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ABSTRACT 

Air Conditioners (ACs) are a vital need in modern buildings to provide comfortable 

indoor air for the occupants. Several alternatives for the traditional coolers are 

introduced to improve the cooling efficiency but among them, Evaporative Coolers 

(ECs) absorbed more attention owing to their intelligible structure and high efficiency. 

ECs are categorized into two types, i.e., Direct Evaporative Coolers (DECs) and 

Indirect Evaporative Coolers (IECs). Continuous endeavours in the improvement of 

the ECs resulted in development of Dew Point Coolers (DPCs) which enable the 

supply air to reach the dew point temperature. The main innovation of DPCs relies on 

invention of a M-cycle Heat and Mass Exchanger (HMX) which contributes towards 

improvement of the ECs’ efficiency by up to 30%. A state-of-the-art counter flow 

DPC in which the flat plates in traditional HMXs are replaced by the corrugated plates 

is called Guideless Irregular DPC (GIDPC). This technology has 30-60% more 

cooling efficiency compared to the flat plate HMX in traditional DPCs.   

Owing to the empirical success of the Artificial Intelligence (AI) in different fields 

and enhanced importance of Machine Learning (ML) models, this study pioneers in 

developing two ML models using Multiple Polynomial Regression (MPR), and Deep 

Neural Network (DNN) methods, and three Multi Objective Evolutionary 

Optimisation (MOEO) models using Genetic Algorithms (GA), Particle Swarm 

Optimisation (PSO), and a novel bio-inspired algorithm, i.e.,  Slime Mould Algorithm 

(SMA), for the performance prediction and optimisation of the GIDPC in all possible 

operating climates. Furthermore, this study pioneers in developing an explainable and 

interpretable DNN model for the GIDPC. To this end, a game theory-based SHapley 
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Additive exPlanations (SHAP) method is used to interpret contribution of the 

operating conditions on performance parameters. 

The ML models, take the intake air characteristic as well as main operating and design 

parameters of the HMX as inputs of the ML models to predict the GIDPC’s 

performance parameters, e.g., cooling capacity, coefficient of performance (COP), 

thermal efficiencies. The results revealed that both models have high prediction 

accuracies where MPR performs with a maximum average error of 1.22%. In addition, 

the Mean Square Error (MSE) of the selected DNN model is only 0.04. The objectives 

of the MOEO models are to simultaneously maximise the cooling efficiency and 

minimise the construction cost of the GIDPC by determining the optimum values of 

the selected decision variables. 

The performance of the optimised GIDPCs is compared in a deterministic way in 

which the comparisons are carried out in diverse climates in 2020 and 2050 in which 

the hourly future weather data are projected using a high-emission scenario defined 

by Intergovernmental Panel for Climate Change (IPCC). The results revealed that the 

hourly COP of the optimised systems outperforms the base design. Moreover, 

although power consumption of all systems increases from 2020 to 2050, owing to 

more operating hours as a result of global warming, but power savings of up to 72%, 

69.49%, 63.24%, and 69.21% in hot summer continental, arid, tropical rainforest and 

Mediterranean hot summer climates respectively, can be achieved compared to the 

base system when the systems run optimally.
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NOMENCLATURE 

A area, m2 

Cp                 specific heat capacity, kJ/(kg°C) 

COP              coefficient of performance                         

dp                 dew point 

Dh   hydraulic diameter, m   

De Equivalent diameter, m 

en Latent heat, kJ/kg 

G Channel gap, m 

h Convection coefficient, W/(m2°C) 

hm mass transfer coefficient, m/s 

H channel height, m 

hum humidity ratio, kg/kg 

i enthalpy, kJ/kg 

Le Lewis number 

Nu Nusselt number 

NL number of layers   

P                 pressure, Pa                                         

Qcooling                   cooling capacity, W                                     

Q heat transfer, W 

Qm                mass flow rate, kg/s                                     

Re Reynolds number 

RH                relative humidity                                           

dry dry channel 



NOMENCLATURE 
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T                   temperature, °C 

air air 

U                  air velocity, m/s                                       

dp dew point 

Subscripts  

W                 electric power, kW                                        

fan fan 

in          inlet 

out outlet 

pump pump 

s surface 

steam water steam 

vap evaporated water 

water water 

wet wet channel 

w wall 

wb wet bulb 

Greek symbols   

λ Thermal conduction coefficient, kW/(m °C) 

σ Surface wettability factor 

φ working air fraction over the intake air          

 ɛ                  efficiency 

ρ density, kg/m3  

Le Lewis number 

Δ difference between two states  



NOMENCLATURE 

   xv 

λf  coefficient of friction resistance 

ξ coefficient of local resistance 

ξ coefficient of local resistance 

Abbreviations  

AC Air conditioning  

AI Artificial intelligence 

COP coefficient of performance 

DC Data centre 

DEC Direct evaporative cooler 

DNN Deep neural network 

DPC guideless irregular dew point cooler 

EC Evaporative cooler 

EO Evolutionary optimisation  

GA Genetic algorithm 

GIDPC Guideless Irregular Dew Point Cooler 

HMX Heat and mass exchanger 

HVAC Heating, Ventilation, and Air-Conditioning 

IEC indirect evaporative cooling 

IPCC Intergovernmental Panel for Climate Change 

ML Machine learning 

MOEO Multi objective evolutionary optimization 

MPR Multiple polynomial regression 

MSE Mean square error 

MVC Mechanical vapour compression 

PSO Particle swarm optimisation  
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SHAP SHapley Additive exPlanations 

SMA Slime mould algorithm 
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CHAPTER 1: INTRODUCTION 

1.1. Background   

Thermal comfort of occupants in all types of buildings, particularly in residential and 

industrial buildings has become an indispensable research field over the recent years. 

To provide comfortable indoor condition, air conditioners are the commonly used 

devices in modern buildings which are responsible for the major part of the energy 

supplied to the buildings, i.e., up to 50% [1]. For instance, as shown in Figure 1.1, the 

air conditioners are the leading energy consumers in office buildings. Additionally, 

Figure 1.2 shows the energy consumption in buildings across Europe which indicates 

the big share of space heating in total energy consumption in the countries where the 

detailed data are available.   

 

Figure 1.1: Energy consumption breakdown in office buildings [2]  

It has been estimated that the total energy consumption in buildings will be increased 

by 34% until 2035 [3]. This can lead to more greenhouse gases emissions as a result 

of more energy supply to the buildings. Out of six major greenhouse gases, the CO2 
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has the largest share among the other five gases which is needed to be managed by 

imposition of restricting measures. This was the main objective of the 2015 Paris 

agreement (2015 United Nations Climate Change Conference) [4], [5] in which the 

global warming was aimed to be controlled by limiting the temperature increase to 

less than 2°C. Although, the inevitable temperature increase will result in more 

demand for Heating, Ventilation, and Air-Conditioning (HVAC) systems but in 

advance restriction measures can pave the path towards the development of 

environmentally friendly HVACs.  

 

Figure 1.2: Energy consumption in buildings in European countries in 2012 [6]  

In order to achieve the UK net zero carbon emission target by 2050, the 

implementation of efficient Air Conditioning (AC) systems are required to pave the 

path to make the determined objective attainable. Figure 1.3 illustrates the share of 

global energy consumption and CO2 emission by sector in 2015. The buildings 

account for 30% of energy consumption and 28% of CO2 emission globally. Although 

the ACs account for 10% of the total electricity consumption around the world but 

demand for the ACs is estimated to increase over the next decades which will make 

the ACs top energy electricity consumers. The statistics and the estimations revealed 
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that the cooling market will substantially grow over the years in which it is expected 

to grow up to £20 billion in 2024. In a similar manner, the Dew Point Coolers (DPCs), 

as the latest Evaporative Coolers (ECs), market is expected to grow up to £6 billion in 

2024. Figure 1.4 shows the global growth of the ECs and in particular DPCs annually 

[7]. As a consequence, in addition to the essence of constructing more efficient 

buildings, the current ACs are needed to get optimised by the aim of operating in their 

full potential.  

 

 

(a) 
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(b) 

Figure 1.3: (a): Share of global energy consumption; (b): Share of global CO2 emission [8]. 

 

Figure 1.4: Cooling market growth from 2010 to 2024 [9]. 

Energy intensiveness of the conventional Mechanical Vapour Compression (MVC) 

systems [7], plays a key role in energy intensiveness of the current cooling systems 
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with COP in the range of 2-4 [10]. MVCs comprise an evaporator, a condenser, a 

compressor and an expansion valve and a refrigerant which circulates within the 

system as a coolant fluid. Among which the energy intensive compressor results in an 

inefficient cooling system. Absorption and adsorption cooling system is introduced as 

the first replacement for the MVCs which operates needless of energy intensive 

compressors. However, requiring high temperature water or vapour and expensive 

chemicals are the undesirable features of the technology. This technology comprises 

a desiccant absorber, regenerator, condenser, evaporator, expansion valve and piping 

connections.  

ECs with direct (DEC) and Indirect (IEC) types, were introduced as an 

environmentally friendly replacement cooling systems in the past decades [11], [12]. 

The ECs are simple in structure and working principle of them is based on water 

evaporation in which the sensible heat in the air is converted to the latent heat in an 

enthalpy-constant process. The heat transfer is done without energy intensive devices 

e.g., compressors, which makes the process efficient. These advantages have led to a 

significant leap forward in the efficiency of the cooling systems with an improved 

COP to the range of 15-20 [7]. The IECs are more preferred owing to their superior 

design structure in extracting the humidity from the cooled air which is supplied to the 

indoor environment [13], [14], whereas the DECs keep the water in direct contact with 

the supplied air which leads to a wetter environment. 

One outstanding limitation that restricts the efficiency of the IECs, is the temperature 

of the intake air which can only be cooled down to the wet-bulb temperature. However, 

the efficiency can further be improved if the humidity of the intake air decreases 

substantially.   
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A continuous need for more efficient cooling systems resulted in development of 

DPCs. DPCs remove the aforementioned limitations with a remarkable potential in 

cooling down the intake air temperature to its dew point temperature [15], [16]. The 

M-cycle Heat and Mass Exchanger (HMX) was the core initiative of this technology 

which caused a significant decrease in dew point and wet-bulb temperatures of the air 

in the wet channel leading to up to 30% higher cooling efficiency [17]. DPC has two 

main types: cross flow and counter-flow [18]. Figure 1.5 shows a cross flow heat 

exchanger while Figure 1.6 shows a heat exchanger for a counter-flow DPC in which 

the flow direction within the HMX is the key difference. Different types of studies are 

in progress to improve the performance of the DPCs in order to improve the efficiency 

of the technology. To this end, a novel counter-flow Guideless Irregular DPC (GIDPC) 

was introduced in which the corrugated plates were replaced with the flat plates which 

led to the best performance in terms of COP value i.e., 52.5 [18, 19]. Moreover, airflow 

resistance is decreased by up to 56% and the heat transfer area is increased by up to 

40% as a result of implementing the corrugated plates. Xu et al. [18] pioneered in 

introducing the technology through the numerical and experimental studies [19]. In 

this study, the aforementioned state-of-the-art DPC, which is called GIDPC, is 

considered as the main cooling system.  
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Figure 1.5: Cross flow DPC [19] 

 

Figure 1.6: Counter-flow DPC [20] 

1.2. Artificial Intelligence in Energy Systems 

The Artificial Intelligence (AI) is a fast-growing smart area that has been an interesting 

topic for the research studies in different fields including energy technologies. In 

general, AI is inspired from the human brain’s smart functionality which is able to 

solve the complex problems by reducing the burden of manual operations. In energy 
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systems, AI can be implemented to learn from previous performance of a particular 

system with the aim of predicting its behaviour through different mathematical 

algorithms [21]. The AI is used in various fields such as accounting, engineering, 

politics, production, medicine, and image recognition to make use of the historical 

informative data with the aim of developing data-driven predictive models. In 

addition, the necessity of presenting the full potential of the energy systems has led to 

the implementation of the optimisation algorithms to design and operate the systems 

optimally. Evolutionary Optimisation (EO) algorithms such as Genetic Algorithm 

(GA), and Particle Swarm Optimisation (PSO) are the most popular algorithms which 

have been used in different fields to optimise the system’s performance in different 

operational circumstances. The success and impact of AI in its early trials have made 

the leading tech companies such as Google, Facebook and Apple to shift their research 

focus towards the AI models to assure the optimum and efficient operation of their 

systems. Apart from utilisation of the AI in different sectors, the endeavours in 

developing new algorithms and improving the existed methods are in progress which 

entail the consideration and investigation of the latest methods in new studies. 

In this research, different AI based algorithms will be used for the GIDPC to firstly 

develop data-driven predictive models for the technology and additionally, to ensure 

the efficient and optimum design and operation of the system in different operating 

conditions. 

1.3. Justification of research 

Over the past decade, AI is brought into the energy systems which has led to 

outstanding success in the field but the cooling technology still suffers from a lack of 

data driven predictive models. Studies on DPC are mostly concentrated on the 

numerical and experimental approaches. However, the experimental models are cost-
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intensive and limited to a single prototype with fixed dimensions. This situation has 

largely obstructed the wide and rational application of DPC technology in practical 

engineering where multiple parameters vary simultaneously across the wide ranges of 

data. Even though the numerical models are economical but it is often time-consuming 

to process the numerical models as they generally comprise complex differential 

equations. Apart from the aforementioned constraints, analysing the DPC in non-

optimal conditions can restrict the potential of the technology. As a consequence, 

continuity of these issues will lead to a significant gap between the research findings 

and engineering application of this advanced technology.  

 

To overcome the aforementioned limitations, it is essential to have a robust, 

economical and comprehensive model which can predict the system performance in 

any random operating conditions. In addition, to demonstrate the ultimate potential of 

the system it is essential to identify the optimum operating and design parameters. 

To date, there has been little endeavour in developing the AI based models for the ECs 

and in particular for the DPC technology. Therefore, this study pioneers in developing 

different AI and optimisation models for the state-of-the-art EC, i.e., GIDPC, to 

mainly: 

i. Construct a big dataset comprising the key operating and design parameters for a 

GIDPC using experimental data and validated numerical model. 

ii. Train data-driven predictive models using the created dataset with the aim of 

performance prediction and analysis of the GIDPC. 

iii. Develop optimisation models with the aim of identifying optimum operational 

conditions and design parameters of the GIDPC technology. 
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1.4. Aim and objectives of the research 

The main aim of the research is mainly to develop several data-driven predictive 

models based on the Machine Learning (ML) algorithms and several optimisation 

models based on the metaheuristic algorithms which can be capable of predicting the 

system performance and identifying the optimum operational conditions and design 

parameters. To meet such targets,  the research is scheduled by the following specific 

objectives: 

1) Dataset development: Conducting an experimental study to construct part of the 

big dataset and to evaluate the performance of the prototype in diverse climates. 

Use a numerical model validated by the experimental data to complete the 

construction of the big dataset which will include the identified key operating, 

design and performance parameters of the GIDPC. 

2) ML model development: Train different data-driven models to demonstrate and 

compare their performance in predicting the GIDPC performance in any random 

operational and design conditions.  

3) Optimisation model development: Develop different Multi Objective 

Evolutionary Optimisation (MOEO) models to identify the optimum operating and 

design parameters of the GIDPC by shifting the focus towards analysing the effect 

of optimum conditions on system performance improvement.  

4) Performance assessment: Comparing the performance of the developed models by 

expressing the energy saving potential of the optimised GIDPCs by shifting the 

concentrations towards the operation of the GIDPC in diverse climates in 2020 

and 2050 by considering the impact of climate change. 
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1.5. Research methodologies 

The constructed big dataset using an experiment and the validated numerical model is 

used to train the ML models using two algorithms, i.e., Multiple Polynomial 

Regression (MPR), and Deep Neural Network (DNN), which are selected after a 

primary performance evaluation of several algorithms. The pros and cons of each 

trained model in terms of accuracy, comprehensiveness, flexibility and training time 

are compared. The second major objective of the study which is optimising the GIDPC 

performance is accomplished through three optimisation models based on the Genetic 

Algorithm (GA), Particle Swarm Optimisation (PSO), and Slime Mould Algorithm 

(SMA). Moreover, the performance of the optimised systems is compared with the 

base model in order to present the energy saving potential of the optimised GIDPCs. 

This is achieved by comparing the performance of the systems in diverse climates. 

1.6. Research novelties  

This is to date the first endeavour in developing the data-driven models based on the 

selected algorithms, i.e., MPR and DNN, accompanying with three MOEO models in 

which the novel SMA is used along with the common GA and PSO algorithms for the 

state-of-the-art EC, i.e., GIDPC. The GA and PSO are selected as the commonly used 

methods in different applications while the SMA is introduced for the very first time 

for an engineering application. In addition, a new eXplainable AI (XAI) is used for 

the DNN model to interpret the developed black-box DNN model. The 

aforementioned approaches will be a leap forward in improving, analysing and 

evaluating the performance of the GIDPC technology. The developed data driven 

models will be trained to predict the performance of the system in any random 

operational conditions (with diverse design and in various climates) using the key 

operating and design parameters only. This will be followed by identifying the unique 
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optimum conditions in all possible climates around the world by each optimisation 

method. Ultimately, the optimised models developed in this study will assist in 

deployment of the novel DPC system by demonstrating the energy saving potential of 

the technology when it operates in various climates in 2020 and 2050 considering the 

impact of climate change.  

 

1.7. Structure of the thesis 

• Chapter 1 summarises the necessity of conducting the current research by 

introducing the selected GIDPC and the required ML and optimisation models 

in order to fill the existed gaps. 

• Chapter 2 presents the literature review conducted for the ECs by shifting the 

focus towards the DPCs and the ML based studies. This chapter covers the 

detailed review of all numerical, experimental and data-driven models with 

their key outcomes for the DPCs.  

• Chapter 3 overviews the construction of the big dataset. This includes an 

experiment which is conducted to build the foundation of the big dataset and 

the validated numerical model which is used to produce the operating 

conditions (data points) of the big dataset. 

• Chapter 4 covers the ML methods which have been used in this study. The 

chapter overviews the methodologies and training process of the models as 

well as explaining the XAI model.  

• Chapter 5 overviews MOEO methods used in this research which covers the 

selection of the decision variables, objectives and results derived from the 

models.  
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• Chapter 6 presents a representative application for each ML model by shifting 

the focus towards presenting the energy saving potential of the optimised 

systems in diverse operating climates in 2020 and 2050 by considering the 

impact of climate change.  

• Chapter 7 mainly summarizes the key outcomes of this research by 

overviewing the results driven by the developed models.
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

This chapter includes the comprehensive review on development of the ECs including 

the theory, concept, classification, evaluation metrics, experimental, numerical and 

evolving AI based studies which are conducted over the past years. However, the 

chapter is mainly focused on technological and research progress of EC technology 

which has led to development of the Dew Point Coolers (DPCs). This is followed by 

shifting the focus towards the AI based studies for the DPCs in which the optimisation-

based models are covered as well. The chapter starts by description of the theory and 

concept of the ECs and the performance metrics that are used for performance 

assessment of the technology. Afterwards, the chronological research progress for ECs 

is overviewed in which the breakthrough in introducing the DPCs are prioritised. 

Eventually, the chapter provides the research progress in AI based models (data-driven 

and optimisation) for the ECs with a further focus on DPCs. This section is bolded by 

detailed discussion and gap extraction over the AI based studies conducted for the 

technology. The justification of the current study is then provided by outlining the lack 

of ML and MOEO models for the state-of-the-art DPC which is GIDPC. 

 

2.2. Concept, theory and classifications of air conditioning systems 

2.2.1. Concept and theory  

It is worth mentioning that over the past decades, a substantial increase in energy 

consumption within the building sector has led the focus of sustainable energy 

researchers to design and implement more efficient appliances. According to the latest 

statistics, the buildings consume 30-40% of the world total energy which has resulted 
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in similar proportion in greenhouse gases emissions [10]. HVAC systems are the 

major energy consumers in the buildings which account for around 50% of the energy 

delivered to the buildings. This indicates that the buildings are the largest end-users in 

European countries which is followed by transport, industry and agriculture which are 

responsible for 32%, 26% and 2% total energy consumption respectively.  

 

AC systems are considered as an essential need for all types of buildings e.g., Data 

Centres (DCs), offices, supermarkets, health centres, hospitals and other public 

infrastructures. This is because of the growing global warming which has increased 

the need for ACs in the hot and arid regions e.g., the Middle East and North America. 

In addition, the need for ACs in mild climates, e.g., UK, has also grown rapidly over 

the past decade [22]. Continuous operation of the current energy intensive ACs is 

considered as one of the main reasons for experiencing the common grid cut-offs in 

some regions such as China [23]. The aforementioned issues in effectiveness of the 

existing commercial ACs have trigged the research studies on developing more 

efficient ACs and reduction in carbon emissions by an increased attention to utilisation 

of the natural and renewable sources.  

 

2.2.2. Classifications of air conditioning systems 

The chapter is followed by introducing various types of common ACs as follows: 

Mechanical Vapour Compression (MVC): The AC market is currently dominated 

by the MVC systems. The MVC operational scheme is based on the heat transfer 

within a dynamic refrigerant (refrigeration cycle) [24]. Generally, the technology has 

an evaporator, a condenser, a compressor and an expansion valve. The heat transfer 

phenomena in MVCs are based on phase change between liquid and gaseous states. In 
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a refrigeration cycle, heat is absorbed and rejected through a liquid refrigerant. As 

seen in Figure 2.1, the refrigerant enters the compressor as a saturated vapour and 

leaves it with higher pressure and temperature. Then the hot vapour which is in a 

superheated vapour state, is condensed via water or air by flowing across the coils in 

the condenser. This is when the heat is rejected and moved away by the water cooler 

or air cooler. Then the condensed liquid refrigerant is gone through the expansion 

valve in which the pressure of the liquid decreases. This process also resulted in 

temperature decrease leading to a cold refrigerant. The cold refrigerant is then flown 

into an evaporator where the refrigerant absorbs heat. As a result of heat absorption, 

the saturated refrigerant vapour is ready to enter the compressor. The cycle is 

illustrated in a pressure-volume diagram in Figure 2.2. 

The refrigeration cycle has been known for a long period and the production of the 

MVCs was made in large scales with the following advantages: long life, stability, and 

cost effectiveness at the time. However, its disadvantages i.e., low COP values in the 

range of 3 to 5 [25], high energy consumption which is mainly because of the 

compressor, and running independent of renewable sources have made the researchers 

to look for efficient alternatives.  
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Figure 2.1: Refrigeration cycle [26] 

 

 

Figure 2.2: Pressure-volume diagram in a refrigeration cycle [26] 

Absorption and adsorption cooling systems: 

The Absorption Cooling System (ACS) is based on the liquid sorption such as water 

or the corrosive lithium bromide while the Adsorption Cooling System (ADCS) is 
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based on solid sorption such as a non-hazardous or corrosive silica gel [27]. This is 

the main difference between these two systems which were introduced as a potential 

replacement for the MVCs [28]. In ACS, the absorption and desorption of a working 

fluid which is known as refrigerant determines the working principle of the system. 

As shown in Figure 2.3, the ACS working cycle starts by vaporising the refrigerant 

from a high absorbent concentration which is transferred into a condenser to generate 

heat (Qcooling). The refrigerant leaves the condenser for an expansion valve with the 

aim of pressure decreasing. Then it enters an evaporator in order to get vaporised 

through receiving heat. Afterwards, the generated vapour is absorbed by absorbent in 

the generator which results in heat dissipation to the environment. Eventually, the 

combined refrigerant and absorbent are transferred back to generator to start another 

cycle.  

Figure 2.4 demonstrates the working principle of the ADCS in which the components 

are same as the ACS. However, the cooling process can be carried out in two separate 

phases. In the first phase, the refrigerant vapour is transferred from the evaporator into 

the absorber while the heat is removed from the liquid. The vapour refrigerant is 

absorbed by the absorbent bed. The desorption process is triggered by warming up the 

refrigerant bed in order to remove the refrigerant from the absorbent bed. Afterwards, 

the vapour goes into the condenser and the condensed liquid leaves it to enters the 

evaporator. The existence of two beds in ADCS ensures the continuous operation of 

the absorption and desperation processes. 

Although the absorbent system, removes the need for energy intensive compressors, 

but it adds high pressure vapour or water requirements. To fulfil the aforementioned 

requirement, an expensive and metal-corrosive chemical are needed for the system to 
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operate. In addition, the need for heat source, low COP value, i.e., 0.4-1.2, and 

complex system configuration are another main disadvantages of this technology [29].  

 

 

Figure 2.3: Schematic of ACS [27] 

 

 

Figure 2.4: Adsorption cycle [27] 
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2.2.3. Evaporative Coolers  

To overcome the aforementioned disadvantages, Evaporative Coolers (ECs) have 

been introduced [30]–[32]. Working principle of the ECs is based on the water 

evaporation which enables the heat transfer and heat absorption. Owing to this feature, 

ECs have a simple structure and use the natural sources which are attractive to 

researchers. In addition, the improved COP values (15-20) [7] compared to the MVCs, 

ACSs, and ADCSs have increased the popularity of the ECs among the users.  

Classification of the ECs: In general, the ECs are classified into two main categories, 

i.e., air-side and water-side coolers. The main difference between these two categories 

is the source of latent heat that contribute to the evaporation process. Many different 

sources can be used to provide the latent heat but the most common source is air. 

However, water is another common latent heat source that both are used to trigger the 

evaporation process. Basically, the latent heat is the main source of energy that is used 

to evaporate the water which is transferred from the air. This helps the air to lose its 

heat and as a consequence, it leads to the temperature drop in the air which is the 

primary goal of the ECs.  

ECs have been introduced with two types of Direct (DEC) and Indirect (IEC) systems 

[33]. However, in some cases a hybrid EC comprising two mentioned types are also 

used. Figure 2.5, shows all types of ECs which are going to be described in details as 

follows: 

Direct Evaporative Cooling (DEC): DECs keep the supply air in direct contact with 

the evaporated water which helps the air to lose its heat. The water absorbs the heat 

from the intake air, and then as a consequence of evaporation, adds moisture to the air. 

This direct contact increases the humidity level of the air and results in uncomfortable 

wetter supply air which can annoy the residents and the equipment of the supplied 
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area. The process continues until the air reaches the saturation point which is normally 

when the air is reached to its wet-bulb temperature. 

 

 

 

Figure 2.5: DECs, IECs, and combined ECs [34]–[36] 

Indirect Evaporative Cooling (IEC):  Owing to separating plates, the IECs are more 

preferred as the supply air is separated from the water and the heat transfer takes place 

in separated sections through the heat exchanging plates [37]. As shown in Figure 2.5, 

the heat exchanging plates create several separated channels in which the supply air 

flows in a dry channel and the working air flows within the adjacent wet channel where 

the water evaporation occurs. The water evaporation leads to temperature decrease in 

the wet side of the plate and the as a result, the achieved temperature difference 

between two sides of the plate in wet and dry channels causes the heat transfer from 

the supply air in the dry channel to the working air in the wet channel. Having 

completed the heat transfer, the wet and warm working air leaves the wet channel. As 
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a consequence, the intake air is cooled without being in direct contact with water 

which resulted in a cold and dry supply air. This is considered as a big advance in ECs 

as the quality of the supply air is improved. One outstanding disadvantage of the IECs 

is their high dependency on the outdoor environment. The difference between the dry 

bulb and wet bulb temperatures has the key role in performing the ECs. This difference 

is limited to small amounts in some climates, e.g., humid climate which leads to low 

cooling capacities. Moreover, instability of the outdoor air conditions can lead to poor 

performance of the ECs.  

Hybrid indirect/direct Evaporative cooling (IDEC): Although this type is not very 

popular but it is designed to mainly increase the efficiency of the ECs. As shown in 

Figure 2.5, the intake air is first cooled in the IEC and then it is directed into the DEC. 

Although it is proved that the temperature of the supply air is decreased more in the 

hybrid system but the disadvantages of both individual systems are still in existence 

in the hybrid systems. As a consequence, the necessity of a novel method was needed 

to increase the efficiency of the ECs. This is done by introducing the Dew Point 

Coolers (DPCs) in which the aforementioned disadvantages of the existing ECs are 

aimed to be resolved.  

Dew Point Cooler (DPC): The DPC is introduced by aiming to achieve higher 

cooling efficiency. The research studies on previous EC technologies revealed that the 

maximum wet-bulb cooling efficiency is only 60% [38]. Therefore, the temperature 

of the supply air must be decreased more in order to reach higher cooling capacities. 

This can be achieved by implementing an idea in which a proportion of the supply air 

is transferred to a separated wet channel where the water evaporation takes place. This 

proportion of air is then called working air which helps the intake air to reach the lower 

temperature levels. This new cycle is called M-cycle which is shown in Figure 2.6 
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[35]. The M-cycle was claimed to reduce the temperature of the intake air down to the 

dew point temperature. Therefore, the term “Dew Point Cooler” is also used to 

represent the M-cycle cooling systems. The early-stage research showed that the 

cooling efficiency of the DPC is much better than the previous technologies. Over an 

experimental study, the wet-bulb efficiency of 80% is achieved which is 20% higher 

than the previous technologies [17]. In addition, it is reported that the wet-bulb 

efficiency of the DPC can reach the outstanding value of 50% under the identified 

ideal operating conditions [17]. As a consequence, the M-cycle absorbed the attention 

of the researchers and the engineers which has led to many further studies on the 

DPCs.   

 

Figure 2.6: Schematic of the M-cycle HMX [34] 

2.2.4. Performance evaluation metrics of ECs 

Despite having ECs as the main cooling systems over the last century, the review of 

standards for IECs, as the most popular ECs, revealed that there is no unique 

international standard for the performance evaluation of the technology. However, 

several national standards have been released so far as follows: 

I. ANSI/ASHRAE Standards (133-2008/143-2015) [39], [40] 
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II. AS/NZS 2913-2000 (Australia) [41] 

III. Labelling Program (Iran) [42] 

IV. IS3315-1974 (India) [43]  

V. C22.2 No. 104 (Canada) [44] 

VI. GB/T25860-2010(China) [45] 

 

Although all the aforementioned national standards are valuable in performance 

evaluation of the IECs but the Australian and American standards are considered as 

leading and popular standards in the world of cooling systems. International standards 

are vital needs for any technology to let the researchers, designers and end-users have 

a single reference for performance evaluation of that technology. However, having 

one internationally accepted standard is an essence in improvement and efficient 

operation of the technology. In this regard, the Australian standard, i.e., AS 2913 

Evaporative Air Conditioning Equipment, was firstly introduced in 1987 in which the 

performance of the ECs was being assessed in terms of few key parameters such as 

airflow, power consumption and water evaporation efficiency [46].  

 

American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) standards are the most common and globally accepted criteria for 

performance evaluation of the ECs. The ASHRAE standards have been updated over 

the years and are considered as comprehensive standards which provides useful 

suggestions for testing and assessment of the ECs. The Standard “143-2015 Method 

of Test for Rating Indirect Evaporative Coolers” provides the performance evaluation 

metrics for the IECs. Its accuracy has been proved through different tests in which the 

following performance parameters are provided as the performance indicators [47]: 
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Temperature drop: This simply represents the temperature difference between the 

intake and supply air. This shows how much the cooler has reduced the temperature 

of the intake air which is the primary factor in evaluating the system performance at 

first glance. In addition, it is the principle of calculating other important performance 

parameters.   

 

Wet-bulb depression: It indicates the difference between the wet-bulb and dry-bulb 

temperatures which is normally measured by the psychometric chart. It is used to 

measure the Relative Humidity (RH) of air. For instance, when the RH is 100%, the 

wet-bulb depression is equal to zero as the wet and dry-bulb temperatures becomes 

identical.  

 

Dew point depression: This expresses the difference between dew point and dry-bulb 

temperatures. It is used to indicate how wet the air is, in which the higher dew point 

depression values mean that the air is dry and the lower dew point depression means 

the air is quite wet.  

 

Total power consumption: It is equal to the power consumption by the electrical 

components such as pumps, fans, etc. 

 

Cooling capacity: The cooling capacity simply determines the IEC’s capacity in 

removing heat which is normally expressed in Watt unit. It is the sensible cooling of 

the supply air which is highly dependent on the temperature drop. The cooling capacity 

can be expressed by Eq. (2.1): 
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Qcooling = Cp(Tdry,in − Tdry,out)(1 − φ)Qm,dr,in                                                      (2.1) 

 

where Qcooling is cooling capacity, Cp is the specific heat capacity, Tdry,in is the intake 

air temperature in dry channel, Tdry,out is the outlet air temperature in the dry channel 

which is identical with the supply air temperature, φ  is the working air fraction over 

the intake air and, Qm,dr,in is mass flow rate of intake air in dry channel.  

 

Coefficient of Performance (COP): The COP is a common evaluation metric for the 

heat pumps and air conditioning systems in which the ratio of the sensible 

cooling/heating to the conducted work is considered. For the ECs, the COP represents 

the ratio of the cooling capacity to the consumed power by fans and pumps and other 

power consuming components. The COP value is normally more than 1 as the system 

needs to be efficient and economical to operate when the heat removal capacity is 

more than the required work. The COP is a metric that considers the technical and 

economic aspects of the EC simultaneously which can be calculated using the 

following Eq. (2.2):  

 

COP =
Qcooling

Wfan+Wpump
                                                                                                                              (2.2) 

 

Where Wfan and Wpump are the electrical power consumed by the fan and the pump 

respectively. 

 

Wet-bulb efficiency: is the ratio of the temperature drop to the wet-bulb depression 

which can be expressed using Eq. (2.3): 
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ɛwb =
Tdry,in−Tdry,out

Tdry,in−Tdry,in,wb
                                                                                                                         (2.3) 

 

Where ɛwb is the wet bulb effectiveness and Tdry,in,wb is the wet-bulb temperature of 

the intake air in dry channel.  

 

Dew point efficiency: It is the ratio of the temperature drop to the dew point 

depression which can be expressed by Eq. (2.4): 

 

ɛdp =
Tdry,in−Tdry,out

Tdry,in−Tdry,in,dp
                                                                                                                           (2.4) 

 

where ɛdp is the dew point effectiveness and Tdry,in,dpis the dew point temperature of 

the intake air in dry channel.  

 

Pressure drop: It refers to the pressure decrease which takes place along the airflow 

path within the ducting systems. The pressure drop takes place mainly due to the 

friction and velocity which can be powered by the air fans within the EC systems. The 

pressure drop is proportional with power consumed by the fans and is normally 

expressed in kPa as Eq. (2.5):   

 

ΔP = (ξ + λf
1

Dh
)
ρU2

2
                                                                                                                            (2.5) 
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Where ΔP is pressure drop, ξ is coefficient of local resistance, λf is coefficient of 

friction resistance where it can be calculated using λf = (64/𝑅𝑒) for the laminar 

flows, Dh is hydraulic diameter, ρ is air density and U is the air velocity.  

 

Water evaporation/consumption rate: Water evaporation and the corresponding 

water usage is a big concern for all the users particularly to those who live in dry 

climates/regions. The water evaporation rate is an important factor that takes place 

when the water absorbs the heat of the intake air and exits the cooling system as the 

exhaust air which can be calculated by the following Eq. (2.6): 

 

Vevp =
1000V2ρa,2

ρw
(w2 − w1)                                                                                                     (2.6) 

 

Where Vevp represents the water evaporation [L/h], V2 is the working airflow rate 

[m3/h], ρa,2 is mean density of the secondary airflow [kg/m3], ρw represents the 

density of the water, w1 represents the inlet humidity ratio of the working air [kg/kg], 

and w2 represents the outlet humidity ratio of the working air [kg/kg]. It is estimated 

that 1.5 L water is needed to produce 1kWh cooling in an efficient EC [9]. 

 

Working air ratio: As mentioned earlier, in an IEC the intake air is separated into 

two parts in which one part is diverted to the adjacent wet channel which is called 

working air and the rest leaves the cooler as the supply air. The more working airflow 

leads to a higher evaporation rate. The working air ratio is also called secondary to 

primary air ratio in which the primary air represents the intake air and the secondary 

airflow represents the working air. The working air ratio can be calculated by the 

following simple Eq. (2.7): 
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𝜑 =
𝑉𝐸𝐴

𝑉𝐼𝐴
                                                                                                                                     (2.7) 

 

Where 𝜑 represents the working air ratio, 𝑉𝐸𝐴 represents the airflow rate of the exhaust 

air [m3/h], and 𝑉𝐼𝐴 represents the airflow volume of the intake air [m3/h].  

2.3. Research progress on IECs 

The continuous studies and progress in EC technology and in particular the huge 

breakthrough in cooling efficiency improvement by invention of the M-cycle cooling 

systems, the IECs gained more popularity and attention in cooling market and among 

the researchers. This is highlighted particularly when the cooling performance and 

energy consumption of the M-cycle cooling systems outperform the previous 

traditional cooling systems. This importance achievement resulted in numerous 

research studies on IECs which can mainly be classified as follows: 

 

1. Methodology based studies in which the new methods and theories are 

implemented. 

2. Technological based studies in which the new technical progress are discussed.  

3. The hybrid studies in which the IEC technology is combined with other 

technologies with the aim of achieving better efficiency. 

4. Application based studies in which the main purpose of these studies is to 

investigate the applicability of IECs in various fields.  

5. Comparison based studies in which the energy saving potential and 

performance of different ECs are presented. In addition, these studies often 

include economic and/or environmental analysis.  
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6. Detailed HMX based studies in which the structure of the HMX, as well as the 

flow patterns within the HMX are the mainly discussed topics. 

7. Over the past decade, new research studies based on Artificial Intelligence (AI) 

are being popular in all fields. The AI based models are mainly developed to 

provide data driven smart models for the technology in order to predict the 

performance parameters of the system using the selected key operating 

parameters. These studies gain more popularity among the researchers as they 

remove the need for expensive experiments and complex and time-consuming 

numerical studies. 

8. Similar to the AI based studies, the optimisation-based studies are conducted 

to operate the technologies in their full potential. Various optimisation 

algorithms are developed to identify the optimum operating and design 

parameters of the technology in diverse applications which will contribute to 

reduction of the carbon emissions and power consumption. This is simply 

achieved by determining the objectives for the optimisation algorithm. For 

instance, one potential objective for the IECs can be maximising the COP.  

 

In this section, firstly, it is aimed to review the theoretical progresses that have been 

conducted for the ECs and then the related research studies, including material-based, 

experimental and numerical studies, which eventually led to the introduction of M-

cycle cooling systems (DPCs). Eventually, the AI based studies which are conducted 

for the IECs are reviewed to extract the existing gap in the research studies for the 

DPCs in order to justify the development of current study. 

 



CHAPTER 2: LITERATURE REVIEW 

   31 

2.3.1. Theoretical progress 

The common methods to simulate the IECs’ performance is based on the 

thermodynamic first and second laws by taking the entransy dissipation and exergy 

destruction into account [31]. These approaches are applied to mainly analyse and 

investigate the system efficiency.  

 

An approach is introduced in 2010, based on the entransy theory [31] which is 

provided to mainly handle the coupled heat and mass transfers and in addition, to 

optimise and analyse the system efficiency. Moreover, new methodologies such as 

Moisture Entransy Dissipation based Thermal Resistance (TRMED) are introduced. 

Moreover, a new thermal resistance metric is introduced which was mainly used to 

assess the performance of the ECs. This new metric is identical with the ratio of 

dissipation rate over the output rate of squared refrigerating effect. 

 

In another study in 2011, Chen et al. [32] carried out an application-based study in 

which a similar metrics other than enthalpy, i.e., moisture entransy and TRMED, are 

introduced which could affect the performance of the ECs including both DECs and 

IECs. The application proved that the lower TRMED values will lead to superior 

cooling efficiency.  

 

Another application-based study is conducted [48] in which a new method, called 

global optimisation, is introduced in which the cooling efficiency of the IECs was 

aimed to be improved. The method was mainly based on the detailed investigation of 

the process irreversibility and it is assessed based on the entransy dissipation. The 

optimisation is conducted by providing a theoretical relationship between the 
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requirement of the users and the operating and design parameters of the HMX. The 

case study revealed that the system optimum operation is mainly based on the global 

optimisation than the parametric analysis.   

 

The exergy analysis is used by Santos et al. [49], for the first time along with the 

energy analysis for performance simulation of the ECs. The authors provided a new 

method by opposing the previous traditional methods in which the supplementary 

mass and energy analysis, the introduced exergy analysis with thermodynamic second 

law are suggested to be used for the performance evaluation of the ECs. Eventually, 

the results revealed that it is essential to include both energy and exergy analyses when 

the performance of the ECs are investigated.  

 

The exergy analysis is then implemented in an experimental study [50] for three 

different ECs, i.e., a DEC, an IEC, and an IDEC. The experiment is carried out in 

diverse climates in Iran in which the process irreversibility and exergy efficiency are 

considered through the exergy analysis. The results revealed that considering both 

thermodynamic first and second laws in evaluating the performance of the ECs is 

essential. Additionally, the best performance of the ECs in different climates are 

identified which led to introduction of optimal climate conditions for the three selected 

cooling systems.  

 

In a comparison-based study, Caliskan et al. [51], compared the performance of 

different cooling systems using the energy and exergy analyses. The considered 

systems were a M-cycle and three conventional IECs. A new metric was introduced 

to assess the sustainability of the considered cooling systems. The new metric which 
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was called sustainability metric, was related to the energy consumption and exergy 

destruction of the systems. Both exergy analysis and new sustainability index proved 

that the M-cycle outperforms the other three IECs in terms of exergy and 

sustainability.  

In another attempt in improving the performance evaluation methods for the cooling 

systems, Zhang et al. [52], provided a novel evaluation tool by investigating the 

similarities and differences between the exergy and entransy analyses. The 

relationship between diverse operating parameters is identified through the exergy 

destruction and entransy dissipation. This is achieved by identifying the factors with 

a negative impact on cooing performance of the considered system in which the results 

revealed that reducing the exergy reduction and entransy dissipation will lead to a poor 

cooling performance by the system. Moreover, new theoretical parameters are also 

recommended for the technical processes that take place in system performance.  

 

Two studies conducted by Zhang et al. [53], [54] are aimed to further investigate the 

EC performance by utilising the exergy and entransy analyses. These analyses are 

conducted within the humid air handling process for the evaporation and 

dehumidification. The case studies revealed that in order to improve the moisture 

evaporation, increasing the water temperature is a better way compared to increasing 

the air temperature value. 

 

In summary, based on the conducted research studies on evaluating the diverse 

theoretical methods for performance evaluation of the ECs,  the following issues are 

the focal areas worthy of intensive investigation:  

- Irreversibility of the heat and mass transfer 
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- Impact of exergy destruction 

- Impact of entransy dissipation 

 

In summary, it is tried to provide a comprehensive method for performance evaluation 

and optimisation of the IECs by implementing the thermodynamic first and second 

laws simultaneously. Although the proposed methods are proved and discussed by the 

authors in order to prove the applicability of the newly proposed methods but 

numerous detailed investigations are needed to consider them as common 

methods/index. 

 

2.3.2. Technical progress 

Having reviewed the theoretical progress, this section will shift the focus towards the 

studies that are mainly focused on technical progress of the IECs. For instance, the 

material-based studies are considered as one of the main research topics in which 

choosing the HMX material that has a key role in determining the evaporation rate, 

heat transfer rate, and cooling efficiency of the system. In addition, the research studies 

in forms of numerical and experimental studies which investigate the system 

performance to mainly improve the cooling efficiency as well as to reduce the 

construction and operation costs of the technology are taken into consideration.  

 

In a research study conducted by Xie and Jiang [55], a constructed IEC in which the 

water was cooled in a terminal AC, it is aimed to improve the cooling efficiency by 

water instead of airflow. This research is especially suitable for systems which are 

operated in public buildings of dry and hot climates. The schematic of the constructed 

water side IEC is illustrated in Figure 2.7, in which the intake air is firstly cooled in a 
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heat exchanger and then the cooled intake air is sprayed by water to the paddling tower 

to produce the desired cold water through the evaporation. The experiments revealed 

that the water can be cooled below the wet-bulb temperature of the intake air. In 

addition, it is established that the COP of the system reaches a value of 9.1. Although 

the system is efficient and the results are promising but there are few studies on this 

technology. 

   

  

 

Figure 2.7: A water-side IEC [49]. 

The evaporation process in IECs can take place separately which keeps the supply air 

separate from the working air. This can happen via a solid wall in a tube in a tubular 

exchanger. An experimental research study is carried out on an IEC system in which 

the water film freely moves within the horizontal tubes [56]. This study is considered 

as the primary work on the IECs with tubular HMX. The results revealed that the 

different water flow rates result in different patterns which are droplets, columns, and 
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liquid sheet. The cooling performance of the system is calculated using a developed 

empirical equation which was based on the experiment.  

 

In another tubular based research study, a semi-indirect evaporative refrigerator is 

developed by Martinez et al. [57], [58]. As shown in Figure 2.8, the system was 

constructed using the standing solid porous ceramic pipes. The water moves towards 

the down of the ceramic wall which separates the primary and secondary airflows and 

then evaporates within inner wall where the primary air flows along the outer surface. 

The system can efficiently be operated in hot and humid climates.  

 

 

Figure 2.8: A semi-indirect tubular evaporative refrigerator [57] 

The remarkable progress in performance of the IECs, have made the researchers not 

only to focus on sole operation of the IECs but also on hybrid applications of the 

technology. The hybrid operation of the system is considered in order to improve the 

cooling efficiency of the system in diverse applications [15], [59]–[67]. Majority of 

the hybrid systems are the combination of the IECs with desiccant systems. However, 

there are some other hybrid systems in which the IECs are combined with other 
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technologies such as heat pipes [45], [68], gas turbines [69], radiative cooling [70], 

and cooling/reheating treatment [71] which all have led to superior cooling 

performance. In addition, other hybrid systems such as the desiccant-enhanced 

evaporative air conditions (DEVap) are gained increasing popularity over the past 

years. These systems are operated as pre-treatment tools for the inlet air flows within 

the IECs by creating a chance for the cooling system in order to improve the cooling 

potential in the working channel. The DEVap has three main classifications as follows: 

 

- Membrane dehumidification [72]–[76]  

- Solid desiccant hybrid systems [77]–[80]  

- Liquid desiccant hybrid systems [81], [82], [91]–[94], [83]–[90]        

 

The liquid desiccant hybrid system is the most common hybrid cooling system in 

which the commonly used liquids are: calcium chloride, lithium chloride, etc. During 

the operation, the pre-humidification is completed when the moisture of the intake air 

is absorbed by the desiccant, which is mainly because of the partial pressure difference 

between the air and the liquid. The wet desiccant is then regenerated through a 

regeneration process in which the moisture of the desiccant is decreased with the help 

of external heat source. Then the air is dehumidified by the help of a desiccant 

dehumidifier. In addition, the temperature of the air is reduced via the evaporative 

cooler. 

 

Superiority of the liquid desiccant hybrid systems and their potential in efficient 

cooling deserve more attention which will lead to a significant contribution to mitigate 
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the restriction of using IECs in wet climates. This will provide the residents with 

comfortable air quality and efficient cooling systems in wet climates. 

 

2.3.3. Materials for evaporating surface 

Several different studies are conducted to improve the IECs cooling efficiency and 

decrease the operational and construction cost of the technology. However, one 

important way to improve the system performance, is employing appropriate wet 

surface materials [95]–[102]. The properties of a suitable wet surface material can 

improve the moisture diffusion and evaporation rate which will result in more 

evaporation and consequently more heat and mass transfer within the wet channel of 

the IECs. The major properties of the materials which can hugely affect the 

performance of the system are moisture wicking ability, diffusivity and evaporation 

rate. 

Different material types have been used and tested for the heat and mass exchanger of 

the IECs in order to find the most effective material. The used materials can be 

classified in different categories as follows: 

- Metals: This category includes different types of plates, tubes, etc. 

- Fibres: In this category, the most common fibre-based materials are paper 

boards, woods, glasses, etc. 

- Ceramics: The most common ceramic-based materials are silicon carbide and 

the related composites, zirconia ceramics, aluminium oxide, polystyrene 

composites, zirconia toughened aluminium, aluminium nitride, etc.   

- Zeolite: The most common zeolites are synthetic polymers, molecular sieves, 

porous ceramics, carbon fibres, etc. 
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- Carbons: The common suitable carbon-based materials are carbon fibres, 

carbon composites, activated carbons, etc. 

The first ever material that was suggested for the IECs was plastic. Although, the 

material is less-corrosion and extremely light but its poor thermal conductivity which 

is a vital feature in operation of the IECs, has limited the usage of plastic in the 

technology [103]. Over the years of research, the fibre materials were introduced as 

potential replacements for the plastic [101], [104]–[106]. The fibre has an acceptable 

level of permeability which lets the water to distribute across the surface of the 

exchanger plate in the wet channel and increase the probability of the heat transferring 

and water evaporation.  

In an experimental study, which is conducted by Bruno [95], a new material for the 

wet side of an IEC is used aiming to increase the cooling efficiency of the technology. 

The used material for the wet surface had high water retention and wickability 

specifications. This resulted in improved cooling efficiency. 

In a study conducted by Zhao et al. [97], by considering the effect of the materials on 

performance of the IECs. The results revealed that the thermal properties of the 

selected materials have small impact on amount of heat and mass transfer. Therefore, 

it is concluded that thermal conductivity and water retaining capacity, also called 

porosity, cannot be considered as key player parameters in selecting the materials for 

heat and mass exchanger. However, the key player factors are the compatibility with 

waterproof coatings, formation and durability and the material cost.  

A few studies have conducted by considering the natural fibres as the material for the 

heat exchanger of the IECs. For instance, Maurya et al. [98], conducted comparative 

research in which three different materials, i.e., aspen fibre, cellulose, and coconut 

coir, are considered. The study was undertaken to investigate the performance of the 
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IECs in Bhopal, India to report the system performance in summer. The results 

revealed that the performance of the aspen is the best among the other materials in 

terms of saturation efficiency, i.e., 80.99%, when the air velocity was 0.5 m/s. The 

cellulose is located in the second place by the saturation efficiency of 69.58% and 

eventually, the coconut aspen has the weakest performance by the saturation efficiency 

of 68.15%. In addition, it was observed that the cellulose and coconut coir have similar 

performance in terms of water soaking. In another endeavour, Kulkarni et al. [99], 

considered different configuration (or shapes) and materials for the heat exchanger. 

The considered shapes were the rectangular, cylindrical and hexagonal shaped 

evaporative coolers while the considered materials were, cellulose, aspen, paper, 

polyethylene. The thorough comparison of the aforementioned options revealed that 

the hexagonal system with aspen material outperforms the other systems with 

saturation efficiency of 91% while the performance of the rectangular shaped cooler 

made from cellulose held the lowest saturation efficiency, i.e., 72.4%. In another 

similar study [100], pressure drop and cooling efficiency of an IEC with high-density 

polyethylene, rice husk, and commercial wetted pads, are compared. It was revealed 

that the rice husk pas with saturation efficiency of 55.90% outperforms the high-

density polyethylene with saturation efficiency of 29.10%. However, the commercial 

wetted pas outperforms the other two types in terms of pressure drop by holding a 

lower value. The performance of various materials such as jute, luffa and palm fibre 

are all compared with the commercial aspen-wood excelsior wetted pas as the 

commonly used material in ECs [101]. The cooling efficiency of all systems is 

compared in which the jute material showed the best performance with cooling 

efficiency of 62.1%. This is followed by luffa and commercial systems by holding the 

values of 55.1% and 49.5% respectively. Eventually, the palm fibre system had the 



CHAPTER 2: LITERATURE REVIEW 

   41 

worst performance by the efficiency of 38.9%. However, considering the Cloth 

fabrics, which exhibits large capillary force and avoid bacterial growth with proper 

treatment, are potentially highly effective media for evaporative cooling. However, 

relatively few reports of this type of materials can be found in evaporative cooling 

applications. In another material-based studies, experimental research is conducted to 

evaluate the performance of a cooling system made from raw cotton fabric and a 

curtain fabric [102]. The experiments showed that the saturation efficiency of the 

curtain fabric made system, i.e., 54.8%, outperforms the raw cotton fabric made 

system with saturation efficiency of 33.2%. In addition, it is reported that the 

temperature drops for the curtain fabric system was 2.9°C and for the raw cotton fabric 

was 1.7°C. In another comprehensive experimental study [107], six different cloth 

fabrics and a kraft paper as materials of the heat and mass transfer in an IECs, are 

compared for performance evaluation. The comparison was made to reveal the best 

material based on four factors, i.e., evaporation rate, wicking ability, diffusion rates 

and wetted areas. The results showed that some fabrics outperform the kraft paper in 

terms of moisture wicking, diffusivity and evaporation ability. In addition, some 

fabrics are failed to satisfy the authors mainly because of low immediate diffusion 

ability. Moreover, some fabrics are also failed to perform well due to distortion. 

Eventually, it was reported that the best materials for the system in terms of cooling 

efficiency are Coopass bird eye mesh fabric and Bamboo charcoal Coolmax active 

fabric. However, it is reported that Bamboo Charcoal Coolmax active fabric is more 

economic choice than Coopass bird eye mesh fabric. Use of aforementioned selected 

materials has led to improvements of up to 182%, 37% and 20% in vertical wicking 

rate, diffusion rate and evaporation rates respectively.  
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It can be concluded that the materials used for exchanger plates in IEC play a key role 

in performance of the systems. This is mainly because the heat and mass transfer in 

wet channel is in direct interaction with the sensible heat exchange between the wall 

and air in the adjacent dry channel. The material of the wet channel must be able to 

keep and distribute the water on its surface to support the water evaporation. This 

feature will facilitate the water evaporation and simultaneous heat transfer between 

two sides of the plate in wet and dry channels. Several studies have been conducted to 

test, compare and eventually find the appropriate material for the IEC’s exchanger 

plates.  

In summary, the chosen material must have the properties which can facilitate the heat 

and mass transfer as much as possible and let the water evaporation to cool down the 

supply air by enabling the heat transfer between the supply air and working air.  

 

2.3.4. Review of the analytical studies 

Apart from the material-based studies, the experimental and analytical/numerical 

models are the core studies which have been conducted in research studies on IEC 

technology. The analytical/numerical studies are carried out to establish the 

mathematical expressions (equations) which can reflect the heat and mass transfer 

occurring within the heat exchanger of the IECs. This approach will contribute to 

analysing the role of all operational and design characteristics including the effect of 

different climates, various shape and dimension of heat exchangers, etc., on the 

performance of the system. Generally, the analytical models employ the thermo-fluid 

theories to develop relationship-based equations between the performance and 

operating parameters of the technology.  
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Maclaine-cross and Banks [108] developed the first analytical model for an IEC in 

which the efficiency of the model was 20% higher than the experimental data. The 

main reasons for the resulted differences are originally coming from the assumptions 

made to develop the analytical model, i.e., it was assumed that the wet surface in the 

wet channel was fully saturated,  water was evenly distributed over the wet surface 

and was fed to have continuous evaporation, and Lewis relation was fully applied. In 

another attempt, Stoitchkov and Dimitrov [109], a method is proposed for a cross-flow 

flat-plate heat exchanger to calculate the cooling effectiveness. The model was 

developed based on analysing the mean temperature of the flowing water. In addition, 

an equation is developed to calculate the proportion of the total to sensible heat. The 

recorded errors compared to the experimental data was in the range of 2-4% which 

was much lower than first model. Another numerical model was developed for a cross-

flow flat-plate heat exchanger IEC in which the calculation of the energy consumption 

and thermal performance of the system was possible [110]. Additionally, 

identification of the optimum geometrical dimensions as well as the configuration 

were considered in the model. The maximum difference of 0.54 C in supply air 

temperature between the model prediction and the experimental data was recorded 

[111]. Erens and Dreyer [112] carried our another early study on developing the 

analytical models for the IECs by shifting the focus towards the comparison of the 

new model with previously developed models. It was concluded that:  

- Poppe method [113], [114] is accurate enough when it is assumed that the 

working air is supersaturated with water vapour. 

- Merkel method [115] which is simplified of Poppe method has lower accuracy 

because the number of assumptions was high (Lewis factor is constant, water 

temperature is constant, the working air is saturated).  
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The developed simple model by Erens and Dreyer, with much higher discrepancy, 

is only suitable for initial assessment of the small sized systems.  

The commons assumption in developing the analytical/numerical models were the 

main reasons for the discrepancies [7]. The main assumptions are: 

I. The heat transfer along the airflow is ignored (the heat transfer occurs only 

vertically between the separating plates). 

II. Ait flow always has the uniform behaviour along the channels. 

III. Water transfer from wet side of the plate to the working air occurs 

vertically only. 

IV. The wet side of the exchanger plate in the wet channel is saturated with 

water. 

V. Air is considered as an incompressible gas. 

Several studies are conducted to reduce the discrepancy of the developed models. For 

instance, Kettleborough and Hsieh [116], proposed a one-dimensional numerical 

model for a counter flow flat-plate heat exchanger IEC. To increase the accuracy, this 

study takes the water behaviour such as temperature change during the operation into 

account which has led to reduced error of 14%. Guo and Zhao [117] developed a 

numerical model for cross-flow IEC in which the effect of various operating 

parameters i.e., air velocities, channel width, relative humidity, etc., on the 

performance of the system was studied. This led to valuable results which could lead 

to an improved performance by the system. For instance, it is found that a system with 

a lower relative humidity of working air and channel width will have higher efficiency.  

New model for a cross and counter flow IECs is proposed by Ren and Yang [118] in 

which the coupled heat and mass transfer equations were solved together (two-

dimensional). In addition, instead of common assumptions, the effect of Lewis factor, 
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evaporation, water temperature and saturation condition of the wet surface were all 

considered. This led to low discrepancy values as follows: 0.17% for the supply air 

temperature, 0.64% for the working air temperature and 0.24% for the working air 

temperature. It is also concluded that performance of the counter flow systems is 

superior to the parallel IECs. 

Hettiarachchi et al. [119] employed the NTU method to develop a model for 

investigating the effect of longitudinal heat transfer on the performance of flat-plate 

cross flow IEC. The results revealed that the cooling efficiency of the system is 10% 

less than conservative conditions. 

There are some more similar analytical/numerical studies for the IECs in which slight 

improvement can be seen in some models. However, no significant novelty was found 

in reports. 

 

2.3.5. Review of the experimental studies 

The experimental studies are normally done to practically observe the performance of 

the system under various conditions. In addition, the experimental data are the key 

source for validating the developed numerical models. Moreover, the experiments can 

be carried out to investigate the effect of different parameters on performance of the 

system. The experiments contribute to identifying the optimum operating conditions. 

One more superiority of the experimental studies is that the system performance can 

be evaluated without any simplifying assumptions which are normally made in 

analytical/numerical models. Generally, various performance parameters of the 

system i.e., cooling capacity, COP, efficiencies, pressure drop, and temperature drop 

are analysed to evaluate the performance of the system. A number of experimental 

studies have been carried out in the IECs which are addressed below: 
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Tulsidasani et al. [120] experimented a tube type IEC in Indore city to study the effect 

of air velocities on the system COP. The studies revealed that the maximum COP of 

22 was achieved when the velocity of the intake air is 3.5 m/s and the velocity of the 

working air is 3 m/s. This occurred when the temperature drop had an acceptable value 

of 10.4 C. To improve the efficiency, performance of a two-stage IEC with a flat-

plate heat exchanger and two evaporative cooling chambers, is tested by Jain [121]. 

This innovative system is designed to enhance system performance in wet 

environments with low indoor air temperature values. The experiment revealed that 

the temperature drop was in the range of 8-16 C when the relative humidity was 90%. 

In addition, the cooling efficiency of the novel system was 20-30% higher than the 

single IEC. A polycarbonate-made IEC was tested under two operating conditions by 

Velasco Gomez et al.[96]. In this first case, the exhaust air of a climate chamber is 

used as the working air of the IEC system, and in the second case, a water spraying is 

added to the exhaust air. The results showed that the performance of the system in 

terms of cooling capacity and cooling effectiveness is better in second case. Moreover, 

the system had better performance when the outdoor air temperature and airflow rate 

were both higher. Jiang et al. [55] used an IEC to provide the cooling water of the 

HVAC system in a building. The test showed that the COP of the system was ranged 

from 0.4 to 0.8 while the outlet water temperature was 14 to 20C cooler than the inlet 

air wet bulb temperature.  

Over another experimental study, the effect of various operating parameters e.g., 

outdoor air temperature, airflow rate, water flow rate, etc., on the performance of an 

IEC is studied by Costelloe and Finn [122]. This study helped the researchers to 

identify the optimum operational rate of the fan and pump system. 
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2.4. Technological breakthrough in IECs 

Continuous endeavours in developing efficiency of the IECs resulted in an 

evolutionary breakthrough. As mentioned earlier, the heat and mass exchanger in IECs 

is core of the technology in which the heat transfer and evaporation take place. As a 

consequence, studies focus on improving the exchanger in order to achieve more 

efficient systems.  

2.4.1. M-cycle Heat and Mass Exchanger 

Dr. Maisotsenko [18], as one of the pioneers in IEC technology, introduced the M-

cycle HMX which was the main initiative of the new technology which is called Dew 

Point Cooler (DPC). The main advantage of the new technology was proposing huge 

temperature drop compared to the previous IECs. The proposed system can be 

categorized into two types based on the airflow distribution, i.e., cross flow and 

counter-flow. The DPC is the state-of-the-art IEC which is able to reduce the 

temperature of the intake air to its dew point temperature which can end up with 30% 

more cooling efficiency [16].  

Figure 2.9 shows the structure of the novel M-cycle HMX and airflow configuration 

for the DPC. As can be seen, the middle section of the surface in dry channel is 

allocated for the working air to flow and the rest of the surface is allocated for the 

product air (supply air) to flow. Both airflows are flown in a direct path using the 

parallel guided flow channels. Numerous tiny holes are designed on the surfaces to 

allow a certain amount of working air to divert to the wet channel. This innovative 

idea lets the working air to be cooled before entering the wet channel as it flows in the 

dry channel and loses heat to the adjacent wet channel. This will lead to more heat 

absorption be the working air in the wet channel mainly because of its lower 

temperature compared with the air streams in adjacent dry channels. As a result, the 
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cooling efficiency of the novel DPC will be higher than the traditional IECs. The 

psychrometric chart is provided as shown in Figure 2.10, to illustrate the various terms 

which are being used in performance evaluation of the DPCs. As seen, reaching the 

dew point temperature can significantly increase the temperature drop and lead to 

better cooling efficiency in the IECs. 

 

 

Figure 2.9: Structure of the HMX in DPC [34]. 
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Figure 2.10: Temperatures in Psychrometric Chart 

2.4.2. Research progress on DPC  

The first ever research study for the novel DPC was an experimental work which is 

done in Coolerado® project in USA (see Figure 2.11) [17]. The test is conducted to 

evaluate the performance of the 2005 model Coolerado cooler in which the heat 

exchanger was inspired from the novel cross flow M-cycle design. The test results 

based on the ASHRAE standards revealed that the wet-bulb and dew-point efficiencies 

could reach the 80% and 50%, respectively.  
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Figure 2.11: Coolerado indirect evaporative cooling [123] 

Zhao et al. [12] carried out a study to investigate the feasibility of the DPC operation 

in buildings of China. The study focused on climates of different regions in China and 

availability of water for operation of the DPC. The analysis results revealed that the 

northern and west regions of China are the most suitable regions for the system as the 

weather was warm enough in summer season in these regions. Additionally, 

integrating the silica-gel dehumidification to the DPC system to dehumidify the wet 

conditions is highly recommended as the lower humidity will lead to higher cooling 

efficiency.  

Riangvilaikul and Kumar [124] test a DPC in diverse operating conditions, 

representing dry, temperature and humid climates. The continuous operation of the 

system showed that the wet-bulb and dew point efficiencies were 102%, and 76%, 

respectively. Bruno [95] conducted an experimental study on a counter flow DPC 

prototype to mainly investigate the system performance in both commercial and 

residential buildings. Operation of the system in commercial buildings revealed that 
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the cooling performance of the system increases sharply in hot and dry climates.  In 

addition, an energy saving of up to 56% was achieved when the system is used to cool 

down the outside air for ventilation purpose of the buildings. Jradi et al. [125] 

developed a numerical model with experimental validation for operation of a cross 

flow DPC in buildings. Moreover, a parametric study is conducted to identify the 

optimum operating conditions of the system. The results showed that the wet-bulb 

efficiencies of 70–117% with supply airflow rate of 300–1500 m3.h-1 can be achieved. 

It was also reported that the higher intake air temperature will lead to higher cooling 

efficiencies. On contrary, the increase of intake air velocity, channel height and 

working air ratio have a negative effect on system performance. Pandelidis et al. [126] 

compared the performance of a novel plate-fin exchanger with M-cycle systems by 

focusing on effect of inlet air parameters. It was revealed that the arrangement of the 

holes on the surface of the dry channels and the amount of working air ratio has a key 

impact on the performance of the both systems. In addition, the effect of operating 

parameters on was indispensable.   

Xu et al. [127] introduced a novel heat and mass exchanger for the DPCs. As shown 

in Figure 2.12, the new exchanger is constructed by irregular plates which in 

comparison to the traditional flat-plate heat exchangers, is able to achieve higher heat 

transfer rate owing to the increased heat transfer area in the corrugated plates. In 

addition, the air resistance is decreased owing to removal of the triangular supporting 

guides. The results revealed that   
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Figure 2.12: Novel heat exchanger introduced by Xu et al. [127]  

Lin et al. [128], [129] carried out two studies in which the mathematical models are 

developed and converted to dimensionless equations for a counter-flow DPC. The 

developed models were able to predict the transient and steady-state performance of 

the system with maximum error of 8%.  It is also found that the local Nusselt number 

and Sherwood number are stable in fully developed regions which were in the range 

of 8.67-9.95 and 8.17-8.67 respectively.  

In another comparison-based study, Wan et al. [130], compared the cooling efficiency 

and temperature drop of two DPCs in which they were distinguished by their airflow 

configurations. Another study is conducted for a hybrid membrane liquid desiccant 

was integrated with the DPC. The results derived by a thermodynamic analysis 

revealed that the supply air temperature was in the range of 20-28C while the 

maximum humidity ratio was 12 g/kg [131]. Wan et al. [132] developed a two-

dimensional CFD model based on the NTU-Le-R method for a counter flow DPC in 

which the behaviour of the temperature and humidity ratio is studied. In addition, 

different operating and design parameters on the performance of the system are 
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analysed. Liu et al. [133] conducted a study for a counter flow dew point cooler in 

which the wet-bulb efficiency and COP increased by 29.3% and 34.6% respectively. 

It is also reported that the DPC have 10% higher cooling efficiency than a flat-plate 

DPC. In addition, it is also concluded that the cooling efficiency can be improved by 

increasing the channel length and cross-sectional area of the channel entrance, and by 

decreasing the channel width and channel gaps. Liu et al. [134] developed a numerical 

model for a counter flow DPC in which the effect of different operating parameters on 

the performance of the system studied by shifting the focus towards the comparison 

of the model results with three other developed models in the literature. The model 

with accuracy of 5% showed that the most important factor in improving the cooling 

efficiency of the system is the intake air temperature. A few more similar studies are 

conducted as well but no significant achievements are reported.  

  

2.5. AI and optimisation in energy systems 

The empirical success of Artificial Intelligence (AI) in various fields, as well as its 

capability in predicting the behaviour of the diverse technologies, have led to its 

increasing popularity in research and real-time applications. As a result, the benefits 

of applying AI in engineering applications, particularly in research studies on energy 

systems should not be underestimated. AI will pave the path in simplifying the 

engineering tasks which were difficult, time consuming or impossible to achieve in 

the past. Although AI was introduced in 1956 for the first time but the substantiality 

of its impact has been discovered over the past decade where it is used in wide ranges 

of fields including engineering. This is mainly because of the remarkable progress in 

computer sciences, in particular the computer hardware. AI can facilitate the tasks 

which were previously required human intelligence by learning and mutating human 
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intelligence [135]. ML is a subset of AI in which a machine/system learns by 

processing the data derived from the previously recorded behaviour of the system 

through different mathematical methods which contributes to predicting the behaviour 

of the system in any unforeseen operating conditions. AI is being gradually replaced 

by the sophisticated machines by taking over the smart production lines and 

manufacturing tasks over time. AI will contribute to design and simulation of the 

engineering products. It also can fully handle the low-value tasks and let the human to 

handle the higher-value tasks.  

Optimisation algorithms are generally used in AI applications with the aim of 

optimising the behaviour/performance of the system to discover the full potential of 

the technology. The optimisation has a key role in determining the best and optimal 

value for the decision variables which affect the performance of the system [136]. For 

instance, it can have a wide range of objectives such as minimising the power 

consumption or cost, maximising efficiency, productivity, product quality or profit, 

etc. Mathematical optimisations fulfil these objectives through the sophisticated 

programming and mathematical tools to overcome the highly nonlinear problems in 

real applications [137].  

 

2.5.1. Practical applications  

The AI, in particular ML, has been a leading research subject in various engineering 

applications. For instance,  ML is used in building energy [138] and building structural 

engineering [139] studies for diverse prediction purposes such as predicting the space 

heating and cooling loads of residential buildings. The growing popularity of the ML 

studies in building life cycle is proved in which the building design accounts for 44%, 

control for 28%, and operation and maintenance for 16% of the total studies [140]. 
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The phase change materials integrated cooling systems including centralised and 

distributed cooling systems, is another area in which the ML algorithms are commonly 

used [141]. In addition, improving the power efficiency in Data Centres (DCs) by ML 

tools has become a common research topic. Growth in employment of cloud-based 

systems, internet-based services and hardware availability has led to the emergence of 

large DCs which are embedded with challenging operational concerns [142]. One of 

the complicated challenges is energy consumption management which has a direct 

impact on energy costs and environmental related issues. The AI-based methods such 

as neural network are generally implemented to predict the Power Usage Effectiveness 

(PUE) of the DCs. For instance, a model which is validated at Google DC is capable 

of accurately predict the PUE of a DC [143].  

AI is actively used in big tech companies such as Facebook and Google. Apart from 

the nature of the tech companies in employing AI in their products and services, it is 

widely used in their DCs where huge amount of data are needed to be stored safely. 

For instance, Google uses its DeepMind AI unit to control the power consumption of 

the cooling systems through robust predictions [144]. This effort has resulted in 40% 

less power consumption by the cooling systems in Google’s DCs which is considered 

as a major breakthrough by Google. This is done by recognising the hidden pattern in 

the historical data including the key affecting parameters such as temperature, pump 

speeds, etc. Figure 2.13 shows how google tried to reduce the  power consumption in 

its DC by controlling the Power Usage Effectiveness (PUE) through a developed ML 

recommendation. This DC consumes 0.01% of the total energy consumption globally, 

i.e., 260 million watts. This amount is identical with the power usage of 200,000 

homes.  
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Figure 2.13: PUE prediction in Google's data centre using machine learning control tool [145]  

The performance of the cooling systems as vital need of different buildings and their 

habitants, is needed to be predicted accurately in order to control and optimise the 

power consumption of the technology. For instance, ML models for the ECs, as the 

most common cooling systems, would be beneficiary. It would be invaluable to have 

a smart model that can predict and optimise the system behaviour in a world that time, 

energy consumption and intelligent application are growing swiftly. The AI based 

research studies on buildings and HVAC systems are risen over the past decade which 

are mainly conducted to provide the users with smart buildings as well as to intervene 

the detrimental impact of greenhouse emissions originated from the buildings and 

HVAC systems. For instance, an adaptive ML based building study [146] is conducted 

by the aim of building automation. The developed building model is updated by an 

online building data using a dynamic neural network-based model. In addition, an 

optimisation model is embedded in the system to optimise indoor thermal comfort and 

power consumption. The model is operated by controlling/optimising the ACs and 

mechanical ventilation systems which led to 36-58% energy saving in the considered 

building.  

 



CHAPTER 2: LITERATURE REVIEW 

   57 

Similar to AI, the optimisation algorithms are needed in similar sectors ranging from 

business planning to engineering applications as it is vital to design the systems as 

economical as possible which can deliver the assigned duties in a short period of time. 

Tool in the optimisation algorithms can be applied to various energy technologies such 

as thermal components, heat exchangers, refrigeration systems, heat pump systems, 

fuel cell systems, renewable energy-based systems, power plants, cogeneration and 

trigeneration systems, multi generation systems, etc. [136]. 

 

2.5.2. Artificial Intelligence and Optimisation in IEC 

Like other technologies, although very few, but AI is also implemented in the EC 

technology. As ECs are evaluated based on numerous parameters so that employing 

the ML algorithms, as a subset of AI, are beneficial for this technology. It is worth 

mentioning that ML is mainly employed to learn from the existed data, produced from 

the numerical models and laboratory tests, for performance/behaviour prediction of 

the technology by estimation of  the common performance metrics, e.g., cooling 

capacity, COP, efficiency, pressure drop, temperature drop, etc. In addition, some 

attempts are tried in optimising the EC performance through the optimization 

algorithms which helps the engineers to identify the optimum design and operating 

conditions for the system. However, due to the quick developments in the field of AI, 

a lot of efforts are required to investigate the effectiveness and performance of all 

algorithms on ECs. However, to best of the author’s knowledge, to date all of the AI 

related studies are on the DPCs which are the most advanced IEC.  

In one of the early ML-based studies, Pandelidis and Anisimov [147] developed a ML 

model using the Response Surface Methodology (RSM) for a cross-flow DPC to 

predict the system performance using the four selected performance parameters. The 
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selected performance parameters were COP, cooling capacity, supply air temperature 

and dew point efficiency. Five operating parameters as the operating parameters, i.e., 

intake air temperature and humidity, mass flow rate of the supply air, working air ratio, 

heat capacity ratio and relative width of the exchanger in dry channel for working air, 

are selected as the inputs of the RSM model. The model has acceptable accuracy and 

showed that most effective parameters on system performance are supply air mass 

flow rate and intake air properties. In one other early attempt, Sohani et al. [148], 

employed the Group Method of Data Handling-type neural network (GMDH) to 

predict the supply air properties for a cross flow DPC using the intake air properties 

and channel length. The results revealed that apart from the model good fitting, its 

accuracy was 1.76% compared to the experimental data. Afterwards, the developed 

GMDH model is used in a Multi Objective Optimization (MOO) to maximise the COP 

and cooling capacity of the system by identifying the system optimum operating 

conditions. This is undertaken for the selected climates in which on average, the COP 

and cooling capacity is improved by 8.1% and 6.9% respectively. Similarly, as shown 

in Figure 2.14, Jafarian et al. [149] used the GMDH and NSGA-II algorithm-based 

MOO for a counter flow DPC with almost the same purposes, i.e., to find the 

optimized conditions in cities of Yazd, Masjed-Soleiman and Ahvaz. The MOO 

resulted in improved COP and specific surface area in all selected regions. The GMDH 

method produces some mathematical equations which comprising numerous terms for 

each performance parameter including all of the selected inputs. In another study, 

Sohani et al. [150], selected two DPCs, which one is called counter-regenerative DPC 

and the other one was a cross flow DPC. The optimum operating conditions are 

identified for both technologies and the performance of them were compared based on 

the water consumption, annual COP and life-cycle cost. The results revealed that the 
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counter-regenerative DPC has better performance compared to the cross flow DPC. In 

addition, the optimisation results revealed that the water consumption can be improved 

by up to 86.4%. The similar improvement is seen for the annual COP which was 

improved by 1,039%. Eventually, the results also reported that the life cycle cost of 

the systems can be improved by 64.4%. In another optimization-based study, Sohani 

et al. [151] also presented an hourly optimizations method for the DPCs employing 

Hourly Optimization Strategy (HOS) in which the performance of the system was 

tracked and optimized hourly. The results revealed that the annual water consumption 

was reduced by 19.6%. Additionally, it is concluded that the derived optimization 

conditions led to 17.8% more COP and 36.2% less operating cost.   

 

 

Figure 2.14: Flow chart of GMDH used in [149] 

Pakari and Ghani [152] employed three regression models using RSM method for a 

counter flow DPC in which four operating parameters i.e., intake air properties, 

extraction ratio, channel length and channel width, to predict the supply air 

temperature and relative humidity as well as wet-bulb efficiency of the system. The 
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results revealed that the maximum discrepancies are less than 10%. Similar to the 

GMDH method, mathematical equations with numerous terms is produced for each of 

the performance parameters. An optimization-based study [153] used Genetic 

Algorithm (GA) based multi-to-single-objective and MOO to optimize the 

performance of a counter-flow DPC by taking the dew point efficiency, COP and 

cooling capacity as the objectives. The results showed that the multi-to-single-

objective method outperforms MOO in terms of simplicity and operating time. The 

optimal channel length and working ratio for the considered DPC were 0.50m and 

0.40 respectively. Moreover, the COP was 36% - 92% higher in the optimized system 

compared with the base system. 

2.6. Research Gap and Scientific Challenges 

Review of the existing literature showed that the studies on DPCs have been mostly 

concentrated on the traditional flat plate HMXs. However, a novel counter-flow 

Guideless Irregular Heat and Mass Exchanger (GIDPC) has the best performance in 

terms of COP value i.e., 52.5 [38], [127] under an ideal operating condition. Xu et al. 

[127] pioneered in introducing the GIDPC through the numerical and experimental 

studies. However, to the best knowledge of the author, there is not any attempt in 

developing the ML based models for the system. In addition, the lack of optimization 

models for the GIDPC is another outstanding gap which limits the full potential of the 

GIDPC. 

The work in this thesis, mainly focuses on employing various ML algorithms and 

different optimization methods in order to: 

I. Construct a big and comprehensive dataset for the GIDPC using a validated 

numerical model which is developed in Engineering Equation Solver 

(EES) software by inspiring from the experimental data. 
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II. Develop different AI models in R, MATLAB and Python using novel ML 

algorithms for the performance prediction of the technology. The models 

will be compared and the best model will be introduced 

III. Develop different MOEO models using various algorithms to identify the 

optimum operating and design conditions of the GIDPC. 

IV. Present and compare the performance of the optimised systems in diverse 

climates in 2020 and 2050 by considering the impact of climate change. 

 

2.7. Summary 

This chapter carried out an extensive literature review focusing on the invention and 

improvement of the ECs. The focus of the chapter is then shifted towards the IECs 

after describing the outperformance of this technology over the DECs. Then the 

chronological review over the research findings for the IECs is discussed in details. It 

is mentioned that the continuous endeavours led to performance improvement of the 

technology and eventually ended up with an evolutionary breakthrough by introducing 

the DPCs. The overview is then continued by a detailed discussion on research works 

conducted for the DPCs. The introduction of GIDPC as the state-of-the-art DPC was 

a turning point in the EC technology as it is able to minimise the power consumption 

without sacrificing the cooling efficiencies. 

However, to date, there is no effort in bringing the AI including ML and optimisation 

to further improve the performance of the GIDPC, which is identified as a clear 

research gap requiring an innovative solution. The rising popularity and success of AI 

in engineering applications have entailed this PhD study to conduct AI and 

optimisation-based study for the GIDPC. This approach fills the aforementioned gap 

by developing two ML models and three optimisation models for the performance 
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prediction and optimisation of the GIDPC.  In summary, it can be concluded that this 

chapter contributed to illustrating the basic theory and concept of the ECs, reviewing 

the research progress made on IECs, identifying the opportunities to further improve 

the performance of the DPCs using the state-of-the-art methods, and eventually to 

building the structure and justification of the thesis.  
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CHAPTER 3: BIG DATASET FOR MACHINE 

LEARNING ALGORITHMS  

3.1. Introduction 

Data are the fundamental need of AI and in particular ML algorithms in the training 

process for the ultimate aim of prediction. Dataset plays a key role in efficiency, 

accuracy and applicability of the ML models in predicting the behaviour and/or 

performance of the considered system in any unforeseen and random situation. In this 

chapter, the methods used for construction of the big dataset as well as the sources of 

data, which will be used to train the ML models for the performance prediction of the 

GIDPC are explained in details. The dataset construction mainly comprises the 

selection of the various key parameters including operational, design and performance 

parameters of the GIDPC. The selection criteria and identification processes of the 

aforementioned key parameters which enable the investigation of the system 

behaviour, are detailed in the chapter. The aforementioned parameters are classified 

as the input and output variables of the ML models and the corresponding operating 

ranges of the input variables are also determined. In addition, data points creation 

based on the aforementioned input and output variables are included in this chapter. 

Eventually, common data pre-processing methods are explained which are used 

occasionally in training processes to enhance the efficiency of the models. In 

summary, the major works addressed in this chapter are: 

• Selecting the operational, design and performance parameters of the GIDPC 

for prediction, assessment and optimisation purposes of the technology. 

• Defining the operational ranges for the input variables to avoid creation and 

consideration of unreal operational conditions in the big dataset.  
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• Explaining the method used to construct the big dataset based on the created 

data points. 

• Explaining the methods used for data pre-processing to improve the efficiency 

of the ML models. 

3.2. Principles of data preparation 

In the predictive data-driven ML based tasks, i.e., classification and regression, data 

preparation is an essential step. The data volume is substantially increased over the 

past decade owing to the significant and continuous advances in smart technologies 

[154]. However, 80% of the created data are unstructured [155]. It is predicted that an 

increase of up to 4300% in data creation will occur annually by 2020. It is identical to 

the individual data production of 1.7 megabytes by each person in the globe [156]–

[158]. Basically, the emergence of the AI and in particular ML and any data driven 

algorithms are all reasons of data production in a huge scale. This sometimes becomes 

challenging to prepare the proper data quickly and accurately. It is vital to make sure 

that the data is clean, consistent and accurate enough before using them in any ML 

algorithm. 

The primary step in developing the ML models is to construct a comprehensive and/or 

big dataset. This is because the ML models are based on data-driven algorithms which 

are aimed to get the required information through the data to analysis, extract the 

hidden patterns and eventually learn from them to finally establish a model which can 

predict the system’s behaviour in any random and unforeseen operational condition.  

As a consequence, the dataset creation is very sensitive and requires a deep 

understanding of the considered system to hold and transfer the correct and sufficient 

information to the ML algorithm. The dataset which is used to train the ML model can 
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either properly build the model or can destructively confuse it. Thus, the 

destructiveness of a bad dataset should not be underestimated.   

Therefore, it is aimed to summarise the key steps in preparing the dataset in this 

section. It can be defined as the process of transforming raw data into a form that is 

suitable for training the ML algorithms. Although the data preparation is highly 

dependent on the type of data but the following essential steps are needed in all 

applications: 

Data collection: This is the primary step in constructing the big dataset. The probable 

challenges that can happen during the data collection must be handled properly. For 

instance, in a csv (common-separated) file, the relevant attributes must be determined. 

Converting the highly nested data structures, e.g., XML, JSOM, etc., must be analysed 

and converted to the tabular format for better analysing [159], [160]. The data 

collection step requires the full definition of the problem comprising the objectives 

and/or applications of the ML model. 

Data exploration: The data exploration is an important step in building a big dataset. 

It should be undertaken once the data is collected. This step is necessary to assess the 

condition of the collected data. This assessment process should identify any missing 

value as well as any incorrect value among the collected data [161]. This is a vital step 

as the ML algorithm will capture all the provided information within the dataset. 

Giving incorrect information to the algorithm will affect the accuracy of the model 

and thus results in completely inaccurate models. 
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Figure 3.1: Graphical demonstration of data mining 

Formatting: The next important step is to control the format of the collected data to 

ensure that they are in a suitable form to be employed and analysed by the ML 

algorithm [162]. This problem occurs when the data are collected from different 

sources. For instance, in the current study, the sources of data are experimental data 

and the analytical data where the format of some data, e.g., RH= 50% versus RH= 0.5, 

can be different. In addition, for instance, if a parameter is calculated by aggregating 

multiple sources, it is essential to make sure that the formats of all sources are same 

and correct.  

Data quality check: The collected data must be controlled in order to increase the 

quality of data. For instance, it must be ensured that the collected data are in the 

required range. For example, for the GIDPC, when the data is collected from the 

numerical model, the parameters of the collected data should fall into the GIDPC’s 

predefined ranges. Another quality check would avoid any repetitive or similar data 

which hold the same information. Having repetitive data, would lead to an inaccurate 

model which is unable to represent the true predictions. In summary, any outlier must 

be removed to increase the quality of the collected data [163], [164] 
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Feature engineering: Although it is said that the data is the fuel of ML models but 

this statement is more accurate when data is considered as the crude oil for the ML 

model which is needed to be refined. The feature engineering is used to prepare the 

inputs of the ML algorithm by transforming the raw data into features that suit the 

method [163], [165]. In addition, like other steps, it is undertaken to improve the 

information given to the algorithm. 

Dataset split: The final constructed dataset should be split into two main subsets, i.e., 

training data and testing data [168]–[170]. The training data would simply be used to 

train and develop the model while the testing data would be used to assess the 

performance of the developed model. It must be ensured that the split data are not 

overlapped. In addition, it is important to split the data in a way that the algorithm can 

observe all the required data. 

In this study, the main operational and design parameters of the GIDPC which 

practically affect the system performance and can vary simultaneously in different 

operational conditions, e.g., various climates, are considered only. This is because the 

main purpose of this study is to provide the models which can predict/assess the 

system performance when it is in real operation under various conditions. As a 

consequence, it is not necessary to involve all of the parameters in energy and mass 

transfer which are integrated with heat and mass transfer and fluid flow characteristics. 

This is an important advantage of data-driven models which are able to predict the 

performance of a system by knowing the major parameters only which simultaneously 

change in system’s real operation. This results in development of more applicable 

models which could possibly be commercialised. The operating ranges are necessary 

for both operating and design parameters as they are needed to let the model and users 

know the upper bound and lower bound of the inputs. It prevents the model from 
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considering the unreal values (operating conditions) which can complicate the model 

structure and also can significantly add to the training and prediction time of the 

model. In addition, considering the unreal operating conditions causes the ML model 

to learn the conditions which do not exist in system’s real time operation. Therefore, 

the operating ranges for each of the following operating and design parameters are the 

essential needs which are provided based on the rational assessment and real operation 

of the GIDPC in experiments.   

Choosing the parameters as input/output variables of the ML models is the most 

important stage in data-driven models. Therefore, a careful analysis and thorough 

knowledge on system behaviour and theory are needed to select the appropriate 

parameters. It is aimed to choose the parameters which are touchable by the 

manufacturers and consumers. It should be noticed that choosing the same or similar 

parameters with relatively same scientific meaning can be considered as an 

outstanding disadvantage for the ML models. The reason for the negative impact 

mainly lies in the fact that considering the same/similar parameters will astronomically 

increase the time of training and will lead to more complex models. In addition, in 

some cases due to existence of excessive data points, weak algorithms will not be able 

to find an accurate model ever. The literature review shown in Chapter 2 revealed that 

considering various parameters with same/similar scientific interpretation can provide 

the readers with more information but in the ML models, the parameters selection 

should consider the independency of the parameters by focusing on the major 

parameters. In this chapter, the main parameters of the GIDPC system which can 

simultaneously change in system operation, are chosen. The importance and impact of 

each parameter on the GIDPC performance are explained in details and the 

corresponding operating ranges are disclosed accordingly. 
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3.3. Operating parameters  

Based on the literature [33], [171], and experimental studies overviewed and explained 

in Chapter 2 of this research, it is identified that the common operating parameters for 

all types of ECs are mainly: intake air characteristics, flow rate (or velocity) of the air 

streams and a parameter which defines the proportion of intake and working airflows. 

These parameters play a key role in determining the system efficiency in terms of 

cooling capacity and power consumption.  

3.3.1. Intake air temperature 

Temperature is the first characteristic of the air which is considered as one of the most 

effective parameters on performance of the GIDPCs [127]. Temperature of the intake 

air is in direct link with the principal purpose of the GIDPC which is decreasing the 

temperature of the intake air. In addition, the intake air temperature is considered as a 

major factor in assessing the efficiency of the cooling systems. Therefore, temperature 

of the intake air [𝑇𝑖𝑛 (C)], as one of the operating parameters of the GIDPC system, 

is selected as the first input for the ML models. Based on the literature, the system is 

efficient when the intake air temperature is in the range of 25 to 45 (C). This means 

that when the temperature is below 25 C, the natural air can be used to cool down the 

area.   

3.3.2. Intake air relative humidity 

The relative humidity is another parameter which has a key role in the efficient 

operation of the GIDPC. It is the second characteristic of air which is defined as the 

amount of water vapour that is held by air. In general, when the temperature of the air 

rises, the relative humidity decreases as the amount of water vapour that can be held 

by air is increased. Therefore, the relative humidity of the intake air [𝑅𝐻𝑖𝑛 (%)] is 

considered as the second input variable for the ML models. Based on numerous studies 
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and the conducted experiments, it is concluded that the wet conditions (i.e., RH above 

50%) will lead to poor system performance [127] as it leads to lower cooling capacity 

and COP. Consequently, using a dehumidifier in wet conditions is highly 

recommended in studies [168]. However, in the current study, a comprehensive 

operating range for the intake air relative humidity, i.e., 10-80 (%), is considered.  

3.3.3. Velocity of the intake air 

The intake air velocity is a factor which has a remarkable impact on system 

performance as it directly affects the cooling capacity, and rate of heat and mass 

transfer within the HMX. In addition, it is a key player in determining air flow rates 

and power consumption of the GIDPC in various operating conditions. Higher 

velocity provided by fans is associated with larger pressure drop which results in more 

power consumption and consequently lower COP values which are not desirable for 

the GIDPCs. As a consequence, the air velocity of the intake air [𝑈𝑖𝑛 (m/s)], is selected 

as the third input of the ML models. Similar to the previous input parameters, the 

operational range is inspired from the literature and real operation of the system which 

is decided to be in the range 0.3 to 3.3 (m/s) for the ML models in this research study. 

3.3.4. Working air ratio 

The working air ratio is defined as the ratio of the exhaust air to the total intake air. It 

plays a key role in system performance where higher working air ratio will lead to less 

supply air flow and consequently more temperature drop will occur in intake air which 

flows inside the HMX dry channels. As a result, at a very high working air ratio, the 

dew point efficiency will increase but it will lead to lower COP and cooling capacity 

values. In addition, the low supply air flow will remain as an unfavourable issue. Thus, 

the working air ratio [𝜑] is selected as the fourth input parameters for the ML models 

in this study. Numerous experimental and numerical studies [17], [38] have revealed 
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that the operating range for the working air ratio is 0.1-0.9. The selection of proper 

value for the working air ratio is widely dependent on the operating conditions 

(temperature and relative humidity in particular) and a simultaneous trade-off is 

needed to reach the best possible value for the system. 

3.4. Design parameters 

The dimension of the HMX, as the core part of the GIDPC, affects the performance 

of the system. Therefore, the most effective geometrical parameters of the HMX are 

selected as the design parameters of the ML models. The dimension of the HMX 

specifies the system cooling capacity and it plays a key role in determining the 

performance parameters of the system. So that it is crucial to include the design 

parameters in the big dataset for the ML models. In addition, the appropriate ranges 

for each of the selected design parameters are inspired from the literature. The selected 

design parameters are HMX height, channel gap and number of layers. The HMX 

width is not considered since: 1) The heat transfer in width direction is ignored; 2) To 

avoid time consuming and complex model by ignoring the less important parameters. 

3.4.1. HMX height 

Height of the HMX is a factor which has the most significant impact on efficiency of 

the GIDPC which is needed to be selected carefully. The larger HMX height normally 

results in a better GIDPC performance [127] in terms of cooling capacity as it provides 

more heat transfer area through the HMX layers but on the contrary it leads to a higher 

pressure drop along the heat exchanger, higher fan power, larger surface area and 

higher construction costs simultaneously [172]. The importance of this factor has led 

us to choose it as the fifth input variable for the ML models. The height of the HMX 

is largely dependent on the application of the GIDPC and the required cooling 

capacity. However, through numerous conducted studies, it is revealed that the GIDPC 
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can perform effectively when the height of the HMX [H(m)] is in the range of 0.8-3.3 

(m) [33]. 

3.4.2. Channel gap 

Channel gap is another design parameter which is defined as the distance between two 

adjacent layers in the HMX. This parameter has a key role in system performance as 

smaller channel gap will cause a higher pressure drop and consequently will result in 

higher fan power and lower COP values. To the contrary, the larger channel gap will 

lead to a higher mass flow rate and higher cooling capacity. As a consequence, it is 

vital to include the channel gap in the big dataset and consider it as one of the inputs 

for the ML models. Thus, the channel gap G(m) is selected as the sixth input variable 

for the ML models which is generally in the range of 0.004-0.008 (m). The ranges for 

the channel gap is specified based on the numerous experiments and the modelling 

studies conducted for the DPCs. 

3.4.3. Number of layers 

A number of layers in HMX is another important factor which can affect the 

performance of the system. It plays a key role in determining the production cost so 

that is vital to take into account the pros and cons of different number of layers in the 

structure of the HMX. More layers can be considered as an important factor in 

increasing the pressure drop, surface area and construction cost. In addition, an 

increase of these parameters will lead to more evaporation area and more heat transfer 

from dry channel to wet channel. The importance of this factor in dimension and 

performance of the system is made the author select it as the seventh input variable in 

ML models. It has been concluded that the number of layers, [𝑁𝐿], varies between 100 

and 200. This range is identified through the comprehensive review of the experiments 

and modelling studies conducted for the DPCs.  
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The summary diagram for the selected inputs variables which are classified as 

operating and design parameters are shown in Figure 3.2. Moreover, the operating 

ranges of all input variables are listed in Table 3.1. 

 

 

Figure 3.2: Selected operating and design parameters 

Table 3.1: Operating ranges of the input variables 

 

3.5. Performance parameters  

Generally, the IECs performance is assessed by their ability in decreasing the 

temperature of the intake air which is called temperature drop. The temperature drop 

is the core parameter in evaluating the performance of the ECs. However, apart from 

the thermal performance of the system, it is vital to know how efficient the EC is in 

terms of power consumption. These aspects can be evaluated by common metrics, i.e., 

Type of parameters input parameters Minimum Maximum 

 

Operating parameters 

Tdry,in  (°C) 25 45 

RHdry,in  (-) 0.10 0.80 

Udry,in  (m/s) 0.30 3.30 

φ (-) 0.10 0.90 

 

Design parameters 

H (m) 0.80 3.30 

G (m) 0.004 0.008 

NL (-) 100 200 



CHAPTER 3: BIG DATASET FOR MACHINE LEARNING ALGORITHMS 

   74 

cooling capacity and COP which are defined by ASHRAE [47] in which the cooling 

capacity is responsible to report the system performance in terms of heat removal and 

COP is the ratio of the cooling capacity to the required power. However, there are 

several other metrics which can be used to further assess the performance of the system 

in depth. For instance, wet-bulb and dew point efficiencies, pressure drop and surface 

area of the HMX layers are other performance parameters. The selected performance 

parameters of the GIDPC as the output (target) variables of the ML models are 

followed in this section. 

3.5.1. Cooling capacity  

The cooling capacity is one of the key performance parameters which expresses the 

amount of energy produced by the system. The cooling capacity is identical to the 

capacity/ability of the system in removing heat from the space which its increasing 

was one of the principal objectives of the research studies. The parameter uses the 

temperature drop as the core term in its formula as Eq. (3.1):  

 

Qcooling = Cp(Tdry,in − Tdry,out)(1 − φ)Qm,dry,in                                                                 (3.1) 

 

Where  Qcooling is cooling capacity, Cp is the specific heat capacity, Tdry,in is the intake 

air temperature in dry channel, Tdry,out is the outlet air temperature in the dry channel, 

φ is working air ratio, and Qm,dry,in is mass flow rate of intake air in dry channel. 

Therefore, the cooling capacity , [Qcooling (kW)], is selected as the first main output 

for the ML models.  
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3.5.2. Coefficient of Performance  

Coefficient of Performance (COP) is another key performance parameter of the EC 

which is identical to the ratio of the produced energy by the system (cooling capacity) 

to the amount of energy used by the system. In the GIDPC structure, the supply air 

fan, exhaust air fan and water pup are responsible for the main power consumers. Huge 

efforts are made in research for the ECs to improve the COP value by decreasing the 

power consumption by choosing the efficient fans/powers. In addition, increasing the 

cooling capacity result in improved COP values which was the focus of most studies. 

The COP can be expressed as Eq. (3.2): 

 

{
 
 

 
 COP =

Qcooling

Wfan+Wpump

𝑊𝑓𝑎𝑛 = (𝑈𝑑𝑟𝑦)(𝐶ℎ𝑜𝑟𝑑) (
𝐺

2
) (𝑚)(∆𝑃)/(𝑒𝑓)

𝑊𝑝𝑢𝑚𝑝 = 𝑓(𝑤𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒, 𝐻)

                                                                        (3.2) 

 

Where, Wfan and Wpump are the electrical power consumed by the fans and the pumps 

respectively, chord is a parameter that defines corrugations of the plates in HMX, m 

is number of channels in the HMX structure, ∆𝑃 is pressure drop and 𝑒𝑓 represents 

efficiency of the fan. The power consumption values are correlated with the GIDPC’s 

design parameters. As a consequence, COP is selected as the second main output for 

the ML models.  

 

3.5.3. Thermal efficiency 

Thermal efficiencies demonstrate the ability of the system in decreasing the 

temperature of the intake air to some specific levels. In general, thermal efficiency 

includes two terms, i.e., wet bulb efficiency and dew point efficiency. Wet bulb 
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efficiency assesses the system ability in decreasing the intake air temperature to the 

wet bulb temperature while the dew point efficiency evaluates the system performance 

in decreasing the intake air temperature to the dew point temperature. Scientifically, 

both aforementioned performance parameters represent the thermal efficiency of the 

system and the only difference is the comparing factor. In most of the reviewed 

literature in Chapter 2, both wet bulb and dew point efficiencies are considered as the 

performance parameters as it was intended to give the authors more information 

regarding the temperature drop occurred by the system operation where the 

trend/behaviour of both parameters was exactly the same. The definition of these 

parameters is shown in the following Eq. (3.3): 

{
ɛwb =

Tdry,in−Tdry,out

Tdry,in−Tdry,in,wb

ɛdp =
Tdry,in−Tdry,out

Tdry,in−Tdry,in,dp

                                                                                                           (3.3) 

Where, ɛwb is the wet bulb efficiency and Tdry,in,wb is the wet-bulb temperature of the 

intake air in dry channel, ɛdp is the dew point efficiency and Tdry,in,dpis the dew point 

temperature of the intake air in dry channel. As a consequence, the wet bulb efficiency, 

[ɛwb], and dew point efficiency, [ɛdp], were selected as potential outputs (third and 

fourth) for the ML model.  

 

3.5.4. Pressure drop 

The pressure drop is another performance parameter which is created when the air 

flow is distributed within the HMX. The main reasons for pressure drop occurrence 

within the HMX are velocity and friction. Pressure drop can have positive and negative 

effects on the system performance and the heat transfer process. Excessive pressure 

drop is considered as a negative impact as it adds up the requirement for the air 

velocity which leads to more power consumption by fans and low COP values. To the 



CHAPTER 3: BIG DATASET FOR MACHINE LEARNING ALGORITHMS 

   77 

contrary, it is vital to overcome the air resistance alongside the flowing channel. The 

pressure drop can be expressed as Eq. (3.4): 

 ΔP = (ξ + λf
1

Dh
)
ρU2

2
                                                                                                             (3.4) 

where ΔP is pressure drop, ξ is coefficient of local resistance, λf is coefficient of 

friction resistance, Dh is hydraulic diameter, ρ is density and U is the air velocity. 

Therefore, the pressure drop, [ΔP(kPa)], is considered as another potential output for 

the ML models. 

 

3.5.5. Surface area of the HMX layers 

All of the aforementioned performance parameters have focused on the technical 

performance of the system. Although the COP takes the economic aspect into 

consideration but another parameter is needed to represent the material cost used in 

the core part of the system (HMX). Surface area of the layers is a parameter that 

represents the area of all layers used in structure description of the HMX. It is chosen 

to mainly control the cost which can be calculated using the following Eq. (3.5): 

𝐴𝑠 = (𝑁𝐿)(𝐻)(𝑤)                                                                                                               (3.5) 

Where 𝐴𝑠 is the surface area, 𝑁𝐿  is the number of layers, 𝐻 is height of the HMX and 

w represents the width of the surface. Although the surface of the area, [𝐴𝑠 (𝑚
2)], is 

not a key performance parameter, it is still considered as one of the potential outputs 

(sixth) in the ML models. Although lower surface area values are desired but higher 

surface area values can astronomically increase the cooling capacity of the GIDPC.  

3.6. Experimental performance of the GIDPC 

An experiment on a 4-kW GIDPC prototype is conducted by simulating various 

operating conditions in the lab environment. The main objectives of this experimental 

study is: 1) to provide a set of experimental data to validate a numerical model which 
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will be used to create data for the ML algorithms; 2) to present the superior 

performance of the GIDPC in diverse simulated operating conditions.  

3.6.1. Guideless irregular dew point cooler prototype  

A 4-kW counter-flow GIDPC prototype, as shown in Figure 3.3, was operated to show 

the performance of the GIDPC in diverse operating conditions. The prototype is 

mainly constituted of three components:  

 

Figure 3.3: Counter-flow GIDPC prototype 

A novel guideless irregular HMX: The guideless irregular HMX as the principal 

component of the GIDPC is shown in Figure 3.4, which is formed of 160 layers. The 

HMX dimensions are 1000mm (height) × 360mm (width) × 800mm (length). To divert 

the inlet airflow from dry channels to wet channels, a number of small holes (with a 

diameter of 5mm) are placed on top side of the HMX (Figure 3.4(a)). The number of 

holes (perforations) in the prototype is 118. Generally, the effect of perforation 

numbers is considered in the pressure drop calculations through the local resistance. 
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Considering the dimension and corrugated structure of the HMX, the total heat transfer 

area includes the corrugated are, i.e., 341032 mm2, and the lower flat section area, i.e., 

41760 mm2, which results in the total heat transfer area of 380479 mm2. 

 

 

(a)  

 

(b)  
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(c) 

Figure 3.4: Schematic of heat and mass exchanger (HMX) as used in the DPC: (a): front view of 

a corrugated sheet [33]; (b): wet and dry channel layers; (c): air distribution within HMX. 

As shown in Figure 3.5, the materials used to construct the sheets within the HMX 

are specific aluminium and Coolmax fibre in which the aluminium side has made the 

dry channel and the Coolmax fibre side has made the wet channel which has high 

water diffusivity and evaporation capacity [107]. 

 

 

Figure 3.5: Material of the layers in HMX [107] 

Water supply/distribution system: Owing to the advanced absorption capacity of 

fibrous material in the wet channels, the periodic water supply design was used by a 

dedicated water distribution system [38], which reduces the amount of used water as 

well as water pump power consumption. The water distributer is composed of a water 

pump, a water header, a water sink, and water distributor tubes which enable the even 
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distribution of water over the surface of wet channels. Figure 3.6, demonstrates the 

water distribution systems which is then embedded within the HMX. 

  

Figure 3.6: Test and demonstration system of water distributing [38]. 

When the water sink underneath the HMX is empty, the water is supplied with a flow 

rate of 6.85 L.min-1 for 15 seconds with 10 minutes intervals, and when the tank is 

full, the water is supplied with flow rate of 2.45 L.min-1 for 60 seconds with 10 minutes 

intervals. Moreover, temperature of the running water is kept at the range of 16-20˚C 

to ensure efficient cooling. In order to apply the aforementioned scheme, the dedicated 

controllers are used within the GIDPC unit. A time relay is employed to control and 

adjust the running time of the water pump to ensure the timely water circulation within 

the HMX. In addition, the pressure of the feeding water could be controlled by a 

pressure gauge and the air pressure sensors in order to follow the desired water spray 

scheme which is quite important to make the evaporation process continue all along 

the experiment.   

 

Product and exhaust air fans: Two fans for supply air, two fans for exhaust air, and 

one water pump together with fan/pump controller are placed inside the DPC unit to 
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control the air flow and water circulation during the experiment. The specifications of 

the aforementioned components are listed in Table 3.2. The speed of the fans could 

be changed and adjusted manually through the fan controllers which could be 

displayed on the control panel.  

Table 3.2: Technical specifications of the DPC components 

Component Specifications 

Supply air fan R3G225-RE07-03, 705 m3.h-1, 458 Pa, 160 W 

Exhaust air fan R3G225-RE07-03, 705 m3.h-1, 458 Pa, 160 W 

Water pump DH40H-24110, 24 V/1.2 A DC, 11mH2O, 450 L/hr 

Fan controller 980-CAS11007 – TMS Controller, ebm-papst Ltd 

Pump controller DH48S-S, Xinling Electrical Co. Ltd 

 

During the system operation, the intake air flows along the guideless layers of the dry 

channel with relatively high temperature and a certain value of relative humidity. The 

heat transfer is triggered owing to the temperature difference between the intake air 

and the neighbour wet channel. Part of the cooled intake air is diverted to the 

neighbour wet channel when it approaches the holes on the layers, while rest of it 

leaves the dry channel as the supply air. The diverted air, called the working air in the 

wet channel, is to absorb and carry the transferred heat and the moisture out as the 

exhaust air. 

3.6.2. Integrated experimental rigs 

Figure 3.7 shows the complete experimental instruments and schematic of the 

experiment. The experimental rigs alongside the GIDPC unit were all integrated in the 

laboratory to carry out the experiment. An intake air regulating system comprising an 

electrical heater to adjust the temperature, a humidifier and a dehumidifier to adjust 

the humidity, are used to imitate the weather condition of the selected climates in each 
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month. The heater was adjustable which enabled the flexibility of adjusting the 

required air temperature. The humidity of the air with the required temperature is 

adjusted by the dehumidifier/dehumidifier and is transferred to the GIDPC as the 

intake air through the spiral ducts. The humidifier/dehumidifier was mixing the wet 

air with the air coming from the heater to achieve the required humidity. Spiral ducting 

with several embedded dampers are installed to construct the airflow distribution 

system for the GIDPC with ability of controlling the rate and direction of the airflow. 

The relatively long ducts are used in front of the intake, supply and exhaust air vents 

to overcome the pressure drop along the flow direction. In addition, small auxiliary 

fans are also embedded inside the intake/supply air ducting systems to maintain the 

zero-static pressure of the flowing air inside the ducts which were being controlled 

continuously by the measurement devices during the experiment. Furthermore, several 

other measurement instruments (i.e., temperature and humidity sensors, and flow 

meters) were used to measure the temperature and humidity and flow rate of flowing 

air during the experiment. Moreover, power meters were used to measure the power 

consumption of the fans and a water pump, and a water flow meter was used to 

measure the water flow rate, a pressure gauge was used to measure the water pressure, 

and eventually, a fan controller system was used to adjust the fan speed during the 

experiment. In addition to the manual controls, all of the measured data were 

transferred through a USB port and embedded sensors to a screen located next to the 

experimental rigs and were compared with the manually recorded measurement data. 

The top view of the lab environment with the fully integrated rigs and their locations 

are shown in Figure 3.7 (b). The schematic top view reveals the location of the unit 

and the corresponding test rigs in the lab room. 
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(a) 

 

(b) 

Figure 3.7: (a): Fully integrated experimental set-up; (b): Schematic of the experiment 
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3.6.3. Experiment procedure 

During the experiment the considered weather conditions in the laboratory were 

simulated by the dedicated heater and humidifier/dehumidifier (as shown in Figure 

3.7(a)). The GIDPC was run for 180 minutes for each simulated condition in which 

the first quarter of the experiment was allocated for the system stabilizing which is 

mainly because of the water to distribute over the wet channels’ surfaces to have better 

evaporation. It also helps the intake air to reach the target temperature and relative 

humidity of the considered weather; as adjusting the relative humidity and temperature 

is time consuming where the simulated air needs enough time to reach the GIDPC unit 

and then to get distributed within the system. During the experiment, the temperature 

and the relative humidity were being monitored continuously by the 

humidifier/dehumidifier within the laboratory and also through the measurement 

devices to avoid any change. Then, the system performance parameters, i.e., cooling 

capacity, COP, wet-bulb and dew point efficiencies which were displayed on the 

screen, were recorded every 15 minutes and eventually at the end of the experiment 

the average values of each performance parameter were calculated and reported. The 

experiment for each operating condition is repeated twice and the average of the 

results were calculated. This is carried out mainly to decrease or minimise any error 

and inaccuracy which could occur during the experiment. Because the whole 

experiment comprised numerous components including sensitive sensors, so that the 

error sources could arise from the components such as sensors or even by the human. 

In addition, the delayed response and other probable error sources made us repeat each 

operating condition twice.  

To maximize the energy saving potential of the GIDPC, optimum operational 

proportion of the supply and exhaust air were adjusted by the corresponding fans. It 
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was experimentally established that the best cooling performance of present GIDPC 

achieves when the working air ratio over the intake air is 0.37 [38]. This value could 

have been achieved by different supply and exhaust air flow rates but examining 

different values revealed that some flow rates lead to more efficient cooling. 

Therefore, it is decided to have the optimum supply air and exhaust airflow rates of 

602 and 364 m3.h-1, respectively, which were kept constant throughout the experiment. 

This is undertaken to have the comparable results in all diverse weather conditions. 

Under these circumstances, the fans’ power consumption, which varies by supply and 

exhaust airflow rates, is measured as 89 W by fan power meter in the working air ratio 

of 0.37. The water pump power consumption is measured as 1.5 W by a power meter 

leading to the total GIDPC power consumption of 90.5 W. It is worth mentioning that 

all of the power units in this study are electrical watts or kilowatts per unit time which 

represent the rate of power consumption instead of amount of power.  

 

3.6.4. Climate pre-treatment  

A developed numerical model for a solar/waste energy driven 

dehumidification/regeneration cycle with a solid adsorbent bed by authors [168] is 

used to pre-treat the wet climates by reducing the humidity of the intake air prior to its 

entrance into the GIDPC. In actual real-life scenarios, the intake air from extremely 

hot and humid climates needs to initially go through a dehumidifier for pre-treatment 

purposes of the wet conditions in order to achieve the operating ranges of GIDPC, 

which leads to a massive improvement in performance efficiencies of GIDPCs. These 

ranges indicate that the intake air temperature of GIDPC should be in the range of 25-

45°C and the relative humidity should be less than 50%. The reason for having such a 

limited relative humidity range is that the intake air with high relative humidity will 



CHAPTER 3: BIG DATASET FOR MACHINE LEARNING ALGORITHMS 

   87 

have less chance to lose its heat to the adjacent wet channel. The reason for this is 

because a part of the intake air will be diverted to the wet channel in which the 

evaporation takes place to absorb the heat from the initial intake air in the dry channel. 

The wet intake air which enters the wet channel will have less capacity in absorbing 

the water and consequently the heat transfer rate will be decreased. As a consequence, 

the wet conditions should be pre-treated to decrease the relative humidity level of the 

GIDPC intake air. Real operation of GIDPC in such conditions will be accompanied 

by a dehumidification system, but in current experimental study, the focus is on the 

GIDPC prototype, and no dehumidification system is used. Instead, a verified 

auxiliary model is used as a replacement. Therefore, the model is used to pre-treat the 

air parameters of wet conditions only (Mediterranean and humid continental) prior to 

their entrance to the GIDPC.  

The model is developed for a solar/waste energy driven dehumidification/regeneration 

cycle with a solid adsorbent bed as shown in Figure 3.8 to solve the energy 

conservation and mass conservation laws. The corresponding equations are applied to 

the selected control volumes, i.e., flowing air and desiccant bed particles, in the 

dehumidifier. Generally, a number of assumptions are made in dehumidifier models 

[173] to mainly simplify and accelerate the simulation without sacrificing accuracy. 

These assumptions are:  temperature and moisture content of the air and absorbent in 

the vertical direction are uniforms which result in one dimensional heat and mass 

transfer; heat transfer via conduction is not considered in the flow direction which is 

mainly because of the small thermal conductivity of the air; heat and mass transfer 

coefficients are considered to be unchanged between air and desiccant; it is assumed 

to have the identical solar radiation in the regeneration process; it is assumed to have 

an unchanged air state at inlet and outlet of both cycles. 
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Figure 3.8: Solar/waste energy driven dehumidification and regeneration cycle 

MATLAB is used to simulate and analyse the performance of the system employing 

the energy and mass balance equations. It is worth mentioning that the finite element 

method is used to implement the simulation. The mass balance for the flowing air 

stream is given as Eq. (3.6): 

 

ρafA (
∂da

∂t
 + u 

∂da

∂z
) =  KyC(dd − da)                                                                                  (3.6) 

 

Where, ρa represents density of the air, f represents ratio of the air to entire channel, 

A represents cross-sectional area , da and dd represent the absolute humidity ratios for 

air and desiccant, respectively, u represents flow rate, Ky represents the coefficient of 
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mass convection, C represents the perimeter of the section where air flows, t represents 

time, and eventually, z represents the flow direction. 

The mass balance within the absorbent bed is given as Eq. (3.7): 

 

ρaε(1 − f)A
∂dd
∂t

+  ρd(1 − ε)(1 − f)Aϕ
∂W

∂t
 

= ρaε(1 − f)A DG
∂2dd

∂z2
+ ρdε(1 − ε)(1 − f)ADs

∂2W

∂z2
+ KyC(da − dd)              (3.7) 

 

where ε is porosity, ρd represents the density of desiccant, ϕ is volume ratio of 

desiccant while W stands as the dry base water content. In addition, DG represents the 

gas phase diffusivity, eventually,Ds stands as the surface diffusivity.  

The energy balance within the flowing air stream is given as Eq. (3.8): 

 

ρa(cp,a + dacp,v)fA (
∂Ta

∂t
 + u 

∂Ta

∂z
) =  αC(Td − Ta) + Kycp,vC(dd − da) (Td − Ta)      (3.8) 

 

Where, cp,a and cp,v stand as the specific heat capacities of air and water vapour 

respectively while α represents the convective heat transfer coefficient. Additionally, 

Ta and Td stand as the temperature of air and desiccant bed, respectively. The energy 

balance of the absorbent bed is represented as Eq. (3.9): 

 

ρdcp,d(1 − f)A(1 − ε) (
∂Td
∂t

− 
kd
cpρd

∂2Td
∂z2

) 

=  αC(Ta − Td) + Kycp,vC(dd − da)(Ta − Td) + KyC(dd − da)qs + I. A/L        (3.9) 
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Where,  cp,d represents the specific heat capacity of the desiccant bed while kd stands 

as the thermal conductivity of desiccant. Moreover, I represents the solar radiation 

intensity where it is only used for regeneration purpose, and eventually L represents 

the thickness of the absorbent bed.  

It is assumed that the flowing air and desiccant have a constant initial temperature 

which is equal to the initial temperature of inlet air. In addition, it is assumed that the 

corresponding humidity ratios are equal to the inlet air humidity ratios. The initial 

condition of the desiccant bed should be dry enough to trigger the dehumidification 

process so that the initial water content of the desiccant is assumed to have a small 

value of 0.015 [kg.kg-1]. In the inlet of both dehumidification and regeneration process 

it is assumed to have constant boundary temperature and humidity ratios for each time 

step. Moreover, the gradient of the temperature and moisture content at desiccant 

boundaries are taken as zero. The heat transfer coefficient is given as Eq. (3.10): 

 

α = 
(Nu)(k)(C)

4A
                                                                                                                           (3.10) 

 

Where Nu is nusselt number, k is thermal conductivity. The mass transfer coefficient 

is also presented as Eq. (3.11): 

 

Ky =  ρa
(Sh)D0C

4A
                                                                                                                         (3.11) 

 

Where 𝑆ℎ is Sherwood number and 𝐷0 is ordinary diffusivity. 
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3.6.5. Climate simulation 

Out of seven existed climate classifications, four different climates are identified as 

suitable operating conditions for the GIDPC. In this regard, a representative city for 

each climate is chosen to carry out the experiment. This is the first endeavour ever in 

investigating the monthly performance of the GIDPC in different climates. These 

climates and representative cities are: Las Vegas, USA, for the subtropical hot desert 

climate; Rome, Italy for the Mediterranean climate; Beijing, China for the humid 

continental climate; and Riyadh, Saudi Arabia for the hot desert climate. The GIDPC 

operating conditions are simulated in laboratory under the aforementioned climates to 

record the monthly performance of the system. The operating months of the GIDPC 

in each selected city are recognized based on the temperature and relative humidity 

requirements. It means that in those months that the temperature and relative humidity 

of the considered city fall out of the defined ranges, the GIDPC will not operate as the 

natural weather condition is cold enough. 

As a consequence, the weather information of each selected city is listed in Table 3.3 

[174] for all the year round. As seen, some relative humidity values are fallen out of 

the defined range for operating of the GIDPC (0 ≤ 𝑅𝐻 ≤ 50%). In these conditions, 

the intake air properties are needed to modify for the GIDPC operation. Therefore, a 

pre-treatment is needed to modify the humidity of those cities. Thus, the auxiliary 

dehumidifier model is used for wet conditions to reduce the humidity levels. As a 

result, as can be seen in Table 3.3, the pre-treatment is conducted in Rome and Beijing 

where their conditions were out of the GIDPC’s operation ranges whereas Las Vegas 

and Riyadh are needless of any pre-treatment.  

It is found out that the GIDPC is only needed from April to October in two cities, i.e., 

Beijing and Las Vegas; and from March to October in Riyadh; and from May to 
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October in Rome. For rest of the year, the outdoor air can be directly used without 

being cooled by GIDPC. The temperature and relative humidity before treatment in 

Beijing range from 20 to 31˚C and from 45% to 78%, respectively which were beyond 

the defined humidity for GIDPC. However, after treatment, the temperature ranges 

from 23.68 ˚C to 36.75 ˚C and the relative humidity level reduced to the acceptable 

range of 16-42.31%. The trend is similar in Rome, where the temperature and relative 

humidity before the treatment ranged from 23 to 28 ˚C and from 73 to 76%, 

respectively; whereas after the treatment the temperature is in the range of 27.25 to 

33.22 ˚C and the relative humidity has decreased to an acceptable range of 35 to 40% 

for GIDPC operation. Temperature in Las Vegas and Riyadh are in range of 25-40˚C 

and 27-44 ˚C, and the relative humidity are in ranges of 18-30% and 16-37%, 

respectively. Therefore, subtropical hot desert climate and hot desert climate are well 

in the range of GIDPC predefined ranges, and no pre-treatment is needed for them. As 

a consequence, all of the weather conditions are now within the operating ranges of 

the GIDPC.  

Figures 3.9 (a)-(d) illustrate the target and experiment values of the monthly 

temperature and relative humidity in operating months for each city. Target values are 

the real monthly weather conditions of the cities which are listed in Table 3.3 while 

the experiment values are those simulated by the heater and the 

dehumidifier/humidifier in the laboratory. These are presented to show how accurate 

was the weather simulations in the experiment.  

The measurements revealed that the maximum relative errors between target and 

experiment temperature values in Beijing, Rome, Las Vegas, and Riyadh were 5.15%, 

3.43%, 5.55% and 5.95%, respectively, and the relative humidity errors were 6.25%, 

3.07%, 4.76%, and 7.89%, respectively. Therefore, the weather conditions in each city 
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are simulated with high accuracy. However, the main reasons for the slight errors are: 

delayed response in sensors and adjustment limits in the electrical heater, humidifier 

and dehumidifier, as well as likely prototype’s inherent errors. 

 

Table 3.3: Average monthly weather conditions 

 

 

Month 

Beijing Rome Las Vegas Riyadh 

Before treatment After treatment Before treatment After treatment No treatment needed 

T(˚C) RH(%) T(˚C) RH(%) T(˚C) RH(%) T(˚C) RH(%) T(˚C) RH(%) T(˚C) RH(%) 

January 2 44 - - 12 77 - - 15.4 43 20 50 

February 5 44 - - 13 77.2 - - 17.05 39.8 23.90 40 

March 12 45 - - 15 73 - - 19.7 34 27 37 

April 20 45 23.68 16 17.5 73 - - 25 25 31 35 

May 26 53 30.84 22.53 23 75 27.25 39 30 21 38 21 

June 30 60 35.58 23.48 26 74 30.84 35 37 18 42 16 

July 31 75 36.75 23.81 28 73 33.22 38 40 20 44 17 

August 30 78 35.58 42.31 28 75 33.22 39 39 27 42 19 

September 27 69 32.03 34.94 27 75 32.03 39 33 26 42 19 

October 20 60 23.68 27.98 23 76 27.25 40 27 30 35 23 

November  10 58 - - 16 78.8 - - 18.5 37 24.60 38 

December 4.5 50 - - 14 79 - - 15 43 23 47 

Average in operating 

months 

- - 31.31 27.02 - - 30.68 32.13 32.67 24.01 37.35 23.05 



CHAPTER 3: BIG DATASET FOR MACHINE LEARNING ALGORITHMS 

   94 

 

(a)  

 

(b) 
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 (c) 

 

(d) 

Figure 3.9: Monthly target and experiment weather conditions in various climates. (a) Beijing 

(b) Rome (c) Las Vegas (d) Riyadh 
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3.6.6. GIDPC performance in diverse climates   

The performance of the GIDPC in the aforementioned simulated operating conditions 

is reported using the common performance parameters i.e., cooling capacity, COP, 

wet-bulb and dew point efficiencies in each of the identified operating months for the 

four representative cities. The results revealed that the performance of the system 

varies in each month where the temperature and the relative humidity play the key 

roles in having the various performance values while other key operating and design 

parameters of the system such as working air ratio, airflow rates, and the dimensional 

parameters were all same.  

The monthly results are shown through the Figures 3.10-3.13 in which big differences 

in GIDPC performance can be observed. This proves how different operating 

conditions can affect the system efficiency. For instance, Figure 3.10 shows monthly 

cooling capacity values of the system which are in the range of 1.6 - 4.65 kW. The 

monthly COP values are also given in Figure 3.11 which are in the range of 17.7 – 

51.38. The COP is a principal factor in decision-making as it considers both economic 

and technical aspects of the system. The maximum value of COP for the current 

GIDPC (52.5) was reported previously [38]. The reason for high COP values is mainly 

because of the novel guideless irregular heat and mass exchanger which has created 

40% more heat transfer area and 50% less flow resistance along the flow direction 

within the channels.  

The COP in Beijing ranges from 30.07 in April to 40.2 in July, and the cooling capacity 

is in the range of 2.72 kW in April to 3.63kW in July. The reason for the minimum 

values in April is due to the relatively cold and dry conditions (the pre-treated 

experiment temperature and relative humidity are 23.68 ˚C and 16% respectively), 

which lead to the lowest cooling capacity and consequently the lowest COP in April. 
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Contrarily, the maximum values in July are mostly owing to the warm weather 

condition, where the pre-treated experiment temperature rises to 36.75 ˚C. In Rome, 

the COP value ranges from 24.6 in May to 43.06 in August, and the cooling capacity 

is in the range of 2.22-3.89 kW. Due to the wet Mediterranean climate in Rome, 

temperature is the principal factor affecting system performance. Therefore, the lowest 

experiment temperature values observed in May (27.25 ˚C), and the highest 

experiment temperature values observed in August (33.22 ˚C), have caused the 

corresponding minimum and maximum COP and cooling capacity values. The 

experiment relative humidity was constant at 39% in both months. 

Similarly, in subtropical hot desert climates, due to the dry condition, the temperature 

has the pivotal role in performance of GIDPC in Las Vegas, where the experiment 

temperature varies from 25 ˚C in April to 40 ˚C in July. Accordingly, the minimum 

COP and cooling capacity values occur in April, i.e., 17.7 and 1.6 kW, respectively, 

and the maximum values occur in July i.e., 50.57 and 4.57 kW, respectively. 

Meanwhile, the experimental relative humidity was 25% in April and 20% in July. 

In hot desert climate, the GIDPC displays its highest potential in saving energy. This 

is mainly because of the warm and dry conditions throughout the summer where the 

experiment temperature and relative humidity were in the narrow ranges of 39.5-42.4 

˚C and 16.1-18.1%, respectively. The COP in Riyadh reached 51.38, 51.06, 50.93 and 

49.66 in September, July, June, and August, respectively, and the lowest value, i.e., 

26.6 occurred in March. Similarly, the cooling capacity was as high as 4.65 kW, 4.62 

kW, 4.6 kW and 4.49 kW in September, July, June, and August, respectively, and the 

lowest value, i.e., 2.4 kW happened in March. 

Wet-bulb and dew point efficiencies of the GIDPC are shown in Figures 3.12 and 

Figure 3.13 respectively. These efficiencies show how close the GIDPC prototype 
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can reduce the temperature of the intake air to the wet-bulb and dew point 

temperatures. The experiment results revealed that the wet-bulb efficiency is in the 

range of 68.57–126.47%, and the dew point efficiency varied between 35.29% and 

90.2%. 

In Beijing, the highest wet-bulb and dew point and efficiencies are 126.47% and 

90.20% respectively, which happened in August while the lowest values of 103.61% 

and 69.6% occurred in April. It means that the temperature difference between the 

dew point and the supply air temperatures in August when the supply air temperature 

is recorded as 22.1˚C, is less than April when the supply air temperature is recorded 

12.7 ˚C. This trend is also same for the temperature difference between the wet-bulb 

and supply temperatures. Similarly, the maximum dew point and wet-bulb efficiencies 

for Rome occurs in August, and in both Las Vegas and Riyadh occur in July, and the 

minimum values occur in May, April and March for Rome, Las Vegas, and Riyadh, 

respectively.  

 

 

Figure 3.10: Monthly cooling capacity of GIDPC 
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Figure 3.11: Monthly COP of GIDPC 

 

Figure 3.12: Monthly wet-bulb efficiency of GIDPC 
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Figure 3.13: Monthly dew point efficiency of GIDPC 

3.7. Review of a validated numerical model for data production 

3.7.1. Model development 

Before getting into the details of the big dataset construction, it is vital to go through 

a validated numerical model [125] which is widely used to produce data. The sources 

of data in this research are mainly the aforementioned experiment and the numerical 

model. 

The common finite element [175]–[179] method is employed to treat the traditional 

mass and energy equations differentially, and the Newton iteration [180] is applied to  

each considered element to pursue the equilibrium state in heat and mass transfer 

phenomena with some simplifying assumptions as follows: 

• Heat transfer between the HMX and surrounding was ignored.  

• Heat and mass transfer were assumed to occur in steady state.  

• The convective heat transfer in the walls of the channels was in vertical 

direction only. 
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• The walls were also considered to be impenetrable, thermal resistance of walls 

was ignored, and air within the channels was considered to be an 

incompressible gas.  

The numerical model was developed by applying the following equations to each of 

the selected computational elements along the channels: 

The air enthalpy difference between the inlet and outlet of the dry element is equal to 

the total heat transfer between the airflow in the dry element and channel walls as Eq. 

(3.12): 

 

 ∆𝑖𝑑𝑟𝑦 = 𝐶𝑃 ∙ 𝑄𝑚,𝑑𝑟𝑦 ∙ ∆𝑇𝑑𝑟𝑦 = ℎ𝑑𝑟𝑦 ∙ (𝑇𝑑𝑟𝑦 − 𝑇𝑤) ∙ ∆𝐴                                                 (3.12) 

 

Where 𝐶𝑃 is specific heat capacity of air, 𝑄𝑚,𝑑𝑟𝑦 is the mass flow rate of air in dry 

channel,  𝑇𝑑𝑟𝑦 is the air temperature in dry channel, 𝑇𝑤 is the temperature of the wall 

and ∆𝐴 is the heat and mass transfer area of computational element.  

The difference of humidity ratio (HR) between the inlet and outlet of the wet element 

is equal to the amount of water evaporated across the wet surface as shown in Eq. 

(3.13): 

 

∆ℎ𝑢𝑚𝑤𝑒𝑡 = ℎ𝑚 ∙ 𝜌𝑎𝑖𝑟,𝑤𝑒𝑡 ∙ (ℎ𝑢𝑚𝑤 − ℎ𝑢𝑚𝑎𝑖𝑟,𝑤𝑒𝑡) ∙ 𝜎 ∙ ∆𝐴                                           (3.13) 

 

Where  ℎ𝑚 is the convective mass transfer coefficient between the working airflow 

and wet channel surface, 𝜌𝑎𝑖𝑟,𝑤𝑒𝑡 is density of the air in wet channel, humw and 

humair,wet are the humidity ratio of the working air at the wet wall temperature and wet 

channel air temperature respectively and σ is the wettability of the surface material. 

The convective mass transfer coefficient between the working airflow and wet channel 
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surface is expressed as a function of the convective heat transfer coefficient and the 

Lewis number ( h/hm  = ρ ⋅ CP ⋅ Le
1−n) where n=1/3. The convective heat transfer 

coefficient between the airflow and the channel wall mainly depends on the flow 

regime (which is laminar in this study i.e., 52.31< Redry < 1209 and 5.38< Rewet < 

1131) and can be calculated as Eq. (3.14): 

 

ℎ =
𝑁𝑢⋅𝜆

𝐷𝑒
                                                                                                                                   (3.14) 

 

Where 𝑁𝑢 is the Nusselt number which depends on the airflow regime, 𝜆 and 𝐷𝑒 (m) 

are the thermal conductivity and the equivalent diameter respectively.  

The energy balance of air in the wet channel is, shown by Eq. (3.15), considered by 

calculating the difference of air enthalpy between the inlet and outlet of a wet element 

through the following expression which is equal to the sum of the heat transferred 

from the dry to wet elements and the change of airflow enthalpy in the wet element 

because of the evaporation. 

 

{

∆𝑖𝑤𝑒𝑡 = 𝐶𝑃 ∙ 𝑄𝑚,𝑤𝑒𝑡 ∙ 𝜑 ∙ ∆𝑇𝑤𝑒𝑡 = ∆𝑄𝑤𝑒𝑡 + ∆𝑖𝑠𝑡𝑒𝑎𝑚
∆𝑄𝑤𝑒𝑡 = ℎ𝑤𝑒𝑡 ∙ (𝑇𝑤 − 𝑇𝑤𝑒𝑡) ∙ ∆𝐴
∆𝑖𝑠𝑡𝑒𝑎𝑚 = ℎ𝑚 ∙ 𝜌𝑎𝑖𝑟,𝑤𝑒𝑡 ∙ (ℎ𝑢𝑚𝑤 − ℎ𝑢𝑚𝑎𝑖𝑟,𝑤𝑒𝑡) ∙ 𝐶𝑃,𝑠𝑡𝑒𝑎𝑚 ∙ 𝑇𝑤𝑒𝑡,𝑜𝑢𝑡 ∙ 𝜎 ∙ ∆𝐴

   (3.15) 

 

Where 𝑄𝑚,𝑤𝑒𝑡   is mass flow rate in wet channel and 𝜑 is the working air fraction over 

the intake air. 

As shown in the following Eq. (3.16), the amount of water evaporated from the wet 

element surface is equal to variation of the water flow rate between the inlet and outlet 

of the computational wet element. 
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∆𝑄𝑚,𝑤𝑎𝑡𝑒𝑟 = ℎ𝑚 ∙ 𝜌𝑎𝑖𝑟,𝑤𝑒𝑡 ∙ (ℎ𝑢𝑚𝑤 − ℎ𝑢𝑚𝑎𝑖𝑟,𝑤𝑒𝑡) ∙ 𝜎 ∙ ∆𝐴                                     (3.16) 

 

Water enthalpy difference between the inlet and outlet of a wet element is caused by 

heat transfer between the water and airflow in the dry/wet channels as well as the latent 

heat of the evaporated water as expressed as Eq. (3.17): 

 

{
 
 

 
 
∆𝑄𝑑𝑟𝑦 = ∆𝑄𝑤𝑒𝑡 + ∆𝑄𝑣𝑎𝑝 + ∆𝑖𝑤𝑎𝑡𝑒𝑟  

∆𝑖𝑤𝑎𝑡𝑒𝑟 = (𝑄𝑚,𝑤𝑎𝑡𝑒𝑟,𝑜𝑢𝑡 ∙ 𝑇𝑤𝑜𝑢𝑡 −𝑄𝑚,𝑤𝑎𝑡𝑒𝑟,𝑖𝑛 ∙ 𝑇𝑤𝑖𝑛) ∙ 𝐶𝑃,𝑤𝑎𝑡𝑒𝑟

∆𝑄𝑣𝑎𝑝 = ℎ𝑚 ∙ 𝜌𝑎𝑖𝑟,𝑤𝑒𝑡 ∙ (ℎ𝑢𝑚𝑤 − ℎ𝑢𝑚𝑎𝑖𝑟,𝑤𝑒𝑡) ∙ 𝑒𝑛𝑠𝑡𝑒𝑎𝑚 ∙ 𝜎 ∙ ∆𝐴

𝑒𝑛𝑠𝑡𝑒𝑎𝑚 = 2446+ 1.86𝑇𝑤𝑎𝑡𝑒𝑟

                        (3.17) 

 

Where 𝑒𝑛𝑠𝑡𝑒𝑎𝑚 , is the latent heat of the evaporated water. 

The model is then used an algorithm to solve the aforementioned equations (including 

the performance parameters’ equations) using the finite element and Newton iteration 

methods in the EES software to enable the heat and mass transfer processes within 

different channels (elements) [125].   

 

3.7.2. Numerical model validation 

Although the validity of the numerical model and consistency of the results with the 

considered 4-kW GIDPC were proven [125], but it is worth ensuring that the results 

derived from the latest experimental data, which are presented in this chapter, are 

comparable. The comparison is made by verifying the monthly COP values in Riyadh. 

It is worth repeating that the experiment is carried out when the working air ratio was 

0.37 and velocity intake air was 3.3 (m/s). In addition, the HMX height was 1(m), the 

gap was 0.005 (m) and the number of layers was 160 in the experiment. These 

parameters as well as the monthly temperature and relative humidity values in Riyadh, 
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are all applied to the numerical model to conduct the comparison. The results, as 

shown in Figure 3.14, revealed that the maximum relative error between the 

experimental and numerical results is 5.24%.  

 

Figure 3.14: Validity of the proposed numerical model: COP values in Riyadh 

3.8. Big dataset construction 

3.8.1. Dataset structure 

The needed parameters, i.e., operating, design and performance parameters are all 

explained in which the operating and design parameters will be considered as input 

variables and performance parameters will be considered as output variables of the 

ML models. The big dataset will be constructed based on the aforementioned 

parameters considering the defined operating ranges. The dataset is considered as the 

backbone of the ML models so that it is essential to choose the appropriate parameters 

which are considered as the key players in performance of the GIDPC. In general, as 

seen in Figure 3.15, the dataset is divided into two subsections, i.e., training and 

testing datasets. The training data is used to train the model and let the model learn 
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and memorize the behaviour of the data for future prediction. It means that the training 

dataset is the only source which can be used as an input for the ML model which will 

help the model to learn from the data and predict the unforeseen conditions and makes 

up majority of the big dataset, i.e., more than 60%. The validation dataset is used to 

tune the hyper-parameters of the ML model which is often done in model training 

process. But the testing data is used to test/evaluate the model performance in 

predicting the output variables.  

 

Figure 3.15: Breakdown of big dataset  

The dataset size and number of parameters can vary from one model to another model. 

This is mainly because the size of dataset is significantly important in training process 

of the ML models. The size of the dataset can be determined by answering two 

questions: 

• How much data is needed to approximate the underlying correlation between 

the input and output variables?  

• How much data is needed to evaluate the performance of the developed model? 
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It is a common statement in ML that too little data can result in poor and inaccurate 

models. In addition, it can cause the model to be an optimistic and high variance. It is 

also a fact that the over-constrained model will underfit the little dataset and under-

constrained model will overfit the dataset. Overfitting occurs when a function is too 

closely fit to a limited set of data points. It means that model learns too much from the 

training dataset which can results in low error values but the model cannot be 

generalized. But the underfitting occurs when the model has not learned enough from 

the training dataset which will cause the model to be unreliable and inaccurate. 

Therefore, it is vital to train the model faster, reduce the overfitting and increase the 

accuracy by choosing the appropriate dataset.  

Both training and testing datasets comprise the input and output variables with plenty 

of data points. A data point or an observation is a group of single or multiple 

measurements that represent the specific unit of observation. In this study, the data 

point refers to unit of observation which comprises a group of separated integers which 

each of them represents each input variables. Every single group of input variable will 

be used by the numerical model to calculate the performance parameters which will 

represent the output variables in ML model. 

It is necessary to have an organized dataset in which comprehensive information about 

the system performance can be provided. It is vital for the model to be aware of all 

possible operating conditions to learn and predict efficiently. As a consequence, the 

number of data points and the way they cover the comprehensiveness of all possible 

operating conditions are substantial.  

In this research, firstly, a number of discrete values, which basically defines the size 

of dataset, for each input variables are created. The evenly distributed discrete values 

for each input variable considering the corresponding lower bounds and upper bounds, 
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are generated. The number of discrete values for each parameter is totally dependent 

on ML algorithm and the power of the method which can vary from one method to 

another one. Therefore, the distance between the discrete values are selected based on 

the performance and ability of the ML models. In this study, different discrete values 

will be selected for each ML model to increase the accuracy of the model as well as 

to avoid the unnecessary and big datasets. Having generated the evenly distributed 

discrete values for each input variable, it is time to generate the numerous data points 

which can cover all possible operating conditions of the GIDPC. As demonstrated in 

Figure 3.16, all possible combination method is used to generate the data points. This 

method generates all possible combinations of the discrete values. The number of data 

points depends on the number of discrete values for each input. The number of discrete 

values will be decided for each ML model in chapter 4 based on the model robustness 

and performance. One way to improve the model accuracy would be increasing the 

number of discrete values to cover more data and train a more comprehensive model. 

Therefore, the total number of data points will be determined once the number of 

discrete values is set. Having created all data points which represent the operating 

conditions, the validated numerical model is used to calculate the corresponding 

performance parameters for all data points. Eventually, the big dataset is created once 

the created data points (as input variables) and performance parameters (as output 

variables) are put together.  
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Figure 3.16: Demonstration of all possible combination method 

3.8.2. Dataset pre-processing  

Once the data points are created and big dataset is established, it is time to conduct the 

pre-processing steps [181]–[183]. Data pre-processing is a data mining technique that 

is used to make the raw data understandable for the ML models. Raw data is 

sometimes incomplete and inconsistent. In addition, it may lack data or include some 

wrong data. Therefore, data pre-processing is needed to clean up the raw data and 

resolve all the issues within the raw dataset to let the ML model train better. As 

demonstrated in Figure 3.17, data pre-processing has three major steps which are data 

cleaning, data transformation and data reduction. 
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Figure 3.17: Data pre-processing types 

Data Cleaning: dataset can have missing, error or irrelated values which are needed 

to be cleaned up and replaced by proper data. These processes are done in data 

cleaning step in which can be handled by different methods as follows:   

For missing data in the big dataset, the common methods are as follows: 

- Ignore the tuple: In large dataset, when a group of data is missed, ignoring 

those data can be one option. 

- Filling the missing values: In a big dataset, some values can be missed which 

for this study can mainly be the weird operating condition for the GIDPC 

where the numerical model is not able to solve that. In this circumstance, the 

missing values can be filled with different values, e.g., mean value of that 

variable, most probable value, or simply a constant value. In a large dataset, 

the impact of these fillings will be ignorable.  

Some data are not missed but they are incorrect and not definable for the models. The 

main origins of these kinds of errors are incomplete and faulty data that are collected 

by mistake which has resulted in meaningless data. In this case, the following methods 

can be taken: 
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- Binning method: data binning or discrete binning is a method that replaces 

the wrong data with a value which stands as the representative of the wrong 

data interval. Generally, the central value of the original data interval is 

selected to replace the wrong data. 

- Regression: a linear or multiple regression can be used to fit the data to a 

regression function. This method will provide the logical values for the wrong 

data as replacement. 

- Clustering: grouping the data with same characteristics can be another way to 

refine the dataset. Data clustering has different methods such as partitioning 

method, hierarchical method, density-based method, grid-based method, the 

model-based method, and the constraint-based method.  

Data transformation: data transformation is basically undertaken to change the 

format/structure of the data in order to make it suitable for data mining process. Data 

transformation can be conducted by various simple and complicated methods based 

on size of the dataset and the ML model, by the following methods: 

- Normalization: The normalization is made to simply scale the values of the 

parameters in a particular range. This will contribute the ML model in training 

process and in some cases can lead to better results. However, better results 

are not always guaranteed.  

- Feature selection: The feature selection is implemented to select a subset of 

the related inputs (features) to train the model. It means that the number of 

input variables is decreased in order to reduce the computational cost and 

training time of the model and sometimes to improve the model accuracy and 

performance [184]. 
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- Discretization: Most of the ML algorithms perform better when input 

variables have standard probability distribution. However, due to the outliers 

in data, highly exponential distributions, etc., input variables have non-

standard distribution. The discretization changes the input variables to have 

the standard distributions to make them suitable for ML algorithms.  

Data reduction: As it can be guessed from the name of the method, data reduction, is 

used to simply reduce the size/amount of data in order to improve the ML model 

accuracy and reduce the CPU and GPU computational working hours. Although big 

data sets have massive amounts of data but there are significant number of errors, 

noise and missing values in the data set so that the data reduction is needed to keep 

the useful data for training the ML models.  

- Data cube aggregation: Data cubes can be built to reduce the volume of data 

without losing any information in order to decrease the computational time. 

Data cubes include multidimensional aggregated information in which each 

cell holds aggregated values which stand for data points in multidimensional 

space [185]. 

- Attribute Subset Selection: In most cases, data set have an excessive number 

of attributes which some of them can be unrelated or ineffective on the model 

accuracy or performance. The main purpose of attribute subset selection is to 

find the useful attribute subsets to increase the speed of model training and 

decrease the cost and time of data analysis.  

- Numerosity Reduction: The numerosity reduction replaces the original data 

by smaller data as representative of the original data. There are two main 

methods for numerosity reduction, i.e., parametric and non-parametric.  
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- Dimensionality reduction: It is simply a process of reducing the size of inputs 

to make the data handling easier for the ML algorithm. There are different 

methods to conduct the dimensionality reduction in which the linear 

transformations, i.e., Principal Component Analysis (PCA), Factor Analysis, 

and Linear Discriminant Analysis (LDA), are more popular.  

3.9. Summary 

In this chapter, all GIDPC parameters included in the big dataset are explained. The 

big dataset as the backbone of the ML models, comprises all operating, design and 

performance parameters of the GIDPC system in which the input variables include the 

operational and design parameters of the system while the output variables include the 

performance parameters of the system. In addition, the operating ranges of all input 

variables which are necessary for considering the real operating conditions of the 

GIDPC, are defined. The operating ranges contribute the ML model to consider and 

learn the real operating conditions and ignore the unreal operating conditions. An 

experiment is conducted to demonstrate the superiority of the GIDPC in diverse 

climates and in order to ensure the validity of the numerical model which is used to 

create a big dataset. It is explained that discrete values are needed for each of the input 

variables to form the data points (operating conditions). The discrete values are 

selected within the lower and upper bound of the defined operating ranges in which 

the number of discrete values is dependent on the performance of the ML models. All 

possible combinations method is used to create the data points or operating conditions 

of the system. The created comprehensive operating conditions are used to calculate 

each of the selected performance parameters of the GIDPC using the validated 

numerical model. The big dataset will be formed once the created data points (input 

variables) and the corresponding calculated performance parameters (output 
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variables) are put together. Eventually, a thorough review of the data pre-processing 

methods are summarized which will be used in development processes of the ML 

models in this study.  
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CHAPTER 4: DEVELOPMENT OF MACHINE 

LEARNING MODELS  

4.1. Introduction 

In this chapter the development of ML models is detailed. The theory of the algorithms 

used in this study, i.e., Multiple Polynomial Regression (MPR) and Deep Neural 

Network (DNN) as well as the mathematical development of the models are 

overviewed. Then, the dataset used for each model and the corresponding input 

variables (comprising the operating and design parameters of the GIDPC) and output 

variables (performance parameters of the GIDPC) are described. Moreover, the 

number of data points, the proportion of training and testing data, the used data pre-

processing techniques are also provided. The chapter is then followed by explaining 

the tuning process of the models which is selecting the polynomial degrees for the 

MPR model, and improving the network structure in the DNN model. Furthermore, 

the fitting quality and accuracy of the trained models are analysed through the 

common accuracy metrics which are generally used in evaluating the ML models. This 

stage includes a comparison of different model structures, which were taken into 

consideration in development process of the final models, through robust trade-offs 

between the accuracy and complexity of the models. In addition, the new and evolving 

eXplainable AI (XAI) is used for the DNN model to interpret the effect of operating 

conditions on the performance parameters of the system. Eventually, the developed 

models are compared in terms of accuracy, training time, complexity and flexibility, 

to disclose the advantages and disadvantages of each algorithm.  
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4.2. Overview of Artificial Intelligence: Machine Learning 

AI is a science by which the computer-based data driven tools, which are inspired by 

human intelligence, are developed [135], [186], [187]. AI enables the computers to 

think critically and comprehend deeply to decide without any intervention from a 

human. AI falls into three classifications based on their ability in simulating the 

human’s behaviour and their applications. The first category is Artificial Narrow 

Intelligence (ANI) [188], also called weak AI, which is designed to fulfil a specific 

task in a very intelligent way. Despite the general description of AI, the ANI does not 

think like human but learn from a set of data to do the specific task only. Artificial 

General Intelligence (AGI) is called strong AI in which the trained machines can 

outperform the human by learning and properly acting in unforeseen circumstances 

[185]–[187]. Artificial Super Intelligence (ASI) is a superb type of AI in which the 

developed AI model is able to present substantially better intelligence than human 

[191]. Over the last century, as seen in Figure 4.1, endeavours in AI resulted in two 

major subsets, i.e., Machine Learning (ML) and Deep Learning (DL). 
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Figure 4.1: Illustration of AI and classified subsets 

AI is a broad subject while ML as the subset of AI, deals with data to carry out the AI 

applications using the computers. ML uses numerous mathematical algorithms to fulfil 

the learning and data exploring processes which have resulted in discovery of DL 

[192]. Substantial high accuracy and success of DL models are mainly due to the major 

multi-layer Artificial Neural Network (ANN) structure which is the core algorithm 

used in the DL applications [193], [194]. Figure 4.2 illustrates the evolution of AI 

over the past century with the general definition of each category. Since the algorithms 

used in this research study, are based on ML and DL so that the detailed explanations 

and classifications of both categories are provided in this chapter. 
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Figure 4.2: Evolution of AI [195] 

ML is a subset of AI which is used to discover the hidden patterns and explore the 

distinctions within small to big datasets for the future prediction [196]. ML is based 

on statistical/mathematical algorithms to develop a program/model which can learn 

from the provided data to predict the behaviour of the system in unforeseen situations 

without explicitly programmed [167], [197], [198]. For instance, the recommendation 

systems on YouTube, Netflix, etc., which learn from a broad scope of data that are 

provided for them through the previous selections, are all based on ML algorithms. 

ML is generally classified into three subsections, i.e., supervised learning, 

unsupervised learning, reinforcement learning [199] .   

4.2.1. Supervised Learning  

In supervised learning labelled dataset including one or more independent variables 

(inputs) and the corresponding dependent variables (outputs) are scrutinized by the 

ML algorithm to extract the hidden relationship or pattern between the inputs and 

outputs [200]. The supervised ML will then be provided by a trained model to predict 
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the outputs for any unforeseen and random set of new inputs. Supervised ML is 

generally classified into two groups, i.e., regression and classification (see Figure 4.3) 

[200]. 

Regression: In regression supervised ML, the algorithm is aimed to provide a function 

which can predict continuous numerical output variables by taking the input variables 

[201]. Therefore, the output variables are in the form of integers to let the regression 

algorithms predict the quantities. Numerous regression algorithms are in existence in 

which the linear regression, Support Vector Regression (SVR), polynomial regression 

and regression trees are among the most popular ones [202].  

Classification: Despite regression, in classification algorithms, the mapping function 

tries to estimate the discrete parameters and categorise the output variables. It means 

that in classification, the algorithm tries to separate the data into different classes. For 

instance, the detection of spam emails is one of the common classification problems 

that we can see. Common classification supervised ML algorithms are: K Nearest 

Neighbours, logistic regression, decision trees, Naïve Bayes, random forest 

classification and Kernel SVM [203].  

 

Figure 4.3: Illustration of classification and regression supervised ML algorithms [204] 
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4.2.2. Unsupervised Learning 

The unsupervised ML is trained using unlabelled data. It means that in unsupervised 

ML the relationship (pattern) between the input and output variables is inferred 

without knowing the output variables [205], [206]. The algorithm investigates data 

and finds the hidden patterns within data itself. This is why it is called unsupervised 

as the algorithm is on its own to find and discover the relationships and provides the 

users with useful information. In general, the unsupervised ML is categorized into two 

subsets, i.e., clustering and association, which are illustrated in Figure 4.4.  

Clustering: In the clustering unsupervised ML, the set of similar data are grouped 

together. The clustering is a common algorithm which can be seen in many different 

subjects. For instance, grouping similar context in Twitter, YouTube, news articles or 

books can be considered as examples of clustering.  

Association: In association unsupervised ML, associations among data in a big dataset 

is established which is all based on discovering the relationship among the variables 

in a dataset. For instance, it is predicted that the people who buy a car will probably 

look for insurance to buy as well.  
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Figure 4.4: Illustration of data in clustering and association unsupervised ML [207] 

4.2.3. Reinforcement Learning  

In the reinforcement ML, the algorithm learns from continuous interaction with the 

environment in which an agent is in trial and error by receiving feedback from the 

previous interactions [208], [209]. It is based on rewards and punishment which the 

agent is awarded by correct interactions and is punished by incorrect interactions. The 

model is simply trained by getting implicit rewards or punishments by trial and error. 

The agent makes a decision after observing the environment and if the observation is 

not satisfactory, the weights of the system are adjusted to gain a different decision in 

next observation. It is based on getting the greatest reward which can be changed in 

different systems.  

4.2.4. Deep Learning   

DL is a subset of ML in which the algorithms are inspired from structure of human 

brain in which it is called Artificial Neural Network (ANN) that learns swiftly and 

accurately from examples [210]. The main distinction of the DL is that it employs an 

ANN with plenty of hidden layers which are stacked together one another. DL is also 
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referred to a large and complex neural network in which a huge amount of data is 

processed. As demonstrated in Figure 4.5, DL is the first class of algorithms that are 

scalable in a way to gradually and continuously improve it by feeding more data into 

the model. The value of the DL which is understood recently, is mainly because of the 

supervised ML which is trained through the labelled data.  

As seen in Figure 4.6, our brains are complex network-based systems in which 

billions of neurons are connected to each other which makes the neural network in the 

mind connected to nervous systems. Although owing to the progress in neuroscience 

it is known that each neuron receives electrochemical signals but still, it is not clear 

how the brain’s neurons work. ANN is inspired from the brain network which includes 

a number of layers with neurons to learn from the received inputs and make a 

prediction. Image classification, handwriting recognition, speech recognition, and 

autopilot devices are all inspired by ANN.  

 

Figure 4.5: Superiority of deep learning over other old algorithms 

The simplest ANN, as seen in Figure 4.6, is a network with several core sections. 

Input node(s) which can hold any numerical value, and connections which are 

weighted through real numbers needed to get optimized through number of 
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iterations, are brought together as a weighted sum. The weighted sum goes through 

the activation function to produce the value of the output node. 

 

Figure 4.6: Artificial Neural Network (right) and Biological Neurons (left) [211] 

Depth is a factor that distinguishes the Deep Neural Networks (DNNs) from the simple 

ANNs. The depth refers to more than one hidden layer where powerful computers are 

needed to fulfil the forward or backward weight optimization processes. Figure 4.7 

shows the difference in configuration of the simple and DL neural networks in which 

the number of hidden layers is the key difference. There are different DL neural 

networks. The main categories of the DL methods are explained below.  

 

Figure 4.7: DL neural network versus a simple neural network [195] 

Convolutional Neural Network (CNN): CNNs are one of the common DL methods 

which are generally used in image recognition. They are used in face identifications 
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[212], street signs and all the applications with visual data. Each image with three 

dimensions, i.e., width, height and depth, are sent to the network as an input. 

Resolution of the images is described by width and height while the depth is used to 

specify the colour of the image. The model will learn from thousands of images in big 

dataset and will optimise the weights by continuous calculation of loss function and 

back propagation. Figure 4.8 shows an example of CNN for recognising the vehicle 

type. 

Recursive (recurrent) Neural Network (RNN): The RNN is the general form of 

ANN with internal memory. It means that a dynamic learning process takes place by 

feeding the output from the previous step to the network as an input of the current step. 

The key distinguish of RNN is the hidden state which remembers the information of 

the previous iteration.  

 

Figure 4.8: Example of a CNN application 

Having reviewed the concept and definition of AI and its categories, it can be 

concluded that the appropriate model should be chosen after the problem definition 

and objective determination. The following sections will describe two methods which 

is used for development of the ML models for the GIDPC.  
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4.3. Method I: Multiple Polynomial Regression (MPR) 

Polynomial regression is a subset of the regression ML which is under the category of 

supervised ML. The definition of the regression can be inspired by the general concept 

of ML in which the models are trained to find a relationship between the input and 

outputs. The inputs of the regression models are often called independent variables as 

their value are not dependent on other parameters, and the outputs are often called 

dependent variables as their values are highly dependent on the inputs. Regression can 

be defined as a relationship between the input and output variables that is identified 

by a best fitting line, as shown in Figure 4.9, or a mathematical equation to make a 

prediction. 

 

Figure 4.9: Fitting line in regression 

There are various types of regression such as linear regression, polynomial regression, 

logistic regression and stepwise regression which are summarised in Table 4.1. 

However, in this chapter, the polynomial regression is used as the first ML algorithm 

to develop a data driven predictive model for the GIDPC. To fully comprehend the 

polynomial regression, firstly, the linear regression as the basic regression algorithm 

is overviewed and then the polynomial regression will be described.  
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Table 4.1: Various classifications of regression analysis 

 

4.3.1. Overview of Linear Regression 

The primary objective of linear regression is to find out a relation between one or 

multiple independent variables and continuous dependent variables [213]. As listed in 

Table 4.1, the linear regression with more than one independent variable is called 

multiple linear regression while it is called simple linear regression when there is only 

one independent variable. Therefore, the linear regression is represented by general 

expression as Eq. (4.1): 

Y = β0 + β1X1 + β2X2 +⋯+ βnXn                                                                                         (4.1) 

Where, 

- Y is the dependent variable or predicted (also called target) value. 

- β0 is the model bias. 

- β1, β2, … , βn are the regression coefficients. 

- X1, X2 , … , Xn are the independent variables. 

Type of Regression Definition 

Univariate / Multivariate Only one/ two or more  quantitative dependent variables 

Simple / Multiple Only one / two or more independent variables 

Linear All parameters appear in the equation linearly 

Nonlinear The relationship between the dependent variable and some of the 

independent variables is nonlinear 

Polynomial Regression The relationship between the dependent variable and independent 

variable can be expressed by a polynomial function 

Stepwise regression Builds a model by adding or removing the predictor variables, 

generally via a series of T-tests or F-tests 

Logistic Regression It is used to predict the probability of an event where the result is 

binary that is either yes or no 
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Which can also be represented as Eq. (4.2): 

Y = 𝛽𝑇X                                                                                                                                       (4.2) 

Where,  

- 𝛽 is the regression vector 

- 𝑋 is the independent variables vector in which the X0 = 1, i.e., 

{1, X1, X2 , … , Xn }. 

When the independent variables are observed, the linear regression has to find the 

appropriate regression coefficients which can enable the model to fit the observed 

independent variables. As shown in Figure 4.10, the regression line will continuously 

search for a line in which the difference between the predicted values through the 

equation and the real values is minimal. The error between the real value and the 

predicted value is called residual. 

 

Figure 4.10: Regression line 

A cost function is needed to represent the error values that normally is the sum of 

squares of the residuals as Eq. (4.3): 

𝐶(𝛽) = 
∑ (𝑌(𝑖)−𝑦𝑖)

2𝑁
𝑖=1

2𝑁
                                                                                                                 (4.3) 

Where N is the number of total data points. 
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In order to find the regression coefficients, the gradient descent is used to find the 

minimum cost function [214]. The gradient descent is a common generic optimisation 

which performs in a way to minimise the cost function via iterative steps as follows: 

1) The regression coefficients are randomly initialized in a process called random 

initialization. 

2) In order to minimise the cost function, the partial derivatives of the function 

are taken with respect to the regression functions as Eq. (4.4)-(4.6): 

𝜕𝐶(𝛽)

𝜕𝛽0
=

∑ 𝑌(𝑖)−𝑦𝑖
𝑁
𝑖=1

𝑁
                                                                                                              (4.4) 

 
𝜕𝐶(𝛽)

𝜕𝛽1
=

∑ 𝑌(𝑖)−𝑦𝑖
𝑁
𝑖=1

𝑁
 X1,i                                                                                                     (4.5) 

𝜕𝐶(𝛽)

𝜕𝛽𝑛
=

∑ 𝑌(𝑖)−𝑦𝑖
𝑁
𝑖=1

𝑁
 Xn,i                                                                                 (4.6) 

All of partial derivatives can be calculated through the following Eq. (4.7):  

[
 
 
 
 
 
𝜕𝐶(𝛽)

𝜕𝛽0
𝜕𝐶(𝛽)

𝜕𝛽1

⋮
𝜕𝐶(𝛽)

𝜕𝛽𝑛 ]
 
 
 
 
 

=
𝑋𝑇(𝑌−𝑦)

𝑁
                                                                                                               (4.7)  

Having calculated the derivatives, the regression parameters will be updated as Eq. 

(4.8)-(4.9): 

𝛽0 = 𝛽0 − 
𝛼

𝑁
∑ (𝑌(𝑖) − 𝑦𝑖
𝑁
𝑖=1 )                                                                                            (4.8) 

𝛽1 = 𝛽1 − 
𝛼

𝑁
∑ (𝑌(𝑖) − 𝑦𝑖
𝑁
𝑖=1 ) X1,i                                                                                   (4.9) 

Where, 

- 𝛼 is called learning parameter. 

All the regression coefficients can be updated using the following Eq. (4.10): 
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[

𝛽0
𝛽1
⋮
𝛽𝑛

] = [

𝛽0
𝛽1
⋮
𝛽𝑛

] − 𝛼

[
 
 
 
 
 
𝜕𝐶(𝛽)

𝜕𝛽0
𝜕𝐶(𝛽)

𝜕𝛽1

⋮
𝜕𝐶(𝛽)

𝜕𝛽𝑛 ]
 
 
 
 
 

                                                                                                (4.10) 

The above steps will be processed through numerous iterations until the cost 

function is minimised. Figure 4.11 illustrates an example for minimizing the cost 

function in which the cost function has reached the minimum value after roughly 

100 iterations. In the iteration process, the 𝛼 value plays a key role. The high 

learning parameters will cause the model to overshoot the best fit line. To the 

contrary, in the low learning parameters, the gradient descent needs more time to 

find the best fit. So, it is vital to choose an appropriate value for the learning 

parameter. 

 

Figure 4.11: Cost function versus number of iterations 



CHAPTER 4: DEVELOPMENT OF MACHINE LEARNING MODELS 

   129 

4.3.2. Regression evaluation 

Regression models are evaluated through different metrics in which few of them are 

more common. In the current study, we will use coefficient of determination (R2), 

Mean Square Error (MSE) and Maximum Relative Error (MRE). R2 reveals how close 

the predicted data are to the real dependent variables which is defined by proportion 

of the variance for the dependent variable. Its value is between 0 and 1 in which: 

- “0” means none of the dependent variables is explained by the regression line. 

- “1” means that all of the dependent variables are explained by the regression 

line.  

MSE represents average of squares errors which is calculated by average square 

difference between the predicted value and real value of the independent variables. 

The MSE and R2 are defined by the following Eq. (4.11)-(4.12) [171]: 

MSE =
SSE

N
=

∑ (Yi−yi)
2N

i=0

N
                                                                                                        (4.11) 

R2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑ (Yi−yi)
2N

i=0

∑ (Yi−yi)
2N

i=0

                                                                                                  (4.12)                         

Where,  

- SSE is sum square of errors 

- SST is sum square of total   

- 𝑌 is the mean of predicted values 

4.3.3. Polynomial Regression 

Polynomial Regression is needed when the relationship between data cannot be 

defined by a straight line [171]. It means that in this case, the proposed linear equation 

by the linear regression cannot represent the relationship in data. Thus, as seen in 

Figure 4.12, the data should be fitted through a curved regression line. The curved 
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regression line covers data in a better and more comprehensive way compared to the 

linear regression. 

 

Figure 4.12: Fitting line in polynomial and linear regressions [215] 

The general polynomial regression can be expressed by the following Eq. (4.13): 

Y = β0 + β1X + β2X
2 +⋯+ βnX

n                                                                                           (4.13)    

Where 

- “n” represents the polynomial degree of the equation 

- Y is the dependent variable or predicted (also called target) value. 

- β0 is the model bias. 

- β1, β2, … , βn are the polynomial coefficients. 

- X is the independent variable. 

More complex data need more complicated curves to fit the data. In this case, 

polynomial fitting curve can be adjusted by the polynomial degrees. When the 

polynomial curve does not properly cover or fit the data, under fitting happens so that 
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it is needed to overcome the under fitting by making the model more complex through 

increasing the polynomial degrees. However, it is an important step as further 

increasing of the polynomial degree will result in over fitting. Over fitting means that 

the regression curve captures most of the data including noises which will result in 

unrealistic and inaccurate predictions. Figure 4.13 shows different fitting lines to 

demonstrate the most desirable fitting line. For the selected sample data, it is revealed 

that a fitting line with degree of 3, can be the correct fitting while the model with 

degree 1 results in under fitting and the model with degree 20 leads to over fitting.  

One efficient way to prevent the over fitting is providing the model with more data to 

allow the algorithm to learn more and become generalized. Although it is a challenging 

step to adjust the polynomial degree but it can be overcome by identifying the 

appropriate bias and variance. It should be noted that high bias leads to under fitting 

and high variance results in over fitting. As a consequence, the appropriate model 

should have low bias and low variance but as seen in Figure 4.14, it is not feasible to 

reach ideal bias and variance simultaneously. Therefore, an accurate trade-off is 

needed to select the best model which can be general as well as accurate enough in 

prediction.  

The advantages of using the polynomial regression are listed below: 

- Can outperform the linear regression in accurately representing the 

relationship between the independent and dependent variables. 

- Functions applicability is broad which can result in better regression fitting 

and consequently accurate predictions. 

- Can cover complex data distributions with numerous numbers of curvatures.  

However, there are some features which can leave a negative impact on performance 

of polynomial regression as listed below: 



CHAPTER 4: DEVELOPMENT OF MACHINE LEARNING MODELS 

   132 

- Existing of outliers can severely lead to inefficient models. 

- It is almost impossible to detect the effect of outliers by the validation tools. 

 

 

Figure 4.13: Fitting line in polynomial and linear regressions [215] 

 

Figure 4.14: Optimum model selection in regression 

4.3.4. Associated dataset for MPR 

The comprehensive dataset constructed based on the methodology described in 

chapter 3 and is divided into two sub-sets: 1) training set; 2) testing set. 80% of the 

comprehensive dataset is selected as the training set and 20% is testing set. The 
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training set is used to train and develop the model and testing set is used to test and 

evaluate the developed model. Each set comprises two different parts: 1) Operating 

parameters; 2) Performance parameters. The required evenly distributed discrete 

values of the operating parameters are selected to construct the dataset. For polynomial 

regression, it is decided to have seven operating and design parameters, i.e., 

temperature of the intake air, relative humidity of the intake air, velocity of the intake 

air, working air ratio, height of the HMX, gap and number of layers within the HMX. 

The existence of numerous input variables causes the regression-based model to be 

called MPR. As performance parameters (dependent variables), cooling capacity, 

COP, pressure drop, wet bulb and dew point efficiencies are selected.   

All possible combinations of the selected operating parameters which represent all 

possible operating conditions for the selected discrete values are produced for each 

set. All possible combinations take all of the probable combinations of the discrete 

operating parameters into consideration. Thus, making the model aware of any random 

operating conditions.  

The total number of operating conditions which also represents number of data points 

is 7857 in the MPR model. Having created the all possible operating conditions, the 

performance parameters of the GIDPC for each created operating conditions are 

calculated using the numerical model, explained in Chapter 3, to finalise the 

construction of the dataset considering the constant parameters listed in Table 4.2.  
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Table 4.2: Geometric parameters and water status in numerical model 

 

The reason for creating the dataset based on the constant geometrical/design 

parameters is that the MPR was unable to process the big comprehensive dataset. To 

overcome this issue, different geometric sets are defined and a dataset is created for 

each of the twelve geometric sets. In addition, because in real operating conditions, 

the geometric variables are unchanged, thus it would be sensible to have a separate 

and organized dataset for each geometric set. As shown in Table 4.3, each geometric 

set has constant geometric parameters including channel height, channel gap and the 

number of layers. As a consequence, the polynomial regression will be used for each 

geometric set to identify 12 sets of polynomial equations with different polynomial 

coefficients. It is worth mentioning that the geometric sets are created based on the 

evenly distributed discrete data using the all possible combination method described 

in chapter 3. 

Table 4.3: Discreet values of geometric characteristics for each geometric set 

 

Parameters Value 

Height (m) 1 

Width (m) 0.348 

Gap (m) 0.004 

Number of layers 200 

Water temperature (°C) 16 

Water flow rate (kg/s) 18 

No. of sets 1 2 3 4 5 6 7 8 9 10 11 12 

H(m) 1 1 1 1 2 2 2 2 3 3 3 3 

G(m) 0.004 0.004 0.008 0.008 0.004 0.004 0.008 0.008 0.004 0.004 0.008 0.008 

L 100 200 100 200 100 200 100 200 100 200 100 200 
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The analysis of the big dataset revealed that the created dataset for MPR is in good 

condition. All of values are checked and it is ensured that the values are correct and 

sensible. However, a few values were missing which are filled by manually rerunning 

the numerical simulation model in EES. Apart from this issue, no significant problem 

is observed.  

4.3.5. MPR development process 

Figure 4.15 shows the visual relationship between the operating and performance 

parameters which discloses a reason for choosing the polynomial regression than the 

linear regression. It can be observed that the behaviour of the operating conditions 

versus each of the performance parameters cannot be covered by a straight line. This 

means that a curve can be a solid solution to represent the pattern among operating 

and performance parameters. As a consequence, the MPR with flexibility in 

controlling the complexity of the model and the fitting curve, can be an appropriate 

ML algorithm. 

The MPR method was carried out in an open source R software. The general MPR 

mathematical expression for GIDPC is based on the general polynomial equation (Eq. 

4.13) which correlates the flow characteristics with the performance parameters of the 

system. The regression coefficients vary for each geometry sets and thus considers the 

impact of geometric characteristics. Eq. (4.15) is the general form of the statistical 

model which is based on the MPR: 

Y = β0 + β1 × (𝑇
n1,1 × RHn2,1 × Un3,1 × φn4,1) + β2 × (T

n1,2 × RHn2,2 × Un3,2 ×

φn4,2) +⋯+ βm × (T
n1,m × RHn2,m × Un3,m × φn4,m)                                     (4.15)                                                                                                                                                                                                      

Where, 

- Y represents the performance parameters 
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- T, RH, U and φ represent the intake air temperature, relative humidity, airflow 

velocity and working air fraction over the intake air respectively.  

- β1, β2, ..., βm represent the regression coefficients.  

- Power of each independent variable is represented by n in which n1 is for intake 

air temperature, n2 is for intake air relative humidity, n3 is for the airflow 

velocity, n4 is for the working air fraction over the intake air and the second 

subscript for n which is shown by m is the number of the coefficients.  

 

 

Figure 4.15: Relationships between the data points and the corresponding performance 

parameters 

Nine MPR models with different degrees, i.e., 1st, 2nd, …, 9th, are considered and 

compared in order to choose the optimum one, in terms of complexity and accuracy, 

for performance analysis and design of the GIDPC.  

These models’ accuracy and performance are compared through two general methods:  

I. Changing degree of the polynomial model. 

II. Assessing the model performance by different metrics.  
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Model complexity in MPR is controlled by polynomial degrees. Larger degrees lead 

to more complex prediction functions and better fitting quality. However, it does not 

necessarily lead to better predictions. Thus, three common metrics [216], MSE, R2 and 

MRE, are selected to evaluate the performance of the models with different level of 

complexities. Five predicted performance parameters are compared with those from 

the numerical simulation.  

Firstly, the model results are assessed by R2 to investigate the level of correlation 

fitting. As shown in Figure 4.16(a), the R2 value has sharply increased by increasing 

the polynomial degrees and has reached the superior value of 1 for all of the 

performance parameters from 5th degree onwards. Although R2 of 1 indicates the good 

level of fitting, but it does not always lead to a good model. This is because R2 gets 

higher values by covering more operating parameters so that other metrics are 

considered in model assessment to ensure the model accuracy.  

As shown in Figure 4.16(b), the MRE decreases for all parameters by increasing the 

model complexity. The sharp declines show the contribution of the model complexity 

in enhancement of model accuracy. MSE of 10% is specified as an acceptable margin 

in this study and the accepted values are coloured in green as listed in Table 4.4. Thus, 

in terms of MSE, 7th degree for cooling capacity, 8th degree for COP, 3rd degree for 

pressure drop, 6th degree for dew point effectiveness and 5th degree for wet-bulb 

effectiveness can be selected. Therefore, in terms of MRE, increasing the model 

complexity from aforementioned acceptable degrees leads to a more complex model 

and does not contribute to model accuracy. 

The trend is exactly the same for the MSE values. As can be seen from Figure 4.16(c), 

MSE for all variables has declined by increasing the model degrees. For dew point 

and wet-bulb effectiveness, all of the studied models are in favour as the MSE values 
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are close to zero. However, the appropriate models for cooling capacity, COP and 

pressure drop are 8th degree, 6th degree and 2nd degree respectively as the MSE values 

have approached zero.   
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(b) 

 

(c) 

Figure 4.16: Influence of degrees on Metrics: (a): R2; (b): MRE; (c): MSE 

0 1 2 3 4 5 6 7 8 9

0

200

400

600

800

M
S

E

Polynomial degrees

 Cooling capacity

 COP

 Pressure drop

 Dew point effectiveness

 Wet bulb effectiveness

0 1 2 3 4 5 6 7 8 9

0

1000

2000

3000

4000

5000

M
R

E
 (

%
)

Polynomial degrees

 Cooling capacity

 COP

 Pressure drop

 Dew point effectiveness

 Wet bulb effectiveness



CHAPTER 4: DEVELOPMENT OF MACHINE LEARNING MODELS 

   140 

Table 4.4: MRE of different MPR models 

 

Performance parameters 

MRE (%) 

1st 2nd  3rd  4th  5th 6th 7th 8th  9th  

Cooling capacity (W) 3197.36 1684.56 660.96 239.65 68.85 39.33 8.39 6.1 2.59 

COP (-) 4421.66 2814.83 1038.02 623.98 180.78 85.83 46.46 7.54 2.9 

Pressure drop (Pa) 241.04 14.34 2.42 0.6 0.21 0.12 0.086 0.07 0.07 

Dew point effectiveness 

(%) 

129.6 76.55 35.69 23.76 13.86 9.78 5.67 3.54 2.1 

Wet bulb effectiveness 

(%) 

135.71 53.53 27.98 15.18 8.95 6.43 4.30 2.53 1.16 

 

Consequently, having done all of the aforementioned analyses, the accepted models 

for cooling capacity, COP, pressure drop, dew point and wet-bulb effectiveness are 

8th, 8th, 5th, 6th and 5th respectively. All other models with higher degrees than the 

abovementioned accepted degrees are valid and more accurate. Therefore, in order to 

have a solid single model for all of the five performance parameters, the 8th degree 

MPR model is taken in next sections to carry out the validation and test parts. 

Therefore, R2 values and average relative error values for the selected 8th degree 

model are given in Table 4.5. Both R2 values (0.99-1) and average errors (less than 

1.22%) indicate the quality and accuracy of the 8th degree model. 

Table 4.5: Average errors and r-squared values of 8th degree MPR 

Dependent variables R2 Average error (%) 

Cooling capacity (W) 1 0.09 

COP (-) 1 1.22 

Pressure drop (Pa) 1 0.01 

Dew point effectiveness (%) 1 0.12 

Wet bulb effectiveness (%) 0.99 0.11 
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It is worth mentioning that the dataset is once normalized through scaling all values in 

a particular range, e.g., [0,1], by the aim of observing the impact of normalization on 

MPR accuracy but no significant improvement is seen.  

Cross Validation: In this section, cross validation is performed, firstly to validate the 

selected model and, secondly to check the model overfitting. In addition, the model 

has been generalized through the cross verification. It means that cross validation 

shows the validity of the proposed model for any new operating condition within the 

defined ranges. Comparison of the predicted values by 8th degree MPR for each 

performance parameter with corresponding values derived by numerical model are 

shown in Figure 4.17. The validation is carried out using the testing set and the 

constant values in Table 4.2. In addition, due to the high number of operating 

conditions, i.e., 1570 (20% of total dataset), only 20 operating conditions are 

demonstrated here. Channel width, water temperature and water flow rate which have 

less importance in operation of standard GIDPC are used to operate the numerical 

model only. As can be seen, predicted values by MPR are overlapped with the 

numerical simulation values whereas the maximum relative errors for cooling 

capacity, COP, pressure drop, dew point and wet-bulb effectiveness are 1.73%, 3.31%, 

0.05%, 3.53% and 3.48% respectively. This indicates that MPR model has the 

satisfactory accuracy and is not over-fitted. Therefore, this regression model can be 

used to replace the previous numerical and experimental models to predict the 

performance of the GIDPC.  
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(e) 

Figure 4.17: Cross validation: (a): Cooling capacity; (b): Pressure drop; (c): COP; (d): Dew-

point effectiveness; (e): Wet-bulb effectiveness 

4.3.6. Developed polynomial equations 

The comprehensive MPR model obtained for the GIDPC is presented in Eq. (4.16), 

which is the generalized form of Eq. (4.15). The matrix on the left of equal sign 

represents the performance parameters and on the two first matrices on right side of 

equal sign, represent the regression/polynomial coefficients and third matrix 

represents the operating parameters. Power of each independent variable is denoted 

by n in which n1 is for intake air temperature, n2 is for intake air relative humidity, n3 

is for the airflow velocity, n4 is for the working air fraction over the intake air and the 

second subscript for n which is shown by m indicates the number of coefficients. The 

number of coefficients for Nth degree polynomial with k variables is(
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𝑁

) − 1, 
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mention that the corresponding powers for each coefficient in general 8th degree 

polynomial are listed in Table 4.6. 

 

[
 
 
 
 
Qcooling
COP
ɛwb
ɛdp
ΔP ]

 
 
 
 

=

[
 
 
 
 
 
β0,1
β0,2
β0,3
β0,4
β0,5]

 
 
 
 
 

+

[
 
 
 
 
 
β1,1 β1,2 β1,3 … β1,m

β2,1 β2,2 β2,3 … β2,m
β3,1
β4,1
β5,1

β3,2 β3,3 …

β4,2
β5,2

β4,3
β5,3

…
…

β3,m
⋮

β5,m]
 
 
 
 
 

[
 
 
 
 
Tn1,1 × RHn2,1 × Un3,1 × φn4,1

Tn1,2 × RHn2,2 × Un3,2 × φn4,2

Tn1,3 × RHn2,3 × Un3,3 × φn4,3

⋮
Tn1,m × RHn2,m × Un3,m × φn4,m]

 
 
 
 

  (4.16) 

 

Table 4.6: Powers of general 8th degree polynomial equations 

m T RH U ɸ 

n1,m n2,m n3,m n4,m 

1 1 0 0 0 

2 2 0 0 0 

3 3 0 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ 

494 0 0 0 8 

 

 

Table 4.7 gives all the regression coefficients to construct the 8th degree polynomial 

equations for different geometric sets. The equations for five performance parameters 

can be used by substituting the proper coefficients in Eq. (4.16) and thus the 

performance analysis of the GIDPC is possible for any operating conditions by 

considering the operating ranges. Since the total number of the coefficients for each 

performance parameter is 494, thus the table is summarized. 
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Table 4.7: Coefficients of 8th degree MPR model 

 

Geometric set  

 

 

 

1 

Performance 

parameters 

m=0 

  

m=1 m=2 … m=494 

Y β0 β1 β2 Βm β494 

Qcooling 3.807e+04 -9.006e+03 9.193e+02 … -5.059e+04 

COP -2.354e+03 5.113e+0 -4.893e+01 … -3.128e+03 

ΔP 1.298e+03 -2.627e+02 2.284e+01 … -1.718e+02 

ɛdp  3.483e+02 -8.201e+01 8.251e+00 … -1.368e+01 

ɛwb -4.996e+01 1.133e+0 -1.124e+00 … -9.738e+00 

 

 

2 

Qcooling 3.118e+03 1.048e+03 1.092e+02 … -6.689e+04 

COP -2.287e+03 5.186e+02 -5.254e+01 … -4.727e+03 

ΔP -1.661e+02 1.046e+02 -1.708e+0 … 5.501e+01 

ɛdp  3.661e+02 -8.634e+01 8.701e+00 … -7.692e+00 

ɛwb -3.839e+01 8.032e+00 -7.435e-01 … -4.384e+00 

 

 

3 

Qcooling -4.378e+03 1.075e+03 -1.065e+02 … -1.151e+05 

COP -1.016e+03 2.057e+02 -1.946e+01 … -7.906e+03 

ΔP 2.590e+02 -6.177e+01 6.359e+00 … 4.164e+01 

ɛdp  2.652e+02 -6.249e+01 6.297e+00 … -1.895e+01 

ɛwb -1.707e+01 3.785e+00 -3.788e-01 … -2.939e+01 

 

 

4 

Qcooling -3.821e+02 -2.462e+02 8.092e+01 … -2.372e+05 

COP 2.903e+03 -6.294e+02 6.052e+01 … -7.800e+03 

ΔP 3.051e+03 -7.324e+02 7.660e+01 … 2.071e+02 

ɛdp  2.387e+02 -5.608e+01 5.630e+00 … -1.610e+01 

ɛwb -1.453e+01 3.461e+00 -3.493e-01 … -2.125e+01 

 

 

5 

Qcooling 1.351e+04 -3.454e+03 3.597e+02 … 8.692e+03 

COP -6.549e+02 1.348e+02 -1.280e+01 … -1.162e+03 

ΔP 1.026e+03 -2.475e+02 2.590e+01 … 3.402e+01 

ɛdp  3.906e+02 -9.235e+01 9.328e+00 … 9.135e+00 

ɛwb 2.461e+00 -7.326e-01 7.598e-02 … 2.712e+01 

 

 

Qcooling -1.248e+04 1.512e+03 -9.795e+01 … 1.076e+05 

COP -1.485e+02 1.117e+01 -4.411e-01 … -2.809e+03 
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6 ΔP -2.296e+03 4.556e+02 -3.865e+01 … 9.069e+01 

ɛdp  1.017e+02 -2.411e+01 2.298e+00 … 2.107e+01 

ɛwb -8.642e+00 1.014e+00 -4.549e-02 … 4.398e+01 

 

 

7 

Qcooling -1.278e+04 3.001e+03 -3.134e+02 … -1.183e+05 

COP 3.071e+03 -6.890e+02 6.563e+01 … -6.401e+03 

ΔP -4.816e+03 1.144e+03 -1.172e+02 … -8.053e+01 

ɛdp  3.157e+02 -7.450e+01 7.516e+00 … -1.827e+01 

ɛwb -5.186e+00 1.160e+00 -1.229e-01 … -2.137e+01 

 

 

8 

Qcooling -1.401e+04 3.315e+03 -3.284e+02 … -2.136e+05 

COP 1.377e+03 -2.511e+02 2.489e+01 … -1.714e+03 

ΔP 2.640e+02 -3.346e+01 5.031e-01 … 7.573e+01 

ɛdp  3.337e+02 -7.868e+01 7.944e+00 … -2.812e+00 

ɛwb -1.621e+01 3.606e+00 -3.269e-01 … 2.961e+00 

 

 

9 

Qcooling 1.596e+04 -4.310e+03 4.504e+02 … 7.089e+04 

COP 1.765e+02 -7.621e+01 1.014e+01 … -3.743e+02 

ΔP 7.107e+03 -1.897e+03 2.157e+02 … -6.753e+02 

ɛdp  4.144e+02 -9.783e+01 9.872e+00 … 2.994e+01 

ɛwb 2.766e+01 -7.527e+00 8.420e-01 … 6.029e+01 

 

 

10 

Qcooling -1.251e+04 8.453e+02 -3.641e+01 … 2.437e+05 

COP -6.748e+02 1.053e+02 -6.987e+00 … -1.935e+03 

ΔP -6.303e+03 1.287e+03 -1.089e+02 … -7.345e+02 

ɛdp  4.235e+02 -1.009e+02 1.025e+01 … 4.747e+01 

ɛwb -3.157e+0 5.909e+00 -5.084e-0 … 8.068e+01 

 

 

11 

Qcooling -3.305e+04 8.131e+03 -8.888e+02 … -9.191e+04 

COP 5.614e+0 -1.372e+02 1.327e+01 … -4.929e+03 

ΔP 6.201e+02 -1.663e+02 1.865e+01 … -2.395e+01 

ɛdp  3.404e+02 -8.030e+01 8.090e+00 … -1.138e+01 

ɛwb 2.566e+01 -5.993e+00 6.013e-0 … -1.016e+01 

 

 

12 

 

Qcooling -1.920e+04 3.678e+03 -3.309e+02 … -1.104e+05 

COP -1.318e+0 1.283e+02 -1.574e+01 … 1.845e+03 

ΔP 7.786e+03 -1.816e+03 1.850e+02 … -1.772e+02 

ɛdp  3.655e+02 -8.615e+01 8.692e+00 … 1.182e+01 
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ɛwb -1.285e+01 3.215e+00 -3.287e-01 … 1.825e+01 

 

4.4. Method II: Deep Neural Network (DNN) 

4.4.1. Overview of the mathematics 

Digital Twins can be defined as a digital replication of a physical entity. It can also be 

combined with the Internet of Things (IoT) and/or augmented reality. However, in the 

simplest case, it would be just a system identification for different purposes such as 

abnormality detection and system optimization [217]. Black box, grey box and weight 

box models are three classes of the system identification known as the main part of 

digital twins. In this section, DNN is used as a black box and data-driven model to 

build the digital twins.  

As explained in previous sections, the DNN is a complex type of ANN considered as 

a subset of DL. In this section, as a second ML model, the DNN is selected for 

performance prediction of the GIDPC. DNN is also have some other names such as 

Multilayer Perceptron (MLP) and Deep Feedforward network. Generally, these 

networks are known as supervised ML tasks in which data including independent and 

dependent variables are known and the task of the network is to find a function that 

can represent the relationship among the data for future prediction of the 

target/dependent variables. It is worth repeating that in ANN models, there is an input 

layer with number of neurons, one or more hidden layers with number of neurons and 

an output layer with a number of neurons. Each neuron in its layer is connected to all 

neurons in the next layer to transmit the information and data to the final output layer. 

The connections are assigned by weights which determine the importance of each 

connection in calculation of the final output value. The number of neurons in each 

layer is independent of other layers but normally, the number of neurons in hidden 
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layers is larger than the input neurons. Figure 4.18 illustrates the general components 

of a NN in which: 

- “I” indicated the input nodes. 

- “W” is the weight of connections 

- “H” indicates the inactive nodes of hidden layer 

- “HA” represents the activated nodes in hidden layers 

- “O” represents the inactive output nodes in output layer 

- “OA” is the activated output node in the output layer 

- “B” is the bias of the layers.  

 

 

Figure 4.18: General structure of the Neural Network 

The number of hidden layers and the associated number of neurons are all in hands of 

the users and there is no rule for that. The users will increase or decrease the numbers 

by considering the complexity and accuracy of the model. In order to be able to explain 
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the algorithm mathematically, the simple NN in Figure 4.19, with associated weight 

values is selected to explain the training steps of a NN model as follows: 

Initialization: The first step in training the model will be initialization in which all 

the weights (W1 to W12) will get random values. In addition, bias nodes should get 

initial values which can be assumed 1 for simplicity. 

Feed-forward: Once the dataset is given to the network, the hidden neuron values can 

be calculated as Eq. (4.17)-(4.18):  

𝐻1 =  𝐼1𝑊1 + 𝐼2𝑊3 + 𝐵1𝑊5                                                                                               (4.17) 

𝐻2 =  𝐼1𝑊2 + 𝐼2𝑊4 + 𝐵1𝑊6                                                                                         (4.18) 

 

 

Figure 4.19: A sample Neural Network structure 

The calculated hidden neuron values are inactive. An activation function, also called 

transfer function, is needed to activate the values. The activation functions are 

mathematical equations which calculate the output of each neuron and decide if the 

value of the neuron should be activated or not. It means that they decide if the 

considered neuron’s value affect the model’s final prediction or not. In addition, the 

activation functions normalise the output of each neuron to a value in ranges of (0,1) 



CHAPTER 4: DEVELOPMENT OF MACHINE LEARNING MODELS 

   151 

or (-1,1) based on the type of activation function. In general, there are three types of 

activation functions: 

1. Binary step function: It is a threshold-based function in which if only the 

input value is above a certain value, it transfers the same value to the next 

layer. 

2. Linear activation function: As it can be realized from the name, it takes the 

input and multiply it by a certain coefficient and transfers it to the next layer. 

3. Non-linear activation function: The most popular activation function in 

modern NNs are non-linear as it creates a complex mapping between the 

network inputs and outputs. Non-linear activation functions have two mains 

advantages over the binary and linear activation functions:  

- The backpropagation is possible as they have a derivative function 

which is related to the input values.  

- In addition, they enable using the multiple hidden layers which are 

essential in DNNs.  

Different non-linear activation functions are in existence in which the common types 

are: Sigmoid/Logistic, Hyperbolic Tangent (TanH), Rectified Linear Unit (ReLU), 

Leaky ReLU, Parametric ReLU, Softmax, and Swish [218]. The most three common 

non-linear activation functions are shown in Figure 4.20. Further details about these 

functions are as follows: 

- Sigmoid: This type is smooth gradient and it creates the output values in a 

range of (0,1). In very high and low value inputs, there is no change in 

prediction due to the vanishing gradient. In addition, the outputs are not zero 

centred and it is computationally expensive. 
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- TanH: Despite the sigmoid activation function, TanH is zero centred and it 

creates the output values in a range of (-1,1). 

- ReLU: It is computationally efficient as it leads to quick convergence and is 

suitable for backpropagation. The disadvantages of the ReLU is that when the 

input values are zero or negative, the gradient of the function is zero which 

causes the model to struggle in learning.  

 

(a) 
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(b) 

 

 

(c) 

Figure 4.20: Common non-linear activation functions: (a): Sigmoid; (b): TanH; (c): ReLU 
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In the current example, the activation function is assumed to be Sigmoid function 

which can be expressed as Eq. (4.19): 

𝐴(𝑥) =
1

1+𝑒−𝑥
                                                                                                                             (4.19) 

Therefore, the calculated hidden neuron values can be activated as Eq. (4.20): 

𝐻𝐴1 =
1

1+𝑒−𝐻1
                                                                                                                            (4.20) 

𝐻𝐴2 =
1

1+𝑒−𝐻2
                                                                                                                           (4.21) 

Having activated the hidden neurons, the value of the output neurons can be calculated 

as Eq. (4.22)-(4.23): 

𝑂1 =  𝐻𝐴1𝑊7 +𝐻𝐴2𝑊9 + 𝐵2𝑊11                                                                                        (4.22) 

𝑂2 =  𝐻𝐴1𝑊8 +𝐻𝐴2𝑊10 + 𝐵2𝑊12                                                                                       (4.23) 

Another activation function is needed in output layer to activate the output neurons. 

For instance, the following linear function, as shown by Eq. (4.24), is considered as 

the activation function of the output layer: 

𝑦 = 𝑓(𝑥) = 𝑥                                                                                                                               (4.24) 

Which results in following activated output values (Eq. (4.25)):  

𝑂𝐴1 = 𝑂1                                                                                                                               (4.25) 

 𝑂𝐴2 =  𝑂2                                                                                                                            (4.26) 

Having calculated the output values, the following expression, which represents the 

MSE, can be used to calculate the prediction error by Eq. (4.27). 

𝑒 =
1

𝑛
∑ (𝑦𝑖 −𝑂𝐴𝑖)

22
𝑖=1                                                                                                            (4.27) 

If it meets the maximum considered error value, the OA can be considered as the 

predicted value. However, it is unlikely to reach an acceptable level of MSE in the 

first pass. Therefore, an iterative method called “backpropagation” is needed to adjust 

the weight values in order to decrease the error values. 
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Backpropagation: the backpropagation is used to optimise the weight values using 

“stochastic gradient descent” optimization method using the following Eq. (4.28): 

𝑊𝑖
𝑘+1 = 𝑊𝑖

𝑘 − 𝜂
𝜕𝑒

𝜕𝑊𝑖
𝑘                                                                                                                (4.28) 

Where 

- k represents the number of iterations 

- 𝜂 is the learning rate which is normally taken as a small number 

- 𝑊𝑖
𝑘+1 represents the adjusted weight value 

- 
𝜕𝑒

𝜕𝑊𝑖
𝑘  shows the derivative of the total error regards to the weight. 

For instance, the derivative of the error regards to the W1 is as Eq. (4.29): 

 

 
𝜕𝑒

𝜕𝑊1
= (

𝜕𝑒

𝜕𝑂𝐴1

𝜕𝑂𝐴1

𝜕𝑂1

𝜕𝑂1

𝜕𝐻𝐴1

𝜕𝐻𝐴1

𝜕𝐻1

𝜕𝐻1

𝜕𝑊1
) + (

𝜕𝑒

𝜕𝑂𝐴2

𝜕𝑂𝐴2

𝜕𝑂2

𝜕𝑂2

𝜕𝐻𝐴1

𝜕𝐻𝐴1

𝜕𝐻1

𝜕𝐻1

𝜕𝑊1
) = (

𝜕𝑒

𝜕𝑂𝐴1

𝜕𝑂𝐴1

𝜕𝑂1

𝜕𝑂1

𝜕𝐻𝐴1
+

𝜕𝑒

𝜕𝑂𝐴2

𝜕𝑂𝐴2

𝜕𝑂2

𝜕𝑂2

𝜕𝐻𝐴1
) (

𝜕𝐻𝐴1

𝜕𝐻1

𝜕𝐻1

𝜕𝑊1
)                                                                                                         (4.29) 

In which the calculation of each term is summarized in the following Eq. (4.30):  

|

|

|

𝜕𝑒

𝜕𝑂𝐴1
= −

2

𝑛
(𝑦1 − 𝑂𝐴1)

𝜕𝑂𝐴1

𝜕𝑂1
=

𝜕𝑂1

𝜕𝑂1
= 1

𝜕𝑂1

𝜕𝐻𝐴1
= 𝑊7

𝜕𝐻𝐴1

𝜕𝐻1
= (

1

1+𝑒−𝐻1
) (1 −

1

1+𝑒−𝐻1
)

𝜕𝐻1

𝜕𝑊1
= 𝐼1

                                                                                         (4.30) 

 

This process should repeat for all weights to update their value with a new adjusted 

value. Once all of the derivatives for each weight is calculated, the following 

comprehensive gradient decent expression, as Eq. (4.31), can be used to update the 

value of all weights: 
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[
 
 
 
𝑊1

𝑘+1

𝑊2
𝑘+1

⋮
𝑊𝑛

𝑘+1]
 
 
 

=

[
 
 
 
𝑊1

𝑘

𝑊2
𝑘

⋮
𝑊𝑛

𝑘]
 
 
 

− 𝜂

[
 
 
 
 
 
𝜕𝑒

𝜕𝑊1
𝑘

𝜕𝑒

𝜕𝑊2
𝑘

⋮
𝜕𝑒

𝜕𝑊𝑛
𝑘]
 
 
 
 
 

                                                                                                    (4.31) 

Based on the network configuration, the outputs can be calculated based on the 

iterative backpropagation method which is based on the stochastic gradient descent. 

For instance, for a network with three hidden layers as shown in Figure 4.21, the total 

derivative of error to the weight W1 can be calculated by Eq. (4.32): 

 

Figure 4.21:  A deep neural network with three hidden layers 
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As seen when the number of hidden layers increases, calculating the derivatives 

becomes more complex and time consuming. This issue becomes outstanding for the 

big dataset as larger networks with more hidden layers and more neurons are needed 

to learn the patterns within the variables of the dataset. Therefore, the necessity of 

using computer programs is a vital need in training the neural network models. 

In this research study, a DNN is developed in Python for the performance prediction 

of the GIDPC. As explained in chapter 3 of the current research study, the number of 

inputs and outputs which are represented by operating, design and performance 

parameters of the GIDPC, are numerous. As a consequence, a big dataset is required 

to train a model with acceptable accuracy. Therefore, it is decided to develop a DNN 

model for the performance prediction of the considered GIDPC which can learn from 

huge datasets. 

The overall architecture of a DNN is depicted in Figure 4.22 where each neuron 

within each layer is connected to every one of the neurons in the following layer. As 

explained in previous sections, initialization process triggers when each of the 

connections is weighted by a random value which will be updated during the training 

procedure to reach the best fit with the lowest possible error values. In addition, there 

is a bias parameter (shown in Eq. (4.33)) which is used to adjust the output values of 

the weighted sum of the inputs to the neuron. Bias is a random constant which helps 

the model in a way that it can fit best for the given data. 

 𝑥𝑗 =  ∑ 𝑤𝑖𝑥𝑖
𝑖=𝑛
𝑖=1 + 𝑏𝑖                                                                                                          (4.33) 

Where 𝑤𝑖  represents the weight connecting the neuron 𝑥𝑖 to neurone 𝑥𝑗 in the next 

layer, n represents the number of the connections, and 𝑏𝑖 is the corresponding bias. 
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Figure 4.22: Structure of the DNN  

Activation functions are needed to attach to each neuron and their role is to determine 

the importance of each neuron’s input in prediction of the outputs and to normalize 

the output of the neurons. Different activation functions are compared and it is found 

that the performance of the network in terms of MSE is best when the activation 

function is hyperbolic tangent sigmoid for the current GIDPC big dataset which can 

be represented through the function below (Eq. (4.34)): 

𝑦𝑗 =  𝑓 (𝑥𝑗) =  
𝑒
𝑥𝑗−𝑒

−𝑥𝑗  

𝑒
𝑥𝑗+𝑒

−𝑥𝑗
                                                                                                      (4.34) 

Where 𝑦𝑗 is the activated value of the neuron 𝑗.  

Randomly selected weights and biases are iteratively optimized through back-

propagation process until the considered evaluation metric, e.g., the MSE, is 

minimised. The back-propagation is an essential step in minimising the errors and 

maximising the model generalization [219]. The holdout cross-validation is used to 

divide the big dataset into three sources: a training data set (70%), a validation data 

set (15%), and a testing data set (15%). The training dataset is used to estimate the 
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network weights, while the validation dataset is used to monitor the network and 

calculate the minimum error during the iterations till network is stopped. The test 

dataset is unseen data by network and task of the test dataset is to decrease the bias 

and generate unbiased estimates for predicting future outcomes and generalizability. 

The test dataset is used at the end of the iteration process for evaluating the 

performance of the model from an independently drawn sample.  

A Bayesian Regularization (BR) is used as a regularization method in optimizing the 

weight and bias values, which is the linear combination of Bayesian methods and NN 

to determine the optimal regularization parameters. BR technique implements certain 

prior distributions on the model parameters as follows (Eq. (4.35)) [220]:   

𝐹 = 𝛽𝐸𝐷(𝐷|𝑤,𝑀) + α𝐸𝑤(𝑤|𝑀) ; D= {𝑋, 𝑌}                                                                      (4.35) 

Where D represents the big dataset, i.e., X represents the inputs and Y represents the 

outputs, 𝐸𝐷(𝐷|𝑤,𝑀) is the sum of squared estimation errors, M represents the 

network structure, 𝛽 and α are estimated hyper-parameters. 𝐸𝑤(𝑤|𝑀) is sum of the 

weights’ squares which intends to decrease the overfitting probability of the model 

[221]. Density function is used for updating the weights according to Bayes’ rule. The 

posterior distribution of w given α, β, D, and M can be written as Eq. (4.36):  

𝑃(𝑤|𝐷, 𝛼, 𝛽,𝑀) =  
𝑃(𝐷|𝑤, 𝛽,𝑀)𝑃(𝑤|𝛼,𝑀)

𝑃(𝐷|𝛼, 𝛽,𝑀)
                                                                           (4.36) 

Where 𝑃(𝐷|𝑤, 𝛽,𝑀) is likelihood function of w, 𝑃(𝑤|𝛼,𝑀) is the prior distribution 

of weights under M, which is the probability of observing the data given w and 

𝑃(𝐷|𝛼, 𝛽,𝑀) is a normalization factor or evidence for hyperparameters α and β. 

 

4.4.2. Associated dataset for DNN 

In this study, as listed in Table 4.8, main operating and design parameters i.e., 

temperature, relative humidity and velocity of the intake air, working air fraction, 
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HMX height and channel gap, and number of layers in HMX structure are all 

considered as input parameters. Additionally, main performance parameters i.e., 

supply air temperature, cooling capacity, COP, dew point efficiency, wet-bulb 

efficiency and surface area of the layers are considered as output parameters. The big 

data set is created using the defined operating ranges based on the literature [33],  and 

with a purpose of covering wider ranges, by the validated numerical model [127]. 

Unlike the MPR, for the DNN model, all operating and design (geometric) parameters 

are included in a single huge dataset. 78125 data points (operating conditions) are 

created using the evenly distributed discrete values for each of the operating 

parameters and based on the all possible combination method described in chapter 3.  

In quite a similar manner to MPR dataset, no significant issue such as inconsistency 

or incorrect values is seen in the DNN model dataset so that, the normalization, as a 

common method in data pre-processing, is tested to observe its impact on the DNN 

model but no significant improvement in neither accuracy nor training time of the 

model are seen.  

 

Table 4.8: Operating ranges of the input variables 

 

Type of parameters input parameters Minimum Maximum 

 

Operating parameters 

Tdry,in  (°C) 25 45 

RHdry,in  (-) 0.10 0.80 

Udry,in  (m/s) 0.30 3.30 

φ (-) 0.10 0.90 

 

Design parameters 

H (m) 0.80 3.3 

G (m) 0.004 0.008 

NL (-) 100 200 
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4.4.3. DNN development process 

DNN is mainly configured by two main hyperparameters that define the structure of 

the network, i.e., the number of layers and the number of neurons in each hidden layer. 

The most common method to spot the preeminent values of these hyperparameters for 

a specific problem is calibration by a robust test harness. Therefore, several models 

with different hyperparameters are constructed until the desired accurate model is 

identified. The model reconstruction stopped when no significant improvement in 

accuracy metrics i.e., MSE and coefficient of determination (R2) is seen. As listed in 

Table 4.9, ten different configurations are compared in terms of MSE and R2 values.  

 

Table 4.9: Comparison of different DNN models 

 

Due to the relatively high number of operating conditions in the big dataset, i.e., 

78125, firstly, the DNN model with a single hidden layer and 10 neurons is configured. 

The MSE value has revealed that more a robust configuration is needed in order to 

reduce the MSE and increase the accuracy of the network. Thus, the network 

complexity is increased gradually by increasing the number of hidden layers and 

Model Number of layers Neurons No in 1st layer Neurons No in 2nd layer MSE R2 

1 1 10 NA 1483.89 0.98 

2 1 20 NA 182.21 0.99 

3 1 30 NA 112.33 0.99 

4 2 30 10 12.86 1 

5 2 30 20 6.74 1 

6 2 40 30 2.39 1 

7 2 40 40 1.19 1 

8 2 45 40 0.9 1 

9* 2 45 45 0.04 1 

10 2 50 45 0.03 1 
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neurons until no significant improvement observed in the MSE value. Model number 

9 with 2 hidden layers, and 45 neurons in each hidden layer is selected as the final 

network since it is accurate enough with MSE value of 0.04 to stop the robust test 

harness. However, one more model with a slight improvement, i.e., model number 10, 

is constructed to compare it with the selected model. It can be seen that, although the 

model was improved, i.e., with MSE of 0.03, but no significant accuracy added to the 

network. Hence, the model No. 9 is selected for the performance prediction of the 

GIDPC. 

4.4.4. DNN model testing: comparison of the supply air temperature  

The developed DNN model is tested by the validated numerical model for 4-kW 

GIDPC described in chapter 3. Although the DNN model is inherently validated by 

being trained and validated through the big dataset which was constructed by the 

numerical model but to test the performance of the model, the temperature of the 

supply air is predicted by the DNN and numerical models for the comparison purpose. 

The idea of selecting the temperature of the supply air, as a comparison factor, is based 

on the key role of this factor in system performance evaluation. Supply air temperature 

is directly considered in performance parameters calculations, e.g., cooling capacity, 

and its value is influenced by other key parameters such as intake air parameters, 

working air fraction and HMX dimensions [222].   

Therefore, the predicted supply air temperature by the model is compared in four 

different climates and the results are shown in Figure 4.23. According to the Koppen–

Geiger’s climate classification [223] and considering the defined ranges, out of seven 

existed climates, warm periods of four different climates, i.e., Tropical rainforest 

climate (Miami), Arid (Doha), Mediterranean hot summer (Rome) and Hot summer 

continental (Beijing) are identified as suitable regions for the GIDPC operation. One 
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representative city for each climate is selected and, in each city, the warm months for 

the GIDPC operation are identified. The criteria for selection of the operating months 

is the commonly defined ranges of the temperature and relative humidity of the intake 

air. The climate data, i.e., temperature and relative humidity of four cities are inspired 

from a source for the comparison purpose only as listed in Table 4.10.  

The comparison is made over the identified operating months by holding the key 

parameters unchanged, i.e., the air velocity, air working fraction, HMX height, 

channel gap and number of layers were kept at 3 (m/s), 0.44, 1 (m), 0.005 (m) and 160 

respectively which are also defined as the base system parameters. The results 

revealed that the predictions made by two models are in good agreement in which the 

maximum discrepancies between the numerical and DNN models in Miami, Doha, 

Rome and Beijing are recorded as 0.32 ⁰C, 0.77 ⁰C, 0.21 ⁰C and 0.54 ⁰C respectively.   
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Figure 4.23: Comparison of the supply air temperature of the base system by numerical and 

DNN models in operating months 
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Table 4.10: Monthly and average weather data of each city [174] 

Month Miami Doha Rome Beijing 

T(⁰C) RH(-) T(⁰C) RH(-) T(⁰C) RH(-) T(⁰C) RH(-) 

January 24 0.74 22 0.72 12 0.76 2.5 0.44 

February 24 0.73 23 0.7 13 0.76 5 0.44 

March 26 0.70 27 0.62 15 0.75 12 0.44 

April 28 0.69 33 0.52 18 0.75 20 0.45 

May 29 0.71 39 0.43 22.9 0.75 26 0.53 

June 30 0.72 42 0.41 26 0.74 30 0.60 

July 31 0.72 42 0.50 27.90 0.73 31 0.75 

August 30.50 0.72 40.50 0.54 28.10 0.75 30 0.78 

September 30.40 0.75 39.50 0.62 27 0.75 27 0.69 

October 28.50 0.76 36 0.63 22.90 0.76 19.90 0.60 

November 26 0.72 29.90 0.66 17 0.79 20 0.58 

December 23.90 0.74 25 0.71 12 0.79 5 0.50 

Average in operating months 28.82 0.72 35.39 0.56 27.25 0.74 28.80 0.67 

 

4.4.5. Explainable Artificial Intelligence 

Owing to the empirical success of the ML models in complex computational tasks, the 

need for interpreting the black box models, e.g., a complex DNN model with 

numerous layers and parameters is increased  [224]. The transparency of such models 

will contribute the experts with providing more detailed information about the model 

than a final accurate prediction [225]. Furthermore, it will lead to more trustable ML 

models in which the researchers can observe the evolving process of the model [224]. 

The aforementioned need for interpreting the complex ML models has led to 

appearance of eXplainable Artificial Intelligence (XAI) field. The newly evolving 

XAI has the ability to demonstrate the rationality of the results in different ways [226]. 

SHapley Additive eXplanations (SHAP) is based on a game theory which can be used 

as a XAI method to interpret the ML models [227]. In this study, the SHAP is used to 
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mainly show how the operating and design parameters of the GIDPC affect the 

performance parameters using the function provided by the developed DNN model. 

SHAP can demonstrate the contribution of each input to the predicted value using the 

calculated Shapley values which reveal how to distribute the predicted values 

(performance parameters) among the features (operating and design parameters). In 

SHAP, the Shapley value explanation is provided as an additive feature contribution 

[227]. In summary, SHAP describes the following three attributes (Eq. (4.37)-(4.39)): 

1) Local accuracy: 

 𝑓(𝑥) = 𝑔(�́�) =  𝜑0 + ∑ 𝜑𝑖�́�𝑖
𝑁
𝑖=1                                                                           (4.37) 

2) Missingness :   

if �́�𝑖 = 0 then 𝜑𝑖 = 0                                                                                                 (4.38) 

3) Consistency:  

For any two different models 𝑓 and �́�: 

 {
𝑖𝑓: �́�𝑥(�́�) − �́�𝑥( ́�́�\𝑖)  ≥  𝑓𝑥(�́�) − 𝑓𝑥(�́�\𝑖) where (�́�\𝑖 = (�́�𝑖 = 0))

𝑡ℎ𝑒𝑛: 𝜑𝑖(�́�, 𝑥) ≥ 𝜑𝑖(𝑓, 𝑥)
                 (4.39) 

 

Where 𝑔 represents the explanation model, 𝑓 is the mapping function, �́� represents the 

coalition vector, 𝜑𝑖 is the feature attribution for the input i, N is the maximum coalition 

size, �́�𝑥 and 𝑓𝑥 are the mapping functions which use the simplified input �́� to map the 

original input 𝑥. 

In local accuracy, the requirement of the explanation model (g) which can match the 

main model (f) for the simplified input(�́�), is explained. The missingness simply says 

the contribution of missing input (feature) is zero. The consistency indicates when the 

model changes, the contribution of the feature will be higher and will stay same. 
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Shapley values are given by the following Eq. (4.40)which is the only set of values 

that satisfies the three aforementioned conditions: 

 𝜑𝑖(𝑓, 𝑥) = ∑
|�́�|!(𝑁−|�́�|−1)!

𝑁!
[𝑓𝑥(�́�) − 𝑓𝑥(�́�\𝑖)]�́�⊆�́�                                                    (4.40) 

in which the |�́�| in the group of non-zero values in �́�, as the subset of �́�. 

The Shapley values can be visualized as forces to demonstrate the attribution of each 

feature on the prediction [35, 36]. Figure 4.24 shows the force plots for each of the 

performance parameters in the developed DNN. Force plots show how each of the 

input variables (features) contribute to the value of the performance parameters. Each 

figure consists of two sub figures in which the first one is demonstrated for one 

representative data point (operating condition) and the second one is demonstrated for 

10 data points (out of 78125 data points used in DNN model) which are rotated 90 

degrees and stacked together horizontally [230].  

Each feature is considered as a force which either has a positive or negative effect. 

The prediction for each performance parameter starts from the base value which is the 

average value of the performance parameter in the training dataset used to train the 

DNN which would happen if the effect of features (operating and design parameters) 

was not considered. There is also an output value in each figure which is identical to 

the predicted value by the DNN model. SHAP values are the arrows in red and blue 

indicating how much contribution each feature has on the output value which results 

in increasing or decreasing the prediction. There are positive contributions in red 

colours which mean that the correspondent feature contributes to increasing the 

performance parameter value from the base value to the actual predicted value by the 

DNN whereas the negative contributions with blue colours contribute to decreasing 

the value of the performance parameter from the base value to the actual predicted 

value. As seen from Figure 4.24, the contribution of each data point is different which 
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is simply because of the different operating and design parameter values. These plots 

allow us to know the impact of each parameter on the predicted values in the desired 

data point. This information let the researchers observe the positive and negative 

contribution of each parameter and identify the appropriate operating condition for 

each performance parameter. This will eventually result in improved system 

performance and energy management. For instance, Figure 4.24 (a) shows the force 

plots for the cooling capacity in which the data point number 8 is selected as the 

representative. As seen,  the base value is increased from 1.77 (kW) to the model 

predicted value of 3.59 (kW) in which four inputs in red colours have positive 

contribution while other three inputs i.e., gap, relative humidity and height have 

negative contributions. The force plots of other performance parameters are also 

provided for ten sample data points as demonstrated in Figures 4.24 (b)-(f).  
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 4.24: Force plots : (a): cooling capacity; (b): COP; (c): wet bulb efficiency; (d): dew 

point efficiency; (e): temperature drop; (f) surface area 

4.5. Comparison of the developed models  

In this section the performance of the developed MPR and DNN models are compared. 

The comparison factors are mainly based on the models’ performance, accuracy, 

comprehensiveness and development processes. In addition, the flexibility of the 

model in prediction and dataset processing are the other comparison factors. The 
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comparison is made by considering the following advantages and disadvantages of the 

models: 

MPR: 

Advantages: 

- Flexibility in increasing the model complexity in a gradual way: Increasing 

polynomial degrees is a way to control the complexity of the model and avoid 

developing unnecessary complex models. 

- High R2 value which indicates the good fitting capability: The fitting quality of the 

MPR model was quite satisfactory where it reached the value of 1 from the 5th 

degree polynomial equations. 

- High accuracy: The accuracy of the selected 8th degree MPR is quite high where 

the MSE reached the minimum value of zero while the maximum average error 

was 1.2%.   

Disadvantages:  

- Higher possibility of over fitting: Although the gradual improvement by 

increasing the polynomial degrees can be considered as an advantage but in 

MPR, more complex models will lead to overfitted model by covering data 

noises.  

- Unable to find an appropriate trade-off between the model accuracy and over 

fitting: It is a big challenge in MPR to find the best model in order to avoid 

overfitting without sacrificing the accuracy.  

- The MPR was unable to provide a single model for the big dataset including 

all of the operating and design parameters. Therefore, one model for each 

design set (geometric set) is provided as the MPR couldn’t discover the pattern 
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amongst all parameters. This led to numerous equations sets which are 

considered as the major disadvantages of the model.   

DNN: 

Advantages: 

- Higher accuracy: The selected model has reached the MSE substantially close 

to zero which proves the high accuracy of the model. 

- High R2:  Similar to MPR, in terms of fitting, the DNN model performs well 

with the R2 value of 1.  

- Capability in increasing the complexity and accuracy of the model without 

overfitting hazard: This can be considered as an outstanding advantage over 

the MPR model where the model complexity and accuracy can be increased 

without confronting the overfitting problem.  

- The model could process the big dataset with all operating and design 

parameters and more performance parameters. Despite MRP, the DNN 

provided a single comprehensive model. 

Disadvantages: 

- Long training time: The only negative point of the DNN model compared to 

the MPR is its roughly high computational time. Increasing the model 

complexity leads to more computational time.  

By taking all the aforementioned discussions into consideration, the DNN model is 

selected as the fitting function to be used in the optimisation models in the next 

chapter. 
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4.6. Summary 

In this chapter, a detailed overview of AI and its subsets including ML and DL are 

conducted. It is mentioned that the ML is a broad subset of AI in which diverse 

algorithms are implemented to develop models which are capable of predicting 

particular systems behaviour through previously established performance data. As the 

models used in this chapter are based on the ML algorithms so that the focus of the 

introduction is shifted towards different ML algorithms. It is mentioned that the ML 

is mainly categorized in supervised and unsupervised ML. The supervised ML uses 

the labelled known data to learn and then extract the hidden pattern within the dataset 

by mapping a relationship between the independent and dependent variables while the 

unsupervised ML uses unlabelled data to extract the relationships among them. In 

addition, procedure of developing two models based on supervised ML are explained 

in details. MPR as one of the regression-based models is selected as the first method 

to find the relationship between the performance and operating parameters of the 

GIDPC. The development procedure and all steps in model development as well as 

the challenges in development process are explained. DNN based model was the 

second model that is used to predict the performance of the GIDPC using the operating 

and design parameters of the system. The developed models are used to demonstrate 

the applicability of them in predicting the system performance in diverse operating 

conditions. In addition, the XAI is used to interpret the developed DNN model by 

demonstrating how each of the input variables (features) contribute to the value of the 

performance parameters. Comparison of the two developed models has revealed that 

the DNN model outperforms the MPR model in different aspects. As a consequence, 

the DNN model is selected as the main ML function for the performance prediction of 
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the GIDPC. This model will be used in optimization models that will be explained in 

the next chapter.  
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CHAPTER 5: DEVELOPMENT OF MULTI-OBJECTIVE 

EVOLUTIONARY OPTIMISATIONS AND 

ASSOCIATED RESULTS 

5.1. Introduction 

In this chapter, firstly traditional and nature-inspired optimisation algorithms and their 

classifications are overviewed. Then, the Multi-Objective Evolutionary Optimization 

(MOEO) methods are explained to reveal the importance and impact of the 

optimisation methods on engineering applications and in particular on energy systems 

over the recent decades. Then the chapter continues by introducing the selected 

MOEO algorithms that are used to find the optimum operating conditions for the 

GIDPC. The Genetic Algorithm (GA) and the Particle Swarm Optimisation (PSO) are 

two common optimisation methods that are used as the base optimisation methods and 

the state-of-the-art Slime Mould Algorithm (SMA) is introduced as a novel method 

for the performance optimisation of the GIDPC. The models’ development 

procedures, mathematical approach and corresponding decision variables and 

objective functions are explained in details. In addition, it is justified that how the 

objectives of the optimisation are selected by explaining superiority of the MOEO 

over the single objective optimisation models. Eventually, the results of each method 

are presented in which the optimum operating and design parameters of the GIDPC 

are identified to maximise the cooling efficiency and minimise the operating and 

construction cost of the GIDPC. This is carried out for different identified operating 

climates in order to propose a single optimized unit for each climate. Eventually, the 

advantages and disadvantages of each method are presented. 
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5.2. Optimisation algorithms  

5.2.1. Concept 

Optimization is simply contributed to maximising the performance of a system. This 

is undertaken by identifying the optimum conditions for the desired system which will 

lead to efficient and economic performance of the technology. In general, optimization 

includes a process in which a particular function is maximised or minimised by finding 

appropriate inputs. The function/parameter which is aimed to get maximal/minimal 

figures is called objective of the optimization and the inputs being identified are called 

decision variables of the optimisation. An optimisation problem is unconstrained when 

the objective is achieved without any predefined constraints while it is called 

constrained when additional limitations and constraints are imposed on the decision 

variables [231]. 

The simplest optimisation problem is an unconstrained optimisation in which a single 

variate function is maximised or minimised as Eq. (5.1): 

max 𝑜𝑟min 𝑓(𝑥),    𝑥𝜖 ℝ                                                                                                      (5.1) 

In the unconstrained optimisation, a point with the condition 𝑓′(𝑥) = 0 can be an 

optimal solution. However, it can be a local maximum when 𝑓′′(𝑥) < 0, and a local 

minimum when  𝑓′′(𝑥) > 0. Therefore, to find the global minimum and maximum it 

is required to go through all of the local minimums and maximums. The local/global 

maximum and minimum values are illustrated in a sample function in Figure 5.1. 
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Figure 5.1: Illustration of global and local maximum/minimum 

Although the theory of the optimisation is simple but using the simple analytical 

methods can only be applicable in small/simple problems. Thus, to overcome the 

complexity in finding the optimal solution in complex problems such as highly 

nonlinear and multimodal problems, the numerical optimisation algorithms are 

needed. Generally, the optimisation for a problem with multiple decision variables can 

be expressed by the following constrained Eq. (5.2):  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥),    𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)
𝑇 𝜖 ℝ𝑛                                                         (5.2) 

In which the ℝ𝑛 represents the n-dimensionality of vector 𝑥 that is constructed by real 

numbers. The constraints are represented by the following Eq. (5.3) and (5.4): 

ℎ𝑖(𝑥) = 0, (𝑖 = 1, 2, … , 𝐼)                                                                                                       (5.3) 

𝑔𝑗(𝑥)  ≤ 0, (𝑗 = 1, 2, … , 𝐽)                                                                                                        (5.4) 

In which ℎ𝑖 and 𝑔𝑗  are considered as the constraints of the optimisation problem. In 

case of having nonlinear functions in the optimisation problem, solving them will be 

challenging and requires robust optimisation algorithms. For the linear functions, the 

optimisation problem can either take integer or continuous input values which are 

called a Mixed Integer Programming (MIP), which also requires numerical 

optimisation algorithms to be solved [232]. The optimisation problems are generally 
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classified by their functions, and their complexity is determined by the linearity and 

nonlinearity of them. There are numerous types of optimisation problems which 

require different solving techniques, i.e., linear/quadratic programming, conjugate 

gradient, trust region method, etc. [233].  

The gradient based methods are the most common methods in which the gradient of 

the objective function is foundation of the calculations. In general, the gradient 

methods are based on an iterative process where information derived from the gradient 

of the objective functions are used to solve the problem. Basically, to minimise the 

function, the following Eq. (5.5) is followed during the iteration processes: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑔(∇𝑓, 𝑥𝑘)                                                                                                         (5.5) 

Where 𝑘 represents the number of iterations, 𝑔 is a function based on the gradient ∇𝑓 

and the current step, and 𝛼 stands for the step size value in which type of the function 

𝑔 is varied in different methods. It is worth mentioning that the step direction in 

searching for the global minimum in minimisation problems is towards the negative 

gradient direction (−∇𝑓). The iteration continues until the determined maximum 

iteration number reached or when the difference between two last values reached zero. 

Having explained the principle of the optimisation, the chapter continues by 

introducing some common traditional optimisation algorithms. 

5.2.2. Newton’s Method 

The Newton’s method is a derivative based method in which the optimum solution of 

a continuously differentiable and single variable function, 𝑓, is found based on the 

Taylor extension [234]. For the multivariate functions the process is started by 

estimating the value of the function as a random starting point using the following Eq. 

(5.6) based on the Taylor extension: 
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𝑓(𝑥) = 𝑓(𝑥𝑘) + (∇𝑓(𝑥𝑘))
𝑇∆𝑥 + 

1

2
(∆𝑥)𝑇∇2𝑓(𝑥𝑘)∆𝑥 + ⋯                                  (5.6) 

In order to minimise 𝑓(𝑥), the derivative of the above expression is taken with respect 

to ∆𝑥 which is the solution of the derived expression. It results in the following Eq. 

(5.7) for ∆𝑥: 

∆𝑥 = −
∇𝑓(𝑥𝑘)

∇2𝑓(𝑥𝑘)
                                                                                                                         (5.7) 

So that value of the new location will be as Eq. (5.8): 

𝑥 = 𝑥𝑘 −𝐻
−1∇𝑓(𝑥𝑘)                                                                                                                 (5.8) 

In which 𝐻 is the Hessian matrix, which is defined as Eq. (5.9): 

𝐻(𝑥) = ∇2𝑓(𝑥) =

(

 
 

𝜕2𝑓

𝜕𝑥1
2

⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

⋯
⋱
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

⋮
𝜕2𝑓

𝜕𝑥𝑛
2
)

 
 

                                                                               (5.9) 

The iteration normally starts from the initial random location, 𝑥(0), leading to the kth 

iteration value of, as shown by Eq. (5.10): 

𝑥(𝑘+1) = 𝑥(𝑘) −𝐻−1(𝑥(𝑘))∇𝑓(𝑥(𝑘))                                                                                      (5.10) 

As explained in general explanation of the optimisation problem in section 5.2.1, the 

step size is needed to increase the speed and accuracy of the convergence. The step 

size is in the range of (0-1) which can be added to the Newton’s method as Eq. (5.11): 

𝑥(𝑘+1) = 𝑥(𝑘) − 𝛼𝐻−1(𝑥(𝑘))∇𝑓(𝑥(𝑘))                                                                                     (5.11)                                                                                 

A Quasi-Newton is the simplified Newton’s method in which the Hessian matrix is 

replaced with the 𝑛 × 𝑛 identity matrix. The reason for this replacement is mainly due 

to complexity and time-consuming derivative calculations in the Hessian matrix when 

the objective function has higher dimensions. The expression for the kth iteration is 

expressed as Eq. (5.12): 

𝑥(𝑘+1) = 𝑥(𝑘) − 𝛼𝐼−1∇𝑓(𝑥(𝑘))                                                                                          (5.12) 
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The method is called steepest descent when it is aimed to minimise the objective 

function while it is called hill-climbing method if the maximisation is the case. In these 

two methods, the amount of step size is calculated which can be time consuming in 

functions with high nonlinearity. However, as long as the correct direction of descent 

is identified, the exact amount of step size is not important. The line search method is 

used when the relatively small step size is selected.  

5.2.3. Conjugate Gradient Method 

The steepest descent and Newton’s methods have some disadvantages requiring an 

innovative solution. For instance, the steepest descent method is time-consuming in 

terms of convergence and the Newton’s method becomes complex as inverse of the 

Hessian matrix is needed to be calculated which increases the cost of computations. 

The conjugate gradient method is introduced in 1950s [232], [235] in order to solve a 

linear problem by minimising a function as Eq. (5.13): 

𝑓(𝑢) =
1

2
𝑢𝑇𝐴𝑢 − 𝑏𝑇𝑢 + 𝜈                                                                                                       (5.13) 

Where 𝐴 is a symmetric matrix, and 𝜈 is a constant value. Taking the derivative of the 

above expression with respect to 𝑢 will lead to the following Eq. (5.14):  

∇𝑓(𝑢) = 0 → 𝐴𝑢 = 𝑏                                                                                                              (5.14) 

The one important requirement of the method is that the matrix should be normal 

which indicates that 𝐴𝑇𝐴 = 𝐴𝐴𝑇 . The method can be expressed by the following 

Krylov subspace-based Eq. (5.15): 

𝒦𝑘(𝐴, 𝑏) = {𝐼𝑏, 𝐴𝑏, 𝐴
2𝑏, . . . , 𝐴𝑛−1𝑏}                                                                                          (5.15) 

The residual for the solution of the 𝐴𝑢 = 𝑏 through an iteration procedure is as Eq. 

(5.16): 

𝑟𝑘 = 𝑏 − 𝐴𝑢𝑘                                                                                                                                (5.16)                                                                                                               
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In addition, the direction vector of the gradient in the conjugate gradient method is 

expressed as Eq. (5.17): 

𝑑𝑘+1 = 𝑑𝑘 −
𝑑𝑘
𝑇𝐴𝑟𝑘

𝑑𝑘
𝑇𝐴𝑑𝑘

𝑑𝑘                                                                                                             (5.17) 

The solution is found by the common iterative process as Eq. (5.18): 

𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑘𝑑𝑘 , 𝑟𝑘+1 = 𝑟𝑘 − 𝛼𝑘𝐴𝑑𝑘 , 𝑑𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑑𝑘                             (5.18)                                                                                                              

Where, 

𝛼𝑘 =
𝑟𝑘
𝑇𝑟𝑘

𝑑𝑘
𝑇𝐴𝑑𝑘

, 𝛽𝑘 =
𝑟𝑘+1
𝑇 𝑟𝑘+1

𝑟𝑘
𝑇𝑟𝑘

                                                                                                         (5.19) 

5.2.4. Stochastic Gradient Descent 

The stochastic gradient descent is a well-known optimisation method in DL in which 

the objective function can be expressed using a parameter vector called weights vector 

[236]. For the minimisation optimisation problem, the objective function can be 

expressed by Eq. (5.20):   

𝐸(𝑤) =
1

𝑚
∑ [𝑢𝑖(𝑥𝑖 , 𝑤) − �̅�𝑖]

2𝑚
𝑖=1                                                                                              (5.20) 

Where �̅�𝑖 represents the real data points, 𝑢𝑖 is the predicted values using the 𝑥𝑖 as the 

input of the model, m represents the number of data points, and 𝑤 stands for the weight 

vector which is commonly used in the NN models and can be expressed as Eq. (5.21): 

𝑤 = (𝑤1 , 𝑤2, … , 𝑤𝐾)
𝑇                                                                                                             (5.21) 

In such standard gradient problems, the weight vector is updated over an iterative 

process as Eq. (5.22): 

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

𝑚
∑ ∇𝑓𝑖
𝑚
𝑖=1                                                                                                           (5.22)                                                                             

Where 𝜂 stands for the learning rate (step size), and ∇𝑓𝑖 is the gradient of 𝑓 with respect 

to 𝑤 which requires the calculations of m gradients. It is proven [236] that the 

stochastic gradient descent will definitely converge when (Eq. (5.23)): 
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∑ 𝜂𝑡𝑡 = ∞,∑ 𝜂𝑡
2

𝑡 < ∞                                                                                                         (5.23) 

Where 𝜂𝑡 represents the learning rate at iteration t. The learning rate should gradually 

decrease which the decreasing learning rate is normally represented by the following 

Eq. (5.24):  

  𝜂𝑡 =
1

1+𝛽𝑡
                                                                                                                               (5.24) 

Where 𝛽 is the hyperparameter of the method which is always greater than zero. The 

method is called stochastic as the initial values are selected randomly which can vary 

in each iteration. The method is called Stochastic Gradient Descent (SGD) when it is 

aimed to minimise the objective function while it is called Stochastic Gradient Ascent 

(SGA) when the objective function is needed to get maximised. In addition, it is worth 

mentioning that the term descent refers to the average decrease rather than direct 

descent. This is one important reason that this method is used in complex DL methods 

which will lead to average descent.  

5.2.5. Nature-inspired optimisations 

The traditional optimisation methods, such as aforementioned common methods, have 

been inefficient over the past decades mainly because of increasing complexity in 

nonlinear problems. Nonlinearity prevents the traditional optimisation techniques 

from finding the global minimum or maximum. As a consequence, new optimisation 

methods are needed to deal with the complex linearity in the optimisation problems to 

identify the global solutions. Therefore, the modern nature-inspired optimisation 

algorithms are introduced to replace the traditional methods.  

The traditional optimisation methods are mostly deterministic while the nature 

inspired algorithms are stochastic. In general, the stochastic algorithms are categorized 

into two types, i.e., heuristic and metaheuristic. The heuristic algorithms are based on 
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trial and errors which mostly lead to acceptable solutions. However, in some cases, 

the heuristic algorithms are unable to find the optimal solutions. The progress in 

heuristic algorithms resulted in invention of metaheuristic algorithms which normally 

outperform the heuristic algorithms. All stochastic algorithms that have randomization 

and local search fall into the metaheuristic categorization. Owing to the 

randomization, the metaheuristic algorithms are suitable for the global optimization. 

The principle of the metaheuristic algorithms is based on diversification and 

intensification. Diversification contributes to finding the diverse solutions while the 

intensification is focusing on region of the current solution which will result in finding 

the best solution. Finding the best solution alongside the diversification through the 

randomisation contribute to finding the global solution rather than remaining in the 

local optimal solutions [137].  

Figure 5.2 shows different types of metaheuristic classifications in which the 

population-based and trajectory-based algorithms are the most common 

metaheuristics. Most of the common metaheuristic algorithms such as GA and PSO 

are population-based algorithms.  
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Figure 5.2: Euler diagram for different metaheuristic algorithms [237] 

The first ever study which is resulted in development of non-deterministic algorithms 

is carried out by Alan Turing in 1940s [238], [239]. Darwin theory of evolution has a 

significant contribution to developing the evolutionary solutions and GA in 1960s. For 

instance, the GA is developed by John Holland in which the principles of the Darwin 

theory, i.e., crossover, mutation and selection were used in operation of the algorithm 

[240]. Similar studies were conducted based on Darwin theory which resulted in 

introduction of evolutionary programming. As a consequence, all aforementioned 

endeavours led to invention of a broader method called Evolutionary Algorithms 

(EAs) which belong to the heuristic algorithms [241], [242]. The progress on 

development of new algorithms is continued which led to introduction of simulated 

annealing in 1983 [243], and Tabu search in 1986 [244]. Another method called an 

Ant Colony Optimisation (ACO) is developed by Marco Dorigo in which 
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specifications of social ant are used to conduct the optimisation [245]. PSO which is 

inspired by swarming of fish and birds, is developed in 1995 [246]. The PSO is 

claimed to outperform many traditional algorithms in which the particles swarm 

around different search spaces and starts searching for the current best solution from 

a random guess. Then, it compares different solutions and finds the global best. In 

1997, Differential Evolutionary (DE) algorithm is developed which was vector-based 

by Rainer Storm and Kenneth Price [247]. Later on, in 1997, a new idea is introduced 

which was saying that it is not possible to find an algorithm which can universally 

perform well. This development which is called No-Free-Lunch (NFL) decreased the 

hopes to find an ideal algorithm for all problems [248][249]. The NFL evaluates the 

performance of the algorithms based on the algorithms’ average performance in all 

problems. However, this idea is rejected by numerous researchers as the aim of 

research studies was to find a method that can work well on particular problems. 

Therefore, the studies continued with a particular focus on the nature-inspired 

algorithms. A honeymoon algorithm was developed in 2004 [250], bees algorithm and 

virtual bee algorithm [251], and Artificial Bee Colony (ABC) [252] developed in 2005 

which were all based on foraging behaviour of bees. Firefly Algorithm (FA) [137], 

and Cuckoo Search (CS) [253] algorithm were developed in 2008 and 2009 

respectively which are proved in being more efficient than previous metaheuristic 

algorithms. The CS algorithm was based on brood parasitism of the reproduction 

strategies of cuckoos and the FA was developed based on the flashing behaviour of 

tropic fireflies. The progress in improving the nature-inspired algorithms continued by 

introduction of Bat Algorithm (BA) which was based on echolocation of microbats 

[254]. The FA, CS, and BA are all categorized as swarm intelligence based algorithms 

[255][256] owing to the fact that all of them are based on the social interactions and 
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their biologically inspired rules. Some other algorithms such as music-inspired 

algorithm [257], Gravitational Search Algorithm (GSA) [258], Flower Pollination 

Algorithm (FPA) [259], are developed in the past decades which are all considered as 

population-based algorithms.  

In this study, three algorithms, i.e., GA, PSO and Slime Mould Algorithm (SMA) are 

used to firstly identify the optimum operating and design conditions of the GIDPC, 

and secondly, to compare the results derived from three selected algorithms. The GA 

and PSO are mainly chosen owing to their proved success and popularity in different 

applications while pioneering in employing the novel SMA is mainly undertaken to 

compare the performance of the method with GA and PSO. The main difference 

between the selected methods is the way they approach the solution. 

5.2.6 Weather data creation 

In this study, it is decided to conduct the optimisations in all climates around the world 

in which the GIDPC are needed. Therefore, the air properties, i.e., air temperature and 

relative humidity, of different climates are needed. In this regard, according to the 

Koppen–Geiger’s climate classification [223] and considering the defined ranges for 

the GIDPC, hourly temperature and relative humidity in 2020 and 2050 are forecasted 

for the selected climates. The reason for selecting these years lies in the fact that the 

operation life of each GIDPC is estimated to be around 30 years. In addition, to meet 

the carbon neutrality targets in 2050, it would beneficial to have the optimisation 

results in 2050. Furthermore, it is revealed that the impact of global warming will be 

more sensible from 2050 onwards [260] .   

Based on the operating ranges of the GIDPC, four different climates with one 

representative city for each climate are chosen to firstly, compare the GIDPC 

performance in base and optimized designs, and secondly, to investigate the power 
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saving potential of the optimized systems. Beijing with hot summer continental 

climate (Dwa), Doha with arid climate (BWh), Miami with tropical rainforest climate 

(Af), and Rome with Mediterranean hot summer climate (Csa) are the chosen cities. 

The four suitable classifications and their representative climates and cities as well as 

the operating months in 2020 which will be used in MOEO models are all shown in 

Figure 5.3.  

 

Figure 5.3: Selected climates and their representative cities (operating months are for 2020) 

The Intergovernmental Panel for Climate Change (IPCC) developed a quantity of 

probable scenarios of future greenhouse gas emissions based on the socio-economic 

data and scenarios to predict the future climate variations for impact and adaptation 

assessment [261] . A number of emission scenarios is presented through the Special 

Report on Emission Scenarios (SRES). Table 5.1 depicts the difference between 

scenarios in terms of greenhouse gas emissions.  
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Table 5.1: SRES weather scenarios and associated descriptions 

SRES scenario Description of emissions 

A1F1 High end of SRES range 

A1B Intermediate case 

A1T Intermediate/low case 

A2 High case 

B1 Low end of SRES range 

B2 Intermediate/low case 

 

In this study, IPCC’s SRES A2 climate scenario that represents high emission future 

scenario is considered in order to calculate the operating hours for GIDPC in both 

2020 and 2050. Meteonorm software [262] is used in this study to generate the hourly 

temperature and relative humidity data for the selected cities. In this study, based on 

the operating ranges of the GIDPC, the temperatures above 25 ℃ are selected as the 

operating conditions in order to calculate the operating hours.   

Figure 5.4 shows the number of operating hours for all climates in 2020 and 2050. 

According to the results, in all climates, the number of operating hours are increased 

by 2050 as a result of global warming. In hot summer continental and Mediterranean 

hot summer, the GIDPC is not needed in winter (December-February) while in other 

two climates, it is needed to operate in all seasons.  
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Figure 5.4: Number of operating hours: (a): hot summer continental; (b): arid; (c): tropical 

rainforest; (d): Mediterranean hot summer. 

Average hourly climate data in 2020, are taken to operate all MOEOs in order to 

identify the optimum decision variables in each city. The reason for taking the average 

data instead of monthly data is because a single GIDPC unit with optimum operating 

and design parameters will be introduced for each representative city. The 

optimisation algorithms are operated for different weight values, which have the total 

value of one, in order to choose the best possible cost function. In this study, the 

priority is to choose the best approach in which the majority of the objectives can hold 

better values than the base system.  
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5.3. Method I: Genetic Algorithm 

5.3.1. Overview 

The GA is the first optimisation algorithm which is selected to optimise the 

performance of the GIDPC in this study. The GA is considered as the most common 

and widely used algorithm as a random-based classical EA. It means that in order to 

find a solution using the GA, random changes are applied to the current solutions in 

order to generate new ones. Although the method is not new but owing to the 

population-based feature, it has been the basis of modern methods which is originated 

from fundamental genetic operators. The population-based indicates that GA operates 

based on a population in which the size of population determines the number of 

solutions. Each solution represents an individual which has a chromosome. A set of 

parameters in chromosome defines the individuals. A set of genes form a chromosome 

which is represented by strings of 0s and 1s.  

The algorithm is introduced by John Hollan in 1960s [263] when they were working 

on a model of biological evolution which is based on the Darwin’s theory of natural 

selection. The strategy of the GA is developed around a few genetic operators which 

is the backbone of the method. These genetic operators are crossover, recombination, 

mutation and selection which are all used together for the first time in GA. The GA is 

used in numerous applications which indicate its popularity and applicability in many 

optimisation problems. It has been used for graph colouring, pattern recognition, 

discrete systems, continuous systems, financial market, etc.  

As stated in previous section, the metaheuristic algorithms have numerous advantages 

over the traditional methods. The two advantages of GA over the previous traditional 

algorithms are the parallelism and the ability of the model in solving the complex 

problems [264]. The advantages are gained owing to the ability of the GA in solving 
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all types of objective functions which defines the optimisation problem. The GA is 

able to handle the stationary and non-stationary, linear and nonlinear, continuous and 

discontinuous, and with random noise objective functions. This feature makes the GA 

and in general metaheuristic algorithms more applicable among the users.  

In GA, multiple agents are represented by multiple offspring within the population. 

The population or any small group searches the space in more than one direction 

simultaneously which makes the processes to parallelise the algorithm for operation. 

In addition, the ability to simultaneously manipulate various parameters and group of 

strings is put the GA in a leading position among the other methods. Like other 

methods, despite the aforementioned advantages, the GA has some disadvantages 

which are mainly related to appropriate parameter selection [265]. For instance, the 

type of objective function is one of the important key players in converging the model. 

Additionally, the size of population is another parameter which plays a key role in 

determining the speed of convergence and most importantly the accuracy of the results 

[266]. Determining the key parameters such as rate of mutation and crossover, and 

basis of selecting new populations are also the key steps which should be taken 

carefully to converge the problem properly. Otherwise, the GA will bring about 

senseless results and it will be difficult for the model to converge. Many different GAs 

are formed based on the aforementioned principles [267].  

In order to represent the chromosomes, the objective function is needed to be coded 

as arrays of bits or by adjusting strings. In addition, the strings are needed to be 

manipulated by genetic operators, and selection is required to be undertaken based on 

the fitness quality. As a consequence, the following steps are needed for finding the 

solutions:  

1) Determining the objective functions or the cost function by encoding them. 
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2) Defining/choosing the fitness function and selection metrics. 

3) Creation of population and its individuals and corresponding fitness 

evaluation. 

4) Developing the population based on evaluation of the individuals’ fitness and 

replacing them by new generations which are created using genetic operators, 

i.e., crossover, mutation, fitness proportionate reproduction. 

5) Decoding the results to represents the optimisation solutions. 

The repetitive process in generating new population is carried out using numerous 

iterations which each of them is called a generation. The lengths of character strings 

in most GAs is assumed to be constant. However, various lengths for the character 

strings have been considered in many research studies. Generally, in adaptive GAs, 

the objective functions are coded as binary or real-valued arrays.  

As depicted in Figure 5.5, the GA process is triggered by a population which is formed 

by a set of individuals which are the solutions of the problem. In addition, a set of 

genes which characterises the individuals are represented by a string, forms the 

chromosomes. In general, the genes are encoded by strings of 0s and 1s. Having 

created the required population, a fitness function will determine how fit the current 

individuals are based on a fitness score which is assigned to each individual. The 

fitness score determines if an individual (parent) is appropriate to be in next 

reproduction or not. This is simply called a selection phase.  
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Figure 5.5: Demonstration of a sample population for a GA 

 

The next phase is cross over in which the genes between two parents are exchanged 

to create offspring which will be added to the population. This genes exchange is done 

until the crossover point which is shown by red colour in Figure 5.6. 

 

 

Figure 5.6: Demonstration of the crossover phase 

 

The next genetic operator is mutation which is mainly done to give a genetic diversity 

within the population as shown in Figure 5.7. The genetic algorithm ends if the 

offspring production can’t lead to significantly different parents in the population. It 

is worth mentioning that the population size is fixed so that continuation of the 
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aforementioned processes will remove the parents with the least fitness score and will 

keep/add better parents to the solution.  

 

 

Figure 5.7: Demonstration of the mutation phase 

 

5.3.2. GA Development process 

In this study, the GA as the first optimization algorithm is developed to reach the 

maximum potential of the GIDPC by identifying the optimum values of operating and 

design parameters. It can deal with system nonlinearity and ignores the local 

minimums of the problem. GA is developed in MATLAB and its correctness was 

validated in different studies [268], [269]. The convergence of the GA is investigated 

through the cost versus number of iterations.  

The cooling capacity, COP, wet-bulb efficiency and surface area of the layers are 

selected as objectives as they inherently consider the economic and engineering 

characteristics of the system simultaneously. The reason for selecting the cooling 

capacity and COP is to maximise the cooling performance and minimise the power 

consumption of the system simultaneously. Although the cooling capacity is included 

in the COP calculations but considering the COP only, will lead to irrational results as 

the focus may be only on reducing the power consumption only. Moreover, 

maximising the wet-bulb efficiency minimises the supply air temperature of the 
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GIDPC. Eventually, minimising the surface area of the layers will lead to lower 

production cost. Considering a single objective can result in irrational solutions by 

ignoring crucial trade-offs in identifying the optimum values. For instance, the cooling 

capacity of a GIDPC can be improved by increasing the length of the channels whereas 

longer channels can lead to lower COP and higher pressure drop (more fan power) 

[270]. Thus, a MOEO is necessary to find the best optimum balance between the 

objectives.  

The optimization function is defined by fitness function and the constraint function. 

The trained DNN in chapter 4, is the fitness function to be optimized which sets the 

variables of the problem and the optimization objectives. The constraint function 

implements the parameters defined ranges as restrictions on the fitness function. 

In the present GA method, the input parameters are assumed as genotype and output 

parameters are considered as phenotype. Out of seven input parameters in the 

developed DNN model, the temperature and relative humidity of the intake air vary 

by climates but the remaining five input parameters are chosen as decision variables. 

Hence, for each specific climate, a GA is performed, which will result in a unique 

optimum design for that climate.  

In each generation, selection functions pick the most valuable genes which are chosen 

as the parents of the next generation and then the multi point crossover procedure is 

performed on them. Among these, the random genes are added to the population as 

mutation functions and this procedure is repeated until ultimate criteria are 

established. Different conditions can be set to stop this process in which reaching the 

maximum iterations of 200 is selected in this study.  

The flowchart of the GA process is shown in Figure 5.8. In addition, configured 

settings and parameters for the proposed optimization are summarized in Table 5.2. 



CHAPTER 5: DEVELOPMENT OF MULTI-OBJECTIVE EVOLUTIONARY 

OPTIMISATIONS AND ASSOCIATED RESULTS 

   195 

The trial-and-error is the most common way to select the listed parameters. However, 

the plot of cost versus iterations, system’s nonlinearity, number of inputs were the 

main factors in selecting these parameters. The cost function in this study is considered 

as Eq. (5.25):  

J(Tdry,in, RHdry,in, 𝑈dry,in, φ, H, G, NL) = W1

Qcooling

RQcooling
+W2

COP

RCOP
+W3

ɛwb

𝑅ɛwb
+W4

RAs

As
              (5.25)                    

Where 𝑇𝑑𝑟𝑦,𝑖𝑛and 𝑅𝐻𝑑𝑟𝑦,𝑖𝑛 are predefined based on the climates, 𝑊 is the weights for 

each objective, R𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔, RCOP, 𝑅ɛ𝑤𝑏, and 𝑅𝐴𝑠 are used to normalize the output 

values or objectives.  

 

Table 5.2: Genetic Algorithm settings 

Type of parameter Rate or type of consideration 

Population Size 40 

Iteration or Decades 200 

Percentage of Mutations 35% 

Type of Mutations Random Number Generation 

Percentage of Crossover 50% 

Type of Crossover 2 Point Crossing Over 

Percentage of Recombination 15% 

Type of Selection Random Selection 
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Figure 5.8: Flowchart of the GA process 

 

5.3.4. Results derived from GA: weight distributions 

The optimisation results for GA are listed in Table 5.3 which include the optimum 

values of the operating and design parameters in each climate. It is revealed that out 

of five considered weight distributions (i.e., equal weights for each objective, and 

dominant weights for each of the four considered objectives), the equally distributed 

weights (i.e., 0.25) are the most desired condition for optimising the GIDPC 
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performance in which the COP and surface area values are significantly improved and 

the cooling capacity and wet bulb efficiency are almost same as the base system. But, 

considering the cooling capacity as the dominant objective (W1=0.85), results in 

significantly lower COP and higher surface area values. Considering the COP as the 

dominant objective (W2=0.85), has caused in low cooling capacity and wet bulb 

efficiency. Taking the wet bulb efficiency as the dominant objective (W3=0.85), has 

led to significantly low COP and cooling capacity values. Although considering the 

surface area as the dominant weight (W4=0.85) gives desired values for COP and 

efficiency but compared to the equal weights, the cooling capacity is substantially 

lower. Consequently, the equally distributed weights are chosen as the best solution 

for optimising the system performance. However, the cooling capacity and efficiency 

values are sacrificed due to the improved COP and surface area values. 

 

Table 5.3: Optimisation results by GA 

Method: Multi Objective Genetic Algorithm (GA) 

Climate: Hot summer continental (Dwa) / Beijing 

 

No. 

Design weights Decision variables Objectives 

W1 W2 W3 W4 Udry,in (m/s) φ (-) H (m) G (m) NL (-) Qcooling COP ɛwb As 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.23 0.84 0.006 159.85 1.23 34.20 0.85 52.76 

2 0.85 0.05 0.05 0.05 2.72 0.24 2.54 0.007 159.93 2.37 14.66 0.89 161.32 

3 0.05 0.85 0.05 0.05 2.00 0.17 0.80 0.007 100.5 0.85 40.52 0.67 31.80 

4 0.05 0.05 0.85 0.05 2.00 0.30 1.36 0.004 100.13 0.77 17.52 1.42 54.24 

5 0.05 0.05 0.05 0.85 2.00 0.22 0.80 0.005 102.32 0.82 36.35 0.86 31.92 

Base system  3.00 0.44 1.00 0.005 160.00 1.60 13.60 1.00 62.49 

No. Climate: Arid (BWh) / Doha 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.25 0.81 0.005 159.92 1.97 51.88 0.99 51.13 

2 0.85 0.05 0.05 0.05 2.75 0.22 2.25 0.007 159.95 3.71 25.20 0.85 143.01 

3 0.05 0.85 0.05 0.05 2.00 0.16 0.80 0.007 105.28 1.43 64.73 0.67 32.33 

4 0.05 0.05 0.85 0.05 2.01 0.28 1.43 0.004 100.27 1.20 26.26 1.38 57.23 

5 0.05 0.05 0.05 0.85 2.00 .204 0.83 0.005 100.21 1.26 53.08 0.94 31.94 

Base system  3.00 0.44 1.00 0.005 160.00 2.22 18.88 1.00 62.49 

No. Climate: Tropical rainforest (Af) / Miami 
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1 0.25* 0.25* 0.25* 0.25* 2.00 0.21 0.80 0.006 159.82 1.04 30.42 0.83 50.57 

2 0.85 0.05 0.05 0.05 2.93 0.23 2.78 0.007 159.97 2.17 10.68 0.89 126.86 

3 0.05 0.85 0.05 0.05 2.00 0.16 0.81 0.007 100.28 0.74 35.36 0.69 31.81 

4 0.05 0.05 0.85 0.05 2.00 0.28 1.27 0.004 100.09 0.67 16.48 1.47 50.04 

5 0.05 0.05 0.05 0.85 2.00 0.21 0.82 0.006 100.15 0.72 32.23 0.86 31.87 

Base system  3.00 0.44 1.00 0.005 160.00 1.21 10.25 1.01 62.49 

No. Climate: Mediterranean hot summer (Csa) / Rome 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.21 0.82 0.006 159.82 0.93 26.58 0.84 51.65 

2 0.85 0.05 0.05 0.05 2.70 0.24 2.66 0.007 159.84 1.80 10.88 0.91 169.82 

3 0.05 0.85 0.05 0.05 2.00 0.17 0.80 0.007 100.04 0.65 31.30 0.70 31.77 

4 0.05 0.05 0.85 0.05 2.00 0.28 1.24 0.004 100.11 0.59 15.17 1.43 48.64 

5 0.05 0.05 0.05 0.85 2.00 0.20 0.80 0.006 101.74 0.64 29.12 0.84 31.89 

Base system  3.00 0.44 1.00 0.005 160.00 1.71 14.52 0.99 62.49 

 

5.3.5. Results derived from GA: Decision variables 

Optimum intake air velocity: 

The intake air velocity is a factor which has a remarkable impact on system 

performance as it directly affects the cooling capacity and rate of heat and mass 

transfer within the HMX. A higher velocity is associated with larger pressure drop 

which results in more power consumption and consequently less COP values which 

are not desirable in optimization and performance evaluation of GIDPCs. Thus, 

calibrating the air velocity is challenging, as investigated by Xu et al. [127], and a 

robust trade-off considering the effect of several parameters was required to identify 

the optimum value in each climate. The GA algorithms revealed that the optimum air 

velocity is almost 2 (m/s) in all climates which is lower than the velocity in the base 

system which was 3 (m/s). Tendency of the GA to give a lower value for the air 

velocity was somehow expected as the higher COP values are expected. Hence, it can 

be concluded that a trade-off by GA has concluded that the lower range of the intake 

air velocity is weighted more than the maximum allowable value of 3.3 (m/s). 

Optimum working air ratio: 
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The working air ratio is defined as the ratio of the exhaust air to the total intake air. 

Higher working air ratio will lead to less supply airflow and consequently, more 

temperature drop will occur in intake air which flows inside the HMX dry channels. 

As a result, at a very high working air ratio, the dew point efficiency will increase but 

it will lead to lower COP and cooling capacity values. In addition, the low supply 

airflow will remain as an unfavourable issue. Thus, similar to the air velocity, 

calibrating the working air ratio is another important challenge in DPC operation 

which requires a trade-off between the other involved parameters in different climates. 

The working air fraction in the base system is taken as 0.44 which was based on the 

experimental study of the M30 (Coolerado USA) DPC 10. GA algorithm revealed that 

the optimum working air ratio is ranging from 0.21 to 0.25 which are less than 0.44 in 

operating condition of the base system. It means that less working air and more supply 

air compared to the base system operation condition leads to better system 

performance. The optimum working air ratio holds almost the same value of 0.21 in 

Miami and Rome where it is 0.25 in Doha and 0.23 in Beijing.  

 

Optimum HMX height: 

Higher HMX height normally results in better GIDPC performance in terms of cooling 

capacity by providing more heat transfer area in the HMX sheets but on the contrary 

it leads to higher pressure drop along the heat exchanger, higher fan power, larger 

surface area and higher construction costs simultaneously [172]. Therefore, GA 

needed a trade-off to recognize the optimum height values. The identified optimum 

HMX height is identified to be in the range 0.80 – 0.84 (m) which are lower than the 

base value of 1m. It is identified that the DPC had the best performance with the 

minimum height value of 0.80 (m) in Miami and by the maximum height of 0.84 (m) 
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in Beijing. The optimum HMX height in Doha and Rome were detected as 0.81 (m) 

and 0.82 (m) respectively. As a result, it can be seen that the optimum values are less 

than the maximum constraint which was 3 (m), less than the base system value which 

was 1 (m), and tend to hold a lower band value of the range. 

 

Optimum channel gap and number of layers: 

The smaller channel gap will cause a higher pressure drop and consequently will result 

in higher fan power and lower COP values. To the contrary, the larger channel gap 

will lead to higher mass flow rate and higher cooling capacity. Similarly, more layers 

can be considered as an important factor in increasing the pressure drop, surface area 

and construction cost. In addition, an increase of these parameters will lead to more 

evaporation area and more heat transfer from dry channel to wet channel. Therefore, 

like previous decision variables, a careful trade-off is needed to identify the optimum 

values in each climate. GA algorithm revealed that the optimum values are higher than 

the base system with channel gap of 0.005 (m) and number of layers of 160. The 

optimum value of channel gap is in the narrow range of 0.005-0.006 (m). Similarly, 

optimum values of the number of layers are almost same in all cities i.e., 159-160. The 

channel gap multiplied by the number of layers gives the width of the HMX that was 

0.8 (m) in the base system but it varies in the range 0.79 to 0.95 (m) in the optimum 

conditions. Hence, it is concluded that similar to the height of the system, the lower 

values of channel gap and number of layers are desired as they lead to a substantial 

decrease in surface area of the layers. 

The aforementioned optimum solutions will be used to investigate and compare the 

performance of the optimised system by GA with the base system over the operating 

months in each climate in the next chapter.   
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5.4. Method II: Particle Swarm Optimisation 

5.4.1. Overview 

PSO is inspired by movements of birds and fishes that congregate in large groups. The 

PSO is swarm-intelligence-based, approximate, non-deterministic optimisation which 

is also considered as a population-based stochastic optimisation algorithm and has 

some outstanding advantages over the traditional algorithms.  

For instance, its simple computation processes and the rapid convergency are the most 

important advantages of the method. In addition, capability of the PSO in global and 

local searching, and the ability in solving the highly nonlinear functions are placed the 

PSO as one of the most popular metaheuristic algorithms. Moreover, the fact that 

implementation of the PSO requires few parameters to adjust, is another important 

privilege. All aforementioned benefits, has led to extensive implementation of the PSO 

in human motion tracking and other complex applications with different fitness 

functions. 

The working principle of the PSO can be simulated by a group of birds which 

randomly search for a piece of food in a specific area. The best idea to quickly find 

the place of food to start searching randomly and follow the nearest bird to the food. 

In a similar manner, PSO is initialised with a random group of particles which 

represent the solutions which are optimised to find the best solution by updating the 

generations through numerous iterations.  

Each particle has a position in the search space, i.e., position, velocity, and individual 

best position. In each iteration, the particles are updated based on two best values. The 

first value represents the best value achieved so far which is also called a fitness value. 

This represents the local/individual best. The second best value is the best solution 
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that has observed so far by any particle within the population. This simply represents 

the global value.  

To implement the PSO algorithm, three main steps are needed as follows: 

1) The fitness of each particle must be evaluated. 

2) Updating the calculated global and individual best. 

3) The velocity and position of each particle must be updated. 

Having found global and individual best values, the PSO updates its positions and 

speed by the following Eq. (5.26) and (5.27): 

𝜐𝑖(𝑡 + 1) = 𝜔𝜐𝑖(𝑡) + 𝑐1𝑟1[�̂�𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑔(𝑡) − 𝑥𝑖(𝑡)]                            (5.26) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝜐𝑖(𝑡 + 1)                                                                                             (5.27) 

Where 

- 𝑖 represents the particle index 

- 𝜐𝑖(𝑡) represents the velocity of particle 𝑖 at time 𝑡 

- 𝑥𝑖(𝑡) represents the position of particle 𝑖 at time 𝑡 

- �̂�𝑖(𝑡) represents the individual best of particle 𝑖 at time 𝑡 

- 𝑔(𝑡) represents the global best as of time 𝑡 

- 𝜔 is called inertial coefficient: it helps the particles to move in a direction that 

was originally supposed to move and holds a value between 0.8 and 1.2. The 

lower values will increase the time of convergence as it contributes to further 

space search while the higher values lead to quicker convergence.  

- 𝑐1 is a cognitive coefficient: it helps the particle to remember its individual 

best and return when the space search ends, it normally holds a value near 2.  
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- 𝑐2 is a social component coefficient or global attraction rate: contributes the 

particle to move towards the global best which normally holds a value around 

2. 

- 𝑟1 and 𝑟2 are values which are chosen randomly: are used as additional random 

weights to improve the exploration and prevent trapping on local minimums. 

5.4.2. PSO development process 

As discussed in previous section, three different behaviours are defined for the 

particles in this optimization algorithm; (1) The fundamental behaviour is persistence 

of a particle having a random search in the solution space, (2) Tendency of the particle 

to redirect towards the best current solution of the whole swarm (Global best), and (3) 

The self-tendency of the particle to rely on its best own best solution.  

Equation 5.27 provides the mathematical behaviour of particles over iteration t. In 

the current study, 𝜔, the inertial coefficient has been set to hold the value of 1. Table 

5.4 provides the initial settings and Figure 5.9 shows the flowchart for the PSO 

algorithm. In addition, the same cost function for GA, as expressed by Equation 5.25, 

is used for PSO algorithm as well. 

Table 5.4: Parameter settings for PSO 

Parameter Values 

Number of particles 7 

Max. Number of Iterations 500 

Cognitive attraction rate, c1 2 

Global attraction rate, c2 2 

Upper inertia [3.3, 0.9, 3.0, 0.008, 200] 

Lower inertia [2.0, 0.1, 0.8, 0.004, 100] 

Velocity limit Infinite 
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Figure 5.9: Flowchart of the PSO process 

5.4.3. Results derived from PSO: weight distributions 

The optimum value of the decision variables in each climate is identified by PSO for 

the different weight distributions. The results are derived based on the average value 
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of the air properties, i.e., temperature and relative humidity, over the operating hours 

in 2020. In a similar manner to GA, this is done because a single optimized unit in 

each climate is aimed to operate for the next 30 years. Similar to GA, five scenarios 

are considered for each climate in which different weight distributions are assumed in 

order to assess and compare different weight distributions over the objectives.  

The primary scenario is to equally distribute the weights over selected objectives 

(multi-objective). It means that importance of objectives for the optimization 

algorithms is same while in other four scenarios, weight distribution is focused on one 

objective (single objective). This means that optimization algorithm will mainly focus 

on maximising/minimising that particular objective. This allows us to observe and 

compare the performance of the system under each scenario.  

The comprehensive results derived from PSO are listed in Table 5.5. In addition, the 

base system properties are listed in the table for better comparison. The results 

revealed that identified optimum decision variables by PSO are different from the base 

system. In addition, compared to the base system, the equally distributed weights lead 

to better results in terms of cooling capacity and COP while other objectives, i.e., wet 

bulb efficiency and surface area, remain almost same. However, the system 

performance under other single objective scenarios is not satisfying. Although, the 

third scenario where COP is considered as the dominant objective (W3 = 0.85) leads 

to convincing results, where COP is maximised and the surface area is lower than the 

base system, but cooling capacity which is one of the main performance parameters 

are lower than the base system. This trend is same in scenario 5 where surface area is 

the dominant objective (W4 = 0.85). High surface area in second scenario where 

cooling capacity is the dominant objective (W1= 0.85) and low cooling capacity in the 

fourth scenario where wet bulb efficiency is the dominant objective (W3= 0.85) have 
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made these scenarios unsatisfactory. As a consequence, scenario 1 in PSO method is 

selected to discuss optimization results and to investigate performance of the 

optimized systems.   

Table 5.5: Optimisation results by PSO 

Method: Multi Objective Particle Swarm Optimization (PSO) 

Climate: Hot summer continental (Dwa) / Beijing 

 

No. 

Design weights Decision variables Objectives 

W1 W2 W3 W4 Udry,in (m/s) φ (-) H (m) G (m) NL (-) Qcooling COP ɛwb As 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.26 0.80 0.005 196.29 1.72 39.17 0.87 62.20 

2 0.85 0.05 0.05 0.05 2.55 0.25 2.10 0.008 200.00 3.19 21.21 0.85 167.32 

3 0.05 0.85 0.05 0.05 2.00 0.18 0.81 0.008 104.62 1.04 47.77 0.65 32.16 

4 0.05 0.05 0.85 0.05 2.00 0.32 1.38 0.004 100.09 0.88 19.52 1.40 55.02 

5 0.05 0.05 0.05 0.85 2.00 0.23 0.80 0.005 100.00 0.93 41.50 0.86 31.75 

Base system  3.00 0.44 1.00 0.005 160.00 1.60 13.60 1.00 62.49 

No. Climate: Arid (BWh) / Doha 

1 0.25* 0.25* 0.25* 0.25* 2.00 0 .27 0.80 0.005 170.11 2.04 51.55 0.94 53.78 

2 0.85 0.05 0.05 0.05 2.52 0.25 1.93 0.008 200.00 4.33 31.86 0.84 153.63 

3 0.05 0.85 0.05 0.05 2.00 0.18 0.80 0.008 111.49 1.55 66.40 0.65 34.05 

4 0.05 0.05 0.85 0.05 2.00 0.34 1.43 0.004 100.00 1.18 25.29 1.38 57.09 

5 0.05 0.05 0.05 0.85 2.00 0.24 0.80 0.005 100.00 1.26 53.86 0.92 31.75 

Base system  3.00 0.44 1.00 0.005 160.00 2.22 18.88 1.00 62.49 

No. Climate: Tropical rainforest (Af) / Miami 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.24 0.80 0.006 200.00 1.39 31.96 0.83 63.38 

2 0.85 0.05 0.05 0.05 2.53 0.24 2.20 0.008 200.00 2.48 16.12 0.87 175.00 

3 0.05 0.85 0.05 0.05 2.00 0.17 0.80 0.008 100.00 0.79 38.01 0.67 31.75 

4 0.05 0.05 0.85 0.05 2.00 0.30 1.31 0.004 100.00 0.71 16.84 1.44 51.84 

5 0.05 0.05 0.05 0.85 2.00 0.21 0.80 0.006 100.00 0.75 34.35 0.85 31.75 

Base system  3.00 0.44 1.00 0.005 160.00 1.21 10.25 1.01 62.49 

No. Climate: Mediterranean hot summer (Csa) / Rome 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.27 0.80 0.005 199.43 1.83 40.78 0.88 63.21 

2 0.85 0.05 0.05 0.05 2.51 0.26 2.09 0.008 200 3.35 23.08 0.85 165.91 

3 0.05 0.85 0.05 0.05 2.00 0.18 0.80 0.008 107.69 1.12 50.05 0.64 32.80 

4 0.05 0.05 0.85 0.05 2.00 0.35 1.40 0.004 100.00 0.91 19.82 1.39 55.81 

5 0.05 0.05 0.05 0.85 2.00 0.24 0.80 0.005 100.00 0.98 43.12 0.85 31.75 

Base system  3.00 0.44 1.00 0.005 160.00 1.71 14.52 0.99 62.49 
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5.4.4. Results derived from PSO: Optimised decision variables  

As listed in Table 5.5, in all climates, the optimum velocity of the intake air derived 

by PSO is 2 (m/s) which is lower than the velocity in base system, i.e., 3 (m/s). This 

is resulted from a robust trade-off by the optimization algorithms as higher velocity 

leads to higher pressure drop and to lower COP values which are not preferred but 

could lead to more heat and mass transfer rate within the HMX. This low value was 

expected as the higher COP was aimed.   

The optimum working air ratio by PSO methods in all four climates are in the range 

of 0.24 – 0.27 which are lower than the working air ratio in base system, i.e., 0.44. 

The working air ratio is proportional to the exhaust air to intake air which its higher 

value will lead to higher temperature drop, higher efficiencies but will bring down the 

COP and cooling capacity. The identified working air ratio by PSO method in hot 

summer, typical rainforest, Mediterranean hot summer, and Arid climates are same 

which are 0.26, 0.24, 0.27 and 0.27 respectively.  

The optimum HMX height identified by PSO is 0.80 (m) which is lower than the base 

system height, i.e., 1 (m). A GIDPC with longer HMX has better performance in terms 

of cooling capacity but it brings up negative effects by increasing the surface area, 

pressure drop and fan power consumption [33]. Therefore, although it provides the 

users with more efficient system but it can’t be an economical choice. As a 

consequence, over a trade-off, it is concluded by both optimization methods that the 

optimum HMX height is 0.8 (m) in all climates. 

The channel gap in the base system is 0.005 (m) while it is revealed that the optimum 

values are different. Base on the PSO method, the optimum channel gap in tropical 

rainforest climate is 0.006 (m) while it is same as the base system in other climates. 

High pressure drop can be recorded in smaller channel gap values which require higher 
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fan power consumption while a larger channel gap can lead to better cooling capacity 

values.  

Higher number of layers will bring about more power consumption as a result of 

higher pressure drop and add up to the construction and running cost. However, it can 

improve the system performance in terms of cooling capacity. The number of layers 

in the base system is 160 while the optimum numbers in PSO range from 170.11 to 

200.00.  

The PSO results will be used to investigate and compare the performance of the 

optimised GIDPC in different climates over the operating month in the next chapter 

in order to report the impact of the PSO.  

5.5. Method III: Slime Mould Algorithm 

5.5.1. Overview 

The state-of-the-art metaheuristic optimisation algorithm, called Slime Mould 

Algorithm (SMA), is used to compare its performance with two selected common 

algorithms (PSO and GA). The considered SMA optimisation is inspired by the 

behaviour and constructional change in slime mould in foraging in which the slime 

mould simply refers to Physarum polycephalum. Slime mould is considered as a 

eukaryote that can be found in cold and humid climates. Its main nutritional phase is 

called Plasmodium in which the organic matter search for food and surrounds it to let 

the enzymes to digest it [271].  

Figure 5.10 demonstrates the foraging process of the slime mould. As seen, due to the 

unique pattern, they can be fed by different food sources through a venous network. 

Very few studies have been conducted on the slime mould so far that let us recognize 

that a propagating wave, which is produced by the bio-oscillator when a vein goes for 
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a food source, produces cytoplastic flow via the vein [272]. In addition, it is unveiled 

that the faster cytoplasm leads to thicker veins. Eventually, the slime tries to find the 

best/optimal way to reach the food sources. This feature caused the slime mould to be 

modelled and applied in a few research studies [273], [274]. 

 

 

Figure 5.10: Foraging of slime mould [275] 

The correlations between the contraction mode and structural changes in the venous 

shaping are as follows: 

- The contraction frequency change from outside to inside leads to the vein 

construction. 

- The anisotropy happens when the contraction mode is not stable. 

- The venous is not present when the contraction is independent of space and 

time. 
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It can be concluded that like previous algorithms, the concentration and focus of the 

slime mould is on the region where the solution can be found. It means that the slime 

mould focuses on a region where the food concentration is high by building a robust 

root. The root is powered by increasing the diameter of the veins when the cytoplasm 

flow increases and when it decreases, the diameter of the veins decreases [275]. 

The aforementioned features have made the researchers consider the slime mould as 

an optimisation algorithm [276] which resulted in introduction of SMA. In a quite 

similar way with PSO, the slime mould, searches for the food with higher 

concentration/quality with a need to choose the appropriate speed and risk in foraging 

process. In addition, the slime mould needs to know when is the best time to get away 

from a food source which one supportive way would be to follow the heuristic and 

empirical rules [277]. One superior feature of slime mould is that it can consume and 

be fed by different food sources at the time even when it finds more than one good 

food sources [278]. Moreover, the slime mould can adjust or optimise the searching 

pattern based on the quality of the food source using a method called region-limited 

search [279]. If the quality of the currently exploring food source is not satisfying, the 

slime mould would get away from that particular source to approach the other source 

[280].  

All aforementioned features of the slime mould are used in development of the SMA 

method which makes it competitive with the previously discussed methods (GA and 

PSO).  

5.5.2. SMA development process 

As stated, the SMA has three phases including approach food, wrap food and grabble 

food. In the approach food, Eq. (5.28) can be used as a mathematical model for 

approaching behaviour of slime mould. 
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X(t + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {
Xb(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + vb⃗⃗⃗⃗ ∙ (W⃗⃗⃗ ∙ XA(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − XB(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) , r < 𝑡𝑎𝑛ℎ|S(i) − DF|

vc⃗⃗  ⃗ ∙ X(t)⃗⃗⃗⃗⃗⃗⃗⃗  , r ≥ 𝑡𝑎𝑛ℎ|S(i) − DF|
 (5.28) 

where |𝑆(𝑖) − 𝐷𝐹| stands for the distance between the fitness of 𝑋  and the fitness 

achieved in all iterations (𝑖 ∈ 1,2,… , 𝑛),  𝑣𝑏⃗⃗ ⃗⃗  ⃗ is an internal vector in SMA with the 

range defined based on Eq. (5.29), 𝑣𝑐⃗⃗⃗⃗  is another vector that linearly decreases from 

one to zero, t stands for current iteration number. The location of a point with the 

highest rate of odour concentration that currently is found can be represented by 𝑋𝑏⃗⃗ ⃗⃗  ⃗ , 

and current location of the slime mould is represented by 𝑋 . In each iteration, two 

individuals are randomly selected from the swarm as 𝑋𝐴⃗⃗⃗⃗   and 𝑋𝐵⃗⃗ ⃗⃗   and their distance will 

be gained by weight of slime mould as �⃗⃗⃗� . 

vb⃗⃗⃗⃗ = [−𝑎𝑟𝑐𝑡𝑎𝑛ℎ (−(
t

𝑚𝑎𝑥 _t
) + 1), 𝑎𝑟𝑐𝑡𝑎𝑛ℎ (−(

t

𝑚𝑎𝑥 _t
) + 1)] (5.29) 

Weight of slime mould �⃗⃗⃗�  can be calculated by Eq. (5.30) in which “Smell Index” is 

a sorted version of fitness vector. 

W(SmellIndex(i))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

{
 
 

 
 1 + r ∙ log (

bF − S(i)

bF − wF
+ 1) ,        condition  

1 − r ∙ log (
bF − S(i)

bF − wF
+ 1) ,          others

 

  

(5.30) 

  

where r is a uniformly distributed random number with the range of [0, 1], the ranked 

first half of the population is indicated by 𝑆(𝑖), bF and wF denote the best and the 

worst fitness values in each iteration respectively. In the wrap food phase, the location 

of the slime mould can be formulated using Eq. (5.31) as follows: 
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X∗⃗⃗⃗⃗ = {

rand ∙ (UB − LB) + LB, rand < z              

Xb(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + vb⃗⃗⃗⃗ ∙ (W ∙ XA(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − XB(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) , r < p          

vc⃗⃗  ⃗ ∙ X(t)⃗⃗⃗⃗⃗⃗⃗⃗  , r ≥ p                                                         

 
   

(5.31) 

where upper bound and lower bound of the search algorithm can be defined by UB 

and LB, respectively. Both rand and r are the uniformly distributed random numbers 

which range from 0 to 10.  

In the grabble food phase which is generated through a random oscillation procedure 

with the bound of [−𝑎, 𝑎], and a negative gain, 𝑣𝑏⃗⃗⃗⃗  which gradually tends to zero over 

the iterations. Similarly, 𝑣𝑐⃗⃗⃗⃗  value is generated through a random oscillation procedure 

with the bound of [-1,1] and a negative gain that eventually approaches zero in the 

final iteration. The flowchart of the SMA is illustrated in Figure 5.11 and the initial 

parameters are listed in Table 5.6. 

Table 5.6: Parameter settings for SMA 

Parameter Values 

Max. Number of Iterations 500 

Slime Mould Dimension Size 7 

Number of Search Agents 30 

Upper Bound Vector (UB) [3.3, 0.9, 3.0, 0.008, 200] 

Lower Bound Vector (LB) [2.0, 0.1, 0.8, 0.004, 100] 

 

The following Multi-Objective (MO) cost function, Eq. (5.32), is same as the cost 

function for GA and PSO in which seven dimensions are associated, i.e., intake air 

temperature (Tdry,in ), intake air relative humidity (RHdry,in ), intake air velocity 

(𝑈dry,in), working air ratio (φ), HMX height (H), gap (G), and number of layers in 

HMX structure (NL ). Noted that 𝑇𝑑𝑟𝑦,𝑖𝑛and 𝑅𝐻𝑑𝑟𝑦,𝑖𝑛  are predefined based on the 
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climates. It means that the decision variables of the optimization algorithm are intake 

air velocity, working air ratio, channel gap and number of layers. In addition, the 

objective of the optimization is to maximise the cooling capacity (𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔), COP and 

wet bulb efficiency (ɛ𝑤𝑏 ,), and to minimise the surface area of the layers (𝐴𝑠,) [33]. 

 

(𝑇𝑑𝑟𝑦,𝑖𝑛, 𝑅𝐻𝑑𝑟𝑦,𝑖𝑛, U𝑑𝑟𝑦,𝑖𝑛, 𝜑, 𝐻, 𝐺,𝑁𝐿) =  𝑊1
𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔

𝑅𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔
+𝑊2

𝐶𝑂𝑃

𝑅𝐶𝑂𝑃
+𝑊3

ɛ𝑤𝑏

Rɛ𝑤𝑏
+𝑊4

𝑅𝐴𝑠

𝐴𝑠
      (5.32) 

 

where 𝑊𝑖 represent the weights for each objective, R𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔, RCOP, 𝑅ɛ𝑤𝑏 , and 𝑅𝐴𝑠 

are typical values of 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔, COP, ɛ𝑤𝑏, and 𝐴𝑠, respectively. 
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Figure 5.11: Flowchart of SMA method 

 

5.5.3. Results derived from SMA: Weight distributions 

In a similar way to GA and PSO, the optimum value of the decision variables in each 

climate is identified by SMA. It is worth repeating that the results are derived based 
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on the average value of the air properties, i.e., temperature and relative humidity, over 

the operating hours in 2020. This is done because a single optimized unit in each 

climate is aimed to operate for the next 30 years. The same five scenarios are 

considered for each climate in which different weight distributions are assumed to 

make the comparison more sensible. The comprehensive results derived from SMA 

are listed in Table 5.7.  

Compared to the base system, the equally distributed weights lead to better results in 

terms of cooling capacity and COP while other objectives, i.e., wet bulb efficiency 

and surface area, remain almost same. However, the system performance under other 

single objective scenarios is not satisfying. Although, the third scenario where COP is 

considered as the dominant objective (W3 = 0.85) leads to convincing results, where 

COP is maximised and the surface area is lower than the base system, but cooling 

capacity which is one of the main performance parameters are lower than the base 

system. This trend is same in scenario 5 where surface area is the dominant objective 

(W4 = 0.85). High surface area in second scenario where cooling capacity is the 

dominant objective (W1= 0.85) and low cooling capacity in fourth scenario where wet 

bulb efficiency is the dominant objective (W3= 0.85) have made these scenarios 

unsatisfactory. As a consequence, similar to the previous methods, scenario 1 in SMA 

method is selected to discuss optimization results and to investigate performance of 

the optimized systems.   

 

Table 5.7: Optimisation results by SMA 

Method: Slime Mould Algorithm (SMA) 

Climate: Hot summer continental (Dwa) / Beijing 

 Design weights Decision variables Objectives 
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No. W1 W2 W3 W4 Udry,in (m/s) φ (-

) 

H 

(m) 

G 

(m) 

NL (-) Qcooling COP ɛwb As 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.26 0.80 0.004 128.03 1.06 33.12 1.07 40.70 

2 0.85 0.05 0.05 0.05 2.30 0.24 1.60 0.008 200.00 2.72 28.35 0.81 126.79 

3 0.05 0.85 0.05 0.05 2.00 0.18 0.81 0.008 103.34 1.03 47.79 0.65 31.99 

4 0.05 0.05 0.85 0.05 2.00 0.32 1.41 0.004 100.00 0.88 19.30 1.40 56.28 

5 0.05 0.05 0.05 0.85 2.00 0.22 0.80 0.005 100.00 0.93 41.23 0.86 31.75 

Base system  3.00 0.44 1.00 0.005 160.00 1.60 13.60 1.00 62.49 

No. Climate: Arid (BWh) / Doha 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.22 0.80 0.004 141.36 1.65 48.54 0.98 44.99 

2 0.85 0.05 0.05 0.05 3.02 0.22 1.40 0.008 200.00 4.26 27.27 0.67 111.59 

3 0.05 0.85 0.05 0.05 2.00 0.18 0.80 0.008 110.21 1.53 66.38 0.65 33.58 

4 0.05 0.05 0.85 0.05 2.00 0.34 1.41 0.004 100.00 1.18 25.56 1.38 56.25 

5 0.05 0.05 0.05 0.85 2.00 0.24 0.80 0.004 100.00 1.16 44.82 1.08 31.75 

Base system  3.00 0.44 1.00 0.005 160.00 2.22 18.88 1.00 62.49 

No. Climate: Tropical rainforest (Af) / Miami 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.24 0.80 0.006 199.86 1.40 32.83 0.79 63.33 

2 0.85 0.05 0.05 0.05 2.28 0.23 2.22 0.008 200.00 2.33 18.93 0.90 176.89 

3 0.05 0.85 0.05 0.05 2.00 0.16 0.80 0.008 100.00 0.79 38.04 0.67 31.75 

4 0.05 0.05 0.85 0.05 2.00 0.29 1.32 0.004 100.00 0.71 16.80 1.44 52.27 

5 0.05 0.05 0.05 0.85 2.00 0.21 0.80 0.005 100.96 0.75 33.49 0.88 31.79 

Base system  3.00 0.44 1.00 0.005 160.00 1.21 10.25 1.01 62.49 

No. Climate: Mediterranean hot summer (Csa) / Rome 

1 0.25* 0.25* 0.25* 0.25* 2.00 0.27 0.82 0.006 158.41 1.52 42.34 0.84 51.19 

2 0.85 0.05 0.05 0.05 2.23 0.27 1.89 0.008 200 3.00 28.84 0.88 150.16 

3 0.05 0.85 0.05 0.05 2.00 0.18 0.80 0.008 104.96 1.10 50.03 0.65 32.21 

4 0.05 0.05 0.85 0.05 2.00 0.34 1.39 0.004 100.00 0.91 19.90 1.39 55.41 

5 0.05 0.05 0.05 0.85 2.00 0.21 0.80 0.006 100.00 1.01 46.57 0.76 31.75 

Base system  3.00 0.44 1.00 0.005 160.00 1.71 14.52 0.99 62.49 

 

5.5.4. Results derived from SMA: Optimised decision variables  

In all climates optimum velocity of the intake air derived by SMA is 2 (m/s) which is 

lower than the velocity in base system, i.e., 3 (m/s). The optimum working air ratio by 

SMA method in all four climates are in the range of 0.22 – 0.27 which are lower than 

the working air ratio in base system, i.e., 0.44. The identified working air ratio by both 

methods in Arid, hot summer, typical rainforest and Mediterranean hot summer 

climates are same which are 0.22, 0.26, 0.24 and 0.27 respectively. The optimum 

HMX height identified by SMA is in narrow range of 0.80-0.82 (m) which is lower 
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than the base system height, i.e., 1 (m). The channel gap in the base system is 0.005 

(m) while it is revealed that the optimum values are different. Based on SMA results, 

it holds the optimum value of 0.004 (m) in hot summer continental and arid climates, 

and 0.006 (m) in tropical rainforest and Mediterranean hot summer climates. The 

number of layers in the base system is 160 while the optimum numbers in SMA it is 

in the range of 128.03-199.86.  

The results derived in SMA will be used to investigate/compare the performance of 

the optimised system by SMA with other optimised systems (by PSO and GA) and 

base system in different climates in the next chapter to discuss the impact of 

optimisations. 

 

5.6. Comparison and assessment of the optimisation methods 

In this section, the methods to assess the accuracy and correctness of the developed 

optimisation methods, i.e., GA, PSO and SMA, are summarised. It is followed by 

comparison of the models in terms of efficiency and convergence speed to reveal the 

pros and cons of each method.  

In general, there are different ways to check the correctness and accuracy of the 

implemented optimisation models which are all derived in MATLAB. However, The 

following common and most effective approaches to check the correctness and 

efficiency of the optimization models are provided as follows [268]:  

Comparison with classical approaches: In some problems it can be possible to run 

both classical approach and multi-variate GA to make sure the results are correct and 

accurate. However, in this paper, because of mathematical complexity using a classical 

approach for comparison is not possible.  
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Using Well-known Benchmarks: The correctness of the code can be also proven 

through the existing benchmarks. The used algorithm has been validated via 23 well-

known benchmarks [281]. 

Using Expert Idea: An expert of the system can check the results and their rationality. 

The authors of this paper have implemented the system and they have the experimental 

experience with the system. Therefore, they all agree that the final results are logical. 

Convergence: The convergence of the implemented multi-objective genetic 

algorithm can be easily observed through the plot of cost vs. iterations. There are also 

other factors such as roundoff errors and local extrema that have the same perspective. 

Domination Factor: The implemented multi-objective genetic algorithm has the 

function to separate dominant results from non-dominant one. So, all final results are 

dominant and with a proper initial population it is very rare to be trapped by a local 

minimum. For more information regarding the domination please check. 

Although in general the common GA and PSO methods have similar efficiencies but 

PSO is more efficient in terms of computations in which fewer functions are used. 

Exploration and exploitation are considered as two important stages in the 

metaheuristic algorithms which are needed to be balanced. As it was mentioned the 

No-Free-Lunch (NFL) theory has proven that none of the substantially improved 

metaheuristic algorithms, can assure to find the global optimum. As a result, the 

endeavours in introducing the new efficient algorithms are led to introduction of new 

methods which the SMA is one of them. It is proved that the SMA makes a superb 

balance between the explorations and exploitations which can lead to better statistical 

performance than the PSO. 

It has concluded that the SMA has the following advantages over the PSO and GA: 



CHAPTER 5: DEVELOPMENT OF MULTI-OBJECTIVE EVOLUTIONARY 

OPTIMISATIONS AND ASSOCIATED RESULTS 

   219 

I) It is novel optimization algorithm with no application/study in 

engineering.  

II) The SMA is fast and it diverges to an optimal solution quickly. 

III) The algorithm has low computational complexity.  

However, it is thought that the efficiency and applicability of the SMA may be refused 

as it is a new method which is not implemented in different fields yet. Thus, the PSO 

and GA algorithms as well-known optimization algorithms are used in parallel to make 

sure that the SMA performs well in our field of research.  

To this end, apart from the acceptable results derived by SMA, Figures 5.12-5.14 are 

provided to show the quicker convergence in SMA than the PSO and GA. The 

methods are comparable as the cost function, fitness function, objective functions and 

all decision variables are identical in all of them. Therefore, it can be concluded that 

in terms of efficiency and convergence speed, SMA outperforms the PSO and GA. 

However, in the next chapter, the performance of the optimised systems by all of the 

three methods will be assessed in order to disclose which method leads to better 

GIDPC performance.  
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Figure 5.12: GA convergence 

 

 

Figure 5.13: PSO convergence 
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Figure 5.14: SMA convergence 

5.7. Summary 

In this chapter, firstly a review is carried out over the development of the optimisation 

algorithms. It is narrated that the heuristic optimisation algorithms are more preferred 

owing to their outstanding superiority over the traditional optimisation algorithms. 

Being robust in considering the highly nonlinear functions and swift calculation 

process is the main advantage of the heuristic optimisations over the traditional ones. 

Three nature-inspired optimisation algorithms including the popular Genetic 

Algorithm (GA) and Particle Swarm Optimisation (PSO) as well as a state-of-the-art 

Slime Mould Algorithm (SMA), are all developed to identify the optimum operating 

and design parameters of the GIDPC. This is made in four different climatic conditions 

which are suitable for operation of the GIDPC during their warm months. The results 

revealed that the identified operating and design parameters by all algorithms are 

relatively similar, however, there are slight differences in some decision variables. The 

performance of the base system is compared with the optimised systems and it is 
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revealed that the optimised systems outperform the base system in terms of COP and 

surface area. However, other performance parameters are unchanged or differed 

slightly. Eventually, the comparison-based analysis is conducted to assess the 

performance of the developed models. It is revealed that the SMA is fast in operation 

and also in diverging to an optimal solution and has less computational complexity.  
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CHAPTER 6: APPLICATIONS AND ENERGY SAVING 

ASSESSMENT OF THE GIDPC 

6.1. Introduction 

In this chapter, firstly, sample applications for the developed ML models are presented 

to show how the ML models can predict the performance of the GIDPC. Afterwards, 

the second and major objective of this chapter which is comparing the performance of 

the optimized GIDPCs in diverse climates, is presented. This is carried out to show 

the performance and impact of the optimization algorithms on the system’s operation.  

As of the MPR application, the monthly performance of a GIDPC in Arid climate, i.e., 

Doha city, in 2020 is predicted using the MPR model. Then, owing to the increased 

cooling demand in Data Centres (DCs), as a result of growing internet and cloud 

computing needs, GIDPC is introduced as potential cooling systems in DCs. As a 

consequence, an application of a DNN model is presented in which the ability of the 

GIDPC in removing the dissipated heat from the IT room of a small assumed DC is 

discussed. This is conducted by predicting the supply air temperature of the GIDPC in 

different climates.  

Eventually, the performance of the base GIDPC is compared with three optimized 

GIDPCs in four selected climates, i.e., Hot summer continental, Arid, tropical 

rainforest, and Mediterranean hot summer, in 2020 and 2050. This is carried out by 

comparing the hourly COP of the systems during the operating hours in all climates. 

Moreover, the average values of other performance parameters such as cooling 

capacity and wet-bulb efficiency for all systems are provided. This is followed by 

annual energy saving analysis of the optimized systems in which the rate of power 

consumption by all systems is selected as the basis of the calculations.  
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6.2. MPR application: Performance prediction of the GIDPC 

6.2.1. MPR initial settings 

In this section, an application of the developed MPR model is presented to demonstrate 

its capability in GIDPC performance prediction. In this regard, the comprehensive 

Equation 4.16 is needed to be adjusted. In order to initialise the adjustment, the 

appropriate polynomial coefficients for the 8th degree polynomial equations, as listed 

in Table 4.7, are needed to be replaced in general/comprehensive equations. Therefore, 

GIDPC’s design (geometric set) and operating conditions are needed to be selected 

accordingly. In this application, the geometric set 2 in which the HMX height is 1(m), 

the HMX gap is 0.004(m), and the number of layers is 200, is selected. As a result of 

considering the aforementioned conditions and applying the 8th degree polynomial 

powers from Table 4.6 in the general equations, the following Eq. (6.1) is achieved 

which will be used for the performance prediction of the selected GIDPC. 

 

[
 
 
 
 
Qcooling
COP
ɛwb
ɛdp
ΔP ]

 
 
 
 

 =  

[
 
 
 
 
Qcooling
COP
ɛwb
ɛdp
ΔP ]

 
 
 
 

 =

[
 
 
 
 
+3.118e+ 03
−2.287e+ 03
−1.661e+ 02
+3.661e+ 02
−3.839e+ 01]

 
 
 
 

+

[
 
 
 
 
+1.048e+ 03 +1.092e + 02 … −6.689e+ 04
+5.186e+ 02 +5.186e + 02 … −4.727e+ 03
+1.046e+ 02 +1.046e + 02 …
−8.634e+ 01
+8.032e+ 00

−8.634e + 01
+8.032e + 00

…
…

+5.501e+ 01
⋮

+4.384e+ 00]
 
 
 
 

×

[
 
 
 
 
T1 × RH0 × U0 × φ0

T2 × RH0 × U0 × φ0

T3 × RH0 × U0 × φ0

⋮
T0 × RH0 × U0 × φ8]

 
 
 
 

           (6.1) 

 

6.2.2. GIDPC operating conditions 

As explained in chapter 5, a high emission scenario defined by the Intergovernmental 

Panel for Climate Change (IPCC) is used to generate the weather data in this research 

study. It is worth reviewing that the IPCC’s SRES A2 climate scenario in Meteonorm 

software is used to create the hourly temperature and relative humidity in the selected 
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cities. The selected cities represent the four operating climates in which the GIDPC is 

eligible (or needed) to operate based on the predefined operating ranges and weather 

properties.  

 

In this section, the developed MPR model is employed to predict the GIDPC monthly 

performance in Arid climate, i.e., Doha city. To this end, the monthly average 

temperature and relative humidity values in 2020 are calculated in Doha. The monthly 

temperature and relative humidity of the operating months are listed in Table 6.1. The 

reason for selecting Doha is mainly because of its warmest conditions and highest 

number of operating hours among the other selected cities. The geometric set 2 GIDPC 

in MPR model is selected for the performance predictions while the working air 

velocity is set 3(m/s) and the working air ratio of 0.44 is selected.  

 

Table 6.1: Average monthly weather properties in Doha 2020 

Month Average T (C) Average RH (-) 

January 25.62 0.49 

February 26.59 0.48 

March 27.32 0.46 

April 29.02 0.47 

May 32.61 0.42 

June 34.96 0.39 

July 36.3 0.45 

August 35.75 0.51 

September 33.25 0.62 

October 30.51 0.61 

November 27.79 0.62 
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December 26.31 0.58 

 

6.2.3. Monthly performance prediction 

In Figure 6.1, three performance parameters of the GIDPC, i.e., cooling capacity, 

COP, and wet-bulb efficiency are shown for Doha from January to June in 2020. As 

seen, the cooling capacity in the selected operating months ranges from 3.68kW in 

January to 5.63kW in June. Similarly, the COP is in the range of 16.01-24.75, wet-

bulb efficiency is in the range of 0.90-0.94.  

 

Although the main ML model in this study is DNN, but this application revealed that 

the MPR is capable of making the predictions despite being weak compared to the 

DNN. The main weakness of MPR is that the design parameters are limited to the 

determined geometric sets which substantially decrease the efficiency and flexibility 

of the model. In addition, it covers limited ranges of the operating parameters which 

again this issue decreases the comprehensiveness of the model.  

 

 

Figure 6.1: MPR application: Monthly performance parameters prediction in Doha 2020 
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6.3. DNN application: The GIDPCs in a Small Data Centre 

6.3.1. Design requirement and operating conditions 

Over the past few years, the cooling demand of commercial and industrial buildings 

has increased significantly which led to a rapid increase in size and number of the Data 

Centres (DCs) to satisfy the growing the internet and cloud computing needs [282]. 

DCs usually operate 24/7 all along the year, which leads to intensive power usage 

levels [283]–[286] (e.g., Google with 300 million and Facebook with 60 MW of power 

usage [287]. The equipment used in DCs produces a massive amount of heat [288], 

which has to be removed from the server rooms using the cooling systems [289]. 

While the power densities of DCs is varied from 0.5 to 10 kW.m-2 [290], cooling 

systems are responsible for almost 40% of total energy consumption in DCs [291]. 

Moreover, cooling costs form around 30% of the total energy expenditure in DCs, 

which has caused the DCs to operate at higher temperatures to reduce cooling costs 

[222]. The cooling systems’ main tasks in DCs are: removing the dissipated heat from 

the IT Equipment (ITE) and distributing cold air into the DCs [289]. The efficient 

cooling systems are required to run the DCs in a more economically and efficiently 

way. 

In general, the cooling systems in DCs comprises two parts, i.e., a CRAC unit and a 

dedicated air distribution system [292] in which the CRAC unit includes the main 

cooling systems and the air distribution system comprises the ducting system which 

distribute the produced supply air by the cooler to the IT room of the DC.  

Figure 6.2 illustrates the power consumption breakdown in DCs. As seen from Figure 

6.2, the power consumption is categorized in three different groups, i.e., space cooling, 
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electrical losses and powering the server equipment in which the majority of the power 

delivered to the DCs is consumed for the space cooling. This is 15% more than the 

electricity needed for powering the server equipment which is considered as the core 

part of the DCs. Moreover, it can be seen that the electrical losses are 35% less than 

the power required for space cooling. This information indicates that the need for 

efficient cooling systems in DCs is vital. This can happen by proposing the new 

methods and strategies for cooling the DCs which can replace the current traditional 

cooling systems. Traditional cooling systems are based on energy intensive 

mechanical vapour compression. The energy intensiveness of the traditional cooling 

systems is worsened because of the following reasons [293]: 

1. The cooling systems are needed to operate all along the year even in the coldest 

seasons as the heat dissipation by the ITE continues. 

2. In the traditional DCs, the air distribution was unable to stop the cold and hot 

air streams from mixing that was leading more need for the cooling system 

operation. 

3. In some cooling systems, e.g., water side cooling systems, due to the size and 

floor plan of the DCs, long ducting pipes. The required fans and pumps which 

are needed to transport the air/water increases the power consumption of the 

whole cooling system.  

One simple solution to improve the efficiency of the cooling systems in DCs and to 

solve the second and the third aforementioned problems is reducing or even 

eliminating the need for the ducting pipes. Several solutions are proposed through 

different research studies to mitigate this problem in DCs. For instance, employing 

rack backdoor coolers, ceiling coolers, specific rack arrangement, etc. [294], [295]. 

However, the first problem is now solved by implementing the free air-cooling 
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technology which is also called an economizer cycle. This technology reduces or in 

some cases removes the need for CRAC units which can results in substantial power 

saving in DCs [296]–[300]. The free air-cooling technology has three types, as below: 

- Airside economizer: The airside economizer free air-cooling technology 

simply decreases the operating temperature of the DCs by making the air to 

directly flow into the IT room of the DC or by to indirectly make the air to 

flow into the room. In the indirect mode, auxiliary components such as fin and 

tube heat exchanger, rotary wheel and the air to air heat exchanger are needed.  

- Waterside economizer: The waterside economizer employs different 

technologies, e.g., water pump, cooling tower, to transfer and then circulate 

the water in the CRAC 

- Heat pipe systems: Heat pipe is used to transfer the heat based on the thermal 

conductivity and phase transition. 

  

 

Figure 6.2: Hot/Cold aisle cooling configuration in DCs [301] 
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Although the free air-cooling technology is efficient enough but in order to employ 

them in the DCs, the following effective factors must take into considerations: 

 

- The geographic location: The airside free cooling technology is limited to 

mild/cold climates and it underperforms in hot and humid climates. 

 

- DC operating range: Although the operating ranges were tight in the DCs but 

it then updated by ASHRAE which let the free air-cooling technology to 

operate in more hours [302]. The most updated classification and 

corresponding operating ranges are shown in Figure 6.3. 

 

- Air distribution system: The most concerning issue in the traditional DCs 

was mixing the hot and cold airflows within the IT room which could lead to 

inefficient cooling. This problem is solved by separating the hot and cold 

airflows in order to avoid them from mixing.  
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Figure 6.3: ASHRAE classification for data centres 

 

The cooled air with the required temperature is supplied into the DC through the 

dedicated air distribution system to remove the dissipated heat from the ITE [303]. 

Although there are numerous containments which are used in DCs to separate the cold 

and hot air streams as shown in Figure 6.4, there are two common cold/hot aisle 

containment in DCs in which the cold airstreams and hot air streams are kept 

separated. The supply air for the cooling systems is transferred to the cold aisle in 

order to reject the heat dissipated by the ITE through the hot aisle. The positions of 

the hot and cold aisle can be either between the racks or insides which depend on 

design factors in DCs. 
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Figure 6.4: Two commonly used cold/hot aisle containment in DCs [304] 

As seen in Figure 6.4, the supply air produced by the cooling system is transferred to 

the IT room from under the floor. This is called and Underfloor Air Distribution 

(UFAD) system which is identified as the most efficient method to transfer the 

supply/cooled airflow into the ITE room within the DCs [305]. However, the 

efficiency of the cooling system in DCs significantly depends on the airflow 

distribution system within the ITE room.  
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The hot/cold aisle airflow distribution is identified as the most efficient configuration 

in the modern DCs as shown in Figure 6.5. The main advantage of this configuration 

is that it keeps the cooled and warm air separated, resulting in better cooling efficiency. 

This configuration prevents the cooled and warm from being mixed and assures that 

the cooled air arrives the cold aisle in its original condition and without being affected 

by the warm air to the high temperature ITE. Therefore, this leads to the more efficient 

cooling process and less power consumption within the DCs. 

 

Based on the ASHRAE thermal guidelines for DCs (2016), ASHRAE TC9.9-Data 

Centre Power Equipment Thermal Guidelines and Best Practices, DCs are classified 

into six classes based on reliability and their uptime. The recommended operating 

temperature and relative humidity ranges for all classes regardless of climate/region 

are 18-27˚C and 20-80% respectively. It means that the temperature and relative 

humidity of cold air delivered to the DCs (supply air temperature of GIDPC) should 

be in the aforementioned ranges to assure the efficient cooling down process for the 

ITE of the DC.  

 

6.3.2. Assumed Data Centre 

In this section, an application of operating GIDPC as the main cooling system in the 

ITE room of a small DC is provided to report the energy saving potential of the 

technology by predicting the performance of GIDPC using the DNN model. Thus, to 

fulfil this goal, a small DC is assumed to operate when the GIDPC is its main cooling 

technology.  
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Based on the potential of the current GIDPC [38], [127], [171] and the performance 

of the technology in the current study, it is concluded that the supply air temperature 

of the GIDPC which will be delivered to the ITE room of the DC (cold aisle 

temperature), should reach a value of less than 22˚C. This will help the GIDPC to 

reach its highest cooling capacity and to satisfy the all classes of the DC according to 

the aforementioned ranges suggested by ASHRAE. However, the lower values are in 

favour as they will lead to more heat removal capacity and consequently more cooling 

efficiency. According to the ASHRAE thermal guidelines for DCs, the average 

exhaust temperature rise is 15 ˚C which is mainly because of the heat transfer from 

the ITE to the cold aisle which is cooled by the supply air of the GIDPC. This value 

represents the temperature difference between the cold and aisle of the ITE room 

within the DC. Having considered the cold aisle temperature of below 22˚C, and the 

average temperature rise of 15 ˚C, the hot aisle temperature will have a value of below 

37˚C. Furthermore, it is established that the dissipated heat from the traditional DCs 

ranges from 430 to 861W.m-2 [290].  

 

Having considered all of the aforementioned information, in this study a small 100 m2  

DC is considered to report the potential of the GIDPC in removing the dissipated heat 

from the ITE room of it. The upper bound, i.e., 861 W.m-2, heat dissipation is 

considered as the cooling load density of the DC which led to the heat dissipation of 

86.1 kW.  
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Figure 6.5: Hot/Cold aisle cooling configuration in DCs 

 

6.3.3. Effect of GIDPC on DC indoor environment  

It is aimed to observe the GIDPC ability in decreasing the temperature and removing 

the dissipated heat from the ITE room of the selected DC in operating months of four 

selected climates. The results revealed that the performance of the system in the DC 

is varied owing to the different temperature and relative humidity values. It is worth 

mentioning that the base GIDPC, i.e., with intake air velocity of 3(m/s), working air 

ratio of 0.44,  HMX height of 1(m), HMX gap of 0.004(m), and the number of layers 

of 200, is selected in the current application. The monthly average temperature and 

relative humidity values (in operation hours) in 2020 are listed in Table 6.2. 

 

Table 6.2: Monthly weather properties in the selected cities in 2020 

City Beijing 
 

Doha 
 

Miami 
 

Rome 
 

month T(C) RH T(C) RH T(C) RH T(C) RH 

January - - 25.62 0.49 26.93 0.54 - - 
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February - - 26.59 0.49 27.01 0.55 - - 

March - - 27.32 0.46 27.11 0.58 - - 

April 26.85 0.31 29.02 0.47 27.35 0.59 - - 

May 28.51 0.41 32.61 0.42 28.10 0.66 26.71 0.49 

June 29.59 0.55 34.96 0.39 28.72 0.74 28.16 0.55 

July 29.70 0.70 36.30 0.46 29.14 0.74 29.07 0.58 

August 28.88 0.69 35.75 0.52 29.16 0.75 29.10 0.59 

September 28.18 0.50 33.25 0.63 28.51 0.77 27.29 0.61 

October 25.68 0.38 30.51 0.61 27.96 0.70 25.74 0.52 

November - - 27.79 0.62 27.27 0.63 - - 

December - - 26.31 0.58 26.87 0.57 - - 

 

Figure 6.6 (a) shows the temperature difference between the cold aisle and hot aisle 

of the selected DC, and Figure 6.6 (b) gives the corresponding indoor cooling 

capacities caused by the GIDPC. The cold aisle and the GIDPC supply air 

temperatures were assumed to be identical and the hot aisle temperature is assumed 

37˚C. The aforementioned temperature difference is the base factor in illustrating the 

GIDPC heat removal capacity from the IT room. The higher temperature difference 

leads to higher heat removal capacity which is identical with the indoor cooling 

capacity. It is also assumed that the 160mm circular ducts are assumed to be used for 

the airflow streams in the DCs. This is inspired from the experimental studies [38] on 

the GIDPC prototype which leads to the airflow rate of 868.14 m3/hr. 

 

The results revealed that the temperature difference is in the range of 15.20-25.57˚C, 

and the indoor cooling capacity for one DPC is varied between 6.41 and 7.49 kW. In 

Beijing, the lowest temperature difference and indoor cooling capacity, i.e., 23.92˚C 

and 7.01 kW, respectively, occurred in July whereas the highest values are recorded 

in October as 25.57 ˚C and 7.49 kW, respectively. Similarly, the maximum 
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temperature difference in Doha, Miami and Rome (i.e., 25.57, 25.04 and 25.51˚C) 

happened in January, December and October, which led to the maximum 

corresponding indoor capacities (7.49, 7.34, and 7.48kW, respectively). Furthermore, 

the corresponding minimum temperature differences (i.e., 21.89, 24.10, and 24.17˚C) 

and minimum indoor cooling capacities (i.e., 6.41, 7.06, and 7.08kW) occurred in July, 

August and August. 
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(b) 

Figure 6.6: (a): Monthly temperature difference between cold aisle and hot aisle (b): Monthly 

indoor cooling capacity 

 

6.4. Performance comparison of the optimised GIDPCs 

In this section, the performance of the base GIDPC with three optimised systems are 

compared to reveal the impact of optimisation algorithm on the efficiency of the 

systems. This is done by comparing the hourly COP of the all aforementioned systems 

in four selected climates over the operating hours in 2020 and 2050. This is followed 

by the energy saving analysis which will report the power consumption of the systems 

in both years. 

6.4.1. Operating conditions 

The hourly weather data in 2020 and 2050 with a temperature above 25 ℃ are selected 

as the operating conditions of the GIDPC. Four identified climates and their 

representative cities as wells as operating months were all illustrated in Figure 5.7 in 
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January February March April May June July August September October November December

0

1

2

3

4

5

6

7

8

9

10

In
d
o
o
r 

c
o
o
lin

g
 c

a
p
a
c
it
y
 (

k
W

)

Operating month

 Beijing

 Doha

 Miami

 Rome



CHAPTER 6: APPLICATIONS AND ENERGY SAVING ASSESSMENT OF THE 

GIDPC 

   239 

three optimized GIDPCs. In addition, the annual cooling capacity and wet-bulb 

efficiency are provided for both base and three optimized systems. 

 

6.4.2. Hourly performance of the optimized systems in 2020 and 2050 

In this section, the hourly COP of the base system is compared with all of the 

optimized systems by GA, PSO and SMA in all climates in years 2020 and 2050. It is 

worth repeating that the selected 4-kW GIDPC prototype is called the base system in 

this study which its dimensions are inspired from the authors’ previous study and listed 

in the upcoming sections of the current study. In addition, the average value of the 

cooling capacity, COP and wet bulb efficiency in operating hours are compared for all 

systems. The performance of the base system is calculated based on the base system 

properties which were listed in Chapter 5 i.e., air velocity of 3 (m/s), working air ratio 

of 0.44, HMX height of 1(m), Gap of 0.005 (m) and the number of layers of 160. 

Furthermore, the performance of the GA, SMA and PSO systems are calculated using 

the identified optimum decision variables from the previous Chapter.  

 

The results revealed that in general, the COP of the GA, PSO and SMA systems are 

superior to the base system while the identified decision variables by GA, SMA and 

PSO play the key role in introducing the superior optimisation methods. The 

differences between the GA, SMA and PSO are the results of robust trade-offs made 

by the optimisation methods by considering the advantages and disadvantages of the 

identified optimum decision values.  

   

Figure 6.7-6.10 shows the hourly COP of four systems over the operating hours in 

each climate. Although due to the high number of operating hours and in order to 
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clearly visualise the results, the first 250 hours of operation are shown in the figures 

but the discussions are provided for the whole operating hours. As shown in Figure 

6.7 (a), the COP of the systems in hot summer continental climate is demonstrated 

over 250 hours of operation. As expected, the optimised system outperforms the base 

system. However, COP in GA outperforms PSO and SMA in both years which is 

mainly due to the differences in working air ratio, i.e., 0.23 in GA versus 0.26 in both 

PSO and SMA, HMX height, i.e., 0.84(m) in GA versus 0.80(m) in both PSO and 

SMA, number of layers, i.e., 159.85 in GA, 196.29 in PSO and 128.03 in SMA. 

Additionally, HMX gap was slightly different in three optimised systems.  

In 2020, the COP of the base system is in the range of 2.28-33.16 while the COP of 

the improved system by GA, ranges from 8.41 to 96.64, by PSO ranges from 7.14 to 

85.53, and by SMA is in the range of 7.22-70.39. The trend is similar in 2050 where 

the COP of the base system varies from 2.32 to 36.87 while in GA it is in the range of 

8.16-107.75, in PSO it ranges from 6.89 to 95.46 and in SMA it is in the range of 7.05-

78.26.  

  

 

(a) 

0 25 50 75 100 125 150 175 200 225 250

0

20

40

60

80

100

Hot summer continental, Dwa: Beijing (Year 2020)

C
O

P

time (hour)

 base

 PSO

 SMA

 GA



CHAPTER 6: APPLICATIONS AND ENERGY SAVING ASSESSMENT OF THE 

GIDPC 

   241 

 

(b) 

Figure 6.7: First 250 hours hourly COP values in hot summer continental climate: (a): 2020, 

total hours: 1790 ; (b): 2050, total hours: 2006 

 

As seen in Figure 6.8, the system behaviour in Arid climate is similar to the hot 

summer continental climate where GA outperforms the PSO, SMA and base system 

in both years. This is because of the higher working air ratio, a larger gap in GA which 

have led to slightly better COP values. In 2020, the COP of the base system is in the 

range of 2.39-43.74. This range is significantly improved when the optimized systems 

are in operation. The COP ranges from 8.60 to 135.39 in GA, and ranges from 7.37 to 

116.78 in PSO system and it is in the range of 7.95-100.61 in SMA system. This trend 

continues in 2050 when the COP of the base system is in the range of 2.47-45.72 while 

in GA it is in the range of 9.06-142.14, in SMA it is in the range of 8.45-105.37 and 

in PSO the COP varies from 7.73 to 122.38. 
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(a) 

 

(b) 

Figure 6.8: First 250 hours hourly COP values in Arid climate: (a): 2020, total hours: 5486 ; (b): 

2050, total hours: 5811 
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SMA systems, it is in the similar range of 7.61-72.73. The similar behaviour in both 

optimized systems was expected due to the extremely similar identified optimum 

operating and design parameters. In 2050, the COP of the base system varies from 

2.31 to 24.37 while in GA it is in the range of 8.06-69.16 , and by PSO and SMA, it is 

in the similar range of 7.58-70.37. 

 

(a) 

 

(b) 

Figure 6.9: First 250 hours hourly COP values in tropical rainforest climate: (a): 2020, total 

hours: 4889 ; (b): 2050, total hours: 5388 
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In Mediterranean hot summer the optimized systems outperform the base system in 

terms of COP where the GA and SMA outperform PSO in both 2020 and 2050. This 

is because of the differences in optimum values of three parameters, i.e., HMX height, 

gap and number of layers by both methods. As seen in Figure 6.10, in 2020, the COP 

of the base system was in the range of 2.83-28.37 while it is improved to the ranges 

of 8.10-71.23 by PSO, 9.09-79.01 by SMA, and 9.68-80.25 by GA. Same behaviour 

occurs in 2050 when the COP of the base system was in the range of 2.39-27.85 while 

the GA, SMA and PSO have increased the ranges to 8.60-85.15, 7.97-82.41 and 7.06-

73.94 respectively.  
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(b) 

Figure 6.10: First 250 hours hourly COP values in Mediterranean hot summer climate: (a): 

2020, total hours: 1416 ; (b): 2050, total hours: 1759 
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operating hours in 2050 has increased in all climates but the behaviour of the systems 

remains exactly the same as in 2020.  

 

In terms of wet bulb efficiency, the performance of the systems follows the same trend 

in both 2020 and 2050. In hot summer continental, arid and Mediterranean climates, 

the wet bulb efficiency of the optimized system by PSO is slightly decreased (almost 

unchanged) but in the tropical rainforest it is decreased by 16% by reaching the 

average value of 0.86. The performance of the SMA system, compared with the base 

system, outperforms in hot summer continental and Arid climates while it holds the 

lower average values in tropical rainforest and Mediterranean hot summer climates.  

 

Table 6.3: Average value of performance parameters in the base and optimized systems - Year 

2020 

  Year Climate Hot summer continental (Dwa) Arid (BWh) 

objective Base PSO SMA GA Base PSO SMA GA 

 

 

 

2020 

 

 

Qcooling (kW) 1.68 1.71 1.06 1.53 2.31 2.08 1.61 2.14 

COP 14.27 37.56 31.69 42.44 19.57 51.78 44.92 59.28 

ɛwb 1.01 0.98 1.23 0.86 1.00 0.97 1.07 0.83 

Climate Tropical rainforest (Af) Mediterranean hot summer (Csa) 

objective Base PSO SMA GA Base PSO SMA GA 

Qcooling (kW) 1.26 1.41 1.41 1.17 1.74 1.78 1.54 1.58 

COP 10.73 32.70 32.70 32.63 14.80 38.55 42.86 43.85 

ɛwb 1.02 0.86 0.86 0.89 0.99 0.95 0.85 0.82 
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Table 6.4: Average value of performance parameters in the base and optimized systems - Year 

2050 

Year Climate Hot summer continental (Dwa) Arid (BWh) 

objective Base PSO SMA GA Base PSO SMA GA 

 

 

 

 

 

2050 

Qcooling (kW) 1.67 1.72 1.06 1.52 2.32 2.10 1.64 2.17 

COP 14.21 37.51 31.67 42.41 19.66 52.30 45.52 60.02 

ɛwb 1.01 0.98 1.23 0.86 1.00 0.98 1.08 0.84 

objective Tropical rainforest (Af) Mediterranean hot summer (Csa) 

Qcooling (kW) 1.26 1.42 1.41 1.17 1.60 1.65 1.42 1.46 

COP 10.68 32.71 32.71 32.68 13.61 35.71 39.73 40.74 

ɛwb 1.03 0.86 0.87 0.89 1.00 0.97 0.87 1.33 

 

As shown in chapter 5, the surface area of the base system with 200 layers is 62.49 

(m2) whereas the optimized systems have lower values in some climates. For instance, 

in the selected scenario (No.1), for GA, the surface area has decreased in all climates 

but for SMA system, except tropical rainforest climate in which the surface area is 

same as the base system, in all other climates, owing to a smaller number of layers, it 

has decreased. However, in the PSO system, the surface area is only decreased in Arid 

climate, i.e., 53.78 (m2) while in all other climates it is almost unchanged.  

 

6.4.3. Energy saving potential of the optimized systems 

The power consumption of the GIDPC considering the forecasted operating hours in 

2020 and 2050 is analysed to assess the energy saving potential of the optimized 

systems. The power consumption values are calculated for the three existed systems, 

i.e., base, optimized by GA, PSO and optimized by SMA. The basis of the calculations 
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is the rate of power consumption for each system which is calculated considering the 

system performance in terms of cooling capacity and COP. The rate of power 

consumption for the base system is around 117.5W while it is 36W for GA, around 

45W for the PSO system and around 33W for SMA system. The values are in line 

with the presented cooling capacity and COP values for each of the four systems. 

 

Based on the operating hours in each climate, the total power consumption is 

calculated in both 2020 and 2050. As seen in Figure 6.11 (a), in the hot summer 

continental climate in 2020, the power consumption is 211.00 (kWh) for the base 

system whereas it has reduced to 80.55 (kWh), 64.44(kWh), and 59.07 (kWh) for PSO, 

GA and SMA respectively. In spite of higher operating hours in 2050, the trend is 

same and the optimized systems perform economically. The power consumption of 

the base system is 236.46 (kWh) whereas it is 90.27 (kWh) for the PSO, 72.21 (kWh) 

for the GA, and 66.19 (kWh) for the SMA systems. This means that in both years the 

power savings of 61.82% and 72.00% can occur by the PSO and SMA respectively.  

 

In the arid climate, as shown in Figure 6.11 (b), the same story is predicted where the 

power consumption of the base system in 2020 with 5486 operating hours is 

647.34(kWh) while  PSO system consumes 66.10% less energy, GA consumes 

69.39% less, and the SMA consumes 69.49% less energy. In 2050, the power 

consumption by the base system is estimated to be 685.69(kWh) while the PSO, GA 

and SMA systems are estimated to consume 453.25(kWh), 475.47(kWh),  and 

476.49(kWh) less power respectively.  
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Owing to the similar optimum operating and design parameters, the power 

consumption by both optimized systems in tropical rainforest climate is almost same. 

As seen in Figure 6.11 (c), the power consumption by the base system in 2020 is 

572.01(kWh) while it holds the value of 176.15 (kWh) by GA, and 63.24% less power 

is consumed by PSO and SMA systems. In 2050 the power consumption by the base 

system is 635.75(kWh) while for GA system is 194.26 kWh, and for both SMA and 

PSO systems is 233.73 (kWh). 

 

As seen in Figure 6.11 (d), in Mediterranean hot summer climate in 2020, the power 

consumption of the base system is estimated to be 165.67(kWh) whereas it has reduced 

to 65.13 (kWh), 51 (kWh), and 50.83(kWh) for PSO, GA and SMA systems 

respectively. In 2050, the base system is estimated to consume 205.80(kWh) power 

while PSO, GA and SMA systems consume 80.91(kWh), 63.38 (kWh), and 

63.25(kWh) power respectively.  

 

The aforementioned explanations revealed that in general, the power consumption of 

all systems will increase by 2050 which is mainly due to the more operating hours 

caused by global warming. Although this increase is valid for both optimized systems 

but the optimization has resulted in significant power saving. 
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(d) 

Figure 6.11: Annual Power consumption in 2020 and 2050: (a): hot summer continental; (b): 

arid; (c): tropical rainforest; (d): Mediterranean hot summer 

6.5. Summary 

In this chapter, an example application for each developed ML model is presented. 

For MPR model, the monthly cooling capacity, COP, and wet-bulb efficiency of the 

GIDPC is predicted in the city of Doha in 2020. Then the DNN application is presented 

by shifting the focus towards the cooling technologies in DCs. DNN is used to predict 

the supply air temperature of the GIDPC when it flows into the IT room of a small DC 

leading the significant temperature drop, i.e., ranges from 21.89 C to 25.57 C, 

between the cold and hot aisle in the IT room. Furthermore, the indoor cooling 

capacity as a result of aforementioned temperature differences is calculated.  
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Furthermore, the hourly COP of the base system is compared with three optimised 

systems. The results revealed that in general, the performance of the optimized 

systems in terms of COP outperform the base system in all climates in both 2020 and 

2050. Although the optimised system by GA has the best COP in hot summer 

continental, Arid and Mediterranean hot summer climates but in Tropical rainforest 

climate, the COP of all optimised systems are roughly same. It is also reported that the 

surface area of the optimized systems is also decreased in the majority of the climates. 

Eventually, it is reported that by operating the optimised systems, the energy savings 

of up to 72% can be achieved.   
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CHAPTER 7: CONCLUSION AND FUTURE WORKS 

7.1. Introduction 

This chapter is provided to summarise the work conducted in this PhD research study. 

The study is considered the state-of-the-art counter-flow GIDPC to mainly assess and 

optimise the system performance in various operating conditions using the ML and 

MOEO algorithms. The chapter outlines the justification and objectives of the research 

which were set to achieve. In addition, the main results and conclusions derived from 

the study is summarised in this chapter. Moreover, the future work which can be 

undertaken by implementing the achievements of the current study in the real world 

is described. 

 

7.2. Overview of the objectives 

The study is aimed to firstly conduct a detailed literature review for research studies 

on the ECs. The objective of the literature review was to chronologically overview the 

main achievements of the research studies which were conducted to present the 

advancements made on this technology over the years. As a consequence, the existed 

gaps, which are mainly the lack of robust ML and optimisation algorithms for the 

GIDPC, are identified. 

In this regard, firstly, it is aimed to pioneer in development of ML based predictive 

tools for performance prediction of the GIDPC, and secondly, to develop nature-

inspired MOEO models for performance optimisation of the system. To this end, a big 

dataset comprising the major operating, design and performance parameters of the 

GIDPC was needed. It is aimed to conduct an experiment to both investigate the 

system performance in diverse climates, and to assure the validity of a numerical 
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model as the main source for data production. Having constructed the big dataset, two 

ML models are trained in order to predict and analyse the system performance. The 

models are compared in terms of accuracy, efficiency and flexibility in predictions 

and the advanced model is selected. 

Afterwards, it is aimed to use the selected model as the fitness function of the MOEO 

models to optimise the system performance. Different nature-inspired optimisation 

algorithms are developed in order to compare the performance of the methods in terms 

of efficiency and convergence speed. 

Eventually, applications of the developed ML models are presented by shifting the 

focus towards comparing the performance of the optimised GIDPCs in diverse 

climates. This is led to reporting the energy savings that can occur by operating the 

optimised systems instead of the base system.  

 

7.3. Summary of the main conclusions 

The critical and in-depth literature review on the ECs technology revealed that in spite 

of substantial research-based endeavours to improve the technology but some 

significant gaps are in existence. It is disclosed that the majority of the studies were 

focused on the experimental and numerical simulations. After introducing the M-cycle 

HMXs, which was considered as a technical breakthrough for the ECs, further 

improvements were struggling by analysing the same traditional cross-flow and 

counter flow DPCs. The outstanding breakthrough in performance improvement of 

the DPC is provided by introducing the novel DPC with new corrugated HMX which 

is called GIDPC. The GIDPC was introduced through the experimental and numerical 

simulation-based studies in which the great improvement in COP and thermal 

efficiencies are achieved. However, the GIDPC technology suffered from lack of 
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further operation and assessments in real life. In addition, although there are limited 

AI based studies for the traditional DPCs but so far, no data-driven model is developed 

for the GIDPC. Furthermore, it is revealed that the GIDPC technology is suffering 

from lack of optimisation-based studies which is essential for performance 

improvement of the technology. Eventually, it is aimed to investigate the energy 

saving potential of the optimised systems compared to the based system (4kW-GIDPC 

prototype) over the annual operation in the four selected climates.  

  

7.3.1. Dataset construction: Experiment and numerical model 

A 4-kW GIDPC prototype was tested in a lab to assess the monthly performance of 

the system in four different climates. This was a pioneer study for the GIDPC in which 

the monthly cooling capacities of the GIDPC were reported to be in the range of 1.6- 

4.65 kW, and the monthly COP values were varied between 17.7 and 51.38. In 

addition, the wet-bulb and dew point efficiencies were in the range of 68.57%–

126.47% and 35.29 %- 90.2%, respectively. The numerical model is validated by 

comparing the monthly COP of the system in one climate in which it is proved that 

the maximum discrepancies between the experimental and numerical results were as 

low as 5.24%. Afterwards, a big dataset comprising the major operating parameters, 

i.e., temperature, relative humidity, and velocity of intake air, and working air ratio, 

and major design parameters, i.e., HMX height, gap, and the number of layers, and 

performance parameters, i.e., cooling capacity, COP, supply air temperature, pressure 

drop, wet-bulb and dew point efficiency, and surface area of the layers, is constructed. 

It is worth mentioning that the predefined ranges for the operating and design 

parameters are considered for having a realistic dataset.  
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7.3.2. Machine Learning models 

Two ML models based on MPR and DNN algorithms were developed to predict the 

performance of the GIDPC. Such kind of effort in bringing the MPR and DNN into 

the GIDPC technology added important scientific values to characterization of the 

engineering process of the GIDPC. The models explored the constructed big dataset 

and produced predictive tools which were able to directly correlate the selected major 

parameters of the technology. The MPR model was classified in different geometric 

sets by considering the channel height, channel interval and number of layers in the 

HMX as the geometric characteristics. The model is also assessed by three common 

metrics i.e., R2, MSE and MRE by considering different polynomial degrees which 

led to selection of the 8th degree polynomial model. The selected 8th degree model can 

predict the performance of the GIDPC with discrepancies of 6.1%, 7.54%, 0.07%, 

3.53% and 2.53% for cooling capacity, COP, pressure drop, dew point and wet-bulb 

effectiveness respectively. The presented regression model is swift in operation and 

can be used in prediction, optimization and design of the GIDPC to commercialize 

this technology. 

 

The second ML model is based on the DNN algorithm which is more flexible, accurate 

and efficient compared to the MPR. Ten different models are compared by calibrating 

the hyperparameters of the models and the one with MSE of 0.04 and R2 of 1 was 

selected. The structure of the selected DNN model had one input layer which 

contained seven operating and design parameters, two hidden layers with 45 neurons 

in each layer and one output layer which contained six performance parameters of the 

GIDPC. Eventually, the supply air temperature of the GIDPC in the selected climates 

are compared with the numerical results to examine the efficiency of the model.  
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In addition, this research is pioneered in bringing XAI to the GIDPC research studies 

by employing the game theory based SHAP method. For the newly evolving XAI, this 

is considered as a preliminary approach which is conducted using the SHAP method 

to demonstrate the features (performance and design parameters) contributions on the 

predicted parameters throughout the force plots which is based on the DNN model. 

7.3.3. Evolutionary optimisations 

Three different models based on GA, PSO and SMA as the metaheuristic 

optimisations are used to optimise the system performance in 2020 and 2050. Four 

climates with one representative city for each are selected to compare the performance 

of the base system with the optimized systems. The climate data revealed that in 

general, the operating hours increase from 2020 to 2050 as a result of global warming. 

However, it is possible to reduce power consumption through the optimisation.  

 

The main outcomes of this study are summarised as follows: 

The results revealed that the optimum intake air velocity by all three methods was 2 

(m/s) in all climates which was lower than the velocity in the base system, i.e., 3 (m/s). 

Moreover, the optimum working air ratio derived by GA was in the range of 0.21-

0.25, the height and channel gap were in the ranges of 0.80-0.84, 0.005-0.006 

respectively while the optimum number of layers held the same value of 160 in all 

climates. The optimum working air ratio by PSO methods in all four climates was in 

the range of 0.24 – 0.27 which were lower than the working air ratio in the base system, 

i.e., 0.44. The optimum HMX height identified by PSO is 0.80 (m) which was lower 

than the base system height, i.e., 1 (m). Base on the PSO method, the optimum channel 

gap in tropical rainforest climate was 0.006 (m) while it was same as the base system, 

i.e., 0.005(m), in other climates. The number of layers in the base system was 160 
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while the optimum numbers in PSO ranged from 170.11 to 200.00. The optimum 

working air ratio by SMA method in all four climates were in the range of 0.22 – 0.27 

which were lower than the working air ratio in the base system, i.e., 0.44. The optimum 

HMX height identified by SMA was in the narrow range of 0.80-0.82 (m) which was 

lower than the base system height, i.e., 1 (m). Based on SMA results, the HMX gap 

held the optimum value of 0.004 (m) in hot summer continental and arid climates, and 

0.006 (m) in tropical rainforest and Mediterranean hot summer climates. The number 

of layers in the base system was 160 while the optimum numbers in SMA were in the 

range of 128.03-199.86.  

The optimization results revealed that in general, performance of the optimized system 

in terms of COP outperform the base system in all climates in both 2020 and 2050. 

The surface area of the optimized system by GA has decreased in all climates. 

However, in the SMA’s selected scenario (No.1) it was same as the base system in the 

tropical rainforest climate whereas it has decreased to the values of 40.70(m2), 

44.99(m2), and 51.19(m2) in hot summer, arid and tropical Mediterranean climates 

respectively. But in the optimized system by PSO, it has only decreased in the Arid 

climate, i.e., 53.78(m2) and it is almost unchanged in all other climates.  

In spite of more operating hours in 2050, the power consumption of the optimized 

systems was estimated to substantially decrease. The power consumption of the base 

system in all climates was in the range of 165.67- 647.34 (kWh) while it has reduced 

to the ranges of 51-210.22 (kWh), 65.13-234.09 (kWh) and 50.83-209.46 (kWh) by 

GA, PSO and SMA systems respectively. This has resulted in power savings of up to 

72%, 69.49%, 63.24%, and 69.21% in hot summer, Arid, tropical rainforest and 

tropical Mediterranean climates respectively, compared to the base system in the same 

operating conditions.  
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The comparison of the models proved that the SMA has the following advantages over 

the PSO and GA: I) It is a novel optimization algorithm, II) The SMA is fast and it 

diverges to an optimal solution quickly, and III) The algorithm has low computational 

complexity. 

 

7.4. Future studies  

The identified gap in the literature is now filled by, firstly, experimental investigation 

of the monthly performance of the GIDPC in diverse climates, secondly, by 

developing the ML and optimisation models which could identify the optimum 

operating and design parameters of the GIDPC. Several studies can be undertaken to 

further complete and challenge the outcomes of this study which are explained below. 

 

7.4.1. Improvement of Machine Learning models 

The final selected DNN model can be challenged by a new superior model. The 

superior model can include data from real operation of the GIDPC in different 

applications. This can contribute to improving the accuracy of the developed models 

which will lead to more realistic predictions. The constructed dataset in the current 

study is mainly based on the numerical data. This is because the GIDPC is not 

commercialised yet and there was no real time data to be considered. By 

commercialising the GIDPC and operating it over time, in different regions,  the 

volume of the real data will increase which can build a massive dataset comprising the 

real operating conditions. As a consequence, more robust ML models will be required 

to get trained through the new comprehensive and real data. Apart from this, owing to 
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the rapid progress in the field of data science, new algorithms can be developed which 

can outperform the current models by removing the current limitations.  

7.4.2. Construction of new GIDPCs 

In regard to the results derived from the optimisation algorithms, new prototypes with 

optimum operating and design conditions can be constructed to challenge the achieved 

results in this study. This will be more economical to commercialise the system by 

considering the optimisation results. As there is no GIDPC in operation with the 

derived optimisation results, therefore, it would be beneficial to examine the outcomes 

of this study by investigating the performance of the GIDPC practically. Furthermore, 

similar to the ML models, the outcome of the current study can be challenged using 

the new optimisation algorithms. Superior ML models can be used in the optimisation 

algorithms as the fitness function to observe the results of the new methods and 

compare them with the current algorithms. 
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