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Abstract

Identification of Cardiac Signals in Ambulatory ECG Data

Mahdi Torabi

Thesis submitted for the degree of Doctor of Philosophy

School of engineering and computer science

September 2018

The Electrocardiogram (ECG) is the primary tool for monitoring heart function. ECG

signals contain vital information about the heart which informs diagnosis and treatment

of cardiac conditions. The diagnosis of many cardiac arrhythmias require long term and

continuous ECG data, often while the participant engages in activity. Wearable ambulatory

ECG (AECG) systems, such as the common Holter system, allow heart monitoring for hours

or days. The technological trajectory of AECG systems aims towards continuous monitoring

during a wide range of activities with data processed locally in real time and transmitted to

a monitoring centre for further analysis. Furthermore, hierarchical decision systems will

allow wearable systems to produce alerts or even interventions. These functions could be

integrated into smartphones.

A fundamental limitation of this technology is the ability to identify heart signal charac-

teristics in ECG signals contaminated with high amplitude and non-stationary noise. Noise

processing become more severe as activity levels increase, and this is also when many heart

problems are present.
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This thesis focuses on the identification of heart signals in AECG data recorded during

participant activity. In particular, it explored ECG filters to identify major heart conditions in

noisy AECG data. Gold standard methods use Extended Kalman filters with extrapolation

based on sum of Gaussian models. New methods are developed using linear Kalman filtering

and extrapolation based on a sum of Principal Component basis signals. Unlike the gold

standard methods, extrapolation is heartcycle by heartcycle. Several variants are explored

where basic signals span one or two heartcycles, and applied to single or multi-channel ECG

data.

The proposed methods are extensively tested against standard databases or normal and

abnormal ECG data and the performance is compared to gold standard methods. Two

performance metrics are used: improvement in signal to noise ratio and the observability of

clinically important features in the heart signal. In all tests the proposed method performs

better, and often significantly better, than the gold standard methods. It is demonstrated that

abnormal ECG signals can be identified in noisy AECG data.

Keywords: ECG signal processing, principal component analysis, Kalman filter,

ambulatory ECG.
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Chapter 1

Introduction

1.1 Motivation

Over the centuries, contagious and infectious diseases such as the tuberculosis, cholera and

plague have been the major causes of human mortality. However, from the twentieth century

the effects of these diseases dramatically reduced due to the significant advancements in

medicine, principally the understanding of contagion and the development of a variety of

vaccines and medicines. Since then, conditions of the heart or brain and different types of

cancers, have become the major factors in human mortality. Primary prevention, control and

risk factor reduction are the most cost-effective steps to reduce the incidence of such chronic

and acute diseases; and to increase life expectancy (Jousilahti et al., 2016).

In the twenty first century, one of the most common health problems globally is Car-

diovascular disease (CVD), which affect millions of people. CVDs take the lives of 17.7

million people each year which is an estimated 31% of all mortalities worldwide (World

Health Organazasion, 2018). In England the mortality due to the CVDs was 152,465 people

aged less than 75 years old in 2017, corresponding to about 200 people dying every day. The

annual statistical report of British Heart Foundation (BHF) in 2018, estimates that more than

7 million are living after heart failure in the United Kingdom (UK) (British Heart Foundation,
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2018). The number of young people suffering heart attacks, sometimes fatal, has dramatically

increased in recent years (Stanhope et al., 2015).

Monitoring people who are at risk of cardiac problems can save their life. Using an

Electrocardiogram (ECG) is a safe, cheap, non-invasive, reliable way to check the heart

status, and is frequently used by the Health Service. It is important to extract medically useful

information from ECG signals while the subject engages in a range of physical activities,

as some conditions only manifest during specific conditions. However, ECG data collected

during activity suffers from large amplitude and non-stationary noise that often obscures the

heart signal. Many signal processing techniques have been developed to identify and reduce

a range of typical noise processes in ECG, leaving a cleaner signal on which to diagnose

heart disease. The early recognition of heart problems using ECG reduces the fatalities and

increase the chance of successful treatment.

A range of instruments have been available for many decades for the monitoring of ECG

signals during activity. Historically, Holter devices have been worn by participants for 24

hours at a time. These book-sized instruments are often worn on the belt and record ECG

signals. Generally, the instrument is returned to a hospital for the data to be downloaded,

processed and interpreted (Shafqat et al., 2004). More modern smart phone based devices

allow signals to be processed in real-time and transmitted to another site for archiving or

interpretation. Despite the improvements of technologies in the field of health monitoring,

the ECG signal in ambulatory monitoring systems is difficult to extract from the noisy

contaminated signal. This limits the amount of usable data produced by ambulatory systems

and also limits the amount of decision making that can be devolved to the mobile device.

For instance, if anomalous heart signals can be identified in noisy signals, then these can be

instantly flagged to a remote clinician and samples of data can be sent for further scrutiny.
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1.2 Aim

The main aim of the thesis is to provide an effective filtering method to remove noise from

Ambulatory Electrocardiogram (AECG). ECG signals recorded over periods of hours or days

are contaminated by a wide range of noise sources, both biological and non-biological, from

within the equipment or from other sources. Typically these noises include 50 Hz electric

field interference which can disrupt the recorded heart signal (Youseffi and Achilleos, 2015).

The different types of noise on the AECG recordings are discussed in detail in Section 2.3.1.

It is not unusual for portions of the recorded AECG data to be so contaminated by noise

that no information related to the heart signal can be extracted. It is important that the ECG

signal is estimated but also that its reliability is quantified.

In this thesis, both normal and abnormal cardiac signals are considered. Several different

abnormalities are considered including Premature ventricular contractions (PVC), Atrial

Fibrillation (AF) and T wave Alternans (TWA). Normal signals provide the initial test of

proposed filtering methods. If the methods distort normal signals then they are unlikely to

be of use when identifying abnormal signals. However, the significant clinical applications

involve the identification of abnormal signals, such as AF and TWA. These often occur only

for short periods or under specific circumstances, with long periods of normal signal between

incidences. Therefore, signal filters should not distort normal heart signals and also separate

abnormal signals from noise generated by a wide range of processes, some produce signals

with many of the characteristics of abnormal heart signals. It is important that filtering and

interpretation methods are able to deal with different types of arrhythmias.

The majority of ECG systems record the heart signal from multiple electrodes simul-

taneously. Each electrode (channel) provides a different view of the temporal changes in

the heart electric field. However, theoretical consistencies between channels allow some

discrimination between heart signals and noise.
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1.3 Overview of the Thesis and Contributions

This thesis has six chapters, plus a glossary to technical terms and appendix. In figure 1.1,

the conceptual links between different chapters of this thesis are depicted. Chapter 2 provides

the necessary background of cardiovascular system, signal processing and noise on ECG

signals. Chapter 3 includes a literature review of ECG signal processing identified a family

of Extended Kalman Filter (EKF) and Extended Kalman Smoother (EKS) algorithms as the

current gold-standards: EKF2/EKS2 and the variants with extensions 6 and 17. Chapter

4 suggests a new denoising framework called PCAKF. The modified version of PCAKF

algorithm is provided in chapter 5. Conclusions and future works are presented in chapter 6.

Each chapter is ended with a summary of the work in that chapter.Below is a summary of

each chapter:
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Fig. 1.1 Main and the subtopics covered in this research.
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1.3.1 Chapter 2: Background

Chapter 2 introduces the anatomy and electrical function of the heart, the morphology of ECG

signals is presented along with a review of ECG noise characteristics and a brief introduction

to ECG signal processing.

1.3.2 Chapter 3: Literature Review

Chapter 3 introduces models of ECG signals using sum of Gaussians. This signal parameteri-

sation is fundamental to the gold standard Extended Kalman Filter (EKF) methods, which

are reviewed. These methods are later used as comparators for the performance of methods

developed as part of this project. Finally, ECG applications of Principle Component Analysis

(PCA) are considered as an alternative to sum of the Gaussian signal parametrisations.

1.3.3 Chapter 4: PCAKF Framework

This chapter develops Kalman Filtering techniques applied to heart signals parameterised

as a sum of PCA basis signals. Sum of Gaussian ECG models are non-unique, highly over

parameterised and yet yield quite a poor fit to many measured heart cycles. Sum of PCA

basis signals provide a parametrisation that is unique, optimally parameterised and a good

fit. The sum of PCA model may be used in the extrapolation phase of Kalman filtering in

a similar way as sum of Gaussian, but requires extrapolation of the whole heart cycle. The

proposed PCAKF framework developed in this Chapter and evaluated in later chapters.

1.3.4 Chapter 5: DB-PCAKF Framework

Several variants of the PCAKF have been developed and tested. The PCAKF method is

extended from single channel single beat PCAKF framework to the single and multichannel

double beat PCAKF algorithm. The double beat (DB) variants use PCA parametrisations
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of two consecutive heart cycles and are shown to be more robust than the Single Beat (SB)

methods. The methods are tested using synthetic and real, single and multichannel, ECG

signals in subsequent chapters.

1.3.5 Chapter 6: Conclusions and Future Works

The final chapter presents a summary of the findings from the current work and critically

evaluates the PCAKF methods against the gold standard EKF methods. Finally, some

possible directions of future research are identified.

1.3.6 Appendix A

Multichannel AECG filtering results are provided in this section.

1.3.7 Appendix B

A copy of opinions regarding the suggested filtering method from cardiologists and anaes-

thetists is provided in this section.

1.3.8 Appendix C

Detailed flowcharts of the provided filtering method have been presented in this section.



Chapter 2

ECG Signals and Processing

2.1 Introduction

This chapter introduces a range of topics on the physiology of the heart related to the

generation of ECG signals, and ECG signal processing.

2.2 Physiology of the Heart

The heart is an efficient muscular organ whose ultimate purpose is to constantly pump blood

to all tissues in the body. The heart consists of four chambers, also called compartments. The

top two chambers on each side of the heart are similar and called the left and right atria. They

receive blood coming from the body or lungs. Blood passes from the atria to the powerful

lower chambers called ventricles. These pump blood out of the heart to the rest of the body

or to the lungs. The heart is a dual pump. The left side of the heart receives oxygenated

blood from the lungs and then delivers it to the body. The right side of the heart receives

deoxygenated blood from the body and delivers it to the lungs to become oxygenated. This

process is accomplished by mechanical contraction and relaxation of the cardiac muscle

tissue in the ventricles. The myocardium contraction processes are linked to electric fields
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around the heart which occur in two phases: the depolarization or systole cycle and the

repolarization or diastole cycle respectively. Increasing pressure due to the contraction in

ventricles, causes the blood to flow from the chambers into the arteries. Blood leaves the

heart and the decreased pressure, due to the relaxation of ventricles, makes room to accept

the blood from atria (Hall, 2015). The anatomy of a heart is depicted in Figure 2.1.

Fig. 2.1 The cross sectional view of the heart, taken from OpenStax (2013)

2.2.1 Electrical Conduction System

The action of the heart is controlled by electrical impulses that travel along nerves. The

pumping mechanism of the heart is controlled by a network of nerve fibres which are

distributed around the myocardial system, to coordinate the routine rhythmic contraction

and relaxation of the cardiac muscle tissue. The main responsibility of the conduction

system is to generate an electrical impulse and transfer it in an organized manner through
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the myocardium. The strong electrical signal associated with the heart cycle begins in the

sinoatrial node (SA-node), which is located in the upper wall of the right atrium. It is the

initial source of electrical impulses in the heart and is known as “the pacemaker of the

heart”. The SA-node sends a depolarization wave to nearby muscle tissues through the heart.

The internodal tracks include the anterior, middle and posterior intermodal pathways. The

intermodal pathways transmit and spread the cardiac electric impulses, generated in the

SA-node, through both atria. This electric impulse causes both atria to be depolarized. After

that, the electric impulse reaches the atrioventricular node (AV-node) located on wall of the

right atrium between the upper and lower chambers. Electrical impulses must pass through

the AV-node to reach the lower chambers. The AV node is also responsible for controlling the

heart rate by slowing the signals, sent by the SA-node, to the ventricles. After the AV-node,

the depolarization front arrives at the bundle of His which is the pathway to connect atria and

ventricles. The signal then splits into several directions along the Right and Left Branches

with Anterior and Posterior deviations. These supply the electrical impulses to the right and

left ventricles. The journey ends in the Purkinje fibres or sub-editorial branches, which are

located in both the left and right ventricular walls and initiate the ventricular depolarization

cycle and ventricular contraction (Hall, 2015, Hampton, 2013).

2.2.2 ECG Morphology

Biological signals are electrical, mechanical or chemical. The activity of the heart muscles

leads to measurable electric potential changes on the skin of the chest. A recording of

this signal is called an electrocardiogram (ECG). The ECG signal contains very important

information about the heart’s condition and function. It is one of the most important sources

of information used by physicians to diagnose heart disease and the health of individuals.

The ECG signal may be measured using electrodes on the skin. The electrical signal is

transmitted via leads to an ECG system which can filter, display and archive data. The typical
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ECG signal may be decomposed into P, Q, R, S, T and U waves. This was first suggested

by the Dutch physiologist William Einthoven in 1895 (Hurst, 1998). Figure 2.2 shows a

schematic of a typical ECG heart cycle with the clinically important features labelled. Each

of the six waves may be associated with a phase of the heart cycle. Firstly, the SA node

produces a wave of depolarization and spreads the depolarization forward through both upper

chambers of the heart via intermodal pathways. This atrial depolarisation causes the P wave.

Next, the atria need to repolarize to regain the resting charge. Atria depolarization happens

at the same time as ventricular depolarization which generates the QRS complex . After

depolarization, the atria begin to repolarize and this is often not observable as it coincides

with the high amplitude QRS complex. Next is the T wave, generated by repolarization of

the ventricles. In some measurements, a small U wave follows the T wave and is thought to

relate to the repolarization of the His Purkinje system, (Hurst, 1998).

Fig. 2.2 ECG waveform with characteristics waves (Hurst, 1998).
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2.2.3 Clinical Analysis of the ECG Signal

P Wave

The P wave duration is about 0.04 to 0.11 seconds. If this wave is wide and dentate, it would

indicate enlargement of the left atrium due to mitral stenosis or mitral deficiencies (Garcia

and Miller, 2009, Hall, 2015).

QRS Complex

The QRS Complex duration is 0.05 to 0.1 seconds. If this complex is longer than 0.12

seconds, it would be classified as an abnormal wave. The QRS wave amplitude exhibits

large natural variation. Very low amplitude QRS complex is considered abnormal and it may

indicate diffuse and advanced coronary diseases, ventricular failure, and presence of fluid

in the pericardium, myxedema, hypothyroid, as well as obesity, or those with pulmonary

emphysema. The amplitude of the QRS complex depends on several factors, including the

thickness of the chest wall. A thick chest wall, usually due to obesity, leads to a lower

amplitude (Braunwald and Zipes, 2001). A consistently larger QRS amplitude may indicate

ventricular hypertrophy. The physical position of electrodes relative to the heart can also

effect amplitude (Garcia and Miller, 2009, Hall, 2015).

The QRS complex and ST segment are important for the diagnosis of myocardial infarc-

tion (Garcia, 2014).

PR Interval

The PR interval indicates the time required for the signal to be transmitted from sinusoidal

node to the ventricular myocardial fibres. The PR interval is the time between the start of the

P wave to the start of the QRS complex, and is normally between 0.12 to 0.20 seconds. This

PR interval is shorter in children. In adults, a long PR interval may indicate ventricular atrial

blockages. A short interval may indicate Wolf-Parkinson-White syndrome, in which there is
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an additional conduction path between the atrium and the ventricle (Garcia and Miller, 2009,

Hampton, 2013).

ST Segment

This is the segment of the ECG cycle, located between the QRS complex and the beginning

of the T wave. This segment begins immediately after the QRS complex, at a point known

as the “j point”. Amplitude displacement of the ST segment is important for the diagnosis

of ischemia and infarction. An increased amplitude of this segment is sometimes seen in

normal people, especially black people. A shift to lower amplitudes is known as “ST falling”

and may indicate myocardial infarction (Garcia, 2014, Hampton, 2013).

T Wave

The T wave occurs after the ST segment and is asymmetrical: starting with a low gradient but

ending in a high gradient. Its peak is curved and has the same polarity as the QRS complex,

with both depending upon the placement of the measurement electrode. Sharp or dentate

T waves are usually abnormal. An extended T wave is sometimes seen in Hypokalemic

infarction (Garcia, 2014, Hall, 2015).

QT Interval

The interval from the beginning of Q to the end of the T wave is the full duration of ventricular

systole and diastole, (this includes: the QRS complex, the ST segment and the T wave).

The QT duration varies with heart rate, age and gender. Changes within an individual can

indicate disease. For example, increased concentrations of potassium or calcium in the blood

will lengthen this interval. It also increases in congestive heart failure (CHF), myocardial

infarction (MI), hypoxemia, and the use of drugs such as Quinidine and Procainamide (Garcia,

2014, Hall, 2015).
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U Wave

The polarity of the U wave is usually the same as that of the T wave. In Hypokalaemia, the

U wave is more pronounced. In the ischemic myocardium, it is inverted. In myocardial

ischemia, drugs such as digitalis, quinidine, epinephrine and diseases such as thyrotoxicosis

may increase the amplitude of U wave (Garcia, 2014, Hall, 2015).

2.3 Biomedical signal processing

The processing of biomedical signals may be required to identify clinically important features.

Accurate measurement and feature extraction may be critical steps in diagnosis (Cohen, 1983).

Filtering is a basic tool in biomedical signal processing and may be required to separate

wanted and unwanted signals, and reducing contamination with extraneous signals and

artefacts. The following subsections introduce the processing of ECG signals.

2.3.1 Noise on ECG

Some conditions which can affect ECG signal recording and make the ECG interpretation

task difficult are:

• Poor electrical connection between electrodes and the skin due to dirt, hair or variable

skin hydration;

• Defective leads connecting electrodes to processing and recording equipment;

• Electrical interference from within the ECG system e.g. mains hum; or from outside

the system e.g. power transmission lines, a pacemaker or invasive equipment such as

roller pumps (pulmonary and cardiac pumps, etc.);

• Incorrect ECG electrode positioning or mismatch between electrode and lead. Inappro-

priate placement of ECG electrodes may cause inversion of waves or misinterpretation
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of a measured wave as abnormal. For example, if the precordial lead is much higher or

much lower than its proper position relative to the left or right ventricles, left ventricular

hypertrophy cannot be seen with electrocardiogram;

• Movement and talking during ECG measurement generates unwanted electrical signals

which combine with the desired ECG signal;

• High-intensity exercise before ECG measurement can distort the ECG signal;

• Excitement or deep breathing during ECG test can also distort the signal.

Some common classes of noise in measured ECG signals include: Baseline Wander (BW)

and electromyography artifact (MA or EMN), Electrode Motion (EM) and Power Noise

Interference (PNI). AECG signals are commonly corrupted with intervals of high amplitude

MA, EM and BW noise. Reduction or removal of these noise classes is difficult as the

interfering signal overlaps the cardiac signal in both time and frequency, while often having a

higher amplitude. Figure 2.3 shows the frequency and temporal overlap present in data from

the Physionet Noise Stress Test Database in both time (a) and frequency domain (b), (Behar

et al., 2013). For example, the spectral range of MA is from 0.1 to 100 Hz, which overlaps

with that of cardiac signals and so these cannot be separated by frequency filters. Therefore,

there is an urgent need to use innovative signal processing techniques to increase the visibility

of cardiac signals in the presence of MA. These methods should reduce artifact power while

preserving the ECG morphological information important for medical diagnosis.

2.3.2 ECG Signal Processing

Many signal processing methods have been proposed to remove contaminates from ECG

signals. Ensemble Averaging (EA) is one of the most common filtering methods used for

extraction of cardiac characteristics from a noisy ECG signal. However, this method requires
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(a) Time Domain

(b) Frequency Domain

Fig. 2.3 BW is baseline wander, EM is electrode motion, MA is muscle artifact and PNI is
the power noise interference; reproduced with permission from (Behar et al., 2013)
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a great number of heartbeats for averaging. Intermittent cardiac anomalies and important

changes in heart rhythm cannot be identified using this method (Lander and Berbari, 1997).

Wiener Filtering (WF) optimizes the Minimum Mean Squared Error (MMSE) when a

known cardiac signal of unknown amplitude is contaminated with stationary noise. However,

apriori the cardiac signal is not known. Furthermore, cardiac signals are non-stationary.

Researchers have proposed the use of WFs in two-dimensions i.e. time-frequency domain or

time-scale domain (Kestler et al., 1998, Lander and Berbari, 1997). Adaptive filters (AF)

effectively convolve with a time varying kernel and have been shown to reduce EM and MN

noise, baseline drift and electrical interference (Laguna et al., 1992).

Wavelet denoising (WD) is a common noise removal technique as it can be applied to

non-stationary signals and noises, particularly signals that scale, as cardiac signals do, with

heart rate. In these methods, the base wavelet is similar to the cardiac signal in the frequency

or temporal domains (Agante and De Sá, 1999, Kestler et al., 1998). Then, the denoising

process is usually performed based on a soft thresholding rule on the output coefficients of

wavelet transform in different scales or classes.

Artificial neural networks have also been used to extract the statistical content of cardiac

signals immersed in high frequency noise. However, these networks require a global super-

vised learning algorithm and large amounts of training data similar to the data to be filtered

(Clifford et al., 2001, He et al., 2006).

All filtering methods rely upon prior knowledge of some characteristic of the cardiac

signal. Some of these are universal, such as the periodicity with heart rate, but most are

determined by the individual and specific ECG measurement e.g. electrode placement. Many

filtering techniques rely upon a flexible ECG Dynamical Model (EDM) that can be adapted

to a particular ECG dataset. This requires the dataset to be split into a training section where

the EDM parameters are determined, and a test section where the EDM based filter is applied.
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In some cases the test section can overlap the training section. The post-filtering EDM may

be used to identify clinically important features in the data.

Bayesian model-based statistical methods have also been proposed to separate cardiac

signal and noise (Akhbari et al., 2013b, Hesar and Mohebbi, 2017a, Roonizi and Sassi, 2016,

Sameni, 2008a, Sameni et al., 2007b, Sayadi and Shamsollahi, 2008). These methods are

based on the most widely used dynamic ECG models: the McSharry Cartesian nonlinear

dynamic model (McSharry et al., 2003) and its derivatives in polar coordinates.

These methods use Extended Kalman Filters (EKF), which are a generalized version

of the standard Kalman filter. Nonlinearities in the system response are addressed by local

linearization around the current system state. EKF filters for ECG signals have dominated

for most of the last decade and many studies have shown their effectiveness in the presence

of non-stationary additive Gaussian noise. In many cases they yielded better Signal-to-Noise

ratio (SNR) improvements than WD and AG methods applied to the same data. EKF methods

can yield artifacts when applied to signals with non-stationary non-Gaussian noises, such

as MN. In this case, it is important that the quality metrics applied measure the visibility

of clinically important features rather than focus solely on improvement in the signal to

noise ratio. Various metrics evaluate how well filtering maintains the important clinical

characteristics in the underlying cardiac signal e.g. the WDD, WEDD and MSEWPRD

criteria (Manikandan and Dandapat, 2007, 2008, Zigei et al., 2000).

ECG segmentation refers to the identification of the clinically important cardiac signal

characteristics introduced in Section 2.2.3. This is an important step in the interpretation of

an ECG signal, in forming a diagnosis and choosing a treatment. The efficiency of the ECG

segmentation method depends on the fidelity of the filtering system and the underlying EDM.

Kohler et al. (2002) reviews some ECG segmentation techniques, including AF filters,

wavelet transforms, neural networks, Hidden Markov Models (HMM), fuzzy logic and

Support Vector Machines (SVM). EKF methods based on McSharry EDMs yield signal
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parameters directly linked to cardiac signal morphology and clinically important features

such as wave amplitudes, centre phases and phase widths (Akhbari et al., 2018, 2013a, Sayadi

and Shamsollahi, 2009).

ECG signal segmentation can be improved by processing the EKF filtered ECG signal

using nonlinear Bayesian structures, such as a Particle Filter (PF) (Lin et al., 2010). However,

the computational cost of such methods is very high compared to linear-Bayesian methods.

Application of statistical denoising techniques such as Principal Component Analysis

(PCA) and Independent Component Analysis (ICA) are also used to compress, classify and

remove artefacts from the ECG signal (Barros et al., 1998, He et al., 2006, Kotas, 2006,

Palaniappan and Khoon, 2004, Romero, 2010, Sharma et al., 2010). Combined statistical and

other algorithms are also proposed based on Neural Networks (NN) and PCA, wavelet-PCA

and ICA, PCA-ICA methods have been implemented to remove motion artefacts from ECG

signals (Clifford et al., 2001, Martis et al., 2013, Sarfraz et al., 2015). Each of these methods

has its own merits and limitations. ICA and PCA aim to identify maximally statistically

independent signals and orthogonal signals explaining maximum variation respectively. On

their own they are unlikely to yield maximal separation of cardiac signal and noise. However,

the combination of statistical and AF methods has the potential to be effective in a range of

scenarios.

2.4 Problem Statement

Any changes in the rhythm and principal morphology of the cardiac signal are known as

arrhythmia or cardiac dysrhythmia (Hall, 2015). A large proportion of cardiovascular disease

mortality is linked to arrhythmia. Preventing any death requires the quick and accurate

diagnosis of arrhythmia, often from long duration AECG recordings. Some of the heart

abnormalities that can be identified in the ECG signals include:
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• amount and place of the heart infarct;

• level of myocardial infarction development;

• the diagnosis of heart rhythm disorders;

• the diagnosis of atrial and ventricular hypertrophy;

• pericardial diagnosis;

• acute pulmonary embolism diagnosis.

Anomaly identification systems need to be developed that can cope with long duration

and very noisy AECG recordings from a large number of patients. They should also be able

to quickly and automatically identify the type of arrhythmia and its occurrence time, in long

ECG recordings with nonstationary signals and noises. The availability of accurate ECG

denoising and segmentation methods can reduce the incidence of death due to arrhythmia by

the identification of heart abnormalities. The dynamics and morphology of the underlying

cardiac signal should not be distorted by such system as this could lead to false positive

diagnoses.

This thesis presents an ECG denoising method based on the integration of PCA and

Kalman Filter (KF). The PCA yields an optimal parameterization of a specific ECG dataset,

and is calculated using a training segment of the data. Standard KF is then used to track

the weights used in a linear weighted sum of PCA signals model of the underlying cardiac

signal. This method is both simpler than the nonlinear EKF methods and computationally

less intensive. Later, it is shown to be better in preserving clinically important features of the

cardiac signal.

The McSharry-based dynamic polar models have shown their capability in a variety of

ECG processing applications, such as denoising, segmentation, etc. However they do not

perform well in ECG records corrupted with high levels of noise, as commonly occurs in
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AECG data. The proposed integrated PCA-KF methods is shown to perform better than the

most recent EKF methods when applied to simulated and real AECG data.

2.5 Summary and Conclusions

This chapter provided a brief introduction to heart physiology, the electrocardiogram and

clinical features of ECG signal. A range of ECG signal processing methods are reviewed

in terms of denoising with their limitation and challenging issues. In the following chapter,

we will discuss previous work on Bayesian methods for ECG denoising, segmentation and

diagnosis of abnormalities.



Chapter 3

Literature Review

3.1 Introduction

This chapter reviews previous ECG studies based on Bayesian frameworks, e.g. Kalman

filters; and statistical methods such as Principal Component filters. First, a McSharry

nonlinear dynamic model for ECG signals is described. Then, ECG filters based on this

model are introduced. These include the Extended Kalman filter framework which has

dominated the literature for the last decade. Finally, some conventional methods based on

statistical methods, particularly PCA filters, are reviewed.

3.2 ECG Dynamic Model

An ECG dynamic model (EDM) was introduced by McSharry et al. (2003). It is based on a

set of nonlinear state space equations in Cartesian coordinates. Each of the P, Q, R, S and T

waves are modelled as a Gaussian pulse with three parameters: centre, width and amplitude.

The EDM is defined by three ordinary differential equations:
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where x, y and z are the state variables and x′ =
∂x
∂y

(similarly for y′ and z′), α =

1−
√

x2 + y2, ∆θi = (θ −θi)mod(2π) with −π < θ = tan−1( y
x) < π , angular velocity of

the trajectory is ω =
2π

T
, and T is the heart cycle period taken to be the time between R-peaks.

The parameter, z0 , sets the virtual ground.

Rotation in the x− y plane defines a notional phase which varies by 2π over each heart

cycle, and is equivalent to time. The phase θ can either grow monotonically with time or be

used modulo 2π . It can be visualised as a saw-tooth pattern with zeros at R-peaks. Figure 3.1

illustrates an ECG signal and the phase. It is important to note that a valid phase observation

depends on quality of R peak detection.
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Fig. 3.1 Phase modulo 2π for an ECG signal, repeated using algorithm on Sameni et al.
(2007b)



24 Literature Review

Each Gaussian wave is defined by the parameters a j, b j, θ j for ( j ∈ P, P, Q, R, S, T ),

which correspond to the amplitude, width, and centre phase. A total of 15 wave parameters

plus the angular velocity are required. Table 3.1 provides some typical values of the these

parameters adapted from McSharry et al. (2003).

Index P Q R S T
θ j(rad) −π/3 −π/12 0 π/12 π/2
a j(mV ) 1.2 -5.0 30 -7.5 0.75
b j(mV ) 0.25 0.1 0.1 0.1 0.4

Table 3.1 Parameters of the synthetic ECG model in McSharry et al. (2003)

The resulting dynamic moves in a circle in the x-y plane, once per heart cycle, while

the z coordinate represents the ECG signal in mV. A range of heart abnormalities can be

simulated using the EDM, while Figure 3.2 illustrates a typical cycle. Dotted circles indicate

the centres of P, Q, R, S and T waves. The dashed lines reflects the limit cycle of unit radius

in x and y coordinates. Methods have been developed to fit EDM parameters to measured

ECGs.

Fig. 3.2 Typical artificial ECG signal (McSharry et al., 2003)
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3.3 ECG Signal Processing Using Extended Kalman Fil-

ters

This section reviews the EDM-based Extended Kalman filter techniques that have dominated

ECG signal processing for the last decade. The McSharry EDM is not linear with respect

to the wave centre and width parameters. The standard Kalman Filter (KF) assumes linear

variation of the system with respect to the state parameters. To apply KF using an EDM

model, requires an extension to the algorithm. Extended Kalman filtering (EKF) uses a

linearization of the EDM model around the current state vector. A sequence of EKF methods

have been developed tracking ever larger subsets of the EDM parameters. These include

methods known as EKF2 and EKF17 (Sameni et al., 2007b, Sayadi and Shamsollahi, 2008).

Furthermore, when filtering ECG data off-line, the filters can be applied in both the forward

and reverse time directions. When applied in the negative time direction the methods are

known as Extended Kalman Smoothing (EKS): e.g. EKS2 and EKS17. Often, EKF is

followed by EKS.

3.4 EKF2

The continuous ECG dynamic equations (3.1) need to be discretised to be applied to sampled

signals. Sameni et al. (2007b) transformed the EDM model to polar coordinates before

discretising:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θk+1 = (θk +ωδ )mod(2π)
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(3.2)
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where zk is the kth ECG signal sample. The angular velocity ωk may change between samples.

The sample period is δ and η is additive white Gaussian noise, which accounts for baseline

wander and another additive noises. Sameni et al. (2007a) developed an EKF method with

two state variables, θ and z, known as EKF2, with:

xk = [θk,zk]
T (3.3)

Other parameters are fixed or describe noise and are:

wk =
[
αp, ...,αT ,bP, ...,bT ,θP, ...,θT ,ω,η

]T (3.4)

where η is the measurement noise.

Noise is assumed to be additive and Gaussian. During periods of high noise, the EKF out-

put follows the EDM model more closely while, during low noise periods, the measurements

are tracked more closely. The EKF methods rely strongly on an accurate R-peak detection,

as well as band-pass pre-filtering to remove baseline wander and high frequency artefacts.

The fifteen Gaussian peak parameters are initially fitted using a period of training data. The

success of EKF2 filtering relies upon the accuracy of this fit and the stationary of the shape

of the cardiac signal. R-peak detection removes the sensitivity to heart rate.

In Sameni et al. (2007b) the EKF frame work is described in detail. A dynamical model

of the discrete-time, nonlinear system is represented as follows:

⎧⎪⎪⎨⎪⎪⎩
xk+1 = f (xk,wk,k)

yk = h(xk,vk,k)
(3.5)
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where f (•) and h(•) are nonlinear functions describing the evolution of the state vector

xk and the observation vector yk, respectively. In equation (3.5) the random variables, wk

represents the process noise and vk is the measurement noise with associated covariance

matrices Qk = E{wkwT
k } and Rk = E{vkvT

k }. The initial estimate of the state vector is given

by x0 = E{x0} which is assumed to be known, with p0 = E{(x0 −x0)(x0 −x0)}T . The

linearized approximation of the process and observation models in equation (3.1) are derived

around the desired reference point

(
x̂k, ŵk, v̂k

)
(Sameni, 2008a):

⎧⎪⎪⎨⎪⎪⎩
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)
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)
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)
+Gk

(
vk − v̂k

) (3.6)

where Ak and Fk are the Jacobian matrices of partial derivatives of f with respect to x

and w respectively. Ck and Gk represent the Jacobian matrix of partial derivatives of f with

respect to v:
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)
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(3.7)

To simplify the matrix notations, both Fk and Gk are usually absorbed into the noise

covariance matrices as follow:

FkQkFT
k → Qk GkRkGT

k → Rk (3.8)
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In order to implement EKF, a linearization of equation (3.2) is needed. The process and

observation models use the first order of Taylor series. The nonlinear model is linearized

using equations (3.6) and (3.7) by defining:

⎧⎪⎪⎨⎪⎪⎩
θk = F1(θk−1,ω)

zk = F2(zk−1,θk−1,ω,ai,bi,θi,η)i∈{P,Q,R,S,T}

(3.9)

The Jacobian elements with respect to the hidden variables are:
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(3.10)

Finally, the time propagation and the measurement propagation equations are summarized

by Sameni et al. (2007b):
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Where X̂−
k and P−

k are the prior estimates of the state vector and the covariance matrix

respectively before using the kth observation, X̂k\k and Pk\k are posteriori estimates of the

state vector and covariance matrix respectively after using the kth observation. In the above,

w̄k = E{wk} and v̄k = E{vk}.

Figure 3.3 illustrates the application of EKF2 and EKS2 to an ECG signal with addi-

tive White noise. Sameni et al used 190 short (30 s) ECG segments from the MIT-BIH

normal sinus rhythm data base, Data 16265 (Goldberger et al., 2000, Moody, 2000b) in the

experiment.
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Fig. 3.3 Typical filtering result for EKF2/EKS2 with an input signal with 4 dB AWGN; a)
shows the original signal with and without noise, b) is the result after EKF2 and c) is after
EFF2 and EKS2.

In, Sameni et al. (2008a) the EKF/EKS methods were used to separate brain and cardiac

signals from EEG measurements where the cardiac signal was considered to be noise. EKF2

has also been used to separate fetal from maternal ECG signals from single channel fetal

ECG measurements (Sameni et al., 2008b).
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3.5 EKF17 and EKS17

Sayadi et al. extended the EKF2 method of Sameni et al. (2007b) by adding the 15 Gaussian

parameters as state vector variables, (Sayadi and Shamsollahi, 2008), to produce an algorithm

known as EKF17. The linearized state vector update can be written:
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ap,k = ap,k−1 +u1,k = F3(ap,u1,k)

.

.

.

bp,k = bp,k−1 +u6,k = F8(bp,u6,k)

.

.

.

θp,k = θp,k−1 +u11,k = F13(θp,u11,k)

.

.

.

θT,k = θT,k−1 +u15,k = F17(θT ,u15,k)
(3.12)

where xk = [θ ,zk,aP,k, ..,aT ,bP,k, ...,bT ,θP,k, ...,θT,k]
T represented the expanded state

vector. The process noise vector is wk = [ω,η ,u1,k, ...,U15,k]
T with the similarly expanded
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covariance matrix of Qk = E[wkwT
k ].The number of EKF state equation variables has in-

creased to 17:15 Gaussian parameters, the angular velocity and cardiac signal. Sayadi named

the new algorithm EKF2+15 or EKF17, and the equivalent smoother EKS17. Figure 3.4

illustrates a typical result applying EKF17 and EKS17 to a measured ECG signal with

added White Gaussian noise. Sayadi’s experiments showed that EKF17/EKS17 performed

denoising better than EKF2/EKS2, particularly for low SNR signals. Figure 3.5 shows the

mean and standard deviation of the SNR improvements of EKF17 compared to EKF2 and

the Multiadaptive Bionic Wavelet Transform (MABWT) (Sayadi and Shamsollahi, 2007)

denoising methods.
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Fig. 3.4 Typical filtering result for EKF17\EKS17 with an input signal with 4 dB AWGN; a)
shows the original signal with and without noise, b) is the result after EKF17 and c) is after
EFF17 and EKS17.
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(a) Original ECG and Noisy Signal

(b) Output of EKF17 on the Noisy Signal

Fig. 3.5 Results of EKF17 and EKS17 using MIT-BHI SNR with 100 time repetition. (a)
SNR improvements (b) standard deviation between all 18 subjects.(Sayadi and Shamsollahi,
2008)

3.5.1 Diagnosing Abnormalities Using EKF

ECG denoising using EKF relies upon an apriori model of signal morphology, often obtained

by fitting the McSharry EDM to a training subset of measured data. Where the measured

signal is considered noisy, the EKF output tracks the model more closely than the measure-

ments. There is a danger that the filter could remove cardiac signal variation that is clinically

important. Many common heart conditions lead to irregular signal shapes and arrhythmias e.g.

atrial fibrillation (AF), premature ventricular contractions (PVCs) and supraventricular tachy-

cardia (SVT) (Harvard-Medical School, 2014). Variation can be periodic or non-periodic i.e.

affecting sequences of heart cycles or occasional single heart cycles. It is important that ECG

denoising does not change the real morphology of cardiac signals for the correct diagnosis to

result. To identify and classify heart diseases it is important that the duration, amplitude and

shape of each ECG wave is preserved. The following sections review the performance of

EKF algorithms on abnormal cardiac signals.
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3.5.2 ECG Denoising and PVC Detection

The frequent occurrence of Premature Ventricular Contractions (PVC) in an ECG records

may indicate serious heart diseases. Sayadi et al. (2010) proposed a variation of EKF with

four state variables known as EKF4/EKS4. The cardiac signal was assumed to be the sum

of three signals corresponding to the P-wave, QRS complex and T-wave. The state vector

contained the phase and the three values of these signals. The grouping of dependent waves

reduced the number of variables from EKF17 while allowing the three signals to become

time-shifted relative to each other. Further more, Sayadi developed a Fidelity Factor in this

research as a measure of the presence of PVC. Normal ECG morphology yields a Fidelity

Factor close to zero while abnormal heart cycles yield a value much larger. The Fidelity

Factor may be calculated after each heart cycle to yield a near instantaneous alert to PVC.

Figure 3.6a illustrates an example of ECG signal with PVC at times t = 6 and t = 9. Figure

3.6b shows the Fidelity Factor after EKF4 processing with peaks corresponding to the PVC

events.

(a) PVC Signal

(b) Fidelity Coefficient

Fig. 3.6 PVC monitoring using the EKF4 (a) ECG signal with PVC (b)fidelity coefficient;
adopted from Sayadi et al. (2010).
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The method has been tested on 40 ECG segments from the MIT-BIH Arrythmia database

(Goldberger et al., 2000, Moody, 2000a). The method detected PVC with an accuracy of

98.43% (Sayadi et al., 2010).

3.6 ECG Denoising and T-wave Alternans Detection

Akhbari et al. (2014) have used the EKF method to detect T-wave Alternans (TWA) (Akhbari

et al., 2014). In TWA arrhythmia, the T wave flips between opposing polarity, as can been

seen in Figure 3.7.

Fig. 3.7 T Wave Alternans, associated with repolarization abnormalities and an increase in
serious ventricular arrhythmias (Akhbari et al., 2014).

Akhbari et al. (2014) proposed an EKF variant with six state variables known as EKF6.

The cardiac signal is assumed to be the sum of two signals: one formed by the PQRS waves

and the second by the T-wave. The state variables correspond to phase and two signal

values, and the three Gaussian parameters defining the T-wave. EKF6 was tested on the TWA

challenge data base (Goldberger et al., 2000, Moody, 2008) and it was demonstrated that TWA

could be identified and T-wave peak times could be estimated to within 8 milliseconds(Paradis

et al., 2007).
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3.7 EKF and Apnoea Bradycardia

Following further research based on EKF framework, Ghahjaverestan et al. (2015) devised a

further variant known as Switching Kalman Filter (SKF) to detect Apnoea Bradycardia (AB),

which is associated with decreased heart rate in foetuses.

3.8 EKF and Atrial Fibrillation

Atrial fibrillation (AF) is one of the most common heart arrhythmias that is typified by

irregular heart rhythm (Le et al., 2008). Figure 3.8 presents an example where irregular R-R

intervals can be observed. Furthermore, the P wave is absent and replaced by fluctuation of

the baseline known as fibrillation or f-waves.
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Fig. 3.8 Example of atrial fibrillation. Data 4746 collected from PhysioNet (Goldberger et al.,
2000)
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Recently, Roonizi and Sassi (2017) adjusted the standard EKF\EKS method for the anal-

ysis of AF. The standard sum of Gaussians model was used but with no P-wave component.

The model ECG signal was augmented with a trigonometric wave between T and Q waves,

with parameters of amplitude, frequency and phase, to represent the f-wave. This yields 17

parameters, i.e. 12 for the four QRST waves, 3 for the sinusoid and 2 for phase and cardiac

signal.

The method was tested with normal data from the PhysioNet PTB Diagnostic ECG

database (Goldberger et al., 1995). The real data was transformed to mimic AF by the

addition of synthetic f waves generated using algorithms devised by Petrenas et al. (2012),

Stridh and Sornmo (2001). As the R-R interval is normalised by R-peak detection followed

by scaling of the phase, it was considered unnecessary to simulate irregular heartbeats. Figure

3.9 illustrates results of simulated AF using synthetic f wave and real ECG signals.
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Fig. 3.9 Example of atrial fibrillation. (a) Synthetic f wave; (b) QRST; (c) sum of f waves
and QRST signal; (d) Noisy ECG signal; (e) QRS-T extraction using EKS framework; (f) f
wave extraction using EKS framework (Roonizi and Sassi, 2017).
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The method was also tested on 10 segments of measured ECG containing AF from the AF

termination challenge database each with duration of 2 minutes,(Roonizi and Sassi, 2017).

3.9 Use of PCA in ECG signal Processing

Principal Component Analysis (PCA) is a statistical technique able to reduce the dimension-

ality of data. A set of correlated random variables is expressed in terms of new, uncorrelated

variables. The new variables, known as the principal components, are linear combinations of

the correlated variables. The principal components are ordered in terms of the proportion

of the total variance they explain. The first principal component is the unit norm, linear

combination of variables that explains the most variance. The second is the unit norm, linear

combination of variables that explains most of the remaining variance. The principal compo-

nents may be collected into an orthonormal matrix which can be calculated by performing a

symmetric singular value decomposition of the covariance matrix of the original variables.

The PCA basis has several desirable properties. The singular values indicate the rank of

the set of random variables and so allows redundancy to be identified and eliminated. In this

case a vector of random variables can be projected onto the PCA basis and represented by a

smaller number of variables. Furthermore, the random variables can be expressed as a linear

combination of PCA basis vectors. This known as a Karhunen–Loève transform. This basis

can be truncated to approximate the random vector (Maglaveras et al., 1998). The truncated

PCA basis is the minimum sized parameterisation that explains a particular proportion of

variance. This is often used in data compression. Additive noise is often spread across the

PCA basis and so truncated PCA representation can also increase the SNR.

The literature related to ECG denoising using PCA is much smaller than that of EKF

methods. However, PCA has been widely used to compress ECG data, and has also been

used in denoising and segmentation. PCA was used in Chawla et al. (2006) to identify

QRS complex morphology in signals contaminated with muscle noise. Olmos et al. (1999)
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employed PCA to compress ECG signals and to filtering additive noise. They used PCA in

the reconstruction and denoising of the state space trajectory points. Kotas (2006) presented a

denoising algorithm using a robust extension of classical PCA. PCAs of short signal segments

were used to filter ECGs while preserving the shapes of the individual heart cycles. In 2010,

Yan and Li (2010) applied the Karhunen Loève Transform (KLT) to denoising, compressing

and feature extraction of ECG signals. They observe that the KLT concentrates the ECG

information into a minimum number of parameters while truncated KLT reduces noise.

PCA techniques also combined with different methods to enhance the ECG signal. PCA is

combined with a wavelet transform in Kher et al. (2014) to reduce motion noise in ambulatory

ECG. In Rodríguez et al. (2015), PCA is used to identify the QRS complex then a Hilbert

transform, combined with adaptive threshold techniques, are used to detect R peaks in noisy

ECG signals.

3.10 Summary and conclusions

The EKF method, based on the McSharry sum of Gaussians model of a heart cycle, has

become the gold standard ECG denoising algorithm over the last decade. Typically it is

applied off-line in the forward time direction (EKF) and then in the reverse time direction

(EKS). Many variations exist where the McSharry model is adjusted to better match some

medical condition, so that clinically important parameters can be identified.

The McSharry model has 15 shape parameters, each related to a specific feature within

the cardiac signal. However, the parameterisation is not unique and this leads to instabilities

when the algorithms are applied to long-term data. PCA yields a linear description of heart

cycle variation that explains the maximum variation for the least number of parameters. As

a PCA based heart cycle model is linear, standard Kalman Filter may be used. Further, the

reduction in model parameters simplifies both the algorithm and computation.
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In later chapters, a combined PCA and KF method will be developed, known as PCAKF.

It will be applied to ECG data from standard databases and the denoising performance will

be compared to that of EKF2\EKS2 and EKF17\EKS17. The EKF2 framework was adopted

with permission from Dr Sameni and extended to EKF 17. The algorithms are used as bench

mark methods during this study.



Chapter 4

Principal Component Analysis Kalman

Filter for Single Channel ECG

4.1 Introduction

Previous chapters have introduced ECG signals and their importance in diagnosing heart

conditions. The McSharry ECG Dynamic Model (EDM) provided a method that allowed

the simulation of ECG signals for a wide range of individuals, electrode positions and heart

conditions. The EDM was the basis for a wide variety of Extended Kalman Filters applied to

ECG denoising. EDM parameters can be grouped and tracked to yield different EKF methods

applicable to different conditions. All rely upon a training period of ECG data to identify

the starting EDM parameters. However, the McSharry EDM is over-parameterised and this

leads to instabilities. A minimum parameterisation can be derived from a PCA applied to a

training set of data. Using a PCA description of the ECG, heart cycle by heart cycle, allows

standard Kalman filtering to be used to both track and filter the ECG signal. This chapter

develops the PCA based KF for ECG denoising and compares its performance to standard

EKF methods presented in previous chapters.
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4.2 Methodology

This section develops the PCAKF method. The algorithm is based on a combination of

statistical and adaptive methods. Standard Kalman Filtering (KF) is used to track a single

channel ECG signal. Instead of the McSharry sum-of-Gaussians EDM heart-beat model,

each beat is approximated by a weighted sum of a small number of principal component

(PCA) basis signals. The PCA basis signals are calculated from a short period of training

data and may be augmented with signals specific to particular cardiac conditions. The KF

tracks the basis weights from heart-beat to heart-beat. The method includes three different

phases. First, the ECG signal is passed through the standard pre-processing filters to remove

common noises from the recorded signal, such as baseline wander. Second, a small part of

the pre-processed ECG signal, known as training data is used to calculate the PCA basis

signals. Finally, the pre-processed ECG signal and PCA basis signals are used in the Kalman

filter to track and denoise the ECG signal. This new method has been called PCAKF. The

flowchart in Figure 4.1 illustrates the overall algorithm used to test the PCAKF filtering

method on signals with additive synthetic and measured noise. The output of PCAKF, along

with EKF methods, is compared with the original ECG signal from both a signal power

and clinical viewpoint. The detailed version of the flowcharts for the PCAKF algorithm are

provided in appendix C.
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Fig. 4.1 The process flowchart used to implement and test the PCAKF algorithm.
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4.2.1 Baseline Wander Removal and Pre-processing

This section specifies the standard ECG signal pre-processing used in this project. The aim

of pre-processing is to remove noise outside the frequencies spanned by cardiac signals, and

to remove clear artefacts such as spikes and step changes in the baseline. The algorithms are

those described in Di Marco et al. (2012). They are designed to detect and reduce the number

and amplitude of QRS band artefacts, baseline drift, pacemaker (PM) spikes, spurious step

changes and high frequency noise; often due to interference from other electronics. A linear

filter is used to reduce noise outside the ECG signal range from 0.5 to 30 Hz.

4.2.2 Estimation of the PCA Model

The proposed method is based on an approximation of the ECG signal over each heart

cycle, based on a linear combination of basis signals derived from Principal Component

Analysis (PCA) of a sample of the signal. These basis signals are calculated from a training

period of clean data acquired under ideal conditions. This has several advantages over the

sum-of-Gaussians model. Firstly, a minimum number of basis signals is required to fit a

known proportion of signal variation. Secondly, there is a linear relationship between basis

weights and the signal, and so a set of parameters yields a unique signal.

After pre-processing, a standard R-peak detection algorithm is applied to identify heart

cycle boundaries. Each heart cycle is interpolated onto a fixed number of samples. In this

project, samples were used for each heart cycle. The PCA basis was chosen to be the Eigen-

vectors of the training period heart cycle covariance matrix, with the largest Eigen-values.

Each element of the 1000×1000 covariance matrix is the expected second moment of two

heart cycle samples. The Eigen vectors are the discretized patterns of heart cycle variation

that explain the largest proportion of the observed variation over the training period. The

signals corresponding to the Eigen vectors, known as the PCA basis functions, generally

correspond to changes in P, Q, R, S and T wave, amplitudes and temporal displacements.
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In the following paragraphs, notation is introduced which will be used to define the

PCAKF algorithm. Consider a training interval where NT heart cycles are measured. The

kth beat time-series is denoted: ECGk(θ) . The vector θ ≡ (θ j) for j = 1 to NS contains the

heart-cycle phases of the measurement time-series, assumed to vary linearly from −π to +π

over each heartbeat. Each filtered ECG signal, over each heart cycle, is approximated by the

weighted sum of NB basis signals, with weights W k
i , for i = 1 to NB.

ECGk(θ)∼=
NB

∑
i=1

wk
i PCAi(θ) (4.1)

When the training data from a clean ECG signal is identified and divided into NT heart-

beats, an uncentred covariance matrix for heart-cycle data is calculated. From the covariance

matrix, the PCA basis signals PCAi(θ) are calculated. The calculation of the PCA basis

relies upon the quality of pre-processing, baseline removal and R-peak identification. In

practice, some selection is required to remove heart cycles strongly contaminated by noise

and artefacts, such as those in Figure 4.4. This selection is automated by rejection of heart

cycles that differ too much from a mean or target cycle. The more and cleaner the available

training data, the lower the noise in the PCA basis signals. Pre-processing of the data before

PCA decreases this noise. Irregularity in the heart rate is largely normalized by R-peak

detection and heart cycle identification.

4.2.3 Kalman Tracking of Single Channel PCA Weights

In the proposed method, Kalman Filter (KF) is applied to track the ECG basis weights wk
i

as in equation (4.1), from one heartbeat to the next. This is achieved by a combination of

extrapolation from the previous beat weights and correction based on the current observed

beat. Standard KF notation is used, as in Simon (2006). For ECG filtering, the state vector is

the vector of weights for the single-lead ECG signal:
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Xk ≡ (wk
i ) (4.2)

This is assumed to be multidimensional Normally distributed with covariance matrix Pk .

The extrapolation process assumes that the heart signal does not change from one cycle to

the next, i.e. there is no forcing:

Xk/k−1 = Xk−1 +Wk−1 (4.3)

The noise vector Wk represents the extrapolation uncertainty due to variation between

consecutive heart beats and is assumed to be zero mean and with covariance Qk . The

uncertainty in the extrapolation estimate of the current state vector is a combination of the

uncertainty in the last heart cycle and the extrapolation uncertainty:

pk/k−1 = Pk−1 +Qk (4.4)

In our case, the state vector is observed by the measurement of a heart cycle contaminated

with noise:

Zk = HkXk +Vk (4.5)

where Vk represents the observation noise, which is assumed to be zero mean and with

covariance Rk . The matrix of PCA basis vectors has been given an index k to indicate that

the PCA basis can evolve in time. In the results presented in this document, the PCA basis is

calculated once at the beginning. However, there is the possibility for the PCA basis to be

refined iteratively. Due to the simplification of the KF process, the ECG PCA parameters

and their uncertainties can be tracked using the following process in equations (4.6) to (4.8).
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The Kalman factor K is calculated by solving:

Kk(HkPk/k−1HT
k +Rk) = Pk/k−1HT

k (4.6)

then the estimate of the state vector for this heart cycle, and its uncertainty, using the

Joseph Form, is calculated using:

Xk = Xk/k−1 +Kk(Zk −HkXk/k−1) (4.7)

Pk/k = (I−KkHk)Pk/k−1(I−KkHk)
T +KkRkKT

k (4.8)

Training data are used to estimate the initial PCA parameter uncertainty P1 and extrapo-

lation uncertainty Q1. P1 is the covariance of the training heart cycle PCA weight vectors

while is the covariance of the difference between consecutive weight vectors. The difference

between the reconstructed heart cycle time series (4.1) and the measured ECG signal is

assumed to be noise with mean squared value N2 and uniformly and independently spread

across all samples which is:

N2 = E

[(
ECGk(θ)−

NB

∑
i=1

W k
i Hi(θ)

)2]
(4.9)

This suggests a diagonal uncertainty matrix:

Rk = N2NNS (4.10)
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4.3 Test Data

To evaluate ECG filtering algorithms, it is necessary to have ECG signals without noise to be

the perfect, uncontaminated output. All measured ECG signals are contaminated with some

noise, even if the ECG is taken in perfect recording conditions. Noise could be internal to

the equipment, internal to the patient, or from the electrode interface. To overcome this, the

use of synthetic ECG and noise signals allows the evaluation and comparison of different

filtering methods. Both synthetic ECG and real AECG are used to test the proposed method

against gold standard methods.

4.3.1 Synthetic ECG

A highly realistic synthetic ECG signal is generated with sample rate of 512 Hz in order to

study the quantitative performance of filtering techniques. Generation of synthetic ECGs,

based on the three-dimensional canonical model of a single dipole vector of the heart,

was proposed by Sameni et al. (2007a). A sum-of-Gaussian model is assumed where the

Gaussians represent P, Q, R, S and T peaks. The Gaussian parameters, three for each peak,

are each assumed to be samples from Gaussian distributions. A 10% multiplicative variation

is generated in each parameter using a multiplier of the form: (1+ 0.01× ε), where ε

is an independent sample from a Standard Normal distribution. The ECG signal is the

concatenation of heart cycles with similar random variation in the R-R intervals. Figure 4.2

illustrates a multi-channel synthetic ECG signal (Sameni, 2008b).
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Fig. 4.2 An interval of realistic synthetic multi-channel ECG, (Sameni et al., 2007a).

4.3.2 Data Collection

In the second part of the reported analysis, measured AECG signals were used to study the

performance of the proposed method. Short segments of ECG signal were selected from

twenty five records measured using an AECG system. Ethical approval was received from

The University of Hull, to collect AECG data from healthy male volunteers. A Mortara

12 lead Holter system, with sample rate of 1000 Hz, is used to collect data. Healthy male

participants were recruited, with no history of heart disease, aged between 20 and 55 and

with a resting heart rate between 70 and 85 beat per minute. Figure 4.3 shows a participant

with the electrode array attached to his chest. A data collection protocol was designed to

simulate a range of normal daily activities, which included six different physical activities.
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First, 10 minutes of data was recorded while the participant was sitting in an upright position

without movement. These data are assumed to have as few noise artefacts as is possible. Data

was then recorded in five minute intervals for five further activities. we asked the participants

to walk normally, while swinging the arms which can add movement and muscle noise to

the ECG signal. To collect extremely noisy data, the participants were asked to jog then run.

Between all of these activities, we asked the participants to stop and rapidly move their arms

up and down, while shaking their body(phase 5). After running and phase 5, the participants

were asked to take three rapid deep breath. This breathing exercise was repeated four more

times.

Fig. 4.3 AECG data collection while sitting upright.



4.4 Noise Signals 51

4.4 Noise Signals

The performance of different ECG filters can be quantitatively measured by filtering clean

ECG signals with added noise. Four types of noise were used in the tests: Additive White

Gaussian Noise (AWGN), Additive Pink Gaussian Noise (APGN), measured muscle noise

and measured electrode movement noise. Coloured noise has a monotonically decreasing

power law spectral density given below in equation (4.11):

S( f ) ∝
1
f β

(4.11)

where S( f ) is noise spectral density, f is the frequency in Hz and β is a measure of noise

colour. White noise has colour parameter of β = 0 while pink noise has β = 1. Pink noise is

both more realistic and more challenging for filters. It has more power at low frequencies

leading to correlation between noise time samples and stronger overlap with the significant

cardiac signal frequencies. To ensure the consistency of the results, the addition of white and

pink Gaussian noise was repeated for hundred times in all tests, and summarizing statistics

calculated.

Two different types of real measured noise were used in the tests. These were selected

from standard recordings by selecting intervals of real muscle artefact (MA) and electrode

motion artefact (EM). Noise signals are from the Massachusetts Institute of Technology-Beth

Israel Deaconess Medical Centre (BIDMd) and were collected with sample rate of 360 Hz

(Goldberger et al., 2000, Moody, 2000c). For this study, the noise signals were resampled

to 512 Hz and 1000 Hz. Motion artefacts are generally considered the most troublesome

because this type of noise can mimic the appearance of ectopic beats and it cannot be removed

easily by filtering methods, as can noise of other types.
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4.5 Quality Measurements

Three common metrics of filter performance are used in this chapter. When synthetic ECG

signals are used, the signal to noise ratio (SNR) before and after filtering may be calculated.

Similarly, the before and after normalised root mean square error (GoF) may be calculated.

Both SNR and GoF are measures familiar to engineers. However, signals with the same SNR

or GoF can look very different due to the phases and spectral density of the noise. Clinically

important parameters may or may not be identifiable in signals with the same SNR or GoF.

Therefore, a third metric is used which measures the visibility of clinically important features:

the MSEWPRD is specified in Section 4.5.3.

4.5.1 SNR Analysis

The signal to noise ratio (SNR) is an engineering term for the ratio of signal to noise powers,

often expressed in decibels (dB). The power in a time-series is often taken to be the sum

of squared amplitudes. The SNR improvement produced by an ECG filter can be defined

as(Sayadi and Shamsollahi, 2008):

SNRimprove[dB] = SNRout put −SNRinput

= 10log

( Ns
∑

i=1
|Xn(i)−X(i)|2

Ns
∑

i=1
|X f (i)−X(i)|2

)
(4.12)

where X represents the pre-processed clean ECG signal, X f is the filtered signal and

Xn denotes the pre-processed noisy segment of ECG signal. A higher SNR improvement

indicates better filtering results.
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4.5.2 Goodness of Fit for ECG Signals

Further to SNR calculation, the normalised root mean square error (GoF) is calculated as

a measure of goodness of fit. GoF is the normalized standard deviation of the difference

between original clean ECG and output of the filter under consideration. The Goodness of

Fit (GoF) is defined by:

GoF = 1−
∥X f (i)−X∥2

∥X(i)−X∥2
(4.13)

where X is the reference ECG signal, X(i) is the reference signal plus the ith noise signal,

while X f (i) is the filtered ECG signal. The root mean square error is the mean of this value

over a large number of tests with different noise signals. Assuming filtering reduces the noise

power then GoF varies between 0 and 1 where 0 represents very poor fit and 1 indicates a

perfect fit with the original ECG.

4.5.3 MSEWPRD

SNR and GoF are valuable methods to quantify quality of synthetic ECG signals, from a

signal processing point of view. However, it is important to demonstrate that ECG filtering

retains clinically important features of the signal. These includes intervals on the ECG signal

such as the R-R interval, ST segment, QT interval, amplitude and direction of P wave. This

allows diagnosticians to read and interpret the ECG signal correctly so that patients can

be treated effectively, with the correct procedures and medication. A misinterpretation of

the ECG could result in unnecessary testing (which wastes medical funding and may cause

substantial discomfort to the patient) or misdiagnosis.

The Multi Entropy-Based Weighted Distortion Measure (MSEWPRD) (Manikandan and

Dandapat, 2008), is a measure of how well a filter preserves the clinically important features



54 Principal Component Analysis Kalman Filter for Single Channel ECG

in an ECG signal. It compares the features of the original ECG with those of the filtered

ECG and a measure of the difference is calculated. MSEWPRD measures the Weighted

Percentage Root-mean-square Difference (WPRD) between the sub-band wavelet coefficients

of the original ECG signal and the filtered ECG signal, with weights equal to the multi-scale

entropies of the corresponding sub-bands. To calculate this metric, signals to be compared

must be decomposed using wavelet filters up to WL levels. The wavelet levels separate the

sharp QRS complexes from the smoother P and T waves. The figures reported in this study

use Daubechies 9/7 bi-orthogonal wavelet filters with WL = 4 (Hesar and Mohebbi, 2017b).

A small MSEWPRD value indicates that clinically important features have been preserved

by the filter.
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4.6 Results

Two different sets of ECG signals are used in this chapter. First, the performance of the

proposed method is studied using highly realistic synthetic ECG to yield quantitative results.

Then the analysis is repeated using real ECG data to qualitatively test the proposed method.

In both synthetic and real signals, PCA results are studied to find the ideal model to use

in the Kalman filter. In the second step, the quantitative results are calculated using short

term synthetic ECG signals with additive white and coloured Gaussian noise with different

powers. Additive real measured muscle and electrode movement noises were also tested. In

the third step, the effectiveness of the proposed method is examined using a typical real ECG

signal with additive real noises.

4.6.1 Pre-processing of ECG Signals

Standard pre-processing algorithms are used on both the ECG and additive noise signals. The

algorithms are those described in Di Marco et al. (2012) which won the PhyisioNet computing

in cardiology challenge in 2011. They are designed to detect and reduce the number and

amplitude of QRS band artefacts, baseline drift, pacemaker (PM) spikes, spurious step

changes and high frequency noise often due to interference from other electronics. Figure

4.4 shows the real ECG signal mixed with real muscle noise to achieve a SNR of -1 dB. It

can be observed that this leads to large baseline wander in the ECG signal. Pre-processing

removes this baseline wander and spikes from noisy time series. Figure 4.5 illustrates the

signal after pre-processed (blue) with R peaks (red). R-peak detection is a critical step in

both EKF and PCAKF filtering methods, and pre-processing is important to correctly identify

R-peaks. This example also highlights that it is important that additive noise is pre-processed

before mixing, or frequencies outside the cardiac signal are re-introduced. The test protocol

performs R-peak detection on the clean signal before adding noise. This means that observed

differences between the outcomes after filtering are not due to sensitivity to R-peak detection.
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Fig. 4.4 AECG with additive real muscle noise to achieve a SNR of -1 dB, before pre-
processing.
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Fig. 4.5 AECG after pre-processing with R peak detection.
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4.6.2 Training Data for PCA

In this section, the estimation of the Principal Component basis signals is described. It is

important to extract PCA components from clean ECG signals. Pre-processing is used to

remove most of the high and low frequency noise and other artefacts. Generally, in any long

interval of training data, heart cycles exist that are strongly affected by noise. Including

these cycles leads to distortion in the estimated PCA bases. An automated system has been

developed to reject contaminated heart cycles. The method maintains an average heart cycle

time series and each subsequent heart cycle is rejected from PCA analysis if it deviates too

far from the average cycle. Accepted heart cycles are included in the running average. Figure

4.6 illustrates the ECG mean heart cycle calculated from training period using real AECG,

while the results of ECG automated selection is illustrated in Figure 4.7. The blue cycles

have been accepted as valid for PCA calculation while the red signals have been rejected. In

the provided typical example, 10 minutes of measured ECG signal is used.
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Fig. 4.6 Mean ECG using real data.
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Fig. 4.7 Heart cycle selection for PCA using Real ECG data.

4.6.3 PCA Component Extraction

In this section, the PCA components are calculated from a ten minute training period of

synthetic or measured ECG signals. The consequences of choosing different numbers of

PCA basis signals are determined. Figure 4.8 illustrates the first 10 PCA basis signals from

synthetic ECG data. Additionally, the first two basis signals are also presented. The choice of

the number of PCA basis signals is tested by applying PCAKF to 100 samples of two minutes

of synthetic ECG signal contaminated with APGN to yield 21 input SNRs. The average

SNR improvements are provided on the Figure 4.9. It shows that using one or two PCA basis

signals yielded the best performance and then performance monotonically decreased. The

use of 2 PCA components yields the best results in terms of SNR, GoF and MSEWPRD

measurements. The results become significantly poorer when using more than 5 PCA basis
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signals. There is a trade-off in this choice. If too few basis signal are used then less of the

variation in the heart signal can be captured. However, the PCA basis signals have decreasing

SNR with basis number and so including more basis signals than necessary can introduce

more noise into the filtered signal. Table 4.1 illustrates the typical results while the signal

filtered using PCAKF while contaminated with added white Gaussian noise at 0 dB.
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Fig. 4.8 The PCA basis signals for synthetic ECG data (a) 1st (b) 2nd (c) first 10 signals.



60 Principal Component Analysis Kalman Filter for Single Channel ECG

Number of PCA Basis
Signals SNR(dB) GoF MSEWPRD

1 11.9 0.94 0.0342
2 13.6 0.96 0.0247
3 12.8 0.95 0.0274
4 12.2 0.94 0.0283
5 11.5 0.93 0.0394
6 10.2 0.90 0.0392
7 8.70 0.87 0.0432
8 7.99 0.84 0.0502
9 7.43 0.82 0.0570

10 6.50 0.78 0.0617
Table 4.1 Typical filtering results for synthetic ECG data with AWGN at initial SNR of 0 dB.
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Fig. 4.9 The PCA basis signals for synthetic ECG data (a) 1st (b) 2nd (c) first 10 signals.
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Testing with synthetic ECG signals shows that most of variation in synthetic ECG signal

is spanned by the first two PCA components. A similar test has been performed using

measured ECG data in section 4.7 and the results suggest that first 5 PCA span most of the

variation in a measured normal ECG signal. Therefore, we use 5 PCA components in both

synthetic and real signals for this thesis. In the next section, PCAKF is applied to synthetic

ECG signals.
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4.6.4 PCAKF Applied to Synthetic ECG

This section quantifies the performance of the PCAKF method when applied to synthetic

ECG signals with four different types of noises including AWGN, APGN, Additive Muscle

Noise (AEMN) and Additive Electrode Movement Noise (AEMN). Adding noise to clean

ECG signals allows the de-noising performance of the methods to be tested and quantified

against a known target signal. Figure 4.10 shows the test reported in this Chapter using

synthetic ECGs.
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Fig. 4.10 The tests performed in this chapter using synthetic ECG data.

The following sections present the results of filtering synthetic ECG signals with additive

noise. Five different filtering methods have been tested: EKF2, EKS2 followed by EKS2,

EKF17, EKF17 followed by EKS17, and PCAKF. Four different noises are considered:

AWGN, APGN, AMN and AEMN. For each noise type, a typical result of each filter method

is illustrated. Monte Carlo results are calculated using 180 synthetic ECG segments each of

2-minutes duration.

Synthetic ECG with Additive White Gaussian Noise

In this section, synthetic ECG data contaminated with AWGN. The Monte Carlo statistical

tests are used for applying 21 different input SNRs with 100 random noise signals for each.
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Figure 4.11 represents the statistical analysis of the proposed method against benchmark

methods where the proposed method filter better than benchmark methods. Also, typical

results of the same procedure are illustrated in figure 4.12 which shows efficiency of the

proposed method compare to benchmark methods. Table 4.2 represents the comparison

between PCAKF algorithm and benchmark methods over two minutes of analysis where

PCAKF algorithm improved SNR, GoF and MSEWPRD comparing EKF2 , EKS2 and their

smoother filters.
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Fig. 4.11 Mean quality measures using 100 two minute ECGs with AWGN with a range of
initial SNRs (a) SNR improvement, (b) GoF, (c) MSEWPRD.
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Fig. 4.12 Typical filtering results on two minutes of synthetic ECG data with AWGN at 5dB:
(a) Noisy signal and synthetic ECG, (b) PCAKF, (c) EKF2, (d) EKS2, (e) EKF17, (f) EKS17.

Methods SNR(dB) GoF MSEWPRD
EKF 2 1.52 0.30 0.15
EKS 2 2.24 0.40 0.13

EKF 17 2.76 0.47 0.13
EKS 17 4.29 0.63 0.11
PCAKF 11.6 0.93 0.05

Table 4.2 Typical filtering results for two minutes of synthetic ECG data with AWGN at an
initial SNR of 5 dB.
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Synthetic ECG with Additive Pink Gaussian Noise

This section provides statistic and typical results for PCAKF and benchmark methods using

synthetic ECG data contaminated with APN. Again, 21 different SNRs are tested with 100

random noise signals each. Figure 4.13 represents the statistical analysis of the proposed

method against benchmark methods. Figure 4.14 and Table 4.3 illustrate typical results while

synthetic data contaminated with APN at -1 dB. As it seen in figures 4.13, 4.14 and table 4.3

, the proposed method has better filtering results compare to benchmark methods.
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Fig. 4.13 Mean quality measures using 100 two minute ECGs with APN with a range of
initial SNRs (a) SNR improvement, (b) GoF, (c) MSEWPRD.
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Fig. 4.14 Typical filtering results on two minutes of synthetic ECG data with APGN at -3 dB:
(a) Noisy signal and synthetic ECG, (b) PCAKF, (c) EKF2, (d) EKS2, (e) EKF17, (f) EKS17.

Methods SNR GoF MSEWPRD
EKF 2 0.815 0.17 0.82
EKS 2 1.17 0.24 0.79
EKF 17 1.32 0.26 0.77
EKS 17 1.92 0.36 0.71
PCAKF 12.0 0.94 0.22

Table 4.3 Typical filtering results for two minutes of synthetic ECG data with APN at an
initial SNR of -3 dB.
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Synthetic ECG with Additive Real Muscle Noise

In this section synthetic ECG data is contaminated with real muscle noise to study the

performance of the PCAKF framework in a more realistic simulation. Noise was resampled

from 360 to 512 Hz and 100 intervals, with duration of two minutes, are selected and added to

100 ECG signals. Noisy data were filtered using PCAKF algorithm and benchmark methods

on different SNRs. Results are provided in Figure 4.15. Typical results of test is given at

figure 4.16 and Table 4.4. It experimentally proves that the PCAKF algorithm able to remove

muscle noise from ECG signal better than benchmark methods in both typical and statistic

analysis for different input SNRs.
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Fig. 4.15 Mean quality measures using 100 two minute ECGs with AMN with a range of
initial SNRs (a) SNR improvement, (b) GoF, (c) MSEWPRD.
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Fig. 4.16 Typical filtering results on two minutes of synthetic ECG data with AMN at 0 dB:
(a) Noisy signal and synthetic ECG, (b) PCAKF, (c) EKF2, (d) EKS2, (e) EKF17, (f) EKS17.

Methods SNR GoF MSEWPRD
EKF 2 1.58 0.31 0.31
EKS 2 2.34 0.42 0.29

EKF 17 3.06 0.51 0.28
EKS 17 4.60 0.65 0.25
PCAKF 14.5 0.96 0.083

Table 4.4 Typical filtering results for two minutes of synthetic ECG data with AMN at an
initial SNR of 0 dB.
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Synthetic ECG with Additive Electrode Movement Noise

In this section, the performance of the PCAKF is studied using synthetic ECG data and

measured AEMN. The same procedure as in Section 4.6.4 is used, but with measured AEMN.

The PCAKF algorithm examined Figure 4.17 shows results for statistical analysis and typical

results are provided in Table 4.5 with the signal contaminated with -2 dB AEMN.
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Fig. 4.17 Mean quality measures using 100 two minute ECGs with AEMN with a range of
initial SNRs (a) SNR improvement, (b) GoF, (c) MSEWPRD.
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Fig. 4.18 Typical filtering results on two minutes of synthetic ECG with AEMN at -2 dB: (a)
Noisy signal and synthetic ECG, (b) PCAKF, (c) EKF2, (d) EKS2, (e) EKF17, (f) EKS17.

Methods SNR GoF MSEWPRD
EKF 2 0.28 0.063 0.62
EKS 2 0.57 0.12 0.60

EKF 17 0.47 0.10 0.60
EKS 17 0.72 0.15 0.58
PCAKF 9.83 0.90 0.21

Table 4.5 Typical filtering results for two minutes of synthetic ECG data with AEMN at an
initial SNR of -2 dB.
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4.7 Measured Data

In this section, the filtering methods are applied to 30 minutes of measured AECG data.

Measured muscle noise has been scaled and added to the measured AECG signals to yield

a range of initial SNRs (calculated assuming no noise in the measured AECG). Although

SNR improvement and GoF are unreliable, due to the known noise in the measured signals,

MSEWPRD can be calculated. Figure 4.19 shows the 5 PCA basis signals calculated from 10

minutes of measured AECG signal. Figure 4.20 shows the proportion of ECG signal variance

explained by each PCA component. It is a feature of PCA that each successive basis signal

explains a smaller proportion of the variance. Figure 4.21 illustrates the output MSEWPRD

comparison. Based on this test, 5 PCA basis signals were selected as a compromise between

performance at low and high initial SNRs.
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Fig. 4.19 PCA components using real AECG signal.
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Fig. 4.20 Proportion of ECG variance explained by PCA basis signals.
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Fig. 4.21 Effect of the number of PCA basis signals on PCAKF denoising quality.
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4.7.1 Typical Example of Measured Data

Figure 4.22 illustrates the filtering portion of 4-seconds AECG signal contaminated with

AMN at -5 dB. Results of denoising for two minutes are presented on 4.6.
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Fig. 4.22 Typical filtering period from two minutes of measured AECG with AMN at -5 dB:
(a) Noisy signal and synthetic ECG, (b) PCAKF, (c) EKF2, (d) EKS2, (e) EKF17, (f) EKS17.

Methods EKF 2 EKS 2 EKF 17 EKS 17 PCAKF
MSEWPRD 0.471 0.424 0.492 0.416 0.180

Table 4.6 Typical MSEWPRD results for 2-minute real AECG signal with AMN at -5 dB.
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4.8 Discussion

In this chapter, numerical experiments have been performed on the ECG denoising properties

of EKF\EKS and the PCAKF filter, for both synthetic and measured AECG data and noise.

Standard pre-processing algorithm has been applied to remove baseline drift, high frequency

noise and common artefacts. Figure 4.5 showed an example of AECG signal with added -1

dB real muscle noise. The baseline drift in the noise has changed the shape of the signal.

As this would normally be removed by pre-processing of the measured signal plus noise, it

has been important to apply pre-processing to all additive noise signals before initial SNR

calculations. Standard R peak detection is also shown in Figure 4.5, and the clean signal

before addition of noise is used for this. Although, in practise, R peak detection would use

pre-processed data including noise, it was important that the filtering methods were compared

without the complication of R peak detection faults.

In order to implement PCAKF, a portion of the signal is used as training data to calculate

the PCA basis signals. EKF methods also use a training interval to select the EDM parameters.

A method has been developed to automate the selection of low-noise heart cycles to be used

when calculating the signal covariance.

To calculate the best number of PCA basis signals to use, various tests have been

performed on synthetic and real ECG data. Using two PCAs had the best results on synthetic

signals however for the measured data, the first five PCA components contain over 99%

of the variance. This choice is a compromise and so a choice has been made that will be

applicable to a wide range of ECG signals and measurement scenarios. Longer periods of

training data yield PCA basis signals with lower noise contamination, and so more basis

signals could potentially be used. The length of training data is also a compromise and so a

realistic duration of ten minutes was used in these tests. Around 3960 analyses have been

performed using synthetic ECG signal with AWGN, APGN, AMN and AEMN. In all cases,

PCAKF performed better than the benchmark methods. Table 4.7 shows the mean quality
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measures overall the tests. It is clear that PCAKF yields significantly better signal and noise

separation while maintaining the clinically important properties of the signal.

Methods SNR GoF(%) MSEWPRD
EKF 2 0.94 18 0.53
EKS 2 1.46 27 0.50

EKF 17 1.43 31 0.51
EKS 17 2.90 45 0.46
PCAKF 12.2 93 0.16

Table 4.7 Mean quality measures over all numerical experiments.

Measured ECG signals are contaminated with some level of noise, even when recorded

in perfect condition. This makes it more difficult to quantify filter performance with real

data. However realistic synthetic ECG test signals do not exhibit the complexity of real data.

In the final section, measured ambulatory ECG signals are contaminated with AMN. The

results are broadly similar to those produced with synthetic ECG signals: PCAKF results are

smoother and more plausible as cardiac signals than those of the benchmark methods. In

some cases, the PCAKF output is more plausible than the initial AECG data, suggesting that

initial noise, albeit small, has been reduced.

The PCAKF algorithm is an order of magnitude computationally faster than EKF2,

EKF17, and requiring about 1 ms to process a heart cycle on a standard PC, compared to 7 ms

for EKF2-EKF17, for 128 Hz data. For more modern 1 kHz sampled data, the difference is

larger at 1.4 ms compared to 115 ms. The PCAKF algorithm may easily run on a smartphone

in real time and may be part of a hierarchical monitoring and decision making system. Matlab

code for single beat single channel PCAKF algorithm are provided on D.

4.9 Conclusions

Despite extensive literature in ECG denoising, there are few methods effective on non-

stationary Ambulatory ECG signals, experiencing intermittent high amplitude noise from
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a range of sources. This chapter demonstrated the filtering of synthetic and measured

ambulatory AECG time-series after the addition of synthetic or measured noise. A new

method known as PCAKF has been presented, based on Kalman tracking of single heart

cycles expressed as a weighted sum of PCA basis signals. In these tests, the PCAKF method

performed well on normal heart signals. The next chapter will test the method on ECG with

arrhythmias.



Chapter 5

Double Beat - Principal Component

Analysis Kalman Filter

5.1 Intorduction

This chapter develops the method presented in the previous chapter with the innovation that

two consecutive heart cycles as a time are modelled. In the previous chapter, the PCAKF

denoising algorithm was introduced, which processes a single heart cycle at a time from a

single ECG channel. The single-beat single-channel PCAKF method performed better than

gold standard EKF2\ EKF17-EKS2\EKS17 methods, using both synthetic and real ECG

signals and noise. A criticism of the single beat PCAKF method is that it yields time series

with discontinuities at heart cycle boundaries. The double beat variant was developed to

address this but has shown other advantages as well. The double beat method is presented in

this chapter and it is tested using normal, abnormal, AF signals and then extended to multi-

channel ECG recordings. The current chapter has three phases. In the first step, DB-PCAKF

framework is introduced. Then the PCA components are calculated for different types of

ECGs. Finally,the extracted PCA components are used on the suggested algorithm to denoise

noisy signals.
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5.2 Discontinuity on Single Beat PCAKF

It was observed in several tests, that discontinuities can occur between heart beats in the

output of the SB-PCAKF method. For low noise signals, the discontinuity is very small

and often not visible. However, even for low noise signals, if the training data is limited,

anomalous beats or noisy epochs may be included; the PCAKF output can have visible

discontinuities. These discontinuities effect the perceived morphology of signal and could

hide a real cardiac anomaly or be interpreted as a cardiac signal. Figure 5.1 illustrates a

discontinuity in the output of an ECG signal contaminated with AMN to yield a SNR of -4

dB.
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Fig. 5.1 (a) original clean measure data and after adding AMN; (b) SB-PCAKF output
showing discontinuities.
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When discontinuities are present, they are common. This suggests that they are introduced

through the PCA bases. If the training data is noisy, and in particular if the baseline wander

has not been fully removed, then the PCA basis signals may not converge to 0 at phases:

φ =±π . These phases are at the midpoints between R peaks and have been chosen as the

cardiac signal and should be near to the baseline. If the PCA basis signals include some

residual baseline wander then the filter output, which is a weighted sum of these basis signals,

will not start and end at the baseline. In this situation the discontinuities will become apparent.

This could be addressed by tapering the PCA basis signals to zero at φ =±π . However, in

this project a different approach has been taken. The beat transition phase points are arbitrary

and if the heart cycles are irregular then the PCA basis signals may be a poor representation.

Numerical experimentation has shown that the single beat algorithm does not perform well in

this common clinical scenario. The new approach that has been developed, uses over lapping

analysis intervals spanning two consecutive heart cycles from R peak to R peak. The R peaks

are a very distinct feature of the cardiac cycle and using these as boundaries removes the

arbitrary use of the mid-points between R peaks. The new variant of the algorithm is known

as double beat (DB) PCAKF: DB-PCAKF.

5.3 Double Beat PCA Components

The DB-PCAKF method uses an approximation of the ECG signal over two heart cycles

as a linear combination of double beat PCA basis signals derived from a training period.

The method steps through the ECG signal to be filtered, moving forward one heart cycle at

a time, but considering two consecutive heart cycles at each iteration. Each heart cycle is

considered twice: first when it is the 2nd cycle of two beats and then in the next iteration

when it is the 1st cycle. A weighted mean of these two approximations is taken as the filter

output. Each filtered double beat interval is added to the output signal after scaling with a

triangular weight function that ramps linearly from a value of 1 at the central R peak, to zero
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at the beginning and end of the interval. Each point in the output signal is derived from two

analysis intervals with weights that heavily favour one analysis period near an R peak to

equal weighting of two intervals half-way between R peaks. Due to the smooth tapering of

mixing weights, no discontinuities are possible in the output.

Another innovation is the non-linear variation of phase. The EKF\EKS and SB PCAKF

methods, assume that the phase varies linearly over each heart cycle. DB-PCAKF does

not make this assumption. A phase of φn = 2nπ is assigned to the nth R peak at time tR
n .

A quadratic transformation is used to transform times to phases i.e. when considering the

interval with the nth R peak in the middle the transformation is the quadratic that passes

through the points: {(tR
n−1,−2π),(tR

n ,0),(t
R
n+1,+2π)}.This transformation has the advantage

that some anomalous cardiac signals are normalised by this process, for example AF where

some heart cycles are very long. After quadratic distortion, each heart cycle has the same

duration in phase, and so some of the other variations in wave positions and distortions are

now spanned by the normal variation in the training period. Other transformations were tested

in developing this method. A cubic spline could be fitted to all the {(tR
n ,φn),n = 1,2, ...,NT}

data to yield a transformation that had continuous derivatives. However, in rare cases with

extreme heart cycle variation, the transformation became non-monotonic.

The DB-PCAKF requires the same pre-processing to remove baseline wander and high

frequency noise as other methods, see Section 4.6.1. The training ECG data is assessed by

an automated heart cycle selection to eliminate data with strong non-cardiac signals and to

prevent them contaminating the PCA basis calculation. Figure 5.2 shows the ECG mean

using two heart cycles and figure 5.3 illustrates the automated heart cycle rejection using 10

minutes of measured AECG data. A set of PCA basis signals spanning two heart cycles are

calculated from the clean data.
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Fig. 5.2 Mean of two consecutive heart cycles calculated from good AECG data.

Fig. 5.3 ECG Selection for DB-PCA calculation.
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5.4 PCA on Normal ECG

First, normal ECG signal is selected to study using PCAKF. Figure 5.4 illustrates the first five

DB-PCA basis signals derived from measured AECG data. The first basis signal is the mean

of the clean beats and clearly shows the PQRST waves of the second beat, along with the

RST of the first beat and the PQR of the next beat. The middle section of the basis signals is

the most important as the ends are multiplied by a small weight when mixing the DB output

intervals. After temporal transformation, the largest variations are in the QRS amplitudes

and the position and amplitude of the two T waves. Due to transformation normalisation, it

is possible that fewer basis functions can be used, but in these tests the same number (5) as

is SB-PCAKF has been used.Once the DB-PCA basis signals have been calculated, the KF

process continues just as with SB. Each double beat interval is approximated by a weighted

sum of basis functions and KF is used to track the weights from one double beat to the

next. The only other difference is the tapered weights applied to each double beat as it is

accumulated into the output signal.
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Fig. 5.4 DB PCA basis signals derived from measured Normal AECG data.

5.5 Filtering of Abnormal ECG Signals

In the previous section DB-PCAKF was applied to normal ECG signals. In this section

DB-PCAKF is applied to ECG signals with abnormalities. Arrhythmias are due to abnormal

contractions of the heart muscles, leading to irregular heartbeats. This irregularity can be a

sequence of beats that may be too fast (tachycardia), or too slow (bradycardia), or with an

irregular pattern from beat to beat such as flutter or fibrillation. In this thesis, three common

abnormal heart signals were selected to study using the suggested method. These include:

• Early Ventricular Contractions;

• Atrial fibrillation;

• T-wave alternans.
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5.5.1 Early Ventricular Contractions

For a healthy heart, the normal heart rhythm is controlled by electrical messages produced

by sinus node (SA), located on right atrium and known as the heart’s natural pacemaker. The

normal electric messages are sent out through the heart regularly and each message triggers

the heart to contract and pump blood around the body. When this system becomes disturbed,

the result may be arrhythmia. Many healthy people experience abnormal heart beats during

periods of stress. Over a protracted period this can even lead to heart failure.

A particular abnormality is known as premature ventricular contractions (PVCs). Occa-

sionally PVCs have no physical signs other than their appearance in ECG data. With early

and correct diagnosis, it is possible to prevent heart failure. In this chapter, the performance

of DB-PCAKF is studied using real abnormal ECG signals. The Physionet abnormal ECG

data base has a sample rate of 128 Hz and duration of 5 minutes (Goldberger et al., 2000,

Moody, 2000a). For this test only, the training and test data are the same. Figure 3.6a

illustrates an abnormal ECG while Figure 5.6 illustrates the PCA basis signals derived from

the ECG signals with PVC.
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Fig. 5.5 Early Ventricular Contractions ECG (Goldberger et al., 2000, Moody, 2000a).
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Fig. 5.6 Double Beat PCA basis signals derived from measured AECG data with PVCs.

5.5.2 PCA on Atrial Fibrillation

Many heart problems present as cardiac dysrhythmia visible in ECG data. Some arrhythmias

may be dangerous and lead to emergency hospital admission. One of the most common

arrhythmias is atrial fibrillation (AF) for which early and correct diagnosis is vital. AF occurs

when the electrical impulses that trigger the heart are initiated from different places in the

two upper chambers (atria). This leads to the atria contracting faster than normal. In AF, atria

start to quiver or fibrillate and produce chaotic electrical signals. These chaotic signals pass

to the AV node and on to the lower chambers. The ventricles then also beat irregularly and

rapidly, but not as rapidly as the atria. The result is an irregular heart rhythm that is inefficient

at pumping blood. AF can increase the risk of stroke dramatically as it increases the risk of a

blood clot forming inside the heart (Pollock, 1986). The heart physiology and ECG signal

for normal heart rhythm and AF are compared in Figure 5.7. Many factors may increase
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the risk of developing atrial fibrillation but the exact cause of AF is unknown. Associated

conditions include:

• High blood pressure;

• Heart attack;

• Coronary artery disease;

• Congenital heart disease;

• Above 60 years of age.

Fig. 5.7 Normal and AF heart rhythm, adopted from MayoClinic (2016).

A person can be completely unaware that their heart rate is irregular due to AF. However,

a Holter AECG monitoring test can be used to diagnosis AF by monitoring the heart rhythm

and electrical activity over 24 hours or more (Stahrenberg et al., 2010). Each year, millions
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of people globally experience AF and this is a major cause of stroke (Bai et al., 2017).

According to the British Heart Foundation report, updated in February 2018, around 1.3

million people in the UK have been diagnosed with AF and approximately 500,000 people

are living with undiagnosed AF (British Heart Foundation, 2018). It is also the most common

abnormal rhythm in elderly people.

Few ECG filtering methods are applicable to AF signals. EKF\EKS methods are predi-

cated on the McSharry model which includes a P wave and no f waves. EKF\EKS methods

interpret the missing P wave as noise. Recently, an EKF\EKF variant has been produced,

EKF5, based on a model with no P wave and a parameterised f wave, see Section 3.8.

In this section, DB-PCAKF is applied to AF signals. The PCA basis functions are

calculated using 200 heart cycles that contain AF, and Figure 5.8 illustrates first 5 basis

signals.
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Fig. 5.8 PCA basis signals derived from ECG data with Atrial Fibrillation.
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5.5.3 PCA on T-wave alternans

T-wave alternans (TWA) is a marker of repolarization instability in the heart. TWA is asso-

ciated with significantly increased mortality risk and cardiac problems. TWA is associated

ischemic cardiomyopathy (IC). Early detection of TWA is one of the most efficient ways to

reduce cardiac mortality (Zipes and Libby, 2018). As it is difficult to see TWA in hospital

based ECG recordings, Holter monitoring is commonly used. Figure 3.7 illustrates a typical

TWA ECG signal. Figure 5.9 shows the PCA component extractions using synthetic TWA

ECG.
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Fig. 5.9 PCA basis signals derived from T-wave alternans ECG.

5.6 PCA on Multi-channel AECG

The changes required to apply PCAKF simultaneously to signals from many electrodes is

small but powerful. Signals from different electrodes are highly correlated. This allows
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multi-electrode methods to predict the beat signal even in the temporary presence of high

amplitude noise. It also allows errored data to be identified when unlikely combinations of

signals occur. A PCA basis needs to be calculated for each electrode, using the data from the

NT training heart cycles. This is done independently for each electrode. Then the PCA fitting

weights are calculated for each double heart cycle, for each electrode, using that electrode’s

PCA basis. These fitting weights are formed into a measured state vector of length NE ×NB:

X ≡ (α l
i )

T = (α1
1 , ...,α

1
1 ,α

2
1 , ...,α

2
NB
, ...,αNE

1 ,αNE
NB

) (5.1)

The state vector for each of the NT training heart cycles can be collected into a NT by

NE ×NB array XTraining. The PCA parameter uncertainty P1 and the extrapolation uncertainty

Q1 can be estimated from XTraining in the same way as for a single electrode system. The in-

formation in these two arrays contains important information on inter-electrode dependencies

that will constrain the Kalman filter.

The other important uncertainty is the measurement uncertainty quantified by the covarianceRl

of the measurement noise. This is assumed to be diagonal with the same diagonal values for

all parameters from the same electrode. As PCA basis fitting is carried out independently for

each electrode-interval signal, there are no inter-electrode correlations in the measurement

noise. The figure 5.10 shows a typical segment from 8 channels of a standard 12 lead AECG

system collected using Holter system and figure 5.11 illustrates first 5 PCA’s of multichannel

data.
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Fig. 5.10 Typical 12 lead AECG Signal.
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5.7 Results

The following sections illustrate the results of filtering normal and abnormal ECGs using

DB-PCAKF. Both single and multichannel analyses are provided. Figure 5.12 presents the

overview of the tests which are reported in this chapter. Single beat PCAKF framework is

used as a benchmark method to compare with double beat PCAKF in this chapter. The PCA

components, extracted in the previous sections, will be used in the following subsections,

with DB-PCAKF framework to extract different types of cardiac signals including normal

sinus rhythm, PVCs, AF, TWA and recorded AECG data with six different phases.
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T-Wave
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Multi-
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monitoring

records

Walking

Jugging

Deep
Breathing

Arm
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Tests in chapter 5
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ECG
Signal

Running
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Fig. 5.12 The tests performed in this chapter using DB-PCAKF.
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5.7.1 Comparison of PCAKF Methods on Normal Sinus Rhythm

In this section, synthetic ECG data is contaminated with added pink noise to compare the

performance of the DB and SB-PCAKF, both applied to a single channel of data. The two

minutes of synthetic ECG with a sample rate of 512 Hz and -2 dB APN is filtered using

both SB-PCAKF and DB-PCAKF. Table 5.1 lists quality measures derived from two minutes

of signal while the Figure 5.13 presents typical results for filtering. In this example the

discontinuities introduced by the SB algorithm are clear and the DB algorithm performs

significantly better than SB in all quality measures.

Methods SNR GoF(%) MSEWPRD
SB-PCAKF 9.5 88.7 0.4
SB-PCAKF 13.5 95.6 0.2

Table 5.1 : Typical filtering results for two minutes of synthetic ECG data with APN with an
initial SNR of -2 dB.
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Fig. 5.13 Typical filtering results on two minutes of synthetic ECG data with APGN at -2
dB: (a) pre-processed synthetic ECG before and after addition of noise, (b) SB-PCAKF, (c)
DB-PCAKF.
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5.7.2 DB-PCAKF on PVCs

This section compares SB and DB-PCAKF applied to a single channel of PVC ECG signal

contaminated with AWGN to yield a SNR of -4 dB. The PVC ECG data is part of the MIT-

BHI arrhythmia database (Goldberger et al., 2000, Moody, 2000a). The database contains

48, 30 minute segments of two channel ambulatory ECG signals with arrhythmia. The whole

half-hour of dataset 119 has been used in this test. Figure 5.14 presents a typical 30 second

segment of signal before and after filtering. Again, DB yields a smoother output that is

closer to the original, clean ECG signal. Both methods identify the premature ventricular

contractions as heart signal rather than noise and the negative excursions are present in the

filtered data. This is because the signal including segments of PVC were included in the

training data. In practise, a filter may require a PCA basis augmented with an extra basis

signal to span PVC anomalies.
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Fig. 5.14 Typical filtering results on two minutes of abnormal AECG data with AWGN at -4
dB: (a) pre-processed AECG signal before and after addition of noise, (b) SB-PCAKF, (c)
DB-PCAKF.
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5.7.3 DB-PCAKF on Atrial Fibrillation

This section applied SB and DB-PCAKF to a measured ECG data containing AF. The data is

from the PhysioNet MIT-BHI atrial fibrillation database. The data was acquired using an

AECG device with 250 samples per second. Two minutes of record 5121 with no significant

noise were selected visually (Goldberger et al., 2000, Moody, 2000d). These data were

contaminated with APN to yield a SNR of 3 dB. Figure 5.15 shows the results of filtering

with SB and DB-PCAKF. Because the training data contained heart cycles exhibiting AF,

the PCA basis recognises the anomalous signal and even reproduces the f waves. AF is

characterised by a highly variable heart rate and this is visible in the variation of the inter R

peak periods. The SB algorithm struggles with this due to the arbitrary heart cycle boundaries

half-way between R peaks. However, the use of the R peak boundaries and the quadratic

time transformation in the DB variant effectively normalises the heart cycles and yields a

much more plausible filtered output.
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Fig. 5.15 Typical filtering results on two minutes of atrial fibrillation AECG data with AWGN
at 3 dB: (a) pre-processed AECG signal before and after addition of noise, (b) SB-PCAKF,
(c) DB-PCAKF.
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5.7.4 DB-PCAKF on T Wave Alternans

This section compares SB and DB-PCAKF applied to a measured TWA ECG signal from

the PhysioNet-TWA challenge data base which includes synthetic and real TWA ECGs

(Goldberger et al., 2000, Moody, 2008). The database signal has been contaminated with

APN with the same power as the signal to yield a SNR of 0 dB. Figure 5.16 shows typical

filtering results for two minutes of signal and Table 5.2 lists the SNR improvements, GoF

and MSEWPRD metrics.

Methods SNR GoF(%) MSEWPRD
SB-PCAKF 8.2 84.8 0.3
SB-PCAKF 12.2 94.1 0.1

Table 5.2 Typical filtering results for two minutes of synthetic ECG with TWA data with
APN at an initial SNR of 0 dB.
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Fig. 5.16 Typical filtering results on two minutes of measured T wave alternans ECG (record
TWA 91) with APN at 3 dB: (a) pre-processed AECG signal before and after addition of
noise, (b) SB-PCAKF, (c) DB-PCAKF.
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5.7.5 DB-PCAKF on Multi-channel Synthetic ECG Data

Previous sections have demonstrated consistent and better performance of the DB algorithm,

and therefore future works will only use the DB variant. This section applied DB-PCAKF to

multichannel data. Synthetic 8 channel ECG data has been produced by replicating a single

channel ECG eight times. In this case the multichannel ECG signals are fully correlated and

so test results are the best that could be obtained. All channels have been contaminated with

additive white Gaussian noise. Noise with ten times the power of the signal have been added

to channel 2 to yield a SNR of -10 dB. The other seven channels are relatively clean with

SNRs of +10 dB. Figure 5.17 shows results of multichannel filtering. Applying DB-PCAKF

to the channels individually increases the SNR on the clean channels by an average of 9.3

dB while Channel 2, with an initial SNR 20 dB lower, the SNR has been improved by

16.3 dB. Much of the noise rejection comes from the projection onto the PCA bases. After

single channel filtering, the noisy channel 2 is still 13 dB noisier than the initially clean

channels. Multichannel DB-PCAKF processes all channels simultaneously and uses the

channel correlation information. After filtering, the SNR on the clean channels has increased

by an average of 10.6 dB while on Channel 2, the SNR has been improved by 22.2 dB. The

cross-correlation information used by multichannel filtering has significantly improved the

filtering results on all channels. The clinically important features of the signals are also better

revealed using multichannel analysis. Average MSEWPRD for single channel filtering is

0.08 while for multichannel filtering it is 0.05. In this case, filter outputs are so clean that

MSEWPRD figures are both very small and so practically the same.
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Fig. 5.17 Typical results of multi-channel analysis. Left column plots are the signal with
added noise while right column plots are the filtered signals.
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5.7.6 DB-PCAKF applied to AECG Data Collected during Different

Physical Activities

Having presented the performance of DB-PCAKF on normal and abnormal ECG signals,

this section looks at the filtering of AECG data collected during different physical activities.

The sequence of activities has been chosen to yield increasing noise. The six activities yield

recorded data with a range of noise sources and amplitudes. SNR improvement cannot

be calculated, as the true signal is not known, so the filter output is assessed for clinical

usefulness by a panel of experts who are either cardiologists or anaesthetists. The 12

lead Holter device collects 1000 samples per second. In the following section, only the

first channel is presented, but the full multichannel results of this filtering are provided in

Appendix B. For each individual participant, the channel PCA bases are calculated using

training data selected from intervals spanning several activities. Data from the most extreme

activities are typically too noisy to use, but data from walking has been included.
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Sitting Upright

In this section the participant was asked to sit still and upright for 10 minutes. Figure 5.18

illustrates a typical example of an ECG signal obtained under these conditions, and the

DB-MC-PCAKF filter output. In this case, the recorded data has a high initial SNR and

filtering reveals very little that couldn’t be seen in the recorded data.
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Fig. 5.18 Typical AECG recording while sitting upright: (a) recorded data, (b) filtered data.
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Walking

In the second phase of data collection, the participant was asked to walk normally for 5

minutes. Figure 5.19 illustrates a typical ECG signal and filter output. The recorded data is

noisier than when sitting still an upright due to electrode movement and small amounts of

muscle noise. The filtered data reveals gradual changes in R peak amplitude that was not

apparent in the recorded data.
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Fig. 5.19 Typical AECG recording while walking: (a) recorded data, (b) filtered data.
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Jogging

Next, the participant was asked to jog to produce a signal with more noise. Figure 5.20

illustrates the typical portion of recorded and filtered signal. The signal is much noisier with

features that could be mistaken for heart signals, such as the noise peak between the T and U

waves of the first and second cycles, and between the third and fourth. The independence

of noise on different channels allows the multichannel filter to distinguish between noise

artefact and heart signal.
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Fig. 5.20 Typical AECG recording while jogging (a) recorded data, (b) filtered data.
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Running

The fourth activity was running. The participant was asked to run for 5 minutes. No other

instructions were given. Figure 5.21 shows the recorded and filtered ECG signals. In these

data the noise is so large that generally only the R and T peaks are identifiable in the recorded

data. After filtering the smooth variation in R and T peak amplitudes is visible.
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Fig. 5.21 Typical AECG recording while running: (a) recorded data, (b) filtered data.
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Deep Breathing

After running, data was recorded while the participant was breathing deeply. The partici-

pant was asked to sit and take three deep breaths for three repetitions. Typical results for

the breathing and filtered signals are provided in Figure 5.22. These signals are strongly

contaminated with muscle noise from the diaphragm. This noise has been largely rejected

by the filter. The muscle noise will be measured by all channels, but the PCA projection

effectively eliminates this noise source as it was not present in the training data.
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Fig. 5.22 Typical AECG recording (a) recorded data while breathing, (b) filtered data.
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Arm Movements while Jumping

Additionally, participants were asked to jump and move their hands for a few seconds. This

produces recordings with high amplitude and intermittent muscle and movement noise. Figure

5.23 shows the typical recorded data. Multichannel DB-PCAKF has produced consistent

results despite the highly fluctuating SNR and noise spectra across the recording.
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Fig. 5.23 Typical AECG recording (a) recorded data while jumping with arm movements, (b)
filtered data.
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5.7.7 R Peak Detections

All the ECG filtering methods presented in this project, both PCA and EKF, rely funda-

mentally on the detection of R peaks for their operation. Two R peak detection algorithms

have been evaluated in conjunction with the filtering methods. The two methods are the

standard Pan-Tompkin algorithm and the other one used by Clifford used at University of

Oxford [private correspondence]. Errors in R peak detection lead to erroneous filter outputs.

Typically the output signal is clearly anomalous and is unlikely to be mistaken for a real

heart signal, but may obscure a real anomaly that occurs at the same time. Typical results of

R peak detections and filtering are provided in Figure 5.24.

Raw ECG

R peak detection(method 2)

1086 1087 1088 1089 1090 1091 1092 1093

Filtered ECG

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Raw ECG

R peak detection(method 1)

1086 1087 1088 1089 1090 1091 1092 1093

-0.5

0

0.5

1

1.5

2

2.5

Filtered ECG

Fig. 5.24 TR peak detection comparison while using PCAKF. (a) Sameni’s R peak detection
algorithm (b) Pan-Tompkin R peak detection, (C) PCAKF result for Sameni’s R peak
detection, (d) PCAKF result for Pan-Tompkin R peak detection.
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5.8 5.8 Discussion

This chapter presented the double beat (DB) variant of the PCAKF algorithm to address the

problem of discontinuities in the output of single beat PCAKF when applied to very noisy

signals. DB-PCAKF was found to solve this problem and also provided much better results

when filtering ECG signal with common and clinically important abnormalities. Much of

the improved performance was due to the quadratic time transformation used to normalise

double beat intervals. The DB-PCAKF algorithm was shown to be applicable to ECG signals

including abnormalities such as PVC, AF and TWL. The filter removed noise while retaining

the abnormal heart signal.

A second major innovation was the multichannel PCAKF algorithm. This uses correla-

tions between PCA projection weights on different channels, to reject noise and enhance

ECG signals. Tests showed that the multichannel algorithm performed significantly better

than applying the single channel algorithm to channels independently. The multichannel

algorithm combines two major apriori advantages. PCA projection on each channel removes

noise sources not present in the training data while the use of cross-channel correlations

enhances the heart signal and further rejects noise that does not exhibit the same correlations.

Fifteen healthy men participated in this study and provided AECG data during a range of

activities. The protocol was designed to yield data with a range of noise sources data range

of amplitudes. The Multichannel DB-PCAKF filter has been applied to these data and typical

results from one participant have been presented. The filter was able to remove most of the

noise and yielded plausible heart signal variation, even when this was not apparent in the

acquired data. The SNR improvement cannot be calculated for these data as the true signal

is not known. However, a panel of medical experts were asked about their opinion on the

quality of the filtering and the clinical usefulness of the filter output. All the comments that

were returned are in Appendix B and a selection are provided below:
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“According to the results, the method provided is able to remove noise and artefacts from

the recorded signal, it could be very useful for us when ECG signal is contaminated with

noise and ECG components (P, QRS complex and T waves) are not visible. In the filtered

results ECG components are easily visible.”

“The PCAKF system is powerful for heart signal detection in the presence of inter-

mittent and high amplitude signals. The PCAKF system clears the noisy ECG signal and

interpretation ECG by PCAKF is very comfortable”

“Filtering of noisy signals are clear. This could be very useful during exercise stress test,

as the ST segment during the test is not visible due to the noise but it is very important to see

clear ECG on the test. ”

“This could be a very useful technique during the CPR to remove noise.”

Hospital based ECG measurements are often performed on calm and conscious individu-

als while they relax on a bed. However, many situations exist where heart signals need to be

acquired under far more challenging conditions. Some clinically important situations include

during:

• Cardiopulmonary resuscitation (CPR) during which ECG contaminated with movement

noise;

• Exercise stress tests where participants are walking, jogging and running;

• Surgery with electrical tools such as an electronic kutter. Typically these tools are

turned off to check the ECG signal;

• Recording ECG from people with Parkinson’s disease;

• Surgery spinal anaesthesia can cause shivering during surgery and therefore ECG

signals are contaminated with muscle noise;
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• Monitoring of people in intensive care units (ICU) who experience breathing difficulties.

Ideally, continuous ECG monitoring is required but muscle noise due to breathing is

common.

The PCAKF filter could be applied in all these situations. Finally, it was emphasised that

both PCAKF and the gold standard EKF\EKS ECG filtering methods rely fundamentally on

the quality of R peak detection.

5.9 Summary and Conclusions

Both the extension of SC-PCAKF to double beat (DB) and the use of cross-channel infor-

mation in the multichannel version of DB-PCAKF, have shown significant improvements

in the proposed algorithm. Multichannel DB-PCAKF performs significantly better than the

gold standard EKF\EKS algorithms in tests with synthetic data, and real or synthetic noise.

A panel of medical experts have stated that the proposed ECG filter yields signals where

clinically important information have been revealed. The proposed filter is likely to have

many clinical applications.



Chapter 6

Conclusions & Future Works

6.1 Conclusions

A system has been developed for the filtering of AECG signals to identify clinically important

features of the heart signal in noisy data. Current gold standard methods use Extended Kalman

filters with sample-by-sample extrapolation based on the McSharry sum of Gaussians ECG

signal model. The methods developed as part of this project use linear Kalman filtering and

extrapolation based on a sum of Principal Component basis signals. Unlike the gold standard

methods, extrapolation is heart-cycle-by-heart-cycle. Several variants have been developed

where basis signals span one or two heart-cycles, and are applied to single or multi-channel

ECG data.

The McSharry sum of Gaussians ECG signal model was found to have major limitations.

It is over-parameterised, not unique and a poor fit to many ECG signals; especially for

abnormal signals. In comparison, a signal model expressed as a sum of Principal Component

basis signals has many advantages: it uses the minimum number of parameters, they yield

a mode with unique parameters, it provides a better fit to ECG signals and provides better

separation between heart signals and noise.
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Once a sum of PCA basis signals model is adopted, the Kalman filtering process becomes

linear and considerably simpler than the non-linear Extended Kalman filters. This leads

to significant computational gains and less complexity, which are important when signal

analysis is devolved to a wearable device like a smartphone. The algorithm is also more

stable and controllable. The PCA basis signals are critical and central to the filtering ability

of PCAKF. It is vital that the signals span the range of heart signals present in the monitoring

data. This is a source of potential problems when using the proposed system. The PCA

basis signals are derived from a period of training data. This is important as signals will

differ depending upon individual morphology, electrode placement and heart condition. It is

particularly important when multi-channel data is to be analysed. The training data may not

span abnormal heart activity that only occurs in special conditions, such as during activity.

In practise, the PCA basis signals may need to be augmented with signals designed to span

typical abnormalities.

McSharry introduced the concept of heart-cycle phase. Phase is a surrogate for time

which increases by 2π radians over each heart-cycle. The use of phase normalises heart

cycles with respect to heart rate variations. The gold standard methods use a piecewise linear

transformation from time to phase with multiples of 2π radians occurring at a specific point

in each heart cycle i.e. the start of the P-wave. This has several disadvantages. The start of

the P-wave is poorly defined and the piecewise linear transformation is not smooth. Several

alternatives were tested for the single and double beat variants of PCAKF. Initially, cubic

splines were tested with phases of (2n+ 1)π radians occurring at R-peaks. This yielded

a smooth transformation based on the well-defined R-peaks. However, for noisy data, or

where heart anomalies occur, the transformation could be non-monotonic. Double-beat uses a

quadratic transformation over each pair of consecutive cycles, spanning three R-peaks. Each

heart-cycle is filtered twice, as the left and right hand part of a pair, and a tapered weighted

average of the two filter outputs is formed. The quadratic transformation normalises away
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much of the inter-cycle variation and allows a PCA basis that spans much more of the natural

variation. The transformation is always monotonic. Like the piecewise linear phase, the

gradient is not continuous at heart cycle boundaries, but the filtered heart signal is.

Part of the filtering power comes from knowledge of the covariances of PCA basis

weights, which are also calculated from the training data. Knowledge of covariances between

PCA basis weights within heart cycles and across channels allows heart signals and noise to

be distinguished. However, these correlations are derived from the training data and if the

monitoring signal has different correlations then the assumed correlations may lead to poor

filtering results.

The quality of R-peak detection is crucial to both the gold standard and PCAKF methods.

For EKF\EKS methods, misidentified R-peaks lead to clearly wrong filter ouput in the signal

portion around the misidentification. For PCAKF, misidentification in the training data is

almost always identified and the heart-cycles effected are eliminated from contributing to the

PCA basis function and weight covariance calculation. When processing the monitoring data,

misidentification can produce an ouput that looks like an ECG signal with irregular heart

rate. However, the algorithm also marks the heart-cycles effected as noisy and unreliable.

R-peak detection is attracting further research attention and improvements in algorithms will

feed through into better filtering output.

To compare the performance of PCAKF and EKF\EKS, a range of tests have been

performed. A comprehensive set of numerical experiments have been performed using

synthetic heart signals contaminated with synthetic noises. In these tests, the true heart signal

is known exactly, and so SNR improvement and signal fit can be calculated and compared.

Tests were also performed on clean measured ECG data with added noises. In this case the

true signal is not known exactly as the clean ECG will contain some noise and artefacts. In

some cases the PCAKF output was more plausible than the clean ECG signal, as the small

amount of noise had been removed. For these tests, the SNR improvement and signal fit are
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not exact, especially for very low amplitude additive noises. Tests were also performed on

databases of ECG data exhibiting common heart anomalies. Finally, the methods were tested

on real measured AECG data collected during a range of activities. In this case, the filter

output has been scrutinised by experts who have provided opinions on the clinical usefulness

of the filtered data.

Initial tests on the single-beat single-channel PCAKF method were encouraging but iden-

tified the discontinuity between heart cycles as an issue. It was also found to perform poorly

on ECG data exhibiting anomalous heart signals. Based on these results the double-beat

single-channel PCAKF method was developed. This algorithm eliminated the discontinuity

and also performed much better on signals containing anomalies such as atrial fibrillation

and T wave alternance.

Finally, multichannel versions of both single-beat and double beat PCAKF were de-

veloped. The big advantage of the multichannel variants is the use of cross-channel PCA

weight covariances. During the calculation of the PCA basis signals using the trial data, the

covariance between weights in the sum of PCA basis signals fit to each channel are calculated.

These covariances provide important information to distinguish artefacts from heart signals.

As all channels are measuring a different view of the evolution of the heart electric field,

the signals measured on each channel have significant similarities encapsulated by the PCA

weights covariances. For example, if an R-peak is delayed or of increased amplitude, this

should be reflected in all channel measurements. Typically, artefacts will not exhibit the

same covariances. In practise, the advantage provided my multichannel processing was less

than expected. In the case where all channels experience independent additive noise with the

same SNR, the SNR improvement was similar to that yielded by single channel filtering. The

advantage was much clearer where a few channels had significantly worse SNR. In this case,

the multichannel variants greatly increased the SNR on the noisy channels. In the extreme,

if a channel is completely missing, such as when an electrode becomes disconnected, then
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the multichannel variants can recreate the missing data using the other channels and the

cross-channel covariance information.

6.2 Future Work

This project has developed a completely new ECG filtering tool with the specific goal of

extracting clinically useful data from noisy AECG data. Future work can develop this idea

further and apply the PCAKF method to other problems.

• The PCAKF method has been thoroughly laboratory tested. The next stage is to test the

method when integrated into an AECG system and worn by participants for prolonged

periods. This is likely to raise some new issues, both practical and signal processing,

that will need to be addressed for a robust systems to be completed.

• The double-beat multichannel PCAKF method has been shown to be applicable to

anomalous data including atrial fibrillation and Twave alternance. Other conditions

may require small adjustments, such as the addition of basis signals so that anomalies

are spanned by basis signals. Possibly a set of anomalous basis signals could be

included as standard so that all standard anomalies can be identified

• The system automatically labels heart-cycles where the filter output is significantly

different from the measured ECG signals. Significant difference indicates that the

filter output less reliable. Further processing could be added to distinguish between

anomalous heart signals not spanned by the PCA basis, and noise. An entropy measure

may be able to do this.

• Many EKF\EKS variants attempt to extract heart signal portions, such as just the

P-wave, QRS complex or T wave. It is likely that this could be achieved using PCAKF

if the basis signals were edited to contain just the segment of interest.
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• The PCA basis has the advantage of minimising the number of basis signals required

to fit a given proportion of the variance in the training data. However, other orthogonal

bases may have advantageous properties in some applications. For example, indepen-

dent component analysis (ICA) has been applied to fetal ECG to separate mother and

fetal heart signals. Using bases that span variation in these signals separately may yield

improved filtering for fetal ECG.

• The current algorithms spate the processing into a training period and a monitoring

period. If the monitoring period produced heart signals quite different from those

encountered in the training data, then the method will yield a poor fit and label the

output as unreliable. An alternative approach would be to iteratively improve the PCA

basis as the monitoring data is processed. Algorithms exist that assimilate each new

measurement and update the PCA basis calculation. Such algorithms have a memory

parameter that put greater weight on the most recent measurements. A training period

would still be required to initialise the process, but iterative refinement of the PCA

basis signals, and weight covariances, could yield an algorithm that is more robust over

long periods and which adapts to changes in the heart signals during, such as between

sleeping and awake.

There are many research avenues yet to be explored. However, PCAKF is a significant

improvement on the current gold standard algorithms and so it is important that the method is

adopted by AECG manufacturers and users to achieve the maximum benefit for mankind. It

is expected that the algorithm will be commercialised by a large medical equipment company,

such as Phillips or General Electric (GE), for rapid introduction into standard practices

globally.
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Appendix A

Multi-Channel AECG Filtering

This chapter provides multi-channel filtering results using DB-PCAKF for different phases.
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Fig. A.1 Typical results of multi-channel AECG recordings on phase one. Left column plots
are the raw ECGs while right column plots are filtered signals.
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Fig. A.2 Typical results of multi-channel AECG recordings on phase two. Left column plots
are the raw ECGs while right column plots are filtered signals



129

Fig. A.3 Typical results of multi-channel AECG recordings on phase three. Left column
plots are the raw ECGs while right column plots are filtered signals
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Fig. A.4 Typical results of multi-channel AECG recordings on phase four. Left column plots
are the raw ECGs while right column plots are filtered signals
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Fig. A.5 Typical results of multi-channel AECG recordings on phase five. Left column plots
are the raw ECGs while right column plots are filtered signals
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Fig. A.6 Typical results of multi-channel AECG recordings on phase six. Left column plots
are the raw ECGs while right column plots are filtered signals
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Experts opinions
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Appendix C

PCAKF Flowchart

This section provides flowcharts for PCA extraction and PCAKF algorithm.
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Fig. C.1 The PCA extraction Flowchart.
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Fig. C.2 The PCAKF algorithm Flowchart.



Appendix D

Single Beat Single Channel PCAKF

Algorithm Matlab Code

This section provides an example of Matlab code for the single beat single channel PCA

calculation and PCAKF algorithm.
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%%      Single Beat Single Channel PCA Calculator 
 
% %     This software is Copyright © UK Mahdi Torabi, 2017, and protected under 

% %     UK and international law. All rights reserved. Any unauthorised use, 

% %     passing to a third party, reproduction, copying, hiring, lending, or re-recording 

% %     will constitute an infringement of copyright.  In all cases this notice must remain intact. 

% %  

% %     This program is distributed in the hope that it will be useful, 

% %     but WITHOUT ANY WARRANTY; without even the implied warranty of 

% %     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

% %     GNU General Public License for more details. 

% %  

% %     You should have received a copy of the GNU General Public License 

% %     along with this program.  If not, see <http://www.gnu.org/licenses/>. 

% %     Contact email address: mahdi.torabi84@gmail.com 
 

% %  ***************************   

%   ** Set parameters used in filter   ** 

% %  ***************************  

  

% Define the clean data as used for PCA calculation and for determining 

% channel polarity 

 

NumPCABeat = 10;                     %This is number of Clean Beats which used for PCA & Polarity 

NumSamplePerBeat = 1000;       %This is NOT fs of Data - Only used for PCA and R peaks 

load ('E:ECG_Data')                    % load ECG data 

  

% % Set Number of channels to filter 

 

NumChannel = size(ECG_Data,1); 

NumSamples = size(ECG_Data,2); 

FirstBeat = 1; 

fs = 1000;   %Frequency of the signal 

t = (0:NumSamples-1)/fs; 

 

% % *****************************   

%    ** Do some pre-processing **  

% % *****************************   

% % The pre-processing MUST be same as PCAKF algorithm one 

  

nMedianSamp = 400;                    % The median is calculated over data spanning this number of samples 

nMedianStep =  100;                     % Number of samples between median calculations 

  

% loop over the median intervals calulating the reference level 

MedianCentres = 1+nMedianSamp/2 : nMedianStep : NumSamples-nMedianSamp/2; 

nMedian = length( MedianCentres ); 

ReferenceLevel = zeros(nMedian,1); 

  

% loop over channels 

for iChan = 1:NumChannel 
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    for iMedian = 1:nMedian 

        MedianIntervalData = ECG_Data( iChan, MedianCentres(iMedian) - nMedianSamp/2 :           

MedianCentres(iMedian) + nMedianSamp/2 ); 

        ReferenceLevel(iMedian) = median( MedianIntervalData ); %(Index) ); 

    end 

  

    % Calculate reference level by interpolation 

    Reference = interp1(MedianCentres , ReferenceLevel , (1:NumSamples) ,'linear','extrap'); 

    % subtract reference from ECG signal 

    ECG_Data(iChan,:) = ECG_Data(iChan,:) - Reference; 

  

end 

  

% %  **********************   

%   ** Peak Detection    ** 

% %  **********************   

 

%% You can use any other R peak detection method  

  

[qrs_amp_raw,qrs_i_raw,delay] = pan_tompkin(ECG_Data(1,:),fs,1);   

IndexPeaks = qrs_i_raw;                                                  %  Peak Index from Peak detection 

NumPeak = numel(IndexPeaks);  

 

%   ************************************ 

%   **  Identify beat boundaries      ** 

%   ************************************ 

  

% determine the start and end of each heart cycle 

% NOTE: the first and last partial heart cycles are not used. 

HeartCycleBoundaries = round( ( IndexPeaks(1:end-1) + IndexPeaks(2:end) )/2 ); 

NumHeartCycle = numel( HeartCycleBoundaries ) - 1; 

  

%   ************************************ 

%   **  Identify PCA Basis            ** 

%   ************************************ 

  

NumPCABasis = 7; 

% [PCA_Basis,Mean] = 

Heart_PCA(ECG_Data_New,HeartCycleBoundaries,NumPCABeat,FirstBeat,NumSamplePerBeat,NumP

CABasis); 

PCA_Basis = 

Heart_PCA(ECG_Data,HeartCycleBoundaries,NumPCABeat,FirstBeat,NumSamplePerBeat,NumPCABa

sis); % This is PCA Calculation 

  

save('PCA_Cutted_Data.mat','PCA_Basis'); 
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%%      Heart PCA Function  
 

% %  *****************   

%   ** Uncentered PCA ** 

% %  *****************   

 

% This code can use for both single and multi-channel analysis 

 

function PCA_Basis = 

Heart_PCA(ECG_Data,HeartCycleBoundaries,NumPCABeat,FirstBeat,NumSamplePerBeat,NumPCABa

sis) 

  

NumChannel = size(ECG_Data,1); 

 

 % define data structure to hold data required to calculate the  

% covariance of time-resampled beat signal 

PlotFlag = true; 

  

% declare array to hold heart beat samples 

X = zeros(NumPCABeat,NumSamplePerBeat,NumChannel); 

  

% loop over beats resampling to normalised time 

NormalisedSampleTime = (1:NumSamplePerBeat)/NumSamplePerBeat; 

  

% This is the time 0->1 used to resample beats of different duration 

  

SumNormBeat = zeros(NumSamplePerBeat,NumChannel);    % vector used to calculate mean beat 

  

% This is the number of good beats to initiate the good beat statistics 

NumInitiateBeat = 3; 

  

 % loop over two beats to estimate the interbeat variation 

figure(12); 

hold on 

for iHeartCycle = FirstBeat:FirstBeat+NumInitiateBeat-1 

     

    % Extract data for one heart cycle 

    StartHeartCycle = HeartCycleBoundaries(iHeartCycle  ); 

    EndHeartCycle   = HeartCycleBoundaries(iHeartCycle+1); 

    HeartCycle_n    = EndHeartCycle-StartHeartCycle; 

    NormalsedTimeInBeat = (0:HeartCycle_n)/HeartCycle_n; 

  

    for iChan = 1:NumChannel 

        HeartCycleData  = ECG_Data(iChan,StartHeartCycle:EndHeartCycle);   

        NormalisedBeat = interp1(NormalsedTimeInBeat,HeartCycleData,NormalisedSampleTime); 

        % accumulate data to calculate covariance 

        X(iHeartCycle,:,iChan) = NormalisedBeat; 

        % save data to calculate mean beat 

        SumNormBeat(:,iChan) = SumNormBeat(:,iChan) + NormalisedBeat'; 
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        if iChan==1 

            plot(NormalisedSampleTime,NormalisedBeat,'b') 

        end 

         

    end 

  

end 

  

% Calculate typical interbeat variance 

NumHeartCyclesUsed = NumInitiateBeat; 

BeatVariance = zeros(NumInitiateBeat,NumChannel);           % beat variances 

for iChan = 1:NumChannel 

     

    MeanBeat = SumNormBeat(:,iChan)/NumHeartCyclesUsed; 

     

    for iHeartCycle = 1:NumInitiateBeat 

        BeatVariance(iHeartCycle,iChan) = sum( (X(iHeartCycle,:,iChan)-MeanBeat').^2 ); 

    end 

     

    if iChan==1 

        plot(NormalisedSampleTime,MeanBeat,'k','LineWidth',2) 

    end 

     

end 

MeanVariance = mean( BeatVariance )'; 

  

% loop over beats resampling to normalised time 

ThisBeatVariance = zeros(NumChannel,1); 

for iHeartCycle = FirstBeat+NumInitiateBeat:FirstBeat+NumPCABeat 

     

    % Extract data for one heart cycle 

    StartHeartCycle = HeartCycleBoundaries(iHeartCycle  ); 

    EndHeartCycle   = HeartCycleBoundaries(iHeartCycle+1); 

    HeartCycle_n    = EndHeartCycle-StartHeartCycle; 

    NormalsedTimeInBeat = (0:HeartCycle_n)/HeartCycle_n; 

  

    for iChan = 1:NumChannel 

        HeartCycleData  = ECG_Data(iChan,StartHeartCycle:EndHeartCycle);   

        NormalisedBeat = interp1(NormalsedTimeInBeat,HeartCycleData,NormalisedSampleTime); 

        % accumulate data to calculate covariance 

        X(NumHeartCyclesUsed+1,:,iChan) = NormalisedBeat; 

        MeanBeat = SumNormBeat(:,iChan)/NumHeartCyclesUsed; 

        ThisBeatVariance(iChan) = sum( (NormalisedBeat-MeanBeat').^2 ); 

    end 

     

    % check this beat is OK and keep if it is 

    if max( ThisBeatVariance./MeanVariance ) < 4^2        %By changing the power we can change the 

senstivity of the bad and good signals  

       NumHeartCyclesUsed = NumHeartCyclesUsed+1;  

       SumNormBeat = SumNormBeat + squeeze(X(NumHeartCyclesUsed,:,:));  

       plot(NormalisedSampleTime,X(NumHeartCyclesUsed,:,1),'b') 
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    else 

       plot(NormalisedSampleTime,X(NumHeartCyclesUsed+1,:,1),'r') 

       title ('Heart Cycles which removing heart beats which contaminated highly with noise') 

    end 

  

end 

     

 % % NOW Do PCA 

  

    PCA_Basis = zeros(NumSamplePerBeat,NumPCABasis); 

  

    Coeff = pca(X(1:NumHeartCyclesUsed,:),'NumComponents',NumPCABasis,'Centered',false); 

%     [Coeff,score,latent,tsquared,explained] = 

pca(X(1:NumHeartCyclesUsed,:),'NumComponents',NumPCABasis,'Centered',false); 

        PCA_Basis(:,:) = Coeff(:,1:NumPCABasis); 
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%%      Single Beat Single Channel PCAKF Algorithm 
 

% %  ***************************  

%   ** Set parameters used in filter   ** 

% %  ***************************   

 

NumSamplePerBeat = 1000;     

 

% %  *******************   

%   ** Loading ECG Data ** 

% %  *******************  

  

load ('ECG_Data')  

  

% % Set Number of channels to filter 

NumChannel = size(ECG_Data,1); 

NumSamples = size(ECG_Data,2); 

FirstBeat = 1; 

fs = 1000; 

t = (0:NumSamples-1)/fs; 

ECG_Data_New = ECG_Data(1,:); 

  

% %  **********************   

%   ** Peak Detection    ** 

% %  **********************   

% same R peak detection of PCA calculation must be used 

  

[qrs_amp_raw,qrs_i_raw,delay] = pan_tompkin(ECG_Data(1,:),fs,1);         % peak detection using 

Pam_Tompkin 

IndexPeaks = qrs_i_raw;                                                  %  Peak Index from Peak detection 

NumPeak = numel(IndexPeaks);  

  

%% Start Loop  

  

NumLoop = 1; 

SNR_Noisy_dB = zeros(NumLoop,1); 

for i_loop = 1:NumLoop 

 

 

% %  **********************   

% % %Adding Noise to Data %          

% %  **********************   

 

ECG_Data_Noise = ECG_Data(1,:); 

 

for iChan=1,NumChannel; 

    Index = find( abs(t-500)<100 ); 

    sd = 0.2; 

    Len = length(Index); 

    fs = 512; 
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    beta = 1 ; 

    Noise = ColoredNoise(sd,Len,fs,beta); 

    ECG_Data_Noise(iChan,Index) = (ECG_Data_New(iChan,Index)+ Noise); 

end 

 

% % ************************   

%    ** Do some pre-processing **  

% % ************************   

% % The pre-processing should be same as PCA calculation one 

  

nMedianSamp = 400;                     % the median is calculated over data spanning this number of samples 

nMedianStep =  100;                     % number of samples between median calculations 

  

% loop over the median intervals calulating the reference level 

MedianCentres = 1+nMedianSamp/2 : nMedianStep : NumSamples-nMedianSamp/2; 

nMedian = length( MedianCentres ); 

ReferenceLevel = zeros(nMedian,1); 

  

% loop over channels 

for iChan = 1:NumChannel 

  

    for iMedian = 1:nMedian 

        MedianIntervalData = ECG_Data_Noise( iChan, MedianCentres(iMedian) - nMedianSamp/2 : 

MedianCentres(iMedian) + nMedianSamp/2 ); 

%        Index = find( MedianIntervalData>Bot_of_Ref_Range & 

MedianIntervalData<Top_of_Ref_Range ); 

        ReferenceLevel(iMedian) = median( MedianIntervalData ); %(Index) ); 

    end 

  

    % Calculate reference level by interpolation 

    Reference = interp1(MedianCentres , ReferenceLevel , (1:NumSamples) ,'linear','extrap'); 

    % subtract reference from ECG signal 

    ECG_Data_Noise(iChan,:) = ECG_Data_Noise(iChan,:) - Reference; 

  

end 

  

% Number of Peaks come from Peak Detection 

  

NumPeak = numel(IndexPeaks);  

  

%   ************************************ 

%   **  Identify beat boundaries      ** 

%   ************************************ 

% determine the start and end of each heart cycle 

% NOTE: the first and last partial heart cycles are not used. 

HeartCycleBoundaries = round( interp1(1:NumPeak,IndexPeaks,(1:NumPeak-1)+0.5,'spline') ); 

NumHeartCycle = numel( HeartCycleBoundaries ) - 1; 

  

% %  **************  

%    **  Input PCA   ** 

% %  **************  
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load('PCA_Cutted_Data.mat','PCA_Basis') 

NumPCABasis = 5; % Different PCA numbers can be used 

  

%   ************************************ 

%   **  Estimate Initial Covariances  ** 

%   **  For the Kalman Filter         ** 

%   ************************************ 

 nTrainingBeats = 20; 

% Initialise storage for best fit Gaussian models for training beats 

X_Training_Fit = zeros(nTrainingBeats,NumPCABasis); 

% Initialise first estimate Gaussian Parameters 

X = zeros(NumPCABasis,1); X(1) = 1; 

  

% Loop over training beats fitting PCA models 

for iHeartCycle = 1:nTrainingBeats 

     

    % Extract data for one heart cycle 

    StartHeartCycle = HeartCycleBoundaries(iHeartCycle  ); 

    EndHeartCycle   = HeartCycleBoundaries(iHeartCycle+1); 

  

    HeartCycle_n    = EndHeartCycle-StartHeartCycle+1; 

    HeartCyclePhase = linspace(0,2*pi,HeartCycle_n); 

    HeartCycleData  = ECG_Data_Noise(StartHeartCycle:EndHeartCycle);     

     

     

    % fit PCA model 

    [X1, R] = LSQ_Fit_PCA_Model(HeartCyclePhase,HeartCycleData,PCA_Basis); 

    X_Training_Fit(iHeartCycle,:) = X1; 

end 

% initial mean Gaussian Parameters 

X_bar = mean( X_Training_Fit , 1 )';  

% initial Gaussian Parameter covariance matrix 

P = cov( X_Training_Fit ); 

% initial Gaussian Parameter time-step transition covariance matrix 

Q = cov( X_Training_Fit(2:end,:) - X_Training_Fit(1:end-1,:)); 

  

%   ************************************ 

%   **  Loop over each heart cycle    ** 

%   ************************************ 

  

% declare storage to save filtered parameters 

X            = zeros(NumPCABasis,NumHeartCycle); 

ECG_Filtered = zeros(size(ECG_Data_Noise)); 

  

for iHeartCycle = 1:NumHeartCycle 

  

    % Extract data from one heart cycle 

    StartHeartCycle = HeartCycleBoundaries(iHeartCycle  ); 

    EndHeartCycle   = HeartCycleBoundaries(iHeartCycle+1); 
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    HeartCycle_n    = EndHeartCycle-StartHeartCycle+1; 

    HeartCyclePhase = linspace(0,2*pi,HeartCycle_n); 

    HeartCycleData  = ECG_Data_Noise(StartHeartCycle:EndHeartCycle); 

    HeartCycleTime  = t(StartHeartCycle:EndHeartCycle); 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Kalman Beat Filter Heart Cycle  % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    % Predict next beat parameters 

    Pred_X_bar = X_bar; 

    Pred_P = P + Q; 

     

    % Calculate measured parameters by fitting Gaussians to Measurements. 

    % The fitted parameters are Z_Measured and the uncertainty covariance 

    % is R. 

    [Z_measured, R] = LSQ_Fit_PCA_Model(HeartCyclePhase,HeartCycleData,PCA_Basis); 

    % Calculate Kalman correction factor based on relative uncertainties in 

    % prediction and measurement 

    K = Pred_P / ( Pred_P + R ); 

    % Next add Kalman correction based on measurement 

    X_bar = Pred_X_bar + K*( Z_measured - Pred_X_bar  ); 

    % Update uncertainty in Gaussian parameter vector 

    P = (eye(NumPCABasis)-K)*Pred_P*(eye(NumPCABasis)-K)' + K*R*K';   % Josepth Form 

     

    % Save the filtered parameters and beat 

    X(:,iHeartCycle) = X_bar; 

    ECG_Filtered(StartHeartCycle:EndHeartCycle) = 

interp1(linspace(0,2*pi,NumSamplePerBeat),Heart_PCA_Model(PCA_Basis,X_bar),HeartCyclePhase); 

end 

  

%%%%%%%%%%%%%%% 

%Calculate SNR% 

%%%%%%%%%%%%%%% 

  

SNR_Noisy_dB(i_loop) = SNR_Calculation(t,ECG_Data_New,ECG_Data_Noise,ECG_Filtered,Index); 

% Any other SNR calculation can be used.  

end 

  

Mean_SNR_over100Loop = mean(SNR_Noisy_dB) 

  

figure; 

plot(t,ECG_Data_Noise/10,'b') 

hold on 

plot(t,ECG_Filtered/10,'k') 

% title('Whiet Gaussian noise') 

grid on 

legend('Noisy','Single-Channel-PCAKF') 

xlabel('Time(s)') 

ylabel('Amplitude(mV)') 
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