
THE UNIVERSITY OF HULL

Quantitative Morphology of Galaxy Clusters at X-ray Wavelengths

being a Thesis submitted for the Master of Science

in the University of Hull

by

Laura Hunt, BSc

September 2021



Quantitative Morphology of Galaxy Clusters Laura Hunt

ii



Acknowledgements
I would like to thank my parents for their unwavering support through my academic career.

My mother for giving me her determination and drive to always seek new and amazing

opportunities. My father for not only inspiring my love of science but helping me to develop

the patience and perseverance I need to succeed in it. My supervisor, Kevin, for his invaluable

encouragement and feedback for which I would be lost without. Without these people

my Masters degree would not have been possible, you all have my ceaseless gratitude and

admiration and I hope you all know how much you have helped me in the path to achieving

my dreams.

iii



Declaration of Originality
This thesis is submitted in partial fulfilment of the degree of Master of Science from the

University of Hull. I declare that the work undertaken in this thesis is original and my

own and was carried out under the supervision of Dr Kevin Pimbblet and Dr Brad Gibson.

Where work, results, or ideas have been taken from other sources, those sources are explicitly

referenced.

Candidates signature:

Date: 13/09/2021

iv



Abstract

We apply quantitative morphology techniques to X-ray imaging of clusters of galaxies

to determine correlation between calculated parameters (CAS, Gini and M20) and features

such as bow shocks, cold fronts, gas sloshing, Kelvin-Helmholtz instabilities (KHI), X-ray

cavities and relaxed/disturbed clusters. In order to do this we create a novel sample of 51

cluster images from archival data such as 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and 𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 based on selection

criteria spanning a redshift 0.01 < 𝑧 < 0.07 and X-ray luminosity 𝐿𝑥 > 1 × 1044 ergs s−1.

We process the original images, and remove foreground sources and CCD gaps, and apply

adaptive kernel smoothing on the central 3 Mpc of the clusters which is determined using

an asymmetry technique to weight the luminosity centroid of the image. For each image we

calculate the concentration of light C, the asymmetry index A, the clumpiness parameter S,

the Gini coefficient G and the M20 parameter. We attempt to correlate these results with the

physical features present and demonstrate that the presence of bow shocks is correlated with

higher M20 and lower C and S, cavities correlate with low G and S, cold fronts show low S and

G and higher M20, low S and high M20 correlate with gas sloshing and clusters that exhibit

KHI have high S values.
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1. Introduction

Matter in the Universe is distributed amongst clusters of galaxies and cosmic filaments which

are separated by vast voids of mostly empty space (Geller & Huchra, 1989; Bond et al., 1996;

Pogosyan et al., 1998; Sousbie, 2011; Cautun et al., 2014). Gravitation is the driving factor

behind this distribution of matter as it is the cause of the accretion of smaller objects onto larger

objects of which clusters of galaxies are the largest (Cole & Lacey, 1996). These clusters are

comprised of an amalgamation of anywhere between hundreds to thousands of galaxies and

the intracluster medium (ICM) with dark matter making up the vast majority of the mass in the

clusters. The ICM is comprised of super-heated gas called plasma that permeates the cluster

and emits strong X-ray radiation through the Bremsstrahlung process (Sarazin, 1986; Sarazin

& Kempner, 2000; Buote, 2002). This emission allows us to observe gravitational disturbances

and dynamical processes that are driven by cluster evolution and merging. Merging events

deeply affect a cluster’s properties through the dynamical disturbance of the ICM’s density,

temperature and metallicity distribution (Ferrari et al., 2005; Sauvageot et al., 2005; Kapferer

et al., 2006; Markevitch & Vikhlinin, 2007). As a result of these events we can observe the

formation of substructure visible in X-ray images. We can classify clusters by the different

substructures that form by quantifying their morphology non-parametrically (Parekh et al.,

2015).

Classifying clusters with similar substructure is useful as these classifications may form

samples of clusters that can be used for studies of cosmology and dark matter. Over the

last century many galaxy cluster classification systems have been developed based on a

wide range of criteria. Historically, clusters are able to be categorised into one of six

richness and seven distance classes (Abell, 1958). However, this can be simplified as all

clusters fall into one of two categories of either regular or irregular (Abell, 1965), these

classifications only determine whether a cluster exhibits a general spherical symmetry in its

galaxy distribution with high central concentration or not. This can be further described by
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the two-class system of dynamical state, as a regular clusters are less dynamically disturbed

and are therefore called relaxed. Irregular clusters are more dynamically disturbed and are

called non-relaxed/disturbed clusters.

There are also more refined classification systems based on a number of definitions. For

example, clusters can be classified on their richness, which can be defined as the number of

galaxies associated with a cluster. Abell (1958) describes five classes based on a richness

criterion in which at least fifty galaxies in the cluster must not be more than 2 mag fainter than

the third brightest galaxy. The Bautz-Morgan (Bautz & Morgan, 1970) classification uses the

relative contrast between the brightest galaxy and the other galaxies in a cluster to classify it

into one of five categories. This consists of three “main” classes and two intermediate classes

to distinguish clusters with a centrally located cD galaxy (type I) to clusters containing no

dominant galaxies (type III). The six-class system devised by Jones & Forman (1992) is often

used when trying to determine whether clusters are dynamically disturbed as it describes

the type of substructure present such as single, elliptical, offset centre, primary with small

secondary, bimodal and complex. Clusters may also be divided into cool core or non-cool core

classes as this can have significant effects on the clusters underlying environment. A cool core

is the result a dense core that cools gas and is compressed by the forces of the surrounding,

hotter gas (Hudson et al., 2010); this generates a cooling flow that is characterised by a higher

luminosity (Fabian et al., 1994). The two-class approach is generally favoured in studies as

this distinguishes dynamically disturbed and non-disturbed clusters.

These classification systems have been developed for optical imaging and have proven

useful for the detection of substructuring. Of course, optical imaging is only one part

of the electromagnetic spectrum. At X-ray wavelengths, we are afforded other views into

cluster systems that reveal structures such as cavities. X-ray cavities are used as tracers for

supermassive black holes, hence detecting the presence of these features in an automated

manner is of utility to both cluster classification and their physical state at different energy

regimes (Fort, 2017). Detection of the presence of specific types of substructure (e.g. cavities,

bow shocks, sloshing gas, Kelvin-Helmholtz instabilities and cold fronts) is a clear next step

in cluster classification. Merging processes can cause substructures such as gas sloshing, bow
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shocks, KHI and cold fronts to form but the nature of the merger and the cluster’s individual

characteristics are what determine which structure forms. At present, arguably the best and

most robust method of classification based on substructure is an in-depth analysis of individual

clusters (Proust et al., 2003; McCleary et al., 2015; Lee et al., 2016; Yu et al., 2016). Whilst

this approach generates an accurate analysis of individual clusters, it is simply not feasible to

perform such studies on all clusters due to it being labour intensive.

Analysis of cluster images through algorithms that quantify their structure is a couple of

decades old concept that has been successfully achieved in the field of galaxy morphology with

the use of Concentration, Asymmetry and Smoothness (CAS) parameters (Conselice, 2003),

the Gini coefficient, G (Abraham et al., 2003; Lotz et al., 2004) and M20 (Lotz et al., 2004).

These parameters will be described in more detail in section 3. There are also surveys applying

these methods to galaxy clusters in combination with other parameters. As an example, Parekh

et al. (2015) uses CAS, G and M20 with ellipticity and Gini of the second-order moment,

G𝑀 as a robust method of distinguishing relaxed clusters from disturbed clusters and finds

this to be a viable option for future studies. Ghirardini et al. (2022) uses C and G with

central density, cuspiness, power-ratios and photon asymmetry to achieve similar ends. They

investigate the evolution of these parameters with redshift and luminosity where they find

the percentage of relaxed clusters decreases with increasing redshift. Works such as these

tend to favour classification of relaxed/disturbed clusters rather than specific substructure. As

a general overview they use the combination of parameters and their correlation with each

other and physical structure to create thresholds in which to further classify more clusters.

As the various parameters measure different manifestations of structure, hypothetically they

should also be able to distinguish between the different types of substructure given sufficient

observational resolution.

1.1 Cluster Substructure

Clusters grow through the accretion of galaxies, galaxy groups and cluster mergers, these

events are what cause cluster substructure to form. There are various features that are great

candidates for algorithmic detection as their physical structure is visible in X-ray images
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and is therefore present in X-ray images. The detection of such features can provide good

samples for further studies to use as they are tracers for various cluster processes. The

relevant substructure features for this work include X-ray cavities, cold fronts, bow shocks,

gas sloshing and Kelvin-Helmholtz instabilities (KHI) – all observed at X-ray wavelengths. In

addition to the detection of these substructures, we will also attempt to systematically classify

relaxed/disturbed clusters.

As an example of what we seek to automatically detect at X-ray wavelengths, X-ray

cavities in clusters, as shown in Fig. 1.1, are a well studied, fairly common feature of clusters

with approximately 20 percent of all clusters currently containing cavities (Boehringer et al.,

1993; McNamara et al., 2000; Bîrzan et al., 2004). Cavities are formed in the presence of

radio lobes which originate in the Active Galactic Nuclei (AGNs) of clusters in which mass

is accreted onto a central massive black hole causing jets that inflate bubbles of superheated,

radio emitting gas (Fort, 2017; Hlavacek-Larrondo et al., 2015). This causes the displacement

of ambient, X-ray emitting gas which results in depressions of X-ray emission where the lobes

are present (Boehringer et al., 1993; Fabian & Nulsen, 1977). However, there is also evidence

to suggest cavities may be formed from the expulsion of cosmic rays from the AGNs as they

form shocks around the boundaries of the bubbles of expanding gas (Mathews & Brighenti,

2007; Sijacki et al., 2008). This has important implications concerning the transfer of AGN

energy to the surrounding gas through cosmic ray diffusion, namely the difference in cosmic

rays interacting with hot gas compared with ordinary gas dynamics. Previous methods of

detecting cavities in systematic searches include 𝛽-modelling and unsharp masking techniques

(Shin et al., 2016) and the detection of X-ray surface brightness depressions (Bîrzan et al.,

2004). Prominent cavities are detected in clusters such as: the Perseus cluster (Fabian et al.,

2000), Abell 2052 (Blanton et al., 2001) and Hydra A (McNamara et al., 2000; David et al.,

2001), these clusters are included in our sample. Cavities in these clusters are confirmed

with calculation of the temperature and pressure of the ICM. Pressure is highest in the shock

regions surrounding the cavities whilst this gas is generally cool in temperature (Mathews &

Brighenti, 2007). However, values for ICM temperature and pressure is not widely available

for all clusters yet as it requires spectroscopic analysis of a target cluster. This means a
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Figure 1.1: X-ray images from our sample with the addition of the cluster 1E0657-56. Produced with image

processing described in section 2.2 to show how the structure appears in the final images: (A) shows prominent

X-ray cavities labelled A and B in Abell 2052, these cavities appear dimmer than their surrounding bubbles of

gas (Blanton et al., 2001); (B) shows the sloshing gas and cold front present in Abell 1644 (Johnson et al., 2010).

Line A shows where the cold front is most prominent as there is a rapid drop off in brightness next to the main

body of the cluster. The sloshing gas is visible as the main body of the cluster swings round, leaving a wake of

dimmer gas behind it, shown with line B; (C) shows the cold fronts in Abell 754 (Markevitch et al., 2003). The

cold front is shown where there is a rapid drop in pixel brightness; (D) shows the textbook example of a bow

shock in 1E0657–56 (the Bullet Cluster) (Markevitch et al., 2002). Determining X-ray morphology is important

as this visible structure can be used as a tracer when searching for clusters to be part of samples for use in other

studies.
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spectrum has to be produced by a telescope that is able to determine temperature such as the

Chandra Advanced CCD Imaging Spectrometer (ACIS) (Giacconi et al., 2001). Generally,

this requires an exposure time of a few hours which means surveys with large numbers of

clusters require a lot of time and money to produce results. This is why detecting features

such as cavities automatically with computational methods, like those discussed in section 3,

will enable surveys of thousands of clusters that have already had X-ray images produced.

Gas sloshing in clusters as shown in Fig. 1.1 forms when a minor merging event, whether

that be through the accretion of a galaxy or galaxy group onto a cluster or two clusters

interacting, causes the ICM to become disturbed through gravitational processes (Roettiger

et al., 1997; Markevitch et al., 2001; Ascasibar & Markevitch, 2006; Roediger et al., 2011).

This appears as the gas being sloshed around the cluster core in an action comparable to

knocking a wine glass. It is useful to be able to easily detect gas sloshing in clusters as

the sloshing effects cluster mass measurements. This can in turn affect the calculations of

the cosmological constants, as cluster properties such as total mass, shape and amount of

substructure; are used to place limits on matter density Ω in the Universe (Crone et al.,

1994; Richstone et al., 1992). The calculated ICM mass in clusters allows us to calculate

the baryonic fraction Ω𝑏 of the Universe. Therefore, it is imperative to detect and correct

for the biases originating from sloshing to be able to accurately measure the cosmological

parameters. Gas sloshing as a process can cause the formation of other features such as cold

fronts.

Cold fronts, as shown in Fig. 1.1, form as a result of various processes and are characterised

by a discontinuity in gas temperature. They form when cooler gas moves through hotter

ambient gas which causes them to differ from shock fronts as their gas pressure remains

consistently in equilibrium across the density discontinuity whereas shock fronts have a

large jump in pressure across the front (Markevitch et al., 2000; Vikhlinin et al., 2001b;

Markevitch & Vikhlinin, 2007). Cold fronts have been extensively studied and modelled

through simulations to determine their exact origin as they are a common feature found in

clusters. This is due to the processes that drive the formation of cold fronts to be fairly

common, these processes include ram pressure stripping, gas sloshing and cluster mergers.
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Strong density jumps in cold fronts can be found in clusters that have undergone merging

(Markevitch et al., 2000, 2002; Machacek et al., 2005) however they may also present in

clusters that possess a cooling flow in their centre. Cooling flows are formed where there is a

region of gas that is rapidly cooling. This can cause the gas to contract and increase in density

to maintain its pressure (Fabian, 1994; ZuHone et al., 2010). This higher density region

can be visible in the form of a cold front where there is a temperature and density disparity

(Markevitch et al., 2001; Mazzotta et al., 2001; Churazov et al., 2003; Dupke & White, 2003;

Sanders et al., 2005). The detection of cold fronts provides insight into a cluster’s formation

history. Whether that be through a past merger like in the cases of Abell 3667 (Vikhlinin

et al., 2001a,b; Owers et al., 2009) and Abell 2256 (Sun et al., 2002; Clarke et al., 2011;

Breuer et al., 2020) or through gas motions in the cluster such as cooling flows and cool

cores like those present in Abell 496 (Dupke & White, 2003; Roediger et al., 2012) and Abell

1795 (Markevitch et al., 2001). Cold fronts aid in determining the gas bulk velocity, potential

hydrodynamic instabilities (Ichinohe et al., 2021), strength and structure of the intracluster

magnetic fields, thermal conductivity, and viscosity of the ICM (Ghizzardi et al., 2010) so it

is of great interest to develop an algorithm to detect them. Cold fronts caused by gas sloshing

may also develop another feature known as Kelvin-Helmholtz instabilities.

Kelvin-Helmholtz instabilities (KHI), as shown in Fig. 1.1, form between two inviscid,

incompressible fluids that exhibit a shear flow parallel to their boundary. Kelvin-Helmholtz

rolls form as the shear velocity and density are not consistent at the interface, causing small

disturbances to grow exponentially as demonstrated in Fig. 1.2 (Roediger et al., 2013a).

Generally, in galaxy clusters the interface at which KHI is observed is between a galaxy and

the ICM (Berlok & Pfrommer, 2019), this process is principal to the incorporation of stripped

material from the galaxy into the ICM (Nulsen, 1982). Minor mergers may also trigger the

formation of KHI in the presence of a sloshing cold front (Zuhone & Roediger, 2016). A

number of clusters exhibit KHI as a result of sloshing such as Abell 2142 (Wang & Markevitch,

2018) and the Virgo Cluster (Roediger et al., 2013b) in which constraints are able to be placed

on effective viscosity due to analysis of the KHI, a method derived by Roediger et al. (2013a).

Therefore, automatic detection of KHI in clusters from image data is a powerful tool to aid

7
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the analysis of ICM properties.

Bow shocks as shown in Fig. 1.1 are another structure formed by merging processes. They

are formed when a dense, infalling gas body or subcluster moves through hot ambient gas at

a speed greater than the velocity of sound (Vikhlinin et al., 2001b; Markevitch & Vikhlinin,

2007). This causes a compression of the hot gas in front of the body or subcluster and is

presented as an X-ray surface brightness discontinuity. Historically, the presence of a bow

shock is confirmed by observing the density, temperature, and pressure jump. Then the speed

and gas pressure of the infalling body and ambient gas can be calculated. A number clusters

have been verified to be containing a bow shock, such as the Bullet cluster (1E0657–56)

(Markevitch et al., 2002), A3667 (Vikhlinin et al., 2001b) and A520 (Markevitch et al., 2005)

to name a few. Shocks not only provide insight into the velocity and geometry of mergers

(Markevitch et al., 2002) but also act as laboratories for the study of the intracluster plasma

processes such as thermal conduction and electron-ion equilibration (Takizawa, 1999). In

addition to this, the Bullet cluster has been used to place constraints on dark matter estimates

(Markevitch et al., 2004) and is one of the most influential pieces of evidence for the existence

of dark matter (Clowe et al., 2004) which will be further discussed at the end of this chapter.

Therefore, it is important to be able to systematically detect bow shocks in clusters.

1.1.1 Cosmological Importance

A cluster’s formation and evolution with redshift depends on the cosmological constant and

the mean matter density. The higher the redshift of a cluster the more dynamically young they

appear to be as merging and accretion is associated with the formation of clusters. This can

be seen through the substructure present within them as merging clusters are more disturbed.

Studies up to a couple of decades ago are limited to using clusters up to 𝑧 ≲ 0.3 as image

data is limited by observational technology. However, 𝑋𝑀𝑀 and 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 surveys provide

observations of clusters out to 𝑧 ∼ 1. We choose these surveys to compare their resolutions

which we discuss further, in section 4 and 5. This gives us great insight into clusters at

a higher redshift, enabling us to build a broader picture of cluster evolution and formation.

Establishing a wide redshift range helps to consolidate our ideas of cluster formation as higher

8
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redshifts provide us with dynamically younger clusters and lower redshifted clusters are older

and more evolved. Therefore, assembling a collage of clusters at all redshifts brings us closer

to understanding the cosmology of our universe as a whole.

As described previously, clusters are vital in measuring cosmological constants as they

provide self consistent laboratories that are perfect to study various cosmological properties.

Previous studies have found that the ratio of gas mass to total mass in massive clusters can

provide powerful insight into cosmology (White et al., 1993; Allen et al., 2004). This gas

mass fraction, 𝑓𝑔𝑎𝑠, should approximately match the cosmic baryon fraction, Ω𝑏/Ω𝑚 (Borgani

& Kravtsov, 2011) in very massive clusters where the mass of hot, X-ray emitting gas greatly

exceeds the mass of colder gas and star mass (Lin & Mohr, 2004). Recently there have

been reliable predictions of the baryonic depletion of clusters which when combined with

measurements of 𝑓𝑔𝑎𝑠 and constraints on Ω𝑏 provide a great method of constraint for the

cosmic matter density, Ω𝑚.

Not only are clusters useful in the measurement of the cosmological constants but they

can be used as powerful tools in the study of dark matter. Historically, clusters appear to

have deeper potential wells than their inferred baryonic mass could account for, this has

provided argument for the existence of dark matter halos around the clusters to make up for

this discrepancy (Zwicky, 1933; Peebles, 1982; Blumenthal et al., 1984; Davis et al., 1985).

Studying the cluster 1E0657–56 has enabled a weak lensing mass reconstruction because of the

ram pressure stripping away the X-ray gas from the present galaxies. This stripping, triggered

by the collision of a sub-cluster into the main body of the cluster, has formed a textbook

example of a bow shock (Markevitch et al., 2002). As highlighted by Clowe et al. (2006),

methods of dark matter detection have previously used objects that required the assumption

of symmetry, hydrostatic equilibrium and/or the centre of mass location to be known. This

brought about counterarguments which Clowe et al. (2004) determined could only be resolved

with a system in which baryonic matter was separated from the inferred dark matter. Thus, the

Bullet cluster is an ideal candidate as Clowe et al. (2004) observes offsets between the lensing

mass peaks and the peaks of the dominant visible mass. Therefore, directly demonstrating

the presence of a dominant dark matter component. Automatic classification of substructure

9
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could directly aid surveys that use these structures to calculate cosmological constants.

1.1.2 Methods of Quantification

There are various methods of quantifying cluster morphology however many methods require

laborious techniques that only make quantification possible for small surveys or individual

cluster studies. Some methods include the caustic technique which aims to estimate the

escape velocity of cluster galaxies from the cluster centre to a few times the virial radius

and can be used to estimate mass and gravitational potential profiles of clusters to radii that

extend the cluster infall region (Yu et al., 2015). Weak gravitational lensing can be used to

calculate the mass along a line of sight in a cluster (Clowe et al., 2004). Both of these methods

determine the mass profile of a cluster beyond the virial radius, however when compared

with each other their estimations are only 30% similar (Geller et al., 2013). The power

ratio method aims to quantitatively classify clusters of different, “dynamically relevant”

morphology in direct relation to their dynamical state as indicated by their gravitational

potential and ultimately produce a simple, quantitative scheme of categorisation (Buote &

Tsai, 1995). They distinguish clusters based on their morphologies by calculating the multi-

pole moments of the X-ray surface brightness in which they find correlation with higher

redshift and the power ratios 𝑃3/𝑃0 and 𝑃4/𝑃0. While useful tools, these techniques are

far too time-consuming to calculate for large samples of clusters. Algorithms that classify

clusters based on their image data are able to automatically classify much larger samples.

Historically, the parameters we use in our study were first developed for the classification

of galaxies. The calculation of which will be discussed further in section 3. CAS (Conselice,

2003; Lotz et al., 2004), G (Abraham et al., 2003; Lotz et al., 2004) and M20 (Lotz et al., 2004)

parameters are able to distinguish between different morphologies of galaxies based on their

image data. A comprehensive review of the history and performance of these parameters is

written by Conselice (2014) which is preceded by a number of notable studies that successfully

apply this technique to the classification of large samples of galaxies (Scarlata et al., 2007;

Zamojski et al., 2007; Holwerda et al., 2011; Hoyos et al., 2012; Rasia et al., 2013). The

application of these parameters to galaxy clusters has mostly been limited to the classification
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of relaxed/disturbed clusters (Parekh et al., 2015; Ghirardini et al., 2022) or cool-core/non-

cool core clusters (Ghirardini et al., 2022) and cluster mass estimation (Green et al., 2019).

However, there is a noticeable lack of studies attempting to correlate specific X-ray features

with these parameters.

In this work, we aim to classify X-ray images of clusters of galaxies in an automated

manner to be able to detect the features noted above via correlating them with C, A, S, Gini,

and M20. The rest of this paper is organised as follows. Section 2.1 gives a brief introduction to

the sample of clusters used in this paper. Section 2.2 gives the X-ray data reduction and image

processing with point source removal and smoothing. Section 3 describes the parameters

used to quantify structure. Section 4 presents the results of the parameters which will be

discussed in section 5. We use H0=70 km s−1 Mpc−1 Ω𝑀=0.3 and ΩΛ=0.7, in concordance

with ΛCDM, is assumed throughout.

11
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Figure 1.2: The evolution of KHI rolls shown as a fiducial KHI test through simulation by Roediger et al.

(2013a). The top row shows the development of rolls at increasing time-steps and the bottom row colour-codes

the vertical velocity to demonstrate the vortices produced by the Kelvin-Helmholtz rolls.

12



2. Cluster Images

2.1 Cluster Sample

For this work, we seek a large sample of X-ray imaged clusters of galaxies in order to

apply morphological measures to and correlate with the presence of various features and

substructures. We use preprocessed images from the 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and 𝑋𝑀𝑀 −𝑁𝑒𝑤𝑡𝑜𝑛 archive

and have applied image processing where necessary to clean them up, this process is described

in more detail in Section 2.2. We do this because the automatic quantification process would

ultimately be performed on clusters that already have compiled observations. Each cluster is

detailed in Table B.1 with its corresponding Observational ID (ObsID), details of exposure

and results. Additionally, the details of the observations are more thoroughly described in the

referenced papers in Table 2.1. In order to place the clusters on a fair and equal footing with

each other, we impose both a redshift and X-ray luminosity limit, detailed below, to yield an

X-ray selected sample.

In Fig. 2.1, we show the redshift and X-ray luminosity of the sample used in this work,

generated from the X-ray Clusters Database (BAX) (Sadat et al., 2004) where we searched

for a sample observed previously with the 𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 or 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 telescopes, with

limits set to a redshift range of 0.01 < 𝑧 < 0.07 which is chosen to eliminate low redshift

contamination from potentially Galactic sources, and at the upper end cut off our sampling

to keep the cluster structure standardized. An X-ray luminosity lower limit of 1×1044 ergs/s

is chosen so that we capture a range of luminosities, but maintain objects brighter than this

limit to ensure we are able to perform reasonable morphological measures.

This yields a total of 84 clusters to work with, and across a range of 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and

𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 images. However, 33 of these clusters do not have high enough quality

images available so the total number of clusters in the sample is reduced to 51. This is

determined by visual inspection and checking the observation logs available with the images

in the 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and 𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 archive. As the high spatial resolution of images

13
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Figure 2.1: Redshift - X-ray luminosity diagram for BAX showing our final cluster sample. The sample is

contained within limits shown in red which are chosen to provide the widest range of redshift without including

contamination from Galactic sources at lower redshifts 𝑧 < 0.01, and poorer quality observations at higher

redshifts 𝑧 > 0.07. We choose a lower limit of 1×1044 ergs/s to ensure clusters are bright enough for structure

analysis.
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plays a significant part in the visibility of substructure within the clusters, 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and

𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 images are used for our study. In total, 14 clusters are imaged by 𝐶ℎ𝑎𝑛𝑑𝑟𝑎

(resolution of 0.492" per pixel) and 37 are from the 𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 (resolution of 1.1"

per pixel). Though these are not necessarily limiting factors of resolution. Table 2.1 shows

classifications of whether structure is present or not. Where there is the presence of a citation,

this means the cluster’s structure has been confirmed by the study referenced. Where there is

no citation, the clusters have been classified by visual inspection. This is not ideal, however

more accurate classification of all 51 clusters through methods such as modelling are beyond

the scope of this work. The visual inspection consists of checking the cluster images by-eye

for obvious signs of structure, this means more subtle structure may missed. This is further

discussed in Section 5.

15



Quantitative Morphology of Galaxy Clusters Laura Hunt

Cluster 𝑧 Relaxed Bow Shock Cavity Cold Front Sloshing KHI

A1644 0.047 ✗1 ✓ ✓ ✓2 ✓2 ✗

A1668 0.063 ✗ ✓3 ✗ ✗ ✗

A1795 0.062 ✓1 ✗ ✓4 ✓5 ✓6 ✗

A1991 0.059 ✓7 ✓ ✓4 ✓ ✗ ✗

A2052 0.035 ✓1 ✗ ✓4 ✓ ✓ ✓

A2124 0.066 ✓8 ✓ ✗ ✓ ✗ ✗

A2589 0.041 ✓1 ✗ ✓4 ✓ ✗ ✗

A2626 0.055 ✓9 ✗ ✓4 ✓ ✓ ✓

A3266 0.059 ✗1 ✗ ✓10 ✗ ✗

A4059 0.048 ✓1 ✗ ✓4 ✓ ✓ ✗

AWM7 0.017 ✗ ✓ ✓4 ✓ ✗

CYGNUSA 0.056 ✗ ✓ ✗4 ✗ ✗

OPHIUCHU 0.028 ✗ ✓4 ✓10 ✓11 ✗

SC1329-313 0.048 ✗ ✗ ✗ ✗ ✗

A0119 0.044 ✗1 ✗ ✗ ✓ ✓ ✗

A0262 0.016 ✓12 ✗ ✓4 ✓10 ✗ ✓

A0426 0.018 ✓17 ✗ ✓4 ✓13 ✓18 ✓18

A0576 0.039 ✗1 ✗ ✗15 ✓10 ✗ ✗

A0602 0.062 ✗ ✗ ✗ ✗ ✗

1Parekh et al. (2015)
2Johnson et al. (2010)
3Pasini et al. (2021)
4Shin et al. (2016)
5Markevitch et al. (2001)
6Fabian et al. (2001)
7Wen & Han (2013)
8Marini et al. (2004)
9Laganá et al. (2019)
10Ghizzardi et al. (2010)
11Werner et al. (2016)
12Hradecky et al. (2000)
13Ichinohe et al. (2019)
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Table 2.1 continued from previous page

Cluster 𝑧 Relaxed Bow Shock Cavity Cold Front Sloshing KHI

A0754 0.054 ✗1 ✓14 ✗ ✓10 ✗ ✓

A0780 0.054 ✓1 ✗ ✓4 ✗ ✗ ✓

A1069 0.065 ✗ ✗ ✗ ✗ ✗

A1656 0.023 ✗15 ✓20 ✗ ✓20 ✓20 ✗

A1736 0.046 ✓1 ✗ ✓ ✓ ✓ ✗

A1831 0.062 ✗ ✓ ✗ ✗ ✗

A1837 0.070 ✗ ✓ ✓ ✗ ✗

A2063 0.035 ✓1 ✗ ✗20 ✗10 ✗ ✓

A2147 0.035 ✗1 ✗ ✗ ✓ ✗ ✗

A2199 0.030 ✗1 ✗ ✓4 ✓10 ✓16 ✓

A2256 0.058 ✗1 ✓ ✓ ✓10 ✓ ✗

A2319 0.056 ✗1 ✓ ✓ ✓10 ✓17 ✓22

A2622 0.062 ✗ ✓ ✗ ✗ ✗

A2634 0.031 ✗ ✗ ✗ ✗ ✗

A2657 0.040 ✗ ✓ ✓ ✓ ✗

A3122 0.064 ✗ ✓ ✓ ✓ ✗

A3391 0.051 ✗1 ✗ ✓ ✓ ✗ ✓

A3490 0.069 ✗ ✗ ✗ ✗ ✗

A3497 0.068 ✗ ✗ ✓ ✓ ✗

A3526 0.011 ✗ ✓4 ✓10 ✓ ✓

A3530 0.054 ✗ ✗ ✗ ✗ ✗

A3532 0.055 ✓9 ✗ ✓ ✗10 ✗ ✗

A3558 0.048 ✗1 ✗ ✗ ✓10 ✗ ✓

A3562 0.049 ✗1 ✓ ✓ ✗10 ✗ ✓

14Markevitch et al. (2003)
15Churazov et al. (2021)
16Nulsen et al. (2013)
17Ichinohe et al. (2021)
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Table 2.1 continued from previous page

Cluster 𝑧 Relaxed Bow Shock Cavity Cold Front Sloshing KHI

A3571 0.039 ✓1 ✗ ✗15 ✗10 ✗ ✓

A3651 0.060 ✗ ✗ ✗ ✗ ✗

A3667 0.056 ✗1 ✓18 ✓ ✓ ✗ ✓

A3716 0.046 ✗ ✓ ✓ ✓ ✗

ESO235 0.049 ✗ ✗ ✗ ✗ ✗

RXCJ0102 0.057 ✓1 ✗ ✓ ✗ ✓19 ✓20

RXCJ0413 0.050 ✗ ✓ ✓ ✓ ✗

RXCJ2205 0.058 ✗ ✗ ✗ ✗ ✗

RXCJ2347 0.030 ✗1 ✗ ✗20 ✗10 ✗ ✓

Total 15 9 31 32 21 17

Table 2.1: The cluster sample, split into two sections: the first are all observed by 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and the second is

𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛. (1) Clusters name; (2) redshift z; (3) dynamical state of cluster (relaxed or disturbed) based

on literature; (4)-(8) evidence of substructure based on literature evidence or by eye. Clusters without literature

evidence of substructure have no labelled reference.

18Vikhlinin et al. (2001a)
19Randall et al. (2010)
20Fujita et al. (2002)
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2.2 Data Processing

Images are from 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and 𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 archives that provide pre-processed images

compiled from the raw events files. Each observation is completed for a specific paper

requested by an observer that has detailed the quality of the observation. We choose these

images rather fully processing our own as ultimately, the purpose of our work is to detail

an automatic method of morphology quantification that will be able to use large surveys of

images like these that have already been produced but require a method of quantifying their

structure for further study. Table. B.1 details observational IDs (ObsID) and exposure times

for each cluster. Some of the data (especially 𝑋𝑀𝑀) still have chip gaps that need to be dealt

with in a systematic manner before we are able to apply morphological measurements. Since

foreground point sources in these images might strongly influence the resultant morphological

measurements, we similarly need to remove these before making any measurements. As the

clusters have different exposure times, the brightness varies between images and the images

must be standardised.

Image processing is completed in the following steps:

1. The images are filtered first by energy band to limit the sample to 0.5keV-3keV as

this optimizes the signal-to-noise ratio from the given cluster, this is done with simple

Python script that is able to iterate over all of the images, and uses their .fits file

information to calculate the respective energies;

2. The images are then filtered again with the Grubbs’s test (Grubbs, 1950) to identify and

cap any outlying pixels. These outliers are found and set to the next maximum pixel

value;

3. Images are initially cropped to a scale of ∼3Mpc to remove as much of the background

as possible and to enable centroiding prior to final cropping step 6;

4. Point sources and CCD gaps are identified and removed with the fixpix task in IRAF;

5. Images are smoothed with the standard Adaptive Kernel Smoothing (AKS) algorithm

asmooth;
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Figure 2.2: Images from left to right show the data processing approach applied to two clusters (A0602 –

labelled A, and A0745 – labelled B) and what the final outcome is. A1 and B1 show the original images and A3

and B3 show the final smoothed images. A1 and B1 have point sources that are removed by interpolating across

the affected pixels. A2 and B2 show that the point sources have been removed. B1 and B2 show how the ’dead’

pixels in the CCD gap are interpolated across.

6. Images are re-centered using the Asymmetry Index (Conselice et al., 2003) and cropped

to a scale of ∼100kpc to place all clusters onto a common fixed metric scale. Note that

this step is distinct from step 3 since the above step is purely undertaken to provide a

limit to which the centroiding is determined (i.e., this step).

(Note that all of these steps are completed a second time without the penultimate smoothing

step to produce a second sample of unsmoothed images for calculating the Clumpiness

parameter as this requires smoothing by a Gaussian Kernel).

Point sources are identified by finding groups of pixels higher than 3𝜎 over the local

median. The local median is determined by dividing the image into a 9x9 segment grid and

calculating the median for each segment. The affected pixels have their coordinates written

to a file. These files are then run through the fixpix task in IRAF which interpolates across
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the areas of badpixels to remove any image artefacts in the smoothed images. This process

can be seen in Fig. 2.2. These point sources are removed as they can affect the results of our

parameters. For example, a point source could increase the Smoothness value as the cluster

would appear to be clumpier than it actually is due to the point source’s localized light. CCD

gaps are detected by finding the "dead" pixels of each image’s corresponding exposure map

and also written to a file. Some clusters still have visible CCD gaps after this process, these

are removed from our original sample of 84. Unfortunately, our process of removing point

sources was unable to remove all of them and in light of a severely reduced sample size, we

chose to include them in our results. This is discussed further in section 5.

Smoothing is performed on the X-ray images by using the Adaptive Kernel Smoothing

algorithm, asmooth (Ebeling et al., 2006). asmooth uses a “uniform significance approach”

which determines the local size of the kernel from the requirement that, at each position within

the image, the signal-to-noise ratio of the counts under the kernel and above the background,

must reach (but not greatly exceed) a certain preset minimum, 𝜏𝑚𝑖𝑛. Images with dimensions

less than (100x100) pixels used a 𝜏𝑚𝑖𝑛 = 2, images with dimensions greater than (100x100)

but less than (200x200) pixels used a 𝜏𝑚𝑖𝑛 = 3 and images with dimensions greater than

(200x200) pixels used a 𝜏𝑚𝑖𝑛 = 4. This is because the images with larger dimensions have a

larger resolution and therefore the relevant structure covers a larger area of pixels. To combat

this a larger 𝜏𝑚𝑖𝑛 is chosen so the kernel requires more pixels to be under it to reach a larger

signal-to-noise ratio, this prevents under-smoothing. The result of this can be seen in Fig. 2.2.

Once smoothed, the images are run through an algorithm that calculates the Asymmetry

Index (shown in Eq. 3.2; see also (Conselice et al., 2003) of various points around the cluster’s

centroid in a jittering motion. The point with the lowest Asymmetry value is taken as the new

centre and a final crop is performed as per step 6, above.
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3. Analysis
The parameters used in this paper are most commonly used in the study of galaxy morphology

(Conselice, 2003; Lotz et al., 2004; Abraham et al., 2003). They can also be used in combin-

ation with each other to classify galaxies (Conselice, 2014) and clusters (Parekh et al., 2015),

and here we apply them to the final X-ray imaging in order to be able to correlate them with

the presence of features noted in the literature about these clusters (cf., Table 2.1). Below, we

briefly detail each morphological measurement made on our sample.

3.1 Light Concentration

The light concentration C parameter measures how the pixel flux is distributed from the centre

of the cluster. It finds the ratio between the radii at which 20% and 80% of the clusters light

is contained (Conselice, 2003).

𝐶 = 5 log
𝑟80
𝑟20

(3.1)

Where 𝑟80 is the radius that contains 80% of the cluster’s light and 𝑟20 is the radius that

contains 20% of the light. The larger the C value, the more light is contained in the smaller

of the two radii. In other words, the higher the C value the more concentrated the light is in

the centre of the cluster. Typical values for C range between 2.0-5.0 for clusters, non-relaxed

clusters show lower values of C as their light tends not to be concentrated in the centre (Parekh

et al., 2015).

3.2 Asymmetry Index

The Asymmetry Index A measures how asymmetric a cluster is. It is calculated by rotating

the image of a cluster by 180 deg around the cluster centre (𝑥𝑐, 𝑦𝑐), subtracting the individual

pixel values of the rotated image from the original image and finding the sum of this subtracted

image (Conselice, 2003).

𝐴 =

∑ |𝐼(𝑥,𝑦) − 𝑅(𝑥,𝑦) |∑ |𝐼(𝑥,𝑦) |
(3.2)
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Where 𝐼 is the original image 𝑅 is the rotated image. The images must be background

corrected before A is calculated, this has been achieved with the Python package Photutils

background estimator. Higher A values show that the cluster is more asymmetric. Typical

values for clusters range between 0.0-0.8 (Parekh et al., 2015).

3.3 Smoothness

The Smoothness S parameter (also known as clumpiness) describes the fraction of light in a

cluster that is contained in clumpy distributions. It is calculated in this paper by smoothing

an image of a cluster with a Gaussian kernel 𝜎 to produce a smoothed image which is then

subtracted from the original to leave a residual map of the high frequency structures. S is

then found summing this residual image and dividing by the sum of the original (Conselice,

2003).

𝑆 =

∑ |𝐼(𝑥,𝑦) − 𝐵(𝑥,𝑦) |∑ |𝐼(𝑥,𝑦) |
(3.3)

Where 𝐼(𝑥,𝑦) is a pixel in the original image and 𝐵(𝑥,𝑦) is a pixel in the smoothed image. The

standard deviation of the Gaussian smoothing kernel is set to 𝜎 = 3. Similarly to A, the

images must be background corrected before S is calculated, which again has been achieved

with the Python package Photutils background estimator. The larger S is, the more clumpy

the structure is. We discuss the ability of Smoothness to predict not only clumps, but features

such as cold fronts, sloshing and X-ray cavities specifically in section 5.

3.4 The Gini Coefficient

The Gini coefficient G is used to calculate the distribution of pixel flux (Abraham et al., 2003;

Lotz et al., 2004). When used in the study of galaxy morphology G is described as the ratio

of the area between the Lorenz curve and the curve of uniform equality, as shown in Fig. 3.1.

The Lorenz curve (Lorenz, 1905) is defined as:

𝐿 (𝑝) = 1
�̄�

∫ 𝑝

0
𝐹−1(𝑢)𝑑𝑢 (3.4)

where �̄� is the mean of over all of the pixel flux, 𝑝 is the percentage of lowest value pixel

and 𝐹 (𝑥) is the cumulative distribution function. The Gini coefficient is then defined as the
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Figure 3.1: A Lorenz curve (Lorenz, 1905) represents the ratio between the total wealth and total population

of a sample. In the case of a cluster or galaxy image it represents how the pixel flux is distributed across the

image. The Gini coefficient is equal to the area between the Lorenz curve and the line of equality, shown as G

on the graph. The line of equality is where the pixel flux is totally evenly distributed amongst all the pixels so

they are all the same value.
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mean of the absolute difference between all pixels 𝑋𝑖:

𝐺 =
1

�̄�𝑛(𝑛 − 1)

𝑛∑︁
𝑖

(2𝑖 − 𝑛 − 1)𝑋𝑖 (3.5)

where 𝑛 is the number of pixels in the galaxy image and 𝑖 is the index for each pixel. The lower

the G, the more evenly the pixel flux is distributed across the cluster as the area between the

Lorenz curve and the line of equality is smaller. For example, if the pixel flux is more evenly

distributed like in a diffuse elliptical galaxy, the G value will be lower than that of a spiral

galaxy as there is a large disparity across the pixels between the arms and the background.

The Gini coefficient differs from Concentration because the flux does not need to be in the

centre, rather it quantifies how the flux varies across the entire cluster. This means it has

a similar goal to Smoothness as they both quantify spatial variation in flux however in past

studies Gini has been deemed to be more accurate at predicting morphology in clusters as

Smoothness is more sensitive to bad signal-to-noise ratios (Parekh et al., 2015).

3.5 Second-Order Moment of Light

The second-order moment of light M20 finds the distribution of light in a similar way to C but

M20 does not rely on the light being concentrated in the centre of the cluster. M20 is calculated

by finding the total second-order moment M𝑡𝑜𝑡 , which is defined as the flux in each pixel 𝑓𝑖

multiplied by the squared distance to the centre of the cluster, all summed over the total pixels

in the cluster (Lotz et al., 2004).

𝑀𝑡𝑜𝑡 =

𝑛∑︁
𝑖

𝑀𝑖 =

𝑛∑︁
𝑖

𝑓𝑖 ·
(
(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2

)
(3.6)

Where 𝑥𝑐, 𝑦𝑐 is the cluster centre, which is determined by finding the point where A is

minimised.

M20 is then calculated as the second-order moment of the brightest 20% of the flux in

the cluster. The clusters pixels are rank-ordered by flux, summed M𝑖 over the brightest pixels

until the sum of brightest pixels is equal to 20% of the total flux. Finally, normalising by M𝑡𝑜𝑡

to find M20.

𝑀20 ≡ log 10
(∑

𝑖 𝑀𝑖

𝑀𝑡𝑜𝑡

)
while

∑︁
𝑖

𝑓𝑖 < 0.2 𝑓𝑡𝑜𝑡 (3.7)
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Where 𝑓𝑡𝑜𝑡 is the total flux of the cluster and 𝑓𝑖 represents the fluxes of each rank-ordered

pixel 𝑖. The higher the M20 value, the more evenly the flux is distributed over the pixels.

26



4. Results

Here, we present our main results that correlate the measurements made in the previous section

with the features (e.g., bow shocks, etc.) noted from Table 2.1. Our results are broken down

into correlations between parameters for the different types of substructure and evaluated with

a standard two-sample Kolmogorov-Smirnov (K-S) test (Fasano & Franceschini, 1987). The

full list of calculated parameters for each cluster can be found in Table B.1, the medians and

standard errors for each classification can be found in Table B.2 and the outcomes of these

K-S tests are presented in Table 4.1.

The K-S test can be used to calculate the difference between two samples. The null

hypothesis of the K-S test predicts that the two samples are identical. For our data this

would mean the results of our parameters indicate that it is not possible to predict whether a

cluster has a particular feature or not as the samples are too similar. This can be described

as statistical similarity. Therefore, the two-sample K-S test aims to prove how significantly

different two samples are. It does this by calculating the K-S statistic and the p-value for

each two samples. Essentially, these values describe how much of one sample is statistically

different from the other sample. The p-value is the probability that the two samples are

the same, any value lower than 0.1 means the samples are statistically different as the null

hypothesis can be ignored. It is determined by the K-S statistic which quantifies the distance

between the empirical distribution functions of the two samples, the smaller the value the

more similar the samples are. The outcomes of these K-S tests are presented in Table 4.1.

In the enumerated list below, we summarize our findings. Our results are presented

visually for all clusters in Fig. 4.1-4.6. Our results are also separated into 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and

𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 samples in Fig. C.1-C.6 and Fig. C.7-C.12 respectively with well-known

clusters marked. We do this to compare the different resolutions of the telescopes. We discuss

these findings in section 5.

1. Some general correlations between clusters include:
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(a) The strongest correlations for clusters independent of structure is between C, G

and M20. Clusters with high M20 always tend towards a lower C and G. This is

because clusters with high M20 have a more even light distribution, this correlates

to low C and G values as the light is evenly distributed. These trends have been

noted in past studies (Parekh et al., 2015; Conselice, 2014).

(b) Clusters tend to be more symmetric however clusters with higher M20 seem to be

more asymmetric as they have higher A values.

(c) Similarly, clusters with low concentration seem to display higher asymmetry.

2. Clusters with bow shocks present show high disparities in pixel flux distribution where

the X-ray emitting gas is compressed along the border of the front. This is reflected in

the M20, S and C parameters shown in Fig. 4.1. Clusters in the sample with bow shocks

present have higher M20 values showing a concentration of light that is not necessarily

associated with the cluster centre like with C. As C and G are lower in the clusters with

bow shocks, this seems to indicate the clusters have an even light distribution.

3. Clusters with X-ray cavities show a tendency to have higher G and M20 values, shown in

Fig. 4.2. This reflects the uneven light distribution caused by the voids from where X-ray

emitting gas has been displaced by the cavities. However, the S value shows clusters

with and without cavities are indistinguishable which is an unexpected outcome. The

K-S test for 𝑀20 shows that the sample is statistically different as the p-value is 0.089

which is lower than the 0.1 threshold.

4. Cold fronts, similarly to bow shocks, have high disparities in pixel flux distribution

along the front’s edge. 𝑀20 is higher whereas C and G are lower in clusters with cold

fronts, shown in Fig. 4.3. This shows there is a relatively even distribution of light

throughout the cluster. These results show similarity for the clusters with bow shocks

which is to be expected as bow shocks usually have cold fronts. The p-value for C is

0.039 which shows the samples have a statistical difference.

5. Gas sloshing is presented in Fig. 4.4. The difference in samples is not as prominent

as other structure though there is a slightly lower G and higher C for sloshing clusters.
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This lower value for G corresponds with the lower G in cold fronts as clusters with

sloshing usually exhibit a cold front. The higher C value could be due to the centre of

the cluster being brighter than the surrounding sloshing gas.

6. Clusters with Kelvin-Helmholtz instabilities show low S values with a very significant

difference between the samples. The M20 values are lower in clusters with KHI present,

this correlates with high G and C values, shown in Fig. 4.5. Low S values are an

unexpected result as the KHI should appear as clumpy, however the low M20 and G

values show high levels of disparity of light between the pixels, this shows an uneven

light distribution. K-S values support this for G, C and 𝑀20 as their respective p-values

are 0.055 0.006 and 0.049, showing the clusters with and without KHI are significantly

different.

7. Fig. 4.6 only shows clusters that have been confirmed with past literature to be relaxed

or disturbed, as the nature of a cluster’s disturbance is not necessarily visible by eye.

Therefore, clusters without a confirmation of classification have been left off the figure.

The samples of the relaxed and disturbed clusters show difference with relaxed clusters

having lower M20 values and much higher G values.
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C A S G M20

Structure Stat, P-Val Stat, P-Val Stat, P-Val Stat, P-Val Stat, P-Val

Bow Shocks 0.290, 0.412 0.195, 0.849 0.280, 0.470 0.407, 0.105 0.383, 0.146

Cavities 0.169, 0.807 0.263, 0.304 0.173, 0.786 0.234, 0.444 0.342, 0.089

Cold Fronts 0.377, 0.039 0.189, 0.669 0.140, 0.926 0.283, 0.213 0.303, 0.156

Gas Sloshing 0.229, 0.464 0.205, 0.600 0.29, 0.202 0.152, 0.892 0.171, 0.794

KHI 0.394, 0.055 0.222, 0.594 0.367, 0.089 0.500, 0.006 0.400, 0.049

Relaxed 0.231, 0.782 0.214, 0.814 0.247, 0.712 0.264, 0.620 0.401, 0.182

Table 4.1: K-S probability for the different samples of substructure. Each of the 5 parameters (CAS, G and

M20 have their respective K-S statistic and p-value displayed. Categorically, these results show that the every

classification of structure is indistinguishable. Results that show a statistical difference are C, G and M20 for

KHI clusters as their p-values are 0.055, 0.089 and 0.049 respectively. Cold fronts have a p-value for C of 0.039

and cavities have a p-value for M20 of 0.089, this shows statistical difference between the clusters that have these

structures and those that do not. As stated previously, p-values lower than 0.1 mean two samples show statistical

difference.
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Figure 4.1: Clusters with bow shocks show higher values in the M20 and lower values for G and C parameters.
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Figure 4.2: Cavities show higher G and C values and lower M20 and A values.
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Figure 4.3: Clusters with cold fronts show higher M20 values and lower G and C values.
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Figure 4.4: Clusters that contain sloshing gas have higher C values and lower M20 and G values, however the

samples do not seem to be significantly different.
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Figure 4.5: Clusters that have KHI present have lower S and M20 values and higher G and C values.
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Figure 4.6: Relaxed clusters show higher G and lower M20 values.
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5. Discussion

In previous studies, using C in combination with the Gini/M20 parameters provides a robust

method of distinguishing relaxed clusters from disturbed clusters. This method is so robust

that clusters can be predicted to be relaxed, non-relaxed and strong non-relaxed based on their

C, G and M20 parameters (Parekh et al., 2015, 2017). Relaxed clusters have lower M20 values

and higher C and G values. These are reflected in our results although with less statistically

significant difference between the samples as calculated with the K-S test. As dynamically

relaxed clusters tend to show less substructure which would generally present in an even light

distribution with an increase in luminosity as distance to the centre of the cluster decreases.

Our study focuses on clusters with a redshift between 0.01 < 𝑧 < 0.07 whereas Parekh et al.

(2015) uses clusters ranging from 0.02 < 𝑧 < 0.9 which are separated into sub-samples of

lower redshift 0.02 < 𝑧 < 0.3 and higher redshift 0.3 < 𝑧 < 0.9. We limit our redshift range

to standardize our sample for the algorithm, however future study would include increased

sensitivity so higher redshifted clusters may be included.

Disturbed clusters share correlations with cold fronts, gas sloshing and bow shocks. We

find disturbed clusters have low G values which is also indicative of sloshing and bow shocks.

Their high M20 values correlate with bow shocks and cold fronts. This is supported by Abell

1644, the disturbed cluster (Parekh et al., 2015) has been determined to have cold fronts and

sloshing by (Johnson et al., 2010). Similarly, Abell 576 is disturbed Parekh et al. (2015) and

has been shown to display signs of a cold front (Ghizzardi et al., 2010).

The results of the parameters for bow shocks and cold fronts show that they correlate.

Clusters with bow shocks can be determined with high M20, low G and low C. This correlates

with clusters with cold fronts as they also show high M20, low G and low C. As bow shocks

are generally present where there is already a cold front this similarity in results makes sense.

A study on the cluster MACS J0553.4-3342 (Pandge et al., 2017) which contains a cold front,

finds high M20 and low G which supports these results.
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The presence of X-ray cavities can be distinguished with high G and low M20 together

From one study on Abell 2384 in which X-ray cavities are detected, the G value is 0.46±0.0035

(Parekh et al., 2020) which reflects well with our results. Generally, it would be expected that

the S value would be higher for clusters with X-ray cavities as this shows higher clumpiness.

This disparity in expectations vs reality is also present in relation to KHI. However, in Fig. 4.5

there is a very clear correlation between high S values and a lack of KHI. Unfortunately, there

is not much literature in this specific area but KHI may just too subtle to detect with this

method.

The Asymmetric index does not show significant difference in any of the samples. On one

hand this is surprising as many of the clusters that show substructure are very asymmetric and A

is used successfully used in the study of galaxy morphology (Conselice, 2014). However, in the

study of cluster morphology the A index is less reliable. When classifying relaxed/disturbed

clusters it is found to be dependent on the exposure time or signal-to-noise ratio (Parekh et al.,

2015). Whilst there are studies on galaxies that use A and S reliably (Conselice et al., 2003;

Conselice, 2006; Conselice et al., 2009), there does not seem to be conclusive evidence of

these parameters being robust in the study of galaxy clusters. More commonly, C is used in

combination with M20 and G to quantify cluster morphology. In addition, Gini/M20 method

is found to be more reliable in the study of galaxies too (Lotz et al., 2004).

Whilst some parameters show a distinction between substructure and lack thereof, there is

generally not a significant enough difference between the samples with and without structure.

Various tests have been performed to try and find more significant distinction between the

features with only a slight success. Firstly, improving the cropping around the clusters. This

was a success as the K-S results showed more significant difference between the samples

without changing the results of the parameters. Other tests include masking portions of

the centre of the clusters and recalculating A and S. A larger sample of 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and

𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 images could be a significant improvement in the results. This would

require increasing the limits on redshift and X-ray luminosity to include a larger total sample

which could need more thorough image processing to keep a consistent sample of clusters

with similar resolution and exposure. However, this would be the aim of any future study as a
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method that can be applied to all clusters at any redshift is the ultimate goal whereas our paper’s

main aim is to determine whether or not there is any correlation between cluster features and

quantifiable parameters. Increasing the sample size would give rise to the opportunity to

include more clusters that have the structure confirmed through literature. As we cannot be

100% certain that our "by-eye" method is accurate, replacing these clusters with those that

have been confirmed to have structure present through study would provide robustness to our

method. When comparing our sample split into 𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 and 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 clusters,

the results show the same trends. We evaluate these results in Appendix C for each type of

structure. This is promising as the results do not seem to change depending on telescope.

This suggests the difference in resolution and depth is not an issue for our sample.

To summarise our results, there is difference in C for clusters with KHI, bow shocks,

cavities and cold fronts. M20 shows differences in relaxed clusters and clusters with bow

shocks, cavities, cold fronts and KHI. This difference is even greater when combined with G

which has significant differences for relaxed, bow shock, cavity, cold front and KHI clusters.

There is not a significant difference in S or A for most samples except S for KHI and A for

bow shocks.

One of the greatest obstacles in classification is the reliance on human observers to classify

objects such as clusters by eye or by scientific analysis. The shear magnitude of data is far

too great and as such computational methods have been developed for the past few decades.

The evolution of these programs and algorithms has brought forward machine learning as

the most likely next step. Significant progress has been made with supervised machine

learning approaches such as convolution neural networks (CNN) which have been successful in

identifying galaxy morphology (Dieleman et al., 2015; Huertas-Company et al., 2015; Aniyan

& Thorat, 2017; Alger et al., 2018) and supernovae types (Kessler et al., 2010; Karpenka et al.,

2013; Charnock & Moss, 2017) for example. In the field of galaxy clusters there are a number

of studies that use CNNs to achieve various goals such as estimating dynamical cluster masses

through spectral analysis (Ho et al., 2019; Ntampaka et al., 2019; Gupta & Reichardt, 2020;

Yan et al., 2020; Kodi Ramanah et al., 2021) or through weak-lensing observations (Hong

et al., 2021). CNNs have been trained to identify cluster members on imaging data alone with a
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purity-completeness rate of ≳ 90% using spectroscopic information and MUSE observations

(Angora et al., 2020). This study is particularly promising as the CNN has a remarkable

generalisation capability with respect to redshift which makes this an exceptionally robust

method of identifying cluster members which in turn enables measurements of clusters’

physical properties to be far more reliable.

Recognising and classifying clusters with CNNs is a more recent development but shows

great promise for the future. CNNs are able to identify diffuse radio sources (clusters and

filaments) (Gheller et al., 2018) and Sunyaev-Zel’dovich clusters (Lin et al., 2021) with varying

levels of success while CNNs trained on the citizen science Zooniverse project are able to

identify clusters with an accuracy of 90% (Kosiba et al., 2020). While these methods are

limited to identification there is promise in the field of classification as one study is able to

classify clusters as cool core (CC), weak cool core (WCC) and non-cool core (NCC) based

on low-resolution mock 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 images without reliance on spectral information (Su et al.,

2020). The balanced accuracy of which is 92% accurate for CCs, 81% for WCCs and 83%

for NCCs. Therefore, providing more accurate classifications than traditional methods such

as using central gas densities and surface brightness concentrations. Future studies could

include training a CNN with the quantifiable parameters we use to correlate with structure

in order to predict whether a cluster will have a specific feature based on its 𝐶𝐴𝑆, 𝐺 and

𝑀20 results. This could be combined with other quantifiable parameters such as ellipticity,

Gini of the second-order moment, cuspiness or power ratios to build a more rigorous training

scheme for the CNN. In fact, a similar approach is attempted by Green et al. (2019) in a

study using 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 and 𝑒𝑅𝑂𝑆𝐼𝑇 𝐴 mock X-ray images to train a random forest regressor

to predict cluster masses from X-ray luminosities and morphological parameters such as 𝐴,

𝑆, 𝑀20, power ratios and ellipticity, among others. They use two series of images, ideal

𝐶ℎ𝑎𝑛𝑑𝑟𝑎 mock images and realistic-condition 𝑒𝑅𝑂𝑆𝐼𝑇 𝐴 mocks in order to evaluate the

potential improvement in mass estimation of lower resolution, real cluster images. While

there is some underestimate of mass in the high-mass tail of the halo mass function, they

suggest this will improve when the model is trained with a larger sample of clusters that is

consistent across a complete mass range. In conclusion, this is a promising method for future
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study with a larger sample of images to potentially train a CNN or other machine learning

algorithm.
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A. Appendix: Gallery of Clusters
We present a gallery of our clusters, separated into the respective observing telescopes.

𝐶ℎ𝑎𝑛𝑑𝑟𝑎 images are displayed in Fig. A.1 and 𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 clusters are shown in

Fig. A.2 and Fig. A.3. Please refer to Table 2.1 for apparent structure.
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Figure A.1: 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 images used to show structure of clusters. Prominent clusters include Abell 1644 that

has sloshing gas and a cold front and Abell 2052 has two large X-ray cavities. Images are filtered within an

energy band range of 0.5-3keV, then adaptively smoothed and cropped to a scale of ∼100kpc, the full process is

discussed in more detail in Section 2.2.
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Figure A.2: 𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛 images used to show structure of clusters. Prominent clusters include Abell 754

that shows a cold front and Abell 426 that shows X-ray cavities. Images are filtered within an energy band range

of 0.5-3keV, then adaptively smoothed and cropped to a scale of ∼100kpc, the full process is discussed in more

detail in Section 2.2.
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Figure A.3: 𝑋𝑀𝑀 −𝑁𝑒𝑤𝑡𝑜𝑛 images used to show structure of clusters. Prominent clusters include Abell 3526

that shows a cold front and Abell 3571 that shows cavities. Images are filtered within an energy band range of

0.5-3keV, then adaptively smoothed and cropped to a scale of ∼100kpc, the full process is discussed in more

detail in Section 2.2.
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B. Appendix: Results by Cluster
In this appendix we present Table B.1 that shows the results of the parameters for each cluster,

their ObsID and exposure times. We display the median values for each type of structure

present alongside the standard errors for said classification in Table B.2.

Cluster ObsID Exposure (s) C A S G M

A0119 505211001 12110 1.96 0.06 0.9 0.16 -1.49

A0262 109980101 23891 3.33 0.05 0.57 0.4 -2.15

A0426 85110101 53597 3.4 0.07 0.08 0.51 -2.11

A0576 205070301 18353 3.13 0.06 0.81 0.34 -2.07

A0602 761112401 10618 2.35 0.2 0.95 0.24 -1.32

A0754 136740101 14417 2.39 0.14 0.59 0.18 -1.3

A0780 504260101 101228 3.49 0.06 0.18 0.47 -2.2

A1069 720251801 6645 3.05 0.22 0.97 0.22 -1.34

A1644 2206 18713 2.62 0.07 1.0 0.21 -1.42

A1656 153750101 25194 2.09 0.11 0.28 0.21 -1.53

A1668 12877 9977 3.38 0.03 0.99 0.26 -2.13

A1736 300210301 8707 2.03 0.2 0.98 0.15 -1.25

A1795 10900 15823 2.34 0.09 0.85 0.33 -1.67

A1831 827030901 16299 2.84 0.09 0.76 0.33 -1.89

A1837 109910101 49013 2.39 0.08 0.6 0.3 -1.72

A1991 3193 38304 3.33 0.07 0.86 0.41 -2.11

A2052 5807 126950 2.7 0.07 0.43 0.31 -1.65

A2063 200120401 18847 2.37 0.05 0.56 0.37 -2.0

A2124 3238 19351 2.1 0.04 1.0 0.12 -1.58

A2147 300350301 5067 2.19 0.06 0.98 0.19 -1.53
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Table B.1 continued from previous page

Cluster ObsID Exposure (s) C A S G M

A2199 723801201 54119 3.16 0.07 0.24 0.49 -2.05

A2256 112500201 16819 1.86 0.08 0.48 0.14 -1.0

A2319 600040101 57814 2.82 0.13 0.2 0.41 -1.83

A2589 7340 14908 2.23 0.07 1.0 0.16 -1.66

A2622 765020701 22620 3.54 0.1 0.84 0.35 -2.2

A2626 16136 110848 2.56 0.08 0.88 0.24 -1.83

A2634 800761501 8494 2.15 0.1 0.99 0.18 -1.62

A2657 300210601 15459 2.65 0.08 0.78 0.3 -1.77

A3122 720253201 25496 2.19 0.14 0.85 0.22 -1.49

A3266 899 29752 1.82 0.17 1.0 0.19 -1.38

A3391 505210401 27152 2.21 0.07 1.0 0.2 -1.6

A3490 677181601 8845 2.34 0.16 0.68 0.23 -1.48

A3497 761112801 9932 2.72 0.09 0.93 0.24 -1.66

A3526 46340101 47141 3.2 0.14 0.96 0.35 -2.09

A3532 30140301 15732 2.39 0.15 0.94 0.2 -1.47

A3558 107260101 43995 2.56 0.09 0.83 0.29 -1.48

A3562 105261301 42232 2.5 0.11 1.0 0.27 -1.71

A3571 86950201 32814 2.48 0.1 0.54 0.37 -1.77

A3651 677182001 7230 2.21 0.15 0.33 0.14 -1.34

A3667 513 44838 1.95 0.08 0.99 0.18 -1.26

A3716 692930101 22388 2.05 0.12 0.58 0.15 -1.13

A4059 5785 92121 2.15 0.07 0.95 0.24 -1.62

AWM7 908 47853 2.18 0.06 0.83 0.13 -1.63

CYGNUSA 360 34719 2.87 0.07 0.97 0.41 -1.82

ESO235 765000101 12711 3.41 0.05 0.71 0.41 -2.1

OPHIUCHU 3200 50532 2.11 0.14 0.99 0.17 -1.5

RXCJ0102 144310101 23376 3.22 0.09 0.89 0.45 -2.14
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Table B.1 continued from previous page

Cluster ObsID Exposure (s) C A S G M

RXCJ0413 720251501 13091 3.1 0.07 0.53 0.41 -2.04

RXCJ2205 720251201 6193 3.89 0.17 0.8 0.4 -2.24

RXCJ2347 204460101 29663 3.54 0.11 1.0 0.49 -2.2

SC1329-313 4166 19372 1.71 0.05 1.0 0.04 -1.41

Table B.1: Clusters with their ObsID, exposure time and results for the CAS, G and M20 parameters.

Cavities Present Not Present

Concentration 2.56 ± 0.017 2.37 ± 0.029

Asymmetry 0.08 ± 0.001 0.1 ± 0.003

Smoothness 0.85 ± 0.009 0.865 ± 0.011

Gini 0.3 ± 0.004 0.225 ± 0.005

M20 -1.72 ± 0.011 -1.53 ± 0.015

Cold Fronts Present Not Present

Concentration 2.275 ± 0.017 2.7 ± 0.025

Asymmetry 0.08 ± 0.001 0.09 ± 0.002

Smoothness 0.84 ± 0.01 0.88 ± 0.01

Gini 0.215 ± 0.004 0.31 ± 0.005

M20 -1.59 ± 0.011 -1.82 ± 0.014

Bow Shocks Present Not Present

Concentration 2.29 ± 0.043 2.56 ± 0.014

Asymmetry 0.08 ± 0.003 0.09 ± 0.001

Smoothness 0.92 ± 0.031 0.85 ± 0.006

Gini 0.2 ± 0.01 0.29 ± 0.003

Table B.2 continued from previous page
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M20 -1.53 ± 0.03 -1.67 ± 0.008

Gas Sloshing Present Not Present

Concentration 2.56 ± 0.022 2.435 ± 0.019

Asymmetry 0.08 ± 0.002 0.085 ± 0.002

Smoothness 0.85 ± 0.014 0.9 ± 0.007

Gini 0.24 ± 0.006 0.265 ± 0.004

M20 -1.65 ± 0.015 -1.685 ± 0.011

KHI Present Not Present

Concentration 2.82 ± 0.033 2.345 ± 0.015

Asymmetry 0.09 ± 0.002 0.08 ± 0.001

Smoothness 0.59 ± 0.022 0.87 ± 0.006

Gini 0.37 ± 0.007 0.225 ± 0.003

M20 -2.0 ± 0.021 -1.62 ± 0.008

Relaxed Present Not Present

Concentration 2.435 ± 0.035 2.5 ± 0.038

Asymmetry 0.07 ± 0.003 0.08 ± 0.002

Smoothness 0.87 ± 0.018 0.9 ± 0.022

Gini 0.32 ± 0.008 0.21 ± 0.009

M20 -1.72 ± 0.02 -1.53 ± 0.026

Table B.2: Each type of structure has a median value for whether or not it is present, with a standard error

presented for each parameter.
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C. Appendix: Results Separated By Telescope
In this appendix we present our results separated by telescope to determine if our correlations

are affected by resolution. Fig. C.1-Fig. C.6 are results for clusters observed with the𝐶ℎ𝑎𝑛𝑑𝑟𝑎

telescope and Fig. C.12 - Fig. C.7 are results for clusters observed with the 𝑋𝑀𝑀 − 𝑁𝑒𝑤𝑡𝑜𝑛

telescope. Each plot has well-known clusters labelled and averages shown.
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Figure C.1: Bow shocks have slight differences between the parameters M20, G and C in which clusters with

bow shocks have higher M20, and lower G and C values. Clusters of note are Abell 1644 that has a higher M20

value, a confirmed cold front and may have a bow shock and Abell 1795 that has a low G value and no apparent

bow shock.
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Figure C.2: Cavities show higher G and C values but lower M20 values. Abell 2052 has a very low S value

which is unexpected because it has very prominent X-ray cavities.

59



Quantitative Morphology of Galaxy Clusters Laura Hunt

Figure C.3: Clusters with cold fronts show higher M20 values and lower G and C values. This is consistent

with the well-known clusters as they all have cold fronts and follow this trend.
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Figure C.4: Clusters that contain sloshing gas have very slightly lower G and M20 values. However, we would

argue that the samples are indistinguishable. This shows with the well-known clusters as they all have potential

or confirmed gas sloshing but they show no real trend.
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Figure C.5: Clusters that have KHI present have higher C and G values but lower M20 and S values. None of

the well-known clusters have KHI confirmed by literature but by-eye, Abell 2052 and 2626 could potentially

have KHI present however, their results do not show that they follow this trend.
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Figure C.6: Relaxed clusters show lower C and M20 and higher G values. Out of the well-known clusters, only

Abell 1644 is disturbed and shows high M20 and low G. Out of the relaxed well-known clusters, none of them

have high C and their G and M20 values are not definitive as some are high, whilst others are low. Because

the relaxed/disturbed sample has to be confirmed by literature, this has removed a large portion of the disturbed

clusters from the sample so these results for 𝐶ℎ𝑎𝑛𝑑𝑟𝑎 are not a good test for the trends in the parameters as

there is not an even split.
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Figure C.7: Bow shocks have slight differences between the parameters M20, G and C in which clusters with

bow shocks have higher M20, and lower G and C values. Well-known clusters with bow shocks confirmed by

literature are Abell 754 and Abell 3667, these clusters follow this trend of parameters. Whereas, Abell 2319

which was determined to potentially have a bow shock by-eye, actually has the opposite trend which means it

may not have a bow shock after all.
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Figure C.8: Cavities show higher G and C values but lower M20 values. Abell 426 has cavities confirmed by

literature and follows the trend perfectly.
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Figure C.9: Clusters with cold fronts show higher M20 values and lower G and C values. Abell 3667 may have

a cold front and follows this trend which is promising. The other well-known clusters also follow this trend

except for Abell 426 and 2319.
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Figure C.10: Clusters that contain sloshing gas have very slightly lower G and M20 values. Again, we would

argue that the samples are indistinguishable. This has not been improved by the separation of the telescopes

which suggests resolution and depth are comparable.
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Figure C.11: Clusters that have KHI present have higher C and G values but lower M20 and S values. Abell

2319 and Abell 426 both have KHI confirmed by literature and both strongly follow this trend. This combined

with K-S test results is promising.
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Figure C.12: Relaxed clusters show lower C and M20 and higher G values. The only relaxed well-known cluster

in this sample is Abell 426 and this also follows the trend for relaxed clusters well. The disturbed clusters almost

exactly oppose this trend.
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