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A b s t r a c t

Fractal dimensions are estimated by the box-counting method for real world data 

sets and for mathematical models of three natural systems. 1 he natural systems 

are nearshore sea wave profiles, the topography of Shei-pa National Park in Taiwan, 

and the normalised difference vegetation index (NDV1) image of a fresh fern. I he 

mathematical models which represent the natural systems utilise multi-frequency 

sinusoids for the sea waves, a synthetic digital elevation model constructed by the 

mid-point displacement method for the topography and the Iterated Function Sys­

tem (IFS) codes for the fern leaf. The results show that similar fractal dimensions 

are obtained for discrete sub-sections of the real and synthetic one-dimensional wave 

data, whilst different fractal dimensions are obtained for discrete sections of the real 

and synthetic topographical and fern data. The similarities and differences are in­

terpreted in the context of system evolution which was introduced by Mandelbrot 

(1977). Finally, the results for the fern images show that use of fractal dimensions 

can successfully separate void and filled elements of the two-dimensional series.
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Chapter 1

Introduction

I do not know what I may seem to the world but to myself I am as a 

small boy playing on the shore whose attention is now and then diverted 

by a rounder pebble or shinier stone while the whole ocean of truth lies 

undiscovered before me. Isaac Newton (1642-1727).

2
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Mandelbrot (1977) introduced the concept of fractal analysis of natural and synthetic 

systems and. since that time, the estimation of "fractal dimension" has become one 

of many methods which have been used to explore the invariant nature of objects. 

The literature is extensive: in 1996, for example. 478 articles used the phrase “fractal 

dimension” in the title, in the keywords or in the abstract in the Science Citation 

Index (SCI) of the Institute for Scientific Information (ISI) database of the Bath 

Information and Data Services (BIDS) in England. In most articles, the fractal 

dimension is estimated either from a single object using a single method, or from 

many objects using different methods, whereas in practice the fractal dimension can 

be derived for many objects through a single method. Within this thesis the single 

method known as the box-counting method will be used to estimate the fractal 

dimension of three natural systems. Although such analysis of natural systems 

provides useful description, it is necessary to construct models of the systems to 

test the understanding. In this thesis, the fractal dimensions of three numerical 

analogues for natural systems are also analysed. This analysis provides great insight 

into the generated systems that could be obtained from the real world data.

Among the many natural systems which could have been analysed, three data 

sets were chosen for this thesis. Firstly, the real and synthetic profiles of nearshore 

sea waves were analysed, followed by the real and synthetic topographic landform 

data, and the image of a fern leaf. The fractal dimension was determined for each 

data set by the box-counting method in order to compare the results for distinct sub­

sections of the data and to compare the results obtained with natural and synthetic 

data. To achieve this, some statistical methods were used to compare results of

natural data with their mathematical models.
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The objectives of the thesis are, therefore, firstly to estimate the fractal 

dimensions of three natural systems and secondly to compare these results with 

corresponding analyses of mathematical models of the same three systems.

The thesis is organised into eight Chapters. Chapter One provides an overview 

and the remaining chapters are grouped into three Parts.

The methodology is explored in Part I. which is further divided into two chap­

ters. Chapter Two is devoted to a general discussion of scientific methods and 

fractal analysis, whilst Chapter Three focuses on the details of the methods used. 

In Chapter Two, a brief review of scientific methods is introduced and followed 

by the essentials of Fractal Geometry, which can be illustrated by the Mandelbrot 

set (Mandelbrot, 1977). The Chapter continues with the description of the natural 

systems of interest and the reasons of selection.

Chapter Three concentrates on the methods used in the analyses of the selected 

data sets, which include the estimation of fractal dimension and statistical analyses. 

The fractal dimension is estimated by the box-counting method for all data sets, 

though various methods might be used for each of them. The results are compared 

using statistical methods, which include one-sample and two-sample tests.

Part II presents the results in Chapters Four, Five and Six, for the analyses of 

sea wave profiles, the topographic data and the image of a fern respectively. Each 

chapter has a similar format: the introduction, the real data, the synthetic models, 

the analysis, the results and a concise discussion. However, the comprehensive 

comparison with other published work will appear later, in Chapter Seven.
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Wave profiles are analysed in Chapter Four, which starts with an introduction 

to the history of wave recording, followed by the measurement of natural waves at 

Teignmouth in England. This chapter continues with a section of analyses including 

the estimation of fractal dimensions and the conventional time series. The results 

of the analyses and a discussion conclude the chapter.

The study on landform data is detailed in Chapter Five. An introduction is 

followed by details of the study area and the construction of a digital elevation 

model (DEM) in this area, which precedes the generation of synthetic DEMs. The 

subsequent analysis is followed by the results and a discussion.

The fern image is analysed in Chapter Six. A brief introduction is followed by the 

construction of the normalised difference vegetation index (NDVI) image of a real 

fern and the simulation of a synthetic fern using the Iterated Function System (IFS) 

codes. This chapter continues with the analysis and the residts, and concludes with 

a discussion.

Part III concludes the thesis. In Chapter Seven, a synthesis of all the results is 

presented. The synthesis is followed by a comparison with other work, from which 

the contribution of the present study as well as the possibility for future research is 

identified. The concluding remarks are presented in Chapter Eight.

The objectives of the thesis are to calculate the fractal dimensions of three nat­

ural systems and to compare these results with corresponding analyses of synthetic 

models of the same natural systems. The similarities and differences of the esti­

mated fractal dimensions of three real and synthetic systems will be examined in 

the context of system evolution introduced by Mandelbrot (1977).
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Chapter 2

The M ethodology

I f Newton had not used the word attraction, everyone in [the French] 

Academy would have opened his eyes to the light; but unfortunately he 

used in London a word to which an idea of ridicule was attached in Paris. 

Voltaire (1694-1778) in 1730 (Mandelbrot, 1983, p.5).

i
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2.1 In tro d u c tio n

This chapter introduces a view of the scientific method, which began rooted in the 

inductive-deductive procedure to be formalised by Aristotle (348-322 BC). The the 

procedure has rarely been challenged until Newton (1642-1727), who addressed the 

polarised positions and argued that scientific procedure should include both induc­

tive and deductive stages (Losee, 1980, p.81). At about the same time, Descartes 

(1569-1650), proposed the concept of hypotheses testing (Losee, 1980, pp.77-78). 

The falsificationism by Karl Popper (1902-1994) completes the last element of the 

contemporary scientific method for most work (TSP, 1996). This thesis, therefore, 

aims to exercise the scientific method following Aristotle by proposing falsifiable 

hypotheses which will be tested against the real world and the synthetic data.

The following major section outlines the formulation of the Chaos Theory and 

the theory of Fractal Geometry. Although the Fractal Geometry is arguably con­

nected with the Chaos Theory, nowadays those two theories are examined with the 

conventional scientific methods and appear to be powerful enough to describe the 

type of chaotic dynamics which were first recorded in 1903 by Henri Poincare (Helle- 

mans & Bunch, 1988, p.403). Various types of system evolution can be illustrated 

in the Mandelbrot set, from which data are selected.

This chapter concludes with the selection of three natural systems, followed by 

the description of current understanding of those systems. Three natural systems 

corresponding to the three types of system evolution revealed in the Mandelbrot 

set are selected; they are the nearshore sea wave profile, the topographic data and 

the image of a fern leaf.
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2.2 T he  M ethodology

It is a perfectly common practice in science to inquire how things come about. 

However, it does not seem to apply to situations such as choosing the research 

methodology. While some scientists are content with whatever they were given by 

the authority of their field, some prefer to be more consciously aware of how the 

methodology they choose in conducting a research was formulated. After having 

discussed, below, the history of philosophy of science, the methodological structure 

of the thesis is derived.

2.2.1 A H istory o f Philosophy o f Science

Aristotle viewed scientific inquiry as a progression from observation to general prin­

ciples and back to observations (Losee, 1980, p.6) and maintained that the scientist 

should induce explanatory principles from the phenomena to be explained, and then 

deduce statements about the phenomena from premisses that include these princi­

ples. Aristotle’s inductive-deductive procedure is represented in Figure 2.1, from 

Losee (1980, p.6).

Aristotle argued that it is by induction that generalisations about form1 are 

drawn from sense experience (Losee, 1980, p.7). In the second stage of scientific 

inquiry, the generalisations reached by induction are used as premisses for the de­

duction of statements about the initial observations.
1 According to Aristotle, every particular thing is a union of matter and form. Matter is what 

makes the particular a unique individual and form is what makes the particular a member of a 

class of similar entities (Losee, 1980, p.7).
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induction

observations (2)
(3)

explanatory
principles

Figure 2.1: Aristotle’s Inductive-Deductive Procedures.

A widely held thesis among ancient writers was that the structure of a completed 

science ought to be a deductive system of statements. Aristotle emphasised the de­

duction of conclusions from first principles.2 Many writers in late antiquity believed 

that the ideal of deductive systematisation had been realised in the geometry of 

Euclid (c. 300 BC) and the statics of Archimedes (287-212 BC).

Euclid and Archimedes had formulated systems of statements -  comprising ax­

ioms, definitions, and theorems -  organised so that the truth of the theorems fol­

lows from the assumed truth of the axioms (Losee, 1980, p.23). With regard to 

the third and last aspect3 of the ideal of deductive systematisation, that is, that 

theorems agree with observations, it seems merely to have been assumed by Euclid, 

Archimedes, and their immediate successors that such terms as “point” , “line”, 

“weight”, and “rod” do have empirical correlates (Losee, 1980, p.24). This dual­

ism claiming that the phenomenal realm is at best an “imitation” or “reflection”

2 Aristotle held that an individual science is a deductively organised group of statements. At the 
highest level of generality are the first principles of all demonstrations-the Principles of Identity, 
Non-contradiction, and the Excluded Middle. These are principles applicable to all deductive 
arguments. Refer to Losee (1980, p. 12) for more details.

3 The other two are 1) that the axioms and theorems are deductively related; and 2) that the 
axioms themselves are self-evident truths (Losee, 1980, p.24).
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of the “real world'’ had important repercussions in the thought of Galileo Galilei 

(1564-1642) and René Descartes (1596-1650).

Aristotle’s method was affirmed and developed further in the Medieval period, 

mainly through the translation of his writings commencing about 1150, and through 

the work of Robert Grosseteste (c. 1168-1253) and Roger Bacon (c. 1214-1292), 

among others (Losee, 1980, pp.29-30).

The attack on Aristotelian philosophy, or rather, the affirmation of Archimedean 

philosophy, appeared in the seventeenth century, notably in the work of Galileo 

Galilei, Francis Bacon (1561-1626) and René Descartes, among others. However, 

Galileo’s anti-Aristotelian polemic was not directed against Aristotle’s inductive- 

deductive method. In fact, he accepted Aristotle's view of scientific inquiry as a 

two-stage progression from observations to general principles and back to observa­

tions. His remarks about scientific procedure were directed against practitioners of 

a false Aristotelianism, which encouraged a dogmatic theorising that parted science 

from its empirical base. Galileo affirmed the Archimedean ideal of deductive sys­

tematisation. However, a more important aspect of Galileo’s Archimedean-Platonic 

commitment was his emphasis on the value of abstraction and idealisation in science. 

An important role of observation and experiment in Descartes’ theory of scientific 

method is to suggest hypotheses specifying mechanisms that are consistent with the 

fundamental laws. Also, it is possible to remove discrepancies between theory and 

observation by altering the associated hypotheses, thus leaving intact the general 

laws of nature. The existence of this flexibility within the Cartesian system was 

one reason for its popularity during the seventeenth and the eighteenth centuries is 

mentioned by Losee (1980, pp.77-78).
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Descartes was among the rationalists such as Benedictus Spinoza (1632-1677), 

and Gottfried Wilhelm Leibniz (16-46—1716) who took the view that the self-evident 

propositions deduced by reasoning are the sole basis of all knowledge (Cottingham, 

1988, p.4). Refer to, for example, Adam &: Tannery (1964-76), Wilson (1978), 

Hellemans Bunch (1988), Cottingham (1988) and Cottingham et al. (1985-91), 

for more details on rationalism and rationalists.

In contrast, empiricists such as Thomas Hobbes (1588-1679), John Locke (1632- 

1704), David Hume (1711-1776), and Bertrand Russell (1872-1970) insisted that "all 

our knowledge is based upon or derived ultimately from experience (E^vans, 1964, 

P-4). Further details on empiricism and empiricists can be found in, for example, 

Santillana & Zilsel (1941), Zilsel (1941) and Priest (1990).

Isaac Newton (1642-1727) made comments about scientific method that were 

directed primarily against Descartes and his followers. He opposed the Cartesian 

method by affirming Aristotle’s theory of scientific method. Elowever, by insisting 

that scientific procedure should include both an inductive stage and a deductive 

stage, Newton affirmed a position that had been defended by Grosseteste and Roger 

Bacon in the thirteenth century, as well as by Galileo and Erancis Bacon in the 

beginning of the seventeenth century. In fact, this procedure which incorporates the 

Cartesian system of testing hypotheses has laid the foundation for the most common 

scientific method used today.

During the Enlightenment4 and the beginning of the nineteenth century that

followed the success of Newton’s theories, there was a romantic reaction against 

4 The period of the Enlightenment is often equated with the latter part of the eighteenth century 

(Hellemans & Bunch, 1988, p.188).
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the mechanistic and materialistic philosophy behind scientific development. The 

romanticists’ view of nature was, to use a modern term, holistic; that is, "they 

believed that all nature should be viewed as a single organism and imbued with 

spirit” (Hellemans & Bunch. 1988, p. 189). Their influence was eventually replaced 

by materialism and "positivism” (Hellemans & Bunch, 1988, p.271). In positivism, 

the use of scientific principles to explain the laws governing all phenomena super­

sedes the two earlier stages of knowledge: a theological stage in which phenomena 

are explained by divine powers and a metaphysical stage in which phenomena are 

explained by general philosophical ideas. Little attention was paid to the devel­

opment of scientific methods until the arrival of the theory of falsificationism first 

expounded by Karl Popper (1902-1994).

The theory of falsificationism states that “although scientific generalizations can­

not be conclusively verified, they can be conclusively falsified by a counterinstance; 

therefore, science is not certain knowledge but a series of ''conjectures and refuta­

tions’, approaching, though never reaching, a definite truth” (TSP, 1996, p.697). In 

other words, falsificationism is the belief that the merit of a scientific theory lies only 

in how well it stands up to rigorous testing. Such thinking also implies that a theory 

can only be held to be scientific if it makes predictions that are testable. For Popper, 

psychoanalysis and Marxism are unfalsifiable and therefore unscientific. "Critics of 

this belief acknowledge the strict logic of this process, but doubt whether the whole 

°f scientific method can be subsumed into so narrow a programme ’ ( LSP, 1996, 

P-321). Nevertheless, Popper’s revolutionary contribution to scientific methods is 

best illustrated by one of his critics, Thomas S. Kuhn (1922-), who argued that 

Paradigms such as Darwinism and Newtonian theory are so dominant that “they
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are uncritically accepted as true, until a ‘scientific revolution creates a new ortho­

doxy” (TSP, 1996, p.496). Whilst the scientific method has reasonably solidified 

so far, some modern scientists are eager to break loose from the rigid tradition of 

partitioning disciplines strongly influenced by the Linnaean classification scheme.

Over the history of science since the Renaissance, as the totality of science knowl­

edge has grown, scientists have specialised more and more. At the same time as there 

has been specialisation, there has also been a merging of disciplines. Albert Einstein 

(1879-1955) limited his work to theoretical physics, but contributed to virtually all 

parts of that field; whilst astrophysics and biophysics are two examples of merging.

A recent revolution in scientific development showed that a single principle is 

devised to interpret various phenomena across scientific fields. Chaos Theory has 

been applied, for example, to meteorology, population modelling, quantum mechan­

ics and astronomy (Crilly et al., 1991). Mandelbrot (1983) also revolutionised the 

non-Euclidean geometry and formulated the theory of Fractal Geometry solely from 

the entities of the classic geometry. The applicability of the theory will be rigorously 

tested under the framework evolved in the long history of science.

2.2.2 T he M ethodological Structure o f the T hesis

1 his thesis exercises perhaps the most common approach in science, described in 

the previous section and illustrated in Figure 2.2. The methodology is utilised to 

estimate the fractal dimensions of real measurements and the corresponding math­

ematical models, and to make comparisons between them. The methodological 

structure appears to transcribe the ancient Greek inductive-deductive procedure.
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Induction

(1) Experimental Data (2) Explanatory Principles

(3) Mathematical Models

Deduction

F racial Analyses 
Specific Analyses 
Statistical Analyses

Wave Profiles 
Landform DEMs 
Fern NDVIs

Figure 2.2: The Methodological Structure of the Thesis.

However, it is more akin to the proposal by Isaac Newton, who integrated the 

Greek “either-inductive-or-deductive” approach and insisted that scientific proce­

dure should include both inductive and deductive stages (Losee, 1980, p.81). Fur­

thermore, the structure incorporates the concept of testing hypotheses formulated 

by René Descartes (Losee, 1980, pp.77-8).

At the methodological level, the inductive-deductive procedure is followed twice 

in completing the analysis of a single data set. In the inductive stage of the first 

run, the theoretical aspect of the fractal dimension is introduced, followed by the 

deductive stage of the first run, the estimation of the fractal dimension of the real 

world data. In order to test the applicability of the fractal dimension, the derived 

fractal dimension has to be compared to that of known or mathematical models. 

I herefore, the inductive-deductive procedure is followed for the second time, when 

theoretical models of natural systems are introduced then followed by the estimation 

of the fractal dimension of such synthetic data. This procedure is completed for each 

°f the three data sets: wave profiles, landform data, and fern images.
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Fractal Geometry centres on the estimating of fractal dimensions and also pro­

vides a guidance to the selection of data. The fundamental concept of fractal 

Geometry is given in the following section, while the methods of analysis are de­

tailed in Chapter Three. This chapter continues with the selection of data in the 

context of system evolution introduced in the Mandelbrot set.

2.3 F rac ta l G eom etry : A n A spect of N a tu re

Although Henri Poincare (1854-1912) (TSP, 1996, p.690) recognised in 1903 that 

very small inaccuracies in initial conditions can lead to vast differences in a short 

order, the fundamental idea of chaos was not explored much further until the 1970s 

and 1980s (Hellemans & Bunch, 1988, p.403). The most famous examples of chaos 

phenomena from the empiricist and rationalist camps are, perhaps, the Lorenzian 

waterwheel (Gleick, 1987, p.27) and the logistic map (May, 1992, for example), 

respectively. However, a deterministic system shows a totally different dynamic if 

the researcher either changes the experience of data collection or alters the reasoning 

of an equation; if, for example, in the case of the waterwheel, “irregular” movements 

of the bucket are regarded as “data” instead of “noise”; or, in the case of the logistic 

equation, one of the parameters is altered to an unusual range of value. See Figure

2.3 and refer to Appendix A for chaos arising from a deterministic system. The C 

programme that calculates such a system is listed in Appendix B. However, the 

quantification of such structure proved to be a great challenge until the science of 

Fractal Geometry was introduced.

Fractal Geometry, coined and developed by Mandelbrot (1977), shows that a
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Figure 2.3: Dynamics of a Logistic System, = n.r((l — £<).
(Top) The state variable (x) is plotted against time (t.) for various values of param­
eters (a), representing the stable, bifurcating, and chaotic dynamics. I he final state 
x is then plotted against a range of the parameter a (see below).
(Bottom Left) As parameter a increases from 0 to 4, its dynamics change from 
predictable to unpredictable. When a is greater than 3.5699456..., chaos occurs. 
(Bottom Right) Self-similar structure is as seen from the window on the left.

complex structure can be generated by simple building blocks (Barnsley, 1993). 

furthermore, it produces scale-invariant fractional dimensions entirely different from 

Euclidean integral dimensions, although it is based on the entities of classical geom­

etry (Mandelbrot, 1983). The implication is that a complicated object of self-similar 

structure could be represented by the fractal dimension.

This section introduces fractals that existed before the Fractal Geometry was 

formulated, including those in humanities, and various objects that are of fractal 

nature. It continues with the definition of a fractal set, followed by the discussion 

°n the system evolution revealed in the Mandelbrot set.
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2.3.1 Fractals before M andelbrot

The concept of fractals is scattered throughout humanistic as well as scientific works, 

although the term was coined by Mandelbrot (1977). It appeared, for example, in 

the European arts and in the oriental literatures. Many other objects were identified 

as of fractal nature by Mandelbrot (1983) himself, and were the source of inspiration 

for his creation of Fractal Geometry.

Fractals in Humanity

Perhaps the most interesting paintings reflecting this concept were those of the 

Dutch artist, Maurits C. Escher (1902-1972) (Escher, 1967; Schattschneider, 1990). 

Mandelbrot (1988) was fascinated by the tesselating plane figures which seem intu­

itively to have some fractal form. For example, the '“Day and Night and the "C ircle 

Limits” woodcut series take people by surprise with the gradual changes between 

the dark and bright entities (Schattschneider, 1990; Jones, 1991). A much earlier 

artist who generated a fractal object based on regular pentagons was Albrecht Diirer 

(1471-1528). If we take a regular pentagon and surround that by five identical pen­

tagons, the shape created fits almost exactly into a larger pentagon (Dixon, 1987; 

Jones, 1991). Imagine starting the procedure from the larger pentagon. We could 

draw the six smaller pentagons that sit inside the larger one. The subdivision can 

continue, with ever decreasing pentagons being produced. Each pentagon is a copy 

of the whole. If subdivision is continued ad infinitum, Diirer’s pentagons form a 

truly fractal object.

However, an even earlier example was found in one of the Buddhist sutras (Ap-
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pendix C). The “Array of Flowers” Sutra describes that “all [universes] are con­

tained in one and one in all” (Harvey, 1990. p.118). This notion was echoed by 

some recent cosmologists. For example, Lanini et al. (1996; 1998) argued that the 

universe is not uniform at all, but has a never-ending hierarchical structure in which 

galaxies group together in clusters which, in turn, group together in super clusters, 

and so on.” They assumed that the Universe is better described in terms of a fractal 

set characterised by a fractal dimension. Objections were abundant, however, espe­

cially from other studies on the galaxy redshift surveys (Guzzo, 1997; ( oles, 1998, 

for example).

The above artistic and literal descriptions reveal objects that fit into the defini­

tion of a fractal. There were also certain mathematical objects whose fractal nature 

led to the development of Fractal Geometry.

Objects of Fractal Nature

Several basic ideas of fractals might be viewed as mathematical and scientilic im­

plementations of loose but potent notions that date back to Aristotle and Leibniz. 

Aristotle had already believed that the gap between any two living species can be 

bridged continuously by other species. He was therefore fascinated by “in-between 

animals. This principle of continuity reflected the belief in “missing links” of all 

sorts, including in Greek mythology the chimera, a beast with a lion’s head and a 

goat’s body (Mandelbrot, 1983, p.405). Mandelbrot (1983, p.406) found that the 

idea of fractional integro-differentiation had occurred to Leibniz, as soon as Leibniz 

bad developed his version of calculus. In his free translation of one of Leibniz s 

letters, Mandelbrot (1983, p.405) stated that “[it is] possible to say in a way that
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successive differentials are in geometric progression. One can ask what would be a 

differential having as its exponent a fraction. \o u  see that the result can be expressed 

by an infinite series. Although this seems removed from Geometry, which does not 

yet know of such fractional exponents, it appears that one day these paradoxes will 

yield useful consecjuences, since there is hardly a paradox without utility.

In mathematics, Aristotle’s idea finds an application in the interpolation of the 

sequence of integers by ratios of integers, then by limits of ratios of integers. What 

about Cantor, Peano, and Koch curves? Cantor’s curve is "divisible without end 

but is not continuous” (Mandelbrot, 1983, p.406). They are among the examples 

of fractal objects that were devised in the pre-Mandelbrot era. A list of people and 

their respective relations to the concept of fractals is given in Table 2.1.

The Fractal Dust

During the late nineteenth century the theory of sets was being developed. Math­

ematicians delighted in producing sets with ever more weird properties, many of 

them now recognised as being fractal in nature. One of these is the set devised 

by George Cantor (1845-1918) (Lauwerier, 1991; Jones, 1991). Its construction is 

relatively simple: Begin with all real numbers in the interval [0,1] of the real time; 

Extract the interval (1/3, 2/3) which constitutes the central third of the original 

interval, leaving the two closed intervals [0, 1/3] and [2/3, 1]; Continue this process, 

at each stage extracting the central third of any interval that remains. It may not 

seem particularly remarkable if this, is continued ad infinitum, but the set has some 

unusual properties. A piece of simple arithmetic shows that the points remaining 

in the Cantor set, although infinite in number, are crammed into a total length of
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Date Name Profession Note
Fractal Artists

1471-1528
1902-1972

Albrecht Dürer 
Maurits Escher Nl. Artist

(Jones, 1991; Dixon, 1987) 
(Jones, 1991; Schattschneider, 
1990)

Fractal Dusts
1845-1918 George Cantor D. Math. (Jones, 1991; Peitgen et al., 

1992)
jfractal Curves

1858-1932
1862-1943
1870-1924

Giuseppe Peano 
David Hilbert 
Helge von Koch Su. Math.

Space-filling curve 

Nowhere differentiable curve
Fractal in Higher Dimensions

1882-1969 Waclaw Sierpinski PL Math. Sierpinski triangle
Fractal in Complex Plane

1878-1929
1893-1978

Pierre Fatou 
Gaston Julia Fr. Math. Julia set

Non-inteqral Dimensions
1919 Felix Hausdorff D. Math. Hausdorff dimension

il landelbrot Se
1976 B.B. Mandelbrot Am. Math. Coined ‘fractal’ and developed 

Fractal Geometry

Table 2.1: A List of People who Created Fractal Objects.
Most of them were artists and mathematicians (Math.), dwelling in France (Fr.), 
Germany (D.), Netherland (Nl.), Poland (PL), Swiss (Su.) in Europe. The American 
(Am.) mathematician Mandelbrot (1983) was also related to French institutes.

magnitude of zero. Such points must be disconnected: there is some unfilled space 

between any pair of points in the set, no matter how close these points may be. 1 he 

set is said to form a “dust”. Thus, the Cantor set contains an infinite set of values 

which lie in a zero length space, yet they have a one-to-one correspondence with the 

set of all real values which fill the interval [0,1]. See Figure 2.4.

The Fractal Curves

In 1890 Giuseppe Peano (1858-1932) “show[ed] how thoroughly mathematicians 

could outrage common sense when he constructed continuous space filling curves’’. 

David Hilbert (1862-1943) later developed a similar construction, a curve which vis-
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Figure 2.4: The Cantor Set and the Koch C urve.
I lie Cantor comb (rectangles) is obtained by repeatedly taking away the middle 
third of the previous rectangles. A similar process is applied to construct the Koch 
curve (lines), where the gap is replaced with two lines of 1/3 unit.

its every point in a square and which is nowhere differentiable. 1 he curve generated 

by Helge von Koch (1870-1924) in 1904 is one of the classic fractal objects. The 

curve is constructed from a line segment of unit length. Then the central third of this 

line is extracted and replaced by two lines of length 1/3. 1 his process is continued, 

the central third of any line segment being replaced at each stage by two lines of 

length one third of that of the segment. The protrusion of the replacement is always 

on the same side of the curve. Note that the points at which the linal curve touches 

the original line are the points of the Cantor set. At each stage, the total length 

of the curve is multiplied by 4/3. In fact, the length of the complete Koch curve is 

infinite. Now consider the area between the Koch curve and the oiiginal line. At 

each stage, four times as many new triangles are added to the total aiea, the area
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of each triangle added being one-ninth of those added at the previous stage. I hus, 

the increase in area at anv stage is four-ninths of the area added at the previous 

stage. This leads to a geometric progression for the total area, which has a finite 

sum. Therefore, we have a curve of infinite length which encloses a finite area. 1 his 

curve is nowhere differentiable, that is, it does not have a well defined slope at any 

point. It also contains an infinite number of perfect miniature images of itself. As 

the curve is infinite in length, any scaled down sub-image is also of infinite length. 

Refer to Jones (1991, p .ll)  and Figure 2.4 for more details.

There are many other fractal curves with similarly intriguing properties, for 

example, Levy’s curve, Koch's quadric curve, the monkey tree curve, etc. (Lamverier 

& Kaandorp, 1987; Saupe, 1988b; Jones, 1991; Peitgen et «/., 1992)

Fractal O bjects in Higher Dimensions

VVaclaw Sierpinski (1882-1969) gave his name to a number of fractal objects: the 

Sierpinski triangle (or gasket) and the Sierpinski carpet, formed in two-dimensional 

space; and the Sierpinski tetrahedron and sponge, constructed in three-dimensional 

space. To construct a Sierpinski triangle, extract from an original triangle the 

inverted half-scale copy of itself formed by joining the midpoints of the three sides. 

Three half-scale triangles now remain, so one-fourth of the area of the original 

triangle has been removed. The process is now repeated for each triangle remaining 

in the object. If the original area is set to A, the area removed by this process gives 

another geometric progression which sums up to A. 1 hat is, we have extracted a 

region of the same size as the whole of the original space, but we still have points left 

in the Sierpinski triangle. A similar procedure can be performed using a square as
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the original region, which gives a “Sierpinski carpet". The Sierpinski tetrahedron is 

created by a similar repetitive construction and replacement stiategv, starting with 

a tetrahedron or triangular based pyramid, lhe  Sierpinski sponge, also known as 

the Menger sponge, is a close relative of this shape. Its formation is very similar 

to that of the Sierpinski carpet, except that the starting shape is a cube in three 

dimensions rather than a scpiare in two dimensions. Refer to Jones (l.).)l, p.14) 

more details.

2.3.2 Fractals Formally Defined

.. , fractal objects; that is, fractals areThis section introduces the essentials oi

. . ir „fPnp structures of non-integral dimensionsexactly self-similar or statistically self-amn

residing in a complete matrix space.

Fractals are Self-similar O bjects of Non-Integral D im ensions

The word “fractal” has its root from the Latin adjective ¡raclus corresponding to

i _ , i ” tviandelbrot 1983). Mandelbrot (1983, p. 15)the verb frangere, meaning ‘ to break (Mann - ’

stated that “a fractal is by definition a set for which the Hansdorff-Bescovitch di­

mension ID] strictly exceeds the topological dimension [D r ]\ and “every set with

„ ul „u fractal may have an integer D"\ he con-a non-integer D is a fractal", although a tractai

tinned that “the dimension Dr is always an integer, but D need not be an integer." 

The formal definition of topological dimension is sophisticated (Hastings fc Sugi- 

hara, 1993, p.29, for example); usually, objects such as a curve, a surface, and a solid 

are assigned topological dimensions of 1, 2 and 3, respectively (Barabasi Stanley,
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1995, p.31). The roots of defining dimensions that were in Euclid s Books on geom­

etry were “as clear as mud” (Mandelbrot. 1983, p.409). However, the relationship 

between Euclidean space (De ) and topological dimension is generally made clear in 

the statements such as “the topological dimension of an object in Euclidean space 

(Hastings k  Sugihara, 1993, p.29). Therefore, the following relationship is generally 

accepted, that is,

Dt < D < De ■ O2-1)

The HausdorfF-Bescovitch dimension comprises the Hausdorff measure and its 

non-integral dimension formulated by Bescovitch (Mandelbrot, 1983, p.36-1), there­

fore, it was actually developed by the two mathematicians whose names are at­

tached to it. The fractal dimension has been widely used instead of the Hausdorff- 

Bescovitch dimension since Mandelbrot (1983). However, reseaicheis sometimes 

rephrased Mandelbrot’s definition erroneously. For example, Jones (1991, {>.7) 

quoted from Peitgen k  Richter (1986) who stated that Mandelbiot s definition 

°f a fractal set X  is one whose Hausdorff dimension h(A ) is not an integer ; and 

Turcotte (1992, p.74) even replaced the Hurst exponent with the Hausdorff measure.

The notion of non-integral dimension is one of the two essential characteristics of 

a fractal set whereas the other is self-similarity and self-affinity. A fractal object is 

self-similar in that subsections of the objects are similar in some sense to the whole 

object. No matter how small a subdivision is taken, the subsection contains no less 

detail than the whole. Typical examples of fractal objects are “Diirer’s Pentagon” 

(c. 1500), the “Pythagorean Tree” and the “Snowflake Curve” by Helge von Koch in 

1904 (Jones, 1991, p .l). These examples have exactly similar subsections, but many 

fractal objects, particularly those which occur naturally,’ have -statistically similar
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subsections, so that those subsections have similar forms with some variations.

In the Euclidean space of dimension E , a real ratio r > 0 determines a trans­

formation called similarity (Hutchinson, 1981). It transforms the point A' = 

(Ah, • • • Xs, • • •, A'e ) into the point r(A') = (rA i, • • •, rXs, • • •, ;’A e ); hence, it trans­

forms a set into another set. A self-similar fractal appears the same for all scales. A 

coastline exhibits such self-similar behaviour. Upon magnification, segments of the 

coastline look like segments at different scales (Poon et al., 1992, P-1273). Other 

self-similar sets include, for example, the Cantor dust, the Koch curve, the Julia

sets and the Mandelbrot set.

Similarly, in the Euclidean space of dimension, E, a collection of positive 

real ratios r =  ( n , • • •, rj, • • •, r^) determines an affinity. It transforms each 

point X  = (Ah, • - - , A'j, • -‘,X e) into the point r(A) = r(Ai, • • •, Xs, • • •,X e ) = 

(r iA'lt • • •, r&Xs, • • ■, veX e)] hence, it transforms a set 5  into the set r(S). Man­

delbrot (1983, p.350) also defined the bounded and unbounded sets of both the 

self-similar and self-affine sets. Practical examples are vertical cuts through either 

relief, a surface of non-isotropic metal fracture, or records of electronic noise.

A self-affine fractal is self-similar only when scaled in one direction. This scaling 

behaviour of different profiles, such as surface profiles of fractured rocks, is charac­

terised by the Hurst exponent H in the range 0 < H < 1 (Poon et a l 1992, p.1274). 

When H is close to 0, the surfaces are roughest while values of II close to 1 are 

relatively smooth. II is related to the typical changes of surface height, *, which 

is a single-valued function of distance, t\ that is, when t is magnified by a factor r, 

be., t becomes rt, then * must be magnified by a factor r " ,  i.e., 2 becomes rHz.



CHAPTER 2. THE METHODOLOGY 27

More common examples of self-affine structures are records of the scalar Brown­

ian motion B(t), of the more general fractional scalar Brownian motion B„(i) whose 

parameter H satisfies 0 < / /  < 1, and of related fractal motion (Mandelbrot, 1985, 

p.257). Note that, when a point moves in the ary-plane, the “tra il' is the set of points 

(x, y) that have been visited, and the “record” will be the sets of points (f, x{t)) and 

(t,y(t)). Wiener’s scalar Brownian motion B(t) is the process within independent 

and stationary Gaussian increments. It has a well-known invariance property, at, 

setting B{0) =  0, the random processes B(t) and I r ^ B ( b t )  are identical in distri­

bution for every ratio b > 0. One observes that the rescaling ratios of t and of B  are 

different, hence the transformation from B(t) to b '^ B ( b t )  is an “affinity” . This is 

why B(t) is “statistically self-affine” (Mandelbrot, 1983; Mandelbrot, 1985, p.257).

A very important role is played in Fractal Geometry by the more general frac­

tional Brownian motion B„{t), where 0 < B  < 1. If 0) = 0, the random 

processes BH(t) and b~HB(bt) are identical in distribution. The value / /  =  1/2 

brings B(t) as a special case of *„(<), called random walk or Brownian motion. It 

is the random walk or the Brownian motion that is used to model self-affine frac­

tals such as mountain terrains (Voss, 1988; Poon et a/., 1992). This current thesis 

utilises this concept to generate digital elevation models, detailed in Chapter Five.

Evertsz & Mandelbrot (1992) stated that “the idea of self-similarity is readily 

extended from sets to measures”, which are then called “multifractals ; although 

the probabilistic approach to multi-fractals was first described in two papers by 

Mandelbrot (1974a; 1974b). Interest in multifractals has grown considerably (Held 

& Illangasekare, 1995; Gutierrez et al., 1996; Tcheou & Brachet, 1996; Bershadskii, 

1997, for example). Refer to Appendix D for some details of multifractal dimensions.
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Determ inistic and Random Fractals

The relationship between (deterministic) fractals and random fractals was that (ex­

actly) scale-invariant objects are fractals and statistically scale-invariant objects are 

random fractals (Hastings & Sugihara, 1993, P-13). Fractals are defined by Hast­

ings it  Sugihara (1993, p.16), for example, to be scale-invariant, either self-similar 

or self-affine, geometric objects. A geometric object is called -self-similar" if it

r 1 a of itself with the rescaling copiesmay be written as a union of rescaled copie

• a • A rrpnmetric object is called “self-affine" ifisotropic or uniform in all directions. A geom J

it may be written as a union of rescaled copies of itself, where the rescaling may

be anisotropic or dependent on the direction. -Regular fractals" display exact self-

• ,,,rsaL-rar statistical version of self-similaritysimilarity. “Random fractals display a weak , -

or, more generally, self-affinity. Although describing the same concepts, other re­

searchers (Turcotte, 1992, for example) used terms such as “deterministic” and 

“statistical” fractals.

The Space where Fractals Live

In the geometrical space of real numbers, R, each point in it is a real number, or

. , _  . . .  , r>2 ;= the coordinate plane of calculus. Anya dot on a line. The Euclidean plane, R , is me cum v

_ o , a simile point in R2, where € meansPair of real numbers Xi, x2 € R  determines a single pom
“belongs to." In the complex plane, C, any point is represented by

x = xi +  WJ>

where i = ^ = 1  for some pair of real numbers x „  x2 S Any pair of numbers 

x„  l2 e  R  determines a point of C. It is obvious that C is essentially the same as
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R \  but there is an implied distinction. In C we can multiply two points x ,y  and 

obtain a new point in C,

x ■ y = (x, + « , ) ( „  + i» )  =  (*.#■ -  **»> +  +  I,W )' (2'3)

The Riemann Sphere, C, is formally defined as 6 = CU{oo}. That is, it includes all

the points of C  together with the "point at infinity." Here is a way of constructing

, „lanp C witii the South Pole on theand thinking about C. Place a sphere on the plane O,

origin, and the North Pole vertically above it.

„  . , structure of subsets of various simpleFractal Geometry is concerned with the

. , . j l,, v  and defined thus by Barnsley'‘geometrical'’ spaces. Such a space is denot y

as “a space X  is a set...where fractals live (1992. p-^)

« i,orn fnrtals live," we need to know the In order to understand the space wh

. j> j “tlip compact sets . Refer to Barnsleydefinitions of "a complete metric space ai

(1993) for mathematical details.

. , „  . n  crv studied, starts with some completeIdeal space, in which fractal Geome >

. „ . n o* However, then “it becomes natural tometric space such as the Euclidean, R  ■

introduce the space H"(Barnsley, 1993, p.27). Let (X ,d) be a complete metric

space. Thus, H( X )  denotes the space whose points are the compact subs

, mi u distance between points A and 13 in H(A)other than the empty set. I he Hausaoijj

w Thp notation i V i/ is used to mean the is defined by h(4 , B) = d(A, B) V d(B,  .4). lhe  notation

, „ j  „ Rarnslev (1993) referred to ( I I (X)J i )maximum of the two real numbers x an J-

as the “space of fractals."

1 1 are random fractals (Hastings & Sugihara,Although virtually all natural objects are ranaor

,, . • Upat first explored through the study of1993, p.16), the concept of self-similarity is best hist p
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regular fractals. There are numerous mathematical fractals. I he first and perhaps 

the most fundamental one is called the Mandelbrot set, devised by Mandelbrot 

(1977; 1983) in order to illustrate the concept of fractals. The systems dynamics of 

constructing such a set are given in the following section.

2.3.3 System s Evolution in the M andelbrot Set

The connection between Fractal Geometry and the systems evolution as introduced 

by Chaos Theory can be illustrated by the Mandelbrot set (Mandelbiot, 1983). The 

process of generating the Mandelbrot set incorporates exactly the elements that 

characterise a chaotic system: it is deterministic, non-linear and sensitive to initial 

conditions. The set also reveals the exact characteristics of fractals, that is, they 

are self-similar structures with scale-invariant measures, the fractal dimension. See 

the discussion below and Figure 2.5.

The Mandelbrot Set A Julia Set

Figure 2.5: The Mandelbrot and Julia sets.
The Mandelbrot set is a “‘road map” to Julia sets, which can be located by the 
reference points (mu).  Shades of greyness are equipotential surfaces, representing 
rates of escaping to infinity, in the dynamics of c i—>■ z2 + zQ.
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Generation of the M andelbrot and Julia Sets

Fractals generated from the theories of Gaston .Julia (1693-1978) and I iene Fatou 

(1878-1929), dating from about 1919, are based in the complex plane. Work similar 

to that of Julia and Fatou had been attempted earlier, but with little success. For 

example, Arthur Cayley (1821-1895) was defeated by the complexity of attempting 

to determine which root of a complex equation would be approached from various 

starting points, using Newton’s iterative method. Using modern computers, it is 

relatively easy to demonstrate that the boundaries between the regions defined in 

this problem are fractal in nature, but without the concept of fractals and without 

computer power this problem proved too complicated for Cavley in 187.) (Peitgen 

& Richter, 1986; Peitgen et al., 1992). It was eventually solved by Hubbard, one 

hundred years after Cayley’s attempt (Gleick, 198<; Jones, 1991).

The direct method for computer graphic generation of a Julia set on a raster 

device involves repeated evaluation of the non-linear deterministic function

z H- z2 + c, (2-4)

where the complex c is on the reference c-plane, and complex number z is picked 

out on a working z-plane (Figure 2.5). Evaluation of the above equation repetitively 

yields a sequence of image points of z. There are two frequently occurring outcomes; 

that is, either the sequence of image points diverges and eventually approaches 

infinity, or it converges to a fixed point. There are other possibilities, such as a 

finite cycle of points being repeated, but the divergent and convergent sequences 

are the most frequently observed. While c is fixed, points Zo = (&o,yo) which act as 

starting points for such an operation can be divided into two sets: the set of points
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for which tire sequence diverges and the set for which the sequence does not diverge. 

Those points which lead to non-divergent sequences but he next to points which 

create divergent sequences constitute the ■‘Julia set" for a particular value of c. T he

Julia set is the boundary between the non-divergent values of -o and the divergent

. . , , , I . r «.U,, nnn-divereent values. 1 lie completevalues of 2o, lying just within the set of th

„ . . r •_ raiifHi the “filled-in” Julia set (Duoady,set of non-divergent starting values of ~o 1S Ct

1986; Jones, 1991).

Reeve (1991) used the method suggested above and showed how changing the 

power of z gives different effects. For example, using the function

z ‘ + c (2.5)

gives k possible values of for each so the random selection at each stage 

is from a larger set of possibilities. Experiments with a range of functions produce 

images resembling primitive biological life forms (M o v er , 1986; Kaandorp, 199-1).

Very similar to the Julia set, the method used to generate the Mandelbrot set is

Z l - >  Z +  ZQ. ( 2.6)

However, to create an image of the Mandelbrot set, the starting point is set to the 

origin of the complex plane. Sequences of image points are evaluated in the same 

way as for the Julia sets, except that both 2 and 20 are on the 2-plane. Extremely 

different types of systems dynamics are observed at neighbouring points, that is, the 

initial conditions, especially close to the set boundary.

The relationship between Julia sets and the Mandelbrot set is actually very rigid. 

Different values of the constant c give many different shapes of Julia set. They fall
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into two essential different forms: connected and disconnected. If a .Julia set is 

connected, then any point within the set can be joined to any other point within 

the set by a line which lies completely within the set, with the boundary enclosing 

a single “island”. Other values of c give disconnected sets, reducing to a “dust of 

separate points in two-dimensional space (Duoady, 1986; Peitgen k  Richter, 1986; 

Jones, 1991; Reeve, 1991). The Mandelbrot set is “the set of values of c for which 

the Julia sets are connected” (Jones, 1991, p.24). If a point within the outline of the 

Mandelbrot set is used to define the constant for the generation of a Julia set, then

the Julia set will be connected (Peitgen & Richter, 1986; Reeve, 1991). If the point 

is outside the Mandelbrot set, the generated Julia set is disconnected. T heiefoie, tin 

Mandelbrot set has been termed its name as “the road map oi table of conti nt 

of the Julia sets (Peitgen et al., 1992, p.855). For example, the Julia set in Figure 

2.5 (Right) can be located by the mu value on the Mandelbrot set on the left. There 

can be many Julia sets, although there is only one Mandelbrot set.

System s Evolution in the M andelbrot Set

The systems evolution depicted in the Mandelbrot set can be interpreted in the 

context of systems evolution using equipotential surfaces (Figure 2.6). I he non- 

divergent part of the Mandelbrot set can be regarded as a piece of metal charged 

with electrons. This charge produces an electrostatic field in the surrounding space, 

resulting in an attracting force on any small test charge of the opposite polarity. 

Imagine the field is bounded by vectors indicating the direction and the strength 

of the force per unit test charge. The lines which follow the vectors from any 

given point to the charged non-divergent part are those that infinitesimally small
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Figure 2.6: System Evolution as Depicted in the Mandelbrot Set.
Areas of similar systems (1), diverse systems (2), and the area containing the bound­
ary between those areas (3) can be identified from the Mandelbrot set (M).

test particles would travel when exposed to the field. These lines are called “field 

lines". In an electrostatic field, the potential energy of an object can be defined 

"in terms of the external work necessary to move it from place to place against the 

forces of the force field”, and the eqnipotential surfaces as “surfaces on which the 

potential is constant’’ (Peitgen et al., 1992, p.801). For example, the equipotential 

surfaces of a point charge are spheres, and those of the infinite wire are cylinders. 

The equipotential surfaces of irregular objects such as the Mandelbrot set are also 

possible. Refer to Peitgen et al. (1992) for the computation of the electrostatic 

potential.

The equipotential surfaces give an idea of the diversity of system evolution; 

that is, the intensity of the field is inversely proportional to the distance between 

equipotential surfaces when they are drawn for equally spaced values of the potential.
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In other words, sparse equipotential surfaces indicate relatively similar systems, and 

crowded equipotential surfaces mean relatively diverse systems. Therefore, three 

types of dynamics can be categorised, including the one containing the boundary 

between similar and diverse systems. This classification scheme also identifies the 

corresponding natural systems to be analysed in this thesis.

2.4 D a ta  T ypes

Fractals are “everywhere” (Barnsley, 1993) to which the estimation of fractal dimen­

sion can be applied (Mandelbrot, 1983), although some (Panico & Sterling, 1995; 

Kurz et al., 1998, for example) argued that retinal neurons and blood vessels are 

not fractal. Among many natural systems, three systems are found to correspond to 

the three types of systems dynamics identified in the Mandelbrot set: the sea wave 

profiles, landform as in the form of digital elevation models, and the normalised 

difference vegetation index (NDVI) image of ferns. The first data set is an example 

of temporal homogeneity. The second contains data that represent spatial hetero­

geneity. The third is related to plant growth rigour in space. The following three 

sub-sections provide current understanding of those phenomena.

2.4.1 T ides and W aves

The prediction of tidal heights makes use of the knowledge that the observed tide is 

the sum of a number of components or partial tides, each of whose periods precisely 

corresponds with the period of one of the relative astronomical motions between
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earth, sun and moon (Doodson & Warburg, 1941). Table 2.2 gives some principal 

tidal components and respective periods in solar hours forming the basic patterns 

of tides (Brown et al., 1989).

Name of the component Symbol Periods in solar hours
Principal lunar m 2 12.42
Principal solar s2 12.00
Large lunar elliptic n 2 12.66
Luni-solar semi-diurnal k 2 11.97
Luni-solar diurnal I<x 23.99
Principal lunar diurnal 0 1 25.82
Principal solar diurnal Px 24.07

Table 2.2: Some Principal Tidal Components. 
After Brown et al. (1989, p.57).

These basic patterns of tides can be modified by local effects, particularly those 

of harmonic, that is, simple multiples of the frequency of the partial tides (Russell 

& Macmillan, 1952, p.58). For example, just west of the Isle of Wight, the principal 

lunar tide is about 0.5 metres, the quarter-diurnal component about 0.15 metres, 

and one-sixth diurnal component about 0.2 metres (Russell & Macmillan, 1952, 

p.59). The period of waves that break on the English Channel coasts and are 

generated by local winds is of the order of six seconds, while Cornish has reported 

on two occurrences of very large waves, namely, 19 and 22.5 seconds, breaking in 

Bournmouth Bay (Russell &c Macmillan, 1952, p.34). Such observation is actually 

the measurement as a result of wave interference (Brown et al., 1997).

Figure 2.7 shows an example of interference of two idealised waves: if the differ­

ence between the wavelengths of two sets of waves (or wave trains) is relatively small, 

the two sets will “interfere” and produce a single set of resultant waves. Where the 

crests of two wave trains coincide, the wave amplitudes are added and the resultant



CHAPTER 2. THE METHODOLOGY 37

lime

time

Figure 2.7: Wave Interference.
Interference occurs at the merging of two wave trains of slightly different wave­
lengths. Modified from Brown et al. (1997) and Russell & Macmillan (1952).

wave has about twice the amplitude of the two original waves. Where the two wave 

trains are “out of phase”, that is, where the crests of one wave train coincide with 

the troughs of the other, the amplitudes cancel each other out, and the water sur­

face has minimal displacement. The two component wave trains thus interact, each 

losing its individual identity, and combine to form a series of wave groups, separated 

by regions almost free from waves, as explained by Brown et al. (1989, p.20). The 

wave group advances more slowly than individual waves in the group, and thus in 

terms of the occurrence and propagation of waves, group speed is more significant 

than speeds of the individual waves in it.

Individual waves do not persist for long in the open sea, only as long as they 

take to pass through the group. Figure 2.8 shows the relationship between the wave 

speed (or phase speed) and the group speed in the open sea. As the wave advances
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Figure 2.8: The Relationship Between the Wave Speed and the Group Speed. 
Wave advances twice the speed of the group in the open sea. Modified from Brown 
et al. (1997, p.20).

from left to right, each wave moves through the group to die out at the front, e.g., 

wave 1, as new waves form at the rear, e.g., wave 6. In this process, the distance 

travelled by each individual wave as it travels from rear to front of the group is twice 

that travelled by the group as a whole. Hence, the wave speed is twice that of the 

group speed. However, wave energy is contained within each group, and advances 

at the group speed. For more details refer to Brown et al. (Brown et a/., 1989, p.21).

Entering into shallow water, the wave dynamics start to change. As the water 

becomes shallower, wavelength becomes less significant and depth becomes more 

important in determining wave speed. As a result, wave speed in shoaling water 

becomes closer to group speed. Eventually, all waves travel at the same depth- 

determined speed, there will be no wave-wave interference, and in effect each wave 

will represent its own “group”. Thus, in shallow water, group speed can be regarded 

as equal to wave speed (Brown et al., 1989, p.21).

The prediction of tides in the open sea is fundamentally different from the mea­

suring of wave heights in the shallow water as a consequence. Out in the open sea, 

for example, the wave-wave interference dominates the system dynamics. However 

complicated it may be, the wave group speed is relatively easy to predict, hence the
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other characteristics of waves (Doodson &: Warburg, 1941). In fact, tide tables have 

been produced for many areas, such as the posts surrounding the Humber estuary 

of England (ABP. 1997). When waves enter shallow water, depth determines the 

wave speed and other characteristics. Furthermore, the wave pattern is dramatically 

modified by the local effects of harmonics, as explained earlier in this section, and 

by the influence of terrestrial conditions (Doodson &: Warburg, 1941). It is thus not 

surprising that actual measurements of wave heights differ distinctly from port to 

port along the coastlines in the world.

However, some wave characteristics seemingly remain unchanged in theory and 

are subject to further tests. In contrast to individual waves which disappear as 

soon as they pass through the wave group in the open sea (Brown et al., 1989, 

p.20), the wave group carries forward all the characteristics occurring as a result 

of interference. In other words, individual waves lose their discrete characteristics 

only to produce a composite wave group that represents the waves that generate it. 

Such a wave group itself can be treated as an individual wave, which has repeated 

patterns of heights. The dynamics of one section of the wave should, therefore, 

be consistent with those of another. The question remaining here asks how such 

dynamics may be measured or quantified.

Along with some conventional methods, the fractal dimension is chosen because 

it is aimed at measuring the self-similarity of natural phenomena. It is anticipated 

that the relative homogeneous sections of nearshore waves can be characterised 

clearly by their similar fractal dimensions. A similar approach can then be applied 

to more heterogeneous systems such as landforms.
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2.4.2 Land form

In this section, attention has turned from the analysis of a homogeneous system to 

that of a heterogeneous system. Apart from the choice of different type of data, 

another important aspect of the objectives is to maintain the use of one single 

method for calculating the fractal dimension. In other words, this thesis has actually 

proposed a relatively new approach of studying landform, as explained below.

There are three basic approaches to applying the fractal dimension using its 

digital elevation model (DEM) to analysing landform (Helmlinger et al., 1993; Liu, 

1992, for example). Firstly, one measurement of the fractal dimension is estimated 

to represent the whole DEM. Secondly, one measurement is calculated for each pixel 

of the DEM. This is an alternative to texture segmentation and classification of dig­

ital analysis (Pentland, 1984; Keller et al., 1989; Mussigmann, 1989; Mussigmann, 

1990; Linnett, 1991; Mussigmann, 1992, among others). It usually involves comput­

ing the local fractal dimension by means of the Fourier technique for each pixel to 

form a “dimension map” (Mussigmann, 1992), which can then be classified by com­

mon methods such as assigning breakpoints in the histogram of the derived fractal 

dimensions (Pentland, 1984). However, the more acceptable interpretation of the 

landform is that it contains bi-fractal (Beauvais &: Montgomery, 1996, for example) 

or multi-fractal characteristics (Blacher et al., 1993; Gao & Xia, 1996, for example), 

which are measures extended from sets (Evertsz & Mandelbrot, 1992).

The third approach is to estimate the fractal dimension of profiles from a DEM. 

Here the analogy is established between the sections in a wave profile and the profiles 

in a DEM, which can be taken either arbitrarily or systematically. The method
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of arbitrary sampling includes taking transects along places of interest (Young & 

Harvey, 1996, for example). The method of systematic sampling involves taking 

profiles along both directions of the DEM; and, to the knowledge of the writer 

of this thesis, such an approach has yet to be seen in literature. Therefore, it is 

proposed here that the dynamics of landform can be revealed by the same method 

in which the wave is analysed.

This testable proposal is based on the current understanding of the heterogene­

ity in landform, which is usually characterised by its forms and processes and the 

relationship between them. A close examination of the complexity of sampling in 

time and space leads the study to focusing on forms instead of processes.

Landform Characterised as Drainage Basin Forms

Landform is usually understood by the drainage basin in which it is contained. A 

drainage basin is the entire area providing runoff to, and sustaining part of all of 

the stream flow of, the main stream and its tributaries (Gregory & Walling, 1973, 

p.37). The function of the drainage basin and its significance is hinted at in the syn­

onyms that have gradually been adopted including drainage area, catchment area 

especially employed in river control engineering, and watershed, utilised especially in 

water supply engineering. The need to study the form of the drainage basin derives 

from two main sources: firstly, to describe the form-form relationships or morpho­

logical systems, and secondly, to analyse the form-process relationships. Numerous 

methods of describing drainage basins have been proposed. The subdivision of the 

quantitative expression of a drainage basin, proposed by Horton (1932), is to con­

sider first the topographic characteristics of drainage basins; second, the rock and
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soil characteristics; and third, the vegetation characteristics. It provides the under­

standing of the ways in which these characteristics are interrelated and combined to 

form several kinds of drainage basin terrain types.

Topographic attributes of drainage basins usually include area, length, shape 

and relief. Complete description of the characteristics of the drainage basin must 

include reference to the rocks and sediments beneath the basin; because the type of 

rock will determine the nature and extent of ground water storage and also the type 

of material available for erosion and transport within the drainage basin (Gregory 

& Walling, 1973, p.59). The superficial deposits and soils are often related to soil 

erodibility and dispersion and water transmission properties (Bryan, 1968). As in 

the case of soil types, the vegetation character of the drainage basin can be used to 

characterise a single watershed or to compare several drainage basins.

Interrelationships existing between the basin characteristics described earlier 

could be illustrated by the drainage network. Within the context of the drainage 

basin, the network was studied through application of the laws of morphometry; and 

complemented by stochastic analysis based upon simulated channel networks and the 

awareness of the dynamic character of the drainage net as a necessary pre-requisite 

for appreciating the effect which the network has upon the stream channel process 

(Gregory & Walling, 1973, p.79). Laws of drainage composition were formulated by 

Horton (1945), and supported by, among others, Schumm (1956) and Woldenberg 

(1966) who suggested that the river open system grows ailometrically according to 

the general equation y = axb. However, Milton (1966) argued that some drainage 

net laws were ailometrically irrelevant, and Scheidegger (1966) concluded that the 

actual junction of drainage channels in a network occurs in a stochastic fashion. Fur­
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thermore, Shreve (1966) simulated stream networks and compared these with 172 

published sets of stream numbers and concluded that the law of stream number is 

largely a result of random development of the topology of channel networks accord­

ing to the law of chance. Smart (1969) saw that interest in the topological properties 

of channel networks has led partly to a shift of interest from the properties which 

could be explained by geological and other controls to those which can be accounted 

for by topological randomness. As a result, many of the interrelationships of the 

essentially morphologic drainage basin characteristic system underline the fact that 

relationships may exist between many variables because of the relationships of these 

variables with landform processes.

Drainage Basin Processes

The study of landform processes is typified by the measuring and quantitative eval­

uating both of the runoff dynamics and of sediment and solute dynamics (Gregory 

&: Walling, 1973, p.93). The runoff dynamics are characterised by the measure­

ments, through time, of precipitation input, évapotranspiration losses, precipita- 

tion/catchment interactions, and output of runoff. Furthermore, certain measure­

ments are directed especially towards the assessment of the processes of erosion, 

transpiration and deposition within a catchment, which can be sub-divided into 

three areas of study (Gregory & Walling, 1973, p.145). Firstly, sediment dynamics 

involves sediment on slopes, sediment in channels, and the sediment yield that is 

the resultant of the processes of erosion, transportation and deposition. Secondly, 

there is solute production and transportation, and thirdly, the associated rates of 

erosion or degradation that can be calculated from the amount of sediment and
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solute yields.

Gregory k  Walling (1973, Ch.4) compiled a list of possible quantitative evalua­

tions of drainage basin processes, which reveals the complexity of landform processes. 

The list includes catchment inputs, the water balance, runoff response, sediment and 

solute production, process interrelationships, and modelling of catchment response. 

The measurements and quantitative evaluating of processes are fundamental for the 

study of the interrelationship between process and form.

Process-Form  Relationship

Relationships between drainage basin form and process are of two kinds (Gregory 

k  Walling, 1973, p.234). Firstly, the character and magnitude of processes can be 

influenced by form and, secondly, the processes operating can be responsible for 

fashioning the form of the landform. The relationship is usually realised by the 

investigation of water and sediment in river channels, channel cross section, the 

channel reach, the drainage basin, and drainage basin mechanics. A large number 

of examples of relationships between form and process were given by Gregory k  

Walling (1973, pp.292-3).

The study of landform evolution can lead to an adjustment of basin character­

istics or of drainage basin processes. Theories of drainage basin changes are based 

on short-term changes such as channel pattern and drainage basin pattern changes; 

intermediate-scale changes such as channel geometry, channel pattern and drainage 

basin changes; and towards the long-term changes (Gregory k  Walling, 1973, p.359). 

Knowledge of present drainage basin form and process and of their interrelations can
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provide the basis for an interpretation of the character of changes while, in addition, 

the analysis and dating of sedimentary deposits provides further assistance. A study 

of the past in the light of an understanding of the present might be necessary in 

developing adequate models of landform evolution. However, the methods of study 

must lean heavily upon the additional information provided by superficial deposits, 

and must sometimes employ spatial variations of the present as a basis for indicating 

how changes may take place over time. Therefore, the study of process and form is 

closely associated with the sampling variations in time and space.

Tempo-spatial Considerations in Sampling

Sampling in time is the prime concern for many process geomorphologists. The com­

mon use of continuous monitoring will overcome many of the problems of sampling 

in time, yet this may lead to insufficient data: observations made on a systematic 

basis could miss many of the extreme events that vary markedly in time. Any data 

collected from a short period of study constitute essentially a non-random sample 

of a time series and years may be required before data are sufficiently reliable to 

provide conclusions about the magnitude and frequency of specific events and pro­

cesses. Furthermore, statistical analysis may be required to assess the reliability of 

data in time and to generate long-term records from a short period of measurement 

(Gregory & Walling, 1973, p.95).

The problems associated with sampling in space are equally important. Apart 

from measurements of the output of channel flow and the associated sediment and 

solute yields from a drainage basin, most process data collected are sample data 

and pertain only to small areas or points within the catchment area. Therefore,
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most measurements embody techniques of random sampling to provide data that 

are to some degree representative of total area. Other difficulties are involved such 

as considerations of availability of suitable locations for instruments in terms of ac­

cessibility. Nevertheless, the measurement itself is often only the prelude to detailed 

processing, analysis and evaluation of the data obtained (Gregory &: Walling, 1973, 

p. 183).

Figure 2.9: Possible Field Studies in Time and Space. 
Modified from the slide by courtesy of Kirby (1999).

Possible field studies with different combinations of time and space are illustrated 

in Figure 2.9. According to Gregory & Walling (1973, p.298), spatial variations in 

the operation of fluvial processes can conveniently be considered at several levels: 

the micro-scale; the meso-scale of runoff, the meso-scale of sediment and solute 

dynamics, the continental and world scale of runoff, suspended sediment transport
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and dissolved loads; and the influence of humans on rural and urban areas. The link 

between spatial variations and drainage basin characteristics might be revealed by 

careful investigation of a detailed account of the annual sediment production rates 

of various regions and scales (Gregory &; Walling, 1973, Ch.6). Although the study 

of landform process is one of the desirable topics, the study of form morphology is 

equally challenging for reasons stated in the following section.

Study of Form Geomorphology

It has been established that landform information may be obtained by mapping 

the spatial distribution of land forms, by measuring the processes responsible for 

the production of land forms, and through the analysis of deposits However, “the 

most apparent difficulty is the dichotomy between process and form in that in many 

areas the processes operating at present are not the ones which were responsible 

for fashioning the landforms of the area, or at least the present rate of operation 

of geomorphological processes is not the same as the rates which obtained in the 

past” (Gregory & Walling, 1973, p.l). A further difficulty is that the three lines of 

information are often not susceptible to study with equal facility. The study of geo­

morphological processes is also more time-consuming than the study of landform; as 

Rice (1988, p.387) has described it, “changes [of landform] within a lifetime may be 

too slight for measurement.” Furthermore, in landform development, the distinction 

between cause and effect in the shaping of landforms depends upon not only the 

size of the system in space but also the length of time being considered. Gregory 

Walling (1973, p.21) stated that the drainage basin may present problems requiring 

analysis and studies conceived at different timescales, ranging from geological cyclic
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and shorter cyclic to very short, steady periods of time. Such a demand on time has 

made the study of landform process less practical than that of form morphology.

The drainage basin is defined as “a system of complex topographic characteris­

tics, rock type, soil, vegetation, and land use" (Gregory Sz Walling, 1973, p.234). 

Topographic characteristics individually and collectively influence catchment pro­

cesses. Rock type is significant in the drainage basin statically and dynamically 

and both are necessarily interrelated (Gregory & Walling, 1973, p.274). The static 

significance is that different rock types vary in their ability to store water, which, in 

turn, dynamically controls the rate water outflows and dictates the rate and char­

acter of weathering, the weathering products obtained and hence the nature of the 

sediment and solute supplied to the stream. Similar effects can also be observed 

in soil, vegetation and land use. The resulting complexity is the outcome of many 

uncompromising sub-systems, such as rocks, soils, and vegetation, evolving at their 

own time scales. The current humble effort is to use the fractal dimensions obtained 

by the approach applied to sea waves to test such a deduction thoroughly.

The development of remote sensing technology has facilitated the study of land- 

form even further. The digital elevation model representing the landform was gener­

ated from a pair of aerial photographs. The remote sensing technique has effectively 

eliminated the problems associated with sampling spatial data. One of its merits 

extends to the study of plant imagery, which contains the boundary between the 

similar background and diverse leafy area.
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2.4.3 Plants

The identical approach to sea waves and topography is extended to the spectral 

imagery of ferns, whose complexity includes an irregular outline of the leaf. A 

spectral image of a plant is actually a spectral phenomenon of both temporal and 

spatial nature; that is, the vegetation indices are obtained for a leaf confined in 

two-dimensional space at a specific instant of time. The plant images are taken 

using the remote sensing techniques. Remote sensing usually refers to ‘'the use of 

electromagnetic radiation sensors to record images of the environment which can be 

interpreted to yield useful information” (Curran, 1985, p.l).

The development of remote sensing began to emerge yet did not become popular 

until long after its inception. In 1960 when the name “remote sensing” was first 

coined (Fischer, 1975), it referred simply to the observation and measurement of an 

object without touching it (Curran, 1985, p .l). Since that date remote sensing has 

taken on a discipline-dependent meaning, for example, in the environmental sciences 

of geography (Duong & Takeuchi, 1997; Merttes et al., 1998), geology (Davis et al., 

1993; Florinsky, 1998), botany (Lehmann & Lachavanne, 1997), civil engineering 

(Amos et al., 1986; Profeti &: Macintosh, 1997), forestry (Holmgren & Thuresson, 

1998), meteorology (Singal et al., 1994; Devara et al., 1998), agriculture (Tucker & 

Choudhury, 1987; Bouman, 1992; Das et al., 1993; Bouman, 1995) and oceanography 

(Eppley, 1992; Ottl, 1997).

A remote sensing system using electromagnetic radiation typically has four com­

ponents: a source, interactions with the earth’s surface, interactions with the atmo-
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sphere and a sensor (Curran. 1985).’ A huge amount of effort has been devoted to 

the development of remote sensing instruments, satellite systems, photogrammetry 

and imagery processing and applications (Curran, 1985; Cracknell & Hayes, 1991; 

Barrett & Curtis, 1992; Lillesand Sz Kiefer. 1994). Figure 2.10 shows various sensors 

as related to energy sources and atmospheric transmittance. As far as plant science 

is concerned, the focus is on the sensors that detect visible and infrared lights, that 

are used for the photosynthesis process.

(a) Energy sources

Human eye 
Photography Thermal scanners

jMultispectral scanners ^  ^

I---- 1----
0.3 pm

~l----
1 pm

“ 1----
10 pm 100 pm

Radar & passive microwave

■v“1-------
1 mm

Wavelength

1 —
1 m

Figure 2.10: Spectral Characteristics and Remote Sensing Systems. 
Spectral characteristics of (a) energy sources, (b) atmospheric effects, and (c) sensing 
systems. Note that wavelength scale is logarithmic. Modified from Lillesand 
Kiefer (1994, p. 11). 5

5 The source may be natural, such as the sun’s reflected light or the earth’s emitted heat, 
or man-made, like microwave radar. The interactions witli the Earth’s surface are characterised 
b y  the amount and characteristics of radiation emitted or reflected from the earth’s surface. The 
atmospheric interaction mainly occurs when emitted energy passing through the atmosphere is 
distorted and scattered. A sensor records the emitted radiation that has interacted with the 
surface of the earth and the atmosphere. The interactions with the reflectance received by the 
sensors is further complicated by other factors such as the soil background, vegetation senescence, 
solar and sensor elevation and azimuth, canopy geometry and phenology.
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A leaf is built of layers of structural fibrous organic matter, within which are

pigmented, water-filled cells and air spaces. Figure 2.11 shows the anatomy of a

Figure 2.11: Leaf features that Affect Light Absorbance and Reflectance. 
Schematic drawing of cross-section of a healthy oat leaf responding to full sunlight. 
Modified from Colwell (1956) and Curran (1985, pp.23,26).

healthy oat leaf and the reflectance characterised by leaf features, as illustrated in 

Colwell (1956) and explained in Curran (1985, p.23). Each of the three features, 

that is, pigmentations, physiological structure and water content, have an effect 

on the reflectance, absorbance and transmittance properties of a green leaf.6 The 

combined effects of leaf pigments and physiological structure give all healthy green

leaves their characteristic reflection properties: low reflectance of red and blue light,

6 Four primary pigments of higher plants, i.e., chlorophylls a  and b , 0  carotene and xanthophyll, 
absorb visible light for photosynthesis. Chlorophylls absorb portions of blue and red light, i.e., 
chlorophyll a  absorbs at wavelengths of 0.43 /mi and 0.66 //m and chlorophyll b at wavelengths of 
0.45 i n n  and 0.65 /n n ;  carotene and xanthophyll both absorb blue to green light at a number of 
wavelengths (Whittingham, 1974). The discontinuity in the refractive indices within a leaf deter­
mines its near infrared reflectance (Curran, 1985). These discontinuities occur between membranes 
and cytoplasm within the upper half of the leaf and, more importantly, between individual cells 
and air spaces of the spongy mesophyll within the lower half of the leaf (Gausman, 1974).
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medium reflectance of green light, and high reflectance of near infrared.

Figure 2.12 shows how the design of the sensors is dictated by the atmospheric 

absorbance, as described by Curran (1985, p.25). Leaf reflectance is reduced as a

Figure 2.12: The Leaf Reflectance and Atmospheric Windows.
The hemispheric reflectance of a Rhododendron leaf and “atmospheric windows”. 
Modified from Curran (1985).

result of absorption by three major water absorption bands that occur near wave­

lengths of 1.4 /urn, 1.9 gm and 2.7 pm, and two minor water absorption bands that 

occur between wavelengths of 0.96 pm and 1.1 pm. In order to avoid water ab­

sorption in the atmosphere, the majority of sensors are limited to three atmospheric 

“windows” that are free of water absorption at wavelengths of 0.3 to 1.3 pm, 1. 

to 1.8 pm and 2.0 to 2.6 pm. Fortunately, within these wavebands, emitted radia­

tion is still sensitive to leaf moisture. Vegetation spectra obtained by this range of 

sensors is closely linked with plant parameters such as biomass and leaf area index

iO
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(Curran, 1985, p.25). However, spectral characteristics of different wavelengths are 

often combined to derive vegetation indices for which the relationship with plant 

parameters is established.

Vegetation indices are derived from various spectral wavebands (Richard Wie- 

gand, 1977; Tucker, 1977; Lillesand & Kiefer. 1994, for example) and found to be 

related to plant growth parameters such as biomass and leaf area index (Agazzi 

Franzetti, 1975; Tucker, 1977; Tucker, 1979; Curran, 1981; Elvidge Sc Lyon, 1985). 

Most indices are derived from red and infrared wavebands, which are commonly 

installed in scanners on board satellites (Barrett «V Curtis, 1992, for instance); nev­

ertheless, strong forms of evidence were presented in support of the fact that the 

combination of green and red lights is closely related to vegetation growth rigour 

(Kanemasu, 1974; Tucker, 1979, among others). Whilst researchers seemed more 

interested in the fractal nature of features such as the root morphology and canopies 

(Berntson, 1997; Critten, 1997; Akasaka et al., 1998, for example), virtually no pub­

lished article was concerned with the fractal dimension of the vegetation indices of 

an individual plant, The above observation provides solid support for the fractal 

study of the vegetation indices on the ground at a much smaller scale, using equip­

ment commonly available to researchers; for example, some hand-held spectrometers 

are manufactured for use for scientific purposes, and most commercial scanners and 

softwares can be combined to split light into blue, green and red wavebands.

The spectral image of a fern represents a system of two major sub-systems: the 

inert background and the active leafy area. The inert part is extremely monotonous, 

whereas the leafy area can resemble a digital elevation model if projected in three- 

dimensional space. The difference in dynamics is to be revealed using the same
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approach applied to both sea waves and digital elevation models. The fractal di­

mension of the boundary between the major systems can also be estimated by the 

same implementation method.

This major section provides the current understanding of three natural systems 

that correspond to the three types of dynamics revealed in the Mandelbrot set: the 

sea waves, topography and plant imagery. The same approach will be used for all the 

systems involved to test the various types of dynamics, ranging from similar through 

diverse to mixed dynamics. The actual analysis methods are actually described in 

Chapter Three.

2.5 C onclusion

The modern scientific method has evolved from the either-or approach of the 

deductive-reductive procedures, through the integration of the procedures and the 

testing of hypotheses, to the falsification of theories. The current methodology in 

which the objectives of this thesis are materialised follows this relatively recent sci­

entific convention and the development of Fractal Geometry, that is usually used to 

quantify complex structures both in nature and as created by Chaos Theory.

Chaos Theory and Fractal Geometry, both of which were designed to assist 

understanding of complexity, were devised in 1970s. Chaos Theory shows that 

chaos can arise from processes of non-linear deterministic systems; whilst Fractal 

Geometry demonstrates that simple building blocks can produce complex structures. 

Chaos Theory focuses on the temporal characteristics of system dynamics. The
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use of the phase portrait technique and Poincare mapping also allows chaos to 

become the subject of spatial study. Fractal Geometry deals directly with the spatial 

characteristics of objects, although fractal objects cannot be created without noting 

the temporal aspect of the mechanism. For example, the classic Mandelbrot set is 

of spatial complexity which must be generated by temporal iterations.

The Mandelbrot set is the most typical example of fractal objects that are self­

similar at various scales. The immediate implication is that there exists a scale- 

invariant measure that can be used to represent the object; as a result, the concept 

of fractal dimension is developed. The fractal dimension measures the scale-invariant 

nature of a complicated object and is in many ways more useful than the Euclidean 

dimension for quantifying irregular objects (Mandelbrot, 1983).

The Mandelbrot set also demonstrates three types of systems dynamics, from 

which three corresponding natural systems are chosen: the sea wave of similar sub­

systems, the topography of diverse sub-systems, and the spectral imagery of active 

plant systems and inert background. The current understanding of the three natural 

systems presumes that those systems are suitable for revealing the complexity in 

systems dynamics.

The concept of the fractal dimension is then applied to those natural systems 

and their corresponding synthetic models. Full details of the fractal dimension and 

its methods of implementation will be given in the following chapter, that introduces 

the theme methods used throughout the thesis. These also include some valuable 

conventional analyses.
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M ethods

One can ask what would be a differential having as its exponent a fraction. 

You see that the result can be expressed by an infinite series. Although 

th is seems removed from Geometry, which does not yet kno w of such frac­

tional exponents, it appears that one day these paradoxes will yield useful 

consequences, since there is hardly a paradox without utility. Thoughts 

that mattered little in themselves may give occasion to more beautiful 

ones. Gottfried Wilhelm Leibniz, 1695 (Mandelbrot, 1983, p.405).
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3.1 In tro d u c tio n

This chapter explains the methods used to analyse the real-world and synthetic data; 

where the methods include the estimation of fractal dimension and various types of 

statistical analyses. The fractal dimensions are estimated, using the box-counting 

method, for temporal data in Chapter Four and for spatial data in Chapters Five 

and Six. Finally the range of statistical tests used for comparison between the fractal 

dimensions derived from the synthetic and natural systems is also explained.

Methods specific to different data sets are given in the respective chapters. In 

Chapter Four, conventional qualitative and quantitative analyses are carried out on 

synthetic and natural sea wave profiles. In Chapter Five, general terrain information, 

for example, that on slopes and aspects, is obtained for synthetic and natural digital 

elevation models. In Chapter Six, green and red scanning channels are used to 

construct the normalised difference vegetation index (NDVI) image of a fern. Such 

an image resembles a digital elevation model and thus the methods of Chapter Five 

are adopted; and fractal dimensions are also estimated for the outlines of synthetic 

and natural ferns.

A B rief Introduction to the D ata

There are three types of data; and each type comprises both measurements from 

natural systems and data from synthetic models. The three data sets are introduced 

here and detailed in Chapters Four, Five and Six, respectively.
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The natural sea wave profile was measured with a pressure transducer (Hardisty,
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1990b) at Teignmouth in England. The synthetic waveform is the summation of 

four sinusoidal waves. The sea wave is much more complex than such a simple 

model due to seabed friction, percolation, refraction, reflection and breaking, and 

the processes are detailed in Chapter Four. Box counting, statistical analysis and 

conventional time series analyses are applied to both the natural and the synthetic 

profiles in Chapter Four.

The digital elevation model of Shei-pa National Park in Taiwan comprising con­

tours at 40-metre intervals is the second set of data used here. The synthetic digital 

elevation model is simulated by the mid-point displacement method (Peitgen L  

Saupe, 1988). General terrain information such as aspects and slopes are obtained 

and then, latitudinal and longitudinal transects are obtained by sectioning the dig­

ital elevation models. Fractal analysis is again applied to transects of both the 

natural and the synthetic digital elevation models and, finally, statistical tests of 

the derived fractal dimensions are performed.

The NDVI image of the fern was obtained with a digital scanner and processed 

by Geographic Information System (GIS) software. The fern leaf can be simulated 

either by random or deterministic algorithms using Iterated Function System (IFS) 

codes (Barnsley, 1993). Methods used in Chapter Five are applied to the fern 

image, because the fern image is similar to a digital elevation model in terms of 

digital imaging, the exception being that the background value of an NDVI image 

is not zero.
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3.2 F rac ta l M ethods

Linear features exist in their own right, for example, coastlines, river networks and 

fault traces, and a wide variety of methods to determine their fractal dimensions 

has been developed (Table 3.1). Linear features are objects with a topological di-

Method Application
Area/perimeter Digitised shoreline and contours (Goodchild, 1982) 

Digital cloud image (Kent k  Wong, 1982)
Digital images of craters on Mars (Woronow, 1981) 
Sinkhole perimeter (Reams, 1992)

Box counting Digitised shoreline and contours (Goodchild, 1982) 
Photographs of vegetation (Morse et al., 1985)
Fracture patterns determined from remote imagery (Vignes- 
Adler k  Le Page. 1991)

Divider relation Lava flow (Bruno et at., 1992)
Digitised contours (Culling k  Datko. 1987)
Digitised shoreline and contours (Goodchild, 1982)
Digitised shoreline (Kent k  Wong, 1982)
Line skeleton of case passage contours (Laverty, 1987; Rov 
et al., 1987)
Drainage basin perimeter (Breyer k  Snow, 1992)
Digitised cartographic lines (Miiller, 1986; Müller, 1987)

Korcak’s law 
Power spectrum

Area of lakes (Kent k  Wong, 1982)
Natural rock surface (Brown k  Scholz, 1985) 
Digital model of sea floor (Fox k  Hayes, 1985) 
Natural rock surface (Power et al., 1987)

Variogram Various geophysical phenomena (Burrough, 1981; Burrough, 
1984)
Soil profiles (Burrough, 1984)
Soil pH (Culling, 1986)
Digitised maps (Culling k  Datko, 1987)
DEMs (Klinkenberg k  Goodchild, 1992)
Ice sheet height profile derived from satellite data (Rees, 1992)

Table 3.1: Application of Fractal Dimensions to Some Linear Features 
A selection of methods commonly used to determine the fractal dimension of linear 
features is presented. Modified from Klinkenberg (1994, p.24).

mension of one within Euclidean space of dimension two. A self-similar feature is 

generally easier to identify than a self-affine feature. If one can interchange the axes 

of the coordinate system used to map the feature without producing any funda­
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mental changes, then the feature has the minimum requirements for self-similarity. 

For example, exchanging the (x,y)  values which define a contour line alters lit­

tle. However, the (x,y) values of a topographic profile cannot be exchanged, even 

though both axes may be measured in the same units. More obviously, the trace 

of a particle through time has axes that represent different information, time and 

distance. Formally, with self-affine fractals the variation in one direction scales dif­

ferently from the variation in another direction (Mandelbrot, 1985; Turcotte, 1992). 

The distinction between self-affine and self-similar profiles is an elusive one (Man­

delbrot, 1985). For analytical purposes, however, whether a profile is studied as a 

self-affine curve or as a self-similar curve may ultimately depend on the objective of 

the research (Klinkenberg, 1994, p.26).

One essential aspect of fractal features is their scaling nature. For example, the 

longer the topographic profile, the greater the observed variability in elevations. 

Building on that concept, researchers (Matsushita Sz Ouchi, 1989) have developed 

a method based on the relationship between sample size and sample variances. The 

method is conceptually very simple to implement and works on both self-similar and 

self-affine curves (Klinkenberg, 1994). Samples of various lengths (jV) are taken from 

the curve, then the standard deviations of the coordinates along each axis, A" and 

Y , are determined. From the two log-log plots of X  and V' against N  the respective 

slopes, Vx and Vy, are determined. If V\  and Vy are equal or nearly so, that is 

a good indication that the curve is self-similar, therefore, the fractal dimension is 

1/Vx or 1/Vy. If Vx and Vy are unequal, it implies that the coordinates scale 

differently. The two variances are related to each other through the Hurt scaling 

parameter (H) as H — Vy /Vx- However, Klinkenberg argued that this method has
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yet to be tested extensively (1994).

3.2.1 A lgorithm s for E stim ating Fractal D im ensions

Method Relation Note
Area/perimeter A oc PDHA .4, area

relation P, perimeter
Box counting n oc b~D n, number of filled boxes 

6, box size
Divider relation L ( t ) oc i-O- 0 ) L(t ), length of rail 

r, step size
Korcak’s law Nr(A > a) oc a ~ i D / A Nr(A > a), no. of area above size a
Line-scaling X  ~  N Vx] V ~  NvY X  k  Y ,  S  of x- k  y- coordinates 

V’s, slopes of log-log plot

£5 II If H' » 1 , D = Y  or D = 2 -  IP
Power spectrum P(u) cc uH 5- 2D) u>, the frequency 

P(ijj), the power
Variogram < ( Z p -  Zqp  >oc (d p ,) (4- 2D > < > , statistical expectation

Zp k  Zq, elevation at points p and q
dpq, distance between p and q

Table 3.2: Some Algorithms of Estimating Fractal Dimensions 
Here is a selection of algorithms used to estimate fractal dimensions. S  indicates 
the standard deviation of a sample. Modified from Klinkenberg (1994, p.26).

Table 3.2 includes some algorithms for estimating the monofractal dimension (Man­

delbrot, 1983; Feder, 1988; Turcotte, 1992; Peitgen et ai, 1992, for example); but 

most have their theoretical and/or practical limitations (Klinkenberg, 1994). It is 

possible that the dimension of the whole may not equal the dimension of the parts; 

for example, the horizontal cuts of a self-affine surface will produce a suite of self­

similar curves (Klinkenberg, 1994, p.27). Matsushita et nl. (1991) prove that the 

fractal dimension of the entire suite of curves will generally be greater than the frac­

tal dimension of a single curve extracted from that suite. Example curves derived 

from a fractal surface of dimension 2.5 show that the fractal dimension of the entire 

suite is 1.50 and for the single longest curve it is 1.32 (Ouchi k  Matsushita, 1991).
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D of F ractal S tru c tu re s

Topology is an example of both self-similar and self-affine fractals (Turcotte, 1992). 

In the two horizontal directions topology is often self-similar, while the vertical 

coordinate is statistically related to the horizontal coordinates but systematically 

has a smaller magnitude (Mandelbrot, 1985). Vertical cross-sections of this type are 

often examples of self-affine fractals (Dubuc et al., 1989).

As shown in Table 3.2, most algorithms are based on the “power law”, expressed 

in its original form of y = cx~D or in its logarithmic form of logy = C T D log l/.r, 

where D is the scaling exponent and, in fractal science, the scale-invariant measure 

called the fractal dimension. The calculation of D is straightforward for self-similar 

structures, although it needs some attention for self-affine objects.

The simplest geometrical characterisation of a fractal object is to count the 

minimum number of hypercubes of linear size e which are required to cover the 

object. If the number of hypercubes is N(e), then, as e is varied, N(e) varies as 

e~D, where D is the dimension. In the limit as e tends to zero, D can be defined as

follows (Mullin, 1993b):

n  r  i n N ^  D = lim
«->o ln(l/e) (3.1)

The value of the dimension need not be an integer. A set which has a non-integer

dimension is said to be fractal and thus has the usual properties associated with

such objects.

A statistically self-similar fractal such as a contour is by definition isotropic. 

That is, f ( r x , r y ) is statistically similar to f ( x , y )  in a two dimensional xy-space. 

The number of boxes with dimensions (aq,yi) required to cover the subject is N\,
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and that with dimensions (rx i,n /i)  required to cover the subject is iV2. If the 

subject is a self-similar fractal,

/V2/iV, = r~D. (3.2)

where D is the fractal dimension.

A statistically self-affine fractal such as a transect is not isotropic. A formal 

definition of a self-affine fractal in a two dimensional .ry-space is that f ( r x i, r11 y\ ) is 

statistically similar to f ( x i , y i )  where H is known as the Hurst scaling parameter. 

Note that the vast majority of researches (Hastings &: Sugihara, 1993, for instance) 

use H as Hurst scaling parameter, while some (Turcotte, 1992, for example) refer II 

to Hausdorff measurement possibly incorrectly. H is related to D as H =  De — D 

where 0 < H < 1 and D j  < D < De + 1 where Dt is the topological dimension 

and De is the Euclidean space. For example, in a random walk graph, if ¿V! is 

the number of boxes with dimensions (xi,yi)  required to cover the graph and xV2 

is that with dimensions (raq, rHyi), then the random walk is a self-affine fractal if 

N2/N\ =  r~D (Turcotte, 1992).

There are two alternative derivations that give estimates of the fractal dimension. 

Assume that the time series is specified over the time interval, T. A necessary 

condition that the time series be a fractal is that its variance V(T)  has a power-law 

dependence on T  (Voss, 1985a; Voss, 1985c; Voss, 1988),

V(T) = T 2H or cr(T) = T f/, (3.3)

where the standard deviation, cr(T) is the square root of variance V[T). Another 

derivation of the fractal dimension of a time series can be obtained by using the 

box-counting method. We first produce a “rectangular box” of width T  and height
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ctj = cr(T) instead of square boxes of unit length, then divide the time interval into 

n smaller pieces, Tn = T/n.  Then we count the boxes required to cover the time 

series and compute its fractal dimension according to Equation 3.1.

3.2.2 The E stim ation M ethod

The methods for determining the fractal dimension as reviewed by other researchers 

(Klinkenberg, 1994; Gao k  Xia, 1996, for example) can be grouped into two cate­

gories relevant to this study: methods for linear features and for features of higher 

dimensions. The box-counting method is the most, suitable method here, because it 

can be applied to structures of higher as well as lower dimensions.

M ethods for Linear Features

A study on the fractal analysis of time series showed that the preferred measure­

ment of dimension for time series is the correlation method. The method utilises 

the property of correlation in time series. The correlation dimension is usually de­

rived from the Grassberger-Procaccia algorithms (Grassberger k  Procaccia, 1983b; 

Grassberger k  Procaccia, 1983a). In some cases, it is obtained by means of the 

rescaled range (R/S) technique, devised by Hurst and introduced by Mandelbrot 

and Wallis (Feder, 1988; De la Fuente et «/., 1998). The correlation dimension in­

cluding the use of the R/S technique demands data of repetitive patterns such as 

the annual flooding records of River Nile (Feder, 1988). It is unlikely applicable to, 

for example, the wave profile of a single tidal circle.
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Using spectral methods to obtain the fractal dimensions of linear features is an­

other form that is widely used (Table 3.1). Mandelbrot et al. (1984) cleared up some 

of the practical issues and formulated the link between the fractal dimension and 

the power spectrum. Although the spectral methods may be, they are computation­

ally difficult and intensive. These methods require much more data preprocessing 

than any of the other methods, all of which work with the data “as are” . Spectral 

methods require the raw data to be de-trended and tapered, and failure to do this 

properly prior to using spectral methods can greatly affect the results. Klinken- 

berg (1994, p.36) quoted from Peitgen k  Saupe (1988) that the spectral methods 

“should only be applied to self-affine curves since the method will always return a 

fractal dimension of one for self-similar curves”. The inherent complexity of time 

series in general and the fast Fourier transformation in particular are found in most 

textbooks (Cryer, 1986; Folland, 1992; Hamilton, 1994, for example).

The divider method has long been used to determine the length of cartographic 

lines (Klinkenberg, 1994, p.30). Richardson’s (1961) investigations into the scale 

dependencies of border lengths, one of the key building blocks in the development 

of Mandelbrot’s concept of fractal dimensions (Mandelbrot, 1983), has become one 

of the most cited references in the literature. Because of the ease with which this 

method can be implemented -  using either physical or computational dividers -  

a large number of studies have used the divider method to determine fractal di­

mensions of features ranging from particle shapes to lava flows (Table 3.1). The 

divider method can be implemented in a number of ways, but the basic procedure 

is to “walk” the divider along the line and record the number of steps required to 

cover the line. By systematically increasing the width of the divider and repeating
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the stepping process, the relation between step size and line length over a range of 

resolution can be determined. Calculation of the fractal dimension follows (Table 

3.2). However, the divider method applies only over a limited range of scales, and 

misapplication can lead to inconsistent results (Goodchild, 1980; Beauvais &: Mont­

gomery, 1996). A common problem with the divider method is that the results are 

sensitive to the treatment of the remainder length (Aviles et al., 1987; Klinkenberg 

& Goodchild. 1992; Andrle, 1992). Aviles et al. (1987) proposed three ways to 

treat the remainder problem. Andrle (1992) and Klinkenberg (1994) provided some 

in-depth discussions on the divider method.

Other methods for linear features or time series are also used, for example, the 

variogram method (Kulatilake et al., 1998) and the box-counting method (Yambe 

et al., 1995; Christ et al., 1997). Both methods are also among the methods espe­

cially devised for estimating the fractal dimension of features of higher dimensions.

M ethods for Features of Higher Dim ensions

There are several methods of estimating the fractal dimension of structures of higher 

dimensions (Table 3.2). The area-perimeter method and Korcak’s empirical rela­

tion for islands (Table 3.1) can be used to determine the fractal dimensions of linear 

features if those features form closed loops (Mandelbrot, 1983; Shook et al., 1993; 

Stutzki et al., 1998). If the data are appropriate, these are relatively simple meth­

ods to use and their implementations are simple (Table 3.2). However, the require­

ment that the features form closed loops restricts the usage of the above area-based 

methods. The variogram method is getting more popular recently (Bellehumeur 

&; Legendre, 1998; Lobo et al., 1998; Tate, 1998, for example). To implement the
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variogram method, one needs to sample a large number of pairs of points of differ­

ing spacings along the profile and compute the differences in their vertical values, 

r. The fractal dimension is easily derived from the log-log plot of (expected dif­

ferences in c)2 against the distance between the point pairs (Table 3.2). However, 

in order to obtain a statistically valid average for the z differences, the point-pair 

distances are usually placed in a number of user-defined classes (Klinkenberg, 1994, 

p.37). Although the variogram method is usually applied to structures up to three 

dimensions (Carr &: Mela, 1998), the box-counting method can be implemented 

easily in higher dimensions.

The Flexible Box-Counting M ethod

The box-counting method is widely used to determine the fractal dimension of many 

different phenomena (Table 3.1). Prior to its applications in fractal research, box 

counting was used mainly to determine quickly the area of irregular cartographic- 

features (Klinkenberg, 1994, p.34). Since it can be applied with equal effectiveness to 

point sets, linear features, areas, and volumes, the box-counting method is a widely 

used means of determining fractal dimensions. This method is also known as the grid 

or reticular cell counting method (Peitgen h  Saupe, 1988), and has been shown to 

be equivalent to the Minkowski-Bouligond (or “sausage” ) dimension (Dubuc et at., 

1989; Klinkenberg, 1994).

The box-counting method, when applied to a linear feature, is usually applied 

to cuts of a surface where the boxes overlie the cut lines or profiles. Systematically 

divide the profile lengthwise into equal parts and count the number of intersections of 

a horizontal line at some specified vertical value. Continue geometrically increasing
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the number of divisions and re-determining the number of intersections until the 

minimum resolution of the data is reached. Using a log-log plot of “box size" 

against “the number of intersections”, the fractal dimension is derived from the 

slope (Peitgen et al., 1992). The mathematics is contained in Equation 3.1.

Several problems have been identified with the use of the box counting method. 

The method requires a significant amount of computer memory and computational 

time since a very large number of cells have to be stored. Because of this problem, 

some researchers (Liebovitch k  Toth. 1989) have introduced a “fast” algorithm 

which, using a statistically-based sampling approach, does not require a complete 

enumeration of every cell at the higher resolutions. However, their method is best 

applied to a database of low fractal dimension (Klinkenberg, 1994). While this could 

be a problem to personal computer users, the computation in this study has not yet 

created any trouble on the UNIX workstation.

The problem of defining the minimum and maximum box size has been addressed 

(Dubuc et al., 1989; Mullin, 1993b). Box counts of extreme sizes should be avoided 

in the slope determination. As with every other method that determines the slope 

in log-log plot, the box sizes should change geometrically so that they will be evenly 

spaced in the plot. The exclusion of extreme box counts was reported to result in 

too few points in the log-log plot (Klinkenberg, 1994, for example).

Problem s Common to All M ethods

There are several problems common to all methods utilising the regression model. 

The first is concerned with the remainder problem. The general tactics include
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careful adjustment of sample numbers to fit the length of the counting unit, which 

leaves no remainder; that is, equally spaced data points in the The log-log plot can 

easily be produced using data length progressing geometrically.

The second is the scale problem, whose effect is more significant on experimental 

measurements than on theoretical objects. There is virtually no limitation on the 

range of scale for a theoretically generated structure; whereas the range of scaling 

has to be specified for naturally occurring objects. Dubuc et al. (1989) reported 

instabilities in the method when the number of data points used was small, and 

also found that the method was sensitive to the level of discretisation of the data. 

The plateau at high resolutions in the log-log plot is inevitable (Peitgen et al., 1992, 

p.722). The log-log plots also can exhibit deviations from simple power law scaling, 

as revealed by systematic curvature of the structure of the standard residuals (Andrle 

& Abrahams, 1989; Andrle, 1992; Klinkenberg & Goodchild, 1992). Therefore, the 

key concern of deriving the measure of fractal dimension is with the linearity of the 

curves in the log-log plot.

The linearity of the log-log plot could be examined by many ways; for exam­

ple, using the method of Andrle (1992), whether the fractal dimension is scale- 

independent can be tested (Beauvais & Montgomery, 1996). This method examines 

the curvature in the log-log plots for deviation from strict self-similarity, using the 

standardised residuals from least squares linear regression of log L versus log e (An­

drle &: Abrahams, 1989; Andrle, 1992; Beauvais h  Montgomery, 1996). If there is 

no structure to the regression residuals, then a single D is estimated using least 

squares linear regression of data between £mm and i mai, where emin is the smaller- 

scale cutoff, and £max is the upper limit to defining D. The log-log plots exhibiting
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systematic structure to regression residuals are examined for distinct linear trend 

over length scales between smin and £max■ New regressions are performed over each 

range of c values characterised by a linear structure of residuals in the original com­

posite regression to estimate D over those more restricted scaling domains. The 

threshold separating these scaling domains, cc, is defined as the intercept of the two 

linear regressions determined from the residual structure of the composite regres­

sion. The scaling thresholds defied by sc and £max are related to the amplitude and 

wavelength of the largest meander in each river platform (Beauvais k  Montgomery, 

1996). See Beauvais k  Montgomery (1996) for more details.

In conclusion, the first problem is easily solved by adjusting data length geomet­

rically. Although the second problem cannot be justified as easily, it will not arise 

if valid estimates of the fractal dimension are obtained, using the regression model.

3.2.3 The R egression M odel and the Fractal D im ension

the linear regression by the method of least squares (Hastings k  Sugihara, 1993; 

Tate, 1996, for example). The linear regression is performed on the logarithms of 

the data, (Ah, Vj), where A', =  log2(l/.r,) and Y] = log2(y,), where .r, is the relative 

box size and y, is the box count. The simple linear regression fits a straight line of 

the form (Hann k  Hounam, 1991, Ex. g02caf),

to the data points. The calculated regression coefficient, 5, that is, D, is defined:

The fractal dimension is conventionally defined through linear line fitting, usually

Y  = a + b.X (3.4)

(3.5)
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and the regression constant, a = Y  — bX, is obtained.

The method of least squares will fit a straight line through any set of points even 

when the relationship between the variables is not linear. Therefore, it requires a 

means of measuring the closeness of the data points to a straight line. This coidd 

be achieved by drawing a graph, although there are alternative numerical ways. For 

example, Tate (1996) suggested using the standard error as an alternative to the 

cut-off value for goodness of fit. Another numerical approach used in statistics is to 

examine the correlation coefficient. The correlation coefficient, r, is calculated using

n z L x y - zîl, -veil,N ■wV
(3.6)

s/mXtx7 -  (e £ , -V)2] [,VE;=, V2 -  (£?:, V)2]'

The value of r will lie between —1 and +1 and have the same sign as 6, the slope 

of the straight line given by the method of least squares. The closer r is to —1 

or +1 the more likely it is that the data can be represented by a straight line. In 

practice, Eason et al. (1980, p.386) suggested tnat fitting a straight line through N  

data points should be considered only when the correlation coefficient (r) satisfies

< M < l, (3.7)
y /Ë T - l

whilst some researchers simply reported the calculated correlation coefficients (Wil­

son k  Dominic, 1998, for example). However, the above criterion will become useless 

if the data points are equal to or less than five, making the cut-off value equal to or 

greater than one.

Two special cut-off values of the correlation coefficients are 0.632 and 0.667, 

corresponding to data points of eleven and ten, because they are equivalent to the 

data lengths of 2U = 2048 and 210 =  1024 in a log-log plot. The former is the length 

found in Chapter Four, while the latter is in Chapters Five and Six.
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Calculation of the Fractal Dimension by Examples

Figure 3.1: The Box Counting Method of a Sinusoidal Curve 
The box size decreases geometrically in both directions.

Two examples are given here to illustrate the calculation of the fractal dimension by 

constructing log-log plots: a sinusoidal curve and a free-hand drawing. Figure 3.1 

shows the schematic diagram of conducting the box-counting method on a sinusoidal 

curve. Let the time series be covered by a grid of boxes and count the number of 

boxes that contain part of the time series. Repeat the above procedure with varying 

box sizes. The fractal dimension is obtained directly by Equation 3.1, rather than by 

the linear regression model. The box-counting method is also applied to an irregular 

structure such as a two-dimensional free-hand drawing, as shown in Figure 3.2.

Table 3.3 shows the fractal dimensions directly calculated by the definition of 

Equation 3.1. As box sizes decrease, the calculated values decrease as well and 

will approach a limit, the fractal dimension. A similar conclusion is reached by the 

calculation of slopes using the standard geometry (51 to S3).
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Figure 3.2: The Box Counting Method of a Two-Dimensional Feature

Counts (N) Sizes (S) log2CV)
(Y)

loga(i)
(X)

D' =
(Y / X )

51 =
(Vn-V,)
(A'n-.Yl)

52 =
On-15) 
(An-A3)

53 =
(Vn-1'3) 
(An-A3)

4 1/2 2 1 2 (A Sine curve)
16 1/4 4 2 2 2
43 1/8 5.43 3 1.84 1.71 1.43
95 1/16 6.57 4 1.64 1.52 1.28 1.14
4 1/2 2 1 2 (A 2D drawing)
14 1/4 3.81 2 1.90 1.81
35 1/8 5.13 3 1.71 1.52 1.32
84 1/16 6.39 4 1.60 1.46 1.29 1.26

Table 3.3: Box Dimensions of ID and 2D Features 
The calculated fractal dimensions (D') approach a limit as box sizes decrease. This 
phenomenon is also seen in the slopes (Si to S3), i.e., fractal dimensions. Note that 
D' is not derived from a regression model, but from Equation 3.1.

The corresponding log-lot plot is constructed in Figure 3.3. Although the slope 

is calculated from the regression model, its use is in doubt. The data points scatter 

along a straight line, and the fractal dimensions derived from the regression model 

seem to fall between one and two: 1.28 (r = 0.998) for the sinusoidal curve and 

1.29 (r =  0.999) for the free drawing. Given the total data points of four, however, 

the results cannot be justified by their calculated cut-off value that exceeds one 

(Equation 3.7). The obvious and easy solution is to increase the counting depth. The 

ease of implementation strengthens the argument that the box-counting method is 

more suitable than other methods for the analysis of various natural phenomena 

corresponding to the system dynamics revealed in the Mandelbrot set.
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Figure 3.3: The Log-Log Plot of ID and 2D Features.
The calculated fractal dimensions are typical for linear features; although the theo­
retical cut-off value cannot be computed for data points less than five.

3.2.4 Im plem entation o f the B ox-C onnting M ethod

It is widely known that for the graph of zeros of B(t), the Hausdorff-Besicovitch 

dimension is 1/2, and almost as widely known that for the graph of B(t) itself the 

Hausdorff-Besicovitch dimension is 1.5 = 1 + | .  However, “the Hausdorff-Besicovitch 

dimension is a very non-intuitive notion because this dimension can be no use in 

empirical work, and is unduly complicated in the theoretical work, except for self­

similar fractals” (Mandelbrot, 1985, p.258).

As to self-affine shapes, Mandelbrot (1985, p.258) stated that local and global 

values must be distinguished for each dimension, and that the different local values 

cease to be identical. The reason is fundamental: “square,” “distance,” and “circle,” 

are vital notions in “isotropic” geometry, but they are meaningless in affine geome­

try. More precisely, they are meaningful for relief cross-sections, but are meaningless
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for noises, because the units along the t axis and along the B-axis are set up inde­

pendently of each other. ‘’There being no intrinsic meaning to the notion of ecpial 

height and width, a square cannot be defined'1 (Mandelbrot, 1985, p.258).

The box dimension is meaningful for the records of Bn(t ), and its local value 

is the “correct” 2 — H and its global value is 1 (Mandelbrot, 1985). As to the 

implementation, one needs to use “rectangular” instead of the usual “square” boxes. 

Theoretically, if Ni is the number of boxes with dimensions (.iq, y i ) required to cover 

the random walk and iV2 is the number of boxes with dimensions (x 2 =  raq , t /2 =  

rHU\)i then the random walk is a self-affine fractal if A 2/iV2 = r~D, where r is the 

scaling factor and D is the fractal dimension. In practice, the width and height of 

the box are decided by the length and the standard deviation of the time series. 

Firstly, we introduce a rectangular reference “box” with a width T, the length of 

the time series, and height gj = cr(T), the standard deviation of the time series. 

Secondly, the interval of the time series T  is divided into n smaller intervals with the 

width of Tn =  T/n.  Therefore, the size of the scaled box of smaller boxes of width 

T„ and height crn = a j / n  is decided. Note that these boxes have the same aspect 

ratio, width/height, as the reference box. Also, the standard deviation associated 

with the interval Tn, crjn = cr(Tn) = a(T/n) ,  is not equal to an (Turcotte, 1992).

Furthermore, estimates of fractal dimensions often vary with the choice of 

method and details of estimation. Where this cannot be easily explained, the ob­

served fractal dimension is of unknown accuracy and may be misleading. Tate (1996, 

p.794) stated that “this may partly explain the difficulties some have had fitting the 

fractal model to topography..., relating [fractal dimension] in any meaningful man­

ner to process... leading some to abandon monofractals in favour of multifractals...”

75
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This results in the observation that method-induced variations in the fractal di­

mension limit both the reproducibility and the testing of the monofractal model 

(Klinkenberg Goodchild, 1992; Tate, 1996, p.S06).

Every method appears to be, or not to be, ‘‘the'’ method of determining the 

fractal dimension of different features. However, Klinkenberg (1994, p.42) has sug­

gested that the box dimension seems to be more appropriate for several reasons. 

Firstly, it represents the characters of features more precisely than Euclidean geom­

etry. Secondly, it is relatively easy to understand and simple to implement while 

maintaining its representativity. Thirdly, it can be applied to both self-similar and 

self-affine fractals without compromising its simplicity.

Therefore, the most suitable method of estimating the fractal dimension from 

the three different types of data is the box-counting method, even though there 

are seemingly better methods specific to each type of data. For example, it is 

indeed truly logical that the fractal dimension is estimated using the spectral method 

for time series such as wave profiles; however, the method cannot be applied to 

estimation of the fractal dimension of a fern’s shape. The concept of the box­

counting method remains unchanged when it is applied to higher dimensions; that is, 

dimensions of hyperbolic cubes may change in higher dimensions, but the counting 

procedure is virtually the same. See the following for further explanations and 

Appendix E for the computer programme listing.
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The Implementation

11

Negative measures in raw data are corrected by method of extrapolation before the 

calculation of the fractal dimension commences in the key sub-routine BoxFD(), 

using the following simple geometry

x i+2 =  2xi+ i -  Xi, (3.8)

if the measurement xI+2 is negative in origin. The very first two data points have 

to be either positive or zero if they are negative. Non-linear correction might be 

considered; however, linear relation is assumed between data of such short time 

span. The corrected data are then submitted to the key sub-routine BoxFD() for 

further processing.

The key sub-routine BoxFD() returns the fractal dimension of a time series. 

Essentially, it counts the minimum number of linear size (e), constructs the log-log 

plot of box sizes against box counts, and calculates the fractal dimension ( D) using

D =  lim log-2 W(g)
“-VÓ loga (1/e) '

(3.9)

Here, the notion of “size” is maintained, although it is actually the “box scale”, the 

box size relative to the largest unit box.

Several procedures are involved in this sub-routine, which are detailed as follows. 

Firstly, the level of recursion is obtained from the number of data. At each level, the 

width and length of the scaled smaller box are decided. Then, blocks of data are 

taken to be examined by the smaller box. The number of boxes needed to cover the 

block, nbox, is, therefore, derived. By adding up the nbox of each block, the total 

box count respective to box size is obtained. Standard regression is performed on
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the logarithms of count and size. Fractal dimension D is the slope of the regression 

line. See the self-explanatory pseudo codes in Figure 3.4, while the actual computer 

programme is seen in Appendix E. More details are given below.

Figure 3.4: Basic-style Pseudo Codes of the Box-Counting Method.
Sizes of the scaled smaller boxes are decided. Eflocks of data, corresponding to the 
scaled box size, are extracted to perform the box counting function. The number of 
boxes is counted by taking the “ceiling” and “floor” of the maximum and minimum 
values, respectively, divided by the height of the scaled box.

The width (N) and height (S) of the reference box are given, where N  is the 

number of data, and S  is the standard deviation of data X(N).  The level of recursion 

is calculated by taking the logarithm of N  to base two, that is, level — log2(iV).

At each level of recursion, the scale of dividing the whole data is decided, that 

is, scale = 2‘, where i = 1,2,..., level. The scaled smaller boxes are of dimensions 

(width = N /2 ' , height =  5 /2 ‘), where i = 1 , 2 level. Blocks of data of width, Bj,
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are obtained, where j  = 1,2, For each block, minimum (min) and maximum 

(max) of Bj are calculated by sub-routine Statsf). Both min and max are then 

divided by the height of the smaller box. The absolute difference between the 

“floor'’ and the “ceiling’’ of the divided values, respectively, is the number of boxes 

(nbox) needed to cover the block of data. Here the function floor() returns the 

greatest integral value less than or equal to a real number x. while the function 

ceil() returns the least integral value greater than or equal to it. The box count of 

each block is added up to produce the total number of boxes needed to cover the 

time series, respective to box size.

The above process is repeated until it completes the recursion. Therefore, box 

counts respective to box sizes are obtained. Using sub-routine Regress(), standard 

regression is performed on the logarithms of count and size to obtain fractal di­

mension, Z), which is the slope of the regression line. The estimate of the fractal 

dimension is then returned by sub-routine BoxFD().

Although a relatively new concept, the estimation of the fractal dimension is 

never detached from conventional science entities, as seen above. Some conventional 

methods in their own right are also useful in making comparisons of the fractal 

dimensions. However, any meaningful comparison of the fractal dimensions has to 

satisfy some basic requirement.

3.2.5 M aking Com parisons o f the Fractal D im ensions

There are at least two fundamental requirements in making comparisons of the 

fractal dimensions; that is, the range of scales and methods to derive the fractal
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dimension must be identical. Andrle (1996) found that "using fractal dimension to 

compare even the same types of features was unreliable because of the dependency 

of fractal dimension on scale of measurement." Fractal dimensions were found to be 

sensitive to changes of scales by means of magnifying a natural object (Chan k  Page, 

1997) or by reducing data length of a natural system, as shown in Chapter Four; 

that is, the estimated fractal dimensions decrease upon increase of magnification. 

Such an observation would be unlikely to hold for mathematical fractals since they 

have no limitation on scaling up or down. For the real world data, the alternative is 

to state clearly the range of scale from which the fractal dimension is derived. Since 

the scaling technique is likely to reveal the multifractality of an object (Gao k  Xia, 

1996; Campbell k  Shepard, 1996; Chan k  Page. 1997, for example), one risks using 

the fractal dimension derived from one scale range in comparison with that derived 

from another scale range. The implication is that one has to make comparisons of 

the fractal dimensions derived from similar scales. Another alternative was to state 

clearly the threshold area associated with the derived fractal dimension (Islam et al., 

1993; DaRos k  Borga, 1997), because “morphometric properties vary considerably 

with the threshold area [Ac] in channel networks, and thus values reported without 

their associated Ac are meaningless and should be used in hydrologic analysis with 

caution” (Helmlinger et al., 1993).

The other requirement is related to the estimation methods. Although in theory 

all estimation methods are designed to reveal the scale-invariant nature of fractal 

objects, they actually produce slightly different measures due to the way they are 

implemented. Zahn k  Zosch (1997) found that the fractal dimension calculated 

by Fourier analysis is higher than the dimension determined by the box-counting
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method, yet both utilise the same digital image. The most possible reason might be 

that the Fourier method could provide an extrapolation procedure that “adds” data, 

hence produces a result different from that derived from the box-counting method, 

as the latter is totally dependent upon the original data points. In other words, the 

pixel density has far less significance in Fourier analysis than in the box-counting 

method. As a result, it is necessary to state explicitly the estimation method used 

when making a comparison.

The two basic requirements just stated are essential in enabling meaningful com­

parisons of fractal dimensions, reported in various sources, that might vary in meth­

ods and scales. Furthermore, it is generally accepted that a comparison should be 

made between identical systems, although different systems may be observed with 

a similar method under similar scales. Under such a restriction proposed here, rel­

atively few articles are available for comparison with the findings in this study, as 

detailed in Chapter Seven, that also includes comparisons with other work for a 

general discussion on the application of Fractal Geometry.

Details of the fractal method have been described, including the use of the regres­

sion model on log-log plots, the box-counting method and its implementation, and 

the rules for making comparisons of the fractal dimensions. The following section 

explains the statistical techniques, the other major methods used here.
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3.3 S ta tis tic a l A nalyses

Basic statistics such as minimum, maximum, mean, and standard deviation are 

obtained to illustrate the characteristics of the data and their derived fractal dimen­

sions. The mean gives a measure of the central location of the data distribution, 

and the variance, whose positive square root is standard deviation, gives a measure 

of the spread about the mean (Eason et al., 1980, p.420). Coefficient of skewness 

and coefficient of kurtosis are also included. The former measures the skewness of 

data (Bryman k  Cramer, 1990, p.97). The latter is the measure of sharpness of the 

peak of a frequency-distribution curve (Marsh, 1988; Allen, 1990, p.658).

The difference of statistical parameters between synthetic and natural data is 

tested. The procedure involves, firstly, the test of normality for each sample (Eason 

et al., 1980, Ch.24,25), which leads to the choice of a non-parametric or a parametric 

test between two samples. Secondly, a non-pararnetric or parametric two-sample test 

is performed accordingly. For populations of normal distribution, a parametric test 

is performed; otherwise, the Mann-Whitney U test is chosen, which is also designed 

for dealing with large sample size (Eason et al., 1980, p.487). In practice, a large 

sample usually means the sample size is greater than or equal to thirty (N  > 30) 

(Eason et al., 1980, p.450). Details regarding the statistical tests are given below 

and their implementation in C programmes can be seen in Appendix F.
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3.3.1 Basic Statistics

Basic statistics refer to minimum, maximum, mean and standard deviation of a given 

sample. Minimum and maximum are the lowest and highest values of the data in the 

sample, respectively, which form the range of the sample. The mean and variance 

of a continuous, more likely theoretical, time series are denoted as x(T) and V(T), 

respectively, where T  is time. In practice, experiment measurements are samples 

taken at certain intervals of time, which yield a discrete time series. Therefore, the 

mean and variance of a discrete time series are calculated and denoted differently as 

x and V, respectively. However, in either a continuous or a discrete case, standard 

deviation is equal to the square root of variance, that is,

S 2 = VV,  (3.10)

where V =  (x, — x )2, where N  is the number of samples, x,-. The standard

deviation measures average amount of deviation from mean (Bryman & Cramer, 

1990, p.87). Formal definitions of skewness (S3) and kurtosis (.9,,) are related to the 

standard deviation and given below.

Coefficient of skewness, S 3 , is defined as the following (Ifann &: Hounarn, 1991, 

Ex. gOlaaf),
= \3

(3.11)
( iV - l ) S 23 '

If there is no skew, that is, if data are normally distributed, a value of zero or nearly 

zero is seen. If there is a negative value, the data are negatively skewed, that is, 

they “tail” to the left. If there is a positive value, the data are positively skewed, 

that is, they “head” to the left. See Bryman & Cramer (1990, p.97).
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The coefficient of kurtosis, 54 , is given as (Iiann & Hounam, 1991, Ex. gOlaaf),

e _  ~ _  o 3̂ jo)
*J _  (;V -  1)S24 3- (X12)

It offers an indication of whether the bulk of data are concentrated around the mean. 

The kurtosis of a peaked distribution is greater than 0. The average distribution 

has kurtosis around zero, while for platykurtic distributions, with widespread range 

of values and similar frequencies, kurtosis is smaller than zero (Allen, 1990, p.658).

A Graphic Alternative

A frequency distribution histogram is an alternative to the basic statistics, where 

frequency is plotted against the class intervals, that is, the grouped observations. In 

practice the class intervals can be of any size but are preferably chosen to give at least 

six equal class intervals over the range of observations (Eason et al., 1980). Because 

of the huge amount of estimates, this histogram technique is applied specifically to 

the fractal dimensions derived from the digital elevation models and spectral images, 

where the size of the class intervals is set to twelve to cover the majority of fractal 

dimensions that ranges between 1.0  and 1 .6 .

3.3.2 Statistical Tests

Several statistical tests are performed to decide whether the difference between the 

synthetic and natural data is significant. Eason et al. (1980, p.509) gave some 

advice regarding the use of tests. A simple guideline is to use parametric tests 

when the sample sizes are large. When the sample sizes are small, unless there is
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Type of test
Nature of
criterion
available

Number of comparison groups or samples
Unrelated Data Related Data

L (group) 2 (groups) 2 (groups)
Non-parametric Categorical:

binomial or Binomial
frequency Chi-square Chi-square

Non-categorial: KS KS
ordinal or Median* Wilcoxon
ranked MW*

Parametric Non-categorial:
means interval or ratio t ,Z t*, Z t, Z
variance F

Table 3.4: Tests of Difference for Two Variables.
KS and MW denote the Kolmogorov-Smirnov and Mann-Whitney U tests, respec­
tively. Those marked with “ * ” are used in this thesis. Modified from Bryman k  
Cramer (1994, p. 119).

evidence to support the validity of the use of a parametric test, the corresponding 

non-parametric tests should be used. Often, the analysis of data by both methods 

will lead to the same conclusion. A summary of statistical two-sample tests is given 

in Table 3.4, which is modified from Bryman Cramer (1994, p.119). The choice 

of tests also depends on the nature of the data.

The statistical procedure used in this thesis is summarised here. The data are 

tested for their distribution pattern, followed by two-sample tests. Shapiro and 

Wilk’s W  test is utilised here as the normality test. If the data are likely to be from 

a normal population, parametric two-sample tests are performed to compare the dif­

ference between synthetic and natural data; otherwise, non-parametric two-sample 

tests are carried out. In other words, if the samples are of normal distribution, the 

¿-test is selected for small sample size (n < 30) and the 2-test for large sample sizes; 

otherwise, non-parametric tests such as the median and Mann-Whitney U tests are 

used to test the difference between two samples.
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In parametric tests, a hypothesis is a statement about what is believed to be the 

value of the population parameter before experimental data are presented (Eason 

et al., 1980. p.465). For example, a sample of observation is drawn from a population 

with known variance, where the population mean fi is unknown but is thought to 

be fi0. It has to be decided which of the two alternatives fi = fio or / 1 /  /¿0 is to 

be accepted; that is, the choice must be made between the null hypothesis, Ho, and 

one of the alternative hypotheses, Hi, respectively.

Depending on the research hypothesis, one and only one of the three alternatives 

is assumed. If the calculated significance level is larger than the given significance 

level, Hq is accepted and Hi is rejected.

Another category of statistical tests is called non-parametric or distribution free 

tests, as parameters such as the mean and variance do not need to be estimated, and 

assumptions about the probability distribution of the observation are unnecessary 

(Eason et ai, 1980, p.487). Hypotheses are proposed and the significance level is 

set. The conclusion can be drawn from the calculated significance level.

The research conclusion is reached by comparing the test statistics with the 

significance level of the test. The choice of significance level is, by convention, chosen 

arbitrarily before the analysis of data to be either 5% or 1% (Eason et at., 1980, 

p.466). For all tests conducted here, the significance level is set to 5%, although 

it was suggested to use 5% for small samples and 1% or lower for larger samples 

(Vaus, 1993, p.191). Alternatively, the calculated significance level or the probability 

associated with the test statistic can be obtained, thus lead to the choice between

Ho : / i  =  fio
± fi0  or 

fi > fi0  or- 
f i  <  f i o

(3.13)
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the null and the alternative hypotheses.

There are two types of errors associated with the choice of significance level. The 

former is that one might reject the assumption of no association in the population 

(i.e., null hypothesis) when there is no association. This is called a type 1 error, 

which is likely to happen when using a higher significance level for larger samples. 

On the other hand, one might accept the null hypothesis when it should he rejected. 

This type II error usually happens in small samples being tested against lower 

significance level. In the words of Chatfield (1988, p.79), for example, types I and 

II errors could be equated, respectively, to the statements that “a non-significant 

effect is not necessarily that same thing as no difference”, and “a significant effect 

is not necessarily the same thing as an interesting effect.”

Just as every statistical test risks either of the two errors, so does this thesis. 

For example, the analysis in the first part of Chapter Four and whole of Chapters 

Five and Six might risk the type I error, for the sample size is large (N  > JO) 

and the significance level is high (5%); whereas the second part of Chapter Four 

might suffer from type II error. Fortunately, most statistical softwares produce 

the calculated significance level of a test. Therefore, one can use the alternative 

approach mentioned above in drawing conclusions on the hypotheses.

Norm ality Tests

A normal population is defined as a distribution which has zero mean and unit 

variance, and is denoted as N(fi,cr2) = N (0 , 1 ) (Eason et al., 1980, p.434). Since the 

normal distribution of data is very important to statistical inference, the assumption
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that the data come from a normal distribution is often examined. One way to do this 

is with a normal probability plot. In a normal probability plot, each observed value 

is paired with its expected value from the normal distribution. Although normal 

probability plots provide a visual basis for checking normality, it is often desirable 

to compute a statistical test of the hypothesis that the data are from a normal 

distribution. Two commonly used tests are the Lilliefors test and the Shapiro and 

Wilk's test. The Lilliefors test, based on a modification of Kolmogorov-Smirnov test, 

is used when means and variances are not known but must be estimated from the 

data. Refer to Norusis (1993. p. 1 S9) for more details.

Shapiro and YVilk’s test shows great reliability in many situations compared to 

other tests of normality (Conover, 1980). Shapiro and Wilk's W  statistic for the 

normality test requires that data are sorted into either ascending or descending 

order. The W  statistic is defined as (Hann h  Hounam, 1991, Ex. gOlddf),

W
£i=i(z.- -  *)2

(3-14)

If the \V statistic is small and its calculated significance level is greater than 0.05, 

then the null hypothesis is accepted and the alternative hypothesis H\ is rejected. 

The W  statistic and its related calculated significance level measures the normality 

of a sample, and indicates what kind of tests are needed for further comparison. That 

is, the parametric test will be performed if both samples are normally distributed. 

In all other cases, non-parametric tests are carried out.



CHAPTER 3. METHODS 89

Two-Sample Tests

There are several methods of making comparisons between two samples. The two- 

sample c-test is valid for all large samples and for small sample when the probability 

distribution of samples is normal; whereas the two-sample t-test is used instead of z- 

test when the sample size is small and the population variance has to be estimated by 

the sample variance, and the population should have a normal distribution (Eason 

e¿ al., 1980, pp.468,471). Another important requirement is that the variance of the 

two populations should be equal. In practice, the sample standard deviations should 

be nearly the same. All these tests are based on the assumption that samples are 

of normal distribution.

The two-sample ¿-test and 2-test are to examine the difference of means between 

two normal populations. If the two population variances are equal, that is, cr̂  = <Ty, 

the test statistic, ¿, is defined (Harm & Hounam, 1991, Ex. gOTcaf) as

lobs
x - y

7 ” *) + (1/Wy)’
(3.15)

where s2 =  1)5y }s the pooled variance of the two samples. Under the

null hypothesis, Ho : px = /iy, this test statistic has a ¿-distribution with (nx+ny — 2 ) 

degrees of freedom. The alternative hypothesis is Hi : /xx ^  p y, and the calculated 

significance level, p — P(t >  [¿ofcsI)-. is the probability of ¿ equal to or greater than 

I¿0631, the absolute value of t0bs. If the population variances are not equal, the two- 

sample ¿-statistic no longer has a ¿-distribution and an approximate test is used. 

That is, the approximate test statistic, ¿', is defined,

x - y
¿1. (3.16)
oha se{x -  y) ’

where se (i — y) = ^  A ¿-distribution with /  degrees of freedom is used to
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approximate the distribution of T', where /  =  C A . . Here the alternative 
11 J 4 / " S . | ylny,(nx-l) ' (nv-l)

hypothesis is H\ : y x ^  fj.y, and the calculated significance level, p, is equal to

Pit' > K J ) -

For large sample sizes (n > 30), the two-sample c-test is used. File c statistic is 

calculated as follows,

The hypotheses are Hq : y x = and Hi : ¡ix ^  f.iy. The calculated significance 

level is compared with the standard significance level associated with the z statistics, 

in order to reach the conclusion. For example, at a 1% significance level the z 

statistic must lie between —2.57 and 2.57 for //o to be accepted.

If the samples are not normally distributed, non-parametric tests have to be 

considered. In those tests, parameters such as the mean and variance do not need to 

be estimated and assumptions about the probability distribution of the observations 

can be unnecessary (Eason et al., 1980, p.487). For example, the Kruskal-Wallis and 

the Friedman tests are methods suitable for detecting differences between several 

groups of observations; Contingency tables were devised as a method of handling 

categorised data and the Wilcoxon test is an alternative to the paired comparison 

¿-test. Refer to Eason et al. (1980, Ch.24-25) for more details. Since this thesis is 

mainly concerned with testing the difference between the real and synthetic data, 

several two-sample tests are discussed below.

The two-sample Kolmogorov-Smirnov test assumes that the data to be tested 

consist of two independent “samples” (Hann & Hounam, 1991). The hypotheses are 

Ho : F{x) — G(y) against one of many alternative hypotheses such as //) : F(x) ^
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G (y), where F{x) and G(y) represent unknown distribution functions of samples of 

size nx and ny, respectively. Given the above alternative hypothesis Hi, the largest 

positive deviation between the two sample cumulative distribution functions (the 

statistic Dnx<n) is obtained (Hann Hounam, 1991, Ex. gOScdf). The normal 

test statistic of DnxtUy can be calculated from Z = \ j ~*~~y- x F)nx<riy. Subsequently, 

the conclusion can be drawn from the test; for example, the null hypothesis, H0, is 

rejected under 5% significance level, if \Z\ is greater than 2.131.

Similar to the Kolmogorov-Smirnov distribution test is the two-sample iVlann- 

YVhitney U test, which assumes that the data consist of two independent “popula­

tions” (Hann k. Hounam, 1991). The Mann-YVhitney test is often suitable in cases 

where the two-sample parametric i-test cannot be used (Eason et al., 1980. p.489). 

Therefore, it is the first non-parametric test used here.

The Mann-YVhitney U test investigates the difference between two popula­

tions defined by the distribution functions F(x) and G(y), respectively. The null 

hypothesis under test is Ii0  : F(x) = G(y) and the alternative hypothesis is 

Hi : F(x) ^  G(y). The test procedure involves the pooled sample, average ranks 

being used for ties. Let rlt be the rank assigned to x ,-,i =  1,2, ...,n i, and r2j the 

rank assigned to y j , j  = 1,2, ...,n2, where nj and n2 are sample sizes. The test 

statistic U is defined as follows (Hann & Hounam, 1991, Ex. gOSahf):

«I

1=1

n i [ n i + 1) (3.18)

The approximate normal test statistic, Z, is:

^  U — mean(U) ±  |  
Jvar(U)

where rnean{U) = ^  and var(U) = .n-irfrfr«f-22±H -

(3.19)

---- --------- rr x TS,  wheren l n2 (n i - f n 2~ l )  ’
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T S  =  5ZJ_i , where r  is the number of groups of ties in the sample and

tj is the number of ties in the j th  group. However, if no ties are present, var(U)

reduces to — .

Another two-sample non-parametric test used in this thesis is called the median 

test. It investigates the difference between the medians of two independent samples 

of possibly unequal sizes. The test proceeds by forming a 2 x 2 frequency table, 

giving the number of scores in each sample above and below the median of the 

pooled sample. The hypothesis under test, //q, is that the medians are the same, 

and this is to be tested against the alternative hypothesis, H\ , that they are different. 

Refer to Hann & Hounam (1991, Ex. gOSacf) for more details.

Comparative Data

The procedures described above involve decision on the hypotheses using test statis­

tics, which is confusing at times. However, the decision process can be made easier 

and clearer using data of known parameters. Two sets of data of known population 

parameters are used for comparative purposes: the normal scores and the random 

numbers from a normal distribution, that is, Ar(0, 1 ). For routines that generate 

those data refer to Hann &: Hounam (1991). Both are expected to be normally 

distributed, and the difference between them is not significant.
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3.4 D iscussion and  C onclusion

In this chapter, the common methods which are used for analysing data in this thesis 

have been introduced, including the use of fractal analyses and of various statistical 

analyses. Specific methods relevant to each type of data are given in later chapters. 

These will include the conventional analyses of time series, digital elevation model, 

and spectral image.

3.4.1 On Fractal A nalysis

Fractal analysis here refers to the estimation of the fractal dimension of self-affine 

linear features such as wave profiles, and profiles of the digital elevation model and 

the fern image. The analysis of the last two features involves the sectioning of a 

self-affine three-dimensional image. Although the distinction between self-affine and 

self-similar profiles is an elusive one (Mandelbrot, 1985), reducing the dimensionality 

means that the nature of the fractal objects might be altered (Mandelbrot, 1989). 

For example, horizontal slices or contours through a topographic surface or a cloud 

exhibit self-similar behaviour, given that those phenomena are self-affine. However, 

other researchers such as Klinkenberg (1994, p.25) stated that “this dimensionality- 

reduction process does not always alter the fractal nature since profiles of self-affine 

surfaces remain self-affine.”

The proper estimation of the fractal dimension requires several considerations 

on the choice of implementation methods. For example, the box-counting method 

demands a large number of data points and hence computer memory; the divider



CHAPTER 3. METHODS 94

method used by Richardson (1961) is unlikely to be appropriate for digital im­

ages; and Klinkenberg (1994, p.36) advised that the spectral method “should only 

be applied to self-affine curves.” Yet another drawback common to every method 

of obtaining the fractal dimension is that discretisation of the phenomena being 

investigated will result in a measured fractal dimension that is different from its 

theoretical fractal dimension (Klinkenberg, 1994. p.28). The coarser the discretisa­

tion, the greater the expected difference, and the direction that the difference will 

take is open to question. Gilbert (1989) found instances of both a decrease and an 

increase in the fractal dimension with greater decimation of the original data. Thus, 

to assume that discretisation achieved by removing finer details will always result 

in a lesser fractal dimension is inappropriate (Klinkenberg, 1994). Since the imple­

mentations of some methods are themselves discretisation of continuous expressions, 

that in itself may affect the derived fractal dimensions (Dubuc et a/., 1989). In fact, 

estimates of fractal dimensions often vary with the choice of method and details of 

estimation (Tate, 1996, p.794).

The box-counting method has proven reliable for the estimation of the fractal 

dimension from many fractal objects, although there are problems associated with 

this specific method and concerns about all methods that use the regression model, 

as explained earlier. The first advantage of the box-counting method is that it can 

be easily extended from linear features to features of higher dimensions. The second 

is that it can be applied to both self-similar and self-affine objects (Klinkenberg, 

1994, p.4‘2) and the third is that it is relatively easy to implement with a computer. 

Therefore, the box-counting method has been chosen here as the method for im­

plementing the estimation of the fractal dimension for the various data sets. The
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obtained results can be used for further comparisons with other work.

Making comparisons of the fractal dimensions demands that identical methods 

and similar scales are used in the estimation process, as described earlier. Such a 

restriction makes the rules for comparisons of the fractal dimensions from various 

sources more rigid and meaningful. It can also be extended to the interpretation of 

the systems dynamics within a system.

The difference of dynamics within a system is not always easy to detect, and 

alternative approaches have been used. Another means of understanding a system 

is to extract their multifractal characteristics and the methods for monofractals have 

been extended to multifractal objects. It is important to separate the observation 

of discrete fractal elements from truly continuous multidimensionality (Andrle & 

Abrahams, 1989; Andrle & Abrahams, 1990), since the question of whether a mono- 

or a multidimensional fractal is the more appropriate model has not been answered 

in most cases (Klinkenberg, 1994, p.27). The result of any analysis must be carefully 

examined for evidence of multidimensionality. One way to check for such behaviour 

is to plot the residuals from the best-fitting line of slope and check for evidence of 

nonlinearity (Andrle, 1992). A closer examination reveals that the formulation of 

multifractal dimensions shares the identical implementation methods used in esti­

mating monofractal dimensions. It seems another alternative approach is needed 

for the exploring of the difference of the sub-systems dynamics.

This thesis offers a conceptually easy alternative to the understanding of sub­

systems dynamics of a system: the estimation of the fractal dimension of the sub­

systems. A sub-system here means a section of a profile of a system. Because
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the estimation method and scale are identical for every sub-system, the comparison 

of sub-systems dynamics is reliable. The sub-systems dynamics can be identified 

spatially, unlike the multifractal or the single measure approaches.

3.4.2 Oil S tatistical Analysis

The statistical methods which are used in this thesis are comparatively well- 

established. Definitions of basic statistics and methods of implementation have 

been documented and the general characteristics of the sample are revealed once 

the basic statistics are obtained. This procedure is performed for both the synthetic 

and natural data sets.

Statistical tests have among other uses the determination of significant differ­

ences between two samples. The tests used in this thesis are mainly for comparison 

between the mean values of raw data and mean values of derived fractal dimensions 

and for these purposes a normality test has to be performed first for the data to be 

tested. For parametric tests to be valid, data samples must be normally distributed, 

that is, with zero mean and unit variance. Because data taken from the natural en­

vironment do not usually exhibit normal distribution, more conservative statistical 

tests known as non-parametric tests are selected for use here.

The choice of the statistical method depends on the nature of the data. Because 

the raw data and the derived fractal dimensions are of a continuous nature, the 

one-sample Shapiro and Wilk’s XV test is used to test the normality of sample. For 

the same reason, the two-sample i-test and Mann-Whitney U test are chosen for 

parametric and non-parametric tests, respectively. The f-test is usually used for a
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small sample of fewer than thirty data points. Because the sample size of a digital 

elevation model and fern image is much greater than thirty, the Mann-Whitney U 

test has been chosen.

The implementation of the box-counting method involves programming with 

ANSI C and FORTRAN 77 computer languages and the complete listing of the 

methodology is given in Appendix E; whereas the statistical tools and programmes 

that are able to modify the data format and make linkage with existing routines are 

listed in Appendix F.
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C hapter 4

Wave Profiles

Figure 4.1: The Teignmouth Estuary in England.
The wave data were collected in 1992 on the beach behind the pier. The pier has 
been dismantled by the local authority. From Baring-Gould & Hicks (1949, p.204).
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4.1 In tro d u c tio n

This chapter focuses on the study of the relatively homogeneous sea wave system, 

using both conventional and fractal analyses. This section provides the basics of 

describing waves, a brief history of wave recording, and the reasoning for the use 

of pressure transducers as the recording instrument. It is then followed by the 

description of the natural wave profile data, that were collected on 16th May 1992, 

at Teignmouth in south-western England; and the synthetic wave, that is generated 

from a typical wave theory, comprising four sinusoidal waves with different sets 

of amplitudes, the first angular velocities, and phase lags. This chapter continues 

with the methods of analysis: the conventional time series analysis includes the 

cjualitative approach of phase portrait reconstruction and the quantitative approach 

of spectral analysis; while the fractal analysis has been detailed in Chapter Three. 

Subsequent results are given, followed by discussion and conclusion.

4.1.1 Describing W aves

Hardisty (1990b, p.l) stated that “the more or less regular rise and fall of the sea 

surface at intervals of up to 20 seconds have been generated since water first liq- 

uidified on the earth’s crust.” It is perhaps surprising that relatively few actual 

measurements are available of these complex and poorly understood phenomena. 

The difficulty of understanding waves is largely due to two sets of problems. Firstly, 

the water level which defines the wave profile is constantly changing so that mea­

surements must be taken at least once a second and often more frequently if fine 

details are to be discerned. The second problem is of a more theoretical nature
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and involves the analysis of the measurements and the formulation of an accurate 

description of the results which properly encompasses the data set.

Tidal waves and wind waves are two main sources contributing the majority of

energy to ocean motions as shown in Figure 4.2. Waves generated by the gravita-

type ol wave

0.1 m
0.017 m l  1 m
___L _ l___ L

wavelength 

10m 100m 1000m
_ J ___l___I

GRAVITY WAVES

C A P ILU R Y  WIND WAVES LONG-PERIOD
WAVES WAVES

ORDINARY 
TIDE WAVES 

(FIXED PERIOD)

TSUNAMIS•*Z.-----3*-
SEICHES and STORM SURGES----------------s»-

wind S T O R M S

Figure 4.2: Type of Surface Waves.
Here are shown the relationship between wavelength, wave frecpiency, the nature 
of the displacing forces, and the relative amounts of energy in each type of wave. 
Modified from Brown et al. (1997, p.10) and Horikawa (1978, p.6).

tional attraction of the sun and the moon are known as “tidal waves” or simply as 

“tides”. “Blowing over the surface of the world oceiin, [wind] transfers energy to the 

water which is manifested as a series of more or less regular crests which develop 

in lines normal to the wind and travel along the wind direction” (Hardisty, 1990b, 

p.l). Waves that are generated and developed by such wind action are known as 

“wind waves” . Waves of greatest energy concentration are wind waves and their 

wave period is normally less than ten to fifteen seconds, while heights of as much 

as 34 metres have been reported (Horikawa, 1978, p.7). Details of terms such as
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Tsunamis and the above schematic diagram of ocean surface waves can be found in, 

for example, Brown et al. (1997, p.10) and Hardisty (1990a, p.49).

There are four important parameters defining a wave: wavelength, wave period, 

wave height and wTave celerity (Hardisty, 1990b), as shown in the schematic diagram 

of an idealised ocean wave (Figure 4.3) below (Brown et al., 1997).

Figure 4.3: Schematic Diagram of An Idealised Wave.
Vertical profile of two successive idealised ocean waves, showing their linear dimen­
sions and sinusoidal shape. It also shows the displacement of an idealised wave at a 
fixed point, plotted against time. Modified from Brown et al. (1997, pp.7,10).

• The wavelength L is defined as the horizontal distance between successive 

crests and has unit metre (rn).

• The wave period T  is defined as the time interval between the occurrence of 

successive crests at a fixed point and has unit second (s).

• The wave height H is defined as the vertical distance between the crest and 

the trough, which is twice the wave am plitude (a), and has unit m.

• The wave celerity C is defined as the horizontal distance traversed by the 

wave crest in one second in a direction normal to the crest line. Such lines
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define the path of the wave and are called wave orthogonal. The velocity of 

the wave form is:

C =  j .  (4.1)

The wave celerity has units rn/s and is often referred to as the wave phase 

celerity in order to distinguish it from the wave group celerity, C3,

Cg =  5 (1 +
2 kh

sinh( 2 kh) (4.2)

where h is the still water level, k = 2ir /  L is called the wave number and has 

units radians m -1, and sink x =  e J is the hyperbolic function where e is 

the base of natural logarithms.

The distinction between deep and shallow waters is in fact '‘a matter of degree'’ 

as Kosko (1993) describes many phenomena. However, some conventions are intro­

duced to describe the water depths. Wavelength with regard to wave period defined 

by Airy’s first order wave theory is as follows (Airy, 1845),

gT2 ,~nh —  tank (— ), (4.3)

where g = 9.81 m / s 2 is the gravitational acceleration, h is the still water level, and 

tanh x = is the hyperbolic tangent function. In deep water, tanh(2nh/L)

approximates to 1. That is, the wavelength in deep water, Loo, using SI 1 units, 

becomes
aT 2

— = 1.56 T 2. (4.4)
¿IT

Deep water is defined as h > Loo/4. Referring to the same hyperbolic function 

again, in shallow water tanh(2 nh/L)  approximates to 27r/i/L, so that, wavelength

1 SI is a system of metric units (Sinclair, 1994).
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in shallow water where water depth is defined as h < 1/20 becomes,

£ = T  W h- (4-5)

This approximation again applies to within 5% in water depth for which h < L /20. 

The general expression must be used for water in intermediate depths.

In the deep water of the world’s oceans, the wave form can travel almost un­

changed for very great distances, because there is negligible energy loss as the wave 

moves forward. Once the wave enters shallower waters, however, the wave is slowed 

down. Therefore, the wavelength reduces because the wave period remains con­

stant. As a consequence of this foreshortening, the potential energy is squeezed 

into a shorter distance and there is therefore a corresponding increase in the wave 

height, until eventually the wave over-steepens and breaks onto the shoreline. These 

changes are known as shoaling wave tran sfo rm ations (Hardisty, 1990b).

The increase in wave height and decrease in wavelength which are predicted 

by, for example, the first order wave theory have been found to account for the 

main changes in wave profile (Airy, 1845). Additionally, however, a number of 

processes which can increase or decrease the wave height are listed below, together 

with selected references wherein further details can be found (Hardisty, 1990b):

• F riction . Sea bed frictional drag reduces the wave height (Nielson, 1982).

• P erco la tion . Wave induced currents within a permeable sea bed which can 

consume wave energy, and reduce the wave height (Sleath, 1985).

• R efraction . Changes in the wave direction during shoaling are known as wave 

refraction, and converging wave orthogonal will result in wave height increases,
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whilst diverging wave orthogonal will result in wave height decreases (VViegel, 

1964).

• R eflection. Wave energy is continuously being reflected by the sea bed during 

the shoaling process and this will steadily reduce the wave height (USAGE, 

1984).

• B reaking . A substantial amount of energy is dissipated in noise and turbu­

lence when the wave finally over-steepens and breaks onto the shoreline (Dyer,

1986).

4.1.2 A B rief H istory o f Wave Recording

Visual observations are the simplest and cheapest method of measuring wave heights 

and period. However, “observers, particularly in small craft, consistently overesti­

mate wave heights, by a degree which unfortunately varies considerably, and it is 

better to compare the wave profile with a graduated pole” (Hardisty, 1990b, p. 17). 

Interest and importance in wave research increased rapidly in connection with the 

amphibious military exercises during the Second World War and resulted in a range 

of instruments. Some instruments are described by Ivlebba (1945) for the Woods 

Hole Oceanographic Institution and Deacon (1946) for the British Admiralty Re­

search Laboratories. The techniques currently available include surface measure­

ments in both deep and shallow water, from above the surface in all water depths, 

and from below the surface in shallow water.

Ewing (1980) made a review of the developments in the use of wave recording 

buoys to measure the wave direction in deep water, but all these techniques were
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found of little use in coastal geomorphology (Hardisty, 1990b). Possibly the earliest 

device for measuring the wave surface in shallow water, which received widespread 

use, was the spark-plug wave recorder. A series of spark plugs, each fixed with the 

electrode horizontal, was placed with the electrodes a few inches apart in a vertical 

line, with the idea that as the sea water moved up and down it would short out 

those plugs which were under water and so yield a wave record (Ivoontz L: Inman, 

1967). The signals are usually cabled to a suitable chart recorder or data logger. 

Williams (1969) gives details of construction, circuit design and calibration of the 

type of gauge. All these instruments are, however, handicapped by the difficulties 

connected with the film of water left on the sensor when the water level drops.

Attempts have been made to obtain the wave measurements from above the 

surface, for example, the recording altimeter, used from flying aircraft; laser instru­

ments, designed originally for precision distance measuring in surveying; using high 

frequency radio signals to measure sea conditions from space. However, they are 

“prohibitively expensive if extended records are required” (Hardisty, 1990b).

One of the methods of obtaining wave records from a sea bed instrument is to 

use an inverted echo-sounder and record the changing distance between it and the 

water surface. The beam must be fairly narrow and the water depth must be fairly 

shallow, so that when a crest is over the recorder, a reflection does not come back 

from the sloping part of water surface (Hardisty, 1990b).

In shallow water most routine wave data collection has been made by transducers 

mounted on the sea bed. Such devices are inappropriate farther offshore because 

the pressure effects due to surface waves are attenuated with depth at a rate which
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varies with the wave frequency. For this reason the short period waves are filtered 

out of the record in deep water. A four-second wave, for example, loses more than 

90% of its pressure effect at the sea bed in water which is more than 10 metres deep. 

Hardisty (1990b) concluded that ‘‘notwithstanding this problem the vast majority of 

sea wave recordings have been obtained with pressure transducers.” Surface waves 

induce pressure fluctuations in the entire column of water between the surface and 

the sea bed. For any given depth of water and wave height the amplitude of these 

fluctuations depends on the wave period, such that waves of very short period are 

quickly attenuated. The pressure fluctuations at the bottom are measured by an 

underwater unit of an electronic transducer. The transducer converts the pressure 

to an electronic signal which is cabled ashore. A grid of transducers is used to detect 

the wave direction.

4.1 .3  The U se o f Pressure Transducers

Although a controversy exists over the adequacy of translating sea bed pressure 

data to surface wave heights, there is now considerable information affirming that 

linear wave theory is adequate to compensate pressure data (Esteva & Harris, 1970; 

Grace, 1978; Forestall, 1982), and that pressure data give reliable estimates of sur­

face wave heights to within five per cent (Bishop h  Donelan, 1987). Carson et 

al. (1975) quoted several methods of "avoiding” the dynamic effects of a current 

while measuring tide by pressure transducers. “Improvements” have been found, 

for example, in Cavaleri (1980). Grace (1978) concluded that the Gaussian random 

process model provided a theoretical surface spectrum that corresponded closely to 

that measured over a reasonable frequency band. His tests were conducted off Hon­
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olulu, Hawaii, in 11.3 metres of water and in the Oregon State University, U.S.A., 

in 2.9 metres and 3.5 metres of water.

However, the linear wave theory was found to be adequate to describe the actual 

data measured by submerging the pressure transducer in 4.7 metres of water at mean 

low tide (Esteva Sz Harris. 1970), in water 11.3 metres deep (Grace, 1978), and even 

in water 20.7 metres deep (Forristall, 1982), respectively. Laboratory tests (Bishop 

Sz Donelan, 1987) conducted to measure wave heights with a capacitance probe as 

well as pressure transducer in water depths of 90 centimetres and 120 centimetres 

confirmed that the transducer is adequate to measure the water surface height.

It is relevant to note that continuous measurements are required for environmen­

tal monitoring. Hardisty (1993, p.856) concluded that in many geomorphological 

process applications, two Hz is a reasonable sampling frequency. Although such 

sampling frequency is reasonable in many geomorphological process applications, 

this chapter intends to apply it to the geomorphological form study.

4.2 R eal W ave D a ta

Wave profiles were measured by Hardisty 8z Drumm (1993) in 1992, deploying pres­

sure transducers on the beach of Teignmouth in England. The calibration of the 

electronic signals was performed on land by computers to obtain the wave profile 

data. Although there were several days of measurements, the complete data col­

lected in the afternoon of 16th May 1992 were used.
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4.2.1 Field Site

O pre/ Point

Field Site

EIG N  M OUTH

1 Km

Figure 4.4: Location of Teignmouth in England.

The experiment was carried out by Hardisty k. Drumm (1993) at the beach of Teign­

mouth in England (Figure 4.4). Teignmouth is located at 50°32'40"Ay3CJ29'30"H/ 

in the global grid reference system, or S X  942 72S in the British National grid ref­

erence system by the Ordnance Survey (OS, 1992). The mean spring tidal range at 

Teignmouth, on the south Devon coast facing the English Channel, is 4.1 metres, 

whereas, compared with that on the northern Devon coast, which faces the Bristol 

Channel, it ranges from 7.3 metres at Appledore to 10.3 metres at Watchat (Carr, 

19S8, p.25). Refer to Appendix G for a brief introduction to Devon.

4.2.2 D ata C ollection

The data were part of the measurements collected by the third of the three de­

ployments sponsored by the Natural Environmental Research Council (Hardisty &
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Figure 4.5: The Flux Square Design of Studying Ocean Waves.
The flux square design consisted of pressure transducers and other instruments de­
ployed at Al, A2, A3, A4 and Outer rigs. Modified from Hardisty & Drumm (1993).

Drumm, 1993) and aimed to measure offshore and longshore current speeds, the 

concentration of the sand in suspension at various heights above the beach sur­

face, and the surface wave profiles. The first two were deployed at Llangenith in 

West Wales in 1990 and at Spurn Head in East Yorkshire in 1991 and the third 

was deployed at Teignmouth in Devon in 1992. The deployment consisted of four 

frames on the inter-tidal beach profile, where the frames were deployed at the cor­

ners of a “flux square” (Hardisty & Drumm, 1993) as shown in Figure 4.5. Pressure 

transducers and other instruments were deployed at each rig (A1 to A4 and Outer), 

which were all cable-linked to a shore-based power supply, filters and PC logger. 

Although this flux square was designed with multiple purposes in mind, this study 

is concerned only with a single wave profile. Therefore, the data measured by the 

pressure transducer at Outer rig were used.

Signals from sensors were converted, calibrated and logged on microcomputers. 

The wave recorder and data analysis system used in this study were developed 

by the Marine Morphodynamics Unit (MMU) at London University, which has now
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transferred to the School of Geography &c Earth Resources at the University of Hull. 

The sensing element consists of the LX1601C.B gauge type pressure transducer and 

signal conditioner manufactured by Sensym in the United States and is available 

from Farnell’s in the United Kingdom. The transducer is internally temperature 

compensated and has an output offset of 7.5 volts (V) with a sensitivity of one volt 

per PSI2. It means that 0.7 metre of water produces a signal of IV, providing a 

very good signal to noise ratio (Hardisty, 1990b, p.26). Only one of these sensors is 

required for a single wave recorder, but two identical units must be assembled for 

the directional instrument (Hardisty &: Drumm, 1993).

The response of the transducers has been found to be remarkably linear; nev­

ertheless a calibration exercise is useful (Hardisty, 1990b). By lowering the sensor 

into still water a relationship such as,

Vsubm  = ( V output ~~ P a i r )  *  V 1 *  depth, (4.6)

can be determined, where Vsubm is the voltage reading when submerged to a depth, 

Voutput is the actual signal voltage reading from the transducer, V)Jir is the voltage 

reading in air, and C\ is the gradient of the line. According to the manufacturer’s 

specification, Vatr should be about 30000 volts and C\ should be about 4000 metre~x 

(Hardisty, 1990b, p.36).

Raw data were obtained through filtering and smoothing of these signal readings. 

The signal readings from the transducers were averaged over 0.25-second intervals, 

and the highest crest and lowest trough were monitored, along with counting the 

crests and zero crossings over the timed ten-minute interval. The sum of the maxi­

2 PSI stands for pounds per square inch.
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mum crest and trough values were then calculated.

Voltages in raw data were converted to depth using proprietary HSDC V.2 (High 

Speed Data Collection) software (Hardisty tV Drumm, 1993). These data were then 

calibrated using arrays of known instrument sensitivities and instrument offsets. A 

linear calibration, y = mx  -f- c, was performed for each measurement,

depth = (Vsuhm * gradient) + offset, (4.7)

where the depth and the offset have the units of rn and the gradient is derived from 

voltage-depth plot. The depths were then used to construct the wave profile.

The whole sea wave profile consists of many records; and each record was mea­

sured at 2Hz  for 17.07 minutes, totalling 2048 data points per record. The relatively 

short length was chosen in order to obtain stationary spectral estimates (Hardisty <V 

Drumm, 1993). The full tidal cycle needs around thirty records to cover, depending 

on the tides and the position of the pressure transducers relative to tide-lines. On 

the day of measurement, twenty-seven records were obtained, producing a total of 

55296 (2048 x 27) data points for the wave profile. The process that generates the 

synthetic waves must comply with those numbers, as described below.

4.3 S y n th e tic  W aves

The tidal theory usually starts with the equilibrium tide over the Earth’s surface, 

which contains a constant term for the particular latitude and declination, a diurnal 

and a semi-diurnal term (Wood, 1969, pp.7-8). Each term of a tidal harmonic 

analysis may be expressed in the form Acos(ujt — P) where A represents amplitude,
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ui the angular velocity, t is time, and P the phase lag. As a result, a wave is generally 

modelled as compound sinusoidal curves (Baldock &: Bridgeman, 1981, Ch.l). The 

simplest form of a wave is a sine wave, r/(t) = sin(t), where y is height and t is 

time. A natural wave is typically modelled as a composition of several component 

sinusoidal waves. See details below and computer programmes in Appendix H.

113

4.3.1 The Equation

A wave profile can usually be approximated by the following equation, with four

component waves and an offset,

r/(t) = A x sin(u i t T Pi)
A A 2 sin(u) 2 t A P2 )
A A3 sin{uj3 t + P3) (4.8)
+ At sin(u4 t A P4 )
+ offset,

where A is the amplitude of waves in metres, u  is the f  irst angular velocity in 

radian-1, t is time in seconds, P is the phase lay in radians, and offset is the 

depth of wave in metres that compensates for the possible negative added-up wave 

heights. The first angular velocity is a function of period, T, that is, =  2tt/ 7’; 

whereas phase lag can be expressed as P = 2n lag/T,  where lag is the lag time in 

seconds.

The above equation can include any number of waves; however, four waves are 

proposed. Although some component waves are optional, it is essential to include 

the tidal wave, for example, Wavef with A*, uq and P4 in Equation 4.8, which 

models the natural tidal cycle.
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4.3.2 Param eters

Wave .4 (m) T ( s ) lag (s)
Wavel 1.0 10 0.0
Waved 0.5 11 0.1
Waved 0.25 21 0.2
Waved 2.0 2764S 20736
Offset 4.0

Table 4.1: Parameters for Generating a Synthetic Wave Profile.
There are three component waves and a tidal wave ( Waved). Amplitudes, A , are 
given in metres, m, while periods (T) and lag time (lag) are indicated in seconds 
(5 ). The offset cancels out the possible negative heights.

The parameters used to run this synthetic wave model are given in Table 4.1, 

where .4 is the amplitude, T  is the period used to derive the first angular velocity 

(u), and lag is the lag time used to derive the phase lag. The first three wave periods 

can be selected, for example, from either empirical records (Russell & Macmillan, 

1952; Horikawa, 1978) or theoretical calculations (Hardisty, 1990a). The amplitude 

of the tidal wave is set to two metres, relatively smaller than the mean spring tidal 

range of 4.1 metres (Carr, 1988). Although the principal lunar tidal component 

repeats itself in a 12.42-hour cycle as described in Table 2.2 and Brown et al. (1989, 

p.57), the synthetic wave profile is modelled according to the actual tidal period in 

around eight hours, that is, 55296/2Hz = 27648 seconds = 7.68 hr. The lag time 

for the tidal wave is set at its third quarter of tidal cycle, when the tide is at its 

lowest level; however, the modelling continues for the full tidal period.

4.3.3 Im plem entation

Stages of implementing the above equation are introduced as follows, where the cor­

responding computer programme is given in Appendix H. First of all, the computer
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programme needs to calculate the tidal period for the modelling, from the “user- 

defined” information, for example, numbers of output columns and rows, sampling 

rate, and the offset. The production of row and column numbers gives the length of 

the profile; and, when divided by the sampling rate, the “tidal period” is obtained. 

This tidal period is not necessarily equal to the real one, although the whole wave 

profile is still maintained (see Figure 4.6).

Figure 4.6: Wave Profiles Generated by Various Tidal Periods.
Although the tidal periods may be different, the whole wave profile is maintained.

The second stage is to calculate the first angular velocity, ui, and the phase lag, P, 

from the wave parameters supplied in Table 4.1. The periods and lags in time units 

are intrinsic, but the trigonometry calculation demands radian units. Therefore, all 

those time units are translated into radian units, as described in Section 4.3.1.

The third stage is to sum up the component waves in Equation 4.8. It results 

in a long list of wave heights against time, which has to be re-organised to comply 

with the data format needed. In other words, the long list is split into twenty-seven 

records; and each record contains 2048 data points. Further analyses described in 

Chapter Three and subsequently can then be applied.
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4.4 A nalyses

Conventional time series analyses are applied to the sea wave profiles, followed by 

the fractal and statistical methods described in Chapter Three. Details of the con­

ventional methods are given in this section, including the qualitative approach of the 

phase portrait reconstructions, and the quantitative approach utilising the spectral 

methods of the power spectra and auto-correlation coefficients. The corresponding 

computer programmes are listed in Appendix I.

4.4.1 Specific M ethods

A wave profile is an example of time series. A time series is a sequence of measure­

ments x which could be represented in continuous or theoretical function as x(t) 

where t is the time or, in discrete or sampled function, as xt = (xj, X2 , ---,  Xjv) 

where N  is the total number of samples. The discrete function is related to the 

continuous function as x, = x(iAt),  where At  is the increment.

The wave profile is continuous in nature. However, the data that represent a wave 

profile are discrete in reality, because the obtaining of data involves application of 

the sampling process which discretise the continuous wave profile. Although data 

used in this study are discrete, methods of analysis are derived for both continuous 

and discrete data.

Qualitative and quantitative characteristics of a time series can be studied by 

phase portrait reconstruction and spectral analysis, respectively. The qualitative 

characteristics of a time series can be revealed by the construction of phase portrait
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reconstruction. A phase space is the space where values of variables at a specific 

time of evolution in a system can be represented by a single point. Sometimes, it is 

easier to think of phase space as containing all the degrees of freedom of a particular 

system (Darbyshire i: Price, 1991). The technique of phase portrait reconstruction 

is to reveal the system dynamic in a pseudo-phase space from a single time series 

measurement (Mullin, 1993b, p.27). The method of optimal delay time is introduced 

first, followed by the method of singular value decomposition (SVD). Phase portrait 

reconstruction usually demands a long time series. Therefore, separate records of 

data are joined together to construct the phase portrait.

The quantitative approach is the power spectrum and its Fourier transformation 

pair the autocorrelation function (Mullin, 1993b, p.25). The spectrum gives a mea­

sure of the amount of power in a given frequency band over a selected frequency 

range. The autocorrelation function for a periodic signal is itself periodic. This is 

particularly so when there is a high harmonic content in the signal. Therefore, it 

provides a useful complementary representation of the data.

The Q ualitative Approach: Phase Portrait Reconstructions

The theoretical phase portraits consist of plots of each variable versus their deriva­

tives (Mullin, 1993a). Although it is in principle possible to carry out the procedure 

with experimental data, problems will arise in practice as a result of the presence of 

noise on the finitely sampled data (Mullin, 1993b, p.32). Therefore, the method of 

delays, which was first proposed by Packard et al. (1980), is a simple and practical 

alternative to experimental data.
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The M ethod of Optimal Delay Tim es

The basic idea of the optimal delay time approach is to request an optimal utili­

sation of the embedding space in order to maximise the distance between trajectories 

to avoid ambiguity, whereas the original delay time method suffers from the instru­

mental resolution, the number of data points and the environmental noise (Buzug 

et al., 1990). The current methods to find the embedding parameters make use 

of, for example, the autocorrelation function (Schuster, 1988), the mutual infor­

mation (Fraeser Sc Swinney, 1986), the generalised correlation integral (Liebert Sc 

Schuster, 1989), and trajectory matrices (Broomhead Sc King, 1986). These mathe­

matical procedures may yield very different values of the delay time, and are often 

sensitive to noise computing time because of complex sorting or searching proce­

dures. Being aware of their limitations, Buzug et al. (1990) developed a method to 

obtain the best delay time for the reconstruction of the chaotic attractors in phase 

space. Their method of finding the best delay time and an estimation of the embed­

ding dimension is purely geometrical. The choice of the delay time will not alter the 

topology of the attractor, although the topology could become completely obscured 

(Mullin, 1993b, p.32).

The algorithm proposed by Buzug et al. (1990) uses the maximisation of the 

averaged parallelepipeds which are defined by points of the reconstructed attractor. 

According to Takens’ (1981) theorem one can reconstruct the attractor in phase 

space from a scalar time series {£(ffc)}, where integer k € A and K  < N. £ is 

the observable and N  is the number of data points. Then the state vectors in the
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¿'-dimensional embedding space are, given by Buzug et nl. (1990),

x(ts) =
ats)

£(U + r)
Z(t, + t (E -  s)) _

(4.9)

where ts = s ■ Ts and s € 5, for integral 5  = {0 < s < N  — t /T s(E — 1)}, where r  

is the delay time, and with the sampling time Ts.

After the reconstruction of the attractor with state vectors above, one has to 

choose (E -f 1) arbitrary indices rm from the set 5’ : (r,n € S ;m  = 0,

Each rm represents a corner of a parallelepiped. To calculate the vectors spanning 

the parallelepiped, one may choose r0 as a reference point. The volume of this 

parallelepiped, Vf;iPo(T), is defined by,

VE,r0(T) = |det(A/£,ro(T))|, (4.10)

where the (E x £)-matrix is defined by the displacement vectors dn, i.e.,

-  (du ...,dE), (4.11)

and

d n { t r o ) : =

t(tr0 ) - t ( t r n)
i(iro + T) “  £(*r» +  T )

(4.12)

({tro +  T( E  ~  1)) -  +  t ( E  ~  1)) J
where n =  1 , . . . ,£ .  The determinant is calculated using NAG Fortran routine 

gOSaaf (Hann & Hounam, 1991).

The measure of the attractor volume, F e ( t ) ,  is defined, given the volume of the 

j-th  parallelepiped Ve , ro(j)(T), with j  from 1 to a sufficiently large number (Nv) of 

parallelepipeds,

FE(r) = ----------- --------------------------------- (4.13)



CHAPTER 4. WAVE PROFILES 120

It is convenient to use the logarithm of the above equation, because F e ( t ) decreases 

with the power of E when the embedding dimension is increased,

/ e (t ) = \og{FE(r)). (4.14)

The maximum of f E(T) in the interval 0 < r  < 0.5ZT provides the best choice of 

the delay time r, where Tc is the characteristic recurrence time of the system. Re­

searchers (Buzug et al., 1990, for example) have suggested that one uses the smallest 

delay time where the f E(T) has its first maximum, for at larger delays coordinates 

might be uncorrelated in high embedding dimensions. By computing the values of 

I e { t ) with increasing embedding dimension, one recognises the qualitative struc­

ture of the attractor. The structure is spaced equidistantly in the logarithmic plot, 

which means that / e (t ) decreases by a constant factor with increasing embedding 

dimension (Buzug et nl., 1990). This effect could be used to estimate the sufficiently 

large embedding dimension, because no new information of the intrinsic structure 

of the attractor can be obtained by adding another dimension.

To calculate / e (t ), Nv is set to 10% of the number of data points and the initial 

dimension of E = 9. Both are assumed to be large enough to accommodate the 

system dynamics. After having identified the optimal / e (t) and its related r, the 

phase portrait of the attractor can be reconstructed.

Singular Value Decom position (SVD)

The technique of singular value decomposition was proposed as an alternative 

of choosing the delay time by Broomhead & King (1986). However, Mullin (1993b) 

pointed out that it is not possible to construct a meaningful phase portrait from 

a time series which contains no low-dimensional dynamic structure, even with the
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technique of singular value decomposition.

The main practical problem with the standard method of delay is that the phase 

portrait reconstruction is carried out by projecting the time series onto an arbitrary 

basis. Thus, no systematic account is taken of the information content of the signal 

in the reconstruction process, nor are the effects of finite sampling and experimental 

noise in the time series catered for. The technique of singular value decomposition 

was proposed as a solution to these difficulties by Broomhead & King (1986). It 

is used to calculate an optimal basis for the projection of the attractor which is 

reconstructed from the time series. In addition, the technique was developed to 

deal with noise and is therefore suited to experimental data.

The object of the singular value decomposition technique is to find the unit 

vectors which are optimally aligned with the position vectors of the trajectory ma­

trix -V. These unit vectors will form the coordinate system onto which the time 

series will be projected in the phase portrait reconstruction. One may think of this 

technique as finding the principal moments of an "object'1 which in this case is the 

attractor. That is, it is a method of extracting the optimum projection of the phase 

portrait from the data.

Procedure of SVD

The procedure of the singular value decomposition method is carried out as 

follows. First of all, a trajectory matrix A' is formed, whose rows contain the n- 

dimensional vectors with the delay time set equal to r, (sample time). In practice, 

n is set large enough to capture the lowest frequency component in the signal and n 

can be selected using the autocorrelation function. This is referred to as the window
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length of the trajectory matrix. Each successive row in the matrix is then given by 

sequential data windows.

The process involves diagonalisation of the covariance matrix A 1 A to obtain 

the set of eigenvectors which are the orthogonal singular vectors. The square roots 

of the corresponding eigenvalues give the singular values. Thus the singular vectors 

give the directions for the coordinate axes and the corresponding singular values 

give the weightings for each. The phase portrait is constructed on this coordinate 

system and each point on the trajectory is a weighted version of the sampled point 

in the time series (Mullin, 1993b).

Noise will be present in all the singular values and will appear in the singular 

value spectrum as a flat noise floor at its upper end. The significant singular values 

will appear above the noise floor and their numbers give an upper limit on the 

embedding dimension of the attractor. Thus, this is a way of distinguishing the 

deterministic part of the signal from the noise. It should be noted that this process 

does not give the dimension of the attractor directly. However, the scaling of the 

singular values can be used to give an estimate of the local dimension of an attractor 

(Broomhead &: Jones, 1989).

When using the singular value decomposition technique, its singular spectrum is 

plotted on a logarithmic scale. If the presence of three significant singular values is 

seen, for example, it suggests that it is justifiable to plot the phase portrait in three 

dimensions (Mullin, 1993b).

Some of the limitations of the singular value decomposition techniques were 

pointed out by Mullin (1993b). For example, it is not possible to construct a
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meaningful phase portrait from a time series which contains no low-dimensional 

dynamical structure. While this may appear to be stating the obvious, he empha­

sised that these techniques are not filtering processes which in some way reduce the 

data to a finite-dimensional form. For example, in a phase portrait reconstructed 

from a time series measured in a distorted fluid flow using the singular value de­

composition technique, it was shown that there was no obvious form associated 

with this phase portrait and the fluid flow motion explores a high-dimensional state 

space (Mullin, 1993b).

Implementation

The procedure is carried out as follows. First of all, one has to form a trajectory 

matrix A whose rows contain the ¿ ’-dimensional vectors used in the method of delays 

with the delay time set equal to the sampling time Ts. In practice, a large E (512) 

is arbitrarily set to capture the lowest frequency component in the signal, though 

E  can be selected using the autocorrelation function (Mullin, 1993b, p.34).

The m by n matrix .4 is factorised as

A - Q D P t , (4.15)

where '
D =

< ¿  =
D = (S 0), i f  m < n

where Q is an m by m  orthogonal matrix, P is an n by n orthogonal matrix and S  

is a min(m,n) by min(m,n) diagonal matrix with non-negative diagonal elements, 

st>i, SV2 , s v min(miTl), ordered such that stq > sv2 > ... > ■sumin(m,n) > 0. The 

first min(m,n) columns of Q are the left-hand singular vectors of A , the diagonal

i f  m > n
(a
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elements of S  are the singular values of .4, and the first min(m, n) columns of P are 

the right-hand singular vectors of .4.

The routine obtains the singular value decomposition by first reducing .4 to 

upper triangular form by means of Householder transformations, from the left when 

m > n and from the right when m < n. Idle upper triangular form is then reduced 

to bidiagonal form by Givens plane rotations and finally the QR  algorithm is used 

to obtain the singular value decomposition of the bidiagonal form. Refer to f02wef  

of NAG Fortran Routine (Hann Hounam, 1991) for details.

This routine produces not only singular values but also singular vectors. Once 

the vectors are obtained, the phase portrait can be constructed.

The Poincare Sectioning

An extremely useful way of extracting the vital qualitative characteristics of a 

phase portrait is to construct its Poincare map. This can be formed by either stro- 

boscopically sampling the time series at a particular point in a cycle or by forming 

the intersection of the reconstructed phase portrait with a plane. Consequently, the 

Poincare section (map) is used to reduce the dimension of the phase portrait in a 

meaningful way.

The Poincare map can be alternatively constructed without using the phase 

portrait by stroboscopically sampling the data. This is particularly useful for pe­

riodically driven systems where the sample point can be set at a particular phase 

angle of the drive frequency. An example of such a system is provided by the para­

metrically excited pendulum where a fixed phase in the sinusoidal drive cycle can



CHAPTER 4. WAVE PROFILES 125

be used as the reference (Mullin, 1993b).

The Q uantitative Approach: the Spectral Analysis

The most common and useful way of quantifying a time series using linear signal 

processing techniques is to construct the power spectrum and its Fourier transfor­

mation pair, the autocorrelation function. The fundamental assumption of these 

techniques is that the stationary signal can be decomposed into a series of sines and 

cosines. The spectrum gives a measure of the amount of power in a given frequency 

band over a selected frequency range. Example uses of it are given by Mullin (1993b. 

p.25). If it consists of discrete lines, then the time series is periodic and the spectrum 

can be used to obtain estimates of the relative power in each frequency component 

of the time series. On the other hand, irregular, chaotic, and random time series 

all have continuous lines in their spectra, indicating that the power is spread over 

a range of frequencies. Therefore, spectral analysis can be used to investigate the 

transition between discrete and continuous cases, as the controlled parameters in an 

experiment are varied.

Power Spectra

There are four principal forms of Fourier transformation, each of which has its 

own variations (Otnes &: Enochson, 1972, p.10), see Table 4.2. The differences 

between the four basic forms are due to the fact that different ranges and domains 

are employed. In 1965, high speed algorithms that reduce the computational times, 

the so-called fast Fourier transformation, were developed (Cooley & Tukey, 1965).

The relatively short length of 2048 data points was chosen because it enables
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X( f )  or AT f  or A: A f x(t) or x, t or iXt

I e i2K̂ dt — CO < /  < oo — OO < t < oo

II 1 -C± < f < —i_ 
2Ai -  J -  2At e /!T  X { f )e j2irf,Atdf

2A  t
— OO < i < 00

III I S l . x . e : 2mk .
— A t 0 < k <  iV -  1 9 w'V-i Xr-pi^rr 0 < i < N -  l

IV e /oT x(t)e-■jintkA/dt — co < k < oo 0 ViQ Z—» — oo *A-A.*C 0 < t < T

Table 4.2: Four Basic Forms of Fourier Transformation.
The continuous, discrete and repetitive functions are indicated by ®, © and ®, 
respectively. Modified from Otnes <V Enochson (1972), p.10.

the calculation of stationary spectral estimates (Hardisty X. Drumm, 1993, p.856). 

However, it may be necessary to use a trend line to de-mean the signal over such a 

record length, for otherwise the result can become contaminated by low frequency 

noise (Clifford, 1993). The record length was carefully chosen (Section 4.2.2) since 

the modern technique for spectral analysis requires the number of samples to be a 

power of two in order to reduce the number of computations.

The profile was decomposed into time- and frequency-domain utilising the 

Fourier transformation, which is one of two principal techniques for the analysis 

of a time series, the other being the autocorrelation technique. Imagine that the 

time series, for example, a single record in this case, was plotted in three-dimensional 

space with coordinates of amplitude, f  requency and time. We can visualise the time 

series in the time-domain, i.e., by generating a heights-time plot, if we look into the 

time series from the frequency coordinate. Similarly, we can obtain the height- 

frequency plot in the frequency-domain by looking at it from the time  coordinate. 

This is a basic technique for understanding the spectral analysis of a time series by 

visualising it in three-dimensional space (Hardisty, 1993).
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A time series can be prescribed either in the physical domain as x (t ) or in the 

frequency domain in terms of the amplitude X( f )  where /  is the frequency. The 

quantity X( f )  is generally a complex number indicating the phase of the signal. Fhe 

amplitude in the frequency domain, X( f ) ,  is obtained using the Fourier transform 

of x(t) in the interval 0 < t < T\ it is given by,

X( f )  = [  x(t) (4.17)
J o

where j  = >/— 1. The complementary equation relating x(t) to A ( /)  is the inverse 

Fourier transform,

*(f) = r  X( f )  ¿ " " ‘If. (4.18)J —oc

The quantity \X ( f ) \2df  is the contributions to the total energy of x(t) from those 

components with frequencies between /  and /  + df. The vertical bars in |A | refer 

to the absolute value of the complex quantity. T he power is obtained by dividing 

by T. The power spectral density of x(t) is defined by,

S( f )  = Y  |A '(/) |2, (4.19)

in the limit T  -* oo. The product S ( f )d f  is the power in the time series associated 

with the frequency range between /  and f  + df .

Implementation

The NAG Fortran routine numbered gVicbf is used to calculate the sample 

spectrum of the time series using spectral smoothing by the trapezium frequency 

(Daniel) window (Ilann &£ Hounarn, 1991). The supplied time series is tapered and 

smoothed, by mean or trend correction (by least-squares), as well as not smoothed. 

The logged as well as unlogged spectral estimates are obtained, too.
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The tapering factor is those of the split cosine bell:

iV + 1 -  T < t < N
otherwise

1 < t < T
(4.20)

where T  =  ^  . where p is the tapering proportion and .V is the number of data.

The smoothing is defined by a trapezium window whose shape is decided by 

the tapering proportion, p, being supplied by the user. A value of p = 0.0 gives a 

triangular window, and p =  1.0 a rectangular window. The frequency width of the 

window is fixed as where .V/ = N/8  is a user-defined constant, where .V is the 

number of data. In order that the smoothing approximates well to an integration, 

it is essential that the order of the fast Fourier transformation (FFT). I\ . be much 

greater than A/, that is, K  A/. A choice of the frequency division, L. greater than 

A/, would normally be required to supply an adequate description of the smoothed 

spectrum. Here. L must be a factor of K. Typical choices of L ~  A" and I\ ~  4.V 

for usual smoothing situations when M  < jV/5 are applied.

Autocorrelation Function

The autocorrelation function for a periodic signal is itself periodic and can often 

give a less confusing representation of the data from the power spectrum. This is 

particularly so when there is a high harmonic content in the signal. It therefore 

provides a very useful complementary representation of the data. Irregularity in 

the time series gives rise to a decay in the autocorrelation function and the rate of 

decaying gives a measure of the degree of irregularity. However, the extracting of 

quantitative estimates from the autocorrelation function can be problematic and it 

is usually used as a complement to power spectral analysis.
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The autocorrelation function is defined as.

.v
R ( V t3) — ^ ( -£| +

*V ~ 1 1 = 1
(4.21 ;

where r s is the sample time.

Implementation

The implementation algorithm for the autocorrelation coefficient, r , of lag k = 

1,2,3. • • •, A, where A is a user-specified maximum lag, is defined in NAG Fortran 

Routine gl'iabf  (Hann Sc Hounam. 1991) as follows,

"  E M * , - * ) 2
(4.22)

where N  is the number of data.

4.4.2 T hem e M ethods

The box-counting method is used to derive fractal dimensions from the wave profiles. 

A unique approach is devised to explore the dynamics of sub-systems; that is, the 

box-counting method is implemented for each record or sub-system of the profile. 

A more common approach is also implemented; that is, the fractal dimension of 

the whole profile is calculated. Both approaches utilise the implementation proce­

dures detailed in Chapter Three; and the computer programme listing is available 

in Appendix E.

Statistical analysis is one of the two theme methods described in Chapter Three, 

and its computer implementation can be seen in Appendix F. The analysis includes 

computing the basic statistics and performing one-sample and two-sample statistical
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tests. The basic statistics such as minimum, maximum, mean, standard deviation, 

coefficient of skewness, and coefficient of kurtosis are obtained first for records of 

both synthetic and natural waves. The mean gives a measure of the central location 

of the data distribution, and the variance, whose positive square root is standard 

deviation, gives a measure of the spread about the mean (Eason et al., 1980. p.4'20). 

Coefficient of skewness and coefficient of kurtosis are also included. The former 

measures the skewness of data (Bryman Cramer. 1990. p.97). The latter is the 

measure of sharpness of the peak of a frequency-distribution curve (Marsh. 1988; 

Allen, 1990, p.65S).

This is followed by the one-sample normality test such as Shapiro and VVilk s H 

test (Eason et al.. 19S0. Ch. 24,25); then two-sample statistical tests are performed to 

test whether the difference between samples is significant. However, the choice of test 

methods depends on the result of the normality test. In other words, if both samples 

are normally distributed, a two-sample parametric test is used; otherwise, a non- 

parametric two-sample test such as the Mann-Whitney l test is more appropriate 

(Eason et al.. 1980, p.487). The process is applied to both raw data and the derived 

fractal dimension.

4.5 R esu lts

Results from conventional time series analysis are presented first, which include 

phase portraits and spectral pairs of auto-correlation coefficient and discrete power 

spectrum; and comparisons are made between the synthetic and natural waves. This 

is followed by the results from the theme methods, that is, fractal and statistical
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analyses; and comparisons are also made between the synthetic and real data.

4.5.1 From Specific M ethods

The specific methods used here are the phase portrait reconstruction, which includes 

the method of delays and the method of singular value decomposition; and the 

spectral analysis, which is illustrated by the pair of auto-correlation coefficient and 

discrete power spectrum.

Phase Portrait Reconstruction

In this section, the problem of choosing a proper delay time for Poincare sectioning 

in phase portrait is addressed first; then followed by two solutions, that is, method 

of delays and method of singular value decomposition.

Two methods of reconstructing the temporal dynamics of waves in phase space 

are presented here, both based on the technique central to the modern non-linear sig­

nal processing which is called the “phase portrait". The first involves obtaining the 

optimal delay time and the embedding dimension from a wave, then reconstructing 

the wave signals in a phase space of embedding dimensions with optimal delay time. 

The second utilises the method of delays as well, but instead of the original data, 

the singular values are used to reconstruct the attractor. That is, if the embedding 

dimension is three, the first three vectors of the singular value decomposition are 

used to construct a three-dimensional phase portrait of the attractor.

Phase portrait reconstruction is essentially a qualitative approach to system
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dynamic. Although phase portrait is not a new concept, it has been very useful in 

depicting structure from time series. Poincare sectioning is a powerful tool used to 

reveal dynamics by lowering dimensions of phase space. To reduce the dimension 

one needs to choose a delay time which acts as if it is slicing a "hyper-sheet ’ through 

an n-dimensionai phase space. The choice of delay time greatly affects the visual 

presentation of system, although its dynamics remain unchanged.

Choosing a Proper Delay Time

The essential factor in constructing a phase portrait is the choice of delay time. 

Although poor choice of delay time will not change the topology, the obtained 

phase portrait will not be comprehensible to human eyes. Lsing a time series of 

known characteristics could help the understanding of system dynamics. Therefore, 

a synthetic wave is generated to illustrate the pros and cons of using phase portrait 

reconstruction. Fortunately, the computer programme detailed in Section 4.3.1 is 

implemented in such way that it allows the user to alter the parameters and even the 

number of waves. In other words, the system is known a priori, and its dynamics 

should be revealed easily.

Figure 4.7 shows some phase portraits reconstructed from the synthetic wave 

comprising the first three sinusoidal waves in Equation 4.8. In Figure 4.7 (left), 

5000 data points are processed initially; however, the number of points plotted in 

the figure depends on the delay time. Delay times are purposefully chosen. For 

example, five seconds are half of the period of Wavel; ten seconds are the period of 

Wave1; twenty-one seconds are the period of WaveS', and 231 seconds are product 

of periods of Wave2 and Wave3. Refer to Table 4.1.
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Figure 4.7: Poincare Sections of Synthetic Waves.
(Left) Poincare sectioning is produced by plotting value at time. /( /) , against value 
at t + tan, f { t  + tau), where tau is the delay time. There are three component waves 
involved, that is, all but the tidal waves in Equation 4.S.
(Right) This phase portrait consists of four waves, including the tidal wave. Struc­
tures are more difficult to observe simply by "guessing the delay times.

If a single sinusoidal wave such as Wavel is used, a delay time of five seconds 

corresponding to half its period repeatedly produces four points, that is. (0,1), (1,0), 

(0,-1) and (-1,0). However, in the composite wave of three waves, this delay time 

forces the system dynamics to centre around those four points.

A delay time equal to the period of a wave will produce a single point or points 

closely clustered around origin. For example, the delay time of ten seconds is exactly 

the period of W'avel. The dynamics of Wavel disappear into a single point; however, 

the dynamics of Wave2 and Wave3 are easily identified by the two loops they form.

If a delay time is slightly larger than a period or its multitudes, it will produce 

data clusters along the diagonal direction. The delay time of twenty-one seconds 

has two effects. Firstly, it is the period of Wave3, which reduces itself in a point; 

and, secondly, it forces the data to cluster along the diagonal direction, because it 

is too close to the multitudes of Wavel and Wave2.

The product of two periods can usually bring out the dynamics of the third
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wave, in a three-wave system. The delay time of 231 seconds, which is the product 

of Wave I] (11) and WaveS (21), seems able to reveal the structure of the first wave 

with a slightly larger delay time than its multitudes. 230.

Figure 4.7 (right) shows the phase portrait reconstruction of the synthetic wave 

used in this thesis, which has four waves including the tidal wave. Delay times, 

including an arbitrary large 1100 seconds with 150000 initial data points, have been 

used to bring out structures from the synthetic wave. None of the delay times seems 

to show structures as described earlier with three component waves. All data points, 

no matter what the delay times are, seem to be compressed along [1 1] direction. 

The most likely explanation would be that, since the comparatively long tidal profile 

covers only half of the sinusoidal curve, it is expected to observe data clustered along 

the diagonal direction.

Arbitrary guessing of delay time does not provide rigid support for the method 

of phase portrait reconstruction. Mathematical approaches are proposed in the 

following section.

M ethod of the Optimal Delay Tim e

The complexity of temporal signals can be reconstructed in phase space by the 

method of delay (Packard et al., 1980). The choice of delay time has been a problem 

for the reconstruction and many ways have been developed (Buzug et al., 1990). 

Here, the optimal delay time approach demands the plotting of the normalised 

delay time chart, from which phase portraits with delay times are reconstructed.

Synthetic Waves
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Figure 4.8: Poincare Sections of the Synthetic Wave Profile.
(Left) The logarithmic fraction of volume utilisation. /(In), in dimensions one to six. 
is plotted against normalised delay time, tau/Tc. Two specific points equivalent to 
13 and 21 seconds are selected to reconstruct Poincare sections below.
(Right) Poincare sectioning is produced by plotting value at time t, f{t),  against 
value at t + tau. f ( t  + tau). where tau is the delay time. Optimal delay time obtained 
from the above are used.

Figure 4.8 (left) shows the logarithmic fraction of volume utilisation, in dimen­

sions one to six. being plotted against normalised delay time t/Tc, where r  is the 

delay time and Tc is the characteristic recurrence time of the system. Here two 

types of points are observed. The first type of points are at local optima and the 

other the local minima of curves. Because higher dimensions do not seem to reveal 

more information, one of the local optima on the dimension three curve is chosen 

to bring forward the dynamics clearly. Local optima give a “good” choice of delay 

times. However, the first minimal delay time common to curves of all dimensions is 

used to illustrate a “bad” choice of delay time.

The resultant Poincare sections are shown in Figure 4.8 (right). The delay time 

of thirteen seconds, that is, r /T c = 0.065 = 13s, is used to construct the Poincare 

section. Similar structures not shown here can be produced by taking other optimal 

delay times of dimension three. The delay time of 21 seconds, the bad choice of 

delay time, packs information along the diagonal direction in the Poincare section.
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The Natural Wave
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Figure 4.9: Poincare Sections of the Natural Wave Profile.
(Left) The first three delay times (tan) are identified. Two optima on the top of the 
graph are so-called "good'’ choices.
(Right ) The Poincare section of delay time five seconds, which is supposed to reveal 
structure from the natural wave profile, is found to be concentrated at the bottom 
left corner; while that of a delay time of twenty-one seconds, which is supposed to 
hide structure from the phase space, creates a more widespread distribution of data 
along the diagonal direction.

Figure 4.9 shows the results of phase portrait reconstruction by the method of 

optimal delay time for the natural wave. The logarithm of the utilised volume. 

/(In), is plotted against the normalised time delay, r /T c, for dimensions one to 

nine, see Figure 4.9 (left). Good delay times are found at the local optima. It has 

been suggested that the first optima between 0 < r  < 0.5TC should be used (Buzug 

et al., 1990). The embedding dimensions are found when no new information on the 

intrinsic structure of the attractor can be obtained by adding another coordinate. 

Here, it is seen that the wave can be embedded in the space of low dimension, 

although one might argue that higher dimensions are possible. The first two possible 

optimal delays times are five and thirteen seconds. A bad choice of delay time is 

also presented.

Poincare sections with good and bad choices of delay time are shown in Figure 

4.9 (right). However, even with the good choice of delay time, that is, five seconds,
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data points are concentrated at one end of the diagonal direction. In fact, if the 

delay time of thirteen seconds is used, the structure looks similar to that revealed 

by a bad choice of delay time.

Comparisons between Synthetic and Natural ITaces

Both synthetic and natural waves can be embedded in phase space of low dimen­

sions. The dimension of two is sufficient to reconstruct the wave dynamic in phase 

space, as suggested by Figures 4.8 (left) and 4.9 (left).

The first few optimal delay times, good or bad. between synthetic and natural 

waves are all identical. The first two examples of so-called good choices are five and 

thirteen seconds and the so-called bad choice is twenty-one seconds.

Poincare sections constructed by those delay times do not appear to be similar 

between synthetic and natural waves, except that most points concentrate diago­

nally. Data points in phase portrait of synthetic wave are more dispersed than those 

of natural wave, except that those data points tend to cluster at the third quadrant 

of coordinates, if two phase portraits are overlapped.

M ethod of SVD

Singular values of wave profiles are computed. Here, the phase portraits are 

constructed from the singular vectors, rather than the profile itself. The results are 

shown in Figures 4.10 and 4.11.

Synthetic Wave

Singular values and the reconstructed attractor of a synthetic wave profile are
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Figure 4.10: The Singular Value Decomposition of a Synthetic Wave Profile. 
(Left) While the "noise floor’ of SV is clearly observed, significant SV cannot be 
identified clearly, where E is the total number of the singular vectors.
(Right) This attractor is reconstructed using the combination of the second (S2). 
third (S3) and fifth (S5) singular vectors.

shown in Figure 4.10. Three different dimensions enclosing vectors are used to cap­

ture the system dynamics. The number of significant singular values and, therefore, 

the dimensions of phase space, are not easily identifiable. However, the noise floor, 

as described in Mullin’s (1993b. p.37), is quite clear as shown in Figure 4.10 (left).

Phase portraits can be reconstructed by combinations of singular vectors. Some 

resemble a “comet'1 and “firework'’ while the others are more like a “disc”. For 

example, shown in Figure 4.10 (right) and named "catching’ is the phase portrait 

reconstructed by using the second (S2), third (S3) and fifth (S5) singular vectors. 

Although the attractors can be constructed from various combinations of the singu­

lar vectors, their trajectories develop in a confined space (more in Appendix J).

Natural Wave

Singular values and the reconstructed attractor of the wave profile at Teignmouth 

are shown in Figure 4.11. The number of significant singular values, indicating the 

dimensions needed to construct the phase portrait, is not clearly observed. Increases 

of the dimension enclosing vectors do not produce significant values clearly, either.
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Figure 4.11: The Singular Value Decomposition of the Natural Wave Profile. 
(Left) Significant singular values, which indicate the dimensions needed to recon­
struct phase portrait, cannot be observed clearly. Nor is the '‘noise floor clearly 
observed. E is the total number of singular vectors.
(Right) The first three vectors are used to reconstruct the attractor.

The noise floor cannot be observed clearly.

Figure 4.11 (right) shows the reconstructed structure of the wave profile given by 

the singular value decomposition method. It is produced by using the first, second, 

and third singular vectors. The curve starts from the right, to the second right, 

then left, and ends up at the second left “coil” . The second left coil will continue to 

expand, if longer vectors are given. In fact, unlike the case of the synthetic wave, if 

the singular vector length is increased, the coordinate ranges change. A long wire­

like structure is formed across the phase space. More attractors are constructed and 

shown in Appendix J.

Comparisons between Synthetic and Natural Ikaues

The “noise floor’’ of singular value decomposition is quite clear in the synthetic 

wave. However, it is not easily seen in the case of the natural wave.

There are a variety of phase portraits reconstructed from singular vectors of 

both synthetic and natural waves. The range of singular values remains within a
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fixed interval for the synthetic wave, if the length of vector changes. However, it is 

not so, if the length of the singular vectors for the natural wave is changed. Part 

of some reconstructed attractors becomes relatively insignificant, that is, a dot-like 

structure, while the rest of it becomes elongated like a wire in space.

Spectral Analysis

In this section, the results of Fourier analysis or harmonic analysis are presented. 

The discrete power spectrum (DPS) and its Fourier transformation, auto-correlation 

coefficients (ACC), are a typical pair of the spectral analysis for time series. The 

discrete power spectrum gives a measure of the amount of power in a given frequency 

band over a selected frequency range (Mullin, 1993b). In other words, it indicates 

the number of composite sub-waves in a theoretical wave. The autocorrelation 

function for a periodic signal is itself periodic and can often give a less confusing 

representation of the data from the power spectrum. Irregularity in the time series 

gives rise to a decay in the autocorrelation function and the rate of decaying gives a 

measure of the degree of irregularity. It is usually accepted that “the spectrum and 

the autocorrelation function contain the same information, but in some cases one is 

easier to visually interpret than the other” (Mullin, 1993b, p.27).

Synthetic Waves

A synthetic wave, whose parameters are known a priori, provides a basic plat­

form for comparison with a natural wave. For example, peaks of discrete power 

spectrum values in the synthetic wave can reveal the number of sinusoidal sub- 

waves embedded, while the auto-correlation coefficient illustrates the periodicity as

140
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Figure 4.12: Discrete Power Spectra and Auto-correlation Coefficients of a Synthetic 
Wave.
(Top) Discrete power spectra are given in logarithmic scale as well as raw form. 
Here, the data are smoothed by the window with the frequency width of 2rr/256. 
Wave4. Waved, Waved and Wav el, are identified, from left to right, respectively. 
(Bottom) The synthetic wave indicates a typical example of a periodic signal. The 
periodicity is around one hundred seconds.

revealed in Figure 4.12.

By referring to Table 4.1, it is clearly seen that discrete power spectrum gives 

an excellent indication of the number of component waves. There are four peaks of 

discrete power spectrum above zero in Figure 4.12 (top), indicated by its raw and 

logarithmic values. They correspond to the four waves in the equation. Because 

frequency (Hz)  is proportional to 1/T, four waves are easily identified. They are 

Wave4, Waved, Waved and Wavel, from left to right, respectively, because a shorter 

period has a higher frequency. Peaks in discrete power spectrum values represent 

the concentrations of power. Tidal influence can be removed by mean- or trend- 

correction of the raw data, the latter being more effective than the former. After 

the correction, the other three waves become more dominant than the tide.

The auto-correlation coefficient is typically paired with the discrete power spec-
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tram in spectral analysis. Peaks in autocorrelation coefficient values are created by 

addition or subtraction of phases of the component waves. I he distance between 

dominant peaks indicates the periodicity of the system, that is. the time needed 

to repeat the system itself. This effect is clearly shown by the synthetic wave 

in Figure 4.12 (bottom). Note that the patterns of discrete power spectrum and 

autocorrelation coefficient are identical in all records; that is, there is no difference 

between records.

The Natural Wave

Figure 4.13: Discrete Power Spectra and Autocorrelation Coefficients of the Nat­
ural Wave Profile.
(Top) The strength of dominant power increases before, levels at, then decreases 
after high tide, indicated by records R5, R15 and R25, respectively. Logarithms of 
the data are further smoothed by window with the frequency width of 27r/256. 
(Bottom) Two types of autocorrelation coefficients are identified: around and out­
side high tides. The periodicity differs from record to record.

Three records of natural waves are included in Figure 4.13. They are records 

Rl5, R5, and R25, which represent dynamics around, before, and after high tide, 

respectively. The discrete power spectrum raw values in Figure 4.13 (top) indicate 

that the tide is the dominant force of the natural wave profile. The tidal influ­

ence, however, is almost removed by mean- and trend-correction of raw data. On
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a logarithmic scale, tidal dominance is visible with or without correction. There is 

no uniform distribution of discrete power spectrum values between records. Fur­

thermore, the difference of power concentration between each record is clearly seen, 

especially at lower frequencies. For example, discrete power spectrum values are 

higher at high tide, that is. record R15. Records approaching high tide, for exam­

ple, record R5, have relatively high discrete power spectrum values, too. However, 

discrete power spectrum values are much lower towards either end of the profile, for 

example, record R25.

Figure 4.13 (bottom) shows two types of auto-correlation coefficients: around 

and outside high tides, that is, records R15 and R16. At high tide, periodicity is 

easily seen and the pattern of auto-correlation coefficients is similar to the synthetic 

wave. The rest of the records shows the other type, where there exists a decay 

in auto-correlation coefficient, similar to that found in chaos and also to long-term 

autocorrelation (Mullin, 1993b, pp.27,30). It occurs before and after high tide, for 

example, at records R5 and R25, respectively.

From the discrete power spectrum, it is certain that the tide is the dominant 

force in each record. However, the strength differs between records. The auto­

correlation coefficients show that periodicity appears in some records while non­

periodicity dominates others.

Comparisons between Synthetic and Natural Wave Profiles

Table 4.3 shows the results of one-sample and two-sample statistical tests of 

discrete power spectrum. Data of normal scores and random numbers from a nor­

mal distribution are included for comparison, whose statistics show that they are
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Data .V min max X s t d Skew K urt W c.s.l.
NS 1024 -3.248 3.248 -0.000 0.999 0.000 -0.044 0.988 0.7666
RN -2.893 4.114 0.000 0.972 0.185 0.272 0.98S 0.7760

Svn. 1024 -19.73 2.586 -16.77 4.072 3.018 S.735 0.510 0.0000*
R5 -12.67 -3.672 -8.086 1.830 -0.229 -12.67 0.955 0.0000*
Rio -14.13 -4.035 -10.03 2.687 0.324 -1.228 0.893 0.0000*
R25 -10.69 -3.699 -7.575 1.583 0.061 -0.7S4 0.956 0.0000*

Median Test (Me) Mann- Whitney U Test
Data Me( X) Me( Y) P U- value Z-value P

NS-RN 0.000 -0.019 0.7908 5.3e5 0.297 0.76639
R5-Svn. -7.847 -18.123 0.000* 9.8e5 34.319 0.0000*

R15-Syn. -10.453 0.000* 9.6e4 32.826 0.0000*
R25-Svn. -7.460 0.000* 9.9e5 -34.647 0.0000*
R5-R15 -7.S47 -10.453 0.000* 7.5e5 16.866 0.0000*
R5-R25 -7.460 0.003* 4.5e5 -5.679 0.0000*
R15-R25 -10.453 0.000* 2.6e5 -20.063 0.0000*

Table 4.3: Comparison of Discrete Power Spectra between the Synthetic and Natural 
Waves.
(Top) Basic statistics and one-sample normality test. R5, Rio, and R25 denotes 
records before, around, and after high tide, respectively.
(Bottom) Two-sample non-parametric tests. Me(X) denotes the median of sample 
X. Median test compares the difference of median between two samples.

normally distributed, as indicated by the calculated significance level. Although 

the Mann-Whitney U test is a non-parametric test, it produces the expected result 

(p = 0.77). According to the auto-correlation coefficients of the natural wave, three 

records representing wave dynamics before (R5), around (Rio), and after (R25) high 

tide are selected to compare with the synthetic wave. The table shows that none 

of the records is normally distributed. Consequently, non-parametric two-sample 

tests are performed. The Median test (p = 0.00*) shows that there is significant 

difference between medians. The Mann-Whitney U test (p = 0.00*) also indicates 

that there is significant difference between the distribution functions of synthetic 

and natural waves. Significant difference is detected between records of the natural 

wave, as shown by both the median and Mann-Whitney U tests.
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Tables 4.4 shows results of statistical tests of the auto-correlation coefficient be­

tween synthetic and natural waves. Statistics of normal scores and random numbers 

from normal distribution are not included. The table shows that the auto-correlation

Data .V min max X std Shew Kurt W c.s.l
Svn. 1024 -9.727 -0.066 -1.851 1.307 -1.849 4.798 0.840 0.0000*
R5 -16.658 -0.397 -4.495 2.261 -0.640 0.668 0.941 0.0000*
R15 -18.919 -0.435 -5.081 1.813 -1.414 5.040 0.926 0.0000*
R'25 -12.709 -0.282 -3.391 1.798 -1.001 1.456 0.923 0.0000*

Data
Median Test (Me) Mann- Whitney U Test

Me(X) \ Ie (Y ) P /7-value Z-value P
R5-Svn. -4.551 -1.482 0.000* 1.4e5 -28.419 0.0000*
R15-Svn. -4.787 0.000* 6. tel -34.425 0.0000*
R25-Svn. -3.175 0.000* 2.3e5 -22.051 0.0000*
R5-R15 -4.551 -4.787 0.042* 6.1e5 6.348 0.0000*
R5-R25 -3.175 0.000* 3.7e5 -11.788 0.0000*
R15-R25 -4.7S7 0.000* 2.5e5 -20.447 0.0000*

Table 4.4: Comparison of Auto-Correlation Coefficients between the Synthetic and 
Natural Waves.
(Top) Basic statistics and one-sample normality test. R5, R15, and R25 denotes 
records before, around, and after high tide, respectively.
(Bottom) Two-sample non-parametric tests. Me(X) denotes the median of sample 
X. Median test compares the difference of median between two samples.

coefficients of both synthetic and natural waves are not normally distributed. Stan­

dard deviations, skewness and kurtosis coefficients also support the result of the 

normality test. Consequently, non-parametric tests are conducted between the three 

records of natural wave and the synthetic wave record. Both median test (p = 0.00*) 

and Mann-Whitney U test (p = 0.000) show that the difference between records is 

significant. The difference between records of the natural wave is significant.

The conventional methods conclude that the difference between the synthetic 

and real waves is significant. In other words, the natural wave profde is aperiodic 

of more frequencies than the synthetic wave, as evidenced by Figures 4.S and 4.9.
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Furthermore, the difference between sections of the natural wave profile is also found 

to be significant. The fractal analysis presents, however, residts that differ from 

those obtained by the conventional methods, as described in the following section.

4.5.2 From T hem e M ethods

General statistics are summarised for both synthetic and natural waves, including 

minimum, maximum, mean, standard deviation, coefficient of skewness, and coeffi­

cient of kurtosis. Fractal dimensions are presented together with the basic statistics 

to illustrate the system dynamics not discovered by conventional statistical methods. 

Comparisons are made between the synthetic and natural wave profiles.

Synthetic Wave

The time series are shown in Figure 4.14 (top), followed by the log-log plots of 

box counts against sizes for each record in Figure 4.14 (middle). The slopes of the 

plots, that is, the fractal dimensions, are shown in the diamond line (-o-) in Figure 

4.14 (bottom left). Estimates of fractal dimensions of individual records range from 

1.639 to 1.689 and average 1.662; and all the estimates are significant, since their 

corresponding correlation coefficients (r > 0.99) are higher than the critical vaue 

of 0.632. Furthermore, the differences in the fractal dimensions are not significant 

between records, because the calculated t < 1.0 values are smaller than the critical

¿.05,i8 (1.734) value (Appendix K).3 The fractal dimension of the overall wave is a

3 The t value for comparing the difference of two regression lines is calculated as t  — 

and the degree of freedom is ( N \  — 2) +  ( N y  — 2) (Fowler & Cohen, 1990).
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Figure 4.14: Fractal Dimensions of a Synthetic Wave Profile.
(Top) Time series for some records.
(Middle) Log-log plots of box counts against sizes for all records.
(Bottom) Left. Fractal dimensions, i.e., the slope estimates, are significant, for their 
correlation coefficients (r > 0.99) are greater than the critical value of 0.632. Shown 
also are basic statistics such as the minimum, maximum, mean and the standard 
deviation (S) of heights. Right. Distributional characteristics of the heights are 
revealed by S, skewness and kurtosis.

relatively low and meaningless value of 1.386, because its corresponding correlation 

coefficient (r = 0.315) is much lower than the critical value of 0.535.

Figure 4.14 (bottom left) also shows the minimum, maximum, mean, standard 

deviation and fractal dimension of each record of the synthetic wave. The overall 

shape of the wave, revealed by average heights, resembles the theoretical sinusoidal 

wave profile. It shows that the wave gains its height, reaches the high tide, retreats 

afterwards, then dies down in the end. The mean heights range from 0.4 to 4.0 metres 

and the overall mean height is 2.1 metres. However, the tidal range is 5.7 metres,
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and is slightly higher than the recorded spring tide4 of 4.1 metres at Teignmouth 

(Hoskins, 1954, p. 17).

The data distribution is measured by the standard deviation, skewness and kur- 

tosis, and is presented in Figure 4.14 (bottom right). Records at either end of the 

profile show different patterns of distribution from those in the middle, that exhibit 

some typical characteristics of a synthetic curve.

It is expected that most characteristics of the synthetic wave are different from 

those of the natural wave. However, there may be some similar patterns between 

them, as described in the following.

The Natural Wave

Time series of some data record are shown in Figure 4.15 (top). The box-counting 

method was conducted for each record, and the results are illustrated in the log-log 

plots of box counts and sizes in Figure 4.15 (middle). The derived fractal dimensions, 

that is, the slopes, are plotted in Figure 4.15 (bottom left). Estimates of fractal di­

mension are relatively consistent with each records, ranging from 1.515 to 1.736 and 

averaging 1.679. their corresponding correlation coefficients (r > 0.99) are higher 

than the critical value of 0.632 thus indicate the estimates are meaningful. The 

differences in the fractal dimensions are not significant between records, since the 

calculated t < 1.0 values are smaller than the critical ¿.05,is (1.734) value (Appendix

K). The fractal dimension of the overall wave profile (1.144) is a relatively low and

4 A tidal pattern that occurs twice a month at full and new moon, when the difference in level 

between high and low tides is greatest (Manser & Thomson, 1997).
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Figure 4.15: Fractal Dimensions of the Natural Wave Profile.
(Top) Time series of some records before high tides.
(Middle) Log-log plots of box counts against sizes for each record.
(Bottom) Left. Fractal dimensions, i.e., the slope estimates, are significant, because 
their correlation coefficients (r > 0.99) are greater than the critical value of 0.632. 
Shown also are basic statistics such as the minimum, maximum, mean and the 
standard deviation (S) of heights. Right. Characteristics of the height distribution 
are revealed by S, skewness and kurtosis.

insignificant value, because its corresponding correlation coefficient (r = 0.286) is 

much lower than the critical value of 0.535.

Figure 4.15 (bottom left) also shows the minimum, maximum, mean, and stan­

dard deviation of each record in natural wave. The mean heights, ranging from 

0.1 to 2.1 metres, form a sinusoidal curve which completes in about eight hours. 

The tidal range, read from the minimum and maximum of the heights, is 2.3 me­

tres, a value relatively smaller than the typical spring tide of 4.1 metres recorded at 

Teignmouth (Hoskins, 1954, p.17).
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Figure 4.15 (bottom right) shows the distributional characteristics of the natural 

wave. Relatively small variations are shown in the records in the middle of the 

profile; however, sharp coefficients of skewness and kurtosis are observed at either 

end, indicating highly skewed and peaked distribution of the data.

The similarity and difference of many characteristics of the synthetic and real 

waves have been revealed graphically. In the following section, however, statistical 

tests are applied in order to confirm the above observation.

Comparisons between Synthetic and Natural Waves

Time (Record)

Figure 4.16: Comparison of FDs between the Synthetic and Natural Waves. 
The estimated fractal dimensions are identical between the natural (—) and syn­
thetic (- -) waves, although the difference in heights is significant.

Comparisons for general statistics and fractal dimensions (FDs) between synthetic 

and natural wave profiles are presented in Figure 4.16. Both profiles form a sinu­

soidal curve, while the overall synthetic wave is slightly positively skewed (0.226)
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and the overall natural wave is slightly negatively skewed (—0.193). Both profiles 

are relatively widespread, indicated by coefficients of kurtosis of —1.783 and —1.483 

for the synthetic and natural waves, respectively.

Top: One-sample test
Data n min max X std Skew hurt W c.s.l.
NS 27 -1.998 1.998 0.000 0.972 0.000 -0.583 0.996 0.9999
RN -2.265 2.526 0.095 1.141 -0.006 -0.442 0.990 0.9929
Syn 27 1.639 1.689 1.662 0.016 0.240 -1.212 0.927 0.0644
Real 1.515 1.736 1.679 0.049 -2.382 5.002 0.653 0.0000*

Bottom: Two-sample tests
Data Test Ko Statistics Z P

NS-RN ¿-test (df = 52) /OVS = PlhV -0.330 0.7427
Real-Syn ¿-test (df = 52) 

Mann-Whitney
PReal —  PSyn

F (Real) =  F (Syn)
1.677
589 3.876

0.0995
0.0001*

Table 4.5: Statistical Tests for Fractal Dimensions of Wave Profiles.
“NS” is the normal scores and “RN” is the random numbers of N(0,1). The synthetic 
and natural waves are indicated by “Syn" and “Real", respectively. The symbol “ * ” 
indicates that the difference is significant at the 5% significance level.
(Top) Basic statistics include minimum (min), maximum (max), mean (.r), standard 
deviation (std), Skewness, and Kurtos'is. The normality test is indicated by the 
Shapiro and Wilk’s IK-value and the calculated significance level (c.s.l.).
(Bottom) The null hypothesis (Ho), test statistics and its related Z-value, and the 
approximate probability of test statistics (p) are given. The distribution function 
and the population mean of sample x, and degrees of freedom of ¿-test are indicated 
by F(x), /rr , and df, respectively. The critical value for ¿-test is 2.009.

Results of one-sample and two-sample tests on the estimated fractal dimensions 

are summarised in Table 4.5, that includes two sets of normally distributed data, that 

is, the normal scores and random numbers. The Table shows that the synthetic wave 

has a narrower range of the fractal dimensions than that of the natural wave. Also, 

the distribution of fractal dimension of a synthetic wave is less skewed and peaked 

than that of a natural wave. In fact, the Shapiro and VVilk’s W  test shows that the 

fractal dimensions of a synthetic wave are of normal distribution (c.s.l. = 0.0G4), 

while those of a natural wave are not (c.s.l. = 0.00*). This leads to difficulty in 

further comparison between two samples, since one sample is of normal distribution
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and the other is not. Therefore, both parametric ¿-test and non-parametric Mann- 

Whitney two-sample tests are performed. The result of the former test shows that 

there is no significant difference (p = 0.995) between wave profiles; however, the 

result of the latter test shows otherwise (p = 0.00=*=). Unfortunately, the statistical 

tests neither deny nor confirm the difference of the fractal dimensions between the 

synthetic and real waves as revealed graphically.

Data Length Effect on Estim ation of Fractal Dimension

Time (Record)

Figure 4.17: Data Length Effect on Estimation of Fractal Dimensions.
(Left) Fractal dimensions are derived from geometrically decreased lengths of data 
for both the natural (-) and synthetic (- -) wave profiles.
(Right) Fractal dimensions of the record at high tide (R15) are selected to show the 
effect of record length to the estimation of fractal dimensions.

The effect of reducing record length is illustrated in Figure 4.17, where broken lines 

represent the synthetic wave and solid lines represent the natural wave. The bottom 

curves of the Figure 4.17 (left), also seen in Figures 4.15 and 4.14, show the estimated 

fractal dimensions of the original twenty-seven records. From bottom to top, each 

record length is further halved, step by step, and the related fractal dimensions are 

estimated; that is, the upper adjacent curves are composed of fractal dimensions 

derived from data of exactly half the length of the lower curves.
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Several interesting results from such operation are presented in Figure 4.17 (left). 

First of all. the average of fractal dimensions decreases as the data length decreases. 

In other words, the shorter record length produces lower estimates of fractal dimen­

sion. Secondly, curves of fractal dimensions are rougher at the shorter length of 

data. Finally, the synthetic wave profile has lower estimates ot fractal dimensions 

than those of natural profile. Similar effects are found in an individual record treated 

the same way as seen in Figure 4.17 (right). In summary, the effect of reducing the 

record length is that it lowers the estimates of the fractal dimension and, in general, 

the curve formed by such estimates becomes rougher as the record length reduces.

4.6 C h a p te r  D iscussion an d  C onclusion

The fractality of a linear structure can be examined by the spectral exponent (¡3) 

derived from the log-log plot of the spectral densities (S j ) against frecpiencies ( /) , 

Sj  oc j j  (Voss, 1988). On the other hand, structures of higher dimensions have 

to utilise the more fundamental definition of fractals. Structures of fractional di­

mensions are by definition called fractals (Mandelbrot, 1983) and “fractals [are] 

everywhere’’ (Barnsley, 1993), although some researchers (Panico k  Sterling, 1995; 

Kurz et al., 1998, for example) reported that retinal neurons and blood vessels do not 

exhibit self-similar structures, implying that fractals are not everywhere. Therefore, 

it is justifiable that almost all natural objects are fractals hence can be measured 

in terms of fractal dimensions. While the fractal method is aimed to explore the 

scale-similarity of structures, the conventional approaches usually are utilised to re­

veal the complexity of structures. Therefore, the conventional methods specific to
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time series is reported along with the estimation ol fractal dimensions.

Given the reliability of pressure transducers and that the measurements were 

made in relatively shallow water, the sea wave profile was suitable for study of 

systems dynamics. Revelation of the simplicity or complexity of the wave, however, 

depends upon the methods used. The result from the fractal method states that the 

sub-systems dynamics of the sea wave in shallow water are relatively homogeneous, 

while the conventional methods reveal complexity.

4.6.1 On Conventional Tim e Series A nalyses

The complexity of wave dynamics can be revealed by the conventional methods: the 

qualitative approach of the phase portrait constructions and the quantitative ap­

proach of the spectral analysis. The advantages of constructing a phase portrait by 

delay times can be clearly shown in Figure 4.7 using all but the tidal components 

in Equation 4.8; that is, patterns are revealed by certain delay times. The phase 

portrait also shows that this method is limited by lack of repetitive dynamics in 

the system; that is, once the single long tidal wave is involved, the whole system 

is squeezed along the diagonal direction in the phase portrait. There are alterna­

tive means of constructing phase portraits, for example, using the singular vectors. 

However, they are more suitable for some than for others; that is, dynamics are 

more easily shown in the synthetic wave than in the natural waves (Figures 4.10 

and 4.11).

The spectral analyses also supported that the natural wave is more complex 

than the synthetic one. The dominant frequencies and the periodicity are clearly
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shown by the power spectra and auto-correlation coefficients of the sub-systems in 

the synthetic wave; that is, the dynamics are actually identical between records 

(Figure 4.12). In the case of the natural wave profile, dynamics differ from record to 

record; although distinctly different behaviours can be observed between the high 

tide records and the rest of the profile (Figure 4.13). The complexity might be 

attributed to the formulation of near-shore sea waves.

In Chapter Two, it was established that waves in shallow water are formulated 

as a result of the interference and grouping of component waves that are further 

modified by local environments. Indeed, such complexity can be revealed by its sta­

tistical parameters (Table 4.5) and explored by the conventional methods. However, 

the fractal approach has produced some interesting results that reveal the simplicity 

of the waves.

4.6.2 On Fractal Approaches o f T im e Series

A typical approach to time series analysis was illustrated by Shaw (1993): a plot of 

measurements as a function of time is plotted, and followed by the calculation of the 

Fourier transformation. Since the emergence of Chaos Theory and Fractal Geometry, 

the estimation of the fractal dimension is then added to the time series analysis. 

The calculation of the fractal dimension is usually made with the construction of 

a log-log plot, from which the slope is equated to the fractal dimension. At times, 

other techniques specific to the nature of measurements are employed, such as the 

calculation of K 2 entropy of an oscillating system (Yamazaki, 1988, for example). 

Very often, only the log-log plot is presented, from which the fractal dimension is
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derived. The subjects under study, however, vary greatly.

The most favourable subjects are systems that produce long-term time series, 

because the calculation of the fractal dimension demands a large amount of data. 

Those systems include theoretical models or experimental data on repetitive pat­

terns. For example, Cusumano k  Sharkady (1995) studied the system which was 

parametrically excited through a bifurcation parameter; and the spatial pattern of 

a trajectory in the phase space drawn by a dynamic system such as a nuclear power 

plant gives the information (fractal) dimension of the system, and enables the onset 

of the limit-cycle (or persistent) oscillation to be examined (Suzudo et al., 1997). 

The following is an ever-growing list of the application ot fractal analysis to diverse 

and complex time series such as flow dynamics (Huber k  Alstrom, 1991; Buzug 

et al., 1992; Hadad et al., 1993; Osborne k  Pastorello, 1993; Marvasti k  Strahle, 

1995; Kozma et al., 1996; Bai et al., 1997), cosmic rays (Aglietta et al., 1993; Berga- 

masco et al., 1994; Kanetake et al., 1994; Yasue et al., 1996; Kitamura et al., 1997), 

physiology (Yeragani et al., 1993; Pradhan et al., 1995; Lutzenberger et al., 1995; 

Wagner k  Persson, 1995; Yambe et al., 1995; Vibe k  Vesin, 1996; Accardo et al., 

1997; Christ et al., 1997; Jartti et al., 1997; Preissl et al., 1997; Yambe et al., 1997; 

Noguchi et al., 1998), solar study (Polygiannakis k  Moussas, 1994; Hirzberger et al., 

1997; Zhang, 1997), earthquakes (Frankel, 1991; Volant k  Grasso, 1994; Tsai, 1997), 

and environmental radioactivity (Jaime et al., 1995). Other linear features are also 

popular subjects, such as fractional Brownian motion (Rani k  Mitra, 1995; Tsai, 

1997), and protein sequences (Rani k  Mitra, 1995; Rani k  Mitra, 1996).
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T he E stim atio n  M ethod

The estimation of the fractal dimension from time series usually utilises the method 

of correlation dimension (Theiler, 1991; Anmajunas k  Tamasevicius, 1992; Olof- 

sen et al., 1992; Zeng et al., 1992; Bassingthvvaighte k  Raymond, 1994; Jedynak 

et al., 1994; Bergmasco et al., 1995; Cusumano k  Sharkady, 1995; Heng et al., 1996; 

Shirer et al., 1997). The correlation dimension based on Grassberger-Procaccia 

(Grassberger k  Procaccia, 1983b; Grassberger k  Procaccia, 1983a) algorithms was 

the most popular method but it was criticised for not being applicable to data of 

higher dimensions (Jedynak et al., 1994). This might be due to the influence of inho­

mogeneities in the probability distribution, such as the boundary and the lacunarity 

effect (Heng et al., 1996), which distinguishes sets that have the same fractal dimen­

sion but different textures (Allain k  Cloitre, 1991). Since the calculation is time 

consuming, parallel computation is sometimes employed to calculate the correlation 

dimension (Corana et al., 1991).

The correlation dimension can also be derived using the re-scale range (R/S) 

analysis (Feder, 1988, for example), which is “a means of characterising a time 

series or a one-dimensional spatial signal that provides simultaneously a measure 

of variance and of the long-term correlation or ‘memory’ ” (Bassingthwaighte k  

Raymond, 1994). Trend-correction has to be applied to get a closer estimate of the 

Hurst exponent. Furthermore, this method is confined to one-dimensional features 

(Karamavruc k  Clark, 1997; De la Fuente et al., 1998) and long-term repetitive 

events such as seasonal floodings in the River Nile (Feder, 1988). The validity of 

the R/S analysis was questionable; for example, the Hurst exponent of H > 1, 

which is theoretically impossible, has been reported for fractal time series using the
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R/S analysis (North k  Halliwell, 1994). Given that the wave profile under study 

was measured in only one tidal cycle, the R/S analysis is unlikely to discern any 

information from the data. However, data should be collected for days or longer 

in order to apply the R/S analysis. This is, nevertheless, beyond the scope of this 

thesis.

Although it is logical to use, for example, the correlation dimension described 

above and the spectral approaches detailed in Chapter 1 hree for linear features, the 

use of the box-counting method here is justified as follows. Corresponding to the 

three types of dynamics revealed in the Mandelbrot set (Chapter Iwo), the data 

used in this thesis are of different dimensions. Furthermore, making comparisons 

demands an identical method and similar scales being used for deriving the fractal 

dimensions (Chapter Three). While the former requirement is met with the use 

of the box-counting method, the latter is shown by the data length effect on the 

estimation of the fractal dimensions.

The Length Effect and M ulti-fractality

As with many other methods, the box-counting method yields different estimates 

if the scale of estimation changes. As revealed by the box-counting method im­

plemented here, fractal dimensions of the sub-sections decrease as lengths of the 

sub-sections decrease (Figure 4.17). The minimal length is related to the cut-off 

value of the correlation coefficient in the regression model; that is, thirty-two data 

with a impossible cut-off of 1.0 are the shortest possible length, according to (Equa­

tion 3.7). On the other end of the scale, there is not even a meaningful estimate 

of the fractal dimension for the whole profile, for the calculated correlation coef­
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ficient is much lower than the critical value. Therefore, extreme scales are not 

advisable for data of limited resolution when calculating the fractal dimension using 

the box-counting method (Zahn k  Zosch. 1997).

An identical result was found in Chan k  Page (1997), who studied SEM° mi­

crographs of a particle system and found the boundary fractal was "sensitive to 

magnification with appreciable drops in value at high magnification. ’ Unlike the 

mathematical object, “the particles studied did not have true fractal boundaries” 

upon magnification (Chan k  Page, 1997). Therefore, the range ot scales that are 

used to derive the fractal dimensions must be specified. Li k  Park (1998) calculated 

a single measure of fractal dimension from each of their model surfaces by fractional 

Brownian motion and found that the fractal dimension is a function of the observa­

tion scale used in the profile measurement. What was demonstrated by Li k  Park 

(1998) is a special case in which multi-fractality is noted by the scaling approach. 

Other studies would simply ignore such a phenomenon (Tsai, 1997; Stutzki et al., 

1998) or adopt the standard multi-fractal approach (Richter k  Markewitz, 1995; 

Veneziano et al., 1995) as mentioned in Appendix D.

The length effect shown here is similar to the findings of Li k  Park (1998). 

Both reveal multi-fractality of a system by means of changing scales, compared to 

the formal definition of the multi-fractal dimensions, that utilise multiple methods. 

This subject can be pursued further but it is beyond the interest of this thesis. 

Further pursuit of the subject can be certainly assumed, although the focus remains 

on the findings made here.

5 SEM stands for Scanning Electronic Microscope.
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Fractal Characterisation of Sea Waves

The mean fractal dimensions of both the natural and synthetic waves are extremely 

similar (Figure 4.16), and the difference of the mean fractal dimensions between 

waves is not significant, as shown by the two-sample ¿-test result (Table 4.5). For 

the random water surfaces measured at a fixed point, Stiassnie et al. (1991) found 

that capillary wave solution produced graphs with dimension 1-T, whereas the graph 

for gravity waves had dimension 1.0. Their result is relatively low, compared with 

the research of Bergmasco et al. (1995), who found that, for certain wind-derived 

surface data measured in Adriatic Sea near Venice, there is a finite value for the 

correlation dimension similar to 7, said to result from the anomalous statistical 

behaviour of certain near-Gaussian random processes. An intermediate value was 

found in the result obtained in this Chapter. Although these examples show that 

the measurements of water surfaces are of a fractal nature, a comparison of the 

fractal dimensions cannot actually be made between them: the estimation methods 

and scales are all different. More importantly, the current implementation method 

is different from the above authors.

Several estimates of the fractal dimensions are derived from sub-systems or 

records of the wave system studied here, while only one measure of the fractal 

dimension was reported from other researchers. The result shows that the fractal 

dimensions are similar between records, for both the synthetic and natural waves. 

This approach in the fractal analysis of time series is unusual, although findings in 

other fields might provide an insight into the current result.

Wilson & Dominic (1998) found that the fractal analysis of topography revealed
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no significant variation in the fractal characteristics of topography in the relatively 

undeformed foreland area. The profiles of the undeformed foreland are very similar 

to the wave profiles, that are dominated by the long tidal wave. Therefore, sections 

of the profile should have similar characteristics. This observation was found to be 

applicable to both the synthetic and natural wave profiles; that is, the difference of 

mean fractal dimensions between these profiles is not significant. On the other hand, 

Wilson &; Dominic (1998) also found that there is a significant positive correlation 

between the fractal dimensions of topographic and structural relief along the strike 

of major folds in the deformed area. However, the investigation of topography itself 

is provided in the following chapter.



Chapter 5

Landform s

Figure 5.1: The Summit of Shei-pa National 
One of the summits that the park is named after,

Park In Taiwan, R.O.C. 
from Tsai k  Simpson (1992).

162
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5.1 In tro d u c tio n

This chapter focuses on the analysis of the topography. The landform especially 

in the mountainous area of high precipitation is usually comprised of diverse sub­

systems. The diversity of the landscape is explored using the conventional and 

fractal approaches. While the general terrain information can be provided using the 

conventional methods as described later on, the diversity of the sub-systems is re­

vealed by the fractal method, implemented by applying the box-counting method to 

each profiles as detailed in Chapter Three. The digital elevation model used here 

was obtained from the Shei-pa National Park in the northern part of Taiwan, the 

Republic of China; whilst the synthetic digital elevation models are generated using 

the mid-point displacement method. The results from both approaches are given, 

then followed by the discussion and conclusion.

5.2 T he S tudy  A rea

The study area is located at 24°37' N/121°2l' E, northern part of Taiwan, the Re­

public of China. It includes most of Shei-pa National Park established in 1992, 

and its neighbouring area. The digital elevation model covers the area of 41 x 41 

kilometres or 25.5 x 25.5 miles, which is equivalent to 1681 square kilometres or 649 

square miles. Refer to Figure 5.2 for the study area. A brief introduction to Taiwan, 

the Republic of China, is given in Appendix L, including comparison of the landuse 

and conservation policies Taiwan, the United Kingdom and the United States.
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Figure 5.2: Location of the Shei-pa National Park in Taiwan, R.O.C.. 
Taiwan, the Republic of China, is situated off the south-east coast of mainland 
China, between Japan and the Philippines (see insert). There are seven National 
Parks (NP), fifteen Nature Preserves, twenty Nature Reserves, and one Wildlife 
Sanctuary. The total areas designated for conservation occupy 13% of the total 
land area. Source: Tsai & Simpson (1992).

Shei-pa National Park falls in IUCN Category II, which defines national parks 

as “relatively large areas not materially altered by human activity where extractive 

resource uses are not allowed” (Table L.3 in Appendix L). file Park is one of the 

seven national parks in Taiwan (refer to Figure 5.2 and Table L.2 in Appendix 

L), and was established to protect the wilderness mountain area that covers 76850 

hectares, and the fauna and flora in it. There are 66 peaks over 1500 metres within 

the region; seventeen of them are listed in the “Hundred Summits of Taiwan”, 

which details summits 3000 metres or over in height. Shei-pa is the combination of



CHAPTER 5. LANDFORMS 165

Sheishan and Tapachienshan, where Sheishan, the “Snow Mountain ’ at 3886 metres 

above sea level, is the second-highest summit in Taiwan; and Tapachienshan, the 

“Gigantic Peaks'’ at 3600 metres above sea level, earns its name by the shape and 

size of the single 300-metre barrel-like rock formation at the top of the mountain, see 

Figure 5.1. In fact, the title of the park literally means the “National Park of Snow 

Mountains and Gigantic Peaks”. Surrounded by the tropical lowlands, this Park 

provides a unique environment for a variety of scientific researches. More details are 

available in Tsai & Simpson (1992).

Little work has been done in the area, although the application of remote sensing 

to the geological environment was conducted recently (ERL, 1992). I his study is 

aimed to contribute to the understanding of the topography in that area through 

the concept of fractal dimension.

5.3 D ig ita l E levation  M odels (D EM s)

The digital elevation model of Taiwan was generated from aerial photos by the 

Remote Sensing Unit of Energy h  Resources Laboratories (ERL) in the Industrial 

Technology Research Institute (ITRI), Taiwan, the Republic of China (ERL, 1992). 

Figure 5.3 illustrates the digital elevation model plan of Taiwan. The whole area 

is divided into mosaics of squares. The squares are sequentially numbered. Each 

square is further divided into four quadrants, labelled l to IV in a clockwise direction, 

starting from the top-right hand corner of the square. An example is given in square 

9519. Each quadrant is approximately 25 x 27 kilometres or 15.5 x 16.8 miles in size. 

Therefore, each square is about 50 x 54 kilometres or 31.1 x 33.6 miles. Because
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of the persistent clouds in the mountain areas, some mosaics of the Taiwan digital 

elevation model are still blank, especially in the south-east of Taiwan.

Figure 5.3: Digital Elevation Model Plan of Taiwan.
The island of Taiwan is divided into squares that are labelled with sequential num­
bers. Each square comprises of four quadrats arranged clockwise from the top-right 
hand corner, and centred at the sequential number. Each quadrant is about 25 x 27 
kilometres or 15.5 x 16.8 miles, therefore, a square is about 50 x 54 kilometres or 
31.1 x 33.6 miles. Islets are also sequenced but not shown here.

The Shei-pa National Park occupies an area of less than two quadrants, that is, 

37.5 x 34.1 kilometres, or 936 x 853 pixels with 40 metres of resolution (ERL, 1992). 

Obviously, the size of the image in terms of pixels does not satisfy the requirement 

of the algorithms described in Chapters Three and Four. The algorithms usually
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demand demand a data series of 2n in length, where n is an integer. I herefore, the 

neighbouring area to the west of the Park is included to produce the target digital 

elevation model of 1024 x 1024 pixels. Refer to the study area in Figure 5.3 and the 

data decoding process in the following section.

5.3.1 D ata  D ecoding

In the original digital elevation model, each quadrant contains 100 hies or 100 unit 

images, and each image is about 2.5 x 2.8 kilometres or exactly 63 x 71 pixels with 

the resolution of 40 metres. By “stitching ’ the unit images together, a large image 

of 50.7 x 55.3 kilometres or 1267 x 1383 pixels is formed, [hen by "clipping the 

large image, the desired image of 1024 x 1024 pixels is obtained for further analyses.

The original digital elevation model hies were generated and recorded by the 

personal computer (PC) in either ASCII1 or binary and both formats (ERL, 1992); 

therefore, pre-processes were taken to render uniform the format used by the com­

puter programmes in this thesis. In an ASCII file, each data point or pixel is 

represented by a single line containing x ,y  and z, that is, coordinates and height, 

respectively. The coordinates x  and y are each of eight bytes, that is, seven digits 

and the appended space, while the height z is of eight or nine bytes. Because the 

height ranges from 0.0 to 4000.0 metres and recorded to three decimal digits, it is 

encoded in eight or nine bytes; that is, it includes the eight-byte real numbers and 

one-byte of “end-of-line” character. Since there are 63 rows and 71 columns of data 

points in a file, each file amounts to around 104 kilobytes (Kb).

1 ASCII stands for A m e r i c a n  S t a n d a r d  C o d e  f o r  I n f o r m a t i o n  I n te r c h a n g e  (Allen, 1990).
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The ASCII file can be read by any computer text editor, given that it accom­

modates a huge quantity of data. Although it takes more than 100 Kb of computer 

memory to handle a single ASCII file, the ASCII files are comparatively easier to 

handle than binary ones, which are of 26 Kb in each file.

Each binary file consists of two parts of information, that is, the header and the 

body of data. The header, the first virtual line in the file, is of -100 bytes in length. 

However, it is encoded in three different formats; that is, the original programme 

uses a one-byte character to record the title of the file, a four-byte integer to record 

the structure of the data, and a blank space to fill the rest of the line. The first 

sixty bytes of the header, which record the title in a string of single byte, keep track 

of the organisation of the file names. The following forty-four bytes record eleven 

essential items of data in four-byte integers; and the items include four corners of the 

xy coordinates, the resolution, and numbers of rows and columns of the image. The 

rest of the header consists only of blank space to the end of the 400-byte block. The 

body of data contains only c values in sequence according to the information given 

in the header. It starts from the second virtual line of the 400-byte block, and goes 

on to the end of the file. Each line contains exact number of column data, followed 

by blank space. The number of lines in the data body is equal to the number of 

rows. Therefore, each file amounts to around 26 Kb.

It was recommended that the binary files should be decoded by the Fortran 77 

program coming with the data files. For some reason, the Fortran 77 compiler on 

Sun workstation was not compatible with that on PC where the source codes were 

created. Therefore, the binary data have to be fully decoded as described earlier 

before any technique of uniformisation could be applied. However, an unexpected
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problem was encountered when trying to decode the binary files. I he integral and 

real numbers were unfortunately encoded differently between the PC where the files 

are stored, and the Unix workstation where the fdes are processed. A “virtual" mir­

ror has to be used to read the four-byte integer between PC and Unix workstation; 

that is, the order of four-bvte integer on the PC, for example, 1234, has to be mir- 

rored to 4321, in order to be read on the Unix workstation. It was also essential to 

swap every two bytes in the real number part of the PC file in order that it could be 

read on the Unix workstation. At last, the structure of both ASCII and binary files 

were decoded and re-organised, using the computer programme particularly written 

for decoding and transforming the digital elevation model files into formats applica­

ble to Geographical Information System (GIS) software such as IDRIS! (Eastman, 

1992a; Eastman, 1992b). Refer to Appendix M for the programme listing.

5.3.2 The Target D EM  Obtained

The digital elevation model used by IDRISI is stored in two files; that is, the text 

document file records the essential information to display the image and the binary 

file simply contains the heights row by row. However, the real numbers in the binary 

file have to be truncated to two-byte integers, implying that the range of heights 

is from 0.0 to 65536 metres. Fortunately, mountain heights in that area are well 

within the limit. The digital elevation model of the natural landscape is, therefore, 

obtained for subsequent analyses.

2 IDRISI is a grid-based geographic information and image processing system developed by the 

Graduate School of Geography at Clark University, MA, USA.
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5.4 S y n th e tic  D EM s

Fractal features are the opposite of smooth curves and surfaces that, in terms of 

differential geometry, globally may have a very complicated structure but in small 

neighbourhoods they are narrow straight lines or planes. While the smooth objects 

yield no greater detail on smaller scales, a fractal possesses infinite detail at all 

scales, no matter how small they are. It is, therefore, “very suitable to simulate 

many natural phenomena” and also simple to generate without involving theory 

such as calculus, necessary for differential geometry (Saupe, 1988a, p.71).

Given that fractals have infinite detail at all scales, it follows that a complete 

computation of a fractal is impossible. Thus approximations of fractals down to 

some finite precision have to suffice. The desired level ot resolution is naturally 

limited by constraints such as the numbers of pixels of the available graphics dis­

play. Saupe (1988a) proposed algorithms that fall into three categories, that is, the 

Fourier filtering method, the random cut method, and the midpoint displacement 

methods. Basically, in the midpoint displacement methods, an approximation of a 

random fractal with the initial resolution is used as input and the algorithm pro­

duces an improved approximation with resolution increased by a certain factor. This 

process is repeated with outputs used as new inputs until the desired resolution is 

achieved. The midpoint displacement methods are discussed further by other re­

searchers (Nakagawa &: Kobayashi, 1992; Shurtz, 1992; Huang et al., 1992; Polodori 

& Chorowicz, 1993; Dixon et al., 1994; Stoksik et al., 1995, for example).
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5.4.1 Definitions

Brownian motion, also referred to as “brown noise”, constitutes the simplest random 

fractal, and it is the core of the following digital elevation model generations. Small 

particles of solid matter, for example, pollens, suspended in a liquid can be seen 

under a microscope to move about in an irregular and erratic way. I his was observed 

by the botanist Brown around 1827, and modelling of this motion has become one of 

the greatest choices of statistical mechanics (Saupe, 1988a, p.74). In fact, Brownian 

motion is the special case of fractional Brownian motion stated below.

In one dimension, a fractional Brownian motion, X(t) ,  is a single valued function 

of one variable, usually time, t. Its increments X ( t o) — -V(11) have a Gaussian 

distribution with variance,

E[\X(t2) -  X ih ) ] 2] cx \ h - t x\2H, (5.1)

where E  denotes ensemble averages over many samples X(t)  and the parameter H 

has a value 0 < / /  < 1 . Although X(t)  is continuous, it is nowhere differentiable. 

Such a function is both stationary and isotropic (Voss, 1988, p.58). Its mean square 

increments depend only on the time difference t% — t\ and all t's are stationary 

equivalent. The special value II = |  is the Brownian motion mentioned above.

In higher dimensions, the generalisation of fractional Brownian motion is a multi­

dimensional process of X(t\ ,  tn) with two properties. That is, the increments 

X ( t u t 2 ,--,tn) ~ X ( s u S2 ,.--,sn) are Gaussian with mean zero. Furthermore, the 

variance of the increments depends only on the distance,

\
¿ ( ¿ i  ~  -s,)2,
1=1

(5.2)
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which is proportional to the 2//-th power of the distance, thus,

n
E[\X(tx, t2, ...An) -  X ( s u s2,. . . , sn)\2} cx ( ^ ( U  -  Si)2)H, (5.3)

i=i

where 0 < H < 1. The function .V again has stationary increments and is isotropic, 

that is, all points and all directions are statistically equivalent (Saupe, 1988a, p.95).

5.4.2 Approxim ation

In one-dimensional space, Brownian motion can be approximated by random mid­

point displacement, proposed by Saupe (1988a, pp.78-80). If the process is to be 

computed for time, t , between 0 and 1, then one starts by setting .Y(0) = 0 and 

selecting -V(l) as a sample of a Gaussian random variable with mean 0 and variance 

<r2. Then i>ar(.Y(l) -  -Y(0)) = a2 and it is expected such that

var(X(t2) -  -Y(ii)) =  \t2 -  ¿i|er2, (5.4)

for 0 < ti < t2 < 1. A '(|) is set to be the average of .Y(0) and JY(1) plus some 

Gaussian random offset D\ with mean 0 and variance A2. Then

X ( i)  -  .Y(0) =  i(X(0) +  + D, (5.5)

and -Y(|) -  ,Y(0) has mean value 0 and the same holds for A'(l) -  X (j). Secondly, 

for Equation 5.4 to be true, it is required that

var(X(i)-  -V(0)) =  j  var(X(l-  + = i  o \  (5.6)

Therefore, A 2 = |cr2.

The next step proceeds in the same way, with setting

X ( i ) - X ( 0 )  =  i(A'(0) +  A'(i )) +  D2 (5.7)
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and it is observed again that the increments, A '(j) — .V(|) and A (j)  — A(0), are

Gaussian and have mean 0. So the variance A.̂  of D2 is chosen such that

var{X{1- )  -  X ( 0 ) )  =  ^  u a r ( X ( i )  -  A'(0))  +  A22 =  l-  a 2 (5.8)

holds, that is, Xj  = |cr2.

Continuing to finer resolution yields

A
1

9 n + l
(5.9)

as the variance of the displacement Dn. In order to correspond to time differences 

A( =  2~n, a random element of variance 2~(n+1*a“ is added, which is proportional to 

Aj. Figure 5.4 is the graphical presentation of the midpoint displacement method.

X

Figure 5.4: One-Dimensional Midpoint Displacement. 
The first two stages in the midpoint displacement method.

For the approximation of fractional Brownian motion, the approach taken by 

the midpoint method can be formally extended to suit parameters H /   ̂ (Saupe, 

1988a, pp.84-87). Here the equivalence of Equation 5.4 is:

2Ua2var(X(t2) -  X (t i ) )  = \t2 -  11 (5.10)
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following the same line of thought above, the midpoint displacements Dn is derived, 

which have variances:

)n\2H( 2" )
(1 - 2 n , ~2). (5.11)

However, it has been shown that the above midpoint displacement technique does 

not yield true fractional Brownian motion for H ^  \  (Mandelbrot, 1982). Nev­

ertheless, this is still a useful and popular algorithm for many purposes, since its 

appearance in Fournier et nl. (1982a; 1982b).

The midpoint displacement method can work with square lattices of points 

(Saupe, 1988a, pp.96-105). If the mesh size S  denotes the resolution of a grid, 

another square grid of resolution of ^  is obtained by adding the midpoints of all 

squares. The orientation of the new square lattice is now rotated by 45 degrees.

Again adding the midpoints of all squares gives the next lattice with the same ori­

entation as the first one and the resolution is now j .  In each stage, the resolution is

scaled by a factor of r = and in accordance with Equation 5.3, random displace-

H  1 À
o

•  ■  «
type 1 type 2 type 1

v  Old points B New added points

Figure 5.5: Two-Dimensional Midpoint Displacement.
Grid type 1 is given at the beginning from which grid type 2 is generated. The 
mean size of type 2 is l / \ /2  times the old mesh size. In a similar step a grid type I 
is again obtained. Source: Saupe (1988a, p.96).
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ments are added using a variance which is r2H times the variance of the previous 

stage. If four corner points of the grid are assumed to carry mean square incre­

ments of a 2, then at stage n of the process, a Gaussian random variable of variance 

a2r2Hn — cr2( | ) n/i must be added. Refer to Figure 5.5.

For the usual midpoint method, random elements are added to only the new 

midpoints in each stage, whereas in this random addition method, displacements are 

added at all points (Saupe, 1988a, p.96). Adding random elements to all points gives 

more control over the statistical property of the synthetic model. The feasibility of 

such an algorithm is unique; for example, the random addition is kept permanently 

applicable in the Fourier filtering method (Saupe, 1988a, p. 108). Another advantage 

of using the algorithm described below is that it unites both methods.

5.4.3 Im plem entation

The random fractal landscape used here is generated by the midpoint displacement 

method (Saupe, 1988a, pp. 100-1). Refer to the Basic-styled pseudo codes are modi­

fied from Saupe (1988a) and listed in Figure 5.6, whereas the actual C programme is 

detailed in Appendix N. A grid of size (N  + l)2, X , is assumed, where N  = 2maxlevel 

and maxlevel is the final level of resolution given by the user. Other assigned param­

eters are the initial standard deviation (sigma) which is used as the initial resolution 

of the grid, parameter H which determines fractal dimension by D — 3 — H, boolean 

parameter addition which turns random additions on or off, and seed value for ran­

dom number generator. The function /3  is given to interpolate and offset boundary 

grid points from type 2 to type 1 transformation, whereas function /4  is used to
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| Algorithm: midFM2D() Comments
/3 (5 , xO, x l, x2) = (.r0 + xl + x3)/3 + 5 * Gaass{ )
f4(S,  xO, x l, x2, x3) = (xO + xl + x2 + x3)/4 + 5 * Gauss()
srand(seed) Introduces seed value for rand( )
addition Boolean parameter
S = sigma Variable
A'[z'][j] = offset Initialising X  with offset value
-Y[0|iV][0|iY] = S*Gauss() Assigning four corner points of X

cjIIIIQ Variables
for level =  1 to maxlevel do ......... ..................................................... R epetition

S  ~  S  * 0.5O W/ ............................. ..................Going from type  1 to type  2
for i = d to N — d step D do . . . . .........................Interpolate and offset points

for j  = d to N  — d step D do
.........X[t][j] -  /4 (5, X[i + d][j + d],X[i + d][j -  d], X[i -  d)[j + if], X[i -  d][j -d}) ..........
if n fini f i nn  thpn ...........................................Random addition

for i = 0 to N  step D do
for j  = d to N  step D do

........................................*[»][?] =  x [i][j] + S * Gauss{) .......................................
S  -  S *  0.oO5“H ............................. ..................Going from  type  2 to  type  1
for i = d to iV — d step D do . . . . .......  Interpolate and offset boundary points

X\i][0] = m s , X[i + d][0],X[i -  d\[0], X[i][d}) 
A"[f][iV] =  m s , x [ i  + d][N],X[i -  d[[N],X\i][N -  d})

X[0]\i] = /3 (5 , A[0][i + d},X[0][i -  d],X[d][i])
....................X[N][i} -  m s ,  A'[iV][V + d], X[N][i -  d], X [N  -d}[ i] ) .....................
for i = d to N  — d step D do ----

for j  — D to N — d step D do
x m  = f4(S,X[.][; + <fl, x \ i \ \ j  -  d\, + X[i -  ¿Mi)

for i = D to ¿V — d step D do
for j  =  d to iV — d step D do

.............*[>']b'l = /4 (s . *[■'][>+<*]. x m - ^ x { i + m , x [ i - m ) ............
if addition then .............................

for i =  0 to N  step D do
for j  = d to N  step D do

for i = d to ¿V — d step D do
for j  = d to iV — d step D do

..........................................X[i}[j] = X[i}[j] + S  * Gauss( ) .......................................
D — D/2\ d = d/2 Reset variables

Figure 5.6: Basic-style Pseudo Codes for Generating Landscapes.
At each level of resolution, data points are added by transformations from type 1 
to type 2 then from type 2 to type 1. Repeat the process until it reaches the preset 
level of resolution. Random addition is performed if it is specified. Modified from 
Saupe (1988a, pp. 100-1).
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interpolate and offset interior points, that is, to add new points, from type 1 to type 

2 transformation.

The grid X  is initially set to an offset value. Four corner points of the grid 

are initialised by the algorithm, Gauss(), that generates Gaussian random numbers 

with normal distribution, N(0,1). The algorithm assumes that the machine has 

a pseudo random number generator routine, rand(), that returns random numbers 

uniformly distributed over some interval [0, /l], where .4 is typically 2 31 — 1 or 2 15 —1 . 

Here, the random numbers are generated by the rand() routine on the Sun UNIX 

workstation (Sun4m of SunOS 4.1.3.U1 v.l), where .4 is 2 15 -  1 . There also exists a 

routine srand(seed), which introduces a seed value for rand(). Taking certain linearly 

scaled averages of the values returned by rand() will approximate a Gaussian random 

variable. Refer to Saupe (198Sa, p.77) and pseudo codes in Figure 5.7.

Algorithm: Gauss() Comments
srand(seed) Introduce seed value for rand()
Nr = 4 Number of samples of rand()
A = 2 15 -  1 Range of rand()
Add = y/(3 * Nr) Real parameter for linear transformation
Fac = 2 * Add/(Nr  * A) Real parameter for linear transformation
sum  =  0 Variable
for i = 1 to Nr do Calculation

sum = sum + rand()
Gauss =  Fac * sum — Add Returned Gaussian random number

Figure 5.7: Basic-style Pseudo Codes for Generating Gaussian Random Number. 
Modified from Saupe (1988a, p.77).

At resolution level one, new points are added to midpoints of grids going from 

type 1 to type 2 then from type 2 to type 1 again. Grid transformation from type 1 

to type 2 utilises function /4 , which interpolates and offsets points. If the boolean



CHAPTER 5. LANDFORMS 178

parameter addition is turned on, random addition is performed. Grid transformation 

from type 2 to type 1 uses function / 3 , which interpolates and offsets boundary grid 

points. The interior grid points are calculated by function /4 . As before, random 

addition is performed if the boolean parameter addition is turned on. 1  he process 

is repeated until the final level of resolution is reached. At the end of the process, 

a binary image and, in order to be applicable in IDRISI, a text document file are 

generated for subsequent analyses. Furthermore, various digital elevation models 

can be obtained by altering the parameters of the computer programme. Details of 

the above C programmes are listed in Appendix N.

5.5 A nalysis

Conventional methods are used to extract terrain information such as aspects, slopes 

and elevations, then followed by the fractal analysis that calculates the fractal di­

mensions from both the synthetic and natural digital elevation models. Statistical 

techniques are also used to compare the results obtained.

5.5.1 G eneral Terrain Inform ation

General terrain information depicted here includes aspects and slopes. The slope 

at any pixel of the raster image is determined by comparing the height to that of 

each of its neighbouring pixels. It is determined by calculating the maximum slope 

around each pixel from the local slopes in A' and Y.  Only the neighbours above, 

below, and to either side of the pixel were accounted for in this procedure. Slopes
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are expressed either in decimal degrees or percentages. Essentially, creating a slope 

map requires that the spacing of contours be evaluated over the whole map. These 

neighbour relations are then used to determine the context elements such as the 

direction that the slope is facing, known as the aspect, and the manner in which 

sunlight would illuminate at that point given a particular sun position, known as 

analytical hill-shading. Aspects were indicated in decimal degrees, using standard 

azimuth designations, 0 to 360, clockwise from north.

Implementation of the above is relatively simple, since there is much Geograph­

ical Information System (GIS) software available that provides such standard func­

tions. Here, the package called ID R IS I is used to derive the slope and aspect maps 

and the statistics associated with the maps.

5.5.2 The Fractal Analysis

A statistically self-similar fractal is by definition isotropic. A formal definition of 

a self-similar fractal in a two-dimensional xy-space is that f [ rx ,ry )  is statistically 

similar to /(x ,y )  where r is a scaling factor (Turcotte, 1992, p.74). It satisfies 

Equation 3.1 in Chapter Three and has the form of

N
C_
,-D' (5.12)

where C is a constant. Here, the number of boxes with dimensions (x^y j) required 

to cover. For example, a rocky coastline is Ah, and the number of boxes with 

dimensions (x2 — rx j,y 2 =  ryx) required to cover a rocky coastline is N2. If the 

coastline is a self-similar fractal, the fractal dimension is derived from N2IN\ =  r~D 

(see also Equation 3.2 in page 63).
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A statistically self-affine fractal is not isotropic. A formal definition of a self- 

affine fractal in a two-dimensional xy-space is that f ( r x , rHy) is statistically similar 

to f ( x , y )  where / /  is known as the Hurst measure. The Hurst measure is related 

to fractal dimension, D , topological dimension, D j , and Euclidean space, De , as 

follows (Mandelbrot, 1983, pp.15 k  249):

H = De — D or H — D — Dt , (5.13)

because D j  < D < De and 0 < H < 1.

The box-counting method can be used to determine the Hurst measure hence 

fractal dimension of an elevation. However, the box size must be scaled using the 

Hurst measure. If Afi is the number of boxes with dimensions (xj,i/i) required to 

cover the elevation and N2 is the number of boxes with dimensions (x2 =  rx \ ,y2 = 

rflyi), then the elevation is a self-affine fractal if N2/ N i = r~D. Several other 

aspects of self-affine fractals need to be considered. However, Turcotte (1992, p.74) 

has proved that a random walk in two-dimensional space satisfies

H = 2 - D .  (5.14)

A discussion on estimation of fractal dimension has been given in Chapter Three; 

and a practical derivation of the fractal dimension of a self-affine linear feature is 

given here by Turcotte (1992, p.76). Firstly, a rectangular reference “box” is taken 

with a width T  and height o j  = cr(T). Note that since the units of the signal hence 

the units of standard deviation can differ from the unit of time, the aspect ratio 

(width/height) of the box can have arbitrary units.

Secondly, the time interval T  is divided into n smaller time intervals with the 

length Tn =  T/n.  Therefore, scaled smaller boxes of width, Tn, and height, an —
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o’r/n ,  are introduced. These boxes have the same aspect ratio as the reference box 

However, the standard deviation associated with the interval f n, a jn = cr{Tn) = 

c{T/n),  is not equal to <rn. Then numbers of scaled smaller boxes of size Tn x crn, 

Nn, that are required to cover the area of width T and height crjn, are determined. 

This is given by

N n
T(tt„ 

I n&n
2aTn
(Tj

Since cr(T) ~  T H (Voss, 1988; Turcotte. 1992), the relation below holds,

«TT„ g(T /n) _  _  _L
<7 T f f ( T )  I, n"

(5.15)

(5.16)

The above two equations combine to give

iVn =  n 2~ H =
T_
Tn

2 - H

(5-17)

This is basically a fractal relation if Tn is associated with rn. The relation 2 — II = D 

is obtained, if the above is compared with the definition of fractal dimension in 

Equation 5.12.

In order to examine the diversity of the system, the box-counting method is 

applied to latitudinal and longitudinal profiles, regarded here as sub-systems. This 

unique approach is aimed to reveal the systems dynamics in a very different way from 

the “single measure” approach and the “dimension map” approach, as described 

earlier in Chapter Two. The box-counting method is implemented with the core 

routine that was detailed in Chapter Three and used for the sea waves in Chapter 

Four, and supporting routines that are mainly used to organise the data.
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Implementation

rile algorithm DernFD() is the main programme for calculating fractal dimensions 

from profiles of a digital elevation model (Figure 5.8). It includes the sub-routine, 

Box F D(), which returns the fractal dimension of a time series. Refer to the Basic-

style pseudo code of BoxFD( ) in Figure 3.4 and its C programme listing in Appendix 

E. The main programme reads image into array, extracts horizontal or vertical

Algorithm: DemFD( Ini mage, width,length, I I / \  )
w = width; 
h =  height
Readlmage(lnlmage , XY, w, h) 
if H do

for i — 1 to h do
ExtArray(X , XY,  w, h, i, II) 
Stats l(X ,  w, S)
Dh[i} = BoxFD(X, w, S)

Ouput(Dh, h)
if V do

for i = 1 to \V do
E xtArray iX , XY, io, h, i, V) 
S ta ts \{X ,h ,S )
Dv[i] = B o xF D (X ,h ,S )

Variable
Variable
Reads image into array XY[w][h] 
Horizontal profiles are chosen 

Obtains horizontal profile 
Extract ¿-th H profile from XY 
Calculates standard deviation, S  
Calculates D 
Prints out Dh[h]

Vertical profiles are chosen

Sub-Routine: Readlmage(Image,XY,m,n) Reads image into array XY[m][n]
Sub-Routine: ExtArray(X,XY,m,n,i,H/V) Extract 11/V profile, X
Sub-Routine: Statsl(X,n,S) Returns standard deviation from A'
Sub-Routine: BoxFD(X,n,S) Returns D. See Figure 3.4
Sub-Routine: Output(D) Prints out D

Figure 5.8: Basic-style Pseudo Codes for Estimating Fractal Dimension from DEM. 
This routine reads in the input image, then extracts profiles upon which the proce­
dure of estimating fractal dimension is performed.

profiles from the array, calls sub-routine BoxFD() to obtain the fractal dimension, 

and prints out the resultant fractal dimensions. Refer to the Basic-style pseudo 

codes for estimating fractal dimensions from digital elevation models in Figure 5.8 

and the complete C programme listing in Appendix 0 .
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Before the routine starts, the user needs to supply the title of the input image and 

its dimensions, width and height, and decide whether to calculate fractal dimensions 

from horizontal or vertical profiles. First of all, the input image is read into an array, 

because it takes a much shorter time for the computer to deal with an array than 

with an image file and/or its related document.

Assume that horizontal profiles are selected. The sub-routine Ext Array () will 

extract a single profile from the array obtained above, according to the parameters 

given. The standard deviation of this profile, which is the height of the reference 

box in box-counting method, is calculated using the sub-routine Stats 1 (). The 

sub-routine BoxFD()  detailed earlier is called to perform the estimation of fractal 

dimension. The above procedure is repeated for each profile. The sub-routine 

Ouput() is called to print out the results of calculated fractal dimensions. Similarly, 

the main routine will skip to another set of parameters, if calculation of vertical 

profiles is selected.

5.5.3 M aking Com parisons

The statistical test procedure was explained in Chapter Three, and is repeated 

briefly as follows. The Shapiro and VVilk’s W  test is performed to test whether the 

data distribution is normal; then it is followed by the non-parametric two-sample 

Mann-Whitney U test, because, most likely, the data are not normally distributed. 

Two sets of samples with known statistical parameters are also included to help 

interpret the test results.
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5.6 R esu lts

General terrain information such as the aspect, slope and elevation is presented; then 

followed by the fractal dimensions of the digital elevation models. Comparisons are 

subsequently made between the synthetic and natural landforms.

5.6.1 T he N atural Landform

Figure 5.9: The Ridges and Rivers of the Shei-pa National Park.
The Park obtains its name from the summits of Sheishan (the Snow Mountain) and 
Tapachienshan (Gigantic Peaks). Modified from ERL (1992)

Figure 5.9 shows the rugged mountains that dominate the Shei-pa National Park 

area. The western part of the area, which descends to the plain along the west coast, 

appears to be smoother than that in the east. The ridges run along the direction
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from north-east to south-west. In fact, these ridges are the northern part of the 

Central Ridges. Rivers begin their flow among the peaks in the Park area. Because 

of the formation of the ridges, some of the rivers merge with the Iaiwan Strait to 

tlie west, while others join the Pacific Ocean to the east coast of the island (Figure 

5.2). There are 76850 hectares of complex ridges and rivers in the Park. For exam­

ple, mountaineers cannot reach the summit of Tapachienshan without rock-climbing 

skills, because the iron ladder and chains built during the Japanese occupation of 

Taiwan were dismantled immediately after the Park was established in 1992. How­

ever, the digital elevation model used in this study covers the neighbouring area 

to the west of the Park. Some missing mosaics are inevitable, since this digital 

elevation model comprises hundreds of unit images (Section 5.3) formed from aerial 

photographs taken under genuinely tropical and marine weather (Appendix L).

Figure 5 .10  (top left) is the orthographic view of the area surrounding Shei-pa 

National Park, where contours of the same area are superimposed onto the top 

of the digital elevation model. The contour interval is set to 250 metres, or 820 

feet, with the range of 4000 metres. The black patch at the east (top right) edge 

of the figure corresponds to the region around the second highest peak of Taiwan, 

Sheishan, whose height is 3883 metres, or 12739 feet. It is part of the Central 

Ridges mentioned above in Figure 5.9. There are rivers in the valleys alongside 

the ridges. To the west, they join the flat plain which is very close to the sea. 

The histogram of height, not shown here, indicates that, under 2250 metres, there 

are two concentrated frequencies between 500 and 750, and between 1750 and 2000 

metres. However, the percentages, ranging from 7.7% to 9.8%, are relatively similar 

between these two intervals. The area higher than 2250 metres occupies almost
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one-fifth (19.7%) of the image. The overall average height is 1446 metres.

Slope (Degree)

1.45

1.4

1.35

1.3

1.25

: 1,2 
1.15

l.l
1.05

■ Longitudinal FD
VAa -,

Latitudinal FD

128 256 384 512 640 768 KV6 1024
South-North / East-West

Figure 5.10: Terrain Information and Fractal Dimensions of Shei-pa National Park. 
Aspects and slopes are measured in degrees but displayed in polar and Euclidean 
coordinates, respectively. Fractal dimensions of longitudinal and latitudinal profiles 
are meaningful, for the correlation coefficients are high (r > 0.99).

The complexity of the area can be revealed by its aspects and slopes. Figure 5.10 

(top right) shows the aspects of the region. The aspect is the direction the maximum 

slope faces, ranging from 0 to 360 degrees, clockwise from north. Therefore, it 

is best presented with polar coordinates. In this figure, each direction is equally 

spaced by 15 degrees. The sub-total of each quadrant is also given. However, 

this figure does not include the totally flat area which has no aspect reading. It 

shows that there are slightly more north-facing (0.226 + 0.2822 =  50.82%) than 

south-facing (0.2097 4- 0.3564 =  46.61%) slopes. Also, there are more west-facing 

(0.2822 + 0.2564 =  53.86%) than east-facing (0.2260 + 0.2097 = 43.57%) slopes. 

Note that it does not include 2.57% of the totally flat area.
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Data n min max X std Skew Kurt W c.s.l
NS
RN

1024 -3.248
-2.893

3.248
4.114

0.000
0.000

0.999
0.972

0.000
0.185

-0.044
0.272

0.988
0.988

0.7667
0.7760

Lat.
Long.

1024 1.180
1.164

1.696
1.401

1.226
1.243

0.027
0.053

5.294
0.993

85.230
0.185

0.827
0.886 O
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o
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Table 5.1: Comparison of Fractal Dimensions between Profiles of Natural Landform. 
Normality test (W) is performed against 5% significance level. If it is not normally 
distributed, indicated by low c.s.l., it is marked by “ * ”. “NS” is the normal 
scores and “RN” is the random numbers from /V(0.0 , 1 .0 ). The Mann-Whitney U 
test shows that U = 4.6e5 and c = —4.405. Therefore, the difference between 
latitudinal and longitudinal profiles is significant (p = 0 .00*).

Figure 5 .10  (bottom left) is the histogram of slopes of the study area. Slopes are 

indicated in decimal degrees, ranging from 0 to 90 degrees. The flat area is defined 

as the area with slopes smaller than five degrees (Rice, 1988, p. 137) and occupies 

only five per cent of the total area. According to the theoretical slope profile of 

Dalrymple et nl. (196S, p.62), also cited in Summerfield (1991, p. 1S1 ), landforms 

between 26 and 35 degrees are called transportational mid-slope. However, from the 

point of view of Rice (1988, p. 137), 72 per cent of the area is comprised of slopes 

of between five and 40 degrees. Landforms steeper than that are called fall face 

(Summerfield, 1991) or cliffs (Rice, 1988). More than one-fifth (23%) of the area 

falls into that category. That is, material in this 23% area tends to roll or slide 

further downhill. In summary, the “flat” area occupies only 5% of the area, 72% is 

“slope”, and more than one-fifth, 23% is “cliff” or “fall face”.

Fractal dimensions are displayed in Figure 5.10 (bottom right) and the related 

statistics are summarised in Table 5.1. The average fractal dimensions are 1.23 

and 1.24 for latitudinal and longitudinal profiles, respectively. The corresponding 

correlation coefficients (r =  0.99) are much higher than the critical value of 0.67, 

thus confirm that the derived fractal dimensions are meaningful. The distribution of 

fractal dimensions from latitudinal profiles is more wide-ranged, skewed and peaked
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than that from longitudinal profiles. The one-sample normality test (W) shows that 

neither is normally distributed, and the two-sample Mann-Whitney U test shows 

that the difference of distributions of fractal dimensions between the two sets of 

profiles is significant.

The fractal dimensions of profiles actually reflect the ground truth, given the 

figure 5.10 and Table 5.1. For the longitudinal profiles, the number of high fractal 

dimensions in the mountainous areas in the east is balanced out by the number of 

low fractal dimensions in the rolling plain in the west. On the other hand, the fractal 

dimensions estimated from latitudinal profiles are highly concentrated at a certain 

value; and relatively few high and low dimensions indicate that most latitudinal 

profiles are similar in some way. The orthographic view of the area gives a visual 

impression of the difference in the profiles. Although the mean fractal dimensions 

of both sets of profiles are very close, it is obvious that they cannot solely be used 

to interpret the landform.

5.6.2 Synthetic Landforms

Some synthetic landform examples are presented in Figure 5.11 and more are given 

in Appendix P. The contours are generated by the UN-supervised contour plotting 

technique, one of the built-in functions of the gnuplot plotting programme UNIX 

version 3.2. Five levels of contours are generated for landform of a lower H value, 

while ten levels are assigned to that of a higher H value. In order to have a clear 

illustration, the resolution of each landform is reduced to 32 x 32 pixels; however, 

all subsequent analyses are based on the normal size of 1024 x 1024 pixels.
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(S. It. Rimkwnl •  <01. 0.2. No>
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Figure 5.11: Some Synthetic Landforms.
Parameters controlling the simulation include the initial variation of landform, 5, 
the Hurst exponent, / / ,  and the random addition switch. While the randomness 
adds complexity to the landforms of the same H value, the complex of landforms is 
mainly controlled by the H values. However, both parameters have no impact on 
the flat initial surface (S = 0 .0 ).

There are three main parameters that control the synthetic process, that is, 

initial variation of landform (5), the Hurst exponent (//)  and the random addition 

switch. The complexity of the landforms is mainly controlled by the H values; that 

is, the lower H values produce landforms of higher complexity. The randomness adds 

complexity to the landforms of the same H value; and it is arguable that it gives a 

more natural appearance to the generated landforms. Comparatively little difference 

on the generated landforms is introduced by various initial surfaces, although a flat 

initial surface (S  = 0 .0 ) produces the uniform landscape that cannot be altered by 

the other two parameters.

Figure 5.12 presents some results from the analysis of the example landforms in 

Figure 5.11. The histogram of heights in metres shows that landforms of lower H 

values tend to concentrate in narrower range of heights. The odd landform with a 

flat initial variation of land, S  =  0.0, shows two frequency peaks of heights. Aspects
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Figure 5.12: Terrain Information and Fractal Dimensions of Synthetic Landforms. 
General terrain information such as heights, aspects and slopes are presented. The 
fractal dimensions of latitudinal profiles are also given.

are equally distributed for every landforms except the one with flat intimai surface. 

The slope measurements for various H  values are given in degrees. The percentages 

of flats, slopes and cliffs can be seen by the cumulative frequency of slopes. A 

low H value has a high percentage of steep slopes. As the H value increases, 

the concentration of measurements tends to shift towards less steep slopes. A fair 

amount of gentle slopes is found in landform of II = 0.8. The landform generated 

with S  =  0.0 is rather different from others, where flats and slow slopes occupy 

most of the area. All the estimated fractal dimensions are meaningful, given the 

high correlation coefficients (r > 0.99).

The results of one-sample statistical tests are given in Table 5.2. All the fractal 

estimates of both latitudinal and longitudinal profiles are statistically meaningful, 

given the high correlation coefficients (r > 0.99). The average fractal dimensions
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Data n min max X std Skeiv l\ urt IF c.s.l
112 . H 1024 1.520 2.336 1.576 0.032 12.943 302.813 0.621 0.0000*
112. V 1.503 1.665 1.563 0.022 -0.045 -0.073 0.986 0.2904
II5. II 1.357 2.105 1.423 0.038 5.924 98.978 0.805 O o CD o *

H5.V 1.318 1.672 1.390 0.037 0.758 2.682 0.951 0.0000*
H7.H 1 .2 2 1 1.934 1.296 0.041 4.037 55.060 0.862 0.0000*
II7.V 1.168 1.708 1.248 0.048 1.441 8.987 0.917 0 .0000*
118. II 1.159 1.857 1.235 0.042 3.490 45.792 0.879 0 .0000*
HS.V 1.095 1.719 1.179 0.050 2.093 13.952 0.895 0.0000*
SO. II 0.951 1.399 0.986 0.021 9.442 160.098 0.546 0 .0000*
SO.V 0.925 1.260 0.964 0.024 3.512 29.280 0.80L 0.0000*

Table 5.2: Statistical Summary of Fractal Dimensions of Synthetic Landforms. 
Landforms of H — 0.2, H = 0.5. H = 0.7, H = 0.8 and S' -  0.0 are denoted as M2 , 
H5, H7, H8 , and SO, respectively, whereas the latitudinal and longitudinal profiles 
are denoted as II and V, respectively.

of latitudinal profiles from landforms of H = 0.2, H = 0.5, II — 0.8 and S = 

0.0 are 1.576, 1.423, 1.235 and 0.986, respectively. Although the distribution of 

fractal dimensions for each landform is not greatly dispersed, it is rather skewed and 

peaked. The normality W  test indicates that none of them is normally distributed. 

The average fractal dimensions of longitudinal profiles from landforms of / /  = 0.2, 

H = 0.5, II = 0.8 and S — 0.0 are 1.563, 1.390, 1.179 and 0.964, respectively. Apart 

from landform of H =  0.2 whose fractal dimensions are normally distributed, the 

others are not normally distributed. In general, the skewness and kurtosis values 

are comparatively smaller than those of latitudinal profiles.

Landform with S = 0.0 is a special case among others, for its average fractal 

dimensions are very close to a line which has a fractal dimension of 1.0. This implies 

that the profiles of such a landform are as smooth as a straight line. Refer to Figure 

5.11 (bottom right) for its geomorphology.

The theoretical fractal dimensions for landforms of / /  =  0.2, / /  = 0.5, and
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Theoretical Dimensions Calculated Dimensions
H = 0.2 / D = 1.8 
II = 0.5 /  D = 1.5 
H = 0.7 /  D = 1.3 
H = 0.8 /  D -  1.2

D ~  1.6 ( 1.50, 1.66) 
D *  1.4 (1.35, 1.67) 
£>» 1.3 ( 1 .2 2 , 1.70) 
D »  1.2 (1.16, 1.72)

Table 5.3: The Theoretical and Calculated Fractal Dimensions of Synthetic DEMs.

II =  0.8 are 1.8, 1.5, and 1.2, respectively. In general, the calculated dimensions are 

reasonably close to the theoretical values, especially at the higher II values (Table 

5.3). The most accurate calculated dimension is from the landform of H = 0.7. 

Furthermore, having compared it with Figure 5.10, the synthetic landform of H = 

0.7 was found to be similar to the natural counterpart in many respects; for example, 

the distribution of aspects, slopes and the measurements of the fractal dimensions 

are all similar between them. Therefore, the specific landform of H = 0.7 is isolated

Aspect (Degree)

Figure 5.13: Terrain Information and Fractal Dimensions of the Landform II =  0.7. 
Aspects and slopes are measured in degrees but displayed in polar and Euclidean 
coordinates, respectively. The fractal dimensions of latitudinal and longitudinal 
profiles are meaningful, for the correlation coefficients are high (r > 0 .99).
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here for further analysis.

Figure 5.13 shows the orthography, aspects, slopes and fractal dimensions of 

landforms with 5 = 0.2 and H = 0.7. The orthography is produced by superimpos­

ing a map of sixteen contours of 250-metre resolutions on top the original image. 

The aspect chart reveals that there are slightly more slopes facing east than west. 

There are around 80% of slopes and 20% of cliffs on the synthetic landform. The 

fractal dimensions are of an average of 1.296 and 1.248 for latitudinal and longitu­

dinal profiles, respectively, and the corresponding correlation coefficients are high 

(r > 0.99). The result from the Mann-Whitney L test (p = 0.00*; Table 5.4) indi­

cates that there is significant difference in the distribution of the fractal dimensions 

between latitudinal and longitudinal profiles. 1 he estimated fractal dimensions are 

shown to be very close to theoretical values of 1.3, and, indeed, the natural landform.

0 128 256 384 512 640 768 8% 1024
South-North

0 128 256 384 512 640 768 8% 1024
Em -Wcm

Figure 5.14: Comparisons between the Synthetic and Natural Landforms. 
Aspects are measured in degrees, while slopes are measured in percentage. All fractal 
dimensions are meaningful, for the correlation coefficients are high (r > 0.99).
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5.6.3 Com parisons Between Landforms

The aspects, slopes, and fractal dimensions of the natural landform and the syn­

thetic landform of H = 0.7 are compared in Figure 5.14. The landforms seem 

similar graphically, although the synthetic landform appears to have more uniform 

distribution of aspects and slopes. In other words, there are more steep than gentle 

slopes and more slopes are facing west than east in the natural landform; whereas 

slopes of the synthetic landform are more equally distributed in terms of aspects 

and frequencies. The distribution of the fractal dimensions appears more rugged in 

the synthetic than in the natural landform as shown here and in the statistics of 

Tables 5.1 and 5.2.

The alternative presentation of the distribution of the fractal dimensions is shown 

in the frequency distribution histogram (Figure 5.15), that has sixteen class intervals 

between 1.0 and 1.6. The distribution of the estimates of the latitudinal profiles is

Figure 5.15: The Histogram of the DEM Fractal Dimensions.

highly skewed and peaked in both the synthetic and natural digital elevation models; 

and the modes are also relatively close to the means in both models. Similarly, in 

the fractal dimensions of the longitudinal profiles, the distribution is slightly skewed
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and peaked; and the modes are close to the means. Further tests are performed to 

examine the difference in the statistics.

Table 5.4 shows the results of some two-sample tests for the natural and some 

synthetic landforms. The parametric test between data of normal distribution is 

provided as a guidance for interpretation of the rest of comparisons. I lie test statis-

Profile Landform 7/-value Z-value P
N. Scores- R. N umbers -0.003 (df = 2046) 0.99794

Natural 4.7e5 -4.405 0 . 0 0 0 0 1 *

Latitudinal H2 6.7e5 11.086 0 . 0 0 0 0 0 *

V. H5 7.8e5 19.124 0 . 0 0 0 0 0 *

Longitudinal H7 8.3e5 22.498 0 . 0 0 0 0 0 *

MS 8.6e5 25.329 0 .00000*
SO S.8e5 26.709 0 .00000*

Latitudinal Natural-117 4.3e4 -35.951 0 .00000*
Longitudinal Natural-117 4.8e5 -3.628 0.00028*

Table 5.4: Statistical Tests of Fractal Dimensions between Landforms.
Whilst the two-sample parametric test is conducted for the normal scores (N.Scores) 
and random numbers (R.Numbers), the non-parametric Mann-Whitney U test is 
performed for the rest of data. Natural landiorm is the digital elevation model of 
Shei-pa National Park, whereas the synthetic landforms of II =  0.2, H = 0.5, 
H = 0, 7. II = 0.8 and 5 = 0.0 are denoted by H2, H5, H7, H8 , and SO, respectively. 
The symbol “ * ” indicates a 5% significance level.

tic shows the expected conclusion; that is, there is no significant difference of means 

between the data. Whilst the parametric test examines the difference of means 

between samples, the non-parametric Mann-Whitney U test checks the difference 

of distribution between samples. Since none of the landforms is found to possess 

a normal distribution of fractal dimensions (Table 5.2), the non-parametric Mann- 

Whitney U test is conducted. The natural and several synthetic landforms are tested 

for the difference of the distributions of the fractal dimensions between latitudinal 

and longitudinal profiles. The results show that there is a significant difference of the
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distribution of the fractal dimensions between profiles of different directions for the 

natural and all synthetic landforms. Further comparisons are conducted between 

the natural landform and the landform of H = 0.7, because they appear to have 

similar characteristics as described earlier.

The non-parametric two-sample Mann-Whitney U test was conducted, although 

mean fractal dimensions are similar (Table 5.2). The difference of the distribution of 

the fractal dimensions is significant between the natural and the specific landforms 

for both the latitudinal and longitudinal profiles. As a result, the fractal dimensions 

between landforms are different in terms of statistics.

5.7 C h a p te r  D iscussion an d  C onclusion

In this Chapter, results from some conventional methods and the fractal analysis are 

presented. As discussed in Chapter Two, landform is a complex system comprising 

inhomogeneous sub-systems such as rocks, soils and vegetation. In other words, 

landform sub-systems, the key players in landform processes and forms, evolve or 

erode in various time scales; those sub-systems maintain their own paces of evolution, 

unlike component waves that merge to form relatively homogeneous group waves, as 

described in Chapter Four. The resultant geomorphology is therefore inhomogeneous 

and some methods are more suitable than others for revealing such diversity.

The combined use of the conventional and fractal methods reveals the ground 

truth rather well, as seen in the calculated terrain information and the fractal dimen­

sions of the natural landform in Figure 5.10. There is high proportion of west-facing
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slopes and high proportion of cliffs. Where those slopes and cliffs are located is not 

clear until the fractal dimensions of the longitudinal profiles are examined. It shows 

that the slopes are concentrated in the west and the cliffs in the east. Used together, 

the findings explain well the heavy impact of monsoons on the river networks in the 

area. In addition to the cyclones that occur irregularly with unpredictable frequency 

and force, the south-westerly winds bring, in sumer, constant rainstorms and down­

pours, that greatly erode then deposit materials on the west sides of slopes. This 

combined impact seem to be the major influence that makes the rivers run west­

wards; however, tectonic movement is as important. I he whole area is actually 

subject to the majestic power of the Eurasian plate's being crushed by the Pacific 

plate (Rice, 1988, Ch.3), that created the Marianas Trench and Ryuku Arc along the 

east of Taiwan (Rice, 1988; Summerfield, 1991). The uplifting force created sum­

mits, while the advancing momentum squeezed the mountains from the east, hence 

left behind more steep east-facing cliffs in the east and relatively gentle west-facing 

slopes further west. As a result, slopes are distributed in the current pattern.

Although the ground truth cannot be verified, the above approach is still appli­

cable to the synthetic landforms (Figure 5.12). The distributions of aspects remain 

relatively similar for all landforms except the one with a flat initial surface; and 

higher portion of steep slopes are observed in landforms of lower Hurst exponents, 

that is, higher fractal dimensions. The fractal dimensions of the latitudinal pro­

files indicate that the irregularity is higher in the south than in the north, yet this 

cannot be shown by conventional methods. Wilson &: Dominic (1998) also found 

that there is a significant positive correlation between the fractal dimensions of to­

pographic and structural relief along the strikes of major folds in the deformed area



CHAPTER 5. LANDFORMS 198

of Appalachian Mountains. It could not have been perceived through the single 

measure approach (Liu, 1992) or the dimension map approach (Mussigmann, 1992). 

With the unique approach used here, the diversity of the landform system is easily 

identified.

The comparison between the natural landform and the landform with the Hurst 

exponent of 0.7 is shown in Figure 5.14. Both landforms appear similar when sub­

jected to conventional methods; however, the fractal dimensions indicate that there 

is a great degree of diversity between different landforms and also within the same 

landform. Despite the fact that the approximation of the Brownian motion is inten­

sively extended to model the natural phenomena (Voss, 1988; Saupe, 1988a), the 

current results suggest that the algorithm might need to be investigated further.

The above conclusion confirms that landform is a system of heterogeneity and 

that diversity can be detected by estimating the fractal dimensions of its profiles. 

Following the theme of this thesis, the focus moves now to the spectral imagery 

containing both homogeneous and heterogeneous systems, in the following chapter.
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6.1 In tro d u c tio n

This Chapter introduces the formation of a normalised difference vegetation in­

dex image from remotely-sensed data of natural plant, followed by the simulation 

of synthetic ferns. The estimation of the fractal dimensions is the key analysis 

of the spectral image that consisted of both heterogeneous leaf and homogeneous 

background sub-systems, using the algorithms detailed in Chapter Five.

6.2 T h e  N a tu ra l Fern

Remote sensing of vegetation has become very popular since the launch of the Earth 

Resource Technology Satellite (ERTS-1) in 1972 (NASA, 1972; Barrett & Curtis, 

1974). Various vegetation indices derived from remotely-sensed data have been 

developed and rigorously tested (Tucker, 1979, for example). The normalised dif­

ference vegetation index of infrared and red channels is one of the most commonly 

used indices (Barrett «V Curtis, 1992, for example). However, articles were found to 

support the use of a normalised difference vegetation index of green and red chan­

nels (Kanemasu, 1974; Tucker, 1979). Furthermore, imaging devices such as digital 

cameras and scanners, which produce green and red images cheaply, are widely 

available. Therefore, the normalised difference vegetation index image of green and 

red channels is used in this thesis.
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6.2.1 R em ote Sensing o f V egetation

The early images of the earth’s surface were aerial photographs taken mainly from 

aircraft and have been applied to land uses, geographical and geological mapping, 

agriculture, forestry, water resource, wildlife conservation, ecology, and archaeology 

(Cracknell & Hayes, 1991; Barrett Curtis, 1992; Lillesand &; Kiefer, 1994, for 

example). The Department of Industry of United Kingdom published a list of UK 

groups and individuals engaged in remote sensing with a brief account of their 

activities and facilities (DOI. 1979). However, the study of vegetation by its spectral 

characteristics was not reported until relatively late. Thomas et al. (1966) found a 

coefficient of determination (r2) of 0.75 and 0.49 between the optical density of false 

colour film and the yield of cotton and wheat, respectively. Others (Steen et al., 

1969; Stoner et al., 1972, for example) also reported a high correlation between 

multi-spectral reflectance and plant growth parameters. Linear combinations of 

spectral channels did not become popular until the launch of earth resource satellites. 

The technical details regarding remote sensing platforms are given in Appendix Q.

Vegetation Index

Vegetation indices are the linear combinations of spectral channels such as infrared 

(IR) and red (R) channels, for example, the vegetation index, V i  = the nor­

malised difference vegetation index, N D V I  =  77̂ »  and the transformed vegetation 

index, T V  I = + 0.5, among others. Many researchers have contributed to

the development and application of vegetation indices (Richard &l VViegand, 1977; 

Tucker, 1977; Tucker, 1979; Curran, 1981; Satterwhite, 1984; Satterwhite L  Henley,
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1987; Gardner et al., 1985; C'houdhury k  Tucker, 1987; Gallo k  Daughtry, 1987; 

Huete k  Jackson, 1987; Tucker &: Choudhury, 1987; Rees, 1990; Barrett k  Curtis, 

1992; Lillesand k  Kiefer, 1994, for example). The vegetation indices used in studies 

of vegetation and land use are extensively discussed in Curran (1980). Various plant 

growth parameters are found to be related to the vegetation indices include cover, 

leaf area, leaf water content, chlorophyll content, productivity, and biomass (Agazzi 

k  Franzetti, 1975; Tucker, 1977; Tucker, 1979; Holben et al., 1980; Curran, 1981; 

Asrar et al., 1985; Best k  Harlan, 1985; Elvidge k  Lyon, 1985, for example).

NDVI of Green and Red Channels

The majority work on the IR and red linear combination has used satellite (Landsat) 

data (Tucker, 1979, p.129). However, Kanemasu (1974) reported on a ground- 

based reflectance study of crop types where various ratios were investigated and 

concluded that the green/red ratio closely followed crop growth and development; 

although Tucker (1979, p.127) stated that the red and IR linear combinations had 

a 7% and 14% greater regression significance than the green (G) and red (R) linear 

combinations for the June and September sampling periods, respectively. Tucker 

(1979) further verified that the normalised difference vegetation index of green and 

red channels, that is, §^77, is highly correlated with the total wet biomass, leaf 

water content, and dry green biomass of the Blue Grama Grass sampled in summer, 

because the coefficients of determination are greater than 0.80. The normalised 

difference vegetation index of the green and red channels is, therefore, suitable for 

studying vegetation particularly on a relatively small scale.

Satellite images are usually of relatively low resolution, compared with the com­
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plexity of an individual plant stand. Whilst a patch of meadow in England might 

contain tens of vascular species, the best satellite image so far is the panchromatic 

image of SPOT, with ten-metre spatial resolution (Price, 1987) and the SPOT-5 

image of five-metre resolution scheduled in 1999 (Dagras et al., 1995). For a de­

tailed study of woodland ecology, for example, aerial photographs might be more 

feasible (Barrett & Curtis, 1992, Part Two). Although 1R filming facilities such as 

filters and cameras are available, they are generally expensive and too sophisticated 

to operate (Curran, 1981). The use of ordinary imaging instruments is, therefore, 

theoretically applicable in practice. The latest development in scanning and imaging 

hardware also facilitates the detailed study of individual plants as well as the small 

scale study of vegetation. Therefore, it was decided that the normalised difference 

vegetation index obtained by the green and red channels of a scanner be used for 

the study of a plant.

6.2.2 N D V I Im age o f the N atural Fern

A fresh fern leaf was sampled and immediately scanned as a digital colour image by 

a colour scanner connected to a personal computer. Refer to Appendix R for a brief 

introduction to the natural history of ferns. The scanner used here is named CLC10 

manufactured by Canon Europa NV and the software which comes with the scanner 

is called PhotoShop (Canon, 1992). The image was carefully adjusted to include the 

fern with the final size of 1024 x 1024 pixels, the size of a digital elevation model used 

in Chapter Five. The colour image was then split into three spectral channels, that 

is, blue, green, and red. The green and red images created by the scanners were 

transferred to geographic information system software such as IDRISI (Eastman,
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1992a; Eastman, 1992b), where the normalised difference vegetation index of the 

fern is calculated. The final image contains two major systems, that is, the leafy 

and background areas.

6.3 S y n th e tic  Ferns

There have been attempts to define the shapes of plant leaves in algebraic terms 

(Thomas, 1942), but this has met with no long-lasting success (Campbell, 1996). 

Extensive quantitative analysis of leaf shape has depended on methods either like 

Fourier analysis (Dickinson et al., 1987) or by sampling landmarks on leaves and 

treating the geometric relations between these special points (Jehnsen, 1990; Ray, 

1992; Jones, 1993). None of these approaches seems suitable to dealing with the 

highly dissected shapes of many ferns (Campbell, 1996).

Fractal Geometry involves only relationships between parts, not the shapes of 

parts themselves (Campbell, 1996). Methods of fractal dimension have been sued to 

draw fern-like shapes (Barnsley et al., 1987; Prusinkievvicz k  Lindenmayer, 1990). 

Campbell (1996) proposed four fractal methods in generating a spectrum of forms 

displayed by different species of ferns; and the methods, including two Iterated 

Function System (IFS) methods, produce fractal structures. The synthetic ferns are 

generated by the IFS method, utilising the IFS code and the collage theorem (Barns­

ley, 1993). The strengths and weaknesses of the method were noted by Campbell 

(1996); that is, the strengths include that the computation of these figures is rapid 

and simple and a variety of classes of real ferns can be approximated, whilst the 

weaknesses include that the method cannot produce forms that are not perfectly
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self-similar, for example, the forms in which there is only a finite level of branching.

6.3.1 The C onstruction o f Fractals

The metric space where fractals “reside" is detailed in Chapter Two. This section 

describes the affine transformations and the contraction mapping, followed by the 

introduction to the Iterated Function System (IFS). Then the design of the Iterated 

Function System, the Collage Theorem, is detailed.

The Affine Transformation and the Contracting Mapping

Fractal Geometry details complicated subsets of geometrically simple spaces such 

as the real number (ft), the Euclidean space (ft2), the complex plane (C), and 

the Rieman sphere (C ). In deterministic fractal geometry the focus is on those 

subsets of a space that are generated by, or possess invariance properties under, 

simple geometrical transformations of the space into itself. A simple geometrical 

transformation is one that is easily conveyed or explained to someone else. Usually 

it can be completely specified by a small set of parameters. Examples include affine 

transformations in ft2, which are expressed using 2 x 2  matrices and 2-vectors, and 

rational transformations on the Riemann Sphere, which require the specification of 

the coefficients in a pair of polynomials. In order to work in Fractal Geometry one 

needs to be familiar with the basic families of transformations in ft, ft2, C, and 

C, and to know well the relationship between “formulas” for transformations and 

the geometric changes, stretching, twisting, foldings, and skewing of the underlying 

fabric, the metric space upon which they act. However, the discussion below is
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based in the Euclidean plane. More details on the transformations are given by, for 

example, Barnsley (1993).

The Affine Transformation

An affine transformation on the Euclidean plane is defined by Barnsley (1993, 

p.49) as follows. A transformation w : R 2 t-> R2 of the form w(x i ,x 2) = [axx + 

bx2 + e, cx 1 +  dx2 -f / ) ,  where a, 6, c, d, e and /  are real numbers, is called a (two-

dimensional) affine transformation. It is often denoted as,

w(x) = w x x
x-2

a b 
c d

x {
*2

+
/

=  Ax  + t. (6 . 1 ;

Here A = a b 
c d is a two-dimensional, 2 x 2 matrix and t is the column vector

e
/

I, which is not distinguished from the coordinate pair (e ,/)  £ R2.

The matrix .4 can always be written in the form,
f  a b \  (  r> cos 01 — r2 sin 02 \
(  c d ) ~ [ r\ sin 0\ r2 cos 02 )  ' i6’2)

where are the polar coordinates of the point (rt,c) and (r2,(02 + it/ 2)) are

the polar coordinates of the point (6, d). This general affine transformation j c ( x ) =  

Ax  + t in R 2 consists of a linear transformation, A, which deforms space relative 

to the origin by rotating and scaling specified by the angle 0 and the scale factor r, 

respectively, followed by a translation or shift specified by the vector t.

Contraction Mapping

Contraction mapping is formally defined by Barnsley (1993, p.74) as follows. 

A transformation /  : A' X  on a metric space (X,d)  is called contractive or a 

contraction mapping, if there is a constant 0 < s < 1 such that,

¿ ( / ( z ) . / ( ! / ) )  £ (6.3)



CHAPTER 6. PLANTS 207

where Vx, y £ X.  Any such number s is called a contractivity factor for / .  where 

d(x,y)  is the distance between x and y. The transformation /  possesses exactly one 

fixed point xj  6 X  and moreover for any point x £ A' in the space, the sequence 

{ f on{x) : n =  0,1,2,...} converges to .r/. Refer to Chapter III of Barnsley (1993) 

for the formal mathematical proof.

The Iterated Function System  (IFS)

After having proven that a contraction mapping of the metric space is continuous, 

Barnsley (1993, p.80) at last reached the definition of the iterated function system; 

that is, “a hyperbolic iterated Junction system consists of a complete metric space 

(A', d) together with a finite set of contraction mappings wn : X  i-> X ,  with respec­

tive contractivity factors sn, for n = 1,2, ...,Ah” The abbreviation “IFS” is used 

for “Iterated Function System.” The word “hyperbolic’ is sometimes dropped in 

practice; furthermore, Barnsley (1993) proved that there is a unique fixed point in 

the space, where this fixed point is called the attractor of the IFS.

The Design of IFS: The Collage Theorem

The Collage Theorem is central to the design of IFS’s whose attractors are close 

to given sets (Barnsley et al., 1985). The Theorem states that in order to find an 

IFS whose attractor is “close to” or “looks like” a given set, one must find a set 

of transformations — contraction mappings on a suitable space within which the

given set lies — such that the union, or collage, of the images of the given set under 

the transformations is near to the given set, where nearness is measured using the
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HausdorfF metric. The proof of the Collage Theorem can he found in the last section 

of Chapter III in Barnsley (1993).

6.3.2 The Sim ulation

The IFS code needed to record a fern leaf is relatively concise, compared with 

methods such as the digital scanning technique (Peitgen et a/., 1992, p.258). The 

implementation of the code varies; here, two types of methods are presented: the 

deterministic and the random algorithms.

The IFS Code

The primary component in generating scenes with an Iterated Function System is 

the affine transformation, which is a rotation, translation, and scaling of the coordi­

nates of a point (x,y)  to a new position (xn,yn). The transformation is performed 

according to Equation 6.1, where the parameters a,b,c and d perform a rotation, 

and their magnitudes result in the scaling; and the parameters e and /  cause a 

linear translation of the point being operated upon (Stevens, 1989, p.385). Barnsley 

(1988) referred those parameters as IFS codes. The IFS codes used in this thesis 

are given in Table 6.1.

Table 6.1 also provides numbers p, associated with each transformations u>, for 

i = 1,2, ...,iV. Their values can be approximated (Barnsley, 1993),

where i = 1,2,..., N.  If, for some i , | det C,| = 0, then p, should be assigned a small

|de tC ,| |a,d, — 6,c,|
(6.4)
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a b c d e f P
Fern No.l (Peitgen e t  a l . ,  1992)

0.849 0.037 -0.037 0.849 0.075 0.183 0.85 T
0.197 -0.226 0.226 0.197 0.4 0.049 0.07 L

-0.15 0.283 0.26 0.237 0.575 -0.84 0.07 R
0.0 0.0 0.0 0.16 0.5 0.0 0.01 S

Fern No.2 (Barnsley, 1993)
0.0 0.0 0.0 0.16 0.0 0.0 0.01
0.85 0.04 -0.04 0.85 0.0 1.6 0.85
0.2 -0.26 0.23 0.22 0.0 1.6 0.07

-0.15 0.28 0.26 0.24 0.0 0.44 0.07
Tree No.l (Peitgen e t  a l . ,  1992)

0.195 -0.488 0.344 0.443 0.4431 0.2452 0.049
0.462 0.414 -0.252 0.361 0.2511 0.5692 0.6

-0.058 -0.07 0.453 -0.111 0.5976 0.0969 0.05
-0.035 0.07 -0.469 -0.022 0.4884 0.5069 0.01
-0.637 0.0 0.0 0.501 0.8562 0.2513 0.3

Tree No.2 (Barnsley, 1993)
0.0 0.0 0.0 0.5 0.0 0.0 0.05
0.1 0.0 0.0 0.1 0.0 0.2 0.4
0.42 -0.42 0.42 0.42 0.0 0.2 0.4

-0.42 0.42 -0.42 0.42 0.0 0.2 0.15

Table 6.1: IFS Codes of Some Plants.
The refined codes by Peitgen e t  a l .  are designed to work on the [0,1] x [0,1] plane. The four 
transformations, i.e., top, left, right and stem, are denoted by T, L, R and S, respectively. 
The original codes used by Barnsley (1993) are also given.

positive number, such as <j  — 0.001. Other situations should be treated empirically. 

The procedure of choosing the probabilities may be summarised by the formula 

(Peitgen e t  a l ., 1992),
max( cr, [ det Ct|)

P ‘ T ,k = i max(cr, IdetCjkl)’

where i = 1,2,..., N . The IFS code can be altered to display the same object. For 

example, the fern generated by the code of Peitgen et al. (1992) is confined to the 

range between real numbers 0.0 and 1.0; whilst that generated by Barnsley’s code 

(1993) has a range of between -100.0 and +200.0 (Stevens, 1989).

The associated probabilities, which obey Yl îLi Pi — 1, play an important role
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in the computation of images of the attractor of an IFS using the Random Iteration 

Algorithm; however, they play no role in the Deterministic Algorithm (Peitgen e/ «/., 

1992, p.328). More details are given in the following section.

The Algorithm s

There are two types of algorithms to generate a synthetic fern. The Deterministic 

Algorithm is based on the idea of directly computing a sequence of sets {An = 

Won(A)} starting from an initial set ,40 (Barnsley, 1993). The Random Iteration 

Algorithm is founded in ergodic theory and also called the “Chaos Game” (Stevens, 

1989; Peitgen et nl., 1992; Barnsley, 1993).

The D eterm inistic Algorithm

When using the deterministic method, one takes each point in the initial set 

and applies to it each of the affine transformations that make up the IFS code for 

the fern (Stevens, 1989, p.386). The new points are plotted, then the same process 

is applied again as many times as necessary to obtain a final result. However, no 

probability is involved in this process.

Barnsley (1993, p.85) defined the deterministic algorithm as follows. Let 

{A; wi, tc2, ■ ■ •, w/v} be a hyperbolic IFS. Choose a compact set A0 C r2. Then 

compute successively An = lFon(.4) according to,

A„+t =  (6.6)

for n = 1,2,3, • ■ Thus one constructs a sequence {.4n : n = 0,1,2,3 • • •} converging 

to the attractor of the IFS in the Hausdorff metric.
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The Random Iteration Algorithm

The computer programme for the random iteration algorithm is fairly straight­

forward (Stevens, 1989, p.394). The programme works by selecting one of the affine 

transformations at random with some probability that approximately represents 

the percentage of the picture that will be illustrated by that transformation, where 

the sum of the probabilities is equal to one. After having repeated the operation a 

certain number of times, one should have generated a fern on the computer monitor.

The following, is a formal definition of the random iteration algorithm given by 

Barnsley (1993, p.88). Let{A'; w w 2, ■ • ■ ,u>,v} be a hyperbolic IFS, where probability 

Pi > 0 has been assigned to (the affine transformation) ¡e, for * = 1,2,-**, jV, where 

£ ”_i pi = 1. Choose ,r0 € A' and then choose recursively, independently,

X n 6  { w i ( x n- i ) , 1 V 2 ( x n- i ) , '  •' , w j v ( x n- i ) } ,  (6.7)

for n =  1,2 and 3. where the probability of the event x n = Wi(xn- i)  is p,-. Thus 

construct a sequence {xn : n = 0,1,2,3, • • •} C X.

The Im plem entation

There are computer programs available for implementing the algorithms (Stevens, 

1989; Peitgen e t  a l . ,  1992; Barnsley, 1993, for example). Each has its own limitations 

as well as advantages in relation to the computer language or the displaying device 

used. Here, the IFS code and the pseudo codes found in Peitgen e t  a l .  (1992) are 

modified to generate the synhteic ferns; whilst the corresponding complete listing of 

the computer programme is given in Appendix S.
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T he D eterm in istic  Ite ra tio n  M odel

PARAMETER

• ¿V, user defined number of iterations.
• IFS,  the IFS code, which includes transformations, Wj, without prob­

ability p, where j  — 0,1,2 and 3.. Refer to Fable 6.1.

• z0, the initial set.

TRANSFORM (Sub-routine, to be called by MAIN)

• Start from level L
• Calculate new points z,+i = z* x w}. Refer to Equation 6.1

• L — L -  \

• IF L > 0

• TRANSFORM(xI+i, L)

MAIN (Main routine)

• TR A N SFO R M ^, ¿)

Figure 6.2: The Pseudo Code for Generating the Fern by Deterministic Algorithm. 
Modified from Peitgen et al. (1992, p.294).

The pseudo code for implementing the deterministic algorithm is given in Figure 

6.2. Firstly, we define the level of iteration, the IFS code of the fern and the initial 

set that must be a non-empty set. Then, the main routine (MAIN) is called, upon 

which the sub-routine (TRANSFORM) is called iteratively. The sub-routine needs 

two input parameters, that is, the z- or ¿/-coordinate (z,) and the level of iteration 

(£), which are supplied by the MAIN. It generates from the previous point the new 

points according to Equation 6.1. Meanwhile, the level of iteration is reduced by 

one. If the level of iteration is larger than zero, it will call upon itself once again. 

The repetition will continue for each point until the level reaches zero.

The resultant image was confined in [0,1] x [0,1] real plane, refer to refined IFS
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code in Table 6.1. The image can easily be displayed onto a graphic device using 

a variety of graphical display utilities such as gnuplot available on Unix. In other 

words, all it requires from the programme is to produce the data format recognisable 

to the graphic routine.

There is a serious problem associated with the use of the deterministic algorithm; 

that is, one has to be very careful about the range which the transformations might 

generate. Stevens (19S9) suggested that, in order to get a whole fern leaf, one has 

to specify the x coordinate to the range from —100 to +200, using the Fern No.2 

code in Table 6.1. On the other hand, there is no such problem when using the code 

given by Peitgen et al. (1992). Another drawback of the deterministic algorithm 

is the slowness of the drawing process for certain pictures; however, this is can 

be improved by using, for example, a recursive structure proposed by Peitgen et 

al. (1992). Furthermore, there is no simple way to determine a priori how many 

iterations will be needed to produce a picture of adequate quality. The user has to 

experiment with various combinations of parameters in order to obtain the desired 

image.

The Random Iteration M odel

The computer code for generating a fern using a random iteration algorithm is 

relatively simpler than that using a deterministic algorithm, refer to Figure 6.3. In 

the random model, the user has to supply the number of iterations, the IFS code 

with probability to represent each transformation, and the initial set which is a 

single point. Then one runs a random number generator to the probability of the 

run between 0.0 and 1.0. Although most generators give integral numbers, there
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PARAMETER

• L. user defined level of iteration.
• IF S ,  the IFS code, which includes transformation, wJ:s with proba­

bility pj, where j  = 0,1,2 and 3. Refer to Table 6.1.

• xq, the initial set.
• n, iteration indicator.
• p, probability given by a random number generator

MAIN

• FOR n < N  DO
• p, given by a random number generator

• IF p < p0 DO Xi+i = Xi x w0

• IF p > po DO x,-+i = Xi x wi

• IF p > (p0 + pi) FO Xi+i = Xi x w2

• IF p  > (po + pi + P2) DO *£»'+1 =  x i x 1C3

• n = n + 1

Figure 6.3: The Pseudo Code for Generating the Fern by Random Algorithm. 
Modified from Peitgen et al. (1992, p.394).

are a few that give real numbers exactly between 0.0 and 1.0, such as the linear 

congruential pseudo-random number generator r_ lc ra n s()  available on UNIX and 

used here. According to the probability, the corresponding transformation is chosen; 

hence, a new point is obtained. This “game” is repeated a pre-defined number of 

times and the final image is obtained.

Three-Dim ensional Images

Although the final image is displayed in two-dimensional space, it actually contains 

heights created as a result of the discretisation process. The continuous plane of 

1.0 x 1.0 is divided into 1024 pixels. Data points within a fixed range of a pixel
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are grouped and plotted at that specific position; that is, the number of visits is 

recorded as the height. Therefore, a three-dimensional image is constructed.

6.4 A nalyses

The fractal dimensions are estimated for the profiles ol the image, the outline of the 

fern and the three-dimensional display of the image, using the same box counting 

approach. The estimation of the profile fractal dimensions was detailed in Chapter 

Five which is based on the method of Chapter Four, as briefly reviewed here. In 

Chapter Four, rectangular boxes of size Sn = x ^-) are applied in order to 

cover a time series, where Sx is the length of ^-coordinate and ay is the standard 

deviation of the ¿/-coordinate, and n is the geometric scaling factor; then the number 

of boxes (Nn) needed to cover the time series is counted. The slope of the log-log 

plot of 1 / S n against Nn is the fractal dimension. In Chapter Five, profiles of the 

digital elevation model are extracted and followed by the application of the method 

used in Chapter Four. Since the spectral image of the fern is similar to the digital 

elevation model, the method used in Chapter Five is applicable in this chapter.

The estimation of the fern’s outline utilises the square box that covers the self­

similar horizontal coordinates; that is, the box size is Sn =  x ^ ) ,  where Sx and 

Sy are the lengths of the zy-coordinates and n is the geometric scaling factor. The 

box of size Sn is run across the image one length at a time; and the corresponding 

number (Nn) of boxes that include both the background and leafy areas is counted. 

The slope of the log-log plot of 1 / Sn against Nn is the fractal dimension.
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The fractal dimension of the three-dimensional image is estimated using the 

hyper cubes of Sn = x ^  x ^-) that cover the self-affine surface, where Sx 

and Sy are the lengths of the .ry-coordinates, a, is the standard deviation of the 

x-coordinate and n is the geometric scaling factor. The number of the hyper cubes 

of size S ,, that cover the image is counted as follows. 1'he hyper cube is moved 

along the .ry-coordinates one length at a time so the range of z  values in that area 

can be identified; then the corresponding box count (¿V„) is equal to the difference 

between the “ceiling” of the maximum z  value divided by size a ,  and the “floor” 

of of the minimum z  value divided by the size a z . Similarly to the above, the 

fractal dimension is equated to the slope of the log-log plot of l / 5 n against Nn. The 

complete computer programme of this section is fisted in Appendix T, while the 

results are given in the following section.

6.5 R esu lts

The estimated profile fractal dimensions of both the natural and synthetic ferns are 

presented here, followed by the results of the corresponding statistical tests. The 

fractal dimensions of the fern in higher dimensions are also given.

6.5.1 T he N atural Fern

Figure 6.4 is the normalised difference vegetation index image of the fern. The 

normalised difference vegetation index, ranging from -1.0 to 1.0, corresponds to the 

plant growth rigour. The highest values are found in the leaflets where most growth
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Figure 6.4: The NDV’I Image of the Natural Fern.
Brighter colour reflects higher growth rigour in the plant. Background occupies 
74.4% of total pixels.

activity takes place; and comparatively lower values are located in the main stem 

that is responsible for transporting nutrients and fluids to the leaflets. The leafy 

area occupies around 25.6% of the total pixels, while the rest is taken up by the 

grey-board with much lower reflectance than any part of the leaf.

Fractal Dim ensions

Figure 6.5 shows the profile fractal dimensions of the fern image and Table 6.2 gives 

statistics of the fractal dimensions derived. All the estimated fractal dimensions are 

meaningul as indicated by their corresponding correlation coefficients (r > 0.99). 

The fractal dimensions of the profiles in both directions appear higher in the middle, 

where they reach the maximum, than near the edge, which approach 1.0. The
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Figure 6.5: Fractal Dimensions of the Natural Fern.
The fractal dimensions are meaningful, indicated by the correlation coefficients.

normality tests indicate that the estimated fractal dimensions are not normally 

distributed in both directions (p = 0.00*). The subsequent two-sample Mann- 

Whitney U test shows that the difference of the distribution of the fractal dimensions

is significant (U = 5.8e5 and p — 0.00*).

Data n min max X std Skew hurt W c.s.l
NS
RN

1024 -3.248
-2.893

3.248
4.114

0.000
0.000

0.999
0.972

0.000
0.185

-0.044
0.272

0.988
0.988

0.7667
0.7760

H
V

1024 1.000
1.000

1.549
1.564

1.345
1.309

0.131
0.166

-1.100
-0.767

0.309
-0.721

0.854
0.852

0.0000*
0.0000*

Table 6.2: Statistics of Fractal Dimensions of the Natural Fern.
Statistics are given to fractal dimensions of horizontal (H) and vertical (V) profiles. 
“NS” is the normal scores and “RN” is the random numbers from iV(0.0,1.0). The 
Shapiro and VVilk’s normality test (VV) is performed at 5% significance level. If it is 
not normally distributed, it is marked by “ *
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6.5.2 Synthetic Ferns

Two types of synthtetic ferns are presented here. The first synthetic fern is generated 

by the deterministic algorithm, and the second one is created by the random iterated 

algorithm. Results of fractal dimension estimation are given.

Figure 6.6 shows the ferns generated by the deterministic and the random al­

gorithms. In the case of using the deterministic algorithm, transformations in the

Figure 6.6: Synthetic Ferns by the Deterministic and Random Algorithms.

IFS codes (Table 6.1) are used to generate new output points which then become 

input points. The transformations, that is, top, left, right, and stem, are applied in 

sequence. In other words, the image is generated by starting from an arbitrary point 

which is transformed according to the sequence of the IFS codes, then ending at the 

given level of iteration. The probability of using any one of the transformations is 

not considered. The resultant image is better produced if the starting point falls 

within the final image. However, the outline is more like a bracken than a fern.

Similarly to the deterministic fern, a random fern is generated using the trans­

formations in Table 6.1. However, the sequence of applying the transformations 

depends upon the associated probabilities. Starting from an artbitrary point that
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is preferably located within the finished image, the generation process stops at the 

given number of iterations. This is a more realistic simulation of a natural fern.

Fractal Dim ensions

Figure 6.7 shows the fractal dimensions of horizontal and vertical profiles of the 

synthetic ferns generated by the deterministic and random algorithms. Table 6.3 is

0 .« J  ...— ---------— -------------------------*---------------------------------------------------- ‘-------------------------------------------LJ-----1------------ ----------------------------------------
1024 768 5 12 256 o

S t e m - T i p

Figure 6.7: Fractal Dimensions of Synthetic Ferns.
Fractal dimensions are estimated for horizontal (H) and vertical (V) profiles form 
ferns by deterministic (Det) and random (Ran) iterated algorithms. The corre­
sponding correlation coefficients (r) are also given.

the summary of statistics and statistical tests of fractal dimensions. The estimated 

fractal dimensions are meaningful for deterministic and random ferns because of 

high values of correlation coefficients (r > 0.99). The distribution of the fractal 

dimensions is not normal for both directions of deterministic and random ferns.
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The average fractal dimensions of the horizontal profiles of deterministic and random 

ferns are 1.054 and 1.186. respectively. The difference of distribution of the fractal 

dimensions between the two types of ferns is significant (p = 0.00*). The difference of 

distribution of the fractal dimensions between both synthetic ferns is also significant 

(p = 0.00*) for the vertical profiles.

6.5.3 Com parisons

Data n min max X std Skew Kurt If' c.s.l
Det.H 1024 1.000 1.357 1.095 0.082 0.294 -1.026 o.sss 0.0000*
Det.V 1.000 1.395 1.054 0.082 1.276 0.449 0.688 0.0000*
Ran.H 1.000 1.520 1.304 0.106 -1.387 L.704 0.S51 0.0000*
Ran.V 1.000 1.606 1.186 0.213 0.402 -1.624 0.728 o o o o *

Table 6.3: Statistics of Fractal Dimensions of Synthetic Ferns.
The statistics are derived from the horizontal (H) and vertical (V) profiles of deter­
ministic (Det) and random (Ran) ferns. Normality test (W) is performed against 
5% significance level. If it is not normally distributed, it is marked by “ *

Tables 6.2 and 6.3 provide the results from the normality test. The estimated fractal 

dimensions from both the natural and synthetic ferns are not normally distributed. 

The distribution of the fractal dimensions can be further shown in the frequency 

distribution histogram in Figure 6.8, that has sixteen class intervals between 1.0 and 

1.6. For the horizontal profiles, low estimates with a distinct amount of background 

profiles are observed in the deterministic fern; whilst most estimates are higher 

than the mean fractal dimensions in the natural and random ferns. The mode of 

the fractal dimensions is higher in the natural fern them in the random fern. For 

the vertical profiles, a distinct portion of background profiles and a skewed and flat 

distribution of the fractal dimensions is observed for all the three ferns. The modes 

are higher than the means of the estimates for both the random and natural ferns.
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Figure 6.8: The Histogram of the Fern Fractal Dimensions.

Results of the two-sample tests on the fractal dimensions of synthetic and natural 

ferns are given in Table 6.4. The parametric two-sample t-test is used only for the 

test between the normal scores and random numbers, whereas the other tests employ 

the non-parametric two-sample Mann-Whitney U test. Comparisons of the fractal 

dimensions are conducted between profiles within the same fern, and between ferns

of the same direction of profiles.

Profile Fern Types 17-value Z-value P
NS-RN -0.003 (2046) 0.99794

Horizontal Natural 5.8e5 3.845 o . o o o o r
V. Deterministic 6.9e5 12.789 0 . 0 0 0 0 0 *

Vertical Random 6.6eo 10.394 0.00000*
Natural-Deterministic 9.6e5 32.991 0 . 0 0 0 0 0 *

Horizontal Natural-Random 6.9e5 12.177 0.00000*
Deterministic-Random 8.1e4 -33.235 0.00000*
Natural-Deterministic 9.2e5 30.661 0.00000*

Vertical Natural-Random 6.9e4 12.845 0.00000*
Deterministic-Random 3.9e5 -10.912 0.00000*

Table 6.4: Two-Sample Statistics Tests of Fractal Dimensions between Ferns. 
The difference is significant at 5% of significance level for all comparisons except the 
paired normal scores (NS) and random numbers (RN).

The comparison of fractal dimensions between profiles within the same fern is 

given in the second block of Table 6.4. It shows that the difference of the distribution 

of the fractal dimensions between profiles of the natural fern is significant statisti­
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cally (p = 0.00*); although the average fractal dimensions are quite similar, that is, 

1.345 and 1.309 for horizontal and vertical profiles, respectively (Table 6.2). Similar 

comparisons are conducted for the other two synthetic ferns. Again, the results 

show that the difference of distribution of the fractal dimensions between profiles 

within the deterministic fern is statistically significant (p. =  0.00*); although the 

means are relatively close, that is, 1.095 and 1.054, respectively, for horizontal and 

vertical profiles. Furthermore, the difference of distribution of the fractal dimen­

sions between profiles within the random fern is statistically significant (p = 0.00*); 

whereas the means are slightly different from each other, that is, 1.304 and 1.186 

for horizontal and vertical profiles, respectively.

Three different comparisons are performed within the same direction of either the 

horizontal or vertical profiles, that is, comparisons between natural and determin­

istic, between natural and random, and between deterministic and random ferns. 

However, none of the six combinations of tests shows any similarity for the spe­

cific comparison. All the differences of means under test are statistically significant

(p =  0.00*).

6.5.4 The Fractal D im ensions o f Other Features

Other applications of the box-counting method include the estimation of the fractal 

dimension from the outline of the fern and the shape of the fern in three dimensions. 

Figure 6.9 shows the fractal dimensions of the ferns’ shapes in two- and three- 

dimensional spaces. The fractal dimensions of the two-dimensional shape of ferns 

are very similar to each other between synthetic and natural ferns, whereas those of
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Figure 6.9: Log-Log Plots for the 2D Shape and the 3D Image of Ferns.

three-dimensional ferns vary to some extent. Nevertheless, all of their corresponding 

correlation coefficients are significant (r > 0.99).

6.6 C h a p te r  D iscussion an d  C onclusion

Although the vegetation index is usually utilised to relate vegetation parameters, 

this study focuses on the morphology of normalised difference vegetation index im­

ages. A normalised difference vegetation index image can be equated to a digital 

elevation model in that the normalised difference vegetation index values are anal­

ogous to the heights of a digital elevation model; and greater resemblance between 

them is found in terms of systems dynamics. Therefore, the fractal analysis for 

a digital elevation model can be easily applied to the analysis of the normalised 

difference vegetation index image. It has been proved that vegetation growth pa­

rameters can be related with the normalised difference vegetation index; that is, 

the normalised difference vegetation index is an indicator of plant systems dynam­

ics. Depending on the resolution of the spectrometer or scanner, each pixel on the 

normalised difference vegetation index image represents the collective dynamics of
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a certain number of sub-systems such as chlorophyll, carotene, and xanthophyll; 

similarly, each pixel on the digital elevation model represents the height formulated 

by various soil and rock types (Chapter Two). However, the spectral image is com­

prised of homogeneous background and heterogeneous leafy areas. Some interesting 

systems dynamics are revealed by the same approach applied to the digital elevation 

model.

There are two major findings that deserve special attention. The first is the 

confirmation of using the analytical approach to explore the dynamics of landforms 

in Chapter Five; and the second is the feasibility and future use of 1FS codes on 

modelling the spectral characteristics of plants. The difference in the composition 

of sub-systems is easily visualised by the spectral images (Figures 6.4 and 6.6) and 

clearly illustrated by the estimated fractal dimensions (Figure 6.5 and 6.7). While 

the fractal dimensions of the empty space approach 1.0, high fractal dimensions 

are found in the middle part of both the natural and synthetic ferns where more 

leaflets are concentrated. In other words, fractal dimensions reflect the dynamics 

of photosynthesis, or the systems dynamics in terms of the normalised difference 

vegetation index. No scientific article was found to describe a fern in this way, 

as far as the search result from the Bath Information Database Service (BIDS) 

is concerned. However, further work is needed to establish the link between the 

normalised difference vegetation index and the fractal dimension, hence the use of 

the fractal dimension as an indicator of vegetation growth.

The simulation method using the IFS code has shown its power in generating a 

natural object. The two-dimensional outline of a synthetic fern is very similar to 

that of a natural fern in terms of the fractal dimension; although the deterministic
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fern is visually more like a bracken which has triangular blades of bi- to tripinnate 

pinnules, and the random fern is like a Lady Fern which has blades of bi- to tripinnate 

leaves with alternate leaflets (Toman & Felix, 1990, pp.89 91). Whereas fractal

Geometry treats forms as relationships between parts rather than as areas in general 

(Campbell, 1996), various algorithms might contribute further to the difference in 

appearance. Alternative measures such as the "lacunarity can thus be used to 

distinguish the difference of “voidness” between them (Mandelbrot, 1983, Ch.34). 

Although it is a possible subject to pursue further, this chapter is more closely 

concerned about other aspects of using the If S code.

The fractal dimensions of the three-dimensional synthetic ferns are less close to 

that of the natural fern. One of the possible problems might be the discretisation 

process that generates the image. In the domain of real numbers, the distance 

between nearby points could be so indefinitely far that each point corresponds to 

only one pair of coordinates; that is, a virtually flat leaf image of uniform height and 

indefinite details is almost certain. Unfortunately, techniques used to produce the 

three-dimensional image lead to discretisation of data. The discretisation process 

affects the computation of fractal dimensions in two opposite ways: it enables the 

calculation of the fractal dimension for a three-dimensional image at the expense of 

the accuracy of presenting the data. In other words, the fractal dimension cannot 

be calculated from a totally flat image; and some points might be shifted to the 

coordinates to which they do not belong. This effect seemingly contributes to the 

low fractal estimate of the deterministic fern.

The diversity of the sub-systems is modelled closely by the algorithms. Although 

the seeming randomness seen in the distribution of the fractal dimensions derived
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from the one-dimensional profiles could not be interpreted easily, it is evident that 

the fractal dimension of the empty background is distinctly different from that of 

other areas. In conclusion, the use of fractal dimensions derived from the approach 

designed in this thesis has successfully identified the difference of dynamics between 

the homogeneous and the heterogeneous sub-systems.



Part III

Discussion and Conclusion



Chapter 7

Condensed Discussion

The scientist does not study nature because it is useful; he studies it 

because he delights in it, and he delights in it because it is beautiful. If 

nature were not beautiful, it would not be worth knowing, and if nature 

were not worth knowing, life would not be worth living. Henri Poincare, 

circa 1900s.

In Chaos and Fractals (Peitgen et al., 1992, p . 15).

229
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7.1 In tro d u c tio n

This chapter presents a discussion of wider aspects, with the focus on the results 

obtained in the previous three chapters. It is generally accepted that the con­

temporary methodology in science is rooted in the inductive-deductive procedure 

attributed as far back as to the Greek philosopher Aristotle (384-322 BC.) and 

the hypotheses-experiments method of the French philosopher and mathematician 

Rene Descartes (1596-1650); and fortified with the falsificationism (TSP, 1996) of 

the Austrian philosopher of science Karl Popper (1902-1994). This thesis utilises 

this possibly standard approach in science to study three natural systems and their 

corresponding mathematical models (Figure 2.2). Those natural systems were not 

arbitrarily chosen but carefully selected according to the three types of systems dy­

namics revealed in the Mandelbrot set (Chapter Two). Subsequent analyses utilise 

the conventional methods, followed by the box-counting method, that is imple­

mented for each sub-system within the system (Chapter Three), where a sub-system 

can be a section of the sea wave profile (Chapter Four) or a profile of the digital 

elevation model (Chapter Five) and the spectral image of a fern (Chapter Six). The 

results obtained here have arguably proven that the fractal dimensions derived by 

this approach can be used to interpret various types of systems dynamics reasonably 

well. The following literature provides a furhter insight into the work accomplished

in this thesis.



CHAPTER 7. CONDENSED DISCUSSION 231

7.2 R en d e red  R esu lts

This chapter firstly re-organises the results from the previous three chapters, al­

though the study of those three natural systems is united under the single box­

counting method that is applied to the derivation of fractal dimensions for all the 

systems. Whilst such an approach would not have been new to Renaissance Man 

(“the complete human being") between the fourteenth and seventeenth centuries 

(Hellemans k  Bunch, 198S), it is certainly a unfamiliar scientific methodology char­

acterised by the Linnaean classification scheme devised by the Swedish botanist 

Carolus Linnaeus (1707-1778) (TSP, 1996), until the development of, for example, 

Fractal Geometry (Mandelbrot, 1983). Although three systems were presented in 

three chapters, it would be more appropriate to summarise the results for further 

discussion. Figure 7.1 shows the summary of fractal dimensions obtained for waves, 

landforms and plants in Chapters Four, five and Six, respectively; whilst Tables 

7.1 and 7.2 extract some essentials of the basic statistics and statistical test results, 

respectively.

F r a c t a l  d i m e n s i o n s  OF SEA w a v e  PROFILES. The estimated fractal dimen­

sions of each of 27 records are meaningful (r > 0.99) and relatively consistent for 

both natural and synhteic waves (Figure 4.16); whereas the fractal dimension of the 

overall wave is not statistically meaningful for the natural (r =  0.286) and synthetic 

(r = 0.315) waves. The average heights and standard deviations are very different 

between both waves (Table 4.5); however, the difference of mean fractal dimensions is 

arguably significant, depending on the statistical residts referred. The two-sample 

¿-test shows that the difference is not significant, although the Mann-Whitney U 

concludes otherwise (Table 4.5).
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Figure 7.1: Summarised Fractal Dimensions ol the Synthetic and Natural Systems. 
The fractal dimensions (FD) and their corresponding correlation coefficients (r) are 
summarised for the sea wave profiles, where the wave profile is modelled by multi­
frequency sinusoids and each record is of 1024 seconds; digital elevation models, 
where the synthetic landforms of various Hurst exponents are generated by the mid­
point displacement method; and fern images, where the synthetic ferns are produced 
using the IFS code implemented with the deterministic and random algorithms.
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Data n X std Skew Kurt IT c.s.l.
N.Scores 27 0.000 0.972 0.000 -0.583 0.996 0.9999
R.Number 0.095 1.141 -0.006 -0.442 0.990 0.9929
Real Waves 1.679 0.049 -2.382 5.002 0.653 0.0000*
Syn. 1.662 0.016 0.240 -1.121 0.927 0.0644
N.Scores 1024 0.000 0.999 0.000 -0.044 0.988 0.7667
R.Number 0.000 0.972 0.185 0.272 0.988 0.7760
Real. 11 DEMs 1.226 0.027 5.294 85.23 0.S27 0.0000*
Real.V 1.243 0.053 0.993 0.185 0.886 0.0000*
Syn.H 1.296 0.041 4.037 55.060 0.862 0.0000*
Syn.V 1.248 0.048 1.441 8.987 0.917 0.0000*
Real.H Ferns 1.345 0.131 -1.100 0.309 0.854 0.0000*
Real.V 1.309 0.166 -0.767 -0.721 0.852 0.0000*
Syn.H 1.304 0.106 -1.387 1.704 0.851 o o o *

Syn.V 1.186 0.213 0.402 -1.624 0.728 0.0000*

Table 7.1: Basic Statistics and Results of the Normality Test.
“N.Scores” is the normal scores. “R.Number” is the random numbers. For the nat­
ural (Real) and synthetic (Syn) systems, the latitudinal profiles of a digital elevation 
model (DEM)) and the horizontal profiles of a fern are indicated as “H”; and the 
longitudinal and vertical profiles are marked with “V ’. The Shapiro and Wilk’s IT 
normality test is conducted at 5% significance level.

While a comparative study using the fractal dimensions derived from different 

sources can be restricted by the estimation and scales employed (Chapter Three), 

making comparisons within a system is totally justifiable. The fractal method re­

veals that there exists a similarity in systems dynamics between the natural and 

synthetic waves. The natural wave profile is arguably a homogeneous system with 

complex sub-systems, as described in Chapter Two. The similar fractal dimensions 

derived from sections of the system have provided positive evidence to support that 

argument. A simple mathematical model of a natural wave also reaches the same 

conclusion, although a totally different distribution of data is observed. Such a 

high degree of agreement between the natural and synthetic wave systems confirms 

that the measurement of the fractal dimension is a reasonable quantitative indi­

cator of systems dynamics. Meanwhile, the conventional methods show that the 

difference between systems is significant; for example, the spectral analysis revealed
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Data n U — value Z  — value P
Artificial 27 -0.330 0.7427

Waves 589 0.0001*
1.677 (t-test) 0.0995

Artificial 1024 -0.003 0.9979
DEM.Latitudal 4.3e4 -35.951 0.0000*

DEM.Longitudal 4.Se5 -3.628 0.0000*
Fern. Horizontal 6.9e5 12.177 0.0000*

Fern. Vertical 6.9e4 12.845 0.0003*

Data n Me.R Me.S < Me.R < Me.S c.s.l.
Artificial 27 0.000 -0.97 12 14 0.7853

Waves 1.321 1.387 25 0 0.0000*
Artificial 1024 0.000 -0.019 508 515 0.7909

DEM.Latitudal 1.775 1.749 380 634 0.0000*
DEM.Longitudal 1.771 1.813 735 287 0.0000*
Fern. Horizontal 1.626 0.000 224 804 0.0000*

Fern.Vertical 1.607 1.666 649 379 0.0000*

Table 7.2: Summary of Two-Sample Tests of Fractal Dimensions. 
Two-sample Mann-Whitney U and median (Me) tests are conducted for the fractal 
dimensions derived from the real (R) and synthetic (S) sea waves, landforms (DEM), 
ferns, and the artificial data that include normal scores and random numbers. All 
tests are conducted at 5% significance level.

that there is no single dominant component frequency in the natural wave, unlike in 

the synthetic wave. The fractal method has apparently explored one of the aspects 

unrevealed by the conventional methods. This approach is extended to examine the 

heterogeneous systems such as landforms.

F r a c t a l  d i m e n s i o n s  OF DEM PROFILES. The mean fractal dimensions of 

latitudinal and longitudinal profiles of the digital elevation model of Shei-pa Na­

tional Park are similar (Table 5.1); however, the fractal dimensions are significantly 

different in terms of distribution (Table 5.4). The fractal dimensions estimated from 

synthetic DEMs of various Hurst (//)  exponents generally agree with the theoretical 

values (Figure 5.12 and Table 5.3); furthermore, the difference of the fractal dimen­

sions between profiles of different directions is significant for each synthetic DEM 

( I able 5.1). The particular DEM of H = 0.7 was used in further comparison with
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the natural landforrn. because its estimated dimension fits best with the theoretical 

value and appears similar to that of the real landform (Chapter Five).

The measurement of fractal dimension has further supported the observation on 

landform as described in Chapter Two. Unlike a wave that has similar sub-systems 

(sections), the complexity of a landform system can be shown by the different fractal 

dimensions derived from the sub-systems or profiles; similarly, the complexity of 

an individual profile is created by the mostly unknown sub-systems within that 

profile, each having maintained its own characteristics. Since possible discrepency 

in comparative studies using fractal dimensions is usually caused by the different 

methods and scales employed (Chapter Three), the approach used here provides a 

simple way of exploring the complexity of lanclforms. In terms of digital images, 

a spectral image is similar to a digital elevation model in many ways; the only 

difference is that a spectral image contains information of inert or homogeneous as 

well as leafy or heterogeneous areas. Therefore, the methods used to analyse the 

landform are transferable to such an image.

F r a c ta l  d i m e n s i o n s  o f  t h e  NDVI i m a g e  o f  p l a n t s . For a natural fern, 

the mean fractal dimensions of horizontal and vertical profiles are similar graphically 

(Figure 6.5) and different statistically (Table 6.4); futhermore, the distribution pat­

terns between profiles are also significantly different (Table 6.4). For the synthetic 

ferns, the mean fractal dimensions as well as the distribution of the fractal dimen­

sions between profiles are significantly different (Tables 6.3 and 6.4). In general, the 

distribution of the fractal dimensions of different profiles is smoother in the natural 

than in the synthetic ferns.
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The approach for landforms has produced successful comparisons between the 

natural and simulated ferns; that is, the measurement of the fractal dimension is 

especially useful in distinguishing the inert from leafy areas. The distribution of the 

fractal dimensions of profiles leads to the conclusion that the IFS code is not used to 

simulate spectral characteristics; whereas the fractal dimensions of the shape reveals 

that such a code is aimed at modelling the fern's outline (Figure 6.9).

In summary, the results obtained in this thesis have provided many forms of 

support for the use of the fractal dimension as an indicator and a tool for comparing 

systems dynamics between natural systems and their corresponding mathematical 

models. The following section focuses on the discussion based on the current results 

and the results reported in other work.

7.3 S um m arised  D iscussion

While it seems rather straightforward that Fractal Geometry is applicable to 

analysing irregular objects, there are some essential issues regarding the applica­

tion of the fractal concept. These issues are mainly concerned with whether the 

application of fractal analysis requires an object to be fractal; whether it is nec­

essary to identify noise prior the estimation of fractal dimension; and whether the 

same estimates represent objects of the same complexity.

The first issue is concerning the requirement of an object’s being fractal for the 

estimation of fractal dimension, that is not tautologically trivial but logically true 

by definition. The classic definition of a “fractal” is given by Mandelbrot (1983) as
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“a set for which the Hausdorff-Bescovitch dimension strictly exceeds the topological 

dimensions.” The structure of fractals, as Feder (19S8) defined it, is “a shape 

made of parts that are similar to the whole in some way.” With regard to the 

process that creates such structure, The Hutchinson Softback Encyclopedia (TSP, 

1996), refers a fractal to "an irregular shape or surface produced by a procedure 

of repeated subdivision.” The quantification of such an object using fractional 

dimension is totally new as far as the Euclidean geometry is concerned. For example, 

a Cantor set is a fractal because its fractal dimension is D = log 2 / log 3 ~  0.6309, 

while its Euclidean dimension is De — 1 an(l topological dimension is D j  = 0; 

the original Koch curve is a fractal with D =  log 4 / log 3 ~  1.2618 > 1, while 

DE — 2 and D j  =  1; and the trail of Brownian motion is a fractal with D = 2 and 

Dt = 1. Therefore, the fractal dimension may be an integer, that is, not greater 

than De but strictly greater than D j  (Mandelbrot, 1983, p. 15; Chs. 6, 8 & 25). 

Euclidean objects such as straight lines, rectangles and cubes are thus not fractals 

by definition, although the dimension of Euclidean objects is calculable with the 

estimation method used in fractal science. In other words, the fractal dimensions 

can be used to identify fractals from Euclidean objects.

The second issue concerns whether it is necessary to identify noise or randomness 

from a system before the calculation of the fractal dimension commences. In the 

light of Chaos Theory and Fractal Geometry, the quantitative study of time series is 

mainly characterised by the calculation of Lyapunov exponents and the estimation 

of fractal dimensions from the reconstructed attractor (Brown et al., 1991; Rowlands 

& Sprott, 1992; Zeng et al., 1992; Mukesh, 1993; Bergmasco et al., 1995; Murphy 

et al., 1996; Chandra, 1997; Zhang, 1997). Chaotic systems have the appearance
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of unpredictability but are sensitive to the initial condition while determined by 

precise deterministic laws (Crilly et a l 1991); whilst the Lyapunov exponent is 

used to characterise the exponential divergence of neighbouring trajectories induced 

by the system’s sensitivity of initial conditions (Mullin. 1993b, p.42). In brief, the 

sum of all the exponents will be negative if there is an attractor and there will be 

at least one positive exponent if the attractor is strange; whereas the geometrical 

characterisation of a reconstructed attractor is to calculate its fractal dimension, 

which measures the self-similarity and self-affinity of a system that is implied by the 

embedded deterministic laws. However, the attractor might resemble that of noisy 

data, Malinetskii et al. (1993) warned; and the Lyapunov exponent and the fractal 

dimension are inseparable and always used together to assure that the use of the 

latter is valid following the calculation of the former (Brown et al., 1991; Prichard & 

Price, 1992; Rowlands & Sprott, 1992; Mukesh, 1993; Wagner et al., 1995; Murphy 

et al., 1996). Indeed, the use of the fractal dimension as an indicator of chaos is 

widely suggested; for example, it is quite common to have statements such as “a 

low and fractal dimension shows chaotic dynamics [of atmospheric pollen counts]” 

(Bianchi et al., 1992) or “the fractal dimension of the attractor...[indicates] chaotic 

behavior [in off-Bragg photorefractive four-wave mixing time series]” (Shaw, 1993). 

It is also true that noisy and chaotic signals in time series could be separated by the 

combined use of Lyapunov exponents and fractal dimensions (Bianchi et al., 1992; 

Bauer et al., 1993; Shaw, 1993; Serio, 1994; Arizmendi et al., 1995; Gopinathan, 

1997). In general, the fractal dimension is popularly used to characterise the a t­

tractor which represents the characteristics of chaotic systems such as a time series. 

However, such an estimation is unlikely to be applicable to structures embedded in 

higher dimensions, unless they can be expressed in terms of time series.
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The methods for estimating fractal dimensions vary greatly according to the 

subjects under study. The researchers on time series try to justify the view that the 

use of fractal dimension should follow the identification of chaos by the calculation 

of Lyapunov exponents and noise is either un-attended or "corrected’. On the 

other hand, others would just use fractal dimension to identify randomness; for 

example, De Vries et al. (1994) found that the a  exponent is 0.45 for the model of 

river network of D — 1.8, using the relationship of a = 1 — 1 /  D, where a  is the 

measure of the integrated mean annual discharge and D is the topological dimension. 

Furthermore. De Vries et al. (1994) also obtained an exponent of 1/2 for the random 

model, implying that a random river network is plane-filling and has dimension of 

2.0. Although such a river network means an unrealistic surface covered with a layer 

of water, the measure of fractal dimension was found to reflect randomness.

Randomness actually plays an important role in creating deterministic and/or 

irregular shapes (Peitgen et al., 1992, Chs.6 &: 9). Barnsley (1988; 1993) used the 

“chaos game” to generate life-like fern leaves as well as self-similar or exact fractal 

objects such as the Sierpinski gasket. The chaos game works because every point 

it produces falls in the attractor, i.e., the fern or the gasket (Peitgen et al., 1992, 

p.305). Since there exists the invariant measure in the IFS transformations (Peitgen 

et al., 1992, p.330), it is absolutely possible to quantify the object by the measure of 

fractal dimension (Peitgen et al., 1992, p.469). Furthermore, irregular shapes rang­

ing from the fragmentation of atomic nuclei to the formation of clusters of galaxies 

can be simulated by percolation models (Lidar et al., 1997; Jan &; Stauffer, 1998), 

based on the fractional Brownian motion, the generalisation of Brownian motion 

(Peitgen et al., 1992; Stutzki et al., 1998, p.458). In other words, such systems
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possess the properties decipherable by means of approximating Brownian motion of 

particles, which underlines the scaling laws from which fractal dimension is derived 

(Peitgen et al., 1992, p.458). Indeed, Sommerer (1994) has proved that there is a 

firm quantitative connection between the dimension of an experimentally observed 

fractal spatial pattern and the process producing it. In this thesis, randomness is 

actually utilised to generate landforms and ferns.

The third issue is about whether the same fractal dimension represents objects 

of the same complexity (Miissigmann, 1992). It is quite possible that objects of 

different textures would yield similar fractal dimensions. This was observed by 

Mandelbrot (1983, Chs. 34 k  35), who proposed an alternative measure called 

“lacunarity'’, which is from lacuna, Latin for gap. Lacunarity measures difference in 

texture in terms of gap composition (Allain k  Cloitre, 1991). Since it was designed 

for spatial phenomena, it is unlikely to be applicable to time series analysis without 

the time series being transformed into phase portraits; this might introduce further 

complication through the transformation process (Heng et al., 1996; Shirer et al., 

1997). Comparison of objects with the same fractal dimension is more feasible in 

theory than in reality (Mandelbrot, 1983, Ch. 34); while this is an area worthy of 

future research.

Having discerned the three issues regarding the application of the fractal concept, 

this chapter continues on the major discussion in the following three sub-sections. 

The immediate sub-section illustrates issues on the fractal characterisations of the 

natural systems, and includes the discussion on the technical consideration of using 

estimation methods, which leads to the exploration of multi-fractals. It is followed 

by the discussion on the unique approach of this thesis, that enables comparisons
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of sub-systems within a system and presents a different way of illustrating multi- 

fractality from other existing methods, f  he last sub-section is the main discussion 

based on the comparison with published work.

7.3.1 Fractal Characterisation o f N ature

Many mathematical structures such as the Mandelbrot set are self-similar fractals, 

that are of geometric invariance under certain transformations (Mandelbrot, 1983). 

In other words, magnified subsets of an object are identical to the whole and to 

each other (Mandelbrot, 1988, p.22). Beyond the mathematical structures, most 

geographic phenomena behave like fractals only statistically, hence are called the 

self-affine fractals (Mandelbrot, 1983). In contrast to self-similar fractals, self-affine 

fractals are anisotropic, thus appear to be the same if the length along different 

directions is scaled down or up by various factors (Voss, 1985b; Mandelbrot, 1986).

The fractal study of geographical features includes the measuring of linear fea­

tures (Mandelbrot, 1977; Goodchild, 1980; Hjelmfelt, 198S; La Barbera k  Rosso, 

1989; Nikora, 1991; Breyer k  Snow, 1992, for example); describing, characteris­

ing and delineating landforms (Fox k  Hayes, 1985; Roy et al., 1987; Klinenberg, 

1988; Huang k  Turcotte, 1989; Piech k  Piech, 1990; Xia, 1993, for example); 

and simulating realistic-looking terrains (Fournier et al., 1982c; Goodchild, 1982; 

Voss, 1985b; Miller, 1986; Goodchild k  Mark, 1987; Klinenberg, 1988; Mandelbrot, 

1988; Voss, 1988; Mareschal, 1989; Clarke, 1993, for example). The subjects under 

study are mostly either linear features including coastlines, shorelines, river chan­

nels, boundaries of drainage basins and terrain profiles (Mandelbrot, 1967; Kent k
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Wong, 1982; Qiu, 1988; Phillips, 1986; Culling & Datko, 1987; La Barbera k  Rosso, 

1989; Phillips, 1989; Robert k  Roy, 1990; Philippe, 1993; Seyb, 1994, for example); 

or the areal features such as topographic surfaces or sea floors (Gooclchild, 1982; 

Mark k  Aronson, 1984; Brown k  Scholz, 1985; Power et nl., 1987; Klinenberg, 1988; 

Robert, 1988; Andrle k  Abrahams, 1989; Gilbert, 1989; Huang k  Turcotte, 1989; 

Norton k  Sorenson, 1989; Milne, 1990; Rex k  Malason, 1990; Turner, 1990; Chase, 

1992; Klinkenberg, 1992; Burrough, 1993; Olsen et at., 1993; Xia, 1993, for instance). 

Although some geographic features do behave as fractals at all scales, these features 

are the exception rather than the norm (Gao k  Xia, 1996). Furthermore, it is more 

likely that fractals occur for certain types of features, along certain directions or at 

limited scales (Bradbury et al., 1984; Mark k  Aronson, 1984; Goodchild k  Mark, 

1987; Xia, 1993).

The fractal characterisation of such objects usually utilises the measure of the 

fractal dimension. A number of methods have been proposed to determine the fractal 

dimension of linear and areal features, as shown in lables 3.1 and 3.2. The statisti­

cal regression model is applied in most methods to the log-log plots, first, proposed 

in conjunction with the divider method for complex curves by Richardson (1961); 

although Leohle k  Li (1996) argued that approaches using regression models to esti­

mate fractal dimensions of spatial patterns are statistically invalid. The advantages 

and disadvantages of various methods are discussed below; where the central issue 

is on the scales of estimation, that lead to the exploration of multi-fractals.
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The Estim ation of Fractal Dim ensions

Central to the understanding of fractals is the property of scale independence, which 

can be quantified by the measurement of fractal dimension, a real number that 

measures the degree of an entity's irregularity (Gao k  Xia, 1996). A popular method 

for determining the fractal dimension of the linear features is the divider method, 

employed by Mandelbrot (1967) to measure the dimension of the British coastline. 

In this method, a table is built up on the relationship between the scales of the 

divider and the corresponded counts; then, a statistical regression model is used to 

derive the fractal dimension from the slope of the Richardson or log-log plot. Other 

methods for areal or higher dimensional features were founded upon Richardson’s 

method; that is, the use of the regression model on the log-log plot is basically 

the same. Here, the fundamental problems regarding the derivation of the fractal 

dimension are closely related with the remainder length and scales used to construct 

the log-log plot and the linearity of the plot.

The divider method involves measuring the length of a curve using a ruler or 

divider of variable lengths decreasing geometrically. A common problem with the 

divider method is that the results are sensitive to the treatment of the remainder 

length (Aviles et al., 1987; Klinkenberg k  Goodchild, 1992; Andrle, 1992). Whilst 

Andrle (1992) and Klinkenberg (1994) provided some in-depth discussions on the 

divider method, Beauvais k  Montgomery (1996) reported three ways proposed by 

Aviles et al. (1987) to treat the remainder problem, that is, add the remainder length 

to the estimated length of the curve; neglect the remainder length; and round the 

counted steps to the nearest whole number. The remainder problem is nevertheless 

common to other methods, including the box-counting method. The most viable
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solution, as seen here, is to collect the sample of suitable length.

The second concern is the scale problem, more significant in experimental mea­

surements than in theoretical objects. For a theoretically generated structure, there 

is virtually no limitation on the range of scale. For naturally occurring objects, the 

divider method applies only over a limited range of scales, and misapplication can 

lead to inconsistent results (Goodchild, 1980; Beauvais & Montgomery, 1996). The 

plateau at extreme resolutions in the log-log plot is inevitable (Peitgen et al., 1992, 

p.722). The log-log plots also can exhibit deviations from simple power law scaling, 

as revealed by systematic curvature of the structure of the standard residuals (An- 

drle & Abrahams, 1989; Andrle, 1992; Klinkenberg & Goodchild, 1992). Therefore, 

the final concern of deriving the fractal dimensions is on the linearity of the plot.

The linearity of the log-log plot could be examined by many ways. For example, 

whether the fractal dimension is scale-independent can be tested using the method 

of Andrle (1992), that examines the curvature in the log-log plots for deviation 

from strict self-similarity using the standardised residuals from least scpiares lin­

ear regression model (Andrle & Abrahams, 1989; Beauvais & Montgomery, 1996). 

In other words, if there is no structure to the regression residuals, then a single 

fractal dimension is estimated using least squares linear regression of data between 

the smaller length scale cut-off and the upper limit; whereas the plots exhibiting 

systematic structure to regression residuals are examined for distinct linear trends 

and new regressions are performed. The identification of multi-linearity leads to the 

distinguishing of mono- and multi-fractals, especially in geomorphology.
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Mono- and M ulti-fractals

In order to accomplish a perfect fit between the fractal model and the real terrain 

data, two line segments (Culling & Datko, 1987) or even more lines (Mark & Aron­

son, 1984; Norton & Sorenson, 1989) are usually required in the log-log plot. These 

phenomena are thus multi-fractals, although the derivation of the fractal dimen­

sions is different from the formal definition of multi-fractal dimensions as given in 

Appendix D. For example, Sengupta et al. (1990) reported on cumulus cloud scales 

and processes that the break in two power laws is at the size where clouds begin 

to modify their environment; whereas Packepsky (1996) also found two distinct in­

tervals of fractal dimensions in the range of soil pore radii from 4 nm to 1 /cm. 

Changing the scale of observation also enables in identifying multiple segments in 

the log-log plots. Campbell & Shepard (1996) measured the lava surface roughness 

using radar observations at 5.7, 24 and 68 cm ^C, L and P band) wavelengths; and 

they concluded that the roughness at the two large scales is well described by a 

single fractal dimension, but the texture at very small scale is not. Chan & Page 

(1997) captured boundary images at a range of magnification and found that the 

estimated fractal dimensions vary with magnifications.

Multifractal terrains may be attributed to the processes responsible for the for­

mation of the landscape (Kent &; Wong, 1982). For example, Armstrong (1986) 

found that the fractal dimension in the range 1-10 cm represented animal-treading 

effects while those over the range 10-100 cm were caused by geomorphological effects; 

and Chase (1992) speculated that the evolution of a landscape at different stages 

or the changes in climate and tectonic activities were the causes of multifractal to­

pography. In addition, the changed relative importance of diffusional and erosional



CHAPTER 7. CONDENSED DISCUSSION 246

processes shaping the landscape may also facilitate the formation of mnltifractal 

landforms (Gao & Xia, 1996).

Multifractal geographic surfaces are actually much more common than their 

fractal counterparts (Mark & Aronson, 1984; Chase, 1992). Considering that most 

geographic entities are statistical fractals, many of them are multifractal and their 

fractal nature is scale dependent (Gao & Xia, 1996). The multifractal nature of 

geographic entities is not limited to topographic surfaces alone. Many linear features 

such as channel networks are multifractals as well (Burrough, 1981; Kent & Wong, 

1982; Tarboton et al., 1988; Elliot, 1989; Snow, 1989). Whereas some features are 

mono-fractals or multi-fractals, some others are not fractals at all, in terms of being 

scalable at all scales (Klinenberg, 1988, for example). The concept of multi-fractal 

is used to model landforms quite successfully and efforts have been made to explain 

the reasons for multi-fractal geographic phenomena and the significance of scaling 

(Gao & Xia, 1996).

According to Berntson & Stoll (1997), methods of estimating the fractal di­

mension have often been applied in an uncritical manner, “violating assumptions 

about the nature of fractal structure. ’ The most common error involves ignoring 

the fact that ideal, i.e., indefinitely nested, fractal structures exhibit self-similarity 

over any range of scales; whereas the real world structures exhibit self-similarity 

only over a finite range of scales. Using the multi-scaling idea of Coniglio & Zan- 

netti (1989a; 1989b), Mann & Jan (1991) calculated the fractal dimension of the 

percolation clusters from the density profile and reported that they did not find 

any evidence of multifractal or multi-scaling behaviour; however, other studies on 

percolation (Loehle &: Li, 1996; Bershadskii, 1997) using the similar method (Na-
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gatani & Stanley, 1991) reached the opposite conclusion. Whilst researchers such as 

Claps k  Oliveto (1996. p.3123) simply regarded the multifractal phenomena as self- 

affine objects which present ‘‘self-similar behavior only in a defined range of scales”; 

Berntson k  Stoll (1997) devised a new technique, which utilises a combination of 

curve fitting and tests of curvilinearity of residuals to identify the largest range of 

contiguous scales that exhibit statistical self-similarity.

The multi-fractality explained above is totally different from the formal definition 

of the multi-fractal dimensions, as given in Appendix D. Since ‘‘the idea of self­

similarity is readily extended from [mono-fractal] sets to [multi-fractal] measure” 

(Evertsz k  Mandelbrot, 1992), the calculation of the multi-fractal dimensions, based 

on the identical estimation method, also suffers from the same scale problem stated 

above. Researchers on fractals are usually interested in comparing the estimated 

fractal dimensions between systems, hence, encountered with the problems on the 

methods and scales used, as described earlier. An alternative is to localise the sub­

system dynamics within a system so that comparisons can be made with the identical 

method and scales between the sub-systems within the system. The complexity 

within the system can therefore be understood, provided that the linearity in the 

log-log plots is statistically significant.

7.3.2 T he Unique Contribution o f This Thesis

The above observation leads to the development of the approach of this thesis, that is 

to calculate the fractal dimension of sub-systems using box-counting method (Chap­

ter Three). This approach is unique in three aspects; the approach utilises the basic



CHAPTER 7. CONDENSED DISCUSSION 248

estimation method of the mono-fractal dimension; the calculation of the fractal di­

mensions from sub-systems enables the comparison of systems dynamics within a 

system; and the box-counting method is applicable to objects embedded in higher 

dimensional systems.

The use of the monofractal method is fundamental, as long as there exists a single 

line segment and its linearity is statistically significant in the log-log plot. The con­

cern over multi-fractality arises from either the existence of multiple line segments 

in the log-log plots or the algorithms (Appendix D), that might be questionable 

if there are multiple segments, because “the program [for the mono-fractals]...has 

been carried out and runs (sic) under the theme multifractals" (Peitgen et al., 1992, 

p.216). With an alternative implementation approach, the complexity of a system 

can be shown using the basic estimation method.

The fractal dimensions estimated from sub-systems can reflect the systems dy­

namics within a system better than the more common single measurement approach; 

that is, the sub-systems dynamics can be physically located within the system and 

the comparison between sub-systems dynamics is under the identical method and 

scales. In other words, the sub-systems and their dynamics can be clearly located 

in the wave profiles, digital elevation models and the plant images; and subsequent 

comparisons can be made with the identical criteria. This approach as well as other 

methods is subject to the linearity of the log-log plots, quantifiable by the correlation 

coefficients of the linear regression model; however, the relatively high correlation 

coefficients indicate that the linearity is significant. Since the data selected are of 

various dimensions, a feasible estimation method has to be found.
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The box-counting method is subsequently chosen, because it is more feasible than 

other methods in deriving fractal dimensions from systems of higher dimensions. In 

other words, the counting unit can be easily changed to any dimensions. Since 

temporal, spatial and tempospatial data may be collected on the same study area, 

the use of the box-counting method will minimise the inherited difference between 

methods and allow meaningful comparisons to be made.

Therefore, the contribution of this thesis is twofolds: the methodology and the 

results. The advantages of using this approach have been illustrated in Chapters 

Two and Three and above. Whilst a moderate discussion on the findings from the 

sea wave profiles, digital elevation models and plant images was given respectively in 

Chapters Four, Five and Six; the major discussion is given in the following section.

7.3.3 Com parisons w ith Other R esults

This section compares the current findings with the results of others. The basic 

requirements for making a meaningful comparison is explained in Chapter Three; 

that is, the comparison must be based on the identical method and the range of 

scales. Whilst relatively few examples are available for perfect comparison under 

such restraints, comparisons on a loose basis are nevertheless valuable.

The following three sub-sections contribute to the comparisons with others. Each 

section starts with a discussion of broader areas such as time series, landforms and 

plants; followed by a discussion on similar subjects such as waves, digital elevation 

models and NDVI images; and finally, comparisons are made with the two funda­

mental requirements met as closely as possible.
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T em poral System s and Sea Wave Profiles

A typical approach to time series is to construct a plot of measurements against time, 

to calculate the Fourier transformation, and to estimate the fractal dimension using 

the linear regression model on the log-log plot (Shaw, 1993). One of the most 

favourable subjects is long-term time series produced by, for example, a wide range 

of systems listed in Section 4.6.2 and described below.

Time series are suitable subjects for distinguishing noise from chaos (Serio, 1994; 

Arizmendi et al., 1995; Vibe k  Vesin. 1996; Gopinathan, 1997), that is arguably 

more common in nature. The scenarios from the rotational laylor-Couette flow were 

used to show a variety of routes to chaos (Buzug et al., 1992); while the white and/or 

“coloured random noise” could be examined by means of multi fractals (Osborne k  

Pastorello, 1993; Bergamasco et al., 1994). Using the definition of the singularity 

spectrum of the time series, researchers explored the multifractal characteristics of 

turbulent flows (Hadad et al., 1993), and the seismicity of the Himalayan region 

(Teotia et al., 1997). The fractal analysis also contributes to the understanding 

of human physiology; for example, the arterial pressure and renal blood flow are in 

fact “nonlinear dynamic (chaotic) processes” (Wagner k  Persson, 1995; Christ et al., 

1997; Yambe et al., 1995; Yambe et al., 1997); and the sleep stages were significantly 

different (Pradhan et al., 1995; Noguchi et al., 1998) in the electroencephalogram 

(EEG) (Accardo et al., 1997). Bianchi et al. (1992) detected the existence of chaos 

from a time series of atmospheric pollen counts, suggesting that the current models 

applying aerobiological knowledge to medical or agricultural practices should include

chaotic elements.
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That randomness plays a significant role in modelling is supported by the results 

obtained in this thesis as well as in published work (Voss, 198S; Barnsley, 1993, for 

example). The synthetic wave profile was modelled by multi-frequency sinusoids, 

that do not contain a single random element; therefore, the distribution in heights 

is less realistic than the natural wave. Although both synthetic landforms resemble 

the natural landscape, the synthetic landform with randomness is statistically more 

robust than the one without. Furthermore, the difference in appearance between 

the deterministic and random ferns is distinct both visually and statistically. The 

measure of the fractal dimension is an alternative in making comparisons.

The more significant implication on the use of the fractal dimensions can be illus­

trated here. Eghball & Power (1995) used a semi-variogram to calculate the fractal 

dimensions for the average yields of nine grain crops along with fibre yield of cotton 

from 1930 to 1990 in the U.S.A.; where a small fractal dimension (near 1) indicates 

the dominance of long-term variation, while a large fractal dimension (near 2) indi­

cates the dominance of short-term variation and non-dominance or lack of long-term 

variation or trend. This effect is demonstrated by the fractal dimensions of 1.20 for 

the relatively stable rice production and 1.47 for the soybean rich in protein and sus­

ceptible to insect invasion. Haastrup & Funtowicz (1992) applied fractal techniques 

to accident time series and suggested that accidents occur in a structured way. An 

attempt was made to detect the machinery faults from time series vibration signals 

(Logan & Mathew, 1996). The fractal analysis can be used in conjunction with the 

conventional signal analysis especially if non-stationary and non-Gaussian features 

of the signal become important (Sakuma et al., 1996); whilst some researchers even 

devised a “dimensiometer" (Anmajunas h  Tamasevicius, 1992) or a diagnostic tool
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(Chandra. 1997) for time series.

The discussion so far has been on the widest possible range of subjects. The 

following sub-section will concentrate on the fractals found in geographical time 

series, followed by the discussion on the sea waves.

F ractals in G eophysical T im e series

Fractal analysis has been applied to geophysical time series such as soil temper­

ature (Outcalt et al., 1992; Hinkel <V Outcalt, 1995; Outcalt & Hinkel, 1996), earth 

climate (Gober et al., 1992; Bitouk, 1994), atmosphere (Gober et ai, 1992; Islam 

et al., 1993; Sahay & Sreenivasan, 1996; Shirer et al., 1997), sea level (Triantafyl- 

lou et al., 1995), seismicity (Costain & Bollinger, 1996; Ieotia et al., 1997), and 

earthquakes (Volant «V Grasso, 1994; Tsai, 1997; Wang, 1997).

Fractal dimensions were found to be related to various geophysical factors and 

parameters. In the air, the dynamics in the atmosphere are complicated (Islam 

et al., 1993); the temperature variation is generally characterised as having high 

dimensionality (Gober et al., 1992; Sahay & Sreenivasan, 1996; Shirer et al., 1997); 

and the horizontal component of wind speed time series were said to have a fractal 

dimension of 1.60 (Syu «V KirchhofF, 1993). On the ground, Outcalt et al. (1992) 

reported that the fractal dimension decreased with depth in the frozen regime of 

the re-freezing layer in northern Alaska; whilst Hinkel & Outcalt (1995) found the 

relationship between the fractal dimension and Hurst exponent is not linear from the 

data collected in central Alaska. In the water, the dynamics of the sea level are “a 

rather nonuniform chaotic one” (Triantafyllou et al., 1995); furthermore, Costain 

Bollinger (1996) suggested that climate plays a key role in triggering the intraplate
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seismicity in the eastern United states, because the fractal dimension determined 

from downward-continued streamflow is approximately the same as the fractal di­

mension of intraplate seismicity. In space, the deterministic and chaotic dynamics 

were thought to exist in the solar wind turbulence (Polygiannakis <Ur Moussas, 1994).

Since the methods and scales are different in the above researches, the corre­

sponding results are not suitable for further comparison with the current findings. 

The focus of discussion is, therefore, on the fractals in sea wave dynamics.

Fractals in Sea Wave Profiles

As far as this thesis can determine, very few articles have been published on the 

fractal characteristics of sea water waves. Nevertheless, a severe issue has emerged 

to challenge one of the traditional assumptions regarding sea waves; that is, the 

statistics of the sea surface displacement produced by waves are Gaussian, or ecpiiv- 

alently, the statistics of the wave amplitudes are Rayleigh (West, 1996). In other 

words, the randomness in surface waves was assumed .

Bergamasco et al. (1995) found not only a finite value for the correlation dimen­

sion similar to 7 but also a positive value for the Lyapunov exponent, which indicates 

the possibility of chaotic behaviour; that is, the wave data were essentially stochastic 

and the correlation dimension and Lyapunov exponent resulted from the anomalous 

statistical behaviour of certain near-Gaussian (or near-bell-shaped) random process. 

Others tended to abandon utterly the traditional assumption regarding sea waves; 

for example, West (1996) proposed that the statistical properties of sea waves are 

of “the visibly random behaviour”, which result in the stochastic forces that load 

off-shore structures and ships. Shaw &: Churnside (1997) also concluded that the
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glint count histogram widths of ocean surface did not follow Gaussian statistics, and 

histogram shapes were approximately log normal. The presumption of sea waves 

being seemingly random was further examined by others; for example, based on an 

analysis of airborne visible and near-infrared imagery of the ocean surface under a 

limited range of wind speed and fetch, Kerman &: Bernier (1994) showed that the 

lower-intensity reflective areas follow a Rayleigh probability distribution, while the 

higher-intensity pixels associated with the scattered light from foam and breaking 

waves demonstrated scaling characteristics in both the optical spectra and the cu­

mulative probability distributions. In other words, the scaling characteristics imply 

the estimation of the fractal dimension is possible.

Despite the poor understanding of the fractal nature of waves, few authors have 

estimated the fractal dimensions from different wave data; and most seem to liken 

relating the fractal characteristics with the forces that generate the waves. Shen 

Mei (1993) used Fractal Geometry to model the intermittency of energy input from 

wind to wave components and proved that “the classical frequency spectral exponent 

4 must be replaced by 4 + (2 — /)), where D [~ 1.88] is the informational entropy 

dimension of the support subset, upon which energy input from the wind to the 

gravity waves in the equilibrium range [of spectra] is considered.'’ In the experiment 

measuring laser glint counts from the ocean surface by Shaw & Churnside (1997), 

spectral density peaks were found to exist at frequencies corresponding to swell and 

long-wind waves, which implied that the glint count process contains information 

related to long-wave modulation of surface roughness.

The obvious discrepancy in interpreting the characteristic forces that generate 

waves might be due to what were measured. For example, Bergamasco et nl. (1995)
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measured the time series of the surface wave displacement driven mainly by gravity 

(as discussed in Chapter Four), while Shaw &: Churnside (1997) focused on the 

surface glint counts induced by wind. Furthermore, the spectral density peaks do 

not exist in the offshore wave profiles it would in the open sea waves. While only the 

tidal dominance is observed in the current study of the natural wave (Chapter Four), 

the tidal waves measured twenty kilometres from land can be easily decomposed 

into component waves (Shaw &: Churnside, 1997). Such dominant force might be 

attributed to the current findings.

Since no article using similar approach to the study is available, a self-reflection 

on the current findings is given. The major findings include, firstly, the fractal di­

mension of one section is similar to that of another, and secondly, the first finding 

holds for both synthetic and natural wave profiles. As stated in Chapter Two, the 

individual waves afar have interfered to become grouped waves that have the char­

acteristics of a single wave; therefore, the first result is reached for the natural wave 

profile. The effect of the tidal force has become clear with the synthetic wave, that 

has distinct frequency peaks including the tide. The sections of the profile are actu­

ally parts of the tidal cycle; therefore, the fractal dimensions are consistent between 

sections. Such homogeneity in the sea wave profile was questioned in Chapter Two 

and finally proved in Chapter Four.

System s of Higher Dim ensions and Landforms

The method used in the analysis of sea wave profiles can be readily extended to 

the analysis of heterogeneity in landforms. It is becoming popular to construct a 

two-dimensional map of surface roughness by laser (Vandenberg L  Osborne, 1992;
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Aggarwal k  Kalra, 1994; Bergmasco et al., 1995; Parkin k  Calkin, 1995) or radar 

(Dellepiane et al., 1991; Blacknell k  Oliver, 1994; Lin et al., 1996; Lin et al., 1997; 

Mather et al., 1998) imagers. Such map is actually a composition of profiles of 

information collected by a linearly scanning device such as a laser. The above 

examples demonstrate both the formulation of a surface image and the applicability 

of the same method for both the sea waves and iandforms.

Applications of fractal measurements to systems of higher dimensions are found 

in, for example, solar studies (Balke et al., 1993; NesmeRibes et al., 1996; Stark 

et al., 1997), percolation (Schmittbuhl et al., 1992; Balke et al., 1993; Kolb k  

Rosso, 1993; Muller et al., 1995; Jan k  Stauffer, 1998), physiology (Genny et al., 

1991; Caruthers k  Harris, 1994; Volant k  Grasso, 1994; Arsos k  Dimitriu, 1995), 

plant root development (Chikushi k  Hirota, 1998), morphology (Ivaram k  Tonyan, 

1993), image analysis in molecular clouds (Hetem k  Lepine, 1993; Stutzki et al., 

1998), nuclear magnetic resonance (NMR) (Muller et al., 1995), and surface scanning 

(Li k  Park, 1998). The range of use of the fractal dimension in systems of higher 

dimension is enormous. Sommerer (1994) used the fractal dimension of a tracer 

distribution as a potential diagnostic for the dynamics of the underlying surface 

flow. Tian k  Yao (1998) suggested that the fractal dimension can be regarded as 

a useful parameter in evaluating the sweep efficiency and oil recovery. Shcherbakov 

et al. (1995) used the fractal dimension to represent the soil pore space. Lipiec et 

al. (1998) used the fractal dimension to quantify soil pore distribution patterns and 

found that the more compact the soil is, the smaller the fractal dimension.

The fractal dimension could be a useful tool for the texture analysis. A useful 

technique of pattern recognition of textual image is to convert the grey level into
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a third coordinate, providing a “terrain” of unit density. An alternative method of 

calculating fractal dimension from virtual terrains was derived using this technique 

(Sarkar k  Chaudhuri, 1992); although Critten (1996) noted that techniques by 

which shade is converted into shape are inherently unreliable. However, Huang et 

al. (1994) suggested that “one should not place too much reliance in the absolute 

value of a fractal estimate, but that the estimates [resulting from the rounding of 

sampled values, for example, do vary monotonically with (fractal dimension) D and 

might be useful descriptors in tasks such as image segmentation and description.”

The fractal analysis of some systems of higher dimensions is concerned with the 

measurement of the “toughness” of materials. Carpinteri (1994) studied the size 

effects on tensile strength and fracture energy of brittle and disordered materials such 

as rocks and reported that “variations in the fractal dimension of fracture surfaces 

produce variations in the physical domain of toughness, and not...only in the measure 

of toughness.” Shek et nl. (1998) determined the fractal dimensions of the fracture 

profiles by the perpendicular sectioning method and also suggested that, under the 

brittle fracture conditions of an alloy, the fracture toughness was approximately a 

linear function of fractal dimension. However, an earlier report concluded that “no 

quantitative relationship between fractal dimension and toughness was found” on 

the fracture surfaces of glass and some porcelain (Baran et al., 1992).

The fractal analysis should, therefore, be applied with caution. Using the vari­

ation method to estimate the fractal dimensions of some microscopic surfaces of 

particles, Li k  Park (1998) found that, while some surfaces have consistent fractal 

dimensions under all scales, others vary according to the scale of scanning; and the 

implied multi-fractal features and the scale-dependency of fractal dimension could
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result from “the artificial processes controlling the surface morphology.” Souriau

(1994) showed that, for instances ranging from 100 metres to 100 kilometres, the 

elevation statistical distribution is well approximated by a standard Brownian sur­

face with a fractal dimension of 2.5; however, when dealing with continental wide 

hydrographic basins, the large scale elevation beyond a threshold around 150 kilo­

metres follows a logarithmic trend constrained by two boundary conditions, that is, 

the sea level and the tectonic ridge.

This section is now focusing on the geophysical features, in the following two 

sub-sections. The immediate sub-section gives a detailed discussion on the fractal 

analysis of landforms as characterised by drainage network. The discussion on the 

fractal analysis of the digital elevation models then follows.

Fractals in Drainage Networks

Most published work on the fractal dimension of landforms focuses on river chan­

nels or drainage networks (Nikora k  Sapozhnikov, 1993; De Vries et al., 1994); whilst 

relatively few contribute to the study of transects (Sornette k  Zhang, 1993) or areal 

features (Fox, 1996). Gao k  Xia (1996) made an intensive review of the applica­

tion of the fractal concept to physical geography, as summarised in the following. 

Most determination methods require one or more straight line segments to fit the 

log-log plot (Chapter Three). Although fractal analysis has been successfully used 

to measure and characterise irregular linear features such as coastline (Mandelbrot, 

1967), to describe and characterise landforms (Milne, 1990), and to delineate land- 

form regions statistically (Klinenberg, 1988); it also shows that some topographic 

features are fractal at limited scales (Mark k  Aronson, 1984). Despite the fact
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that the multifractal nature of some geographical phenomena has been explored in 

great depth, it is not completely understood why some terrains are better modelled 

with Fractal Geometry than others (Gao Sc Xia, 1996). However, the estimated 

fractal dimensions are generally used to describe the branching patterns of the river 

channels (Feder, 198S; Tarboton et nl., 1988; La Barbera Sc Rosso, 1989; Nikora & 

Sapozhnikov, 1993; Beauvais Sc Montgomery, 1996; Wilson Sc Strom, 1993; De Jong 

Sc Burrough, 1995; Claps Sc Oliveto, 1996), the processes that create the landform 

(Hatano et al., 1992; Liu, 1992; Beauvais Sc Montgomery, 1996) and the transects 

(Sornette Sc Zhang, 1993; Gallant et al., 1994; Pachepsky et al., 1997).

There are several common methods of calculating the fractal dimension from the 

branching patterns of a drainage network. One is based on Hack’s (1957) law, which 

explores the relationship between main stream length and basin area (Beauvais Sc 

Montgomery, 1996); whilst the other relies on the statistical properties of branching 

networks known as Horton’s (1945) and Strahler’s (1952) laws (Feder, 1988; Tar­

boton et al., 1988; La Barbera Sc Rosso, 1989; Beauvais Sc Montgomery, 1996; Claps 

& Oliveto, 1996, for example). Nikora Sc Sapozhnikov (1993) provide a detailed 

review of those two methods; and show that the river network is a fractal object 

with self-affine properties, where the fractal dimension and Hurst exponent are 1.52 

and 1.0 for the river network simulation of small scale, 1.71 and 0.58 for that of 

large scale, and 1.87 and 0.73 for natural networks. Fractal dimensions estimated 

by Wilson Sc Strom (1993) used the divider method and a relationship based on Hor­

ton’s bifurcation and length ratios. In contrast to Nikora Sc Sapozhnikov (1993), the 

small scale fractal dimensions in their study are generally in good agreement with 

reported values for large-scale river systems. De Jong Sc Burrough (1995) proposed
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a three-dimensional version of the “walking divider" method, that was claimed to be 

able to distinguish rangeland, marquis and chosen garrique, and to a lesser extent 

agricultural regions on the Landsat Thematic Mapper image of southern France.

Other studies attempted to link fractal dimensions with the underlying geomor- 

phic processes. Fractal dimensions were used to describe rivers flowing through dif­

ferent types of valleys by Beauvais k  Montgomeny (1996); where the results showed 

that scaling properties of river platforms are related to the geomorphological pro­

cesses governing the valley floor morphology, and none of the valley types related 

differences in form, that is, the fractal dimension, to differences in process, in part 

because estimates of the fractal dimension using Hortonian or allometric relation 

provide unreliable fractal dimensions. Other researchers such as Liu (1992, p.2981) 

had a similar concern; he stated that “the fractal structure and properties of stream 

networks as a distorted system have been poorly understood", and also implied that 

there is a link between hydrology and the fractal dimensions of stream networks. 

The link between the fractal dimension and the underlying process is clearly shown 

at macroscale by Hatano et al. (1992), who used fractal dimensions of methylene 

blue staining patterns in five undisturbed soil columns to explain solute transport 

in five soils and found that the fractal dimension of the internal structure of staining 

patterns decreased with an increase in soil depth.

Although a great majority of study in geomorphology focuses on processes, the 

characterisation of géomorphologie forms remains fundamentally important in land- 

form studies; for example, the existing form is not necessarily shaped by the current 

processes or the processes occurring nearby (Gregory k  Walling, 1973). A full 

understanding of forms would certainly facilitate the study of form-process relation­
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ships. Rhea (1993) suggested that the difference of the fractal dimensions and other 

parameters in river profiles led to the tectonic interpretations that “the central west­

ern Coast Range is the locus of synclinal tilting and that the entire Oregon coast 

is experiencing landward tilting and uplift.” Upon re-examining the determination 

of the fractal dimension of river networks, however. Claps Oliveto (1996) argued 

that “natural networks tend to have the same fractal dimensions [no matter what 

the underlying processes may be].”

The fractal dimensions of landforms can be estimated either for the whole area 

or for the boundaries or profiles within that area, box (1996) developed a two- 

dimensional spectral model of bathymetry; where parameters of his model clearly de­

fined the contrast between the constructional volcanic terrain (rough, isotropic, with 

a high fractal dimension) and the tectonic extensional terrain (smoother, anisotropic, 

with a low fractal dimension). Thibert Tawashi (1991) used the estimate of fractal 

dimension to show that a significant difference was observed in the boundary varia­

tion of the calcium oxalate stone fragments treated by shock wave and ultrasound. 

The semi-variogram, roughness-length, and two spectral methods were compared, 

by Gallant et nl. (1994), using synthetic 1024-point profiles generated by two meth­

ods, and using two profiles derived from a gridded digital elevation model and two 

profiles from a laser-scanned soil surface; the estimation methods were found to be 

quite consistent for the Hurst exponent near 0.5, but vary at other values. Using a 

laser altimeter, Pachepsky et al. (1997) found that the root-mean-square roughness 

data had two intervals of self-affine fractal scaling on grass transects and four such 

intervals on shrub transects.

The issue of noise and randomness is important in landform process, that can
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be explored using the spectral approach in particular. Spectral studies by Sornette 

&: Zhang (1993) have shown vertical transect profiles of landscapes and mountains 

to be self-affine fractals. Using the generalisation of the deterministic Culling’s 

linear equation (Culling, 1960; Culling, 1963), Sornette k  Zhang (1993) showed 

that the self-affine rough landscapes are created by the interplay of non-linearity, 

coming from the requirement that erosion is proportional to the exposed area of the 

landscape, and noise, accounting for the fact that erosion is locally irregular as a 

result of the heterogeneity of soils and distribution of storms. Robert k  Roy (1993) 

reviewed the application of fractals to the spatial variability of different phenomena; 

and proposed that fractal surfaces could be used as a null hypothesis and initial 

surface for the study of geomorphic processes, and the fractal dimension be used 

for the characterisation of surface roughness. The synthetic landforms generated by 

the random algorithms are not only statistically sound but also visually realistic.

The fractal dimension is, therefore, generally accepted as an indicator of landform 

complexity; however, making a comparison of the derived fractal dimensions must 

be carried out with caution. The main concerns are on the scales and methods used 

to derive the fractal dimensions, as described in Chapter Three. Very few articles 

are, therefore, available for further comparisons under such considerations.

Digital Elevation M odels

This sub-section aims to compare the current results with other work that applies 

the box-counting method to estimate the fractal dimensions from profiles of digital 

elevation models. A “profile" in the current study is referred to as the linear features 

taken along meridian lines; whereas other authors may refer a profile to a fractured
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face (Carpinteri, 1994; Shek et a/., 1998) or a river profile (Rhea, 1993). Since 

the profile in the current study comprises a mixture of features created by various 

processes, the dynamics are expected to be different from, for example, a river profile 

shaped by the river it contains.

Two almost identical cases are presented here. Pardini & Gallart (1998) mea­

sured surface roughness with a laser metre and estimated the fractal dimension of 

the profile by linear regression; their results revealed distinct micro- and macroto- 

pographic variations of artificially weathered surface samples. As noticed by Liao

(1995), “the fractal analysis of profiles is limited by the traced length at larger scales 

and the measuring method at smaller scales. Although the fractal dimensions are 

estimated from profiles, both cases are more concerned with the difference induced 

by scales than by profiles. Whilst both cases have revealed the diversity of the land- 

form under different scales; the current results explore the complexity by showing 

the difference of the fractal dimensions between profiles. In other words, the current 

approach implies a new direction of research, one that deserves further investigation.

Ecological System s and Ferns

Whilst (geo)morphologists are trying to reason the use of the fractal dimensions, 

other applied scientists such as ecologists have already accredited fractal analysis. 

Leohle & Li (1996) proposed a sampling theory for studies of fractals; that is, 

for nonisotropic media (or maps), random placement of transects is shown to give 

an unrealistic estimate of pattern, whilst for transects taken perpendicular to a 

directional pattern (i.e., strata), it is shown that the mean of multiple estimates of 

the multi-scale fractal dimensional profile does converge to the true value. Others
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(Raulier & Ung, 1997) have claimed to link the fractal dimension with faunal, floral 

and environmental parameters.

The fractal dimension of natural habitats may influence both numbers and body 

size distribution of fauna (Gunnarsson, 1992). An important feature of a fractal 

curve is that its length or area becomes disproportionately large as the unit of mea­

surement is decreased (Sugihara & May, 1990); therefore, for woody plant surfaces, 

there should be more usable space for smaller animals (a small unit of measurement) 

than for larger ones. Whilst Shorrocks et nl. (1991) showed that the body-size dis­

tribution of the small arthropods found on lichens can similarly be predicted from 

the fractal dimension; Laussen et nl. (1997) also suggested that vegetation cover 

affects the sinuosity of turtle trails. However, Stork & Blackburn (1993) suggested 

that the fractal nature of surfaces is less important in determining arthropod as­

semblages than it has previously been considered, using the samples collected in the 

lowland rain forest in Seram, Indonesia. Not only the static distribution but also the 

dynamic movement of individuals could be quantified by fractal dimensions. The 

expansion of a plant disease from a single focus was simulated by Shaw (1995), who 

concluded that the distribution of individuals produced is approximately self-similar 

across a wide range of scales, and the fractal dimension changes systematically with 

scale in a way which may be characteristic of the dispersal distribution.

Some studies on plants and vegetation contribute to the relationship between 

the fractal dimensions and canopies and stems; whilst the majority focuses on the 

root system. Patterns of crown fractal dimension were related to the self-thinning 

exponent in four tree species by Osawa (1995). Smith et al. (1995) concluded that 

the fractal dimensions of canopy profiles have value for predicting the physiognomy
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of Alpine vegetation from the microenvironment. Esco et al. (1995) found that the 

box-counting fractal dimension of branch architecture of green peppers (Capsicum 

annum) declined under stress infection. However, Zeide (1991) argued that '‘not all 

tree variables are fractals”; for example, stem surface is fractal but volume is not, 

implying that volume as well as tree height should be calculated using the methods 

of classical geometry.

Fitter k  Stickland (1992) carried out extensive research into the fractal charac­

terisation of root system architecture, using the divider method; the main findings 

included those that fractal dimensions are mostly below 1.5, differ significantly be­

tween species and increase with age. Eghball et al. (1993) showed that the fractal 

dimension of corn (Zea mays L.) root systems was ‘‘significantly smaller for zero 

N[itrogen]...[than]...applied N levels. ’ Lynch k  Vanbeem (1993) observed that sig­

nificant genetic differences were related to the root fractal dimension. A peanut 

root system inoculated with a wild type strain of Agrobacterium rhizogenes was 

shown to have a high fractal dimension compared to the control (Akasaka et al., 

1998). Ohdan et al. (1995) conducted an experiment on the allelopathic effect of 

aqueous extracts of six Crotalania species on wheat root growth. Although Ohdan 

et al. (1995) were reluctant to relate the application of the extract with fractal 

dimensions, significant suppression of root lengths as related to the variation in 

fractal dimensions of profiles of root systems was observed. However, whether the 

root system in three-dimensional space is a fractal object was a topic not addressed 

until relatively recently. Nielsen et al. (1997) found that the three-dimensional frac­

tal dimension differs from a corresponding projected fractal dimension, suggesting 

that the analysis of roots grown in a narrow space or excavated and flattened prior
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to analysis is problematic; however, a log-linear relationship was found between 

the fractal dimension of roots and spatial dimension, suggesting that the three- 

dimensional fractal dimension of root systems may be accurately estimated from 

excavations and a tracing of root intersections on exposed planes. Eshel (1998) 

concluded that the root system has the characteristics of a fractal object, using an 

empirically derived root system in three dimensions.

The difference of species is also detectable through applying fractal dimensions. 

The discrimination between plant and weed species is possible by the use of then- 

fractal dimensions (Critten, 1997). Corbit &; Garbary (1995) compared three species 

of brown algae and found no difference in fractal dimension among mature fronds, 

but the fractal dimension was highly correlated with both developmental algae and 

structural complexity. Izumi et al. (1995) also suggested the possibility for char­

acterising the root system morphology of rice cultivars, Taichung Native 1 (TN-l, 

indica type) and Yukara (japónica type), through the fractal dimension. Rubier & 

Dudgeon (1996) studied the temperature dependent change in the form complexity 

of fronds of Chondrus crispas, a perennial red seaweed, and found that the growth 

of morphologically more complex thalli at the higher temperature resulted in a sig­

nificantly higher fractal dimension than that at a lower temperature.

Detection of a difference between species might, however, recpiire more than 

merely the measure of the fractal dimension. Critten (1996) noted that different 

patterns may have similar dimensions, and suggested that other measures such as 

“lacunarity” should be used as well. Berntson & Stoll (1997) developed a technique 

that combines curve fitting and tests of curvilinearity of residuals, and claimed 

that it reduces significantly variations in estimated fractal dimensions arising from
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variations in the method of preparing digital images of the rhizome systems of golden 

rod (Solidago altissima).

The Spectra of Plants

Very few published works have been devoted to the spectral characteristics of 

plant and vegetation using the fractal concept; although Bedford (1993) established 

the relationship between the fractal dimension and the roughness parameter in ra­

diative transfer models of surface reflection. Also, Knyazikhin et al. (199S) showed 

that both the radiation regime and the photosynthesis depend on the fractal dimen­

sion of the plant stand at a scale at which Beer’s law loses its validity. The closest 

example to this current study was reported by Vedyushkin (1994), who concluded 

that “the fractal method can be used for discrimination of remotely sensed data 

but further investigations, including detailed comparison of fractal characteristics 

of remotely sensed forest images with results of on-site field studies are necessary 

to validate them.” Although the normalised difference vegetation index image was 

similar to that used in the current study, further comparison is prevented due to the 

difference in the scales and method. A comparison of the fractal dimension derived 

from the outline of ferns is also prohibited; for example, even the fractal dimension of 

the first-ever virtual fern was not mentioned by the author (Barnsley, 1993). An 

interpretation might be given by McLellan & Endler (1998), “fractal dimension is 

highly related with the ratio of perimeter to area (dissection index) and reveals little 

additional information about shape [of maple leaves].” Although the current results 

(Chapter Six) have identified the distinct difference between the inert and leafy ar­

eas using the fractal dimensions, the relationship between the fractal dimension and 

spectral characteristics is actually unclear and deserves further investigation.
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7.4 F u tu re  W ork

Some further improvements can be performed, based on the findings from the current 

study and other work as deduced from the above discussion. Since the mono-fractal 

dimension is estimated here, the possible multi-linearity in the log-log plot should 

be treated carefully by means of the corresponding correlation coefficient or other 

methods (Andrle, 1992, for example). The measure of lacunarity can be used to 

distinguish systems of different textures with the same fractal dimension (Allain & 

Cloitre, 1991); therefore, it can be further applied to the analysis of the sea wave 

profile that exhibits similar fractal dimensions between sections of the wave pro­

file. Furthermore, the systematic estimation of the fractal dimensions from merid­

ian profiles of a digital elevation model enables direct understanding of the system 

compexity w’ithin a system; therefore, an in-depth evaluation of this approach is 

suggested. The study on the relationship between the spectral characteristics and 

fractal dimensions has become fundamentally important in terms of applying the 

fractal concept to the remotely-sensed data; and deserves further contribution.



Chapter 8

Conclusion

As far as the laws of mathematics refer to the reality, they are not 

certain. And so far as they are certain, they do not refer to reality. 

Albert Einstein (1879-1955).

In Fuzzy Thinking (Kosko, 1993, p.3).

269
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The two main objectives of the thesis were defined in Chapter One as

1. the determination of the fractal dimensions of three natural systems, and

2. the comparison of these results with corresponding analyses of mathe­

matical models of the same three systems.

These objectives have been achieved and this thesis has also affirmed the method of 

fractal dimension. The proceeding chapter has also examined possible future work.

The approach of the current study has followed the inductive-deductive proce­

dures, the hypotheses testing and the falsificationism, as explained in Chapter Two. 

The chapter also brought out the theoretical development of Chaos Theory and 

Fractal Geometry, from which the concept of fractal dimension is derived. The 

three types of dynamics revealed in the Mandelbrot set were identified; and three 

corresponding natural systems were also located and detailed, that is, the sea waves, 

landforms and spectral images.

The methodology was detailed in Chapter Three, which included the estimation 

of fractal dimension, and a description of the statistical methods. Whilst the fractal 

dimension quantifies the dynamics of three natural systems and their corresponding 

mathematical models, statistical techniques were used to give a general description of 

the data, and to examine the difference between natural data and synthetic models. 

The basic requirements for comparing fractal dimensions were also derived: the 

comparison must be based on the identical method and a similar range of scales.
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The main work was completed in Chapters Four, Five and Six, appended with 

the discussion based on the findings corresponding to the specific type of systems; 

the condensed discussion followed in Chapter Seven. The specific methods were 

deduced for the waves, landforms, and fern images and the mathematical models 

corresponding to those natural systems were also induced. The fractal dimensions 

of the natural and synthetic systems were estimated and compared. The method of 

fractal dimension was proved to be scientific as a result.

The analysis of the natural and synthetic wave forms was given in Chapter 

Four. The fractal dimensions were found to be similar between records, for both the 

natural and synthetic waves. Statistical tests suggested that there is no significant 

difference of the estimates between waves. The systems dynamics were found to be 

homogeneous for the sea wave profiles.

The results derived from the digital elevation models were presented in Chapter 

Five. Whilst a range of fractal dimensions was derived from the profiles of a digital 

elevation model, the significant difference was between profiles and between the 

natural and synthetic landforms. In other words, the systems dynamics were found 

to be heterogeneous for the digital elevation models.

The spectral images of ferns were analysed in Chapter Six. Similarly to the 

digital elevation model, a range of fractal dimensions was found, and the difference 

of fractal dimensions was significant between profiles and images. Furthermore, the 

difference between background and leafy areas was easily identified by the fractal 

dimensions, supporting the observation that the fractal dimensions can be used to
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identify a system mixed with the inert and active sub-systems.

The current results and the summarised discussion in Chapter Seven revealed 

that a simple fractal method, with proper implementation, can be used to describe 

the complexity of a system.

In conclusion, through the unique approach devised in the current thesis, the 

similarities and differences of the estimated fractal dimensions of three natural 

and synthetic systems have been fully explored in the context of system evolution 

introduced by the Mandelbrot set.
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A ppendix A

An introduction to Chaos Theory

The historical development of Chaos Theory is introduced, then followed by its 

definitions, then the route to chaos.1 The use of the phase portrait is the means to 

illustrate the dynamics of a system. However, in order to reduce the dimensionality, 

one has to apply the technique called '‘Poincare sectioning”.

Chaos Theory was formulated from the chaotic phenomena arising from a non­

linear deterministic system. The other key element of deterministic chaos is its 

sensitivity to the initial conditions, popularised as the “Butterfly Effect” (Lorenz, 

1963; Gleick, 1987). Work by Feigenbaum (1980) revealed the route to chaos. The 

conventional “phase portrait” technique is popularly used in order to display the 

dynamics of a system. “Poincare sectioning” can reduce the dimensionality of an 

object; therefore, it is very useful in quantifying objects of self-similar structures. 

Because of self-similarity, it is always possible to derive the dimensions of the whole 

object from its sections in lower dimensional space.

1 Refer to page 16.
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A .l B rie f H isto ry  of C haos T heo ry

The idea that the earth was stationary and that the sun, the planets and the stars 

moved in circular orbits about the earth can be traced back to Aristotle’s (381- 

322 BC) teaching at the Lyceum, a temple to Apollo, in 334 BC. After a number 

of centuries, the final blow to Aristotelian theory came. In 1638, Galileo’s (1554- 

1642) Discoursi e demonstrazione mathematiche intorno a due nuove (Mathematical 

discourses and demonstrations on two new sciences) corrected many of Aristotle’s 

errors. Just before that, in 1609, Johannes Kepler (1571-1630) had published .4s- 

tronomia nova (New Astronomy) revealing that elliptical orbits fit the observations 

well. Also, he suggested that the planets were made to orbit the sun by magnetic 

forces. Refer to Hellemans k  Bunch (1988, pp.34-36,117,137,138).

In 1687, Sir Isaac Newton (1630-1727) published his Philosophiae Naturalis Prin- 

cipia Mathematica (The mathematical principles of natural philosophy) and pos­

tulated a law of universal gravitation, according to which, bodies of mass in the 

universe were attracted to each other by gravitation. Pierre Simon de Laplace 

(1749-1827) helped to found the theory of disorder or probability at the beginning 

of the nineteenth century, although he had a thoroughly Newtonian view of the 

universe (Hellemans & Bunch, 1988, pp.167,261).

Percil (1992, p. 13) summarised the development related to chaos phenomena 

before the twentieth century as follows: “... during the 19th century, there were two 

kinds of theory for changing systems, the deterministic theories and the theory of 

probability. The two approaches appeared incompatible. In the first, the future is 

determined from the past... In the second, the future depends in some random way 

on the past, and cannot be determined from it. The first challenge to this picture
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came with the quantum theory in the 1920s and the 1930s. ... theorists describe 

the behaviour of an electron in terms of a 'probability wave’. The second challenge 

came from the theory of chaos. Simple mathematical analysis shows that even in 

simple systems, which obey Newton’s laws of motion, you cannot always predict 

what is going to happen next. The reason is that there is persistent instability.”

According to Gleick (1987), many of the modern developments in chaos theory 

can be traced back to Henri Poincare’s work (1899) on celestial mechanics at the 

end of the nineteenth century. He developed a new kind of mathematics called 

topology, a sort of geometry that deals with continuities and connections among 

varying quantities. Dancer (1988, p. 13) noted that “it was first realized by the 

French mathematician Poincare late last century that very complicated behaviour 

could occur for some simple equations.” This was developed further by the Amer­

ican mathematician Birkhoff in the 1920s, and the English mathematicians Mary 

Cartwright and Littlewood in the late 1940s (Dancer, 1988, p.13). In the 1920s, 

European mathematicians, for example, Gaston Julia (1893-1978) (Julia, 1918) and 

Pierre Fatou (1878-1929) (Fatou, 1919) in Paris studied a special kind of abstract 

motion, which led to the beautiful “fractal” pictures that Benoit Mandelbrot (1983) 

created in the 1970s.

Approaches that follow the work of Poincare take the topological pictures of 

complex dynamic behaviour and use them to probe how oscillating systems become 

chaotic. Myrberg (1958) started a line of research to plot how such dynamics evolve, 

which helped Robert May (1976) to understand how populations of animals oscillate 

then become chaotic (Holton Sz May, 1993). The American mathematician Smale 

(1967) showed that there really was chaotic behaviour in a rather precise sense.
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The behaviour of dripping taps was analysed by Packard and his colleagues 

(1980). The most important complications of this kind of motion were unravelled 

by Sarkovskii (1964) and Mitchell Feigenbaum (1979). A similar system helped 

David Ruelle and Floris Takens (1971) to analyse the behaviour of turbulent fluids, 

and Edward Lorenz (1963) to analyse the chaos in the weather system. Lorenz 

produced some equations which were a rough approximation to the behaviour of the 

atmosphere and found numerically that chaotic behaviour occurred (Lorenz, 1993).

A .2 T h e  D efin ition  of C haos

Chaos can be interpreted as a system being deterministic and sensitive to initial 

conditions, although there are various definitions. Some examples, quoted from 

Gleick’s (1987, p.306) book “Chaos Making a New Science” are: “A kind of order 

without periodicity” (Hao, 1984); “Apparently random recurrent behaviour in a 

simple deterministic (clockwork-like) system" (Stewart, 1984); and the “irregular, 

unpredictable behaviour of deterministic, nonlinear dynamical systems” (Jensen, 

1987). In one of the most recent attempts to define chaos, Mullin (1993c) stated “it 

represents a universe that is deterministic, obeying the fundamental physical laws, 

but with a predisposition for disorder, complexity and unpredictability.”

Another definition of chaos was proposed by Field k. Gyorgyi (1993, p.v) as fol­

lows: “Chaos is the word we apply to oscillatory but aperiodic, apparently random 

behavio[u]r appearing in a system not subject to stochastic perturbation but en­

tirely governed by a deterministic dynamic law.” It is intimately related to periodic 

oscillation, and periodicity may decompose to chaos when some varying parameter 

constraining an oscillatory system crosses a critical value. The resulting complex,
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chaotic waveform may he regarded as periodic but with a repetition time approach­

ing infinity. Indeed one of the major routes from periodicity to chaos involves a 

repetitive doubling of the period as a parameter is monotonically varied.

The amplitudes and/or periods of the individual cycles of a chaotic waveform 

seem to be random and are unpredictable and irreproducible over an extended period 

of time. A chaotic system will remain apparently noisy regardless of how well 

experimental conditions are controlled. However, a chaotic waveform results from 

a quite ordinary deterministic dynamic law and has considerable order related to 

the presence of a so-called strange attractor that attracts trajectories in the same 

way as do simpler attractors such as steady state or limit cycle. Field & Gyorgyi 

(1993, p.v) pointed out that “order is present because a chaotic waveform stays 

within a finite region in phase space in the close neighbourhood of the strange 

a ttra c to r .V a r io u s  maps, e.g., return maps constructed from Poincare sections 

(or maps) and next amplitude maps, may be constructed and used to show the 

underlying orderliness of chaos, which often has a fractal nature.

The unpredictability of a chaotic waveform results because trajectories starting 

from arbitrarily close initial conditions diverge. The measure of this divergence is the 

Lyapunov exponent. The fundamental mathematical definition of a chaotic system 

is one with a positive Lyapunov exponent. This definition and similar measures 

can be calculated for an experimental waveform, but practical problems often arise 

that cloud their interpretation. Chaos is thus usually identified in an experimental 

system or situation by construction of the sorts of maps mentioned above and by the 

investigation of the route from periodicity to aperiodicity (Field Gyorgyi, 1993, 

p.v).
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Chaos Theory has gained wide popularity, and attempts have been made to 

identify the phenomenon in many different branches of science. Articles related 

to chaos accumulated quickly in traditional fields such as biology (Rogers, 1981; 

Tsonis & Tsonis, 1989; Kvriazis, 1991; Philippe, 1993; Engbert & Drepper, 1994; 

Velanovich, 1994; Lloyd & Lloyd. 1995), physics (Bohigas «V Weidenmuller, 1988; 

Lauterborn &: Parlitz, 1988; Teitsworth, 1989; Monteiro, 1994; Nicholis &: Nicholis, 

1995), chemistry (Vidal, 1981; Scott, 1991; Roux, 1993; Gyorgyi & Field, 1993; 

Scott, 1994), mathematics (Taubes, 1984; May, 1989; Schwabe, 1990), economics 

(hausman & McPherson, 1990; Lebaron, 1994) and geomorphology (Malanson et a l . ,  

1992; Gaffney, 1993; Phillips, 1994; Phillips, 1995; Land Richards, 1997).

There are also articles that relate chaos to art and design (Lansdown, 1991) or 

to medicine (Velanovich, 1994). In fact, there are books devoted to the discussion 

of DNA (Walter, 1994), the I-ching (Legge, 1990) and Chaos Theory. Although the 

focus is mainly on the chaos arising from deterministic systems, conferences have 

been held and dedicated to the discussion of order and chaos in quantum systems 

(Exner & Neidhardt, 1990). Scientific articles related to quantum physics and chaos 

are available (Efetov, 1995; Jensen, 1995; Elnaschie, 1996).

Sensitive to Initial Conditions

An essential element of chaos in nonlinear deterministic systems is the extreme 

sensitivity of the system to initial conditions (Lorenz, 1963; Crilly, 1991; Peitgen 

et al., 1992). This means that two sets of conditions of a system initially very close 

together can give rise to widely different states in the long term.

In nature, the initial condition cannot be known exactly but only with limited
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accuracy. It follows that the predictability of long-term behaviour must fail for those 

nonlinear systems that exhibit chaos (Crilly, 1991, p.196). Crutchfield et nl. (1986) 

stated, “it may happen that small differences in the initial conditions produce very 

great ones in the final phenomena. A small error in the former will produce an 

enormous error in the latter. Prediction becomes impossible.” Henri Poincare was 

aware of this phenomenon in 1903 in his study of planetary motion (Hellemans & 

Bunch, 1988; Crilly, 1991). However, the sensitivity of nonlinear systems to initial 

conditions was explained by Edward Lorenz (1963) and became popularly known as 

the butterfly effect shown in Figure A.l, which is derived from Equation A.l.

Figure A.l: The Butterfly Effect.
The parameters a, 6, and c in Equation A.l are 10, 28, and 8/3, respectively. The
initial values of x are 0.6 (—) and 0.6001 (------ ). However, the difference between
subsequent values becomes significant after a few iterations.

In 1960s, Edward Lorenz used a computer to model weather patterns, using a
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set of ordinary nonlinear differential equations,

x = a{y — x) 

y =  bx — y — xz ■> 

i  = x y - c z

where a, b and c are empirical parameters. The variables x , y and z are related 

to “convective overturning”, “horizontal temperature” and “vertical temperature”, 

respectively (Crilly, 1991, p.200). The significance of the equations lies in their 

exhibition of chaos. “It is a reminder of the subject’s intrinsic mathematical dif­

ficulty that very little of the behaviour of the solutions can be proved with strict 

mathematical rigour” (Sparow, 1982).

The mathematical tool used to quantify the phenomena is the Lyapunov expo­

nent. The Lyapunov exponent is the measure that “quantifies the average growth 

of infinitesimally small errors in the initial point” (Peitgen et. al., 1992, p.516). The 

algorithm was first proposed by Wolf et al. (1985) for a time series, and generalised 

for example by Peitgen et al. (1992, pp.715,751) for continuous systems such as 

Lorenz system.

Shaw (1981, p.224) stated that “for an n-dimensional system, ‘Lyapunov char­

acteristic exponents’ can be defined, at least operationally.” These numbers can 

easily be computed numerically for simple systems whose equations of motion are 

known, and can be experimentally measured at least in some cases. The spectrum 

of Lyapunov numbers provides a partial classification scheme for dynamic systems. 

For instance, if all the Lyapunov numbers are negative, the system will approach 

a stable equilibrium . A system in a stable oscillation does not contract vol­

ume along the direction of the trajectory through stable phase space, thus one of 

the characteristic numbers is zero. If any of the Lyapunov numbers is positive, the

APPENDIX A. AN INTRODUCTION TO CHAOS THEORY
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system will be chaotic (Shaw, 1981; Field k  Gyorgyi, 1993, for example).

A .3 R ou tes to  Chaos

The study of chaotic systems was made popular by the computer experiments of 

May (1974) and Feigenbaum (1980) and fully described by Peitgen et nl. (1992) 

on a mapping known as the logistic map (May, 1976; Feigenbaum, 1980; Bland 

k  Rowlands, 1986; Scott, 1991; Field k  Golubitsky, 1992). A map which allows 

us to predict the next value xn+i from the current measurement xn is known as 

an iterative, recursive, or logistic map (May, 1976; Field k  Golubitsky, 1992; 

Hardisty et al., 1993, for example.). This mapping is one of the typical models in 

population dynamics,

xn+1 =  g(x) =  Axn(l -  xn), (A.2)

where g is the logistic mapping, A is the effective growth rate, and xn C [0,1] is the 

relative population at generation n. The remarkable features of the logistic map 

are “the contrast between the simplicity of its form (it is a polynomial mapping of 

degree two) and the complexity of its dynamics” (Field k  Golubitsky, 1992, p.100).

The route to chaos can be illustrated by Figure A.2 which shows how the dynam­

ics of the logistic mapping g change as the effective growth rate A is varied (May, 

1974; May, 1976; Gleick, 1987; Field k  Golubitsky, 1992; Peitgen et al., 1992). The 

mathematical analysis by Feigenbaum (1980; 1992) provides a detailed understand­

ing of the route to chaos. The route advances in three stages, that is, stationary 

states, period-doublings, and chaotic regions.
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Figure A.2: Feigenbaum Map: The Route to Chaos.
The route to chaos is illustrated by the bifurcation scenario which is represented 
by a logistic equation. The attracting sets include fixed points, period-doubled 
points. The chaotic dynamics appears at parameters larger than 3.5699456..., the 
Feigenbaum point (F).
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Stationary States

Suppose at the effective growth rate A < 1, the population decreases to zero as 

n increases. Next, suppose A is greater than 1 and smaller than 3. There is a 

critical relative population that remains constant time after time. The value of such 

population is called a fixed point or stationary state for the mapping g (Field 

& Golubitsky, 1992, p. 104).

Period-D oubling or Bifurcation

As A becomes greater than 3, a pair of period-two points is created. Moreover, for 

almost all initial populations, i.e., Xq > 0, the population xn approaches the pair of 

the period-two points. The population alternates between high and low values. This 

change in dynamic behaviour is called a period-doubling or bifurcation (Field 

& Golubitsky, 1992, p.104).

As A is further increased, the period-two point itself period-doubles to a period- 

four points then period-doubling to period-eight occurs, then to period sixteen, and 

so on (Field & Golubitsky, 1992, p. 106). The phenomenon of period-doubling is the 

qualitative characteristic of the logistic map (Scheck, 1990, p.362).

Chaos

When the effective growth rate reaches a critical value Ac, period points of an ar­

bitrarily large period have appeared in the dynamics of g and chaotic dynamics 

has set in (Field &: Golubitsky, 1992, p. 106). This threshold marks the end of the 

period-doubling regime. It was discovered by Feigenbaum (1979) and has become
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known as the Feigenbaum point \ c = 3.5699456... (Clleick, 1987; Peitgen et al., 

1992, p.588).

A .4 F e ig en b au m ’s N u m b er

This bifurcation scenario which illustrates the route to chaos is summarised by the 

famous bifurcation diagram, redrawn relatively easily here in Figure A.2. In this 

figure the horizontal axis shows the parameter A and the vertical axis shows the 

final population x. For each value of the parameter, the attracting sets are shown: 

first the fixed points, then the period-doubling points, then the chaotic region.

Dancer (1988, p.9) said that “bifurcations have been studied for a long time 

beginning with the work of Euler in the 18th century. An increase in interest followed 

the work of Poincare late last century. ... [Focusing on] where the bifurcation takes 

place started with the work of the Russian mathematician Krasnosel’skii (1946) in 

the late 1940s, and has been pursued by a number of authors since then.”

However, it was not until 1978 that Feigenbaum made another remarkable discov­

ery about the logistic map and mappings like the logistic map: “there is a universal 

constant of mathematics (akin to ?r and e) that can be associated with period­

doubling cascade and, moreover, this constant can even be determined experimen­

tally”, recalled Field & Golubitsky (1992, p.108). Feigenbaum (1979) discovered 

that the ratio,

A m  A m _ i  
A m  +  1 A m ,

(A.3)

appears to be a constant as m becomes large and this constant is now known as 

Feigenbaum’s number (F ie ld s  Golubitsky, 1992, p.108) or Feigenbaum ’s con-
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stant (Peitgen et al., 1992, p.588). What is important is that there is a large class of 

mappings, which include the logistic map, for which this number is the same (Feigen­

baum, 1979; Feigenbaum. 1980; Feigenbaum. 1992; Field Sz Golubitsky, 1992). The 

number is S = 4.6692016...

A .5 M aking  th e  Im age of C haos

x

Figure A.3: The Lorenz Attractor.
The parameters a, 6, and c in Equation A.l are 10, 28, and 8/3, respectively. The 
initial values for x, y , and x are 0.6, 0.6, and 0.6, respectively. The trajectories are 
projected onto the XT-plane. The trajectories consist of 5000 points. Note that 
there is no crossover in the attractor.

Classical dynamical systems can be thought of as possessing attractors in phase 

space. For the system described by Lorenz’s equations (Equation A.l) an attractor 

exists, although it is not simply a point attractor. The way a trajectory winds around 

an attractor for this case is indicated by a two-dimensional projection in Figure A.3. 

There are 5000 points plotted in the figure using Equation A .l. The parameters a, b,
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and c are 10, 28, and 8/3, respectively. The initial values for i \  y, and z are 0.6, 0.6, 

and 0.6, respectively. The trajectories are projected onto the A'V-plane, and there 

is no crossover in the attractor. Crilly (1991, p.200) stated that "if trajectories of 

Lorenz's equations are plotted in three-dimensional phase space, Lorenz found that 

they are attracted towards a bounded ‘ellipsoid’, which all trajectories eventually 

enter and from which they never escape.” A curious mathematical property of the 

ellipsoid is that it possesses zero volume. It is now known that the Lorenz attractor 

is an infinitely nested layered structure, and that the zero volume is consistent with 

cross sections through the layers being fractal in nature.

A particularly clear topological method of studying the trajectory flow in the 

neighbourhood of a closed orbit is provided by Poincare mapping. “In essence, 

it consists in considering local transverse sections of the [trajectory] flow, rather 

than the flow as a whole, i.e., the intersection of integral curves with some local 

hyper-surfaces that are not tangent to them” (Scheck, 1990, p.342). This mapping 

technique effectively enables the estimation of the fractal dimension of a complex 

fractal object from its sections in lower dimensions.



Pi'ogram m e Listing of the Logistic  
Equation

A ppend ix  B

The following C programme is compiled by C 
compiler on SunOS (4.1.3_U 1), using the script 
“acc S i . c  - o  S i  - I m  - x C C  - w "  }  Example usage, 
m a y  0 . 6  3  4, produces a logistic map of an initial 
population of 0.6 and growth rates between 3 
and 4.
/ *  MAY. C
Usage: may xO al a2
Desc: x _ { n + l }  = a  x _ n  Cl  -  x _ n )

*/
i t include < s td io .h >  
t t include < s t d l i b . h >  
i t include <math.h>
i tdef ine  ISTART 500 / /  run- in  i t e r a t i o n s  
tide f i n e  ISTOP 50 / /  No. of i t e r a t i o n s  
i tdef ine  ASTEP 1000 / /  S te p s  of para a 
i tdef ine  VMINUTE 0.000001 / *  m i n . d i f f  of  
vmin and xdat  * /
i tdef ine WILD 999.9  / /  Wild value  
/*************** main ***************/  
void m a n i(int a r g c ,  char * * a r g v )

{
int i ,  j ,  k ;  

double x O ,  a l ,  a 2 ; 

double i n ,  x n e w ;  

double a n e w ,  a w t e r v a l ; 

double x d a t i A S T E P ]  U S T O P ]  , 

a d a t i A S T E I * !  ; / /  a_ual x x_val  
double v m i n ;  

if l a r g e  < 2 ) { .

p r i n t f ( "  U s a g e :  % s  x O  a l  a2 \ n ” , a r g v K f ]  ); 
p r i n t f ( , ” \ t x O :  I n i t i a l  p o p u l a t i o n

( 0 < x 0 <  1 ) — 0 . 5 \ n ”);
p r i n t f ( " \ t a l , a 2 :  R a n g e  o f  p a r a m e t e r  

( 0 < a < 4 ) ~  0 - 4 \ n ” ) ;

e x i t ( - 1 ) ;

} / /  w a r n i n g  

x O  = a t o f C a r g v C . l l ) ;  
a l  = a t o f ( a r g v [ 2 ]  ); 1

1 Refer to page 16.

a 2  = a t o f C a r g v C S ]  );
a i n t e r v a l  =  f a b s ( a 2  -  a l )  /  A S T E P ;

for 0 = 0 ;  i < ASTEP; ¿++){
a n e w  = a l  + i * a i n t e r v a l ;  

i n  =  xO;  

a d a t C i ] = a n e w ;  

forO = 0 ;  j  < I S T A R T ;  > + ){  
x n e w  = a n e w  * x n  * ( 1  -  x n ) ; 

x n  =  x n e w ;

} / /  j: skipping 
for(j = 0 ;  j  < I S T O P ;> + ){  

x n e w  =  a n e w  * x n  * (.1 -  x n ) ; 
x n  = x n e w ;  

x d a t C i ]  [j] = x n e w ;

} / /  j:  calculating
} / / i

for(» =  0 ;  K  A S T E P ;  (++){ 
for ( j  = 0 ;  j <  I S T O P ;  j + + ) {  

if ( x d a t i i l i j l  ! = V W I L D ) {  

v m i n  = x d a t [ _ f \  [;] ; 
ford- = 0 ;  k  < I S T O P ;  k + + ) {  

if (I- == j ) {  x d a t i  d i k l  =  v m i n ;  > 
else {

i f C f a b s C x d a t i i l  i k l -  vmin) < 
VMINUTE) i  x d a t i i l i k l  = VWILD; } / /  i f  

> / /  i f - e l s e  

} / /  k
y / /  i f  

y / /  j  
y / /  i
forii=0; i < ASTEP; ¿++){ 

for (j*0;j<ISTOP;j++){  
if  ( x d a t i i l i j l  != V W I L D )  {

pnntfC%f%f %2d\n”, adatiil, 
xdatiil [ y] , j) ;

> / /  i f

} / /  j
} //p r in to u t  
} / /  main

325
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Fractals in Buddhist Literature

According to Harvey (1990, p.l), the history of Buddhism spans almost 2500 years 

from its origin in India with Siddhattha Gotama (c. 566-486 DC or 448-368 BC), 

who became the Buddha (Pali samma-sambuddha), or “perfect fully Awakened One" 

and taught for 49 years in India.1 Our knowledge of Buddhism, the teachings of 

the Buddha, is based on several canons of scripture, which derive from the early 

oral transmission of Sangha1 2. In its long history, Buddhism has used a variety of 

teachings. Around the beginning of the Christian era, a movement began which 

led to a new style of Buddhism known as Mahayana3, or “Great Vehicle”. One 

of the schools of Mahayana philosophy is based on the Avatnmsaka, or “Flower 

Ornament” Sutra (Chinese Hua-yen Ching) (Harvey, 1990, p.118). This is a huge 

work, many of whose chapters circulated as separate Sutras. The most important

1 Refer to page 19.
2 The most important bearers of the Buddhist tradition have been the monks and nuns 

who make up the Sangha ox “Community” (Harvey, 1990, p.2).
3 The Mahayana is characterised, on the one hand, by devotion to a number of holy 

Saviour beings, and on the other by several sophisticated philosophies, developed by ex­
tending the implications of the earlier teachings of Buddhism (Harvey, 1990, p.2).
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books are the Dasa-bhumika Sutra, on the “Ten Stages" of the BodhisattmP - path, 

and the Gandavyuha, or “Array of Flowers" Sutra, which comprises more than a 

quarter of the whole Avatamsaka. The Gandavyuha deals with the spiritual pilgrim­

age of the youth Sudhana, who is sent on a journey to fifty-two teachers to learn 

the secrets of the Bodhisattva-path. Near his journey’s end, he comes to the Bod- 

hisattva Maitreya0, who shows him the huge tower of the Buddha Vairocana (“The 

Resplendent One").

Sudhana enters the tower, where he finds a wondrous world, as vast as space, full 

of countless paths, palaces, banners and trees, all made of jewels, along with count­

less mirrors, burning lamps, and singing birds. Moreover, Harvey (1990, pp. 118-19) 

described, “the tower is also found to contain countless other towers, each as vast 

as itself, yet these do not interfere with each other in any way, but harmoniously 

intermingle and preserve their separate identities. All are contained in one and one 

in all; and in each Sudhana sees himself, so that he feels as if his body and mind 

had melt away. In an especially large tower, of exquisite beauty, Sudhana sees all 

the worlds of the universe, with Buddhas active in each.” Therefore, Sudhana sees 

himself, as a self-similar structure, in both inward and outward scaled towers. This 

image is almost identical to the description of objects of a fractal nature. 4 5

4 A being (Pali s a t t d )  who is dedicated to attaining perfect enlightenment (b o d h i ) 

(Harvey, 1990, p. 15).
5 Maitreya means “The Kindly One” . In Eastern Buddhism, he is portrayed in the 

form of his recognised manifestation, the tenth-century Pu-tai. In the West, his images 
are known as “Laughing Buddha” (Harvey, 1990, p.131).
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M ultifractal Dimensions

D .l  In tro d u c tio n

The number of scientific papers on multidimensional fractals is increasing rapidly 

(Lovejoy Sz Schertzer, 1986; Feder, 1988; Mandelbrot, 1988; Mandelbrot, 1989; Ev- 

ertsz Sz Mandelbrot, 1992; Borgani et al., 1993; Lee et al., 1993; Nagatani, 1993; 

Platt &: Family, 1993; Radons, 1993; Tessier et al., 1993a; Tessier et al., 1993b, 

for example).1 There are two ways to extend the idea of fractal dimensions to 

multifractal dimensions. One is the generalised dimension D,, and the other is the 

introduction of the singularity spectrum f(a )  (Halsey et al., 1986).

D.2 G eneralised  D im ensions

Consider a structure (or any fractal measure) embedded in a ¿ ’-dimensional space. 

Let be the points of the structure as a long time series. The number of

1 Refer to page 27.
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points representing the space is equal to or greater than the points of the structure 

N. Cover the space with a mesh of Zf-dimensional spheres of size r. Let M(r) be the 

number of spheres that contain points of the series {.Yt}-=1 and let P;.(r) =  Nk/N  

where Nk is the number of points in the k-th sphere of size r.

The similarity dimension was defined by Mandelbrot (1983). However, he re­

gretted using the term because “it does not carry over to the self-affine fractals” 

and suggested the box dimension, Db , instead (Mandelbrot, 1985).

Db = — lim lim log M (r)/log r,
r —fO N - y o o

(D.l)

which describes the scaling of the density. 

The information dimension, Dj, is defined as

where

D i = — lim lim 5 (r) /lo g r,
r —>0 N - y o o

M ( r )

(D.2)

S{r) = -  E  P k ( r ) \ o g P k { r ) ,  (D.3)
k =  1

which gives the information gained by the knowledge of each Pk with accuracy r. 

Di tells us how the information (or the morphology) increases as r  -> 0.

The correlation dimension, Dc, is defined by

Dc = lim lim log C (r)/ log r,
r —>0 N —yoo

(D.4)

where

C(r) N 2 E  ~  \ X i  -  El), (D.5)

where 0 is the Heaviside function (Hentschel Sz Procaccia, 1983).

In case of a two dimensional space, this quantity is the probability that two points 

lie within the sphere of size r, i.e., the probability that two points that are separated



APPENDIX D. MULTIFRACTAL DIMENSIONS 330

by a distance smaller than r. Therefore, C(r) could be rewritten as (Blacher et nl., 

1993)
A/(r)

C (r)=  £  (P „(r)f, (D.6)
k=l

for an image.

The uncountable infinity of generalised dimensions is given as (Hentschel X. Pro-

caccia, 1983)

1 log Z k ( P k ( r ) ) '----- - hm ------ -------------q — 1 r-+o log r

Equation D.7 could be rewritten as

1 log £  Pfc(r) exp'' 1 log P k { r)------  hm --------------- ---------------------
q — 1 ' ►o log r

(0 .7 )

(D.8)

In the limit q 1 one expands the exponential and Equation D.2 is obtained.

Most natural fractals are not completely or even statistically self-similar. For 

such fractals, dimensions estimated by various methods are different from each oth­

ers (Hirabayashi et al., 1992). For such fractals, Dq > Dq> if q' > q. Then a single 

value of the fractal dimension is not enough to characterise the fractals.

The singularity spectrum /(a )  is the fractal dimension of the subsets with the 

same singularity strength a. When we formulate the singularity spectrum /(cv), we 

cover the space with spheres of size r and define P,(r) to be the probability in the 

f-th sphere. This singularity a, is defined as (Hirabayashi et al., 1992)

P , ( r )  as r ~ a ' (D.9)

and then the exponent / ( a )  can be defined by

N a ( r )  as r - W  (D.10)

where Na{r) is the number of spheres with size r in which the P,(r) has the singu­

larity strength between and a and a + da.
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The generalised dimension Dq is obtained as an extension of some definitions of 

the fractal dimensions, and can be defined as (Hirabayashi et al., 1992)

n 1 logEo (P,(r ))qDq = ----- - hm -
q — 1 r-*0 log r

( D . n ;

The parameter q can take any real number ranging from —oo to oo.

The relation between the generalised dimension Dq and the singularity spectrum 

f (a)  is expressed by

Dq = [qa(q) -  f(a(q))},  (D.12)

which is deduced from Equation D .ll by the use of the method of the steepest 

descent (Hirabayashi et a l 1992). The reverse expression is the Legendre transfor­

mation of Equation D.12, such that (Halsey et al., 1986)

a(<7) =  - [ ( ? - 1 ) 0 , ] ,  (D.13)

and

/(a(<7)) = qa{q) -  (q -  1 )D,r  (D.14)

It has been customary to determine the Dq of interest and then to evaluate the 

singularity spectrum f(ct) by transformations, because the direct determination of 

f {a)  from a limited number of data often yields inaccurate answers.

D.3 Im p le m en ta tio n  M ethods

Implementation methods are similar to those for monofractal objects.
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Box-counting M ethod

This method is based directly on the definition of Dr  We cover the ¿^-dimensional 

space with sphere of size r and decide P,(r). Then, Dq is estimated from the slope 

of the log-log plot between the values Yh(P>(r))q and r. The slope corresponds to 

(q — 1 )Dq, see Eq. D .ll. It is simple but often impractical for the small number of 

points (Greenside et al., 1982; Hirabayashi et al., 1992).

Fixed-centre M ethod

This is a generalisation of the correlation method (Jensen et al., 1985). The total 

mass (points) M{< r) within the circle of the radius r is measured with the increase 

of r. then, Dq is estimated from (Hirabayashi et al., 1992)

log < M(<  r )?_1 > % (q — l) log r, (D.15)

where < >  is the average of the mass for the circle centre.

Fixed-m ass M ethod

This is also a generalisation of the correlation method and is essentially equal to 

the fixed-centre method. We find how the smallest radius R(< rn), within which a 

fixed-mass m  is included, increases as the mass rn increases. D,, is decided by,

log < R{< m )1{q~l)D- q > % — (q — 1) log m, (D.16)

the relation proposed by Hirabayashi et al. (1992), who found this method was 

superior in calculating D — q for negative q of earthquakes.



Program m e Listing of the Box- 
Counting M ethod

A ppendix  E

The following script is used to compile C pro­
gramme incorporating NAG FORTRAN library 
routines (Hann & Hounam, 1991), whose re­
sulting object programme is further compiled 
by FORTRAN compiler.1 That is, “acc -c - I m  

S l . c ” and “/77 S l . o  - o  S i  - I n a g " . It includes 
the main programme ( b o x f d .  c ) ,  the user-defined 
header file ( T S . h ) and its source code ( T S . c ). 

The user-defined header file is first given.
A  TS.h
/ /T S _ d a ta _ ex t r a p  -  e x t r a p o l a t e  raw data 
* /
t t i f nde f  _TS_h 
t tdefine  _TS_h
extern  void T S _ d a t a _ e x t r a ( / *  double x [ ] ,
double y O ,  i n t  n */)  ;
t tendif

The source code of the user-defined header file is 
given below. It is a simple C programme which 
is compiled as a user-defined library.
A
/ /  TS.c -  implementation f i l e  f o r  TS.h 
* /
t t include < s t d i o  ,h>
Itinclude < s t d l i b . h >  
tt inc lud e  <math.h> 
t t include “TS.h" 
t tdef ine HU (0 .01 )
/*********************##*********
/ /  e x t r a p o l a t i o n
/ /  X_i = 2 * X _ { i ~ i y  -  X _{ i~ 2}

void
T S _ d a t a _ e x t r a (

double xG , / *  input  array * /  
double y[] , / *  output array * /

1 Refer to Section 3.2.4.

int n) A  length of  array  * /
{

int i;
yL(J] = 0.0; ( /[ / ]  = 0.0\
for ( i=0] i < n; <++){

if ( j [d  >= 0.0){ yia = xCO;
> else {

y [/I = 2 * y h - û  -  y U - 2 ]  ;
if( yea < 0 .0  ) { yCd = M U ;  >

>
>
} A  TS_data_extra  * /

Here follows the main programme. 
A  b o x fd . c
/ /  Usage: boxfd col  row 
/ / R e f :  Turco t t e ,  1993 
/ /  I n p u t :s t d i n  (col  x row)
/ /  O utput :s t d o u t  
* /
t tinclude  <std io.h>  
tt inc lude  <math.h> 
t t include <nagmkl5,h> / /  NAGF l i b .  
t t include <TS.h>

/ / B o x - c o u n t i n g :  Brownian method 
/ /  Count boxes between max and min 
/ /  width decreased by 2~n 
/ / h e i g h t  i s  g iven

void
T S _ b r o w n _ b o x _ c o u n t i n g (

double x [ ] ,  A  input  da ta  * /  
hit l e n g t h ,  A  length o f  data  * /  
double s t d ,  A  he ight  o f  da ta  * /  
double r e s u l t i 2 0 ] )  A  r e s u l t  * /

(
int i . u . v ;
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int paces;
double *tmpp, *size, * count, *ind, *dep; 
double width, height, val; 
double seal;
/*  d e c l a r a t i o n s  f o r  G01AAF, G02CAF * /
int n,iwt,ifail;
double
* wt,xmean, s2, s3, s f , xmin, xmax, wtsum; 
paces= ( in t) Roor{log2{ {double) length)); 
size = malloclpaces * s izeo f(in t));  
counts malloclpaces * s iz e o f(in t)); 
for(i = 0; i < paces; «++){

seal = pow{2.0,  (d ou b le )i ); 
width = length /  seal; 
height = std /  seal;

= seal;
countli] = 0.0; 
tmpp = mallocllint) width * 

s izeo f(d o u b le ));
wt = mallocl(in t) width * 

s izeo f(d o u b le ));
for(u = 0; u < seal; u++){ 

for(t> = 0; v < width; v++) {
tmpp[t] = r[u * ( in t )width + t>] ;

>
n = (in t) width; iwt = 0; ifail = 1; 
g01aaf_{kn,tmpp,kiwt, wt,tixmean,tLs2, 

ksS.ks^, kxmin, kxmax.kwtsum,kifail);
val= cetKxmax/height) -  

floor {xmin/height) ;
couniDl += val;

>
free{tmpp) ; free{ wt) ;

for ( 1=0 ; i < p a c e s  ; i++ ) { 
s!;e[j] = l o g 2 ( s i z e l i ] )  ; 

c o u n t l i ] =  l o g 2 ( c o u n t l i ] )  ;

>
n =  p a c e s ;  i f  a i l  =  1;

g 0 2 c a f _ { k n ,  s i z e ,  c o u n t ,  r e s u l t ,  k i f a i l ) ; 

f r e e { s i z e ) ; f r e e ( c o u n t ) ;

> / /  TS_brown_box_counting / /

*************** main ****************

void mam(int a r g e ,  char * * a r g v )

{
int i, j ,  size_d;
int w i d t h ,  l e n g ,  n e w _ l e n g ,  s i z e ;

double * d a t ;

/*  NAGF: G01AAF e t c  * /
int n, iwt, if ail;
double * y ,  * x , * w t ,

x m e a n , s 2 , s 3 ,  s f , x m i n , x m a x ,  w t s u m ,

r e s u l t l 2 0 ]  ;

\ I { a r g c  < 2 ) 1

p n n t f i ” U s a g e :  % s  c o l  r o w \ n " , a r g v i O ] ) ;

printf(”\tcoI:number of columns\n”) ; 
printf(”\trow:number of rows\n'’); 
exit( 1);

>
width = atoi(argvUI);
leng = atot(argvl2]);
new _leng = ( in t ) exp2{ Jloorl log2{
(d o u b le ) leng ) ) ); / /  leng = 2~n 
size = width * leng;
size_d = s izeo f(d o u b le );
/***** read data from s t d i n  *****/ 
y = malloc{size * size_d); 
dat = malloc(size * stze_d); 
for(i = 0; i < leng; /++){ 

for0  -  0; j  < width; /+-+){ 
n = i + j  * leng;
i f { scanfr% If”, ftyCri]) == NULL) 

y[n] = 0 . 0 ;
}  / /  j  

} / /  i
TS_data_extra{y, dat, size); free{y); 
/********************************
/ /  Computations o f  means and s t d  
/ /  G01AAF: means, s t d ’s 
/ /  Box-count in g , then 
/ /  G02CAF: y = a + bx 
********************************/
/*** r e s u l t s  o f  the whole *******/ 
wt = mallocfsize * size_d); /*  A MUST! * /  
n = size; nut = 0; ¡fail = l; 
gOlaaf_(kn, dat ,kiwt , wt,kxmean,ks2,ks3,  
k s f , kxmin, kxmax,kwtsum,kifail); 
TS_brown_box_countmg{dat, size, s2, 
result); / /  b = r e s u l t f S ]  
free{ wt) ;
/**** r e s u l t s  f o r  each p r o f i l e  ******/ 
x = mallochuiw_leng*size_d); /*  MUST! * /  
wt= malloc{new_leng*size_d); /*  MUST! * /  
forO = 0; i < width; /++){

foi'O = 0; j  < nev/Jeng;  j++){
xl j l  = dat h* leng + j] ; / / s k i p p i n g !

> / *  j  * /
n = new Jeng; iwt = 0; ifail = 1; 
gOlaaf_(kn,x,kiwt, wt,kxmean,ks2,ks3,  

k s f ,kxmin,kxmax,kwtsum,kifail);
TS_brown_box_counting(x, new _/eng, s2, 

result);
i f (i  != 0) / / s k i p p i n g  f i r s t  l i n e
pnntfl ”%3d %5d %.3f %.3f %.3f\n” ,

( in t )  log2(new Jeng) , new Jeng, xmean, s2, 
resultio] );
> / *  i * /
free{x) ; free{ w t ) ; free{dat) ;
> / / m a i n



Program m e Listing of Statistical 
M ethods

A ppendix  F

The computer programmes for conducting sta­
tistical tests are listed below.1 First of all, the 
data are organised by a pre-test programme that 
produces compatible format of output for tests. 
All the statistical tools used in the thesis are in­
cluded in the last programme which generates 
the test results and comparative data, i.e., ran­
dom numbers and normal scores. The results 
are stored in a text file, the camparative data 
can be piped to, as it is conventionally called in 
Unix, other devices such as “gnuplot”.
Example scripts are given here to illustrate how 
these programmes are linked. In Chapter Four, 
one of the tests is performed by the script
“pretest p-)h.fd twl.fd 27 84 83 4 4 4 4 I tstats 
c 27 27 > waveJest-raw.txt”. In Chapter Five, 
an example script is like “pretest spdem.fd.dat 
syn28n.fdJi.dat 1024 175 0 5 4 - 4 I tstats c 
1024 W24 > dem-test-raw-all.txt". Whereas in 
Chapter Six, it is like “pretest fernredh.dat fern-
g r n h . d a t  1024 70 70 4 4 4 4 \ t s t a t s  c 1024 1024
> f e r n J e s t - r a w - c . t x f ' . They differ mainly in the 
setting of parameters.

F . l  P re te s t
The following C programme is compiled by C 
compiler on SunOS (4.1.3.U1), using the script 
“acc S l . c  - o  S i  -Im -xCC -w".
/ *  PRETEST. C
Syntax:  p r e t e s t  hdrl  hdr2 row col  t a r g e t  
f i l e l  f i l e 2
Dec: organ ise  data f o r  < t s t a t s >
Input:  f i l e l ,  f i l e s
Output: (s t d o u t )  2  co l  x row_no
hdr_no: Waves = 83; DEM = ;
*/
i t i n c l u d e  < s t d i o . h >

» i n c l u d e  < s t d l i b . h >

1 Refer to Section 3.3.

i t i n c l u d e  < m a t h . h >
*********

************* main *************

mamCint a r g e ,  char * * a r g v )
{
F I L E  * f i n i , * . f i n g i

int
r o w ,  h d r l , h d r 2 ,  c o l l , c o l 2 ,  t a r g e t  1 ,  t a r g e t 2 ;
int i,j;
int d_s»2:e=sizeof(double) ; 
double t m p x ,  t m p y ;  

double * x , * y ;

if  l a r g e  < 2 )  i

p r i n t / ! ”S y n t a x :  % s  f i l e l  id e '2  r o w  h d r l  

h d r 2  c o l l  c o l 2  t a r g e t  1 t a r g e t 2 \ n ” , a r g v [ 0 ] )  ; 

p r i n t / ! ” \ t i i l e * : i n p u t  f i l e s \ n ”) ; 
p n n t / ! ” \ t r o w : r o w s \ n ” ) ; 

p r i i i t f ( . ” \ t h d r * : m i m b e r  o f  h e a d e r  in  

r o w s \ n ” )  ;
p r i n t / !  ” \ t c o l * :  c o l s \ n ”) ; 
p r i n t / ! ” \ t t a r g e t * :  t a r g e t  c o l \ n ” )  ; 

e x i t ! - ! )  ;
} / /  warning
/*** open input  f i l e s  *** /
if I ! f i n l = / o p e n ! a r g v i l l , ” r t ” ) )  == N U L L H  

p r i n t / ! ” #  C a n ’t  o p e n  i n p u t  f i l e  1:

%s\n” ,argv[l] ) ;
e x i t ! 0 )  ;

> / /  open f i l e l
if( ! f i n 2 = f o p e n ! a r g v l 2 ]  , ” r t ” ) ) == N U L L ) /  

p r i n t / ! ’’#  C a n ’t  o p e n  i n p u t  f i l e  2:

% s \ n ” , a r g v [ 2 ]  ) ; 
e x i t ! 0 ) ;

> / /  open f i l e 2
/*** read in p a r a ' s  *** /
r o w  = a t o H a r g v i O ]  ) ;
h d r l  = a t o H a r g v Z / ] )  ;

h d r 2  = a t o i ! a r g v [51 ) ;
c o l l  =  a t o i ! a r g v L 6 ] )  ;

c o l 2  = a t o i ! a r g v l 7 ]  )  ;
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t a r g e t l  =  a t o t ( a r g v i S ] )  ; 
t a r g e t s  =  a t o i ( a r g v l 9 ] ) ;
/ * * *  e x t r a c t  t a r g e t  c o l  * * * /  

x  =  m a l l o c i  r o w  * d _ s i z e )  ; 

y  =  m a l l o c ( r o w  * d _ s i z e )  ; 

f s e e k (  f i n  1 ,  h d r l , S E E K _ S E T )  ; 

f s e e k (  f i n d , h d r d , S E E h f i S E T )  ; 
for( i = 0 ;  i < r o w ;  (++){ 

for (j =  1 ; j < = c o l l  ; j++ ){
f s c a n f l f i n l , ” % l f  ” , k t r n p x )  ; 
if  ( j = = t a r g e t l )  { x[/] = t m p x ;  >

> / /  j
for ( j = l ;  j < = c o l 2  ; j + +  ) {

f s c a n f ( f i n 2 ,  ” % l f  ” , k t m p y ); 
i f l j = = t a r g e t 2 ) { y U ] = t m p y ;  >

} / /  j
> / /  i
f c l o s e ( f i n l )  ; f c l o s e { f i n 2 )  ; 
f o r (  i = 0 ;  i < r o w ;  i++){

p n n t f (  ” % 8 . 3 f  % 8 . 3 f \ n ” , x l i ]  , y U ]  ) ;

> f r e e ( x )  ; f r e e l y ) ;

} / /  m a i n

F.2 S ta tis tic a l Tools
The following script is used to compile C pro­
gramme incoporating NAG FORTRAN library 
routines (Hann k  Hounam, 1991), whose result­
ing object programme is further compiled by 
FORTRAN compiler; that is, “acc -c -Im Sl.c 
and /77 Sl.o -o Si -Inag".
/ *  TSTATS.C
Syntax:  t s t a t s  c / r  col  row 
Desc: s t a t i s t i c a l  t e s t s
NB1: P r e - p r o c e s s : <p re te s t>
*/
t t include  <std io.h>
# i n c l ude < s t d l i b . h >
t t include <math.h>
t t include <nagmkl5. h> / /  NAGF l i b .
#d e f i n e  VAL_ON (1)
# d e f in e  VAL_OFF (0)  
ndef ine  CLEVEL (0. 9S)

*******#******;** main ************* 
4 , 4 4 , 4 , 4 * 4 4 4 4 4 * 4 : 4 4 , *  4  * * * * * * * * * * * * * * * * * /

void maw (in t argc, char **argv)
•C
char c/i; / /  choice  btui R/C
int i , j ;  / /  loop i n d i c a to r s
int lengjengl; / /  data length
int d_.sjce=sizeof(double);
double *x,*y,*xy;
/* * *  nagf var .  * * * /

int ntype.ifail;
double d,z ,p ,*sx ,* sy ; / /  d i s t . t
int calwts;
double *u, wx,pwx, wy.pwy; / /  norm, t
int iwt; / /  s t a t s
double * wt, xmean, ymean, xstd,
ystd, xsd, ys3,xs4, ys3,,
xmin.ymin, xrnax, ymax, wtsum;
char * tail,* equal;
double clevel,t,df,prob,dl,du; / /  mean.t 
double *pp; / /  normal scores  
double xme.xmd, xsd, yme, ytnd, ysd; 
int n,i l , i2;
double *tmpx, *tmpw, tmpp; / /m e d i a n  t e s t  
int ties;
double u, unor, upO, * ranks,* wrk; / /  MW. t 
if (argc < 2){

pnntf( "Syntax: %s R /C  
leng\n ”, argt>[0] );

printfC’\ tR /C :  row/column type of 
stdin\n”) ;

pnntf(”\tleng: row no./no. of first 
d a t a \ n ” ) ;

printfC'\tlengl: row no./total no. of 
data\n"); 

pnntfC’M ”); 
exit ( -1);

} / /  warning
ch = argvi /] [id ; / *  read in para's  * /  
leng = atoi(argvl2]); 
lengl = atoi(.argvi3]);
sw itch(c/)){ / *  read in data from s td in  * /

case ’c ’ : 
case ’ C  :

x =  malloc(d_size * leng); 
y = mallocid_size * leng); 
for0=0; Kleng; ¿++){ 

scanfC’%If %lf\n” ,kxlQ , ky i f ] );
> break; 

case ’ r*: 
case ’ R ‘ :

x =  malloc(d_size * leng); 
y = malloc{d_size * leng); 
xy = mallocilengl * d_size) ; 
for0=0; i<lengl; !++){ 

scanf(”%lf );
>
for 0=0; i<leng; i++){

•r[j]=xy[i]; j/[i]=ry[i+/em/] ;
} free(xy); break; 

default: break;
> / /  ch
/*** d i s t r ib u t i o n  t e s t :  F(x)  = G(x) ***/
sx = malloc(d_size * leng);
sy = malloc{d_size * leng);
ntype = VAL_0N; if ail = VAL_ OFF; 
g08edf_(.kleng, x ,kleng, y ,kntype ,kd ,kz ,kp ,
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s x ,  s y ,  k i f a i l )  ;
i f ( i f a i l  —  V A  L _  O F F )  {;
} else { p r i n t f i ' ’#  c h e c k  ¡ fa i l  o f  

g 0 8 c d f \ n  ” ) ; >
/* * *  Normal i ty  t e s t ;  s o r t e d  f i r s t  *** /
p r i n t f i ” # \ n #  N o r m a l i t y  t e s t :  W - v a l u e  

S i g . L e v e I \ n ” ) ;
a  =  m a l l o c i d _ s i z e  * l e n g )  ;
i f  a i l  =  V A L . O F F ; ca/fets = V A L . O N ;

g 0 1 d d f _ ( s x ,  k l e n g ,  k c a l w t s , a ,

k w x ,  k p w x , k i f a i l )  ;
i f ( ¡ f a i l  == V A L . O F F H  p r i n t  f i ” #  R e a l  

S a m p l e  ( X ) :  % . 3 f  % f \ n ” , w x , p w x )  ;} 
else { p r i n t f i ” #  C h e c k  g O l d d f  f o r  r e a l  

s a m p l e \ n ” ) ; }
»f a i l  =  V A L _ O F F - ,  c a l w t s  =  V A L . O F F ; 

g O l d d f _ i s y , k l e n g , k c a l w t s , a ,

k w y ,  k p w y ,  k i f a t l )  ; 
f r e e  ( a )  ;

if( i f a i l  == V A L _ O F F ) i  p r i n t f i ” #  S y n .  

S a m p l e  ( Y ) :  % . 3 f  % f \ n " , w y , p w y )  ;> 
else { p r i n t f i " #  C h e c k  g O l d d f  f o r  s y n t h e t i c  

s a m p l e \ n ” ) ; }
/*** bas ic  s t a t s  * * * /
p r i n t f i ” # \ n #  Basic stats: mean sfci sAevv
k u r t  m i n  m a x  N \ n ” )  ;

u)t = m a l l o c ( d _ s i z e  * l e n g ) ;

i w t  =  V A  L _  O F F ;  i f a i l =  V A L _  O F F ;

gO 1 a a f _ i k l e n g , x , k i w t , w t ,

k x m e a n , k x s t d , k x s 3 , k x s . { ,

k x m i n , k x m a x , k w t s u m , k i f a i l )  ;
if(jf a i l  == V A L _ O F F ) i  p r i n t f C ’#  S a m p l e  X :

% 6 . 3 f  % 6 . 3 f  % 6 . 3 f  % 6 . 3 f  % 6 . 3 f  % 6 . 3 f

% 6 d \ n ” , x m e a n ,  x s t d ,  x s 3 ,  x s f ,  x m i n ,

x m a x ,  l e n g )  ;}
else { p r i n t f C ’#  C h e c k  g O l a a f  f o r  X \n ”);>
iwt — VA  L _  O F F ;  i f  a i l  =  V A L . O F F ;

g O l a a f _ { k l e n g ,  y , k i w t ,  w t , k

y m e a n  , k y s t d ,  k y s 3 , k y s f ,

k t j m i n , k y m a x , k w t s u m , k i f a t l ) ;
lf(if a i l  == VA  L _  O F F )  { p r i n t f C ’#  S a m p l e  Y:
% 6 . 3 f  % 6 . 3 f  % 6 . 3 f  % 6 . 3 f  % 6 . 3 f  % 6 . 3 f

% 6 d \ n ”, y m e a n ,  y s t d ,  y s 3 ,  y s f ,  y m m ,

y m a x ,  l e n g )  ; }
else { p r i n t f C ’#  C h e c k  g O l a a f  f o r  Y\n”);> 
f r e e (  w t )  ;

/* * *  ob ta in  medians ***/
i f a i l  = V A L _  O F F ;

g 0 7 d a f _ ( k l e n g , x ,  s x , k x m e , k x m d , k x s d , k i f a t l )  ; 
if( i f a i l  ! = V A  L _  O F F ) { p r i n t f (  ” #  C h e c k  

g O T d a f  f o r  X \n ”);>  
i f  a i l  = V A L _ O F F ;

g 0 7 d a f _ ( k l e n g ,  y , s y , k y m e , k y m d , k y s d , k i f a i l )  ; 

if ( i f a i l  ! = V A L _  O F F )  { p r i n t f i  ”#  C h e c k  

g O T d a f  f o r  Y \ n ” ) ;>
/*** t - t e s t :  Ux = Uy * * * /
t a i l  = ” T ” ; / /  two t a i l :  HO:  Ux =  Uy

e q u a l  = ” E ” ; / / p o p .  var .  : Un/Equal?
c l e v e l  =  C L E V E L ;  i f a i l  = VA L _  O F F ;  

g 0 7 c a f _  ( t a i l ,  e q u a l ,  k l e n g ,  k l e n g ,  k x m e a n , 

k y m e a n  , k x s t d  , k y s t d  , k c l e v e l , 

k t , k d f , k p r o b , k d l , k d u ,  k i f a i l , l e n g , l e n g ) ; 
if( i f a i l  == V A L _ O F F ) {

p r i n t f C ’# \ n #  t-test a t  % . 2 f  l e v e l :  t - v a l u e  

d f  s i g . l e v e l / L . c o n f .  U . c o n f .  Ec \?  T a i l \ n ” , 

c l e v e l ) ;
p r i n t f C ’#  U x  ? =  U y  % 6 . 3 f  % 6 . 0 f  % f  % 6 . 3 f  

% 6 . 3 f  % s  % s \ n ” , t ,  d f ,  p r o b ,  d l ,  d u ,  e q u a l ,  

t a i l ) ;

} e lse { p r i n t f C ’#  C h e c k  g O T c a f  \ n " )  ;>
/*** Median t e s t :  2 smaples *** /  
n  = l e n g  +  l e n g ;  i f a i l  = V A L _ O F F ;  

t m p x  =  n u l l l o c (  n * d _ s i z e ) ; 

t r n p w  =  m a l l o c i n  * d _ s i z e ) ;  

f o r i i = 0 ;  i < l e n g ;  i + + ) {  

t m p x [i] = x[;] ;
t m p x h + l e n g ]  =  y  [ ¿1;

> / /  t
g 0 8 a c f _  ( t m p x . k n , k l e n g ,  t m p w , k i l  , k i 2 ,

k t m p p . k i f a i l ) ;
f r e e i t m p x )  ; f r e e i t m p w ) ;
if ( i f a i l  == V A L _ O F F ) {  p r i n t f i ” # \ n #  M e d i a n

t e s t :  % d  < M e X  =  % 6 . 3 f ;  % d  < M e Y  =
% 6 . 3 f ;  s i g . l e v e l  =  % f \ n ” , i l ,  x m e ,  ¡ 3 ,  y m e ,  

t m p p ) ; >
else { p r i n t f i ” #  C h e c k  g 0 8 a c f  \ n ” ) ;>
/ * * *  Mann-Whitney t e s t  * * * /
t a i l  = ” T ” ; i f a i l  =  V A L _ O F F ;

r a n k s  =  m a l l o c i i l e n g  +  l e n g )  * d _ s i z e ) ;

w r k  =  m a l l o c i i l e n g  +  l e n g )  * d _ s i z e ) ;

g 0 8 a h f _ i k l e n g , x , k l e n g ,  ij, t a i l . k u , k u n o r , k u p O ,

k t i e s ,  r a n k s ,  w r k , k i f a i l , l e n g ) ;
i f a t l =  VA  L _  O F F ;

i f  i  i f a i l  == VA  L _  O F F )  {
p r i n t f i ” # \ n #  M a n A V h i t n e y  t e s t :  U - v a l u e  

Z - s t a t s  a p p r . P \ n ” ) ;

p r i n t f i ” #  % 1 0 . 2 f  % 6 . 3 f  % ( \ n ” , 

u , u n o r , u p O ) ;

> else { p r i n t f i ” #  C h e c k  g 0 8 a h f  \ n ”) ; > 
f r e e i  r a n k s ) ; f r e e i  w r k ) ; f r e e i x )  ; f r e e i y ) ;
/ * * *  Normal s c o r e s  *** /
p p =  m a l l o c i l e n g  * d _ s i z e ) ; i f a i l  =  V A L _ O F F ;  
g 0 1 d b f _ i k l e n g , p p , k i f a i l ) ; 
i f i i f a i l  ! = V A L _ O F F ) { p r i n t f i  ” #  C h e c k  

g O l d h f W ’) ;}
p r i n t f i ” # \ n #  N o r m a l . s c o r e s  X . d a t a  Y . d a t a

- >  n o r m a l  p r o b .  p l o t \ n ” ) ;

f o r i i = 0 ;  i c l e n g ;  i + + )  { p r i n t f i ” \ t % 8 . 3 f  % 8 . 3 f
% 8 . 3 f \ n ” , p p i i ]  ,sx[(3 ,sy[i] ); >
f r e e i p p ) ; f r e e i  s x ) ;  f r e e i s y ) ;

} / / m a i n
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F.3 H istog ram
The following script is used to compile C pro­
gramme incoporating NAG FORTRAN library 
routines (Harm & Hounam, 1991), whose result­
ing object programme is further compiled by 
FORTRAN compiler; that is, '‘a c c  - c  - I m S l . c  
and f 7 7  S l . o  - o  S i  - I n a g " .

/*
/ /  f r e q . c
/ / U s a g e :  f r e q  Ihdr col  row t a r g e t  noe 
/ /  Desc: frequency t a b l e  by noe c l a s s e s  
/ /  In: ( s t d i n )  inc lud ing  header  
/ /  Out : ( s t d o u t )
/ /  min c l a s s  f r e q  -> c l a s s  max f r e q  
* /
t tinclude < s td io .h >
t t include < s t d l i b . h >
t t include <math.h>
t tinclude <nagmkl5.h> / /  NAGF l i b .
M e l i n e  HDfi_WIDTH (256)
M e f i n e  AUTO_BOUND (0)  / /  auto
boundaries
M e f i n e  G01PARA (1)
M e f i n e  FDHIN ( 1 .0 )
M e f i n e  FDHAX ( 1 .6 )

******* main() ***************

void mcmi(int a r g e ,  char * * a r g v )

{
char h d r  l  H D  R _  W I D T H ]  ;
hit i ,  j ,  I h d r ,  c o l ,  r o w ,  t a r g e t ,  c o u n t ;
int site_d=sizeof(double),
si2e_i=sizeof(int);
double t m p ;
/***** gOlaef  para ******/
in t n o c ,  i c l a s s ,  ¡ fa i l ,  n ,  n p r o b ,  * j f r e q ;  
double * A ,  * C ,  x m m ,  x m a x ;
/*****  warning msg *********/
i f ( a r g e  < 2 ) 1
p n n t f ( ” U s a g e :  % s  I h d r  c o l  r o w  target n o c  
\ n ” , a r g v i O ] ) ;
p r m t f ( ”\ t l h d r  c o l  r o w  t a r g t \ n ” ) ; 
p n n t f ( ”\ t n o c :  n u m b e r  o f  c l a s s e s \ n ” ) ; 
p r i n t f ( ”\ t A u t o  g e n e r a t e d  b o u n d a r i e s  
a c c o r d i n g  t o  n o c A n ” ) ; 
e x i t ( - l ) ;
>
/*****  g e t para *****/
I hd r  = a t o i ( a r g v l l ]  ) ;  
co l  = a t o i ( a r g v i 2 ]  ); 
r o w  = a t o t ( a r g v l 3 ]  ); 
t a r g e t  = a t o R a r g v i f ]  ); 
n o c  = a t o i ( a r g v i 5 ]  ) ;
A  = m a l l o c ( ( n + 1) * s i z e _ d ) ;

C = malloc(noc * size_d) ; 
jfreq = malloc((noc+1) * size_i) ; 
for ( i=0] i<=n; (++H/l[d =0.0\}
/ * * * * *  s k i p  h d r  * * * * * /

for(¡=0; i<lhdr; ¿++H / /  s k i p  h d r  l i n e s

gets(hdr) ;
> / /  i
/ * * * *  r e a d  i n  d a t a  * * * * * /

target— ; 
count = 0;
for( ¡=0; i<row; t++){ 
for (j= 0 ; j< col ; j++ ) { 
scanf(”%lf ”, ktmp);
\{(j==target) {
if  (tmp <= FDMIN) { Aicount++]=FDMIN; > 
e l s e  if (tmp>=FDMAX) {
Aicount++] = FDMAX; } 
e l s e  {  Aicount++] = tmp; >

> / /  i f  
} / /  j  
} / /  f
/ /  f o r ( i = 0 ;  i < = n ;  i + + ) i p r i n t f  ( " ‘/ , 6 .  3 f  \ n " ,

A [ i ] ) ; }

n = row; ¡fail = G01PARA; 
nprob=GOlPARA ; 
iclass = A UTO_BOUND; 
g01aef_(kn,knoc, A .kiclass, C,jfreq, 
kxmtn ,kxmax,kifail) ;
/ * * * * * * *  o u t p u t  * * * * * * * * * /  

p n n t f C ’#  n o  l o w  u p p e r  f r e q \ n ’’ ) ; 
n o c — ;
for ( i=0; t<=noc; «++) {
ifG==0) {
printf(”%5d %6.3f %6.3f %4d”, i+1, xmm, 
Citi , jfreq li] ) ;
> e l s e  if  ( i==noc) {
pnntfC%5d %6.3f %6.3f %4d”, i+l, C h-1] ,  
xmax, jfreq [ d ) ;
> else { printf(’’%5d %6.3f %6.3f %4d”,
A l ,  C O / ] ,  C [0 , jfreqlt] ) ; > 
pnn tf(”\ n ”) ;
> / /  i
free (A) ;  free( C) ; free( jfreq) ;
> / /  m a i n



A ppend ix  G

An Introduction to Devonshire

The name of Devon is derived ultimately from a Celtic tribal nam e-“the people of 

the land,” dating from the earliest days of the shire in the ninth century (Hoskins, 

1954).1 The people of the land living north of Port Isaac and Teignmouth will 

witness a near total solar eclipse in the twentieth century, for two minutes six seconds 

at around 11.11 am on August 11th, 1999 (Gibbs, 1998). Although “nature denied 

[Teignmouth] a deep water harbour” (Norway, 1898, p.64), Dartmouth, Dawlish and 

Teignmouth were much engaged in pilchard fishery from the seventeenth century 

until the early nineteenth century (Hoskins, 1954, p.213).

The chances of rain in Devon depend on altitude and exposure to the westerly 

winds. Thus, Plymouth has about 40 inches (around 1000 mm) of rain a year and 

the high moorland village of Princetown 82 inches (2082 mm), but Exeter, sheltered 

partly from the rain by the mass of Dartmoor, has only 30 inches (750 mm) (Knapp, 

1984).

The mean annual temperature inland is 50.5 degrees Fahrenheit and 51.5 degrees

1 Refer to page 109.
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on the coast, and the mean annual temperature for .January at sea level is 42 to 44 

degrees (Hoskins, 1954). Because of the fairly mild weather, it was reported, as 

early as 1759, that “the air [is] very wholesome here [in Teignmouth] especially in 

summer” (Travis, 1993, p.10). In 1817 one local guidebook (Travis, 1993. p.61) 

declared that “invalids will not find more real benefit than in the healthy town 

of Teignmouth, the enclosed vale of Dawlish, or the warmer region of Torquay.” 

Teignmouth was a fashionable seaside resort in the late eighteenth century-early 

nineteenth century (Hoskins, 1954, p.492), and has remained so until now.

The geology around Teignmouth mainly consists of Permian sandstones and 

Breccia, see Figure 4 of Hoskins (1954, p. 17).



Program m e Listing of Synthetic 
Waves

A ppendix  H

The following C programme is compiled by C 
compiler on SunOS (4.1.3.U1), using the script 
“acc S l . c  - o  S i  - I m  - x C C  -u/’.1 One example 
use is such that “s y n w a v e  2 7  2 0 J 8  2  4  2 . 0  >  

s y n w a v e .  d ' , which generates a synthetic wave, 
stored as 27 columns and 2048 rows in file s y n ­

w a v e . d ,  with sampling rate of 2 Hz, four com­
pound waves and an offset of two metres.
/ *  s y n w a v e . c

/ /  S y n :  s y n w a v e  o u t _ c o l s  l e n g  H z  w a v e _ n o  
w a v e _ o f f s e t  

* /

t t include < s t d i o . h> 
i f include < s t d l i b . h >  
ft inc lud e  <mat h.h> 
f tdef ine MAX_PTS 5000 
ffdefine HAX_UAVE 4 
t tdef ine  PI 3.14159

* * * * * * * * * * * * * * *  fjJdifi * * * * * * . * * * '* * * ; *

void m a i n C m t  a r g c ,  char * * a r g v )
{
int i , j , k , t m p ;

int o u t _ c o l s ,  l e n g ,  H z ,  w a v e _ n o ;

double w a v e ^ o f f s e t ;

double
o m e g a i M A X _  W A V E ]  , p l a g l M A X _ W A V E ]  ; 

double vei l , n e w . T ,  s a m p l e _ m t i o ;  

double w a v e _ T L M A X _ W A V E ]  =  

i l O .  0 , 1 1 . 0 , 2 1 . 0 , 2 7 6 4 8 } ;  
double w a v e _ L a g l M A X _  W A  V E ]  =
1 0 , 5 . 0 , 1 0 , 2 0 7 3 6 };
double w a v e _  A  [AT4 A'_ W A  V E ]  =
{ 1 . 0 , 0 . 5 , 0 . 2 5 , 2 . 0 } - ,
/******* Warning *********/  
if  ( a r g c  < 2 ) {

p r i n t f i ” U s a g e : % s  o u t _ c o l s  l e n g  i n _ c o I  l a g  

o u t _ c o l s \ n ” ,  a r g v l O ] ) - ,

1 Refer to Section 4.3.1.

p r i n t f ( . ”\ t o u t _ c o l s : o u t _ c o l s  o f  s t d o u t \ n ” ) ; 

p r i n t f ( ” \ t l e n g : l e n g t h  o f  s t d o u t  

( 5 5 2 9 6 ) \ n ” ) ;

p r i n t f i ” \ t H z : s a m p l i n g  rate 
( H z = 2 ) ~ > T = l e n g / H z \ n ” ) ;

p n n t f ( ’’\ t w a v e _ n o :  w a v e  n u m b e r s

(d)\n
p r i n t f ( ” \ t o f f s e t :  t i d e  o f f s e t  (double)\n”) ; 
ex it(-1 );

> / /  i f
o u t _ c o l s  = a t o i ( a r g v i l ]  ); 
l e n g  =  a t o i ( a r g v l 2 ] ) ;

H z  = a t o i ( a r g v i J ] ) ; 

w a v e _ n o  = a t o i ( . a r g v [ J ]  ); 
w a v e _ o f f s e t  = a t o f ( a r g v i , 5 ]  ) ;

/ * * * * * * *  t r a s f o r m  p a r a m e t e r s  * * * * * * * * * /  

new _ T  = ( o u t _ c o l s *  l e n g )  /  (double) /fe; 
w a v e _ T I M A X _  W A  V E - 1] = n e w . T ;  

w a v e _ L a g l M A X _ W A V E - 1 ]  = n e w  _ T * 3 / 4 ’, 
for ( i = 0 \  K M  A  X _  W A  V E ;  i + + ) {  

o m e g a i i ]  = 2 * P l / w a v e _ T l i ]  ; 
p l a g i i ]  =  2 * P I * w a v e _ L a g l i ] / w a v e  T[i] ;

> / /  i f
/****** c a l c u l a t i o n  &  o u t p u t  * * * * * * * * /  

for (.1= 0 ; K l e n g ;  i + + ) {

for ( , j = 0 ;  j < o u t _ c o l s ;  j + + )  {  

t m p  = i + j + l e n g ;  
v a l  = 0 .  0 ;

s a m p l e _ r a t i o  = t  m p /  (double) H z ;  

for ( k ~ 0 ; k <  w a v e _ . n o ;  k++) {
v a l  += w a v e _ A [ k ] * s i n ( s a m p l e _ r a t i o  * 

o m e g a l k ]  + p l a g i k ] ) ;

y  / /  i

v a l  += w a v e _ o f f s e t ;  

p r i n t f C ’ % . 3 f  ”, v a l ) ;
> / /  j
p n n t f C \ n ”);

> / /  t
} / /  m a i n
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Program m e Listing of Tim e Series 
Analyses

A ppendix  I

The following C programmes are compiled on 
SunOS (4.1.3-U1) either by using the script ua c c  

S l . c  - o  $ 1  - I m  - x C C  - w "  if it contains no NAG 
routines, or by " a c c  S l . c  - c  - I m  - w  - x C C '  and 
“/77 S l . o  - o  S i  - Inag'’ if it includes NAG library 
routines.1 Some FORTRAN programmes are 
compiled using “/77  S l . f  - o  S i  - I m  - I n a g " .

1.1 Q u a lita tiv e  M eth o d
One of the typiccal qualitative approaches to a 
time series is the reconstruction of phase por­
traits. Here are the reconstruction methods.

M ethods o f D elay
Example: c a t  w a v e . d a t  | o p d e l a y  2 7  2 0 -18  I 2 0 0  

s y n o p . d a t

/ *  o p d e l a y . C
/ /  Syn: opdelay  col  leng col  
/ /  Desc: Optimal Delay Time algori thms  
/ /  Read in data
/ /  log of  F i l l  o f  Volme of Matr ix  of  
Displacements
/ / O u t :  [ f _ E ( t ) ,  t / T ,  dim] i . e . ,  II : 
t / T ,  f_E : I I 
* /
»i nc lude < s t d i o .h >
9inc lud e  < s t d l i b . h >
9inc lud e  <raatii.h>
9inc lude  <nagmkl5. h>/* NAGF l i b r a r i e s  
* /
9d e f i n e  HDR 55 
9d e f in e  MU 0.0001
9d e f in e  DIM 9 / *  Embedding dimensions  * /  
9d e f i n e  M2CM 1 . 0 / *  raster to cm * /
9d e f i n e  NV 0.1  / *  nv = /  o f  t o t a l  * /

1 Refer to Section 4,4.1.

» d ef in e  CONST ( 0 .5 )  / /  tau=0.5 T_c 
int RMIDIM+ /] / *  r e f e ren ce  p o i n t s  * /
/ * * *  d a ta _ c o r r e c t io n  **********/
/ /  X_i = 2*X_i i~iy  ~ X_{i~2}  
*******************************/ 
void data_correction(

¡lit n, /*  length of array * /  
double r[] , / *  input  array * /  
double y[] / *  output array * /
)

{
int i;

for ( i-0\  i < n; ;++){
if(r [d  > MU) { yiil  = M2CM*xli] ; > 
else {

yHfl = M 2 C M * ( 2 * yh -n  - yi i -2]) - ,  
if( y[0 <= MU  ) { y[i] = yCi-i]; >

>
} / *  End of  d a ta _ c o r r e c t io n  * /
/****  g e t _ d e t _ f  ************/  
double get_det_f(

int dim, / *  dim of  array * /  
double A [] [] / *  2D array  * /
)

{
int ia, n, ifail;
double det, *wkspce;
wkspce = malloc(2*dim*sizeo f(d o u b le ));
n = dim; ta = dim; ifail = 1;
fO;Jaaf_(A, bia, Sen, Sidet, wkspce, kifail);
free( wkspce) ;
re tu rn (fahs(det ));
> / *  g e t _ d e t _ f ( )  * /
/****** g e t^ m a t r ix _ f  ******/  
double get_matnx„f(  

int dim,  
double dtff, 
double dat_in[~\ ,
int leng, / *  length of  data  * /  
int t a u , / *  value  o f  tau * /  
int nv / *  j - t h  p o i n t  * /
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)
{
int j ,  d ,  t ,  r m O ,  t m p ; 

double s u m  =  0 . 0 ,  s p a c e _ v o l ,  /_ v a l ; 
double *.4;
double B I J ]  [d] = { { 3 3 ,  1 6 ,

7 2 } ,  { - 3 R - 1 0 , - . 5 7 } ,  { - 8 , - 4 , - 1 7 } } ;  
s p a c e _ v o l  = p o w ( d i j f ,  (d ou b le)d im ); 
t m p  = l e n g  -  t a u  * ( . d i m  -  1 ) ;

.4 = (double *) m a l l o c ( d i m  * d i m  * 

s izeo f(d o u b le )); 
forO = 1; j  < =  n v ;  j++H  

r rnO =  R M l C f ]  * j ;  
for ( d  =  0 ;  d  < d i m ;  d + + ) {  

for(< = 0 ;  t  < d i m ;  t + + ) {

A { d * d i m + t ] = d a t _ i n { ( r m O  + 
t * t a u ) ‘/ , t m p ] -  d a t _ i n { ( R M [ d ]  + 
t *  t a u ) V , t m p ]  ;

}  / *  f o r :  t * /
}  / *  f o r :  d * /
s u m  + =  g e t _ d e t _ f ( d i m ,  .4);

> / *  j  * /
f _ v a l  =  l o g (  ( s u m  /  (double) n v  ) /  
s p a c e _ v o l ) ;
\ i ( f _ v a l  < - 1 0 0 0 0 . 0 ) f _ v a l  =  - 1 0 0 . 0 ;  

f r e e ( A ) ; 

retu rn (/_ v a l ) ;
}  / *  g e t _ m a t r ix _ f  * /
/+*+* f i l l ^ f  *******/  
void /)//_/( 

int d i m ,  

double d i f f ,

double dat_in{] , / *  input  data * /  
int n ,  / *  length o f  da ta:  nv * /  

double d a t _ o u t { ]  , / *  log o f  F i l l  * /  

int t a u  / *  TAU * /

)
{
int t ,  n v ;  

double v a l ;

n v  = ( in t)n  * N V ;  / *  la rge  no: 2

p e r c e n t s  of  N * /
fo rd  = 1;  t  <= t a u ;  £++){

d a t _ o u t ( t - 1 ]  =  g e t _ m a t n x _ f ( d i m ,  d i f f ,  

d a t _ i n ,  n ,  t ,  n v  ) ;

}  / *  t  * /
}  / *  f i l  l . f  * /

******************** ******** 
********** main ******************

void m a i n ( i n t  a r g c ,  char * * a r g v )
{
F I L E  * f o u t ;

int t y p e _ l a b e l ,  c o l _ n o ,  c o l _ l e n g ,  t a u ,  s t a r t ,  

n v ;

char h d r i H D R ]  ; 

int i , j , k ;

int t o t a l _ l e n g ,  w i d t h ,  l e n g _ s t e p ,  

s c a l e _ s t e p ;

int t m p _ s c a l v ,  t m p _ w i d t h ,  t m p _ s t e p ,  

t m p _ s ;

double * t m p ,  * d a t a ;  

double * f _ d i m , f _ r e s u l t l D I . \ l + l ]  [ SOU] , v a l ;  

int i w t ,  ¡ fa i l ;  

double * w t ,

x m e a n , s 2 ,  s 3 ,  s 4 , x m m , x m a x ,  w t s u m ; 

double d i f f ;
/********** warning *********/
if  ( a r g c  < 2 )  {

p r i n t f f ” U s a g e :% s  w i d t h  c o l _ l e n g  c o l _ n o  

t a u \ n ” , a r g v l O ]  );
p r i n t f ( ” \ t w i d t h :  ¡ l i m b e r  o f  c o l u m n \ n ” ) ; 

p r i n t f ( ” \ t c o l _ l e n g :  l e n g t h  o f  c o l u n u A n ” ) ; 

p n n t f ( ”\ t c o l _ n o : w h i c h  c o l u m n  is  

used A n ”) ;
p n n t f ( ” \ t t a u ( 2 0 0 ) :  tau = 0 . 5 * T _ c \ n " ) ; 

e x i t ( - l ) ;
> / /  i f
/******** Read in paras  *********/
w i d t h -  a t o i ( a r g v {  / ] ) ;  
c o l _ l e n g =  a t o i ( a r g v l 2 ] ) ; 

c o l _ n o  = a t o i ( a r g v { J ] ) ; 

t a u  =  a t o i ( a r g v l 4 ]  ) ;  

t o t a l _ l e n g  =  c o l _ l e n g ;

/ *  RM[i] : i < S+N-tau/T_a * (E - l )  * /
/ * *  l o c a t e  m e m o r y  f o r  d a t a O  * * * /

R M Z O .] = 1;
t m p _ s  = t o t a l _ l e n g  -  t a u * (  D I M - 1 ); 
forO = /; i <= D I M ;  i + + ) {

R M l t ]  = r a n d ( ) '/, t m p _ s ;

}
d a t a  =  m a l l o c ( t o t a l _ l e n g * s iz eo f(d o u b le )); 
/****  Read in data f r o m  s t d i n  ***** /
t m p  = m a l l o c ( c o l _ l e n g  * s izeo f(d o u b le )); 
c o l_ . n o— ; 
k = 0;
for ( i= 0 ; i < c o l _ l e n g ;  ¡++){

d a t a i i ]  = 0 . 0 ; / /  i n i t i a l i s i n g  

for (./=/); j <  w i d t h ; j++) { 
s c a n f ( ” % l f  ”, Sr v a l ) ;  

if 0  == c o l _ n o ) {  

t r n p l k ]  =  v a l ;

A.++;
> / /  i f

}  / /  j  
}  / /  i
/****** data c o r r e c t i o n  *******/  
d a t a _ c o r r e c t i o n ( c o l _ l e n g ,  t m p ,  d a t a ) ;  
f r e e ( t m p ) ;

/ * * * * * * *  c o m p u t e  d i m s  * * * * * * * * /

i w t  = 0 ;  i f a i l  =  1;

w t  = m a l l o c ( t o t a l _ l e n g  * s izeo f(d o u b le )); 
g 0 1 a a f _ ( & t o t a l _ l e n g ,  d a t a ,  Sc i w t ,  w t ,  

S t x m e a n ,  k s 2 ,  b s 3 ,  &s . { ,  t c x m i n ,  k x m a x ,
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k w t s u m ,  k i f a i l ) ;
d i f f  = ( r m a x  -  x m i n ) ;

f _ d t m  = m a l l o f f t a u  * s izeo f(d o u b le ));
forO = /; i <= D/.V/; /++){

f i l E / G ,  d i f f ,  d a t a ,  t o t a l _ l e n g , f f d t m , 

t a u );
for(j = 0 ;  j < (au; /*-+){ 

f _ r e s u l t [ i ] [j] = f _ d i m [ j ]  ;

}  / /  j  

}  / /  i
f r e e ( f - d i m ) ;  f r e e ( d a t a ) ;
/******** output **********/
i f ( ( f o u t  = /open(orgi'[5] , ” w t ” ) )  = =  N U L L ) {  

p r i n t f f ’’C & n ’t  o p e n  o u t p u t  f i l e  % s \ n ” , 

a r g v i o ]  );
e x i R l ) ;

y / *  i f  * /
f p r i n t f f f o u t ,  ” #  w i d t h  % d  c o l _ n o  % d  

c o l _ l e n g  % d  t a u  % d  N V  %.2f\n” , w i d t h ,  

c o l _ n o ,  c o l _ l e n g ,  t a u ,  N V ) ; 

f p r m t f f f o u t ,  ” #  t a u  d i m l  . . .  

d i m  % d \ n ” , D I M ) ; 
for() = 0 ;  j  < t a u ;  j + + ) {

f p r i n t f f f o u t ,  " % . 3 f  ”, (double) ( > / )  /  
(double) t a u ) ;

for ( i =  1;  i <= D I M ;  ¡++H
f p r m t f f f o u t ,  ” % 8 . 3 f  ”, f _  r e s u l t  i l l  [j] );

> / /  i
f p r m t f f f o u t ,  ”\ n ” ) ;

> / /  j
}■ / /  main

Singular Value D ecom posi­
tion (SV D )
There are two FORTRAN programmes to com­
pute SVD. The first is to calculate the SVD val­
ues, and the second is to construct SVD vectors, 
which can be used to draw phase portraits.

Example: c a t  w a v e . d a t  | l a g f f 7 7  2 7  2 0 f 8  0  1 l  3 2  

| s v d v a l  >  s v d v a l . d a t  for calculating SVD values 
or c a t  w a v e . d a t  | l a g f f 7 7  2 7  2 0  f  8  0  1 1 3 2  \ s v d -  
v e c  >  s v d v e c . d a t  for constructing SVD vectors, 
where l u g f f 7 7  is the data organising programme 
(see below).
/ *  Iag4f77 .c
/ /  Syntax:  l a g f f T 7  width leng hdr  col  
lag win_dim_
/ /  Desc: Prepare  lagged v e c t o r s  f o r  fT7  
p ro cess
/ / O u t p u t :  s t d o u t  
* /
t tincludo <s td io .h >  
t t include < s t d l i b . h >

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

* * . * ; * ;* * : ;* .* * * * * .*  / ^ a  1 H  * * # * * * # # #  + 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * /  

void mam(int a r g c ,  char * * a r g v )

{
char c h l l  ; 
int i , j , k ;

hit w i d t h , l e n g , h d r , c o l , l a g , w m _ d i m ;  

int now _ l e n g ;  

double * d a t a ,  v a l ;

/********* Warning *******/
if  l a r g e  < 2 )  {

p r i n t f f ” U s a g e : % s  w i d t h  l e n g  c o l  M  N \ n ” , 
a r g v K J ]  );

p r i n t f f ”\ t w i d t h :  input w i d t h \ n " ) ; 

p r i n t f f ” \ t l e n g :  i n p u t  l e n g \ n ”); 
p r m t f f ”\ t h d r :  l e n g t h  o f  h e a d e r  in  

c h a r a c t e r s  ( 0 ) .  O n e  l i n e  a t  m o s t . \ n ” ) ;  

p r i n t f f ”\ t c o l . s e l e c t e d  c o l \ n ”) ; 
p r i n t f f  " \ t l a g :  l a g \ n ” ) ; 

p r m t f f ”\ t w i n _ d i m :  w i n d o w  d i m e n s i o n  

( c o l ) \ n " ) ; 

e x i t ( - 1 );
> / /  i f
/ +  Read in paras  from s t d i n  * /
w i d t h  =  a t o R a r g v i l ) ) ; 

l e n g  =  a t o i ( a r g v l 2 ] ); 
h d r  =  a t o i ( a r g v l 3 ]  ); 
c o l  =  a t o R a r g v i J , ) ) ; 
l a g  =  a t o i ( a r g v l 5 ] ) ; 

w i n _ d i m  = a t o i ( a r g v [ ( j ]  );
/******* Read in data * * * /  
if  ( h d r = =  0 ) { ; }

else i s c a n f f ” % s \ n ” , c h ) ;} / /  sk ip  header  
d a t a  = m a l l o c i l e n g  * s izeo f(d o u b le )); 
k  = 0 ;  c o l— ; 
for( i - O ;  i < l e n g ;  i++){ 

for ( j = 0 ;  j <  w i d t h ; j++) { 
s c a n f f ” % l f  ”, k v a l ) ; 

i f ( j  - =  c o l ) {

d a t a i k ] = v a l ;  k + + ;

y / /  i f
> / /  j

y / /  i
/**#+* output ******/
new _ l e n g  = l e n g  /  l a g  -  w i n _ d i m ;  

p r i n t f f ” % d  % d \ n ” , new J e n g ,  w m _ d i t n ) ; 
/ /  M, N in f 7 7  
for0 = 0 ;  i < n e w _ l e n g ;  i++){ 

for (j = 0 ;  j <  w m _ d i m ; f f + ) {

p r m t f f " % o . 3 f  ”, d a t a L G + j ) * l a g l );
> / /  j  
p r i n t f f  ” \ n ”) ;

} / /  i 
f r e e ! d a t a ) ;

} / / m a i n



APPENDIX I. PROGRAMME LISTING OF TIME SERIES ANALYSES 345

The Com putation of SVD Values
* S V D V A L . F

* W A N T Q  . F A L S E .  F O R  L - H  S V

* W A N  T P  . F A L S E .  F O R  R - H  S V

* L  W O R K = N ~  2 +  5 (A -  /)
* L D P T  > =  m a x ( l , N )

* N C O L B  =  0 :  A r r a y  B  i s  n o t  r e f e r e n c e d
*

* . . .  P A R A M E T E R S .........
I N T E G E R  N I N . N O U T  

P A R A M E T E R  ( N I N = 5 , N O U T = 6 )  

I N T E G E R  M M  A  X , N M A  X

P A  R A M E T E R  ( M M  A X - 5 . 5 2 9 6 ,  

N M A  X =  5 12 )

I N T E G E R  L D A , L D Q , L D P T  

P A R A  M E T E R  ( L D A - M M A X ,  

L D Q = M M A X ,  L D P T - N M A X )

I N T E G E R  L W O R K  

P A  R A  M E T E R  ( L  W O R K  =  

2 * ( N M A X - 1 ) )

* . . .  L O C A L  S C A L A R S  . . .

I N T E G E R  l ,  I  F A I L ,  J ,  M ,  N ,

N C O L B

L O G I C A L  W A N T P ,  W A N T Q

* . . .  L O C A L  A R R A Y S  . . . .

D O U B L E  P R E C I S I O N

.4 ( L D A , N M A X ) , D U M M Y U ) ,

Q ( L D Q . M M A X ) , S V ( M M A X ) , 

W O R K ( L W O R K ) , P T ( L D P T . N M A X )

* . . .  E X T E R N A L  S U B R O U T I N E  . . .

E X T E R N A L  F 0 2 W E F

* . . .  S K I P P I N G  H E A D E R  . . .

* R E A D  ( N I N , * )

R E A D  ( N I N , * )  M . N  

I F ( ( M .  G T . M M A X )  . O R .

( N . G T . N M A X )) T H E N

W R I T E  ( N O U T , * )  ’ M  O R  N  I S  

O U T  O F  R A N G E .  '
W R I T E  ( N O U T ,  9 9 9 9 9 ) ' M  = *, 

M ,  ‘ N  =  > , N  

E L S E

R E A D  ( N I N , * )  (

( A ( I , J )  , J = 1 , N ) , 1 = 1 , M )

* . . .  F I N D  S V D  O F  A  . . .

W A N T Q  =  . F A L S E .

W A N T P  =  . F A L S E .

N C O L D  = 0  

I  F A I L  =  0

C A L L  F 0 2 W E F ( M ,  N ,  A ,  L D A ,  

N C O L B ,  D U M M Y ,  1 ,  W A N T Q ,  Q ,  L D Q ,  

S V ,  W A N T P ,  P T ,  L D P T ,  W O R K ,  I  F A I L )

* . . .  O U T P U T  . . .

W R I T E  ( N O U T ,  9 9 9 9 7 )  ’ U 

SINGULAR VALUE (SV), l o g ( S V ) ‘

W R I T E  ( N O U T ,  9 9 9 9 8 )  

( S V ( I )  , L O G ( S V ( /))  , 1 = 1  , N )  

E N D I F  

S T O P

9 9 9 9 9 F O R M A  T  ( I X ,  .4 ,1 5 ,  .4 ,15)  

9 9 9 9 8  F O R M A T  ( 2 F 1 0 . J , )

9 9 9 9 7  F O R M A T  (.4)
E N D

The Construction of SVD Vectors
* S V D V E C . F

* W A N T Q  . T R U E .  F O R  L - H  S V

* W A N T P  . T R U E .  F O R  R - H  S V

* L W O R I \ = N ~  2 +  5  ( N - l )

* L D P T  > =  m a x ( l , N )

* N C O L B  =  0 :  A r r a y  B  i s  n o t  r e f e r e n c e d

*

* . . . P A R A M E T E R S .........
I N T E G E R  N I N . N O U T

P A  R A  M E T E R  ( N I N =  5 ,  N O  U T =  6 )  

I N T E G E R  M M A X ,  N M A X  

P A  R A  M E T E R  ( M M A X = 5 5 2 9 6 ,  

N M A X = 6 . { )

I N T E G E R  L D A ,  L D Q ,  L D P T  
P A  R A  M E  T E R  ( L  D A = M M  A  X , 

L D Q = M M A X ,  L D P T = N M A X )

I N T E G E R  L W O R K  

P A R A M E T E R  ( L W O R K  =

2 * ( N M A X - 1 ) )

* . . .  L O C A L  S C A L A R S  . . .

I N T E G E R  l ,  1 F A 1 L ,  J ,  M ,  N ,
N C O L B

L O G I C A L  W A N T P ,  W A N T Q

* . . .  L O C A L  A R R A Y S  . . . .

D O U B L E  P R E C I S I O N

4 ( L D A , N M A X ) , D U M M Y ( l ) ,

Q ( L D Q , M M A X ) , S V ( M M A X ) , 

W O R K ( L W O R K ) , P T ( L D P T , N M A X )

* . . .  E X T E R N A L  S U B R O U T I N E  . . .

E X T E R N A L  F 0 2 W E F

* . . .  S K I P P I N G  H E A D E R  . . .

* R E A D  ( N I N , * )

R E A D  ( N I N , * )  M . N  

I F ( ( M .  G T . M M A X )  . O R .

( N . G T . N M A X ) )  T H E N

W R I T E  ( N O U T , * ) ' M  O R  N  I S  
O U T  O F  R A N G E .  >

W R I T E  ( N O U T ,  9 9 9 9 9 ) '  M  =  ' ,  
M ,  ’ N  =  ' , N  

E L S E

R E A D  ( N I N , * )  (

( A ( I , J )  , J = 1 , N ) , 1 = 1 , M )

* . . .  F I N D  S V D  O F  A  . . .

W A N T Q  =  . T R U E .
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W A N T P  =  . F A L S E .

N C O L B  = 0  

I  F A I L  = 0

C A L L  F 0 2 W E F ( M ,  N ,  A ,  L D A ,  

N C O L B ,  D U M M Y ,  I ,  W A N T Q ,  Q ,  L D Q ,  

S V ,  W A N T P ,  P T ,  L D P T ,  W O R K ,  I F A I L ) 

* . . .  O U T P U T  . .  .

W R I T E  ( N O U T , 9 9 9 9 7 )  • *  R-H 
SINGULAR VALUE VECTOR, BY COLUMN'

I  F I  M .  G  T .  ( M M  A  X /  2 ) )  T H E N  

D O  1 0  I =  1 ,  M / 5

W R I T E  I N O U T ,  9 9 9 9 6 )  

( A ( I , J )  , J = 1 , N I N )

1 0  C O N T I N U E

E L S E

D O  2 0  I  = l ,  M

W R I T E  ( N O U T ,  9 9 9 9 6 )  

( A ( I , J )  , J = 1 , N I N )

2 0  C O N T I N U E

E N D I F  

E N D  I F  

S T O P

9 9 9 9 9 F O R M A T  ( I X , .4 ,1 5 ,  A , 15 )

9 9 9 9 8  F O R M A T  ( 3 F 1 0 . / , )

9 9 9 9 7  F O R M A T  (.4)
9 9 9 9 6  F O R M A T  ( 5 ( 1  X , F I 0 . 4 ) )

E N D

Poincare Sectioning
Example: c a t  w a v e a l l . d a t  \ p h a s e  2  5 5 2 9 6  2  2 2  3  

> s y n l a g 2 2 . d a t ,  where w a v e a l l . d a t  contains the 
wave data in t i m e - h e i g h t  pairs.
/ *  p h a s e .c
/ /  Syn: phase width  leng in_col  lag 
ou t_ co l s
/ /  D e sc :Organise data in to  columns wi th  
lagged t ime.
/ / I n p u t :  s t d i n ;  width * leng 
/ / O u t p u t :  s t d o u t  
* /
Kindude <std io.h>
K i n d ude < s t d l i b . h >
Kinclude <math.h>
K i n d u d e  <TS.h>
Kdefine MAXPTS 3000 
/************************
******** main ***********

void a r g e ,  char * * a r g v )

{
int i , j , k ;

int w i d t h ,  l e n g ,  i n _ c o l ,  l a g ,  o u t _ c o l s \  

int n e w _ l e n g , o u t _ l e n g ;  

double v a l ,  * d a t a , * d o u t \

/ * + * * *  W a r n i n g  * * * * * * * * * * * /

i f  ( a r g e  < 2H
p n n t f ( ” U s a g e : % s  w i d t h  l e n g  i n _ c o l  l a g  

o u t _ c o l s \ n ’ , a r g v U J ] ) ' ,

p r i n t f ( ” \ t w i d t h :  n u m b e r  o f  c o l s  f r o m  

s t d i n \ n ’’) ;
p r i n t f ( ” \ t l e n g :  l e n g t h  o f  c o l  f r o m  

s t d i n \ n ” ) ;
p r i n t f i  !’\ t i n _ c o l :  c o l  t o  b e  p r o c e s s e d \ i i ’) ; 
p r i n t f ( ” \ t l a g :  l a g g e d  t i m e  ( r e f e r  t o  r e s u l t s  

f r o m  o p d e l a y . c ) \ n ”) ;
p r m t f ( ” \ t o u t _ c o l s :  n u m b e r  o f  c o l u m n  in  

s t d o u t \ n ”) ; 
e n t ( - l ) ;

> / /  i f
/****** Mead paras  ***********/
w i d t h  =  a t o i ( a r g v l ß ) ; 
l e n g  = a t o i ( a r g v l 3 ] ) ; 
m _ c o l  = a t o i ( a r g v [ . 3 ]  ) ;  

l a g  = a t o i ( a r g v l f l )  •, 

o u t _ c o l s  = a t o i ( a r g v [ , 5 ]  );
/***** Mead in data from s t d i n  * * * /  
o u t _ I e n g =  l e n g  /  l a g  -  o u t _ c o l s ;  

i f ( o u t  J e n g  >= M A X P T S ) i  
o u t _ l e n g =  M A  X  P T S ;  

n e w  _ l e n g = l a g * o u t _ l e n g ;

}
else{

new N e n g = l a g * o u t _ l e n g \

>
d a t a =  m a l l o c ( n e w  J e n g  * s izeo f(d o u b le )); 
k  = 0; i n _ c o l — ; 
for ( i = 0 ;  i < l e n g \  i + + )  { 

for (j =  0 ;  j <  w i d t h ; j + + ) { 
s c a n f ( ” % l f  ”, fern/); 
if  (Knew J e n g  && j  == m _ c o l ) {  

d a t a i k ] = v a l \  ÄH-+;
> / /  i f

}  / /  j
> / /  t
/***** data c o r r e c t io n  ***********/
d o u t  =  m a l l o c ( n e w _ l e n g  * s iz e o f(d o u b le )); 
T S _ d a t a _ e x t r a ( d a t a , d o u t , new J e n g ) ; 

f r e e ( d a t a ) ;
/****** Output to s t d o u t  **************/
p r i n t f (  ” #  l e n g  % d  l a g  % d  o u t _ p o i n t s  

% d \ n ” , l e n g ,  l a g ,  o u t j e n g ) - ,  

k  = 0 ;

for0=0; i < o u t _ l e n g ; (++){ 
for ( j = 0 \  j <  o u t  _ c o l s  • , }¥+)■(

p r m t f ( ” % 1 0 . 3 f  ”, d o u t i j * l a g  +  k ]  );
> / /  j
p n n t f ( " \ n ”) ; k  += lag-,

> / /  t 
f r e e  ( d o u t ) ;
} / / m a i n
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1.2 Q u an tita tiv e  M e th ­
ods

One of the typical quantitative analyses of a time 
series is the spectral analysis. It consists of auto­
correlation coefficient functions and power spec­
tra.

A uto-correlation Functions
Example: p i c k w a v e d a t  2  5 5 2 9 6  2  0  w a v e a l l . d a t  \ 

a u t o c o r r  2  5 5 2 9 6  > w a v e a u t o c o r r . d a t  

The programe below, p i c k w a v e d a t ,  is used to 
pre-organise the wave data.
/*  p i c k w a v e d a t a . c

/ /  Usage: p ickwavedata  width lengcol  f i n  
/ / I n p u t :  b-band f i l e s
/ / O u t p u t :  ( s t d i o )  chosen data from f i l e  
* /
t t include <s td io .h >  
t t include < s t d l i b . h> 
t tdef ine  HDR 100
/*  ***************************
/ / D a t a  c o r r e c t i o n  a l g o r i t h m  

/ /  X _ i  =  2 * X _ { i ~ l }  -  X _ { i ~ 2 > 
****************************/  
void d a t a _ c o r r e c t i o n (

double i f ]  , / *  input  array  * /  
int n) / *  length of  array * /

i
int i;
for( i=0; i < n; i++)i  

if(xCil > 0 . 0 H  
z[i] = xCi] ;

} else {
j [ i] = 2 * x f t - l ] -  x [ i - 2 ] ;

}
}

> /*  d a t a _ c o r r e c t i o n  * /  
/ * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * *  m a i n  * * * * * * * * * * * * * * *

m a m C m t  a r g c ,  char * * a r g v )

{
F I L E  * f i n ;

char ch fH D R l ;
int i ,  j ,  n ,  k \

int c o l ,  w i d t h ,  l e n g . h d r ;

double * v a l ,  t m p ;

iff a r g c  < 2 )  {
p n n t f i  " \ n  U s a g e :  % s  w i d t h  l e n g  c o l  

H n . . . \ n ” , a r g v l O ]  );

p n n t f C ’\ t \ t w i d t h :  n o .  o f  c o l u m n s  o f  a n  

i n d i v i d u a l  f i l e \ n ”) ; 
p r i n t f ( ” \ t \ t l e n g t h :  n o .  o f  r o w s \ n ” ) ;  

p r i n t f ( ’’\ t \ t c o l :  t h e  c o l u m n  t o  b e  e x t r a c t e d ,  

0  A n”);
p r i n t f ( ”\ t \ t h d r :  h e a d e r  l e n g t h \ n ” ) ; 

p r i n t f C ’\ t \ t i n  t i l e . \ n ”) ; 
e x i t (  l )  ;

} / *  warning * /
w i d t h  =  a t o i i a r g v f . i l )  ;
l e n g  = a t o i i a r g v f l ] )  ;
c o l  =  a t o i ( a r g v L 3 ] ) ;
h d r  = a t o i ( a r g v f . Q  ) ;
v a i  = m a l l o c i l e n g  * sizeof(double) ) ;
c o l  =  c o l  -  /;
/***** Read in data ********/
f i n  = f o p e n i a r g v f o ]  , ”r t ” ) ; 
if  ( . h d r  <= 0 )  { ;}  
else { f g e t s ( c h ,  H D R ,  f i n ) - , }  

k =  0-,

fori» = 0 ;  i < l e n g ;  i++H
for ( j  = 0 ;  j  < w i d t h  ; _/++){ 

f s c a n f ( f i n ,  ” % l f  ”, S c t m p )  ; 
ifO - -  c o l )  { 

v a l f k ]  = t m p ;  

k  += 1 ;

} / /  p i c k  the r i g h t  col
> / /  j

> / /  i
f c l o s e ( f i n )  ;
d a t a _ c o r r e c t i o n ( v a l ,  l e n g ) ;  

for(i = 0 ;  i <  l e n g ;  ¡++H
p n n t f ( ” % 6 d  % 6 . 3 f \ n ” , i + l ,  v a l f i ] ) ;

> / /  i 
f r e e (  v a i )  ;

> / *  main * /

ACC Main Programme
/ *  a u to c o r r . c
/ /  Syn: a u to c o rr  col  row
/ /  Desc: Estmate a u t o . c o r r  c o e f .
/ /  Input:  s t d i n  
/ / O u p u t :  s t d o u t  
/ /  NB: NAGF—g l3ab f_  ()
*/
t t include < s t d i o . h> 
t t include < s t d l i b . h> 
t t include <math.h> 
t t include <nagmkl5 ,h> 
/*****************#********;******,** 
********* mainf)  ****************** 
***********************************/  
void mainCmt u r g e ,  char * * a r g v )

{
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int i ,  j ,  n;

int x c o l ,  x r o w ,  x s i z e ;
int s i z e _ d  = s izeo f(d o u b le );
double * x d a t ;  / /  arary  to hold data
int n x ,  n k ,  i f  a i l ;

double * x ,  x m ,  rt>, * r ,  s t a t ;

/ * *  Read s t d i n  into  a large  array  * * /
if D i r g e  <  2 )  {.

p r i n t f i ” U s a g e :  % s  c o l  r o w \ n ” , a r g v C O ]  ); 
p r i n t f i ” \ t c o l : n u m b e r  o f  c o l u m n s \ n ”); 
p r m t f i ”\ t r o w : n u m b e r  o f  r o w s \ n ” ) ; 

e x i t i - 1 );
}• / /  warning 
x c o f c  a t o i i a r g v i l l ) ; 

x r o w =  a t o i ( a r g v [ 2 ] ) ; 
x s i z e =  x c o l  * x r o w ;  

x d a t =  m a l l o c i x s i z e  * s i z e _ d );
/ * * *  read data  i n t :  row a f t e r  row * * * /  
for(i -  0 ;  i < x r o w ;  ¡++H 

for ( j  =  0 ;  j <  x c o l ;  j++H  
n = i + j  * x r o w ;  

s c a n f i ” % l f  ”,
> / /  j

> / /  t
/******* au to corr  ************/
x  = m a l l o c i x r o w  * s i z e _ d ) ; 

n x  =  x r o w ;  

n k  = x r o w  /  2 ;  

r  = m a l l o c f n k  * s i z e _ d ) ; 

for(i = 0 ;  i <  x c o l ;  ¡++H 
for (j = 0 ;  j  < x r o w ;  j++){ 

n =  i * x r o w  +  j ;  

x l j ]  = x d a t  [n] ;
} / /  row 

if( i != 0)  {
¿fai l  = 0 ;

g l 3 a b f _ ( x ,  & n x ,  Senk,  & x m ,  Sexv,  r ,  

k s t a t ,  k i f a i l ) ;

p r i n t f i ” #  m e a n  %of v a r a i n c e  % f  s t a t  

% i \ n ” , x m ,  x v ) ;

p n n t f C #  N o .  R  l o g 2 R \ n ’’ ) ;  

for(n = 0 ;  n < n k ;  n++H 
ifC r[n] > 0 . 0 )  {

p r i n t f i  ” % 5 d  % 6 . 3 f  % 6 . 3 ( \ n ” , n + 1 ,  

r[n] , l o g 2 ( r l n ]  ) );
> else if(r[7j] == 0 . 0 ) { 
p n n t f ( ” % 5 d  % 6 . 3 f  0.000W ’, n + 1 ,

r[n]);
> else {

p r i n t f i  ’’% o d  % 6 . 3 f  % 6 . 3 f \ n " , n + 1 ,  

r[ii] , l o g 2 i  f a b s i  r[n] ) ) ) ;
} / /  e l s e - i f  

> / /  n 
> / /  i f

> / /  i :  c o l
f r e e i x )  ; f r e e i r )  ; f r e e i x d a t ) ;

> / /  main

Power Spectra
There are two programmes here. One is C pro­
gramme which prepares the data and the other 
is F77 programme which calculates DPS. 
Example: cat wave.dat | predps 27 20-lS 0 1 \ 
dps > dps.dat
The programme below, predps, is used to pre­
organize the data.
/ *  p r e d p s . c
/ /  Syntax:  predps  width leng hdr col  
/ /  Desc: Prepare lagged v e c t o r s  f o r  /7V  
p r o ce s s
/ / O u t p u t :  s t d o u t  
* /
include <stdio.h> 
ttinclude <stdlib.h>
»define 0UT_C0L(16)
/  ******.*;*.*;*****.****.***.*■*.*
************ main *******

void maini int  arge, char +*argv)
{
char c/i[] ; / /  header  
int i , j ,k ;
int width,leng,hdr, col; 
double +data,val;
/****** Warning ********/
if iarge < 2)  {

pr int f i”Usage:%s width leng col M N \ n ”, 
argvLO] ) ;

print f i”\ twidth:  input width \n”); 
printfi ”\tleng: input leng\n”);  
p r m t f i”\ thdr: length of  header in 

characters (0). One line at m os tAn”) ; 
p n n t f i ”\tcol: selected col \n”) ; 
print f i”\ tnote:  output in 16 cols \n”); 
ex i t i -1 );

> / /  i f
/ *  Read in paras  from s t d i n  * /
width= a t o i i a r g v l D ) ; 
leng = atoiiargviS] ); 
hdr = atoiiargviL] ); 
col = a toi iargvi .{2 );
/******* Read in data *********/  
i f  (.hdr == 0H ;>
else i scanf i”% s\n”,ch) ;> / /  s k i p  header  
data = mallocileng * s izeo f(d o u b le )); 
k = 0; col— ; 
for( i=0; i<leng; i++){ 

for( jpO;j< width; j++){  
scanfi”%lf ”, kval);  
if  i j  == col)(
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d a t a  [A] = v a l \  k + +  ;
> / /  i f

> / /  j
> / /  i
/ * # # * * * * *  o u t p u t  * * * * * * * /  

p n n t f C ’ % d \ n " , l e n g )  ; / /  M i n  f T 7  

for( (=0; i < l e n g \  ¡++H
p r m t f ( ” % 6 . 3 f ” , d a t a i t ] ) ;  
if( G  7. O U T _ C O L ) = = ( O U T _ C O L - 1 ) )  { 

p r i n t f ( ” \ n ” )  ;
>

> / /  t
p r i n t f ( ”\ n ” ) ;  f r e e ( d a t a )  ;
} / /  m a i n

DPS Main Programme
* D P S .  F

* . . P a r a m e t e r s  . .

I N T E G E R  M W O ,  M W 1 ,  N G ,  N X  

I N T E G E R  K C M A X ,  N X  M A X  

P A  R A  M E T E R  ( K C M A  X = 2 2 1 1 8 4 , 

N X M A  X - K C M A  X / 2 )

I N T E G E R  N I N ,  N O U T  

P A R A M E T E R  ( N I N = 5 , N O U T = 6 )

* . . L o c a l  S c a l a r s  . .

D O U B L E  P R E C I S I O N  P W ,  P X  

I N T E G E R  I ,  ¡ F A I L ,  I < C ,  L ,  L G O ,

L G 1 ,  M T X O ,  M T X 1 ,  M T X 2

* . . L o c a l  A r r a y s  . .

D O U B L E  P R E C I S I O N  S T A T S U ) >
X  I K  N X  M A X )

* X G a b c :  a :  c o r r e c t i o n - ,  b :  a n / s m o o t h e d - ,

* c :  a n / l o g  

D O U B L E  P R E C I S I O N

X G O O O i  K C M A  X ) , X G 0 0 1  ( K C M A  X )  
D O U B L E  P R E C I S I O N  

X G l O O i K C M A X ) , X G  1 0 1 (  K C M A X )  

D O U B L E  P R E C I S I O N  

X G 2 0 0 I  K C M A  X ) , X G 2 0 1  ( K C M A  X )  

D O U B L E  P R E C I S I O N  

X G 0 1 0 ( K C M A X ) , X G 0 1 1 ( K C M A X )  

D O U B L E  P R E C I S I O N  

X G I I 0 (  K C M A X ) , X G 1 1 H  K C M A X )  
D O U B L E  P R E C I S I O N  

X G 2 1 0 ( . K C M A X ) , X G 2 1 U K C M A X )

* . .  E x t e r n a l  S u b r o u t i n e s  . .

E X T E R N A L  G 1 3 C B F

* . .  E x e c u t a b l e  S t a t e m e n t s  . .

R E A D  ( . N I N , * )  N X

I F  ( N X .  G T .  0  . A N D .

N X . L E .  N X M A  X )  T H E N
R E A D  ( N I N , * )  ( X H ( I ) , 1 = 1 , N X )  

M T X O  = 0  

M T X I  =  1

M T X 2  =  2  

P X  =  0 .  2 D O  

P W  = 0 . 5 D 0  

M W O  = N X  

M W  l  =  N X / 8  

I < C  = 4 * N X  

L  = N X  

L G O  =  0  

L G I  =  l

* . .  R E A D  D A T A  I N  . .

D O  4 0  1 =  l ,  N X

X G 0 0 0 ( I )  =  X H (  I)

X G  1 0 0 ( 1 )  =  X H (  I )

X G 2 0 0 ( 1 )  =  X I  1 ( 1 )

X G O I O ( I )  =  X I 1 ( 1 )

X G  1 1 0 ( 1 )  =  X I I ( I )

X G 2 1 0 G )  =  X H (  I )

X  G O O  1 ( 1 )  =  X H (  I )
X G  1 0 1 ( 1 )  =  X H ( I )

X G 2 0 1 G )  = X H (  I )

X G O U ( l )  =  X H (  I )

X G l l l ( I )  =  X H (  I )

X G 2 1 K I )  = X H (  I)

40 C O N T I N U E

* D O  N O T  U S E  W R I T E  ( N O U T , * )

* w h i c h  g i v e s  ' tt 1 2 3 .  . . ' on stdout
* T H E  L E A D I N G  S P A C E  I N  * t  1 2 3 . . .  •

* W I L L  C A U S E  P R O B L E M S  T O  g n u p l o t

* . .  M W O  = N X :  u n - s m o o t h e d  . . 

W R I T E  ( N O U T , 9 9 9 0 6 )  • »
U n L o g / C o r r ( n o ,  mean, t r e n d )

L o g / C o r r ( . . . )  ’

W R I T E  ( N O U T ,  9 9 9 9 6 )  • #  DF  

bandwidth l o w e r  upper i f a i l '
W R I T E  ( N O U T ,  9 9 9 9 9 )  ’ tt N o t

s m o o t h e d :  MU =  ’ , MUO

I F A I L  =  1

C A L L  G 1 3 C B F ( N X ,  M T X O ,  P X ,  

M W O ,  P W ,  L ,  K C ,  L G O ,  X G 0 Q 0 ,  N G ,  

S T A T S ,  I F A I L )

W R I T E ( N O U T ,  9 9 9 9 8 )  ' #  

S T A T S ( l ) ,  S T A T S ( 4 ) ,  S T A T S ( 2 ) ,  S T A T S ( 3 ) ,  

I F A I L

I F A I L  =  1

C A L L  G  1 3 C B F ( N X , M T X I ,  P X ,  
M W O ,  P W ,  L ,  K C ,  L G O ,  X G 1 0 0 ,  N G ,  

S T A T S ,  I F A I L )

W R I T E ( N O U T ,  9 9 9 9 8 )  '# \  
S T A T S ( l ) ,  S T A T S ( 4 ) ,  S T A T S ( 2 ) ,  S T A T S ( 3 ) , 

I F A I L

I F A I L  =  1

C A L L  G 1 3 C B F ( N X ,  M T X 2 ,  P X ,  

M W O ,  P W ,  L ,  K C ,  L G O ,  X G 2 0 0 ,  N G ,  

S T A T S ,  I F A I L )

W R I T E ( N O U T ,  9 9 9 9 8 )  ‘ it >, 

S T A T S ( l ) ,  S T A T S ( 4 ) , S T A T S ( 2 ) ,  S T A T S ( 3 ) ,  
I F A I L
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I FAIL = 1
CALL G13C'BF(NX, MTXO, PX, 

MWO, PW, L, KC, LGl, XGOOI, NG, 
STATS, IFAIL)

WRITE(NOUT, 99998) «#  
STATS(l), STATS(4), STATS(2), STATS(3), 
IF AIL

I FAIL = 1
CALL G13CBF(NX, MTX1, PX, 

MWO, PW, L, KC, LG1, XG101, NG, 
STATS, I FAIL)

WRITEiNOUT,99998) ,
STATS(l), STATS(4), STATS(2), STATS(3), 
IF AIL

I FAIL = 1
CALL G13CBF(NX, MTX2, PX, 

MWO, PW, L, KC, LG1, XG20I, NG, 
STATS, IFAIL)

WRITE(NOUT,99998) *# \  
STATS(l), STATS(4), STATS(2), STATS(3), 
IF AIL 
*

WRITE (NOUT,99999) '« 
Smoothed: window (freq.width) = /’, HW1 

I FAIL = 1
CALL G13CBF(NX, MTXO, PX, 

M W  I, PW, L, KC, LGO, XG010, NG, 
STATS, I FAIL)

WRITER NOUT, 99998) '» 
STATS(l), STATSC4), STATS(2), STATS(3), 
IF AIL

I FAIL = 1
CALL G13CBF(NX, MTX1, PX, 

MW1, PW, L, KC, LGO, XG110, NG, 
STATS, I FAIL)

WRITE(NOUT,99998) '» 
STATS(l), STATS(4), STATS(2), STATS(3), 
IF AIL

¡FAIL = 1
CALL G13CBFCNX, MTX2, PX, 

MW1, PW, L, KC, LGO, XG210, NG, 
STATS, I FAIL)

WRITER NO UT, 99998) •* ’, 
STATS(l), STATSC4), STATS(2), STATS(3), 
IFAIL

I FAIL = 1
CALL G13CBFINX, MTXO, PX, 

M W  I, PW, L, KC, LG1, XG011, NG, 
STATS, IFAIL)

WRITEiNOUT,99998) '» ', 
STATSU), STATS(4), STATS(2), STATS(3), 
IFAIL

IFAIL = 1
CALL G13CBF(NX, MTX1, PX, 

MW1, PW, L, KC, LG1, XGlll, NG, 
STATS, IFAIL)

WRITEiNOUT, 99998) '* ',

STATS(l),  STATS(4), STATS (2) , ST ATS 13) , 
IFAIL

I F A I L  = 1

C A L L  G 1 3 C B F ( N X ,  M T X 2 ,  P X ,  

M W  I ,  P W ,  L ,  K C ,  L G  I ,  X G 2 1 I .  N G ,  

S T A T S ,  I F A I L )

W R I T E I N O U T , 9 9 9 9 8 )  ># \  
STATS(l),  STATS(4) ,  STATS(2 ) ,  STATS(3 ) ,  
IFAIL 
*

W R I T E  ( N O  U T ,  9 9 9 9 6 )  ' » N o .

Corr(raw mean t ren d)  SmCorr(ibid) 
Lo gCorr ( i b id )  LogSmCorr(ibid) '

W R I T E !  N O U T ,  9 9 9 9 7 )

+ ( / ,  X G 0 0 0 U ) ,  X G 1 0 0 U ) ,
X G 2 0 0 ( 1 ) ,

+  X G O I O ( I ) ,  X G  1 1 0 ( 1 ) ,  X G 2 1 0 G ) ,

+ X G O O I  ( I ) , X G  1 0 1 ( 1 ) ,  X G 2 0 K I ) ,

+  X G O U ( I ) , X G l l l ( I ) , X G 2 1 K 1 ) ,  
1 = 1 ,  N G - 1 )

E N D  I F  

6 0  S T O P
*
9 9 9 9 9  F O R M A T  ( A ,  I)

9 9 9 9 8  F O R M A  T  ( A  , F 5 . 1 , 3 F 8 . 4 , 1 2 )

9 9 9 9 7  F O R M A T  ( I 5 . 1 2 F 1 0 . 3 )

9 9 9 9 6  F O R M A T  ( A )

E N D
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R2 .019 .13 .00: t values for the test between two slopes (FDs of the real wave)
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•
! 1

R4 .041 .38, .49 .07 .00! t = ABS(SE1 - SE2) / SQRT(SE1*SE1 + SE2*SE2)

R5 .040 •37l .47 .oe; .02 .00 n = (N1-2) + (N2-2) = (11-2) + (11-2) -1 8 |
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R21 .045 .44 .53 I 14 .07 .08 .07 ; .03 .08 .07 .05 .08 .02 .02, ,02| .02 .02 ,02| .00; .02 .02 .00 I
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
SE .069 .070 .069 .070 .070 .072 .067 .065 .067 .065 .068 .067 .066

H1 .069 .01
R2 .070 .00 .01 < CD C

R3 .069 .01 00 .01
R4 .070 .00 .01 .00 .00 t = AE
R5 .070 .00 .01 .00 .00 .02 n = (t
R6 .072 .02 .03 .02 .02 .00 .05 where
R7 .067 .03 .02 .03 .03 .05 .00 .02
R8 .065 .05 .04 .05 .05 .07 .02 .00 .02
R9 .067 .03 .02 .03 .03 .05 .00 .02 .00 .02
R10 .065 .05 .04 .05 .05 .07 .02 .00 .02 .00 .03
R11 .068 .02 .01 .02 .02 .04 .01 .03 .01 .03 .00 .01
R12 .067 .03 .02 .03 .03 .05 .00 .02 .00 .02 .01 .00 .01
R13 .066 .04 .03 .04 .04 .06 .01 .01 .01 .01 .02 .01 .00 .01
R14 .065 .05 .04 .05 .05 .07 .02 .00 .02 .00 .03 .02 .01 .00
R15 .068 .02 .01 .02 .02 .04 .01 .03 .01 .03 .00 .01 .02 .03
R16 .067 .03 .02 .03 .03 .05 .00 .02 .00 .02 .01 .00 .01 .02
R17 .068 .02 .01 .02 .02 .04 .01 .03 .01 .03 .00 .01 .02 .03
R18 .065 .05 .04 .05 .05 .07 .02 .00 .02 .00 .03 .02 .01 .00
R 19 .067 .03 .02 .03 .03 .05 .00 .02 .00 .02 .01 .00 .01 .02
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COp
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R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27

; t values for the test between two slopes (FDs of the synthetic wave)

I { ! i | | | |
t = ABS(SE1 - SE2) / SQRT(SE1*SE1 + SE2*SE2) 

n = (N1-2) + (N2-2) = (11-2) + (11-2) = 18
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| .01
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Land Use and Conservation of 
Taiwan, R .O .C .

A ppendix  L

The Republic of China is situated in Eastern Asia, and includes islands bordering 

the East China Sea, Philippines Sea, South China Sea, and Taiwan Strait, north of 

the Philippines, off the southern coast of China.1 The total area is 35980 square 

kilometres, roughly the same size as the Netherlands (WCMC, 1994). The land, 

including the Pescadores, Matsu, and Quemoy, is 32260 square kilometre long. The 

coast line is 1448 kilometres. Mean temperatures range from 25° to 28°c, from 

June to September, respectively. The average temperature in winter, that is, from 

November to April, is 20°c. The annual rainfall exceeds 2000 millimetres or 78.7 

inches (Tsai & Simpson, 1992).

The tropical and marine climate reflects the fact that the Tropic of Cancer passes 

through the middle of the main island, Taiwan. The rainy season is during the 

southwest monsoon from June to August. Cyclones occur frequently. Cloudiness, 

except in the south, is persistent and extensive all year. Two-thirds of Taiwan, 

mainly in the east, is mostly rugged mountainous terrain. However, the terrain 

descends to gently rolling plains in the west (Tsai h  Simpson, 1992).

1 Refer to page 163.

355
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TYV UK (TVV : UK) US ( t y v : us)
Population (million) 21* 58** (1 : 2.8) 264* (1 : 12.6)
Land Area (km2) 32.3e3 241.6e3 (1 : 7) 9.2e6 (1 : 284)
Population Density (head/km2) 651.0 240.1 (2.7 : 1) 28.8 (22. 6: 1)
Land Use I (%)

Arable Land 24 29 (1 : 1.2) 20 (1.2 : O
Meadows & Pastures 5 48 (1 : 9.6) 26 (1 : 5.2)
Forest & Woodland 55 9 (6.1 : 1) 29 (1.9 : 1)
Other 16 14 (1.1 : U 25 (1 : 1.6)

Land Use II (ha/103)
Food Production 44.5 320.7 (1 : 7.2) 1597.2 (1 : 35.9)
Potential Conservation 84.5 37.5 (2.3 : U 1006.9 (1 : 12.0)
Conservation/Food 1.89 0.12 (16 1) 0.63 (3 : 1)

Table L.l: Comparison of Land Uses Between Taiwan, the UK and the US. 
Symbols * and ** indicate the populations estimated in 1995 and 1992, respectively. 
The digraphs TVV, UK and US represent Taiwan, the Republic of China, the United 
Kingdom, and the United States of America, respectively. The Food Production 
area in Land Use II is the total of the Arable Land and Meadows &; Pastures, while 
the Potential Conservation includes Forest & Woodland in Land Use I. Source: The 
1996 World Fadbook (1996).

A summary of basic statistics between Taiwan, the Republic of China (TVV), the 

United States (US) and the United Kingdom (UK) is given in Table L.l. The total 

population of TVV is rather small, compared with that of US and UK. However, 

the population density is relatively high, given the small land area. Twenty-nine 

per cent of land used for agricultural purpose confirms that two-thirds of Taiwan 

is mountainous (Tsai & Simpson, 1992), compared with nearly half of the land in 

the US, and three-quarters of the land in the UK which are of agricultural use. A 

much lower land area per thousand people than in the US or the UK is used for 

agricultural production. Also, more land per thousand people in US than in TVV 

and the UK potentially contributes to conservation. However, the conservation/food 

ratio is much higher in TVV than in either the UK or the US.

All figures in Table L.l indicate that there is great potential for conservation in 

Taiwan. Indeed, there are more than two hundred peaks of over 3000 metres which 

connect to form the Central Ridge that is termed the backbone of the island. The
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Central Ridge includes "Jade Mountain", the highest peak in East Asia, which rises 

to 3952 metres or 12965 feet. With its tropical and marine weather, Taiwan supports 

diverse flora of over 4000 vascular plant species (1075 endemic) and a spectrum of 

six forest types. This environment in turn supports rich fauna: sixty-one species of 

mammals (42 endemic), more than 400 species of birds (70 endemic), 92 species of 

reptiles, 30 species of amphibians, 140 species of freshwater fish, and an estimated 

50000 insect species, including more than 400 species of butterflies (McHenry &; Lin, 

1984; Tsai Sz Simpson, 1992).

T itle Cat. Major Protected Features Ha. Year
Renting V Marine Ecosystem, Uplifted Coral Reef, Limestone 

Caves, Slumping Cliffs, Tropical Coastal Rainforest, 
Waterfowl, Migratory Birds, Butterflies.

17731 19S5

K in men Historical Battlefields, Traditional Ming Villages, 
Historical Sites, Archaeological Sites, Natural Scenic 
Areas.

5745 1995

Lanyu II n/a 29146 n /a
Shei-pa II High Mountains, Rugged Terrain, Cliffs, Natural 

Forest, Wildlife. Rare Species of Flora and Fauna.
76850 1992

Taroko II Marble Gorge, Sheer Cliffs, Waterfalls, High Moun­
tains, Valleys, Streams, Wildlife, Virgin Forest, Pre­
historic Relics Trail.

92000 19S6

Yanmingshan V Volcanic Geological Forms, Meadows, Hot Springs, 
Waterfalls, Butterflies, Birds, Amphibians.

11456 1985

Yushan II High Peaks and Mountainous Terrain, Diversity of 
Plants and Wildlife, Virgin Forest, Large Mammals, 
Rare Species of Flora and Fauna.

105490 1985

Table L.2: List of National Parks in Taiwan.
IUCN Categories and the major protected features are given. Sources: Tsai k  
Simpson (1992) and IUCN (1994).

However, it was not until 1985 that the first national parks were established. 

Table L.2 lists the major protected features, area and established year of the seven 

national parks in Taiwan. The World Conservation Union (IUCN) Management 

Categories to which they belong are also given. The World Conservation Union 

(IUCN) Management Categories I -  V are listed in Table L.3 below. This classifi­
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cation defines what activities are allowed or not allowed in such areas. Most of the 

national parks in Taiwan fall into Category II which aims to ‘‘protect outstanding 

natural and scenic areas of national or international significance for scientific, edu­

cational, and recreational use.” Kenting and Yanmingshan national parks belong to 

Category V which is to ‘‘maintain nationally significant natural landscapes which 

are characteristic of the harmonious interaction of man and land while providing op­

portunities for public enjoyment through recreation and tourism within the normal 

life style and economic activity of these areas.”

Shei-pa national park aims to protect features such as high mountains, rugged 

terrain, cliffs, natural forest, wildlife, rare species of flora and fauna. However, this 

thesis focuses on its geomorphology.
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I. Strict Nature R eserve/Scientific Reserve. To protect nature and main­
tain natural processes in an undisturbed state in order to have ecologically 
representative examples of the natural environment available for scientific 
study, environmental monitoring, education, and for the maintenance of 
genetic resources in a dynamic and evolutionary state.

II. National Parks. To protect outstanding natural and scenic areas of na­
tional or international significance for scientific, educational, and recre­
ational use. These are relatively large natural areas not materially altered 
by human activity where extractive resource uses are not allowed.

III. Natural M onum ents/N atural Landmarks. To protect and preserve
nationally significant natural features because of their special interest or 
unique characteristics. These are relatively small areas focused on the 
protection of specific features.

IV. Managed Nature R eserves/W ild life Sanctuary. To assure the natu­
ral conditions necessary to protect nationally significant species, groups 
of species, biotic communities, or physical features of the environment 
where these may require specific human manipulation for their perpetua­
tion. Controlled harvesting of some resources can be permitted.

V. Protected Landscapes and Seascapes. To maintain nationally signifi­
cant natural landscapes which are characteristic of the harmonious inter­
action of man and land while providing opportunities for public enjoyment 
through recreation and tourism within the normal life style and economic 
activity of these areas. These are mixed cultural/natural landscapes of 
high scenic value where traditional land uses are maintained.

Table L.3: The 1UCN Management Category.
Here Categories VI to VIII are not included. Note that a revised Category system is 
under construction at the time of writing. Source: The World Conservation Union 
(IUCN) (1994).
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Program m e Listing of Converting  
D EM  to ID R ISI

The computer programme for converting the 
digital elevation model files to files of Idrisi for­
mat is listed below.1 The following script is used 
to compile the C programme, that is, “acc - c  -Irn 

S l . c ” .
/*
/ /  DEM2IDRISI. C
/ / U s a g e :  DEM2IDRISI in. img o u t . b i n  
o u t . doc
/ /  Desc: Read TUN DEM image f i l e  and 
conve r t  i t  in to  Unix rec o g n i sa b le  f i l e ,  
/ / * . b i n  and i d r i s i  * .doc .
/ /  Input:  TUN DEM: *. img -> *. dem ' cos  
i d r i s i  uses . img. See below.
/ / O u t p u t :  Unix b inary  f i l e :  * . b in  -> 
i d r i s i  .img
/ / i d r i s i  document f i l e :  * .doc  
* /
^ i n c l u d e  <stdio.h> 
tinclude <stdlib.h>
#def ineSTART60 
#defineHDR22 
#defineR0WS75 
#def ineINFOl1 
#defineBLK400
/**************** main *************/  
void mam(int a r g c ,  char * * a r g v )

{
F I L E + f i n ,  * f t m p ,  * f b t n ,  * f d o c ;  

c h a r h d r l H D R l , s o u r l j ]  , d e s t i f l  , 
c h _ i n i B L I \ ]  , c h _ o u t t B L I \ 1  ; 
i n t v a l O ,  v a l l = 0 ,  p a r a i l l l  , 
x m m ,  y m i n ,  x m a x ,  y m a x ,  r e s o l ,  r o w s ,  
c o l s . z m a x ,  z m i n ;  
short in t h g t ;  
f l o a t v a l ;
i n t i ,  j ,  k ,  l ,  m ;
i n t s t a r t ,  char_si~e, int_si.ce, short_si;e, 
float_si.ee;

1 Refer to section 5.3.1.

if { a r g c  <  2 )  {

p r w t f C ’ S y n t a x :  %s i n . i m g  o u t p u t . b i n  

input.doc\n” , a r g v [ 0 ] ) ;  
p r i n t f ( ” \ t i n . i m g :  input i i l e s \ n ” ) ;  

p r m t f ( . ’' \ t o u t p u t . b i n :  o u t p u t  f H e . \ n ” )  ; 
p r i n t f ( ” \ t \ t t o  b e  c o n v e r t e d  i n t o  i d r i s i  i m a g e  

b y  d d \ n ”) ;
p r i n t f C ’ \ t o u t p u t . d o c :  o u t p u t  i d r i s i  d o c u m e n t  

f i l e . \ n ” )  ; 
e x i t ( O )  ;
> / *  i f  * /
/ *  char: 1; s h o r t  i n t :  2; i n t / f l o a t  :
double: 8 b y t e s  * /
char_si.ee = sizeof(char) ;
int_sice = sizeof(int) ;
short_sire = sizeof(short int);
float.sice -  sizeof(float) ;
if( ( J i n  = f o p e n i a r g v l l l  , ” r b ”)) == N U L L H

p r m t f ( ” C a n ’t o p e n  i n p u t  f i l e  % s \ n ” ,

a r g u ì  11 ) ;
e x i t ( O )  ;

> / *  i f  * /
/ *  open a temporary f i l e  to hold data * /
if( . ( f t m p  =  J o p e n C ’ t e m p . i m g ” , ” w b ” ) )  == 
N U L L ) {

p r i n t f i " C a n ’t o p e n  t e m p  b i a n r y  f i l e ;  

t e m p . i m g \ n ” ) ; 
e x t t ( l )  ;
>
/*
/ /  Convert b y t e s  in to  d e s i r a b l e  o rder
and output as a f i l e
/ /  keep the header: 60 b y t e s
/ /  m irro r  each 4 b y t e s  between 6 0 - t h  and
4 0 0 - t h  b y te :  1234 becomes 4321
/ /  swab each 4 b y t e s  a f t e r w a r d s :  1234
becomes 3412,
/ /minus  1 from element 2 o f  o r i g i n a l  
before  put in to  new order  
* /
/seek(fin, 01, SEEK_SET) ; fseekiftmp, 01,

360
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S E E K . S E T );
f r e a d l c h . i n ,  char.sice, B L I \ ,  f i n ) ;  

for( A■ =  0 ;  k  < S T A R T ;  k + + ) {  

c h . o u t l k ]  = c h . i n i k ] ;
}  / /  k: 0-60
forU- = S T A R T ;  k  < B L K ;  ){
for(/ = 0 ,  m  =  3 ;  l  < 4 ,  m  >= 0 ;  /++,
m — ) {
c h . o u t i k  + m] = c h . m i k  +  /] ;
} / /  l : m i r r o r

k  += 4:
> / /  k :  6 0 - 4 0 0

f w r i t e l  c h . o u t ,  char.sice, B L K ,  f t m p ) ; 

f s e e k l f i n ,  B L K ,  S E E K . S E T A  ; 
f s e e k i f t m p ,  B L K ,  S E E K . S E T ) ; 

f o r d  =  0 ;  l  < R O W S ;  1 + + H  
f r e a d l c h . i n ,  char .sice , B L K ,  f i n ) ;  

for I k  =  0 ;  k  <  B L I \ ; ) { .  

c h . o u t l k + O ]  =  c h . m i k + O - l ;  

c h _ o u t [ k +  /] = c h _ i n [ k + ( J ]  ;
c h . o u t i k + 2 ] = c h _ i n l k + 3 ]  ; 

c h _ o u t l k + 3 ]  =  c h . i n i k + 2 ] ;
k  += 4'<
]■ / /  k :  s w a b

f w r i t e ( c h _ o u t ,  char.sice, B L K ,  f t m p ) ;

}
f c l o s e ( f i n ) ; f c l o s e ( f t m p ) ;
/*
/ /  r e a d  t h e  d a t a  f r o m  c o r r e c t e d  f i l e  

/ / p u t  i t  i n t o  a  f i l e  

* /
f t m p  =  f o p e n ( ” t e m p . i m g ” , ” r b ” ) ; 

i f ( ( f b i n  =  f o p e n ( a r g v i S ]  , ” w b ”)) == 
N U L L ) {

p r i n t f i ” C a n ’t  o p e n  o u t p u t  i m a g e  Tile: % s \ n ” , 

a r g v t d l ) ;  
e x i t (  1 ) ;

y
f s e e k ( f t m p ,  O L ,  S E E K . S E T ) ; f s c a n f i  f t m p ,  

” % s ” , h d r ) ;

f s e e k i f t m p ,  S T A R T ,  S E E K . S E T ) ;

f r e a d { p a r a ,  hit_sice, 1 1 ,  f t m p ) ;

x m i n  = p a r a i O ]  ;
y m i n  =  p a r a i J ]  ;
x m a x  =  p a r a  [./] ;
y m a x  = p a r a i D  ;

r e s o l  = p a r a  [5] ;
r o w s  = p a r a [50 ;
c o l s  = p a r a l l f f ]  ;

z m i n  =  9 9 9 9 ;

z m a x  -  0 ;

f s e e k i f t m p ,  B L K ,  S E E K . S E T ) ; 

f s e e k l f b m ,  O L ,  S E E K . S E T ) ;  

for I k  = 0 ;  k  < r o w s ;  k + + ) {  

f s e e k i f t m p ,  k * B L I \ ,  S E E K . S E T ) ;  

for( 1 = 0 ;  l  < c o l s ;  /++){ 
f r e a d l k v a l ,  float.sice , 1 ,  f t m p ) ;

h g t  =  (short int) v a l ;

\ i l h g t  > 0  && h g t  > zm a x ) zm a x  = h g t ;  

\ T l h g t  > 0  && h g t  < z m t n )  z m i n  =  h g t ;  

i d h g t  < 0 )  h g t  =  0;  

f w r i t e l k h g t , short.sice, / ,  f h m ) ;

y /*  i * /  
y /*  k * /
f c l o s e l f t m p ) ; f c l o s e l f b i n ) ;
i T l l f d o c  =  f o p e n l a r g v i J ]  , ”wt”)) ==
N U L L ) {

p r i n t f C ’C a n ’t  o p e n  o u t p u t  d o c  Tile: % s \ n ” , 

a r g v i J ]  ) ;  

e x i t l  1 ) ;

y
/ * * *  w r i t e  o u t  i d r i s i  

f p n n t f l f d o c , "Tile t i t l e  

f p n n t f l f d o c , ’’d a t a  t y p e  

f p r i n t f l f d o c , ’’Tile t y p e  

f p r i n t f l f d o c , ’’c o l u m n s  

f p r i n t f l f d o c , ” r o w s  

f p r i n t f l f d o c , ” r e f .  s y s t e m  

f p r i n t f l f d o c , ” re f .  u n i t s  

unit d i s t .  

m i n .  X

f p r i n t f l f d o c ,  

f p n n t f l f d o c , 

r e s o l ) ;

f p r i n t f l f d o c , ’’max. X  

r e s o l ) ;
f p n n t f l f d o c , ” m i n .  Y  
r e s o l ) ;
f p n n t f l f d o c ,  ’’m a x .  Y  

r e s o l ) ;

f p r i n t f l f d o c ,  ’’p o s ’n  e r r o r  

f p r i n t f l f d o c ,  ’’resolution 
f p n n t f l f d o c , ’’min. v a l u e  

f p n n t f l f d o c ,  ’’m a x .  v a l u e  

f p r i n t f l f d o c ,  ’’ v a l u e  u n i t s  

f p n n t f l f d o c ,  ’’v a l u e  e r r o r  

f p r i n t f l f d o c ,  ’’f l a g  v a l u e  

f p n n t f l f d o c , ’’f l a g  d e f ’n  . 

f p r i n t f l f d o c , ’’l e g e n d  c a t s  

f c l o s e l f d o c ) ;

} / *  m a i n  * /

d o c  f i l e  * * * /  

% s \ n ” , nr<7i’[ / ] ) ;  
: i n t e g e r \ n ” ) ; 
b i n a r y \ n ” ) ;
: % d \ n ” , c o l s ) ;

: % d \ n ” , r o w s ) ;  

: p l a n e \ n ” ) ; 

m \ n ” )  ;

• l \ n ” ) ;

: % d \ n ’

% d \ n ” , 

% d \ n ” , 

% d \ n ” ,

x m i n  -

x m a x  +

y m i n  -

y m a x  +

: u n k n o w n \ n ” ) ; 

u n k n o w n \ n ” )  ;

: % d \ n ” , z m i n ) ;

: % d \ n ” , z m a x ) ;  

: c l a s s e s \ n ” ) ;

; u n k n o w i A n ” )  ; 

n o n e \ n ’’ )  ; 
none\n”) ;

: 0 \ n ”) ;
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Program m e Listing of Synthetic 
D EM s

The following C programme is compiled by C 
compiler on SunOS (4.1.3.U1), using the script 
“acc S l . c  - o  $ 1  - I m  - x C C  -ui" A  The example 
use of this programme is like “ s x j n d e m  0 . 2  0 . 8  

n s y n 2 8 n . b i n  s y n 2 8 n . d o c ", which generates the 
landscape with the offset of 0.2, H  of 0.8, and 
no random addition, which is stored in the files 
of syn28syn.bin and syn28syn.doc .
/ /  syndem.c
/ / U s a g e :  syndem Sigma H y /n  .b in  .doc  
/ /  Desc: Terrain model by mid -po in t  
displacement
/ / S o u r c e :  p . T T U p . l O O ,  the sc i en ce  of  
f r a t a l  images, 1988.
*/
ttinclude <stdio.h> 
ttinclude <stdlib.h> 
ttinclude <math.h> 
ttdefine JVrand (4)
ttdefine Arand ((int)((pow(2,15))-(l))) 
itdefine GaussAdd (sqrt ((3.0)* (Nrand))) 
ttdefine GaussFac ( (2. 0)* (GaussAdd) /
((Nrand)*(Arand))) 
tide fine SEED (100) 
ttdefine MAX.LEVEL (10)
«define MAP.SIZE (1024)
«define BASE (0.1) 
ttdefine SCAL (0.5)
«define MAG (4000.0) 
ttdefine OFFST (1)
ttdefine MIN(x, y)(((x)<=(y))?(x) : (y)) 
ttdefine MAX(x, y)(((x)>(y))?(x) : (y ) 
/****** InitGaussO ******/ 
void
/m/GaussCunsigned hit s e e d )

i
s r a n d ( s e e d ) ;

> / /  In i tG a u s s O  
/ i t****** Gauss ( )  ****** /

1 Refer to Section 5.4.3.

double
G a u s s ( )
{
int i ;
int s u m  =  0 ;

forO = 0 ;  i <  N r a n d ; ¡++) { 
s u m  += r a n d ( );

>
retu rn ( G a u s s F a c  * (double)sum  - 
G a u s s A d d ) ;
> / /  Gauss()
/****** f^()  **##*#/
double
f 4 (  double d e l t a ,  double x O ,  double x l ,  

double x “2 ,  double x 3 )

{
double r e s u l ,  * r a n ;
r e s u h  ( x O  +  x l  +  x 2  +  x 3 ) / 4 - 0  + d e l t a  * 
G a u s s ( ) ; 
return ( r e s u l ) ;
> / / f  4 0
/****** f3() ******/ 
double
f 3 (  double d e l t a ,  double x O ,  double x l ,  

double x 2 )

i
double r e s u l ,  * r a n 4,

r e s u l =  ( x O  +  x l  + x 2 ) / 3 . 0  + d e l t a  *

G a u s s ( ); 
return ( r e s u l ) ;
> / /  J3()
/**********************+*
****** main()  *********** 
* * * * * * * * * * * * * * * * * * * * * * * * * /  

void mom(int u r g e ,  char * * a r g v )

{
F I L E  * / 0 1 ,  * f 0 2 ;  
char c/i;
int t , x , y ,  * z \

int N ,  D ,  d \

362
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short int i t m p [ . \ I A P _ S I Z E ]  [A//1 P . S I Z E ]  , 

i m i n ,  i m a x ;

float AT M A P . S I Z E ]  i M A P . S I Z E ];
double d e l t a ,  s i g m a ,  H _ con st, m i l ,  v m a x ,  

v m i n ,  v r a n g e ,  v c e n t r e ; 

ifC a r g c  < 2 )  i

p n n t f C ’ U s a g e :  % s  s i g m a  I n c o n s t a n t  

n o / v e s \ n ”, a r g v i d ]  );
p r i n t f i ” \ t s i g m a : i n i t i a l  s t d  ( 0 . 5 ) \ n ”); 
p r i n t f C ’\ t H _ c o n s t :  P a r a m e t e r  H ( 0 . 8 ) ,  D  =  

3  -  H \ n ” ) ;
p n n t f ( ”\ t N o / Y e s :  T u r n  r a n d o m  a d d i t i o n  

o n ?  [ N ] o / [ Y ] e s \ n ” ) ;

p n n t f { ” N o t e :  m a p  s i z e  =  % d  x  % d \ n ” , 

M A P _ S I Z E ,  M A P  . S I Z E ) - ,  

e x i t  ( . - I ) ;
} / /  warning msg
s i g m a  =  a t o f i a r g v i l ] );
H _const = a t o f ( a r g v [ Z ]  ); 
c h  = a r g v CO i d ]  ;

I r u t G a u s s ( S E E D ) ;

N  =  ( i n t ) e x p 2 ( . M A X . L E V E L ) ;

d e l t a  =  s i g m a ;

for(x  = 0 ;  x  < M A P _ S I Z E ;.;++){ 
for (y -  0 ;  y  < M A P . S I Z E ;  y + + ) i  

A'Cx] Cy] = B A S E ;

> / /  y
}  / /  x
A'CO i d ]  = d e l t a  * G a u s s O ;

A'CO [AG = d e l t a  * G a u s s O ;

X L N ]  i d ]  = d e l t a  * G a u s s O ;

X I N ]  [AG = d e l t a  * GaussO;
/*
/ /DEM  ge nera t ion
/ /G o in g  from g r i d  type  I  to t yp e  I I  
/ / t h e n  type  I I  to type  I  
* /
D =  N ;  

d  =  N / 2 ;

for (¡=0; K  M A X  . L E V E L ;  i + + ) {

/ * * *  type  I  to t ype  I I  * * * /
d e l t a  *= p o w i S C A L ,  S C A L * H _ c o u st);  
for(x  = d ;  x  < =  N - d ;  x  += D ) {  

for ( y  =  d ;  y  <= N - d ;  y  += D ) L  

A'Cx] Cy] =
fJ, ( d e l t a , A'Cx+0 Cy+0 , A'Cx+O CyO ,
A'Cx-O Cy+O , A'Cx-0 C y O );

> / /  y
}  / /  x

if( O h  == 'y ')  II O h  == * Y’ ) K  
for(x  -  0 ;  x  <= N ;  x  += D ) i  

for(y = d ;  y <= N ;  y  += £>){
A'Cx] Cy] += d e l t a  * G a u s s O ;

y / /  y 
y / /  x

>

/**** type  I I  to type  I  ****/
d e l t a  * =  p o w { S C A L , S C A L * H _ const); 

/ * *  I n t e r p o l a t e  and o f f s e t  boundary g r i d  
p o i n t s  * * /

for(x = d ;  x < N - d ;  x  += D ) {

A'Cx] i d ]  = / : ] ( d e l t a ,  A'Cx+O Id] ,
X i x - d ]  i d ] , A'Cx] CO );

A'Cx] CN ]  = / %  d e l t a ,  A'Cx+0 CA0 , 
X i x - d ]  CM , A'Cx] CiV-0 );

A'CO Cx] = f 3 ( d e l t a ,  A'CO Cx+0 ,
A'CO [ x -0  , X i d ]  Cx] );

A'C AG Cx] = f %  d e l t a ,  X i N ]  Cx+0 ,
A'C N ]  i x - d ]  , A'C N - d ]  Cx] );
>
/ * *  I n t e r p o l a t e  and o f f s e t  i n t e r i o r  g r i d  
p o i n t s  * * /

for(x = d ;  x  <= N - d ;  x  += D ) {  

for(y = D ;  y  < =  N - d ;  y  += D ) {

A'Cx] Cy] =
f 4 ( d e l t a ,  A'Cx] CyO , A'Cx] Cr'd .
A'Cx+0 Cy], A'Cx-0 Cy]);

y / /  y 
y / /  x
for(x  = D ;  x <= N - d ;  x += D ) {  

for(y = d ;  y <= N - d ;  y += D ) {

A'Cx] Cy] =
/ . { { d e l t a ,  A'Cx] CyO , A'Cx] Cy-0 ,
A'Cx+0 Cy], A'Cx-0 Cy]);

y / /  y 
y / /  x
if( O h  == >y’ ) II O h  == 1 Y D  H  

for(x = 0 ;  x <= N ;  x  += D ) i  

for(y  =  0 ;  y <= N ;  y += D ) {

A'Cx] Cy] += d e l t a  * GaussO;
y / /  y 

y / /  x
for(x  = d ;  x  <= N - d ;  x  += D ) {  

for(y  = d ;  y  <= N - d ;  y  += D ) {

A'Cx] Cy] += d e l t a  * G a u s s ();
> / /  y

y / / x

} / /  turns  random a d d i t i o n  on
D  = D / 2 ;  

d  = d / 2 ;

> / /  t
/***  s c a l i n g :  -10000 to  10000 ****/
v m a x  = - 9 9 9 .  0 ;  

v m i n  =  9 9 9 . 0 ;

for(x = 0 ;  x <  M A P _ S I Z E ; x + + ) i  

for( y = 0 ;  y  < M A P _ S I Z E ; y + + H  

v m i n  = M I N C v m i n ,  A'Cx]Cy]); 
v m a x  = M A X {  v m a x ,  A'Cx] Cy] );

> / /  y
y / / x
for(x = 0 ;  x  < M A P _ S I Z E ; x + + H  

for(y = 0 ;  y  < M A P _ S l Z E ; y + + ) i



APPENDIX N. PROGRAMME LISTING OF SYNTHETIC DEMS 364

A'[jt] [y] -= i m m ;  / /  a l l  p o s i t i v e

now!
> / /  y 

> / / *
v m a x  = - 9 9 9 .  0;  

v m i n  = 9 9 9 .  0 ;
forCr = 0; x < M A P _ S I Z E ; x + + ) {  

for(y  = 0 ;  y  <  M A P _ S 1 Z E ;  y + + ) {  

v m i n  =  M I N i v m i n ,  A'[r] [y ]); 
v m a x  = M A X (  v m a x ,  X [x] [y] );

> / /  y
} / / x
v c e n t r e  =  ( v m a x  + tm i n ) / 2 .  O', 
v r a n g e  = f a b s ( v m a x  -  v m i n ) ;  

for(x = 0 ;  i  < M A P _ S I Z E ;x+-+ ){  
for (y = 0 ;  y  < M A P _ S I Z E ;  y++) { 

v a l  =  A'[x] [y] / v r a n g e ;  

i f ( v a l  > 0 . 0 )  {  

v a l  * =  M A G ;

i t m p i x ] [y] = (short in t) v a l ;

> else {
i t m p i x ]  Cy] = O F F S T ;

} / /  i f - e l s e

y / /  y
y / /  x
/ * * *  o u t p u t  b i n a r y  . b i n  f i l e  * * * /

i f G f O l  = f o p e n C a r g v i f ]  , ” w b ”)) == N U L L ) {  

p r i n t f ( ” C a n ’t  o p e n  output . b i n  f i l e \ n ” ) ; 

e x t t ( l ) ;

y
for(x = 0 ;  x  < M A P _ S I Z E ;  x + + ) { .

f w r i t e i i t m p i x ]  , s izeof(sliort in t ) ,  
M A P _ S I Z E ,  ¡ 0 1 ) ;

y / /  x
f c l o s e i f O l ) ; 
i m a x  =  - 9 9 9 ;  

i m i n  =  9 9 9 ;

for(x  = 0 ;  x  <  M A P _ S I Z E ; x + + ) { .  

for(y  -  0 ;  y  < M A I E S I Z E ;  y + + ) {  

i m i n  = M I N i i m i n ,  i t m p i x ]  [y] ); 
i m a x  = M A X G m a x ,  iimpLr] [y] );

> / /  y
> / / x
i f G f 0 2  =  f o p e n i a r g v i o ]  , ”wt”)) == N U L L ) {  

p n n t f C ’C a n ’t  o p e n  o u t p u t  . d o c  f i l e \ n ” ) ; 

e x i  t ( . l ) ;
> / /  i f
/ * * *  o u t p u t  i d r i s i  . d o c  f i l e  * * * /

f p n n t f i f 0 2 ,  ’T i l e  t i t l e  : S y n t h e t i c  D E M  b y  

m i d - p o i n t  m e t h o d X n ” ) ; 

f p r i n t f i f 0 2 ,  ’’d a t a  t y p e  : i n t e g e r \ n ” ) ; 

f p r i n t f i f 0 2 ,  ’T i l e  t y p e  : b i n a r y \ n ” ) ; 

f p r m t f i f 0 2 ,  ’’c o l u m n s  : % d \ n ” , 

M A P . S 1 Z E ) ;

f p n n t f ( . f 0 2 ,  ’T o w s  : % d \ n ” ,

M A P . S I Z E ) ;

f p n n t f ( f 0 2 ,  "ref .  s y s t e m  : p l a n e \ n ” ) ;

f p r i n t f ( f 0 2 ,  ’’re f .  u n i t s  : m \ n ” ) ; 

f p r i n t f t f 0 2 ,  ’’u n i t  d i s t .  : l \ n ”) ;
f p r m t f ( f 0 2 ,  ” m i n .  X  : 0 \ n ” ) ;

f p n n t f ( f 0 2 ,  ’’m a x .  X  : % d \ n " ,

M A P _ S I Z E * J , 0 ) ;

f p n n t f ( f 0 2 ,  ” m i n .  Y  : (An"); 
f p r m t f ( f 0 2 ,  ’’m a x .  Y  : % d \ n ’’ ,

M A P _ S I Z E * 4 0 ) ;

f p r i n t f i / 0 2 ,  ”p o s ’n error : u n k n o w n \ n ” ) ; 

f p n n t f ( / 0 2 , ’’resolution : unknown\n”) ; 
f p r u i t f ( f 0 2 , ” m i n .  v a l u e  : % d \ n ”, im in); 
f p r t n t f ( f 0 2 ,  ’’m a x .  v a l u e  : % l d \ n ” , (short 
in t) i m a x ) ;
f p r m t f ( f 0 2 , ’’ v a l u e  units : classes\n”) ; 
f p r m t f i f 0 2 ,  ’’ v a l u e  e r r o r  : u n k n o w n \ n ” ) ; 

f p n n t f ( f 0 2 ,  ’’f l a g  v a l u e  : n o n e \ n ” ) ;  

f p r m t f ( f 0 2 ,  ’’f l a g  d e f ’n : n o n e \ n ” ) ;  

f p r i n t f ( f 0 2 ,  ’’l e g e n d  c a t s  : 0 \ n ”); 
f c l o s e i f O S ) ;
} / /  m a i n O



Program m e Listing of D E M s’ 
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A ppendix  O

The computer programme for estimating the 
fractal dimension of DEMs is listed below.1 The 
following script is used to compile C programme 
incoporating NAG FORTRAN library routines 
(Hann & Hounam, 1991), whose resulting object 
programme is further compiled by FORTRAN 
compiler. That is, " a c e  -c - I m  S l . c ” and " ¡ 7 7  

S l . o  - o  S i  - I n n g " .

Example: “ d e m f d  d e m . d o c  d e m . b i n  1 > f d . d a t ", 
where d e m . d o c  is an IDRISI header file and 
d e m . b i n  is a Unix binary file, converted from 
the IDRISI image file by " d d  i f = d e m . i m g  

o f = d e m . b t n  c o n v = s w a b "  on the Unix machine. 
/ *  demfd. c
/ / U s a g e :  demfd i n . d o c ( I d r i s i )  
in .b in ( U n ix )  1 > f i l e  
/ /  Desc: Get info  from I d r i s i  .doc  
/ /  Read image in to  an array  row * col  
/ /  Get p r o f i l e  of  2~n p o i n t s  
/ / O u t :  ( s t d o u t )
/ /  no mean s t d  f d ( h )  mean s t d  f d ( v )
*/
»include < s t d i o .h >

¿ i n c lu d e  <stdlib.h>
»include < m a th .ii>

¿ i n c lu d e  <nagmklS.h> // NAGF l i b .

¿include <TS.h>
¿ d e f in e  HX_IHG_SIZE (1024)
»define HDR_LINE_NO (21)
»define HDR.LINE.SIZE (100)
¿d e f in e  HDR_INFO_START (14)
¿ d e f in e  MX_SUB_SET (20)
»define OUT_BASE (0.0)
/ *  c o l ,  row, e t c  from header  * /  
int e x t r a c t _ i n f o (

char ou<[] , / /  input  s t r i n g  
char inQ ) / /  output  s t r i n g

i
int i ,  j ;

1 Refer to Section 5.5.2.

for( i= H D R _ I N F O _ S T A R T ,  j = 0 ;  j < 5 ;  

!++,>+){ o u t i j ]  =  in[i] ; >
} / /  e x t r a c _ i n f o ( )  
/****+**************#+*#**#*******  
/ / B o x - c o u n t i n g :  Brwnian method 
/ /  Count boxes between max and min 
/ /  width decreased  by 2~n!
/ /  hei gh t  i s  g iven

void
T S _ b r o w n _ b o x _ c o u n t m g (

double x'[] , / *  input  data * /  

int l e n g t h , / *  length o f  data * /  
double s t d ,  / *  height  o f  data * /  
double r e s u l t l 2 ( f ] )  / *  dimensions * /

{
int i, u,v; 
int paces;
double * t m p p ,  * s i : e ,  * c o u n t ,  * i n d ,  * d e p ;  

double w i d t h ,  h e i g h t ,  v a l ;  

double s e a l ;

/ *  d e c la r a t i o n s  f o r  G01AAF, G02CAF * /  
int n,iwt, ifail;  
double +wt,
r m e a n , s 2 ,  s 3 ,  s j , x m i n , x m a x ,  w t s u m ; 
p a c e s  = (in t) f l o o r ( l o g 2 ( ( d a u h \ e ) l e n g t h ) ) ; 

s i z e  = m a l l o c ( p a c e s  * s iz e o f( in t)); 
c o u n t s  m a l l o c ( p a c e s  * s iz e o f( in t)); 
for(i = 0 ;  i < p a c e s ;  ¡++){ 

s e a l  =  e x p 2 (  (double) i ) ;  

w i d t h  = l e n g t h  /  s e a l ;  

h e i g h t  = s t d  /  s e a l ;

■SiceCd = s e a l ;  / *  from s c a l e  to s i z e  * /  
coun/[0 = 0 . 0 ;  

t m p p  = m a l l o c i  ( in t) w i d t h  * 
s izeo f(d o u b le ));
w t  = m a l l o c (  (in t) w i d t h  * s izeo f(d o u b le )); 
for(u = 0 ;  u <  s e a l ;  u++){

for(u = 0 ;  v  < w i d t h ;  ih-+) { t m p p i i i ]  =  

r[u * ( in t ) w i d t h  +  e] ; > 
n = (h it) w i d t h ;

365
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i w t  =  0 ;  

i f  a i l  =  1 ;
g 0 1 a a f _ ( k n ,  t m p p ,  i t i w t , w t ,  k x m e a n , 

k s 2 ,  k s 3 ,  k s f ,  k x m i n ,  k x m a x ,  k w t s u m ,  

k i f a i l ) ;

v a l  -  c e i l ( x m a x / h e i g h t )  -  

f l o o r ( x m i n / h e i g h t ) ;

c o u n t f i ]  += v a l ;

} / /  u
f r e e ( t m p p ) ; f r e e (  tut) ;
} / /  *
for 0=0; i < p a c e s ;  *++){ 

s i z e i i ]  = l o g 2 ( s i z e i i ]  ) ; 
c o u n t i i ]  =  l o g 2 ( c o u n t i i ] ) ;

> / /  i
n = p a c e s ;  i f a t l  =  1;

g 0 2 c a f _ ( k n ,  s i z e ,  c o u n t ,  r e s u l t ,  k i f a i l ) ;  

f r e e ( s i z e ) ;  f r e e  ( c o u n t ) ;

> / /  T S _ b r o u m _ b o x _ c o u n t i n g  / /  
/******************************** 
********* m a i n ( )  * * * * * * * * * * * * * * * *  

********************************/ 
void mam(int a r g c ,  char + * a r g v )

{
F I L E  * f i n ;

char h d r l H D R _ L I N E _ S l Z E ]  , t r n p i o ]  , e h ;  

int s u b ; / /  n u m b e r  o f  s u b s e t s  

int i , j ,  k ;
int c o l ,  r o w ,  new _ c o l ,  new_roir; 
int d i j f _ c ,  d i j f _ r ,  s t a r t _ c ,  s t a r t _ r ,  

v a l i d ]  i M X _ S U B _ S E T ]  ; 

int s i z e _ s ,  s i z e _ d ;  

short int
i m g L M X J M G . S I Z E ]  i M X _ I M G _ S I Z E ] ,

* t e m p ;

double
o u t U f ]  i M X _ S U B . S E !1 [M X _ I M G _ S I Z E ]  ;

double v r e m n l ,  v r e m n d ;

/ *  NAGF:  G 0 1 A A F  e t c  * /  

int m ,  n . i w t . i f a i l ;  

double * y ,  * x , * w t ,

x m e a n , s 2 , s 3 , s f . x m i n , x m a x ,  w t s u m , 

r e s u l t i 2 ( i ]  ;
double * t m p x ,  * t m p y ;  

size_s = sizeof(short in t);  
s i z e _ d  = s izeo f(d o u b le );
/***** w a r n i n g  m s g  *************/ 
if  ( a r g c  < 2 )  {

p r m t f ( ” U s a g e :  % s  i n . d o c  i n . b i n  no > 
i i l e \ n ” , a r g v i O ] ) ;

p r i n t f ( ” \ t i n . d o c . I n p u t  d o c u r n e n t  

( I d r i s i ) \ n ");
p r i n t f ( ” \ t i n . b i n : I n p u t  image ( U n i x ) \ n ” ) ; 

p r i n t f ( ” \ t n o . : N u m b e r  o f  p o i n t s .  I  m e a n s  

a n  ¡ m g .  o f  2 ' n \ n ”);
p r i n t f ( ” \ t \ t - >  t o  b e  d d  c o n v = s w a b  ( U n i x )  

- >  . i m g  ( I d r i s i ) \ n ’’ ) ;

p r i n t f ( ” N o t e :  o u t p u t  ( s t d o u t )  s h o u l d  b e  

r e d i r e c t e d  t o  a  f i l e \ n ”);
p r m t f ( ”\ t i . e . ,  . . . I m o r e  >  f i l e \ n ” ) ;  

p r m t f ( ' ’\ t n o :  N u m b e r  o f  s u b - s e t s  u s e d  < 

% d \ n ” , M X _ S U B _ S E T ) ;  

e x i t ( - l ) ;
>
/****## parameter  *********/
s u b  = a t o i ( a r g v ( 3 ]  ); / /  to  see  i f  N ! =  2~n 
/ *  g e t  col  & row from .doc header * /  
i f  ( ( f i n  = f o p e n ( a r g v i I ]  , ”rt”)) == N U L L ) {  

p n n t f ( ” Can ’t o p e n  i n p u t  I d r i s i  . d o c  f i le :  

% s \ n ’’ , a r g v i l ] ) ;
e x i t ( - D ;

} / /  open f i l e
for(i = 0 ;  i < H D R _ L I N E _ N O ;  i++H 

f g e t s ( h d r ,  H D R _ L I N E _ S I Z E , f i n ) ;  

ifO == 3 )  {
e x t r a c t _ m f o ( t m p ,  h d r ) ; 

c o l  = a t o i ( t m p ) ;
>
if c i == m

e x t r a c t _ i n f o ( t m p ,  h d r ) ;  

r o w  = a t o i ( t m p ) ;
}

> / /  i
f c l o s e ( f i n ) ;

/*** scan image in to  an arry  *** /
if ( ( f i n  = f o p e n ( a r g v l 2 ]  , ”r b ” ) )  == N U L L H  

p r i n t f ( ” C a n ’t  o p e n  i n p u t  i m a g e  f i le :

% s \ n ” , a r g v ( 2 ] ) ;  

e x i t ( - l ) ;

}
t e m p  -  m a l l o c ( c o l  * s i z e _ s ) ;  

fo rd  = 0 ;  i < r o w ;  i++){
f r e a d ( t e m p ,  s i z e _ s ,  c o l ,  f i n ) ;  

for ( j  = 0 ;  j  < c o l ;  j++){ 
if(<e mp[j] > 0 )  i

i m g i i ]  [j] = t e m p i ) ] ;
>else { img[i] [;] = 0 ;  }

> / /  j
> / /  i 
f r e e ( t e m p ) ; 
f c l o s e ( f i n ) ;

/ *  Decide the s i z e  o f  p r o f i l e  f o r  f d  * /
x m e a n =  f l o o r ( l o g 2 (  (double) c o l  ) );  
v r e m n l  = r e m a m d e r (  (double) c o l ,  2 . 0 ) ;  

new . c o l  = (in t) e x p 2 ( x m e a n ) ; 
x m e a n -  f l o o r ( l o g 2 (  (double) r o w  ) ) ;  

v r e m n d  =  r e m a m d e r (  (double) m w ,  2 . 0 ) ;  
new.roio = (in t) e x p d ( x m e a n ) ;
/****** f d  c a l c u l a t i o n  ********/ 
x  =  m a l l o c ( n e w _ c o l  * s i z e _ d ) ; 

y  =  m a l l o c ( n e w _ r o w  * s i z e _ d ) ; 

t m p x  =  m a l l o c (new _ c o l  * s i z e _ d ) ; 

t m p y  = m a l l o c ( n c w _ r o w  * s i z e _ d ) ; 
w t =  m a l l o c  ( n o w  _ c o l  * s i z e _ d ) ;
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d i f j _ c  = ( c o l  -  new _ c o l )  /  2 ;  

d i j f _ r  =  ( . r o w  -  new _ r o w ) / 2 ;  

for ( k  =  0 ;  k  <  s u b ; G + ) {  

i f ( v r e m n l  != 0 . 0 )  {
s t a r t . c =  r a n d o m () '/, d i f f _ c ;  

v a l l O ]  [A:] = s t a r t _ c ;
> else {

v a l i d ]  [&] = s t a r t _ c  =  O',

>
if( v r e m n 2  != 0 .  0 ) f

s t a r t _ r =  r a n d o m l )  7, d i f f e r ;  

v a l l i ]  I k ]  =  s t a r t  _ r ;

> else {
v a l l O ]  [£] = s t a r t _ r  =  0 ;

>
forO = s t a r t . c ,  m  = 0 ;  m  < new _ c o l ;

I'++, m++ ) {
for(j = s t a r t _ r ,  n  =  O', n < new _ r o w \  

J++, n++K
t m p x l r i ]  = i m g l i ]  [/] ;
/mpt/[/i] = i m g l j ]  [0  ;

> // j
n =  new _ r o w ;  i w t  = 0 ;  i f a d  -  1; 

T S _ d a t a _ e x t r a ( t m p x , x , n ) ; 
g 0 1 a a f _ ( k n ,  x ,  k i w t ,  w t ,  S t x m e a n ,  

k s 2 ,  k s 3 ,  k s 4 ,  k x m i n ,  k x m a x ,  k w t s u m ,  

t u f a  i l )  ;
T S _ b r o w n _ b o x _ c o u n t i n g ( x ,  n ,  s 2 ,  

r e s u l t )  ;
out lCJ]  [Al Cm] = r e s u l t i , 5 ]  ; / /  [ O j  : 

h o r i z o n t a l

n =  new _ r o w ;  i w t  =  0 ;  i f a d  = 1;  

T S _ d a t a _ e x t r a ( t m p y ,  y ,  n )  ; 

g O l a a f . l k n ,  y ,  k i w t ,  w t ,  t t x m e a n ,  

k s 2 ,  k s 3 ,  k s . { ,  k x m i n ,  k x m a x ,  k w t s u m ,  

k i f a i l )  ;
T S _ b r o w n _ b o x _ c o u n t i n g ( y ,  n ,  s 2 ,  

r e s u l t )  ;

o u t i l ]  I k ]  [m] = r e s u l t i , 5]; / /  [ l j  : 

v e r t i c a l

y  / /  i

> / / k
f r e e ( x )  ; f r e e l y ) ; f r e e i  w t )  ;
/********** R esu l t  *************/
p n n t f l  ”#  i d  ( h  v )  r e s u l t s  f r o m  % s  % s ;  

s u b i m a g e  s i z e :  % d \ n ” , a r g v l l ]  , a r g v l d ]  , 

new _ c o l )  ;
p n n t f l ” #  % d  p a i r s  o f  t o p - l e f t  c o r n e r s :  ” , 

s u b )  ;
forO =  0 ;  i < sub- , j++){
p r i n t f ( ” ( % d  % d )  ” , v a l i d ]  I f ] ,  r a /[ / ] [ i l ) ;
>
p r i n t f ( ” \ n ” )  ;
p r i n t f l ” #  n o .  h _ f d  v _ f d  d e l t a _ h _ f d + % . l f  

d e l t a _ v _ f d + % . l f \ n ” ,  O U T . B A S E ,  
O U T . B A S E )  ;

forO = O', i <  new _ c o l ;  i + + ) {  / /  o r i g n a l  &

d e  I t a

p n n t f l ” % 5 d  ” , t + 1 ) ;

f o r l j  = 0 \  j  < sub-, j++){
p r i n t f ( ” % 5 . 3 f  ”, o u t K J ]  l j ]  I f ] )  ;

}
for l j  =  0-, j  < s u b ;  j++){

p n n t f l  ” % 6 . 3 f  ”, o u t K J ]  I ß  I f ]  - 
o u t l O ]  10 ]  [i] + O U T _ B A S E )  ;

>
forO = 0 ;  j  < s u b ;  /*•+){

p r m t f ( ” % 5 . 3 f  ” , o u t i l ]  [j] [fl ) ;
>
forO = 0 ;  j  < s u b ;  j++){

pnntfl”%6.3f”, outil] lj ] ( i]  - 
o u t i l ]  1 0 ]  Cd + O U T . B A S E ) ;

>
p n n t f l  ”\ n ” ) ;

> / /  t 
} / /  m a i n
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Som e Synthetic Lanclforms

(S, H, Random) = (0.0, 0.8, Yes) (S, H, Random) = (0.0,0.2, No)

Parameters controlling the simulation include the initial variation of landform, S, 
the Hurst exponent, / /, and the addition of randomness. The image size is 16 x 16 
pixels and eight levels of contours are plotted for each image.
An initial flat landform produces same resultant landforms, regardless of / /  values 
or random additions. As H decreases, landforms become more complicated, seen 
from the pattern of contours. The effect of random addition is also shown. There is 
little difference between landforms with other initial variations.
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(S, H, Random) = (0.8. 0.9, Yes) (S, H, Random) = (0.8,0.9, No)
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(S, H, Random) = (0.8, 0.4, Yes) (S, H, Random) = (0.8, 0.4, No)

(S, H, Random) = (0.8, 0.3, Yes) (S, H, Random) = (0.8, 0.3, No)

(S, H. Random) = (0.8, 0.2, Yes) (S, H, Random) = (0.8, 0.2, No)

(S, H, Random) = (0.8,0.0, Yes) (S, H, Random) = (0.8,0.0, No)
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(S, H, Random) = (0.2,0.9, Yes)

(S, H, Random) = (0.2,0.7, Yes)

(S, H, Random) = (0.2,0.6, Yes)

(S, H, Random) = (0.2,0.5, Yes)

(S, H, Random) = (0.2, 0.9, No)

(S, H, Random) = (0.2. 0.7, No)

(S, H, Random) = (0.2, 0.6, No)
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(S. H, Random) = (0.2,0.4, Yes)

(S, H, Random) = (0.2,0.3, Yes)

(S, H, Random) = (0.2,0.4, No)

(S, H, Random) = (0.2, 0.2, No)

(S,H, Random) = (0.2, 0.1, No)



A ppendix  Q

Rem ote Sensing Platform s

The satellite view of the earth’s surface began in 1972 with the launch of Earth Re­

source Technology Satellite (ERTS-1), later renamed Landsat (NASA, 1972; Barrett 

&: Curtis, 1974).1 In subsequent years, Landsats 2-5 have obtained similar data. 

The data include those measured by the Multispectral Scanners (MSS) at 80-metre 

spatial resolution with four spectral channels, and, since 1982, those measured by 

Thematic Mapper (TM) at 30-metre spatial resolution with seven spectral channels. 

In 1979, the 16-day coverage of Landsat began complemented by the Advanced Very 

High Resolution Radiometres (AVHRR) of TIROS-N (for Television InfraRed Ob­

servation Satellites) series of satellites (Kidwell, 1981; Mather, 1987), which acquires 

1.1 km  spatial resolution data in four or five spatial channels daily. Although the 

programme is known as TIROS, the individual satellites are called NOAA-N (Na­

tional Oceanic Atmospheric Administration). NOAA-6 and NOAA-7, launched in 

1979 and 1981, respectively, were the last in the TIROS-N series, which was then 

renamed Advanced TIROS-N or ATN on the launch of NOAA-8. The imaging in-

1 Refer to page 201.
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strument carried by the ATN satellites is the AVTIRR (Mather, 1987, p.6S). In 

19S6 two High Resolution Visible (HRV) sensors onboard the French Satellite Pour 

/ 'Observation (le la Terre (SPOT) have begun to obtain data suitable for monitoring 

vegetation at 10-metre spatial resolution with a visible “panchromatic” channel or 

at 20-metre spatial resolution with three thermal channels (Price, 1987, p . 15).

Other spacecraft and sensors were developed to monitor the earth’s surface, too. 

Explorer-A carries the HCMMR (Heat Capacity Mapping Mission Radiometre), 

with spatial resolutions of 500 and 600 metres for channels 1 and 2, respectively 

(Mather, 1987). Nimbus-7, which was launched in 1978 and continued to operate 

for ten years, had onboard CZCS (Coastal Zone Color Scanner). Seasat was launched 

in 1978 and operated for only 106 days. Nevertheless, it was the first spaceborne 

active microwave mapping sensor, a Synthetic Aperture Radar or SAR, with 25- 

metre spatial resolution (Cracknell &: Hayes, 1991). The Meteosat is geostationary. 

It carries one visible channel with 2.4-metre spatial resolution and two thermal 

infrared channels with five-metre spatial resolution (Mather, 1987).

Th optics and optical systems of remote sensing are detailed, for example, by 

Slater (1980), whereas the physical principles of remote sensing can be seen, for 

example, in Rees (1990). Price (1987) gave a detailed account of wavelengths and 

bandwidths of the scanners, and vegetation indices related to the spectral channels.



A ppendix  R

The N atural H istory of Ferns

In the Palaeozonic era, the typical palaeophytic formations were “carboniferous 

forests” composed of tree-like clubmosses, horsetails and ferns.1 Over a long period 

of 350 million years, these sporophytes evolved, died out or adapted to the change 

from life in water and bogs to life on dry land. The plant bodies of clubmosses, 

horsetails and ferns are the asexual phase, which is entirely independent of the 

sexual phase. These plant bodies are already clearly differentiated into a root, stem 

and leaves, hence also have a relatively complicated morphological and anatomical 

structure. Besides the leaves which manufacture food, the plants also have leaves 

called sporophylls that develop sporangia. Present-day ferns are not as large as their 

ancestors, although, in the tropics, they may have immensely large fronds. Ferns 

also include dwarf species only five centimetre high, more like a liverwort or moss in 

appearance, that grow on rocks. Ferns also include plants that long ago gave up life 

on dry land and went back to living in water, e.g., the water-fern (Snlvinia) used in 

aquaria. Refer to Toman & Felix (1990) for more details.

1 Refer to page 203.
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Program m e Listing of V irtual 
Plants

A ppendix  S

The computer programmes for generating two 
virtual plants are listed below.

5.1 A V ir tu a l T ree
The following C programme generates a virtual 
tree using the “chaos game” approach.1 This 
programme is incorporated with the SunGKS
4.1 Graphic library using the following script, 
“acc - B d y n a m i c  - I S G K S H O M E / i n c l u d e

- I S  O P E N  W I N H O M E / i  n e l u d e  S l . c  - o  S i  - x C C  

- L S O P E N  W I N H O M E / l i b  - L S G K S H O M E / l i b  
- I gk s  - Ixg l  - I x v i e w  - I X 1 1  - I m  - I F 7 T ' .

/*
/ /  GKTREE. C
/ / D es . : a ch a o t i c  t r e e .
*/
if include < g k s / a n s i c g k s . h> 
i t include < s t d i o . h> 
f t include < s t d l i b . h >  
i t include <math.h> 
tide f i n e  MAXCLR IS 
i tdefine NUMITS 50000 
tide f i n e  DAMMY 100 
i tdef ine RNUM 1000 
i tdef ine PARA_SIZE S
/ *  the window and v i ew p o r t  dimensions  * /  
G n l i m i t  v i e w p o r t  =  {  0 . 0 ,  1 . 0 ,  0 . 0 ,  1 . 0  } ;  

G w l i m i t  w i n d o w  =  ■{ - 0 . 1 ,  1 . 1 ,  - 0 . 1 ,  1 . 1  

>;
/ *  Frame of  v i e w p o r t . * /
G w p o i n t  s q u a r e [¿G = { . 0 . 0 ,  0 . 0 ,

0 . 0 ,  1 . 0 ,

1 . 0 ,  1 . 0 ,

1 . 0 ,  0 . 0 ,

0 . 0 ,  0 . 0 } - ,

G w p o i n t  v a l ,  n e w v a l ;

/ *  IFS code: a , b , c , d , e , f  and p * /
f l o a t  t a {  P A R A _ S I Z E ]  =  {  0 . 1 9 5 ,  0 - 4 6 2 ,  

- 0 . 0 5 8 ,  - 0 . 0 3 5 ,  - 0 . 6 3 7 } ,  

t b L P A R A _ S I Z E ]  = { - 0 . 4 8 8 , O . 4 1 4 , 

- 0 . 0 7 0 ,  0 . 0 7 0 ,  0 . 0 0 0 } ,  

t c l P A R A _ S I Z E ]  = { 0 . 3 4 4 ,  - 0 . 2 5 2 ,

0 . 4 5 3 ,  - 0 . 4 6 9 ,  0 . 0 0 0 } ,  

t d i P A R A _ S I Z E ] = { 0 . 4 4 3 ,  0 . 3 6 1 ,  

- 0 . 1 1 1 ,  - 0 . 0 2 2 ,  0 . 5 0 1 } ,  

t e l P A R A _ S l Z E ]  =  {  0 - 4 4 8 1 ,  0 . 2 5 1 1 ,  

0 . 5 9 7 6 ,  O . 4884 , 0 . 8 5 6 2 } ,  

t f t P A R A _ S I Z E ]  = { 0 . 2 4 5 2 ,  0 . 5 6 9 2 ,  

0 . 0 9 6 9 ,  0 . 5 0 6 9 ,  0 . 2 5 1 3 } ,  

t p i P A R A _ S I Z E ]  = {  0 . 0 4 9 ,  0 . 6 ,  0 . 0 5 ,

0 . 0 0 1 ,  0 . 3 } - ,
A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

************** main ************ 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /  

void m a i n O 
{
G a s f s  a s f s ;

G k s _ w s _ c o n f i g  c o n  f i g ]

G c h a r  * c o n n  = N U L L ;
G c h a r  * w s t y p e  ~  " x g L t o o l ";
G i n t  t r a n s f o r m  =  1 ;
G  w s  w s l  = 1]

G m k t y p e  m a r k e r  ~  1 ;
G c o b u n d l  c o l o u r _ r e p \

G i n d e x  f i l l _ c o l o u r  = 0 ]

long int r,

int r;
int m a p ;

float m a g ]

/ *  e i t h e r  INDIVIDUAL or  BUNDLED * /
a s f s . m k _ t y p e  = I N D I V I D U A L ]  

a s f s . m k _ s i z e  = I N D I V I D U A L ]  
a s f s .  m k _ c o l o u r  = I N D I V I D U A L ]  

a s f s . l n _ c o l o u r  = I N D I V I D U A L ; 
a s f s . l n _ t y p e  -  I N D I V I D U A L ]  
a s f s .  I n _ u ’i d t h  =  I N D I V I D U A L ]

1 Refer to page 199 and Section 6.3.2.
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A
/ /  Open GKS.
/ /  Se t  up and conf igure  the w o r k s t a t i o n . 
/ /  Open and a c t i v a t e  w o rk s ta t io n  
* /
if  ( g o p e n g k s ( s t d o u t , G M E M O R Y ) )

{  e x i t  ( 2 )  ; >
c o n f i g  = g k s _ w s _ c o n f i g _ g e t _ i n s t a l l e d (  w s t y p e )  ; 
g k s .  w s _ c o n f i g _ s e t ( c o n f i g ,

G I \ S _  T O O L _ X ,  1 0 ,

G K S . T O O L . Y ,  1 0 ,

G K S _  T O O L _ W I D T H ,  6 0 0 ,

G K S . T O O L _ H E I G H T ,  6 0 0 ,

G K S _  T O O L _ L A B E L , " G K S  # 1 ” ,

0 ) ;
g k s .  w s _  c o n f i g _  i n s t a l l i  c o n f i g )  ; 
g o p e n w s ( w s l ,  c o n n ,  w s t y p e ) ;  

g a c t i v a t e w s (  w s l ) ;
A  s e t  a t t r i b u t e ;  a c t i v a t e  wrkstn * /
g s e t a s f ( a s f s )  ;

A  Set  up colourmap f o r  each ws * /
for ( f i l l . c o l o u r  =  0 ;  f i l l _ c o l o u v  < =  M A X C L R ;
f i l l _ c o l o u r + + ) - i

c o l o u r _ r e p . r e d  =  c o l o u r _ r e p . g r e e n  = 
c o l o u r . r e p .  b l u e  =

(float ) f i l l . c o l o u r / M A X C L R  ; 

g s e t c o l o u r r e p ( w s l , f i l l . c o l o u r ,  c o l o u r . r e p )  ;
>
A  the window and v i ew por t  us ing it * /
g s e t w i n d o w (  t r a n s f o r m , w i n d o w ) ;  / /  no & 
g s e t v i e w p o r t ( t r a n s f o r m ,  v i e w p o r t ); / / no &  

g s e l n o r m t r a n ( t r a n s f o r m )  ;

A  S e t  colour ,  t yp e ,  s t y l e ,  e t c .  * /
g s e t m a r k e r t y p e ( m a r k e r )  ;

g s e t m a r k e r c o l o u r l  1 5 )  ;
g s e t h n e c o l o u r l  1 5 )  ;
v a i .  x  = 0 . 0 ;
v a i .  y  =  0 . 0 ;

g p o l y l i n e ( . 5 ,  s q u a r e ) ;

for(z = 0 ;  i < N U M I T S ;  i + + ) {

r  =  r o n d i )  '/. R N U M ;

m a p  = 0 ;

i f ( r  > (int)(ipCCO * R N U M ) )

m a p  =  1;

i f ( r > (iut)((fptfiO +ip[f] ) * R N U M ) )

m a p  = 2 ;

i f ( r > ( in t ) G . t p i O ] + t p l l ] + t p L 2 ]  ) * R N U M ) )  

m a p  = 3 ;

i f ( r > ( in t ) ( ( . t p L O i + t p l O + t p l t f i + t p i X i  ) * 
R N U M ) )  m a p  = 4 ;  
n e w v a l . x -  ( f l o a t ) ¿ a [ m a p ]  * v a l . x  + 
t b l m a p l  * v a l . y  + t e [ m a p ]  ; 

n e w v a l . y =  (float)ic[m ap] * v a l . x +  

t d l m a p l  * v a l . y  +  t f i m a p i  ; 

v a l . x  =  n e w v a l . x ;  

v a i .  y  =  n e w v a l .  y ;

if  O' > D A M  M Y )  {  
g  p o l y  m a r  k e r f  1 ,  S c n e w v a l ) ;
>
>
g m e s s a g e ( w s l , ” Q u i t s  a f t e r  f i v e  s e c o n d s ” ) ; 

s l e e p ( 1 5 ) ;

A  Clean up * /  
g d e a c t i v a t e w s ( w s l ) ; 

g c l o s e w s (  w s l ) ; 
g c l o s e g k s ();
} / /  main

S.2 S y n th e tic  Ferns
The two computer programmes for generat­
ing synthetic ferns are listed below': one us­
ing deterministic while the other using random 
algorithms.2 The following script is used to 
compile both C programmes incorporating NAG 
FORTRAN library routines (Hann k  Hounam, 
1991), whose resulting object programme is fur­
ther compiled by FORTRAN compiler. That is, 
“acc -c -Irn $l .c” and “/77 $l .o - o  S i  -Inag".

D eterm inistic Synthetic Ferns
Example: d e t f e r n  1 0  0  

A  d e t f e r n .C
/ /  Santax: d e t f e r n  l e v e l  3 / 2 / 0 ( I d r i s i )
/ /  Desc: Generating  a f e r n :  p e i t e t a l 9 2  
/ /  Using D e t e r m i n i s t i c  a lgori thm  
/ / R a n g e :  [0.  0 1 . 0]x  [0.  0 1 . 0 ]
/ /  Output: 3D (z  on ly )  or  2D (x y)  
/ / f i l e :  a f e rn  in IDRISI format  
/ / N o t e  :Img s e t  to WIN.SIZE x WIN.SIZE 
* /
t t include <s td io .h >  
f t include < s t d l i b . h> 
i t include <math.h>

Udefine PARA.SIZE (4)
«def ine  WIN.SIZE (1024)
«d e f in e  VAL.OFF (0)
«d e f in e  VAL.ON (1)
«define NIN(x, y) (((x)<=(y))?(x):(y)) 
«define MAX(x, y)(((x)>(y))?(x):(y))

unsigned short int
f e r n l  W I N . S I Z E ]  [ W I N . S I Z E ]  ;

unsigned short hit
i m g l  W I N . S I Z E ] [ W I N . S I Z E ]  ;

-  Refer to Section 6.3.2.
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/ * * *  p e i t e t a l 9 2 :  295 * * * /  
f l o a t a l D = {  0 . 8 4 9  , 0 . 1 9 7 , - 0 . 1 5  , 0 . 0 } ,  

b l 4 1 = {  0 . 0 3 7 , - 0 . 2 2 6 ,  0 . 2 8 3 , 0 . 0 >, 
c l . { ] = { - 0 . 0 3 7 ,  0 . 2 2 6 ,  0 . 2 6 ,  0 . 0 } ,  

d [ 4 1 = - i  0 . 8 4 9 ,  0 . 1 9 7 ,  0 . 2 3 7 , 0 . 1 6 } ,  

e l 4 ] = {  0 . 0 7 5 ,  0 . 4 ,  0 . 5 7 5 , 0 . 5 } ,

f l f ] = {  0 . 1 8 3 ,  0 . 0 4 9 , - 0 .  0 8 4 , 0 .  0 } \

/ * * *  Det_ tans fo rm at io n()  * * * /  
void Det_transformation( 

int iter, / /  i t e r a t i o n  
f l o a t x , / /  coord 
float y)

-C
int trans, level, i,j; 
float neivxl PARA .SIZE] , 

newylPARA_SIZE]; 
float tmpx, tmpy,

/ *  Calcu la te  f i r s t  s e t  o f  t rans  * /
for (.trans = 0; trans < PARA.SIZE; 

trans++){.
newxltrans] = a [irons] * x + ¿[irons]

* y + e[irons] ;
newyltrans] = citrons'] * x + £/[i7’ans]

* y + fl trans] ;
tmpx = newxltrans] ; 
tmpy = newyltrans] ; 
i f  ((tmpx>=0.0) k k  (trnpx<=l. 0) k k  

( tmpy>=0.0) k k  (tmpy<= 1 . 0)){
/ * f l o a t  to p i x e l  ( i n t )  l o c a t i o n  * /

1 = (short int)
( rint(tmpx* WIN_S1ZE));

j  = (short int)
( rint(tmpy* WIN_S1ZE));

ii((i>=0) kk ( i<WIN_S!ZE) kk 
(j>=0) kk ()< (VIN_SIZE) ) {

fernUMj] += V A L _ O N ;
> / /  i f :  i , j

> / /  i f :  tmpx, tmpy 
> / /  t rans

/ *  c a l c u l a t e  the  second s e t  o f  t rans  * /
level = iter - 1; 
if  (level > 0)4.

for (trans = 0; trans < PARA.SIZE ; 
trans++){

x = neiuxltrans] ; 
y = newyltrans] ; 
Det_transformation(level, x, y) ;

> / /  t rans
} / /  i f :  l e v e l  

> / /  D et_ t ran s fo rm at ion ()

************ Main ****************

mainCmt urge, char **argv)
{
FILE *fout;
int iter,oat_choice;

int i,j;
int size_us = sizeof(unsigned short in t);  
unsigned short int z m i n , z m a x , z \  

float x , y ;  

i f ( a r g e  \ =  3 )  {

p r i n t f ( ” U s a g e :  % s  i t e r  3 / 2 / 0 \ n ” . a r g v l d ] ) ; 
p n n t f ( ’’ \ t i t e r :  I t e r a t i o n s  ( 1 0 ) \ n " ) ;  

p r i n t f ( ” \ t 3 / 2 / 0 :  3 D ,  2 D  o r  1 D R I S I  f i l e s  

( d e f a u l t ) . \ n ");
e x i t ( - l ) ;

} / /  warning
i t e r  = a t o i ( a r g v l l ]  );
o u t _ c h o i c e  -  a t o i ( a r g v l 2 ]  ) ;
/* * *  I n i t i a l i s i n g  array  * * * /  
for ( i=0] K WIN_SIZE; ;++){ 

for (j=(); j< WIN.SIZE-, j++) { 
i m g l i ]  [j] = V A L _ O F F ;  

f e r n  I  f ] [j] = V A L _ O F F ;

> // j
}  / /  i
t m g l W I N _ S I Z E / 2 ] l \ V I N _ S I Z E / 4 ] =
V A L _  O N - ,

i m g l  W I N _ S I Z E / 2 ]  10] = V A L _ O N \

/* * *  CAlculat ions  * * * /  
for( i=0; i< W I N _ S I Z E ;  (++){ 

for ( j = 0 - , j < W I N _ S I Z E - , j + + ) i  

i f ( i m g l i ]  [j] ! = V A  L _  O F F )  {  

x  = (float) 1 /  W I N  . S I Z E ; 
y  = (float) j  /  W I N  . S I Z E - ,  

D e t _ t r a n s f o r m a t i o n ( i t e r ,  x ,  y ) \

}  / /  i f
> // j

> / /  t
/* * *  Output r o u t in e  * * * /
s wi t ch ( o  u t _  c h  o  i c e )  { 
case 3:

for( i = 0 ;  i <  W I N . S I Z E ;  ¡++){ 
for ( j = 0 ; j <  W I N . S I Z E ; p + ) {  

p r i n t f C ’ % u \ n ” . f e r n l i ]  [/] );
> // j
p r i n t f ( ” \ n " )  ; / /  g n up lo t :  z  only

> / /  i 
break;

case 2:
for 0=0; i <  W I N . S I Z E - ,  1++) { 

for(j=0; j< W I N . S I Z E ; j + + H  

i f ( f e r n l i ]  [j] != V A L . O F F H  

p r i n t f ( ” % d  % d ” , i , j ) ; 

p r i n t f ( ” \ n ”);
> / /  i f

} / /  j  
}  / /  i 
break; 

d efa u lt:
p r i n t f C ’#  D e f a u l t :  W r i t e  t o  I D R I S I  d o c  

a n d  . i rn g  f i l e s . \ n ”) ;
if( ( f o n t  =  f o p e n ( "  D e t F e r n . b i n ” , ” w b ”))
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/* * *  I n i t i a l i s i n g  array  * * * /
f e r n  =  m a l l o c i sizeof(in t) * i m g _ s i z e  * 

i m g _ s i z e );
for i i = 0 ;  i < i m g _ s i z e ; ¡++){ 

for ( j = 0 ; j < i  m g _ s i z e ; j++) {
f e r n [ i *  i m g _ s i : e + j ]  =  V A L _  O F F ;

y / /  j  
y / /  i
/ * * *  I n i t a i l  s e t  * * * /
/ /  x = e [0]  ; y = f  [0]  ; 

x  =  0 . 5 ;  y  =  0 ;

/ * * *  i n t e r v a l s  *** /  
p i  =  p U J ] ; 

p 2  =  p l O ]  + p i n  ; 
p 3  = p [ 0 ]  +  p i l l  +  p [ 2 ] ; 
for i i t e r  =  0 ;  i t e r  < n u m _ p o i n t ;  i t e r + + ) {  

r  = r _ l c r a n _ 0 ;
t r a n s  = 0 ;  / / s t e m ;  p e i t e t a l 9 3 :  351 
ifCr > p i )  t r a n s  = 1; / /  r i g h t  l e a f  
i f ( r> p 2 )  t r a n s  = 2 ;  / /  l e f t  l e a f  
if(r  > p 3 )  t r a n s  = 3 ;  / /  top  
n e w x  =  a[frans] * x  +  b l t r a n s l  * y  +  

e i t r a n s h  ;

n e w y  = c i t r o n s ] * x  +  d i t r a n s l  * y  +  

/[trans];
m = (unsigned short in t) rint(newx * 

i r n g _ s i z e ) ;
n -  (unsigned short in t ) r i n t { n e w y  * 

i m g _ s i z e );
if((m>=0) && ( m < i m g _ s i z e ) &Sc ( n>=0) && 

(n<img_size)){
f e r n i m  * i m g _ s i z e  + n] += V A L _ O N ;

y / /  i , j
x  = n e w x ;  y  = n e w y ;

> / / i t e r
switch ( o u t _ c h o i c e )  {

case 3: /* * *  3D: z on ly  * * * /  
for0=0; i < i m g _ s i z e ;  ¿++H 

for (/= 0 ;  j <  i m g _ s i z e  ;j++){ 
p r i n t f i ” % d\n ”, 

f e r n i j * i m g _ s i z e + i ] );
> / /  j
p r i n t f i ” \ n ” ) ;

} / /  t
break;

case 2 : / * * *  2D: xy * * * /  
for ( ¡ = 0 ;  i < i m g _ s i z e ; ;++){ 

i o v i j f = 0 \ j < i m g _ s i z e ; f r + ) {

\ f ( ( . k = f e r n i i * i m g _ s i z e + j ] ) > 0 ) {  

p r i n t f i ” % d  % d  ” , i , j ) ;  
p n n t f ( ” \ n " )  ;

> / /  i f
y / /  j  

> / /  < 
break;

default : /* **  IDRISI f i l e s  * * * /
p r i n t f i ” #  D e f a u l t :  W r i t e  t o  I D R I S I

. d o c  a n d  . ¡ m g  f i l e s A n ” ) ;

if i i f o u t  = f o p e n i ” R a n F e r n . b i n ” ,

” w b ”)) == N U L L ) i

p r i n t f i ” #  C a n ’t  o p e n  I D I U S I  

i m a g e  f i l e :  a n s i  f e r n . i m g \ n ” ) ;  

e x i t i - 1 ) ;
} / /  opening a f i l e
z m i n  =  f e r n [ 0 ]  ; z m a x  =  f e r n  i f f ]  ;

for ( i = 0 ;  i < i m g _ s i z e ;  ¿++){ 
for i j  = 0 ;  j  < i m g _ s i z e ;  J++H 

k  =  i * i m g _ s i z e  + j ;  

f w r i t e i k f e r n i k ]  , s i z e _ u s ,  1 ,

f o u l ) ;

z m i n  =  M l N i z m i n ,  f e r n i k ] ) ;  

z m a x  =  M A X i z m a x ,  f e r n i k ] ) ;  

> / /  y
y / /  x
f c l o s e i f o u t ) ;
if  i i f o u t  =  f o p e n i "  R a n F e r n . d o c ” ,

” w t ” ) )  == N U L L ) {

p r i n t f i ” #  C a n ’t  o p e n  I D R I S I  . d o c  

f i le :  a n s i  f e r n . d o c \ n ” ) ;

e x i t i - 1 ) ;
y / /  opening a f i l e

f p r i n t f i f o u t , ’’f i l e  t i t l e  : R a n F e r i A n ” ) ; 

f p r i n t f i f o u t , ’’d a t a  t y p e  : i n t e g e r \ n ” ) ; 

f p r i n t f i f o u t ,  ’’f i l e  t y p e  : b i n a r y \ n ” ) ; 

f p r i n t f i f o u t ,  ’’c o l u m n s :  % d \ n ” , i m g _ s i z e ) ; 

f p r i n t f i f o u t ,  ’’r o w s  : % d \ n ” , i m g _ s i z e ) ; 

f p r i n t f i f o u t ,  ” r e f .  s y s t e m  : p l a n e \ n ” ) ;  

f p r i n t f i f o u t ,  ’’r e f .  u n i t s  : m \ n ” ) ;  

f p r i n t f i f o u t ,  ’’u n i t  d i s t .  : l \ n ” ) ;  

f p r i n t f i f o u t ,  ”min. X : 0 \ n ” ) ; 

f p r i n t f i f o u t ,  ’’max. X : % d \ n ” , i m g _ s i z e - 1 ) ;  

f p r i n t f i f o u t ,  ” m i n .  Y  : 0 \ n ”); 
f p r i n t f i f o u t ,  ’’m a x .  Y : % d \ n ” , i m g _ s i z e - l ) ; 

f p r i n t f i f o u t ,  ”p o s ’n e r r o r  : u n k n o w n \ n ” ) ; 

f p r i n t f i f o u t ,  ’’resolution : unknown\ri”) ; 
f p r i n t f i f o u t ,  ”m i n .  v a l u e  : % d \ n ” , z m i n ) ;  

f p r i n t f i f o u t , " m a x .  v a l u e  : % d \ n ” , z m a x ) ;  

f p r i n t f i f o u t ,  ’’ v a l u e  u n i t s  : c l a s s e s \ n ” ) ; 

f p r i n t f i f o u t ,  ’’ v a l u e  e r r o r  : u n k n o w n \ n ” ) ;  

f p r i n t f i f o u t , ’’f l a g  v a l u e  : n o n e \ n ” ) ;  

f p r i n t f i f o u t ,  ’’f l a g  d e f ’n : n o n e \ n ” ) ;  

f p r i n t f i f o u t ,  ’’l e g e n d  c a t s  : 0 \ n ” ) ; 
f c l o s e i f o u t ) ; 

break;
> / /  s w i t c h  
f r e e i f e r n ) ;
} / /  main



Program m e Listing of Fern’s 
Dimensions

A ppendix  T

The computer programme for calculating the 
fractal dimensions of the fern is listed below.1 
The following script is used to compile the C 
programme, that is, “acc -c - l m  S l . c "  and “/77  
S l . o  - o  S i  - I n a t f ’ .

T .l  F rac ta l D im en ­
sions of P rofiles

/*
/ /  f e r n f d . c  <— f r o m d em _ fd . c  
/ / U s a g e :  dem_fd in .d o c  i n . b i n  1 > f i l e  
/ /  Out: ( s t d o u t )
*/
#i nc lude <s td io .h >
ft include < s t d l i b .h >
ft include <math.h>
i t include  <nagmkl5.h> / /  NAGF l i b .
# inc lude  <TS.h>

» d e f in e  MAX_IMG_SIZE (1024)
»define HDR_LINE_NO (21)
»d e f i n e  HDR_LINE_SIZE (100)
»d e f i n e  HDR_INFO_START (14)  
f tdef ine  REGR_RESULTS (20)  
f tdef ine OUT_RESULTS (9)  
t tdefine  HAX_SUB_SETS (20) s 
f tdef ine OUT_BASE (1 . 0)

/ * * *  co l ,  row, e t c  from header  * * * /  
int e x t r a c t _ i n f o !  

char out[] , / /  input s t r i n g  
char in []) / /  output  s t r i n g  
{
i n t i ,  j ;

for ( i = H D R _ I N F O _ S T A R T ,  j = 0 ; j < 5 ;  i + + ,  

j++) { o u t [j] - i n  [i] ; >
}  / /  e x t r a c _ i n f o ( )

1 Refer to Section 6.4.

/*###* ********
/ /  Box-count ing: Brownian method 
************************************/  
void T.S_ b r o w n  _  b o x _  c o u n t i n g !  

double x[] , / *  input  dat a * /

int l e n g t h ,  / *  length of  data * /

double s t d ,  / *  hei gh t  of  data * /

double r e s u l t ( 2 ( J \  ) / *  r e s u l t a n t
dimension * /
<
int i , u , v ;  
int p a c e s ;

double * t m p p ,  * s i z e ,  * c o u n t ,  * i n d ,  * d e p ;  

double w i d t h ,  h e i g h t ,  v a l ;  

double s e a l ;

/ *  d e c la r a t i o n s  f o r  G01AAF, G02CAF * /  
int n , i w t , i f a i l ;

double * w t ,  x m e a n , s 2 ,  s$, s4, 
x m i n , x n i a x ,  w t s u m ;
p a c e s -  (in t) f l o o r ! l o g 2 (  (d o u b le ) l e n g t h ) );
s i z e  =  m a l l o c ! p a c e s  * s iz e o f ( in t ) ) ;
c o u n t s  m a l l o d p a c e s  * s iz e o f( in t) );
for(i -  0 ;  t < p a c e s ;  i++){
s e a l  =  e x p 2 ( (double) < );
w i d t h =  l e n g t h  /  s e a l ;  h e i g h t  = s t d  /  s e a l ;

s i z e d ] = s e a l ;  c o u n t d l = 0 . 0 ;

t m p p  = m a l l o d C m t ) w i d t h  *
s izeo f(d ou b le));
w t  = m a l l o d ! h i t )  w i d t h  * s izeo f(d o u b le )); 
for(u = 0 ;  u < s e a l ;  !<++){ 
for(r = 0 ;  v  < w i d t h ;  v + + )  { 
t m p p [r] = x ( u  * (in t) w i d t h  + r] ;
>
n = (in t) width; iwt= 0; if ail = 1; 
g01aaf_!&.n, tmpp, &iwt, ivt, kxmean, Sls2, 
ScsS, &s4, ttxmin, Six max, tewtsum, t i fa i l ) ; 
val = ceiHxmax/height) -  f loodxtnin/height) ; 
countii] += val;
y
f r e e ! t m p p ) ; f r e e ( w t );
>
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for ( i = 0 ;  i < p a c e s ; ¡++) { 
s i z e d .] = l o g 2 ( s i z e i i ]  ) ;  

c o u n t ( i ]  =  l o g 2 ( c o u n t ( i ] );
>
n= paces; ifail = 1;
g02caf_(Scn, size, count, result, Sufail); 
free( s i z e ) ; free(count);
} / /  TS_brown_box_counting / /

3fC3fC3fdfCjfC3/t3fC3fC3fC3fC /ft CL Ï Tl () ******************

void m a i n C n i t  a r g c ,  char * * a r g v )
{
F I L E  * f i n ;

char h d r ( H D R _ L I N E _ S I Z E ]  , t m p i S ]  ,  c h ;

int s u b ; / /  number o f  s u b s e t s  
int i ,  j ,  k ;

int c o l ,  r o w ,  new_co/, n e x v _ r o w ;  

int d i f f _ c ,  d i f f _ r ,  s t a r t _ c ,  s t a r t _ r ,  

v a l ( 2 ] I M A X _ S U B _ S E T S .];  
int s i z e _ s ,  s i z e _ d ; / /  2 b y t e s  
short int * t e m p ,

i m g t M A X _ I M G _ S I Z E ]  [ M A X _ I M G _ S I Z E 2 ;

double
h o u t ( R E G R _ R E S U L T S ]  i M A X _ I M G _ S I Z E ]  , 

v o u t U l E G R _ R E S U L T S ]  I M A X _ I M G _ S I Z E 1  ; 
double v r e m n l ,  v r e m n 2 ;

/ *  NAGF: G01AAF e t c  * /  
int m ,  n ,  i w t ,  i f a i l ;

double * y ,  * x , * w t ,  x m e a n , s 2 , s 3 , s 4 ,

x m i n . x m a x ,  w t s u m ,  r e s u l t i S O ]  ; 

double * t m p x ,  * t m p y ;  

s i z e _ s  = sizeof(short in t);  
s i z e _ d  =  s izeo f(d o u b le );

/****** warning msg *****************/
i f  ( a r g c  < 2 ) (

p r w t f i ”U s a g e :  % s  i n . d o c  i n . b i n  n o  > f i l e \ n " , 

a r g v U J ]  );
p r i n t f ( ” \ t i n . d o c : I n p u t  d o c u m e n t  ( I d r i s i ) \ n ” ) ; 

p r i n t f i ” \ t i n . b i n : I n p u t  i m a g e  ( U n i x ) \ n " ) ;  
p r i n t f i  ” \ t n o . : N u m b e r  o f  p o i n t s .  1 m e a n s  an 
i m g .  o f  2 ' n \ n ” ) ;

p r i n t f ( ” \ t \ t - >  t o  b e  d d  c o n v = s w a b  ( U n i x )  ->  

. i m g  ( I d r i s i ) \ n ” ) ;

p r i n t f i ’’N o t e :  o u t p u t  ( s t d o u t )  s h o u l d  b e  

r e d i r e c t e d  t o  a f i l e \ n ”); 
p r i n t f ( ” \ t i . e . ,  ... I m o r e  > f i l e \ n ” ) ; 

p r i n t f i  ” \ t n o :  N u m b e r  o f  s u b - s e t s  u s e d  < 

% d \ n ” , A I A X _ S U B _ S E T S ) ;  

e x i t ( - l ) ;
>

/********** p a r a m e t e r  * * * * * * * * * /

s u b  = a t o i i a r g v i . ' J ]  ) ;

/ * * *  c o l  &  r o w  f r o m  . d o c  h e a d e r  * * /  

if  ( ( f i n  =  f o p e n i a r g v i l l , ” r t ” ) )  == N U L L ) {  

p r i n t f i ” C a n ’t  o p e n  i n p u t  I d r i s i  . d o c  f i le :  

% s \ n ” , a r g v i l h ); e x i t ( - l ) ;

} / /  o p e n  f i l e

for0  = 0 ;  i  < H D R _ L I N E _ N O ;  <++){ 
f g e t s i h d r ,  H D R _ L I N E _ S I Z E ,  f i n ) ;  

i f ( i  == 3 )  {  

e x t r a c t _ i n f o ( t m p , l i d r )  ; 

c o l =  a t o i ( t m p ) ;

>
if ( * == 4 ) <
e x t r a c t _ m f o ( t m p , h d r ) ; 

r o w =  a t o i ( t r n p ) ;

>
> / /  i 
f c l o s e ( f m ) ;

/****** scan image in to  an arry  *******/
i f ( ( f i n  =  f o p e n i a r g v U f l , ” r b ” ) )  == N U L L ) {  

p r i n t f i ” C a n ’t  o p e n  i n p u t  i m a g e  f i l e :  % s \ n ” , 

a r g v i Z ] ); e x i t ( - l ) ;

>
t e m p  =  r n a l l o c ( c o l  * s i z e _ s ) ;

i m g i C O  [ 0 ] = 0 .  0 ;  t e r n p [ C d = 0 . 0 ;  t e m p i  f i = 0 .  0 ;

fo r ( i  -  0 ;  i < r o w ;  i++){
f r e a d ( t e m p , s i z e _ s ,  c o l ,  J i n ) ;

for ( j  = 0 ;  j  < c o l ;  > + ){
if(temp[j] > 0 . 0 )  {

i m g i i ] [j] = t e m p  [j] ;
>else {
t e m p l j ]  = 2 * t e m p i j -  f ]  - t e m p i ) - 2 ]  ; 
if  ( t e m p i j ] < 0 . 0 )  { t e m p i j ] = t e m p i i - 1 1 ;  } 
i m g i i ] i f ]  =  t e m p i j ]  ;
>
} / /  j
> / /  t
f r e e ( t e m p ) ;  f c l o s e ( f m ) ;

/ * *  the  s i z e  of  p r o f i l e  f o r  f d  * * /
x m e a n =  f l o o r ( l o g 2 (  (double) c o l  ) );  
v r e m n l =  r e m a i n d e r i  (double) c o l ,  2 . 0 ) ;  

new _ c o l =  ( in t) e x p S ( x m e a n ) ; 
x m e a n =  f l o o r ( l o g 2 (  (double) r o w  ) ) ;  
v r e m n 2 =  r e m a i n d e r i  (double) r o w ,  2 . 0 ) ;  

new _ r o w =  ( in t) e x p 2 ( x m e a n ) ;

/******** f d  c a l c u l a t i o n  ********/
x =  m a l l o c i n e w _ c o l  * s i z e _ d ) ; 

y =  m a l l o c ( n e . x v _ r o w  * s i z e _ d ) ; 

t m p i -  m a l l o c ( n e w _ c o l  * s i z e _ d ) ; 
t m p y =  m a l l o c ( n e w _ r o w  * s i z e _ d ) ; 

w t -  m a l l o c ( n e x v _ c a l  * s i z e ^ d ) ; 

d i f f _ c =  ( c o l  -  new „ c o l )  1 2 ;  

d i f f _ i -  ( r o w  -  n e w _ r o w ) / 2 ;  
for ( k  = 0 ;  k  < s u b ;  k + + ) { .
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i f ( v r e m n l  != 0 . 0 ) { 
s t a r t _ c =  r a n d o m () 7, d i f f _ c ;  

v a l i d ]  [À] = s t a r t _ c ;

> else {
v a l i d ]  [£] = s t a r t _ c  = 0 ;
>
\ R v r e m n 2  != 0 . 0 )  i  
s t a r t _ r =  r a n d o m i )  '/, d i f f _ r ; 

v a l i l i  [O = s t a r t _ r ;

> else {
v a l i d ]  [fc] = s t a r t _ r  =  0;

}
for(i = s t a r t _ c ,  m  =  0 ;  m  < new _ c o l ;  i + + , 

m++ ) {
for O’ = s t a r t _ r ,  n  =  0 ]  n < new _ r o w ;  _/++, 
n + + ) {
t m p x i n ] -  i m g i f ]  i j ]  ;
<mpy[;i]= i m g i j ]  [/I ;
} / /  j
n =  new _ r o w ;  i w t  =  0 ;  i f a i l  =  1;  

T S _ d a t a _ e x t r a ( t m p x , x , n )  ; 
g 0 1 a a f _ ( & n , x , ! c i w t ,  w t  , k x m e a n  , t z s 2  , k s 3  , k s . { , 
k x m i n  , t z x m a x , ! c w t s u m , k i f a i l )  ; 
T S _ b r o w n _ b o x _ c o u n t i n g ( x ,  n ,  s 2 ,  r e s u l t ) - ,  

for ( j =  0  ; j <  R  E G R _  R E S  U L  T S  ; j++) { 
i f ( x m e a n  > x m i n ) {  

h o u t i j ]  i f ]  = r e s u l t i ] ]  ;

> else { h o u t i j ]  [il = O U T _ B A S E ;  }
> / /  j
n= new _ r o w ;  i w t  = 0 \  i f a i l  =  1; 

T S _ d a t a _ e x t r a ( t m p y , y , n )  ; 
g 0 1 a a f _ ( k n , y , k i w t ,  w t , & x m e a n , S c s 2 , k s 3 , k s j , 

k x m i n , k x m a x . k w t s u m , k i f a i l ) ; 
T S _ b r o w n _ b o x _ c o u n t m g ( y ,  n ,  s 2 ,  r e s u l t ) - ,  

f o r ( j = d ;  j <  R E G  R _ R E S U L T S ; p - + ) {  

if(xmean > x m i n ) {  

v o u t i j ]  [i] = r e s u l t i ] ]  ;

> else { v o u t i j ]  CO = O U T _ B A S E ;  >
> / /  j

y / /  x
y  / / k

f r e e ( x )  ; f r e e ( y )  ; f r e e ( w t )  ;

/*************** R e s u l t  **********/
p r i n t f C ' #  i d  (h  v )  r e s u l t s  f r o m  % s  % s ;  
s u b i m a g e  s i z e :  % d \ n " , a r g v i l ]  , a r g v i 2 ]  , 

new _ c o l )  ;

p r i n t f C ’#  % d  p a i r s  o f  t o p - l e f t  c o r n e r s :  ”, 
s u b )  ;
forO = 0; i < sub; i++){
p r i n t f ( . ” ( % d  % d )  ”, v a l i d ]  [0  , ra/[ /]  CO);
> p r i n t f C ’\ n ” )  ;

p r i n t f C ’#  n o -  1 2  h _ r e s u l t s . . .  1 2  
v _ r e s u l t . . . \ n ” ) ;
for ( i -  0; i < new_col; <++){
p r i n t f C ’ % 5 d  ”, »+/);
for ( j  =  0 ;  j  < O U T _ R E S U L T S ; j++)

{ p r i n t f C ’ %o.3l f  " ,  h o u t i j ]  CO ) ;> 
for O' =  0 ;  j  < O U T _ R E S U L T S ;  >+ )  
{ . p r i n t f C ’ % - 3 l f  ”, v o u t i j ]  i f ] )  O  

p r i n t f C ’\ n ” )  ;
> / /  i 
} / /  main

T.2 F rac ta l D im en ­
sions of 2D 3D 
F ea tu res

/*
/ /  FERNBOXFD. C
/ /  Santax:  fe rnboxfd in_img img_size  R/S  
/ /  Desc.FD of  2D and 3D 
/ /  Output:2D 3D 
* /
itinclude <stdio.h>
9 in c lu d e  <stdlib.h>
ft include <math.h>
ttinclude <nagmkl5 ,h> // NAGF lib.

9define MAX_IMG_SIZE (1024)
9define VAL_0FF (0)
9define VAL_0N (1)
9define MIN(x,y) (((x)<=(y))?(x):(y)) 
9define MAX(x,y) (((x)>(y))?(x): (y))

/******** box_fd( )  *********/  
void b o x _ f d (

int m a x _ l e v e l ,  / /  i t e r a t i o n  
double r[] , / /  x v a r i a b l e  
double !/[] , / /  y v a r i a b l e  
double resulti2(J]) / / o u t p u t :  f d  
{
int i, sice_i/=sizeof(double);
/ *  d e c l a r a t i o n s  f o r  G01AAF, G02CAF * /
int n , i w t ,  i f a i l ;

double * x x , * y y , * w t ;

n = m a x _ l e v e l  -  1;

x x  = m a l l o c ( n  * s i z e _ d ) ;

y y  = m a l l o c ( n  * s i z e _ d ) ;

f o r 0 = 2 ;  i < m a x _ l e v e l ;  / + + ){
n = i -  1 ;  rr[n] = l o g (  1 . 0 / x i i ] ) ;

y y i n ]  =  l o g i y i f ]  );
> / /  i
i f  a i l  = 1;

g 0 2 c a f _ ( k n ,  x x ,  y y ,  r e s u l t ,  & ¡ f a i l ) ; 

f r e e  ( x x ) ; f r e e ( y y ) ;
> / /  box_f d( )

/***********************************
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************* main ***************** 

void m c i i n C m t  a r g c ,  char * * a r g v )

1
F I L E  * f d o c  
char ch;
hit i m g _ s i z e , b o x _ s i z e ;
in t i t e r ,  m a x _ i t e r ,  l e v e l ,  m a x j e v e l ;
int i , j ,  r n , n ,  u , v ,  L s t r , j _ s t r ;
in t si;e_d=(sizeof(double)) ,  s i z e _ u s =
(sizeof(unsigned short in t ) ) ;

unsigned short in t * t e m p ,  
i m g i M A X J M G . S I Z E ]  \ _ M A X J M G _ S 1 Z E ]  ; 
unsigned short in t z _ c o u n t , b o x _ c o u n t , 

z , z m i n , z m a x ;
unsigned long int count ,box_count_3D;

double * y ,  * x , * w t , x m e a n , s 2 , s 3 , s 4 , x m i n ,  
x m a x ,  w t s u m , r e s u l l ( 2 0 ]  , i w t ,  ¡fai l;  
double * y y , * x x ,  h e i g h t , f d ;

\ f ( a r g c  != Jt ) {
p r i n t f C ’U s a g e :  % s  i n j m g  i m g _ s i z e  R / S \ n ” , 

argvLO3) ;
p r i n t f ( ”\ t i n _ i m g : i n p u t  I D R I S I  i m a g e  ( d o n ’t 

n e e d  .d o c ) \ n ” ) ;
printf(”\timg_size: size of image\n”) ; 
printf(”\tR/S:Real/Synthetic\n”) ; e x i t ( - l ) ; 
}  / /  warning
i m g _ s i z e  = a t o i ( a r g v i 2 ] ); ch = a r g v i f f ]  [fiQ ; 
m a x j e v e l  = ( i n t ) l o g 2 (  ( d o u b l e )  i m g _ s i z e ) ;

if( ( f i m g = f o p e n ( a r g v ( l ]  , ”r b ’’ ) ) ==  N U L L ){ 
p r i n t f ( ” C a n ’t  o p e n  i n p u t  i m a g e . \ n ” ) ; 

e x i t ( - l ) ;
} / /  open image f i l e
/ * * *  Read, f i l e  in to  array  array  * * * /
t e m p  = m a l l o c ( s i z e _ u s  * i m g _ s i z e ) ;  

z m m  = 0;  z m a x  = 0;  
fo r ( i = 0 ;  i < i m g _ s i z e ;  ¡++){ 
f r e a d ( t e m p , s i z e _ u s ,  i m g _ s i z e , f i m g ) ; 
for ( j = 0  ;j< i m g _  s i z e ; j++) {
2 = t e m p i ] ]  ; i m g U ]  Cj] = z ;  
z m i n = M I N ( z m t n , z ) ; z m a x = M A X ( z m a x , z ) ;

y / /  j
> / /  i
f r e e ( t e m p ) ;  f c l o s e ( f i m g ) ; 
p r i n t f ( ” z m i n  % d  z m a x  % d \ n ” , 

z m i n , z m a x ) ;

switch(c/i) / *  rea l  or  s y n t h e t i c  * /

1
case ’ I P :  case ’ r ' :
c o u n t s  V A L _ O F F ;
forO = 0 ;  i < i m g _ s i z e ;  ¡++){
fo r ( j = 0 ; j < i m g _ s i z e ; J + ) (  z  = i m g U )  l j ]  ;

if (2 < z m a x )  { c o u n t + + ;  > / /  i f  
i r n g i d i j ]  = a b s ( z m a x  -  z ) ;
> / /  j
y / /  i
p r i n t f C ’#  N o n - e m p t y  p i x e l s :  % d \ n " , c o u n t ) ; 
break;
case ’S ’ : case ’s':
c o u n t  = V A L _ O F F ;
fo r ( i = 0 ;  i < i m g _ s i z e ;  ¡++){
f o r ( j = 0 ; j < i m g _ s i z e ; j + + ) {  z  = i m g U )  i f )  ;
if (2 > 144L_ O F F )  {  c o u n t * * ; > / /  i f

> / /  j
> / /  i
p r i n t f C ’#  N o n - e m p t y  p i x e l s :  % d \ n ” , c o u n t ) ; 
break;
d e f u l t :  break;
}  / /  switch

x =  m a l l o c ( c o u n t  * s i z e _ d ) ; 
w t =  m a l l o c ( c o u n t  * s i z e _ d ) ; 
c o u n t  = V A L _  O F F ;

for ( ¡ = 0 ;  i < i m g _ s i z e ;  (++){ 
f o r  ( j = 0 ; j < i m g _ s i z e ;  ] + + ) { .

2 = u n g U )  [j] ;
i f (2 > VAL_OFF) { r[couni] = (d o u b le )2 ; 
count**; > / /  i f
y / /  j  
y / /  i

/*** ge t s t a t s  ***/
i w t  — VAL_OFF; ¡fai l  = VAL_ON;
g O l a a f _  ( t  c o u n t ,  x , t z i u i t , w t ,  k x m  ea n , Scs2 ,Scs3 ,

, S cx mi n , S c x m a x . A w t s u m , k i f a i l ) ;  
p r i n t f C ’#  mean s t d  min m ax\n”) ; 
p r i n t f C ’#  % 4 . 2 f  % 4 . 2 f  % 3 . 0 f  % 3 . 0 f \ n ” , 
x m e a n , s 2 ,  x m i n , x m a x ) ; 
f r e e ( w t ) ;  f r e e ( x ) ;

/*** i t e r  -> box_count (col  -> row); 
output: s i z e f j  & countCJ ***/
x -  m a l l o c ( s i z e _ d  * ( m a x j e v e l *  1 ) ) ;  
y =  m a l l o c ( s i z e _ d  * ( m a x j e v e l + l ) ) ;  
x x  = t n a l l o c ( s i z e _ d  * ( m a x j e v e l + l ) ) ;  
y y  = m a l l o c ( s i z e _ d  * ( m a x _ l e v e l + D ) ; 
x  iff.1 = (doub le) MAXJMG_SIZE;  
x x  iff) = (d o u b le )MAXJMG_SIZE;  
x i  10) = (doub le) VAL_ON; 
x x  i l f f )  = (doub le) V A L _ O N ;  
y  i d )  -  1 - 0 ;  y y  if f]  -  ( x m a x - x m i n )  / s 2 ;  
y  O f f ]  -  (doub le) i m g _ s i z e  * i m g _ s i z e ;  
y y  O f f )  = (double) t m g _ s i z e  * i m g _ s i z e  * 
( x m a x - x m i n ) / s 2 * e x p 2 (  1 0 ) ;

/*** s e t t i n g  s i z e  ***/
for ( level= 1; level<maxjevel; level**){
m a x j t e r  = ( in t ) e x p 2 ( l e v e l ) ;
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b o x _ s i z e  = i m g _ s i z e /  m a x _ i t e r ;  
h e i g h t  -  s 2 /  (double) m a x _ i t e r ;  

x l l e v e l ] = (double) b o x _ s i z e ;  
x x i l e v e U  = (double) b o x _ s i z e ;

/* * *  counting r o u t in e  * * * /
b o x _ c o u n t  = VA L _  O F F ;
b o x _ c o u n t _ 3 D  = V A L _  O F F ;
for ( u = 0 ;  u < m a x _ i t e r ; u++){
j _ s t i - u *  b o x _ s i z e  ;
for(r=0; v < m a x _ i t e r ; r++){
i _ s t r  = v * b o x _ s i z e ; z _ c o u n t  = V A L _ O F F ;
z m i n  = 9 9 9 ; z m a x  = V A L _ O F F - ,
fo r 0 - 0 ;  i < b o x _ s i z e ; ¡++){ m  = i _ s t r  + i;
for ( j = 0 ;  j < b o x _ s i z e \  j++){
n = j _ s t r  + j; z  = i m g [ m ]  [n] ;
if(* > V A L _ O F F )  { z _ c o u n t ++;
z m i n  = M I N ( . z m i n , z )  ;
z m a x  = M A X ( . z m a x , z )  ; } / /  ¿ /
> / /  J
> / /  t
if(~_c o u n t  > V A L _ O F F )  { b o x _ c o u n t + + ; } 
c o u n t  = (unsigned long int)
( c e i R x m a x / h e i g h t )  -  f l o o r ( x m m / h e i g h t )  ) ; 
b o x _ c o u n t _ 3 D  += c o u n t ;

} / /  v
> / /  ti
y i l e v e b ]  = (double) b o x _ c o u n t ;  
y y i l e v e l ] = (double) b o x _ c o u n t _ 3 D ;
}  / /  l e v e l
p r i n t f C ’#  s i z e  2 D _ c o u n t s  3D_counts 
( I o g ‘2  v s  r e a l  s c a l e s ) \ n ” ) ;

for(i=0; i<-max_level\ ¿++K 
p r i n t f C ’ % 4 . O f  \ t % 9 . 3 f  % 1 1 . 3 1A £ ”, 
logSixii] ) , log2(yi i]  ) ,  log2(yyii]  ) ) ; 
p r i n t f C ’% 4 - 0 f  \ t % 9 . O f  % 1 1 . 0 l f \ n ” , 

xii] ,y[0 .yylil ) ;
> / /  t

p r i n t f C ’#  D  f d  ( I o g - l o g ) \ n ” ) ; 
box_fd( .  m a x j e v e l . x ,  y ,  r e s u l t ) ; 
p r i n t f C ’#  2  % . 3 f \ n ” , r e s u l t i , 5h ) ; 
box_fd( ,  m a x j e v e l ,  x x ,  y y ,  r e s u l t )  ; 
p r i n t f C ’#  3  % . 3 f \ n ” , r e s u l t [5 ]); 
f r e e ( x )  ; f r e e ( y )  ; f r e e ( x x )  ; f r e e ( y y )  ;
} / /  main


