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Summary of Thesis suhmitted for Ph.D, degree
by David Collingwood Jiles
on

Application of a new Ultrasonic Sing Around System to the Study of
Magnetoelastic Effects in some Heavy Rare Earths

The development of a new ultrasonic sing around system has beén
described. The equipment has been used to investigate the behaviour
of the second order eleastic moduli of single crystal specimens of
Gadolinium, Terbium, Dysprosium aﬁd Erbium under conditions of
varying témperature, pressure and magnetic field.

From the results: some indication of'the performance of the new
system has been obtained. The behaviour of the elastic propertiés
as a function of magnetic field has allbwed critical fields to be
determined, and the variation of the elastic moduli with pressure
have allowed the Griineisen parameters and third order elastic
constants to be calculated. Results have been compared where

possible with earlier published findings.
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CHAPTER O

Introduction

The elements Gadolinium, Terbium, Dysprosium and Erbium belong to
the 4f series, the rare earths, which lie between Lanthanum and
Lutetium in the periodic table. This group of elements all have Qery
similar chemical properties but exhibit a wide range of magnetic
structures. These are due to the partially filled 4f shell which
makes a significant contribution to the magnetic moment of the atoms
in the solid phase, but is screened from the outside by the outer 54
ard 6s2 electrons which are responsible for the chemical properties,
-Among the techniques used to obtain information about the magneﬁic
structures of these elements are neutron diffraction, magnetisation,
electrical resistivity and elastic constant measurements,

Ultrasonic techniques have been used to investigate the elastic
properties of the rare earths Dysprosium and Gadolinium by Rosen [1,2],
Erbium by Fisher and Dever t3] and Gadolinium, Terbium, Dysprosium,
Holmium and Erbium by Palmer et al [4,5].

Direct measurements of acoustic transit times by use of an
oscilloscope limits precision to about 0.1% according to Papadakis [6].
In order to obtain greater precision more sophisticated techniques are
necessary and a review of these is given in chapter one. The original
sing around was due to Holbrook [7] and the arrangement described in
this thesis is broadly a development from the system due to Forgacs [8],
Later improvements were made by Brammer [8] and the present scheme is
outlined in chapter four. Its performance will be found included in

the results,



In this work measurements have been made of the single crystal
elastic moduli of the heavy rare earths Terbium, Gadolinium and Erbium
over the temperature range 4,2 -300°K and in fields of O- 2.5 Tesla,

From the location of magnetoelastic anomalies and other changes in the
elastic properties the magnetic phase diagrams of Gadolinium and Terbium
have been coﬁstructed and compared with those obtained by other

~ techniques, notably by neutron diffraction. Thé present work is
believed to be the first measurements of the elastic prpperties of the
materials under these conditions, although some preliminary work in zero
field and 2.5T was reported by Palmer and Lee [4,5].

The variation of single crystal elastic moduli of Terbium,

Dysprosium and Erbium with hydrpstatic pressures have also been measured
over the ranges O~ 100 bar in Hull and o= 5 kbar using the S.R.C, high

- pressure facility at S.T.L. Ltd. at Harlow. The Griineisen parameters

have been calculated from these data and compared, in the case of Erbium

and Dysprosiumvwith fhe earlier results of Fisher [10]. In the case of
Erbium the variation of some of the second order moduli with selected
uniaxial stresses along certain crystallographic directions have been -
‘measured, From these results a complete set of third order éléstic

moduli has been calculated according to the method outlined by Brugger [11].

In chapter four attention is drawn to the mode of operation Qf the new
sing around system, together with other experimental methods including
control of the physical environment of the specimeﬁs either at low.
temperature, high pressure ér under applied magnetic fields, Calibratién
procedures for the thermocouples and sérain gauges are outlined.

A brief description of the magnetic and elastic properties of the
heavy rare earths is givén in chapters six and seven followed by
presentation of results in detail in chapters eight, nine and ten.
Associated information which was either not directly relevant of tcc‘long'

to include in the main text will be found in the appendic&si



CHAPTER 1

Ultrasonic Technicques

+

1.1 General Applications of Ultrasonics

Ultrasonics has been an accepted experimental technique sinée'the
work of Langevin who investigated the use of piezoelectric quartz for
emission and receipt of high frequency acoustic vib;ations in the early
1 1920's. . Some of the main uses of ultrasound now include the non-
destructive testing of articles for flaws, for example the dgtection of
inhomogeneities in specimens by reflection of all or part of an incident
wavefront by the defect; the investigétion of elastic properties of
mate:ials from acoustic velocity méasurements, and the monitoring of
attenuation of ultrasound which is used in thickness gauges and level
detectors, Other meaéuréments include the estimation of grain size in
specimens by the amount of acoustic scattering. It has also been used
as a method of detecting obstacles on a larger séale, for example in
ultrasonic radar systems,

Acoustic imaging techniques which have been avalilable sinceithe
work of Solovev in 1934 involve a little more sophistication. ’However,,
because of the upper frequency limit the resolution of these iﬁage
converters is restricted. One of the more recent developments has been
the use of ultrasonic holography which contains information concefniné
the inside of objects including shape and size of defects br
inhomogeneities. This has found an important application in medical
physics., |

Among the high intensity applications is the préduction of
cavitation in liquids when rapidly fluctuating pressures are applied,

This can be used to induce chemical reactions for example to produce a

colloidal solution of two otherwise immiscible liquids, or in ultrasonic
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cleaninc baths which depend on a combination of agitation and
cavitation. High intensity ultrasound is also used in fatigue
teéting of materials and other techniques such as the ultrasonic

“drill,

1.1.2 Particular Applications to Elastic Properties

The earliest reported attempts to use ultrasonic techniques to
measure elastic properties of materials were reported by Plerce [lj
1925 and by Boyle and Lehman [2,3)] 1926. Later attempts to measure
changes,in elastic moduli required_mére subtle techniques than direct
measurement of the time between successive acoustic pulses ard as a
result the puléé echo overlap technique was invented by Huntingdon in
1947 [4] and an early form of sing around system by Holbrook in 1948 [5].

More recent applications of interest include the work of Creéraft [6)
who used-an ultrasonic sing around system to measure the differential
velocity between two waves polarised along the principle stress axes of a
sample and from this a knowledge of how the velocity varies with stress
was gained and from the third order elastic constants the residual stress

in the specimens was calculated,

1.1.3 Acoustic Methods to Investigate the Properties of Solids

Acoustic methods provide one of the three main materials testing .
techniques for investigating the properties of solids, the others being
electromagnetic and particle methods. The use of ultrasound to deter-
mine the mechanical properties of a solid depends on measuring, however
indirectly, the elastic constants of the material. Fortunately a
fairly simple relationship exists between the acoustic velocity and the
relevant elastic constant as indicated in section 1,3.3.

Ultrasonic frequencies are generally taken té lié between 20kHz2
and 50QMiz. These may be further subdivided into those ranges employed

in the two principle ultrasonic methods of obtaining information



concerning elastic properties. For methods involving resonance
techniques the kiloherz frequencies are used, while for pulse echo

methods the megaherz range frequencies are employed.

1.2 Determination of Acoustic Velocity

| A short review of the main expérimental meghods used for the
determination of acoustic velocity in solids is given. This concerns
only the high frequency,‘megaherz, pulse-echo techniques, These fall
broadly into five categories (i) Pulse Superposition, (ii) Pulse-Echo
Overlap, (iii) Pulse Interferometer} (iv) Twin Specimen Interferometer

and (v) Sing Around Systems.

1.2.1 Pulse Superposition Methods

Except in cases where fairly large ghanges in acoustic velocity
arelbeing measured, that is of the order of 0.l% or larger, which can
be seen on the time base of an oscilloscope, more subtle techniques than
direct measurements must be employed, The first of these methads for
détecting'smgll changes in Qelocity is the pulse superposition
technique [7,8]. This is‘based on measuring accurately the time from
any cycle of a given echo to the correspording cycle of the next echo.
It is therefore a very accurate method of measuring the absolute
velocity of sound in a sample,

| When operatinq,a series of.pulses and corresponding echoes is
observed on an oscilloscope. The frequency of the kiloherz c.w,
(continuous wave) oscillator is adjusted until the initial pulse ffom
the r.f., (megaherz) oscillator corresponds exactly with one of the
echées from the preéeding pulse, This may be checked since when the
two are exactly superposed the amplitude of the sum of the echoes will

be a maximum,
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If the pulse is superposed on the first echo then the radio
frequency pulser fires once per round trié in the sample, and hence the
reciprocal of the c.w. frequency as measured on the frequency counter
gives the transit time of the acoustic pulse in the specimen. If the
malse is supefposed on the second echo then the reciprocal of the c.w.
frequency is twice the transit time and so on. '

The actual time measured then represents the period between any
point on the initial pulse and thé exactly corresponding point on its
nth echo, When the frequency of Fbé c.w. oscillator 1is equalyto the
reciprocal of one transit time the superposed signal gives an interference
maximum which is'global because under these conditions the attenuation
between the superposed pulses is a minimum. A schematic diagram of the

bPulse superposition method is given in fig. l.l.

1.2.2 .Precision

This method can be used for absolute velocity determination hecause
of its caﬁability for measuring transit times by ﬁatching cycle for
cycle, Various systematic errors reduce ité'accuracy, such as beam
Spreading which causes a shift in phase of the waveform, An assessment
of both the pulse superposition and pulse echo overlap methods h;s been
given by Papadakis [9].

Concerning the precision of this method for measuring changes in
transit time there will be some error due to the experimenter gaﬁgiﬁg
the exact point of pulse superposition. A precision of a few parté in
105 is quoted for the basic system, McSkimin has made some improvements
in an automated version of this method [8] ard claims a precision of |

¥ 1 part in 106.



1.2.3 Pulse Echo Overlap

This method is similar to the pulse superpdsition technique in
that it measures the time between corresponding cycles of particular
echoes, Hence it can also be used to measure small canges in
velocity to é high precision. The absolute accuracy of the pulse
echo overlap is thought to be slightly greater than the pulse super-
position méthod according to Papadakis [9] while the precision of éhe
pulse superposition may be better although both are quoted at a few‘
parts in 105. .

Scme features of the pulse echo overlap (P,E.O0.) [10] differ from
those of the pﬁlse superposition method. The P.E.O. can be used to
measure through transmission of one transit of a sample using transducers
on both erds of the specimen, acting as separate emitter and receiver,
The P,E.O. does not require direct bonding, as does the pulse super-
position, and thus can be operated with a buffer rod between the trans-
ducer and specimen. The most important feature is that the P,E.O. can
be operated with broad band pulses so that the correct cycles may easily
be overlapped. In the pulse superposition this condition is more
difficult to obtain and the superposition may be an integral number of
cycles out, A drawback is that the P.E.O, has not been automated in the
manner in which McSkimin has automated the pulse superposition method
and it is not envisaged that this will be achieved in_the near future.

Operation of the P.E.O, involves the matching of a pulse and one of
its succeeding echoes so thﬁt they overlap, cycle for cycle, on an.
oscillloscope, This condition is achieved by adjusting the frequency of
the c.w. oscillator until the reciprocal of this equals tﬁe travel time
between pulse and echo. The oscilloscope is operated in x-y rather than

Y-t mode so that by suitable choice of the c.w. frequency successive

echoes will appear on successive sweeps of the trace across the screen,
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Intensifier pulses are used to brighten the two echoes which are being
overlapped, and others may be blacked out by turning down the intensity
control on the oscilloscope. When the c.ﬁ. oscillator frequency is
set correctly the pulses and echoes will all occur at the same point in
the sweep on the oscilloscope screen. The reciprocal of the
oscillator ffequency then gives the transit time between the selectgd

echoes, The P.E,0. system is represented schematically in fig. 1.2,

1.2.4 Precision

The same type of analysis whié£ may be applied to the pulse
superposition method also applies to the P,E.O0,, except that it is
possible to obtain an exact overlap of the correct cycles. The
Precision depends mainly on the observer's abi;ity to overlap the
echoes exactly. This is taken by Papadakis to introduce errors of
about 20 p.p.m. which remains the limit of preciﬁion of the system at

present.

1.2,5 Pulse Interferometer (Phase Adjustment Method)

This method covers a broad category of techniques for determining
velocity in which the variation of the r.f. frequency is the central
theme. With these variable frequency methods it is important to note
vthat the phase change on reflection varies with the r.f. frequency and
therefore must be accounted for as the frequency is charged. The
transmitting transducer is pulsed and when the first echo is received
back it is pulsed again. This is achieved by using a variable deiay
between the two pulses, which is adjusted until the second coincides
with the echo of the first pulse, . Consequently all echoes are super=-
posed in pairs except fof the initial pulse,

The amplitude of the secord signal is then made smaller than the

first, to allow for attenuation, until both signals make equal
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contributions to the observed interference pattern. By suitable
adjustment of the frequency w the total signal may be made zero
independent of time t and hence the transit time T through the sample
may be calculated as follows.,

At time t the waveform of the initial pulse which will have made
two round trips through the specimen and underéone two phase changes of
9 will be given by |

Al(t) = Al.Sin(w(t + 2'[') + ZCP) . oocol.l

i .

-and thé waveform of the second pulse will be

Az(t) = 'Az.sinmt ‘ eeesl.2

The interference waveform pattern will therefore be given by

Atot = 2.A.sin(w(t-1)+p)cos (wt=-¢) sevel.d

where both components have amplitudes A adjusted to be equal. Since by
adjustment of the frequency w the net signal may be made zero, when this

occurs at w the condition may only be satisfied for all t when

cos(wot-¢) (o] . eeselod

f

LS
mor-w (2n+1)2 ....1.5
where n is a positive integer, The phase angle ¢ may be calculated as
a function of frequency and consequently the transit time calculated

from the observed null frequency W A version of this method was

reported by Williams and Lamb [11].

1.2,6 Twin Sample Interferometer

This is a modification of the basic pulse echo methods which is
sultable for small changes {z 0,1%) in acoustic velocity. Ultrasonic
pulses are sent into two specimens which have the same length under the
same physical conditions and the echoes from both are displayed on an

oscilloscope. An interference pattern is observed by summing the two



7L 61y

SCHEMATIC DIAGRAM OF THE TWIN SAMPLE INTERFEROMETER

C.W.

OSCILLATOR

R.F.
PULSER

L

i

TRIGGER Y

OSCILLOSCOPE

-0 o

AMPLIFIER
DETECTOR




-10 -

signals., If the velocity in one specimen changes when its environmnent
is modified while the other remains under its original conditions, a
shift in the interference nodes occurs,

The two sets of signals will develop a progressively increasing
phase difference as the velocity difference between the two samples
increases. If destructive interference occurs at the nth echo, theﬁ
the transit time betweén,the two samples has changed by 1/2 inn r6ﬁnd
trips, whgre T is the transit time through the control sample, By
this observation a precision of about 5 parts in 106 can be achieved.
The method is described in more deLail by Truell et al [12] and a block

diagram of thé electronics is given in fig. l.4.

1.,2.7 The Sing Around System

In this method an initial pulse fréﬁ an r.f, generator is passed
into the ;pecimen by a transmitting transducer, picked up by a second
receiving transducer, amplified and detected, It is then fed back to
the r.f, pulser to initiate‘the next pulse ﬁhrough the specimen. This
arrangement will then cycle continuously until switched off.

The travel time through the whole loop including all acoustic and
electronic delays will be given by the reciprocal of the sing around
repetition rate as measured by a frequency meter (see fig, 1.5), The
meter measures the frequency of triggering pulses supplied to the‘r.f.
oscillator, If the electronic delays can be accounted for or eliminated
the absolute accuracy of this system would be about one part in 104.
This is seldom practical and the system is therefore not suited to
measuring absolute velocity. |

The precision of the system in its simple form as shown in fig. 1.5

is quoted [9] as 2 parts in 105 for measuring Av/v. However, an

improved system due to Myers [13) and - later Forgacs [14) employing a delay
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gate so that the r.f. pulser was triggered not from the first echo but
by one further down the echo train, was able to improve the ratio of
acoustic to electronic délay and thus improve the precision. The
errors in this later system were then due mainly to instability in the
triggering point which was taken from the leading edge of the echo which
has a slow rise time. Forgacs also introduced a 'tandem gating' idea
consisting of a wide gate using a delay line like Myers to select a‘
particular echo, and a narrow gate to select a particular cycle of that
echo for‘triggering. The cycle sgléct circuit then fired the trigger
at a fixed point in the cycle. A precision of a few parts in lO7 was
claimed for Av/v for this system, This was thought to be the limiting
'precision since a variation of O.OOlOK'would give rise to similar

variations in Av/v in most materials,

1.3.1 Background to the Present Work

The precision of the sing around systems for measuring changes in
acoustic velocity exceeds that of any of the other methods, although its
absoiute accuracy is less than the others, It is therefore the best
method available to date for measurements involving location of'rapid
changes in elastic moduli which may be associated via magnetoeléstic
effects with magnetic phase transitions. It is also the best method
available for the measurement of pressure derivatives of elastic moduli
necessary in the determination of third order elastic constants,

The idea of an ultrasonic 'feedback' device was first used by .
Holbrook in 1948 [5] to study small changes in the velocity of sound in
sélids. Each pulse passed through the specimen was detected by a
second transducer, amplified and used to trigger the systém into firing
another burst of ultrasound into the sample. Once started the system
would therefore continue to transmit and receive acoustic pulses almost

indéfinitely, a mode of operation termed "sing around",



-12 -

Each time the system was triggered by a detected pulse the pulse
passed through a frequency counter and hence the repetition rate of
the system could be measured. The change in velocity of sound
through the system could then be found from the change in frequency
registered by tﬁe meter, If the length of the sample can be determined
to sufficient accuracy and electronic delays allowed for the ab;olute
velocity can be measured. In’practice the changes in transit timé
At/t are found and hence changes in velocity Av/v. Fractional changes
In elastic moduli may therefore be determined to high accuracy.

It was realised that the actu;l delay measured between two pulses
was the sum of.acoustic delay in the specimen and electronic delay through
the sing around detector system and triggering. The main component of
electronic delay was found to be due to delays in the triggering éoint of
the detector. Cedrone and Curran [15) developed Holbrook's ideas further
using the same equipment, Their method of eliminating the electronic
delay was to use two specimens which were identical except for their
length, and keep both under the same experimental condition, The
difference between the two delays through the specimens was the transit
time through a path length equal to the difference In lengths gf £he

specimens,

1.3.2 Previous Improvements to the Sing Around Method

Forgacs introduced some refinements to the sing around method [14]
notably an improvement of the delay line employed by Myers [13] which'
gated out a number of received acoustic echoes allowing the system to be
triggered not by the first detected pulse but by one of the later echoes,
In this way the ratio of acoustic to electronic delay was maximised,.

The interference due to echoes continuing to reverberate inside the

systen when it was retriggered were also virtually eliminated,
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Forgacs also preferred a different counting method using a separate
counter and timer. The sing around was allowed to continue until a
specified number of retriggerings had occurred, e.g. 103, 104, 105.

The measured time interval was terminated precisely as the 10™th sing
around cycle started. This modification of the method was claimed to
have a precision with a limit of * 1 part in 107 for Av/v and on the
determination of this for gold changes of the order of 5 to 15 part; in
106 were detected with an accuracy of about 1%, Papadakis has stated
that this precision can not be imp;o§ed upon under present capabilities

-3 % win give rise to a variation in Av/v which

since a change of * 10
in most materi%ls is of the order of * 1 part in 107.

Later Brammer and Drabble [16,17] designed a sing around system
largely along the linesiﬁf the Forgacs method but with more Stable
circuitry., The detector was changed to a "zero crosser" type wﬁich had
previously been used in nuclear physics, The detector was not a zero
crossover in the true sense in that it could not detect immediately the
voltage in the receive circuit went above zero simply because there was
aiways a finite noise level, To overcome this the detector voltage was
raised to the level of the background and it triggered immediately the
received voltage passed above this.,

1,3.,3 Determination of Elastic Constants from Acoustic Velocity
Measurements

Once the velocity of sound through a sample has been determingd bf
one of the methods outlined in section l.2vthe elastic constants can be
calculated from the simple relationship which is derived below for an
isotropic crystal lattice,

Consider for simplicity a one dimensional array of atoms each of

mass m and at an equilibrium separation of d between nearest neighbours,
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If a wave passes through the lattice causing each atom to be displaced
from its equilibrium position by an amount which varies from atom to
atom, then the force on the nth atom which is displaced by an amount

u will be
n

)

F = Afu .-u) -Af(u -u_ ) eesellb
n n

n n+l n-1
where A is the force constant defined by dF/du = -\, and only nearest
neighbour interactions have been considered. Replacing the force Fn

by the product of mass amd acceleration,

7

.-—- A( 2u ) ....l.?

+ -
un+1 un-l n
which is the equation of motion of the lattice under the conditions

imposed. A solution of this equation will be vibrations of the form,

unl o = A.exp i(krﬁ'wt) 00001'8

where the wt term has been included to indicate time dependence,

Equation 1.8 in a solution of equation 1.7 provided that

Ww . = 2’ &" . Sin('li:g) oqool.g
m 2

When k and hence w are small, that is for low frequency vibrations,
in practice << lolon, this reduces to

A.d°

m

w = k ....1.10

and hence w is a linear function of k for these low frequency (acoustic)
vibrations. Therefore because of the long waQelength of the vibrations
large numbers of atoms vibrate togetheé, and the displacement un may be
expressed as a contimucus function of the distance x in the direction of

propagation, Expanding this displacement as a Taylor series gives,

n
un+l un + d(ax ) + 2d (_’é?—) + eae 4..01011
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and substituting this expression into the equation of motion 1.7 gives

du 2 d
m, —> = A4, g cesal,12
dat ox

which is the equation of a wa?e with velocity v given by

x.a2
m

e 01013

For a three dimensional solid generalising the above results, the
elastic constant ¢ would be defined‘by the ratio of stress to strain, so

that,

/

dar

d
C = a;;'o ;':'z- 0.001.14
where y and z represent the directions orthogonal to x. The velocity

may therefore be represented by : .
V = E— : ...-1.15
. v op

where p is the density of the solid.

This result which holds for the propagation of low frequency
vibrations in a discrete lattice may be compared with an identical
result obtained by considering the solid as a continuum, Such a

treatment may be found for example in Champion [18]. ‘
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CHAPTER 2

The Theory of Elasticity

2.1 Introduction

In the case of an isotropic or a polycrystalline solid theré are
only two elastic moduli which may be defined. These are the Young's
modulus, E, which relates to the velocity of compressional waves
through the solid, and the shear modulus, G; relating the velocity of
shear wéves. The results obtained in section 1.3.3 are not generally
applicable in the case of an anisotropic solid like a single crystal
aﬁd in the present work all regults have been taken from single crystal
specimens. ‘ |

In';his chapter a more general theory of elasticity for any three
dimensional solid is expounded startiﬁg from a definition of stress
and strain in section 2.1. The expression for a general deformation
of a three dimensional anisotropic solid is given in section 2.2 and
then the conditions of hexagonal symmetry are taken into accoﬁnt and the
expression simplified to suit a hexagonal crystallographic group. From
consideration of symmetry it is shown that there are five indeééndent
second order elastic constants (S.0.E.C.) for a hexagonal crystal, and
the relation of these to particular crystal directions 1is illustrated.

Anharmonic effects leading to higher order elastic constants, in
particular third order moduli are considered and a thermodynamic
definition of elastic constants is given. [Expressions for the change
in path length and density of a specimen are derived in section 2.6
which allow corrections to be made-to results of change of acoustic
Velocity as a function of tenpérature if necessary. Such corrections

have not been made to the results reported in the present work,
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Thermal expansion in the particular case of a hexagonal crystal is
also described. Finally a definition of Grineisen parameters,
another manifestation of crystal anharmonicity, is given, and a method

of calculation from acoustic measurementssuggested.

2.1.1 Deformation of a Homogeneous Continuum

A solid body subjected to an applied force will undergo a
deformation. Consider the position veétor of a typical point in the
urdeformed body is given by r referred to a coordinate system Xy
i=1,2, 3. If the point r is deformed to r' under a certaln stress
and the coordingte system X, is deformed to xi' then the transform may
be £epresented by a tehsor describing‘the deformation from inifial to
final state. . |

r' = 'g:g_ veee2,l

and the'xi' which form the basis of r' obey

xi' = 23 aijxj , : . cess2.2

The displacement vector of the typical point r due to the
deformation may be represented as u

‘-1— = r‘ - X ‘ 'oqv203

2.1.2 The Strain Tensor

Following Landau [1] the displacement vector u whose components

u, are given by

== L :
u, Xy xi | eee el d

may be used to derive an expression for the displacement of any point
in the deformed solid. Consider two points close together in the
undeformed solid. If the vector joining them before deformation is

dg with components dx, 1 = 1, 2, 3 then the vector joining them after

i

deformation is d2' with components dxi'. Hence the initial
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displacement of the points is d% which is transformed to 4!

2 2 2 '
as = /(dxl + ax, + dx3) veee2.5
2 2 2
' = - ' ' '
as v’(dxl + dx', + ax')) cees2.6
and from the definition of ui given above,
2 _ 2
as Z(dxi + duy) .
. Z(d;cz + 2au,dx, + du’) 2.7
i i i i" ] i eo s ek
aui
Replacing dui by Z(EE—ﬁdxk gives,
k 'k
ar? = ae? + 2Jauax, + Jau,?
: ii i
i i
Ju
= a® + 2] (haxax,
ki “%x
du du
i i
+ Z hd . dx dx o-c02-8
17%,0 axk sz k8 |
Interchanging suffices in the terms on the r.h.s, gives
ou
ar'? = ag? 4 22(-§x—k)dxidxk .
ik i
3u Ju
L 2
+ ] e 7. ax.adx
1,%,2 axk axi k1
du du 3u
= at?+ ] e It Shacax,  ...209
i,k L Tk i
auk auz auz
and replacing the term +—— + &X 7= == by the tensor u,, gives
X 9x x ik
i L k i
'2 2 |
ag’” = ar o+ izkz uy, ax, dx cees2,10
1

where
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u = ?..‘:l.l(_ + !52 ?ig.'. .?.l:!.'_
ik ox ox, ° ax

i Lk i

This result compares with the equation given by Kittel [2], the
difference being that the present expression for ui

su au
term &z 5;&u 5;&-. The tensor Uige is called the strain tensor and is

LA | k

symmetric, i.e. Uy = uki' For small strains the last term in uik.becomes

negligible and in this case leaves the more familiar expression for u

" includes an extra

ik

du, . du ' :
(——-i_ + —-—](—) i ..002.1-1-
X ox S

k i

LS

“ix T

However, the extra term must be included when dealing with third order

constants, and in this case Kittel's treatment is invalid,

2.1.3 Diagonalisation of Strain Tensor

 The tensor u,, 1is symmetrical and therefore it can be diagonalised at

ik
any peoint. That is, at any point axes can be chosen (the principal axes'
of the tensor) such that only the diagonal terms are non'zero. This

- means that the strain at any point may be expressed as components of three

independent strains in three mutually perpendicular directiohs.

2.2.1 The Stress Tensor

Consider the total force on some part of a body., The force will be
equal to the sum of forces acting on the volume elements which ccmbrise
that part of the body. If F is the force per unit volume then F.dV is
the force on an elemental volume dv.

The forces which cause internal stress in a solid are of very short
range when compared with macroscopic distances and are typically of the
order of a molecular‘diameter. Consequently the forces which act on é
volume element can be represented as the sum of forces acting on all the
surface elements surrouﬁding it, Therefore for any elemental volume dV

the components of force ]Fi.dv can be transformed into an integral over the
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bounding surface, by applying the divergence theorem. This states that
the Integral of a scalar over an arbitrary volume can be transformed into
an integral over the surface if the scalar can be exprgssed as the
divergence of a vector. That is

Jv.rav = [F.as ceee2.12
v s '

In this particular case the scalar is an integral of a vector\pver
a volume, Therefore it may be expressed as the divergence of a tensor

of rank two, Hence the force F with components F, can be expressed as

i
, d0 .

Fy = Zaxik ceed2,13
k °%x
30

R -\ [} =k av
v i VX 8xk
. - jgoik.dsk _ veee2.14

where the dSk are components of the surface element vectors 4s. The

which is obtained in this way is the stress tensor.

;ensor of rank two, oik
The term cikdsk is the i th component of the force on dsk' that is the

forée in the 1 direction due to an incident stress in the k direction.

To prevent turning forces and hence to maintain equilibrium oik must

be symmetric. That is

g = v

ik ki ) -.-.2.15 .
2.2.2 Hooke's Law

This states that for sufficiently small deformations the strain is
directly proportional to stress, Hence the stress may be expreséed as
a linear sum of the strains.

6 '0.02.16

ik - gcik,j Yy

vhere the u, represent the strain tensor in Voigt notation and not the

3
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displacement vector (Voigt transformation of indices is defined as

follows: 11->1, 22-+2, 33+3, 23~+4, 31-+5, 12-+6). The terms Cik 3
’

represent the various S,0.E.C.

2.2.3 Hydrostatic Compression
In a stﬁdy of third order'elastic constants measurements under
hydrostatic compression are necessary. If a body is subjected to uniform

compression from all sides the stress tensor will have a particularly
simple form since there are no shear stresses. If the pressure is P
acts on an elgmént of volume ds

then a force of P.ds of the surface.

i i
. By reference to equation 2.14 this force must also be equal to oik.dsk

o o Xoik.dsk = P.dSi noooZol?

k .
and, in order to satisfy this condition,

P.ds, = EP.éik.dsk ci.02.18 -

. ; k
where Gik is‘the Kronecker delta.
.. p.8 = o . cees2.19

ik . ik

and therefore the stress tensor has the form,

o - P o o ‘,
- (o] P o]
o o p _
2.2.4 Dilation
The change of volume of a bady due to a deformation may be found from
the matrix describing the deformation. Consider a deformation represented

by the tensor a = a Any position vector r of a point in the body is

ij°

transformed to r' such that according to equation 2.1

r! = a.r

and in matrix form,
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a

a

11 %12 %3 1

) = 3y 3y 23 X5
]

X'3 831 %32 333 )

The ratio of final to initial volume is given by the determinant of

the transformation matrix

det a veeel 20

<I€
L]

= 1+ ull + u22'+ u33

are as

ij
The fractional change in volume AV/V

where V' is the final volume, V is the initial volume and the u
defined in equations 2.10 or 2.1ll.
| 1s thus given by

Av '
— = u.. +u,, +u

v 11 22 33 seee2.21

2.2.5 General Deformation

In the case of a general deformation the non diagonal components of
the stress tensor will also be non zero. Under conditions of equilibrium

the internal stresses in every volume element must balance.

F) e = O eee2.22
20
.t axik = o0 veer2.23
k Tk

The external forces which act only on the surface must balance the
internal stresses. If P is the external force per unit area on the

surface ds, with components dS

k
P,.ds = Loy ds cees2,24
k
The components of dS in the kth direction dSk are related to 4S5 by
S = ee e e .
d " dfi.gk 2,25

where n is a unit vector normal to the surface and n, are its camponents.

i
Therefore substituting 2.25 into 2.24,
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) 04Ny = p, ce02.26

So that the component of the external force in the i th direction is
‘equal to the sum of contributions in the i th direction from all the

stress components,

.

2.2.6 Mean Value of the Stress Tensor

It has already been shown in equation 2.23 above that under

equilibrium conditions

Z aoik ~
ox o 0
k 7k
multiplying through by xk and integrating over the whole volume gives
90 : ax
ig ] k
/I e x, o+ Qv = JT == (9, +x )av [lo, === s av
3 sz k ) axl 12 "k 3 it axz

...'2.27
and both sides are zero. The first integral on the r.h.s. may be trans-

formed into a surface integral

= 'gﬁi&'xk ds, - f%"fm-&kl-dv
= f’z"u %, ds, = Jo v = 0
ces.2.28
From equation 2.26, zoik K = Pi and substituting this gives
éPi.xk.as = ﬁzu-xk-dsjl cees2,29
and hence that,
o, av = jp x, ds = .v.'a';k 002,30

where Eik is the mean value of A By symmetry this gives

— 1
= P
Oik 9§(Pi xk + S )dS eeee2.31
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which allows the stress tensor component's mean value to be calculated

simply from the prevailing macroscopic conditions.

2.3.1 Elastic Moduli of Hexagonal Crystals

The potential function ¢ of a crystal [3,4] may be used to represent
either the internal energy in adiabatic processes or the free energy in

isothermal processes. Expanding ¢ as a Taylor series.[5] where u is the

strain
¢(u) - ¢° +u du + 2 d‘ﬁ- + s ® & 'Q..2.32
and using d¢ - Zai- where the u, are components of u
du iaui i
¢ = bt Lot l Cpouu L.2.33
' a,B ikfm

where terms of higher order have been neglected. Since only the variation

of ¢ is of interest the arbitrary constant ¢o may be set to zero

¢ = )O0 s  + %] C u,, u cees2,34
o, B apf af iK4m ik&m “ik "m
and the Ciklm represent the elastic moduli of the crystal since Ciklm has

been shown to be

2@
a ....2.35

C =
ikam auik aulm ,

2.3,2 Symmetry Considerations

By the symmetry of the strain tensor, the value of the product uik ulm
is invariant when i,k or &,m are interchanged. Applying similar arguments
it will be seen that

Cixtm = Critm = C1xms = Comik

which immediately limits the number of possible independent elastic moduli

to 21, for the class of lowest symmetry.
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For hexagonal crystals the number of bossible elastic moduli may be
further reduced. Let x,y and z be the coordinate axes of the system
with z the six-fold axis. Define transformations to a new coordinate
system £,n,z by

3 = x + 1y - eees2.36

n = X - iy 00102037

such a system must have invariance under a rotation through ﬁ/3 about the

z axis. Applying such a rotation sends £ and n to the following

coordinates y
L 1*/3
€ + £ e = E(cos™/3 + 1 sin'/3)
—iT
n -+ ne iv3 . n(cos®/3 - i sin'/3)

and in order to maintain invariance under such a transform, only those

ciklm whicb contain the same number of suffices of & ard n can be non zero.

2,3.3 Independent Moduli

Replacing £ by a and n by b and z by ¢ gives the three principal
axes of the hexagonal system. Applying the conditions on the moduli given

above this reduces the number of independent moduli to ccccc' ca@ab' Caabb'

abce! c::1cbc'

The compressional constants C33 ard Cll relate to longitudinal waves

propagated along the ¢ axis and in the basal plane respectively. The

shear modulus 044 is obtained by propagating a shear wave along the ¢ axis

which is polarised in the basal plane. The shear modulus C66 = H(Cll - C12)
is found by propagating a shear wave along one axis in the base plane and
polarising at right angles, along the other axis in the base plane.

The cross coupling coefficient C is related indirectly to shear and

13
longitudinal wave propagated at 45° to the c axis. All of these directions

and the equations relating accustic velocities along certain crystallographic

directions to the principal elastic moduli will be found in reference six.
Lieeraity
Library

Hull
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2.4,1 Definition of Third Order Elastic Constants

Cohsider a body subjected to a stress represented by the tensor ojk'

and let the potential function ¢ be given by 2.34

= C + C +!..
¢ EB aBuaB a%y& aByG uaBuyé

v

In the above expression the terms C represent the second order

aByds ]
elastic constants, normally referred to as elastic constant, for example in

Hooke's Law

- 9% -
caB | auas ocls cees2.38
Copys = —2b 2Cup 2.39
. au' au . au L BN .
af Y6 y§

The next order term in the series expansion is C which 1s the

aBy6eg

third order elastic constant term which gives deviations from Hooke's Law

(5,7]

¢ - e 2.40
a876e; auaBBuYsaugc cssebs

This gives the required definition of Secong and third order elastic
constants, Higher order elastic constants may be easily defined by

repeated differentiation of ¢.

2.4.2 Thermodynamic Derivation of Higher Order Elastic Constants

The thermodynamic energy equations for conservative (non dissipative)
media are [8]

au = T.dS + aw
oo'o2-4l

dar = auv - d4(rs)

Consequently if ‘ﬁk is the stress tensor and ujk the strain tensor

the two above expressions may be represented by

= 0 L L]
du T.dS + j{ sx 993 2,42

dF = "S.dT 4 dU. ) 00002-43
jk

o]
sk 3%
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The thermodynamic potential used in equation 2.34 will be the free
energy F under isothermal conditions and the internal energy U under
adiabatic conditions.

Therefore the equations 2.42 and 2.43 may be modified under conditions

of adiabatic or isothermal processes respectively

Adiabatic du = ) %, QU5 cee.2.44
jk
Isothermal dF = ij ojkdujk eee02.45

Under their respective conditions the internal energy and free enerqy
become functions of strain only. The isothermal and adiabatic third order

elastic constants are therefore, according to Brugger [9]

s 33u ‘
c = ( - . . ) .‘..2.46
. jkpasim aujk Bupq aulm g

T 3dp
€4xpatm = o) veee2.87

jk pq im F

2.4.3 Anharmonic Vibrations

From the expression for the pbtential function given in equation 2.34

¢ . = Q%CGBUGB + GEYGCGBYsuaBUYG e

Previously only terms up to the second order had been considered, and
under such conditions the components of the stress tensor are linear
functions of the components of the strain tensor. This may be shown as

follows,

If ¢ remains constant under either an adiabatic or isothermal change,

3¢
= C, + JC ..U o ceee2.48
Buya af Y6 aByd y$
aéd replacing CaB by "oaB gives
ceeel.49

o = Jc . .u
aB v6 aByd yé
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which gives the required linear relationship between stress components
and strain components.

If higher order terms are included then the contributions due to
the additional terms are called anharmonic effects because the
correspording equa£ions of motion are non-linear, and hencé do not

permit simple periodic solutions.

2.4.4 Third Order Anharmonic Effects

The cubic terms in the elastic energy expression give quadratic
terms in the stress tensor in addition to the linear terms. The

strain tensor must then be given by the form of equation 2.10

. . a[ffi+§i‘3_+zil‘£i“_z]
ik 2 Bxk Bxi L 3x X

Expressing, the elastic energy of a body under strain and substituting

in for u‘ as given above,

ik
du 3u Ju ou
a B 2 2
6 c o (=2 s B 4 7T L. 2
af 2 BxB Bxa g Sxa axe
. o T‘T ( aua . Bue . aul ' auz)
a?y& 4 aBYs axB X ) axa axe
( aua du 8 Z u, ) 3 % )
aBySer 8 axB ox ¢ X axB
aByber
'0002.50
and the variation in this energy may be expressed as
du
d¢ =] 2. veee2.51
ou ax
i,k i
3(57)
k
Bui
where —— = u as defined in equation 2.11, Therefore,
axk ik .
au au oik 000.2-52
3( i.) ik
ax
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. . Ju
. dd = Yo, a( i
& % O (=) | ‘eei2.53
k
: o0
3 ik
= ) (axk (0, -du,) = @u, =, ) veea2.54
ik
304, . .
where the terms 2 /ax are the components of force on the body as
k k

shown in equation 2.13. Hence although the expression for d¢ is

different when anharmonic effects are included the equation of motion

remains the same , that is,
. 2 /'\
w304y
' . k

where o is the density of the undeformed body. The components of Ok

must now be given by the complete expression.

Thus even although an extra anharm;;ic term has been included into
the Stréés tensor the elastic constant can still be obtained from an
equation of the form given by 1.15 because the equation of motion is still

of the form given by equation 1.12,

2,5.1 Variation of Acoustic Velocity with Temperature

If v is the acoustic velocity in a solid of density p with elastic

constant ¢, then by equation 1.15

v = Y e veee2.56

p

then the derivative is {7)

CAA
oT - 2v

[+
©

C
-—pv- ) "..2.57

|
wlar
318
o

T

The sing-around method measures a period T or a frequency f of
acoustic waves through the specimen, which is related to the wave path

length through the specimen £

o|<

l...2'58



- 30 -

The path length % is temperature dependent and often it is more
convenient to measure the frequency £ amd calculate the corresponding
velocity v assuming the length of specimen % remains constant, which is
taken as the room temperature value lo.

Differentiation of the equation 2.58 with respect to temperature T

gives,
v of oL
~ = o f_—- cselos
3T Yar ot rar weee2.59

If the effects of temperature on both specimen length ard density
are ignored then the relationship between sing around frequency and
elastic constant will be given by combining equations 2.59 and 2.57

o 1, 3¢

%' 3T T Fwp, or neee2.60
o -
‘and rearranging gives
p 222 g2y 3¢ © 2,61

oo 9T aT .

where Po ard 20 are the room temperature values of p and £ which are
assumed to remain constant. Integration of 2.6l gives
c

2'2.f2 = - ootl2o62
o .

Po

which is analogous to equation 2.5.6.
The correct relationship between elastic constant and sing around

frequency is given by

of L - A ol e e 3p
besr Y Py - 28 (p 3T o2 a'r) ve+2.63

In order to estimate the correction necessary to the raw data
conshier a cube of isétropic material of side & and linear the;mal expansion
coefficient «a, althéugh this has limited applicability to the materials under
consideration which are hexagonai single crystals, because of their

anisotropy.
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If the length of side of the cube changes from 10 to £ during a
temperature change AT

!. - 21 = a.ATol ooo.2c64
(o] (o}

and similarly the volume changes by

V - V = 3a.AT.V o-ou2065 '
) o '
The density of the material of mass m will therefore vary by
p-p = —3.G.p° veeel2.66

o

Returning to equation 2.63 givés,

23 , ,p2, 3% _ 1 3% _ c
2f£o oT * 2f‘2048T Po aT B—g aT
?00'2.67
Differentiation of the equations 2.64 and 2.66 gives
98
(=) = a. L
oT zo o
) 'v-a2.68
. = -
(BT ) 3.0.p
Po
ard substituting these into ecquation 2.67
2 3 (g2 2 92 - 1 gc 3.a.c .
. lo 3T (£5) + 2f zoa p T + p
o] o
.I..2!69

Integrating on both sides with respect to T and setting the limits
of integration as To and 'I'o + AT where To may represent for example room
temperature

zg. £2 (1 + 2aAT) = E"— (1 + 3aAT) ceee2.70
(e}

and both Zo and p, are measured at room temperature so the required

correction is

c - Do-fz-lz (1 + 2a.AT)

o '('1"'"—"‘—"'+ 3 Q.-A-T-)- newe 2 071
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2.5.2 Thermal Expansion in Hexagonal Crystals

Thermal expansion is probably the most obvious conéequence of
anharmonicity in lattice vibrations and can yield information on the
strain dependence of forces in the solid. The linear thermal expansion
coefficient in the ith direction may be defined from macroscopic

considerations. If x! is the length of the solid at temperature To

i
and xi is the length at temperature T, then
' = -

xJ x;(L+a, (T-T))) _ . ceee2.72
ard as in 2.1.2 the displacement u, = xi - %y

ui = | Gi.xi(T-To) 000'2073

aui . .
L] L] 5x_j.- = ai(T—TO) ) .'..2.74

ard the l.h.s. may be expressed as the strain component u,, of the strain

) ii
tensor. Eij )
uy = ai(T-To) vess2,75
Néw if Uy is replaced by ny where the reduced (Voigt) nctation is used
Co
L (ﬁ-)o o 1=1, ...6 ....2.76’

where o denotes that all stress components are held constant.
Thermal expansion is generally described in terms of the Griineisen

functions Fj which are given by [10]
| 1 (285

P = ..'..2‘.77
n %

i C
n',T

where Cn is the specific heat capacity at constant strain and n',T

denotes that strain components, other than n, and temperature are

i

maintained constant. This equation may then be expressed in terms of

measurable quantities,
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\'4 : S
r = 2-——.C. .(l = z-y.c . a 00002078
3 Cn i 3 Cc ij

and the Czj and Cij are the isothermal and adiabatic elastic constants,

and Cn, C0 are the heat capacity.
The thérmal expansion coefficients can then be obtained from the

Grlineisen functions,
c

== n == —g- S
oy X sji s = E S ceee2.79

where the Sji and SSi are the elastic compliances.
The above three equations may be used to give the two independent
Griineisen parameters for axially symmetric crystals like hexagonai.

These may be defined as Q" and Fl with respect to the principal .

symmetry axis.

~ 1 23S
rl" = 2C ( alna) oo oo2.80
n C,T.
1 39S
Ty = c_ ( aznc)
n a,T

- where a and ¢ are the lattice parameters of the®unit cell. This may be

expressed as,
S

\ s S :
ry = c, ((c, + €y + Clyoy) rese2.82

\ s 5 ' - o
P” = E:—O" ( 2C13al + C33 0-” ) i ceee2.83

and solving these equations to give a) and ay, explicitly in terms of the

Griineisen parameters

s s
c0 [c33rl - c13§) s 54
o = b . 2 sneels
1 v s, 8 .8, L, 8.2 B
C33(Cyy +Cpp) - 2(Cp5)
’ S s S
L. ¢ L Hey rep)ly - % 5l 5 at
l/ v S S S z *aw e *

5
(c,, + ) - 2(013)

€33 * G2
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2.5.3 Griineisen Parameters

In studying the anharmonicity of a crystal lattice, the analysis in
most cases deals primarily wi§h the Griineisen function I, which is a
measure of the change of lattice frequencies with the volume of the
crystal, For the cases of isotropic or cubic crystallographic solids the

Grineisen parameter T may be defined by

. 1 '
r = E—'( ﬁ)n,T 00002.86
n
v [ 2S o
= -~ ntr ’ -o--2.87
Cv Y n,T

where n is the lagrangian strain, and CV is the specific heat at constant
volume. Furnctions such as (%SJ or T can be calculated-fairly easily
from the Helmholz free energy [efg. 10 P.518] and are therefore
convenient for describing theoretical models.

For the case of an anisotropic solid, and in particular for the
case of a hexagonal material, the expressions for the Grineisen parameters
must be modified to include each strain coordinate since all direction;

are no longer equivalent, A natural generalisation of equation 2.86 is

therefore ,
1,98
r = _—("""_‘) x":l' LY 6 00-02088
CA Cv anA

n',T

‘és given by Barron and Munn [11, P.86] where the n',T indicate that all
strains other than n are held constant and that temperature is held
constant. Each independent PA may then be analysed as the single T is in
the isotropic and cubic cases. The equation 2.86 may be obtained from

2,88 by simply allowing Pl = P2 = F3 = Ty P4 = Fs = P6 = 0 using

abbreviated Voigt notation.
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The equation 2,88 may also be expressed in terms of directly
measurable quantities like the elastic constants and thermal expansions

in the way outlined by Munn [10]

u

\'4 T
r = —-Z C, .a
. L N g .8
A Cv v ApT Ty . 2.89
\' z S
= — C 'a
Cpu,lu u
where the Cfu and Cfu are the elastic stiffnesses under isothermal and
adiabatic conditions and o, is the»thermal expansion coefficient along

the uth direction and the C,_ and C

v p are heat capacities at constant

strain and constant stress.

When electronic contributions are negligible then both C.. and S

\Y
will deperd, to a first"approximation, only upon the temperature and the
- Jw
normal mode frequencies ws while T depends upon the derivative svs-.

Expressing the specific heat capacity Cv as the sum of contributions Cr
fromvall the available modes, gives,

3N=-6
C = ZC 00002091

v r=1 Y

where N is the number of atoms in the solid.

4

From the quasi-harmonic approximation all thermodynamic and elastic
properties of a crystal are assumed to be determined by the harmonic
“lattice frequency distribution and its dependence on volume, or strain.
Tﬁe I''s may be related to the strain derivatives of the normal mode

frequencies by
3N-6

) Y, :C,

r = Tl eee2.92
IN-G

Cr
r=1

where the Yr's are called the mode Grlineisen parameters, These general
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mode Grlineisen parameters may be defined, e.g. Elliott and Gibson [12,P80]), .
by considering that the characteristic vibrational modes of a crystal change

with volume, and in particular making the assumption that they undergo the

same fractional change

dw av
_— = . —— esen tg
W Yy 2.93
and specifying for a wavevector g with polarisation P
_ 9 fnw P
Y = _—_L . .O.02.94
q,P 9 in vV .

This last equation is the form quoted for the individual mode gammas by

Collins [13,P.325]. Replacing the frequency wq P

wq,P = q.SP(6,¢) v0ee2.95

by

where q = Ig]and SP(6,¢) is the velocity of sound of the pth branch in

the direction given by the angles (6,¢).

. = = 9 2ng - 9 2&n S,(9,9)
Yq,p 3 oV 3 IV | veen2.96

This is the form of expression arrived at by Sheard [14].
Deviating from this paper and following the method of Gerlich [15] the g

may be replaced by
2 2 2
q a (Ll + L, + L

)~ eee2.97

r

where the Li are lengths of the crystal parallel to the x, y and =z

crystal axes.

2,.2, 2"
aln(Ly+Lo+L3) ) 3AnS,(8,9)

Yq'P= - alnv afznV .-002-98

Converting here from derivatives with respect to &nv to derivatives

with respect to P and using

av
dinv = 7

_= - Bvadp 0-0-2099

where BV is the volume ccmpressibility
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s (an2rrerd) 2.4n 5.(6,4)
q,? Bv : P Bv oP
.'..2'100

Differentiation of the terms on the right-hand side gives,

228y, + m2By  + n2g3

T 4y T 1 3

Y, (@ = 4+ —=— =— (2n S_(6,¢) )
P B, BV 3P P

Vp

.0'.20101

where the Bi are isothermal linear compressibilities along the
T . ‘
directions of the crystallographic axes, 1l,m,n are direction cosines of q,

and Bv, is the isothermal volume compréssibility.
T
Denoting the elastic constant associated with the mode q,P by

Cp(q) and using this to replace the velocity SP(6,¢) gives the following

3 &nSp(8,4) _ 1 3 &nCp(8,4) _
ap 2 aP 5 BVT .'..2'102

This therefore leaves the expression as,

228, + m?B, + n2B
vl = 1, 2, £ 1 L ? nCL(8,4)
p ‘3 - =Y e —
8 2 Bv opP
v
T * '00¢-2-103
2 2 2
228, + m?B, + nlB, 3C,(6,9)
YP(CI) = T T T - L + 1 (, "] )
8 2 2¢, (6,97 F, P
VT

.I.'20104

This last eqﬁation is then analogous to the equation used by Fisher
th] to calculate Griineisen parameters»from pressure derivatives of
elastic constants,

Since £, m and n are direction cosines of the wavevectgr g.then by
suitable choice of‘g_alonq crystallographic directions two of these three

2, m, n can be made zero leaving the simplified expression

i . BT 1 250

. ...2.105
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The average mode value of the Gruneisen parameter is then obtained
by summation over the possible polarisations P for a particular

propagation direction g

3 .
1
r - §'P=Xl YP(Q) . 00002o106

and therefore for a hexagonal crystal the Grineisen parameters perpendicular

and parallel to the unique axis may be defined by

3
1 ' .
1 % 1
rl = 3' P=1'2_(YP (a) + YP (b) ) , eves 2. 108

The Gruneisen parameter for the whole crystal is given by

N .
15 |
T 1}; qX=lYp(q) vree2.109

The average mode Gruneisen parameters may then be compared with that

determined from thermal expansion data.
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CHAPTER 3

Magnetic Interactions and Phase Transitions

A brief outline of magnetic phencmena in general terms is given.
Some aspects of the historical development of theoretical magnetism are
discussed including the Weilss classical theory and the quantum
mechanical theory. Two models for the behaviour of magnetic structures
are presented, the Heisenberg model,'based on quantum mechanics, and the
Ising model. s

The thermodynamic behaviour of magnetic materials in the proximity
of magnetic phase transitions is also t?;ated including ;he applicability

of two models.

3.1.1 Types of Magnetic Order

The most widgly recognised of magnetic pheno&ena is that of
ferromagnetism in which the magnetic moments within a domain are all
aligned parallel, although direction frequently changes from domain to
domain, Neighbouring domains may be aligned by application of a magnetic
field and when the field is removed the material in genéral reta}ns some
of its magnetisation.

In paramagnetic solids the atomic moments are randomly oriented in
the absence of an applied field. By application of a magnetic field
however they may be aligned in a similar manner to the ferromagnet, but
when the field is removed they revert to their former random orientations,

Antiferromagnetic materials have an ordered aligmment of atomic
magnetic moments in such a way that the ordering produces‘zero bulk
magnetisation in the absence of a field. Ordering of the moments in this
way may be achieved by various étructures the most obvious of which is

that when nearest neighbour moments are aligned antiparallel to each
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other, This is known as simple antiferromagnetism., Another
important type of antiferromagnetic order, particularly in the rare
earths, is helical antiferromagnetism in which atomic moments in a
particular lattice plane of the solid are inclined at a fixed angle to

the moments in the previous plane.

3.1.2 The Classical Theory of Magnetism

A non quantum mechanical explanation of the phenomenon of
ferromagnetism was given by Weiss [1] in 1907; He considered that an
internal or 'molecular' magnetic field existed inside the ferromagnet.
This caused the moments to align parallel to the field. ﬁnfortunately
the magnitude of this field would need £o be ~ 103T to explain the
effects obsérveﬂ. It is now used only As a convenient way of
considering the magnetic interactions by treating them as if they are
in a mean field produced by allether magnetic moments in the solid.
The mean field in a paramagnet.was set arbitrarily to zero, and the same
approach was later used with antiferromagnetism, The treatment leads
tb a simple rule known as the Curie-Weiss Law exXpressing the susceptib-
ility of a ferromagnet. Analogous expressions were obtained for

14

paramagnets and antiferromagnets.

3.2.1 Electronic Magnetic Moments

The contribution to the total magnetic moment of a solid comes in
the main from electronic magrnetic moments., Those atoms with partially
filled inner electron shells, for example the rare earths, whose
partially filled 4f shell lies inside the filled 5s, S5p and 6s states,
have net magnetic moments due to these unfilled shells. Thié is
however not the only way in which electrons can contribute to the net
magnetic moment. In some metals, notably Fe, Ni, Co, the magnetic
properties are thought to deéend on unpaired electrons in the ¢onduction

bard.
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In the former case the magnetic moments are localised on the
atoms and this is termed the localised moment model. It is this

type of magnetism with which the present work is concerned.

3.2.2 Magnetism as a Quantum Mechanical Effect

An expression was derived by Heisenberg for the energy of two
electrons whose wave functions overlapped. A term which could ndt be
.explained classically was fourd in the Hamiltoni%n and this is now
known as the exchange interaction. i By considering fo; example the case
of two. atoms, each with one electron, in close proxzimity so that the
wavefunctions overlapped and the electrons were effectively shared by
the ﬁwo nucléi,‘the application of the Pauli exclusion principle was
found to put a constraint on the elecﬁrons which therefore behaved as
though there were an interaction energf'ﬁetwéen their spins,. When the
total Hamiltonian of the electrons was derived in this case the

additional term Hex was found to be of the form,

ch

H = '-J'S'E

exch ‘—i j '..03101

where s, and s, are the spin vectors of the two electrons and J is the

i =3
exchange integral. This is derived mathematically in Appendix’ 2.

3.2.3 The Exchange Integral and the Pauli Principle

The extra term in the Hamiltonian referred to as the exchange
interaction has no classical analogue ard occurs in addition to a
classical dipole-dipole interaction between the two electrons and their
nuclei, This exchange term is derived as a direct consequence of the
Pauli Exclusion Principle, and depends upon the spin vectors of the twd
electrons concernea and the exchange integral J, which may be positive
or negative depending on the amount of overlap between the wavefuhcticns

of the elcctrons.

+
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3.2.4 Models of Ferromagnetism

The origin of the interactions which cause magnetic ordering in a
solid lies in‘the exchange forces which were outlined in section 3.2.2.
These are essentially of an electrostatic nature and lead to a contri-
bution to the total Hamiltonian of the solid, of

-5 1 a
i,3

)‘s-'s ....3.2

g B3 2425

exch

Use of this equation as the magnetic energy in the absence of an external
applied magnetic field gives a semiquantitative description of the
magnetic phenomena in antiferrcmagﬁets and ferrimagnets. However,
ferromagnets are almost always metallic and hence the localised spin
system upon which this, the Heisenberg model, depends is not always
applicable, since for most of these elements the magnetic properties
depend on conduction electrons.

In the case of the rare earth elements the Qagnetic moments are
localised at the atomic sites in the lattice. However even here there
is a problem because the atoms aré so distant that the tightly bound 4f
orbitals do not have overlapping wave functions, énd hence direct
" exchange can not occur. The exchange between 4f electrons in Fhis case
is indirect proceding via direct exchanges between each localised 4f
electron and conduction band electrons.

In the absence of an external field the vectors s, are freé to
rotate so that a mode exists which has zero energy (called the zero

frequency mode) and a series of low energy excited states is possible.

A discussion of spin waves is given in section 3.3.3.

3.2.5 The Ising Model

The Ising model is a2 non quantum mechanical model of magnetic
ordering having the unique distinction of being the only model of a

second order phase transition which has so far given a mathematical
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solution, This was achieved by Onsager [2] for a two dimensional
Ising lattice,

If there is an éppreciable orbital contribution to the total
magnetic moment of an atom, for example if the major contribution to
' magnetic moment comes from tightly bound electrons localised at the
lattice sites of the solid, then considerable anisotropy may occur for
different directions of the moment. In the Ising model, which is'the
most important anisotropic model to have been given much attention so
far, éhe moments are confined to thé "2" direction with values
g% = tj: depending oﬁ whether the’spin is parallel or antiparallel to
this chosen "z" direction. |

Consider a set of spins or magnetic moments sl, s . sn

2'
associated with atoms airanged in some particular symmetry, for example
on the';attice points of a particular crystallographic group. Each of
the spins is allowed to have one of two possible orientations which

correspond to a chosen crystallograﬁhic axis, In this case the

'magnetic contribution to the total Hamiltonian is,

Z z
Hmag s - ‘5 igj J. (gij)§'i"s_j Ql.'3.3

4

which may be further simplified by considering only nearest neighbours
and by assuming that J(gij) is the same for any pair of nearest
neighbours and hés the value J. This simplification allows the
solution of the partition function at least in the two dimensional
case, and from this all other thermodynamic function may be derivéd, as
shown by Greene and Hurst [3].

The magnetic energy in the absence of any external applied field

is then given by the expression’

.8 ceee3.4

H = =% .3 7 55

s
"a 13 %

nearest
r2ighbours
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The likely total energy may be evaluated if the partition function

Z for the system can be found. The partition function has the general

form,
J
y/ = . 2 exp(m z Ei'gj) eeee3.5
all confiqurations 1.3
of sy , nearest
neighbours

and once this has been calculated for any particular geometricaliﬁase
the thermodynamic potentials can be found.

The Ising model is therefore the only non-trivial model of
order-disorder transitions for whicﬂ exact solutions have been obtained.
In the simplést form of the model there is exactly one atom per unit cell,
(This may be,shown by constructing a Wigner-Seitz cell about each lattice
peint). The advantage of consideriqg such a lattice cell model is that
although the number of possible configurations of spins in the solid is
very large, the actual number of possible configurations of a particular
cell is small. Also; on the whole, configurations of neighbouring cells
will be correlated and this must be taken into consideration,

In this model there élso exists an energy g;p of 8.J.52 between the
ground state and the first excited state, which in the Ising model
corresponds to the energy required to reverse one spin in the fiéld of the
others. This may be contrasted with the low energy states predicted on

 the Heisenberg model which give rise to spin waves as discussed in section

3.3'3.

3.3.1 Magnetic Ordering in the Heisenberg Model

In solids whose magnetic properties depend on electrons which are
localised at the atomic sites the exchange mechanism is unlikely to be
direct exchange between the localised electrons simply because, as

explained above in section 3.2.4, their wave functions do not overlap.
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Instead it is considered that the exchange between such electrons is
indirect.involving electrons in the conduction band, which interact
directly with bound electrons. In this way the orientation of
magnetic moments of unpaired electrons on a particular atomic lattice
site can influgnce the orientation of unpaired electrons on a
neighbouring atom even though the atoms are so far -apart as to pgevent
exchange between their electrons. An 'teffective' exchange integrél J
may still be defined in this case and the form of the Heisenberg

exchange energy retained,

s

Tﬁe sign of fhe exchange integral is dependent on the interatomic
or interionic spacing in the solid. It is only over a certain range
that the exchange integral between nearest neighbours is positive, and
hence that the minimum eneigy state is achieved with neiqhbouring'spins
parallel, As the interatomic spacing increases J becomes more
positive while as it decreases it becames more negative, This may be
expected since the exchange energy is proportiohai to -J and therefore
increases as the electrons come closer togeﬁher:

If all the exchange integrals between electrons contributing to fhe
magnetic moments are positive then the lowest energy state occufs when the
magnetic moments are parallel and hence ferromagnetid order is favoured.
If some exchange integrals are negative, howeVer, then some spins will align

_antiparallel. The simplest case occurs when only the exchange integrals
between nearest neighbours are significant and are negative. This

gives rise to simple antiferromagnetism.

3.3.2 Helical Antiferromagnetism

Another form of magnetic ordering which also gives rise to zero
total magnetisation is the helical order or helimagnetism, from which simple
antiferromagnetism can be derived as a special caSe. If the condition

for the direction of moments is
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where uB is a é;;; m;éneton ard g is the splittiﬁg factor,uéiving.the
ratio of the number of Bohr magnetons to H.

If the constant term is set to zero then there will be no component
out of the xy plane, and moments will describe a helical structure with
vector along the z axis, _

The total energy of such a structure may be found by using

Heisenberg's expression and summing over all pairs of spins 1i,]

W = - ZJ(Rij)%.ij ' .0003.7
i,3
= - (—-!E--;)2 z J(R, . ).cos(w.R, =w.R) ~ 3.8
ard replaéing Bi-gj by Bij gives
m )2
W = - - J R . .R, N e 0o el
. (g_‘jB §j (—ij) cos (w. "13) 3.9

which is the total magnetic energy for such a structure. This has
been employed in specific cases of helical magnetic structures, for
example Dysprosium, by Enz [4] and Nicklow [5] to calculate the inter
layer turn angle w as a function of the exchange interaction, by

setting gg-= 0 at equilibrium.

3.3.3 Excited States of a Magnet: Spin Waves

At the absolute zero of temperature the magnetic moments of a
magnetic solid would be perfectly ordered as governed by the exchange

integrals discussed in section 3.2 and the total magnetic moment, in
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the case of a fefromagnet, would reach a maximum value. As the
temperature is increased, however, the moments acquire thermal energy
which allows them to deviate from the perfectly ordered state,

Consider the case of a ferromagnet which in its ground state will
have all its moments in a particular direction. If thermal energy is
supplied then this results in low level states where all the spins
precess about the originél direction. If the nearest neighbour iﬂter—
actions only are considered and their interactions represented by thé
Heisenberg expression in equation 3.1 |

w = - J.S 00003010

5 3m
and if J is the same for all nearest neighbour pairs the total energy of

an Nx N two dimensional lattice will be

W = -J X Z s, reee3.1l

mag j=1 i=1""

If one of the N magnetic moments is reversed in the field of the

.S,
—i+l

others then this will give a change in energy of Ay
Aw = BoJusz ’ !0.03.12
Howevet a state of much lower energy is obtained if all the spins

exhibit a precession about the original direction. The energy

contribution due to the ith spin will be .
wi - - 2 . J . 'S—i.('s"i—l + §'i+l) oov.3'l3
and if the magnetic moment of the ith spin is Hi
P‘i = - g .uB'E'i oo.i3'l4
3 - 2.J .
e W T gy M- (B Y o5) seee3.13
> +
and replacing g.n (Ei-l §i+l) by 91' the local field which is observed

B
by the 1 th spin, this gives

Wi = - Hi.'?‘i 010.3016
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The rate of change of angular momentum fl{ﬁ.gi) is given by

dt
i) = B | 3.7
odt ~i 'p—iA"—i *se0 e .
2J
= ;-(EiA's—i + -s—'iA -s—i+l) Q...3l18

resolving this into components along the three orthogonal directions,

D, % . 24J  y, =z z Lo 2.y V4
pE S ) n 51 (Sgat Sp) TSy lspg tosig) )
‘ veed3.19

Since the excitation is aSsumed‘to be of low energy, and if the
original direction of the moments was parallel to the z axis, then the
x and y components would be small and therefore s Z . s. The products

i
X .Y :
of s and sy thus become negligible.

1

'z%;'fsiz’ =0

SBE(Six) = M(zsiy - Si-l N s§+1) seee3.20
Bs) = - gg_ﬁ(ZSix - 81 " s’i(%l) .

These equations yield solutions of the form

8, = Ax . exp(i(nka - wt))
'00'3'21 '
siy = Ay . exp(i(nka - wt))
which are then satisfied when
flw = .4.\].5. (l -COS ka) . -..30 22

which is a lower energy state than the 8J53:required for reversing one
of the spins, The low energy excitations in this model are therefore
wave-like variations in the individual spin vectors. The excitations

are known as spin waves.
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3.4.1 Phase Equilibrium

Any homogeneous and physically distinguishable portion or state of
a system having definite boundaries is termed a phase. The
equilibrium state of a body may be determined by specifying any two
thermodynamic quantities, for example pressure and temperature.
However, for each pair of these values the equilibrium may not co¥respond
to only one phase, It may happen for example that given a particular
pair of values of the two variables that either or both of two phases
can be in equilibrium. At such a point a phase transition occurs,
Apart from phases of a substaﬂce such as liquid, solid and gaseous
states there may existlseparate phases in the solid state. For example
at different temperatures or pressures the solid may exhibit different
crystallographic groups. The‘magnetic structure of a solid may also

change for example the behaviour of a ferromagnet at its Curie point.

’

3.4.,2 Phase Transitions

Phase transitions occurring at constant pressure and temperature
will have the Gibbs function G continuous across the transition since
the change dG is given by

ac @ = -5 .dT + v.dP 0e0e3, 23

The first de;ivatives of the Gibbs function>are the entropy S and

the volume V,

-, 9G
(=) = -8
GTP
BG ..ll3.24
(5'1;) = v
T

which are discontinuous across the phase boundary in the familiar phase
transitions of vaporisation’fusion'and sublimation. However, many
phaée transitions occur'in which the entropy and volume remain constant
at the transition point. In these cases the four parameters T, P, V, S

remain constant and therefore so must the thermodynamic functions G, H, U, F.
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3.4.3 Classification of Transitions

The phase transitions may be conveniently classified following
Ehrenfest [6] such that the order of a transition is determined by
the lowest order of differential coefficient of the Gibbs function
which shows a discontinuity at the Fransition.

The first order transitions such as vaporisation, fusion and
sublimation are accompén;ed by heat exchange known as latent heat
because of the discontinuous change in entropy at the critical poinf.
Second order phase transitions have the first derivative of the Gibbs
functibn continuous and hence no lgtent heat is associated with these.
However, changes in specific heat, expansion coefficients and compress-
ibility occur discontinuously because these are related fo the second
derivatives of the Gibbs function. ‘

According to Zemansky [7] the 'lambda' transitions may also be
classified as second order transitions although they are not typical of
the type. These transitions have ihfinite‘peaks of Cpr B and k at the
transition instead of a finite discontinuity. Among the many types of
lambda transitions are the order-disorder type of transition in
particular that of a ferromagnetic state to a paramagnetic state.

This particular case is also the only physical process of its kind to
have diven a mathematical solution and thus been explained qualitatively,

if not quantitatively, in the Ising model.

3.4.4 Transitions between Phases of Different Symmetries

Transitions between phases with different symmetries, for example
between crystalline states of two diff;rent crystalline groups, or some
magnetic phase transitions can not occur in the same way as transitions
between for instance a liquid and a gas where the symmetries are the same.
At any particular point the body has either one symmetry or the other, and

therefore it is always possible to say which phase the state of the system
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‘correéponds to. Therefore in this particular case the two states
can not coexist.

Phase transitions of the order-disorder type, for example the .
ferro- to para-magnetic states of a solid occur in such a way that there
is no discontinuous change in tbe pgrametérs T, P, V, S which specify
the state of the solid. That is it behaves as a second order phase
transition. However,.euen an arbitrarily small displacement of the -
magnetic moments from their random symmetry positions is sufficient to
give the symmetry conditions for the ferromagnetic phasé. The solid can
therefore only exist in one state or the other and the ferro- and para-
magnetic states can not coexist, At the transition point the conditions
of the two phases become identical. '

The second order phase transitions are therefore less abrupt than

' the first order. The symmetry of the bady changes continuously so that

only one phase exists at any particular time,

3.4.5 Order-Disorder Transitions

At any point in the phase of a solid undergoing an ordefqﬂisorder
transition a parameter called the degree of ordering may be introduced
which is zero in the disordered or higher symmetry phése, and fi’nite in
the ordered or lower symmetry phase. As an example from the Ising model

of a ferromagnet this may be taken as,

P+ - P-

m 00-03025

n .
where P+ and P- are the probabilities of any particular magnetic moment
being parallel or antiparallel to a chosen direction,

When n # O this corresponds to the ferromagnetic phase (even when
P- = 1) and when n = O this corresponds to the paramagnet when
P+ = P~ = 0.5, Arbitrarily small values of n, whether positibe or

negative, will still give the same symmetry as the ferromagnetic state.
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The phac> transition therefore occurs at the moment when n becomes zero.
The states of the two phases are thus idéntical (see for example
equation 3,32), The states of two phases therefore become identical
at a second'brder phase transition when n reaches zero, and in fact the

symmetries also become identical at this point.

3.4.6 Change of Symmetry

A change in the symmetry of a system by means of a second order
phase transition requires that the symmetry of one of the phases is
higher than the symmetry of thé other. (Naturally this does not
preclude the possibility of a second ordef phase transition occurring
without change of symmetry. See for example Landau [8] and equation
3.31). In fhe majority of cases in which such a change of symmetry
occurs it has been found that the phase of higher symmetry corresponds
to the higher temperature phase, For example the paramagnetic phase

is more symmetric than the ferromagnetic phase,

3.4.7 Absence of Metastable States near a Second Order Transition Point

A first order transition occurs at a point at which the Gibbs

- functions of the two phases Gl(P,T) and G2(P,T) are equal, but i? is an
ordinary point for each of these two functions. Both Gl and G2 will
correspond to some equilibrium state on both sides of the transition,
although when Gl > G2 this will only correspond to a metastable state of
phase one and conversely,

For a second order transition the states of the two phases become
identical at the transition point, and the Gibbs functions of either
phase beyond the transition point do not correspord to an equilibrium
state. That is they do not correspond to local minima of G beyond the
phase transition. With this latter fact is connécted the impossibility

of superheating or supercooling in second order transitions. Neilther of

the phases can exist at all beyond the transition.
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3.4.8 Behaviour of the Thermodynamic Potential near the Transition Point

The parameter n has been defined in 3.4.5 such that n = O corresponds

to the higher temperature phase and n # O to the lower temperature phase.
These may now be refeired to as the symmetrical and unsymmetrical phases.

Considering the thermodynamic potential for a given deviation from the
symmetrical phase, i.e. for a given value of n the Gibbs function‘may be
expressed as a function of P, T and n as shown by Landau [8]. The
preséure arnd temperature may be given arbitrary values but having done
this n must be obtained on the conditiqn thét the value of G should be a
minimum w.r.t. n. ’

In the neighbourhopd of a transition G may be expanded as a function
of n by a Taylor series. Using the potential ¢ to represent the Gibbs

function,

¢(P1Tln) = ¢o+an+An2+Bn3+cn4+ ee e 00003026

vwvhere a,A,B,C are functions of 'T and P. It can be shown (e.g. ref.8,
p.439) that if the states with n = O and n # O have different symmetrics

then o must be identically zero at all points,

3.4.9 Conditions on the Coefficients

The coefficient A(P,T) of the second order term must vanish at the
transition point, For the symmetrical case ¢ must have a minimum when
n = 0 and this requires that A > O in that phase. Conversely in the
unsymmetrical phase the minimum of ¢ must occur for non zero values of n,
and therefore A < O, Therefore A must vanish at the transition point.

A(P ,T) = 0 veee3.27

c' ¢

For the transition itself to be a stable state so that ¢ is a minimum
at n = O the third order term must also vanish at the transition and the
fourth order term positive.

B(P ,T) = O ouo.3028

c’'c .

C(PC,TC) > 0 A . .0'03:29
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Since the coefficient C(P,T) is positive at the transition (PC,TC)
it is also positive in a neighbourhood of (PC,Tbj. There are two
possible continuations only one of wh}ch is of interest. Firstly the
third order term may be identically zero, in which case there is only
one condition for the transition to occur and that is,

A(PC,TC) = o 003,30
This will define P and T as functions of one another in order for a
transition to occur.

The second case is when B(P,T{ is not identically zero, In this
case the transition is governed by the two relations

A(PC'Tb) = 0 .

. sees3.31

B(Pc,Tb) = o)
and herg‘the transition points will be isolated since they will be the
locus of intersection of the two curves given in 5.31.

The more usual ard interésting case occurs when B(P,T) = O at all
points, since this gives a curve in the Px T plane at which the phase
transition may occur. This will be taken to refer to second order
phase transitions. The expansion of the thermodynamic potentia;, in
this case the Gibbs function, is therefore given by

¢(PIT'n) = ¢O + Anz + cn4 ' 'ooc3'32

with the conditions A>0, C>0 in the symmetrical phase and A<0, C<0O in
the unsymmetrical phase.
In the case where no change of symmetry occurs we may expect a
function of the form
2 4
¢(PIT'n) = ¢o + a'n + An +CT\ --003.33
The general form of this last equation is identical to that Qf the

potential function of a Riemann-Hugoniot, or Cusp, Catastrophe (see

section 3,.5.2).
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3.5.1 Order-Disorder Transitions in an Ising Model

A mathematical treatment of the probable configuration of magnetic
moments located on atomic sites in a two dimensional Ising lattice has
shown [2,9] that the lattice undergoes an order-disorder transition at
the Curie temperature TC given by J/kTC = 0.88 where J is the coupling
energy between neighbouring spins., It has also been shown that at such
‘a Curie point the specific heat exhibits a lambda anomaly going to
infinity.

Most of the early theoretical wérk concerned an incompressiblehlsing
lattice for which the above results were obtained. Later work was
attempted on a compressible Ising lattice [10,11] which concluded that
although a Curie point was again predicted, the iattice Secame~ unstable in
the region of the Curie point, tending to collapse inwards unless a strong
lattice spin coupling was invoked. This would make calculations much
more difficult since the partition function could not be split into a
product of contributions from the la£tice and spin systems, Solutions of

a three dimensional Ising lattice have not been .produced.

3.5.2 Magnetic Phase Transitions as a Consequence of Catastrophe Theory

In recent years a mathematical method of describing the evéluation of
farms such as the changes of state of a substance has been developed.
Attempts to apply this to thermodynamic phase transitions have met with
some success [e.g. 12,13, P.53) although there are still some problems to
overcome [13, P.635]. Applications to other branches of physics have so
far received more attention, In the appendix an attempt has been made to
correlate the observed phenomena of magnetic phase transitions with the
mathematical predictions of the model. It is probable that this theory,

like the Ising model, will only be able to provide qualitative results.
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- CHAPTER 4

" The Sing Around System

4.1 Development of the Present System

4.1.1 Construction of the Sing Around System

The sing around system was already available having been desiéned
and built by Whitehead and Broadhurst [1]. It contained some
modifications from the earlier systems used by Brammer [2] and by
Forgacs [3,4]. It was designed as an automated device, that is it had
an internal memory in which it could store its own results, The results
may then be retrieved later, coded onto punched paper tape. Monitoring
of the sing around frequency could be achieved by using a six digit

Racal frequency meter, so that continuoué'sampling was maintained.

4.1.2 Automation of Velocity Measuring Systems

There are several methods available for measuring the velocity of
acoustic vibrations in specimens [5,6) most of which employ the pulse-
echo technique in one form or another, All employ the conversion of
electrical pulses to ultrasogic pulses, using piezoelectric transducers,
which then pass through the specimen, are reconverted to electrical
pulses using either the same or a second, receiving transducer, amplified
and passed back to the electronics. The delay due to the acoustic
vibrations passing through the specimen is then measured. The methods
fall into three main categories, depending on how this delay is méasured;
the superposition or overlap techniques, the interferometer techniques
and the sing around systems, All of these have been describéd in
detail in section 1;2.

In the overlap and superposition techniques the transit time is

obtained by adding a variable delay to the waveform on the oscilloscope
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until two similar points in two consecutive echoes coincide. The
delay is then equal to the transit time. It is possible to automate
the measurement of the transit time for such a system [7,8] by
employing a cycle selection method and a timer for eachAof the two
echoes. This could have the desired accuracy, however the two t}ming
clocks would need to be ;ndependent and hence the amount of equipment
necessary would be excessive. '

A method has been found for automating the read out of measurements
based on interference techniques [9] again employing delay lines and in
this c;se also determining the pha;e difference betweeh the two echoes,

- Consequently this is not easily achieved,

4.1.3 Automation of the Sing Around

The sing around [2,3) would appear to be the most easily autcmated
of the three general types of technique. It does not usually require
adjusting during operation sin;e it will continue to operate during
moderate changes in pulse height and shape. Thé gating signal can
be used as a pulse to oéerate a frequency counter.

This system was therefore chosen for autocmation employiné modern
integrated circuits and high speed logic which had an internal demory

store capable of recording 113 individual sing around periods. A

frequency control and pulse width control were also incorporated.

4.1.4 Developments from Earlier Systems

In the Forgacs model the use of separate counter ard timer‘méters
had the following drawback: by measuring the number of cycles occurring
over a period of ten minutes it was necessary to maintain the temperature
constant over this~period in order to achieve meaningful results.

The present scheme employs two independent mecasurements of the‘sing around
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transit time. A frequency meter with a sampling period of about a
second acts in the same way as the two meters in Forgacs method. The
temperature therefore only has to be maintained over an interval of a
second-for this. It is, of course, not as sensitiveAto changes in
transit time as the Forgacs method because it samples fewer cycles.
The internal memory stores measurements of a single transit time
through the sample which have been made over a period of ten micro—‘
seconés. This enables meaningful results to be obtained even in

materials undergoing rapid changes of thermodynamic parameters.

-’

4,2.1 Modifications to the Electronics

In the sing around system as used by Broadhurst [1] the detector |
was unable t; distinquish clearly between consecutive cycles of a
particular echo, This caused some uncertainty in the triggering point
on occééions vhich resulted in fluctuations in the detector and gating
_traces which were monitored on an oscilloscope.

The detector level had been referenced to a ramp voltage caused by
Integrating a received echo and setting the deteétor threshold to
ascertain when the ramp exceeded a certain level. This was found to be
unsatisfactory since it allowed a continuous change in the obser@ed sing
around period as the pulse shape changed. An improved method was
devised by generating a 'spike' function as each echo was received so
that the spikes coincided with the peaks of the cycles in each echo,

By this method any changes in the individual transit times caused by
changes in the trigger point were observed as discontinuous jumps in the
data output from the internal memory store.

To reduce the occurrence of the detector jumping from one cycle to

another on a given echo the threshold detector was replaced by a ‘zero

crossover' type as used by Brammer [2], In this way as soon as the
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amplitude of the received pulse moved above the backg;ound noise level
the detector would observe it. By using this form of deteétor the
first cycle of the echo occurring after the delay gate had opened
triggered the r.f. generator. The discrete changes in the individual
t:ansit times caused by changes in the trigger point could easily be
distinguished from continuous changes due to variations in elastie

constants.,

4.2,2 Measurement of Individual Transit Times

A particular cycle of a particular echo in the pulse-chain can be
selected to retrigger the r.f. generator by a suitable choice of a
preset digiﬁal delay which opens a delay gate. The zero crossover
detector enables a signal to be discriminated once it moves above the
noise level. The level of the detector or the amplifier gain may be
adjusteéd so that the detector level coincides with the noise.

The time between the closing of the delay gate and the triggering
- of the detector is measured by reference to an internal 'clock' which
is a 250MHz high-stability crystal controlled oscillator. This period
is then stored in the internal memory ard may be output as required.
The sum of this and the preset digital delay gives the total sing
around period to an accuracy of £ 3 nanoseconds, The three nanoseconds
represent the limiting precision introduced because of the uncertailnty
in the state of the oscillator of one quarter of a cycle at the beginning

of the time.period and one half of a cycle at the end,

4,2,3 Accuracy of the Measurements

The sum of the preset digital delay D and the coded outputs on

paper tape t, represents the total of one sing around period as expressed

i
in'equation 4.1 below [1]
t, + 2

= -_j;.m .100401
T 0.128(D + 1) + 1600
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- The time is then given in microseconds. The conversion factors of

t,+ 2
0.128 and B S are simply characteristic of the form of data

1000
output, which is not directly in microseconds, and have no physical
significance.

The preset digital delay has a maximum value of ninety-nine
which corresponds to a time of 12.8psecs, although it is frequently
not used at this value because attenuation of signal in the specimén
makes it impossible to trigger the detector this far down the echo |
train. |

The total error introduced into the measured period, as indicated
above, is + 3 nsecs. Taking a typical digital delay of lOusecs the
précision of the sing around period as calculated froﬁ fhe internal
memory store is t 3 nanoseconds in 10 microseconds which represen£s
3 parts in 104. Consequently the values of the total sing around
period obtained by processing data from the internal memory store will
have a precision of-this magnitude,

The precision of the results measured from the fréquency counter
debénd on the accuracy of the timer and the control of envirommental
conditions since the étability of the sing around circuitry is better
than both of these. The Racal counter timer gives a sensitivity‘of
about + 1 part in lo6 for the measurement of frequencies of the order
of 500 kHz. Typical repetition rate frequenciles used in the sing
around a;e about 200 kHz which gives a sensitivity of about + 2 parts
in 106. This is significantly less than the sensitivity 6f + 1 part in
1C7 quoted by Forgacs for his system simply because the sampling time is
less,

Envirommental changes may also introduce fluctuations in the sing

around frequency in the specimen. According to Papadakis [5]
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fluctuations of ¢ 0.001°K will give rise to changes in Av/v of about

1 part in 107, so that even by eliminating errors due to the stability
of the electronics precision beyond 1 part in 107 for Av/v is notv
possible under present capabilities. The temperature stability in
the present measurements was unlikgly to be better than 0.1% and
therefore this would give rise fo fluctuati&ns in-Av/v of about one
part in 105. The senéipivity of the sing around system using the
frequency meter is therefore better than the fluctuations in sing

around frequency which it measures.

’

4.3.1 Operation in Pulse Mode

In order to operate the new sing around the waveforms at the four
test-points shown in fig. 4.1 must be monitored on an oscilloscope.
A Tektronix 84603N or 846 series with féﬁr beams was found to be most
suitagle. The traces of the waveforms at these points when in pulse
mode are éhown in fig. 4.2. .

With the sing around switch in the 'off' position the circuit ié
triggered by a 27 kHz multivibrator, The output from the amplifier
should be adjusted to give é large initial pulse and a series of clean
echoes with a minimum of transducer ‘'ringing' or overlap. If éhe
echoes are not clearly distinguishable from one another the r.f.
osclllator frequency may be tuned until the optimum conditions are
reached when the transducers are operating at resonance. If no |
echoes are visible this may be because the amplifier gain is not high
enough, If having increased the gain echoes are still not visible
this could be due either to}attenuatios of sound in the specimen or
to sound not being passed into the sample due to electrical short
circuits, bond~breakage or similar probiems. when the cause has

been rectified adjustment of the r.f. oscillator frequency should give

the clean echoes desired.
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When the pulse echo train is in the required form the variable
digital delay may be adjusted within its limits of O0~12.8usecs
until the gate opens within 400 nanoseconds of a suitable cycle.
This may be the leading cycle or one in the middle of the echo, The
detector level should then be altered uniil the trace from test point
four has the form shown in fig. 4.5, indicating that the signal level
is above the detector threshold level. It has been found that if
the signal level is too far above the detector level the system will
not retrigger correctly when in sing around mode. This condition
may be remédied by reducing the amplifier gain. In this pulse mode
the frequency meter reading should be 27 kHz, the repetition rate of

the pulser..

4,3.2 Operation in Sing Around Mode .

If the above set of conditions has been satisfied for the pulse
mode of operation the sing around switch may be placed in the 'on'
position and the multivibrator button depressed once to start the
cycling. If conditions are suitaple, when the multivibrator button
‘1s released the sing around will continue almost indefinitely, and the
four trace waveforms will be as shown in fig. 4.3, If all protedures
outlined in section 4.3.1 above have been followed and sing around does
not start the problem 1s usually due cither to too much gain or téo
little gain from the amplifier. Adjustment of this will give solution
to the problem in most cases,

The repetition frequency of the sing around will depend on the
point in the wave train chosen for retfiggering. This usually lies
between 100 - 500 kHz, The delay gate waveform is used to operate the

frequency meter.
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4,3.3 Data Output

The repetition frequency may be continuously monitored using a
Racal frequency counter with a sampling rate of once per second,
for measurements in which the physical paramete;s of the specimen were
varying slowly. Under conditions in which the parameters were .
varying more rapidly, for example during magnetic field sweeps, the
internal memory store could be used.

In order to record results in the store the 'reset and start' button
~ should be depressed and released ana the corresponding LED light switches
on and remains on until the store is filled. The sample LED light will
switch on each time an interyal is recorded. The 'sample rate' switches
select whicﬁ intervals are recorded. If the thumbwheel switch is set to
'n' then one interval in every n is recorded. The multiplier switch
can be used to increase this éo'one in every 10On or 10On, This gives
a limit of one in every 900 ihtervgls. If the multiplier switch is
put into 'external trigger' mode an interval is recorded each time a
suitable pulse is received at the external trigger input. A separate
pulse generator is used to supply the required pulses which are of one
microsecond duration negative going pulses of height 5V. The . 'external
trigger' input is maintained at +5V, except when induced to sample by
reducing its voltage to OV for a microsecond. The veoltage must then
be reset to +5V,

When the store is full the ‘'reset and store' LED light goés off and
the sample LED light remains on. Data may then be output'on the paper
tape unit by pressing the 'reset and start' and ‘punch' buttons
simultaneously but releasing the 'punch' button first, In order to
analyse the data output‘quickly and accurately the procedures given in

Appendix 1 were used in a computer program. This converted the
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recorded transit times into values of elastic constants. Finai
analysed output consisted of tables of the controlled physical
parameters (e.g. temperature, pressure or magnetic field), the
cérreSponding sing around frequency both new and corrected for any
discontinuous jumps from cycle to éycle in the echo, and calculatgd
elastic constant. Graphical output of elastic constant against the
physical parameter was made using the Computer Centre Graph Plotter.

(HUGP) and is included in the results.
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- CHAPTER 5

Exper imental Methods

5.1 Low Temperature Equipment

5.1.1 Cryostat

The cryostat used throughout the experiments was a conventional
narrow tailed type suitable for use with an applied magnetic field
from an electromagnet, and capable of temperatures down to liquid
heliunm 4.2°K. A schematic diagram of.the cryostat is given in
fig. 5.1.

Two chambers for holding refrigerants were included. The outer
one for liquid nitrogen had a volume of about 3%. The inner can was
used for liquid helium if temperatures down to 4.2K were required, or
for liquid nitrogen again if temperatures down to only 77°K were needed,
This inner chamber ran the whole length of the tail and had a volume of
50m4. It was screened from the outside by a copper radiation shield
cooled by the refrigerant in the outer chamber. ] This enabled the tail
to be made narrower and the magnetic field intensity, which could be
achieved with this narrower tail by closing the pole pieces of fﬁe
electromagnet, was therefore correspondingly higher,

Access to the chambers was by inlet and exhaust tubes as shown in
the diagram, The inlet tub; leading to the bottom of the can and the
exhaust from the top. By this method any refrigerants or condensation
could be removed from the cans by applying an overpressure via the
exhaust tube. Facilities were available for a glass dewar to be used
on the outside of the cryostat to reduce heat inflow when temperatures
down to 4.2°K were required.

The liquid nitrogen and helium refriqeranté were introduced viar

vacuum Jjacketed transfer siphons, - The nitrogen was transferred by
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using an overpressure of about two atmospheres of air from a pressurised
air line. The liquid was allowed to boil off iﬁto the atmosphere.

The helium was transferred by employing an overpressure of its own
vapour and all evaporated helium was collected and recycled for
liquefaction in the liquid helium plant, Condensation of air or water
from the atmosphere into the two cans was reduced by employing bunsgn
valves on the inlet and outlet tubes.

The sample space in the cryostat was evacuated using the rotary
pump of the vacuum system to obtain'pfessures down to 10;2 torr (see
fig. 5.2) If exchange gas was required helium was introduced via the
inlet valve. The exchange gas allowed thermal equilibrium to be
reached more quickly and therefore improved temperature stability in
the spg;imen. It was also possible to introduce excharge gas into the
main vacuum space in the cryostat. This was useful for cooling down
the helium can rapidly to 77%& béfore introduction of the liquid helium.

-The exchange gas pressure was monitored on a Bourdon gauge close to the
inlet valve (see diagram). Helium gas was contained in a bladder
filled from a gas cylinder.

The main vacuum space and the vacuum jacket between the helium can
and the sample space were evacuated by the high vacuum line leading to the
diffusion pump. Vacuum pressures down to 10.5 torr were possible in the
main vacuum space. Cryopumping was also utilised when liquid helium was
present in the inner can to improve the vacuum, Under these conﬁitions
temperatures of 4.2°K could be maintained for about 20 mins Qith exchange

gas in the jacket or for about 1% hours with the jacket evacuated.
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5.1.2 Specimen Holders

A specimen holder was designed to allow electrical contact between
the input/output of the sing around system and the transducers bonded
onto the specimen. The main consideration was to allow the sample
temperature to be controlled and measured as accurately as possible.

To facilitate this the main body of the specimen holder was made as
small as possible out of good thermal conducting material, in this case
cbpper. Heat leaks into the specimen were minimised by supporting the
-holdér on a long hollow rod of stainless steel, which is a poor
conductor.

<A heater coil of 1500 of chromel wire was wound on the main body
of the specimen holder (see fig. 5.4). - Two thermocouples junctions
were embedded close to tAe specimen for temperature measurement. The
supports for the two electrodes were of copper and were in good thermal
- contact with the main body of tﬂe sample holder. Electrodes and
supports were insulated electrically from each other by thin layers of
mica, which was also a good heat conductor so that thermal equilibrium
wés quickly achieved.

The complete specimen holder and support is shown in fig. 5.3.

The sample space in the crfostat was 15mm in diameter by about 90cm in
length which imposed immediate restrictions on size. Two P.T.F.E,

spacers are shown on the support rod in fig. 5.3. These were designed
to maintain the holder central in the sample space and prevent géod
thermal contact between specimen and the walls of the samplé space while
the temperature was being raised. A third spacer is present on the
lower end of the holder.

The cap of the specimen holder was made of aluminium and when

bolted into position on top of the cryostat it formed a vacuum tight
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seal to the sample space, allowing it to be evacuated and exchange gas
to be let in to any desired pressure.

All input/output points in the cap were glass to metal sealed
vacuum lead-throughs. They could be made vacuum tight by allowing
melted wax to solidify insiae the lmm diameter brass tﬁbes of the lead
through., Wires to the specimen holder were passed down the hollow

centre of the stainless steel support tube.

5.1.3 Vacuum System

The vacuum system employed is éhown in fig. 5.2 which used a
rotary pump as backing pump to an Edwards 0il Diffusion pump
enabling pressures down to 10"5 torr to be achieved on the high
vacuum line, fhis was used for the main vacuum space and the vacuum
jackeﬁ in the cryostat, The rough vacuum line also shown was
evacuated only by the rotary pump and achieved a pressure of down to
10-2 torr which was used to evacuate the sample space. An exchange
~gas inlet is shown on the right of the diagram, the pressure of gas
being registered by the Bourdon gauge.

The pressures were monitored by a Plrani gauge in the rough

vacuum line and a Penning gauge in the high vacuum line. The gauge

heads and measuring equipment were also supplied by Edwards.

5.2 High Pressure Apparatus’

5.2.1 The Hydrostatic Pressure Cell

The purpose of this apparatus was to allow the specimens to be
subjected to a controlled hydrostatic pressure in the range 1-80 kg/cm2
(8 x lO6 Pascal or 80 bar), The design of the equipment is shown in
fig. 5.5. The cell was supplied by the Department of Physics at the

University of Southampton,
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The pressure éell was constructed of thick walled'yls" brass.

At one erd was the pressure inlet consisting of a P,T.F.E. sealed
high pressure copper tube 1/4" I.D., 3/8"O.D. At the other end the
sample space was closed by a brass 1id sealed by nine steel bolts.

An '0' ring of neoprene which was of the "completely surrounded" ;ype,
to prevent blow outs, maintained the high pressure. Electrical
input/output ports for the sing around were located in the 1lid and'
secured by P.T.F.E. seals, The specimen holder consisted of a brass
platé joined to the 1id which supported two spring loaded adjustable
probes for maintaining electrical contact with the transducers bonded
onto the specimen.

The cell was connected via high pressure copper tubing to a
nitrogen gas cylinder wﬁich could supply pressures up to 180 bar,

The pressure in the chamber was measured by a Bourdon gauge located
close to the cell which gave readings of pressures in the range 0-80 bar
with an accuracy of ~ 1%, An exhaust valve was included as shown both
for regulating pressure and also as a safety precaution ag#inst over
pressurising the equipment, The exhaust valve limit was 1200 p.s.i. or
80 bar, ,

The gas inlet/outlet valve from the gas cylinder was of the type
supplied by Air Products Ltd. which differed from the conventional 2 bar
, gés regulator nbrmally used with gas cylinders in that it allowed full
bottle pressure to be achieved, This was connected to the chamber by a
length of flexible high pressure copper tubing.

The pressure cell and most of the associated pipework was enclosed
in a shielded box of'V4" thick aluminium alloy as a safety precaution

against explosion. The box was always sealed using %" steel bolts

before pressure was introduced into the chamber,
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5.2.2 Uniaxial Pressure Apparatus

A uniaxial pressure apparatus was also supplied by Southampton
University. This allowed uniaxial stresses of up to 100 kg/cm2 to be
applied by using a lever arm with 5:1 ratio connected on one side to a
stainless steel pushrodlwhich compressed the specimen and on the other
side, to suspended weights in units of 0.25 kg. The apparatus is
shown in fig. 5.6.

A ball and socket joint was introduced at the bottom of the push
rod éo ensure that the applied strgsé was normal to the surface of the
specimen. The two surfaces of the specimen were made parallel by
lapping to within 50. - By this technique any deviation between the
direction of motion of the push rod and the normal to the specimen plate
was compensated for. '

The push rod was constrained to move vertica;iy by three tufnel
rings along the length. Tufnel was used because of its low coefficient
of friction with stainless steel [1]. Frictional forces acting against
the applied stress were thereby minimised.

The specimeﬂ plate was made to specifications at this University.
It consisted of a plate‘of 1" thick duralumin alloy to support the
specimen under forces of up to 100 kg.wt. It contained two movable
electricél probes mounted in insulating t&fnel on sliding spring loaded
duralumin supports. The probes were of 2 mm diameter brass rod of
about 4 mm length connected to the input/output ports in the heaépiece
by copper wire running the whole length of the apparatus. ’The specimen
was placed on a raised platform in the centre of the specimen plate with
transducers bonded on.

It was found that because of the size of specimens (3 mm height x
6 mm diameter) the usual 6 mm diameter transducers could not be used

Since they would interfere with the application of stress by the push rod,
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‘or at best be shorted to earth on the base plate. Therefore special
miniature transducers were supplied to our specifications by Gooch and
‘Housego Ltd. which were of 2 mm diameter. These were not fouled by
either pﬁsh rod or base plate and allowed measurement of acoustic
velocity under the applied stress to be measured.

The strains induced in the specimens under stress were measured by
strain gauges supplied by Welwyn Strain Measurements Ltd.* The type
of 'gauge used was SK~-09-0l5EH-120, These were also useful for
calibrating the.apparatus since despite attempts to minimise frictional
forces along the push rod these would be likely to occur at least to
some extent, ,

The basé plate was h?ld in position by three symmetrically placed
stainless steel rods and secured by three nuts. The specimen chamber
was closed by a brass can whicﬂ could mate into position on the base
plate and could be moved vertically along the stainless steel support
rods. The chamber was connected to the headpiece by a length of 30 cm
of %" thin walled stainless steel tubing througlf which all lead wires
passed, | '

The headpiece of the apparatus contained two tufnel rings to
position the push rod (see fig. 5.6) and three input/output ports, two
for the sing around which had b.n.c., sockets attached, mounted on P.T.F.E.
support blocks and a third for allowing strain gauge leads and tbermocouple
leads to be passed into the sample space. |

The lever bar had small holes drilled vertically into each bearing
to allow it to be ‘Oiled,'thereby ensuring that all parts moved freely,
A counterweight could be attached to the opposite end of the lever (not
shown) to compensate forbthe weight of the arm and thus allow all

measurements to start from zero applied stress,
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Welwyn Strain Measurements Ltd,, Armstrong Road, Basingstoke, Hants,
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5.2.3 High Hydrostatic Pressure Equipment

High hydrostatic preséures up to 5 kbar were obtained using the
S.R.C, high pressure facility at Standard Telecommunications Ltd, (I.T.T.)
of Harlow; The apparatus is shown schématically in fig. 5.7. The
Pressure medium in this case was castor'oil in a high pressure ce%l and
compressed by a stainless steel piston. Input ard output leads .
were connected via high pressure sealed lead-throughs in the piston:

A high pressure manganin-copper 'O' ring was used to seal the chamber,

5.3 Specimen Preparation

5.3.1 Crystal Growth

The crystals were érown by workers.at other universities* or by
Metals Research Ltd, The low purity Erbiﬁm and Terbium crystals ﬁrom
Metalé'Research were 98—95% pure, while the Gadolinium and high purity
‘Terbium were 99,9% pure and were grown using the solid state electrb-
t;ansport method. The resistance ratio for the Gadolinium was also
supplied (p273/p 4.2 = 250) . Crystals were in the form of cylindérs
of about 2-3 mm length and 5~6 mm diameter. The axis parallel‘to the
direction of the unique axis of the cylinder was specified in all cases,

ard in most one other axis was marked in the plane of the cylinder.

5.3.2  X-Ray Diffraction

In order to determine the orientation of crystals whose
crystﬁllographic directions had not been marked, Laue back réfleétion
Photographs were taken using a 50 kv X—Ray set in the Physics
Department. The photographs were then compared with known patterns for
hexagonal crystals to find the orientation. Aligmnment of the axes |

could be made to within + 1° by this method.
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*
Department of Materialv Science, University of Birmingham, Bristol Road,

Birmingham Bl15 27T.



THE HIGH HYDROSTATIC PRESSURE CELL

ANVIL

— t 7 |
: T , ; "] _MOVEABLE
g ; r 1| PLATE
: : i -
[} ] ] N
ELECTRICAL | 7 HIGH
INPUT / — | PRESSURE
OJ}PUT f) PISTON
| [ : | 0 RING
: —— [ sEAL
TO ! '
pSOIDAL ' 1{ 1 SAMPLE
ESSURE ' L
VESSEL : , b OLDER
[} ’ < V.
CELL ' ' SLIDING-FIT
MEDI UM: ——t— SUPPORT
R
CASTOR ODbs
oIL
FIXED
1 pLaTE

LOADING

PRESS

fig.5.7



PI ATE VITI



PM<ALE

JpRy S|
M =Pi §R)

PLATE VII



- 73 -

5.3.3  Spark Machining

Whén further modification of the crystals was necessary either
pPlaning more surfaces for the application of stress or in the one
case when a crystal had actually to be cut from a boule the spark
machining facilities at the University of Birmingham were used.

This method was chosen since at present it is the best technique
for cutting a crystal without damaging it (e.g. by introduction of
dislocations) more than is necessary. The machine used was an SMD
made<by Metals ﬁesearch Ltd, The’pianing is achieved by spark
discharges between a brass disc rotating in a horizontal plane and the
specimen both of which are immersed in a bath of paraffin. This dis-
charge voltaée varies ué to ~v 250 volts and this causes abrasion of
small .particles of the solid from the surface. By this method two
surfaces of a crystal may be pianed flat and par;llel to within ¢ 1

micron.

5.3.4 Diamond Saw Cutting

»

In the instances when polycrystalline specimens were used, for
example in the preliminary testing of the uniaxial stress apparatus,
* there was no need to try to eliminate dislocation damage. For’these
the cutting of faces in the specimens was achieved by using a circular

diamond saw manufactured by Metals Research Ltd. to cut two parallel

surfaces which were then lapped and polished.

5.3.5 Lapping, Polishing and Etching

Lapping and polishing of crystals was on a hand lapping machine
using abrasives and diamond polishing pastes supplied by Engis Ltd,

Thickness and parallelism could be checked using a slip gauge,
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To remove oxide layers which formed on the surfaces of crystals
én etching solution of 50% glacial acetic acid and 50% nitric acid was
recommeﬁded. Etching was for 30 - 60 seconds at roam temperature. To
prevent or minimise the formation of oxide layers the purer séecimens
were stored under vacuum in glass tubes with greased ground glassyjoints.
Other specimens were stored in a desiccator containing self indicating

silica gel as a drying agent, which also reduced the rate of contamination.

5.3.6 Transducers and Bonding Materials

The most frequently used type of transducer in this work was
piezoeiectric quartz in the form of thin discs of diameter 6 mm with
opposite faces coated Qith gold foil e;ectrodes. These were supplied
by Gooch and Housego Ltd. and had a resonant frequency of 15 MHz.

The transducers were specified as shéar or longitudinal wave generators
depending on the axis of the quartz crystal which is perpendicular to
the plane of the surface. The shear wave transducers had the direction
of displacement marked. In this work quartz or CdS transducers were
used, although a large number of piezoelectric materials are now
available commercially.

In order to generate acoustic waves in a solid a large enefgy
transfer between transducer and specimen is needed. This can not be
achieved over a solid-air interface and consequently a material bonding
medium between transducer apd specimen is needed. The requirements of
a good bonding medium have been reported elsewhere [2].

Some bonding materials which were tried were

(1) Nonaq Stopcock Grease

(11) Dow Corning Silicone Liquid DC200

(iii) Dow Corning Resin 276-V9

(iv) Araldite Epoxy Resin

(v) Rapid Araldite Epoxy Resin

(vi) Phenyl Benzoate
(vii) Vacuum greases and oils.
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The Nonaq grease was useful for longitudinal waves for temperatures
down to about 140°K. Below this tempera;ure the bord was liable to
break due to differential thermal expansion between the séecimen and
transducer. It was not found satisfactory for shear waves.

The Dow Corning fluids and resins were found useful for temperatures
below room temperature and down to about 200°K. The resin needed to be
heated to reduce its viscosity before it could be used to bond the'
transducer.

.Phenyl Benzoate was recommendgd‘for use with shear waves when both
the Nonaq and Dow Corning resins proved unsuitable, Unfortunately
this material was impracticable due to the fact that the sing around
reqdires two transducers to be accurately aligned both with respect to a
partigular crystallographic direction amd with each other. The aiign—
ment was fourd to be very difficult to achieve without either the phenyl
benzoate crystallising or the aligmment being disturbed before the bona
was made,

The Araldite epoxy resins were found to be.by far the best bonding
materials in the present work. They could be used for both shear and
longitudinal waves, and for temperatures down to 4.2°K without bond
breakage. The Rapid Araldite was more convenient since it set forming
a bond within about 15 minutes, whereas the other required up to 24 hours
to cure. The only disadvantage with araldite resins is when the
transducer needs to be reméved. For this overnight socaking in éhloroform
is recommended.

Vacuum greases and oils were used only intermittently for bonds at

room temperature.
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5.4 Temperature, Pressure and Magnetic Field

" 5.4,1 Temperature Measurement

Temperature measurement was made mainly using thermocouples
although instances did occur when platinum resistance thermometers
were used, particularly in calibrating the thermocouples, ard a
mercury in glass thermometer was used to obtain some fixed points
above 273%k notably the goiling point of water.

-FPor measurements of temperatures down to 77°K, the. liquid nitrogen
point, a copper v. constantan thermécouple was used and for temperatures
between 4i2°K and 77K a gold/iron v. chromel thermocouple waé pgeferred.
The reference junctions were maintained at 273°K in a mixture of ice and
water in a dewar vessel, The other jupction was embedded in the body

of the sample holder as close to the specimen as possible.

5.4.2 Thermocouple Calibration

Two types of calibration were used for the thermocouples. The
simpler method was due to White [3,pl33] and depends on fitting a curve

of the form,

E(T) = AT3 "' BTZ + CT + D .....501 ’

where E(T) is the emf,of the thermocouple at temperature T and A,B,C,D
are the coefficients of the polynomial, The coefficient D is the
residual emf. when both junctions are at the same temperature and was
fourd by placing both junctions in the ice-water mix. The term was
found to be less than t 1pv and therefore considered negligible,

The calibratibn therefore resolvea into fitting the polynomial

E(T) = AT3 + BT2 + CT ceeehD 2

which may be found by measuring the emf. at three fixed points other
than 273°K and solving the three simultaneous equations éxactly for A,

B and C. The valucs of temperature found using this calibration at
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values lying within the range defined by the three calibration points
éhould not be in error (according to White) by more than 2uv
representing about + 0.1 -0.2°. This estimation would seem to be
rather optimistic when compared with the second calibration method.
Readings outside the range defined by the three calibration points and
273°K are not valid. It should be borne in mind that the quoted error
in temperatures represents the errof in temperature of the thermocéuple
junction as measured by the calibration. The error in temperature of
‘the'specimen is larger than this apd is at best only withnxiO.SOK with
the methods used here.

The second calibration method depends on the accurate determination
of temperatdre using a platinum resistance thermometer. Measurements
were taken of thermoéouple emf, against voltage across a platinum.
resistance thermometer of nomihal (i,e. at 273°K) resistance 100R using
a constant current source of 1lO0OuA. From the calculated value of the
Z function (see 5.4.3) at each point, the value of temperature was read
from tables of Z against temperature [3,pll5]. . Interpolation between
tabulated values was made where necessary as described in 5.4.3.

A table of values of thermocouple emf. against temperature could
then be made and a polynomial cﬁrve fit of the form,

E(T) = ATS + BT4 + CT3 + DT2 + GT'+ K . eneeD.3

could be made from the data'using a least Squares method, ‘

The method [4] of obtaining the teﬁperatures from Z values which
are intermediate between values available in tables is outlined in 5.4.3
and given in detail in the appendix,

In both methods the data was handled by computer and the programs
will be found in the appendix. Tables of values of thermocouple emf.

against temperature taken from the polynamial approximations were

printed out at intervals of O.2°K.



- 178 -

That the second method was more accurate can not be doubted.
An assessment of the relative performances of the two methods confirmed
this. However, the simplicity of the first method and the fact that
the maximum discrepancies between the two methods corresponded to
temperature of less than 1°K when errors of at least O.SOK in specimen
temperatures were expected meant that in practice it was preferred,

-

5.4.3 Platinum Resistance Thermometer

A platinum resistance thermometer of nominal resistance 1000l was
used to calibrate the thermocouples. The resistance of the thermametex

was measured at 273°K and at the helium point 4.2°K. The resistance RT

at any subsequent temperature was used to calculate the value of the 2

function
N R At R ‘.‘
Z = T R4'2 . '..'5'4
Ry - Ra.2

Tables of values of Z against temperature are available [eg.3,pll5]

and any necessary interpolation was made by using polynomial
approximations over four regions bounded by 23°K, 47°K and lSOOK.

The 2 function varies differently with temperature over these four
regions hence four separate approximations were made giving four
imependent polynomials, one for use with interpolation in each of the
regions. Again computer programs were used to ease the calculation,

A graph of Z against T obtained by this method is shown in appendix 6,

5.4,4 Temperature Control

The temperature of the specimen was controlled by application of
an emf. to the heater coil on the specimen holder. The heater was
controlled by a commercial temperature controller type 3010 MKII supplied
by Thor Cryogenics Ltd. The emf. of the thermocouple was compared to a

preset value determined by the experimenter. Any positive difference
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was amplified and the amplified emf. used to supply the heater, while
any negative difference was ignored. By this method if the temperature
registered by the sensing thermocouple was below the preset value the
applied emf. to the heater raised the temperature. If the temperature
exceeded the preset level the heater was automatically set to zero.

A maximum of 40 Watts was supplied to a 1500 chromel resistance coil
wourd on the sample holder. Separate thermocouples were used for '
temperature measurement on a D,V.M, and for the temperature controller,
Tﬁe b.V.M. used was a Hewlett Packard 3490A multimeter with a
sensitivity of 1luv. The temperatﬁre of the specimens was measured to
an accuracy of # 0.5°K, although temperatures below lSOK were expected
to be in more serious error due to the inaccuracy of the platinum

resiqtance calibration below this temperature.

5.4.5 Magnetic Field and its Measurement

An eleven inch commercial electromagnet was used to apply
magnetic fields of up to 2.5T to the specimens. The current coils
of the magnet were supplied by a Mullard Precision Current Controller
type MS4113, which could be operated either manually or by an autgmatic
electronic sweep unit MS4115. The magnet was water cooled usiﬁg a
' closed ciicuit water cooling system to minimise corrosion of the
cooling pipes.

The magnetic field attainable by the electromagnet could be varied
by adjusting the gap between the pole pieces, The field was measured
using a Scalamp Fluxmeter search coil available from W. G. Pye & Co, Ltd.
This consisted in one case of 100 turns for measuring fields less than
0.7T and of 10 turns for measuring larger fields. The calibration was

plotted as a function of coil current.
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5.4.6 Measurement of Deformation using Strain Gauges

In order to measure the deformation of the specimens under uniaxial
stress strain gauges available from Welwyn Strain Measurements were used.
The gauges depend on the variation of resistance with strain of a karma
alloy grid embedded in a glass fibre reinforced epoxy resin backing
material. The gauge type found most suitable was Gauge SK-09-0l15EH-120

which had overall physical dimensions of about 3 mm x 2 mm,

5.4,7 Strain Gauge Preparation Technique

The bonding of strain gauges onto the surface of a specimen
requires a detailed technique of abrading and degreasing the surface
"and careful bonding. These may be found in the Micromeasurements
Bulletin B-129 (May 1976) conéerning cleahing and Micromeasurements
Bullétin B-130-3 (May 1974) concerning ﬁénding. The adhesive used was
M-Bond 610 an epoxy resin which must be stored at sub-zero temperature
for preservation. The specimen and bond were annealed at 200°C for

two hours to allow the bond to ‘cure'.

5.4.8 Measurement of Resistance using a Bridge Network

In order to measure accurately the change in resistance oﬁ the
gauge the Wheatstone bridge network shown in fig. 5.8 was constructed.
The gauge and dummy are remote being connected to the main circuit by a
length of screened three core flex encased in the usual plastic sleeve
with an additional thick P.V.C., cable sleeve to reduce any thermal
variation in the resistancevof the leads, By keeping the leads to the
- gauge and dummy together in this way, the effect of any thermal variation
in resistance of the leads which does occur, despite the precautions,
will be minimised since the same change in resistance will occur in

both arms of the bridge.



CIRCUIT DIAGRAM FOR THE STRAIN GAUGE BRIDGE

STRAIN GAUGES

&) -E8

D.V.M.

0-100 Ohm

0-1000 Ohm

fig.5.8
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‘The dummy is placed as close to the gauge as possible and bonded
onto a similar material to compensate for any changes in resistance
due to thermal expansion. By this method it was expected that the
only variation in resistance detected by the bridge is due to strain in
the specimen. |

The strain gauge ;esistance under zero strain is 1200 £ 0.6%, The
gauge factor G is defined as the fractional chanée in resistance per

unit strain,

dr

d-—s. J-‘ -oco .,5'5

G | = R

where ds is the strain, i.e. ds = d2/%. For the gauges used G = 2,05

4+ 2.0% at 75°F_room temperature.

5.4.,9 Measurement of Strain

If the change in voltage across the points B and C (see fig. 5.8)
‘from the balanced position is AV due to a change in resistance of the
auge dR_/R , then
gauge dR /R ,

dR . . -
AV = k o"ﬁi : to--5t6
g

where k ié a constant. The voliage change is thus ptopdrtional to the
fractional change in resistance. The bridge may be calibrated by
making changes in the coarse resistor on the arm AC of dRAC and measuring
the corresponding Voltage change across AB, AVA

B

dRAC

AV = k!—-—_—_ v 0...5.74k
AB Rpc

and in this case both AVAB and dRAC/RAC are known, which allows k to bg
found.
When the bridge is in operation this value of k may be used in the

equation 5.6 to give the change in resistance of the strain gauge. = By
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definition dR /R = G.dg%/ & from equation 5.5 and herce
. 9 g

ds = AV L N ] .5.8

1
k.G

5.4.10 Voltage Amplification

In order to increase the out-of-balance voltage, AV, an ANCOM 15C-3a
amplifier with a gain of x1000 was used. The sensitivity of the bridge
network was + 0.l1mV after amplification, which meant that changes in
voltage across BC down to 0.1uV before amplification could be detected,
Cﬁanges in RAC of 0.19 gave changes‘invvoltage AVBC of typically 15mv
after amplification. Consequently, changes in resistance down to
+ 0.001Q could be measured giving a limit of sensitivity of about
0.15 mV. This meant that measurement of‘strain down to a limit of

0.5 x 10'-5 or 5 u.strain was possible with the existing bridge network.

5.4.11 Interference and Stabilisation of the Bridge Network

The strain gauge leads were f;und to be picking up r.f, signals
from the sing around leads which were unscreened inside the uniaxial
pressure apparatus. Due to the small size of the strain gauge and i£s
associated leads it was impractical to consider screening. Instead it
was found that if the sing around was switched off (i.e. left in 'sing
around mode' without supplying the initial pulse) while the strain
measurements were made the results were satisfactory.

Capacitors of 0.47uF (ceramic) were placed across the inpﬁts from
the gaﬁge and dummy leads to eliminate any stray r.f. pick up that did
occur, A similar capacitor was placed across the output from the
amplifier, All leads outside the screened box were shielded, The
bridge with these modifications was found to be stable to & 0,02 mV

compared with the previous + 0.1 mV,
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5.5 1Irradiation of Specimens

5.5.1 Problems Associated with the Measurement of Elastic Constants
under Stress

Uniaxial stresses large enough to produce measurable changes in
the transit time of ultrasound through single crystals are also likely
to cause movement of dislocations inside the solid, The dislocation
mobility changes the observed velocity of sound in the crystal and'
affects the measured elastic constants and their stress derivatives.
Thevmechanism of this process is deséribed in the appendix.

The contribution of these dislocations to the elastic moduli may
be linear or non linear. It was hoped originally that the linear
variation of elastic constant with stréss, the third order constant,
could be extracted from—non linear effects due to dislocations by
making polynomial fits to the data and removing the non linear terms.
This was found to be unsuccessful, and later it was realised that the

technique had already been attempted [6] with the same result, The

fact that the dislocation contribution may be linear makes it difficult

to distinguish between lattice anharmonicity and the dislocation effects,

There are two possible solutions to the problem. One is to use

small uniaxial stresses which do not give rise to significant dislocation

mobility, in conjunction with a method of measuring very small changes in

elastic constant, Another method is to use some way of pinning the

dislocations to prevent their movement contributing to the elastic

constant, The first method is not feasible at present and previous work

has been concentrated on methods of pinning.
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5.5.2 rinning of Dislocations

The problem of dislocation effects has been discussed by Truell
et al [7]. The most successful methods to date have been neutron or
gamma irradiation of the specimen or the use of prestressing techniques.
Hiki and Granato [8] showed that the apparent elastic range (i.e. when
streés is proportional to strain) can be extended by prestressing; They
also observed in the untreated specimens deviations from linearity in the
graph of elastic constant against stress in the initial parts of each
measurement; that is for low stresses on a decreasing stress run. This

was similar to observations made in the present work.,

5.5.3 Criterion for Elimination of Dislocation Contribution

Salama and Alers [9] were able to show that a criterion for
determining whether dislocations effects had been eliminated was when
uniaxial and hydrostatic pressﬁ;e derivatives-of the elastic moduli
were compatible. Linearity of the'grapﬁ of elastic modulus against
stress was shown to be an insufficient condition for determining the
reliability of results because, as mentioned abdve, the dislocation

contribution may be linear or non linear,

5.5.4 Pinning by Irradiation with Gammas or Neutrons

Salama and Alers were also able to show that irradiation with a
large flux of gamma or neutrpns produced no detectable change in
attenuation of ultrascund with stress and gave a linear variation of
elastic constant with stress which was in good agreement with hydro-
static pressure measurements. It was concluded that the dislocation
effects had been adequately suppressed.

Their gamma irradiation was carried out for 28 hours close to a
4000 Ci Cobalt-60 gamma source at a temperature of 15000. Neutron

irradiation was in the core of a nuclear reactor producing a flux of .
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l.4 x 1013 neutrons/cmz.sec for two hours giving a fluence of 1017
neutrons/cmz.

Thomas [6] also used neutron irradiation to suppress dislocation
effects in single crystals of aluminium, He found the same criterién
for elimination of dislocation contributions as reported by Salama and
Alers, although he had tried to eliminate non linear contributions from
ﬁis data without success, The ériterion was satisfied after neutéon
irradiation, The energy of neutrons reported was 1lOOkev,

| In the presént work the single crystal specimens of Erbium were
irradiated by placing them inside the core of the Universities Research
Reactor at Risley Warrington for 24 hours at 120% giving an integrated

flux of about 1017 fast neutrons per square centimetre.
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CHAPTER 6

The Magnetic Properties of Heavy Rare Earths

6.1 Introduction

6.1.1 Electronic Structure of the Rare Earths

The rare earth elements Lanthanum to Lutetium form a class-of
materials which, although they have very similar chemical properties,
exhibit a variety of different magnetic étructures. The magnetic
behaviour of these metals can be expiained at least qualitatively in
terms of two main factors, the exchange and crystal field interactions,
Other conéributions to the magnetic energy do exist and of these the
most importaht is the magnetoelastic effect. |

. In a rare earth crystalline solid the outer 54 and 652 electrons
migrate throughout and form thé conduction electron band. The 4f shell
which is filled during the series, }s screened from the outside by the 5s
and S5p shells, and is responsible for the magnetic moment of the ions,
The electronic structures of these elements is given in fig. 6.1. It
can be shown [1] that the 4f electron configuration acted upon by the
crystal field and coupled by the exchange interactions gives a reasonably
simple explanation of the complex magnetic properties observed throughout

the Lanthanide series.

6.1.2 Crystal Structures

The crystal structures of the light rare earths Lanthanum to
Europium are mainly double hexagonal close packed (dhcp), while the heavy
rare earths Gadolinium to Thulium are hexagonal close packed (hcp). A
table of the crystal structures is given in fig. 6.2. The c/a ratios
for these crystals vary from 1.591 in Gadolinium to 1.584 in Lutetium
passing through a minimum of 1.571 between Holmium and Thulium, This

compares with the ideal value of 1,632,



The Outer Electron Configurations of the

Rare Earth Atoms La57-—Lu71
R R ;:ﬁgs
R

La 552.5p6.5dl.6s2 582.5p6 1.061
ce | 4£2.55%.5p%. 652 agt . 552.5p° | 1.034
pr | 4£3.55°,5p°.66° ag? 562.50° | 1.013
na | 4£%.562.50°, 652 a£3.552,55° | 0.995
pn | 4£5.552.5°. 652 ag? 552.50° | 0.979
sn | 4£%.5s%.5p°, 65 ag° .55%.5p° | 0.964
mu | 4£'.55°,5p°.65° 4£8.5s2.5p° | 0.950
ca | ag”.5s2.5p%.5a%.652 | 4£”.552.50° | 0.938
m | 4£°.552.5p°. 652 4£8 552.5p° | 0.923
py | 4£%.56%.5p°.65° ag2 .58%.50° | 0.908
no | aett 52,5p°, 652 a£10 552:5p% | 0.804
pr | 4£12 552, 5p°, 652 agt 552 5% | 0.881
m | a£l3.552.50°. 652 a£'? 552 5p% | 0.869
Yb 4f14.552.5p6.652 4f13.552.5p6 0.858
Lu 4f14.552.596.5d1.652 4f14.552.5p6 0.848

The inner electron structure remains the same
throughout the series

2

1ls .252.2p6.352.3p .3d

lo , 2 6 ,b.10

.45 .4p .4d

fig. 6.1




Crystallographic Properties of the Rare Earths

Crystal Density a c ¢/ * Melting
Structure | g.cm—2 % Q a P%i?t
La dhcp 6.166 3.772 12,144 1.610 920
“Ce dhcp 6.771 3,673 11,802 1.607 798
Pr dhcp 6.772 3.672 11.833 1.611 931
Nd dhcp 7.003 3.659 | 11,799 | 1.612 1018
va 7.26 3.65_ 11,65 1.600
Sm rhom 7.537 3.626 | 26.18 1,605 1072
Eu bce 5.253 4,580 822
cd hep 7.898 | 3.634 | 5,781 | 1.501 | 1311
To hep 8.534 3.604 ~5.é98 1,581 1360
Dy hcp 8.540 3.593 5.655 1,574 1409
Ho hep 8.781 3,578 5.626 1,572 1470
Ex hep 9.045 3.560 | 5.595 1,572 1522
Tm hcp 9.314 3.537 5.558 1.571 1545
Yb fcc 6.972 5.483 824
Lu hep 9,835 3.505 5.553 1.584 1656

*

c/a ratios of dhex crystals are given as ¢

/2a

- fig. 6.2
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Removal of the 5d and 652 electrons into the conduction band
leaves a tripositive ionic core located at the lattice sites, The
rare earths therefore behave as tripositive ions with highly localised
magnetic moments due to the tightly bound 4f electrons. The total
moment of each atom is given by application of Hund's rules as shown in
the spectroscopic properties in fig. 6.3. The spin orbit coupligg is
strong giving J=L -8 fox: the light rare earths and J=L + S for the

heavy rare earths,

6.1.3 Effects of the Crystal Field on Magnetic Ordering

In the heavy rare earth crystals the crystalline field has an
important effect upon the detailed structure of magn’etic ordering,
however it 1s still of secondary importance compared with the exchange
1nteraction-in these materials, since if'is the latter which determines
whether or not ordering-occurs. In the light rare earths the 4f shells
are much larger and the effects of éhe crystal field are correspondingly
- greater so that they can affect the existence or otherwise of magnetic
ordering.

A phenomenological theory of magnetic ordering in the rare earths
has been built ué»in which the contribution of the conduction electrons
to the total magnetic propertiles is ignored. The behaviour only of a
system of localised 4f electrons with associated magnetic moments is

considered, with various interacting forces between these,

6.2 The Principal Magnetic Interactions

6.2.1 Contributions to the Magnetic Hamiltonian

The existence of a particular type of magnetic ordering in the rare
earths is determinéd by the minimum magnetic free energy under the given
conditions. This magnetic energy may be derived from the total

Hamiltonian and has the following main contributing terms



Spectroscopic Properties of the Rare

Earth Series Las.’--Lu7l

L S J A gvJ(J+1)

La |o| o 0 0 0.00
ce | 3| Yy | 32| 87 2.56
pr (5| 1 | 4 | 45| 3.8
N | 6| 3/5 | %y | 8/11] 3.62
Pm | 6 2 4 3/5 2.68
sm | 5| 52|52 | 2/ 0.84
m |3 3 0 - 0.00
ca ol 7179 2 7.94
™ | 3| 3 6 |3/, 9.70

by | 5| 5/ |15/5| 3 | 10.60
Ho | 6 | 2 8 | 34| 10.6p

Br | 6| 3/, |15/, 6/5 | 9.60

T™Tm | 5 1 6 /e 7.60
Yb | 3 1/2 779 | 8/7 4.50
Lu 0 o o o} 0.00

where g is the gyromagnetic ratio and
g = gvJ (J-1) gives the effective
magnetic moment of the atom in Bohr

magnetons

fig. 6.3
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H = H + H + H
mag iso.ex an.ex c.f. m.s. z

where the first two terms are the exchange energy Hamiltonian is

H
" Tc.f.

the crystal field term, H s is due to magnetostriction and Hz is the

Zeeman energy in an applied magnetic field.

. ' 1

6.2.2 The Exchange Interaction

As explained in section 3.2.3 and in more detail in Appendix 2 the
exchange interaction arises directly from the Pauli exclusion principle.
A spin moment 51 1

exchange energy Eex of

located at r, and a spin moment 5, at EQ give an

E = -J(,-r,))s

ex l.‘s" .0106.2

2

In the rare earths the amount of direct overlap between 4f orbitals on
neighbouring lattice sites is negligibléf so that exchange between these
electrons is small, However, the 4f electrons do overlap with s electrons
in the conduction band and the net result of this is an indirect exchange
mechanism between the 4f orbitals by means of the direct s-f exchange.

The best known model of this indirect exchange is the RKKY model [2,3,4].
which has the same general form for the exchange energy between 4f orbitals

’

as in the direct exchange.

6.2.3 The s-f Exchange

The exchange integral between the bound 4f electrons and the free
s conduction electrons will have the form of equation A2.,10

2
RERE bag (2D T o 0K Vg L

L}

J] spins ...6.3
where the ¢ are the wave functions for s electrons and ¢4f for the 4f

electrons,
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This energy favours parallel alignment of the s and 4f electron
maments in the rare earths, so that the conduction electron moments add
to the ionic 4f moments [5]. In the RKKY theory the exchange interaction
r I. In

—J

practice it is necessary to include a term due to anisotropic exchange

is assumed to be isotropic and hence only a function of |£i-

[6,P.19] which is the term H  ox, Obtained in the magnetic Hamiltonian.

6.2.4 The Indirect 4f - 4f Exchange

To a first approximation the indirect 4f - 4f exchange has the same

form as the direct exchange which is

HeJ( = : z J(Rij)'s_i.ij -011604
R
1]
where r, -r,, the vector between the ith and jth electron.

Ry TE T I
The magnetic moment of the atom J is a constant rather than s because
of strong spin-orbit coupling (s -L). The exchange may therefore be

expressed in terms of J by projection of s into J, which is (g~1)J so that

equation 6.4 becomes

H

0.006.5
ex

2
-g-1° ] gr, ).3,.3
Rij ij"" 4"

[4

The exchange energy is consequently larger in the heavy rare earths
than in the light rare earths because J is generally greater in the former,

as can be seen from the table of spectroscopic properties in fig. 6.3.

6.2.5 The RKKY Model

For the heavy rare earths the mean radius of the tightly bound 4f
orbitals is only one tenth ;f the interatomic spacing. Direct overlap of
the wavefunctions is therefore negligible. The exchange interaction between
the 4f electrons which is responsible for the production of ordered magnetic

states therefore proceeds via a direct 4f -s exéhange involving polarisation

of the conduction s electrons.
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In the RKKY theory [2,3,4] the exchange integral between the s and 4f
electrons is assumed to be isotopic and consequently depend only on the
distance between the electrons.

Jsf(Eij) = JSf(Ei—E'j) 0000606

and further it is taken to be constant, say Jo

Jsf:,., = Jo 000'6.7

So that the exchange interaction between a conduction s electron Es

at Es and a bound £ electron gf at'?r_f is

Esf = "'Jo Ef."s's .'006'8

This will cause polarisation of the conduction electrons, since for
example, if Jo is positive then conduction electrons whose moment is
parallel to §f

minimum of the exchange energy,rwhile conduction electrons with spins

will prefer to be close to the ion since this gives a

antiparallel will be distant from the ion.
The exchange energy between the 4f electrons then has the same general

form as in the direct exchange and results in an expression of the form

E4f4f Z J4f4f _ij)s .gj vse+6,9

[4

where now the J4f4f ij) and J(R Ry

The 4f-6s exchange integral for some rare earths has been calculated

) are not necessarily the same.

by Milstein and Robinson [7]. In particular they were interested in its
variation with interatomic spacing. Their results indicated ﬁhat the

4f-6s exchange integral was relatively insensitive to changes in interatamic
spacing a result which might be expected in keeping with the assumption of

equation 6.7 in the RKKY theory.
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6.2.6 The Crystal Field Interaction

The exchange interactions align magnetic momenté in certain
directions relative to each other. This may cause all moments to be
parallel or for nearest neighbours to be antiparallel as in a simple
aptiferromagnet, or for moments in neighbouring hexagonal planes‘to be
inclined at a fixed angle to one another as in helical antiferromagnetiam.
The exchange interaction can not however explain why the moments m%y
favour a particularlcrystallographic direction to any other, for example,
tﬂe aligmment of moménts along the é—axis in ferromagnetic Gadolinium
between 240°K and 293°K, or alignment in the base plane b axis in
ferromagnetic Terbium below 2l4°K.

In‘the'heavy rare earths the next most important contribution to the
magnetic Hamiltonian is éhat due to the electrostatic crystal fieid
experienced by the 4f electrons. The charges around any ion in a solid
will give rise to an electric field at the ion, and in the rare earths
the tightly bound 4f electrons whi;h are localised at the ionic sites will
experience this field. The 4f electron charge, clouds are highly
anisotropic and will therefore experience a torque which tends to align
their moments along particular crystal directions.

’

The general form of the potential energy will then be given by [6]

e

V(Ei) = I p(_R_) . d_R_ ...l6| 10
all |£i'-§J
crystal
where r, is the position vector of a particular 4f electron and p(R) is

. the charge density at the general point R, If p(R) lies entirely
outside the ion then the potential V(Ei) will be a solution of laplace's
equation as explained in Appendix 5 and consequently this can be
expressed as a series solution |

vie,e,4) = IIAT .t YR, veer6.11
£ m
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and when the symmetry of the hexagonal crystal is taken into account this

reduces to the form

o 2 o 4 0.6
V(Ei) = Az.r .Y (9,4) + A4.r Y (9,9) + A6r Y(6,9)
+ Ag 6 [y (6,¢) + y (e,¢)] ceeeb.12

where the Y2(6,¢) are spﬁerical harmonics. This may be expressed in the
form given in the Appendix 5 using Legendre polynomials

O

2 {cosb) + (cosB) + K

NO

sinse.c056¢

6° 6

....6.13

v(r,9,¢) = Pg(cose) + K6

.

The expression favoured by the experimentalists may be derived from this

by grouping together the powers of sin® and this gives

1l 2 1l 4 6 1l 6
v(r,6,9) = K2 sin'6 + K4 sin 6 + K6 sin 6 + K6651n Ocos 6¢
00006114

measurement of anisotropy using this equation necessarily includes any

anisotropic exchange.

6.2.7 Physical Meaning of Terms in the Crystal Field Expansion

m

The Az

terms in equation 6.12 represent the electric field
components of the appropriate symmetry in the crystal while the ;l.Y:%6,¢)

are the various multiples of the electron distribution. All matrix

elements with 2> 6 are zero for hexagonal symmetry. The Azo, A4O and AGO

coefficients represent the axial anisotropy in a hexagonal crystal while
the Aé; represent the anisotropy in the base plane. Since the minimum of
the anisotropy potential represents the stable magnetisation direction,
negative values of A;), A;) ard Aé) favour ¢ axis aligrment, while positive
values favour base plane directions.

The magnetocrfstalline anisotropy can be very strong giving energies
equivalent to field strengths of 100T and therefore making contributions to
the magnetic Hamiltonian approaching the magnitude of the exchange inter-

action. In heavy rare earths however the exchange interaction is still the

dominant effect.



6.2.8 Magnetic Anisotropy in the Heavy Rare Earths

The relative magnitudes of the anisotropy coefficients determines
the fine detail of magnetic ordering in the heavy rare earths. The
expression for the anisotropy 6.13 and its régrouped form 6.14 were used
by Rhyne and Clark [8] in their determination of the anisotropy
coefficients of Terbium and Dysprosium. For most of the heavy rére

0

earths the K;) which gives the axial anisotropy corresponding to the A2

potential, is the dominant term. The Kés base plane is about 100 times

smaller than Ké) while the other te;ms K;) and Ké) are intéfmediate in
. value, These last two are importént in stabilising the conical magnetic
structures in elements such as Erbium and Holmium.

The majority of the magnetic properties of the rare earths can be
exp;ained at least qualitatively in terms of these two major contributions
to the magnetic energy given by equations 6.5 and 6.13. The crystal field
gives a particular contribution to the magnetic Hémiltonian of the 4f
electrons due to the presence of a Coulomb field of the neighbouring ions;

Therefore the crystal field can not give rise to cooperative magnetic

effects such as oider—disorder transitions,

6.2.9 Magnetostriction : ‘

The final two terms in the magnetic Hamiltonian are the magnetostrictive
and Zeeman energies, The magnetostrictive energy consists of two

components

H = H + H ’ .o.-G.lS
ms me e

where He is the elastic energy associated with homogeneous strain
components and Hme is the magnetoelastic energy which couples the spins to
the strains [9].

Work has been done‘on the magnetostrictive effects in the rare earths
[10,11] and on the magnetoelastic effects [12,13] and their relation to

the thermal expansion behaviour. According to Bozorth a close
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relationship exists between the magnetoelastic effects and the crystal
. anisotropy.

Greenouéh [13] suggests that the thermal expansion and Neel
temperéture of Dysprosium are dependent on the residual internal strain

in the specimen.

.

- 6.3 Magnetic Ordering  in the Rare Earths

6.3.1 Phenomenological Theory

The phenomenological theory of rare earth magnetic. ordering involves
a distinction being made between thé localised magnetic 4f electrons and
the outer 54 and 652 conduction electrons. The magnetic contributions
of the outer electrons are ignored in favour of the larger contributions
due to the 4f shell. This works excel}ently-for the heavy rare earths

Gadélinium, Terbium, Dysprosium, Holmium and Erbium and gives a reasonably
good expianation of the properties of the light rare earths. It is
however completely unsuitable for some of the more complex magnetic

properties of Cerium and Ytterbium.

6.3.2 Effects of the Crystal Field on Ordering

Much of tﬁe early work on the theory of rare earth spin structures
approached the problem by consiaering the interactions of the 4f electrons
with the crystal field. The crystal field for the hexagonal lattice was
determined in its operator form by Elliott and Stevens [14] as

= o 2 0 o 4 0 0O 6 (o] 6 6 6
V(Ei) = A2<r >aJ02 + oA 904 + A6<r >YJQ6 + A<r >yJo6

>.".6.16
where the various terms can be seen to corraspond to those of equation 6.12,

Calculations show tﬁat the effects of the crystal field are dominantly

through the Ag potential. The sign of the Stevens factor aJ gives the

relation of the quadrupole of the 4f electrons to the J direction. The
- 0 -1

values of the crystal fiecld potentials are AO = «300 om l, A, = -60 cm ,

2 4

we e TR g T T
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AGO = 15 cm-l and A6-6= -90 cm-l according to Taylor and Darby [5].

In Terbium, Dysprosium and Holmium the calculated a, are negative
and the prediction of crystal field theory consequently tends to align the
magnetic moments‘perpendicular to the ¢ axis, which is in agreement with
the known magnetic structures of these elements. In Erbium oy ig
positive hence predicting aligmment parallel to the c axis. The antiferro-
magnetic state of Erbium has magnetic moments aligned both paralleliand
antiparallel to the ¢ axis, in keeping with the A;)

in the ferromagnetic phase and also in the antiferromagnetic regime between

potential. However,

. 53o and 20°K it has a component in the base plane which orders helically

and corresponds to the effect of the A ° potential, The effects of the

6
various terms were given by Taylor and Darby and are reproduced in fig. 6.4.

6.3.3 Effect of the Exchange Interaction

Although the crystal field calculations were- able to show whether

the magnetic moments would lie along the ¢ axis or in the base plane, and

6

. they were unable to explain why the magnetic moments in successive planes

further, through the A term which of the base plane axes was preferred,
should lie parallel or at a fixed angle, the turn angle, to one another.
That 1s, they were unable to explain cooperative phenomena, at least in
the heavy rare earths,

The oriéinal attempt at using the exchange interaction to explain the
magnetic structure of Dysprosium was by Enz [15]. Dysprosium has a
helical antiferromagnetic structure with the magnetic moments confined to
the basal plane between temperatures of 178°k and 85°k. Below 85°K it is
ferromagnetic with moments aligned along an a axis,

In the helical antiferromagnetic phase each hexagonal layef or base
plane is assumed to be ordered ferromagnetically with the orientation

varylng from plane to plane. If the exchanée interaction between the n th
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and (n+l)th planes is denoted by Jl ad between the nth and (n+2)th by
J2 etc., and if the angle of the arbitrary origin is qy then the total
exchange energy of the crystal is obtained by summing equation 6.9 over
the whole crystal.

2

E_- = - 11 3.cos(  -9).s ceed6.17

ex +
mn

where the magnitude of s is indeperdent of m and n, and only its direction
is dependent on m. If the interlayer turn angle is W then

e - e = mm -.'.6u18
“n+m n i

"and further, assuming that the energy of each plane is the same, then the
total energy will be simply N times the energy of one plane, where N is

the number of planes.

E = -N.sz z J. .cos (mw) eess£.19
ex m"m

where the summation is now over the number of planes whose interactions
are being considered. Considering that interactions from three or more

planes away will be negligible this leaves

E = —N.sz(J + 2J.cosw + 2J.cos2w) eeeeb,20
ex o) 1l 2

Ignoring other contributions, the equilibrium condition will give a

minimum value of the exchange energy Eex' ,

3aE 2 ‘
a— '..'6'
mex N.s (2Jlsinm + 4stin2w) 21

. which will be zero when,

o = 2Jlsinw + 4stin2m veeeb.22
The solution of equation 6.22 is when -
! 6.23
cos W = lﬁ; e e s O

The helical spin antiferromagnetic structure is therefore stable for

those conditions under which J1/|J2fs 4. When J, becomes smaller than Jl/4

2

the ferromagnetic structure is formed.
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6.3.4 Helical Antiferromagnetism

In the antiferromagnetic phases of the heavy rare earths the mcst
commonly occurring order is the helical spin system governed by the
conditions described above for Dysprosium. The helical bdse plane
ccmpoﬁent may also be accompanied by a c axis component which may be
constant as in Erbium below 20°K, vary sinusoidally as in Erbium between
53°k and 85°K or vary As A square wave as in the antiphase domain structure
in Erbium between 20°K and 53°K. The turn angle w in the base plané is
aiso temperature dependent, decreasihg as the temperatufe decreases,

Application of a magnetic fieid in the base plane of this type of
structure gives a continﬁous distortion of the helix until the field
strength is sufficient to cause‘rotation of the spins with components in
the reverse direction of the field, into.phé field direction. This
results initially in a fan-type structure, and as the field is increased
the fan angle becomes smaller, eventually closing campletely to give
a ferromagnetic aligmment. Recently, however, Crangle [16] has expressed
some doubt concerning the existence of the fan state following results
which show in cne case only an increasingly deformed helix as the field
strength is raised. ,

Landry [17]) has given an explanation of the variation in helimagnetic
turn angle as a function of interlayer spacing, suggesting that the results
are due to the variation of exchange interaction with interatomic Spacing.
This would appear to be contrary to the view held by Robinson.and Milstein

[7] for the RKKY interaction.

6.3.5 Ferromagnetic Ordering

The existence of long range periodic spin structures depends on the
long range exchange interaction. The exact details of the structure, for
example which crystallographic direction the moments point along, 1s

determined by the crystal field anisotropy. As the temperature is reduced
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the energies due to the crystal field increase. At low temperatures the
crystal anisotropy in the rare earths corresponds typically to a magnetic
field of about lOT according to Mackintosh [18]. This results in a
reduction of the turn angle in helimagnetic ordering. This effect is
therefore largely responsible for the eventual transition from antiferro-

magnetic to ferromagnetic ordering at the lower transition temperature.

6.3.6 Description of Magnetic Order

The magnetic'structures of the heavy rare earths are notable for
their long range pericdicity along the ¢ axis, which is due mainly to the
form of the indirect exchange. The form of orderirng may therefore be
expressed in terms of two basic structures [18] the helix aﬁd the
lengitudinal wave. In the helix the components of magnetic moments in
the 5asal plane, corresponding to the xy plane of coordinates, may be

expressed as

Ty = m.J, cos Q.R, veseb.24
in = m.Jl Sin 'Q—.'R-i ouco.6.25

and in the case of a longitudinal wave the ¢ axis component varies as

le = m J// cos 9-.5'1 ot006n26,

where in both cases 51 is the position vector of the i th plane measuréd
from some arbitrary origin plane and Q is the wave vector of the magnetic
orderbwhich also lies along the z axis. From this values of Q may be
plotted against temperature for the different rare earth elements,
Results from some neutron diffraction measurements of Koehler et al [19]
and Dietrich and Als-Nielson [20] are given in fig. 6.7. The wave
vector has been converted into an angle which in the case of Dysprosium
“and Terbium represents tﬁe interplanar turn angle w. For Erbium above
53°K in which only a longitudinal wave along the ¢ axis exists the ahqlé

represents the phase angle between moments in successive base planes since

in this case the term 'turn angle’ would be meaningless.'
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6.3.7 Present State of the Theory

The present state of the phenomenological theory is one in which it
has reached a level capable of explaining broadly most of the existing
results., The magnetic properties can be explained in terms of the two
. main interactions, the exchange and‘crystal field, together with the
magnetostrictive coupling. The combination of these three factors and
their variation, both ffop element to element in the Lanthanide series,
and in a single element as a function of temperature as for example in the
cAse of Terbium [18] lead to a wide variety of magnetic structures.

Some progress has been made iA calculating the exchange integrals
from first principles although this has not included anisotropic exchange.
Calculations of the crystal field effects are also lécking. On the whole
therefore the analytical theory of rare ?9rth magnetism is at a very

primitive stage of development.

6.4 Magnetic Structures of the Heavy Rare Earths

6.4.1 Determination of Structure

In order to determine the exact magnetic structures of the rare
earthé most of the information has been obtained by neutron diffraction
and magnetisatioﬁ measurements on single crystal specimens. From the
analysis of data obtained using these two techniques the magnetic config-
urations shown in fig, 6.5 have been deduced, Early work on neutfon
diffraction by the heavy rare earths was carried out at Oak Ridge, Tennessee
and magnetisation measurements at the Ames Laboratory at Iowa State

University.

6.4.2 Variation of Magnetic Structure with Temperature

The magnetic moment structures of the heavy rare earths Gadolinium,
Terbium, Dysprosium and Erbium are given in fig. 6.5. As the

temperatures of the rare earth paramagnets are reduced a critical
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temperature is reached at which the elements adopt one form or another
of ordered magnetic structure. These temperatures at which order-
disorder transitions occur are marked by discontinuities or anomalies
in the electrical, thermal, magnetic and mechanical properties.

All except Gadolinium exhibit én antiferromagnetic state at some
polnt in the temperature range. The antiferromagnetic states of»
Dysprosium and Terbium érp both helical antiferromagnetic wiﬁh the
moments confined to the base plane, Erbium however has an antiferro-
maénetic phase in the range 53°K - 8$°K in which the moments are confined
to thé c axi$ but vary sinusoidall§ in both magnitude and direction.
Another antiferromagnetic phase of Erbium also occurs with ordering in
the basé plane.

. All except Gadolinium have a lower.?;ansition temperature from the
antiferromagnetic to ferromagnetic state, Gadolinium itself also has a
lower transition at which a component of magnetic moment appears in the
base plane inclining the net moment to the ¢ axis so that it lies on the
surface of a cone. The magnetic structure however continues to be simple
ferromagnet. Terbium and Dysprosium form base plane ferromagnets, while
the ferromagnetic transition in Erbium occurs when the component of moment

parallel to the c axis orders ferromagnetically while the base plane is

still helical, giving it a conical structure.

6.4.3 Gadolinium
Results of previous work on Gadolinium indicate that it is a
ferromagnet below its Curie point of 293°Kk down to 4.2% [21,22], although

" there had been some speculation, notably by Belov [23] concerning the

o
existence of an antiferromagnetic helical structure between 240°K and 293K,

It is now well established that in this temperature range the moments lie
parallel to the ¢ axis, and that below-240°K they deviate from this axis

by the introduction of a component in the base plane. = The maximum

1
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deviation from the c axis occurs at 180°K when the moments lie on a cone

of semi-vertical angle 65°. This angle then reduces to a value of about

32° at 60°K and then remains fairly constant down to 4.2°K. The variation

of this cone angle as a function of temperature is shown in fig. 6.6, the
results being taken from the neutron diffract;on work of Cable and Wollan

[21] and from the determination of the magnetic easy axis by the ﬁagnetisation
measurements of Corner,'RPe and Taylor [24] and later Corner and Tanner [25].
An antiferromagnetic structure in Gadolinium in the temperature range

246°K-293°K has been reported under high hydrostatic pressure of 30k bar

by McWhan and Stevens [26].

6.4.4 Terbium

The Néel and Curie temperatures of this element seem to vary rather
widely from sample to sample. Terbium.uhdergoes a transition from the
paramagnetic to a base plane helical antiferromagnetic structure at a Néel
point of 230°K, although some results seem to indicate that this is closer
to 225°K. ‘ The antiferromagnetic phése exists only over a narrow temperature
range ofabouthOK, and reported Curie points vary from 214% - 220°K.
Throughout the ordered state the moments are confined to the base plane by
large anisotropy fields. Magnetisation measurements -at high fields show
that the susceptibility along the ¢ axis is fairly constant with applied
field, and that the moments are lifted less than 90 ocut of the base'plane by
fields of up to 7 Tesla at 4.2°K.

Magnetisation measurements by Hegland et al [27] indicate that the b
axis is the easy magnetic direction throughout the antiferromagnetic phase,
" At about 5°K below the Néel point the transition from antiferro- to
ferromagnetic structure begins according to neutron diffraction measurements,

The turn angle in Terbium varies from about 20.5o at Tﬁ through a
minimum of about 17° and then rises to. about 18.5° at T.. Results due to

C
the early neutron diffraction work of Koehler et al [28] and later Dietrich
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and Als-Jdielson [20] are shown in fig. 6.7. The latest neutron
diffraction results of Crangle [29] using a recent high purity Terbium
specimen do not show the existence of a minimum in the variation of turn
angle with temperature, but rather give an almost linear variation over
the range. |

The helical antiferromagnetic structure can be completely @estroyed
in Terbium by the application of fields as small as 0.1 ~0.2 Tesla élong
the easy b axis, which again indicates a rather delicate balance between
the anisotropy and exchange forces in this phase of Terbium as mentioned
by MacIntosh [18]. /

At the Curie point the magnetic moments lie along the base plane b

axls and this ferromagnetic structure is stable down to 4.2°K.

.

6.4.5 Dysprosium

Below its Néel temperature of 180°k Dysprosium has a helical magnetic
structure similar to Terbium, in which the magnetic moments are again
confined to the base plane by large axial anisotropy forces., This
antiferromagnetic phase exists over a much wider temperature range than
in Te;bium, the ﬁelix existing down to 90°k when the transition to the
ferromagnetic phase begins, terminating at a Curie temperature of between
85°Kk and 88°K, depending on different purity of the specimens and
different methods of determination, when the moments align along the base
plane a axis,

The interplanar turn arngle variles from 43° at the Néel temperaﬁure
to 26° at 90°K as shown in fig. 6.7.- The critical magnetic field applied
" in the base plane that is necessary to convert the antiferro- to the ferro-
magnetic alignment varies linearly from zero at Tb up to 1,1 Tesla at 160°K.
Above 135°K the collapse of the antiferromagnetic order is not immediate

when the critical field is reached but rather passes through a series of

fan states. The easy axils in this case is the base plane a axis, although
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some work on the changes in the easy asis during magnetisation have been
indicated by Bly, Corner and Taylor [30] and later again by Corner and

Welford {31]. 1In the ferromagnetic state the moments lie along the a axis.

6.4.6 Erbium

Erbium undergoes an ;rder-disorder transition to an antiferromagnetic
state at a Neel temperature of 85°K. The 4f quadrupole moment is rotated
through 90° compared with Terbium and Dysprosium causing the zero field
momenté to lie along the ¢ axis.between 53°k and 85°K.  Over this
temperature range the ¢ axis components vary sinusoidally, while no order
has been detected in the base plane.

At 53°K another transition occurs in which the base plane components
order helically while the ¢ axis components, modified by the anisotropy
alter froﬁ simusoidal to an antiphase domain type structure of four moments
in one direction followed by four moments in the other. Some &authors
consider tha£ a higher harmonic appears in the sinusoidal'variation causing
the variation to become more like a square wave as for example in a Fourier
series,

?he Curie point of Erbium occurs at about 20°K at which point the ¢
axis moments order ferromagnetically to give a cone of semi vertical angle
300. This equilibrium represents once again the result of competing
anisotropy and exchange forces on the lowest energy state.

The variation of the wave vector of Erbium is given in fig. 6.7, In
the temperature range 53°k - 85°K this respresents the phase angle between
successive c axis moments, and appears to be constant at 51.50. Between
53°K and 20°k this represents the interplanar turn angle which decreases
from 51.5° at 53°Kk down to 43.5° at' the Curie point of 20°K when the
ordering along the c axis becomes ferromagneticvand the turn angle
stabilises at 43.50. The net effect is therefore a conical ferromagnetic

structure. -

R
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Application of a ¢ axis'field to Erbium closes the cone angle in the
ferromagnetic state. In the region between 20°k and 53°K this is
preceded by a first order transition from the anti aligned cone structure
to the‘pure conical state. This means that'the structure is ordered
ferfomaghetically and that the Curie point has been effectively raised.
Application of a base plane magnetic field results in a phenomenon
requiring a more complicated explanation. The cone appears to coliapse
to a fan state lying at an angle to the ¢ axis. This appears as an
abfupt change in the base plane compqnent of the magnetic moment at an
internal field strength of 1.7T acéording to Rhyne et al [32]. The a
and b axis moments remain isotropic up to an internal field of 4.5 Tesla
which marks the collapse of the fan state. At higher fields the a and b
axls components become éhisotropic with final base plane ferromagnetism

not being achieved below 20 Tesla for the b axis direction.

6.5 Bulk Magnetic Properties

These are the macroscopic or average responses of the materials to
the sum of all the microsccpic interactions discussed above. The
hexagona; crystal structure of the heavy rare earths leads to large
anisotropies in the crystal field and in most of the magnetic and elastic

properties.

6.5.1 Magnetisation Measurements

Thé magnetisation measurements on the heavy rare earths Gadolinijum,
Terbium, Dysprosium and Erbium have been described in detail in section 6.4
on the determination of magnetic structure. The original single crystal
magnetisation data on these heavy rare earths was due tc Legvold, Spedding
and co-workers at £he Iowa State University. The earliest reported
méasurements for Gadolinium were by Nigh, Legvold and Spedding [33], for
Terbium by Hegland, Legvold and Spedding [34], for Dysprosium by Behrendt,

Legvold and Spedding [35] and for Erbium by Green, Legvold and Spedding [36].
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Other important magnetisation measurements not mentioned in section 6.4
include work on Terbium by Rhyne et al [8] and on Erbium by Rhyne et al [32]

again and by Flippen [37].

6.5.2 Determination of Critical Fields

The critical magnetic fields necessary to cause changes in the magnetic
ordering from antiferro- to ferromagnetic when applied along the'magnetic
easy axis have been reported by Cogblin [38] fér all the heavy rare earths
with the exceptibn of Gadolinium, The results were obtained from
magnetisation méasurements on single crystal specimens by Feron [39] using
applied fields of up to 4T. In most cases internal fields of no greater
than 2.5T were sufficient.to produce reorientation of magnetic moments,

The Cur£e points of those heavy rare earths which have an
antiferromagnetic phase represent the transition from antiferromagnetic
to ferromagnetic alignment. In all cases this transition tempe?ature has
beeﬁ found to be field dependent and approaches the Néel temperature as tﬁe
field is increased. The critical field is also strongly temperature

dependent.

6.5.3 Magnetocrystalline Anisotropy Measurements

14

As indicated above the early magnetisation measurements oh heavy rare
earths showed evidence of large crystalline anisotropy. The anisotropy
constants as given in eQuatipn 6.14 may be determined by magnetisation or
torque magnetometer measurements, |

The variations of the anisotropy constants of Gadolinium have been
measured b} Corneg et al [24] and were found to be much larger than for
other typicai hexagonal magnetic materials, for example Cobalt, The
principal term, Kz;, was found to change sign just below 240°K,
corresponding to the movement of moments away from the ¢ axis at the spin

reorientation transition.
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The anisotropy constants of Terbium and Dysprosium were measured

as a function of temperature by Rhyne and Clark [8] and also by Bly,
Corner and Taylor [40,41]. No reliable measurement of the anisotropy
constants of Erbium appears to have been made because the exchange energy
ié_field dependent and it has so far eluded analysis.

| The easy magnetic directions in the rare earths are given in'fig. 6.9.
In the cases of Terbium and Dysprosium the easy axis lies in the base plane,
lwhile for Erbium it is along the ¢ axis. This is in agreement with the
contributions of the anisotropy constants as discussed in section 6.3.2
and as shown in fig. 6.4. In the'éése of Gadolinium the easy direction is

variable below the spin reorientation transition.

6.5.4 Magnetostriction Measurements

Values of all the single crystal magnetostriction coefficients of the
heavy rare earths are now available [1]. Magnetostrictive strains which
are closely related to the crystal énisotropy through the elastic energy

have been found to be unusually large in the rare earths,

6.5.5 Anomalous Thermal Expansion Measurements

The observed thermal expansion of rare earths has a very anomalous
temperature dependence located clcse to magnetic transition teméeratures.
in tﬁose rare earths with helical spin structures, such as Dysprosium and
Terbium, a large ¢ axis expansion anomaiy of exchange origin is observed.
Lattice distortions in the rare earths are sufficiently iarge to be
determined accurately by X-Ray diffraction techniques, Darnell [42,43]
has studied the temperature dependence of the a, b and ¢ axes of Gadolinium,
Terbium, Dysprosi;m and Erbium, The results are in good agreement with the
bulk thermal expaﬁéion data obtainea using strain gauges in the paramagnetic
and antiferromagnetic regionsf. Below TC the average strain observed‘by a
strain gauge is not unique because it depends on the domain structure that

the crystal forms, The strain gauge data are therefore not reliable

below TC.
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6.5.6 Specific Heat Measurements

Specific heat measurements have been made on all thé rare earths
below 3OO°K, the early work keing carried out between 1851 and 1960 by
the group at Iowa State University [44,45,46,47). The results show
lambda type anomalies in specific heat at the ordering temperatures. In
the helical antiferromagnetic to ferromagnetic transition in Dysprosium a

sharp first order ancmaly is observed.

6.6 Effects of Pressure on Magnetic Properties

6.6.1 Variation of Magnetic Ordering Temperatures

The variation of the Curie temperature of Gadolinium and the Néel
femperatures of Terbium, Dysprosium, ﬁolmium and Erbium have been found
as a function of pressure.by several groups of workers. Robinson-and
Milstein [48] monitored the change in susceptibility using Gadolinium as
the cb£e of a transformer up to pressures of 40 k bar, Bloch and
Pauthenet [49] measured the weak field permeability using their specimens
at the centre of two coils to obtain a mutual inductance. McWhan and
Stevens [26] used both X-Ray diffraction and A.é. susceptibility measure-
ments similar to Robinson and Milstein. Finally Bartholin and Bloch [50]
used magnetisation measurements under pressures of up to 61;bar:

The.transition temperatures were found to decrease with increased
pressures in all cases by typicaliy lOK per k bar. The exact details are
given in fig. 6.10. ' Both fg and TC were found to decrease in a liﬁear
fashion with pressure, The explanation offered for this is that the
exéhange energy andlcrystal field interactions decrease with pfessure, and
in particular are strongly dependent on the ¢ axis parameter,

One exception tc this rule has been found [48] in which the transition

temperature of a Gadolinium-Dysprosium alloy increased with temperature,

but for the pure metals all transition temperatures decrease.
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6:6.2 Variation of Exchange Interaction with Atomic Separation

The Curie point in Gadolinium or the Neel point in the other heavy
rare earths gives some indication of the magnitude of the exchange inter-
action energy since it is approximately the point at which the exchange
energy and thermal random energy are equal. An investigation into the
variation of the order-disorder transition temperatu;e with pressﬁre will
also yield information.oq the variafion of exchange interaction.

Results by Robinson [48] for pressures up to'éOlibar-indicated the
déérease of Tb for Gadoliniuﬁ with pressure, and hendé that the free
energy of the ferromagnetic state ﬁust increase with pressure and hence
decrease with interatomic spacing. This would result in the paramagnetic
phase being energetically favoured at a lower temperature,

5 Results due to McWhan and Stevens shpwed that the exchange
interactions, in the form of TC/[(g-l)zJ(J+l)], increased smoothly on
passing through the series from Gadolinium to Holmium, that is with

increasing R/r where R is the interatomic spacing and r is the average

radius of the 4f orbital.

6.6.3 Crystallographic Phase Changes with Pressure

Work by McWhan and Stevens up to pressures of 85 k bar showed that
high pressure phase changes occurred approximately at G4 25k bar, Tb 27 k bar,
Dy 52k bar and Ho 30-40k bar.

These higher pressure phases had lower critical temperatures than
the low pressure phases which is in keeping with the idea that ordered
magnetic states have a free energy which increases with pressure. There
also appeared‘to be the same sequence éf crystallegraphic structure
occurring for all the heavy raré‘earths, these being hcp - Sm type~ dhcp -+

fce as the pressure increased.,
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6.6.4 Other Properties

Bloch and Pauthenet measured the spontaneous and saturation
magnetisations of the heavy rare earths Gd, Tb, Dy, Ho. Measurement of
saturation moments for Gd and Dy at 77°K were consistent with the
vari;tion of conduction electron polarisation, however the Terbium results
were compietely different and indicated that the application of high
pressures induces electtqps to transfer from the 4f shell to the conduction
band. Spontaneous magnetisation of specimens was féund to decrease by
tybically 0.1% per kbar for the heavy rare earths,

Neutron diffraction work on Terbium and Holmium [51] showed that the
turn angle in the helical antiferromagnetic state varies with pressures up

to S5kbar,. This has also been predicted theoretically. Results for Dy

[50) indicated the same.
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* CHAPTER 7

Elastic Properties of the Heavy Rare Earths

7.1 Variation of Elastic Properties with Temperature

7.1.1 Elastic Constants of Polycrystalline Rare Earths

The low temperature ela#tic properties of polycrystalline specimens
of the heavy rare earths were measured by Rosen [l] in 1968, over the range
4,2 -300°K. The results, giving the variation in longitudinal and trans-
verse sound velocity in Gadolinium,\Terbium, Dysprosium, Holmium and
Erbium, showed anomalies correspording to the location of magnetic phase
transitions in the matefials. |

This work was followed by the compleﬁe set of adiabatic second order
elastic constants of Dysprosium by Klimker and Rosen [2] in 1970. 1In

this later paper the compressional constants C 1 ard C3 and the cross

1 3

coupling coefficients C were found to give sharp minima in the

12° ©13

vicinity of the Neel temperature TN and the Curie temperature Tc. In

contrast the shear moduli C44 and C66' although giving anomalies at TC’

were found to be little affected at TN'

7.1.2 Elastic Constanés of Single Crystal Specimens

| Early measurements of the adiabatic second order elastic constants
(SOEC) of single crystal Dysprosium over the temperature range 298-—900°K,
and single crystal Erbium over 600-300°K were made in 1967 by Fisher amrd
Dever [3). Their primary objective was however to show a correlation
between the shear anisotropy ratio c44/C66 and the existence of a
martensitic hcp + becec crystallographic phase transformation. This is
incidental to the p?esent work although their measurements appear to be
the-first complete set of single crystal SOEC of any of the heaQy rare

earths.
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Moran and Lﬁthi.[4] investigated the changes in longitudinal
acoustic velocity along the ¢ axis (C33).for single crystal Gadolinium,
Terbium, Dysprosium and Holmium at temperatures down to 77°K again
showing anomalies in elastic constant close to the magnetic transitions.
The existence of a critical external applied magnetic field of 1.2T
along the a axis of Dysprosium at 167°K was shown from the elastic 
constant and similar behdviour in Gadolinium and Terbium was indicated.

The SOEC of single crystal Terbium were reported by Salama et al [5]

over the range 77 -300°K, the behaviour of C showing an unusual

11
maximum at Tb = 221%%. The autﬁors concluded that the sepafation of the
Curie and Néel points of only 8%k may cause some overlap of the magneto~
elastic effects of the paramagnetic to éntiferromagnetic and a.f., to £.
transitions. The behaviour of the elastic constants in the region of thé
phase transitions in Terbium was also investigated by Jensen [6].

7.1.3 Systematic Investigation of the SOEC of Single Crystal Heavy Rare
Earths

The variation of the five SOEC of single crystal Dysprosium and
Holmium with temperature over the range 4.2 - 360°K was reported by Palmer
and Lee [7] and of Gadolinium, Terbium and Erbium by Palmer et al [8] over
the same range. Measurements were made in filelds of zero and 2.5T applied
along the easy axis where pbssible. The moduli showed marked anomalies
again in accordance with Klimker and Rosen [2].

Differences in the moduli in zero and 2.5T fields of Dysprosium,
Holmium and Terbium were considered to be due to domain wall rotation
effects since the field caused, as far as possible, magnetic saturation
and converted the crystals into single domain ferromagnets, This change
in the elastic moduli, termed the Ac effect, was considered to be analogous
to the AE effect in polycrystalline magnetic materials. The ﬁheory behind

this AE effect has been discussed by Bozorth [9]. Briefly, if a
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polycrystalline mégnetic material is subjected to stress the observed
strain will have two component contributions. One is the normal

elastic strain of the material while the other i1s due to the reorientation
of domains caused by the applied stress. The value of the Young's
Modulus, defined as the ratio of stress to strain, will thereforeAappear
to be less than would be expected in a non-magnetic solid. The AE
effect is thus always positive. However, in the heavy rare earths.the
large magnetostrictive stralns can allow the 'Ac' effect to be either
poéitiQe or negative as explained by Palmer and Lee [7]. The AE effect
" was found to be greater in annealeé crystals by Kdster [10] who therefore
- considered that the effect decreased with internal strai-n.

For Erbium and Gadolinium it was considered by Palmer et al [8] that
the field strength of 2.5T would not be sufficient to convert the crystal
into a single domain ferromagnet, and hence that the observed difference
betweén the elastic conétants in zero and 2.5T applied fields would not
be the total 'Ac' effect. The magnetic fields were applied along the
magnetic easy axes as given in fig. 6.10 whenever this was orthogonal to
the direction of propagation of the acoustic waves. In the case of
Gadolinium the field was aligned paraliel to thé ¢ axis where pqssible,
although the easy axis in this case varies over the temperature range
4.2°K - 240°K as indicated by Corner et al [11].

Magnetic remanance was observed in the elastic constants qf Holmium
at 4.2°K. That is after application and removal of a magnetic fieid of
2,5T along the easy axis, the elastic moduli did not recover their
original zero field values. It was found necessary to heat the
specimen above its.Curie point and recool before the original value was
regained. .

| In the case of Erbium the elastic moduli were found to be

significantly lower than the results reported by Fisher and Dever [3] by
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a factor of up to 4% for C__ at BOOOK, which could not be attributeu to

13
experimental error. Results of the single crystal elastic moduli of
the heavy rare earths Gd, Dy, Er and Tb of various workers are summarised

in figs. 7.1 and 7.2,

7.2,1 Variation of Elastic Moduli under Constant Applied Field

The variation of the five SOEC of single crystal Erbium under constant
external applied magnetic' fields of up to 3.9T haé been investigated by
duvPlessis [12], although their isothermal magﬁetic depepdénces were
not studied. The temperature range covered was frocm 10°K-300°K. In
the éase of C33 the application of a magnetic field led to extreme
softening of the modulus near 53°K instead of restoring it to that
expected for a non-magnetic material.

“ The temperature variation of the tw6“moduli Cyy and C,, for
Gadolinium over the range 77°K-330°K was reported by Long et al [13].
They also measured the behaviour close £o the spin reorientation transition
at 225°K in constant applied magnetic fields of up to 0.8T. The work was
based on the behaviour of this spin reorientation anomaly under different
‘fields., The anomaly was found to disappear completely in fields greater

than about 0.5T. Theoretical interpretation of the results was ‘given by

Levinson and Shtrickman [14].

7.2.2 Critical Fields from Location of Magnetoelastic Anomalies

Moran and Liithi [15,16) showed in a series of experiments én Gadolinium,
Terbium and Dysprosium that the critical change in sound velocity near the
Néel temperature obeys tﬁe relation Av/v a molne where € is the reduced
temperature (T--'I‘N)/’I‘N and 0w is the angular frequency of the acoustic
vibrations. The aﬁomaly was found to be independent of the frequency for
the three values 30MHz, 50MHz and 70MHz used, The existence of such

anomalies has already been noted as the AE or Ac effect.



Comparison of the results of single crystal SOEC of Gadolinium and Terbium from Various Workers

Gadolinium . ) Terbium
) Palmer Long | Moran o Palmer Salama
TRl qe] | [1s] | 4] | TR 1e) | (5]
4.2 7.90 4.2 8.24 _
Cyq 77 7.80 | 7.8 7.2 Cyq 77 8.18 7.98
300 7.12 7.3 6.6 300 7.44 7.225
4.2 7.68 4.2 - -
c 77 7.59 : c, 77 5.89 6.56
300 | 6.78 : 300 6.92 6.79
4.2 2.38 | | . 4.2 2.52 -
Cus 77 2.35 . Cayp | 77 2.49 2.39
300 2.08 _ : " 300 2.18 2.14
4.2 - 4.2 - -
C 77 - o 150 - 1.85
12 300 2.56 12 300 2.50 | 2.43
4.2 1.91 . 4.2 - -
€3 77 1.93 C)5 150 - 1.99
300 2.07 _ 300 2.18 2.30

=2 1 -2

Units are 1010 N.m Units are 10 ° N.m

" Fig. 7.1



Comparison of the results of single crystal SOEC of Erbium and Dysprosmum

from Various Workers

Erbium
Tem oK Palmer Fisher du Plessis
P (8] (3] [14]
4.2 8.12 - -
c33 77 8.51 8.73 8.6
300 8.45 8.55 8.43
4.2 8.70 - -
C11 77 8.81 9.10 8.85
, 300 8.37 8.63 8.39
4.2 2.76 - -
c44 77 2.90 2.98 2.83
: 300 2.75 2.81 2.65
4.2 - - -
C12 77 2.92 3.09 2.90
300 2.93 3.05 2.93
4.2 2.31 - -
c13 77 2.22 2.26 2.34
300 2.22 2.27‘ 2.42

Units are'lo10 N.m'z

£ig. 7.2

Dysprosium
Tem oK Palmer Fisher Rosen

P [7] [3] (2]
4.2 8.51 - 8.52

c33 77 8.38 - 8.4
3¢C0O 7,81 7.87 7.90

4.2 g8.01 - 7.72
C11 77 - - 6.80
300 7.31 7.47 7.07
4.2 2.68 - 2.70

C44 77 2.61 - 2.65
' 300 .2.40 2.43 2.48
4.2 - - 2.50
C12 77 - - 1.75
300 2.53 2.61 2.53

4.2 "1.86 - 1.97
C13 77 - - 1.99
300 2.23 2.23 2.08

Units are 1010 N.m

-2
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The variation of the compressional modulus C.. of Dysprosium as a

33
fﬁnction of both magnetic field and temperature was investigated by

Isci [17] who also reported similar properties in the intra-rare earth
alloys Gd-40%Y and Ho-50%Tb. Isci and Palmer [18,19] were able to

draw conclusions concerning the magnetic phase diagrams of their

. specimens from the location of minima in the elastic constants aésociatei
with magnetic phase transitions; This followed similar conclusions from
experiments to locate maxima in ultrasonic attenuation in specimens of
rare earths by Treder et al [20,21], and also from magnetisation measure-

ments by Behrendt [22] and Jew and Legvold [23] and from magnetoresistance

measurements by Akhavan [24].

7.3.1 Application of Hydrostatic Pressure at Rocm Temperature

The éffects of hyd;ostatic pressures of up to 5kbar on single crystal
SOEC of Gadolinium, Dysprosium and Erbium in their paramagnetic states at
298°Kk was reported by Fisher et al [25]. The five SOEC were found to
vary linearly with pressure and the derivatives are reproduced in Table 7.3.
The size of the pressure derivatives of the adiabatic SOEC indicated
according to Fisher that a small ion core model could be used for inter-
preting the data theoretically. The results could also be useful in

testing the validity of the central force Born model, (p = -a

/tm + b/rn) ’
and calculations along these lines were performed by Ramji Rao [28]. ‘
Grineisen parameters were calculated from the experimental data
obtained (see sectio; 2.5.3) ard were found to be in poor agreement with
those obtained from thermal expansion data. This was explained in terms
of the change in c/a ratio of the crystals with volume. Calculation of

Griineisen parameters from theoretical lattice potentials by Ramji Rao et

al [29,30,31,32) were in good agreement with the corrected data of Fisher.



Hydrostatic Pressure Derivatives of the SOEC of Gadolinium,
Dysprosium and Erbium as reported by Fisher et al [25]

Gd Dy Er
C,, | 3.018 £0.02 | 3.092  0.006 | 4.768 £ 0.02
Cyy | 5.726 * 0.05 s.3§i + 0.008 | 5.448 * 0.018
C,y | ©-185 £ 0.012 | 0.434 £ 0.00L | 0.949 % 0.005
Css. 0.377 * 0.002 | 0.408 * 0,002 | 0.853 % 0.012
C,, | 2.26 +0.02 | 2,277 * 0.006 | 3.062 * 0.044
C,y | 3.53 *0.05 |3.32 fo.L 2,16 * 0.04
Kg | 3.320 % 0.039 3.21; * 0,054 | 3,302  0.02
Ky 3.228 *+ 0.044 | 3%.256 t 0.25

- fig. 7.3
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7.3.2 Application of Bydrostatic Pressure at Low Temperature

The effect of high hydrostatic pressure on the single crystal
moduli of Gadolinium over the temperature range lBOoK-340°K was
measured by Klimker and Rosen [26]. Isobaric measurements only were
made using pressures up to 6kbar and employing a high hydrostatic
pressure cell which was temperature controllable down to the cryogepic
.region. The authors suggested that it could be used down to 4.2°K at
pressure, however no results appear to have been obtained down to such
temperatures., The object of the work was to investigate the effect of
pressure on the magnetoelastic anomaly at the spin reorientation
transition at 225°K.and at the Curie point 294°. Pressﬁre dependence
of the transition temperatures from thé location of the anomalies weie
also determined from these measurements and were broadly in agreement with

those of other workers as reported by Elliott and shown in fig. 6.1l.

7.3.3 Effects of Internal Strain of Transition Temperatures

Greenough et al [27] showed that the existence of internal strain in
specimens of 50%Ho-Tb alloy affected the position of the Néel temperature
as determined by elastic constant measurements by up to 4°K. After

thermal cycling this effect appeared to be irreversible in the partiéular

crystal used.

7.4.1 Theoretical Calculation of Third Order Elastic Constants

The second and third order elastic constants can be calculated
theoretically as reported by Srinivasan and Ramii Rao [33,34) using either
a central force model or via Keating's approach [35,36]. Attempts to
compute the third order elastic constants of the heavy rare earths were
mgde in a series of papers by Ramji Rao and co-workers for Gadolinium [29],
Erbium [30], Terbium [31] and Dysprosium [32). They investigated not

only third order elastic constants but also the Griineisen parameters of
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these materials. The method of calculation was based on the Keating
approach except in the case of Erbium for which a Born type central force
potential was used. This was found to be less accurate than Keating's
method when compared with the experimental results of Fisher [25].

From anharmonic parameters yielded by Keating's method the ten TOEC
were calculated and using these the hydrostatic pressure derivatives of
the five SOEC were found and compared with the experimental results; The
calculated TOEC are given in Table 7.4 and the hydrostatic pressure

derivatives are compared with the measured values in Table 7.5.

s

7.4.2 Thermal Expansion and Grineisen Parameters

The Gruneisen parameters y may be calculated from a knowledge of the
TOEC as outlined by Srinivasan [33]. from these generalised parameters
the'effect;ve Grlineisen parameters 71 and ?b», perpendicular and parallel
to the unique axis, may be found. In the same series of publications
Ramji Rao et al [28 et.seq.] calculated the effective Griineisen parameters
for G4, Tb, Dy, Er as a function of temperature and thereby derived the
related thermal expansions. The thermal expansion behaviour of crystals
of the hexagoﬁal class had been expounded by Munn [37] and is given in
section 2.5.2 where expressions for the derived Grilineisen parameters will

be fourd.



Calculated Third Order Elastic Constants of Gadolinium,
Dysprosium, Terbium and Erbium from Ramji Rao et al
{28, 29, 30, 31, 32]

Ga Dy Tb Fr
C111 -50.3 | -53.2 | -48.0 | -79.6
Cl12 -13.3 | -16.4 | -16.2 | -18.7
€113 +0.4 -0.8 -1.1 -5.0
0123 -6.3 -6.9 -5.4 -7.0
C133 -9.7 -12.4 _li.l ~16.7
Ciqa | =3.9 -4,6 -4,3 -5.4
5155 -2.0 -3.1 -2.2 -6.6
C222 -55.1 | -62.0 | -57.1 | -87.8
C333 -76,2 | -73.5 | =73.7 | -74.,7
Cy44 -9.7 -12.4 | -11.,1 | -16.,7

Units are lO10 N.m.2

fig. 7.4



Comparison of Hydrostatic Pressure Derivatives of SOEC of
Gadolinium, Dysprosium and Erbium as measured by Fisher [25])
and calculated by Rao [28 et seq]

GADOLINIUM DYSPROSIUM ERBIUM

FISHER RAO FISHER RAO FISHER RAO

[25] [29] [25] [32] [25] (28]

cll 3.018 | 3.019 3.092 | 3,094 4,768 4,77
Cqq 5.726 | 5.726 5.331 | 5.336 5.448 5.45
c44 0.185 | 0.183 0.434 | 0.432 0.949 0.95
Cee 0.377 | 0.379 0.408 | 0.409 0.853 0.85
C12 2.26 2,261 2,277 2.276 3,062 3.06

fig. 7.5
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CHAPTER 8

Results (I): Performance of the Sing Around

In this chapter scme preliminary results using the new sing around
system are presented. As indicated in chapter four there were two
possible modes of data output, the repetition rate of the sing aroﬁnd
averaged over a period of about a second was displayed on a frequency
meter, or the values of individual sing around periods were obtained
using a fast sampling mode of about ten’milliseconds and the data
recovered on punched tape.

The repetition rate of the sing afpund was used to investigate
variations of the SOEC of Gadolinium and Erbium as a function of
tedpe:ature, the’results of which are presented in section 8.2. The
fast sampling mode was used to measure the variation of the compressional
modulus C33 of Terbium as a function of a rapidly swept magnetic field.

These results are compared with repetition rate measurements which were

taken simultaneously and are given in section 8.3,

8.1 Determination of Absolute Velocity

’

The absolute values of velocity and hence the actual values of the
elastic constants can not be measured very accurately using the sing around
technique. Therefore the values of elastic constants have been calculated
where possible from absolute velocity determinations on the same specimens
by other workers. In cases where this was not possible, for example with
new samplés, the absolute velocity determination was made using a spike
generator to obtain an approximate‘yalue of the transit time through the
specimen ard bond éo within % 0,02usecs, and then a pulse echo overlap,.
d?iven by a frequency synthesizer, used to measure the transit time to

within * 0.00lusecs. This allowed the velocity to be measured to within
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about 0,5%. The error in the veloclity at points other than the
calibration point is then dependent upon the point-to-point accuracy of
. the equipment used to determine Av/v. The values of the elastic
constants calculated in this way in the present work are not eipected to

be in erroxr by more than 2%,

8.2 Measurement of Av/v from Repetition Frequency

Thg fractional change in acoustic velocity Av/v may be related
directly to the fractional chanée in the repetition frquéncy Af/f of
the sing around. As indicated in section 4.2.3 this instrument gives a
precision of about i‘2 parts in lO6 for Av/v. As a demonstration of

the sensitivity the behaviour of C,, of Gadolinium has been investigated

33
close to its Curie point, Tb, of 293°k,

8.2.1 Variation of C33 of Gadolinium close to T

The variation of 033 of Gadolinium close to.TC has been investigated
by several previous workers, the earliest of which appears to be that
reported by Long et al [1] using a pulse echo overlap technique. Later
measurements on similar purity specimens weré made by Moran and Lﬁphi (2]
and by Palmer et al [3]. Finally'measurements were carried out on some
of the latest hiéh purity Gadolinjum by Savage and Palmer [4]. A com-
parision of the results of these various workers is given in fig. 8.1,
showing differences in the quoted values of the elastic constant of up to
7% from specimen to specimen. |

In fig. 8.2 the fractional changes in elastic constant Ac/c compared
with the quoted values at 300°Kk are plotted against the reduced
temperaturg, (T—TC)/TC in each case, for the same results, These show
that the depth of ihe anomaly compared with the value at 300°K is about
4% according to Palmer et al, thle according to the bther three reports

it is about 2.5%, In these cases the temperature control was to within

+ 0.1°%.
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In the present work the temperature control was to within t+ 1lmK
with an accuracy of lOmK using a specially designed thermostat made
available by the Department of Physics at the University of Southampton.
The temperature of the specimen was varied at a rate of 2%k per hour
using this equipment and the results provided a useful indication of the
sensitivity and stability of the electronic circuitry.

The resulting variation of the elastic modulus C33 of Gadoliniﬁm on
either side of its Curie point is shown in fig. 8.3. This may be com-~
péred with the variation reported by'Savage and Palmer on the same
specimen. The elastic constant appears to have reached a certain degree
of stability at about 294.5°K, however results could not be continued
much above this due to a failure in the equipment. The depth of the
anomaly as shown in the %igure again appears to be about 2%.

Each reading represents a difference in Femperature of typically
10mK. The change in acoustic velocity Av/v which would arise from such a

change in temperature is 3 parts in lO5 just below T, and about 2 parts in

C
104 just above TC. These are both rather greater than the actual
resolution of the instrument, however the performance of the equipment
over the flat region of the curve close to TC gives some indication of its

stability, at least over a period of an hour or so. Here the difference

between successive readings was approximately equal to the resolution.

B8.2,2 Variation of the SOEC of Erbium with Temperature

The variation of the SCEC of Erbium as a function of temperature has
also been investigated by several groups of workers. The first
measurements of the single crystal moduli of Erbiﬁm were reported by
Fisher and Dever [5]. However these results were taken over the range
60-300°K. Rosen et al [6] and Palmer et al [3] both measured the full

set of SOEC over the‘range 4.2 - 300°x in zero magnetic;field and the latter

e s Bt ey T L e N e £ e S ST (a1 v 3 DL S s a e s i 4oL L e T g R Tt g e
SIS Y S S R TR RS PR R i e e R Aens S T g DR ST S, e B e " : e

SR S e et S B SO AT e T e NI T R O LT A e TS N, g e



£'g 61}

ELASTIC MODULUS

1

7.0875£+10
7.0750E+10 ¢

7.0625E+10 f

¥

7.0500E+10

k]

7.0375E£+10

T

7.0250E+10

7:0125E+10

¥

7.000CE+10

i

6.9875E£+10

ki

6.9750E+10

GADOL INTUM-C33

/

/

+
+
.
.
-
+
.
+
*
+
L 3
+
<+
*
+
4+
+
+
-+
+
*
+
*
A
+*
-+
$

\

766 [ 287 0 268.0 289.0 290.0 201.0 292.0 203.0 294.0 205.0
DEGREES KELVIN ‘




- 120 -

work also in a constant applied mégnetic field of 2.5T. Finally

_ du Plessis [7] investigated the behaviour of the SOEC with temperature
under severa; constant applied magnetic fields of up to 4T. The
results of these different investigations are shown.

In fig. 8.4 the variations of C with temperature over the range

33
4.2 -100°K are compared, All workers report rapid changes in the
modulus at the phase transition temperatures of 20°K, 53°K and 85°K,
giving a characteristic 'step-like' appearance to the modulus. Because

of the well-defined location of these changes the values of C have

33
also been used to compare the tranéition temperatures in fig. 8.6. The
discrepancy in the values of C33 between the various samples corresponds
to about 1l.5% at IOOK and about 1% at lOOOK, the results of du Plessis
be;pg consistently higher'than those of the other two.

The results of the present work on C33, using the same sample as
Palmer et al, are given in fig. 8.5. This shows good agreement with
the general form of the results of éhe other workers, alﬁhough the
" resolution of the present equipment has allowed‘far more detail to be
‘shown.

The results of previous work on C ., are givén ir. fig. 8.7, Here there

11
is significant disagreement between the results in particular concerning the
depth of the anomaly at about 45 - 50°k. The results of du Plessis

indicate that the depth of the ancmaly is about 12%, while the results of
Rosen suggest a value nearer 7%. The results of Palmer et ai could not

be continued in this region due to excessive attenuation of signal in the
'sample. Otherwise the discrepancy between the various resulis does not

exceed 2%. The present results for C,. are shown in fig. 8.8. Again

11
the main feature is a deep anomaly in the region between 20 - 50°K with a
depth of about 6% which is in agreement with the results of Rosen. A

sharp increase in the modulus at the Curie point of about 22°x is present
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Comparison of the Transition Temperatures of Erbjium according

to the various different workers. The results are based on

the variations of C_ ., with temperature
-

3

Tb T* TN
Rosen [6] ‘ 22.5 ' '52.5 85
Palmer [3] 19 54.5 85.5
au Plessis [7] . 20 53 85
this work e 22 54.5 84.5

fig. 8.6
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and also a small anomaly and a definite change in slope at 84.5°K which
does not appeér in the work of Palmer et al or du Plessis, AIthough the
work of Rosen shows this behaviour,

‘A comparisbn of the results for C is given in fig. 8.9, The main

44
features are a sharp change in the modulus at the Curie point followed by
a slower increase up to a maximum at a temperature of about 5003. A
change in slope occurs at about 85°k. The maximum discrepancy bet@een
the rgsults is about 5% betwéen the values of Rosen et al, and the values
Sf du Plessis. The results of Palmer et al are intermediate.

The behaviour of C,, from the present work is given in fig. 8.10

44
and is in broad agreement with the earlier findings. A small but
definite change in slope of the elastic modulus occurs at 56°K close to
the phase transition. Tkis was also present in the results of Roéen but
is missing from tﬁe other reports. The change in slope at the Neel
temperature occurs at 86°K.

Finally the results of previous work on C,,_  are given in fig. B8.11.

66
Here the ﬁain characteristic is a deep anamaly between 20 - 55°K similar

to that observed in Cll' and corresponding to the helically ordered baﬁe
plane magnetic structure with an antiphase domain type of c axi§
modulation. According to Palmer et al the attenuation below‘53°K was
too great to allow results to be taken. Rosen et al show an anomaly with
a depth of about 12% while du Plessis indicates’a deeper anomaly of some
28% reduction in the value of this modulus and again results-were not
obtained over the whole range because of severe attenuation. Noge of
these results show any abrupt changes in the modulus at either 20°K or
85°k.

The present results for C_ . are given in fig. 8.12, The

66
characteristic softening of this mode between 25°K and 55°K is again

present. Results were not possible over a large region of the temperature
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range. The anomaly here had a depth of 4.5% before readings became
impossible due to attenuation and consequently no upper limit can be
given to its depth. Another feature not reported in the earlier work

was the pronounced increase of C in the region of T, of about 1%

66 C

followed by the already reported anomaly above TC.

Results for the cross checking.measurement L(C C44) are shown

66 "
in fig. 8.13 giving again a deep anomaly at about SOOK corresponding to

the softening of the C66 mode. This has a depth of about 10% compared

with the value of the modulus at 60°K, and since the value of C44 does

not vary much between 50°K and GOOK this would indicate that the anomaly

in C66 which could not be observed because of attenuation would be of a

depth of about 20%. Also a change in shape occurs at about 84K

44 Those measured

results are compared with the calculated values of lz(c6

corresponding to the observed change in slope of C

6 + C44) in fig. 8.14,

8.3 Measurement of Transit Time T

The transit time T of acoustic pulses through a specimen of Terbium
has been measured,'using the internal memory store, as a function of a
rapidly swept applied magnetic field. The raw data was converted into a
time measurement in microseconds using equation 4.1, viz,

ti + 2

—i—o—c)'a— ooonavl

Ty = 0.128(D + 1) +

where D is the digital delay which controls the width of the delay gate
and t, is the coded number from the punched tape.

i

8.3.1 Variation of C

33

Some results of transit times of three round trips through a sample of

of Terbium as a Function of Applied Magnetic Field

Terbium, Tb(I),have been taken as a function of magnetic field applied along
the easy direction of magnetisation, the b axis, in the antiferromagnetic
regime, Application of such a field should cause initially a distortion of

the helical structure and at higher field strengths, according to Nagamiya
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Comparison of values of the mode %(C4 + C66) as measured in fig. 8.15

4

and as calculated from the corresponding values of‘g44 and C’G-
TanpOK Calculated Measured Discrepancy
15 0. 28365 | o.28370 0.176 x 10>
20 0.28303 0.28271 0.989 x 10°°
25 0.28926 0.28231 0.240 x 107}
55 0:28789 0.28792 0.104 x 10~
60 0. 29402 0.29422 0.680 x 10™°
65 0.29387 0.29395 | o0.272 x 1073
70 0.29366 0.29348 0.613 x 1073
75 0.29271 0.29282 0.376 x 107>
80 0.29196 0.29237 1.404 x 1073
85 0.29122 0.29281 5.445 x 107>

fig. 8.14 .
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and Kitano [8], a 'fan' state should be produced. (Crangle has
recently [9] suggested that in fact no such fan state exists in Terbium).
At higher field strengths still the angle of the fan closes and finally

the alignment becomes ferromagnetic.

33
" similar pattern to that in Dysprosium [10] when subjected to a field.

‘The behaviour of the elastic modulus C in Terbium follows a

An initial slow decrease, corresponding to the distortion of the helix,
ié followed by a rapid softening of the modulus when the fan state is
uformed and then a slow, and in some éases_incomplete, recovery as the
fan angle éloses to form a ferromagnetic alignment.

The present results are shown in figs, 8.15-8.21. The transit times
from the fast saﬁéling mode have error bars representing the uncertainty
of + 3 nsecs in the tﬁning as discussed in section 4.2.3. Alongside these
results the simultaneously measured repetition rate frequencies of the
sing around, as monitored on the frequency meter, are given in kiloherz;

As can be seen from the results the maxima in the transit times occur
at the same field strengths as the courresponding minima in repetition rate,
or velocity. These occur at field strengths of between 6.35 and 0.45
Tesla according to the temperature of the specimen, The actual location
of the minima in velocity may be compared with the resulting.phase diagram
of Tb(I) given in chapter nine, since the minimuw velocity will correspond
to the minimum value of the elastic constant.

The general shape of the curves of transit time t against field and
'repetition rate against field shown in figs. 8.15-8,21 are also similar
bearing in mind that 1 azllf.
fig. 8.15 show the transit time and velocity recovering much of their

For example the results at 214°K given in

original value after the maximum/minimum, whereas at 226.5°K which is just
into the paramagnetic region, the behaviour is less field dependent after

the maximum/minimum with the velocity and transit time not recovering their

original values.
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8.3.2 Comparison of Transit Time Measurements with Changes in Velocity
as Measured from the Frequency Meter

Comparison of the transit times obtained using the fast sampling
mode and the reciprocal of the sing around frequency, which itself
corresponds to an averaged transit time, shows good agreement for the

results presented. The fractional changes (T,

ax " 16)/10 and Eo - f Y/

min’’ "min
between the zero field. values fo, To and the values at the maximum/minimum
fmin’ Imax are shown in %ig. 8.22, with the excepgion of one case, within 10%.4%

The reciprocal of the repetition rate was taken to be the 'correct'
value of the sing around period. -1Its point¥to-point accuracy was nearly
two orders of magnitude better than the t;ansit time measurements made in
the fast sampling mode. The values of the transit time T obtained from
the fast sampling mode have been compared to the reciprocal of the
repetition rate for the'zero field valuég in fig. 8,23, The values of Tt.
will be seen to be correct to within t 3 nsecs.

Comparisons of the transit times for the field sweeps at 216.5°K and
225.5°K are shown in figs. 8.24 and 8,25 regpectively. Again the results

show agreement to within t 3 nsecs. The results therefore indicate that

the fast sampling mode is operating to its quoted specifications.

4



Comparison of Changes in Transit Time T and Changes in Repetition Rate f

for C33 of Terbium Tb(I) at Various Temperatures in the

Antiferromagnetic Region

Temp®K Field at which £ - f T -1
o min max o
T occurs B Summand
max fmin To
Tesla
214 0.4 0.00452 0.00443
215 0.4 0.00563 0. 00554
216.5 0.4 0. 00629 0.00719
223.5 0.35 0.01138 0.00936
224.5 0.35 0. 00908 0.00908
226.5 0.4 0. 00908 0.01022

fig, 8,22



Results of Sing Around Frequency and its Reciprocal in Microseconds

compared with the Transit Time T measured by the fast sampling mode

Tb(I) -C33 in zero applied field

Temp Sing Around /¢ T

<K Frequency Usecs usecs

iz

212 276.448 3.617 3.616

214 276. 687 3.614 3.612

215 276.868 . 3,612 3.612
215.5 "276.721 3.614 3.612
216.5 276.618 3.615 3.614
223.5 275.193 3.634 | 3.634
224.5 275.339 3.632 3.633
225.5 275.716 3.627 3.628
226.5 276.103 3.622 3.620

fig. 8.23



Results of Sing Around Frequency and its Reciprocal in Microseconds

compared with the Transit Time T measured by the fast sampling mode

Th(I) -Cyy at 216.5°K
Applied Field . Sing Around 1/, T
. Frequency o
(Tesla) KHz Usecs usecs
0.00 | 276.618 3.615 3,614
0.045 276.451. 3,617 3.616
0. 067 273.318 3.619 3.618
0. 089 276.160 3.621 3.620
0.156 275. 646 3.628 3.626
0.178 275.579 - 3.629 3.628
} 0.222 275,333 - | 3.632 3.630
0.266 275.129 3,635 3.634
0.310 275.046 3,636 3.636
0.332 275.014 3.636 3.637
0.397 274.918 . 3,637 3,640
0. 440 274.920 . 3.637 3.640
0.461 274.947 3.637 3.638
0. 504 275.029 3.636 3,636
0. 567 275.227 3.633 3.634
0. 609 275.409 3.631 3.632
0.630 275.500 3.630 3.629
0. 650 275,591 3.629 3.628

fig. 8.24



Results of Sing Around Frequency and its Reciprocal in Microseconds

compared with the Transit Time T measured by the fast sampling mode

Tb(I) -C,, at 225, 5°K
Applied Field Sing Around l/¢ T
Frequency .

Tesla KHz psecs usecs
0.00 275.716 3,627 3,628
0. 067 275.522 3.629 3.630
0.089 275.326 3,632 3,632
0.111 275,124 3.635 3.636
0.134 274.992 3.636 3.636
0.156 274.779 3.639 3.638
0.178 274.517 3.643 3.641
0.222 " 274.094 3.648 3.648

0.244° 273.880 3,651 3.649
0.288 273.515 3.656 3.656
0.310 - 273.372 3.658 3.657
0.354 273,227 3,660 3,658
0.397 ' 273.219 3.660 3.660
0. 483 273,405 3.658 3.660
0.525 273.548 3.656 3.660
0. 567 | 273.653 3.654 3,656
0.588 273.685 3.654 3.654
0. 650 273.830  3.652 3,652

fig. 8.25
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CHAPTER 9

Results (II): Elastic Properties as a Function of
Temperature and Magnetic Field

9.1 Introduction .

In this chapter results of the variation of the'elastic moduli of
Gadolinium, Terbium and Erbium as a function of temperature and applied
magnetic field are presented. In particular attention has been
concentrated on the regions in whigh.the materials unde;qnphase
transitions.

The modulus C33 of Gadolinium has been investigated over the range
lBOf-BOOOK as a function of magnetic field applied in the base plane.
The location of field and temperature dependent.ancmalies has been
plotted and critical fields determined from these, Tentative proposals
are put forward for the underlying mechanisms behind the elastic behaviour
under these conditions, Corrections for demagnetising fields in the
sample have been made and a magnetic phase diagram of the material
obtained,

Similar work has been performed on Terbium with the field applied
along the easy directioﬁ, the b axis, over the range 200-235°K with the
main interest centred on the behaviour of the antiferromagnetic phase,

In Erbium the modulus C,, has been studied as a function of field applied

33

along the b axis below 20°K. Above 20°K the modulus Cll has been

investigated with the field applied along the éasy direction, the ¢ axis,

9.1.1 Previous Elastic Constant Measurements

Previous meaéﬁrements on the elastic moduli of Gadolinium and Erbium
in zero field have been reported in chapter eight. Some measurements of
the elastic properties under constant épplied magnetic fields have been

performed on Gadolinium by Long et al [1], reference to which is made in
) , ( , ;
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fig. 9.11 of section 9.2.3, and on Erbium by du Plessis [2]. Same

"results on the zero field behaviour of C of Terbium have been reported

33
by Salama et al [3)] and by Palmer et al [4]. Distinct minima in this
modulus are seen to occur at the Néel and Curie temperatures, The

behaviour of the elastic moduli of Terbium in a constant applied field

of 2.5T along the b axis was also reported by Palmer et al.

- 9.1.2 Determination of Critical Fields

Critical magnetic fields may be found by studying one or more of
several magnetically dependent properties of a material, for example
magneﬁisation, magnetoresistance, magnetostriction or specific heat.

In Gadolinium critical fields have been found [rom magnetoresistance
measureﬁents by Hiraoka and Suzuki [5] for scme temperatures in the

ra&ée 77 - 400°K although the measurements were not exhaustive. Specific
heat and resistivity measurements close to Tc have been made by Simons and
Salamon [6] in fields of up to 0.17T. Magnetisation measurements have
been carried out by Nigh et al [7] and by Feron [8,9].

In Terbium magnetoresistance measurements in fields of up to 87T over
the range 4.2 =~ 20°K have been made by Singh et al [lb] although no
measurements of this property over the temperature range of inte;est in
the present work have been reported. Magnetostriction measurements by
Belov et al [11]) in fields of up to 1.5T for the range 215 - 230K, have
enabled critical fields near the two phase transitions to be dbtainea.
Magnetisation measurements have been hade by Hegland et al [12] and by
Feron [9,13]. This latter work has also included magnetisation measure-
ments in low fieldé close to the transition temperatures from which
critical fields haQé been determined over the temperature range of

interest in the present work.
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In Erbium magnetisation measurements have been made by Green et al
[14] and by Féron et al [15]. Also magnetisation work has been
performed by Flippen [16] which has yielded critical fields in this
material,

Determination.of critical fields and magnetic phase diagramg via
elastic properties has been made on Dysprosium and the intra rare earth
alloys Holimium-50% Terbium and Gadolinium-40% Yttrium by Isci and Pélmer
[17,18,19]; although no such determinations for any of the other rare
earths appears to have been reportedAto date, The present study of the
prope?ties qf Gadolinium, Terbium'and Erbium has attempted to provide
knowledge of the behaviour of their elastic properties under applied
fields and to deduce from such results the magnetic phase diagrams of the
materials, It is alsovhoped that the results will help to complément

the findings of workers using different methods.

9.2 Gadolinium

As mentioned in chapter six Gadolinium orders ferromagnetically
below a Curie point of 293.5°K with magnetic moments aligned along the
¢ axis, Between 240°K and 225°K a second transition occurs when the
momeqts rotate away from the ¢ axis and lie along thé generatdfsAof ah
easy cone. Evidence for this structure has been obtained independently
by the neutron diffraction work of Cable and Wollan [20] and the
magnetisation measurements of Corner et al [21,22].

The modulus C33 is strongly coupled to the magnetic structure in
Gadolinium and distinct minima occur in this mode at the two transition
temperatures. The dependence of this modulus upon temperature and
magnetié field has been studied in the present work to investigate the -
behaviour of the elastic properties under these conditions and also to

gain some insight into the magnetic structure.
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9.2.1 Zero Field Temperature Dependence and Critical Behaviour

The temperature dependence of C,, of the Gadolinium specimen used

33
in the present work has already been investigated in zero field by Savage
and Palmer [23]. fhe origin and purity of this sample have been
discussed in chapter five. .The present measurements over the range
200 - 325°K are shown in fig. 9.1. A deép anomaly occurs at the Curie
point and a rather shallower minimum at the spin reorientation f
temperature; This is in agreement with the findings of Savage and Palmer
who reported that the anomaly at the Spin reorientation transition in this
high purity material is less pionounced than had been reported for much
lower purity specimens by earlier workers [1,4,24].

A more detailed investigation of the behaviour close to Tb has
also been conducted to enable the critical variation of velocity to be
studied. A Curie point of 293.7°K was found by locating the minimum

velocity. The variation of acoustic velocity in this region has been

compared with the relation recommended by Moran et al [25,26] for critical

changes in velocity .
Av
T a !,ne . ....9-1

where £ is the reduced temperature (T--TC)/TC and pAv/v 1s the fractional
change in velocity. This is shown in fig, 9.2 together with a ploé of

the expression

lfl 'A;')\i (!; BRIIE . ) .".9.2'

which derives from

.A.\.’. = kEB
v

...‘9‘3

where B is the critical exponent and k is a constant. Camparison of the
graphs shows that 9.1 only applies to the data over a limited region,
Reference to a similar comparison made by Moran and Liithi [25] shows that

the derivation from the relation 9.1 only occurred very close to Tc, for
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fne < -5.0, which was an expected limitation since Ene'tends rapidly
towards -« as € decreases. Such deviations are therefore not due to an
injudicious choice of Tb. However the present results for Gadolinium
show that the relation does not seem to hold very well for fne > -2,5
either which is surprising since the reported results for Dysprosium hold
to the relation for values of gne up to about -l. Reported results on
Gadolinium [26] show that the linearity of the relation holds for
Gadolinium for gne > -2.5 as far as f&ne = -1 which is outside the range
of the results‘quoted here. It may be concluded that the relation 9.1
does not hold for the high purity specimen of Gadolinium used in the
present investigations further than fne = ~2.5 from the Curie point, or
closer than ine = -4,25,

The relation 9.2 is also shown plotted in fig. 9.2, using the right
hand ordinétes, to engble a canﬁarison to be maae. This gives a much
closer agreement with the true behayiour of Gadolinium close to its
Curie point, and from this a critical exponent 6f B = 0.32 has been
extracted. *

The results presented are for the ferromagnetic phase of Gadolinium,
The variation of velocity in the paramagnetic region does not appear to
follow either relation. Robinson and Lanchester [40] have observed

similarly unsual behaviour in the critical specific heat and thermal

expansion of Gadolinium in the paramagnetic phase,

‘9.2.2 Field Dependence of the Modulus close to T

5R
At temperatures well below the spin reorientation region the elastic

modulus is almost field independent for applied field strengths of up to
0.4T in the base piéne. At a fleld of between 0.45 ~0.5T a small
maximum occurs as shown in fig. 9.3. This is followed by an equally

shallow minimum before the modulus rises towards saturation above O, 6T.
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As the temperature is raised the location of the maximum moves at
first slowly towards lower field strengths and also grows in size as can
be seen from fig. 9.4. at 214% the maximum occurs at a field strength
of about 0.4T, but above this temperature it.moves rapidly‘to lower
. fields and increases in magnitude very quickly at temperatures above
220°K. Above 226°K it has moved to zero field and completely swamped
the previous low field bepaviour.

The location of the minimum remains close to 0.5T throughout th{s
teﬁperature range and it becomes more pronounced as the low field
maximum gains in strength. Above'é25°K the minimum appears as the most
noticeable feature, as for example at 229°K as shown in fig. 9.6. Above
this temperature the location of the minimum moves very slowly to lower
field strengths. .

The low fieid values of the elastic constant above 226°K show
behaviour characteristic of the low field maximum below TSR' At higher
temperatures, fig. 9.7, the behaviour is similar to that at 229%k except

that the value of the elastic constant at higher fields (> 0,6T) decreases

more rapidiy than the zero field value,

9.2.3 Field Dependence of the Modulus close to ?C
The sharp minimum in C33 as a function of field occurring at about

0.387T for a temperature of 257% becomes gradually less well definéd as

the temperature is increased, fig. 9.8, although for all temperatures up

to its ordering point of 293.5°K the value of C 3 recovers much of its

3
o;iginal zero field value for fields greater than about 0,67, As TC is
approached the location of the minimum éradually moves to lower fields,
from 0.4T at 252°K to about 0.2T at 293°k,

Above TC' in fig. 9.10 the behaviour is rather different, A
minimum value of the elastic constant still exists but the softening

occurs very soon after the field is applied, for example at 296°K noticeable
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changes in the modulus have occurred at fields below OiOST. When the
broad minimum has been reached the modulus becomes much less field
dependent and does not recover to its zero field value for the fielad
strenéths used. Further into the paramagnetic region the minimum
shifts to higher fields, occurring at about 1T at 298°k.

9.2.4 Temperature Dependence of the Modulus in Constant Applied Fields

close to T R .

" The tempgrature dependeﬁce of C33 in constant applied fields of‘up
té 0.8T in the base plane of Gadolinium has already been investigated
some years ago by Long et al [1] oﬁ a low purity specimen. These
results are shown in fig. 9.11 and attention is drawn to the reported
depth of the zero fiéld anamaly. '

Results of the present investigations are shown in fig. 9.12 et seq.
The location of the minimum in zero field is at 225°K and as the field
is increased the minimum moves, at first slowly to lower temperatures.
At a field strength of 0.27T thé minimum occurs at 207°K, at 0.387 it
occurs at 201°K both of‘which are in agreement with the work of long.
At higher fields of 0.56T and above no minimum was observed above 180°K.
. The results of Long in fact suggest that the deep zero field anomaly had
disappeared in fields‘greater than O.5T and that a change in slope
occurred at 175°K which prqbably corresponded to the location of the
trénsition. Present results indicate that the initially shallow anomaly

had disappeared for fields greater than about O.4T.

9,2.5 Temperature Dependence of the Modulus in Constant Applied Fields
close to T - v

seREE P e ,

The anomaly at the Curie point shown in fig.’9.16 appears to be very
weakly field dependent and possibly field independent. For fields up to
a strength of O.74Tvin fig.‘9.l7 the location has shifted by less tﬁau one
degree Kelvin, The most notable effect in this regioﬁ was that the -

anomaly became less well defined as the field increased. Comparison of
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the sharp zero field minimum in fig. 9.16 with the very broad minima
exhibited at higher fields in fig. 9.17 shows that the transition frem
ferromagnetism to paramagnetism becomes broad and indistinct at high

fields.

9.2.6 Interpretation of Results and Phase Diagrams

The phase diagram of this sample of Gadolinium as a function 6f
temperature and applied ﬁégnetic field is given iﬁ fig. 9.18, The
: Curie and Spin reorientation temperatures have been taken to correspond
to the min;ma in the elastic modulus similar to tﬁose observed at zero
field. At fields greater than 0.3T the spin reorientation temperature
can be seen to be strongly field dependent.
| Fraom the isothermal measurements in the range 225 - 293°K the
iocation of the minimum of the modulus Aéva function of field has been
taken to indicate tbg existence of a critical fieid (HC). Above HC
the moments lie in tﬁe base plane, (phase III, using Feron's terminology
[8]) and below the moments are all aligned af an angle g to the ¢ axis,
phase II. In zero field the moments lie along the ¢ axis (8 = 0),

At temperatures below the spin reorientation point T R’ the

()
rapidly rising part_of‘the pgak observed in the isothermal field sweeps
haé been taken to mark the trénsitian between thg phase below TSR‘ phase I,
and that above, phase II. The minimum has been taken to correspoﬁd to
the same transition between phases II and III as the minimum which occurs

for temperatures above T This phase boundary appears to be very

SR®

weakly temperature dependent in this region.

9.2.7 Magnetic Structure in the Three Phases

From the phase diagram of Gadolinium tentative proposals are made
for the magnetic behaviour in each of the phases. In phase I it is

known from previous work [20,21,22] that in zero field the moments lie at
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an angle 6 inclined to the ¢ axis which varies with témperature. The
moments therefore lie on the surface of an easy cone, with the axis of
the cone along the c axis of the crystal. All moments in a particular
daﬁain are parallel. Referring this to polar angles in fig. 9.19 at
any particular temperature the angle is the saﬁe for all damains yhile
the angle ¢ varies from domain to domain.

Upon application of a low field it is thought that some domain-wall
movement occurs so that those domains with components aligned favourably,
parallel to the field, grow at the ekpense of unfavourably oriented
domains [27]. Another possibilit; is that application of the magnetic
-fleld causes some distortion of the conical structure so that the axis
of the cone no longer lies along the c axis but starts to move into the
field direction, The ﬁégnetic moments, although remaining in a conical
structure will then exhibit various angles 8' to the ¢ axis from domain
to domain. In general the 8' would then be larger for those domains
éligned with components parallel to the field, as shown in fig. 9.19,

At higher fiela strengths a domain reorientation would be likely to
occur in either of these two cases, corresponding to -a bulk rotation of
‘the direction of moments in unfavourably aligned domains. This would mark
the phase boundary between phasés I and II, since after the rotation all
domains would have the same values of 6 and ¢. The first phase boundary
below TSR is therefore thought to correspond to a 'sweeping out' of
domain in the conical ferromagnetic structure.

At higher fields still the moments are thought to collapse into the
base plane which characterises the boundary between phases II and III.

This transition is the only one to occur at temperatures above TSR' In
phase II at zero field the moments lie along the ¢ axis but as the base
plane field is increased the moments move away to lle at an angle 6 to the

¢ axis, with a component parallel to the field in all domains,
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9.2.8 Lemagnetising Field Corrections

In order to calculate the demagnetising field inside the specimen
results for the demagnetising factors N given by Osborne [28] and by
Bozorth [29] for. the generéiised spheroid were émployed. The sample
was then compared with the spheroid whose shape it most closely
resembled and the demagnetising factor for this spheroid used. The
sample was in the form of a cylinder of axial 1ength 2.5mm and diameter
‘3.5 mm,

The demagnetising factor of this particular Gadolinium sample was
found to be N = 3,52, The intern&l magnetic field could then be
calculated from

Hi = Ha - N.J.p csee9.4

where Hi is the internal field and Ha the applied field both measured,
in this case in Oersteds, J is ihe magnetisation in emu./g and p is the
density in g/cm3 *. The magnetisapién measurements of Nigh et al [7]
were used to calculate the magnetisation as a function of applied field
for various internal fields for a sample with‘N~= 3.52. A plot of
internal against applied field was then made for this sample and is shown
in fig. 9.20. ‘

The phase bounéaries obtained in fig. 9.19 were then replotted as a
function of internal magnetic field and the final phase diagram is shown
in fig. 9.21. The critical field for the transition from phasé I to
phase II, below 225%K is seen to be much reduced at about 0.0Q075T over the
temperature independent portion of the curve. The critical field from
phase II to phase III is by contrast reduced less at higher temperatures,

and appears to increase almost linearly with temperature over most of the

e T T W W T T S Sk T A T YD W S e Y M G N SR S G S T A N Wl SV P S T e A TR S A T S GG YR YD R U B B T YN TS R G SR W W Wom G Y W e B e Y o 09

* c.g.s. units have been resorted to because previous data of magnetisation
and demagnetising factors were in c,.q.s.
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range, For temperatures just below the results were not detailed

uh
enough to show whether the critical internal magnetic field showed a
decrease, similar to that observed in Dysprosium [30,31,32].
Certainly the critical applied magnetic field showed such a decrease.
However, after transforming to internal field, the results were not

conclusive, A critical applied field of below 0.18T at 290°K would

indicate a decrease in the critical internal field.

9.3 Terbium ; -

Measurements of the variation of the compressional modulus C33 have
been made on two samples of Terbium. One sample, Tb(I), was obtained
‘from Metals Research Lfd., and had been grown by float zoning techniques.
The final purity of this specimen.was expected to be of the order of 99%.
"The other sample, Tb(II), was a high purity specimen which had been grown
by the solid state electrotransport method at the Department of Materials
Science at the University of Birmingham and was expected to have a purity
of 99.9% proof against all impurities. Resulté on a third specimen which
were reported recently [33] have not been included here,

The variation of the elastic modulus as a function of temperature
and applied field along the easylb axis has been investigated in the
temperature range 200 - 235°K which includes the whole of the antiferro-
magnetic phase, The two samples exhiﬁited different Curie and Néel
temperétures, but the critical fields in the antiferromagnetié phase were

found to vary in a similar fashion although they were numerically different.

9.3.1 Zero Field Temperature Dependence of the Modulus of Tb(I)

The zero field temperature dependence of C33 of Terbium has been
studied by several previous workers including Salama et al and Palmer et al
the results of which are shown in fig. 9,22, Work on this modulus has

also been performed by Jensen [34]. However in this case the behaviour
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-

was unusual in that it seemed to indicate two Néel points. This was
attributed to two 'domains' in the crystal.. It is likely that the
sample consisted of two crystallites each of which ordered at a different
teuperature.

Results of the present investigation into the elastic modulus of
Terbium under zero field are shown in fig. 9.23. fhe two runs |
fepresent temperature ingreasing and decreasing. Hysteresis was
. observed in the Curie point, which is a first order transition, so
that when the temperature was increasing"from the ferromagnetic phase
Tb occurred at 219°K, while when décreasing from fhe antiferromagnetic
~phase it occurred at 214%k. Thé hysteresis does not always seem to
occur,'since.at least one instance cccurred when Tb was at 2l4°K during

‘warming; however, such an observation as hysteresis may help to explain

the diverse values of reported Curie temperatures for Terbium,

9.3.2 Field Dependence of the Mcdulus for Tb(I)

In the ferromagnetic region at 212% application of a fieid along
the b axis causes a decrease in the modglus resulting in a small but
quite definite minimum at a field of 0.38T as shown in fig. 9.24; As
the temperature is.raised the depth of the minimum decreases faster than
the decrease in the zero fileld value of the elastic modulus, On
énterinq the antiferromagnetic phase at 214°K the nature of the minimum
changes and ;t becamnes much broader, Also éhe appearance of a shoulder
is evident at 214°K, although it is less prominent at higher temperatures.

The shoﬁlder occurs at field strengths of 0.15 - 0,2T throughout thel
antiferromagnetic regime, '

As the temperature is raised in the antiferromagnetic phase the
minimum becomes lower. The field at which the minimum occurs also
decreases slowly as a function of temperature from 0.42T at 213°Kito

0.35 at 225°K. At higher fields the modulus recovers most of its zero
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field va;ﬁe, although no indication of saturation is observed in the
field strengths used.

Above ;he Neel temperature the behaviour is somewhat differeht.
The minimum still exists: however, it modves to higher field strengths
as the temperature increases. The high field behaviour is much less
field dependent than below the Néel point, similar in this respegt to
fhe observations of paramagnetic Gadolinium.

- 9,3.3 Temperature Dependence of the Modulus in Constant Applied Fields
for Tb(I)

The temperature dependence usder constant applied fields of up to
.0, 35T resembles the zero field behaviour in figs. 9.30 and 9.31. The
Néel point at the minimum does not seem to vary much with field while the
Lurie poiht at the shouldér of the curve is weakly field dependent;
However above 0.35T the behavicur is entirely different with a minimum
occurring where the Curie point would be expected (fig. 9.33). It is
thought that this represents the trénsition from a ferromagnetic align-
ment to either a fan state, if such a state exists, or else to a badly
distorted helical structure in which there exist large ferromagnetic
regions which have grown from domain walls aligned parallel to Fheffield ‘

direction.

9.3.4 Zero Field Temperature Dependence of the Modulus of Tb(II)

The variation of the élastic modulus of the high purity specimen of
Terbium, Tb(II), as a function of temperature is shown in fig. 9.35.,
This differs frbm the observed behaviour in the other sample, Th(I), in
several respects. The Néel temperature characterised by thg deeper of
the two anamalies occurs at 230°K instead of 226°K, while the Curie
temperature is at 220°K. Further the behaviour at the Curie point also

exhibits a minimum instecad of just a change in slope;
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9.3.5 Field Dependence of the Modulus of Tb(II)

In the ferromagnetic region the variation of elastic modulus with
field shows a minimum between 0.15 and 0.2T, the existence of which can
be clearly seen in fig. 9.36. vSimilar behaviour is shown in fig. 9,38
where the_minimum is seen to bécomg broader., In thié region, despite
the existence of the minimum the elastic modulus is only weakly field
dependent. ' .

Above the Curie point a sharp minimum appears at fields décreésing
from about O.44T at 221°K to 0.38T.a£ 226°K.  The depth of the minimum
in the eléstic constant decreases ;ith temperature until the Néel point
is reached; Above Th the familiar paramagnetic field dependence is
again in evideﬁce, with the elastic constant not recovering significantly

‘after passing through the minimum.

9,3.6 Temperature Dependence of the Modulus in Constant Applied Fields
' for Tb(II)

The temperature dependence of the modulus for various constant
applied magnetic fields is shown in figs, 9,42 and 9.43. At 0.1T the
variation is similar to that at zero field; however, the depth of the i
minimum at TC is shallower. The behaviour at 0.2T shows the same Néel
btemperaturé but it has two shoulders occurring at 226°Kk and 220°k.

At higher fields the Curie point minimum has disappeared and the
shoulder at 220°K becomes progressively less well defined as the field
increases. The Néel point remains the same in all of those cases but

the minimum here becdmes broader as the field is increased.

9.3.7 Interpretation of Results and éhase Diagrams

The phase diagrams of the two specimens of.Te;bium are shown in
figs. 9.34 and 9. 44. The main difference between the two is in the
locﬁtion of the Curie point which in Tb(l) occurs at 214°K, while in .

Th(II) it is at 220°K.
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Applicaﬁion of a weak field along the b axis in ferromagnetic
Terbium is likely to caﬁse a growth of domains with moments oriented
favourably, that is along the b axis lying parallel to the field, and a
decline of those domains with components against the field. This
will result in small wall movements, At higher fields there wil; be
a 'sweeping out' of domains aligned unfavourably eilther by bulk rotation
of magnetic moments or by irreversible domain wall movément. Thec

Lresult is that a single domain crystal is formed at high fields; it is
thoughtthat the critical field at which the production of the singledomain
is formed corresponds to the minimum of the elastic constant as a function
of field. Such effects occur at a field strength of 0.35 ~0.4T in Tb(I)

“and at a lower field of 0.15~-0.3T in Tb(II), depending on the temperature
of the saméle. This méy be expected since the leés pure sample would be
likely to contain more pinniﬂg sites for domain walls, resulting in a
‘higher critical field.

In the antiferromagnetic phase fhe application of a base plane
field to the helical magnetic structure should cause distortion of the
helix at low fields. According to Nagamiya and Kitano [35,36) at
higher fields the moments aligned with components antiparallel to the
field rotate and foim a fan state at a critical field. ‘However,

| Crangle [37] has found no evidénce of a fan state inreither Dysprosium ér

Terbium and suggests that the critical field corresponds to the point at

which there is a rapid growth of regions witﬁ moment s aligﬁed parallei to
the field, for example favourably aligned domain wéllé between heliéai\‘
domains in the antiferromagnetiq phase, It is thought that theicritical,
field corfesponds Fo the location of the minimﬁm in‘the élastié constént
and that at higher fields one pf the two possible strucﬁures discussed
above exists, The recovery of the modulus‘at higher fields ébrrésponds

then to the saturation of the magnetisatioh caused by either the closing
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of the fan angle or the complete destruction of the distorted helix in
favour of a ferromagnetic alignment. Until the matter of the existence
of a fan state is resolved it is not possible to make a definitive
statement concerning the nature of the magnetic structure at higher
fields. Publication of neutron diffraction data by Crangle [38]‘15
anticipated and would give further insight into this problem,
Application of a'base plane magnetic field to the paramagnetié phase

‘of Terbium causes a rotation of the initially randomly oriented'momeﬁts
into the field direction. There apbears to be a minimhm in the eléstic
modulus at a certain field strength which increases with temperature.
Above this field the sample has appreciable short range order, Maekawa [41]
has in fact classified it as ferromagnétic, although it is strictly
paramagnetic. The transition from ferromagnetic to paramagnetic at high

fields shows no evidence of an anomaly.

9.3.8 Demagnetising Field Corrections

The demagnetising factors for Terbium'were found in a similar way
to that indicated for Gadolinium. The factors were found to be N = 5,15
for Tb(I) which was a cuboid of dimensions 3mm x 3mm x 5.5mm and N = 4,02
for Tb(II) which was a cylinder. of height 4.5mm and diameter 5mm. From
the magnetisation data of Hegland et al [12] and particularly the low
field magnetisatién data of Feron [9] the variation éf‘applied
magnetic field with temperature for various internal magnetic fields was
found for sampies with the given demagnetising factors. The dependence of
applied field upbn internal field for various temperatures, as shown in
figs, 9.45 and 9.47,were then plotted for the two samples. Conversions
from applied to internal magnetic fields were made and the phase.diagrams
as a function of temperature and internal field were plotted as shown in

figs. 9.46 and 9.48.
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Both phase diagrams show that the critical‘internal field in
antiferromagnetic‘Terbium is typically n lO-zT which is much smaller
than tﬁe critical fields reported for Dysprosium [17,30,31,32]. However
the Qesults are broadly in agreément with the critical fields of Terbium
‘reported by Feron [39] from magnetisation measurements and by Belov [11]
from magnetostrictién measurements., The.present results, howeyer, show
fhe critical f;eld decreasing to zero within experimental error, cibse to

the Curie point. The features of the critical field curve are otherwise

qualitatively similar to Dysprosium,

9.4 Erbium

Erbium orders antiferromagnetically with a ¢ axis modulated
structure below its Néel point of 85°k. A further transition occurs at
;bout 53°k below which ordering in the base plahe occurs, The Curie
point is at 20°K below thch the ¢ axis camponents order ferromagnetically.
These structures are discussed in more detail in chapter six.

The moduli C and C

33 11 have been studied as a function of applied
field here. Because of the arrangement of the.apparatus it was only
pdséible to measure acoustic velocities in directions at right angles to
the fiéld. Therefore when the direction of applied field was changed

from the b axis to the ¢ axis the modulus was changed from C.., to C

33 1’
Behaviour of the moduli as a function of temperature in zero field has
been given in chapter eight; The samples used were the same ones as in
Palmer et al [4] and are expected to be about 98§ pure at the very worst,
Results on the temperature dependence of the moduli in constant applied

fields up to 4T have already been published by du Plessis [2].

9.4.1 Field Dependence of C,, below 207K

The varjation of C33 with a magnetic field applied along the b axis

for several temperatures below 20%k is shown in fig. 9.49, Tha behaviour
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at all of these temperatures is very similar. For fields of up to
about 1.57 the modulus is almost field independent, It then undergoes
a fairly rapid decrease resulting in a 2% reduction in the value of the
eiastic constant. The modulus then levels off at its lower value.
'A'ﬁore detailed exampie is given in fig. 9.50. The critical field was
taken as the middle of the rapidly changing part of the curve giving a

value of Hc = 1,85T. This critical field appears to be almost temperature

independent.

9.4.2 Field Dependence of C,; in the Range 20 - 100°K

Above 20°K the variation of Cll with a ¢ axis field has been
studied. At 20°K the behaviour is si@ilar to that shown by C33 below
20°K. The modulus is almost field independent at low fields and then
Aecreases at fields greater than 1.5T. At higher temperatures, fig. 9.51,
the high field behaviour shows an increase instead of é decrease in
elastic constant. It seems likely therefore that the sample was still
ferromagnetic at 20°K and that the Curie point lies somewhere between 20
and 24°K. (See fpr example the results in chapter eight). Also a
shallow minimum occurs at a field of 1.0T for temperatures just above TC.

As the temperature is increased further, fig. 9.52, the béhaviour
is more uniform showing an iﬁitiAI field independence at low fields,
followed by a rapid rise thch appears to reach saturation for fields’
greater than about 1l.5T. This behaviour continues up to 50°K in fig. 9.53,
then.at 55°K, close to the transition temperature, the zero field value of
the elastic modulus increases, becoming almost equal to the high field
values of elastic modulus below 55°k, The elastic properties therefore
appear to be only weakly field dependent. However, fig. 9.54 shows that

the modulus is in fact still increasing with field, although it no longer

appears to saturate at high fields.
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Above the transition temperature the modulus ié much less field
dependent and in fact decreases slightly with field as shown in fig. 9.56.
Further increase in the temperature shows similar behaviour. Fig. 9.59
shows that although the decrease with field is slight it is still clearly

detectable at 80°K.

f9.4.3 Interpretation of Results.

The behaviour of C below the Curie point shows a rapid decrease

33
at a field strength of 1.85T. This is considered to be the critical
field at which either.the helical étructure collapses into a fan state,
or at which a rapid growth of favourably’oriented domain walls occurs,
causing a destruction éf the base plane helix in either case. Demagnet-
ising field calculations using the magnetisation data of Feron et al [L5]
indicate that this applied field corresponds to an internal field of 1.72T
at ZOOK. This result is in agreemént with the éublished results of the
critical b axis field of Erbium below 20°K by Feron [39] and Flippen [16]
both oé whom indicate that the critical field is temperature independent
iﬁ this region.

Thé critical field above 20°K has been taken as that corresponding
~ to the rapidly rising portion of the curve. Demagnetising fieid
corrections have been made, fig. 9.61, and the critical internal magnetic
field plotted as a function of temperature in fig. 9.62 where the results
are campared to the findings of other workers using magnetisation
‘measurements.

The two samples were approximately cuboilds with dimensions 4.5 mm x

5.0mm x 2.2 mm for the measurements of b and 5.5 mm x 3.5 mm x 2,2 mm

33

for the measuremeﬂts of Cll'
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9,5 Summary of Results

Results of the variation of C of Gadolinium with temperature over

33
the range 180-300°K and magnétic fields over the range 0 ~0.9 T have been
preseﬁted. The. behaviour as a function of field below 225°K showed the
existence of three magnetic phases, while above 225°K only two phases
appeared to be present. Demagnetising field corrections have been made
and a fiﬂal phase diagram of the speéimen suggested.

Results on two specimens of Terbiﬁm of different purity are
reported. The two samples appeared'tq have different Curie points, and
hysteresis in the Curie point of oﬁe of the specimens was found, although
such aﬁ effect was not investigated in the other. Magnetic phase
diagrams of the two samples in the temperature region around the antiferro-
magne;ic phése have been ;onstructed and are ;n agreement with pubiished
results of earlier workers.

An investigation of the magnetoelastic behaviour of Erbium using

the modulus C,., below 20°K showed field independence at low magnetic fields,

33
A critical internal magnetic field of 1,727 was found to be almost
temperature independent in this region. The behaviour of C11 with a ¢
axis magnetic field in the range 20 - 100°k has also been reported. The
results show markedly different behaviour of the modulus above and below
55°K. Critical fields have been dedgced with some difficulty fiom the
results and after demagnetising field corrections the results have been
shown and coméared wifh those of other workers. Although ﬁhe agreeﬁent
is not entirely satisfactory, particularly at higher temperatures, the
variatién of critical field with temperature up to SOOK is qualitatively
in agreement with garlier findings. At higher temperatureé the required

critical magnetic field could not be achieved with the electromagnet used

in the present investigations,
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CHAPTER 10

Results (III): Elastic Properties as a Function of Pressure

10.1 Introduction:

In this chapter the effects of‘hydrostatic pressure on the e}astic
moduli of Erbium, Dysprosium and Terbium are reported. High hydro-
static pressures of up‘tq SOOMPa(S}cbars)‘were employed using thev
S.R.C. High Pressure Facility at S.T.L.‘Ltd. of Harlow*, Details'of
the equipment have been given in chapter five. Also the behaviour of
the second order elastic moduli of(Erbium under uniaxial pressures applied
along eertain crystallographic directions have been investigated, and
from these results and the hydrostatic pressure derivativés é complete set

of third order elastic constants of Erbium has been‘calculated.

» 10.1.1 Previous Measurements of Third Order Elastic Constants

As mentioned ip chapter éeven there has not yet been a determination
of the third order elastic moduli of any of'the rare earths from
experimental measurements reported to date. Some theoretical work on the
TOEC on the heavy rare earths has been conducted by Ramji Rao et al [1]
and these have been discussed in chapter seven. ‘

The most notable experimental work on the effects éf pressufe on the:
elastic propertiés‘of the rare earths has been that 6f Fisher et ai [2]
who investigated the hydrostatic pressure derivatives of the SOEC of‘
Gadolinium, Erbium and Dysprosium with pressures up to 300MPa (3 kbar)t at
- 298%k.

* Standard Telecommunication Laboratories (ITT) Itd., London Road,
Harlow, Essex, ' ' ‘

' private communication indicates that the measurements were up to 3 k bar
not 5kbar as reported in [2] ‘ ‘
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10.1,2 Measurements of Third Order Elastic Constants of Other
Hexagonal Materials

Some measurements of thé third order elastic moduli of other
hexagonal materials have been made by Swartz and Elbaum [3] for Zinc, and
by Naimon [4] fof Magnesium. The techniques for determination of single
crystal third order elastic moduli are fairly well established [5,6,7,8]
in particular the need for pinning of dislocations to suppress mobility
during uniaxial stress measurements, Samne methods of achieving this

~‘have been discussed in chapter five,

10.2 Calculation of Griineisen Parameters from Hydrostatic Pressure

Derivatives
10.2.1 Calculation of Compliances sij and Compressibilities Bi—
‘The relations between the elastic moduli cij and the compliances sij

for a hexagonal material are given in fig, 10.1, From these the values
of the compliances given in fig. 10.2 have been calculated using data
from Palmer et al [9,10].

The volume compressibility of a hexagonal crystal is related to the

compl iances by

By = 2s8,, + s

11t 833 * 2(8, *+ 2s

13) . oc.-lOcl

[

The general expression for the linear compressibilities of a
hexagonal crystal is, according to Nye [11].

2 : I,
2 13 7 %11 T %12'%3
* e 9o lo. 2

' 2 2
= L .
B (s,, + s5,, ¥ 513)(2l + 25 4 3) + (533 + 8

11l 12
where the li's are the direction cosines along the three principal axes.
When resolved into component linear compressibilities parallel and
perpendicular to the unique axis, this gives

By = 2sy3+s vr.:10.3

13 33

Bl = s + s + S 01:010'4

11 12 13

The compressibilities are given in fig. 10,3,
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Values of the Compliances Sij of Erbium, Terbium and Dysprosium

( Units are lo—ll.Pg-l
'Sij Ex " Dy Tb
S5 -0.2587 -0.3341 -0.3546
Sy4 1.3186 1.4720 1.5503
Saa 3.6245 4,{?67 4. 5850
Sec 3.6643 4.1754 4, 4903
5,1 “1.4088 1.6262 1.7335
’ S5 -0.4234 -0.4614 -0.5116

Values calculated from room temperature elastic constants
"given by Palmer and Lee [9] and Palmer et al [10]

fig. 10.2
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Units are lonll.Pa-l for B's and lOllPa for K's
Er. Dy ™
By 2,255 2.465 2.576
By 0.801 0. 804 0.841
8 0.727 0.831 .0.867
By -8y 0.033 -0.011 -0.010
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KT: 0.444 0.406 . 0.388
K ‘0.455 0.411 0.405

fig. 10.3
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10.2.2 Method of Calculation of Griineisen Parameters

The method of calculation of the Gruneisen parameters from the
pressure derivative of the elastic moduli of a hexagonal single crystal

has been discussed in chapter two. The equation 2.105 is utilised, viz,

@ = By l@ 1,11 ac (q)
Yp'd T B, 27 28C (@ " Tap

00'010.5 !

where Yp(q) is the mode Griuneisen parameter associated with acoustic
vibrations proéagated along the q direction with polarisation along the

P direction. ' Bl(q) is the relevant linear compressibility and B the
' ' 3c, (q)
P

9P

volume compressibility. CP(q) is the elastic constant and

its pressure derivative.

The final terms on the right hand side of the equation may be

replaced by a single expression, “ij' following Fisher [2], so that,

L I CUN ,
- , - 11 + .
yp(q) 5 2.(1 "ij) cees10.6
where
alnci
ﬂij = aln v ' ! 0-0110-7
9 ’
‘ 1 0C !
= - C—'_':'—__ BP 00091008
1 By :
: 'BCi
values of the 7, . calculated from the measured values of ——~1

ij or
in fig. 10.12 are listed in fig. 10.13 together with Fisher's results

for Erbium and Dysprosium.

10.2.3 Hydrostatic Pressure Derivatives

The results of the hydrostatic pressure variations of the
different second order elastic moduli of Erbium are shown in
‘figs., 10.4 - 10.7. Pressures up to 500 MPa have been employed.

The results seem to show some deviations from linearity in particular the
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slopes ac low pressure are in some cases noticeably larger than the
slopes at higher pressures. The derivative obtained at low pressures

(<50MPa) from fig. 10.5 is approximately 13,0 which compares favourably
' 3C

oP

ﬁith the results of of Erbium in appendix seven where the low pressure

derivatives were markedly larger. Despite this the behaviour under
increasing and decreasing pressures appears to be fairly reproducible as
evidenced by fig. 10.5.

The temperature variation of the sample throughout the measurements
was monitored using a chromel—alume; thermocouple. The change in
temperature upon application of préssure, which was typically increased.
in steps of 25MPa (v0.25k bar) was fouyd to be less than 0.25°K. A
period of 15-20 mins was allowed after each increase in pressure to
enable‘the temperature to‘return to its equilibrium value. Over the whole
range of the measurements the temperature variation was.found to drift by
less than 1%k (typically it was ~ 0.5%K). Each experimental run took
betwee? six and eight hours.

The results of the measurements op ﬁyspros}um and Terbium under
similar condifions are presented in figs., 10.8 -10.11 and the pressuré
derivatives obtained in figs. 10.12 are the arithmetic means of the
increasing and decreasing pressure derivatives which were obtained by a.
least squares computer fiﬁting procedure, These have been compared with
the reported results of Fisher.

From the pressure derivatives the values of the 1, 6 's given by

ij
equation 10.4 have been calculated for each mode of the three specimens
and in the cases of Erbium and Dysprosium have been compared with those
obtained by Fisher.

The various ﬁ;de Griineisen parameters yp(q) have been calculated

from the results using the method indicated, and the average Grilineisen

parameters P” , Fl and ' derived from them (fig. 10.14),
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10,2.4 Discussion of Results

The measurements of the variation of elastic moduli with hydrostatic
pressures up to 500 MPa (5k bars) presented here indicate that there are
some deviations from linearity. In particular the derivatives at high
pressures ar smaller than those at low pressures, This can not be
attributea entirely to a temperéture change in the sample, sincg a
variation of loK over the whole range of the measurements would casé a
variation in %?- for Ca3 of Erbium for example of 5.9 x 10"S whereas the’
actual variation %?—caused by such a change in pressure is 2.07 x 1072
for the same modulus (fig. 10.4). w Therefore temperature dependence
could only account for a very sﬁall part of this deviation.

The temperature variation of the moduli couid therefore not be the
cause of the.discrepancy 5etween the preseht results’and thdse of fisher,

the only other notable work. 1In fact, taking again as an example the
"cdnpressiohal moduli of Erbium in fig. 10.4, the slopes of the graphs at
pressures up to‘ZOOMPa(Zlcbars), uéing a straight line fit to the data by

eye, yield pressure derivatives of 4.8 for 033 and 4.5 for C.. which ére in

11
good agreement with Fisher's results.

Recent results by Gerlich and Kennedy [12] on the variation of elastic
moduli of polycrystalline copper with hydrostatic pressures up ﬁo 2005M?a
have also shown non-linearities, beginning at pressures of 600MPa. ~ The
change in slope (g%% was found to be from 1.8 at the lower pressures to
0.9 at the higher pressures, a factor of exactly two, éimilar,deviatiohs
from linearity‘in the rare earths might be expected to ocour at lower
pressures simply because the second order”elastic moduli are smaller than

1
11 Pa

copper (n0.8 x 101 Pa compared with 1.7 x 10 ).



Hydrostatic Pressure Derivatives of the Elastic Moduli of Erbium,

Dysprosium and Terbium

Erbium Dysprosium Terbium

This work | Fisher [2] | This work Fisher [2] | This work
3c,, _
<5 3.20£0.28 | 5.448£0.018 | 3.58 £0.01 | 5.331:0,008 | 3.31%0.22
o, - ‘
5 3.31#0.05 | 4.768+0.020 | 2,50 #£0.30 | 3,092+0.006 | 2.48%0.66
3¢, , (1) : |
—5 0.72+0.04 | 0.949£0.005 | 0.49 $0.04 | 0.434%0,001 | 0.25%0,03
aC, (11 |.
5P 0.77%0.01 | 0.949%0,005 | 0.50 $0.15 | 0.434%*0,001 | 0,23%0,03
3C, . ~ '
5 0.6710.09 | 0.853%0.012 | 0.245%0,01 | 0.40810.002 | 0.27%0.03
ac :
-——-Pu S‘ . i - b . - - -
5 0.6910. 05
e
2q.1. + - \ - - -
o5 3.22%0,91 ;

Errors quoted are externally consistent [16]

fig. 10.12




Comparison of the Calculat.d Values of n

19—
Erbium Dysprosium Terbium
This work | Fisher [2] This work | Fisher [2] This work
LI -1.68%0.15 | -2.89%0.04 | -1.86%0.06 | -2.78%0.03 | -1.73%0.11
", -1.75%0.03 | -2.51%0.03 | -1.3920.17 | -1.70%0.02 | -1.39%0,37
T, (D) -1.1640.06 | -1.5440.02 | -0.83#0.07 | -0.73%0.01 | -0.45%0.05
ﬁ44(11) -1.2410,02 - -0. 850,25 - -0.41%,05
e -1.0940.15 | -1.39#0,03 | -0.4210,02 | ~-0.69%0.01L | -O.47%0.05

fig.

10.13




Calculated Values of the Griineisen Parameters

Yp(q) Yij Er Dy Tb
Y () Y33 0.69510. 08 0.756%0.03 0.69210.06
Y, (c) 744('1) 0.43510.03 0.24130.04 0.05240., 03
v, (a) \eT] 0.69710. 02 0.532310.08 0.53210.19
Y, (@) Yeo 0.36710.08 0.047+0.01 0.07210, 03
Y, (@) Y44 (1D 0.44210.01 0.262%0,12 0.042 %, 03
[
N .
r»‘ l $(¥35 +27,, (D) 0.52210. 05 0.41310.04 0.26510. 04
1, -
r, §(Y11+Y66+ 744(11)) 0.502 10, 04 0.280%0.07 0.21510,08
r -;-(r 2 0.509 0. 04 0.324 0. 06 0.23210.07

fig. 10.14
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10.3 ° Uniaxial Pressure Derivatives and TOEC

10.3.1 Methods of Determination of TOEC

Previéus methods of determination of the third order elastic constants
of hexagonal.single crystals have involved a combination of uniaxial and
hydrostatic preséure measurements on the second order cénstants. The
hydrostatic pressures in the measurements of Swartz and Elbaum [3j and
Naimon [4] were applied by using a gas pressure cell connected to aacylinder
of nitrogen gas. This method was also used for some of the reéulﬁs
obtained in the present work, which}nwever are not presented in this chapter.
A pressure limit of 5MPa (50 kg.cm;z) was found to be sufficient to allow
determination of the pressure derivatives in this work and also in that of
Swartz and Elbaum. | |

Methods of application of uniaxial stress fall broadly into three
categories, the hydraulic press used by Swartz and Elbaum, the mechanical
system operated by a screw press and calibrated gy a proving ring as
employed by Brammer [13], and the mechanical lever system used by Salama
and Alers [6], Sarma and Reddy [8) and Hames [14), The lever system was

also used in the present work to apply uniaxial stress.

10.3.2 Method of Calculation p

The method of calculation of the third order elastic coﬁstants from
pressure derivaties of various modes of a hexagonal crystal have been given
by Brugger [15]. A set of at least four hydrostatic pressure derivatives
and at least six linearly independent uniaxial derivatives are needed to
calculate the ten TOEC. The measurements used in the present determination
have been summarised in fig. 10.15, .

The hydrostatic pressure derivatives may be expressed by an equation
of the form,

3 (Pov?)

, 57 1 + 2(p VP + G +++210.9



Stress Derivatives required to Calculate the Third Order

Elastic Constants of a Hexagonal Crystal

after Brugger [15]

No. Propagation Polarisation Stress Ela;stic
Direction Direction Modulus
1 M oL c ‘ c hydro Ci3
2 M 0a'1‘2 c b hydro c 44
3 _Moy'I'2 b a hydro c 66
4 | ML b b hydro iy
5 MzaL c ., | c b C33
6 M, YL ' § " a ' b cll ,
7 M3’yL b b e c11
8 M2YT2 a b i b c66
9 M, YTy | a c b c 44
;0 M20ET2 c b | ‘b c 44 |

~ fig. 10,15
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and the uniaxial derivatives by
2

a(pov )
P

These h%ye been further simplified to an equation of the form,

: a(pov )
oP

= 2(p°v2)F' + G eee010.10

F + G _ eeesl0.11

where the values of the terms F and G, expressed in products of the
compliances and elastic constants are given for the various cases in
fig, 10.16. From these ten simultaneous equations the various TOEC,

Cijk can be extracted when the pressure derivatives are known.

10.3.3 Results of Uniaxial Pressure Derivatives_

Some preliminary uniaxial pressure measurements of the elastic
moduli of Erbium’haVé been made and the results are given in fig. 10.17,
The results are just sufficient to allow the third order constants to be
calculated..

These results should oniy be considered preliminary on several
counts.,  The actual changes in elastic constaﬁt were so small that they
were only just detectable above fhe fluctuations in the siﬁg around frequenéy,
and the results were obtained by a&eraging several experimentai runs.
Further, no cross checking measurements have been made, simply because these
wogld only be useful to calculate whether the uniaxial‘measurements were
consistent with previous hydrostatic pressure derivatives. 'As seen‘in
section 10.2.3, the values.of the hydrostétic derivatives haQe not been .
finally resolved yet. Doubt has been raised concerning the uniformity of ,
the applied uniaxial stress and although efforts have been made to éortect
this the possibility remains as a source of error. Finélly} élthoﬁgh”
‘attempts were made to thermally isolate the system, it was not temperature
controlled aﬁd therefore thermal fluctuations remain a further:possibie »b

source of error,



‘Relations between

the various pressure derivatives and the TOEC,. C

i 3k—
-;l;(pvz) = F+ G
No. F G
1 MOO.L 1+ 2(25 33) 13 2(sl +sl 13) 133 * (2513+533)c333
2 | mpT, | 1+2(5),+5),+5,,)C,, (813 *+ 512 %5130 (Crg* Crgg) *+ 2813+ 5530C3,
(3 MQYT, | 14205, +8,,+8513)C é(su" S12* 5130 (Cypp =€) # (‘25 *+533) (€133 =Cp3)
4 | MYl | 1+ 205, +55 +859C, (S) *512% 8130 (€1 +Cyyp) + (28,34 855)C, 5
> Moot 2513°C3$ (815 +5127€133 * 513C333
6 géYL 251211 S12%111 * 511112 * S13%013
7 | mgt 25,3-C); $13(C111 ¥ C112? * 53303
8 M7y 2511-%%¢ %‘Sn =5127%1 - T 5%, * 3513C113 7 C1p3) = 39533 ~3515)C0,
9 | MarT, 25)31Cy, 511144 * 5125155 * 513%344
10 | u,yT, 25),.Cy, 515C144 * 513%55 * 513C344
f£ig. 10.16




x 107"

AC / Cq

VARIATION OF THE MODULI OF ERBIUM
WITH UNIAXIAL STRESS

7 181

(7]

N AL

fig.1017




~ - 152 -

The contributions of disiocatiqn mobility to inherent stress
provided another problem; however, irradiation by neutrons, as discussed
| in chapter five, was thought to have suppressed this. The behaviour of
the uniaxial der;vatives before irradiétion were clearly non linear,
After irradiation stresses of up to only 3 MPa were applied in order to
cause as little dislocation motion as possible, and the derivativés were

then linear as far as could be discerned.

10.3.4 Calculation of TOEC from Results

The results of the uniaxial pressure derivatives are given in
fig. 10.18. Using the numerical values given in fig. 10.19 and grouping
together the two equations involving 0133 and C333, the three equations
involving 0144, C155 and C344 and the five equations involving 0113, C123,

0222, C112 and Clll' this leaves three matrix equations whose solution
_gives the ten TOEC
4 = . . '..lOO 12
0099 _0.26 . C333 N . ._2' 59
0.73 0.73 0.80 0144 -2.12
1.41 -0.42 -0.26 Ciss = ~0.63 ve..10,13
-0.42 1.41 ~0.26 C344 +0.99
-0.40 0.36 -0.36 -2,
0.40 o) . o] C113 2.08
0.73 ' -
0.80 (6] o) 0.73 c123 5.53
-0. o] 1.41 -0. = -3,
0.26 0 ' 0.42 C222 3.11
. (0] "0.26 -Je .
1,32 (o) 0.26 C112 1 49
-0.13 —O.L3 -0,67 -0.25 +0,92 C -2.93

111
000010014

From these equations the values of the third order elastic constants

given in fig. 10.20 have been found.



Coefficients of the Various Terms given in fig. 10.16 as calculated from the SOEC

units are lollPa

133 333
fig. 10.18

ool See £ | “133 %33 Cfuas s Saa 0 i3 S23 22 Cw2 . G C°n;‘;gt 2 a;:li,j
1 M oL 1.45  0.80 2.35 = - 3.20:0.28
2 MPT,. 0.73 0.73  0.80 1.49 = - 0.72:0.04
3 MoYT, 0.40 -0.40 0.36 -0.36 . 1.41 = - 0.67£0.09
4| mgrL 0.80 0.73 0.73 2.22 = - 3.31£0.05
5 M 0L 0.99 -0.26 -0.44 = - 3.03:0.61
6 MoYL -0.26 1.41 -0.42- -0.71 = - 3.82:0.76
7 | M gYL 132 -0.26 -0.26 -0.43 = +1.06:0.42
81 M7, -0.13 -0.13 -0.67 -0.25 0.92 -0.79 = - 2.1420.27
" 9’ M YT 141 -0.42 -0.26 -0.14 = - 0.77:0.21
10 M ST, 0.42  1.41 -0.26 - 0.78 = +1.77:0.35
equations read horizontally, e.g. 1.45C + 0.80C + 2.35 = =3.20




Uniaxial Pressure Derivatives of Erbium

ote | Pame | T

ML C, 3.03 % 0.61
M2YL Cll | ,3':82 t 0,76
My YL o -1.06 * 0,42
M27T2 C66 2.14 £ 0.27
MZYT3 C44 | 0.77 £ 0,21
Mza'r2 C44 =1.77 £ 0.35

fig. 10.19




Values of TOEC of Erbium

Cijk‘ This Work Ramji Rao [1]
C a3 -3.01 % 0.33 -1.96
Cya3 -1.49 t 0.11 -7.83
Cras -0.79 % 0.07 —o.\49
Ceg 0.095 * 0.09 -0.49
-c344 -2.02 + 0.03 -1.96
¢113 ~0.299+ 0,02 -0.38
l €103 7.11 io.oz -0.60
Cyos -0.95 % 0.06 C -9.1
0112 ~3.41 #0.10 . ~2.57
Cill -3.84 10.08 -7.47

units are 1011 Pa

:, fig. 10.20
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Agreement with the calculations of Ramji Rao is fair with only the

moduli C333, 0123 and C222 showing significant discrepancy.

10.4 Summary of Results and Discussion’

Some results of the gffects of hydrostatic pressures up to 500 MPa
(S]Fbar) on the elastic moduli of Erbium, Dysrposium and Terbium have been
presented. The results show deviations from linearity which do not seem
to be due to temperature ;ariatiOns. The derivatives obtained by making
a least squares straight line fit to all the data points are significantly
smaller than those reported by Fisher for Erbium and Dysprosium, although
the defivaties over the lower parts of the range give farily good agreement
in at least one case tgken as an example. The measurements on Terbium are
believed to be the first determination of the pressure derivatives of this
material.

Griineisen parameters have been calculated from the data and again
disagree with the Fisher calculations. quther both sets of calculations
disagree with the Grilineisen parameter'obtainéd from thermal expansion data,
being in both cases too small. However if there are higher order
contributions to the pressure derivative then this would help to explain

the disagreement, Thg results of the non linear behaviour of dc/ D have

a
- been compared to similar findings on copper by Gerlich,

Some preliminary measurements of the uniaxial pressure derivatives of
Erbium have been made and from these the full set of third order elastic

constants calculated, The results are in surprisingly good agreement with

the calculations of Ramji Rao.
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CHAPTER 11

Conclusions

11.1 Summary 6f Results

| In this work some modifications to a new ultrasonic sing around
system have been reported and the performance of the final instrumént
investigated by measuring the variation of the second order elastic
moduli of Gadolinium, Erbium and Terbium, The results were COmEared
where possible with previous measu;eﬁents of elastic moduli of thése
materials and the system was found to be operating to its quoted
specifications. |

The initial results on C33 of'Gadolinium close to its Curie pqinf
of Tb = 293.5°K gave considerably more details of the critical behaviour
. than had‘previously been achievéd 'The measurements of the elastic
moduli of Erbium over the range 4. 2 100°k gave once again much finer
detail,than the earlier results. The variation of the moduli were
nevertheless broadly in agreement with earlier results; |

The behaviour 6f C33 of Terbium as a function of magnetic field
applied along the b axis has also been investigated, The results
obtained.ffom the internal memory stqre agreed with the repetition frequency
“to within the quoted error of t 3hsecs. although the loss éf :esolution |
experienced with this mode of‘output was rather 1ihiting.: The general
form of fhe field dependence was rather as expected and similar in some
respects to that of Dysprosium under similar conditions.

A detailed study of the variation of the elastic moduli of Gadolinium,
Terbium and Erbium with magnetic field and temperature has been made ahd
from the results the magnetic phase diagrams of Gadolinidm and Terbium
have been constructed. The results for the variation of the spin recrientatiou
temperature of Gadolinium in constant applied field in the hase plane cempare  §

with earlier publl hed ‘work. " The results for Terhium have yielded the
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variation of the critical field with temperature and agreement with
earlier published work 1is good.

The results for Erbium gave a critical b axis field which was almost
témperature independent below 20°K. The critical ¢ axis field above 20°K
was qualitatively in agreement with earlier work, although the present
results indicated that it did not increase quite so rapidly with temperature,

Dependence of fhe_elastic moduli of Erbium, Dysprosium and Tergium
with hydrostatic pfessures up to 4.5 MPa showed serious discrepéncies with
earlier published results for pressufes up to 300 MPa, Later results with
pressures up.to 500 MPa showed that deviatiohs from linear pressure
dependence occurred. In particular the pressure derivaties of elastic
constants decreased with increased pressure. These changes in the
pressure de;ivative could not be attributed to temperature variatiéns in
the sample as had been suggested initially,

The derivatives obtained in the present work for préssure ranées
covereq by the previous work, BOOAMPa, were in reasonable agreement with
the published results. It would appear from this that the pressure

vderivatives of‘thé elastic modull are not constant over thérrange 0 - 500 MPa
as had previously Been suggested. A . ‘ |
Finally some preliminary measurements‘of the dependences of various
elastic moduli qf Erbium with uniaxial stresses along seléctad crystalio¥
graphic directions have been made. From these a c;mplete sef of third
order elastic constants has‘been obtained, although no éross—chécking

measurements have been made to test the self-consistency of the results,

-

11.2 Future Work

The loss of resolution Qhen meésureménts were made using the inteinal~
memory store were found to be severely limiting in some cases. ‘It wouid,:
therefore be useful to try to improve the aécuracf of thié mode, particuia#ly,

since the improved speed of measurement would be useful for measuxiﬁg.changés‘
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in elastic constants in pulsed magnetic fields where the sampling rate
of even a second or so would be too long. Work is being conducted in
this department to improve the accuracy from & 3nsecs to ¢ 1.5 nsecs
by using a 500 MHz oscillator as a clock instead of the 250 MHz
oscillator. However,an improvement of at least an ordexr of magnitude
would be ultimately desirable.

Conéerning the behaviour of Gadolinium under applied field som;
results of fie;d dependence of the elastic moduli below lBOOK w&uld be
useful in order to ascertain whether'two or three phases exist there, in
particular whether phase II exists right down to 4.2°K. Current opinion
is that probably it does not.

The ;esults of the pressure'dependénces of the elastic moduli seem to
have uncovered more proﬁiems than they have solved, The low pressure
derivatives, with pressures up to 4.5 MPa, and thg high pressure
derivatives, up‘to 500 MPa, gave initial disagréement. Further
investigation showed that both appeared to be nbn linear in’a way that
could be consistent, however the pressure chénges using the 500 MPa press’
could not be adjusted in small enoggh steps to allow the low pressure
derivative to be measured accurately. Despite this an attempt to estimate
the low pressure derivative from high pressure measurements was made and
the results were encouraging. Plans have since been made to have the
elastic constants measured over the intermediate range O - 100 MPa so that
the problem may be resolved. ' |

Results of the uniaxial pressure variation of the moduli of Erbium were
only preliminary and in fact further measurements along‘these lines should
be made before a dgfinitive statement of the TOEC of Erbiuﬁ caﬁ be made.’
The TOEC of all of the remaining rare earths‘ﬂave yet'to be determined and

therefore further progress in this direction is needed,
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" Appendix 1 Data Analysis

The data output from the sing around may be in either of two forms.
The sing around ffequency may be read directly from the frequency meter,
or the delay timé between the opening of the electronic gate and the
detection of the next ecﬁo may be obtained on paper tape. In order to
simplify the data analysis two computer programs'have been written to

calculate the elastic constants fram the raw data.

Data Output on Paper Tape: Program 1

The form of the data input fof this program consisted of the initiai
value of the controlled parameter, for example a thermocouple emf. or a
coil current for the electromagnet, the increment in this parameter
between readings and the éigital delay or gate delay as read direcfly from
the preset switches on the sing-around. This last reading may be con-
verted to a delay time in microseconds as indicated in section 4.8. The

format of the data used was

v

Av D

13

-100.0
* koK ok

where V was the initial value of the parameter, AV the increment between
successive readings and D the digital delay., The "-100,.0" was simply a

terminating character.

The program then calculated the sing around period T, for each of the

ti in the data as governed by the equation 4.1
t, +2

1
= D+1).0.128 +
Ty (0 +1) 1000

Y secs, Al.l



- 158 -

and then produced a graph of 1, against the corresponding temperature T

i i

or magnetic field Bi which was found from the values of V, given by

i

Vi = V+ (i-1).4v ' Al.2

by using a calibrating subroutine.

Corrections were then made to the calculated periods T, in the

i
following way. Since the frequency of the acoustic waves was 15MHz the
"~ time intervals between corresponding points of successive cycles was the
reciprocal of this, i.e. 0.067usecs. Starting from i=2 if the difference

between two successive periods T and 1, was greater than O, 066usecs.,

i-1 i
then a function Ai' which was initially set to zero, was incremented
according to

Ai = Ai-l % 0.0667 Usecs, Al.?
whenever a likely change in the triggering cycle was. observed. The sign

of the increment was determined by the relative magnitude of the two

functions _
.t Al.4
- - + R .
€ = ITI Tia o 0667|
- = - - 0.066 ' Al.5
ei |Ti Ti—l 7'

If e+ were smaller then the positive sign was used and vice versa. A new

set of corrected periods 1,' was then calculated by

\ } .
and from this the sing arouﬁd frequency calculated from

: 1
f =

—_ Al.7
i Ty

The square of sing around frequency was proportional to the elastic
modulus, and the elastic moduli as a function of the controlled parameter

were computed by finding one frequency f_  for which the elastic constant

i

was known to have a particular value Co. For example, in the magnetic

field sweeps the elastic modulus at zero field was often known, The
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coefficient of proportionality k was then given by

c

=2
2

f

Al.8

and the other resulté Qere then scaled by multiplying by k, to éive a
series of elastic constahts against. the controlled variable of temperature
or magnetic field.

The data output was‘'then in the form of a gréph of elastic modu;us

against the controlled variable using the Computer Centre graph plotter,

Data Output from the Frequency Metér: Program 2

The form of data input for this program consisted of tabulated values
of the variable parameter V and the sing around frequency f arranged in

corresponding pairs in the format shown below

v, £,
vy 5
' ‘ f
n n
100.0 : -100.0
* % k %k .

where again the "-100.0" is a terminating chéracter. The program then
plotted a graph of this raw data on the liné printer to show its general
form, The program then corrected the data in the event of any changes
in triggering point which would‘manifest themselves as'abrupt breaks in
the graph.

In order to achieve this the moving average of the slope of the
curve was recorded, taking the last foﬁr data points into consideration,

That is, at the ithpoint it defined a slope function Si as

= Ifi-l - fi-2| * |fi-2 - fi-3| Al_9'
: Visa - Vi-3|




- 160 -

and then calculated the slope between the current (ith point) and the

(i-1)th point.

| | £ - £
D = ' Al.lO
i ‘Ivi - vi_l‘

If Di-< 5.51 then no action was taken and the program moved on to

the next operation which involved a check of the change in direction of

" slope. However, if D, 2 5,51 or there was found to be a change iﬂ

i

direction of slope between S, and D, then a correction was made'as outlined

i i
below. The factor 5 was determinedvempirically.
If a correction was to be made to the ith data point in conjunction

with the conditions given above, then a function 6§ was incremented such

that 6i was set initially to zerc and when a correction was required,

6y = P8y -Vy) AL.11

where p, was simply the direction of the slope Si given by
£ - f

P, = fi'l - fi'3 ' Al.12

/ ' i-1 i-ﬂ
and consequently Pi was either +1, .

After all the 61 had been evaluated the corrections were made to the
data by defining a new function Ai such that P

by o= By v 8y ' A1.13

The new function Ai could then be added to the values of frequency fi to

give the corrected frequency fi

£, = £, A, Al.1l4

When the program had completed its run a new set of corrected

frequencies fi' were obtained and again the fiz were calculated. Using

the same procedure as the other program a parameter V, for which the

2

elastic constant was known to be Co was found as the other values of fi

'

scaled accordingly to give values of elastic constants.
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The final form of output was then a graph of elastic constant against

the controlled variable, either temperature or mégnetic field, using the

Camputer Centre graph plotter.

Generation Function g

The generation function g; was introduced later to show where corrections

‘had been made to the data. The values of g, were defined by

= O Alo
5, 15
94 9,4 * 1 for 61 #0 Al.17

so that each ﬁime the frequency 1s corrected the value of the generation
fynction g increases by one. This was used to identify the corrections.
These occurred typically about once evefy-3o-50 data points, alﬁhouqh

_ this was naturally dependent on how rapidly and how drastically the

attenuation changed.
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‘Appendix 2 " Origins of the Exchange Interaction

Simultaneously and independently Dirac [1] and Heisenberg [2]
explained ferromagnetism using quantum mechanics shortly after Pauli had
discovered his exclusion_principle. The exchange interaction was dig-
covered as a consequence of this exclusion principle and the physical
overlap of the wave functions of the electrons concerned. This
additional energy term appeared to have no classical analogue.

The exclusion principle was found to keep electrons with parallel
spins apart and thereby reduce the Coulomb repulsion interaction. The
difference in energy between the parallel and antiparallel spin config-
urations of two electréns was called the exchange energy, although this

was favourable to ferromagnetism only under certain circuﬁstances.

Heitler~London Approximation for the Wave Functions of Two Electrons in a

Hydrogen Molecule

This model will be invoked since the result is useful in obtaining
the wa;e functions of two electrons on neighbouring atoms, In this
approximation electron repulsion is considered to be significant in
affecting the motions of the electrons so that they will spend most of
the time at opposite ends of the molecule. The system will thérefore
resemblé two separated hydrogen atoms, The wavefunctions of the two
electrons may then be approximated by using one electron functions, each
of which is localised at one of the nuclei, Let these two fﬁnctions be
wa and'q;b localised at nuclei a and b respectively, | |

The symmetrical and antisymmetrical wave functions are therefore:

Vglry or,) = ¢, (r))¢, (x,) + ¢a(r2)¢b(r1) «ee.A2,1

‘PA(rl,r2) = ¢a(rl)¢b(r2) - ¢a(r2)¢b(rl) .IO|A202
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so that ¢a(ri) represents the separate wave function of the first
‘electron at nucleus a and4>b(r2) represents the wave function of the
second electron at nucleus b, ¢b(rl) and ¢a(r2) are the wavefunctions

when electrons are exchanged between the nuclei.

Evaluation of the Total Energy

The total energy E of the electrons may then be obtained by

E = Ifw*-HO ‘P.dvldvz ] 0000A2.3.

where the wavefunction ¢y is given bY‘either of the forms A2,1 or A2,2,
The sign aistinguishes corresponding singlet and triplet states.
The total Hamiltonian for this particular system may be split into

its constituent terms

H = H + H + H 'l.‘A2Q4

where Hl is the energy of the first electron in the absence of the.second,
and is therefore dependent only on rl, and H2 is the energy of the second
electron in the absence of the first, The term Hl,2 is the energy due
to interaction of the electrons, which was incidentally neglected in
obtaining the approximate wavefunctions.

The evaluation of the energy integral A2.3 may then be obtained as
follows, where no;malisation factors héve been ignored.

E = ff(¢;(rl)¢;(r2) £ ¢a(r2)¢b(rl»ﬂ.(¢a(r1)¢b(r2) + ¢a(r2)¢b(rlﬂ

x dvldvz ‘ ..o.]A2.5

= ”4,; ‘rl)‘*’ﬁ(rz)ﬂ'q’a (r1)¢b (r2) dvl av,

+ [Jorry g JHO (x )9 (x)) dv, av,

£ f[o5te )43 (r B0 (r))0, (x)) av, av,

- !f¢;(r2)¢£(rl)ﬂ.¢a(;1)¢b(r2) dv, av,

!'..A206
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and recalling that y* and H are symmetrical or antisymmetrical in r and
1

r2, yields,
E = 2ff¢;(rl)¢£(r2)H.¢a(rl)¢b(r2) dvldv2

* *
+ 2H¢a(r1)¢b(r2)H.¢a('r2)¢b(rl) av, av,
OOI.A2.7 A
Separation of the operator H into its constituent terms as indicated

in equation A2.4 gives

E ' '

1 = = 2H¢;<rl>¢;<r2)ul¢a(rl)qsb(rz) dv, 4V,  ....A2.8
l+a

E2 ‘
— - 2ffoy ot ms (x4 () avy av,  ....A2.9

where El and E2 are the unperturbed eneiqies of the electrons in their
states a(rl) and 2(r2) without any interaction, The factor a2 is the

exchange integral.

o’g = 2H¢;(r1)¢1‘;(r2)Hl¢a(r2)¢b(rl) av. qv e ..A2,10
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2
«°E, = 2jf¢;(rl)¢g(r2)ﬂ2¢a<r2>¢b<rl) dv,dv,  ....a2.11

Therefore the sum of these terms gives simply the unperturbed (i.e.

no interacting) energy of the two electrons El + E2. This still leaves two

extra terms in the total energy, which will be denoted by Q@ and J.

0 ff¢;(rl)¢g(r2)ﬂl,2¢a<rl)¢b(r2) av, dv, ....A2,12

12

r g

i

£ ffogpegepm o e, ) av av, Lia21s

2

So that the full expression for the energy of the system is

ot = B +* E, + 2(0t )  ee..n2.14
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where the terms El énd E2 are the energy. of the system when the two
electrons are not interacting, for example if one nucleus and its
electron were at infinity. Q and J are due to the interaction component
le of the Hamiltonian and may therefore be called thg interaction energy
terms. Q may be interpreted as a Coulomb electrostatic interaction
between the electrons.  However it is the J term which is particularly
interesting. ‘

J is known as the exchange integral and appears because the Pauli
principle requires a correlation betﬁeen the quantum numbers defining the
electrons. It owes its existence therefore to the fact that the wave
functions of the two electrons have the form given in equations A2.1 and
A2.2. The nature of this interaction is therefore electrostatic and not
a magnetic dipole type ;f interaction. The exchange integrai is thus

responsible for regulating the spin configurations of electrons in atoms,

molecules and on a larger scale throughout a solid.
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Appendix 3 Magnetic Phase Transitions and Catastrophe Theory

Thermodynamic Equilibrium

In thermodynamics the state of a sYstem is defined by the parameters
temperature T, pressure P, volume V, and entropy S. Additional
parameters of magnetic field H and magnetisation M are also somgtimes
used, These may be classified according to the conditions under which
an experiment is conducted, into those parameters which may be controlled
by the experimenter, the control spaée, and those'parameters which
specify the behaviour of the syste;, and are necessary together with thé
control parameters to specify the state of the system. These may be
termed the behaviour or state space.

For example it often‘happens that the temperature and pressuré of a
system are varied in order to produce changes in volume. In this case
the control space is the two dimensional space of P,T and the state
space }s the one dimensional space'of v. In order to obtain the

equilibrium conditions in this case the Gibbs fgee energy is found and a

minimum obtained with respect to the state variables.

Catastrophe Theory

In catastrophe theory a theorem exists which appears to be analogous
to the description of the specification of state of a thermodynamic
system, This is the main theorem of catastrophe theor? and is stated in

a simplified form here:
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Theorem:

If C is a control space and Z is a state space let ¢ be
a smooth function on Z parametriciéed by C. Then M the set
of stationary values of ¢ with respect to the state variables
is a smooth surface in Cx Z. The only singularities of thei

projection of M onto C are elementary catastrophes (see [7] for

definition).

This means that for elementary catastrophes there exists a smooth
potential function ¢ such that the equilibrium conditions of the system
are given by
X - o 1=1, 2, ...

ayi
where the yi belong to 2.

A3.1

Elementary Catastrophes and their Classification

Each of the catastrophes has a particular model and a general
-formula for the potential fuﬁction ¢ exists for each type. The formulae
are given in the table below although the signs of the coefficients here
are.arbitrary. In each case the a,b,c,d are parameters for the control

space C and x for the state space 2

dim 2z | dim C ¢
Field 1 1 %-x3 - ax
Cusp 1 2 %-x4 - ax - -]27--hx2
Swallowtail 1 3 %-xs - ax - i-bxz - %—cx3
Butterfly 1l 4 %-XG - ax - __bx2 - %-cxa - %-dx4

Only those catastrophes with one dimensional state spaces 2 have
been included since these are the only ones with which the present work

is concerned.
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The Cusp Catastrophe

In the case when 2 is one dimensional and C is two dimensional the

set M of stationary values of ¢ gives a surface of the form shown below.

This is called the cusp catastrophe and is particularly easy to

~

visualise,

The projection of the fold onto the control space C gives the
Riemann~Hugoniot cusp which is the £eason for the alternative ﬁame of this
case, the Riemann-Hugoniot catastrophe. The pptential function ¢ has the
form, |

1 1 2 ‘
N PR g A3.2

therefore ﬁhe surface, governed by %§-= 0 is,
x3 = bx +a ' ‘ A3.3
and differentiating again with respect to x to obtain the cusp points gives
on elimination of x the projection of the fold onto the plane a b
27a2 = 4b3 A3, 4

the Riemann-Hugoniot cusp.

Relevance to the Real Situation

In practical situations two parameters are often varied to give
particular states of a system and the resulting phase diagram is a

projection of a particular behaviour parameter onto the control plane,
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In the present work this has been obtained by finding the magnetic state
of a solid as a function of temperatu;e and magnetic field.. It
therefore appears that this particular form of elementary catastrophe
has important applications.
It has been shown in chapter 3‘that the general form of the‘potential

function for second order phase transitions with an ordering parameter n

may, be given by equation 3.50

¢ = ¢ taf +ocn’ el 33050

and by application of a magnetic field to prevent symmetry changes the

form of the potential is
2 4
¢

¢o £ An” tan+ Cn vees3.51
Hence by application of Thom's theorem the equation 3,51 will

L}

generate a surface M in the space C(T,H).A Z(n) which has the general form
of the cusp catastrophe. The equilibrium surface in this case being

_given by

13 = o 'A3.5
t o

‘Note here than n as defined by 3.43 is closely related to the

entropy. In fact
s = xkwm{( C ) As.6

where k is Boltzmann's constant and ncr is the number of ways of
selecting r states from a total number of n staﬁes.

It might also be expected that the coefficient « is proportional
to the applied magnetic field H, and A to the difference between Curie

temperature and the observed temperature of the system (i.e. Tb - T).
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General Form of the Gibbs Function in the Two Cases

(1)

When o = 0, i.e., zero magnetic field

A2 0
¢ = cn* + an?

(ii) when a is non zero

A<Q
¢ = cn* -an?
¢

A>0; & >0

A>0; %<0

¢

=

A<Q;&>0
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The magnetic Gibbs potential function has the form
e = ~S.dT + V.dP - M.dH ' A3.7

and hence the equilibrium states are given by

A3.8

L}
o

T,H P,H T,P
In order that the behaviour of the system follow that of a
Riemann-Hugoniot catas£rophe there can be only two control paramete.rs.
Otherwise it is necessary to invoke one of the elementary catastrophés
of higher dimension. In the particular cases of the pfesent work the
two controi parameters were T ané H.

daG = ~-S.dT - M.dH A3.9

The case of the general pélynomial expansior; for the Gibbs function
then yields the forms shown in the diag'rams above, depending solely on
the coefficients a of magnetic field and A of temperature.

| In those cases where A 3 O this’corresponds to T - Tc?a 0 and the

system is paramagnetic. In those cases where A <O it is ferromagnetic,

Form of the Riemann-Hugoniot Surface for a Ferromagnet
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At the critical point of the transition TC -T=0,H=0,n =0,

For n = O there is no net magnetic moment and for n > O there is net
magnetic moment parallel to the field H,
Tb - T is the splitting factor in Zeeman's definition [2,P19] while

H is the normal factor.

Ferromagnetic to Paramagnetic Phase Transition

There can still be a ferromagnetic to paramagnetic phase transition
in which there is no change of symmetry [1,P432]. This still constitutes
an order-disorder transition. Consider for example a ferromagnet aligned
antiparallel to a weak magnetic field, The field is maintained constant

"but the temperaturé is raised slowly.

<3///\\ AN )
"\

p— ~= )
T T2 T3 T4
TEMPERATURE
INCREASING
T4>13>T2>T1

Transitions involving change of Symmetry

Transitions involving change of symmetry have to proceed in general
via a second order phase change, for example the ferromagnetic
paramagnetic transition in zero field.

The symmetry of the lower symmetry state usually modifies i;self
until it equals the symmetry of the higher s§mmetry state [e.g. Landau(l)]

and hence such transitions are continuous, and do not exhibit hysteresis

or metastable states.

N € i a3 = st st g
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Order -Disorder Ttansitions

It has been shown above that an order—disoraer transition can occur
without change of symmetry, fér example the ferramagnetic to paramagnetic
phase transition in a weak magnetic field. In those cases where o # O
this implies a discontinuous change in the ordering parameter n and hence
in the entropy S to which it is related.

~ If as the temperature rises the degree of ordering vanlshes bf a
discohtinuous jump from some finite value to another value then.the.
transition will be first order. ;f the degree of ordeiing vanishes

continuously then it is a secord order transition.

Critical and Isolated Points of a Second Order Transition

| The potential ¢ given by equation‘3.51 seems to give the simplest
example of an isolated point of a second'order transition, When a = O
the transition is second order and whena# O it is first order. . In the
case of the contrél space being P,T- instead of T,H then the transition
can remain second order throughout since by the symmetry argument given
in section 3.4.9 the coefficient a would be limited to zero over the
whole control space.

It has been shown by Landau [1] and later by Schulman [4] that in
order tﬁat a line representing second order transitions be able to reach
a critical point and become a locus of first order transitiohs'the
dimensions of the control space need to be increased. - Sincé it
represents the boundary betwgen phases of different symmetries a second
order phase transition curve in the control space can‘not simply stop at .

a point,

For the investigation of such a point it has been shown by Landau [1]

and confirmed by Schulman [4] on the basis of catastrophes, that such a
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system requires a four dimensional control space, i.e. the "butterfly"
catastrophe, rather than the "swallowtail" catastrophe which is the
next in dimensionality after the "cusp" catastrophe. The potential

is in this case

¢, * oan % an?2 x B t on* + Gnf
. ' A3.10
where the inclusion of the term Bn~ is allowed by Landau and this

¢

therefore forms the general equation of the potential for the butterfly

catastrophe,

The locus of second order phase transitions requirés
A,=0; B,=0; C>0; «=0 | A3.11

At the tricritical point we must have C = O since otherwise this

remains a second order transition in a neighbourhood of the point.

General Thermodynamic Behaviour of an Antiferromagnet

In the case of a magnetic material which exhibits both antiferro-
and,ferromagnetic phases below the ordering temperature, there will be
a second order phase transition from paramagnetic to antiferromagnetic
as the temperature is reduced through the Néel point T, Also |
application of a magnetic field to the antiferromagnetic phase yill
produce a ferromagnetic alignment at sufficient high field intenéiﬁies;
Furthef ?eduction of tempe:ature in the antiferromagnetic phase will
cause a transition to ferromagnetic oréering below the Curie point TC.

At points in parameter space at which a second order transition
changes to a first order transition it’is called the crit;ca; po;nt of
the phase transition, In order to investigate such a transition |

Landau [P.452] again uses a polynomial expression for the Gibbs function

of the form ’
¢ = ¢, + An 4 Bn?2  + ont o+ nnﬁy A3.12

wﬁere A is the applied field, and on tﬁe locus of second order transitions

B=0,C>0. ,Atythe critical point at which the sedond order‘trénsitiéﬁ‘;‘

ends C'= 0, D >0,
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This expression for the Gibbs potential may be compared with

Zeeman's expression[2p31] for the potential function of the butterfly

catastrophe
$ = xé - ax - bx2 - cx3 - dx4 A3.13
where the constant ¢ has been set to zero. Solving this potential

function to give the phase transitions in tn,T,B) space where b = 'I‘-—TN

and a = H gives the solution surfaces in (a,b,x) space in the

mathematical model for various values of the parameters d. The two

of interest here may be found in Zeeman[ P.31] for ¢ = 0 and either d< 0

P

or d > Q.

For 4@ < O this again gives the solution surface of an isotropic

ferromagnet, .

For d > O this gives a new solution surface for the isotropic

antiferromagnet.

/ FERROMAGNETIC -
AL
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Appendix 4 " The Contribution of Dis.ocation Mobility to the Elastic
" Properties of a Crystal

in studying the elastic properties of crystals under an applied
sﬁress, and in particular in the present work measuring the third order
elastic constants, contributions to the elastic moduli due to the motion
of dislocations (line defects) occur un;ess precautions are taken‘to
minimise or eliminate the motion. It appears that the motion of these
~dislocations is the main‘cause of the defect contribution to the'osserved

elastic moduli.

Classification and Observation

The dislocations ih crystais may bg divided into two broad categories,
fhe edge dislocations and the screw dislocations {8,P21-25] depending on
the relative orientation of the Burgers vector b and the dislocation line
© vector }? In a screw dislocation b and £ are parallel and in an edge
dislocation they are perpend;cular. In real dislocations the behaviour is
generally a mixture of the two basic types in which b lies at éome finite
angle to £, The dislocation may then be resolved into components parallel
and perpendicular to § and treated as a combination of the resultin§ screw
and edge components., N

Dislocations lines can end at the surface of a crystal or at a graini
boundary but can never finish at a poipt inside the crystal. Therefore
they form closed loops either upon themselves or by branching into othef
dislocations.

The existence of these line defects has been confirmed by surface

methods, e.g. by preferential etching, by X-Ray diffraction methods and by

transmission clectron microscopy. '

Movement of Dislocations

Two types of motion of a dislocation are possible,'glide and climb.‘,‘pk

Glide occurs in the plane defined by b, % and climb occurs in thé‘directicn' {’
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normal to this plane, Movements of dislocations through the vector b
in the glide plane require only a small rearrangement of atomic bonds
near the dislocation and the energy is therefore less than would be

required to deform a perfect crystal.in the same way.

General Case of Slip

In the general case of slip the boundary separating the slipped and
unslipped regions is curved, that is the dislocation line is curved (see
fig. A4.l). The Burgers vector however remains constant along the length

of the dislocation line.

A s Y

fig. a4.1

The curve ABC represents the dislocation line and b is the Burgers
vector of the dislocation. At the point C the dislocation is normal to
the vector b and hence is pure edge dislocation. At A the disloéation
line is parallel to E.and is thus pure screw dislocation. The remainder
of the curve ABC has mixed edge and screw dislocation characteristics.
Resolution of the }ine vector E.at any point into components parallel aﬁd

perpendicular to b will allow analysis.
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Critical Stress and Stress Field

There 1s a critical stress, dependent on tﬁe properties of the
particular solid under investigation which reéresents the onset of
élastic deformation required to set the dislocations moving,

The displacement of a lattice required to produce a dislocation
results in an elastic ;tress field being created round the dislocation.
As the dislocation moves+*so the stress field movés through the solid
[5,p72]. The dislocations therefore move as if there were an effective
force acting upon them. Consider for example a dislocation moving in a
slip plane under a uniform stress o. If an element A2 of the dislocation
line moves through a distance dx then the work done will be

aw = daL.dx., o0.b . A4.1

and consequently the force per unit length of the dislocation dF/ is

dag
ar
a—i. = G'b A402

If the dislocation is in the form of a closed loop then, since b is
constant at all points around the loop, under an applied stress the
dislocation moves parallel or antiparallel to b, This causes the loop

of the dislocation to expand or contract accordingly. ,

Bowing of Dislocation Lines under Stress: Frank-Read Sources

When a crystal already contains a dislocation network and is
plastically deformed one method by which its dislocations multiply is by

a Frank~Read source as shown in fig. A4,2,

"

R e d L i

fig. M. 2
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As the stress increases the radius of curvature of the dislocation

line R is given by

R.0 = C.b A4.3

where ¢ is the applied stress, C is the shear modulus and b the Burgers
vector. (See for example [4,P62]). When R reaches the value L/2 the
bulge will continue to expand without further increase of stress and

eventually a camplete glissile loop detaches itself and the process can

repeat itself.

Dislocation Contribution to Elastic Moduli

In a perfect crystal if o is the applied stress, u the strain and c

the corresponding elastic modulus then -

o - cou | Ad.4

In a real crystal however a contribution Uy to the shear strain must
be added due to the bowing of the dislocation lines under stress as

described above

- -
e = -]

A
-
v

© fig. ‘A4.3
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Considering the case of the bowed dislocation as shown in fig. A4,3
where x,y is the plane of the dislocation, the initial dislocation length
is L along the x axis. This is displaced to the arc shown. The force
F on an elemenﬁ of arc of length ds is given by integration of g% given

in equation 24,2

F = o.b.ds A4.5

which for small displacements will be perpendicular to Ox.  There will
: ' 2
also be a resultant restoring force due to the tension in the line T. Sl-~-—g—.d:t\:.
' . ax
‘Therefore equating these forces under equilibrium,
_ dz .
o.b.ds = T, ——%-. ax. . A4,6
ax

and for small displacements ds = dx,

d * .
c.b = T, i 4 A7

2
It can also be shown [eg. 4,P57) that T = C,b" where C is the appropriate

shear modulus. So that if k is a constant of order unity this gives

2 : .
iy = =2 | 24.8
dx ) ' ’

using the boundary conditions y=0 x=0,1 and solving this equation gives

k.o

Y = mx(l—X) A4.9

The area swept out by this segment therefore gives the shear strain
due to the dislocation

a 12 G - ~

and summing over all the dislocations present will give the total’

contribution to the strain by the dislocations in the solid

: [ 3
= -Cq- f B;%—N(E)dl , A1

by 12

d
o

‘where N(%) is the number of dislocation segments of length g per unit

volume of the crystal, If D represents the value of the integral then

this gives
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u

[+
— A4,12
a c° D .

and adding this to the ideal strain from the equation A4.4

u e = 9 24,13

and consequently.an effective modulus of elasticity ceff may be defined

. .
such that u,_ . /c

c = ¢ | A4.14
eff = 14D

the value of the effective or observed modulus of elasticity and its
proximity to the value for the perfect crystal depend on the vaiue of the
integral D

3

j kL n(nyar

D = EVE : 24,15
(o]

Expre531ons for N(£) given by Thompson [4] give rise to the following
solutions. ‘
(1) Fot well annealed crystals
Coer = -—-—-%'9;2— a6

eff p
1+ —Ifl

(11) For random defects, e.g. by radiation damage ,

C
Ceff = .-—*EEE;T A4,17
1+

2

where p is the dislocation density and 10 is the segment length of
dislocation. It should be remarked here that subjectiog s solid to
radiation damage decreases the segment length 2 of the dislocations and
thus the value of C of £ in an irradiated crystal may be closer to C than

in an unirradiated crystal,

Pinning of Dislocations

Using fast neutrons from the core of a nuclear reactor direct

collisions can produce recoils of up to 105ev. Thermal neutrons (enorgy
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0.02eV; have insufficient energy to displace atoms in direct collisions
and their contribution is mainly through nuclear reactions of the (n,yy
type. These reactions produce small groups of vacancy-interstitial pairs,
| Changes in elastic modulus show a tendency to saturate with increasing
dose rate, for example the work on copper by Holmes [10] from which
fig. A4.4 is taken. |

A

ELASTIC MODULUS

~
o

Fluence #.t

'fiﬂ; Ad.4 (neutrons.cm™2)

This shows the trend in.values of the Young's Modulus of copper as a
function of exposure ¢.t at 25%.

Dislocation pinning causes a change in the length of the dislocation
'20 in equation A4,17. The segment length is inversely proportional to the
number of pinning points n which is given by

n = n(1+ Yot) ' A4‘18v
where n_ is the number of pinning points before ijrradiation and y is the
efficiency of producing point defects, Since Rb a 1/n these values may

be substituted into equation?dd.17 to give

Cpp(det) -c . .
Cep(O - C B 1 +yt) 2 A4.19

wvhere Ceffﬁbt) is the observed modulus after irradiation and ceff(O)

~ before irradiation. This last equation has been experimentally verified
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by Thompson and Paré [9] showing that as ¢.t is increased the value of
Ceff approaches the value C for the perfect crysﬁal.

Therefore the effect of dislocation mobility on the elastic
cénstants of single crystals can be significantly reduced or eveﬂ

eliminated by irradiation with a high flux of neutrons of suitable

energiles.
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Aggendix 5 The General Form of the Crystal Field Potential

The electrostatic potential experienced by an electron in a solid
is determined by the array of charges around it. The charges around
any particular lattice site will give rise to an electric field at that
point with a symmetry determined by the crystal class. This potential
1s experienced by the 4f electrons 15 rare earth crystals and therefore
can affect the magnetic behaviour of the crystal.

Gauss's law gives the relation between the flux of an elecﬁric
field g_thrqugh a closed surface so the charge enclosed by the surface

and the form of this law is well known,

1
[oa = 3 [p.ar A5.1

o T

where p is the charge density and T is the total volume enclosed by the
" surface s. By application of the divergence theorem

fgbdg_ = fV.EdT :
s T _ AS5.2

and hence by combination of A5.1 and A5.2, where both integrals are

over the same volume, this yields

= P .
V'E-v € | A5.3
and by replacing E by W this gives Poisson's equation f
| 92y = ’eE | ' '
o A5.4

There is no general analytical solution of Poisson's equation

[1,P.51] although it may be solved in particular cases.

Three Dimensional Solutions of Laplaces Equation

Many examples of two dimensional solutions of Laplaces equation
exist [e.g. 1 P163;2 P223]- . In this particular case however a solution i
of laplaces equation should be as general as possible and so a solution in

spherical polar coordinates in three dimensions has been outlined below.
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The Laplace equation for the elecuric potential in spherical

coordinates is, [1.P.32)

» 1 3%y =
120w, 1 3(sin6.%y-)+ e e
-2 ar(r or 2 36 r‘.sin“e 342
r r .sind B
A5.5

Empioying methods similar to those used for two dimensional
solutions express the potential V as a product‘of three functions each
dependent on only one of the three variables, r,68,¢.

0(r,6,¢) = B§§l-.6(6).§(¢) A5.6

and substituting this into the Laplace equation gives

2_ 2
rz.sinze %—d g + 21 . %—é%-(sine. g%—) + %-. é—%— = 0
dr r°.sind , d¢
' A5.7

The last term depends only on ¢ while ¢ does not appear anywhere
else in the expression. Therefore in order to satisfy the expression
. for all values of ¢ this term must be constant

1 4%z _ 2
§ -aE-z— = m AS.B

and for real values of m, m2 > O gives the solutions
E = A exp(imp) + B exp(-im¢) A5.9

Substituting the value -m2 for the term in ¢ in the equation AS5.7

’

2 2 2
r“a’R 1 1 a a8 m
r_ i1 a9 g, 22 - =
— 5t % Tis '35 | sin® 35 ) 5 0 A5.10

dr sin"0-
By a similar argument the term in r must also be a constant.

Therefore let the value be 2(L1+1)

2
L(2+
-d—g - ——-(——2—1l R = 0 A5.11
dr r mz
L(2+1) =~ A5.12
ae -  A5.12
-s-'i%——e- a%(sinﬁ 3r) sin?g o °

which leaves the two above differential equations to solve for R and
separately. = The general solution to Ab5,11 is

R(r) = a4 gt ' © A5,13
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To solve the differential equation A5.12 make the substition
X = cos 6 and let P(x) = @(cos ). The resulting differential equation

is then,
2

]P =0 A5.14

' a 2. 4p
-a—x— [ (ly-x ) a;(— ] + [ L(+1) -
' l-x

which is a form of Legendre's equation [see 1 P167, 2 P234] for

which the solutions are Associated Legendre Polynomials dependent on the

PERY

values of both m and %

8(8) = P, (cose) _— A5.15

Consequently the most general solution for the three dimensional

Laplace equation in spherical coordinates is

- (2+1) )Pr;‘l (cosB) (C exp im¢ + D exp-im¢)

. A5.16

where A,B,C,D are constants and m and £ are positive integers, withm § 4.

Vi, 8,0) = Z(Ar9‘+13r
2 mge

Associated Legendre Polynomials

2 m - P

o o} 1 !
1 o) cos 0

1 | 1 sin ©

2 o %— cos® 6 - -;—

2 1 sin2 6

2 2 cos26 - 1

When m = O these become identical to the Legendre Polynomials,
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Form of the Crystal Field

If it is assumed that the 4f electrons do not overlap neighbouring
ions in the lattice then the potential experienced by those electrons

satisfies Laplaces equation and can be expressed in the form
Vi) = ):2 Y, (8,9) A5.17

where the A" depend on the distribution of external charge and the
rlY?(9,¢) are the various multipoles of the electron distribution.
Summing over n 4f electrons to obtain the total potential gives Vc

\ = ) Vi)

c A5,18

Restriction on terms in V due to Hexagonal Symmetry

In the case of hexagonal symmetry and in particular in the case of
the heavy rare earths the terms in the potential energy of a single
electron at (r,0,¢) expanded in spherical harmonics as in equation.A5.17

are restricted to give [6]

. O 2.0 040 O 6.0
V() = Azr Y (0,4) + A4r Y (6,¢) + AT Y (8,¢)

6 6 -6
+ A &F [ Y _(6,94) + Y (6,9)

A5,19 ¢
: L
- As each harmonic r Y?(G,¢) gives a multipole of the electron
distribution they may be expanded out, for example for 2=2, m=Q
2

2.0 1.2
rY 0,0 = 582 -x) A5.20

which is the quadrupole moment of the electron charge cloud.

Transformation to Operator Equivalents

In evaluating the terms of the potential VC between multiplet
states |J,MJ> the integration has been found to be most easily achieved
b& transforming to operator equivalents of the multipole terms [s].

For a particular multiplet the matrix elements of the potential VC are
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proportional to the so called "operator equivalents" obtained by

replacing X,Y,2 in the multipole terms by Jx, Jy and Jz.

For example, again using the V2o term,
0o 2.0 0 r2 2
Az.r .Y2(6,¢) = A2. 3 . (3cos“8 - 1)
= Ag. . (3z2 - r2)

A5.21

NN""

2 .
and replacing 22 by Jz and r by J(J+1) this gives,

0 2 2
= Ay .o (330 - J@+LKr">

LV L

2
where <r2> is the value of r averaged over the 4f wave functions. The
multipole term is therefore transformed to

2 2 ' 2 2
3z° - r > A< >.[3JZ -~ J(T+1)]

- 2.0
= aL.<r>.0, A5, 22

m .
The values of the othexr operators 02 are given elsewhere [4,5].

The operator equivalent expression for the crystal field Hamiltonian is

thus
m m
v = Y ] B0
c ¢ n L F A5,23
where the B;m are related to the crystal field parameters by
m m __2 ’
By Ry <r™>.6, A5.24

and 62'= a1 64 = BJ{ 66 = Yy are constants which have been evaluated [6].
Expanding out the expressions A5.23 for the heavy rare earths gives,

(o] 2 0 (¢] 4 (o] .0
v = A <r >.QJ02(Q) + A <r >.8J.04(Q)+ A

6 0
c 2 4 6 ¥ > Y0 (1)

6 6 6 -6
+ AL <r >.yJ.{06(_J_) + 0 ()]
These various terms acted upon by the gradient of the electric field
in-their particular crystallographic directions cause changes in the energy
of electrcns in different orbitals, which differ with differing 2 values.

Consequently this breaks the degeneracies of electron states in a

spherically symmetric potential{
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Appendix 6 Calibrations

Calibration of Thermocouples

Two thermocouples were used in the present work, copper v. constantan
for temperatures from 273%k to 77°k and gold-(0;03%)ifon v, chromel for
temperatures between 77°K.and 4.2°K. Although a good approximation to
the temperatﬁre was achieved by usiné a curve fit of the typg mentioned
in section 5.5.2 and giv;n by equation 5.2, the exact calibrations were
made against a platinum resistance thermometer [1]. This is a practical
thermometer whbse fractional change in resistance over the range 10.5°K -
273°K on the thermodynamic scale of temperature was agreed by the
Consultative Committee on Thermometry 1964 from which the data used for
correlating resistance of platinum and the absolute temperature has been

taken [2]. This is in the form of the‘Z function given by

R - R
T 4,2
Z(T) = R( ) A6,1
273 - R4.2
where R(T) is the resistance at temperature T, R4 2 is the resistance at

the helium point and R273 at the ice point. Tabulated values of Z against

T over the range 4.2°k-273°K are available.

Calculation of T as a function of 2

Since the value of Z can be calculated from measurements it is then’
necessary to convert the observed values into a temperature T. From the
tabulated values of Z function against temperature T polynomial curve
fittings of the form

5 .
T = A+ B2 + CZ + DZ3 + FZ4 + GZ5 A6.2

were made over the four intervals bounded by the temperatures 4.2°K, 23°K,
o .
48°k, 150°K and 273°K and the sets of -coefficients A, B, C, D, F and G for

each section found. From a knowledgé of these the temperature
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corresponding to any particular value of Z could be found over the range
4;2°K-273°K. A graph of the Z data against temperature is shown in

figure A6.1 and the polynomial approximations are given by the curve.

Measurement of Resistance of the Platinum Thermometer

The platinum resistance thermometer and thermocouple were placed
close together in the cryostat and readings of thermocouple emf. against
resistance of the platinim were taken at predetefmined intervals from
4.2°K to 273°K. R The circuit used fpr measurement of resistance is given
in fig. A6.2. The voltages VS across the standard resistor of 1000 and‘

across the platinum thermometer V__ were made using a potentiometer so

pt

"that no current was drawn from the circuit, A constant current source

of 100uA was used throughout. The resistance of the platinum was

.

i calculated from

v : 26,3

R = pt

pt

<:,m
n ju

From the value of the Z function calculated from each value Rpt the
temperature was found using the appropriate coefficients from equation A6.2,
Tabulatelvalues of thermocouple emf. against temperature were then

obtained, ’

Thermoéouple Emf. as a Function of Temperature

The variation of thermocouple emf. as a function of temperature
calculated in this way is given for Gold-iron v. chromel in fig. A6.3
and for copper v, constantan in fig. A6.4, The curve fit to the data to
give a generating function 1is given in this case by a polynomial of the

form

E - A + BT + CT2 4 DT> + pp? A6.4

over all the data points using a 1east‘squares method. This is also

canpared in both figures with the approximate fit of equation 5.2 using
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four points over the range 4.2°K-273°K so that the relative merits of
the two methods can be seen, It will be noticed that once the
measurements are outside the range of the approximate calibration they

diverge rapidly from the curve. This is particularly clear in fig. A6.4.

. Calibration of the Electromagnet

The calibration of the magnetic f£ield in terms of the coil'current
supplied to the electromagnet was made using a Scalamp Fluxmeter and
search coils manufactured by Pye [4]. The fluxmeter was itself
calibrated directly in Tesla for fge 10 turns.cm-2 coil and‘in 0.1 Tesla
for the 100 turrxs.cm—2 second coil. Values of the magnetic field égainst

current for .various pole separations are shown in fig. A6.5.

Calibration of the Uniaxial Press

Calibration of the uniaxigl pressure equipment was méde using strain
gaugés by the method given in sections 5.5.8 and 5.5,9, The smail size
of the rare earth specimens made it necessary to use the smallest gauges
available, thése were SK-09-O15EH-120 manufactured by Microméasurements
[5]. The graphs of the strain against applied force in kg.wt. are given

along the ¢ axis of Erbium in fig. A6.6 and along the b axis in fig. A6.7.



- 193 -

Appendix 7 Hydrostatic Pressure Derivatives of Erbium, Dysprosium and
Terbium with Pressures up to 4.5 MPa

In this appendix some results of the pressure derivatives of the
elastic moduii of Erbium, Dysprosium and Terbium with pressures up to
4.5 MPa are presented. These were obtained using a gas pressure cell
connected to a cylinder of nitrogen, a technique that has previouély been
used by several groups of workers including Swartz and Elbaum [lj, Naimon
[2], Hiki and Granato [3) and Hames [4]. The pressure range of O-4.5 MPa
was also typically the same as in the earlier measurements.

Changes ih temperatufe of the’éell over the whole range of measuremén£s
during these experiments did not exceed 0.02mV on a copper v. constantan
thermocouple, which corresponds to < 0.5%. The temperature decreased as
the pressure was decreased during the measurements. As the temperature
derivative of the elastic constants is negative for all three materials at
' rocm temperature, the pressure derivatives so measured would be likely to be
‘smaller thah the true value, although the actual recorded results showed
values larger than the previously reported derivatives of Fisher et al [5].

The results aré presented in figs. A7.1 -A7.8, The calculated
pressure de;ivatives were obtained by avéraging the‘results of typically
f;ve experimental runs. The derivatives are shown in fig. A7.é.

Griineisen parameters calculated from these derivates are shown in fig. A7.10.

The results reported hgré‘have been shown to be reproducible. Each
.value of the derivative 1s the result of averaging several calculated
derivatives and the standard deviation has also been indicated. The whole
work represents over two hundred separate sets of experimental data all of
which show discrepancies from earlier published results and from the high
pressure derivativés obtailned in chapter ten.

Attempts to isolate any systematic error which could be causihg the

unexpectedly large values of the pressure derivatives have been unsuccessful,

and no reason has yet been found to explain this disagreement with earlier
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results, It is conceded however that such a systematic error may have

escaped detection.
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Cruneisen Parameters calculated from Pressure Derivatives

up to 4.5M.Pa
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Appendix 8 Computer Programs

In this appendix five computer programs are givenwhich have been
used to aid dapa analysis in this work. The fiist three have been used
to anaiyse data output from the sing around system and convert it into
results of elastic constant against'a given controlled parameter, for
example temperature, pressure or magnétic field, The last two haQe been
Qsed to calibrate thermocouples, |

3

Program 1

.This program analyses data obtained from the internal memory store of
the sing around system by the method given in appendix 1. Corrections are
made to the data if successive readings differ by an interval corresponding
‘to about one cycle of the 15 MHz acoustig‘vibrations. This wouid indicate
‘that the trigger point had changed from one cycle to another.

The final data output consists of tabulated values of elastic constant
~against the controlled parameter, and a graphical representation of‘the data
"on the University graph plotter.v The subroutines including "GRAPH" and

beyond are only respoﬁsible for the graphical output, All éﬁbroutines

before this are concerned with data analysis.
’ I

Program 2

This program was used to analyse data obtained from’the frequéncy
meter and follows the method ocutlined in appendix l. As in the éase,of
program 1 all subroutines including "GRAPH" and beyond are concerned only
with the graphical output of results, The first three subroutines deal -j'

with the data analysis.

Program 3 -
This program was used exclusiVély‘with pressure measurements when
the data was read from the frequency meter. The analysis is similar to

program 2 and the outputs both tabulated and graphical are identical,
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However, this program contains a subroutine "LINEFIT" which calculates

the slope of the data, dc/ , thereby giving the pressure derivatives of

dp
elastic constants. More sophisticated programs have been written in
which polynoﬁial,fits to the data were made in order to detect any
a%c

fourth-order effects, /dPZ .
Prbgram 4

This program has been used to calibrate a thermocouple aga;ﬁst a
platinum resistance thermometer. | The program calculates the temperature
from the resistance of the platinum'the;mometer‘by ﬁhe method outlined in
appendix six, and then outputs tabulated and‘graphical data of thermocouple

emf, against temperature. The method used is that recommended by '

Greenough (1],

'Program 5
This program uses the simplified expression given in chapter five
‘relating the emf. of the thermocoupie to the temperature. It required
four fixed calibration points.  The programvwagboriginally by Isci [2]
utilising the equation of White [3]. A comparison of the two methods of

calibration represented by programs 5 and 6 has been given in appendix 6.
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PROGRAM 1

MASTEP STOTEDATA

‘_“raL 1HC™, i, X

COVMON/BI/70UANET, ATY DI, ATATE
DIGLASION ACI2)LfC120),1(C l”f)aZ(l"'C)
DIMENSION 100
PIMERNET N n(1"”):&1"0);3‘(1"“)

PEATC S, 1) SNRITLATYT I, LDATE
FOPUATCAR, 2%, 0%)
SREADCS, 1 E) ’"T""T:INCP; CLLY

FOPMATCARD
1=1

PEALCE, 83ACDD
IFCACL) ERL
I=1+1

0)GOTI 3

Syacld
FORWATCFO.0)
I7¢ACLI) LT 0,0)GITT 25
COTJ 10

N=1=1

£h 50 .1 1, N

.
~
-
ot
fl
[ WY
L ]
- I

+1-1) : ,
IF(S(I).T”..-G)G:TE 50
HCId)=(nILY+ 1. 00 175+ (SCI) %7
DCId=100%, 0/7:4C0)

CouT IJU{:

EO 102 I=1,4 (
Z(I)-"-‘S'T(\?T+(I"l)*IZ‘JC?

'C’)"loc‘

CoNTIlvE )

CALL EITHER

FITLLCALCZ 2000
2

cALL
CALL PLITTER(Z,T.2
HEADINGS 04 WEW PaGE
UBITE(E, 20)
FOTUATCUILLIR0C 5 "))

UPITECE, 21D

FOTUMATC/ /o 20, "TAPE DATA ', TY, 191515 AT
112v, "FITLD Y

WRLTEC 6, 28)

FATALTC Lo, CIICTOETCITE Y, 10y, v e
URITI( 4, 20) .

FOTHATCIUNG, L7¥, 200 "))
TlveT gQuernt yaTlIaTLdN R NAR LN G N

37

AR

):?‘Co.f‘ﬁlv

CRERIOD Y, 7%, tIm e |

Il S
BRSSP



"/

t ¢ ‘
.
I .
N t
. * 4 '
' v- ’ "
v o
oL 4 N
PO 40 L=1,N "
WRITECE, 27) : o

FORMATCLIC, LT, " ' 4C19%, "% ') |
ML) =L FIYCECL)) ~ , .
WRITEC6s 23)11CLY 5 11CL Y, DCLY » B(L)

F]“ﬁn7(1{1317’ M T 1A R T QCEKS F T8 £y VK V), TH, TE
WRITE( A, 37) : :
erwr(Cam_ . . . P .
*COHTINUER ) . : ’ o
"WRITLC6, 25) . oo | :
FO™SATC 10X, "PIT FINISHED ") L - : -
- SECOND QUTPUT GFAPH OF PLLATIVE L[LASTIC COWSTANT
AGAINST TEMPERATURE | Db s

Y

STOP
EHD R
SURRQUTIHNT FIELDCAL (Y, Ty, 1)

CCOMHOU/ R/ A0ANE, ATYRE, ALATE R
EIx-thJm MCIA0)LHECI20), TCIE0) e oo

THEV/Z0 09/, 20/ 0,30/, 83/70408/

I:l»\.':';sCl/’?oO/aC‘T/7-U/:CE/I5--0/" :

DUEL TA= ( (G 13y s € Corn Dy GOk C C1am) ki G (O 2 4 C Lo ChkH )
| =Cl#CCPwn)a(CaAR) = CClewD) o (CRuk 2) 4 00m (€ 1w Y w €0 ( O
A= CPIn( (02 Ca=0re (OD%B) ) =T 2a ((C1h%M) "”*ul‘(’“ﬁh )
14B2%((Cl#x2)xCRP-Cln(CRx#2))) /NELTA

B= = (5Ix ((COw2)%C2=C0 (0% D)) ~=P*c<c1¢* )% C 3 caa(
14233 ((Clax2)xC2=Clx(CR2x2))) /0RLTA

C=(TIx((CRuex2)*(CaxT)=(CTxwiT) s(ch.}.m))..‘:m’(( l“m.")’?‘(t'f“l’f;i

T

l“ﬂ

-"))
.‘

B2y

l(Cl**ﬂ)”(cq**3))+r°“((CI‘*q)*(6”4*”)~(CIha”)ﬁ(C” ®2YI) /DT

Spdl L=lsil : : . e
T(L)"’*#("(LM%G).—P (‘/(L.M "’)+C%~"(l ) St e
SCOWTINHVE L , ; o
CALL GRARHC ' ', T, 5, &) | S
URLTE(E, 2T ’ - T e

FOTUATCINC, 33, PCPARH OF SING AMOUND PERISL AGALLST FIsLrn)
YRITECE 201) ; EERER T e e
FOPMAT(HD, B3 2y TN TATAY) : T
WPITEC €, 200 ANANE, ATYRE, ADATE SRR Do
FAPHATCINCS A8, AT 030 4T)

WRITEC R, 218) | I e
FOPHATCINL, 120¢ ")) L . S T
WPITE( 6, N1 1) £LAM I, £TYTE, ADATE
FOCMATCLD, 45, TEAUPLE 1 YL A%N, AR, ARY
UPITE( &, 240) : IR ,
VEITI( 8, 7] 4) A
FIPMATCIAC, 187, "0 L fhal 2, ""\ﬂ FTIC Y, 1Y, LInenrTyIne,

l!3ha'CJ?ﬁLC*IE'JIT¥a""”PTH(Y > ‘ ' T
URPITECE, 7)1 5

FORUSATCIIC, LM, YO I ""a VIV, 0 FICLL v, I, rEpEnus]
| YFPLALENCY ', 15V, TEPUATED Y - o
ot e e : 't e ‘
- . ) | |
I: o . " .
. e
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_1+TQ«<<"1«*1>*VO—V1xc"“*w°>)>/rrL"r

JDIT“<6a“°”) C .
FOPMATC//Z5 19¥, "1 ' 19X, 'Y, 190, "5, 190, "CF 'y 19¥, *FO Y, |0, 1ami!
WRITE(6,260) :
V”°1“”<//a!""al°l( k1)) . .
FETURY

END » N
SUBROUTINE THCOUPLE(Y, T, N, H) .
COMMOH/ZRI /AN L ATYPE, ACATE . o
DIMEICION V(E00),HC126) , : o SR
DIMENSION (2000, TC200) v
DATATl/—19e.p/,TQ/—1oc.o/,.3/-:0,0,

DATAVI/=(.00872/,V2/~0.00 7=/JVQ/-C-G0181/ .
CELUA=S (U 4k2) % (!]n*w").ﬂ/g.}.(t“ PEEADE AT N AT D RIS I QLS T th IR A AR IR
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WRITE(C G, 218) _ , ; ;
FOPMATCIN1,120C % ")) : . ;
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WRITEC£,570)

CFOTEATC//, 1070 TV 1Y, TT L 0N, VE e, 1OV, NCF Y, LYY, CER, 10, T
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SUSPIUTINE PLITTENCZZ, DOs Ty i) '
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J=dJd+ ] ,
- 2P IFCDDCI) s liEe060)CITT 20
: Cd=d+ ) o . o
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26 TFCDIFFCL) LTels 0AETIGITT 100
MYCI)=1(Id+Ne 0RET :
MNCIYI=I(IY)=Ca 887 S -
MARCI)=AZS ULy =l = 1)) o , L RS
CHIAECI =ATSCHICIY -ICI-1)) [ D e L
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DIMENSION XYL Y (W) : L
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. « __PROGRAM 2 ° X
i, ' :

MASTEP hLawrsﬁ,'

PPGGTAM TO CORFECT CHANCES IN SING APIUNED FREQUEICY
LUE T3 TPLGGE" PILWT JUMPING 20 70 CETECTI FE1AS
RESET, . . ‘

RPN RS RS Ne]

CoMifJ J/Nl/f*(?) o : : U
FEAL 100C,¥3D : . ; S
INTEGER G
DIMENSION INCCE00),DIR <=00>,usccaoo> L
DIMENSION MIDCEGOY ' ,
DIMENSIGN GCS0CY.NCS00)

DIITFLSION UCS00),2C¢500) ,
CIMENSION TC(S00),DELCSCO), DIFF(500)

CDIMENSION PCS00Y, SCEQ0Y, W(E00) -
DIMENSIIN ¥(S00),YCEL0) .
I=0 '

o PEADCE, 1)AZ (!).ﬂ‘“(")a!‘ QD P %) (ﬁ),A"(ca) AI’(G) Ap('y)
] FIPHATCTIARY .

o TMEALC S, &) PILUT, CONET
4 FORLEAT(2F0.0)

L CUN"T CuiNeT*1.0F It
3 I=1+} : :
<. PEAD(CS, 10) ¥(I),Y(1)

10 FORMAT(ZF0.0) .

CCIFCYCI) o GT.0.0)G3TT S
N=l-1"
WELTEC 6, 400) :

400 FOTMATCINIL120C '« ')) . : g
oo URITECE, ATDIALCL) . ARCE) S AT <°>an~c¢>,ar(=>,afcs)aor(f>*
»Ql : E'l"rv"lt\"‘(!”ﬂ z.rv_' 7.{* ) i :
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Cc

c CeLl. EITHE® THCIUFLE I7 FlELLCAL ,
CﬁuL """C“'”ﬁuh('?’a ad) : o T, . ENER

c : e

C

c

SET UL ATPAYS TIOINI e EE’{[_\'UI{_‘}H?‘ TEODPATL

s¢ly=0 . - =
G(y=" : : . ,
C(Ry=(
DO f0 I=0u1
IRCCII=Y (LY =Y Clml) o ‘ ey
TFCIACCID v 5N fiaddI0( )= rx“c1~1>ﬁc.rnz
CRITCI)=INCCI) /ATSCIN0(D)) ,
LGc1> rreeny

- '<:)~n1~<1>/n1“c1-x>
20 CTJ."TIN’,L L
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LO 100 I=4,N
GCI)=0
U(I)=Y(I)
- =ARSIY(I~1)=Y(I-0))
R B~A‘°(Y(I 2)-Y(l~- 7))
C=A+3
D=X(l1=1)=%¥(1=23) _
S(I)=ALS(C/D) o, . R .
P=Y(I)=Y(I~1) ' . . . L
RCII=Y(L)=¥(I~1)
RCI)=ARS(P/0(1))
- WCI)=840%5C1)
100 CONTINUEL

SFLECT CJWPITIONS UNDER 'WHICH CDD“EC¢Iu ’ HUULD
"BE MADE T2 DATA SN . ‘
g , . o
p0 200 I=4,H ‘ :
GCLY=C(CI-1) T
CIFCARSCI) WGTL.0CO0 TT 70 . » Sl '
IF(DVCCI+l)oGToU)GG*D 7C . S v
om0 i R
70 IF(T(1).LE, ‘(L))CUTJ &0 -

a0 oa

c © CORPECTING PROCEDUFE FOLLIVE

C T J 1
40 Al—(Y(J-l)*V(J-”))/CV(J~I) X (J=- w))
IFCAL «NEWDDYCSTD 60 ,
J=Jd=1
1F(Jd. LE.S)SJTJ &f
S G3JTO 40 :
60 A2=ARE(ALY
SIGH=AL/AN
CLOPE=S(1) <] 0l O o SR o
DIF:(I)-CL‘“W#ﬁ(1)+Y(I~1)~Y(I) Tl b S T
GCII=CCI=10+1 o, N
CONTIUTE T e

o

END' OF COPPECTING PAUTINE S
61 TO 0 RYPASEES cabwrc*lﬁve ™ DA*A‘

VOO,

C'J\"‘Isﬂ”"
RUSPEASEPN
 DEL(1)=0.0
DJ 180 =2,
DELCRI=DELCH= 1)+ DI 77
AR @1+ )"v(a\)*‘ﬁfl..(a\) :
180 COQuTINHUEZ
v DL) s t<-l.'vi.‘.‘l .
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S PRIMENCSICH WM(s00)

DO 200 I=1,0
IF(XC1) s NE.POINTYGOTD 300
COEF=CANST/Z(1)

CONTLIAUVE

DO 250 I=t,W ' , -
MODCI) =CIEF *7(1) B ' P -
CONTINUE ' ‘ ' ‘
CWURITECE,260) .
CFOPHATC//, 100, 100C¢ % ")) L O
0O 280 I=1,ii . S -
WPITECG, 220) | : - o
FORMATCIN0,9¥, SC % 1, 1OY), % 1)

WRITEC&, 240) X(I)JT(I);Y(I);H(I);VDF(I);u(I)
FOPMATCLI0,OW, Y Yy BY 0 FEa 2070, Vi Y, 4Y, FT4 2, %X, Yk 1, B,
1F7+3, 75 '*' =w,~7.‘,7x,-* ,axanxx.s,ax;'*w,sx.xa>
WRITECE, 230D , AR AR SRR
WPLTEC €, 260) :

CU \JTI'\)”‘- . . .

CALL GPAPHC 'x ¥, T,MOC, N, €) .

STOP

END
SUSRJUTINE T”CJVDLE(V T, N)

LY . .
e

DIMENSION VCS00) '

DIMENSICHN ¥(500),T¢(500)

rEAL X ‘ ’ .
DATATI/=19€¢0/572/=TTe8/4TI/=NE2,9/

DATAVI/=C. pee7asz,ve/-Co CU”?LI/,Ug/-g,0g¢q7:/

DELTA= ((*I*‘”)*(*°¥4n)¥*7+(*I*«“)x*ﬂ*(~1*4Q)+~1u(¢ﬂ s V)Y R(TY
! ”l*(*"**")*(Tq**7)'(*1**”)*(*"¥x°)47°-(*l4*1)*T”0(””r*”)
A= (U ((Toxx2)xT2- T”*(*”+*ﬁ))'""f((”1**¢)*¢°-*l*(*”r»’))
l+U°*((TI**")**“ TI%(TR¥=2)))/DELTA ; SR

Be- (Ul ((TOxx I RTI=TOR(TIk%TY) “””k((T14$”)**”-*1*(7“1‘ﬁ)3
1+V“*((*1**”)k””‘*lﬁ(*”ﬂrq)))/tv Ta :
C= (Ulw((*”*k”)*(*”**")-(’”<sﬁ)s(*ﬁ**o))-nn*(<ml**1)h(~q**n
l(Tl**°)F(*”**?))+"”*((*1**”)«(*”*5”)-(*1k*”)*(””**”)))/Z:L
pO 1 L=, :
ux(L)=¥(L)/s1000.0

X=1.0

IF(LOE“O I)Tt’\"=ccoo
IF(LiE« 1) TA=T(L-1)
UCLY=AR(TAxR ) +Ex (TA*® Q)+ CkTH
pul=wy (L) =Y (L)

IFCATS(DVL) LT, QCCDPI)CJT3 20
Sl A=V /A rc'(‘""l)
TA=TA+ ST CHAR 0o 07K

VD= AR (TRks )+ TR (TR R & Cx T
pua=InI (L)Y =17 (L)

S GNR=DUN /AT (NN
IFCCIGUIeEra SIGHAY GITT 10
TTARTACST LA IO O/ ‘

i{=1(>.~"‘-0

.

. L B
~e . L] M 7 JEaS N N
» : : : AT o " i
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¢
S e ._,,,__,,,'., GDT‘] N \l D [P .... o n b B e o O e - g L L.;,........,_.,,‘.......___,m,___'__m___ o e e,
20 TCLI)=TA+273.0
1 CONTINUE |

e WRITECE, 210D ,
210 FUORMATCIMNC, 120C'%'))
N WRITEC6, 214) S e : S
2Ly FORMATCLIC0, 193, "THERMOCOUPLE ' %%, 'CO “”EQPJJTIJ ,1CV‘»angE@
113%, '"CUPPECTED ', 1 0%, ' ELASTIC ")
CWRITEC G, R1T) ‘ ’ .
g CFORMATCIH0, 17X, TEHMFTL IR ,'vtwhEﬁATnnr',llv,'Vnrpnzqcu b 107,
\ 1'FRECUENCY '» LI¥, "CONSTANT') | A 3 ) L
o S WRITECG,220) _ - R |
o enp FORMAT(/ /5197, 'V, 19%, ?’F'¢19X; YFY,19%, 'CF ' 19, 'FR

"RETUDN S : X e
END - « ‘ L R SRR
sUDPCUTI: NE '"'I}-_L[CAL.(Y;'P,J) A e v |
DIMENSICN X(SCG0),TCE0C) Y : R RN S 3
DATABI/0687/,B2/1.05/20823/147%7 . - B
DATACI/Z 104 0/,C0/2040/,C2780407/ ;
’ DI'LT!‘»—-((CI**")’!(C"*‘*”)!<C"+(C[+¥Q)*cﬁ+(cq,,.,,g'1)+()l*(cr- ""5’(‘2':?
] =Cl®CCo%%2) R (COx D =(CI*x2)x (Ckk )k CO=(ClHk IR COR(LEa% D))
A= (B ((Co%x2) X C2=C% CC2Hk DI ) =Dk ( (C ek D)k (2 Cl*(C”k»”)) '

1483 ((C1#%D) % C2=C1H(CT%k2IId/LILTA .

== (E1#((CExx )% Ca=CPK(Crk D)) -V”*((CI4A”)*C"-C1*(C“*%”)) %
1+B3k((ClI#%x3)xCO=-Cl*x (CT#%2)))/DELTA ;

j1o]
on

ey 1
') l! A | 'G::

T

J ' C=(uIx{(C2 F*")*(Cu“f”)*(C°'*')«r(r:3>p.4<")) rr*(((’“wq;xgtcnﬁ»{r.)-k
h PCClwxz)= <C°*~’>>+:3¥<<Clk*“)»crﬂ*4ﬁ)-<C1«x’>n(f?¢# )27'"“HT%
T(L)-n*(‘((u)**")-**+(X(L)**°)+C*Y(L) ‘ ) e

1 CONTINUE : , o S ok

WPITECE,210) :

210 FOPMATCOIHC, I2CC % "))

: URITEC(E, T14) e ' S T

214 . FOPMATCIH0, 167, 'CIIL ', 15Y, ”‘I[‘C TETICY, lov 'ASIZSEF"!SD",

' 112V, PCOTNECTED Y, 16V, ' ELASTIC M) e
WPITE(Es S R) '

218 FOPMATCLHO, 1 B, " crrt LT 'J»! o, v Tl Lo ‘J,lzi‘{ veoe rpyya.dcu LA Rt
P UFREAUEICY ', 1 1%, CNSTANT Y T § et el
WOl TECE, 280) ) o L e e
Rt ‘ : R
2270 FARMOAT(L// . 12,1, 13X, ", 19y, lgw 'C."' 12V, vFa e, 1oy, ":?
DETURH ' S e .
ENE |

CepEnOUTIUT CTATI(C, Y, YL, 1)
CIVENSIJN XY N -

CALL MNIY (75 s VHAY, VitL L4, lc,c>
CaLL {lu’(YaaaYlf"~VUIJ,1f,g)

CCALL SCALE ITOiaY, ML LAY, Y I ”
cnalL PLJT:Z'A(CI:’J\.’).J)
- : TFCLWETeMCALL VHP IT(IY
L , 'c L t'"”LAV "avgv,"‘","ix:,vavv,vixi>
: ?’\“ myvt ‘\I ‘ n ; : . I
’ . Re ', i R .
, I R
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B . .
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TeUBPOUTINE MM (X, 10, ¥MAY, VUIw;wD"aINC)'
“DIVENSION Y)Y AC1D) ,
DATH A71 605,15, QOJQ Sy e les By Ffe, .-51 )o:lﬂo:lo “/
CDTRWCCZI=ATNT(Z+10000., >-10000. ,
ASRIE GE.1)CATS 2
CoowHaY = X : .
©OXMIN = XMAX -

T 2 Dpd 1 IC=l.N ~ o c .
e IFCXCIC) « GToXHUAYIYMAY=Y (1) o Lol
. : Tl OIFCACIC) DL T NI MMIN=Y (IC)
L | PLE=ALOGIOCCYHAY=XNINY /NDY) \ '

4 S EXP=DTPHC(TLG) RN R SR ;

: © o SIM=RLG-EXP . T T

©OSUX=10.kkSUY . .
., DD 31c=1,12 4
ITF(SUNLLTA(1I0)) uTQ P

L 3 CONTINUE N .,
T ' QHVAHCMIO*MN“ -
T 1C=1C+]
. WMY =UNsDTPNC(YHAX/ZIN+0.9999)
oL XN =UN*DTPAUC(XEIN/UR+0.6001)

IFQ(eY- ‘(".\I)/T"’.C’FuJE\H’U-l)G""‘_, 4
KHIN =¥ ‘ :
XUAY = XHN+NDU=IH

PETUTN
END ; :

CEUBRPOUTINE SCALE I TN, XN, YHY, VMY
COMAST ZZIEPY/G(AA) L IL N, I, Vilav, 1y
DATA B/ v/ »

XMIN=VMN
UY = (Yuy=Yidd) 2100, 0
YUAY = YiY :
Uy = (YH¥=-YHI /S0 T T
- DJ 1 1C=1,6%2 ; o
1 'GCIC)=5 " T
. “r".”h.'\iv . . 4 .
SOEND
SULNIUTI \i" r‘L.-'J E (C;'{J»aw)
PIENSI I XY, Y i) R
COIion /’96‘:’”/‘:(“5'3);." JLH, 1T, V\qf‘\{'yrvf il
PO 1 1C=1,4 o ¥
. 1X= I.."rt(*’czc»-*'Im)/rw;.«;3,~
IFQIVeGTol0)CESTT 1
ISCIY LT 1) TOT0 ‘
1Y= 1n¢c<V1»"~vcfc>)/r~+1.,)
IFCIY 3T S1GTE | , ,
TFCIV L Ta)GEITT ) Ce N
cell (‘Jh\’(llu(Iq"I\’ 1™, 1%, Ch 1)
Sl CONTINUE R Lt
LED RURRALIAY

HEVD N . . ‘ y g ¢ R
TR %S S S T : e e e e v e
. PN P ; - . it
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SULBPOUTINE LINE(C:VIJY!;““:Y“)
DIMENCION ¥C10),YCL10) ; .
COMMON /23 &P/ GCERRY S MIN, IN, YUY, UY
DX=(¥2-%1) /1% S :
DY=(Yo=-y1)/UY. : '
DMAY“?1A’I(AV’(DY),A”¢(DY))
DY=UEs DX/ DMOAX | - .
DY=UYRLY /IHMAX oL - )
'NPT=DMAX-0.5, C ' S ”
XC1y=y1+I¥ : o AR S -
Y =Y1+LDY ‘ , S -
CIF(NPTLTI)PETION

ICE = MINQCHPT,10) L ‘ _ . ‘
pd 1 1c=2,1CE T
CXCIC)=X(CIC~1)+DY : i S e e
1 YCIC)=Y(IC~1)+DY |
. CALL PLOTEM(C,¥,Y,ICE)
© NPT = KPT - ICE

S X)) = ¥(ICE)+DY

Y1) = YCICE)+DY . e "

GO TO ¢ ' o , S

0o

END | _
CSRrRQuUTINE - DU“Y‘ IT(I) '
DIMENSIIN HEC6) e L S
COMMABE/TLZA5CT) : - | | o
COMMTN /29 €PX/GCEER), YHIN, UN, YILAX, UY o
£l 9 1C=1,¢ ‘ : o ~
HE¢ (IC) = YALU+20. *”"*(IC 1) : B
9 IF(ATS(HS(ICI/TY) JLE.O, COIXNSCICY=0, o :
CL WRITE(IL ICOIADC1) S AT )JA*(Q);rh(ﬁ),nf(R),pB(6),”“(7) et
100 FORMAT(IHI1, 43V, 74%) ‘ e . ST
 WRITECL,108) o : R S
104 Fjruurclwu/xﬂvalnc'+',9¥>a'+'/13w.'+-,1oc9t'-'>;'+')>»
T YAY=YMAY+ SexlY e e . o
JE = 1 : B - - T e
JE=13 ; o s : = - g
Lo 1 1C=1,1¢ : ' R T
L YAYSYAY - S S e 1Y ,
IFCARS(YAY /I ) LT C- I0IIvay=10.1
WRITECL, 1C2)YAY  (G(JCIudC=IT,JE)
102 FOPHATOIYLGICeds "4+ ', 12085, A8, 'ey vy -
Ld 2 (C=1lse : : : e
o dJB = JE+]
JE = J"+1"
| WRITECL, 101 CECI0YsdCodT,d D
101 FORMATCIOY, '= 'y 1A%, A5, '= 1)
2 CCUTILAVE ‘ ‘ !
dE=J i+ ]
I JE=JU+12
XY AY=YEAY -“’U-V”"
WRITE(I, 10 ’”’a(""CJCth -Jz u.J;_)
WPITE(L, 102)1E ~
103 FOOMAETCLDY, '+'.-}"(/('-'), vc- ')/l""alf(”t' }\)J‘n.,‘n/“; ,f(‘ij_";‘,‘t;’!,
© o RFTURY : » . | LA
END

-

o
-

; g
e
-




: ',.- ;‘. " | '4 . . ) " o .
CTTUCUBPAUTINE BISTLAY (X0 Y, No XUAY, XML, YIUAY, YHIN)
COIMON/DR/TYPE(2) ’ '
COUMUH/ DO/ LNATECD)
COMMON/EL/ZARCT) ,
DIMENCION Y¢)sY (W)
Y GOAL E= (VM AN =YI4IN)Y /16, 0 h
YSCALE= (YMAY=YMIN) /12,58 . IR S
W= (XMAY -YMIN) /1040 ' T
YW= (YMAX-YHL Y /100 ' ' ‘ ‘ S
CALL GPSTART(1,24.0,10. OJYCCALEaYCCALr,Q)
CALL GPNEWIPIGINC=YHUIW, =YHIN)
CaLL GPAYESHIAI(YW, 10, 0,Y%, lU:OJﬂJlJ.JOJL: )
FKS=XI N+ (XMAY =¥ 41w)/a 0 L

WY=YAX |
POSX=XHIN+ 0+ 665 (XMAX-XMIN)

POSY=Yil =Y SCALF, | .

PY=YMIu+ 006 6% (VIIAX=YMIN) |

PX=)W1i= 3¢ (4XECALE .,

CALL GPHIVECEKS,¥Y) , :

CALL sr*¢VT<““,nrc1>,1,a,n o- T

CALL SGriiIva(rRosy,PAEY)”

~ e

CALL G“TF"T(lCJA[{W"(l)alaﬂauaﬁ)
“CaLL GRHAvI(rY, FY)

CALL GPTEYT(]& TYPEC1), 154,90, 0.

YPE=YHAY+2 (&Y ECALE

YMS=Yiil=2. (Y SCALE

XPE=Yiiaw+2, 0#Y SCALE
XM C=VI =5, OnXECALE

CALL GriduI(¥ide,vils) o .
CALL GPLIUE(YRE,YMEY 7 v e

CALL GPLINE(YPE,VYPS) - e o Tt

CALL GOPLINE(YMS,YPS) b

CALL GPLINE(YS,YHMS) - - ; T P N
Lo .80 I=1,1 ' X ‘ B SR I
CALL GFMOVEC(II,Y(I)) < e e L T
. CALL .GFMATL(0,1) ' S ‘ o R
80 CONTIHUE D s W S

©CALL GPFINISH - SR

S PETUR
L END , \

SLOCK raTa TITLES ,
CCOMMDNZR/TYRECD) RETE ERTRE SN ~.,,”~ 

COMMON/ER/PNAKECTY el
CLATA TYRI/VELASTIC 'L MITVLUS vt
- DATA uAAJE/'Dfr?LES ', YMELVIN G vy

E:D . -

FIWIEH

Tk ok ok
. .
¥; P RY
s & M L4
. e \] [N t :
- " ARl - e
. h w'.
4 ',(
+ ‘ '
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A . - PROGRAM 3. .

‘ e ' o ; .
: MASTER FLDTTE“
C .
C rrOGRAN TO CDW”ECT CHANGES IN SING ARJUMD FOEAUTCY
c LUE TO TPIGGER PUINT JUMPING Or T3 DETECTIMN LEING |
C RESET. . o
o
, CDMMDN/E JEECT) .
RFAL INC,¥MOD
INTEGER G
DIMENSION 0¢200)
DIMENSION AC2)TTC200)
DIMENSION STRC200),430C200)
DIMENSION AAC200)L,ERC200) ‘ '
C DIMENSIZN Iwc<°90),,1ﬁ<°oo>.u5cc on>
DIMENSIIN G(200) y
DIMENGICON U¢200),2¢200) 7 ,
~ DIMENSION TC200),DRELC2NM)DIFr(200)
CDIMENSISN ™C200),SC0000517¢200) .
CIMENSION ¥(200),YC200) )
I=0 .
READCE, 1)ATC1Y, AT(P)LARCD) l‘u(lz),[\r‘(C)_,m(5),155(7)
] FOPMATCTAR) . ;
PEADCS, £4) CWST ,,
4 FOTMAT(E0.0) '
S o I=1+]
0 READCES,10) YCIYLVeD)
10 FORMAT(RF0. 0) -
- TF(YCI) «CT. G 0)CGOTT €
. . N=1=1 '
c \
C : .
.C CALL TPLSCAL '
c o
c ' _ .
. CALL PPESCAL(Y, T, e
c SET UP ARRAYS T3 MOWITIP BEHAVIIUD J7 pata
c v - : ,
G(l1y=10
G(ay=¢
Gy =
DG 20 1=%,3
THCCI)=Y(Iy)=-Y(I-1)
1"(IuC(.)oi‘”-"-P)ahC(y)*[IH(I“I)*C C[}!
D DITCI)=14HGCL) ZA08CLatel )
RDITC1Y=DI™¢) ’
GEe(l)= ‘1"<1>/r1“<1-1)
20 CORTIND ‘
: D) 109 1=4,m
Geid=1 L
V(I =Y (D) ) ,
B K s ;';t‘ ‘\. L ' .
\ $ )t f"."\ SN
; Pl : : A
] .‘



e ’ ' : o

LA ABECY(I=1)=Y(I=5))
B=ALS(Y(1-2)=Y(1-23))
C=RA+E ‘
D=X(I=1)=XCI=2)
S(I)=ABS(C/D)
PeY(I)=Y(I-1)
NCId=XCl) =Y (I=1) |

TUOP(IY=ARS(R/NCIND ‘ ‘ : o
WCIY=5.0%SC1) SO oL , K

100 cOWTINUE

A

OO OWL:

C
C rLEC* cOoN PITIJNQ UNDED I CH CJPDECT14d¢ °”DMLD
c BE MADE TJ DATA .
¢ ¢ ‘ B
DO 200 I=4 i e ]
S GCIY=GCI~1) - o
IF(ORSCINGT.0)CT TD 70 : , ; ‘
IF(OBSCI+1) «GT.0)CITI 70 o T
GATd 71 Vo ; - C .
70 IF(NCIYLLESWCIIICOTI S0 .
C . : SRR , SN
c : . CORRECTING PRUCEDUNE FOLLOWS -
J=1 R :
40 p1=<Y<J-1> Y(J~- ’))/(V(J—l) MCh q)) , B :
) Ip(Ai. !L.oC' C)C:}T Al’l T ‘ - )
J=d=-1
IF(J.LE.2YGITI S0
- 63TO a0
. 60 AR=ATS(A))
SIGi=nlsan
SLOPE=S(I)»RICH
DIF’(I)~°L”“F*f(1)+V(I~!)~V<I)
NISPEIIS ERRES : : s o
0 CUUTIu“" ; : o ' - RIS
FND d‘ CD““VC 104G ﬁ-UTIdF '
GO TO S0 EYPASSES CIPRECTIONG TO paTA -
6¢ ecINTIHVE e . N
U =YL o : e
DELC1)=0.0 o
Ld 180 H=20 ' _
CIL () =CELCA=1)+ DI FFC)
IHHIEN A NS RTINSO N ‘ ' -
IS0 cOwTINuE | .
D3 208 H=1,
AP R NSE ]
208 CTIRTINVE
296 CO 206 I=lod 7
‘ IFCNCI) o BT 0 0XCTTT 298
CORF=CQIT/2CL) e , o ,
| Sl B BTN ey e f
! S\
e : wh




T WRITEC6,299) COEF '

599  FOPMATCINE, 0¥, "COEFFICIEST ='HEl4.T)
L WRITE(E, P94 CONST,Z D) : :

294 FORMATC1H0, 25X, E1407, 10%, FI2.2) ;

o GOTO 301 , | . o

29%° 0 CONTIWUE | ’ : o R

TFCI.L7Tex)COTH 200

CALL LIWEFITCH,A»T2Z) I L
: ‘COEF=CIHST/ACYY - | » T
" 300 CONTINUE S ~ . [T T

301  CONTINUE
. DO 381 I=1.0 . ~
o CTTCIN=TCI)# 10000000 .
S 351 cOwTIwUE R R
DO 2§81 I=1,¥ % TR S
M eTPCIY=TTCI) /COUST -
MODCI)=COEF*Z(I)

2581 CONTIWNUE
WRITEC €, 260) o -
..260 FODUATC/ /5 10%, 1010 03D S '
< , DO e I=1,14
WRLTE(E,500) ’
230 : D”’!\T(lin o, ('l-'al*i?f):"") : :
nw;w (£, 280) v(I),*(I):Y(I)a”(T);.]*(I);C(I)
240 FOTAATCLH0,9Y, ' 'y €y FEQs Ty ', A, F740,8Y, v, &Y,

1F7e2,77, ', 520 FT7e 2, "’V:'v‘ GUNGELC ey, Y T, 3,1

WRITE(£,2230)
WRITECE, 260D

25¢ . COUTIWUE ,

C ~  CaLL cravu('x', T,V s %)
CCALL P“Q”U(!*',T,L»IJT,,,F) v : . ‘ _’ Lo

C - CALL GRADI( Y% ', 3TO,0 4.&“: s f‘) _ .
CaLl LIGTTLTCds AR, ST 2RND) . o e ST
WEITE( &, X 3CYAECIYLAECRYL 8T(C 3):3—\:?(11);'[135(5)’;&?6 £, A%CT)

v

.

-

PO o7 vn*cxx1,///,sav,7na,///)v‘ = : '
URITICE, 252 T R
329 FOTHATCLIN 0, l'f":#f’ "1“')) S e
CYDITE(F, 202) . wh ot e S
202 FOTHMATCLIIL, £#07, ' 117 'IL QTIC c,q=~nwmc'.1t“ ey

WRITEC(R, 201D
MPLTEC 4, £00) | | |
620 FITUATCIH T, 403, "x ', TS TETECY, GV, Tk VT, VTIEC Y, T, Y )
B I'”:'(f'::"“) ’ ' S e
2017 FOPHATC L0, 43 £5C T 1))
me mamAT( 1T A0Y, Tats 1ANG TR, LRy, vty
' WL TEC A AT D AACL) S 220D e e e
B0 FOTEATCLI0, AN, N e LY, BLO AL BV, Y, 40, B0 Ly 400 TR T
."'rIT,«(F~«:ﬁ(—> X : - ’ T e e
URITEC S 3010 e
CALL LIAETITGL DD TTHED R s
NPT TEC Ay £79) ~ e L

403 F3 ’uhT(////////;ﬁl":ﬁPC ¥ 1)) i RSy ;
4 “‘ toan ‘:‘ i ’ ,‘" . ’ \:. g i f’, Av "f.
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D e e
(A ] . ..‘, .
o » . .
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T URITEC 6, 209
308 FOPMATC 110, 407, '
COYRITEC 6, 301D e R A | .
WRITEC G, 420) , . |
WPITEC G, 307) . | A .

1,9%, '"PPESCURE DEPIVATIVES ', 9%, k')

WRITEC 6, 420) BECT), BR(2) . , . - ,
WRITECE, 362D - SRS TR
WRITECE, 2010 . - o - .
sTaP S R -
END R . S e
SUEPOUTINE PRESCAL(Y, Tyl o
U DIMENSION ¥(200), TC(2C0) |
DO 1 L=l.W ‘ N
C o TCLIEXLY /100 S .
1. -cowTrwus v - )
YPLTEC 6, 210) « SRR
210 FOPHATCINI, 120C"% ")) ' K
NPITEC6s 21 4) o B |
214 FORMATCING, 19V, 'APPLIED. FORCE', 7¥, ' DEGSURE 1, 10, 1INTITUL
113, "CITFECTED ', 18%, "ELASTICY . e -

WRITE(G, 215) :

g

ASCAL ', 1 1%, '"FRECUENCY ' 19Y,

218 FOPUATCING, 170, " XG', 1A%, WZGA

1 YFRENVUELCY ', 13, "COHCTANT ).
: WRITECE,220) , : o . RS A »
220 FORMATC/ /75 19%s "W, 19¥, TP 18X, YE 1, 19X, 1CF1, [9%, 1500, 16Y, V3501)

. RETURY R e s
S END ‘ S
. SURPIUTL

JE GPAPHE(CLYaYailal) \ R .
: . , .
103 SS RN B ST
1

W)LY (L) , e , : PR

CALL M.y PIMEIAY TN, 10, 1) '
CALL IRIM(Y o VUIAY,,YUTH IR, )
CaLL £C HOFEN SIS ST PR LD S0 B B0

eCA
Cal.l F.‘..’]
IF(l.¢ 3T e
CaLL LI "'“' AY

L DU LTI , :
Ca Vo ldg WHAY S MU U, YAV, YHINY -

PETUDY . S |
END . ‘ v ~ ot e e
SUSRUUTINE Hili (s JNJgiAu:‘lINJQ[" e : SN

DLOERSITE X()sAC1E)
DATA &/1008s 1080200 Te8s 2uslu, Sy £0, 08,704, 100, 1945/
DTPNCCZ )= 0TCZ+100GC)=100 CO. - ; s :
IFCIHC.CT DEITE 2

YHAX = V(1)
YALN = HAY

"'J

. LI 1 IC=1.w : R o e e
TFEYCLC) TN AYIYIAN=Y(IC)Y L R S s e
JOIFCICIC) LT .'s.’I«.’),.:;.;-,1:3'(1(')
™ G'J,‘LJ..lr((""""‘4"'7"\'71:5)/:‘Jl:‘.’)
EMP= DT CTLE) .
SERARE A PREL BN L
I [ feks EIN : : \
P 2 I1C=1,1% R
1 F(lE’!l?!;L'ﬁ.‘f\(iC))CD‘;P:J NG o e R




4‘ ' L4 f
. . ' {
v i [ ‘:' ' 0
3 CONTINDE " Lo ]

4 U¥=pCICI*1 0ok XD e B '
1C=1C+1 S ’ | e
¥MX =1 DTPNCCXHAN /UM + 049999)

VNN =UXsDTRNCCYHIN/ N+ 0.0001) |
I FCONMY =210 2100, C?-NDV+0-I)GuTD 4 e
CXMIN =Xk : .

_OXMAX = RN+ NDVRUX

c RETURY '

 END
SUBROUTINE QQALV I TCNMY, XENLSY MUY YD

- cOEMaN /79erv/”<ce3),rw1w,rwgvuﬁw.U? |

DATA B/ e L : .

XMIN=¥M : 7

UX = (XM =XMN) /10040

YMAX = VI S :
UY = (Yu¥=YHN) /50 e . :,
DD 1 IC=1, 662 - e

1 GCICY=5
RETHY
TND : -

SUBTOUTIHE PLOTEL(C, Yo Y N)

DIMENSICH ¥ .Y D

CICUIDN /29 cr“/ccb.->,“'1:,v AY VA, Y

DU 1 IC=1,5" ‘ L

IX=INTC(YCIO) - "w:\)/vx+1~§>,

TFUYGETHI0DCITI L e

IFCIVeLTeld)GITI :
CIYETHTOCY AN *YCIC))/""*"Io,) : '
IFCIY.GT.S1ICITI 1 O T SR D
IFCIY. LT, 1)32TT | ' e T
. C!\L,L. CJ"Y(!;;(I"“I"l”) I‘(aCal) ‘
sETURH NI e R S e
END , | cn sl
CEUSZDSUTIHE LINE( C, (la‘t'l.v"’" Yo R i
DLMEGST 4 (10, v (10
COMMON 222 ™7 50 AED2Y S MWL N 1N,
Dit=(xa-1) /1
LY=(Y =Y 1) /1Y
CHAY=AMAY L (AD
B\’—uty‘l’, f'('/l' f “f
DY tf\)<y‘n,/r jn‘ﬁ
NPT=IMAY -0 &
"CI’—"I"'TV" Y
LY CY=YIeLY B
TFCAPTALT ODTUR SR
ICE = HINDCITT, 1D e T e T
LI 1 I1C=92,1C2 : ok
CRCICY =IO ) PRSI S :
Y CIC) =Y (I G- 10+ LY e T e
' CALL TPLUTEZICC.Y.YLICEY,

YiigN, w7

°(£‘")al£$(f‘f)) :

0Ny

R §

2w




WPt = weT - 1cET U Tt
XC1) = X(ICE)+DX
YC1) = YCICE)+DY
GO Td © :
END ~ K R , |
SUBRJUTINE DIMF IT(I) - ' - .
DIMENSION HECE) S | RS ‘
COMMON /29 6P%/ GC.662) 5 ¥HIN, 1%, YHAX, LY S
. DO 9 IC=1,¢ . C
HECIC) = YHIN+20 %1% CIC=1) L
9 IF(AESCHS(IC) /) (LEC,CODUS(ICI=0.0

|1 I )

WRITECL, 104 . S ,
104 ~uruATc1u1/1ﬁY,10('+',9w>,'+'/1QV,'+';10<9c'-');'+4>>j

Y AY =YHMAX #UY o . o

JR = ] \ T

JE=13 S

‘DO 1 IC=1.10
CYRYEYAY - SexlY A '
I FCARS(YAY/TY) LT« 0. 001)YAY=0.40 TN
) WRITELL, 102IYAY, (C(JC)»JC=d 50 d B)
102 FOPMATCLIY. G108, '+-:-',1’>A PR
DO 2 ¥C=1l., & :
JB JE+] : P )
JI JE+12 o
U"I"‘"(IJIOI)(C(JC) JC= J’E:J")
101 FOPHMATCIOY, '=', | 9A%, AS, '= 1)
T e eOoNTIavE N L
JE=JdF+] L & R
l,J =J0+ 12 . . x ’ S ) . : v ”. 
CYAY=TIAY =Sk
‘,DITF(IJlnh)vA‘{J(ﬂc'JC)JJC J:JJE)
WPITE(L, 1 02)1E S
103 FITNATCI3Y, '+'alC(9<"'):'+’)/l""’;l"('+' }f))"+VlG‘-’..f(G!E-iQ1;'3"'
RPETURN R G el I T

1nn

DiTEme

END

SUBPIUTING LINEFITCN, ALY, Y) ‘e
DIMENSIIN A(E);Y(““C);Y(“O”)
SIGY=0.0 , : .
CSIGY=0.0
SICYY=0.0
SIg¥er=9,¢
DO pEL I=1,4
AN=FLOATCN)
SIGYY=8LCVY+X (I *Y (1)
SIGX=C1 oM+ (1)
SIGY=CICY+Y ()
‘ SIGYSNP=CI G ane (1) kD
200 CINTIWUT
DELT n-owxvl“"°ﬂ-°1c"s«° S ;
AC1)Y= (I 0w ’If‘°”~“1‘"‘°1f"v)/rw LY
BOOY= (Al TIONY=CL 8 FLGY) /DL
"“'Tt"" . . P . . B DR | = 8 ) : : ,
L I-“Pg'_ . : . ..... R . . : = ‘: R : i e L
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Fickos

. '

[ [ } .

,?A P ‘;:’ ¥ ]
' (e p E o :‘ ,‘-i' .

. . '.4 ' R ’ K ;.".',; - ~ .
SUBPOUTIAE DIEPLAY (0, Y, N, ¥HAK, XLN, Ya¥X, YHIED
CHMON/BR/TYPECD) - . :
COMHNN/BE/ ANANECR)

COMMDU/LIZATCD)
PIMENSION YR, Y G

XSCALE= (MHIAY-YHIN)V IS0

YSCALZ= (Y AN ~YHIN) /1540 .

EW= (AN -XATH) 71040 e |

Y U= (yiaY-Yuli) /1040 o - e
CALL GRETARTC 1, 244041040, XSCALE,YSCALE, 0D

: -y -yMIf

CALL GPNEUDTIGLH(-YHId, -YH
CALL CPANESHIH(XW, 10,0 0L,y 10, 0,4, 10200,457)
E:»S-—:}:;ql.w(‘!:lﬁ}f YHli)74e0 ..

wY=sYiAY .
POSK=YHT i+ 0o 66x (KUAY=XMIID
POSY=YAIN-YECALT :
PY=YH i+ 0 66 (VIAY-YALH)

CPY=VHII- 2, 0 ECA LT ’
CaLL GRisUWE(E5, ')

 CALL GRTENT(OC,ATC(1Y 1200000 Y
CALL GPMGUI(PISY,s FIIY) TR

Ct"‘.LL anwq‘(2"1:“\.&2(]))1:['} v )

L CALL STHOVE(RY,FY) |

CALL GPTEXT(1& TYPEC1)s1s4s79 0.0
DO S0 I=1,3 .
CALL SDRMOUECYCLI, Y1)
CALL GPUADPH(0s 1)
CIETIUVUE |
CALL GPFIIISH !

PETUN
END

R ‘ i
rLOCK DaTA TITLES e
UeSH/na/TY R ECD) o
COMAnN/ZTR/8IBIE(E)
l"’ ‘
LATA TYRE /'::L"S""Ia, 's 'LJ"U“ /
DATA AN/ BEGAY, Y PASCAL '/
N PORY)
FInisn _’
‘ 0 . e - - R E
- y .' “‘
. ' Vo ' Yy
‘ % e
E " ‘ ; R . ’
\
‘.' ' . *
- - N
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...I ’ g'" L i oy o
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CkA=CH
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210 FOTMATCIN0, 20, 21 TH YY)
‘ CALL OPDET(ZIT, X, NTRI)
CALL PLENCRP, LT, NUM)
£Q fsg L=, 0.
LO 150 J=l, e A
__— IFCZI(LY «CToCCJIIGITT 1€C
150 CaNTInys
160" DO 200 K=1,6 - -
SUM(L) = UI(')+A(Ja&)*7“(L)x*(h—l)
CTCLY= €1 (L)

200 CONTINUE
V”I*E(Fa??@)”P(L);?P(L);QT(L)aE(L)

220 FOPMATCLIN »20¥, 40 "% '5.8%, FI o2, 5%), "% ')
WRLTE( R, 220) . : '
230 FOPMATCIH L RC0X, 210 % ")) ‘ .
P80 COWNTIWNVE &
. d=l )
TI=CT(M)=072.0
Uiz ) . R -

T?=CT(MS)-?73-C
CVeSECHD)
*7‘C*(J°)-Q . 0
Y3 E(M2)
. WEITECE, 2¢0)TIL"0R, T2
260 FORMATCINH1, 50V, 2(F5.2,10%))
. ONPITE(A, 2£1)V,YE, 1R
. 261 FOPMATCIN ,00Y,2(F5.2,10Y))
CALL POLYFLIT(RWILE,CTy Esl.du0K, &)
CALL 3SPATHC 'x ', CTs o0l €)
T sTaR '
END _
SUNROUTINE 2T DRER(X, Y, )
DIMENSITN YC100),YC100)
Ld 100 J=1,14
PO B0 I=1,i-1
IFCCI+ 1) LT.7¢1))CITT <0
PM=vY(1) o
X(II=v(l+ 1)
X(l+1)y="u4
Tz (D)
YCII=Y(I+1)
YC¢l+1)="0
0 CluTLiune
100 CINTINVE .
: LETIIT
EiD
S !ﬁjt'w.“"" POLYFITONOETE, h, Y aYaI LJJ;..J VEZDED)
CLAMIN/N/TEST]

aaaon

MALD PROSTAY DTNCLEAST SAUADES Crmur £ et gg
AY (I Lot mUlivte IS 100
MAY IIGrrE 19 106G
) © . ‘\I. .
"1
\ P \
‘ r



o)} Qoo

- n

0o

e N Ne]

Qoo o-~

DIMENCTI 3N (\(ll;ll)a"(IUPJJY(IOO):CDEF(IOO)
+INTFGE™ DECPEE, DECT)

DEGP|=DREGREE + |
CALL NITMEN(LECRE E. DEOPI; vJ""“';)’:YJ COEFR

: . . v
PRINT PESULTS
WRITE(6, €) .
FOPMATCINI, 45%, 30¢ % ')
WRITEC 6, 7) - | ' ‘ .
FORMAT(1H0, 45X, "% ', 2%, 'OPDER COEFFICIEIT ' 3%, 14 1)
WRITE(G6,9) s ’ : ~

FORPUMATCIND, 48X, 200 "% *))

' pJ S L=1,DEGPI

=L~} _
WRITECE, 4){, COEF(L) .
FORMATCLHD, 687, "k 'L 0¥, 1 1, 8%, 'x 0, 2y, FIDe €27, 'x ")

CWSITECE,2)

FORMATC 110, 45, 306C % ")) .
ACJ,LYI=CIEF(L) : o
.«L""I JYTC‘ ) * . )
RPETL)
END
SURPGUTINE JHVH:‘(\(DF'C".E'EJDEGDIJ:‘JJF"."'JYJ 2 C5 FF)

"U'i";ll‘JE G 3';'.":’\1{‘- NGTAL r:mrp-rl-aec

INTEGEP LEGTR, LEGTEE, CECH

DIMENEI T POVYC200), Y CITRTELYGIIFTE ), €1iC 11, 1 1), PS¢ D)

CIHENSITH CIEFCLECRPD) :
CEGTA=sLCIZCTEExT .

CIMPUTE &Rl OF BJINTS
03 1 I=1,CZG77T
POWX(I)=Ce0

DS 1 J=1,0wdrTe
POWMCI)=PIWX (I ) +20(J) x=x]

rFe0s o evnqe JF b Eee o0 ATITE TR L"tc or
THE ENUATIINSG IJ THE T3 I 1EN O AL
ATPAY ST

. ng o2 I=1,TF301
L 2 Js1, TEGPI
A=l+J="
IFC{ LE, D) EOTIR



2 NeNoNeNoNe! (e NeReNeNT P QOO0 w

s ReoRoNeRe]

2o NeNeNe]

<o

PR

SIMCI,J) = PIWX (L)

.GOTd 2
SN (1, d) =NaPTS
CONTINUE

SET UP RS EAUATIING
RHS(1)=0.0 ’
DO 4 J=1,NJPTS
THS(1)=PHE(1)+Y (J)
DU 5 I1=7,DEGP]
PHE(I)=0.0 {

DI & J=1,H0PTS
PHS(1)=PUS

’

(I)+Y(J)*Y(J)**(I-l)

CALL SUEPOUTINE T3 SILVE THE EnvATInNg

CnLL CP”Q”(DEC“Er DEGP1, PHE, CDE? c1ng)y

PETUDY
END “

SUBPOUTINE GAWUSS(DECT

118 SOLVES THT €ET JF
SUM(I,J)=ri18Cl)

"INTEGED™ LECGFEE,CECPI
LITMENSION “HE(DEGRD) .
£d 10 £=1,0ECTZE

CKFLUSI=i+ ]

L=LA

=3

ro 11 I=x{0LMSl, DEC
LT

lr(f’°(°'”(la\)
L=1
ColLmIHNE

IF(L.LECOGITE 12

: O
IRTIPCHENGE TS JBTALNR

TACNTITULE

FEO 12 Jd=i{LLCR)
Tl'x'"-"' ICivadd)

CZ.Y' (K:u)"r".:(uad>

"4

)

1e,

EE,

EPUATIONS

CIEF

(C‘YY(

pane

~

(La&)))”“Tj

FIND TETMS OF GREATEST MaCUlTURE

%

11

.

CECY1, PHE, COEF, 1)

(CEGPDYL, S1MC11,11)



Qo000 - CO000Q -~ ' '
Py ’ Db_OOOOOOQ QO .

om

o000 -

SOLVE SINCLE EQUATION RPEMALNIWG

SUM(L, J)=DIHD
DIMP=PH () , ,
PHECK)=PHS(L) ' . S
PHECL)=LUMP ' , : ,
LI 10 I=xXTLUS], DEGD]

FACTO™ = SUMCIL) /780K, :()_

%

. . .
. -

SET THIS TEMM T3 ZEPD

CSWMMCILKY=C. 0 .
DO 14 J=(PLUS], CECP!

COMPUTE DTHEP TEPMS.

ey (I J)=S!.”(I;J)-":CTJ*‘*°[ s d)
PHECL)=PiS(l)-FACTOP*THE (L)

CCEF(DEGFI)=T] "'(DLC‘-"I)/S'."I(D Gr1, DF"“""I)
1=DEGEE

AIFPLIE =1+

TOTAL=0.0

COMFPUTE CTHER SOLUTIONS 3Y SURSTITUT] Iy

rd 1€ J=1PLUS, DECD] - |
TJTAL'*D*fL+°”I(IaJ)*CVG (J) .

RETUDN SOLUTISHS Id THE MATPIY CIFF

C.JE FCLy=(FlIS(1) - "'u"'fL)/"”I(I;I)
I=1=-1"

IFCLWGTe C):.:"--j 1€

NETUDN

END i
CRUELTOUTINEG CTATHC(C,YaY o N, 1)
DIMEISICH ¥, Y Qd)

Cl!hL e (Y, Ha VU, vl J4,10,0)
Cel MY i YA L YHET L 1 0, 1)
C!‘.LL eCALT 1 TMIANLYET N, Y 1("‘,\/’]{“)
cniLl "’LJ"'L&]((" "JY:‘J) .

v
\
1

Tia,

S QY



IF(I1.CGT.0)CALL DIWMP I7T(I)
CALL LI STLAY cY,Y,J,wmrv YMIN, YIAN YMIND
l’: E’!‘] !h[\}
END ' s ‘
SURPOUTINE Vu“”( 7, N, XIAY, YMIN;NDU;INC)

DIMFNEION X, nC012) :
DATA N/Z1 o801 050 ealuBs2esliesSep Fays TeF, 8-:10-;] « 8/

DTONC(Z)=ATWT(Z+10C00.3-1000040 © .
IFCINC.GE.1)GGTD. 2 e e o
XMAX = X(1) , SRR PR :

XMIN = Ay

O I 1C=1,W

ITFCXCIC) « GTYHAYD S JAV'Y(IC)

ITFCYCIC) WL T MM YMIN=¥(IC).

FLCG= (LDG!F(("MAY-VWIW)/UDU)

CEXP=RTRRNC(PLE)

SI¥=PLC~-EYD

SIH=1C0exx X

D0 2 1C=1.17.

CONTINIE e g e SRR
UX=ACIC)* ) 0okm EXP o o . ‘ - S

1C=1C+!
XMX UMK DTONC(YUAY/UY40,9999)

YAl =tVRDTRUCYMIN/IY0.0001)
I?((""W-"“'}J)/',‘Y-G'"-l\il:‘»’*'eoI)CJ"-] 4

v XI‘}:: o= ‘,Vi J+ lV DU* "Y

ChETURY - ; ‘ .
V END ' ‘: k

- SUSPOUTINE SCA Lr I*(v"v ¥ NJY"V V” WY ; S
COMION /29 6T /0 263),Y IIEu'VJYIM', e S ' o
CaTa C/7° /- , L 4 : L o
¥MI=YpnN - S Sl .

AR G R SE i)/lrﬂ 0 b ', ' e B S
YHAY = YNV : ‘ : B
Y o= (Y=Y J)/‘:n
Lq ! IC‘laffq '

EWE ; ,

c:rn“LvrmI iE "'L -rp (C:Y ¥ R

CILUENCITN Y(NYLY ) Celnnl i
CJI”\..J /79‘:“”"/4(""1)) LII \,J”V Vu/’fxv,ty\f' n L Y
DI 1C=1,100 : i
I"“I TN CIC)Y =Y
ITFQIYCTe101) 0T
PRI elme 1Y COmo 0 e ~
IY=I;’3"T((‘!1E',=‘-V<IC))/?"-’+1.v,)v

IFCIY T G273 1

IFCIY JLTe)GETI] : ‘ .

CALL C;“((lav(l“¥IY~1°>,13,c,1)

CONTLIITE ,

RETURW .

CEND SR ST g e L T T e b

o) /?’?};"4. l . E:
l

7
-
o




(i) DDHTIJV warcc,V1 Yl:V“JY?)

DIMENSL O {\(lO)JY(lC) '
COMMON /79 6DY/GCA02) , YHIN, I, YUAX, Y
LX=(Y2=¥1)/sux -
DY=(Y2~-Y1)/UY : o

CDMAR=AMAM I (ARS(DX) . AL“C(DY))

DX=1Yx DY/ THAY

DY=UY* Y/ LUAY S

NPT=LMAY-0,5 : ‘
FC1)=X1+L¥ : f e T , | e

Y(I) VIi+LDy ' i B Rt

IF(NPT.LT, !)"E*”“V e

ICE = MINOCHPT,10) LS

O | I¢=2,1C%: '

XCICY=Y(IC=1)+I¥

YCIC)=Y(IC~-1)+DY

CALL PLOTEACC,¥,YLICE)

NPT = NPT = ICE

¥(1) = M(lICEY+EY | :

YC1) = Y(ICEY+LY , B R

GO 70 2 ‘ '

END S,

SUERQUTINF DUP 17T(D)

CIVENSIOWN HS( &)

CMON /79»°V/q<s¢1),wwzw Y, YMAY, UY

~ L. 9 1C=1,6

104

HECIC) = v*11+"c.*NVv(1c-1> |
IFCATSCHECIC) /T W LEL D ﬂ"l)"(IC)-O‘
WPITE(E, 164) :

‘raﬁfn—r(lulllqr"ln( v+ O,QV)‘ !+|/lqu " ',10(;( '..')“‘.‘ ‘,+ '))
YAY=YAAY+ S oxlTY . ’ e

bO 1 1C=1,10. e Sl »

1oe

e

104

YAY=YAY =S nlTY . o
IFCALS(Y LY /I ) LTy 0 091)" v=0,0

WRITECL, 1LY CCIlY)sdC= JL;JE)
FORMATCOLY, G0 d, "++ 'S I2RE 08, "44 1)

LJ 2 KC=l,a

JE = JE+]
JE = JI+ 20 :
WRITICIL, 101)¢3CJIC), JC J”.-:JT‘) .

FOUAATCIOV, Y= ITARLAE, Y= V)

CONTINVE L

JEEJE+l

JE=JT4+ 17
-‘.’AY=‘:’22;,\’-¢‘F ':Y"/ )
NELTECL, 102 7'(”(JF>;JF d';dr)
WRLTE(L, L0 HS

FTUATCLRY, '+ ';lt("( - BRI '5/1'= ,1n( '+ ','}"’), '+ '/H‘“, f(

PETIITN.

'f.j"ﬂ i
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- XECAL F=(¥ulaAX=YIIN) /1245
.0

CCOMMIN/ER/DCE, 1) B2 /DECPL ‘ o ‘ :
INTEGE® DECTI T , .
I=1 )
G= *(Ia!)+ (Ia?)*""“(l;?)*"*m +"(I:l‘)*"**"+ (I.-C)nc"\k.«tw"(l; ;)*‘,,,5
.""T‘"D :
Eiin )

N .
' . "
¢ ' .

N . . ! 3

. . e '
[ -

f v .
v )

CURFPOUTINE leanV<w,Y,w, S B, XL YMAY, YT L)
EXTESHNAL G . :

EYTIrNAL I
PIMENSI 3N ¥ ()Y G

YSCAL E= (YMAX=YNIN) /1540 , i g .
XU= (Yiih - "811“)/10 0 o . . ) o a ..

YW= (Yae-Yild) /100 o K

EPS=YUWx 0. ]

CALL GPSTAPT(1,7240,1040,XSCALE,YSCALFE, §)

CALL GPHUFWIPI GIH(=Y¥MIN, =YHIN)

CALL GPAXESWUM(Y W, ] 0,0,Y%s10,0,%4,1. 3; 4,0 2,3

YPS=YMAX+ . 0¥ SCALE: 2

YMS=YMIN-3.0*YFCALE | . |

CXPE=MEAYH Lo 0V CCALT S ' ' .
XMS=XMI -2 0¥ SCALE . e
CALL CPRIISVE(YMS,YHS) : o

CALL CFrLIUE(YRE,Vis)

CeLL GPLINZ(YDE,YES)
CALL GPLILNE(MNS,Y™E)
CALL ZPLINEZ(YNE,YiS) )
03 80 I=1,:

CaLL GEAvn(v(eIN,VvI))

CALL GFHA™K(0,7)

CONTIUUE

o CALL Grrermari( C: *li u"a““(: ETS)
CALL CrRICeAPH(H, M 1w, YRlAX, ETT)

CALL GFFINISY | : .
PETUPY ‘
END v

t"JC"‘I |'\, L(V) '

FUNCTION "i(T)

COMMIUN/TN/ T T, TR, UL U2, U2
DELTASCCTlnk ) m(TORa D) e TOH (T kD) R TOA T2k A+ TIR (TORE ) & (T4 0)
I =Tl Toem ) s (T2ka ) =L TInk Tk (TR )k TA= (T kD) kT (T2 7)) i
A (U4 (TR ) R T2=TOR(TO2RET) ) =L ([T %) TR=T]i (" 2xxT))

1+ URCCTIns M) Tl=TLo(T2%%T)) ) /LELTH ‘
D-—<‘14<'*”*¥“>**?-*"'<’“‘%")> SUCK T R TIST LN TINN D))
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