛 concentration. Its function is somewhat 

like the functions of 𝑚 and ℎ in activation and deactivation of sodium channel. The 𝜌𝑁𝑎 

makes sever interruptions in exact configuration of 𝑚 and ℎ and somehow these gates 

lose their real performance. With this description and from the above computational 

relations, it can be concluded that secretion of A𝛽 in Alzheimer’s disease causes a disease 

like channels dysfunction in the nervous system.  The same condition can be defined for 

potassium flux in neuron, as well.  

Therefore, in order to computationally simulate amyloid peptide channels at plasma 

membrane in the Alzheimer’s disease condition, this study needs to increase the amount 

of cations inside the cell. As noted above and shown in equation (5.24) for given ion like 

sodium, the maximum conductance of sodium has a direct relation with the ion flux 

inside the membrane. Therefore, for any changes of intercellular ions, the maximum 
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conductance should be changed. In support of this, this study can refer to the work of 

Perez, et al. (Perez, et al., 2017). In their work for intercellular ion changes which are 

increased by created A𝛽 channels, Perez, et al (Perez, et al., 2017) changed the maximum 

conductance of related ion. But how much is needed for changing the concentration of 

sodium and potassium? In order to find out these values the study get benefit from the 

model introduced by Vitvitsky et al. (Vitvitsky, et al., 2012). For this reason, the 

intracellular sodium increased by a 2-fold and the intracellular potassium increased 8–

15%. The nominal channel conductivity for sodium is 120 ms/cm2 for potassium is 36 

ms/cm2. The equilibrium potential applied for sodium is 50 mV, for potassium is -71 mV 

and for leakage is -51 mV. The injected current is 10 nano-Amps. These equations are 

solved using the Ode45 method which is based on an explicit Runge-Kutta method, with 

a time step of 0.01 ms.  

 

5.4 Computational Results 

In the following, the responses of a neuron with Aβ channels is compared to the standard 

neuron. It can be seen that the presence of Aβ channels increase in the amplitude of 

membrane potential and the increased number of spikes (see Figure 5.1.D). Further study 

was carried out to investigate this further. The first experiment is performed with all 

conductances having nominal values. The second and third experiments are done by a 2-

fold intracellular sodium increases and 15% intracellular potassium increases, 

respectively. The final experiment performed by 2-fold intracellular sodium and 15% 

intracellular potassium increases, simultaneously. This reflects the increase in channels 

due to the AB deposits as speculated by Vitvitsky (2012). All the experiments are carried 

out at simulation time 150.0s. The injected current varies from 0 nA, between 0.0 to 50.0 

seconds, to 10 nA, between 51.0 to 1000.0 seconds. The reason for considering two 
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different injection currents was to have the behaviour of the system under both 

stimulation and non-stimulation conditions. 
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Figure 5.1.A shows the responses of the neuron for the nominal set of values. This spike 

is taken to the ideal response, and all comparisons are made to this response. As it is 

shown, the reactions are series of spikes. These spikes have two main characteristics. The 

first characteristic is the magnitude of the spike and the second is the inter-spike intervals. 

The analyses of these two characteristics for all changes are shown in Figure 5.3 and 

Figure 5.4. The Figure 5.1.B presents the reaction of the neuron to the change of sodium 

conductance. 2-fold increasing changes the sodium ion conductance. It can be seen that 

as the sodium ion conductance is increased from its nominal value, the magnitudes and 

the inter-spike interval are both increased. In other words, neuron responds with more 

massive spikes at a more rapid rate. 

In the same way, results obtained for the conductance of potassium ion. The reaction is 

shown in Figure 5.1.C. In this experiment, the effect of potassium conductance is more 

pronounced. 15% increasing changes the potassium conductance. It can be seen that as 

the potassium ion conductance is increased from its nominal value, the time of inter-

spike intervals is decreased (see Figure 5.3). As the outcome indicates, the nerve cell is 

more sensitive to any potassium changes inside the cell than to sodium ion changes. 
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The next set of the experiment meant to changes combination of sodium and potassium 

conductance in a single neuron, simultaneously. This result is shown in Figure 5.1.D. 

From the results, it is evident that both sodium and potassium conductance changes at 

the same time affected almost every element of the output, i.e. inter-spike interval and 

magnitude of the spikes. Results from this figure can be compared with results in 

Figure 5.1.B which show when combined conductance changes occur in the cell the 

effects are more severe than (but are consistent with) those reported in the individual 

sodium or potassium conductance changes. Overlap graphs to acquire a better 

comprehension of these changes is presented in Figure 5.2. 

Increasing 𝐺𝑁𝑎 leads to increase the amplitudes of action potential of neuron (see 

Figure 5.3.B). On the other hand, increasing 𝐺𝐾  as compared to the value applied for 

normal neuron increases the amplitudes of spikes (see Figure 5.3.C). As shown in Figure 

5.2.A combining both changes on a single neuron leads to increasing the amplitude of 

action potentials even more than the both previous single changes. In case of 𝐺𝐾on the 

other hand, a much higher change in 𝐺𝐾 is required to reproduce the observed behavior 

in case of increasing 𝐺𝑁𝑎. In line with observations, as it can be shown depolarization 

linearly increased. However, increasing combined both 𝐺𝐾 and 𝐺𝑁𝑎 does not change the 

slope significantly, inconsistent with increasing only 𝐺𝑁𝑎. 

As shown in the Figure 5.4.B by increasing 𝐺𝑁𝑎 the time interval of the response of 

neuron to stimulation is decreased. The same behavior is observed in the Figure 5.4.C 

for increasing 𝐺𝐾. The response of neuron to the combined changes is shown in the 

Figure 5.4.A. The changes shown an decrease in the time intervals of action potentials 

but the slop of changes doesn’t show significant changes with single changes of 𝐺𝑁𝑎 and 

 𝐺𝐾. 
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Figure 5.3 – The changes of Action potential amplitudes A. in both sodium potassium conductance B. sodium 

conductance C. potassium conductance 
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Figure 5.4 – The changes of time intervals of action potentials A. both sodium potassium conductance B. sodium 

conductance C. potassium conductance 
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The sodium and potassium fluxes across the membrane for a given neuron with single 4 

nS channel and 25 μm diameter in the normal and affected by amyloid-β are shown in 

Figure 5.5 and Figure 5.6, respectively. 

  

 

 

Figure 5.5 – The changes of ions flux in normal condition A. Sodium flux B. Potassium flux 
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Figure 5.2 – The changes of ions flux when the intercellular concentration of sodium 2 fold and potassium 15% 

increased A. Sodium flux B. Potassium flux 
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The results indicate a deterioration of ions exchange in the vicinity of the plasma 

membrane with Aβ protein. As shown in Figure 5.6 in hyperpolarization step the neuron 

experiences huge fluctuations for sodium exchange.  This delay or even fault in the 

turnover of ions flux across the neuronal membrane may eventuate in crucial 

impairments of cellular performances and it will also lead to a potential threat to nerve 

cell longevity. The fluctuations are driven solely by Aβ pores which are permeable to 

sodium and potassium. The pores make damage to membranes of nerve cell and 

transform its specific functions such as ion homeostasis and action potentials as shown 

in the results. 

 

5.5 Discussion 

There is growing evidence which indicates that neurodegenerative disorders have a an 

origin in the presence of dysfunctional ion channels. Many neurodegenerative disorders 

like Alzheimer's disease, Parkinson's disease, and age-related disorders are caused due 

to the transformation of functionality in ion channels (Kumar, et al., 2016).  

The results in this chapter show that the  presence of Aβ channels on the membranes 

cause hyperactivity in the function of the neuron. The results summarised in Figures 

5.1.B to 5.1.C illustrate the complexity and the response of these channels for separated 

sodium and potassium ions. Figures 5.1.B shows the output of increasing sodium 

conductance by 2-fold and Figures 5.1.C shows the output of increasing potassium 

conductance by 15%. In comparison to Figures 5.1.C, the hyperactivity has been 

exacerbated in Figures 5.1.B more.  The reduction in the magnitude of the spikes is a 

result of lowering of the dielectric barrier due to the inoic changes. Since the output due 

to changes in sodium (see Figure 5.1.B) and the output of combined changes in sodium 
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and potassium (see Figure 5.1.D) are very similar. Thus it can be seen that Aβ disrupts 

sodium homeostasis in neuron, and it can be inferred that Aβ peptides function similar 

to sodium channels. In the studies of real brain tissue, Vitvitsky et al. (Vitvitsky, et al., 

2012) have shown that abnormal levels of ions like sodium and potassium in neurons 

cause the ionic imbalance that is linked to Alzheimer's disease pathogenesis. They found 

remarkable ion imbalances in the cortical (sodium) and cerebellar (potassium) of 

Alzheimer's disease brain. Based on other research (Migliaccio, et al., 2015), (Stage, et 

al., 2017), (Mendez, 2017), (Ballarini, et al., 2016) which were done on the early- and 

late-onset stages of Alzheimer's disease, in the early stages of Alzheimer's the cortical 

areas are most involved. After considering these studies and taking into account the 

results of our experiments it may be concluded that changes of sodium ions in the 

intracellular neurons of the cortical regions can be considered as a hallmark of early 

detection of Alzheimer's disease. 

These results indicate the conditions for  neuronal hyperactivity (see Figures 5.1.D) and 

when considered together with the studies of  (Migliaccio, et al., 2015); (Stage, et al., 

2017); (Mendez, 2017); (Ballarini, et al., 2016) show the possibility of developing test in 

Alzheimer’s disease.  But this raises another issue that, despite the fact that there is an 

increased excitability in hyperactive neurons, how can the neurodegeneration seen in 

Alzheimer's disease be associated with a reduction in the overall activity in neurons. This 

question was answered by another study done by Busche et al. (Busche, et al., 2008) and 

the role of inhibitory neurons in the general structure of the nervous system. Busche et 

al. mapped the distribution types of neurons. In their studies, they showed that there are 

three types of neurons about the nearest three-dimensionally Aβ accumulations. These 

three types are included as hyperactive, silent, and normal neurons. Hyperactive neurons 

are found only in very close proximity (usually less than 60 𝜇𝑚) to the borders of Aβ 
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plaques. After this border and at increasing distances, the proportion of silent neurons 

significantly increased. Thus, a possible explanation for the two types of hyperactivity 

and silent neurons may be an impairment on inhibitory neurons. As it turns out from the 

results and studies done by Perez et al. (Perez, et al., 2017) and Busche et al. (Busche, et 

al., 2008) the hyperactivity which is caused by Aβ channels, exacerbates the activity of 

inhibitory neurons. For this reason, one can assume that the activities of the neurons 

surrounding the hyperactive neurons are looked as silence and in general, someone can 

see the lowering of neuronal activities in the central nervous system.  

The results of the function of an individual neuron in the direct vicinity of Aβ plaques 

show the epileptiform activity in Figure 5.1.B, 5.1.C, and 5.1.D. As it is shown, the 

neuron experiences several action potentials even when there are not any stimuli for the 

neuron. These results confirm the studies done by (Busche, et al., 2008) (Minkeviciene, 

et al., 2009) (Palop & Mucke, 2009) (Roh, et al., 2012) (Berridge, 2014 ). They revealed 

that in addition to the increased neuronal activity in the direct vicinity of Aβ plaques the 

risk of epileptic seizures is high in Alzheimer’s disease. In answer to our key question, 

the study should point to this novel idea that Aβ is toxic to cortical and cerebral neurons 

as this kind of protein forms the aberrant ion channel in the plasma membrane of the 

neuron. As a result, it disrupts neuronal homeostasis, partially or completely. Aβ interact 

with different types of membranes which leads to the formation of Aβ ionic channels and 

it could support the idea that Aβ is cytotoxic largely, due to the action of Aβ channels in 

the plasma membrane of the neuron. As Aβ gets more deposited the channels for sodium 

exchange increases and therefore it can be seen that 𝑁𝑎𝑖𝑛 increases and eventually, the 

relation 5.11 leads to [𝑁𝑎+]𝑖𝑛 − [𝑁𝑎+]𝑜𝑢𝑡 → 0 that is a deterioration in the neuron. It is 

clear that there is a deterioration in the signals. The rate at which this change occurs is 

important from the point of view of detecting the problem at an early stage. 
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Aβ accumulation has been discovered to form large, relatively cation-permeable 

channels under physiologic conditions. These channel formation in membranes of a 

neuron could cause cell depolarisation, sodium and potassium dysregulation, depletion 

of neural energy stores, and other types of cellular dysfunction. As shown in Figure 5.6 

the build-up of Aβ depositions during the onset of Alzheimer's disease has profound 

effects on the activity of the local community of neurons in the central nervous system. 

For instance, in hyperpolarization step of action potential the neuron experiences huge 

fluctuations in sodium exchange. These effects can include enhanced neural activities 

(Busche, et al., 2008), spontaneous epileptiform activities (Minkeviciene, et al., 2009), 

(Palop & Mucke, 2009), and incidences of epileptic seizures (Roh, et al., 2012), 

(Berridge, 2014 ). According to the results of the experiments, it can be well understood 

that the neurodegeneration observed in Alzheimer's disease has been associated with the 

increase of toxicity of Aβ depositions. Concertedly, this study reveals that accumulation 

of Aβ during Alzheimer's disease causes neuronal hyperexcitability in inhibitory neurons 

as well as, makes neural networks susceptible to epileptiform activities. 
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6 Fault investigation for dysfunction of 

neurons 

 

6.1 Introduction 

 

A mathematical model of a biologic system provides a perception of that system. Models 

of diseases have been increasingly used in research (Andreas & Bowser, 2017), e.g.  

mathematical model of the nervous system can be applied to study and explain 

neurological diseases (Awasthi, et al., 2017).The nervous system has a very complex 

structure, with highly interconnected cells. In this chapter a set of neurons modelled using 

four-dimensional differential equations are studied to understand the dysfunction in 

neurons, and the effect this has on the action potential of nerve cells in the nervous 

system (Baravalleab, et al., 2017).  

However, despite the existence of a nervous system model for understanding neural 

activities, these models are often inaccurate, in that the neurons often don’t follow the 

laws precisely. A reason for this is that noise or extraneous signals can get amplified 

resulting in errors. Thus estimating the state of the neuron or neurons becomes an 

important problem. 

This chapter applies linear (Kalman) and nonlinear (Extended Kalman) observers to 

detect faults i.e. to detect dysfunction of inhibitory neurons in Alzheimer’s disease. In 

order to further verify the efficiency of the detection scheme, another nonlinear observer 
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by coordinate transformation proposed by Delgado, et al. (Delgado, et al., 2005) was 

applied. 

Over recent years, several studies have been used to apply the Kalman filter on the 

Hodgkin-Huxley model as a model observer system. A work by Kawai et al (Kawai, et 

al., 2008) has applied the Kalman filter as an observer on a locally linearized model of 

the Hodgkin-Huxley in order to estimate current state from the input and parameters of 

the model. In another work (Lankarany, et al., 2014) the Kalman filter method was 

extended for the Hodgkin-Huxley model to estimate the unknown parameters as well as 

the intrinsic dynamics of the model. However, such studies often concentrate only on the 

observer itself. This study designs a linear observer based on the Kalman filter in order 

to be able to detect faults in neurons, especially to detect the dysfunction of inhibitory 

neurons in Alzheimer’s disease. 

 

6.2 Kalman Filter 

System states describe the behaviour of internal variables of systems of which, in most 

of systems, only a few can be measured. In other words not all system states are 

achievable through measurement and furthermore only some of them appear explicitly 

in the measurement equations. To obtain system states for different purposes such as 

control, fault detection, etc. they should be estimated through observers. The Kalman 

filter as a minimum mean square error estimator is a well-known stochastic observer 

employed to estimate system states (Grewal & Andrews., 2015)  . It uses a system model 

as well as a series of measurements over time for state estimation. It contains statistical 

noise and other inaccuracies and finally, it turns out estimates of unknown variables. This 

experiment shows that a Kalman filter framework can adapt neuronal data from only 

single voltage measurements and after that reconstruct the required ionic dynamics. 
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Kalman filters are designed for linear dynamical systems and perturbed by additive 

Gaussian noises in system and measurement models. In many cases, the number of 

outputs that are measured not the same as the number of states, thus the observers are a 

way of recreating these extra states. This is done in the presence of noise and 

disturbances. In these cases, it is necessary to think of a way of finding an optimal 

estimation of all the states of the system. The optimal means the optimal in terms of 

minimum variance or least squares. Generally, it can be done by constructing a 

mathematical model of the system dynamics in order to track the states. The results of 

the state noise are obtained by spreading the state noise through a completely similar 

mathematical model and filtering it from the estimation of states with a weight based on 

the measurement noise. Given that no analytical solution is actually needed, the 

differential equations of the state and noise will be solved recursively in order to find the 

estimations of state. One of the most commonly used mathematical models for noise 

suppression is the Kalman filter. 

In this section, Kalman filtering is applied to be employed for estimation of system states 

and then the estimated states are employed for fault detection. The details of the 

implementation are omitted here and can be found in (Grewal & Andrews., 2015). 

6.2.1 Proposed observer for the neuron model  

This experiment uses the neuron model to demonstrate dynamical behaviours of neural 

cells. For more about the neural model refer to section 2.3. 

6.2.2 Detection of faults using a linear observer 

For fault detection, an analysis of the difference between the sensor and expected values 

derived from the model, called the residual is required. If the residual goes above a certain 

threshold, a fault is detected. It is worth mentioning that the concept of threshold in this 

chapter is totally different from previous chapters. In this chapter the term of threshold 
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used as the threshold of fault, however in other chapters it used as threshold of an action 

potential. The residual signal is normally zero when our system is fault free, while it is 

not zero when a specific fault is present in the system. There are several residual 

generation methods, which are listed in section 2.18.1. Among them, for fault detection 

the study chooses observer based residual generation as it has wide applications in the 

framework of control theory. In addition, this study can also estimate the internal states 

of the system (Yang & Tang, 2007); (Edwards, et al., 2000); (Yang & Saif, 1998); (Li, 

et al., 2010); (Q Cheng, et al., 2005); (Sadeghzadeh-Nokhodberiz & Poshtan, 2014). 

 

As mentioned above there are several residual generation methods and this study uses 

observer based residual generation in which Kalman filter is employed as a linear 

observer. In order to detect faults by residual generation, the following residual is 

employed: 

 𝑟(𝑡) =  𝑦(𝑡) −  𝐶𝑥̂(𝑡)  (6.1) 

Where C is the measurement matrix that determines the relation between state and output 

of the model, 𝑥̂(𝑡) is the output of the observed and 𝑦(𝑡) is the real outputs. Then, this 

study computes the Euclidean norm as ||𝑟(𝑡)|| and compare it with a predefined threshold, 

say µ, which is determined through trial and error to specify a binary decision if a fault 

is occurred or not.  

6.2.3 Simulation results 

In this experiment, a neural model with the same characteristics as in the previous 

experiments is applied to produce the response of a neuron to a stimulation. The neural 

model properties are presented in Table 6.1.  

Symbol Specification Description 

VL -51 mV Leakage potential 

VNa  50 mV Sodium potential 

VK -71 mV Potassium potential 
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gL 0.3 mS/cm2 Leakage conductance 

gNa 120mS/cm2 Sodium conductance 

gK  38 mS/cm2 Potassium conductance 

CM 1.0 μF/cm2 Membrane capacitance 

Table 6.1 – Model specifications 

 

The stimulus, Istim= 10 μA/cm2, 50ms ≤ t ≤ 200ms, is considered as the injected current. 

The states n, m and h are random number distributed uniformly over the interval [0, 1].  

As shown in Figure 6.1, the output of intracellular voltage (v) and the output of estimated 

membrane voltage are shown with good accuracy. This figure presents the performance 

of the Kalman Filter in estimating the parameters of the neural model. 

 

 

 

 

 Figure 6.1 – Observed membrane vs. normal membrane  
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 Figure 6.2 – Error of model when GNa = 120. The nominal value of GNa = 120 

 

  

 Figure 6.3 – The output estimation error of model when GNa = 121. The nominal value of GNa = 120 
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The output estimation error is shown in Figure 6.2 for normal condition and in Figure 6.3 

for a condition which GNa = 121 (faulty condition). A fault is detected if the value of the 

residual exceeds the predefined threshold. The residual r (t) is given by (6.1). A fault 

occurs when r(t) exceeds the threshold µ and the fault f(t) is given by 

𝑓(𝑡) =  
1 𝑖𝑓 𝑟(𝑡) ≥ µ

0 𝑖𝑓 𝑟(𝑡) < µ
 

 In this case the threshold is set at± 20𝑚𝑉. Figure 6.3 shows the responses when 

hypernatremia occurs, in case GNa was set to 121. The error or the residual exceeds the 

threshold. And as it is exceeded the fault flag in now set to 1.  

 

 

Figure 6.4 – The output of faults applied between the time 80 and 140 seconds for Kalman filter 

 

From figure 6.3 it is seen that the residual increase with time, a reason for this is that the 

fault is accumulating, and at the same time in the neuron there has been a time shift. The 

inter-spike interval in the neuron has changed (see chapter 3) while that of the observer 

has remained the same. When the fault is removed, although the spike train returns to its 

original, there is an apparent time shift in the neuronal response, which causes the error 
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to remain. If the time element was rest as fault is removed, the two trains would be as 

before (see Tables 6.2, 6.3 and 6.4). In order to test the strategy further, a sequence of 

events were generated, 

 

𝐺𝑁𝑎 = {

120 𝑓𝑜𝑟 𝑡 = [50 − 80]𝑆  

141 𝑓𝑜𝑟 𝑡 = [81 − 140]𝑆
120 𝑓𝑜𝑟 𝑡 ≥ 141 𝑆             

 

 

The properties of action potential before applying fault, during applying fault and after 

applying fault are presented in Table 6.2 to Table 6.4.  

 

 Before Fault During Fault After Fault 
Av. of Inter-

spike 
Intervals (S) 

Av. of Spike 
Amplitude (mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

KF 13.92 24.24 13.73 29.087 13.8 41.43 

Neuron 13.75 24.09 13.03 28.32 13.76 23.98 
‖𝑟‖ 0.17 0.15 0.7 0.767 0.04 17.45 

Table 6.2 –The properties of action potential for Kalman filter G_Na=141 

 

The same scenario is done for lower range of errors (i.e. 𝐺𝑁𝑎 = 121 𝑎𝑛𝑑 𝐺𝑁𝑎 = 130 ) 

and the results are presented in Table 6.3 and Table 6.4. The reason to perform more 

experiments was to find out the behaviour of observe against the different ranges of 

faults.  The properties of Table 6.3 is as follows: 

 

𝐺𝑁𝑎 = {

120 𝑓𝑜𝑟 𝑡 = [50 − 80]𝑆  

121 𝑓𝑜𝑟 𝑡 = [81 − 140]𝑆
120 𝑓𝑜𝑟 𝑡 ≥ 141 𝑆             
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 Before Fault During Fault After Fault 
Av. of Inter-

spike 
Intervals (S) 

Av. of Spike 
Amplitude (mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

KF 13.87 24.3 13.84 24.42 13.88 24.02 

Neuron 13.81 24.1 13.50 25.31 13.75 24.13 
‖𝑟‖ 0.06 0.2 0.34 0.89 0.13 0.11 

Table 6.3 –The properties of action potential for Kalman filter for G_Na=121 

 

The properties of Table 6.4 is as follows: 

 

𝐺𝑁𝑎 = {

120 𝑓𝑜𝑟 𝑡 = [50 − 80]𝑆  

130 𝑓𝑜𝑟 𝑡 = [81 − 140]𝑆
120 𝑓𝑜𝑟 𝑡 ≥ 141 𝑆             

 

 

 Before Fault During Fault After Fault 
Av. of Inter-

spike 
Intervals (S) 

Av. of Spike 
Amplitude (mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

KF 13.89 24.27 13.79 26.77 13.85 33.1 

Neuron 13.78 24.12 13.26 27.815 13.74 24.15 
‖𝑟‖ 0.11 0.15 0.53 1.04 0.11 8.95 

Table 6.4 –The properties of action potential for Kalman filter for G_Na=130 

 

 

It can be seen that the magnitude of the fault was increased. In both case the residual 

signal should the same trends. These results are discussed in more detail in later section 

(section 6.5). 

6.3 Extended Kalman Filter  

The Kalman filter is based on linear transformations, but more sophisticated systems can 

be nonlinear. The issue of non-linearity can be found in observations, modelling, or both. 

The extended Kalman filter is a nonlinear version of the Kalman filter. The extended 

Kalman filter has been considered as a standard in the theory of nonlinear state 

estimation.  
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To formulate the continuous time Extended Kalman filter (EKF), firstly consider the 

following continuous time nonlinear model: 

 𝑥 (𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) + 𝜔(𝑡) (6.2) 

 

where ( )x t  is system state vector, ( )u t  is system input vector, f  is system nonlinear 

function, and ( )t  is white Gaussian noise, ( ) (0, )t N Q . 

Now consider the following measurement model: 

 y(𝑡) = ℎ(𝑥(𝑡)) + 𝑣(𝑡) (6.3) 

 

where ( )y t  is system measurement, h  is measurement function and ( )t  is white 

Gaussian measurement noise with ( ) (0, )t N R . 

Now, in the following extended Kalman filter is presented: 

-Initialization 

 𝑃(0) = 𝑃0, 𝑥(0) = 𝑥0 (6.4) 

 

-Error covariance update  

 𝑃 = 𝐴𝑃 + 𝑃𝐴𝑇 + 𝑄 − 𝑃𝐶𝑇𝑅−1𝐶𝑃 (6.5) 

   

-Kalman gain 

 K = 𝑃𝐶𝑇𝑅−1 (6.6) 

 

-The estimation update and prediction 

 𝑥̂ (𝑡) = 𝑓(𝑥̂(𝑡), 𝑢(𝑡)) + 𝐾(𝑦(𝑡) − 𝐶𝑥̂(𝑡)) (6.7) 

 

Where 

 
ˆ( ) ( ), ( )x t x t u t

f
A

x






 
(6.8) 
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ˆ( ) ( )x t x t

h
C

x






 
(6.9) 

 

 

6.3.1 Proposed extended Kalman Filter observer for the neuron model  

The difference between Kalman and Extended Kalman is that for Kalman someone use 

a linearized model around the operation point, while in Extended Kalman someone use 

the nonlinear model in the prediction phase, and then it can linearize the system around 

the estimation point. In order to apply the extended Kalman Filter to the model, the 

linearized model is as follows:  

 𝜕𝑓

𝜕𝑥
|.𝑥̂(𝑡) =  

𝜕𝑓

𝜕𝑥
=

[
 
 
 
 
 
 
𝜕𝑓1

𝜕𝑉
𝜕𝑓2

𝜕𝑉
𝜕𝑓3

𝜕𝑉
𝜕𝑓4

𝜕𝑉

  
𝜕𝑓1

𝜕ℎ
  

𝜕𝑓2

𝜕ℎ
𝜕𝑓3

𝜕ℎ
𝜕𝑓4

𝜕ℎ

𝜕𝑓1

𝜕𝑚
  

𝜕𝑓2

𝜕𝑚
𝜕𝑓3

𝜕𝑚
𝜕𝑓4

𝜕𝑚

𝜕𝑓1

𝜕𝑛
𝜕𝑓2

𝜕𝑛
𝜕𝑓3

𝜕𝑛
𝜕𝑓4

𝜕𝑛 ]
 
 
 
 
 
 

 |.𝑥̂(𝑡)  = A(t) 

(6.10) 

 

 

𝐵 =
𝜕𝑓

𝜕𝑢
|.𝑥̂(𝑡). = 

[
 
 
 
 
1

𝐶𝑚

0
0
0 ]
 
 
 
 

  

(6.11) 

where ˆˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
T

x t V t h t m t n t 
  . Now, in the following the derivatives of 

equation (6.10) are computed: 

 

 
 
𝜕𝑓1
𝜕𝑉 ˆ( )x t

=
1

𝐶𝑚
[−𝑔𝑁𝑎𝑚̂.

3ℎ̂. − 𝑔𝐾𝑛̂.
4 − 𝑔𝐿] 

(6.12) 
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 𝜕𝑓1
𝜕ℎ ˆ( )x t

=
1

𝐶𝑚
[−𝑔𝑁𝑎𝑚̂.

3ℎ̂.(𝑉̂. − 𝑉𝑁𝑎)] 
(6.13) 

 

 𝜕𝑓1
𝜕𝑚 ˆ( )x t

=
1

𝐶𝑚
[−3𝑔𝑁𝑎𝑚̂.

2ℎ̂.(𝑉̂. − 𝑉𝑁𝑎)] 
(6.14) 

 

 𝜕𝑓1
𝜕𝑛 ˆ( )x t

= 
1

𝐶𝑚
[−4𝑔.𝑛̂.

3(𝑉̂. − 𝑉.)] 
(6.15) 

 

The 𝑓2 derivatives are  

 

 
𝜕𝑓2
𝜕𝑉 ˆ( )x t

=
0.01 (1 − exp [−

𝑉̂. + 55
10 ]) −

1
10

exp [−
𝑉̂. + 55
10 ] 0.01(𝑉̂𝑘. + 55)

(1 − exp [−
𝑉̂. + 55
10 ])2

(1

− 𝑛̂.) +  
1.125

80
exp [−

𝑉̂. + 65

80
] (𝑛̂.) 

(6.16) 

 

 

 𝜕𝑓2
𝜕ℎ ˆ( )x t

= 0 
(6.17) 

 

 𝜕𝑓2
𝜕𝑚 ˆ( )x t

= 0 
(6.18) 

 

 𝜕𝑓2
𝜕𝑛 ˆ( )x t

= 
0.01 (𝑉̂. + 55)

1 − exp [−
𝑉̂. + 55
10 ]

−  1.125ex p [−
𝑉̂. + 65

80
] 

(6.19) 

 

The 𝑓3 derivatives are 
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𝜕𝑓3
𝜕𝑉 ˆ( )x t

=

0.01(1 − exp [−
𝑉̂. + 40
10

] (𝑉̂. + 40)) − 0.1 (− exp [−
𝑉̂. + 40
10

]) ∗ 0.01(𝑉 + 40)

(1 − exp [−
𝑉̂. + 40
10

])2
(1

− 𝑚̂.) +
4

18
exp [−

𝑉̂. + 65

18
] (𝑚̂.) 

(6.20) 

 

 𝜕𝑓3
𝜕ℎ ˆ( )x t

= 0 
(6.21) 

 

 𝜕𝑓3
𝜕𝑚 ˆ( )x t

=
−0.01(𝑉̂. + 40)

1 − 𝑒𝑥𝑝 [−
𝑉̂. + 40
10 ]

− 4 𝑒𝑥𝑝 [−
𝑉̂. + 65

18
] 

(6.22) 

   

 𝜕𝑓3
𝜕𝑛 ˆ( )x t

= 0 
(6.23) 

The 𝑓4 derivatives are 

 𝜕𝑓4

𝜕𝑉 ˆ( )x t
= - 

0.07

20
 exp [−

𝑉̂.+65

20
] (1 − ℎ̂.) − 

0.1exp[−
𝑉̂.+35

10
]

(1+exp[−
𝑉̂.+35

10
])
2  (ℎ) 

(6.24) 

 

 

 𝜕𝑓4
𝜕ℎ ˆ( )x t

= 0.07 exp [−
𝑉̂. + 65

20
] − 

1

1 + exp [−
𝑉̂. + 35
10 ]

  
(6.25) 

 𝜕𝑓4
𝜕𝑚 ˆ( )x t

= 0 
(6.26) 
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 𝜕𝑓4
𝜕𝑛 ˆ( )x t

=  0 
(6.27) 

 

Now, the extended Kalman filter algorithm can be applied (equations (6.4) to (6.7)) to 

the system using the above computations.  

 

6.3.2 Fault detection using extended Kalman filter  

The residual for fault detection using extended Kalman filter is computed as follows:  

 𝑟(𝑡). = 𝑦(𝑡). − ℎ (𝑥̂(𝑡)). (6.28) 

Now, the Euclidean norm as ||𝑟(𝑡)|| can be computed and compare it with a predefined 

threshold to specify a binary decision if a fault has occurred or not. 

 

6.3.3 Simulation results 

In this experiment an observer with extended Kalman filter on the neural model is applied 

to produce the response of a spiking neuron to an stimulation. The stimulus, Istim= 10 

μA/cm2, 50ms ≤ t ≤ 200ms, is considered as the injected current. There is no response 

between 0 second and 50 seconds to consider the behaviour of system during the non-

stimulating time. The 200 ms time was obtained by using the trial and error method as 

the best time in the experiments. 

As shown in Figure 6.5, the output of intracellular voltage (v) and the output of observed 

membrane voltage are shown with excellent accuracy. This figure, however, presents the 

output of the extended Kalman filter by estimating the parameters of the neural model. 

 



 161 

 

 

 Figure 6.5 – Observed membrane vs. normal membrane  

 

 Figure 6.6 – Error of model when GNa = 120. The nominal value of GNa = 120 

mS 

m
V

 

mS 

m
V
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 Figure 6.7 – The output estimation error of model when GNa = 121. The nominal value of GNa = 120 

 

 

The output estimation error is shown in Figure 6.6 for the normal condition and in 

Figure 6.7 for a condition in which GNa = 121. Here, this study has identified the threshold 

by trial and error. A fault is detected if the value of the residual exceeds the predefined 

threshold. The threshold was set at similar values to the previous observer. (Section 6.2). 

As shown in Figure 6.6 the value of error for nominal (GNa = 120) does not exceed the 

specified thresholds while for the faulty condition in Figure 6.7, the error exceeds the 

threshold and a fault is detected.  

 

mS 

m
V
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Figure 6.8 – The output of faults applied between the time 80 and 140 seconds for extended Kalman filter 

 

A sequence of faults similar to the previous sequence was also injected here and the 

results are shown in figure 6.8. The properties of action potential before applying fault, 

during applying fault and after applying fault are presented in Table 6.5 to Table 6.7. 

 

 Before Fault During Fault After Fault 
Av. of Inter-

spike 
Intervals (S) 

Av. of Spike 
Amplitude (V) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

EKF 13.58 24.58 13.77 25.575 13.73 29.38 

Neuron 13.77 24.158 13.06 28.35 13.54 23.78 
‖𝑟‖ 0.08 0.422 0.71 3.225 0.19 5.6 

Table 6.5 –The properties of action potential for extended Kalman filter for G_Na=141 

 

The same is done for 𝐺𝑁𝑎 = 121 and 𝐺𝑁𝑎 = 130 and the results are presented in Table 

6.6 and Table 6.7. 

 

 

 

mS 

m
V
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 Before Fault During Fault After Fault 
Av. of Inter-

spike 
Intervals (S) 

Av. of Spike 
Amplitude (mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

EKF 13.80 25.08 13.36 26.7 13.78 25.0 

Neuron 13.70 25.0 12.95 27.66 13.69 25.1 
‖𝑟‖ 0.1 0.08 0.41 0.96 0.09 0.10 

Table 6.6 –The properties of action potential for extended Kalman filter for G_Na=121 

 

 Before Fault During Fault After Fault 
Av. of Inter-

spike 
Intervals (S) 

Av. of Spike 
Amplitude (mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

EKF 13.83 25.33 13.58 26.18 13.69 27.8 

Neuron 13.76 24.57 12.81 27.37 13.59 24.18 
‖𝑟‖ 0.07 0.76 0.77 1.19 0.1 3.62 

Table 6.7 –The properties of action potential for extended Kalman filter for G_Na=130 

 

6.4 Nonlinear observer by coordinate transformation 

A nonlinear observer is referred to a dynamical system that receives the output or input 

measurements of the system to process an estimation of the nonlinear system states 

(Delgado, et al., 2005). Non-linear observers are more needed to identify the fault for 

dynamic systems. Since the majority of processes in the world around us are non-linear 

therefore applying linear observers reduces the efficiency of fault detection algorithms 

due to linearization errors. A design method for nonlinear observers was proposed in 

Delgado, et al. (Delgado, et al., 2005). In this work, an observer is proposed for nonlinear 

systems that can be transformed simply into the normal form. The method for obtaining 

a neural observer for non-linear systems involves two steps. 

In the first stage, the input or output reaction is recognized with the dynamic neural 

system. In the next stage and after training dynamic neural system the observer can be 

designed for the neural model. At this stage, the inverse of the injective map is applied 

to measure the state vector of the original system from the state vector of the neural 
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observer. The inverse of the injective map transforms the nonlinear system into the neural 

model. 

 

6.4.1 Proposed observer for the model of neuron 

Consider the following nonlinear system: 

 𝑥 = 𝑓(𝑥) + 𝑔(𝑥). 𝑢 

𝑦 = ℎ(𝑥) 

(6.29) 

Where, 𝑥 is the state vector, 𝑓(𝑥) and 𝑔(𝑥) are smooth vector fields. ℎ(𝑥) is a smooth 

scalar field. 𝑦 is the output and 𝑢 is the input. A nonlinear system has a relative degree 𝑟 

if the input 𝑢(𝑡) emerges explicitly 𝑟 times after differentiating the output 𝑦(𝑡) with 

respect to time. In the above system, the maximum relative degree is 𝑟 = 𝑛 at the origin 

if the output and derivatives of output can be written as follow: 

 𝑦 = ℎ(𝑥) 

𝑦 = 𝐿𝑓ℎ(𝑥) 

. 

. 

𝑦𝑛−1= 𝐿𝑓
𝑛−1ℎ(𝑥) 

𝑦𝑛 =  𝐿𝑓
𝑛ℎ(𝑥)+𝐿𝑔𝐿𝑓

𝑛−1ℎ(𝑥). 𝑢 

 

(6.30) 

where at the origin 𝐿𝑔𝐿𝑓
𝑛−1ℎ(𝑥) ≠ 0. 

𝐿𝑓ℎ(𝑥) = 
𝜕ℎ(𝑥)

𝜕𝑥
. 𝑓(𝑥) = 𝑑ℎ(𝑥). 𝑓(𝑥) is Lie derivative of the scalar field ℎ(𝑥) along the 

vector field 𝑓(𝑥). For higher order Lie derivatives someone can use 

 𝐿𝑓
𝑘ℎ(𝑥)=𝐿𝑓(𝐿𝑓

𝑘−1ℎ(𝑥)) with  𝐿𝑓
0ℎ(𝑥) = ℎ(𝑥). 
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Consider system (1) with relative degree 𝑟 = 𝑛 around origin then the coordination 

bellow has a Jacobian matrix as follows: 

 

 

[
 
 
 
 
𝑧1
𝑧2
.
.
𝑧𝑛]
 
 
 
 

=

[
 
 
 
 
𝜑1(𝑥)
𝜑2(𝑥)

.

.
𝜑𝑛(𝑥)]

 
 
 
 

=

[
 
 
 
 

ℎ(𝑥)
𝐿𝑓ℎ(𝑥)

.

.
𝐿𝑓
𝑛−1ℎ(𝑥)]

 
 
 
 

 

(6.31) 

 

The above coordinate transformation can be written in compact form as 𝑧 = 𝜑(𝑥) and 

the inverse 𝑥 = 𝜑−1(𝑧) with 𝜑(0) = 0. By applying the above coordinate transform, 

system (6.29) transforms into the following form: 

 𝑧 = 𝐴. 𝑧 + 𝐹𝑎(𝑧) + 𝐹𝑏(𝑧). 𝑢 

y=c.z 

(6.32) 

where,  

A = 

[
 
 
 
 
0 1 0
0 0 1

. . 0

. . 0
. . .. .

0 0

.
0

\ .
. .
. .

1
0]
 
 
 
 

’ 

 

𝐹𝑏(𝑧) =

[
 
 
 

0
0.
0

𝑎(𝑧1, … , 𝑧𝑛)]
 
 
 

 , 

𝐹𝑏(𝑧) =

[
 
 
 

0
0.
0

𝑏(𝑧1, … , 𝑧𝑛)]
 
 
 

, 

 

the nonlinear functions are:   
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 𝑎(𝑧1, … , 𝑧𝑛) = 𝐿𝑓
𝑛ℎ(𝑥)| 𝑥=𝜑−1(𝑧) 

 

𝑏(𝑧1, … , 𝑧𝑛) = 𝐿𝑔
 𝐿𝑓

𝑛−1ℎ(𝑥)| 𝑥=𝜑−1(𝑧) 

 

(6.33) 

A neural observer for system (6.32) is given by bellow: 

 

 𝜉 = 𝐴. 𝜉+ 𝐹𝑎(𝜉) +  𝑘. (𝑦̂ − 𝑦0) + 𝐹𝑏(𝜉). 𝑢 

𝑦0=cz 

(6.34) 

where 𝜉 ∈  𝑅𝑛,  𝑦0 ∈ 𝑅 

A = 

[
 
 
 
 
0 1 0
0 0 1

. . 0

. . 0
. . .. .

0 0

.
0

\ .
. .
. .

1
0]
 
 
 
 

’ 

 

𝐹𝑎(𝜉) =

[
 
 
 

0
0.
0

𝑇𝑎(𝜉1, … , 𝜉𝑛)]
 
 
 

 , 

 

𝐹𝑏(𝜉) =

[
 
 
 

0
0.
0

𝑇𝑏(𝜉1, … , 𝜉𝑛)]
 
 
 

 , 

 

𝑘 =

[
 
 
 
 
𝑘1
𝑘2.
.
𝑘𝑛]
 
 
 
 

’ 

𝑐 = [1  0  .  .  .  0] 

To find the error 𝑒 = 𝑧 − ξ  is needed and it satisfies: 
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 𝑒 = (𝐴 − 𝑘. 𝑐). 𝑒 + {𝐹𝑎(𝑧) − 𝐹𝑎(𝜉)} + {𝐹𝑏(𝑧) − 𝐹𝑏(𝜉)}. 𝑢 (6.35) 

 

6.4.2 Applying nonlinear observer by coordinate transformation on neural model 

Following equation (6.29) and the Hodgkin-Huxley model: 

𝑑𝑉

𝑑𝑡
=  

1 

𝐶𝑚
 [−𝑔𝑁𝑎𝑚

3ℎ (𝑉 − 𝑉𝑁𝑎) − 𝑔𝑘𝑛
4 (𝑉 − 𝑉𝑘) − 𝑔𝑙 (𝑉 − 𝑉𝑙)] +

1 

𝐶𝑚
 . 𝐼𝑖𝑛𝑗 

 

𝑦 = 𝑉(𝑡) = ℎ(𝑡)  

As in this condition our related degree becomes 1 therefore: 

n = 1 => r = n = 1 

now following equation (6.31) : 

𝑧1 = 𝜑1(𝑥) = ℎ (𝑥) = 𝑉 

following equations (6.32) and (6.33) 

𝐹𝑎(𝑧) = a (𝑧1) =  𝐿𝑓
1𝑣 = 

𝜕ℎ

𝜕𝑉
 . f (x) = 

𝜕𝑉

𝜕𝑉
 . f (x) = f (x) 

and 

𝐹𝑏(𝑧) = b (𝑧1) = 𝐿𝑔 𝐿𝑓
0  h(x) = 𝐿𝑔. 𝑉 = 

𝜕𝑉

𝜕𝑉
 𝑔(𝑥) = 𝑔(𝑥) =  

1 

𝐶𝑚
 

and 

A = 0  

then following (6.32): 

𝑧 = 0. 𝑧1 + 𝐹𝑎(𝑧) + 𝐹𝑏(𝑧). 𝑢 => 𝑧 = 𝑓(𝑧) +
1 

𝐶𝑚
. 𝑢 

y=c.z ⟹ y= 1.V = V 

now someone can implement the observer for our system. Following equation (6.34)  

𝜉 = 0. 𝜉 +  𝑓(𝜉) +  𝐾(𝑐𝜉 − 𝑐𝑧) +
1 

𝐶𝑚
. 𝑢 

f (x), x = V g (x) u 
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the ‘k’ is not known, therefore following equation (6.35)  

𝑒 = 𝑧 − 𝜉 

and then 

𝑒 = (𝐴 − 𝐾𝑐). 𝑒 + {𝑓(𝑧) − 𝑓(𝜉)} +  
1 

𝐶𝑚
− 

1 

𝐶𝑚
} 𝑢 

then the following is obtained: 

𝑒 = (−𝐾𝑐)𝑒 + (− 
1 

𝐶𝑚
(𝑔𝑁𝑎𝑚

3ℎ + 𝑔𝑘𝑛
4 + 𝑔𝑙)𝑧 +

1 

𝐶𝑚
𝑔𝑁𝑎𝑚

3ℎ𝑉𝑁𝑎 +
1 

𝐶𝑚
𝑔𝑘𝑛

4𝑉𝑘

+
1 

𝐶𝑚
𝑔𝑙𝑉𝑙) − (− 

1 

𝐶𝑚
 (𝑔𝑁𝑎𝑚

3ℎ + 𝑔𝑘𝑛
4 + 𝑔𝑙)𝜉 + 

1 

𝐶𝑚
 𝑔𝑁𝑎𝑚

3ℎ𝑉𝑁𝑎

+
1 

𝐶𝑚
𝑔𝑘𝑛

4𝑉𝑘 + +
1 

𝐶𝑚
𝑔𝑙𝑉𝑙) 

       = −𝑘𝑐𝑒 − 
1 

𝐶𝑚
 (𝑔𝑁𝑎𝑚

3ℎ + 𝑔𝑘𝑛
4 + 𝑔𝑙 ) (z - 𝜉) 

 

= −𝑒(𝑘𝑐 + 𝑝) 

then 

𝑑𝑒

𝑒
= (−kc −  P) dt ⟹ ∫

de

𝑒
 = ∫(−𝑘𝑐 − 𝑝)𝑑𝑡  ⟹ 𝐿𝑛 𝑒 = (−𝑘𝑐 − 𝑝)𝑡 + 𝑐1 

then 

𝑒(𝑡) = 𝐸𝑥𝑝((−𝑘𝑐 −  𝑝)𝑡 + 𝑐1) = 𝐸𝑥𝑝(𝑐1). 𝐸𝑥𝑝((−𝑘𝑐 −  𝑝)𝑡)  

when t → ∞  then e → 0 and it’s the stability of observer. On the other hand when t → ∞ 

if (– 𝑘𝑐 − 𝑝) < 0 𝑡ℎ𝑒𝑛 𝑒∞ → 0. If, 𝑘𝑐 >  𝑝 ⟹   𝑘 >
𝑝

𝑐
 ⟹  𝑘 > 𝑝, as a result for any 

 k > p the observer is stable and it convergent to real value and it means: 

z – 𝜉 → 0 => 𝜉 → z 

hence 

𝑑𝑒

𝑒
= −(𝑘𝑐 + 𝑝)𝑑𝑡 

𝑒(𝑡) = 𝐸𝑥𝑝((−𝑘𝑐 − 𝑝)𝑡 + 𝑐1) 

p e 
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6.4.3 Simulation results 

In this experiment, a neural model with the same specifications as in previous 

experiments is applied to produce the response of a spiking neuron to a stimulation. The 

stimulus, Istim= 10 μA/cm2, 50ms ≤ t ≤ 200ms, is considered as the injected current.  

 

  
 

Figure 6.9 – Observed membrane vs. normal membrane  

 

As shown in Figure 6.9, the output of intracellular voltage (v) and the output of observed 

membrane voltage with excellent accuracy have been shown.  

 

m
V

 

mS 
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 Figure 6.10 – Error of model when GNa = 120. The nominal value of GNa = 120 

 

 
 

 Figure 6.11 – The output estimation error of model when GNa = 121. The nominal value of GNa = 120 

 

The output estimation error is shown in Figure 6.10 for normal condition and in Figure 

Figure 6.11 for a condition which GNa = 121. Here, this study has identified the threshold 

m
V

 
m

V
 

mS 

mS 
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with the trial and error method. A fault is detected if the value of the residual exceeds the 

predefined threshold. The threshold is considered as error > 20 mV or error <- 20 mV 

through trial and error method. 

 

 

 

Figure 6.12 – The output of faults applied between the time 80 and 140 seconds for nonlinear observer by coordinate 

transformation  

 

A sequence of faults similar to the previous sequence in section 6.2.4 and section 6.3.3 

was also injected here and the results are shown in figure 6.12. The properties of action 

potential before applying fault, during applying fault and after applying fault are 

presented in Table 6.8 to Table 6.10. 

 

 

 

 

 

 

mS 

m
V

 



 173 

 Before Fault During Fault After Fault 
Av. of Inter-

spike 
Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike Intervals 

(S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Nonlinear  13.85 24.12 13.8 23.7 13.8 23.74 

Neuron 13.84 24.12 13.09 28.4 13.96 23.77 
‖𝑟‖ 0 0 0.71 4.7 0.16 0.03 

Table 6.8 –The properties of action potential for nonlinear observer by coordinate transformation for G_Na=141 

 

The same is done for 𝐺𝑁𝑎 = 121 and 𝐺𝑁𝑎 = 130 and the results are presented in Table 

6.9 and Table 6.10. 

 

 

 Before Fault During Fault After Fault 
Av. of Inter-

spike 
Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike Intervals 

(S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Nonlinear  13.81 24.0 13.83 23.8 13.78 24.12 

Neuron 13.81 24.0 13.45 24.23 13.77 24.14 
‖𝑟‖ 0 0 0.38 0.43 0.01 0.02 

Table 6.9 –The properties of action potential for nonlinear observer by coordinate transformation for G_Na=121 

 

 

 Before Fault During Fault After Fault 
Av. of Inter-

spike 
Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike Intervals 

(S) 

Av. of Spike 
Amplitude 

(mV) 

Av. of Inter-
spike 

Intervals (S) 

Av. of Spike 
Amplitude 

(mV) 

Nonlinear  13.79 24 13.81 23.79 13.8 24.0 

Neuron 13.79 24 13.2 26.45 13.875 23.96 
‖𝑟‖ 0 0 0.61 2.66 0.075 0.04 

Table 6.10 –The properties of action potential for nonlinear observer by coordinate transformation for G_Na=130 

 

6.5 Discussion 

The application of observers is useful not only in system monitoring and regulation but 

also for detecting faults in any dynamical systems.  Most observer designs are based on 

a mathematical model; therefore when designing a fault detection methodology, care 

must be given to distinguish between faults and the natural disturbances which occur. 
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This is often taken care of by using the threshold. From earlier sections it is clear, by 

setting the threshold at 20mV, disturbances would be excluded from the fault detection 

and genuine faults are detected. From Figures 6.3, 6.7 and 6.11 it can be seen that a small 

fault in sodium is detected.   

A Kalman filter as a linear observer was first applied to our neural model. Then, extended 

Kalman was also applied to the model and finally nonlinear observer by coordinate 

transformation applied. In each case the performance of the observer is studied for 

different magnitudes of faults. From the results it is clear, that even after the fault has 

been removed the error in the observer and the neuron persist way above the threshold. 

The response of a neuron to a stimulus is characterised by both the inter-spike interval 

and the magnitude of the spikes. Thus it is reasonable to have two fault signatures when 

a fault occurs. This is in line with the results from Chapters 3 and Chapter 4. Thus the 

fault signature is simply not the differences between the magnitude of the spikes between 

the observer and the neuron, but must include the inter-spike interval as well. With each 

of the observers the sequence of changes to sodium was the same, and in each before the 

fault was introduced the differences in the time and the magnitude of the spikes was 

negligible. Once a fault has been introduced, the residual allowed the detection of the 

fault, however when the fault was removed the spike trains from the observer and the 

neuron exhibited a difference. This can be seen from the graphs and Tables 6.2 to Tables 

6.11. This is as a result of the change in the spike intervals in the neuron which shifted 

the spike, while those in the observer remained the same. As can be seen from tables the 

two characteristics return to their original values when a fault in sodium levels is injected. 

In order to assess the method further, different levels of faults in sodium were tested. 

These are shown in Tables 6.2 to Tables 6.10. The faults are detected properly during the 

fault occurrence. Tables 6.2 and 6.4 show that as the level of faults become bigger the 
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behaviour of system after fault occurrence becomes more unstable (see Figure 6.4). As 

it can be seen in Table 6.2 to Table 6.4 the Kalman filter has an acceptable performance 

in counter of low range of faults but its performance for large faults is not acceptable.  

The extended Kalman filter (see Table 6.5 to 6.7) exhibits a similar behaviour and can 

be seen in Table 6.5 to Table 6.7 and Figure 6.8.  The results show that the observer 

based on the EKF works well for low and intermediate levels of faults. By considering 

the values of Table 6.7 and 6.5 it can be seen that the output of residuals in fault free 

conditions is much bigger than faulty conditions.  

The results of nonlinear observer, which is based around a globally linearization strategy, 

are presented in Tables 6.8 to 6.10. The same range of faults are applied here as well. It 

can be seen from the results (see Tables 6.8 to 6.10 and Figure 6.12) the faults are 

detected, and the behaviour of the observer is such that it is able to track the neuron well.  

From the results it can be seen that both the Kalman filter and extended Kalman filter 

performance deteriorates as the level of fault magnitudes are increased. A reason for this 

is that with the linear version of the filter or the extended version, both use a form of 

locally linearization. This therefore does not allow for large changes in the parameters of 

the system (neuron). These results will be similar for all levels of faults, unless the 

observer is an adaptive observer (Zhang, et al., 2008). However, this is computationally 

expensive. On the other hand the process of the nonlinear system through coordinate 

transformation linearizes the system globally, and is thus more effective. 
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7 Conclusion 

7.1 Introduction 

This chapter provides a summary of the thesis, with conclusions that have been drawn 

from the results of the project. It also highlights the novel contributions of this project 

from the computational neuroscience point of view including the practical implications 

of the project. 

 

7.2 Research contributions and discussion 

The significance and the contributions of this project can be assessed from medical and 

computational points of view. The results have not only prepared research on the 

symptoms and causes of neurodegenerative diseases like Alzheimer's disease but also 

highlighted those crucial moments where computational intelligence could play a 

remarkable role in detection of the advancement of these kinds of disease. In addition, 

the results have pointed to ways of deriving optimum benefits from the fields of 

computation, mathematics, biology, and neuroscience. In addition to all of these, the 

research has found significant symptoms that can be applied as biomarkers for early 

detection of Alzheimer's disease. 

The following are the main contributions of the thesis: 

 

 

- The impact of ion gradients in exacerbating neurodegenerative diseases 
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In Chapter 3, the study has highlighted the role of ion imbalances in neural 

activities and shown that ion imbalances can make neurodegenerative diseases 

worse. It has been shown that ionic imbalances in patients with neurodegenerative 

diseases can lead to serious disturbances in the nervous system or even death of 

neurons. Therefore, it was shown in a computational form that the role of ion 

balance in patients with neurodegenerative diseases is crucial.  

- Ion gradient and its impact on basic features of electric signalling of neuron 

The basic features of action potential, i.e. peak and resting membrane potential, 

have a direct relation with sodium and potassium concentrations such that 

increased potassium level leads to the increase of resting membrane potential and 

decreased potassium level has the opposite effect. Changes in sodium levels do 

not have significant effects on resting levels of membrane potential. However, 

increased sodium level leads to an increase in amplitude and decreased sodium 

level has the opposite effect. Chapter 3 has shown these results. The rate of these 

changes can help us to find a solution to stabilize changes in neuron signalling in 

neurodegenerative diseases. 

- The region of synchronicity 

Using mathematical relations like the generalized form of neurons and coupled 

type equations and the results of experiments on coupled neurons, this study 

obtained a relation that is essential for synchronicity in the nervous system.  In 

entirely normal conditions if a neuron is stimulated only by presynaptic potential 

and it does not receive any other stimuli from other neurons to produce 

synchronisation between any two neurons, the minimum condition should be  𝐼𝑐 ≥

𝐼𝑖𝑛𝑗1

2
 where Ic is coupling conductance between two neurons.  
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- Increasing the coupling conductance leads to further synchronisation in the 

network of neurons 

Chapter 4 has shown that as coupling conductance is increased, synchronisation 

is more triggered. After further coupling conductance, increasing action 

potentials coincide with each other, except for slight defects. As the results show, 

by picking sufficiently large coupling conductance, cell synchronisation 

occurred. The results indicate how any changes in the coupling conductance can 

drive the neurons into different degrees of synchronisation. This is a 

computational proof that adjusting coupling conductance in neurodegenerative 

diseases like Alzheimer's by developing appropriate medications can improve the 

symptoms of the disease. 

- The nervous system is more sensitive to potassium changes than sodium 

changes.   

In Chapter 4, it was shown that, during the combination of sodium and potassium 

imbalances, the conditions led to the properties of potassium concentration.  This 

means that important features of an action potential, such as the rates of rising of 

the action potential, its peak amplitude, and duration, are more dependent on the 

properties of potassium. 

- A computational model for amyloid channels 

In Chapter 5 a computational model for amyloid beta channels was presented. As 

was evident from the Alzheimer's pathology, amyloid accumulation in the 

synaptic space is a primary stage of Alzheimer's development. Therefore, 

focusing on the model of Aβ channels can lead us to early diagnosis or even 

treatment of Alzheimer's. Aβ channels are permeable to cations including sodium 

and potassium, as far as these channels have been identified as cation channels. 
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This study has shown that abnormal levels of ions like sodium and potassium in 

neurons cause the ionic imbalance that is linked to Alzheimer's disease 

pathogenesis. 

- Applying fault detection in the computational model of the neuron to detect 

NDDs 

Neurodegenerative diseases like Alzheimer's disease are considered to be due to 

a fault in the neuron. In Chapter 6 observer-based residual generation for 

detection of Alzheimer's disease was considered for fault detection. In addition, 

the performance of Kalman filter, extended Kalman filter and neural observer by 

coordinate transformation in observer based residual generation was compared. 

It is shown that the faults in the neuron have two signatures when a fault occurs 

i.e. the inter-spike interval and the magnitude of the spikes. 

 

7.3 Concluding Remarks 

The main problem of neurodegenerative diseases is that these diseases are not curable 

(so far) and hard to detect in the very early stage of disease as these diseases do not have 

obvious symptoms. Moreover, these diseases are very hard to distinguish in the next stage 

because of similarities between different neurodegenerative diseases as well as 

symptoms of normal ageing. Because there are no valid methods for recognizing such 

diseases; scientists are extremely keen to find hidden patterns that can be useful in the 

early diagnosis of neurodegenerative diseases. The results of this research project have 

highlighted the significance of computational neuroscience and artificial intelligence in 

the early detection of these kinds of diseases, like Alzheimer's disease. This research has 

demonstrated the problems with the early detection of neurodegenerative diseases like 
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Alzheimer's disease and offered feasible solutions. The role of beta-amyloid in the 

pathogenesis of Alzheimer's disease and the abnormalities of these channels in creating 

the ionic imbalance that causes impairment of neuronal signalling function were 

presented using the computational model and simulation. Results of experiments are 

demonstrated and validated by other prestigious research in neurology, neuroscience and 

biology.  In addition, this research has proposed and demonstrated a novel idea for 

treating neurodegenerative diseases using changes of coupling and synchronisation in the 

neural activities. The results of the research project have demonstrated novel and 

significant findings that can be applied in clinical practice for early detection and 

treatment of Alzheimer's disease. 

 

7.4 Future work 

In addition to the main novel contributions that have been demonstrated in previous 

chapters, this study hereby, demonstrates extensions and feasible solution that might 

support to amend and develop the shortcomings. This chapter highlights the feasible 

extensions of our research project using machine learning and data mining techniques to 

clinical applications. 

 

- Finding the brain waves change rates using Brain-Computer Interface (BCI) 

The change of the neuron from a healthy state to an unhealthy state leads to 

gradual death of the neuron. This period of changes is typically observed in many 

disorders such as neurological diseases include Alzheimer's Disease (AD), 

Parkinson’s Disease (PD), and Motor Neuron Diseases. At the onset of the 

disease, the neuron starts to change in neural spiking and its function. This 

changes can be observed in the dynamics of the neuron. 
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One future augmentation of this research project is designing Brain-Computer 

Interface (BCI) which finds the rate of changes in brain waves due to beta-

amyloid secretion in order to apply on electroencephalogram machines. 

 

- Applying machine learning to detect NDDs using neurons signal changes 

Although there are very accurate tests for patients with NDDs but there are not 

good tests in order to detect diseases in very early stage or even future NDDs like 

Alzheimer's (Bondi, et al., 2017). Machine learning has entered into the field of 

diagnosis in medicine, therefore, it can have a lot of benefits in finding a 

comprehensive solution to this. Nowadays this branch of artificial intelligence 

can predict various crucial diseases like Brain Strokes or Heart Attacks even more 

accurately and better than any expert. But, what someone can do about NDDs? 

Techniques in machine learning over the past decades are significant for the 

prognosis and diagnosis of neurological disorders, particularly for Alzheimer's 

disease. 

Diagnosis of the disease years before causing damage to the nerve cells or even 

cells death still haven't been identified easily by a simple neuropsychological 

evaluation. Amyloid-beta (Aβ) peptide is a great help on this path. Accumulation 

and aggregation of amyloid-beta (𝐴𝛽) peptide in the brain extracellular space 

makes changes in the function of brain, especially in the electromagnetic 

activities and rhythms of the brain (Babiloni, et al., 2016). Following these 

changes the brain activity is changed and it affects the nerve cells signaling 

(Sadegh-Zadeh & Kambhampati, 2018). Research confirms that at the beginning 

of the secretion of amyloid-beta (Aβ) peptide in the extracellular of neurons, the 

brain rhythms have shown changes (Babiloni, et al., 2016).  
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