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Summary of Thesis 

The work in this thesis covers two main topics: successfully porting an Ensemble Monte 

Carlo (EMC) focused on bulk III-V semiconductors on to the graphics processing unit 

(GPU) and investigating carrier transport in a two-dimensional electron gas (2DEG) 

created at an Aluminium Gallium Nitride (AlGaN) and Gallium Nitride (GaN) 

heterojunction, specifically the effect of introducing non-equilibrium phonons. 

The programming language used to be able to run on the GPU, NVIDIA CUDA, is 

introduced. The concept of highly parallel programming is explored, along with the 

challenges this poses to an EMC simulating semiconductor materials and devices. The 

changes made to the bulk EMC algorithm are explained, including architectural, memory 

strategies and execution optimisations. The performance increase related to each change 

is given, and it is found that the GPU algorithm has a run time that is approximately 30% 

of the original EMC algorithm. This is the first example of an EMC simulating electron 

transport in semiconductors on a GPU. 

A two-dimensional EMC is created to simulate the behaviour of electrons confined in the 

2DEG created at an AlGaN/GaN heterojunction. Results are presented for the electron 

velocity, momentum and energy relaxation times and mobility, which are compared to 

experimental results from AlGaN/GaN High Electron Mobility Transistors (HEMTs), and 

agreement is good. No velocity overshoot is observed, in agreement with experiments. 

Finally, non-equilibrium phonons are introduced to the 2DEG simulation to study their 

effect on the electron transport. Non-equilibrium phonons are found to reduce the electron 

velocity due to diffusive heating. However, due to the confinement of electrons, the 

phonon distribution is only increased in a small volume of reciprocal space and the effects 

are shown to be weaker than in bulk. The consideration of electron confinement and a 

non-equilibrium phonon population has not been seen in the current literature. 
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Chapter 1 

Introduction 

1.1 Gallium Nitride 

Due to its wide, direct band gap, there has been a significant amount of research, both 

experimental and theoretical, on bulk GaN and device heterostructures where GaN is one 

of the main materials. Optical technology using GaN is fairly mature and already well 

understood. GaN naturally operates at a wavelength of 405 nm, and slightly longer 

wavelengths spanning into the green and yellow ranges of the visible light spectrum can 

be achieved by the formation of higher order compounds utilising GaN (such as Indium 

Gallium Nitride (InGaN) and Aluminium Gallium Nitride (AlGaN)). In addition to the 

red LED, it is possible to create a full colour range of efficient LEDs, which are now 

commonly used in high power applications such as traffic lights. White light LEDs have 

also been created using GaN with higher efficiency than conventional incandescent bulbs 

[1]. Blue laser diodes have also been created which are used in the now common 

household Blu-Ray players, and the invention of efficient blue LEDs won the Nobel Prize 

in Physics in 2014. There has been a lot of interest in the use of GaN for high-power, 

high-frequency electronics due to its high breakdown field [2, 3] and large saturation 

velocity [4, 5]. A specific technology that has received recent attention is the use of GaN 

and other nitride compounds in the High Electron Mobility Transistor (HEMT) [6]. 

1.2 High Electron Mobility Transistor 

1.2.1 Background 

GaN based HEMTs have potential for a wide range of uses, especially in high-power, 

high-frequency electronics, due to their large mobilities. One example is a high-gain, 

highly efficient power amplifier for pulsed signals, due to the high breakdown field and 



Introduction 

 

2 

high frequency response. Power outputs have been reported between 250 and 400 W at 

microwave frequencies [7-10]. Such devices have become commonly used in mobile 

network base stations, employing the high-power, high-frequency characteristics that are 

needed to broadcast reliable 4G network coverage, and has advanced to 5G technology. 

High frequency power amplifiers based on HEMTs have also been utilised in military 

applications, with the development of versatile, high-gain amplifiers that can be used 

along with a number of high power military equipment [11]. Despite great advances in 

GaN power devices, there are still challenges to overcome, such as suppressing the current 

collapse effect, which occurs when a large bias is applied to the drain, and heat dissipation 

[12]. The high power and high frequency demands on the devices lead to significant self-

heating, resulting in rapid increases in the channel temperatures and device degradation. 

Early experiments on GaN HEMTs focused on measuring the electron Hall mobility and 

current characteristics of the devices. Voltage-current curves, and current against applied 

electric field plots, are useful in determining the performance of a device and its potential 

for high-power and high-gain uses. Measured currents are used to estimate the electron 

drift velocity [13] which can then be compared to Monte Carlo simulation results. 

Experimental results of steady state electron drift velocity in GaN based HEMTs have 

shown little signs of a peak and saturation [13-17], and transient velocity results also show 

no signs of a velocity overshoot [18, 19]. A clear peak and saturation in the steady state, 

and a significant transient overshoot, are prominent features of velocity results in bulk 

GaN [2, 4, 20, 21]. Their absence therefore strongly indicates that the electrons are 

confined within a two-dimensional electron gas (2DEG), and the electron behaviour and 

transport properties are no longer governed by macroscopic transport physics. 

In order to try and understand and replicate the results, Monte Carlo simulations of 

electron transport in GaN 2DEGs were created. These simulations regularly use the 

triangular well approximation, and when simulating narrow quantum wells, use just one 
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or two sub-bands. If the quantum well is narrow enough, the quantum limit can be reached 

where electrons only occupy a single sub-band [22]. In most devices the well is too wide 

for this to be the case, however, in most HEMTs the well is narrow and it is a reasonable 

assumption to include just two sub-bands in the simulation [23]. The infinitely deep 

triangular well assumption means that electrons remain confined within the quantum well 

even at large energies. In reality, the quantum well has a finite height above which the 

electrons are no longer confined in discrete energy levels and are in continuum states, 

behaving as they would in bulk. Electrons are initially confined in the discrete energy 

levels of the 2DEG, however, once they gain enough energy they can escape from the 

potential well and enter the continuum states where their behaviour and transport is bulk-

like. This situation is difficult to simulate, so it is regularly assumed that the electrons 

exist purely in the 2DEG, or in bulk. Effects of the 2DEG-continuum states have 

potentially been seen experimentally by Atmaca et al. [24], who report having seen 

negative differential resistance in a 2DEG, which has never been reported before. Their 

explanation for this is the large electric fields (due to small channel lengths) cause the 

electrons in the 2DEG to gain enough energy to make the transition from the Γ valley (the 

lowest valley and where the 2DEG resides) to the L valley whose minima is 0.9 eV 

[25, 26] above the conduction band minima in bulk GaN. Atmaca et al. claim the velocity 

then decreases due to the 2DEG electrons in the L valley having higher effective mass, 

however details of the confined band structure are not present in the literature. Electrons 

in the L valley do have a higher effective mass [27], however, it is highly unlikely that 

the electrons are still confined in a 2DEG. The barrier height in the 2DEG created at an 

AlGaN/GaN heterojunction is typically between 0.3-0.4 eV [28], so any electrons that do 

transfer to the L valley at 0.9 eV will no longer be confined and will be in bulk states. 

High energy electrons, or ‘hot electrons’, have been seen to cause degradation in an 

InAlN/GaN HEMT by Tapajna et al. [29]. While concentrations of hot electrons and 
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degradation have been investigated in AlGaN/GaN HEMTs by Brazzini et al. [30] with 

local electron temperatures reaching approximately 3900 K. Operating temperatures of 

AlGaN/GaN HEMTs have also been investigated. Pomeroy et al. [31] investigated the 

operating channel temperature of AlGaN/GaN HEMTs and experimentally saw local 

temperatures around 110°C (383 K), whilst models predicted temperatures reaching 

250°C (523 K). Tan et al. [32] also investigated the high temperature performance of 

AlGaN/GaN HEMTs and found stable operation and no significant permanent 

degradation up to 500°C (773 K). Most early Monte Carlo simulations produce results 

that do not agree well with experiment. Ardaravicius et al. [27] compared Monte Carlo 

results from Yu et al. [18] to their own experimental results, however the Monte Carlo 

results significantly overestimated the electron velocity found experimentally. Similarly, 

Palacios et al. [33] also found simulation results to be much higher than experiment. An 

absence of hot phonon effects has been used to explain the poor match between 

experiment and simulation [27]. Some work has been done to include hot phonon effects 

in simulations and it is shown to reduce the velocity results and match more closely to 

experiment. Hot phonon effects were shown in bulk GaN by Dyson et al. [34]. Ramonas 

et al. [35] found including hot phonon effects to greatly improve the accuracy of the 

simulation results when compared to experiment. Tea et al. [36] have also shown how a 

phonon dedicated Monte Carlo code that treats hot phonons as a population, updates the 

phonon distribution function and calculates phonon relaxation over time can be coupled 

with a charge carrier Monte Carlo code to accurately represent the hot carrier relaxation 

dynamics in polar semiconductors. They found that the hot phonon population slowed 

relaxation when the carrier density was relatively low. Self-consistent Monte Carlo 

simulations have also been created that calculate and update the electric field throughout 

the simulation based on the distribution of the charge carriers and can also calculate heat 

generation [37]. Many results are limited to low applied electric fields (typically less than 
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50 kVcm-1). In simulations, this is likely an attempt to keep the electron energies low, 

such that the two sub-band triangular well approximations remain valid. Experimentally, 

this can be due to limits in the measurement set up [35], but it also presumably to avoid 

device degradation. 

1.2.2 2DEG Formation in AlGaN/GaN 

Most semiconductor devices are created by doping the active semiconductor material. 

This generally includes HEMTs which are based on the creation of a quantum well at a 

heterojunction between a (typically) highly-doped wide gap material and an undoped 

material with a narrower band gap, and lower conduction band minima. However, this is 

not the case in AlGaN/GaN HEMTs, which can be created without the need for doping. 

In many early studies concerning the 2DEG, the existence of the 2DEG was simply 

assumed without any prior knowledge or proof of its existence [38-40], there was little 

understanding about the reasoning behind its formation. 2DEGs have been observed at 

the AlGaN/GaN interface when there is no doping in the AlGaN layer [41]. In 

AlGaN/GaN based heterostructures, the 2DEG is induced by strong polarization effects, 

from both spontaneous and piezoelectric polarization [38, 39, 42]. Spontaneous 

polarization (at zero strain) creates a significant electric field in AlGaN [43]. The 

piezoelectric polarization creates its own electric field which enhances this. Ambacher et 

al. [39, 44] investigated the spontaneous and piezoelectric polarization charges in 

AlGaN/GaN heterostructures and state that when the polarization induced sheet charge 

density is positive, free electrons tend to accumulate to compensate the polarization 

induced charge. The polarization induced sheet charge density is associated with a 

gradient of polarization in space. At an AlGaN/GaN interface, the polarization is different 

within each layer, and the sheet charge density is thus defined as the difference in 

polarization between the top layer and the bottom layer [44]. The total polarization in 
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each layer is a sum of the spontaneous polarization (no strain) and the piezoelectric 

polarization (strain-induced). Due to the strong spontaneous and piezoelectric 

polarizations in AlGaN/GaN based structures (piezoelectric polarization of the strained 

top layer can be more than five times larger than AlGaAs/GaAs structures [44], while the 

spontaneous polarization is also very large, particularly in AlN [43]), there is a significant 

increase in the sheet carrier concentration at the interface [45-49]. The large electric fields 

created by the strong polarization effects lead to a deep quantum well at the interface 

(large steps in the conduction band energy) and hence strong carrier confinement. For a 

single heterojunction, the quantum well is triangular [50, 51]. Electrons that have 

accumulated near the interface to compensate for the large polarization induced charge 

travel across the interface (effectively ‘falling’ over a potential cliff) and become confined 

in the quantum well, creating a 2DEG.  

1.3 CPUs vs GPUs 

As the number of transistors on computer chips increases and computers become more 

powerful, scientific simulations become more advanced and complex. With increasing 

complexity, simulations begin to require more computer resources and their run times 

become significantly long. Utilising multiple cores on the CPU, or multiple CPUs, where 

parallelisation is possible is one way to overcome these long run times. Where high 

amounts of parallelisation is possible, GPUs hold great potential in reducing run times 

further. The CPU contains several powerful cores capable of handling a wide-range of 

tasks. The GPU contains a significantly higher number of less powerful cores. The 

architectures of both the CPU and GPU are shown in figure 1.3.1, which shows the vast 

difference in the number of cores. The Kepler card series illustrated in figure 1.3.1 is old 

(released in 2012) but its architecture is indicative of more recent cards. This is the main 

difference between the CPU and GPU. The CPU is designed to perform a wide-range of 
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Figure 1.3.1: Illustration of the CPU and GPU architectures, showing the vast difference in cores. The CPU 

diagram (top) is based on the Intel Core processors, and the GPU diagram (bottom) is the block diagram of 

a NVIDIA Kepler GK110, where each green or yellow block represents a CUDA core [52]. 

different tasks as quickly as possible, but are limited by the number of tasks that can be 

run at the same time. The GPU is designed to render high-resolution images, at high 

speeds and concurrently. CPUs have broad instruction sets and manage every input and 

output of a computer. GPUs do not have the same wide range of instructions, however, 

the sheer magnitude of GPU cores and the potential for massive amounts of parallelism 

make them an interesting prospect for general purpose computing instructions. The use 

of GPUs to perform general computation tasks is known as general-purpose computing 
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on graphics processing units (GPGPU) and has already been utilised in many scientific 

disciplines [53-55]. 

1.4 Outline of Thesis 

The next chapter of this thesis introduces the different algorithms and equations that are 

needed to develop the various models used throughout this work. The ensemble Monte 

Carlo (EMC) algorithm is described and how this premise is used to generate a model to 

simulate electron transport in bulk III-V semiconductor materials is then introduced. The 

changes required to ensure the algorithm is capable of simulating transport in a 2DEG are 

explained. These include changes to the scattering rates and the underlying equations. 

The chapter finishes by introducing how 3D non-equilibrium phonons can be included in 

the algorithm, and how they are tracked and updated. Chapter 3 explains how the bulk 

EMC algorithm is modified to be run on a GPU, the first example of an electron transport 

in semiconductors simulation being performed on the GPU. The challenges faced and 

how the algorithm was amended in an attempt to mitigate these is explained. These 

include architectural changes specific to the GPU, as well as some generic simulation 

changes that can be applied to any model. The memory strategy to best utilise the GPU 

memory is introduced. All changes are explained and their effect on the simulation 

performance are explored. These include effects on overall runtime and on the results 

output, when compared to the original EMC algorithm run on a CPU. This is the first 

example of a semiconductor Monte Carlo simulation being performed on the GPU. 

Chapters 4 and 5 explore the use of the 2DEG algorithm to investigate electron transport 

in the 2DEG created at an AlGaN/GaN interface in a HEMT. The inclusion of electron 

confinement in HEMT simulations has not been seen before, neither has the combination 

of confined electrons and a non-equilibrium phonon distribution. Chapter 4 presents 

results from an equilibrium 2DEG algorithm, including velocity and mobility results that 
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are compared to published experimental and simulation results from the literature. 

Chapter 5 focuses on how introducing 3D non-equilibrium phonons affects the 2DEG. 

The same results are investigated and compared to the equilibrium results from chapter 4 

and published results. The behaviour of the phonons is explored, including the evolution 

of the distribution and effect on the scattering rates. The thesis ends in chapter 6 by 

drawing conclusions from the results presented and potential future work based on 

extensions of this project are discussed.  
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Chapter 2 

Semiconductor Physics and Monte Carlo Methods for 

Simulating Electron Transport 

Monte Carlo simulations are one of the many models that can be used in simulating 

electron transport in semiconductor materials and devices, the simplest being semi-

classical drift-diffusion models, which make use of drift-diffusion equations derived from 

the Boltzmann Transport Equation. However, they are insufficient for investigating sub-

micron devices and non-equilibrium behaviour. Full quantum models using numerical 

solutions of the Schrödinger equation can be adopted to study such devices and behaviour. 

The results of such models are highly accurate, however, the computational effort is very 

high and results can only be achieved for small numbers of particles [56]. Monte Carlo 

simulations are somewhere in-between drift-diffusion and full quantum models, in terms 

of both computational effort and accuracy. These simulations can be purely semi-

classical, or if necessary, quantum corrections can be included to account for possible 

many body effects. However, since electron-electron interactions are ignored (including 

these would be a large amount of work for a relatively small effect), for the work 

presented in this thesis the semi-classical approach is sufficient. This chapter will 

introduce some key concepts in semiconductor physics and describe the base bulk model. 

The underlying concepts of a 2DEG are also introduced, along with how the base EMC 

algorithm is adapted to allow for the simulation of the electron transport within a 2DEG. 

Finally, a brief overview is given of how a bulk population of non-equilibrium phonons 

can be introduced into the algorithms. Most algorithms are based on those presented by 

Tomizawa [57], which were re-developed in FORTRAN 95 by Naylor [20], and the base 

algorithm has been reproduced in C++ to allow for the use of NVIDIA CUDA. 
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2.1 Background Physics 

2.1.1 Band Structure 

If a free electron (away from any lattice) with energy, E, is treated as a wave with 

frequency ω = E/ℏ, then through the solution of the time independent wave equation, a 

simple relationship between E and the electron wavevector, 𝐤, is found: 

where 𝑚0 is the electronic mass [58] and ℏ is the reduced Planck constant. It can be shown 

that ℏ𝐤 is the electron momentum, and hence equation 2.1.1 is seen to be the equivalent 

of the electron kinetic energy. However, if the same electron is placed in a periodic, 

varying potential (in a crystalline structure, for example), then the energy is no longer 

given by the simple expression above. The Schrödinger wave equation must now be 

solved, taking into account the varying potential at a given position, r. Semiconductors 

are highly ordered crystalline structures, and a characteristic of such structures is a 

periodic potential related to its nuclei and electrons. The potential within a semiconductor 

can be approximated to a predefined potential, V(r), giving a single electron problem 

[57]. For such a potential profile, applied to an electron with wave function ψ(r) and 

energy E(r): 

where ∇2 is the Laplacian operator. Bloch’s theorem states that the solution to the wave 

equation in any periodic potential must itself be periodic [59], given as: 

 
E(𝐤) =

ℏ2𝐤2

2𝑚0
 2.1.1 

 
[-

ℏ2

2m0

 ∇2+V(r)] ψ(r) = E(r)ψ(r) 2.1.2 
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where 𝑢𝒌(𝒓) is the Bloch lattice function, which periodically produces the same set of 

results. Since the solution to the Schrödinger equation is periodic, this allows the solution 

to be obtained within a unit cell, knowing the solution found will apply to all other unit 

cells. The unit cell, in reciprocal space, is the first Brillouin Zone (BZ). Kronig and 

Penney [60] have shown that a simple one-dimensional potential profile can be used to 

obtain a solution to equation 2.1.2 that contains ranges of energy where there are no 

physical solutions, producing forbidden energy “gaps” within the band. 

2.1.1.1 Effective Mass 

In three-dimensional space, the band structure is in general much more complex than the 

simple Kronig-Penney model. There are numerous different reasons for this, such as the 

difference in lattice constants in different directions, and in binary or higher order 

compounds, the variance in sizes and charges of the atoms. This can often lead to bands 

having multiple local energy minima (referred to as “valleys”) throughout the BZ, and 

these valleys are typically not symmetric in all directions. Full band structure models can 

be used to solve transport problems using a wide range of numerical methods [2, 61-63]. 

However, mobile electrons are, generally, low in energy with respect to the rest of the 

conduction band and lie around the valley minima (typically populating the lowest 

valley). An analytic approximation for the band structure, similar to the free electron 

model given by equation 2.1.1, known as the parabolic band structure approximation can 

be used around the valley minima [58]. For a valley minima located at energy, Ec, it is 

given by 

 
ψ

𝒌
=  𝑢𝒌(𝒓)𝑒𝑖𝒌∙𝒓 2.1.3 

 
E(𝐤) =

ℏ2𝐤2

2𝑚∗
+ Ec 2.1.4 



Semiconductor Physics and Monte Carlo Methods for Simulating Electron Transport 

 

13 

and is based on the concept of the effective mass of an electron, 𝑚∗, which is defined as 

[58, 64, 65] 

The term effective mass arises because an electron within a band travels as if it has a mass 

equal to 𝑚∗. For spherically symmetric parabolic bands, or close to the valley minima, 

the effective mass is a constant. 

2.1.2 Electron Scattering 

An electron travelling through a perfect crystal would be continuously accelerated based 

on the strength of an external field. However, in reality, even the smallest defect can cause 

the electron to be scattered, changing the direction of travel and possibly the electron 

energy. As an electron travels through a semiconductor, there are several scattering 

mechanisms that it may encounter. Not all mechanisms exist in all systems. The 

remainder of this subsection focuses on some of the most common mechanisms found in 

semiconductor transport, scattering by charged impurities and threaded dislocations, and 

phonon scattering. Alloy scattering is also introduced, which does not occur in pure 

elemental semiconductors, however, it can play a role in electron transport in 2DEG 

systems. 

2.1.2.1 Charged Impurity Scattering 

Whether they are present based on design, or otherwise, defects arise during crystal 

growth. Sometimes, impurities are purposely introduced through doping, in other cases it 

is almost inevitable that some undesirable material will affect the semiconductor during 

growth. Similarly, dislocations are often unavoidable. Dislocations are the inclusion, or 

omission, of a line of atoms in the material, which can occur when a material is grown on 

 
𝑚∗ =

ℏ2

𝑑2E/𝑑k2
 2.1.5 
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a substrate material with a different lattice spacing (a problem in GaN). Both impurities 

and dislocations cause local ionisation, disrupting the otherwise periodic potential. 

Hence, any nearby electron will scatter due to the abnormal field present. The effect is 

greater on slowly moving (low energy) electrons that spend longer in the region of the 

impurity or dislocation, while electrons travelling quickly (high energy) are less affected. 

2.1.2.2 Non-Polar Optical Phonon and Acoustic Scattering 

For any temperature greater than 0 K, the lattice in any solid will vibrate. To account for 

these vibrations, the energy is quantised and the vibrations are termed “phonons”. For 

simplicity in dealing with phonon-related events, a phonon is defined by a wave vector, 

q, and frequency, ωq. In the same way an electron can be described by a wave vector, k, 

as having momentum ħk, a phonon defined by a wave vector, q, acts as though it has 

momentum ħq. The energy of the phonon is described by its frequency, as ħωq. When a 

phonon interacts with an electron, the principles of conservation of momentum and 

energy are applied to determine the outcome of the interaction. There are two types of 

phonon, when neighbouring atoms are displaced in the same direction, this is termed an 

acoustic phonon (acoustic phonon scattering), and when atoms are displaced in opposite 

directions, this is an optical phonon (also known as non-polar optical phonon scattering). 

Each of these displacements has a different effect on the periodic potential, and hence 

will have a different effect on the motion of the electron. 

2.1.2.3 Polar Optical Phonon and Piezoelectric Scattering 

Compound materials, such as III-V semiconductors (like GaN) have a polar nature. The 

bonds between neighbouring atoms are slightly ionic. Any lattice vibration that causes 

the atoms to displace will corrupt local charge neutrality, thus causing electric 

polarisation. This small polarisation generates an electric field, which affects the periodic 

potential and hence can affect the motion of any nearby electrons. The displacement of 
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atoms can be in the same direction, generating an acoustic phonon (referred to as 

piezoelectric scattering), or in the opposite direction, generating an optical phonon 

(known as polar optical phonon scattering). Polar optical phonon scattering is the 

dominant mechanism in polar materials, whilst piezoelectric scattering is often weak and 

can be ignored [66]. 

2.1.2.4 Alloy Scattering 

In semiconductor alloys (AxB1-xC), it is often assumed that the two types of atoms, A and 

B, form a uniform periodic arrangement and hence a periodic potential [67]. However, it 

is often the case that the actual arrangement differs slightly from this perfect periodic 

arrangement. Say, for example, a site that in the perfect alloy should be occupied by atom 

A, is in fact occupied by atom B, or vice versa. This variation from the perfect alloy lattice 

causes a local change in the period potential, and hence can have an effect on the motion 

of a nearby electron. 

2.1.3 Fermi’s Golden Rule 

The quantum mechanical representation of the electron scattering process is Fermi’s 

Golden Rule. It is based on the assumption that any interaction between an electron and 

phonon is instantaneous, and has a long lasting effect. However, since an electron is going 

to encounter many scattering events within any system, it is possible that the effect of any 

given collision is not permanent and could be relatively short-lived. Collisions are not 

instantaneous either, however, if the duration of each collision is much shorter than the 

time between scattering events, then the assumption is valid (a condition which is found 

to be satisfied in most cases [65, 66]). The scattering rate is then given by [66]: 

 
𝑊(𝐤) =

2𝜋

ℏ
∫|𝑀(𝐤′, 𝐤)|2𝛿(Ef −  Ei)𝑑𝑁𝑓 2.1.6 
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where 𝑀(𝐤′, 𝐤) is the scattering rate matrix element (connecting the initial and final 

electron states), Ei and Ef are the initial and final electron energies and 𝑁𝑓 is the number 

of final states. For interactions in which only one phonon process is involved, assuming 

the final state is unoccupied, the scattering rate can be rewritten as [65]: 

where 𝛺 is the crystal volume, E𝒌 and E𝒌′ are the energies of the initial and final states 

with wave vectors 𝐤 and 𝐤′, ℏ𝜔 is the energy of the phonon with wave vector 𝐪. The ± 

arises from the two possible phonon interactions (absorption and emission), in partnership 

with energy and momentum conservation to ensure the delta functions are equal to zero. 

2.1.4 Monte Carlo Method for Solving the Boltzmann Transport Equation 

The Boltzmann transport equation (BTE) describes carrier transport evolution over time 

in semiconductors, in both real and momentum space (represented by the subscripts r and 

p respectively). For a system of electrons that is represented by the distribution function 

f(r, p, t), for an electron with momentum, p, position, r, and at time, t, and subjected to 

an external force, F, the BTE is given by [58, 65]: 

when considering collisions (electron scattering) and drift (caused by the applied field) 

only. Since the BTE is a partial differential equation over six dimensions (three in real 

space and three in momentum space), finding an analytic solution is impossible. 

However, the equation can also be solved using numerical methods, such as Monte Carlo 

methods to simulate electron transport within a system. Using path integral formulation, 

it can be shown that the solution can be separated into two components, carrier free-flights 

 
𝑊(𝐤) =

𝛺

(2𝜋)3

2𝜋

ℏ
∫|𝑀(𝐤′, 𝐤)|2𝛿(E𝐤′ − E𝐤 ± ℏ𝜔)𝛿𝐤′−𝐤±𝐪𝑑𝐤′ 2.1.7 

 𝜕𝑓

𝜕𝑡
= (

𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
− (𝐯 .  ∇r𝑓 + 𝐅 .  ∇p𝑓) 2.1.8 
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and instantaneous scattering events. The probability of an electron scattering within a 

small time interval, dt, is 

where 𝑊(𝐤) is the total scattering rate, and 𝐤 varies with time due to acceleration from 

the external field. The probability that an electron, having scattered at time 𝑡 = 0, drifts 

until time 𝑡 without scattering is then given by 

This probability can then be utilised as a distribution of free flight times, by the use of a 

uniform random number generated between 0 and 1 to represent the probability. Since 

the total scattering rate changes with the wavevector, 𝐤, the integral would need to be 

performed for each new wavevector an electron obtains during a simulation. This can be 

simplified by introducing a new scattering mechanism, labelled ‘self-scattering’ [57]. The 

self-scattering rate is set such that the total scattering rate is constant across all energies 

(wavevectors). This means that the calculation of the electron drift time is the same for 

all energies (this is explained further in section 2.2.2). Therefore, if the individual 

scattering rates for each of the mechanisms included in the simulation are known, a total 

scattering rate can be generated, and hence free flight times between scattering events. 

Electron transport can then be simulated by drifting the electron between scattering 

events, according to some external applied field, and then performing an instantaneous 

scatter based on one of the scattering mechanisms included. Section 2.2 explains this 

method in more detail, including how an electron drifts and how a scattering mechanism 

is chosen and the scattering event is implemented. 

 𝑃 = 𝑊(𝐤)dt 2.1.9 

 
𝑃(𝑡) = exp [− ∫ 𝑊(𝐤)dt

𝑡

0

] 2.1.10 
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2.2 Bulk Ensemble Monte Carlo Simulation 

An ensemble Monte Carlo (EMC) algorithm simulates a system with a large number of 

particles simultaneously. The many particles are simulated individually for specified time 

steps, allowing the evolution of the system over time to be investigated. One of the main 

advantages of the EMC method is that it allows for both steady state and transient data to 

be obtained. Steady state at the end of the simulation time (for each field step) and 

transient at the end of each time step. 

2.2.1 Ensemble Algorithm 

The EMC simulation treats each electron as an independent carrier, meaning electron-

electron interactions are ignored. The scattering rates are pre-calculated just once at the 

start of the simulation and stored in a look-up table, saving computation time throughout 

the simulation. Once the scattering rates are calculated, the system and electrons initial 

conditions are set (by starting with a thermalized electron distribution). After this, each 

electron is taken in turn and simulated until the end of the first time step. Once each 

electron has been simulated for the same period of time, the transient data can be output. 

This process is repeated until all electrons have been simulated for the specified 

simulation time. The whole process (apart from calculating scattering rates) can also be 

repeated for several field strengths. A flow chart of the bulk EMC algorithm is shown in 

figure 2.2.1. If the simulation is being run with multiple field strengths, the loop contained 

within the field steps (from setting initial conditions to outputting steady state data) can 

be run in parallel on multiple threads. In this case, calculating the scattering tables would 

be performed once for all fields, before the rest of the simulation is run in parallel until 

all field steps are complete. 
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2.2.2 Scattering Rates and Drift Time 

As mentioned, to increase performance scattering rates are pre-calculated at specified 

energy ‘points’ between 0 eV and some maximum, and stored in a look-up table. The 

maximum, and the interval step size, are material dependent (for the work using the bulk 

algorithm in this thesis, the material used is Gallium Nitride (GaN), and the maximum is 

set to 3 eV). This removes the need to calculate the scattering rate every time an electron 

scattering event occurs, vastly improving the run time. There is an effect on the accuracy, 
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Figure 2.2.1: Flowchart showing an overview of how the base EMC algorithm simulates electron transport. 
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however, this can be diminished by choosing an appropriate value for the interval step 

size such that the difference between the scattering rates at two successive energy  ‘points’ 

is small. Once the scattering rates are calculated, it is possible to determine the drift time 

of an electron (the time between scattering events). Let 𝑊𝑇(E𝐤) be the total scattering 

rate for a given energy E𝐤, i.e. the sum of all of the individual scattering rates at a specific 

energy interval. Tomizawa states that the probability per unit time, 𝑃(𝜏), of an electron 

traveling for a period of time, 𝜏, before being scattered is given by [57]: 

As discussed in section 2.1, the electrons in the system have variable energies, and hence 

a different probability of scattering, leading to different drift times. These times would be 

required to be calculated for each energy interval. To avoid this, and to save on computer 

workload, ‘self-scattering’ is introduced. Self-scattering has no effect on the electron, it 

is only introduced to simplify equation 2.2.1. The self-scattering rate is set in each energy 

interval such that the total scattering rate, 𝑊𝑇(E𝐤) is equal across all energies. This allows 

equation 2.2.1 to be written as: 

Where Γ is chosen as the largest total scattering rate across the energy range. Introducing 

self-scattering means that the calculation of the drift time is the same for all electron 

energies. To make use of the scattering rates when selecting a scattering mechanism, they 

are converted to scattering probabilities. For each energy interval, the scattering rates are 

stored cumulatively and normalised to Γ. This creates a series of weighted number lines, 

from 0-1, representing the probability of each scattering mechanism being chosen. Figure 

2.2.2 represents how these scattering probabilities are stored in the code. 

 
𝑃(𝜏) = 𝑊𝑇(E𝐤) exp [− ∫ 𝑊𝑇(𝐸𝒌)𝑑𝑡

𝜏

0

] 2.2.1 

 𝑃(𝜏) = Γ𝑒−Γ𝜏 2.2.2 
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Figure 2.2.2: Illustration of the storage of scattering probabilities as a number line from 0 to 1. In this 

example, there are three scattering mechanisms, plus self-scattering. For mechanism 2, the probability is 

added to that of mechanism 1 and so on. 

2.2.3 Initial Electron States 

The algorithm attempts to start with a realistic electron distribution. This is achieved by 

using a thermal distribution based on the Fermi-Dirac function (treating the electrons as 

an electron gas with equipartition of energy, and allowing for three degrees of freedom 

by introducing a factor of 3/2 [57, 65]): 

Where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the lattice temperature. The Fermi energy, 

EF, is assumed to correspond with the minima of the lowest conduction band, and is set 

to 0. Also assuming that exp [E𝐤/(3𝑘𝐵𝑇 2)⁄ ] >> 1 then 2.2.3 becomes, 

which is rearranged to obtain, 

Since 𝑓(E𝐤) is known to be a value between 0 and 1, a uniform random number generator 

is used to determine the energy of each electron. This energy is then used to determine 

the electron wavevectors. The magnitude is calculated based on the selected band-

structure approximation and the direction is determined by two more randomly generated 

 
𝑓(E𝐤) =

1

1 + exp [(E𝐤 − EF)/(3𝑘𝐵𝑇 2)⁄ ]
 2.2.3 

 
𝑓(E𝐤) =

1

exp [E𝐤/(3𝑘𝐵𝑇 2)⁄ ]
 2.2.4 

 
E𝐤 = −

3𝑘𝐵𝑇

2
ln[𝑓(E𝐤)]. 2.2.5 
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numbers. One is used to calculate an angle between the wavevector and the x-y plane, the 

other used to calculate an angle between the wavevector and the z-axis. The wavevector, 

𝐤, is then split up into its three components, kx, ky and kz. 

2.2.4 Electron Drift 

An initial drift time is also determined, based on the solution of equation 2.2.2 in terms 

of τ, 

where 𝑟 is a random number between 0 and 1, chosen by a uniform random number 

generator. After every electron scattering event, a new drift time is determined by 

equation 2.2.6 and is added to the current time for that electron, to generate the time of 

the next scattering event. The field applied across the device is assumed to be solely in 

the x-direction and constant throughout. Using τ, the change in the x-component of the 

wavevector is then calculated using, 

where 𝑒 is the electronic charge and 𝐹 is the applied electric field. It is also assumed that 

the rate of change in 𝑘𝑥 is constant throughout the drift step. This allows for the 

assumption that the electron moves with a constant velocity when calculating the distance 

travelled by the electron in the x-direction. The constant velocity corresponds 

to 𝑘𝑥,(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) +
∆𝑘𝑥

2
, where 𝑘𝑥,(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) is the x-component of the wavevector at the start of 

the drift step. 

 
𝜏 = −

ln(𝑟)

Γ
 2.2.6 

 
∆𝑘𝑥 = −

𝑒𝐹

ℏ
𝜏 2.2.7 
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2.2.5 Electron Scattering 

When an electron has been simulated up to the time of a scattering event, the scattering 

mechanism to be encountered needs to be chosen. To do this, a random number between 

0 and 1 is chosen using the uniform generator. Since the algorithm has generated, and 

stored, cumulative scattering probabilities for all energy intervals, this is a straightforward 

process. First, the electron energy is calculated, and then which energy interval the 

electron is in is calculated by dividing by the energy step size. Once the energy interval 

is selected, the random number, 𝑟, is compared to the cumulative probabilities, 𝑝𝑛(E𝐤) in 

the given scattering table. The condition for selecting a scattering mechanism with index 

𝑚 is then, 

where 𝑝0(E𝐤) = 0. If the random number is greater than the sum of all the scattering 

probabilities in the given energy interval, then “self-scattering” is chosen. Once the 

scattering mechanism has been determined, the electron energy and wavevector are 

updated accordingly. In all cases, the energy change is simple (either no change, or ± a 

phonon energy), which allows the magnitude of the post-scatter wavevector, 𝐤′, to be 

easily calculated. The direction of the wavevector is determined by two scattering angles, 

the polar angle, 𝜃′, and the azimuthal angle, 𝜙′. The polar angle is defined as the angle 

between the initial and the final in-plane wavevectors, whereas the azimuthal angle is 

defined as the angle between the final in-plane wavevector and the x-axis. The azimuthal 

angle is determined by the following relation,  

 𝑝𝑚−1(E𝐤) < 𝑟 ≤ 𝑝𝑚(E𝐤) 2.2.8 

 𝜙′ = 2𝜋𝑟 2.2.9 
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where 𝑟 is again a random number uniformly generated between 0 and 1. This relationship 

arises from the fact that the transition rates are independent of the azimuthal angle. The 

polar scattering angle, however, is determined based on whether the scattering 

mechanism is isotropic or anisotropic. 

2.2.5.1 Isotropic Scattering 

For scattering mechanisms that are isotropic, the post-scatter wavevector has an equal 

probability of pointing in any direction. In the case of isotropic scattering, the polar angle, 

𝜃′, is calculated from: 

Since there is an equal probability for all scattering angles to occur, the angles obtained 

for 𝜃′ and 𝜙′ can be assumed to be the polar and azimuthal angles of the new direction of 

𝐤′, as opposed to the change in these angles. Meaning the new kx, ky and kz of the post-

scatter wavevector can be simply calculated directly from 𝐤′, 𝜃′ and 𝜙′. Isotropic 

scattering mechanisms include non-polar optical phonon and acoustic phonon scattering. 

2.2.5.2 Anisotropic Scattering 

For scattering mechanisms that are anisotropic, it is much more difficult to determine the 

polar angle, a direct relationship with a random number can no longer be used. The 

probability of scattering from 0 to the polar angle 𝜃′ can be found by solving, in terms of 

cos(𝜃′),  

where the subscript represents the limits of the polar angle integration, and 𝑊𝑡(E𝐤) is the 

scattering rate of scattering mechanism, 𝑡, for an electron with energy, E𝐤. Tomizawa 

presents the solutions for polar optical phonon scattering as [57]: 

 cos(𝜃′) = 1 − 2𝑟 2.2.10 

 𝑊𝑡(E𝐤)𝜃:0−𝜃′/𝑊𝑡(E𝐤)𝜃:0−𝜋 2.2.11 
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where 𝑟 is a random number from 0 to 1, and 𝑓 is defined in terms of the electron energy 

before (E𝐤) and after (E𝐤′) scattering as 

and for impurity scattering as: 

where 𝑞𝐷 is the Debye length, which is given by 

where 𝜖𝑠 is the dielectric constant and 𝑛 is the electron concentration. Once the scattering 

angles have been calculated, it is difficult to perform any further calculations directly in 

the original (laboratory) frame of reference. It is easier to use a rotated frame, which is 

rotated around the origin of the laboratory frame such that the initial wavevector is 

parallel to the new z-axis (see Naylor [20] for more details of the rotated reference frame 

in the bulk case). 

2.2.6 Output 

One of the main advantage of an EMC algorithm is the ability to output transient transport 

properties and generate the electron distribution function. This is done at the end of 

specified time intervals to monitor the evolution of the system, the EMC algorithm 

produces ensemble averaged data at any desired point in time during the simulation. To 

 
cos(𝜃′) =

1 + 𝑓 − (1 + 2𝑓)𝑟

𝑓
 2.2.12 

 
𝑓 =

2√E𝐤E𝐤′

(√E𝐤 − √E𝐤′)2
 2.2.13 

 
cos(𝜃′) = 1 −

2𝑟

1 + (1 − 𝑟) (
2𝑘
𝑞𝐷

)
2 

2.2.14 

 𝑞𝐷 = √𝜖𝑠𝑘𝐵𝑇 𝑒2𝑛⁄  , 2.2.15 
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calculate the average electron velocity and energy in the ensemble, the instantaneous 

properties can be taken and averaged over all electrons in the system. For a simulation 

containing 𝑛 electrons, the average velocity at a given time, 𝑡, is calculated as 

and the energy is calculated as 

As well as ensemble average velocity and energy, the EMC algorithm can also produce 

valley occupancy data and the distribution of the electrons velocities and energies which 

can be taken at the end of any time step. This would need to be done at multiple time 

steps throughout the simulation to generate time evolution properties. The output at the 

end of the final time step gives the steady state data, if the simulation is run for a long 

enough period of time. 

2.3 Two-Dimensional Electron Gas Monte Carlo 

The EMC method can be used to simulate electron transport in the two-dimensional 

electron gas (2DEG), created at a material interface. The algorithm is largely similar to 

the bulk EMC algorithm, the main differences being the need to replace the scattering 

rates with the 2D rates, and to alter the code to account for electrons being confined in 

one direction (assumed to be the z-direction in this work), meaning they are only free to 

move in the plane of the other directions (x-y plane). There are two electric field strengths 

used, a confining field (in the z-direction) which creates the well and the applied electric 

field (assumed to be solely in the x-direction, as explained in the bulk algorithm). The 

only movement in the confined direction comes from scattering events that cause a 

 
〈𝑣〉𝑡 =

1

𝑛
∑

1

ℏ

𝜕E(𝐤)𝑖

𝜕𝑘𝑖

𝑛

𝑖=1

 2.2.16 

 
〈E(𝐤)〉𝑡 =

1

𝑛
∑ E(𝐤)𝑖

𝑛
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transition from one sub-band to another. The simplest approach to calculate the sub-band 

energy levels is to assume an infinitely high triangular quantum well. In what follows, the 

triangular quantum well approximation, assumed to contain two sub-bands, and how this 

is used to simulate electron transport in the 2DEG created at a GaN-AlGaN interface are 

explained. 

2.3.1 Triangular Well Approximation 

To accurately determine the wavefunctions in a quantum well would require self-

consistent numerical simulations [68], due to the electric field varying with distance from 

the interface. Given the complexity of the Monte Carlo algorithm, a much simpler 

approach is to assume that the electric field changes linearly with distance, creating a 

triangular potential well, as shown in figure 2.3.1. For the lowest sub-band, this is a good 

approximation, however it becomes less accurate for much higher sub-bands. Assuming 

the potential changes linearly in the confinement direction (assumed here to be the z-

direction), and is given by 𝑒𝐹𝑧, where 𝑒 is the electronic charge and 𝐹 is the confining 

electric field, then the Schrödinger equation to be solved is [57]: 

where E𝑛 and 𝜓𝑛(𝑧) are the energy level and wavefunction of the 𝑛th sub-band. This 

approach, considering two sub-bands, is used in the 2DEG algorithm. The wavefunctions 

commonly used are the Fang-Howard wavefunctions, which for the first two sub-bands 

are given by [69, 70]:  

 
−

ℏ2

2𝑚∗

𝜕2𝜓𝑛(𝑧)

𝜕𝑧2
+ 𝑒𝐹𝑧 𝜓𝑛(𝑧) = E𝑛𝜓𝑛(𝑧) 2.3.1 
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Figure 2.3.1: Illustration of the triangular potential well approximation of the conduction band, assuming 

the confinement is in the z-direction, for a confining electric field strength, F. 

Where 𝑧 is the confinement direction, and 𝑏 is a constant (calculated from using the 

variational principle to minimise the lowest sub-band energy), given in terms of the 

electric field applied in the confinement direction, 𝐹𝑧, as [71]: 

where 𝑚∗ is the effective mass of the electron, 𝑒 is electronic charge and ℏ is the reduced 

Planck constant. 𝐹𝑧 is linked to the sheet charge density (see appendix A) and its value is 

altered to tune the sheet density to match experiment. The minimisation parameter, 𝑏, is 

very important as it is used in the calculation of the 2D scattering rates. The sub-band 

energy levels, E𝑧, are also determined by minimisation and are given as [71]: 

 

Ψ0(𝑧) = (
𝑏3

2
)

1
2

𝑧 exp [−
𝑏 𝑧

2
]  2.3.2a 

 

Ψ1(𝑧) = (
3𝑏3

2
)

1
2

(𝑧 −  
𝑏𝑧2

3
) exp [−

𝑏 𝑧

2
]  2.3.2b 

 

𝑏 = (
14 𝑚∗

ℏ2
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3
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where 𝐴0 = 0.7587 and 𝐴1 = 1.7540. 

2.3.2 Energy and Momentum Conservation 

The confinement creates discrete, quantised energy levels in the confinement direction 

that the electrons can occupy. Using the parabolic band approximation, the total electron 

energy can then be separated into two components, the sub-band energy (E𝑛), and the 

electrons kinetic energy in the plane parallel to confinement (E//). Hence 

where  

where 𝑘𝑧is the z-component of the wavevector, and 

where 𝑘𝑥 and 𝑘𝑦 are the x and y components of the wavevector, and 𝑚∗
 is the effective 

mass within the well. For any intra-band electron-phonon interactions, such that the 

electron remains in the same sub-band, E𝑛 and 𝑘𝑧 remain unaffected. Hence, energy and 

momentum conservation is only needed to be considered within the parallel plane. For 

inter-band interactions, E𝑛 and 𝑘𝑧 will change, and hence the energy and momentum 

conservation rules are applied in three-dimensions. 

 

E𝑧𝑛 = (
ℏ2

2𝑚∗
)

1
3

(
3𝜋𝐴𝑛

2
𝑒𝐹𝑧)

2
3
 2.3.4 

 E = E𝑛 + E// 2.3.5 

 
E𝑛 =

ℏ2𝑘𝑧
2

2𝑚∗
 2.3.6  

 
E// =

ℏ2(𝑘𝑥 + 𝑘𝑦)2

2𝑚∗
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2.3.3 2D Scattering Rates 

The main differences between the derivation of the bulk and 2D scattering rates are the 

density of states and the introduction of a form factor in the 2D case. In the 2DEG 

simulation, the scattering rates used are those derived by Yoon [72] and are introduced 

below for all scattering mechanisms. 

2.3.3.1 Acoustic Scattering 

Using the wavefunctions given by equations 2.3.2, Yoon gives the acoustic deformation 

potential scattering rates for intra- and inter-sub-band scattering as (where the subscripts, 

in the form AB, refer to a scattering from sub-band A to sub-band B) [72]: 

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the lattice temperature, 𝐷𝐴 is the acoustic 

deformation potential, 𝜌 is the material density, 𝑆𝑙 is the longitudinal sound velocity and 

𝑏 is the normalisation parameter given by 2.3.3. 

2.3.3.2 Alloy Scattering 

Alloy disorder also generates a short range potential which can affect the electrons in a 

semiconductor device, similar to the acoustic phonon. The scattering rates for intra- and 

inter-sub-band scattering are given by Yoon as (where the subscripts, in the form AB, 

refer to a scattering from sub-band A to sub-band B)  [72]: 

 
𝑊00(𝐤//) =

𝑚∗𝑘𝐵𝑇𝐷𝐴
2 

ℏ3𝜌𝑆𝑙
2

3𝑏

16
  2.3.8a 

 
𝑊01(𝐤//) =

𝑚∗𝑘𝐵𝑇𝐷𝐴
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ℏ3𝜌𝑆𝑙
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32
  2.3.8b 
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where 𝑥 is the mole-fraction composition, Ω is the volume of the primitive cell and ∆𝑉 is 

the alloy disorder potential.  

2.3.3.3 Polar Optical Phonon Scattering 

Again, using the wavefunctions given in 2.3.2, Yoon derives the polar optical phonon 

scattering rates, for intra- and inter-sub-band scattering, as (where the subscripts, in the 

form AB, refer to a scattering from sub-band A to sub-band B) [72]: 

where the integration range for θ is from 0 to π, and where 
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E(𝐤//) is the energy associated with the initial 2D wavevector, 𝐤//, ℏ𝜔 is the phonon 

energy, 𝜖∞ and 𝜖0 are the optical and static dielectric constants, 𝑁(𝒒) is the phonon 

occupation number and 𝜃 is the angle between the initial and final wavevectors, 𝐤// and 

𝐤′//. To generate the polar optical phonon scattering rates requires numerical integration 

of the expressions in equation 2.3.10. 

2.3.4 2D Electron Scattering 

As in the bulk EMC algorithm, scattering rates are used to generate cumulative scattering 

probabilities for all energy values in the look-up table. Choosing a scattering mechanism 

is performed in the same way as the bulk algorithm. Similarly, the magnitude of the final 

wavevector is easily calculated from the resulting change in energy. However, since the 

electrons are only free to move in the x-y plane, the energies (and hence wavevectors) 

used are the in-plane energies. As the wavevector is in-plane, the direction is determined 

by the polar angle only, the azimuthal angle is not required. 

 
E𝑏 = 2√E(𝐤//)[E(𝐤//) ± ℏ𝜔]   

 
𝐶 =

𝑒2𝜔√𝑚∗ 

8𝜋√2ℏ
(

1

𝜖∞
−

1

𝜖0
) (𝑁(𝒒) +

1

2
±

1

2
)   

 𝛼 =  √E𝑎 − E𝑏 cos(𝜃)  

 
𝛽 = 𝑏 +

√2𝑚∗

ℏ
𝛼  

 
𝐴 =

√3

2
𝑏3 

𝐵 =
𝑏

3
 

 



Semiconductor Physics and Monte Carlo Methods for Simulating Electron Transport 

 

33 

2.3.4.1 Isotropic Scattering in 2D 

As discussed in section 2.2.5, after an isotropic scattering event the post-scatter 

wavevector has an equal probability of pointing in all directions. This means equation 

2.2.10 can be used to generate the scattering angle. Again, because of the equal 

probability of the final in-plane wavevector, 𝒌//
′ , pointing in all directions, the scattering 

angle generated is assumed to be the direction of the new wavevector, not the change in 

the direction. The polar angle, 𝜃, is defined as the angle between the in-plane wavevector 

and the x-axis. This allows the x and y components, 𝑘𝑥 and 𝑘𝑦, of the new wavevector to 

be simply calculated as: 

2.3.4.2 Anisotropic Scattering in 2D 

Much like in the bulk case, it is more complex to generate the scattering angle for 

anisotropic scattering mechanisms. There is no analytical solution to equation 2.2.11 to 

allow the scattering angle to be determined, instead a different approach must be taken. 

Price [73] introduces a rejection technique for determining successful polar optical 

phonon scattering events in 2D. 

2.3.4.2.1 Polar Optical Scattering in 2D 

To implement a polar optical phonon (POP) scattering event, a scattering angle is found 

by performing the following procedure [73], (1) generate an angle 𝜃 =  𝜋𝑟 where 𝑟 is a 

random number between 0 and 1, (2) calculate the magnitude of the in-plane phonon 

wavevector, 𝑞//, from: 

 𝑘𝑥 = 𝒌//
′ cos(𝜃) 2.3.11a 

 𝑘𝑦 = 𝒌//
′ sin(𝜃) 2.3.11b 
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where 𝑘// and 𝑘//
′  are the magnitudes of the initial and final in-plane wavevectors, (3) 

test the following condition: 

 where 𝑅 is another random number and 𝐽∗(𝑞) is given by: 

and  

where the subscripts 𝑖 and 𝑓 represent the initial and final sub-band respectively, (4) if 

2.3.13 is not satisfied, repeat steps (1)-(3) until an angle is generated that does satisfy the 

condition. Using the wavefunctions given by 2.3.2, numerical integration is used to create 

another look-up table for 𝐽∗(𝑞) during the initial set up of the algorithm for use in POP 

scattering events. The step size for q in the look-up table was tested to optimize 

performance as well as obtaining a distribution of scattering angles that satisfied 

anisotropic scattering, i.e. a distribution that favours small angles. The angle found from 

the Price method, 𝜃𝑝, is defined as the angle between the initial and final in-plane 

wavevectors. In order to use the angle to determine the x and y components of the final 

wavevector, the Price angle is added to the angle between the initial wavevector and the 

x-axis, 𝜃, resulting in the angle between the final wavevector and the x-axis, 𝜃′, as shown 

in figure 2.3.2. The x and y components are then easily calculated as in equation 2.3.11, 

using the final angle, 𝜃′, in place of 𝜃. The values for cos(𝜃′) and sin(𝜃′) are calculated  

 𝑞//
2 = 𝑘//

2 + 𝑘//
′ 2

− 2𝑘//𝑘//
′ cos(𝜃) 2.3.12 

 𝐽∗(𝑞//) > 𝐽∗(|𝑘// − 𝑘//
′ |) 𝑅 2.3.13 
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 2.3.14 
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Figure 2.3.2: Illustration of the use of the Price scattering angle, θp, and initial wavevector direction with 

respect to the x-axis, θ, to generate the post-scatter angle between the final wavevector and the x-axis, θ’. 

using the trigonometric functions cos(A+B) = cos(A)cos(B) – sin(A)sin(B), and sin(A+B) 

= sin(A)cos(B) + cos(A)sin(B). Using 𝜃, 𝜃𝑝 and 𝜃′ from figure 2.3.2 this gives: 

where cos(𝜃𝑝) and sin(𝜃𝑝) can be calculated using the Price scattering angle, and: 

where 𝑘𝑥 and 𝑘𝑦  are the x and y components of the initial wavevector and 𝑘// is the 

magnitude of the initial wavevector. 

 cos(𝜃′) = cos(𝜃) cos(𝜃𝑝) −  sin(𝜃) sin(𝜃𝑝) 2.3.16a 

 sin(𝜃′) = sin(𝜃) cos(𝜃𝑝) +  cos(𝜃) sin(𝜃𝑝) 2.3.16b 
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𝑘//
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sin(𝜃) =
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𝑘//
 2.3.17b 
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2.3.5 2DEG Algorithm 

The 2DEG algorithm follows the same procedure as the bulk algorithm explained in 

section 2.2.1, and illustrated in the flow diagram in figure 2.2.1. Before calculating the 

scattering table, the minimisation parameter and sub-band energy levels need to be 

determined. This is followed by filling the scattering table, with the use of numerical 

integration, where the energies used are the in-plane energies, as opposed to the full 

electron energy. In the 2DEG algorithm the scattering table is split into two sub-bands, 

where each sub-band has its own version of each scattering rate included. So, as in the 

bulk algorithm each valley has its own self-scattering constant, in the 2DEG algorithm 

each sub-band has its own self-scattering constant to reduce self-scattering. Since self-

scattering has no effect on the electrons properties, when a self-scatter event is chosen, 

the computer wastes computational time. Therefore, reducing the number of self-

scattering events optimises the algorithm in terms of run time, since less time is needlessly 

spent implementing a self-scatter, and also improves the accuracy in terms of calculating 

the time between two scattering events. The initial states are then set, again using a 

thermal electron distribution. Each electron is then simulated in turn. The electron drift is 

the same as described in section 2.2.4, as the applied field is still assumed to be along the 

x-axis. Choosing a scattering mechanism is the same as in bulk, but scattering is 

implemented in 2D as described in section 2.3.4. Transient data is output at the end of 

each time step, and steady state data at the end of each field step. 

2.4 Simulating Non-Equilibrium Phonon Effects 

To derive polar optical phonon scattering rates, a static and thermal phonon population is 

assumed. This implicitly assumes that any energy produced in a phonon emission process 

will decay instantly, which is unrealistic. When a phonon is emitted, this energy would 

be stored in the lattice and could possibly be reabsorbed. In an area with a significant 
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population of phonons, phonon emission can cause a shift away from equilibrium. When 

this occurs, ‘hot phonons’ are introduced, metaphorically relating an increase in phonons 

with an increase in the electron temperature. The process of reabsorption will increase the 

carrier relaxation rates, for both energy and momentum [65]. The effects of non-

equilibrium phonons can be incorporated into an EMC algorithm using the method 

proposed by Jacaboni [74]. Non-equilibrium phonons can be included in the bulk EMC, 

however, since they are not used in the simulations for the work in this thesis this is not 

discussed here, instead how non-equilibrium phonons are included in the 2DEG EMC, 

assuming bulk phonons interacting with 2D electrons is explained in the next section. 

2.4.1 2DEG Non-Equilibrium Phonon Algorithm 

To implement non-equilibrium phonons, a phonon occupation histogram is created, 

defined as a grid in momentum space. After each POP scattering event the phonon is 

recorded. To record a phonon, a scattering angle must be determined and the wavevector 

calculated. This is performed using the Price rejection technique. The angle is determined 

using the procedure introduced in section 2.3.4.2.1, and the phonon wavevector is 

calculated from equation 2.3.12. Since the phonon distribution changes as the simulation 

proceeds, the pre-calculated POP scattering rates in the scattering table no longer apply 

and must be updated according to the changed phonon distribution. The non-equilibrium 

phonon distribution is relaxed back towards thermal after a length of time has passed that 

is equal to the phonon lifetime, which is known to be dependent on material, carrier 

density, temperature, phonon distribution and mechanism [65]. The carrier density is 

constant throughout the simulation, allowing a constant phonon lifetime to be used. 

Lifetimes have been measured in the range 0.1 to 2.5 ps [75]. The initial phonon 

distribution is set at thermal equilibrium, calculated using: 
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where 𝑁 is the phonon occupation number and E𝑞 is the phonon energy. The flowchart 

in figure 2.2.1 is updated for the non-equilibrium phonon algorithm and is shown in figure 

2.4.1. In the non-equilibrium phonon simulation, transient and steady state velocity and 

energy can be output and compared to the equilibrium result, to investigate the effects of 

non-equilibrium phonons on electron transport characteristics. Phonon distributions, 

maximum phonon occupation number, average phonon occupation number and POP 

scattering rates can all be output as a function of time to investigate non-equilibrium 

phonon behaviour. 

2.4.2 Phonon Occupancy Table 

In the 2DEG algorithm, although the electrons are confined the phonons are assumed to 

be bulk and are treated as such. The bulk phonon model is employed for non-equilibrium 

phonons, following Jacoboni [74] and the approach used by Ramonas et al. [35] for non-

equilibrium phonon effects in 2DEG channels. The phonon momentum is split into two 

directions, a component parallel to the applied electric field, 𝑞𝑥, and a component in the 

plane perpendicular to this, 𝑞𝑡, which can be written as: 

and 

The grid in momentum space is then a set of concentric rings, shown in figure 2.4.2, 

where each ring corresponds to a section of the phonon occupation table. 

 
𝑁 =

1

(exp [
E𝑞

𝑘𝑏𝑇
] − 1)
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Figure 2.4.1: Flowchart diagram showing how non-equilibrium phonons are added to an EMC algorithm. 
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Figure 2.4.2: Schematic diagram showing the q-space grid, consisting of concentric circles, centred along 

the qx axis and with increasing radii in the y-z plane. 

2.5 Summary 

This chapter has introduced how the ensemble Monte Carlo method can be implemented 

to simulate electron transport in various semiconductor structures. The algorithm to 

simulate transport in bulk semiconductor materials was presented first. The different 

stages of the simulation and the vast range of data available were explained. The range of 

data available is the main reason an ensemble Monte Carlo is used over a single electron 

Monte Carlo. The extra data being calculated and output has an effect on the run time, 

though this is mitigated by introducing parallelisation. The changes and additions 

required to simulate transport in a two-dimensional electron gas were then introduced, 

where a confining field creates a triangular quantum well. With the electrons now only 

free to move in the 2D plane perpendicular to confinement, the new scattering rates and 

their implementations were described. Finally, the process of adding bulk non-

equilibrium phonon effects into the algorithms was introduced. This includes recording 
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the phonon scattering events to generate the true phonon distribution, and how this is used 

to recalculate the phonon scattering rates throughout the simulation. 
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Chapter 3 

Bulk Ensemble Monte Carlo on a GPU 

Computational simulations are an extremely popular method of scientific research and 

have been used in a wide range of disciplines for many decades. As computer technology 

advances, so do the simulations, allowing for more complex systems to be modelled. Of 

course, adding more complexity leads to more computationally expensive simulations. 

Complicated equations and calculations demand longer computation times, causing 

considerable run times. Assumptions and simplifications can be made to decrease 

complexity, at the expense of accuracy when compared to a real, physical system. 

Parallelisation is another common method of reducing run times, provided the simulation 

can be decomposed into components that can be run in parallel. This then allows multiple 

cores on a central processing unit (CPU) to run similar sections of the algorithm 

simultaneously. However, parallel computation can also be performed on the many (less 

powerful) cores on the graphics processing unit (GPU), this is known as general-purpose 

computing on graphics processing units (GPGPU), and gives a much higher level of 

parallelisation. In this chapter, GPGPU is introduced with an overview of the GPU 

architecture. The computer language used to run sections of the algorithm on the GPU is 

introduced and the properties of an ideal algorithm are explained, followed by the 

challenges that arise from attempting to run a Monte Carlo simulation on a GPU. The 

changes made to the bulk Monte Carlo algorithm (described in section 2.2) to be run on 

a GPU are then presented. These begin with architectural changes to the algorithm before 

moving on to GPU specific optimisations, such as memory and branching. Finally, more 

general changes that affect the underlying physics and can be performed on any algorithm 

are investigated. All changes and optimisations are presented with their effect on the 

performance, and where necessary, outputs are compared to those from the original bulk 

Monte Carlo to show any effect on the overall results. This is the first example, to my 
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knowledge, of an electron transport in semiconductor Monte Carlo simulation being 

performed on a GPU. 

3.1 Introduction to NVIDIA CUDA & GPGPU 

There are several languages that can be used for GPGPU implementations, OpenCL, 

OpenMP and OpenAAC all have the capability to run code on the GPU. CUDA is 

NVIDIA’s own parallel computing platform and programming model, and is written 

specifically for the NVIDIA GPU hardware. CUDA can be used as an extension to several 

languages including C, C++ and FORTRAN and it allows for computationally intensive 

sections of code to be run on the GPU. With the original bulk ensemble Monte Carlo 

(EMC) algorithm written in C++, CUDA is the chosen language for this project for the 

similarities in the languages (CUDA is essentially the C language with added extensions 

to allow for highly parallel programming). In this section, CUDA is briefly introduced 

followed by an overview of GPGPU programming and the architecture. The 

characteristics of an ‘ideal’ GPU algorithm are presented and linked to the bulk EMC. 

Finally, this is followed by the problems that arise from transferring the EMC to the GPU. 

3.1.1 NVIDIA CUDA 

CUDA is a parallel computing programming language developed by NVIDIA to be used 

for GPGPU, specifically on NVIDIA GPU hardware. NVIDIA have created a number of 

CUDA-accelerated libraries that are readily available for developers to use, as well as a 

C/C++ compiler, nvcc. C++ algorithms can be transformed to use CUDA C++ by using 

the nvcc compiler along with the relevant CUDA libraries. A function to be invoked on 

the GPU is called a kernel. 
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3.1.2 Thread Blocks and Warps 

Due to the enormous number of threads available on the GPU, as discussed in section 1.3 

and shown in figure 1.3.1, threads are divided and execute instructions in a unique way. 

The NVIDIA GPU architecture is an array of Streaming Multiprocessors (SMs). Each 

SM contains a large number of threads (architecture dependent), as well as having its own 

shared memory, L1 cache and thousands of 32-bit registers. A CUDA application consists 

of CPU and GPU sections, the CPU section handles all of the function/kernel calling 

while the GPU section contains one or more kernels. Each kernel is executed across a 

large number of the GPUs threads, and all threads will be running identical code. CUDA 

algorithms are split into sub-problems that can be solved independently, and in parallel, 

by a block of threads. Threads within a block can cooperate when solving each sub-

problem, by using shared memory. Each block is scheduled on to any available SM, in 

any order, either concurrently or sequentially depending on availability, such that the 

compiled CUDA program completes the whole algorithm on any number of SMs. The 

threads within a block always execute concurrently on one SM, while multiple blocks can 

also execute concurrently on one SM (dependent on number of threads and memory 

availability). SMs are designed to execute hundreds of threads simultaneously, and are a 

part of the SIMT (Single-Instruction, Multiple-Thread) taxonomy. The SM executes 

threads in groups of 32 called warps. Threads within a warp begin at the same instruction, 

but are free to branch and execute independently. A warp executes one single instruction 

at a time, meaning full efficiency is obtained when all 32 threads have the same execution 

path. If threads diverge due to a conditional branch, the warp executes each branch path 

taken sequentially, disabling threads that are not on the current path. Branch divergence 

only occurs within a warp, since all warps execute independently. 



Bulk Ensemble Monte Carlo on a GPU 

 

45 

3.1.3 GPU Memory 

There are a number of memory types on a GPU. Registers were already mentioned when 

introducing the SMs. In an ideal algorithm, all data would be stored in registers and other 

memory types would only be used for transferring data to and from the CPU, and for 

sharing data within a block. The remaining types, in order of performance (from fastest 

to slowest) are: constant, shared, local and global. GPUs also contain texture memory, 

but since there are no large matrices in the EMC, texture memory is not used. Constant 

memory is a read-only memory type. Reading data from constant memory is fast but has 

a small bandwidth, meaning only a small amount of data can be read at once. Reading too 

much data leads to several sequential read requests as the local cache becomes full. Each 

block of threads running on a SM has its own allocated shared memory that each thread 

has access to. This shared memory is divided into equally-sized modules, referred to as 

banks [76], which can be accessed simultaneously. Therefore, if multiple threads make a 

read or write request, where the memory addresses fall in separate banks, then they can 

be performed simultaneously. However, if multiple addresses are within the same 

memory bank, the access has to be serialised, and the memory request is split into as many 

separate ‘conflict-free’ requests as are required. Each thread has its own local memory, 

which is effectively a back-up space for registers. If a thread uses more registers than it 

has available, any further variables defined are placed in local memory, this is known as 

register spilling. Any large structures or arrays that would consume too much register 

space are also likely to be stored in local memory. Global memory has global scope, 

meaning all threads in all SMs have access to it. Local memory resides in device memory, 

so both local and global memory have high latency. Shared memory is on-chip, therefore 

has much higher bandwidth and lower latency than local and global memory.  
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3.1.4 Ideal GPGPU Algorithm 

To fully utilise the parallel potential of the GPU and its architecture, an ‘ideal’ algorithm 

must have some specific features. Firstly, the algorithm must be highly parallelisable to 

make use of the vast amount of threads available. The parallelisable component must also 

be significant, in terms of run time, compared to any serial components (described by 

Amdahl’s law [77]). As explained in section 3.1.2, an algorithm is split into thread blocks, 

and these thread blocks are run in warps of 32 threads. All threads in a warp run the same 

instruction simultaneously, any threads that follow a different branch are disabled and all 

branched instructions are run sequentially. Therefore, a perfect algorithm would ideally 

be able to be split into a number of blocks that have no branching conditions, meaning 

the threads follow the same flow. In terms of the bulk EMC algorithm, the highly parallel 

characteristic is present since a large number of electrons are simulated. For an ideal GPU 

algorithm, the electrons would all follow the same flow from start to finish of the 

algorithm, or at least be split in individual problems that have no branches, so all threads 

within a warp can run in unison. If the EMC algorithm consisted of a huge number of 

electrons that all follow the same path, then a GPU algorithm would see an enormous 

performance increase. Unfortunately, this is not the case for the bulk EMC algorithm and 

some problems arise. 

3.1.5 Problems with Bulk Monte Carlo 

The bulk EMC algorithm includes a large number of electrons (ideally 10,000s for 

accurate statistical analysis) and since electron-electron interactions are ignored each 

electron can run simultaneously, creating a highly parallel problem. It is relatively simple 

to parallelise the algorithm at the electron level, however, this introduces a number of 

issues for an ‘ideal’ GPGPU algorithm. Firstly, the large number of scattering 

mechanisms included in the simulation creates an equally large number of conditional 



Bulk Ensemble Monte Carlo on a GPU 

 

47 

branches (12 when considering absorption/emission). As explained in section 3.1.2, all 

32 threads in a warp execute the same instruction at the same time, if threads diverge due 

to a conditional branch, the warp must execute each branch taken, disabling threads not 

on this path. Hence, there is the possibility that in a single warp, all 12 scattering 

mechanisms occur and all 12 paths must be executed sequentially. As well as the high 

number of branches, the paths an electron can take are long and can involve a number of 

complex operations. Monte Carlo simulations are based on the random number generator 

creating random scattering events, therefore it would be very difficult to alleviate the issue 

created from the large number of branches, as it is possible for the electron to follow each 

path. The probability of each path being taken is weighted based on the relevant scattering 

mechanism for a given electron energy, hence some paths are more likely to be taken than 

others, but it is not possible to know when each path will be taken. 

3.2 Algorithm Implementation on a GPU 

In the previous section, an overview of the CUDA language and how an algorithm is 

divided and performed on the GPU architecture were introduced, along with some issues 

that arise from porting the bulk EMC algorithm onto the GPU. In this section, the changes 

made to the algorithm are presented along with their effect on performance. Firstly, 

architectural changes are introduced, such as where parallelism is included and the 

number of threads per block. This is followed by an explanation of the memory strategy 

taken, which includes the effects of copying the data from host (CPU) to device (GPU) 

and vice versa, how the different memory locations explained in section 3.1.3 are used 

and how the data is rearranged in memory.  

3.2.1 Architectural Changes 

The original bulk EMC algorithm, run on a CPU, is parallelised at the field level (as is 

the non-equilibrium phonon variant), meaning each core of the CPU is given a field step 
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to perform (see section 2.2.1). With the large number of threads available on the GPU, 

the parallelisation is moved to the electron level, which is each thread is given a single 

electron to execute, utilising the greater number of cores available. Each field step is run 

sequentially, however, it would be possible to run multiple field steps simultaneously on 

multiple GPU devices. The flow diagram shown in figure 2.2.1 needs to be changed, and 

the updated algorithm flow diagram is shown in figure 3.2.1. 

3.2.1.1 Threads per Block 

As explained in sections 3.1.1 and 3.1.2, the GPU divides the algorithm into thread 

blocks, and these thread blocks are scheduled on to available SMs. The number of threads 

in a block can be user defined, however, threads within a block are also separated into a 

number of warps (group of 32 threads) so it is common practice to have the thread block 

size as a multiple of 32, such that you have a block of full warps, rather than having to 

create a warp to run less than 32 threads. The number of threads per SM is architecture 

dependent, therefore the optimal number of threads per block to ensure the full usage of 

the SMs will vary depending on the graphics card used. The number of threads per block 

is varied from 24 (to study the effect of having a block size that is not a multiple of 32) 

to 192 to investigate the effect on simulation run time. 

The results are shown in table 3.1, where the effect on performance is quantified as the 

percentage increase/decrease in run time compared to a block size of 32. A block size of 

24 gives the longest run time, 11% longer than for a block size of 32. This is likely due 

to the number of disabled threads that occur from creating a warp of 32 threads to run 

blocks of 24, leaving 8 unused threads for each block that is created. The fastest run time 

is achieved for a block size of 64, which gives a 5% speed increase. Any further increase 

in block size results in a slower run time, and for block sizes exceeding 160, the run times 

exceed the result for a block size of 32. This is possibly due to the large number of 
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Figure 3.2.1: Flowchart showing an overview of how the base EMC algorithm was redesigned to run on a 

GPU. Orange borders represent sections performed on the GPU. 
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branches, as explained in section 3.1.5. The larger the block size, the more likely it is that 

more, or all, of the possible execution paths must be taken in a given warp. 

Threads per 

block 

Performance effect, % of 32 

threads per block 

24 +11.4 

32 0 

64 -5.1 

96 -4.0 

128 -2.3 

160 +1.1 

192 +8.6 

Table 3.1: Investigation into the effect of number of threads per block on simulation run time. 

3.2.1.2 CUDA Math Functions 

The majority of NVIDIA GPUs are optimised for single precision floating point (floats) 

operations. Double precision (doubles) calculations take approximately twice as long as 

single precision calculations, but this performance is only available on a GPU that has 

been specified as part of a compute engine. Double precision performance on all GPUs 

designed specifically for graphics use has been restricted to 10% of the single precision 

performance. Therefore, all double precision floating point variables (doubles) in the 

algorithm were changed to single precision (floats). Another alteration made revolves 

around the mathematical functions used in the GPU sections of the code. NVIDIA CUDA 

has its own fast math library designed and optimised for use on the GPU [76]. For all 

sections of the code that run on the GPU, these CUDA functions are used. The simulation 

run time was investigated and it was found that including CUDA math functions produces 

a 14.3% speed increase compared to the original C++ math functions, a significant 

performance increase for a simple change. 
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3.2.2 Memory Strategy 

With the many different memory locations explained in section 3.1.3, a strategy was 

created to best utilise these wherever possible. This section will explain the various 

methods used and their effect on performance. It begins with an experiment to investigate 

the effect of having to copy memory from the host (CPU) to device (GPU), and how the 

performance changes if we minimise the amount of memory copies required. This is 

followed by examples of how different memory locations are used. Firstly, how local 

memory was used to create a local copy of each electron. Then how constant memory is 

used throughout the simulation, including variables that are constant throughout the 

whole simulation as well as variables that are constant for each field step. Finally, 

modifications made to the structure of the data and how it is stored in memory are 

introduced, including electron parameters and the scattering table. 

3.2.2.1 Memory Copy from Host to Device 

To allow for sections of the algorithm to be performed on the device (GPU), it needs its 

own version of the relevant data. This data is copied from the host (CPU), and likewise, 

the data must be copied back from the device once all instructions are performed, such 

that the host has the updated data for the remainder of the simulation. In the bulk EMC, 

transient data is output at the end of each time step to investigate how electron properties 

evolve over time. Thus the electron data must be copied from the device to host at the end 

of each time step for the same transient data to be output. For accurate transient results, 

data is typically output at 500 stages throughout the simulation time, for each field. The 

effect of having transient output switched on/off was investigated. Removing transient 

output resulted in a 25% decrease in the overall run time. Therefore, it would be possible 

to obtain a performance increase by varying how frequently transient data is output from 

the simulation, the cost being the amount of transient data available to investigate (less 
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frequent transient output may result in the sparse data not showing the true evolution of 

electron properties over time).  

3.2.2.2 Localise Electrons 

Due to the large number of electrons, the GPU copy of the electron array is stored in 

global memory. As discussed in section 3.1.3, global memory has high latency, meaning 

any reads or writes are slow. To lessen this issue, when a thread is assigned an electron, 

each thread creates its own local copy from the global array and all calculations and 

updates are then performed on the local electron. The local electron is then used to update 

the global array at the end of the kernel execution. Creating a local electron produced a 

15% speed increase. 

3.2.2.3 Constant Memory 

As discussed in section 3.1.3, reading from constant memory is fast but has low 

bandwidth so only a small amount of data can be read at any one time. Constant memory 

space is cached, and thus a read from constant memory costs one read from the constant 

cache, or one read from device memory on a cache miss. If threads within a warp attempt 

to access different addresses, these are serialised and as a result the cost scales linearly 

with the number of serialised requests. Hence, the constant cache is best when threads 

within a warp access only a few distinct memory locations. If all threads in a warp access 

the same location, i.e. require the same variable, constant memory can be extremely fast. 

Therefore, all variables in the simulation that are constant for all electrons, and are 

required concurrently, are stored in constant memory. These include such things as the 

number of electrons in the simulation, the energy step size in the scattering table and the 

thermal energy. In every instance of an electron using π in a calculation, it is multiplied 

by 2, thus the value of 2π is calculated once and stored in constant memory. 
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Figure 3.2.2: Illustration of electron parameters stored in memory, a) shows original structure from CPU 

bulk algorithm with electrons stored one by one, b) shows new design for CUDA algorithm with parameters 

stored one by one, … represents parameters being continued. 

3.2.2.4 Memory Coalescing 

Global memory is accessed via 32-, 64-, or 128-byte memory transactions. This means 

that when a thread reads from global memory, it does not read in a single variable, it reads 

the 32-, 64- or 128-byte segment in which the variable is aligned. In the bulk EMC 

algorithm, all reads are for an integer or a float (4 bytes), meaning every read would be a 

32-byte read. If the next thread requires a variable that is in this 32-byte segment, the data 

is readily available. However, if the next thread requires a variable that is not in this 

segment, another 32-byte read is required and if this memory is not already in the cache, 

a cache miss occurs, there is then a delay until the new 32-byte section of memory is 

loaded into the cache and is ready to be read. Therefore, it is extremely important, and 

beneficial, to coalesce the data in memory such that the data required by alternate threads 

is adjacent in memory locations. In the CPU algorithm, a structure is created (Electron) 

that contains all of the electron parameters (kx, ky, kz etc.), and then an array of Electrons 

is created. This means that in memory, electrons are stored one after another. All the 

parameters for one electron are stored together, then the parameters for the next electron 

are stored and so on. Hence, the same parameter for two neighbouring electrons are 

separated in memory, therefore multiple reads from global memory would be required. A 

new array was designed which stores each parameter continuously, one after another, e.g. 

all electron kx’s, followed by ky’s and so on, as illustrated in figure 3.2.2. This ensures 

that in the kernel, when an electron parameter is read from memory, the 32-byte segment 
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will contain the same parameter for the next electron. This reduces the number of cache 

misses immensely and improves the performance of data acquisition. It has the same 

effect at the end of a kernel when the electron parameter is updated, the memory where 

the parameter is to be written is also readily available. The combination of storing 

variables in constant memory, and coalescing electron parameters, produced a 10% 

performance increase. 

3.2.3 Execution Optimisations 

As discussed in section 3.1.2, the GPU separates threads into warps, and all 32 threads 

within a warp perform the same instruction simultaneously. When threads within a warp 

follow different execution paths, this is known as divergence and each path is performed 

sequentially. Threads not on the current execution path are disabled, drastically reducing 

occupancy and performance. Of course, this makes flow control instructions (if, switch, 

while, for example) detrimental to performance due to the creation of different execution 

paths. The different execution paths within a flow control instruction are known as 

branches. Branches with just a few instructions generally result in marginal performance 

losses. However, branches with many instructions, or flow control instructions with many 

branches, tend to result in significant performance losses. Unfortunately, the bulk EMC 

algorithm contains flow control instructions with a large number of branches, due to the 

high number of scattering mechanisms included. The remainder of this subsection 

explains changes made to the flow control instructions in the algorithm in an attempt to 

improve occupancy and minimise the performance losses. 

3.2.3.1 Zero Branching 

The best case scenario would be to have all electrons follow the exact same execution 

path. This would require all electrons (within a warp) to choose and implement the same 

scattering mechanism. To perform a test of this scenario, the scattering function was 
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replaced by a new function which only implemented acoustic scattering. Acoustic 

scattering causes no change to the electron energy and is isotropic, meaning the final 

wavevector calculations use the least, and simplest, code. The new routine included no 

branching statements, purely the code required to implement an acoustic scattering event, 

meaning all electrons within a warp now perform the same instruction concurrently for 

the whole scattering implementation. Utilising the new scattering mechanism produced a 

40% performance increase compared to the simulation including all scattering 

mechanisms. This gives an upper bound to the execution optimisations, having only one 

scattering mechanism, and hence only one execution path, is the ideal case for GPU 

performance. All electrons within a warp perform the same instructions and there are no 

conditional branches to cause threads to be disabled, reducing occupancy and 

performance. 

3.2.3.2 If-then-else Statement 

When choosing a scattering mechanism, a random number between 0 and 1 is compared 

to the weighted scattering table for the current electron energy (see section 2.2.2). There 

are twelve possible scattering mechanisms, including self-scattering, therefore this is 

performed in the original EMC in a 12-branch if-then-else statement, starting with 

scattering mechanism 1, and continuing until the scattering mechanism is chosen. Hence, 

if a large number (or potentially all 12) of the scattering mechanisms are chosen in a 

single warp, multiple execution paths are created and there are several instances of threads 

being disabled. However, the implementation of certain scattering mechanisms are the 

same, or very similar, meaning they can be grouped together. For example, piezoelectric 

and acoustic scattering both cause no change in the electron energy and are grouped 

together, the only difference is acoustic scattering is isotropic whereas piezoelectric 

scattering is anisotropic. For scattering mechanisms such as non-polar/polar optical 

phonon, the magnitude of the energy change is the same (phonon energy), but since the 
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scatter is either by absorption or emission, the only difference is whether the phonon 

energy is added or subtracted from the initial energy. On each thread, a local float is 

created to store the sign of the energy change (either 1.0 for absorption or -1.0 for 

emission), as well as a local Boolean to store whether the scattering is isotropic or 

anisotropic (stored as either true or false). The scattering mechanisms are collected into 

six groups, polar optical phonon (POP), non-polar optical phonon (NPOP), piezoelectric 

and acoustic, inter-valley to lower band, inter-valley (IV) to upper band and impurity and 

self-scattering. 

When choosing a scattering mechanism, the 12-branch if-then-else statement was 

replaced by a binary subdivision if statement. Rather than comparing the random number 

against each scattering mechanism (or scattering group) individually, the binary 

subdivision dissects the scattering table each step. Firstly, checking whether the random 

number selects one of the first six, or last six, scattering mechanisms. Then by splitting 

each six into four and two. Since the scattering mechanisms are in six groups of pairs, if 

the random number corresponds to the group of two, then the scattering group is selected 

after just two steps. If the random number corresponds to the group of four, a third step 

is needed to determine the scattering group. In each scattering group, whether the 

scattering is absorption or emission, or isotropic or anisotropic (if required), is decided 

and stored in the relevant local variable. Consequently, the 12-branch if-then-else 

statement has been transformed to a 6-branch binary if statement, where the minimum 

number of steps required to make a decision is two, and the maximum is three. This can 

be compared to the minimum of one, but maximum of twelve originally. This lowers the 

number of possible execution paths and thus reduces the amount of time spent with 

disabled threads. In order for the scattering groups and binary subdivision to be used, the 

order in which the scattering mechanisms appear in the scattering table must be 

rearranged.  
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3.2.3.3 Switch Statement 

Similarly, when implementing the energy change caused by a scattering event in the 

original EMC, a 12-branch switch statement is used, with one case for each scattering 

mechanism. Therefore, if this method were used on the GPU, if a large number of 

scattering mechanisms are encountered in a single warp, each implementation is 

performed sequentially leading to several instances of threads being disabled. However, 

since scattering mechanisms with similar implementations are grouped together, the 12-

branch switch statement is replaced by a new switch statement with only five branches. 

The six groups from the previous section are reduced further to five groups. Acoustic, 

piezoelectric and impurity scattering all have no effect on the electron energy, and so can 

be implemented together. The remaining scattering groups (POP, NPOP and IV) are 

implemented individually, with absorption and emission scattering events implemented 

at the same time based on the predetermined sign as discussed in section 3.2.3.2. The 

combination of reordering the scattering table into groups, using a binary subdivision 

approach to choosing a scattering mechanism, and implementing like scattering 

mechanisms simultaneously, caused an approximately 4% performance increase. In 

section 3.2.3.1, the ideal scenario of having zero branches and only one execution 

produced a performance increase of 40%. This shows that limiting the number of 

execution paths is vitally important in optimising the performance of the algorithm. 

Unfortunately, this means that including more scattering mechanisms (hence more 

execution branches) will have a negative effect on performance as is seen by the relatively 

small 4% increase (when compared to the ideal scenario) obtained when all scattering 

mechanisms are included.  
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3.2.4 General Physics Simulation Changes 

As well as the changes made based on the specific architecture of the GPU and its memory 

layout, there are also some general changes that were made. Although these changes were 

influenced by the GPU architecture, they could be made to any physics simulation to 

obtain a performance increase. This subsection introduces the changes made along with 

their effect on the performance, and output, whenever applicable. Experiments were also 

performed that changed the underlying physics of the simulation to investigate the effect 

on performance and accuracy of the output and these changes are also explained. 

3.2.4.1 Doubles to Floats 

The first general change was already mentioned in section 3.2.1.2 and is highly influenced 

by the GPU architecture, but is a more general change that could be made in physics 

simulations to potentially obtain a performance increase. Changing between double 

(doubles) and single (floats) precision floating point numbers is essentially a trade-off 

between performance and precision. Doubles have twice the precision of floats but are 

also double the size in memory, to be able to store the extra precision. In the GPU case, 

section 3.2.1.2 explained how CUDA has optimised mathematical functions for float 

operations and so it is extremely beneficial to use floats on a GPU. Double precision 

operations can be up to 32x slower than single precision operations [76], on a consumer 

GPU card. Double operations are 2x slower on a GPU compute card, however, these are 

vastly more expensive. It is found that the change from doubles to floats has minimal 

effect on the simulation output, as shown in figure 3.2.3. The steady state outputs from 

the C++ EMC, using doubles, are compared to the CUDA EMC, using floats. The velocity 

output from the CUDA EMC is slightly higher at low fields, however, as the field 

increases the outputs begin to match more closely. The energy outputs are extremely close 
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Figure 3.2.3: Steady state velocity and energy results, comparing results from the original C++ code (using 

doubles) to the CUDA code (using floats). 

for all field strengths. The minor differences may be due to the change in the random 

number generator on the GPU and the order in which the numbers are accessed. 

3.2.4.2 Time Step Duration 

The total EMC simulation time is separated into a number of individual time steps. The 

duration of these time steps is dependent on how often the transient data is required, and 

for a simulation including hot phonons also depends on the phonon lifetime and how 

regularly phonons need to be updated. Hot phonons are not included in the GPU algorithm 

so these dependencies can be ignored. In some simulations, such as device algorithms, a 

mesh is used and the electrons positions are monitored in order to regularly calculate the 
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charge distribution, and the time step must be considered accordingly. However, in the 

bulk EMC, the time step is purely used to take snapshots of electron properties for 

transient data. In the original EMC, the time step was set to 0.1 fs, however, transient data 

was output every 1 fs (or 100 time steps). Using this time step on the GPU led to relatively 

poor performance, i.e. the speed increase in comparison to the CPU algorithm was low. 

Investigating this with the NVIDIA Visual Profiler, it was found that the occupancy and 

thread utilisation was extremely low. The reason was discovered to be that with a short 

time step, only a small percentage of electrons would scatter, meaning a large percentage 

of threads were disabled while these few scattering events occurred. The time step was 

increased to 1 fs, and transient output was now performed after every time step. This 

ensured that a much higher percentage of electrons encountered a scattering event, 

meaning fewer threads were disabled. This led to an enormous 80% performance 

increase, and the change in time step had minimal effect on the output. The longer time 

step was vital for improved performance on the GPU, however, the same change produced 

a similar performance increase on the CPU algorithm. Evidently, having a longer time 

step, meaning fewer stop-start points, produces the best performance. This is logical, 

given that the end point is the same, it is simply reached in fewer steps.  

3.2.4.3 Limit Scatters per Time Step 

With the time step increased, and the vast majority of electrons encountering a scattering 

event, the occupancy and thread utilisation was still found to be low during some periods 

of the simulation. Investigating this, the low occupancy was found to be caused by a small 

percentage of electrons scattering a high number of times, compared to the rest of the 

electrons. The majority of electrons would encounter two or three scattering events during 

a time step, whereas a very small percentage of electrons scattered six or seven times. To 

investigate the effect on performance, a maximum number of scatter events per time step 

was set and experimented with. Logically, limiting the number of scattering events stops 
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the small percentage of electrons scattering more than the majority, preventing threads 

being disabled, hence should lead to a speed increase. However, by limiting the number 

of scattering events, the simulation is made less physical as the scattering events are 

produced based on the scattering rates and related probabilities. Setting the maximum 

number of scattering events to five produced a 2% performance increase, whereas limiting 

the scattering events to four produced a 5% performance increase. In both cases, the 

steady state results were within 1% of the original results. However, the transient results 

saw on average a 4% change when the limit was five, and a 5.5% change when the limit 

was four. This shows that setting a limit on the number of scattering events does have an 

effect on performance, but also has an effect on the simulation output, as expected. Due 

to the effect on the results and the unphysical nature of having a limit on scattering events, 

for a relatively small performance increase (the 2% increase is minimal, whereas the 5% 

increase comes at the expense of a much higher effect on the results), the scattering limit 

is removed from the final GPU simulation. 

3.2.5 Timing Results 

So far, the results of implementing changes have been presented as a relative percentage 

performance improvement. Calculated as the percentage change in run time from the 

previous version of the algorithm (i.e. a 5% performance increase represents a reduction 

of 5% of the initial run time). Here, the run times of certain main stages are presented in 

seconds to give some perspective. The initial C++ algorithm, running on a single core of 

the CPU, had a run time of 336 s. A direct switch to the GPU, and after changing the 

block size to 64, which was found to have the best performance, the CUDA algorithm 

had a run time of 166 s, approximately 50% of the C++ run time. After changing the 

duration of the time step from 0.1 fs to 1 fs, the C++ algorithm had a run time of 56.5 s, 

while the CUDA algorithm had a run time of 23.9 s. The CUDA algorithm now has a run 



Bulk Ensemble Monte Carlo on a GPU 

 

62 

time approximately 40% of the C++ run time, showing that the increase in time step 

duration, leading to more electrons scattering in the current time step (hence improving 

occupancy), produces a greater performance increase. After implementing further 

changes, including swapping all C++ math functions with CUDA math functions, 

grouping like scattering mechanisms and adding the binary subdivision if-then-else 

statement, the final CUDA run time was 18.0 s, approximately 30% of the C++ run time. 

The CPU used for these timings was an Intel Core i5-3570K 3.40 GHz and the GPU used 

was an NVIDIA GeForce GTX 550 Ti, both of which are considered mid-range for a 

standard desktop PC. 

Algorithm Status Time (s) 

Original C++ (CPU) 336 

Original CUDA (GPU, blocksize = 

64) 
166 

Time Step Change, (CPU) 56.6 

Time Step Change, (GPU) 23.9 

Final Version, (GPU) 18.0 

Table 3.2: Table of run times at various significant stages throughout the CUDA algorithm development. 

3.3 Summary 

This chapter has introduced how general purpose computing on the graphics card is run 

using NVIDIA CUDA. It is shown how the algorithm is separated into individual blocks 

of threads, consisting of warps of 32 threads, to perform a set of instructions, and the 

problems this creates for a Monte Carlo algorithm. The changes required to utilise the 

GPU and overcome some of these problems were introduced and it was proven that 

CUDA can be used to improve the performance of Monte Carlo simulations. A direct 

move from CPU to GPU, with the only change being where the parallelisation occurs, 

saw an approximate 45% performance increase, and varying the number of threads per 
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block improved this to a 50% performance increase. Further changes inspired by the GPU 

architecture, memory layout and NVIDIAs optimised math libraries were introduced to 

show how the GPU algorithm can begin to be optimised. The simple change of replacing 

the mathematical functions with NVIDIAs own optimised math library produced a 14% 

performance increase. Creating a memory strategy to store parameters that are constant 

for all electrons in constant memory, and reordering electron parameters to coalesce them 

in memory, also produced a significant performance increase of approximately 10%. The 

biggest performance increase of 80% came from a more general physics simulation 

change of increasing the length of the time step. Although this was inspired by 

investigations into optimising the GPU occupancy, it was found to have an equally 

substantial effect on the CPU algorithm. It was also shown that changing the simulation 

variables from doubles to floats had minimal effect on the output, suggesting that in any 

physics simulation a performance increase could be obtained by using floats instead of 

doubles, so long as the accuracy of the results remains consistent.  
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Chapter 4 

2DEG Scattering in Gallium Nitride 

The algorithm described in section 2.3 has been used to investigate the transport 

properties of a two-dimensional electron gas (2DEG) created at a Gallium 

Nitride/Aluminium Gallium Nitride (GaN/AlGaN) interface. A triangular well of infinite 

height is assumed with the two lowest sub-bands considered, as shown in figure 4.1. A 

uniform electric field is assumed across the whole system, in the x-direction. A confining 

field is assumed in the z-direction (direction of confinement) that creates the triangular 

well and determines the effective well width and the minimisation parameter. The sub-

band energy levels for each confining field and the material parameters are shown in 

tables 4.1 and 4.2 respectively. The scattering mechanisms included are non-polar optical 

phonon, polar optical phonon, acoustic phonon, and alloy scattering. All mechanisms can 

cause an inter-band scattering event (see section 2.3.3 for more details on the inter-band 

scattering rates). Scattering due to impurities is not included as the structure is assumed 

to be intrinsic. Piezoelectric scattering is also not included as it has been reported that the 

piezoelectric component of acoustic scattering in AlGaN/GaN 2DEGs is much weaker 

than the deformation potential scattering and thus can be neglected [78]. For all results in 

this chapter, the 2DEG Ensemble Monte Carlo (EMC) code is run using a parabolic band 

approximation, to allow for the separation of the in-plane (x-y) and confined (z) energies 

and wavevectors. The simulation parameters are shown in table 4.3. The chapter begins 

with investigating the steady state results, comparing velocity results to published 

experimental data. Relaxation times and low-field mobility results are then compared to 

published experimental and theoretical data. Transient properties are compared to bulk 

GaN results, specifically an investigation into whether there is the presence of a velocity 

overshoot, as is seen in bulk GaN [2, 4, 20, 21]. The chapter finishes with an investigation 

of the effect of the alloy disorder potential on the velocity and mobility results. The 
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Figure 4.1: Schematic diagram of a triangular potential well at an AlGaN/GaN interface. E0 and E1 

represent the sub-band energy levels, V(∞) represents the infinite potential assumed at the interface (z=0), 

V(z) is the potential as a function of z, i.e. the depth into the GaN layer. 

inclusion of electron confinement for AlGaN/GaN HEMT simulations is novel compared 

to current literature. 

Confining Field 

(kV m-1) 

Equivalent Sheet 

Density (x1012
 cm-2) 

E0 Sub-band 

Energy Level (eV) 

E1 Sub-band 

Energy Level (eV) 

250 0.434 0.115 0.201 

500 0.868 0.183 0.319 

750 1.30 0.239 0.418 

1000 1.74 0.290 0.507 

Table 4.1: Sub-band energy levels, E0 and E1, for varying confining field strengths, Fz, and the equivalent 

sheet densities (sheet density-electric field conversion shown in Appendix A). 

4.1 Steady State 

Perhaps the easiest, and most important, data to obtain from an EMC is the steady state 

ensemble average velocity and energy characteristics. It is simple to output at the end of 
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the total simulation time (as explained in chapter 2). Steady state velocity results are 

regularly obtained from experiment and are readily available for comparison. 

Table 4.2: Gallium Nitride parameters, at 300 K, used in simulations. Parameters obtained from [4, 21, 79-

83]. 

Parameter (units) Value 

Number of electrons 100,000 

Number of sub-bands 2 

Time per time step, dt (fs) 2 

Number of time steps 1000 

Lattice temperature (K) 300 

Confining field strength, Fz (kVcm-1) 250-1000 

Applied field strength, Fx, step size (kVcm-1) 1/5 

Number of field steps 25 

Table 4.3: Simulation parameters used for all AlGaN/GaN 2DEG simulations. 

4.1.1 Velocity 

Steady state velocity characteristics are one of the results that can be obtained from 

experiment and can be compared to EMC code results to verify that the algorithm is 

giving physically sensible results. Here, the velocity field characteristics are compared 

with published experimental results and other 2DEG algorithms, for verification, as well 

as including a comparison to the bulk results. The steady state velocity-field 

characteristics generated for a GaN 2DEG are shown in figure 4.1.1, it is evident that 

Parameter (units) GaN 

Density (kgm-3) 6150 

Longitudinal sound velocity (ms-1) 6560 

Static dielectric constant (ε0) 8.9 

High frequency dielectric constant (ε0) 5.35 

Effective mass (me) 0.2 

Acoustic deformation potential (eV) 8.3 

Non-polar optical deformation potential coupling constant (eVm-1) 1011 

Alloy disorder potential (eV) 1.5 

Volume of primitive cell (x10-30 m3) 46.943 

Polar optical phonon energy (meV) 91.2 

Non-polar optical phonon energy (meV) 91.2 

Mole-fraction composition (in AlGaN layer) 0.3 
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alloy scattering is limiting the velocity and this will be addressed in section 4.5.1. Results 

for a range of confining fields from 250 to 1000 kVcm-1 are compared to results obtained 

from the bulk EMC simulation, employing non-parabolic bands. As shown in figure 4.1.1, 

the velocities output from the 2DEG EMC (for varying confining fields) are all similar to 

the bulk results. Figure 4.1.2 shows the 2DEG results for a confining field strength of 

500 kVcm-1, along with experimental results from Matulionis et al. [16] and Palacios et 

al. [33]. Both experimental set ups have significantly higher carrier densities than the 

simulation using a 500 kVcm-1 confining field. Matulionis et al. report a carrier density 

of 1.2x1013 cm-2, while Palacios et al. report 1.46x1013 cm-2, compared to the value of 

0.868x1012 cm-2 from table 4.1. This shows that the 2DEG simulation results compare 

remarkably well, given the differences in sheet densities, with the Palacios et al. results 

at low applied electric fields, and begin to compare well with the Matulionis results at 

larger field strengths (50-60 kVcm-1). However, the 2DEG results continue to increase 

after 60 kVcm-1 and begin to exceed the experimental results by a considerable margin. 

The steady state velocity-field results are compared to more experimental results in 

chapter 5 when non-equilibrium phonon effects are introduced to the algorithm. 

4.1.2 Energy 

The steady state ensemble average electron (total) energy vs applied electric field results 

are shown in figure 4.1.3. The energy remains around the sub-band energy levels at low 

fields, increasing slightly with field. Once the applied electric field passes 60 kVcm-1, the 

energy begins to increase rapidly and very quickly reaches the limits of the scattering 

table. The maximum applied electric field is limited in order to mitigate the effects of 

scattering events with electron energies that are outside of the scattering table. Capping 

the field at 100 kVcm-1, where the average electron energy begins to approach the 

scattering table limit, 2.5 eV. When the confining field strength is 250 kVcm-1, the 
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Figure 4.1.1: Average electron velocity vs applied electric field, confining fields from 250-1000 kVcm-1, 

compared to results from the bulk Monte Carlo.  

Figure 4.1.2: Average electron velocity vs field for the 2DEG (500 kVcm-1 confining field), compared to 

experimental results from Matulionis [16] and Palacios [33]. 
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average electron energy surpasses the maximum energy of the scattering table at high 

applied field strengths. This could be a possible explanation for the hint of a runaway in 

the velocity-field plot at this confining field strength in figure 4.1.1. For a confining field 

strength of 500 kVcm-1, the average electron energy rapidly approaches the scattering 

table limit at higher applied fields, which could explain the slight runaway in the velocity 

in figure 4.1.1, and be the reason for the velocity at this confining field exceeding the 

experimental data from Matulionis in figure 4.1.2.  The energy increase is much slower 

for higher confining fields, which is thought to be linked to the sub-band occupancies. 

Higher confining fields create a larger separation between the sub-band energies, meaning 

fewer electrons make the transition to the excited sub-band at lower fields. Figure 4.1.4 

shows the sub-band occupancies vs applied field. It shows that for a confining field of 

1000 kVcm-1, the occupancy of the second sub-band only begins to increase at larger 

fields. The percentage of electrons in the second sub-band at the highest applied field 

(100 kVcm-1) is ~20% for a confining field of 1000 kVcm-1, as opposed to ~40% when 

the confining field is 250 kVcm-1. The energy runaway has been explained by Ridley [65] 

as an effect caused by ‘hot electrons’, meaning their average energy rises above thermal 

equilibrium. Of course, this occurs at all field strengths, but becomes increasingly 

noticeable at higher field strengths. Ridley [65] showed that assuming a purely parabolic 

conduction band, and that the energy dependence of the relaxation times can be 

represented as a simple analytic solution (AEp, where A and p are constants, E is the 

electron energy), the energy will increase with the square of the field. A parabolic band 

approximation is used in this algorithm, and figure 4.1.3 shows a parabolic nature to the 

energy increase past an applied electric field of 60 kVcm-1. Results from this point 

onwards, including future chapters, are presented up to 60 kVcm-1, to more clearly 

investigate the electron behaviour before the energy runaway causes unphysical 

behaviour. 
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Figure 4.1.3: Steady state ensemble average total electron energy vs field plots for a range of confining 

electric fields, showing a rapid increase in electron energy at high fields. Subset shows the low field range.  

Figure 4.1.4: First sub-band (solid circles) and second sub-band (open circles) occupancy vs field for a 

range of confining fields. 
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4.2 Relaxation Times 

In a semiconductor, the distribution of electrons have a tendency to approach equilibrium 

due to scattering events. There are several relaxation processes, and the momentum 

relaxation time is considerably lower than the energy relaxation time. Almost all 

scattering mechanisms will relax momentum, whereas only polar optical phonon 

scattering relaxes energy [84]. Relaxation rates are a regularly investigated characteristic. 

Energy, 𝜏𝑒, and momentum, 𝜏𝑚, relaxation times can be calculated using [85]: 

where 〈  〉 represents the ensemble average, E is the electron energy, 𝑣 is velocity, 𝑝 is 

momentum, 𝑒 is the electronic charge, 𝐹 is the applied electric field and E0 is the zero-

field average electron energy. Since all electrons in the simulation have the same effective 

mass, the ensemble average momentum, 〈𝑝〉, is simply calculated as 𝑚∗〈𝑣〉. 

4.2.1 Momentum Relaxation 

The momentum relaxation times, calculated for each field step using equation 4.2.2, are 

shown in figure 4.2.1, for a confining field of 500 kVcm-1. At low applied electric field 

strengths, the relaxation time is at a maximum of 41 fs. As the applied field increases, the 

relaxation times steadily decreases to approximately 28 fs. After 50 kVcm-1, the decrease 

begins to slow. Bulutay plots relaxation times versus electron energy, for bulk GaN [85]. 

The momentum relaxation time is lowest at high energies, and gradually increases as 

energy decreases. Figure 4.1.3 shows that, with a confining field of 500 kVcm-1, the 

electron energy very slowly increases between applied electric fields of 5-60 kVcm-1.  

 
𝜏𝑒 =

〈E〉 − E0

𝑒𝐹〈𝑣〉
, 4.2.1 

 
𝜏𝑚 =

〈𝑝〉

𝑒𝐹
 4.2.2 
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Figure 4.2.1: Momentum relaxation times vs field, with a confining field of 500 kVcm-1. 

This would mean a steady decrease in the momentum relaxation time, as is seen in figure 

4.2.1. The average electron energy in this field range is between 0.2-0.4 eV, which in 

Bulutay’s results yields relaxation times between 10 and 30 fs. These results are therefore 

consistent with bulk. Suntrup et al. [86] measured the momentum relaxation rate of hot 

electrons using a GaN/AlGaN hot electron transistor (HET). For devices with an injection 

energy of approximately 1 eV, a momentum relaxation rate of 16 fs was calculated, which 

is consistent with the results presented here. 

4.2.2 Energy Relaxation 

Energy relaxation times for each field step are calculated from equation 4.2.1 and shown 

in figure 4.2.2, again with a confining field of 500 kVcm-1. The energy relaxation times 

rapidly increase as the applied electric field increases. As the electric field increases 

further, the energy relaxation times continue to increase but at a slower rate. As the field 

passes 50 kVcm-1, the energy relaxation times begin to rapidly increase again which is 
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Figure 4.2.2: Energy relaxation times vs field, with a confining field of 500 kVcm-1, subset showing the 

low field range.  

likely due to the energy runaway. Bulutay again plots relaxation time versus electron 

energy for bulk GaN [85]. At low energies, the energy relaxation time increases rapidly 

with an increase in electron energy. As the electron energy increases further, the increase 

in relaxation time slows. The range of the energy relaxation times in Bulutay’s results, in 

the energy range 0.2-0.4 eV, is between 20-80 fs. Figure 4.2.2 shows a similar trend in 

the field range of 15-50 kVcm-1. The initial increase in relaxation time between 15-

25 kVcm-1 is much more rapid than between 25-45 kVcm-1. At 15 kVcm-1, the energy 

relaxation time is 15 fs, and at 50 kVcm-1 is 60 fs. Which are in a similar range to the 

Bulutay relaxation times of 20-80 fs. Again, results are consistent with reported bulk 

results. 
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Figure 4.3.1: Linear fit analysis, performed within the OriginPro software, of the low-field steady state 

velocity vs field results, generating the electron mobility for each confining field strength. Colour and 

number in subscript corresponds to the colour of the data plot and confining field strength in kVcm-1. 

4.3 Low Field Mobility 

Another characteristic in semiconductor devices that is well researched, both 

experimentally and theoretically, is the electron mobility. Electron mobility, 𝜇, is defined 

by 

Where 𝑣𝑑 is the electron drift velocity and 𝐹 is the applied electric field. At low applied 

electric fields, the drift velocity is directly proportional to the field, hence, using equation 

4.3.1 the electron mobility can be simply calculated as the gradient at the low-field region 

of the steady state velocity field results shown in figure 4.1.1. The simulation is performed 

with smaller field steps of 1 kVcm-1 and linear analysis is performed on the first ten field 

steps, from 1-10 kVcm-1. The results are shown in figure 4.3.1. The highest mobility 

 𝑣𝑑 = 𝜇𝐹 4.3.1 

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

V
e
lo

c
it
y
 (

x
1
0

7
 c

m
 s

-1
)

Field (kV cm-1)

m250 = 413.4 cm2V-1s-1

m500 = 361.9 cm2V-1s-1

m750 = 317.9 cm2V-1s-1

m1000 = 296.5 cm2V-1s-1



2DEG Scattering in Gallium Nitride 

 

75 

obtained is 413 cm2V-1s-1 for a confining field of 250 kVcm-1. Bajaj et al [14], who 

measured the Hall mobility in an AlGaN/GaN HEMT, present a result of 445 cm2V-1s-1 

with a measured sheet density of 7.8x1011 cm-2. Converting the sheet density to confining 

electric field strength (see Appendix A), this sheet density corresponds to a confining 

field of 450 kVcm-1. The closest confining field used is 500 kVcm-1, which gives a 

mobility of 362 cm2V-1s-1. This is lower than the experimental result, however for a 

slightly higher confining field. In these results a higher confining field leads to a lower 

mobility. However, these results are significantly lower than those presented by 

Matulionis et al. [16] and Palacios et al. [33], who alongside the velocity results used for 

comparison in figure 4.1.2 also presented measured Hall mobilities of 1500 and 

1670 cm2V-1s-1 respectively. Later in the chapter, the mobility will be revisited in light of 

the alloy scattering parameters. 

4.4 Transient 

One of the main advantages of using the ensemble Monte Carlo method is the ability to 

output transient data, this allows the electron properties evolution over time in the 

simulation to be seen. This is particularly interesting when investigating how the electron 

velocity evolves over time. In the bulk case, there is a velocity overshoot at the beginning 

of the simulation where the electron velocity increases rapidly and significantly exceeds 

the saturation velocity for a short period of time. The presence of this velocity overshoot 

is of particular interest for use in devices, for example, it would be extremely beneficial 

if the electrons only travelled for a short period of time through the device, such that they 

only ever experience the velocity overshoot, and never reach velocity saturation. Electron 

properties are output at the end of each time step, this subsection shows the transient 

velocity and energy characteristics, for a confining field of 500 kVcm-1. 
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Figure 4.4.1: Transient velocity results for a low applied electric field, mid-electric field just before the 

energy runaway, and just after the energy runaway in the 2DEG (solid circles) and corresponding data from 

the bulk EMC (open circles). 

4.4.1 Velocity 

Figure 4.4.1 shows the velocity evolution over time for three different applied electric 

fields. A low electric field (10 kVcm-1), a mid field just before the energy runaway 

(50 kVcm-1) and one just after the energy runaway (70 kVcm-1). At low applied electric 

fields, the velocity quickly rises towards the saturation velocity and then remains constant 

at this value. At higher applied electric fields, the velocity rises rapidly to a peak velocity 

just above the saturation value, showing a very small hint of a novel velocity overshoot. 

For 70 kVcm-1, the velocity reaches a peak of 1.8x107 cms-1 before dropping to a 

saturation value of 1.65x107 cms-1, however, as time continues to increase, the velocity 

starts to slowly increase due to the energy runaway, reaching a value of 1.73x107 cms-1 at 

1 ps. Again, the 2DEG velocity results are limited by the alloy scattering and are lower 

than the bulk results, when the 2DEG velocity is expected to be greater. The effect of the 

alloy scattering is investigated in section 4.5. 
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Figure 4.4.2: Transient energy results for a low applied electric field, mid-electric field just before the 

energy runaway, and just after the energy runaway in the 2DEG. 

4.4.2 Energy 

The transient energy characteristics were investigated for the same applied electric fields, 

and are shown in figure 4.4.2. Again at low applied fields, the energy has a small increase 

before reaching a saturation level. At mid applied fields the energy has a more significant, 

and more rapid, increase before reaching saturation. At fields beyond 60 kVcm-1, where 

the energy runaway begins, the energy has the same significant and rapid initial increase, 

however instead of reaching a saturation value, the energy continues to steadily increase. 

In the 70 kVcm-1 case, the initial rapid increase sees the energy reach a value of 0.27 eV, 

then the energy continues to increase and after 2 ps has reached a value of 0.45 eV. 

4.5 Effect of the Alloy Disorder Potential 

The alloy disorder potential used in calculating the alloy scattering rates in this work is 

taken as 1.5 eV [84], however, this generates a rate that is comparable to the peak polar 

optical phonon emission scattering rate, making alloy scattering one of the dominant 
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Figure 4.5.1: Steady state velocity results for varying alloy disorder potential, compared to experimental 

results from Palacios [33] and Matulionis [16].  

scattering rates, especially at low energies when polar optical phonon emission is not yet 

active. Alloy scattering is not expected to be a dominant scattering mechanism, and in the 

case of an AlGaN/GaN interface, the electron gas is localised in the binary material (GaN) 

and would only slightly experience effects of alloy scattering from the ternary material 

(AlGaN). In this case, the alloy scattering is expected to play a negligible role [70]. The 

expressions for the alloy scattering rates given in equation 2.3.9(a-c), show that the alloy 

disorder potential, ΔV, is in the numerator. This means a lower alloy disorder potential 

would result in a lower scattering rate, and given that the potential is squared this effect 

is enhanced for a small change in its value. Therefore, the effect of small changes in the 

alloy disorder potential on the results is investigated, specifically, the steady state velocity 

and low field mobility. 
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Figure 4.5.2: Linear fit analysis, performed within the OriginPro software, of the low-field steady state 

velocity results, generating the electron mobility for each alloy disorder potential. Colour and number in 

subscript corresponds to the colour of the data plot and alloy disorder potential in eV.  

4.5.1 Steady State Velocity 

The simulation generates low velocities and mobilities compared to experimental data 

(seen in figure 4.1.2 and section 4.3). This could be due to the high alloy scattering rate 

causing more scattering events, limiting the mobility. The simulation is repeated with 

alloy disorder potentials ranging from 1.0-1.5 eV, in 0.1 eV steps (for a confining field of 

500 kVcm-1), and the velocity results are shown in figure 4.5.1. It is evident that a lower 

alloy disorder potential, resulting in a lower alloy scattering rate, generates larger steady 

state velocities. The increase in velocity becomes more prominent as the applied electric 

field increases. At low applied electric fields the velocities are similar, but by 50 kVcm-1 

the difference in the velocities is much more significant. This further increase in velocity 

as the applied field increases causes a steeper velocity-field curve, which leads to higher 

mobilities, since low field mobility is calculated as the gradient at the low fields. 
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Figure 4.5.3: Linear fit analysis, performed within the OriginPro software, of the low-field steady state 

velocity results, generating the electron mobility for further reduced alloy disorder potential. Colour and 

number in subscript corresponds to the colour of the data plot and alloy disorder potential in eV. 

4.5.2 Low Field Mobility 

The same simulations are run with field steps of 1 kVcm-1 to generate the low field 

velocity, to allow for the calculation of the mobility for varying alloy disorder potentials. 

The increased velocity shown in figure 4.5.1 that becomes more prominent as the applied 

electric field increases results in a steeper gradient velocity-field plot, hence larger 

mobilities. Linear analysis is performed on the first 10 field steps, from 1-10 kVcm-1, and 

the results are shown in figure 4.5.2. The maximum mobility obtained is 622.5 cm2V-1s-1 

for an alloy disorder potential of 1.0 eV, a 72% increase on the 1.5 eV result. The increase 

in mobility is investigated further by running simulations with additional reductions to 

the alloy disorder potential. Alloy disorder scattering is completely removed by setting 

the disorder potential to 0 eV to calculate a maximum mobility, along with values of 0.25, 

0.50 and 0.75 eV. The results are shown in figure 4.5.3. The enhanced mobility with 

reduced alloy disorder potential becomes stronger, with a rapid velocity increase at low  
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fields for lower potentials. Linear analysis is performed on the first 5 field steps, before 

the velocity results begin to saturate, so the low field mobility equation, equation 4.3.1, 

remains valid. Removing alloy scattering generates a maximum mobility value of 

2094.4 cm2V-1s-1, which exceeds the experimental values of Matulionis (1500 cm2V-1s-1) 

and Palacios (1670 cm2V-1s-1). Including alloy scattering with a low alloy disorder 

potential generates mobility values which are close to these experimental values. An alloy 

disorder potential of 0.25 eV generates a mobility of 1891.3 cm2V-1s-1, while an alloy 

disorder potential of 0.50 eV generates 1459.7 cm2V-1s-1. 

4.5.3 Experimental Results 

It is shown in figure 4.1.2 that the velocity results from this work are comparable to the 

experimental results of Palacios et al. [33]. However, this was for a confining field of 

500 kVcm-1 which generates a much lower sheet density value (0.868x1012 cm-2) than that 

reported by Palacios (1.46x1013 cm-2) [33]. Converting a sheet density of 1.46x1013 cm-2 

to a confining field strength (see Appendix A) generates a value of 8400 kVcm-1. The 

simulation was repeated with a confining field of 8400 kVcm-1 corresponding to an 

effective well width of 2 nm. The alloy disorder potential is varied until the velocity 

output is closest to the experimental results. It is found that an alloy disorder potential of 

0.9 eV generates velocity results that match closely to the experimental results, as shown 

in figure 4.5.4. 
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Figure 4.5.4: Steady state velocity results for a confining field strength of 8400 kVcm-1
 (corresponding to 

an electron sheet density of 1.46x1013 cm-2) and an alloy disorder potential of 0.9 eV, compared to 

experimental results from Palacios [33]. 

4.6 Summary 

In this chapter, the steady state and transient characteristics of a two-dimensional electron 

gas created at a Gallium Nitride/Aluminium-Gallium Nitride interface were investigated. 

The chapter began by comparing the steady state velocity results to published 

experimental results [16, 33]. It was shown that the average electron velocity agreed well 

with the published data. The 2DEG results were also compared to results from the bulk 

EMC, these showed how the average electron velocity continued to increase with applied 

electric field, unlike the peak and saturation seen in bulk GaN. It was also shown that 

increasing the applied electric field leads to an energy runaway for fields greater than 

60 kVcm-1. The runaway is explained by Ridley as an effect caused by ‘hot’ electrons 

[65]. For the parabolic band approximation, as used in this simulation, the energy is 

shown to increase with the square of the applied field. It is shown that at high applied 

fields the energy increase has a parabolic nature. 
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The chapter then went on to investigate momentum and energy relaxation times, and 

compared their values and behaviour with published data. Momentum relaxation time is 

found to drop off as the applied electric field increases, hence the average electron energy 

increasing, which agrees with published data for bulk GaN [85]. The values of 28-42 fs 

also agree with the magnitude of the published data. The energy relaxation times are 

found to increase with increasing applied electric field (average electron energy), 

increasing more significantly at low fields, then beginning to slow as the field increases, 

matching the behaviour of published results for bulk GaN [85]. Next, the low-field 

electron mobility and how it changes with confining electric field strength (effectively 

changing the well width and carrier density) was investigated. For a confining field 

strength of 500 kVcm-1, the mobility result of 362 cm2V-1s-1 is close to the value of 

445 cm2V-1s-1 found by Bajaj [14] for a two-dimensional sheet density of 7.8x1011 cm-2 

(which corresponds to a confining field of 450 kVcm-1). A lower confining field in the 

2DEG simulation leads to a higher mobility, with the highest mobility obtained being 

413 cm2V-1s-1. Therefore, for a confining field of 450 kVcm-1, the mobility would be in 

the range of 362-413 cm2V-1s-1. 

The chapter then investigated the transient properties, it was found that the average 

electron velocity increases rapidly initially before saturating. For low applied electric 

fields, there is no sign of a velocity overshoot. For higher applied electric fields, there 

were signs of very minor novel overshoots, likely caused when the average electron 

energy increased beyond the phonon energy and polar optical phonon emission becomes 

dominant, causing the electrons to lose energy and the velocity to drop slightly. For 

applied fields greater than 60 kVcm-1, after the peak velocity is reached and saturation 

should occur, the velocity continues to slowly increase as time increases. Similar 

behaviour was seen in the average electron energy results. For low applied electric fields, 

there is a small initial increase in energy over time before saturating. For mid fields below 
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energy runaway, there is a more significant initial increase in energy before saturation. 

When the energy runaway is present, the initial rapid increase in energy is followed by a 

steady increase in energy instead of saturation. 

The chapter ends with an investigation of the effect of the alloy disorder potential on the 

velocity and mobility results. It was found that lower alloy disorder potentials, which 

result in smaller alloy scattering rates, generate higher velocities which match 

experimental results. The velocity increase becomes more prominent as the field 

increases, which produces a steeper velocity-field curve and thus larger low field 

mobilities. The mobility sees a 72% increase from 361.9 cm2V-1s-1 when the alloy 

disorder potential is 1.5 eV to 622.5 cm2V-1s-1 when the alloy disorder potential is 1.0 eV. 

For an alloy disorder potential of 1.3 eV the mobility is 436.9 cm2V-1s-1, which is much 

closer to the value of 445 cm2V-1s-1 reported by Bajaj et al. [14]. It was also shown that 

removing alloy scattering from the simulation produces a maximum mobility value of 

2094.4 cm2V-1s-1. Whereas including low alloy disorder potentials of 0.25 and 0.50 eV 

generated mobilities of 1891.3 and 1459.7 cm2V-1s-1, which are much closer to the 

Matulionis [16] and Palacios [33] experimental values of 1500 and 1670 cm2V-1s-1 

respectively. 
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Chapter 5 

Non-Equilibrium Phonons in a Gallium Nitride 2DEG 

The algorithm described in section 2.4 is used to investigate the effect of non-equilibrium 

phonons on the transport properties of the two-dimensional electron gas (2DEG) created 

at a Gallium Nitride/Aluminium Gallium Nitride (GaN/AlGaN) interface. The same 

triangular well as depicted in figure 4.1 is considered. A uniform electric field across the 

whole device, in the x-direction (perpendicular to the confinement), is assumed. The sub-

band energy levels for each confining field remain the same as in table 4.1. No additional 

material parameters are introduced, so they remain as given in table 4.2. Non-equilibrium 

phonon scattering is considered for both intra- and inter-band polar-optical phonon (POP) 

scattering events. With the addition of non-equilibrium phonons, new simulation 

parameters are introduced, these are given in table 5.1. The 2DEG phonon lifetime is not 

well characterised for GaN, the value used is based on that typically measured for HEMTs 

[13]. The chapter begins with investigating the effect of non-equilibrium phonons on the 

steady state results, comparing velocity field results with those from chapter 4, along with 

experimental results. The effects on relaxation times and low-field mobility are then 

studied and are also compared to experimental and theoretical data. A brief look at the 

non-equilibrium effects on the transient data follows. The chapter concludes with an 

investigation into the distribution of the non-equilibrium phonons, and how the 

confinement in one dimension and constraints due to momentum conservation in two 

dimensions constrict the non-equilibrium phonons to a small area of the non-equilibrium 

table (or q-space). The inclusion of a non-equilibrium phonon population interacting with 

confined phonons in an AlGaN/GaN simulation has not been seen in the current literature. 

Parameter (units) Value 

Phonon lifetime (ps) 1 

Phonon update time (fs) 25 

Table 5.1: Additional simulation parameters used for all non-equilibrium AlGaN/GaN 2DEG simulations. 
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5.1 Steady State 

The steady state ensemble average velocity and energy data is output at the end of the 

total simulation time (as explained in chapter 2). The effect of non-equilibrium phonons 

on the steady state energy, and the energy runaway seen in chapter 4, are investigated. 

The effects of non-equilibrium phonons on the steady state velocity are then studied, 

firstly by comparing to the equilibrium results from chapter 4, which is followed by a 

comparison with published experimental results. Investigations are limited to 60 kVcm-1, 

before the energy runaway begins in the equilibrium results, to allow for the focus to be 

on the effects of the non-equilibrium phonons. 

5.1.1 Energy 

The steady state ensemble average total electron energy vs applied electric field results 

are shown in figures 5.1.1 and 5.1.2, and the results are compared to the equilibrium 

results from figure 4.1.3. For all confining fields, the non-equilibrium energy results are 

greater than the equilibrium results. The non-equilibrium results follow the same trend as 

the equilibrium results, with signs of an energy runaway as the applied electric field 

increases beyond 50 kVcm-1. The non-equilibrium energies are slightly higher at low 

electric fields, while at higher electric fields the difference becomes marginally more 

pronounced. This increase in energy due to the introduction of non-equilibrium phonons 

is caused by an increase in the POP absorption rate, which is the dominant scattering 

mechanism at low energies (before an electron has enough energy to emit a phonon), 

exceeding acoustic scattering. The phonon relaxation time in bulk is 3 ps [87], while here 

it is 1 ps, therefore non-equilibrium phonon effects would be expected to be stronger in 

bulk than in the 2DEG, since the 2DEG phonons relax faster. 
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Figure 5.1.1: Average electron energy vs applied electric field for confining field strengths of 250 and 

500 kVcm-1. Results from both the equilibrium, figure 4.1.3, (solid circles) and non-equilibrium (open 

circles) simulations are shown for comparison.  

Figure 5.1.2: Average electron energy vs applied electric field for confining field strengths of 750 and 

1000 kVcm-1. Showing results for equilibrium, figure 4.1.3, (solid circles) and non-equilibrium (open 

circles) simulations for comparison. 
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5.1.2 Velocity 

Steady state velocity characteristics are shown in figure 5.1.3, for the range of confining 

fields 250-1000 kVcm-1, and are compared to the equilibrium results from figure 4.1.1. 

For all confining fields, the velocities from the non-equilibrium results are lower than the 

equilibrium results. At low applied electric fields the difference is small, but as the applied 

electric field increases, the non-equilibrium results become much lower than the 

equilibrium results, this effect of non-equilibrium phonons limiting the electron velocity 

is also seen in bulk [2, 4, 20, 21]. The lower velocity when non-equilibrium phonons are 

included in bulk is commonly attributed to the increase in average electron energy causing 

an earlier transition to the upper valleys with higher effective masses [34]. However, since 

the 2DEG simulated is considered to be in one valley only, the two sub-bands have the 

same effective mass and hence this cannot be the case for these results. Another effect of 

introducing non-equilibrium phonons is an increase in electron-phonon interactions, due 

to the increase in the POP scattering rates, which leads to an increased randomisation of 

the electron momentum, known as diffusive heating [34, 88]. Diffusive heating is also 

regularly associated with the decrease in electron velocity when non-equilibrium phonons 

are included and is the likely reason for the lower velocities in the above results. 

In figure 5.1.4, the velocity results for both the equilibrium and non-equilibrium 2DEG 

simulations (confining field of 500 kVcm-1
, alloy disorder potential of 1.5 eV) are 

compared to experimental results from Palacios [33] and Matulionis (for differing 

voltage pulse lengths used, 3 ns and 100 ns) [13, 16]. The confining field has not yet been 

tuned to generate sheet densities to match the experimental data, this is performed in 

section 5.5.3. Figure 5.1.4 shows that both the equilibrium and non-equilibrium 

simulation results agree well with the results of Palacios in the very low field range. The 

velocity limiting caused by the introduction of the non-equilibrium phonons causes the  
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Figure 5.1.3: Average electron velocity vs applied electric field for confining fields ranging from 250-

1000 kVcm-1, comparing the equilibrium results, from figure 4.1.1, (solid circles) to non-equilibrium results 

(open circles).  

non-equilibrium results to now match well at higher fields (40 kVcm-1 onwards), where 

the equilibrium results overshot the experimental results. Such close agreement between 

Monte Carlo simulation results and published experimental results have not been seen in 

other published Monte Carlo simulations [13, 16, 35], including Palacios et al.’s own 

simulation results where they attempted to generate their experimental results used here 

[33]. 
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Figure 5.1.4: Average electron velocity vs applied electric field results from the equilibrium and non-

equilibrium 2DEG simulations (confining field of 500 kV cm-1, alloy disorder potential of 1.5 eV), 

compared to simulation results from Palacios [33], and experimental results from Matulionis for a 3 ns [13] 

and 100 ns voltage pulse [16]. 

5.2 Relaxation Times 

The introduction of non-equilibrium phonons will also have an effect on the momentum 

and energy relaxation times. The increase in the electron momentum randomisation, 

which was previously seen to reduce the electron velocity, would be expected to lead to 

faster relaxation of the electron momentum. Previous analytical investigations [89] have 

also shown that one of the effects of introducing non-equilibrium phonons is to slow the 

rate of energy relaxation. The equations for energy, 𝜏𝑒, and momentum, 𝜏𝑚, relaxation 

time calculations are repeated here [85]: 

 
𝜏𝑒 =

〈E〉 − E0

𝑒𝐹〈𝑣〉
, 5.2.1 
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where 〈  〉 represents the ensemble average, E is the electron energy, 𝑣 is velocity, 𝑝 is 

momentum, 𝑒 is the electronic charge, 𝐹 is the applied electric field and E0 is the zero-

field average electron energy. Since all electrons in the simulation have the same effective 

mass, the ensemble average momentum, 〈𝑝〉, is simply calculated as 𝑚∗〈𝑣〉. 

5.2.1 Momentum Relaxation 

The momentum relaxation times when non-equilibrium phonons are included are 

calculated for each applied field strength using equation 5.2.2, for a confining field of 

500 kVcm-1. The results are shown in figure 5.2.1, along with the equilibrium results for 

comparison. The non-equilibrium results follow the same trend as the equilibrium results, 

the maximum relaxation time occurs at the lowest applied electric field, the relaxation 

time then steadily decreases as the applied electric field increases. As discussed in the 

previous chapter, this behaviour matches results presented by Bulutay [85], who plots the 

momentum relaxation time versus electron energy for bulk GaN. For all applied electric 

fields, the relaxation times when non-equilibrium phonons are included are lower than 

the equilibrium results. This is consistent with the theory that an increase in electron-

phonon interactions due to the introduction of non-equilibrium phonons causes an 

increase in electron momentum randomisation, which results in a reduced velocity and 

faster momentum relaxation. However, this effect is small, as seen in the steady state 

velocity outputs in figure 5.1.3, and by the minimal difference of just 2-3 fs in the 

momentum relaxation times. 

 
𝜏𝑚 =

〈𝑝〉

𝑒𝐹
 5.2.2 



Non-Equilibrium Phonons in a Gallium Nitride 2DEG 

 

92 

Figure 5.2.1: Momentum relaxation time vs applied electric field for a confining field of 500 kVcm-1, 

comparing equilibrium (solid circles) and non-equilibrium (open circles) results. 

5.2.2 Energy Relaxation 

The energy relaxation times when non-equilibrium phonons are introduced are calculated 

for each applied field strength using equation 5.2.1, again with a confining field of 

500 kVcm-1. The results are shown in figure 5.2.2, and are compared to the equilibrium 

results from chapter 4. For the whole field range the non-equilibrium relaxation times are 

slightly higher than those from the equilibrium simulation. This is consistent with the 

analytical investigations that show the introduction of non-equilibrium phonons slow the 

energy relaxation rate [89] and also consistent with the steady state energy results shown 

in figure 5.1.1 where the non-equilibrium results are slightly greater. 
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Figure 5.2.2: Energy relaxation time vs applied electric field for a confining field of 500 kVcm-1, 

comparing equilibrium (solid circles) and non-equilibrium (open circles) results. 

5.3 Low Field Mobility 

As discussed in the equilibrium results in the previous chapter, electron mobility is an 

important characteristic in semiconductor devices and has been studied extensively, both 

experimentally and theoretically. Electron mobility, 𝜇, is defined by 

Where 𝑣𝑑 is the electron drift velocity and 𝐹 is the applied electric field. The electron 

drift velocity is proportional to the applied field at low applied fields, allowing the 

electron mobility to be calculated as the gradient of the low-field region of the steady 

state velocity results shown in figure 5.1.3. The simulation, with non-equilibrium 

phonons included, is run with smaller field steps of 1 kVcm-1
 for a range of confining 

fields. The results are shown in figure 5.3.1, where linear analysis has been performed on 

the first ten field steps to calculate the electron mobility for each confining field. The 

 𝑣𝑑 = 𝜇𝐹 5.3.1 
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comparison between the equilibrium and non-equilibrium results are shown in table 5.2. 

In section 5.1.2, it is shown that the steady state velocity is lower when non-equilibrium 

phonons are introduced, due to the increased randomisation of the electron momentum. 

As this effect increases with applied electric field, meaning lower velocities for higher 

electric fields, the non-equilibrium electron mobility, calculated as the gradient of the 

velocity-field results, should be smaller. 

In table 5.2, it is shown that the non-equilibrium mobility results are noticeably lower for 

all confining field strengths. For a confining field of 250 kVcm-1, the non-equilibrium 

mobility result is 9.5% lower. For a confining field of 750 kVcm-1, the biggest difference 

occurs, with the result 15.2% lower. For confining fields of 500 and 1000 kVcm-1, the 

non-equilibrium results both lie in this range and have similar differences, at 12.6% and 

12.2% respectively. In the previous chapter, the equilibrium results were compared to 

experimental results by Bajaj et al [14], who measured the Hall mobility in an 

AlGaN/GaN HEMT with a sheet density of 7.8x1011 cm-2, which can be converted to a 

450 kVcm-1 confining field (see Appendix A). The closest confining field used is 

500 kVcm-1, and the equilibrium result (362 cm2V-1s-1) was found to be lower than the 

experimental value (445 cm2V-1s-1). Introducing non-equilibrium phonons leads to a 

slightly lower mobility, hence the result of 316.1 cm2V-1s-1 is still significantly lower than 

the Bajaj et al. [14] results. The simulation results have not been tuned to fit any 

experimental data in any way. The alloy scattering parameters could be used to provide a 

better fit, as in chapter 4, and is again considered in section 5.5. 
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Figure 5.3.1:  Linear fit analysis, performed within OriginPro, of the non-equilibrium low-field steady state 

velocity-field results, generating the electron mobility for each confining field strength. Colour and number 

in subscript corresponds to the colour of the data plot and confining field strength in kVcm-1. 

Table 5.2: Comparison between equilibrium and non-equilibrium results for electron mobility for each 

confining field strength, and equivalent sheet density (sheet density-electric field conversion shown in 

Appendix A).  

5.4 Transient 

With the introduction of non-equilibrium phonons having an effect on the steady state 

characteristics, specifically the increased randomisation of electron momentum causing 

the velocity to be lower, this is also likely to have an effect on how the electron properties 

change over time. Electron properties are output at the end of each time step and here the 
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transient velocity and energy characteristics when non-equilibrium phonons are 

introduced are investigated. The results are compared to the equilibrium results for the 

same applied fields as in chapter 4 (10, 50, and 70 kVcm-1), for a confining field of 

500 kVcm-1, and are also compared to the equilibrium bulk results. 

5.4.1 Velocity 

Figure 5.4.1 shows how the velocity evolves over time for the three applied electric fields 

and for each of the simulations, equilibrium, non-equilibrium (2DEG) and bulk 

(equilibrium). For all field strengths, the saturation velocity in the non-equilibrium results 

are lower than the equilibrium results, and this difference increases with an increase in 

the applied field. This is expected from the steady state velocity results in figure 5.1.3, 

where the non-equilibrium velocities are lower than the equilibrium results, and this is 

enhanced as the applied electric field increases. For all applied electric fields, the initial 

rapid increase in the velocities are similar, and the peak values reached are very similar. 

This is followed by a slightly prolonged decrease in velocity to the lower saturation values 

in the non-equilibrium results, creating a slightly larger novel overshoot. For all fields, 

the peak and saturation velocities for the non-equilibrium results are lower than in bulk. 

5.4.2 Energy 

The energy evolution over time for the three applied electric fields are shown in figure 

5.4.2, comparing the equilibrium and non-equilibrium results. For all applied electric 

fields, the non-equilibrium results saturate at a higher energy, this effect becomes more 

noticeable as the applied electric field increases. For 50 and 70 kVcm-1, both results begin 

with the same trend before the non-equilibrium results saturate slightly later and at higher 

energies. The higher saturation energies are consistent with the results shown in figure 

5.1.1, where the non-equilibrium energies are slightly greater than the equilibrium results. 
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Figure 5.4.1: Transient velocity characteristics for a low applied electric field, mid-electric field before the 

energy runaway and just after the energy runaway (in equilibrium). Comparing the equilibrium 2DEG (pale 

solid circles), non-equilibrium 2DEG (solid circles) and equilibrium bulk EMC (open circles) results. 

Figure 5.4.2: Transient energy characteristics for a low applied electric field, mid-electric field before the 

energy runaway and just after the energy runaway (in equilibrium). Comparing the non-equilibrium (solid 

circles) and equilibrium (pale solid circles) results. 
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5.5 Effect of the Alloy Disorder Potential 

As in the previous chapter, the alloy disorder potential is lowered, and completely 

removed, to lessen the alloy scattering rates and the effect on the steady state velocity and 

low field mobility is investigated. The alloy disorder potential is tuned due to the different 

compositions and materials used in the growth of the experimental structures. Palacios 

[33] used a 0.7 μm iron doped buffer layer, 1.8 μm unintentionally doped GaN and 29 nm 

Al0.35Ga0.65N barrier, with a 0.6 nm AlN interlayer between the GaN buffer and AlGaN 

barrier. Matulionis [53] used a 1 μm magnesium doped GaN buffer layer, an undoped 

25 nm Al0.15Ga0.85N layer and was protected by a 33 nm Si3N4 layer. Both structures were 

grown on sapphire substrates. 

5.5.1 Steady State Velocity 

The equilibrium simulation produced velocities that were low when compared to 

experimental results, and with the introduction of non-equilibrium phonons lowering the 

velocity this difference is enhanced (see figure 5.1.3, comparing velocity results to 

experimental results). The non-equilibrium simulation is repeated with alloy disorder 

potentials ranging from 1.0-1.5 eV, in 0.1 eV steps (for a confining field strength of 

500 kVcm-1) and the results are shown in figure 5.5.1. The same effect as in section 4.5.1 

is seen, with a lower alloy disorder potential, hence a lower alloy scattering rate, 

producing a small increase in the velocity results at low applied electric fields and the 

increase in velocity becomes more prominent as the field increases.  
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Figure 5.5.1: Steady state velocity results for varying alloy disorder potential, compared to experimental 

results from Palacios [33] and Matulionis [16]. 

5.5.2 Low Field Mobility 

The field step is changed to 1 kVcm-1 to generate low field velocity results, to allow for 

the calculation of the low field mobility for varying alloy disorder potentials. Linear 

analysis is performed on the first 10 field steps and the results are shown in figure 5.5.2. 

As expected from the velocity results in section 5.5.1, a lower alloy disorder potential 

produces a greater mobility result due to the increased velocities. The increased mobility 

results, however, are lower than the equivalent results from the equilibrium case in section 

4.5.2. For an alloy disorder potential of 1.0eV, the equilibrium result is 622.5 cm2V-1s-1 

whereas with non-equilibrium phonons introduced the result is 505.1 cm2V-1s-1. This is 

expected, since the steady state velocity results have shown that the increase in velocity 

is not as pronounced in the non-equilibrium case, due to the increase in electron-phonon 

interactions lowering the velocity. The increase in mobility is investigated further with 

further reductions in the alloy disorder potential. Alloy scattering is completely removed 
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Figure 5.5.2: Linear fit analysis, performed within the OriginPro software, of the low-field steady state 

velocity results, generating the electron mobility for each alloy disorder potential. Colour and number in 

subscript corresponds to the colour of the data plot and alloy disorder potential in eV.  

Figure 5.5.3: Linear fit analysis, performed within the OriginPro software, of the low-field steady state 

velocity results, generating the electron mobility for further reduced alloy disorder potential. Colour and 

number in subscript corresponds to the colour of the data plot and alloy disorder potential in eV. 
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from the simulation by setting the alloy disorder potential to 0 eV to generate a maximum 

mobility result. The simulation is repeated with alloy disorder potentials of 0.25, 0.50 and 

0.75 eV and the results are shown in figure 5.5.3. With lower alloy disorder potentials, 

the mobility increase is enhanced, giving a rapid increase in velocity at low fields. Linear 

analysis is performed on the first 5 field steps, before the velocity begins to saturate, to 

ensure the low field mobility equation, equation 5.3.1, remains valid. Similar to the results 

in figure 5.5.2, the increased mobility results in the non-equilibrium simulation are lower 

than the equilibrium results. The maximum mobility obtained, for an alloy disorder 

potential of 0 eV, in section 4.5.2 is 2094.4 cm2V-1s-1, compared to the maximum non-

equilibrium result of 1116.2 cm2V-1s-1.  

5.5.3 Experimental Results 

The velocity results in figure 5.1.4 are compared to experimental results from Palacios et 

al. [33], however, the confining field strength of 500 kVcm-1, which corresponds to an 

electron sheet density of 0.868x1012 cm-2, is significantly lower than the reported value 

of 1.46x1013 cm-2. Converting a sheet density of 1.46x1013 cm-2 to a confining field 

strength (see Appendix A) generates a value of 8400 kVcm-1, which corresponds to an 

effective well width of 2 nm. The non-equilibrium simulation is run with a confining field 

strength of 8400 kVcm-1, and the alloy disorder potential is varied to find the value which 

produces the greatest match to the experimental velocity results. It is found that an alloy 

disorder potential of 0.9 eV (the equilibrium result from section 4.5.3) produces velocity 

results that are much lower than the experimental results. The alloy disorder potential 

must be lowered further to best match the Palacios et al. velocities [33]. Further 

reductions to the alloy disorder potential were tested until the velocities were found to 

best match the experimental data. It is found that an alloy disorder potential of 0.6 eV 

gives the best match up to an applied electric field of 35 kVcm-1. After this the velocity 
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Figure 5.5.4: Steady state velocity results for a confining field strength of 8400 kVcm-1
 (corresponding to 

an electron sheet density of 1.46x1013 cm-2) and alloy disorder potentials of 0.6, 0.7, 0.8 and 0.9 eV, 

compared to experimental results from Palacios [33]. 

does not saturate as significantly as the experimental results, meaning the fit over the 

whole field range is not as accurate as when a lower sheet density is assumed, i.e. the 

results shown in figure 5.1.3 for a confining field of 500 kVcm-1
. The alloy disorder 

scattering varies with aluminium content in the barrier [90], and has a range in the 

literature from 1.0-1.5eV. The lower alloy disorder potential required here to match 

experiment is likely due to the absence of interface roughness scattering. The need for a 

lower alloy disorder potential to match the experiment results is consistent with results in 

sections 5.5.1 and 5.5.2, where the non-equilibrium velocity results are lower than the 

equilibrium results due to the increased electron-phonon interactions, so it is expected 

that a lower alloy disorder potential would be needed to reproduce the same velocity 

results. Although a reduction in the alloy scattering parameters produces a better match, 

there are scattering mechanisms not included in the simulation, such as interface 

roughness scattering, which may have an effect on the electron velocity and thus the 
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accuracy in comparison to experimental results. The very narrow well width may result 

in a single sub-band being present, which would result in a slightly increased POP 

scattering rate and hence slightly reduced velocity. 

5.6 Phonon Behaviour 

The inclusion of the phonon occupancy table, to allow for the introduction of non-

equilibrium phonons into the simulation, allows the distribution of the phonons to be 

monitored throughout the simulation. The phonon distributions can be output at several 

time intervals to investigate the growth of the phonon distribution over time. The average 

phonon occupancy can also be calculated and output over time. 

5.6.1 Phonon Distributions 

At the early stages of the simulation, the phonon distribution will be around thermal, as 

not many phonons will have been emitted. Phonon occupation, 𝑁𝑞, can be calculated for 

a given temperature using: 

where E𝑞 is the phonon energy, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature. 

Using the phonon energy of 0.0912 eV from table 4.1, and a temperature of 300 K, the 

phonon occupation at thermal for GaN is calculated as 0.03. Figure 5.6.1 shows the 

average phonon occupation over time for a range of applied electric fields, from 10 to 

60 kVcm-1, for a confining field of 500 kVcm-1. At the start of the simulation, for each 

applied field, the average occupation is around the thermal value. For low applied electric 

fields, 10 and 25 kVcm-1, the average occupation remains around thermal throughout the 

whole simulation time, increasing slightly. As the applied electric field increases, the 

average phonon occupation increases further. This is expected, as an increase in applied  

 
|𝑁𝑞| =

1

𝑒
E𝑞

𝑘𝐵𝑇 − 1

 5.6.1 
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Figure 5.6.1: Average phonon occupancy over time for a range of applied electric fields. 

electric field leads to an increase in electron energy, which results in more phonon 

interactions. Figure 5.6.2 shows the phonon distributions over the full q-space range for 

applied electric fields of 25 and 50 kVcm-1 at the beginning (0.1 ps), middle (1 ps) and 

end (2 ps) of the simulation run time. It is evident that the phonons are confined to a small 

area in q-space, this is due to momentum conservation rules in the plane. Also, for intra-

band POP scattering via emission, the electron must have enough in-plane energy to emit 

a phonon (i.e. the in-plane energy must be equal to or greater than the phonon energy, 

0.0912 eV), and this minimum energy relates to a minimum phonon wavevector. 

Figure 5.6.3 shows the same phonon distributions from figure 5.6.2, with a reduced scale 

on both axis to more clearly show the distribution in the small area of q-space that is 

affected. The minimum phonon wavevector associated with the minimum energy 

required for POP emission scattering is shown in figure 5.6.3 as qħω. Also in figure 5.6.3, 

a minimum wavevector is shown based on the ensemble average in-plane energy for the 

given snapshot. The average in-plane energy for each snapshot (0.1 ps, 1 ps and 2 ps) is 
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 Figure 5.6.2: Phonon distributions as a function of phonon wavevector for applied fields of 25 and 

50 kVcm-1 after 0.1, 1 and 2 ps. qx is the component of the phonon wavevector in the direction of the applied 

electric field (x-direction) and qt is the y-z component. Confining field strength of 500 kVcm-1. 
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Figure 5.6.3: Phonon distributions as a function of phonon wavevector for an applied field of 25 and 

50 kVcm-1 after 0.1, 1 and 2 ps, for a confining field strength of 500 kVcm-1. qℏω represents the minimum 

wavevector calculated from the minimum in-plane energy required to emit a phonon, q〈E〉 represents the 

minimum wavevector calculated based on the average in-plane energy for the given snapshot. 
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taken from the transient outputs from section 5.4.2. The phonon energy is then added to 

this average in-plane energy to calculate the energy an electron must have to emit a 

phonon and end up with the average energy. The minimum phonon wavevector associated 

with this energy, q<E>, is then calculated. For all phonon distributions shown, the hotspot 

lies between these two wavevectors, along the qx axis. For an applied electric field of 

25 kVcm-1, the hotspot is around 0.5x109 m-1 for all time steps. For an applied electric 

field of 50 kVcm-1, when more electron-phonon interactions occur and the average 

distribution increases more significantly (as shown in figure 5.6.1), the hotspot starts 

around 0.5x109 m-1 but spreads out to between 0.3 and 0.5x109 m-1 in the final time step. 

Figure 5.6.4 shows the minimum phonon wavevector against in-plane energy and the 

calculated minimum wavevectors at the phonon energy, qħω, and ensemble average 

electron energy (at 0.1 ps for 50 kVcm-1), q<E>. This shows that the minimum wavevector 

decreases as electron energy increases, explaining the relative positions of the 

wavevectors in figure 5.6.3. Although q<E> is calculated based on the average energy, in 

reality the distribution of electron energies will spread below this energy and above it. 

For electrons with energies greater than the ensemble average, the minimum wavevector 

is less than q<E> and for electrons with energy lower than the average the minimum 

wavevector is greater than q<E>. This explains why the distributions in figure 5.6.3 spread 

below q<E>, and don’t lie purely between the two wavevectors, qħω and q<E>. In two-

dimensional systems, electron-phonon scattering events favour forward scattering, while 

in one-dimensional systems there is only forward scattering [91]. With a very narrow 

well, the interactions may effectively act as in the one-dimensional case. This preference 

for forward scattering is seen in figures 5.6.2 and 5.6.3, where the distribution changes in 

the positive qx direction, and close to the qx axis (i.e. qt = 0 and the phonon wavevector is 

purely in the x-direction). 
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Figure 5.6.4: Minimum phonon wavevector against electron energy. Showing the phonon energy, ħω, the 

ensemble average energy (taken at 0.1 ps for an applied electric field of 50 kVcm-1), <E>, and the associated 

minimum phonon wavevectors for each energy. 

The phonon occupancy increases over time as more phonons are emitted and reabsorption 

takes place. This characteristic is enhanced for higher applied electric fields (maximum 

phonon occupancy of 0.955 for 25 kVcm-1 and 2.34 for 50 kVcm-1). Figure 5.6.5 shows 

the phonon distribution at the end of the simulation time (2 ps) for an applied electric field 

of 10 kVcm-1. Ramonas et al. [35], who also include 3D non-equilibrium phonons in a 

2DEG simulation, show a phonon distribution for a field of 10 kVcm-1 (for intra-band 

scattering assuming the qz component of the phonon wavevector = 0). The phonon 

distribution reaches a maximum value of 0.14 (which rearranging equation 5.6.1 equates 

to a temperature of 513 K), whereas figure 5.6.5 shows a maximum of 0.244 (which 

equates to a temperature of 660 K). However, the distribution in figure 5.6.5 includes all 

scattering processes (including inter-band) which may explain the slight increase in 

values. Another difference between the simulations is that Ramonas [35] treat acoustic 

scattering as an inelastic process. Acoustic scattering at room temperature is regularly 
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Figure 5.6.5: Phonon distribution as a function of phonon wavevector for an applied field of 10 kVcm-1 

after 2 ps, for a confining field strength of 500 kVcm-1. qℏω represents the minimum wavevector calculated 

from the minimum in-plane energy required to emit a phonon, q〈E〉 represents the minimum wavevector 

calculated based on the average in-plane energy for the given snapshot. 

assumed to be an elastic process because the acoustic phonon energies are small. 

However, this means that electrons are not able to dissipate energy until they are 

accelerated to energies above the phonon energy. At low fields, where the average 

electron energy is low, this can lead to inaccurate calculations of energy relaxation times. 

Ramonas’ simulation is focused on low electric fields and hence they include inelastic 

acoustic scattering. Treating acoustic scattering as an inelastic process is another possible 

way for an electron to dissipate energy and would lessen the effect of an energy runaway, 

observed in the steady state results in section 5.1.1. 

5.6.2 Polar Optical Phonon Scattering Rates 

From the expressions for the POP scattering rates given in section 2.3.3.3, it is shown that 

the scattering rates are dependent on the phonon occupation. As the phonon distribution 
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evolves over time, the scattering rates must be updated accordingly, as described in 

section 2.4. Due to the small area of q-space where the phonon distribution increases, 

shown and explained in section 5.6.1, the average phonon occupation does not increase 

significantly at low applied electric fields, and hence the scattering rates would not differ 

greatly. However, as the applied electric field increases causing the phonon distribution 

to increase further in the confined area, the average phonon occupation does appear to 

increase and a difference in the scattering rates over time can be seen. 

Figure 5.6.6 shows the intra-band POP scattering via absorption rates, in the lowest sub-

band, at the beginning (0.1 ps), middle (1 ps) and end (2 ps) of the simulation run time, 

for applied electric fields of 10, 25, 50 and 60 kVcm-1. Intra-band absorption is chosen as 

it most clearly shows the increase in scattering rates. It is evident that for an applied 

electric field of 10 kVcm-1, the scattering rate remains consistent for all energy values 

throughout the simulation. For an applied electric field of 25 kVcm-1, there are very small 

increases in the scattering rate at low energies over time. For higher applied electric fields, 

50 and 60 kVcm-1, the increase in scattering rate over time is more noticeable. The 

increase is more prominent at low energies, but is still significant at high energies. 

There are minor bumps that arise from the numerical integration used in the recalculation 

of the phonon occupation crossing bin boundaries. The phonon bin size was varied and 

the final number was chosen to minimise the numerical effects, which are very small near 

the start of the simulation but continue to grow as the simulation continues and become 

noticeable towards the end of the simulation time. This section shows the increase in POP 

scattering rates over time and how this is enhanced for larger applied electric fields, which 

would lead to an increase in electron-phonon interactions. This supports the theory of 

diffusive heating having an increased effect on the steady state electron velocity and 

energy as the applied electric field increases, as discussed in section 5.1. 
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Figure 5.6.6: Intra-band POP via absorption scattering rates as a function of electron energy for an applied 

field of 10, 25, 50 and 60 kVcm-1 after 0.1, 1 and 2 ps. 

5.7 Summary 

In this chapter, the effect of non-equilibrium phonons on the transport characteristics of 

a two-dimensional electron gas created at a Gallium Nitride/Aluminium-Gallium Nitride 

interface were presented. The chapter began by comparing the steady state velocity results 

from the non-equilibrium simulation to those of the equilibrium simulation and with 

published experimental results [13, 16, 33]. It was shown that introducing non-

equilibrium phonons causes a reduction in the electron velocity. This was caused by 

diffusive heating (the increase in the randomisation of electron momentum due to an 

increase in electron-phonon interactions) and was found to become more significant as 

0.0 0.5 1.0 1.5 2.0 2.5

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5

0.4

0.6

0.8

1.0

1.2

1.4

S
c
a

tt
e

ri
n

g
 R

a
te

 (
x
1

0
1

2
 s

-1
)

10 kV cm-1

 0.1 ps

 1.0 ps

 2.0 ps

25 kV cm -1

50 kV cm-1

Energy (eV)

60 kV cm
-1



Non-Equilibrium Phonons in a Gallium Nitride 2DEG 

 

112 

the applied electric field increased. Momentum and energy relaxation times from the non-

equilibrium 2DEG simulation were then compared to the equilibrium results as well as 

published data. The momentum relaxation times were found to be lower when non-

equilibrium phonons are introduced. This is consistent with the theory that an increase in 

electron-phonon interactions, leading to an increased randomisation of the electron 

momentum, produces lower velocities and faster momentum relaxation. The energy 

relaxation times were slightly increased, consistent with analytic investigations [89] that 

state introducing non-equilibrium phonons leads to slower energy relaxation rates. 

The chapter then investigated the effect on the low field mobility and it was found that 

the low field mobility values, for a range of confining field strengths, when non-

equilibrium phonons are introduced reduced significantly. The lowest decrease was 9.5% 

for an applied electric field of 250 kVcm-1, with the greatest reduction being 15.2% for 

an applied electric field of 750 kVcm-1. This was consistent with the steady state velocity 

results, where the non-equilibrium results were lower, and this was enhanced as the 

applied electric field increased. Next, the transient characteristics were investigated. It 

was shown that the initial velocity evolution over time were similar for both the 

equilibrium and non-equilibrium results, however, the non-equilibrium results saturated 

to lower velocities, consistent with the steady state results showing lower velocities when 

non-equilibrium phonons are introduced. The difference in saturation velocities increased 

as the applied electric field increased, consistent with the steady state results and with the 

increase in electron-phonon interactions for larger applied electric fields. The transient 

velocities for both the equilibrium and non-equilibrium simulations showed signs of a 

minor novel overshoot, before the electrons had enough energy to begin emitting 

phonons. This lack of any significant overshoot is consistent with experimental results 

[18, 19].  
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Next, the effect of the alloy disorder potential was studied, it was found to have the same 

effect as in the equilibrium results from the previous chapter. Lowering the alloy disorder 

potential, and hence the alloy scattering rate, produces an increase in steady state 

velocities. This effect becomes more prominent as the applied electric field increases, and 

hence generates a steeper velocity-field curve which led to higher low-field mobility 

results. However, due to the increased electron-phonon interactions, the non-equilibrium 

velocities are lower than in the equilibrium case, so these increased mobilities were 

smaller than the equilibrium results. Alloy scattering was totally removed from the 

simulation, by setting the alloy disorder potential to 0 eV, to calculate a maximum 

mobility value for the non-equilibrium simulation. The maximum was found to be 

1116.2 cm2V-1s-1, which is significantly lower than the equivalent result in the 

equilibrium simulation of 2094.4 cm2V-1s-1. The value of 1116.2 cm2V-1s-1 is well below 

the experimental values of Matulionis (1500 cm2V-1s-1) and Palacios (1670 cm2V-1s-1), 

however these results were for different sheet densities. It was found that, for a confining 

field strength of 8400 kV, to generate an electron sheet density of 1.46x1013 cm-2 to match 

that reported by Palacios [33], an alloy disorder potential of 0.6 eV is needed to produce 

steady state velocities that best match the published results, much lower than the 0.9 eV 

needed in the equilibrium case.  

The chapter ended by investigating the phonon behaviour. The evolution of the phonon 

distribution over time was shown to be confined to a small area of q-space due to 

momentum conservation within the plane. The hotspot was found to lie between 0.3-

0.5x109 m-1 on the qx axis (qt = 0). The average phonon distribution was found to undergo 

minimal increase for low applied electric fields, however this increase became more 

significant at higher applied electric fields. The peak phonon occupancy equates to an 

equivalent temperature reaching ~3000 K, which compares favourably with the 

experimental results of ~3600 K [30]. The effect on the POP scattering rates was shown 
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to be minimal for low applied electric fields (10 and 25 kVcm-1) where the average 

phonon distribution increases slightly. The increase in scattering rates became more 

prominent for higher applied electric fields (50 and 60 kVcm-1). The increase in scattering 

rates at higher applied electric fields would lead to diffusive heating having a greater 

effect, and this explained why the difference in the equilibrium and non-equilibrium 

steady state velocity results is small for low applied electric fields but increased and 

became more prominent as the applied electric field increased. The mobility results, 

varying the alloy scattering parameters, cover the spread of the experimentally 

determined values. While it is clear that non-equilibrium phonons are important in GaN 

based devices, the details of the individual device structures, doping, composition, etc. 

are also important in determining the peak velocities and mobilities. 
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Chapter 6 

Conclusions & Future Work 

In this work an Ensemble Monte Carlo (EMC) algorithm, simulating electron transport 

in bulk III-V semiconductor materials, has been successfully ported from the CPU 

architecture to the massively parallel GPU architecture. A series of optimisations, 

including architectural changes, a memory strategy and general physics simulation 

changes, were performed leading to significant reductions in the simulation run time. Of 

the optimisations, increasing the time step (usually determined by the frequency of 

transient output) and changing from double to single precision floating point numbers (at 

the expense of precision) can be implemented within the CPU algorithm to obtain 

reductions in the simulation run time. Refactoring of the algorithm for the particular, 

highly parallel GPU architecture saw further reductions in run times. The most significant 

reductions were obtained from maximising the time steps, ensuring all electrons 

encountered at least one scattering event and reducing the number of inactive threads for 

a given iteration, from replacing mathematical functions with the corresponding CUDA 

optimised functions and from utilising local memory to have each thread create its own 

local version of the electron it had been assigned to simulate. The optimised code running 

on the CPU ran in 56.5 s, while the GPU version ran in 18.0 s, which is approximately 

30% of the CPU run time, proving that it is possible to gain significant performance 

increases in semiconductor EMC algorithms by utilising GPUs. 

Also in this work, electron transport within the two-dimensional electron gas (2DEG) 

created at an Aluminium Gallium Nitride/Gallium Nitride (AlGaN/GaN) heterojunction 

was explored. New scattering rates and a new scattering routine were introduced to the 

bulk EMC, based on the triangular well approximation, assuming the two lowest sub-

bands. Steady state velocity, momentum and energy relaxation times and electron 
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mobility results were compared to experimental and other simulation results. The results 

were found to match remarkably well with experiment (given a significant difference in 

electron sheet density). Steady state velocity results show no peak or signs of negative 

differential resistance (NDR), consistent with experimental data [16, 33] and unlike bulk 

GaN [2, 20]. Transient velocity results show no sign of a significant overshoot, also unlike 

bulk GaN [4, 21] and again consistent with experimental results. 

The effect of introducing non-equilibrium phonons to the 2DEG EMC were also 

investigated. Non-equilibrium phonons are shown to reduce the steady state velocity due 

to diffusive heating [86, 88], caused by an increase in electron-phonon interactions. 

Momentum relaxation times decrease slightly compared to the equilibrium 2DEG results, 

consistent with the theory of diffusive heating causing an increase in randomisation of 

the electron momentum and faster relaxation times. Energy relaxation times slightly 

increase, consistent with previous analytic results [89]. The non-equilibrium phonon 

effects are found to be small, especially at low applied electric fields. It is shown that the 

phonon distribution only changes in a small area of q-space, due to the electron 

confinement, and thus the phonon occupancy does not significantly increase and the polar 

optical phonon scattering rates show very little change at low electric fields. The phonon 

occupancy grows more significantly for higher applied electric fields, hence the change 

in the scattering rate becomes more noticeable as the applied electric field increases, and 

the increase in electron-phonon interactions is more prominent at high electric fields. This 

effect was seen in the comparison of the steady state velocity results, which were only 

slightly reduced at low applied electric fields and were lessened much further at higher 

applied electric fields. 

The work in this thesis shows that electron confinement should be included in simulations 

to accurately represent GaN based HEMTs and to reproduce experimental results, and 

also provides a base for possible future work in two-dimensional simulations of device 
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structures. Simple devices containing an anode, cathode and active region have 

previously been modelled [20]. Whilst GaN Gunn diodes operating in one spatial 

dimension have been simulated [92], along with a proof of concept for two-dimensional 

devices, these device models could be expanded such that more complex devices can be 

simulated, for example, switching from vertical devices to model planar devices. The 

device model calculates the electric field based on the current charge density, which could 

be regularly fed to the 2DEG EMC. A full device model would require a significant 

amount of computation power, and it would be possible to improve the performance of 

such simulations by utilising GPGPU for highly parallel sections of the algorithm.
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Appendix A 

Carrier Sheet Density to Applied Electric Field Conversion 

Experimental results regularly quote the electron sheet density of their 2DEG, and the 

minimisation parameter, 𝑏, is often given in terms of the sheet density, 𝑛𝑠ℎ, as [72]: 

where 𝑚∗ is the effective mass, 𝑒 is the electronic charge, 𝜀 is the dielectric constant and 

ℏ is the reduced Planck constant. In equation 2.3.3, repeated here, the minimisation 

parameter is given in terms of the applied confining electric field, 𝐹𝑧, as [71]: 

where the symbols have the same meaning. Equations A.1.1 and A.1.2 both define the 

minimisation parameter and thus can be seen as equal. Setting A.1.1 equal to A.1.2 and 

solving in terms of the confining electric field strength yields 

and hence using equation A.1.3 it is possible to calculate the corresponding field strength 

for a given sheet density, and vice versa. 
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