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Abstract

Cough monitoring has been undertaken for many years but the subsequent analysis of 

cough frequency and the temporal relation to trigger factors have proven problematic. 

Since cough is episodic, data collection over many hours is required; real-time aural 

analysis of the resultant data is therefore highly time-consuming. As cough as a 

symptom becomes a more important area of study, the requirement for a method for 

cough monitoring and assessment increases.

An objective, portable device has been developed for the 24 hour acoustic monitoring 

of cough together with a system for the automatic recognition and counting of coughs 

in audio recordings.

Digital signal processing was applied to extract the spectral features of sound events, 

followed by a variety of investigated data pre-treatment techniques.

Due to their success in other areas, artificial neural networks were studied in depth for 

their potential application as a pattern classification step; they were, however, found 

to be unsuitable for the discriminations between cough and non-cough events due to 

the high degree of variability present in both classes.

Digital filtering was then applied to remove a range of low frequencies common to 

many sounds in order to study the characteristics of the higher frequencies.

The system has been demonstrated to correctly classify 82% of all coughs present in 

audio recordings; the 18% of coughs that were missed were mostly very low in 

amplitude and would not have been classified as coughs by an experienced cough 

listener. This figure of 82% is therefore largely underestimated. Only 11% of the 

events classified coughs were actually non-coughs. Results for sensitivity are 

calculated to be 82%, specificity is 97% and accuracy is 94%. These are considered to 

be highly acceptable for clinical applications.

Ambulatory high-quality cough recordings are now possible over a 24 hour period. 

Automatic analysis affords rapid and reproducible association of cough with 

environmental triggers.
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Introduction



Chapter 1 - Introduction

1.1 Aims

The aims of this work were to develop a system for the acoustic monitoring of cough 

in patients. Intended applications of the system included the study of the patterns of 

patients’ cough episodes and their correlation to various trigger factors and also the 

comparison of cough frequency before and after medication in cough suppressant 

efficacy studies. The work comprised of two elements; the design and production of 

both a monitoring device and a method for the automatic analysis of the results.

The monitoring device had to be objective and capable of the ambulatory monitoring 

of cough for 24 hour patient studies. It also had to be capable of recording various 

patient activities to allow the study of trigger factors. Due to the time requirements of 

manually processing recordings of 24 hour duration, automatic analysis was 

necessary to make this a feasible application. A computerised method was therefore 

required to process the resultant audio recordings and thus achieve automatic cough 

recognition. The results of this process then need to be presented in a clear way for 

medical interpretation.

A method for the automatic recognition of cough had previously been designed; the 

aim was to develop this method for application to 24 hour ambulatory studies. A 

further aim was to investigate additional methods appropriate for the automatic 

recognition of cough.

1.2 Cough

1.2.1 Introduction

Sound has been used for many years to monitor medical conditions. Devices for 

acoustic monitoring include the stethoscope invented in 1816 by Rene T.H. Laennec 

to monitor heart and lung sounds, monitors for snoring and sleep apnoea1, infant 

monitoring systems to guard against sudden infant death syndrome (SIDS)2 and 

cough monitoring which has implications in drug development for efficacy studies as 

well as for the monitoring of disease in patients.
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Chapter 1 - Introduction

Cough is an essential protective reflex which clears the respiratory tract and prevents 

the inhalation of foreign materials and excessive secretions into the respiratory 

system. Cough is one of the most common complaints for which patients seek 

medical advice3 and population studies reported prevalence of cough to vary between 

3% and 40%4. In contrast to the trivial complaints of cough caused by acute upper 

respiratory tract infections (URTIs), such as the common cold, chronic cough 

sufferers can experience severe debilitating effects. Fortunately, the perception of 

cough as a symptom is now changing. Progress has been made in defining the range 

of conditions responsible for persistent cough and scientific advances in 

understanding the biology of the cough reflex are expected to lead to improved 

therapeutic strategies.

Based on duration there are two categories of cough that are not mutually exclusive: 

acute and chronic.

1.2.1.1 Acute cough

Acute cough is defined as lasting for less than three weeks, although prolonged post- 

viral cough could cause symptoms as long as a few months lateri. The vast majority 

of acute cough is caused by URTIs, in which cough is usually non-productive and 

self-limiting. The management of acute cough has massive health economic 

consequences with the use of over-the-counter cough remedies in the UK being 

estimated at 75 million unit sales per annum4. The main active ingredients are 

codeine, which has more recently been replaced with pholcodine due to its less toxic 

metabolites, and dextromethorphan. However, there is a disparity regarding the 

efficacy of many of these antitussives, the most common reason for which appears to 

be the different models employed to study the antitussive effects. Many studies have 

shown these agents to be effective in animal models6"9 and human induced-cough 

models10"12 although there are few data to show the effectiveness of treating acute 

cough due to URTI in humans. Some studies have even excluded the use of placebos 

during antitussive trials, thus failing to show any significant improvements over the 

placebo effect. It is also questionable that any improvement seen in patients with 

URTI is due to the antitussive effect rather than the natural progression of the

3



Chapter 1 - Introduction

infection. Furthermore, a recent study of over-the-counter cough medicines lias 

suggested they possess little clinically relevant efficacy13.

1.2.1.2 Chronic cough

Persistent cough lasting eight weeks or more is classed as chronic. Chronic cough is 

significantly associated with adverse physical and psychosocial effects on quality of 

life14. Debilitating physical effects can include exhaustion, incontinence, loss of 

sleep, cough syncope, vomiting, hoarseness and even broken ribs; whilst psychosocial 

effects can include embarrassment, self-consciousness, absence from work, inability 

to socially interact and changes in lifestyle and activities.

Irwin el al. reported that a cause for chronic cough could be found in 98% of cases 

and was due to either cough variant asthma (CVA), rhinisinusitis associated with 

postnasal drip syndrome (PNDS) or gastro-oesophageal reflux disease (GORD)5. In 

addition, a common cause of cough in sufferers of high blood pressure is ACE- 

inhibitor cough, directly caused by the medication, which significantly lowers the 

cough threshold3,15.

1.2.1.2.1 Cough variant asthma (CVA)

Cough variant asthma is a type of asthma in which the sole or most predominant 

symptom is cough16. Patients typically exhibit asthmatic responses to 

hyperresponsiveness but not bronchoconstriction and respond well to anti-asthma 

treatment. Other symptoms of asthma such as wheezing and dyspnoea are not present. 

Treatment of CVA is achieved with anti-inflammatory therapy such as inhaled 

corticosteroids and short-acting bronchodilators as needed.

1.2.1.2.2 Post nasal drip syndrome (PNDS)

Postnasal drip syndrome is a symptom, not a disease, the causes of which can include 

allergic rhinitis, vasomotor rhinitis, viral or bacterial infections and nasal polyps . 

The cough reflex is stimulated by the drainage of fluid from the nose or sinuses down 

the back of the throat. Treatment depends on the cause of the excessive secretions and 

can include antihistamines, decongestants or antibiotics.

4
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1.2.1.2.3 Gastro-oesophageal reflux disease (GOKD)

Gastro-oesophageal reflux disease (GORD) is defined as occurring when typical 

reflux of substances from the stomach into the oesophagus leads to symptoms or 

physical complications. The cough reflex is stimulated by the reflux into the 

oesophagus and subsequent aspiration. In up to 75% of cases, cough is the sole 

presenting symptom of GORD which can pose problems with diagnosis3. Treatment 

is usually by stomach acid suppression using drugs such as proton pump inhibitors or 

prokinetic agents or by anti-reflux surgery3.

1.2.2 Cough studies

The objective assessment of cough frequency is an important measure for both 

clinical and research purposes. Cough is a common symptom of many respiratory 

disorders and when monitored, can provide important information for diagnosis, 

therapeutic efficacy and progression of disease. In addition, the assessment of cough 

is important in pharmacological studies for determining the efficacy of antitussive 

drugs.

Interestingly, the actual definition of a cough remains an unresolved issue in the 

medical world. Some argue that every cough event must have its own preceding 

inspiration to be counted as one cough, while others argue that the number of cough 

events should be defined by the number of characteristic cough sounds made. 

Equally, some suggest that cough severity can be measured based on the time spent 

coughing, others believe that there needs to be a measure of cough intensity included. 

It is therefore widely accepted that the cough counter can make a personal definition 

of cough as long as it is consistent and reasoned.

The evaluation of cough severity has so far relied mainly on subjective measures such 

as cough reflex sensitivity and on the patient’s perception of the symptom assessed by 

cough visual analogue scores, quality of life questionnaires, cough symptom scores 

and patient’s diaries18'21. However, subjective recording or scoring of cough is 

unreliable as individual perception of cough differs from mild irritation to marked 

impairment of quality of life14' l9. In addition, subjective assessment of cough 

frequency during the night-time has been shown to be unreliable22,23. The measure of

5
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cough reflex sensitivity by cough-inducing agents such as citric acid“ , capsaicin“ 

and water aerosols3" has long been carried out. However, while induced-cough 

models serve as effective screening tools for antitussive agents and for studying the 

cough reflex, there are few data to relate treatment responses using this model with 

those in disease. Induced cough is therefore not yet considered a definitive clinical 

model to demonstrate the efficacy of antitussive drugs. Further to this, Sevelius noted 

that patients could become tolerant of the inhaled irritants used to induce cough" . 

Woolf showed that a drug which had previously been proven effective using induced
•yo . . .

cough tests to be ineffective when a cough count was performed ; thus indicating 

that induced cough responds differently to suppressants and that cough monitoring is 

a more representative method.

Successful cough frequency monitoring therefore depends on an objective cough 

counting method. The basic requirements for such a monitor are the possibility to 

record over a representative amount of time, usually 24 hours to study the diurnal 

changes of cough, and the use of a portable recording system to study patients in their 

own environment carrying out their usual daily activities. In addition, since the 

manual examination of cough monitoring recordings is a slow and tedious process, 

the capacity to automatically detect the occurrences of cough sounds from the 

recordings is required.

1.2.2.1 History of objective cough counting

Several attempts at objective cough counting have been made over the years. In 1954, 

Gravenstein et al. recognised the problem of finding quantitative data to show that 

antitussive agents reduce the frequency of pathological cough* . Previous studies by 

Keats et al. had shown placebos to be an effective therapy for ailments where 

subjective factors play a major role30. To solve this, Gravenstein used the Grass sound 

recorder developed by Albert Grass, founder of the Grass Instrument Company, to 

test the efficacy of antitussives on pathological cough. Cough was recorded by use of 

an ink-writer on a moving paper tape in the form of spikes of varying frequency and 

amplitude, depending on the frequency of the cough. In 1964, Woolf and Rosenberg 

developed a method to record patients using a free-field microphone and tape
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recorder28. The tape recorder was activated by an electronic on/off unit which was 

triggered by a sound signal; this meant that up to 24 hours of observations could be 

made on one tape and manual counting could be achieved in approximately two 

hours. A time signal was generated every half hour to allow more accurate and 

temporal cough frequency counting. In 1966, Sevelius and Colmore developed a very 

similar set up, this time using a throat microphone to exclude background noise . A 

limited amount of movement by the patient was enabled by use of a long cord. In 

1967, a more complex system for cough frequency monitoring was developed by 

Loudon21, ’2. Again, the system used a free-field microphone which detected all 

sounds in a patient’s room and fed the signal through to a sound-activated tape 

recorder. However, the signal was then amplified and passed through a frequency- 

specific attenuator to an amplitude discriminator with an adjustable threshold. The 

frequency attenuator and amplitude discriminator were tuned to accept coughs and 

reject all other sounds, thus reducing the required counting time even further.

In 1974, Thomas et al. developed a semi-ambulatory system in which patients were 

“free-roaming” within a controlled environment33. A microphone was attached to the 

patient’s throat and sound was sent, via a transmitter, to a tape recorder. Cough was 

differentiated from other noise and subsequently counted by satisfying two criteria; 

firstly possessing a rapid rate of rise that is characteristic of coughs; and secondly 

possessing an energy content above a determined threshold.

In 1983, Matthys et al. measured cough frequency and intensity during sleeping hours 

by use of a pressure transducer attached over the trachea and connected to a recorder
• "li

which measured the amplitude of the coughing' .

In 1988, Salmi et al. developed a method for long term recording and automatic 

analysis based on the simultaneous recording of filtered acoustic signals and cough- 

induced fast movements of the body'0 . A dynamic microphone mounted in the focus 

of a paraboloid acoustic fibreglass mirror was placed at the foot of the bed and 

directed toward the face of the patient. Signals from the microphone were high-pass 

filtered to eliminate low-frequency noise. Body movements were recorded with a 

static charge-sensitive bed connected to an amplifier and a filter unit. High-pass 

filtering was used to record only fast body movements typical for cough. Events were
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thus identified as coughs if the signals in both cases simultaneously exceeded the 

detection threshold. While the method gave excellent levels of sensitivity (99%) and 

specificity (98%), it was limited by the fact that the patient had to remain in bed, 

could only engage in quiet conversation and had to refrain from making any quick 

movements whilst speaking.

In 1997, Chang et al. adapted a disused Holter monitor, a device for ambulatory 

electrocardiography, to create an inexpensive cough monitor19 36. The device used the 

electromyogram (EMG) signal alongside an audio signal and both were filtered 

before recording to minimise unwanted signals. A cough was defined as a positive 

response occurring simultaneously in both channels. The device gave good results 

when validated against an ordinary tape recorder, although the tests were carried out 

overnight whilst the subjects were asleep, thus encountering very limited background 

noise. In addition, it was necessary for the cough counting to be carried out manually 

by a trained investigator, leading to a time-consuming process.

While all these systems were addressing the need for objective cough monitoring and 

even reducing the processing time of the data by sound activated tape recordings, 

there remained the problem that patients could not be fully mobile under study. 

Eccles showed that simple resting causes a reduction in cough frequency37, thus 

further illustrating the need for ambulatory cough counters.

In 1994, Hsu et al. developed the first 24 hour ambulatory cough monitor38. The 

device made simultaneous recordings of cough sounds and of EMGs of the lower 

respiratory muscles, including diaphragmatic activity. Cough counting was performed 

manually by visualising the audio and EMG signals. Later the same year, Munyard et 

al. reported a similar device with the addition of electrocardiograph (ECG) 

monitoring and an accelerometer to determine the level of the subject’s activity39.

In 1996, Pavesi et al. developed a computerised cough acquisition system to test the 

efficacy of dextromethorphan on acute cough caused by URTI40,41. Developments 

were carried out to allow a degree of portability, such that patients were allowed to 

move around within a confined area, such as their home. The device used a contact 

microphone attached to the patient’s suprasternal notch and delected cough audio 

vibration signals. These signals were then transmitted by frequency modulation to a
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receiver which was positioned within the area of study. Analysis of the data gave 

information about cough frequency, intensity and latency. However, the analysis 

procedure still required manual listening and input from a trained investigator.

In a similar way in 1998, Rietveld et al. developed a system to record tracheal sounds
«17of children in their homes . The ambulatory device consisted of an electret 

microphone and a transmitter which fed to a receiver and recorder placed in the 

patient’s home. The study covered two recording durations, 24 hours and 72 hours 

and analysis was carried out manually. A conclusion of the report was that the time 

consumption made the method unattractive for clinical application.

1.2.2.1.1 System assessment

Cough recognition systems are generally assessed in terms of sensitivity, specificity 

and accuracy; these are defined in Equations 1-1, 1-2 and 1-3 respectively, where TP 

is true positive, TN is true negative, FP is false positive and FN is false negative.

Sensitivity
TP

TP + FN
Equation 1-1

Specificity
TN

TN + FP
Equation 1-2

Accuracy
TP + TN

IT + TN + FP + FN
Equation 1-3

1.2.2.2 State of the art

Only very recently has the technology evolved such that it is possible to incorporate 

all the desired features into an automatic cough monitor; portability, extended 

recording durations and automatic analysis. Automatic cough recognition from 

ambulatory multi-channel physiological recordings has been reported by Coyle et al. 

in 20054\  The system is a cardio-respiratory monitoring device called a Lifeshirt™ 

(Vivometrics Inc., Ventura, California) which, like the devices by Chang et a!., Salmi 

et al. and Hsu et al., relies upon multiple signal monitoring for cough recognition. 

Respiratory inductance plethysmography (RIP) non-invasively measures ventilation, 

a unidirectional contact microphone monitors cough sounds, an ECG measures heart
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rate and a centrally located 3-axis accelerometer monitors posture. Automatic 

analysis uses data from all channels to identify a cough event. Accuracy of the 

Lifeshirt™ system is given at 99%, sensitivity was lower at a value of 78.1% whilst 

specificity was 99.6%. Of a total of 3,645 coughs counted using video surveillance, 

3,363 coughs (92%) were counted. However, while the results appear to show the 

Lifeshirt™ as unequalled, there are some limitations associated with the device and 

its use that are not defined. The authors note that a limitation of the video surveillance 

was the human error introduced to counting due to fatigue, suggesting that the 

percentage of coughs that the system counts could be lower. The validation method of 

video surveillance unfortunately limits patient mobility and fails to illustrate how well 

the system would cope in a fully ambulatory situation with patients undergoing their 

usual daily activities. The system is incorporated into a vest which must be worn 

underneath the clothing for the entire study duration once it has been fitted, including 

during sleep, which introduces impracticalities of the patient being unable to remove 

the device for bathing. The whole device is expensive with the purchase of one 

Lifeshirt™ plus software costing up to $30,000 (US). Personal communication with 

L.P.A. McGarvey (The Queen’s University of Belfast) and J.A. Smith (Wythenshawe 

Hospital, Manchester) revealed that investigators that have used the Lifeshirt™ find 

its sensitivity and specificity to be much less than claimed in the published paper. 

Equally, the authors have admitted that the system identifies throat clearings as 

coughs; thus potentially introducing a degree of inaccuracy into the results. A further 

disadvantage is that data must be analysed by Vivometrics, who then compile the 

results; this “black-box” approach is too ambiguous for medical applications and 

regulations.

In 2002, Hiew et al. developed an automatic approach to cough monitoring of asthma 

patient recordings44. The system consists of a digital recording device and a computer 

algorithm. To compress the sound file, any silent periods are firstly eliminated by 

way of an applied threshold level. The remaining recording is then divided into one 

second portions for further analysis. Each one second envelope is checked for 

exceeding a second threshold and if it does, auto-correlation is applied to determine 

whether the sound fulfils the criteria of being an asthma cough. The final check is to 

see whether the significant frequency is within a set range. If all of these criteria are
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met, the one second envelope is classed as a cough second. Values for sensitivity and 

specificity were quoted at 70.5% and 98.3% respectively. However, the study used 

overnight patient recordings which immediately limits the amount of background 

noise encountered and therefore does not truly test the performance of the system. 

Equally, it is not possible to demonstrate the performance of the system in instances 

of fully ambulatory patients. In 2006, part of the same group, Smith et al. used the 

compression stage of the algorithm to exclude any periods of silence and then 

manually counted coughs in the remainder of the recording45, perhaps indicating the 

weaknesses of the original system. This semi-automatic approach, very similar to that 

used by Woolf et al. in 1964, took processing time of a 10 hour recording down to 2.5 

to 3 hours. Also in 2006, Matos et al. developed a system which consists of a portable 

digital audio recorder to record cough in ambulatory patients together with an 

algorithm based on a Hidden Markov Model (HMM) to carry out automatic 

analysis46. The system correctly recognised cough at a detection rate of 71% with a 

false positive rate of 13 events/hr. As expected, false positives included speech (at an 

average of 4 events/hr), throat clearing sounds, impulsive noises and cough sounds 

from other persons. To reduce the number of false positives being counted, two 

energy thresholds were introduced at 90% (CDF90) and 95% (CDF95) of the 

recording’s energy cumulative density function (CDF). However, this threshold 

immediately excluded a percentage of the cough sounds from analysis, with only 

averages of 84% (range 48% to 100%) still being present at CDF90 and dropping to 

72% (range 28% to 94%) at CDF95. Of these two percentages, only averages of 77% 

and 82% respectively were actually recognised by the algorithm leading to an overall 

average result of 65% at CDF90 and 59% at CDF95 with the false positive rate at 9 

events/hr and 7 events/hr respectively. These actual figures show that the system does 

not perform as well as suggested by the authors. Later the same year, Paul et al. 

developed an ambulatory, objective cough monitor, which lacked automated 

analysis47. The system was based on an accelerometer which measured vibrations in 

the chest and was thus subject to interference from other upper respiratory sounds 

such as speech, laughter and snoring. However, it was not reported whether or not 

these sounds caused the occurrence of false positives. In addition, the system had 

only been tested on short durations, most being only 30 minutes, due to the time
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consuming nature of validating the method against video monitoring. No 24-hour 

studies were carried out to test the possibility of such durations or the time required to 

process them. Also in 2006, Barry et al. developed an automatic method for the 

analysis of cough sounds in audio recordings but without the ability to make 24 hour 

recordings48. The system used a digital audio tape (DAT) recorder to monitor cough 

sounds in smoking patients. The automatic system then isolated periods of sound, 

calculated the cepstral coefficients and used a probabilistic neural network (PNN) for 

the classification of cough and non-cough sounds.

Although progress is definitely being made, there still remains to be developed a fully 

ambulatory monitoring system capable of making objective 24 hour cough studies 

with high figures of sensitivity, specificity and accuracy.

1.3 Analysis of Cough

In the attempt to develop an objective and automatic cough counter, the acoustic 

properties of cough must be studied in order to determine specific features which 

could be used to distinguish cough from any other sounds.

1.3.1 Studies of cough sounds

Cough is easily recognised by the human ear and can be audibly distinguished from 

other upper airway sounds such as speech, laughter, throat clearing and snoring.

The cough reflex can be described as a sudden rapid air expulsion, caused by a 

coordinated contraction of the respiratory musculature against a closed glottis which 

then opens49, Cough sounds can generally be characterised as a composite of two 

or three phases^1 [See Figure 1.1]. The first is an expulsive phase occurring at the 

moment of glottal opening and causing a high intensity sound. This is followed by an 

intermediate or steady state phase which is lower in amplitude and associated with a 

steady flow of air through the open glottis. Frequently, there is also a third voiced 

phase which is caused by the partial closing of the vocal chords vibrating toward the 

end of the cough49, though this third phase is not always present.
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Tim e-am plitude plot of a typ ica l cough sound

0.2 0.3 0.4 0.5
Tim e (s)

Figure 1.1 Typical three-phase cough sound

Cough can be separated into four common cough-classes, respectively labelled as 

voluntary, chemical-induced, acute and chronic49, where acute and chronic are both 

spontaneous cough. However, it has also been demonstrated that cough sounds can 

vary widely and that their acoustical differences, caused by gender or the presence of 

mucus for example, can be detected by the human ear"2. The large number of 

descriptors used for cough sounds, including brassy, rattling, bovine and barking, 

perhaps also indicate the potential difficulties in classifying all these sounds as one 

type.

Several studies have been made into the classification of cough types based on their 

acoustical features. In 1989, Piirila and Sovijarvi studied the acoustics of spontaneous 

cough in patients with various pulmonary diseases using spectrograms52. They found 

that sound characteristics and flow dynamics can be typical of certain diseases and for 

some parameters there was no overlap between patient groups. In 1991, Toop et al. 

designed a portable but not ambulatory system for the spectral analysis of cough 

sounds in asthma"4' The hardware comprised of a flow meter, a contact 

microphone for chest sounds, a free-field microphone for cough sounds, an amplifier, 

filter and replay unit and a computer; all of which was fitted onto a trolley for
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portability. The method was not one for monitoring cough frequency over long 

periods, merely to analyse the actual cough sounds of asthma patients.

In 1992, Thorpe et al. used multivariate discrimination to distinguish the cough types 

by their many varying characteristics and found that the variables which were most 

effective at distinguishing between asthmatic and non-asthmatic groups were: zero­

crossing rate, duration, presence or absence of a final burst, and the cepstral 

coefficients56. However, the recognition error rate was calculated to be between 20 

and 30 %. In 1997, Doherty el al. described the spectrographic features of cough 

which could be observed and quantified for cough analysis1'7. Data was presented as 

spectrograms, overall spectral energy plots and root mean square (RMS) pressure 

plots and visual patterns observed. In 2000, Olia el al. studied the spectrograms of 

cough in healthy subjects^8. In 2002, Van Hirtum and Berckmans developed a system 

to discriminate between voluntary and spontaneous cough types to an accuracy of 

96%y). Recognition was achieved using various methods of digital signal processing 

and a learning vector quantisation (LVQ) neural network.

In 2006, Murata el al. described a system for automatic cough counting based on six 

types of classified cough sounds60. In this, five parameters of cough sounds were 

identified which could be used to characterise the coughs. From this, coughs were 

classed into six types and a system was designed to recognise any sounds that 

matched any of these categories. The resulting system achieved a sensitivity of 90.2% 

and a specificity of 96.5%. The study did however necessitate recordings in a silent 

room during sleeping hours to avoid any interference from background noise. The 

group had also previously demonstrated the ability to discriminate between 

productive and non-productive cough sounds by spectral analysis61. In 2002, Korpas 

el al. studied the variation in cough sound patterns during disease using time- 

amplitude plots or tussinophonograms49. They concluded that tussinophonograms 

possess sufficient variation between diseases to be useful in diagnosis [See Figure 

1.2]
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Cough sound 

Pattern Intensity Duration

Normal cough

HM---- 29.4 ± 2  AU 0.30 ± 0.01s

Inflammation — mild
bronchitis

Laryngitis

* #1 <50 AU <0.45 s

Tracheitis

Inflammation — severe 
laryngo-tracheo-bronchitis

1 s

Figure 1.2 A summitry o f the variety in cough sound patterns (illustrated by time- 
amplitude plots) intensities and durations for different diseases. ¡Reproduced from

Korpas et al.4>J

1.3.2 Digital signal processing

Digital signal processing (DSP) is the use of mathematics, algorithms and techniques 

to analyse, modify or extract information from digital signals. Signals are digitised by 

taking uniformly spaced samples from the continuous signal, which are measured 

over a finite time. DSP has applications in many areas including communications, 

medical imaging, radar and sonar and high fidelity music reproduction.

Although there has been some attempt to understand the mechanism of cough 

production, so far little research has been directed toward computer modelling of the 

cough sound. As cough can be recognised by the human ear as being different to all
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other sounds, it must possess unique acoustic properties that define it as an individual 

type of sound. Upper airway sounds originate from the resonance of air in the mouth, 

pharynx and nasal cavities. This resonance can be caused by the How of air through 

the larynx giving rise to vocal sounds or by the expiratory force of air against a closed 

glottis which then opens giving rise to a cough sound. Since these are two similar 

processes, both dependent upon the resonance of air in the upper airway cavity, and 

since recognition of speech has already been extensively researched, techniques used 

to analyse speech provide an insight into possible methods available for cough sound 

analysis.

1.3.2.1 DSP for speech analysis

1.3.2.1. / History of speech analysis

Research in automatic speech recognition has been ongoing for over 50 years with the 

earliest systems for automatic speech recognition being produced in the 1950s. Since 

then there have been many approaches to the technique of speech recognition in an 

attempt to produce an accurate and robust machine, intelligent enough to understand 

spoken conversation on any subject by all speakers and in all environments. This 

ideal is still a long way from being achieved. At present, although speech recognition 

systems are gaining increased accuracy and can generally cope with normal speech 

patterns, as opposed to the previous necessity to pronounce every word clearly and 

slowly, they still cannot adapt to multiple speakers and different environments.

By the time the first speech recognition systems were being developed, much other 

work had been carried out into speech and language technology. Perhaps one of the 

first and most important steps was the invention of the telephone in 1876 by 

Alexander Graham Bell and was later followed by the first long distance 

transmissions of speech over the radio in 1915. By 1898, Pouslon had invented the 

first tape recorder allowing speech to be recorded onto steel piano wires. 

Commercially viable tape recorders, using magnetic plastic tape as designed by 

O’Neill in 1927 became available in the 1930’s.

Electronic speech synthesis began development in the 1920’s with simple electrical 

resonators simulating sustained vowels. In 1939 Homer Dudley invented the
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“vocoder”, the voice operated recorder, a complete electronic speech synthesis system 

which produced speech from data extracted from natural speech.

Attempts at actual automatic speech recognition began in 1952 at Bell Laboratories 

with a system for isolated spoken digit recognition for a single speaker62' 63. The 

system relied on measuring spectral resonances during the vowel region of each 

word. In 1956, at RCA laboratories, Olson and Belar developed a system to recognise 

ten monosyllabic words as spoken by a single speaker64. This system used an 

analogue filter bank to take spectral measurements during the vowel regions of the 

words. These early systems required the user to use a distinct speech pattern to dictate 

by separating every word with a pause; known as discrete speech and stop dictation 

and thus ruling out the possibility of application to normal, continuous speech. The 

repeatability and reliability of the systems were also poor. The 1960s saw many other 

researchers enter the field and by 1966, Reddy had developed a continuous speech 

recognition system by dynamic tracking of phonemes62. The research program set up 

by Reddy shortly after, remains to this day a world-leader in continuous speech 

recognition. In the 1970s, speech recognition research achieved a number of 

significant milestones. Work by three separate groups allowed isolated word or 

discrete utterance recognition to become a practicable technology. Velichko and 

Zagoruyka in Russia advanced the use of pattern recognition ideas for speech 

recogntion65, Sakoe and Chiba in Japan successfully applied dynamic programming 

methods66 and Itakuro in the United States developed the use of linear predictive 

coding (LPC)67. Further to this, IBM set up a highly successful group research effort 

in large vocabulary speech recognition , whilst Bell Laboratories began research into 

making speaker independent speech recognition systems. By the 1980s, focus had 

moved onto connected word recognition in order to develop the technology for the 

recognition of fluent speech. The 1980s also saw the introduction of the auspicious 

Hidden Markov Model (I1MM) and the re-introduction of the neural networks. 

Neural networks had originally been applied in the 1950s without success, however, 

new understanding of the technology brought with it a new interest. A major impetus 

to the development of speech recognition technology was given by the Defense 

Advanced Research Projects Agency (DARPA), which sponsored a large research 

program producing several successful results. Development of these original ideas
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continued into the 1990s. Today, speech recognition is increasingly used, with 

commercial applications in telephone networks to automate operator services and also 

in dictation software.

1.3.2.1.2 State of the art

The attempt to perform speech recognition by machine has lead to three different 

approaches to achieve the task.

1. The acoustic-phonetic approach

2. The statistical pattern recognition approach

3. The artificial intelligence approach

1.3.2.1.2.1 Acoustic-phonetic approach

In 1967, Hemdal and Hughes put forward the acoustic-phonetic theory68. This 

suggests that there are finite, distinctive phonetic units, known as phonemes, in 

spoken language and that these units are characterised by a set of acoustic properties 

that are prominent in the speech signal over time. Once these characteristics have 

been spectrally analysed and represented, they must be converted to a set of features 

that describe the broad acoustic properties of different phonetic units. The final step 

in the approach is the segmentation and labelling of the regions in the speech 

according to how well the features within that region match those of individual 

phonetic units. There are several disadvantages to this method which mean the 

acoustic-phonetic approach is still in a development stage and has not been used 

successfully in actual speech recognition problems. The method requires extensive 

knowledge of the acoustic properties of phonetic units, which is generally only 

available for the simplest of situations such as steady vowels. The choice of features 

is made on considerations specific to the situation and for most systems is actually 

based on intuition rather than an optimising approach. The design of the sound 

classifiers is not optimal and the method of the speech labelling step is doubted by 

many linguistic experts.
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1.3.2.1.2.2 Statistical pattern-recognition approach

The statistical pattern-recognition approach consists of four steps; firstly, speetral 

analysis is performed on the input signal in order to carry out feature measurement 

and thus define a “test pattern'”. Next, a pattern representative of the features of test 

patterns corresponding to speech sounds of the same class is created to serve as a 

reference pattern. Unknown test patterns are then compared with class reference 

patterns and a measure of similarity between the two patterns is computed. Finally, 

the similarity scores are used to determine the most fitting reference pattern to the 

unknown test pattern in order to determine the speech input. In this approach, the 

performance of the system is sensitive to the amount of training the system receives. 

No speech-specific knowledge is required by the system so the method is relatively 

insensitive to the vocabulary used. It is also straightforward to incorporate syntactic 

(grammatically correct) and semantic (meaningful) constraints into the pattern 

recognition structure thereby improving the accuracy of the system.

Along with the development of techniques such as the statistical pattern recognition 

approach was the requirement for spectral analysis and feature detection. DSP 

became more widely used as the speech recognition methods became more 

sophisticated. Techniques employed by the statistical pattern-recognition approach 

will be discussed further in Section 1.3.3.2.

1.3.2.1.2.3 Artificial intelligence approach

The third, and potentially the most successful approach to developing automatic 

speech recognition by machine is the artificial intelligence (AT) approach.

This technique uses knowledge from a wide variety of sources and applies it to the 

problem faced. Thus, the system may use a mixture of acoustic, semantic and 

syntactic knowledge to apply to speech recognition. The necessity for such a range of 

knowledge requires a method of automatic knowledge acquisition or learning and an 

ability to adapt to the knowledge. An ideal approach which can be applied to this is 

the use of neural networks; these will be discussed further in Section 1.4.
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1.3.3 DSP methods

1.3.3.1 Fourier transform

Fourier analysis describes a set of mathematical techniques based on decomposing 

signals into sinusoids. The Fourier transform, named after the French mathematician 

and physicist Joseph Fourier (1768-1830), is a mathematical technique for the 

reversible integral transform of one function into another. The resulting output gives 

the coefficients of sinusoidal basis functions against their frequencies whose linear 

combination produces the original function. The recombination of sinusoidal basis 

functions is called an inverse Fourier transform. For audio signals therefore, the 

Fourier transform defines a relationship between a signal in the time domain and its 

representation in the frequency domain. In this way, the frequency content of an 

audio signal can be calculated and used for spectral analysis. The actual mathematical 

transformation is called the discrete Fourier transform (DFT) while the efficient 

algorithm for computing it is known as the fast Fourier transform (FFT).

1.3.3.1.1 Discrete Fourier transform (DFT)

The DFT calculates the Fourier transform of a signal at discrete time intervals. The 

DFT provides a means for analyzing the frequency components of a discrete-time 

signal. This can be achieved by fitting the signal with all allowed sine and cosine 

functions for each considered frequency. This constitutes a laborious process; a 

discrete signal of 1024 data points requires the calculation of 1024 parameters by 

linear regression and the calculation of the inverse of a 1024 by 1024 matrix. The 

DFT is defined in Equation 1-4 where x0,-..rfN-i are complex numbers.

N-1 2 m

*.-s nk
x„e k -  0,...,jV-1

n=0 Equation 1-4

1.3.3.1.2 Fast Fourier transform (FFT)

German mathematician Karl Friedrich Gauss (1777-1855) developed the principles of 

FFT in 1805 to interpolate asteroidal trajectories. However, his work was not widely
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known, only being published posthumously and in neo-Latin. Various other limited 

forms were rediscovered through the 19lh and 20th centuries, but it wasn’t until 1965 

when Cooley and Tukey reinvented the algorithm and described how to perform it 

conveniently on a computer69 that FFT became popular. The number of operations in 

FFT is proportional to (2N+l)log2(2N+l) instead of (2N+1) as used in DFT, which 

reduces the number of operations required for 1024 data points from 106 to 104 and 

increases the speed by 100 times.

1.3.3.2 Spectral analysis models

The terminology surrounding the computation of the cepstrum came from the original 

article by Bogert et al70, in which various terms from signal processing (spectrum, 

frequency, phase, analysis) were rearranged into anagrams (cepstrum, quefrency, 

saphe, alanysis). This was done to highlight the unusual treatment of frequency 

domain data, as if it were time domain data, in generating a new data set which had 

the quefrencies in units of seconds across its x-axis values, but which indicated 

variations in the frequency spectrum. Today, only the term "cepstrum" remains in 

common use.

1.3.3.2.1 Bank-of-fttiers model

The bank-of-filters model takes the magnitude frequency spectrum as calculated by a 

Fourier transformation. The spectrum is then smoothed with a collection of band-pass 

filters that span the relevant frequency region. Several designs for the arrangement of 

the band-pass filters exist including a uniform filter bank in which the filters are 

uniformly spaced over the frequency range under analysis. An alternative to this 

method is the non-uniform filter banks which are designed according to some 

criterion for the frequency spacing of the individual filters. This has the effect of 

concentrating data values in the more significant parts of the spectrum. Since the 

human perception of sound is not uniform or linear over the full range of frequencies, 

a common filter bank to use for speech recognition is the mel-scale based filter 

bank71. The mel-scale is based on the sound perception of the human ear and is 

designed to capture the phonetically important characteristics of speech. The mel-
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frequency scale has linearly spaced filters at low frequencies i.e. below 1000 Hz and a 

logarithmic spacing at high frequencies i.e. above 1000 Hz (see Figure 1.3).

Frequency (Hz)

Figure 1.3 Illustration of the mel-scale ¡Reproduced from Fundamentals of Speech
Recognition621

The processing technique which uses the mel-scale filter bank is known as the Mel- 

Frequency Cepstral Coefficients (MFCC) method. A diagram of the structure of a 

MFCC processor is given in Figure 1.4.

INPUT
spectrum

<-

mel __________________  mel
cepstrum Mel Cepstrum spectrum...... Mel frequency■1 ■ ■ ■ wrapping

Figure 1.4 Block diagram of the MFCC processor
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The MFCC processor passes the input signal through several stages:-

1. In frame-blocking, the signal is divided into overlapping frames which are 

then to be processed sequentially.

2. The next step is to window each individual frame so as to isolate a specific 

section of signal on which to perform the processing. The simplest window is 

a rectangular window with all values between the starting point and the end 

point multiplied by one and all other values multiplied by zero. A problem 

with this type of window is that the signal changes abruptly at each end of the 

window, a feature not present in the original signal. When the Fourier 

transform spectrum is taken of such a window, oscillations appear as artefacts 

due to the sharp amplitude change. To avoid such problems with the resulting 

Fourier transform spectrum, it is necessary to minimise the signal 

discontinuities at the start and end of each frame. This can be achieved by 

applying a window which gradually tapers toward zero at each end. Such 

windows include the Flanning window which is given in Equation 1-5.

win) =
f

-cos
v

2nn^
Equation 1-5

Where N  represents the width, in samples, of a discrete time window 

function and n is an integer with values 0 < n < N-l.

More commonly used is the Hamming window which is given in Equation 

1- 6 .

w(n) = 0.54-0.46 cos 2m
~N-\ Equation 1-6

An example of the use of the tapered window can be seen in Figure 1.5.
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Signal T

Each trarr.? vnsdowed to takr a 
rtpresentation of the signal for 

processing

Figure 1.5 Illustration of the frame blocking and windowing shown with a tapered
window.

3. The FFT converts each window of samples from the time domain into the 

frequency domain to produce a FFT spectrum.

4. The mel-frequency wrapping is the stage where the signal is passed through 

the band-pass filter bank according to the mel-frequency scale. The resulting 

output is therefore modified to emphasise the perceptually important lower 

frequencies while attenuating the higher frequencies.

5. Finally, the mel spectrum is converted back into the time domain by use of the 

Discrete Cosine Transformation (DCT) algorithm. The resulting output is the 

mel-frequency cepstral coefficients (MFCCs) and provides a representation of 

the spectral properties of the signal in the given frame.

1.3.3.2.2 Linear predictive coding (LPC) model

The idea of applying LPC to speech recognition problems was introduced in the 

1970’s and has been successfully used ever since. LPC is a method of digitally 

encoding analogue signals. The basic idea behind LPC is that a sample of sound x[n] 

can be approximated as a linear combination of the past p  sound samples. The 

linearly predicted signal is a smoothed version of the original signal.
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The method uses a single or multi-level sampling system in which the value of the 

signal at each sample time is predicted to be a linear function of the past values of the 

quantised signal. Mathematically, LPC can be described as in Equation 1-7.

x[n\ = axx[n -1] + a2x[n -  2] + • • • + apx[n -  p]

= 'Yj akx[n-k]
k—\ Equation 1-7

Where T[«] is the predicted sample at point n and a{,a2,...,a p are the LPC 

coefficients.

LPC provides a good model of the speech signal and even in the unvoiced regions of 

speech, which the model is less effective at coding, the results are still at an 

acceptable level. The model is also effective at achieving a reasonable source-vocal 

tract separation which is necessary in order to produce a characteristic representation 

of the vocal tract. LPC is a simple and straightforward method to implement and does 

not require as much computation as methods such as the bank-of-filters model. A 

diagram of the components of a LPC processor is shown in Figure 1.6.

Figure 1.6 Block diagram of LPC processor

The stages involved in the LPC processor include:-

1. Pre-emphasis involves putting the digitised speech signal through a low-order 

digital system, typically a first order FIR filter, to spectrally flatten the signal 

and make it less susceptible to precision effects later in the processing.

95 Library
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2. The frame-blocking and windowing steps are the same as described earlier for 

the MFCC processor.

3. The next step is the auto-correlation analysis of each frame of windowed 

signal. Rather than finding the correlation between two variables, this process 

finds the correlation between two values of the same variable at two different 

times.

4. LPC analysis converts each frame of the auto-correlations into an LPC 

parameter set; the set may take the form of LPC coefficients, reflection 

coefficients, the log area ratio coefficients or the cepstral coefficients.

5. If LPC analysis was not used to derive the LPC cepstral coefficients, then the 

LPC parameter conversion is used to achieve this. The cepstral coefficients 

are the coefficients of the Fourier transform representation of the log 

magnitude spectrum. They are more robust and reliable than any of the other 

coefficients derived in the previous step.

6. Parameter weighting applies weights to the cepstral coefficients by a tapered 

window so as to minimise the sensitivities of the coefficients to spectral slope 

and noise.

7. The temporal derivative includes information on the temporal cepstral 

derivative (first and/or second) in the cepstral representation of the speech 

spectrum. Thus temporal order is introduced into the representation. The first 

and second derivatives estimate the change in the cepstral coefficients and the 

change in the first derivative respectively over time.

1.3.3.3 Hidden Markov models (HMMs)

IIMMs have been increasingly used for automatic speech recognition since their 

introduction in the 1970’s. The HMM is a finite set of states, each of which is 

associated with a, generally multidimensional, probability distribution. Transitions 

among the states are governed by a set of probabilities called transition probabilities. 

In a particular state an outcome or observation can be generated, according to the 

associated probability distribution. Only the observations are seen and the goal is to
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infer the hidden state sequence. For example, the hidden states may represent words 

or phonemes, and the observations represent the acoustic signal. Continuous speech 

recognition using HMMs “ and, furthermore, using Hidden-Articulator Markov 

Models ',  in which each state represents a particular articulatory configuration, have 

been successfully used.

1.3.3.4 Digital filtering

Digital filters enable the separation of a signal into its component parts. This allows 

the analysis of separate parts of the signal and removal of interference or noise. While 

analogue filters are cheap, fast and have large dynamic ranges for both amplitude and 

frequency, digital filters are far superior in their performance. Digital filters allow a 

high degree of accuracy and control over the signal. The four most common filters are 

known as Elliptic, Chebyshev Types I and II and Butterworth.

An elliptic filter, also known as a Cauer filter, is an electronic filter with equalised 

ripple behaviour in both the passband (band of frequencies allowed through the filter) 

and the stopband (band of frequencies disallowed by the filter). The amount of ripple 

in each band is independently adjustable, and no other filter of equal order possesses 

a faster transition in gain between the passband and the stopband, for the given values 

of ripple. Alternatively, the ability to independently adjust the passband and stopband 

ripple can be exchanged for the property of a filter which is maximally insensitive to 

component variations.

As the ripple in the stopband approaches zero, the filter becomes a type I Chebyshev 

filter; while as the ripple in the in the passband approaches zero, the filter becomes a 

type II Chebyshev filter. Chebyshev filters are analogue or digital filters named after 

Pafnuty Chebyshev; their mathematical characteristics having been derived from 

Chebyshev polynomials. Chebyshev filters have the advantage that they minimise the 

error between the idealised filter characteristic and the actual characteristic over the 

range of the filter, but still possessing ripples in either the passband or the stopband. 

Because of the passband ripple inherent in Chebyshev filters, filters which have a 

smoother response in the passband but a more irregular response in the stopband are 

preferred for some applications.
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As both ripple values approach zero, the filter becomes a Butterworth filter. The 

Butterworth filter was first described by the British engineer Stephen Butterworth in 

1930. It is designed to have a frequency response which is as flat as mathematically 

possible in the passband. They are also known as maximally Hat magnitude filters. 

Butterworth filters can achieve a high gradient between the stopband and the 

passband thus allowing an accurate selection of frequencies to be made.

Figure 1.7 show's the frequency response of all the classic electronic filters. The 

Butterworth filter has the slowest transition but has no ripples; the types I and II 

Chebyshev filters have ripples in the passband and stopband respectively; whilst the 

elliptic filter has the sharpest transition but it shows ripples in both the passband and 

the stopband.

Elliptic Chebyshevl

Chebyshev2 Butterworth

Normalised frequency Normalised frequency

Figure 1. 7 Plots illustrating the response of the classic electronic jitters: The 
elliptic filter has the sharpest transition hut it shows ripples in both the pass-band 
and the stop-band; the two Chebyshev filters are relatively sharp with ripples in 
part of the spectrum; the Butterworth filter has the slowest transition but has no

ripples
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1.3.3.5 Higher order spectral analysis (HOSA)

HOSA allows the analysis of signals corrupted by non-Gaussian noise or signals 

arising from a nonlinear process. Higher-order spectra, which are defined in terms of 

the cumulants (higher-order moments) of a signal, contain additional information that 

is not conveyed by the signal's autocorrelation or power spectrum. Higher-order 

spectra are useful because they suppress additive coloured Gaussian noise of an 

unknown power spectrum, identify non-minimum phase signals, extract information 

due to deviations from Gaussianity and detect and characterize nonlinear properties in 

signals.

In mathematics, in the area of statistical analysis, bicoherence is a squared normalised 

version of the bispectrum. The bicoherence takes values bounded between 0 and 1, 

which make it a convenient measure for quantifying the extent of phase coupling in a 

signal. It is also known as bispectral coherency. The bispectrum is a statistic used to 

search for nonlinear interactions. The Fourier transform of the second-order 

cumulant, i.e., the autocorrelation function, is the traditional power spectrum. The 

Fourier transform of the third-order cumulant is called bispectrum or bispectral 

density. They fall in the category of higher order spectra, or polyspectra and provide 

supplementary information to the power spectrum. The third order bispectrum is the 

easiest to compute, and hence the most popular.

Coherence analysis is an extensively used method to study the correlations in 

frequency domain, between two simultaneously measured signals. The coherence 

function provides a quantification of deviations from linearity in the system which 

lies between the input and output measurement sensors. The bicoherence measures 

the proportion of the signal energy at any bifrequency that is quadratically phase 

coupled.

Bispectrum and bicoherence may be applied to the case of non-linear interactions of a 

continuous spectrum of propagating waves in one dimension.
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1.3.4 Data pre-treatment

Data pre-treatment is an essential step to prepare raw data for an ultimate 

classification or analysis stage in order to obtain the best possible result. Different 

pre-treatment methods emphasise different aspects of the data and each pre-treatment 

method has its own merits and drawbacks.

Mean-centring, which involves subtracting the mean of the data from each data-point, 

removes inherent magnitude effects and prevents skewing74. Auto-scaling involves 

dividing the mean-centred data by the standard deviation and gives all the data unit 

variance74. Savitsky-Golay smoothing75 essentially performs a local polynomial 

regression on a distribution to determine the smoothed value for each point. Principal 

component analysis (PCA)76 reduces the dimensionality in a dataset whilst 

maintaining the characteristics possessing the maximum variance.

The choice for a pre-treatment method depends on the question to be answered, the 

properties of the data set and the data analysis method selected. Data pre-treatment 

can be used to remove noise, interferents due to systematic variations rather than the 

variations under study or features common to more than one group. Essentially, data 

pre-treatment accentuates the properties of interest, i.e. those under analysis, and 

attenuates all others.

1.3.4.1 Principal component analysis (PCA)

PCA is the decomposition of a data matrix into eigenvectors and eigenvalues; where 

each eigenvector represents an abstract factor or data vector and each eigenvalue 

represents the relative importance of the associated eigenvector. The eigenvectors are 

calculated consecutively such that each successive eigenvector accounts for a 

maximum of the variation in the data. The linear PCA transformation then chooses an 

optimised orthogonal coordinate system for the dataset such that the greatest variance 

by any projection of the data set comes to lie on the first axis (called the first principal 

component), the second greatest variance on the second axis, and so on. Since the 

smallest set of eigenvalues account for experimental error only, PCA can be used for 

reducing dimensionality in a dataset while retaining those characteristics of the
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dataset that contribute most to its variance by eliminating the later principal 

components (PCs).

Any non-singular matrix can be decomposed into a scores matrix and a loadings 

matrix, the combination of which will exactly reproduce the original matrix. The 

scores give information regarding any trends between samples and the loadings 

represent the variation and importance of the variables.

PCA is a useful tool for exploratory analysis; by plotting the data set on the new axes 

formed by the PCs, the relative distribution of variance can be discerned. Groupings 

of objects of similar structure will occur and outlying data points can become more 

clearly recognisable.

1.4 Neural Networks

1.4.1 Artificial neural networks (ANNs)

Artificial Neural Networks (ANNs) are a paradigm of the biological nervous system 

and are designed to imitate the information processing and knowledge acquisition of 

the mammalian brain. A neural network is a parallel distributed processor consisting 

of simple processing elements which has a natural capacity for storing experiential 

knowledge and making it available for use. Connections between the neurons are 

weighted to store the acquired knowledge and control the functioning of the network. 

The learning process is performed by a learning algorithm, the function of which is to 

modify the weights between the neurons so that the desired output is obtained. This 

step can be seen as an optimisation process in which the neural network Teams’ to 

give accurate and correct results from the inputs it receives.

Neural networks offer many advantages over current statistical methods of data 

analysis. They are well suited to performing typically human tasks such as 

memorising objects, recognising patterns, generalising, estimating parameters and 

making decisions. They also have a strong ability to cope with noisy data, tolerate 

faulty data and adapt to circumstances.
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Neural networks are highly advantageous to the applications of pattern recognition 

and data classification. They can derive meaning from complicated data and can be 

used to extract patterns and trends that are too complex to be recognised by other 

computer techniques.

1.4.1.1 History of neural netw orks

The original work on neural networks was published in 1943 by McCulloch and 

Pitts77 who tried to understand the functioning of the nervous system by defining 

primitive information processing elements, based on mathematical logic, that 

represented the functional properties of biological neurons and their properties. Their 

model of a neuron was assumed to follow an “all-or-none” law and with a sufficient 

number of such units and synaptic connections, operating synchronously, they 

showed that a network could, in principle, perform any computable function. In 1949, 

Ilebb described a learning rule for synaptic modification which was derived from 

observations of neurophysical experiments on biological neural networks78; now 

commonly known as the Hebbian learning rule. The theory suggested that neural 

pathways are strengthened each time they are used and that neurons adapt and form 

neural assemblies as learning occurs. However, up until this point, research into 

artificial neurons was still theoretical due to the lack of computer technology 

available70. In 1954, Gabor, the inventor of holography and one of the early pioneers 

of communication theory, introduced the idea of a nonlinear adaptive filter; a device 

that was to take six years for his team to build811. Learning was accomplished by 

feeding samples of a stochastic process into the machine together with the target 

function that the machine was expected to produce. In 1956, work by Rochester el al. 

was possibly the first attempt to use computer simulation to test a well-formulated 

neural theory based on Hebb’s postulate of learning81. The attempt failed but showed 

some important requirements necessary for success. By 1958, Rosenblatt had 

developed the first precisely specified, computationally orientated neural network 

called the Perceptron82. Rosenblatt described a novel method for the supervised 

learning of a network of binary decision units (BDNs). By altering the synaptic 

strengths each time the network gave a wrong answer, the network gradually 

“learned” to give the correct answer instead. In 1960, Widrow and Hoff developed
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the least mean-square algorithm and used it to develop Adaline and Madaline, two 

models that made use of adaptive linear elements . By this time, although success 

had served as an impetus for the growth of artificial neural networks, and indeed 

encouraged more research into the area, a theoretical study by Minsky and Papert in 

1969 was to severely damage this enthusiasm84. They showed perceptrons to have 

very serious limitations when applied in the form and manner which had been used 

up to that time. In addition, they argued that even extending the perceptron to multi-
or

layer networks would not improve results '. The discovery of these problems 

impeded the research into neural networks. Many scientists were not encouraged to 

continue research and funding became less available for those that were. However, 

despite this, the 1970s saw the emergence of self-organising maps using competitive 

learning. Von der Malsburg first demonstrated self-organisation in 197386, and with 

Willshaw in 1975 , showed the formation of self-organising maps, motivated by 

topologically ordered maps in the brain. The back propagation algorithm introduced 

by Werbos in 1974 solved a problem with training hidden neurons . The algorithm 

allowed a neuron to propagate its errors back to former layers of the network.

1982 saw a resurgence of interest in neural networks. Hopfield introduced nonlinear 

transfer functions for the evaluation of the final output from neurons84. The Hopfield 

neural network enabled auto-association by means of which any information, 

representable by a multivariable or matrix e.g. an image, is regenerated from only 

partial or corrupt data. Hopfield used the idea of an energy function based on physical 

theory to formulate a new computation necessary for his network. This development 

paved the way for a surge of physical theory to enter neural modelling, thereby 

transforming the field of neural networks. Another important development that year 

was Kohonen’s self-organising maps90, which differed to the earlier work by 

Willshaw and von der Malsburg and which received far more attention.

In 1985, Ackley et aJ. developed the Boltzmann machine91, a neural network very 

similar to that developed by Hopfield. However, in addition to the basic Hopfield 

elements, the Boltzmann machine used a probabilistic learning algorithm inspired by 

Ludwig Boltzmann’s work in statistical mechanics; the Boltzmann distribution of 

energy.
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9")
In 1986 Rumelhart el al. reported development of the back-propagation algorithm , 

and despite its original mention a decade before by Werbos, much of the credit now 

goes to Rumelhart’s group for their extensive work on the area. In 1988, Broomhead 

and Lowe described a procedure for the design of layered feed-forward networks 

using radial basis functions (RBF), an alternative to multilayer perceptions93.

To date, neural networks have continued to be developed, aided by the increasing 

power of computer processors. Their rising popularity has seen their application in 

many areas, both in research and commerce.

1.4.2 Applications of ANNs

Neural networks have a wide variety of applications to real problems. Although many 

neural networks can now achieve statistically high levels of accuracy, they are still 

not without a degree of error. While work continues to improve accuracy, some uses 

are being found for neural networks at their current levels of performance. In some 

decision-making processes, for example loan approval, a 90% accurate system is still 

an improvement over existing methods. Some banks have shown that the failure rate 

on loans approved by neural networks is lower than those approved by some of their 

best traditional methods. Credit card companies are using neural networks to aid in 

establishing credit risks and credit limits. Neural networks are also finding 

applications in stocks, bonds and international currency94. In addition, they are being 

used in the detection of credit card fraud by automatically recognising unusual 

spending patterns" and in the same way for detecting fraud in mobile phone 

networks96. Companies are also using neural networks for targeted marketing to 

ensure more effective and successful methods97.

Success has also been achieved in the forecasting of sea surface temperatures . 

Whilst the elimination of noise from phone lines using Widrow and Hoffs 

Madaline has been used for many years.

Neural networks are being applied in food analysis for the pattern recognition of data 

collected using electronic noses and tongues99. A similar application is in quality 

control, where constant mechanical monitoring can achieve much better results than 

human inspectors who can easily become fatigued or distracted. Manufacturing has
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made use of neural networks in system design, process control, robot scheduling and 

operational decision100.

An important field in which neural networks have also been applied is medical 

diagnosis and prognosis101. Uses include the image processing of MRI outputs, the 

prediction of risk for the relapse or spread of cancer, primary screening tools e.g. for 

cervical cancer102 or breast tumours10’ l04, ECG surveillance, detection of heart 

murmurs10' and many more.

Neural networks are also increasingly being used for classification of chemical data 

such as analytical data from near infra-red (NIR)106, mass spectrometric (MS) and 

nuclear magnetic resonance (NMR) techniques8̂  lli7. Image processing using neural 

networks can also be put to many uses, such as face identification108, document 

analysis109, license plate recognition and fingerprint analysis110.

Neural networks have been applied to automatic cough recognition, with particular 

focus on pig cough as an early sign of disease by Van Hirtum et al. 11M l4.

1.4.3 Description o f neural networks

The problems which neural networks can be applied to can be divided into four basic 

types107:- association (auto or hetero); classification; transformation and modelling.

Auto-association is the ability of the system to reconstruct an incomplete or corrupted 

pattern from a learned pattern. Hetero-association is the ability of the system to make 

a one-to-one association between members of two sets of patterns. Thus, on the input 

of a letter, for example *A\ the system can respond with an output of the number 

representing that letter’s position in the alphabet, so *A’ would give the output *1’.

Classification assigns all inputs to appropriate classes depending on the 

characteristics they share. Following training, the neural network will then be able to 

subsequently classify any further inputs based on the clusters it has already 

constructed.

Transformation is the mapping of a multivariate space onto a space of lower 

dimensionality for example, representing a 3-dimensional object onto a 2- 

dimensional plane.
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Modelling uses an analytical function or algorithm which will give a specified output 

for a given input. The training of the network depends on the ‘fitting’ of the model in 

which the operation of the algorithm is determined by the best agreement between the 

input data and the calculated output data.

1.4.3.1 ANN Architecture

The application of the success of the principles behind biological neurons to artificial 

data processors has lead to the use of a similar neural structure. The artificial neuron 

receives one or more signals simultaneously and sums them to give a collective input 

The neuron then multiplies the total signal by a characteristic synaptic weight. An 

activation function or transfer function is then applied to limit the output of the 

neuron to a permissible value.

The operation of a neural network depends on the interconnection of the entire 

network rather than the workings of each individual neuron. It is also dependent on 

several important steps in the operation of the neural network including weightina of 

the input, summation of the weighted input values, the application of a transfer 
function and the addition of bias [See Figure 1.8].

Input Synaptic
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1.4.3. LI Weights

The weight of a neuron is the value that is multiplied to the input signal of that neuron 

to achieve the desired output. These weights can be modified in response to various 

training sets and according to a network's specific topology or through its learning 

rules. Each neuron can receive many signals simultaneously and represent these 

inputs by adjusting the strength of the output it passes on to the next neuron. It is the 

continuous adjusting of the interconnecting synaptic weights which trains the network 

to give the correct output to a particular input. Once the weighted inputs have been 

calculated, the sum of all the inputs must be computed to determine the significance 

of each. The simplest method is to multiply each input with the weight of the 

receiving neuron and add all the values together. The summation function can, 

however, be more complex than the input and weight sum of products and can be 

calculated in several ways by use of algorithms.

1.4.3.1.2 Transfer functions

The result of the summation function is then passed through a transfer function to be 

transformed into a working output. It would not be appropriate to simply represent 

the output as the weighted sum of the input signals, since the output of an artificial 

neuron is one of two possibilities; it either activates or it does not. The net input to the 

neuron must therefore undergo a further, non-linear transformation known as a 

transfer function to make the output signal more realistic. The summation total is 

usually compared to a set threshold value; if the sum is greater than the value a signal 

is generated, and if it is less, no signal is generated. The transfer function is generally 

non-linear as a linear function would simply give an output proportional to the input; 

this was the problem in the earliest network models as noted in Minsky and Papert's 

book “Perceptrons”w.

The output signal must firstly be non-negative, as a negative firing frequency is not 

plausible, and secondly must be continuous and confined to a specified interval. 

There are several transfer functions applicable in these instances.
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1.4.3.1.2.1 Hard-limiter

The hard-limiter transfer function gives only one of two values, zero or one. A 

threshold value determines the input required to change the output value from zero to 

one; once the input is above the threshold value, the neuron will ‘fire’. A slightly 

modified form of the hard-limiter is the bipolar hard-limiter, in which the two values 

used are +1 and -1, as shown in Figure 1.9.

>< output

1

......... . . . ^
0

threshold -1
value

Figure 1.9 A bipolar hard-limiter transfer function

1.4.3.1.2.2 Threshold logic

The threshold logic transfer function is similar to the hard-limiter in that the output 

limits are between zero and one. However, there is also a swap interval included in 

which the output is linearly proportional to the input. It therefore represents the input 

within a given range and also acts as a hard limiter outside of that range, as shown in 

Figure 1.10.
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Figure 1.10 The threshold logic transfer function 

1.4.3.1.2.3 Sigmoidal function

The sigmoidal function is similar to the threshold logic transfer function except that a 

sigmoid or S-shape curve replaces the linear region. The curve approaches the 

minimum and maximum values at the asymptotes, which still have values of zero and 

one. The curve is commonly called a sigmoid when it ranges between 0 and 1 (as 

shown in Figure 1.11.), and a hyperbolic tangent when it ranges between -1 and 1.

The threshold and sigmoidal functions are not simple logic functions which give a 

yes/no or true/false output. Instead, they hold all the values between the two extremes 

and this possibility forms the link between artificial neural networks and “fuzzy 

logic”.

Figure 1.11 The sigmoid threshold logic transfer function
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This is not a definitive list of transfer functions but instead three of the more 

commonly used. The chosen function is highly dependent on the use and application 

of the neural network at hand.

1.4.3.1.3 Bias

The addition of bias to the decision function has the effect of applying an affine 

transformation to the output i.e. a transformation of coordinates that is equal to a 

linear transformation followed by a translation. This can be illustrated with the 

example given Figure 1.12 in which the use of a bias function allows the separation 

of point D from points A, B and C.

Figure 1.12 The effect o f implementing a bias function to the separation of D from
A,B and C

1.4.3.1.4 Training

Training is carried out by use of training and learning functions, these are 

mathematical procedures used to automatically adjust the network’s weights and 

biases. The training function dictates a global algorithm that affects all the weights 

and biases of a given network. The learning function can be applied to individual 

weights and biases within a network. As discussed in Section 3.3.5.1.2.1, due to the 

danger of over-training the network and removing its ability to generalise, a training 

error of zero is not necessarily the desired aim. A performance function is therefore
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applied to measure the error of the training process and to decide when training is 

complete.

The process of network training can be carried out in a supervised or unsupervised 

manner, generally depending on the application and the type of network employed.

1.4.3.1.4.1 Superv ised training

Training with supervision requires an external input to the system to provide the 

network with information about the correct output. The network then compares the 

actual output to the desired output and adjusts the weights, which are usually 

randomly set to begin with, to produce a closer match at the next cycle or iteration. 

The learning method tries to minimize the current errors of all processing elements. 

This global error reduction is created over time by continuously modifying the input 

weights until an acceptable level of network accuracy is reached.

Training is considered complete when the neural network reaches a defined 

performance level. This level signifies that the network has achieved the desired 

statistical accuracy as it produces the required outputs for a given sequence of inputs. 

It is important to set a realistic accuracy level and terminate training as it is reached. 

If a network is presented with too much training data, it can easily become ‘over- 

fitted’. When this occurs, the network has difficulty recognising anything that is 

slightly different from the training data and the only solution is to clear and re-train 

the network. When no further learning is necessary, the weights are saved by the 

network ready for application.

The training data must express all the properties and relationships which the network 

must learn in order to carry out accurate future predictions. The data must also 

contain as much and as varied information as possible at a time. This is to avoid the 

network adjusting weights very specifically for one property and then 'forgetting’ that 

property when the network is altered for the next property.

ANNs only deal with numerical data therefore any raw' data must be appropriately 

formatted before being presented to the network. The best format and conditioning 

technique will be different for each application.
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The final stage is to validate the neural network by testing the outputs for known data 

that has not been presented to the system previously. If the outputs are correct and 

accurate to a satisfactory standard, then the training is complete and the network is 

ready for application. If there are discrepancies in the outputs, however, further 

training must follow to fine-tune the system. This testing is critical to ensure that the 

network has not simply memorized a given set of data but has learned the general 

patterns involved within an application.

1.4.3.1.4.2 Unsupervised training

With unsupervised learning, a system requires no external influences to adjust its 

weights. The network is presented with a set of data and finds any trends or patterns 

within the input signals by internally monitoring performance. The system must still 

have an optimisation criterion that is used for the evaluation of the result produced at 

each iteration, so that there is an inherent aim for the system to work towards. This 

information is built into the topology and learning rules.

1.4.3.1.5 ANN architecture

The way in which the neurons of a neural network are structured can be classified 

into three fundamentally different types.

1.4.3.1.5.1 Single-layer feed-forward networks

A layered network consists of neurons organised into the form of layers. The simplest 

form of a layered network contains an input layer of source nodes collecting the input 

signal that projects onto an output layer of computation nodes. The single layer refers 

to the one layer of computational nodes present; the source nodes simply gather the 

information to be processed. The network is a feed-forward type in that information 

only passes forward; each node in the input layer is connected to every node in the 

output layer so that all information is passed forward.

1.4.3.1.5.2 Multilayer feed-forward networks

Multilayer feed-forward networks contain the presence of one or more hidden layers. 

The hidden layers, which correspondingly contain hidden neurons, provide an
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intermediate stage of computation between the input and the network output. The 

extra layers added to a network allow it to extract higher-order statistics; a 

particularly valuable property when the size of the input layer is large. Again, each 

node in a layer is connected to every node in the next layer so that all information is 

passed forward. One example of this network type is the radial basis function neural 

network.

The Kohonen neural network is a self-organising, unsupervised version which uses 

topology as a method of dealing with information. The network architecture consists 

of a single layer of neurons arranged in a two-dimensional plane and learns by 

competitive learning. In competitive learning, all neurons in the output layer compete 

among themselves to Tire’. The network selects either the neuron that has the largest 

output in the entire network or the one that has the weight vector most similar to the 

input signal. Only the selected neuron will produce an output signal in a winner- 

takes-all method, it is then further optimised to make its weight even closer to the 

desired value. The weights of the neighbouring neurons are then also altered, usually 

scaled down to increase the contrast between those and the firing neuron. This scaling 

down process is largely dependent on the distance from the winning neuron and is 

thus known as a topology dependent function.

The Learning Vector Quantisation (LVQ) neural network is a supervised version of 

the Kohonen algorithm. LVQ networks are often used for pattern recognition and 

classification problems.

1.4.3.1.5.3 Recurrent networks

A recurrent neural network is distinguished from a feed-forward neural network in 

that it contains at least one feedback loop. Each neuron feeds its output signal back 

into the inputs of all the other neurons in the same layer. A self-feedback loop is 

where the output of a neuron is fed back into its own input. The presence of feedback 

loops increases the learning capability of the network and its performance. One 

example is the Hopfield neural network, developed in 1982 by J. J. ITopfield89 which 

is a single-layer recurrent network capable of performing auto-association.
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The probabilistic neural network (PNN) was developed by Donald Specht1 ,v l16. The 

network provides a general solution to pattern classification problems by following an 

approach developed in statistics, called Bayesian classifiers. Bayes theory, developed 

in the 1950's, takes into account the relative likelihood of events and uses a priori 

information to improve prediction. The PNN has a feed-forward architecture and uses 

a supervised training algorithm similar to back-propagation. In recall mode, these 

distribution functions are used to estimate the likelihood of an input feature vector 

being part of a learned category.

1.5 H a r d w a r e  C o m p o n e n t s

The requirements of a device for the acoustic monitoring of cough are portability, 

adequate power and data storage to carry out 24-hour good quality recordings and a 

suitable microphone for picking up coughs from the subject whilst excluding 

extraneous background sounds.

1.5.1 Microphones

Microphones are transducers which detect sound signals and produce an electrical 

image of the sound. All microphones capture sound waves as vibrations and convert 

them by various methods into an electrical signal that is an analogue of the original 

sound. Most microphones in use today use electromagnetic generation (dynamic 

microphones), capacitance change (condenser microphones) or piezoelectric 

generation to produce the signal from mechanical vibration.

Dynamic microphones consist of a lightweight diaphragm, usually made of plastic 

film, attached to a very small coil of wire suspended in the field of a permanent 

magnet. When a sound causes the diaphragm to vibrate, the whole assembly works as 

a miniature electricity generator, and a minute electric current is produced.

The capacitor microphone consists of an extremely light disk and a rigid back plate, 

separated by an insulator, the disk being free to move in sympathy with sound waves 

incident upon it. The capacitor is charged via a very high resistance. The condenser
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works on the principle that sound pressure changes the spacing between a thin 

metallic membrane and a stationary back plate which causes the capacitance to vary.

The electret microphone is a version of the capacitor microphone. Instead of applying 

an electrical charge to the microphone capsule via an external power source, electret 

microphones use a diaphragm made from an insulating material that has a permanent 

electrical charge. A back-electret microphone has a permanently-charged material 

fixed to a stationary back-plate instead of the diaphragm in order to allow much 

thinner diaphragms to be employed.

A piezoelectric microphone uses the phenomenon of piezoelectricity, which is the 

ability of some materials to produce a voltage when subjected to pressure, to convert 

vibrations into an electrical signal.

A laser microphone consists of a laser beam that must be reflected off a glass window 

or another rigid surface that vibrates in sympathy with nearby sounds. This device 

essentially turns any vibrating surface near the source of sound into a microphone. It 

does this by measuring the distance between itself and the surface extremely 

accurately; the tiny fluctuations in this distance become the electrical signal of the 

sounds picked up.

A contact microphone is designed to pick up vibrations directly from a solid surface 

or object, as opposed to sound vibrations carried through air. They are frequently 

applied to detect noise of a very low level or in situations where there are high levels 

of ambient noise. Contact microphones can be based on either piezoelectric 

microphones or a version of the dynamic microphone, in which a contact pin is used 

to detect vibrations and transfer them to the coil of a magnetic transducer.

1.5.2 Directionality

The directionality of a microphone indicates how sensitive it is to sounds arriving at 

different angles about its central axis. The sound picked up by the microphone can be 

controlled by the use of directional microphones which have specific pick-up patterns 

[See Figure 1.13]. A microphone that picks up sound equally from all angles is called 

omnidirectional, but this level of detection can be unfavourable when there are
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unwanted sounds in the recording area. Directional microphones are more specific in 

their detection. Cardioid microphones pick up sound in a heart- shaped pattern such 

that the least sensitive spot is right behind it. Hypercardioid microphones, sometimes 

also known as supercardioids. are similar but with an extra small lobe of sensitivity to 

the rear. Bidirectional or figure-of-eight microphones, receive sound equally from the 

front and the back. Shotgun microphones have high sensitivity at the front, with 

additional lobes of sensitivity to the left, right and rear.

Omnidirectional Cardioid Hypercardioid Bidirectional Shotgun

Figure 1.13 Common pick-up patterns of microphones. The microphone is 
positioned at the central red point, the dashed line represents the range of sound 

and the solid Une represents the sound detected

1.5.3 Recording devices

The technology to make 24 hour, ambulatory recordings has long been awaited, yet 

constraints of sufficient data storage and power supply have severely delayed such 

advances. For many years, the most popular, and perhaps most advanced method, was 

the use of digital audio tape (DAT) recorders. DAT recorders were first introduced by 

Sony and Philips in the mid 1980s and it wasn't until December 2005 that Sony 

decided to discontinue production. DAT recorders make digital recordings on 6mm 

tape cartridges, using a modified video recording mechanism with a rotating tape 

head. They have been used widely in professional broadcasting because of their 

capability for making high quality recordings and usually have a digital output stream 

capability so that recordings can be transferred digitally to a computer system.

The next development was that of the MiniDisc (MD) recorder, which was introduced 

onto the market in 1992 by Sony, which made compressed digital recordings on a 

2.5" magneto-optical disk protected in a cartridge. These were recently improved by
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the development of high-density MDs (Hi-MDs) capable of storing up to one 

gigabyte (Gb) of audio data. This equates to approximately 34 hours when using 

Sony ATRAC3plus mode of recording at 64 kbps (kilobits per second). Again, these 

came with a USB interface which could be used to upload recordings to a computer. 

However, the mechanical action of the disk still meant power consumption was 

relatively high and could not provide for long recording durations.

By far the most recent advance in technology has been solid-state recorders, which 

make digital recordings onto memory cards, such as compact Hash cards. The lack of 

mechanical activity means these devices can record for much longer durations than 

MDs and can store up to 40 Gb of data.

1.5.4 State of the art

Several devices have been developed for the objective monitoring of cough events. 

Although a variety of techniques have been employed, they all possess the common 

feature of acoustic monitoring. The simple recording of audio sounds using digital 

portable recorders has been employed by both Smith et a/.44,45 and Matos et al.46 who 

used various types of mp3 recorders. However, 24 hour recordings were not 

performed in either of these studies; Smith et al. quoted their inability to achieve 

sufficient power and data storage whilst Matos et al. did not specify their reasons for 

the limited duration, leaving the reader to infer whether they were unfeasible or 

simply unnecessary to the study.

A limited degree of mobility was allowed during audio recordings for cough studies 

by Pavesi et al.41 and Rietvald et al.'v~. Patients w'ere fitted with a microphone and a 

transmitter while a receiver and recorder were situated within the area of study. 

Although the systems were objective and suited to long recording durations, they 

were not fully ambulatory as the patients were limited to the study environment for 

the entire time.

The combination of audio recording with the measurement of EMG signals has been 

achieved by both Chang et a lM' and Hsu et al,38 in order to monitor cough sounds 

alongside the activity of the lower respiratory muscles. Cough was thus identified as a 

positive response occurring simultaneously in both channels.
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Accelerometers have frequently been employed in cough studies to monitor the 

motion of the patient during cough events. Most recently, Paul et a lA1 used an 

accelerometer to measure vibrations in the patient’s chest. In addition, Munyard et 

al.39 used both the recording of audio signals and an accelerometer with ECO 

monitoring to determine the patient's level of activity. All channels were then 

considered in order to define a cough event.

Perhaps the most comprehensive cough monitoring device is the one developed by
4 "I

Coyle et al. which records multiple data from lour sources; a contact microphone 

for cough sounds, an accelerometer for posture, an ECG for heart rate and RIP to 

measure ventilation. A positive response must then occur simultaneously in eight 

channels for an event to be defined as a cough. Although the device is objective, 

portable and has been shown to work for 24 hour studies it has drawbacks including 

expense and impracticalities of wearing the device for such long durations.

1.6 Existing System

Prior to beginning this work, Adrie Dane and workers at Castle Hill Hospital 

(Cottingham, Hull, UK) had developed a prototype for the methodology of automatic 

recognition and counting of cough'48 [See Appendix C], This section introduces the 

existing work so as to make the unique contributions of this thesis clear.

The initial focus of the work was on the development of the automatic analysis of 

cough recordings. This method for the computerised processing of audio recordings 

operates in three steps; sound detection, feature extraction and pattern comparison

For sound detection, the signal is analysed to identify periods of sound within the 

recordings; these sound events are then isolated and any periods of silence are 

omitted from further analysis. The sounds that are isolated then undergo the feature 

extraction step. DSP is applied to calculate the characteristic spectral coefficients 

which represent each sound event. The techniques used are LPC and a bank-of-filters 

front-end processor. The resultant coefficients are reduced by PCA, which highlights 

the components of the data that contain the most variance, such that only these 

components are used for further analysis. Finally, the sound events are classified into
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cough and non-cough events by applying a PNN to the calculated feature vectors. The 

PNN is trained to recognise the spectral coefficients of reference coughs and non­

coughs and classify future sound events appropriately.

Parameters such as the total number of coughs and cough frequency as a function of 

time can then be calculated from the results of the audio processing.

1.6.1 Processing software

Original software was developed under Matlab version 6 (Mathworks Inc., Natick, 

MA, USA). The following Matlab toolboxes were used: PLS_Toolbox version 2.1.1 

(Eigenvector Research Inc., Manson WA), Signal processing toolbox version 5.1 

(Mathworks Inc., Natick. MA, USA), Neural network toolbox version 4.0.1 

(Mathworks Inc., Natick, MA, USA) and Voicebox (a free toolbox for speech 

recognition). The programs were executed under Windows 2000 on a 1.4 GHz 

Pentium 4 PC with 256 megabytes of RAM.

1.6.2 Original hardware

The original device used in the previous work, consisted of using a Sony ECM-TIS 

Lapel microphone connected to a Sony TCD-D8 Walkman DAT-recorder, powered 

by AA dry cells. Sound was recorded at a sampling frequency of 48 kHz. For each of 

the subjects, this recording was converted into 44.1 kHz 16 bit mono Microsoft WAV 

format.

1.6.2.1 Data processing

Table 1-1 defines the variables and symbols used in the analysis. The operation of the 

existing system can be summarised into a schematic representation as shown in 

Figure 1.14.
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Table I-1 Symbols used and their settings. Settings are based on established values 
and preliminary experiments. Symbols only used locally are explained in the text.

Symbol Meaning Value

fs Sampling Frequency 11025 Hz

I Time in milliseconds

^"signal

Windowed standard deviation of 
signal

Calculated as a function of 
time

^^background Background interval 11026 points (1000 ms)

th™sii peak High (event detection) threshold 1 0 ( X ¿̂background )

thresK mits Low (event start and end) threshold ^ ( * ̂ background )

^background Standard deviation of background

■^train Number of reference patterns
150 (75 cough/75 non­

cough)

«b-0-f

Number of mel bank-of-filters 
cepstral coefficients

42 (14+14 1st derivatives 
+ 14 2nd derivatives)

n LPC

Number of LPC cepstral 
coefficients 14 (no derivatives)

Ncepstral

Total number of cepstral 
coefficients ( % o -f +  % > c ) 56

NiV PCA Reduced number of features 45
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Entire cough wave file 256 samples comprising one frame
of signal

b) Valid sounds 
isolated 4X (x-X)3

n- 1
Standard deviation of 
the signal within the 
frame is calculated 

using a moving window

Each portion oi signal 
is then analysed in

sequence Portions of signal found with a variance from the
baseline above the standard set level ai e identified

c) Noise reduced

Plot of the standard Identification of peaks which Information on the valid
deviations of each frame are not significantly larger than remaining peaks is compiled,

the troughs either side of them.

d) Spectr al 
features 

determined

Signal split into frames Each frame windowed to take a SPectral analysis carried out on
representation of the signal for entire signal

processing

e) Pattern 
recogniion

Input ► ( x  ------ j --------------------------*----- ►1 » Cits vitiation

inpui
nab

Mxi&il summrg /inaiai

» COUGH 

• NON- COUGH

The data is passed to the neural network for training 
Exact weight and bias information is saved

Neural network trained with training data. The 
trained network will now be able to classify 
further spectral data into the correct groups

Figure 1.14 Schematic diagram illustrating the pattern recognition approach to
cough, non-cough classification
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1.6.2.1.1 Sound detection

The audio recording was firstly converted to a digital WAV file for processing. To 

minimise data storage the sound recordings were analysed at a sampling frequency, f  

of 11025 Hz by using only every fourth point. The initial processing stage then 

identifies valid sound events within the audio recording so that any “empty” regions 

can be omitted from further processing.

The signal is analysed using the moving windowed signal standard deviation, ¿rsignai ,

i.e. the standard deviation as a function of time. The moving window works along the 

entire length of the audio signal, taking each frame as the centre of a new window. 

This windowed standard deviation is similar to the more commonly used RMS signal, 

however, it corrects for deviations of the mean from zero. Portions of the signal 

containing no sound events show a reasonably constant baseline signal with small 

deviations relating to the inherent noise present in the signal. A sound event causes 

the signal to rise above the baseline with a magnitude proportional to the validity of 

the signal. A noise level is established which represents an acceptable level of 

variation from the baseline without being significant enough to represent a sound 

event. The moving window technique ensures the standard deviation of the 

background signal is not fixed for the duration of the signal; instead ¿background at time 

t is calculated as the minimum <TSjgnai between the start of the window, / -  zi background 

and the end of the window, t + H background- Sound events are thus detected when ¿rSjgnai 

for a particular window exceeds the threshold value, threshpeak, multiplied by 

¿background for that window. Although this procedure means that sound sensitivity 

varies to a certain extent, it allows for peak detection in noisy backgrounds.

The start and end values of a sound event are defined as the nearest <7Signai before and 

after the peak maximum which are below the defined low level calculated by 

thresh\¡mjtsx ¿background- Portions of the signal that are below this low level are removed 

and excluded from further analysis. Figure 1.15 illustrates this procedure. Point (a) 

indicates the first standard deviation larger than threshpeak x ¿background- Points (b) and 

(c) are the points nearest to point (a) where ¿rsigna| is smaller than thresh\mils x
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b̂ackground- The whole region between points (b) and (c) is a sound event. In the same 

way, the region between points (d) and (e) will be detected as a sound event.

Figure 1.15 Illustration of the method used for sound detection; Illustrating the 
original sound signal (top) and the standard deviation of the signal (bottom)

The amount of noise within the section of signal is then reduced by smoothing. The 

standard deviations for each frame in the section are plotted and treated as a series ol 

peaks. Peaks with variations lower than the noise-level are removed. The remaining 

frames of signal are compiled for signal processing.

1.6.2.1.2 Feature extraction

The next stage was to identify characteristic features of the sound events identified to 

enable subsequent classification. This was achieved by calculation of spectral features 

of the signal by use of DSP.

Cepstral coefficients are a reliable, robust and most widely used feature set based on 

frequency content [See Section 1.3.3.2]. They are good at discriminating between
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different phonemes, are fairly independent of each other and have approximately 

Gaussian distribution for a particular phoneme. They are also independent of the 

sound amplitude, which makes the placement of the microphone less critical and also 

allows for the fact that cough amplitude varies remarkably for each patient as well as 

between patients.

The feature vectors used in this method consist of a pre-treated combination of « b-o -f 

mel bank-of-filters cepstral coefficients with their delta and delta-delta derivatives 

and /7l.pc LPC cepstral coefficients, without derivatives. These delta coefficients are 

used to capture the speech dynamics of sound.

Pre-treatment consists of scaling followed by projection into the PC space obtained 

for the reference samples. This pre-treatment reduces the number of features in each 

pattern from Austral (= « b-o-f + Wlpc)  to AW
The combined X C0Ugh, X n0n-cough matrix is firstly auto-scaled; then following PCA, only 

the scores that describe more than 0.5 % of the variance are used. New data is scaled 

using the means and variances obtained in auto-scaling and projected onto the PC 

space using a projection matrix.

1.6.2.1.3 Graphical user interface (GUI)

In order to create and test the pattern recognition stage, reference measurements are 

required. For this purpose a graphical user interface (GUI) was developed. The GUI 

allows the visual and aural inspection of an entire audio recording along with manual 

classification of sound events. The GUI is created by the function coughgui which 

performs the operations as described in Section 1.6.2.1.1 and displays the results. The 

GUI display includes the time/amplitude signal plot [Figure 1.16], the time/frequency 

plot [Figure 1.17] and initially, the labels identifying each located sound event. By 

selecting and changing labels, sound events are manually classified as either coughs 

or non-coughs for identification in the pattern classifying stage. Following the later 

processing stages, the GUI displays the classification results from the neural network.

The design also includes the ability to manually scroll through the audio data and 

perform rapid and accurate manual counting.
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Figure 1.16 The GUI output of the software showing the time/amplitude signal plot 
for a 10 second window of a processed audio recording

He Options ScrolStrp labds T <->P
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>

Figure 1.17 The GUI output of the software showing the time/frequency signal plot 
for a 10 second window of a processed audio recording
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1.6.2.1.4 Pattern comparison

The next step was the application of a pattern recognition step to the calculated 

feature vectors. A PNN is used to perform the pattern comparison and decision­

making step. This network provides a general solution to pattern classification 

problems by following a Bayesian classifiers approach. Bayes theory, invented in 

1763 and developed in the 1950's, takes into account the relative likelihood of events 

and uses a priori information to improve prediction. The PNN stores the reference 

patterns. The action of the PNN for a single test pattern x consists of the following 

steps:

1. Calculation of all Euclidean distances d between x and the reference patterns.

2. Each distance d{ is transformed into a probability value p, using a probability 

density function (also called radial basis function) as illustrated in Equation

Where p ,■ is maximal (equal to 1) when d, = 0.. When dj increases /?, 

decreases according to a Gaussian distribution, o/wv is the sensitivity or 

spread. The larger its value the lessp, decreases with increasing distance.

3. For each class k the p , values are summed to form (X P \\ and divided by the 

sum of all probabilities to form Equation 1-9.

4. Where /?* is the probability that x belongs to class k.

5. x is classified as a member of the class with the largest pu.

Instead of classifying single patterns, (step 4) the method classifies complete sound 

events. The />* values for all test patterns belonging to each sound event are summed

1- 8 .

P, = e
Equation 1-8

Equation 1-9
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yielding a sum of probabilities £  Pk for each class. The sound event is recognised as a 

member of the class with the largest £  pk-

The PNN required initial training in order to recognise and distinguish coughs from 

non-coughs using prepared data. To achieve this, a dataset of coughs and non-coughs 

was required.

1.6.2.2 Method employment

1.6.2.2.1 Data collection

A series of audio recordings containing a relatively large number of cough events 

were collected in order to develop the cough recognition software. Thirty three 

smoking subjects, twenty male and thirteen female aged between 20 and 54 with a 

chronic troublesome cough were studied in the hour after rising using the recording 

equipment as described in Barry et al. . All the subjects were studied in the out­

patients clinic with the subjects ambulatory and television and conversation freely 

permitted. The resultant recordings contained a large number of coughs from the 

subjects along with a large number of other sounds.

/. 6.2.2.2 PNN training

The first step was to identify suitable cough and non-cough events in all 23 

recordings, where non-cough events are all sounds present in the audio recording 

which are not coughs. Sound recordings from 23 subjects were used to create a set of 

75 cough patterns and 75 non-cough patterns. Suitability is determined by the clarity 

of the sound, and by its ability to add relevant variation to the dataset. These events 

are processed, as previously described, to yield feature vectors which are then 

combined into a cough pattern matrix XC0Ugh and a non-cough pattern matrix 

Xnon-cough- The reference patterns used for creation of the PNN are obtained by 

performing two k-means11' clusterings (k = 0.5 Mrain) of approximately 2000 cough 

and non-cough patterns. The initial 2000 patterns are selected from XCOugh and 

Xnon-cough- The reference patterns are then passed through the PNN to allow future 

classification of cough and non-cough patterns.
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Experimental data is scaled using the means and variances of the reference data and 

projected onto the principal component space using a projection matrix. The resultant 

data is then passed through the PNN for classification.

I. 6.2.23 PNN validation

The remaining ten hour-long recordings of the subjects described in Section 1.6.2.2.1 

were analysed by both the software and an independent, experienced cough listener. 

The GUI described in Section 1.6.2.1.3 was used to count the coughs recognised by 

the software. The GUI was also used to definitively identify cough and non-cough 

events in the recordings to establish the sensitivity and specificity of the data 

processing stage.

J. 6.2.2.4 Results

Table 1-2 lists the total number of coughs reported by the human observers and the 

software. Bland-Altman plots comparing the total number of coughs calculated by 

both the experienced listener (A), listener (B) and the software are shown in Figures 

1.18 and 1.19 respectively.

Table 1-2 Coughs counted in each recording of ten subjects as counted by two 
listeners (A and II) and the software

Subject Listener a Listener B Software

1 8 6 8
2 21 22 25

j 3 5 6 9
4 26 25 31

5 14 30 28
6 9 13 9

7 8 8 15
8 20 29 27
9 28 53 50
10 98 150 140

58



Chapter 1 - Introduction

Bland Altman plot com paring Listener A  with com puterised m ethod
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Figure 1.18 Bland Altman plot illustrating the difference between the computerised 
processing and an experienced cough listener
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Figure 1.19 Bland Altman plot illustrating the difference between the computerised 
processing and an inexperienced cough listener
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The results showed a significant increase in the number of coughs reported by the 

inexperienced listener and the computerised method compared to those reported by 

the experienced listener. This difference is caused by both the inexperienced listener 

and the software detecting and counting coughs from sources other than the subject 

under study. The subjects were recorded in a clinic alongside other patients and as a 

result, other coughs are clearly audible on the recordings. The inexperienced listener 

B and the software both simply counted all audible coughs which explains why the 

data from B and C are so similar, and exaggerated. Clearly the experience of listener 

A discerns between the subject closest to the microphone and the other cough events 

that are audible on the recordings. Thus it is clear that even with this slight disparity 

between the computer and the experienced listener, the computer has in fact classified 

all the coughs on the recordings, but without any distinction as to the source of the 

coughs.

One of the major advantages of the automated recording is that it is possible to re­

analyse the data with minimal effort and achieve consistent results. Thus, when the 

same recordings were reprocessed the events classified as coughs in one run were 

also found to be coughs in subsequent runs. This allows development of a statistically 

stable analysis method with a known statistical confidence limit on the results.
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2.1 Aims and Context

The aim of this work was to create a 24 hour ambulatory monitoring device, for 

application to patient cough studies, along with a method for the computerised 

processing of audio recordings to automatically identify coughs. The starting point 

for the automated analysis was the existing cough recognition system, as previously 

described, which required development in order to make it suitable for application to 

24 hour cough monitoring and data analysis.

The work was therefore divided into two sections. The first section entailed the 

design and development of the cough monitoring device, to include all the necessary 

requirements as discussed in Sections 1.1 and 1.2.2. This was then followed by the 

validation of its use and the subsequent collection of audio data from 24 hour patient 

cough studies. The second section involved the development of a computerised 

method for the analysis of the resultant audio recordings in order to perform cough 

recognition. Following the assessment of the existing software, it was decided to use 

this as a starting point, with the intention of further modification in order to apply the 

method to the new 24 hour cough monitoring studies.

2.1.1 Collation of existing software

The initial stages of the work involved working through the existing software to 

ascertain the methods used to perform cough recognition on the audio files. The 

capabilities of the system then needed to be established before the plans lor 

modification could be made.
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2.2 Development of HACC H ardware

2.2.1 Developments for 24 hour recording

The aim of this work was to develop a hardware device capable of making 

ambulatory, 24 hour recordings for objective cough counting. The requirements for 

this design were:

1. Recording media capable of storing 24 hours of audio data

2. Portable power supply capable of recording for 24 hours

3. Low sensitivity microphone

4. Patient activity marker button

5. Contained within a portable, convenient and secure case 

A design for the device is illustrated in Figure 2.1.

Event
Shoulder marker

strap Internal
microphone

Secure Recorder with 24 hour power 
case 24 hour media supply

Figure 2.1 Design for a 24 hour ambulatory objective cough counter
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2.2.1.1 Recorder

A recorder which uses a high quality recording media capable of storing 24 hours of 

audio data was required. The chosen recording device was based on a Sony® Hi-MD 

MZ-RH10 audio Walkman, a recent advancement of the original minidisk recorder 

developed to use a much higher capacity recording media. The audio data is 

compressed using the ATRAC3plus format (Adaptive TRansform Acoustic Coding). 

The recorder makes compressed, single-bit analogue-to-digital conversion, digital 

recordings on a 2.5" magneto-optical high-density MiniDisc (Hi-MD) which is 

protected in a cartridge. Hi-MDs have the capacity to store up to one gigabyte (Gb) of 

audio data, which when using the Sony ATRAC3plus mode at 64 kilobits per second 

(kbps) approximates to 34 hours. The recorder uses a sampling frequency of 44.1 kHz 

and has a frequency response of 20 to 20,000 Hz ± 3 dB.

2.2.1.1.1 Data storage

Since only 24 hours of data collection is required, the Hi-MDs which are capable of 

recording for 34 hours, are filled with a non-audio buffer to leave only 24 hours 

worth of storage space on the disk. This is achieved by recording for a short duration 

in pulse code modulation (PCM) mode, equivalent to approximately 10 hours in 

ATRAC mode, without a microphone attached. Thus, when the disk has been filled, 

the recorder will automatically switch off.

2.2.1.1.2 ATRAC compression

The effects of using the ATRAC compression system to perform audio recordings 

needed to be investigated and compared with the linear PCM method, which is a 

digital, non-compressed audio coding system. A short recording of coughs and speech 

was made in PCM format and then converted to ATRAC. The two resultant WAV 

files were then compared.

2.2.1.1.3 Signal input

The optimum way to feed the signal from the microphone into the recorder out of the 

two possible; line-in and microphone-in, needed to be determined. Recordings were
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taken using both methods and the resultant signal was then assessed for its signal-to- 

noise ratio (SNR).

2.2.1.1.3.1 Line input

The line-input port records the received signal with no additional amplification or 

control. The signal input is 49mV. Following a period of silence, a new track is 

created which can ultimately lead to thousands of tracks during a 24 hour period. To 

avoid this problem, a constant tone generator producing a signal of 14 kHz, injected 

into the second channel during recording, was tested.

2.2.1.1.3.2 Microphone input

The microphone input port amplifies the recorded signal and has more control than 

the line input over the incoming signal. The signal input is 0.13V. Amplification of 

the signal can cause a lower SNR and greater interference. To reduce the effects of 

amplification, attenuators in the form of varying levels of resistors were introduced 

into the system and the effects calculated.

2.2.1.2 Microphone

A directional microphone with a relatively low sensitivity in order to maximise the 

detection of cough sounds from the patient whilst minimising extraneous background 

sounds was required. The chosen microphone is a dual-channel, cardioid condenser 

microphone with a frequency response of 35-20,000 Hz, a signal to noise ratio of 

66dB, open circuit sensitivity of-42dB and a maximum input sound level of 131 dB 

and dynamic range of 102dB. Only the first channel of the microphone is used to 

record the patient and sits on a strap across the chest. The second channel has the 

option to be used to record background sounds in order to carry out noise cancellation 

if necessary, or it can simply be used to serve a purpose inside the device as described 

in Sections 2.2.1.1.3 and 2.2.1.5.

2.2.1.3 Power supply

An additional power source was required to ensure the recorder and microphone had 

sufficient power to operate for the 24 hour study period. The supplied nickel metal
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hydride (NiMH) rechargeable battery has a lifetime of approximately 8.5 hours when 

recording in I li-MD mode which can be increased by 3 hours by using an additional 

AA alkaline dry battery connected externally. To record for 24 hours, the device was 

modified to be powered by a rechargeable NiMH 1.2V D cell fed in through the 

internal battery contacts. The power supply consists of a DC-DC converter which 

converts the 1.2V supplied by the battery into 5V. This is electrically isolated from 

the battery by the integrated circuit IC4 [See Appendix B]; this was necessary so as to 

eliminate severe interference induced into the microphone circuit as a result of a 

ground loop between the motor drive and the microphone circuits. The microphone 

derives power from the isolated 5V supply via R8 and R9 [Appendix B],

2.2.1.4 Portable case

All the components of the recording device needed to be enclosed in a portable, 

convenient and secure case which could be easily accessed by clinical staff for 

maintenance. The designed case is closed using four tamper-proof screws and two 

security key locks. The device is fitted with an extendable strap which fits across the 

patient’s body such that it passes from one shoulder to the opposite hip.

2.2.1.5 Event marker

The aim of this research component was to develop a method to enable the 

correlation of patient activities with coughing episodes. For the hardware 

development, this required a feature which could record a recognisable signal during 

the audio recording. In order to maximise the range of activities that can be monitored 

and to prevent limiting the device to specific applications, the event marker was 

designed such that it requires the patient to audibly describe their activities. The event 

marker consists of a button on the exterior surface of the case which can be pressed 

by the patient prior to the activity description. This generates a one second burst of 

signal which is attenuated and fed into the second channel of the microphone [See 

IC1 and IC2 of Appendix B], In this way, a single event marker button is used to 

highlight the activity whilst the software will locate the markers and the associated 

descriptions.
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2.3 Development of HACC Software

2.3.1 Processing software

The original software has previously been described in Section 1.6. Improvements to 

software were made using Mat lab1' version 6.5. All software that was written for this 

system is given in Appendix A and is referred to in the text. All other functions are 

Matlab functions and can be found in the following toolboxes: PLS_Toolbox version

3.5 (Eigenvector Research Inc., Manson WA), Signal processing toolbox version 6.0 

(Mathworks Inc., Natick, MA), IIOSA toolbox version 2.0.3 (Developed by A. 

Swaini, downloaded from the Matlab File Exchange) and Neural network toolbox 

version 4.0.2 (Mathworks Inc., Natick, MA). The programs were executed under 

Windows XP on a 1.50 GHz Pentium(R)M PC with 256 megabytes of RAM and on a 

2.66 GHz Pentium(R) 4 with 512 megabytes of RAM fitted with a Sound Blaster 

Audigy 2 ZS Platinum Pro Audio Card (Creative Technology Ltd.).

2.3.2 Commercial software

The “design of experiment” work was achieved using the Stat-Ease Design-Expert 

version 4.0 software (Stat-Ease Inc., Minneapolis, MN, USA). Sony SonicStage 

version 3.4 (Sony Corporation, Tokyo, Japan), as supplied with Sony audio products, 

was used to transfer audio recordings to the PC and convert them to WAV format for 

processing. Creative Wave Studio version 5.0 (Creative Technology Ltd., Singapore) 

was used for cropping audio files and splitting the channels of the audio recordings.

2.3.3 Data collection

The aim of this section was to collect audio data for developing and testing of the 

software, in addition to the recordings collected previously and described in Section 

1.6.2.2.1. For these studies, patients wore the cough recorder as illustrated in Figure

2.2 and described in Section 2.2.1.4.
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Figure 2.2 Illustration of the way in which the cough counting hardware is worn by
the patient under study

2.3.3.1 Cough studies

A number of audio recordings were required in order to develop the processing 

software. The cough recordings were comprised of two groups; short cough studies 

and 24 hour studies.

For the short cough studies, recordings of chronic cough patients, ambulatory within 

the hospital grounds, were made. A summary of all the short cough studies and their 

filenames is given in Table 2-1. Patients partaking in the 24 hour cough studies were 

set up with the recorder in a clinic appointment and then advised to carry out their 

normal activities. Patients were asked to remove the device from their person for 

showering and bathing and to hang the strap over their headboard during the night 

such that the microphone was closest to their head. A summary of all the 24 hour 

recording cough studies and their filename prefixes is given in Table 2-2.

Each 24 hour recording has 8 associated files consisting of 3 hour portions. The study 

set included two chronic cough patients with GORD, one cystic fibrosis patient both 

on and off cough medication and a further six cystic fibrosis patients, three on and 

three off the cough suppressant medication. For the description code, CF were 

patients with a cough due to cystic fibrosis, whilst GORD were patients with GORD
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as the cause for their cough. Patients were asked to press the event marker following 

a bad bout of coughing and to audibly describe the activity being carried out prior to 

the cough episode. In addition to these studies, audio data collected in Section

1.6.2.2.1 were also used for software development; a summary of these tiles is given 

in Table 2-3.

Table 2-1 Summary of cough studies and filenames

C ough  st u d y F ilena m e M ale  / F em ale
R ecording

DURATION (HH:MM)

Cl 19-07-2005 Female 00:30

C2 08-09-2005 Female 01:00

C3 30-09-2005 Female 01:45

C4 13-10-2005 Female 01:27

C5 14-10-2005J Female 03:05

C6 14-10-20052 Female 01:34

C l 14-10-20053 Female 01:57
C8 20-10-2005 Female 02:34

Table 2-2 Summary of 24 hour cough studies and filenames

C ough  st u d y
F ilenam e

prefix M ale  / F em ale D escription  c o d e

C9 06-Mar Female CF
CIO 14-Mar Male CF

C ll 29-Mar Female CF
C12 12-Apr Female CORD
C13 03-May Male CF
C14 09-May_on Male CF
C15 09-May_off Male CF
C16 11 -May Male CF
C17 12-May Female CF
C18 13-May Female GORD
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Table 2-3 Summary of original one hour cough studies and filenames

C o u g h  S tud y F il e na m e M ale  /  Fem a l e

Al JLT25 Male

A2 RMT33 Male

A3 MST39 Male

2 .3 3 .2  Data processing

The aim of this work was to prepare the data for data processing. Cough recordings 

were transferred to the PC. 24 hour recordings were divided into 8 tracks of 3 hours 

each and denoted by a filename suffixed “ jpartl-8”. Shorter recordings are divided 

appropriately such that portions are no longer than 3 hours. The files are then 

converted to WAV format to be compatible with Matlab for further processing.

The WAV files consist of two channels; the first channel contains the data collected 

from the patient microphone and is used for cough analysis. The second channel 

contains information for the patient activity marker and is used for event monitoring. 

Matlab reads only the first channel of an audio file; therefore the second channel is 

isolated and saved as a separate mono WAV file for further processing.

2.33.3 Test dataset

In order to create a dataset with a sufficient variety of cough and non-cough sounds, 

a short audio file was created containing sound events and coughs from different 

subjects. This control dataset was created by compiling short sections of several 

cough recordings into one audio file. Sections were between 5 and 8 minutes in 

duration and were chosen to contain a balance of a sufficient number of coughs and 

other sounds. A summary of the test dataset is given in Table 2-4.
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Table 2-4 Summary of the test dataset audio file

Portion

O riginal

FILENAME
M ale  / 

F em ale

D u ration  
(m m : ss)

C ough

c o u n t

PI 14-Mar_partl Male 05:00 40

P2 29-Mar_partl Female 06:00 14

P3 09-May_off_part 1 Male 05:00 3

P4 12-Apr_partl Female 05:40 13

P5 19-07-2005 Female 05:00 17

P6 14-10-20052 Female 05:00 118

P7 11-May_partl Male 08:00 3

P8 13-10-2005 Female 05:30 75

2.3.3.4 Test sounds

In order to identify spectral features of various sounds, individual sound events from 

the file Cl were extracted for further study. These sound events are summarised in 

Table 2-5 and include coughs, various upper airway sounds and equipment sounds.

Table 2-5 Summary of individual sound events isolated from the file Cl

S ou n d S o u n d  type

Tl - T58 Coughs

T59 - 65 Speech

T66 Laughter

T67 - 86 Other sounds e.g. equipment sounds

T87-91 Breathing

2.3.4 Sound Identification

2.3.4.1 Cough sound acoustics

The aim of this work was to study the characteristic features of various sounds in 

order to find a method for distinguishing cough from all other sounds. Sounds from 

the cough studies A1 and Cl were used for this purpose. Time-amplitude plots,
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spectrograms and power spectra of cough sounds, vocal sounds and other noises were 

produced and studied. The time-amplitude plots were produced by plotting the signal 

against time, the Matlab function specgram was used to produce the spectrograms, 

whilst the power spectra were produced by plotting the square of the absolute value 

of the FFT coefficients.

23.4.2 Development of data pre-treatment

2.3.4.2.1 Identification of sound events

The first step toward data pre-treatment was to identify valid sound events within the 

cough recordings and then correctly label them as coughs or non-coughs for the 

subsequent training and validation step [as described next in Section 2.3.4.2.2]. Audio 

recordings were initially processed by the function coughgui which locates portions 

of sound in the recording [as described in Section 1.6.2.1.1] and creates a GUI to 

display the information. Using the GUI, representative cough sounds were manually 

selected and labelled to be used for training the neural networks. Suitability is 

determined by the clarity of the sound and by its ability to add relevant variation to 

the dataset. All other sounds are classed as non-coughs.

The threshold levels for determining the validity of sound events were set depending 

on the individual recording and were determined by use of the SNR.

23.4.2.2 Training and validation

The next step was to create a function which automatically divides the data, 

previously labelled, into sets for training and validation for the neural network. The 

function created was dataprep [See Appendix A]. Cough sounds were initially 

separated from non-cough sounds to ensure a fair distribution of each class into both 

training and validation datasets. One third of the data was selected for validation by 

taking every third point whilst the remaining two thirds were used for training. If 

there are more non-cough sounds than cough sounds, the non-cough dataset is 

reduced so that they are almost equal. A separate matrix was created to contain 

labelling information for the data, where ‘U represented a cough and ‘O’ represented 

a non-cough.
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A random selection of sound events from the cough studies A1 and Cl were listened 

to following the dataset division to validate this classification process.

23.4.23 Feature extraction

It was considered appropriate to use the existing software as a starting point for this 

work. Therefore the feature extraction stage was based on the initial method as 

described in Section 1.6.2.1.2 with further modifications included where necessary.

2.3.4.2.3.1 Mel-frequency cepstral coefficients (MFCC)

The optimum window size for the MFCC calculation needed to be ascertained. The 

window size was initially set to 256 samples. This essentially divides each sound 

event into 0.023 second portions and lists the MFCC’s calculated for each window. In 

order to capture all the MFCC’s into a one-row information matrix, the minimum 

window size was first established by determining the size of a random selection of 

coughs. Following this the MFCC window was set to 4864 samples and any sound 

events smaller than this were padded with zeros so that all outputs were of uniform 

size.

2.3.4.2.3.2 Linear predictive coding (LPC)

The value of the LPC coefficients in addition to the MFCC’s, as had previously been 

carried out in the existing method, was ascertained. LPC coefficients were originally 

calculated and added onto the end of the MFCC matrix such that the first 42 spectral 

coefficients were from the MFCC calculation and the remaining 14 were from the 

LPC calculation. A study of these coefficients showed that they possessed very little 

variation between coughs and non-coughs, and inclusion of these was considered 

unnecessary.

23.4.2.4 Cough in audio recordings

It was considered necessary to assess the effect that the proportion of coughs 

contained within a recording has on the ability of any system to accurately identify 

the cough events, given a system efficiency value. The assessment was carried out 

using a contingency table which is based on Bayesian statistics and takes into account
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the system prediction efficiency and the proportion of coughs to other sound events to 

give a cough recognition accuracy.

2.3.4.2.5 Principal component analysis (PCA)

The aim of this research was to perform data reduction on the spectral coefficient data 

set so that only the data containing maximum variation remained. Following the 

application of MFCC to the data, the number of columns in the resultant spectral 

coefficients was 42, consisting of 14 coefficients along with 14 delta coefficients and 

14 delta-delta coefficients; whereas the number of rows was variable and directly 

dependent upon the duration of the sound event and the window' size employed by the 

MFCC function. However, the resultant data matrices for each sound event must be 

of uniform size for subsequent presentation to the neural network.

PCA was carried out on the spectral coefficients using the singular value 

decomposition (SVD) function to produce the eigenvectors and corresponding 

eigenvalues. A number of different methods for the application of PCA to the data 

were tried.

2.3.4.2.5.1 Reduction of the loadings

An eigenvalue plot was produced for the spectral coefficients of both coughs and 

non-coughs following PCA in order to establish the amount of variance possessed by 

each coefficient. The loadings that appeared to possess little variance were then 

removed from further processing.

23.4.2.5.2 Data reduction to multiple rows

Following on from the previous step using the PCs with the most variation, the scores 

were reduced to create a uniform dataset size according to the number of frames in 

the smallest sound event.

23.4.2.5.3 Data reduction to single row'

To capture maximum variance and information in one row of data, such that all 

relevant data for each sound event can be passed to the neural network together, the 

PCs with the maximum variance were ordered on one row. SVD was performed on
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each sound event and the first PCs were multiplied by their corresponding 

eigenvalues to scale according to variance.

2.3.4.2.5.4 Data reduction to uniform size

Additionally, prior to SVD, the feature vector was multiplied by its transpose to 

create squared matrices of equal size for all the sound events. SVD was then carried 

out and multiplied by the corresponding eigenvalues. The square root of the data was 

taken and the first 2 to 5 loadings were lined up from left to right to form one row of 

data. Scores were also reduced in both cases according to the percentage variance 

they represented.

2.3.4.2.6 Correlation coefficients

It was considered necessary to investigate if there was any correlation within the 

frequency spectrum as the frequencies progressed through the sound event.

The correlation coefficients of the first 15 spectral coefficients were calculated and 

compiled into a one row matrix. A reduced number of coefficients were used so as to 

reduce the size of the final dataset; the first 15 coefficients appear to possess the most 

variance of all 42. The training data was then constructed in the usual way, with each 

row this time representing one sound event. PCA was carried out and the scores plot 

produced. In addition, the correlation coefficients were plotted onto coloured surface 

plots to make any correlation visually apparent.

2.3.4.2.7 Higher order spectral analysis (HOSA)

2.3.4.2.7.1 Voice data collection

In order to study the variation of vocal sounds between males and females, audio data 

was collected. Recordings were made of a dialogue as spoken by two males, two 

females and a male and a female. The dialogue was used to introduce a variety of 

words and speech characteristics whilst maintaining a similarity between the different 

recordings.

Further to this, a recording was made of a male and female speaking a variety of 

vowel sounds to enable study of the speech formants if necessary.
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2.3.4.2.7.2 Voice separation

HOSA was applied to samples of speech from both males and females to attempt to 

separate different voices. Various functions from the Matlab HOSA toolbox were 

employed [See Appendix A for methods]. The outputs from HOSA were inspected to 

identify any features that could potentially be used for voice separation.

2.3.4.2.73 Cough separation

HOSA was applied to the cough and non-cough data to attempt to identify significant 

differences between them in order to enable separation. HOSA was carried out on a 

test sample of sound events consisting of eight coughs and eight other sounds as 

isolated in Section 2.3.3.4. Script code for these calculations can be found in 

Appendix A. Values for the mean, variance, skewness and kurtosis, the linearity and 

Gaussianity data and the three fundamental frequencies of the sound were all 

calculated and compiled. A LVQ network with 13 input neurons was created, one for 

each value, with 2, 4 and 6 hidden neurons. Following training with this data, the 

same data was presented to the network for simulation.

2.3.5 Optimum data pre-treatment

Using the cough studies C5-C7, the data pre-treatment techniques described 

previously were assessed for their performance. Following this, an optimum set of 

data pre-treatment steps were compiled and used to treat the data prior to the 

application of the ANN.

2.3.6 Sound Separation

The aim of this section was to develop a series of ANNs in order to optimise the 

pattern recognition step and allow the recognition of cough events from all other 

sounds.
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2.3.6.1 Development of neural network

2.3.6.1.1 Feed-forward (FF) neural network

A FF neural network with one hidden layer was created for later training with pre­

treated data from the cough studies. Several parameters of a FF neural network were 

tested which resulted in several versions of the network. Table 2-6 lists the 

parameters and the levels at which they were tested.

The number of input nodes in the input layer was variable and dependent upon the 

pre-treatment the data had undergone. The output layer had one output node which 

gave values of closer to "O’ for a non-cough and closer to ‘ 1’ for a cough.

Table 2-6 Parameters of the FF neural network and the levels at which they were 
tested

Pa r a m e t e r s L e v e l s  t e st e d

Hidden neurons 8, 10, 12, 15

Training function Sequential order incremental training function

Learning method Gradient descent method

Performance function Mean squared errors

First transfer function Competitive, tansig, logsig

Second transfer function Purelin, tansig, logsig

2.3.6.1.2 Learning vector quantisation (L VQ) neural network

A LVQ neural network was created for later training with pre-treated data from the 

cough studies. The LVQ network w-as created with two neurons in the hidden layer. 

The number of input nodes in the input layer was variable and dependent upon the 

pre-treatment the data had undergone. The output layer had two output nodes which 

gave a value of 1 in the first column to represent a cough and a value of 1 in the 

second column to represent a non-cough.
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2.3.6.1.2.1 Testing the neural networks

The aim of this experiment was to test the ability of the designed neural network to 

distinguish between two groups of data by use of a simulated dataset. Two pure 

spectral peaks (approximate Gaussian curves) were plotted using 41 data points (c.f. 

42 coefficients for the ntel cepst signal processing coefficients). The first peak had its 

maximum at 10 (arbitrary units) and a range of 0-20 while the second peak had its 

maximum at 30 and a range of 20-40 [See Figure 2.3]

Data set 1

Data set 2

Figure 2.3 Two spectral peaks with peak maxima at 10 for (lata set 1 (top) ami 30
for data set 2 (bottom)

To add some simulated contamination into the dataset, the pure Gaussian peaks were 

multiplied by 0.2 to give minor peaks. These were added to the major peaks to create 

two new spectra consisting of the major of one peak and the minor of the other [See 

Figure 2.4].
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Data set 3

Data set 4

Figure 2.4 Dataset 1 containing contamination from dataset 2 (top) and vice versa 
with dataset 2 containing contamination from dataset 1 (bottom)

Noise was added to these four sets of peaks by generating a random matrix of size 

(1,41) of numbers between 0 and 1.0. This matrix was multiplied by 0.02 to make the 

numbers sufficiently small and then added to each of the pure spectra.

A total of 400 spectra were then generated, 100 of each of the noisy spectra and each 

with slightly different values. This was achieved by creating a matrix of random 

numbers between 0 and 0.1 of size (1,100) and multiplying each number by the noisy 

spectra of each peak [See Figure 2.5].
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Figure 2.5 Mesh plot of the 400 spectra comprising the dataset: 100 of peak 1,100 
of peak 1 pins a small amount of peak 2 as contamination, 100 of peak 2 and 100 of 

peak 2 and a small amount of peak 1 as contamination. All the peaks had the
addition of noise.

In order to correctly train and validate the neural network, the dataset was split into 

two groups; 100 validation spectra (sampled at regular intervals throughout the 

dataset to get an even spread of the spectra) and 300 training spectra.

PCA was applied to the training data set in the form of SVD. The first five PCs were 

then used to represent the variation in the dataset. The first five loadings values were 

multiplied by the training spectra to give the dataset necessary to train the neural 

network. The validation spectra were treated in exactly the same way by being 

multiplied by the same values.

A LVQ neural network was then created. Five input neurons were created for the five 

PCs and three neurons were specified for the hidden layer. The training function was 

defined as trains, which selects samples from the training dataset in sequence in order 

to train the network. All these parameters are as defined in the network used for the 

original dataset.
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The target classes were defined as simply ‘1’ or k2’ for the first and second peaks 

respectively. A binary matrix was created to pass these targets to the network such 

that a *F in the first column and a ‘0’ in the second column indicated the spectra 

represented peak one while a "O’ in the first column and a *1’ in the second column 

indicated the spectra represented peak two.

2.3.6.1.2.2 Training the neural networks w ith noise

To decide if the neural network would be more robust if trained with noisy data, it 

was trained with both the original data and the same data contaminated with artificial 

noise. A FF network with one hidden layer and a logarithmic sinusoid transfer 

function between each layer was created. The neural network was trained using the 

gradient descent method for 1000 epochs of cough and non-cough data as prepared by 

the function dataprep. This was followed by another 100 epochs of the same cough 

and non-cough data, modified by the addition of random noise. A further 1000 epochs 

of cough and non-cough data, without added noise, completed the training.

2.3.6.1.2.3 Testing the neural network’s suitability to the data

The aim of this experiment was to test the suitability of the neural network to the data 

requiring classification. The cough and non-cough spectral features of 20 sounds 

taken from the test sounds group were separated into two datasets. Each value in the 

cough dataset was multiplied by various factors from 10 to 100,000 so that it was 

substantially larger than the non-cough data. The performance of the neural network 

was then tested at the original scale and at the exaggerated values. A LVQ network 

was employed with default properties as set by the Matlab function newlvq and three 

neurons in its one hidden layer.

Following on from the results of this previous test, the same spectral features were 

then used and the magnitude effects were tested on the non-cough dataset.

The results appeared to indicate that the network was not recognising magnitude 

between groups; a simulated dataset was therefore produced, each data vector 

possessing the same basic pattern but with two different magnitudes in the dataset.
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Finally, the real dataset was pre-treated to leave only absolute values and only the 

first PC was used. The neural network was re-tested with this new' dataset, still with 

the non-cough data scaled up to the same orders of magnitude.

2.3.6.1.2.4 Number of epochs

The number of epochs used for presentation of the data to the neural network was 

tested at varying levels from 20 to over 1000. The optimum number of epochs to 

prevent over-training was then established.

2.3.6.1.2.5 Optimising network training using design of experiment

The aim of this experiment was to determine the optimum network training 

parameters. Design of experiment (DoE) was used to investigate the optimum 

combination of the number of PCs used to represent the data and the number of 

neurons in the hidden layer of a network. Table 2-7 lists the levels tested for each of 

the factors under study.

Table 2-7 Factors under study and the levels used for each in the optimisation of 
the neural network training parameters

Fa c t o r s L evels

Number of PCs 3, 4, 5, 6

Number of hidden neurons 4, 6, 8, 10, 12, 14, 16, 18,20

The data consisted of cough and non-cough feature vectors from the audio file C5 

which had been squared, decomposed by SVD, scaled by multiplying each 

eigenvector by the variance each represented and then square rooted. The first rows of 

the resultant matrix, according to the number of PCs being tested, were lined up from 

left to right to form a single row. The response to be determined was the cough 

validation accuracy achieved by the neural network.

The neural network was a LVQ network as described in Section 2.3.6.1.2.
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2.3.6.2 Network training

In order to create an automated system, software was created to perform complete, 

automatic ANN training and validation using the pre-treated data. Script codes, Ivqnet 

and ffnet, for the automatic training of the neural networks can be found in Appendix 

A. The automatic process firstly takes the name of the file to be used for training, 

separates the data into training and validation and applies the desired data pre­

treatment [See Section 2.3.4.2]. If there is no existing ANN, a new one is created; 

otherwise an existing one is recalled. The prepared data is then presented to the neural 

network for training. After each set of training epochs, the validation data is presented 

to the network. The classifications given by the ANN for the validated data are 

compared to the actual values and a validation accuracy is subsequently calculated. 

For accuracy, three validation accuracies are determined; the percentage of coughs 

and non-coughs correctly classified and a total percentage of sound events correctly 

identified. Each validation accuracy is then compared to the one given on the 

previous run; unless it is the first run in which case the network is trained once more. 

If the accuracies are equal to or better than the previous, the network is assumed to 

have either reached a plateau or is still improving and the current network is saved for 

further training. Another cycle of training then ensues. However, if the accuracies 

have worsened, then the network is in danger of being over-trained and so the current 

training changes are ignored and the previous network saved as the final version.

Table 2-8 Neural network training data details

A udio  F ile C o u g h  C ou n t N o n -c ou gh  C o u n t E pochs

Al 32 28 25
A2 19 14 50

A3 11 6 50

Cl 20 29 50

C4 140 37 50

2.3.6.3 Network simulation

Continuing with system automation, software was developed to automatically apply 

the pre-treatment stage to a previously unseen audio recording and then use the saved
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neural network for classification of the sound events. This function created is 

netprocess as given in Appendix A. This tile automates the process of presenting a 

new file to a previously trained neural network for classification. The audio recording 

is initially processed by the function coughgui to identify portions of sound in the 

recording [as described in Section 1.6.2.1.1 and Figure 1.15]. Data pre-treatment is 

then applied exactly as for the network training data to extract the spectral 

coefficients representative of the sound events. The current ANN is recalled and the 

resulting data is presented to it. The outputs are then classified as coughs or non­

coughs dependent upon their values.

2.3.6.4 Analysis of audio recordings

The next stage was to apply the developed software to sections of the 24 hour audio 

recordings collected as described in Section 2.3.3.1 and listed in Table 2-2. The 

neural network was created and trained according to Section 2.3.6.2 and Table 2-8. 

The audio recordings C9_partl, Cl()_partl, C10_part2, Cll_partl and C12_partl 

were pre-treated as described in Section 2.3.5 and then processed using the neural 

network.

During this work, it was considered necessary to develop the ANN training step. 

Experiments into various training conditions were made. It was also attempted to 

retrain the network using some of the interfering sounds encountered on these 

recordings. The GUI was used to scroll through the audio recordings and to allow 

identification of a selection of non-cough sounds that were repeatedly being wrongly 

classified as coughs and an equal selection of coughs. The network was then trained 

with the isolated sounds and their correct classes.

2.3.7 Additional data pre-treatment

From the results of the work carried out in the previous section, it was considered 

necessary to find an alternative approach to the data processing in order to achieve 

cough recognition. The aim of this section was to further investigate the possibilities 

of data pre-treatment in order to obtain data that the neural network could distinguish 

with greater accuracy.
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2.3.7.1 Frequency filtering

The aim of this experiment was to use the information gathered from Section 2.3.4.1 

to exclude any unwanted frequency information from the audio recordings and thus 

enhance the data pre-treatment stage.

2.3.7.1.1 Application of a Buttenvorth filter

A narrow-band high-pass frequency filter was used to eliminate the low frequencies 

present in many interfering sounds, whilst retaining the higher frequencies possessed 

by coughs. A Butterworth filter [See Section 1.3.3.4] with a pass band beginning at 

14700 Hz and stopping at 15300 Hz was applied to each minute of the audio file Cl. 

The remaining signal was then analysed for its high frequency content. The presence 

of a frequency with a threshold intensity of over 0.0002 was counted as a positive 

event and a list of occurrences in the file was compiled. Following the location of a 

positive event, the file was skipped forward by 0.3 seconds to avoid the multiple 

classification of a single sound event. Several of the parameters were tested at varying 

levels, these are summarised in Table 2-9.

Table 2-9 Summary o f parameters tested for the frequency Jitter and their values

P a r a m e t e r
"■ “ 1

L evels  T ested

Skip value 0.1,0.2, 0.4

Filter frequency (kHz) 11, 12, 14, 15

Threshold level 0.0001, 0.0002, 0.002, 0.007, 0.02

The start time of the sound event is defined as the point that the high frequencies 

defined by the filter rise above the threshold intensity. The end point is defined by 

taking the average intensity of each 100 sample portion from the start of the event 

until it falls below a 0.0001 threshold. The end of the final portion still above the 

intensity threshold is defined as the end of the event.

Sounds that are classified multiple times due to having above-threshold frequency 

intensities 0.3 seconds into the sound are identified by having the same end times.
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These sound events are combined, taking the earliest start time as the actual start 

time.

To eliminate some high frequency microphone noises or sector boundary errors 

(SBEs), these sounds were analysed and found to have very short durations. A check 

was included for sound event duration and any found to be lower than 2000 samples 

(0.18 seconds) were discarded.

2.3.7.1.2 Application of FFT

The audio recording was initially processed by the function coughgui to locate 

portions of sound in the recording [as described in Section 1.6.2.1.1 and Figure 1.15 j. 

FFT was then applied to each sound event and the Fourier transforms between 8,000 

and 15,500 Flz were taken. To identify similarities or differences between the data, 

four cough sounds and six other sounds, selected from the sound events isolated as 

described in Section 1.6.2.1.1, were all squared by their transpose and then processed 

using SVD. All scores were plotted on the same space. The frequency band selected 

for analysis was also tested at 6,000 to 15,000 Flz.

2.3.7.1.3 Co variance

From the results of the previous experiment, it was considered necessary to further 

investigate the variance within the data following frequency filtering. A covariance 

calculation was performed on both groups of sounds. The Matlab function cox was 

used to calculate the covariance of test sounds as selected from Table 2-5. Following 

the results of this, the FFT filtering step and the covariance calculation was applied to 

all the sound events in the file C l.

The results of this allowed a threshold value to be established for the covariance level 

of cough events.

2.3.7.1.4 Validation offrequency filtering

The aim of this experiment was to test the performance of the frequency filtering data 

pre-treatment on the test dataset [Section 2.3.3.3]. The functions fftprocess, 

fftfeatures andfft coughid were created to automatically process the data in this way
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[See Appendix A], Frequency filtering was carried out as described above in Section

2.3.7.1.2 above followed by the covariance calculation and the application of a 

covariance threshold.

A minimum cough duration was set to exclude sound events that were too small to be 

coughs from the results.

2.3.7.1.5 A ppi ¡cation of a n A NN

It was considered useful to test out the ANN on the sound events defined by the 

previous stage. Results obtained for the testset were divided equally into training and 

validation groups. A LVQ neural network was then created, trained and validated.

2.3.8 Additional features

2.3.8.1 Graphical representation of results

The aim of this work was to create a function to automatically summarise the results 

of the cough counting and represent them graphically. The function plotcough [See 

Appendix A] summarises the cough frequencies for each of the eight three-hour 

portions in a 24 hour audio recording into 15 minute sections. The results are then 

plotted on bar charts in two forms for ease of data interpretation, the cough count and 

the time spent coughing. The function combineplot then groups the information for all 

eight plots to produce a 24 hour cough count summary. The method was validated 

using the cough studies C9 and CIO.

2.3.5.2 Double cough detection

The aim of this research was to solve the problem of the software incorrectly 

recognising multiple coughs as single events. To avoid double or triple coughs being 

miscounted a step was included to allow the operator to make the final decision. The 

function plotcough [See Appendix A] takes all sounds events over one second in 

duration and plays them to the operator in sequence. After each sound event, the 

program takes the operators decision, inputted simply as a number, before 

progressing to the next sound event. The operator can request repeated playback at
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any time. At the end of the sequence, the number of cough events is recalculated and 

displayed graphically.

2.3.9 Patient activity monitoring

The aim of this research was to develop the software to be used with the event 

marker. The software was required to locate the use of the event marker on the second 

channel of the audio recording and identify the corresponding patient description on 

the first channel. Compilation of the activity information is to be carried out by the 

operator.

2.3.9.1 Spectral analysis

In order to identify the occurrence of the event marker within the audio recording, a 

characteristic feature of the marker needed to be identified. The marker sound was 

studied for its spectrographic properties. A portion of the audio signal from the 

second channel of the file CIO which contained a marker sound, as determined by 

listening to the signal, was isolated. The TFT was calculated and the resulting 

spectrogram plotted using the function specgram. Studying the frequency intensities 

revealed the frequency content of the signal for further analysis.

2.3.9.1.1 Application offrequency filter

Using the results of the previous experiment, the aim was to design a function to 

automatically process an audio recording and identify the use of the activity marker. 

The function signal was created [See Appendix A]. Each minute of the 3 hour audio 

file is processed in sequence and is initially filtered. A narrow band pass Butterworth 

filter removes all frequencies outside of a 14,300 to 14,900 Hz range. The specgram 

function is then used to calculate the amount of each frequency within this filter 

range. The resulting output is a measure of the intensity of this marker frequency in 

each sample. Thus, samples exceeding a threshold of 0.003 of the relative amplitude 

determine the location of the marker. Marker times are compiled and converted from 

sample numbers to time for output.
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2.3.9.1.2 Validation of “signal”function

After development, the signal function required validation to determine its 

effectiveness at locating the use of the event marker. The second channel of the audio 

recording CIO was listened to and a summary of the start times of the marker was 

made. These times were then compared to the results from the processing of the same 

recording by signal.

2.3.9.1.3 Compilation of patient activities

Following the success of the previous experiments in locating the use of the event 

marker, the aim of this experiment was to establish the activity description on the first 

channel of the audio recording. The function activity [See Appendix A] uses the 

marker times compiled by signal to locate the corresponding portion on the first 

channel of an audio recording which contains the patient’s description of activity. The 

section of recording beginning at the start of the marker and ending two seconds after 

the end of the marker is played to the operator using the Matlab function soundsc. 

The operator inputs the activity as spoken by the patient and the function compiles a 

summary of the activities and the times they occurred.
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3.1 Aims

The aim of this work was to create a 24 hour ambulatory monitoring device along 

with a method for the computerised processing of audio recordings to automatically 

identify coughs.

• Monitoring should be carried out for 24 hours in order to study the temporal / 

diurnal patterns of cough frequency.

• The monitoring device should also be an objective measure such as audio 

recordings to avoid the inaccuracies introduced into the system by subjective 

counting.

• The recording device should be ambulatory to allow the patient to carry out 

normal daily activities in their own environment in order to gain a true 

representation of the cough events.

• Finally, an automatic method for the analysis of the recording is required to 

make the system feasible and convenient to use.

3.1.1 Assessment o f existing system

In the assessment of the existing methodology, data was reprocessed to establish the 

methods in which the system worked and also to obtain a measure of the capabilities 

of the system. Using the GUI, the average sensitivity was calculated to be 0.80 with a 

range of 0.55 to 1.00 while the specificity was 0.96 with a range of 0.92 to 0.98. At 

this stage, the cough events recognised needed to be counted by a human listener. For 

this purpose, the GUI was used. However, in this procedure only events classified as 

cough have to be listened to. Using the system it was possible to identify coughs in an 

hour long recording in an average time of 1 minute 35 seconds, a reduction of 97.5% 

in counting time.

Reproducibility of repeated analysis is 100%. The average percentage of false 

positives compared to true positives was calculated to be 20%. False positives were 

caused by similar sounds such as laughter, loud bangs and other subjects coughing.
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The results of this initial work therefore showed the potential of automatic cough 

identification using speech processing techniques and neural networks. However 

some limitations have been highlighted at this stage:

1. Due to the current hardware limitations, the system is only capable of short 

recordings, in a relatively controlled environment and with subjects only 

ambulatory to a limited degree. This is an obvious limitation with regard to the 

need for 24 hour ambulatory and objective cough counting but also means that 

this developed software has not been fully tested in such conditions. Adequate 

hardware needs to be developed in order to carry out such recordings and then 

enable the development of the software if necessary.

2. The study showed that the method is not subject-specific in its cough 

classification, and will recognise any coughs that are audible on a given 

recording. Improving the counting accuracy is best achieved, therefore, by 

excluding the non-subject coughs from the recording, for instance by using a 

different microphone with a lower sensitivity. This will ensure only high- 

amplitude sounds occurring close to the microphone will be detected, thus 

discerning the subject’s coughs from ambient coughs. This modification will also 

diminish problems with the increased background noise which will be 

encountered in 24 hour ambulatory recordings.

3. The original use of the PNN meant that all training had to be carried out at 

once which did not allow for any additional training later on. It would be 

advantageous to have the ability to train the network at a later stage as different 

cough types and other sounds are encountered. For this, an automatic data-pre- 

treatment, data selection and network training would be necessary.

4. The recordings were of smoking subjects and thus contained a large number 

of coughs in a short time period. The subjects were also confined to the clinical 

environment with a limited amount of ambient noise to be detected on the audio 

recording. Thus, a sample of all background noise and cough samples could be 

used to train the PNN, with minimal possibility of further extraneous sounds 

causing interference.
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In order to fulfil the original aims of creating a 24 hour ambulatory recording device 

together with software capable of analysing the resultant data, several improvements 

to the existing system were required.

In addition to providing solutions to the problems of subject non-specificity and 

limited neural network training, the hardware must also be re-designed and the 

software must be modified to be suitable for processing the extended recordings.

3.2 Development of Hardware

The hardware used for the initial studies w'as a lapel microphone connected to a DAT 

recorder, which had limited recording duration due to power constraints and a limited 

amount of data storage. To meet the new requirements, a new recording system had 

to be developed.

3.2.1 Developments for 24 hour recording

The aim of this work was to develop a hardware device capable of making 

ambulatory, 24 hour recordings for objective cough counting. Research over the years 

has shown the need for such technology [See Section 1.2.2], Subjective scoring of 

cough has frequently been proven to be unreliable. Animal models and induced- 

cough models have been shown to be inaccurate for assessing patient cough 

responses and therapeutic efficacies. 24 hour recording durations are necessary to 

study the diurnal changes of cough and an ambulatory device is required to study the 

patient during normal everyday activities and in their own environment.

The ability to carry out 24 hour, ambulatory recordings depended on the combination 

of several requirements:

1. Recording media capable of storing 24 hours of audio data

2. Power supply capable of recording for 24 hours

3. Low sensitivity microphone

4. Patient activity marker button

5. Contained within a portable, convenient and secure case
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3.2.1.1 Recorder

There are a limited number of commercially available recorders that have the 

capability to carry out 24 hour ambulatory recordings. For the cough counting device, 

the most important features are adequate data storage, as it would be unfeasible to 

interrupt a study to change the recording media, and a compact and portable design 

for maximum convenience to the patient. A 24 hour power supply would be 

beneficial but not absolutely necessary as extra power could be provided with slight 

modifications.

Three possible options were MiniDisc (MD) recorders, solid state memory recording 

devices, also known as flash memory and hard disk drive (HDD) recorders.

MD technology was announced by Sony in 1991 and introduced in 1992, and is 

capable of storing any kind of binary data. Originally intended to replace the compact 

disk (CD) for sale of music albums, MDs are now primarily used for recording and 

are fitted with a USB interface which can be used to upload recordings to a computer.

The audio on a MD is compressed using the ATRAC format. ATRAC is a 

psychoacoustic lossy audio compression scheme, which means that although 

decompression of the compressed signal will not yield the original signal, it is 

designed to maintain a high quality of sound, audibly identical to the original.

MDs were recently improved by the development of high-density MDs (Hi-MDs) and 

Sony’s latest compression, ATRAC3plus. Hi-MDs are capable of storing up to one 

gigabyte (Gb) of audio data, which is approximately 34 hours when using 

ATRAC3plus mode of recording at 64 kilobits per second (kbps).

The recording media is therefore adequate for 24 hour recordings, although the 

mechanical action of the disk means power consumption is relatively high and the 

supplied battery was not capable of long recording durations. At this time. Hash 

memory devices and HDD recorders were still very much in their infancy, very 

expensive and not widely used. In addition, although one of their main advantages is 

large data capacity, the amount of storage they offer is actually superfluous to the 

design requirements. While this could be viewed as an opportunity to utilise the much 

larger memory capabilities in order to store the required 24 hours in a less
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compressed format, again this is an unnecessary extra. Therefore, due to the features 

and capabilities of the Hi-MD recorders, the Sony Hi-MD MZ-RH10 was selected to 

form the basis of the 24 hour recording device.

3.2.1.1.1 Data storage

The recording media were filled with a non-audio buffer of a size equivalent to 

approximately 10 hours of ATRAC3plus compression such that 24 hours worth of 

space remained on the disk. This successfully limited the recording time to the 

desired 24 hours. This served an important purpose in that when the disk reaches full 

capacity, the recorder automatically performs the data-save function and stops 

recording; whereas if the recorder were to continue for an unnecessary 34 hours, 

power supply would be compromised and a power failure would result in the entire 

recording being lost.

3.2.1.1.2 ATRAC compression

Due to the high degree of compression being used in order to record for the 24 hour 

period, it needed to be ascertained that the ATRAC3plus method of compression did 

not significantly affect the recording compared to the ordinary PCM. The quality of 

data recorded in both Linear PCM and ATRAC formats were therefore directly 

compared. Spectrograms of the two examples are shown in Figure 3.1. The colours 

represent frequency intensities; comparison of the two plots suggests that there is no 

reduction in intensities of the frequencies recorded in the ATRAC format. The two 

plots are also very similar in clarity and contrast, indicating that spectral resolution 

also appears to be maintained. This comparison shows that the ATRAC method of 

compression is very similar to the PCM recording and will therefore produce 

recordings of equally high quality.
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Time-frequency plot of two cough» followed by speech recorded in PCM format Time-frequency plot of two coughs followed by speech recorded in ATRAC format

Figure 3.1 Spectrogram of a sample of coughs and speech recorded in PCM format
(left) and ATRAC format (right)

3.2.1.1.3 Signal input

There are two options for signal input into the recorder; microphone input and 

analogue line input. The aim of this study was to determine which of these two inputs 

would be the optimum to use for the 24 hour subject recordings.

3.2.1.1.3.1 Line-input

The SNR of a line-in recording was calculated from a direct comparison with the 

microphone input to be 58.03 dB from an average signal of 0.25 and an average noise 

level of 3.09E-4(Au). The SNR of cough study C5 was calculated to be 74.62 dB 

from an average signal of 0.50 (Au) and average noise level of 9.29E_5(Au).

A major problem with the line-input is the automatic introduction of track marks for 

every period of no-sound encountered, where a period of no-sound describes a 

situation when the input falls to 4.8 mVlls. This can result in hundreds of tracks per 

hour which leads to a lengthy combination step and media-to-PC transfer time. This 

was resolved by introduction of a continuous tone into the recorder such that it never 

encounters a period of true silence. As long as the tone is of a small, limited 

frequency range that is outside the frequency region under study, it should contribute 

no interference to the recording. This was proved to successfully reduce the line-in 

recording to a single track of data; however, the constant tone generator appeared to 

consume a high level of power and subsequently reduced the available recording time
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from 24 hours down to just a few. This was a problem for the hardware that had to be 

addressed, but for the remainder of the work, the microphone input was used.

3.2.1.1.3.2 Microphone-input

The SNR of a recording made through the microphone input for comparison with the 

line-input was calculated to be 55.92 dB from an average signal of 0.96 and average 

noise level of 1.53E (Au). These values are clearly significantly higher than for the 

line-in recording, showing that although the SNR is very similar, there is actually a 

much greater degree of noise. The SNR of cough study CIO was calculated to be

73.07 dB from an average signal of 0.45(Au) and an average noise level of 

1.01E '4( A u ) .  The line-input clearly possesses a higher SNR than the microphone 

input and also has a baseline during quiet periods that is five times smaller. However, 

it carries with it the disadvantage of frequent track splitting. An advantage to both of 

these recording inputs is that they both possess greater SNRs than the old hardware 

which was calculated at 57.12 dB for cough study A1 from an average signal of 0.24 

and an average noise level of 3.37E~4(Au).

The use of attenuators was experimented with to reduce the amount of noise picked 

up on the microphone input. However, the use of attenuators does not improve the 

SNR, it simply reduces the intensity of all sounds; thus noise and interfering sounds 

such as speech may be reduced, but they are done so to the detriment of the cough 

events. It was decided that changing the threshold values of detection, as described in 

Section 1.6.2.1.1, is a simpler and less permanent step to achieve the same result.

3.2.1.2 Microphone

The chosen microphone was a dual channel, cardioid, capacitor microphone. The dual 

channel aspect allowed the use of the first channel for the recording of coughs from 

the subject while the second channel could be used for the event information. A 

further application for the second channel was that of background noise subtraction in 

case of extreme interference on the recording. However, it was decided that this was 

an unnecessary addition for two reasons: firstly, it would be a lengthy procedure to 

perform a background subtraction on the entire audio recording; secondly, it would be
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unlikely that a patient would be in such a noisy environment for the entirety of their 

study, and in which case it would be unfeasible to have to listen to the recording in 

order to identify when background subtraction would be necessary, as this element of 

manual processing is what the system design is aiming to avoid.

The capacitor microphone has a cardioid pick-up pattern, which is omnidirectional 

therefore does not need exact positioning to avoid the exclusion of sounds from 

certain directions. An omnidirectional microphone is a necessity with this application 

as once the patient has left the clinic, their activities over the 24 hour study period 

will almost certainly mean that the position of the microphone is moved to a certain 

extent. However, the fact that the microphone does not pick up sound from behind, 

means that a reasonable amount of unnecessary sound will be excluded from the 

recording.

Capacitor microphones are highly sensitive; however their sensitivity can be 

attenuated by applying a greater charge over the capacitor. This ability to restrict the 

level of sound that the microphone detects is not achievable with some other 

microphones such as the dynamic or electret types as their sensitivity is fixed. The 

capacitor also possesses a fast signal response and the capability of a high sampling 

rate such that a wide range of frequencies can be studied.

The frequency response of up to 20,000 Hz is adequate for capturing maximum 

information regarding the frequency content of the cough; and due to the Nyquist 

frequency and the sampling rate of 44,100 Hz, it would only be possible to study 

frequencies of up to 22,050 Hz. In comparison, contact microphones, or more 

specifically throat microphones, are used in areas with a high level of ambient noise 

and therefore offer the capability of detecting a limited number of sounds; however, 

their frequency range is typically 300 to 3400 Hz which cuts out a lot of the higher 

frequency information useful to spectral coefficients analysis.

3.2.1.3 Power supply

The Sony MD-RH10 can record for up to 8.5 hours using its fully charged nickel 

metal hydride (NH-14WM) 1.2 V battery. It is supplied with an extra attachable case 

for one dry AA cell which provides enough power for up to three extra hours of
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recording. Thus possessing the potential for 12.5 hours of recording, the system 

required modifications in order to be used for 24 hour recordings.

As the internal battery provided so much power, it was decided to consolidate this by 

using an extra battery pack fed into one of the other two inputs; the mains charging 

input or the input for the additional battery. A feature of the MD which must be 

considered at this point is the need for “system file writing” at the end of each 

recording; responsible for ensuring that the recorded data is fully saved and readable 

in the future. This step requires an additional amount of power which, if interrupted 

can result in the loss of the entire recording. The recorder safeguards against such a 

problem by possessing a function winch constantly measures the voltage of its power 

supply. If the voltage drops below a set threshold, the recorder assumes the battery 

power is failing and stops the current recording in order to have enough power left to 

save data. However, when powering the device through the mains input, the device 

assumes that the power will be constant and of unlimited supply so this feature is not 

active. Supplying the additional portable power through the mains input w'ould 

therefore pose more of a risk of data loss in case of power interruption. This risk 

could be reduced by ensuring that the extra battery has far more power than is 

required, such that the disk would reach full capacity and induce the data-saving step 

well before the power diminishes. However, it was discovered that if the recorder 

received any power through the mains input, it bypassed the use of the internal 

battery in favour of this supply. This would then take the requirements of the extra 

battery up from 11.5 to in excess of 24 hours, and would also need to supply the high 

voltage of 3 V expected by the device.

The next option was to consolidate the internal battery by supplying power through 

the additional power input, as the system was designed for, but replacing the AA cell 

with one capable of 11.5 hours of recording. Due to the anticipated high use of the 

device, it was considered much more cost-effective and environmentally friendly to 

utilise rechargeable batteries; a nickel metal hydride 1.2 V D cell possessed adequate 

power for this application. However, the expected voltage of the additional battery 

input was 1.5 V compared to the 1.2 V of the internal rechargeable battery. Thus, the 

recorder required the additional battery to supply a higher constant voltage to
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continuously operate without provoking the data-saving step. Since the selected 

battery possessed more than enough power for a 24 hour recording, the battery was 

connected via the internal battery contacts thus replacing the existing power supply 

completely with a much larger battery [See Figure 3.2].

The resulting device was proven to successfully make 24 hour recordings.

Figure 3.2 Diagram of the modified power supply for the device in order to achieve
2d hour recording capabilities

3.2.1.4 Portable case

In order to make the device suitable for patient use, a portable, convenient and secure 

case was required to contain all the components of the cough counter including the 

recorder, the microphone and the extra power supply.

While the case needs to be easily accessed and maintained by the clinic staff, it must 

remain secure and inaccessible to the patient. This was achieved by complete 

enclosure of the system into a compact case, lockable by four tamper-proof screws 

and two security locks [See Figures 3.3 and 3.4]. A small grill was included in case 

the second channel was to be used for background recording for subsequent noise 

cancellation. A relatively large button, for ease of use, was fitted to the top of the case 

to serve as the patient activity marker. An adjustable strap is attached to either side of 

the case and is designed to fit across the body of the patient such that the mid-point of 

the strap sits on the shoulder and the device sits on the opposite hip. The set up for 

audio data collection was optimised to determine the best microphone position for

Terminals for 
attaching dry 
battery case

DC input 3V jack

Internal battery 
compartment
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recording coughs. The microphone is attached to the device’s strap such that it is 

positioned on the centre of the patient’s chest pointing upwards toward the mouth. 

Attaching the microphone to the strap means that its placement is consistent both 

during the 24 hours and also between patients; thus, the microphone’s position is not 

dependent upon the patient’s choice of clothing, for example when using lapels or 

collars for attachment. The fitting of the strap removes any need for the patient to 

hold the device, limits the chance of the microphone moving and also means that the 

entire device can be removed and replaced easily by the patient for example when 

showering, changing or sleeping. The strap is adjustable i.e. can be extended or 

shortened for the patients comfort. During the night, the strap can be placed over a 

headboard such that the microphone is closest to the patients head, or can simply be 

placed on a bed-side table, again with the microphone close to the patient.

The resulting set up was successful in recording the subject’s upper airway sounds, 

easily transferable between users and was widely accepted by patients for 24 hour 

use.

3.2.1.5 Event marker

The event marker consists of a button on the external surface of the case which 

records a characteristic marker sound on the second channel of the microphone. 

Patients are instructed to register more severe cough episodes by pressing the event 

marker button and audibly describing the activity they were carrying out prior to the 

cough. Along with the objective counting of cough, it was considered advantageous 

to have an additional monitoring feature which enabled the correlation of patient 

activities with coughing episodes.

As cough is a symptom of the underlying cause, studying the relationship of cough to 

certain patient activities can contribute important information to a diagnosis. As 

discussed in Section 1.2.2, a patients subjective scoring of cough can be unreliable 

and often no patterns to coughing episodes are recognised. A more objective system 

is therefore required to study such correlations. One cause of cough which can be 

identified in this way is CORD. In up to 75% of patients with GORD, cough is the 

sole presenting symptom; therefore the absence of heartburn and other associated
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symptoms is not necessarily enough to refute a diagnosis. In GORD sufferers, cough 

reflexes are stimulated by the occurrence of reflux into the oesophagus and typically 

occur when the oesophageal sphincter (OS) is opened. Activities responsible for the 

opening of the OS include eating and the subsequent release of gas from the stomach, 

and any movement which uses the diaphragm, as this puts direct pressure on the OS 

and causes it to open. Such movements include talking, due to excessive use of the 

diaphragm for phonation, driving, bending and getting out of bed in the morning. 

Other triggers of coughing episodes could include the patients contact with certain 

allergens. Thus, by recording certain activities of the patient and correlating them to 

the temporal cough counts, cough patients can be studied and potentially diagnosed. 

Carrying out this study of cough and its relationship to trigger factors alongside the 

objective 24 hour cough counting clearly requires subject input. In order to make the 

system as automatic as possible, it was considered ideal to use the recording device to 

record the necessary activity information. It would then be possible to compile all the 

information at once. One option for achieving this objective would be to have several 

buttons, each with a characteristic marker, which the patient presses to indicate their 

current activity. However, the maximum number of activities which could be studied 

would be set at the time the hardware was developed, with no room to expand or 

change as studies showed new information. In addition to this, the studying of a 

sufficient number of activities would create a complicated system for the patient to 

use. It was therefore decided to utilise the fact that the upper airway sounds of the 

patient were already being recorded in the cough study and instruct the patients to 

audibly describe the activity they had been carrying out prior to the coughing episode. 

In this way, a single event marker button could be used to highlight the activity whilst 

the software could be developed to locate the markers and the associated descriptions. 

Furthermore, used in this way, the event marker can then be applied to many 

additional situations; for example in drug efficacy studies, the event marker can 

indicate the administering of medication.

The resulting device was a working marker which was easily used by patients and 

successfully inserted a characteristic marker onto the second channel of the recording.
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3.2.2 Hull Automatic Cough Counter (HACC)

The final device, called the Hull Automatic Cough Counter (HACC) is shown in 

Figures 3.3 and 3.4. All the desired features for the device including adequate data 

storage, power supply and the patient activity marker have been included. All the 

components of the device are enclosed in a secure case with a shoulder strap for the 

patient's comfort and convenience and optimal positioning of the microphone. The 

device is fully operable by patients and has been demonstrated to work as intended.

Low sensitivity
capacitor microphone

Shoulder strap

Secure, convenient
and portable case

Figure 3.3 The exterior of the device
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Figure 3.4 The interior of the recording device

3.3 Development of Software

The aim of this section was to develop the software for the automatic counting of 

cough in audio recordings. As a method for computerised processing of audio 

recordings already existed, it was initially decided to attempt to further develop and 

modify this software for application to the new, extended recordings. In order to 

develop the software, a dataset of cough studies collected with the new hardware was 

required.

3.3.1 Data collection

Data was collected using the recording device as described in Section 3.2. The 

resultant data from the 24 hour cough studies are very different to those used to 

develop the original method as they contain a much lower concentration of coughs 

and a much larger amount of extraneous background sounds.

104



Chapter 3 -  Results & Discussion

3.3.2 Cough studies

In order to develop and test the processing software, a series of recordings were 

collected. The first stage was the collection of short, ambulatory audio recordings of 

chronic cough patients. The purpose of these initial recordings was to test the 

software following the modifications to both the software and the hardware, whilst 

still working with manageable file sizes. Eight recordings of varying durations 

between approximately 30 minutes and 3 hours were made.

Following this, the study duration was increased to 24 hours to test the capabilities of 

the hardware and to fully assess the modified software under test conditions. To 

maximise the utility of the study, it was decided to test the effectiveness of the system 

for multiple uses; both for its use in GORD diagnosis and in pharmaceutical efficacy 

studies. For this purpose, the study set included two chronic cough patients with 

GORD, one cystic fibrosis patient both on and off cough medication and a further six 

cystic fibrosis patients.

The result of the experiment was a successful collection of audio recordings. The 

developed hardware achieved a 100% success rate of recording for 24 hours. Patient 

feedback regarding the comfort and convenience of the device was positive.

3.3.2.1 Data processing

The audio recordings were then transferred to the PC and prepared for further 

processing. The files existed on the MD media as two compressed ATRAC3plus 

files; one of length 999:59 minutes, as this is the maximum value the counter can 

reach, and the other of approximately 440:00 minutes, which in total made up the 24 

hours of data. The data was transferred via USB to the PC using the Sonicstage 

software. The data was required to be in WAV format in order to be compatible with 

Matlab; however, this expands a 24 hour stereo audio file from 0.65 Gb to 14.2 Gb. 

To avoid memory constraints associated with processing such large files, the ATRAC 

files are initially divided into three-hour portions, which when decompressed will 

approximate to 1.8 Gb. The files are all named according to the date of the original
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file and are suffixed to show to which three hour portion of the eight created they 

belong.

Matlab reads only the first channel of a stereo audio file; the data can therefore 

remain in stereo format for the cough recognition work without any interference from 

the second channel. However, in order to carry out the event marker processing on the 

second channel, the first channel needs to be removed. This was achieved by creating 

a mono file based on the second channel alone for each three-hour portion of WAV 

data.

The result was 16 WAV files for each 24 hour recording; eight stereo files for cough 

recognition processing and eight mono files for the event marker processing. At this 

stage, all files were in the appropriate fonnat to be read by Matlab.

3.3.2.2 Test dataset

In order to test the system on a variety of coughs sounds a test dataset was created, 

consisting of a short audio file containing a variety of sound events and coughs from 

different subjects. In this way, the analysis methods could be tested on a variety of 

coughs and other sounds rather than restricting each analysis to a single subject. This 

was considered necessary to avoid limiting each analysis to one subject and tailoring 

any modifications to the one set of results only to then have to address a different set 

of problems and modifications for the next subject. The resulting file was of a 

manageable size for repeated analysis and allows a wide range of cough types to be 

studied at once.

3.3.2.3 Test sounds

In order for individual sounds and coughs to be studied, a variety of cough and non­

cough sounds were isolated as separate events for both spectral analysis and for use in 

assessing analysis methods. For the purpose of this work, a cough will be defined as 

an explosive sound separated by a fall of sound level to below' threshold, regardless of 

the presence or absence of a preceding inspiratory' effort. The result was a set of 58 

coughs and 33 other sounds including speech, mechanical sounds, breathing and 

laughter.
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3.3.3 Sound identification

3.3.3.1 Cough sound acoustics

The first step towards finding a method for the automatic identification of cough was 

to visually inspect the features of various graphically represented sounds in order to 

investigate whether or not there are any clear methods for distinguishing cough from 

all other sounds. While it is obviously necessary to find statistically relevant 

differences between coughs and other sounds, it is perhaps more important to find 

statistical similarities between coughs. This is because it would be impossible to 

create one group to fit the vast amount of non-cough sounds which would potentially 

be encountered during a 24 hour ambulatory recording. Thus, it is not going to be 

feasible to simply perform a statistical measure, such as cluster analysis, to determine 

which group a sound event is most likely to belong. A better approach to the problem 

would be to find some characteristic possessed only by coughs which could then be 

checked for in order to classify the sound.

Two possibilities exist for cough sound analysis: one is the registration of acoustic 

pressure accompanying cough in the form of a time-amplitude wave, also known as a 

tussiphonogram; the second is the analysis of the frequency content of the cough 

sound.

Several methods of analysis have been studied by other groups including the use of 

spectrograms, pressure plots, cepstral coefficients, zero-crossing rates and neural 

networks [See Section 1.3.1]. For this study, analysis was carried out in both the time 

and frequency domains.

3.3.3.1.1 Time-domain analysis

Observations were initially made on coughs alone to attempt to find characteristics 

that could then determined as absent from other non-cough sounds.

As discussed in Section 1.3.1, literature has reported that cough can be characterised 

as a composite of two or three phases: an expulsive phase occurring at the moment of 

glottal opening, responsible for the high intensity sound; an intermediate or steady 

state phase which is lower in amplitude and associated with a steady flow of air
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through the open glottis; and occasionally a third voiced phase which is caused by the 

partial closing of the vocal chords vibrating toward the end of the cough. While this 

qualitatively describes an almost uniform pattern to the cough sound, quantitative 

uniformity is practically impossible. In addition to this problem, literature also reports 

that cough changes its sound in disease , thus making the potential variation between 

cough sounds even greater. An example of this is shown in Figure 1.2. which is a 

summary7 of the variety in cough sound patterns, intensities and durations for different 

diseases.

Observation of the coughs in the time-domain immediately shows that there is no 

uniformity to either the overall duration of coughs or the duration of each cough 

phase; neither within or between patients. Even the presence of a third phase is a 

variable occurrence within an individual, as shown in Figures 3.5 and 3.6, the former 

is a two phase cough while the latter has three phases; both are coughs from the same 

patient.

Tim e-am plitude plot of a typ ica l cough sound

Figure 3.5 Time-amplitude plot of a cough sound illustrating the absence of the
third cough phase
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Tim e-am plitude plot o f a typ ica l cough sound

0.3 0.4
Tim e (s)

Figure 3.6 Time-amplitude plot of a cough sound illustrating the presence of a
third cough phase

There is also no correlation between the relative amplitudes of each cough phase 

within individuals. When it is present, the third phase can frequently be larger than 

the first phase, as shown in Figure 3.7. This also illustrates the variation of cough 

type within an individual subject, as Figure 3.7 is a time-amplitude plot of a cough 

from the same subject as the one illustrated in Figures 3.5 and 3.6. Furthermore, due 

to some patients “voicing” their coughs, usually due to habit, the amplitude of the 

intermediate phase can be as large as the first phase, as shown in Figure 3.8.
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Tim e-am plitude plot of a typ ica l cough sound

Figure 3.7 Time-amplitude plot of a cough sound, illustrating the larger amplitude 
of the third phase in relation to the first phase

Tim e-am plitude plot of a typ ica l cough sound

cr

Figure 3.8 Time amplitude plot of a cough sound, illustrating the large amplitude 
of the second phase in relation to the first and third phases
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Some patients have multiple expirations against the closed glottis for only a single 

inspiration, meaning that their third phase is either replaced or followed by what is 

essentially, a first phase. Again, this can vary in duration, amplitude and positioning 

within the cough as a whole [See Figures 3.9 and 3.10],

Tim e-am plitude plot o f a typ ica l cough sound

Figure 3.9 Time-amplitude plot of a three-phase cough followed by a two-phase 
cough; there is no intermediary inspiration preceding the second expiration against

the closed glottis
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Tim e-am plitude plot of a typ ica l cough sound

Figure 3.10 Time-amplitude plot of a three-phase cough followed by a second 
three-phase cough; there is no intermediary inspiration preceding the second 

expiration against the dosed glottis

The start of the first phase can vary between an immediate high amplitude onset, as 

illustrated in the figures above, and an obvious rise of signal from baseline to 

relatively low amplitude. This is illustrated in Figures 3.11 and 3.12. This instance 

usually occurs when the expiration against the closed glottis is less powerful, such as 

when the subject does not have a large enough, or even any, inspiration prior to the 

expiration.
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T im e-am plitude plot of a typ ica l cough sound

cr
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Figure 3.11 Time-amplitude plot of a two-phase cough following a minimal 
inspiration, the onset of the amplitude is not as rapid as in other coughs and the 

amplitude does not reach as high a level

Tim e-am plitude plot o f a typ ica l cough sound
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Figure 3.12 Time-amplitude plot of a three-phase cough following a minimal 
inspiration, the onset of the amplitude is not as rapid as in other coughs and the 

amplitude does not reach as high a level
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Cough events may also occur in peals of cough sounds following a single inspiration. 

Figure 3.13 shows a peal of cough sounds, consisting of two three-phase coughs 

followed by four two-phase coughs. Apparent from the plot is the decrease in 

amplitude over time as the air remaining in the lungs of the subject diminishes and 

results in a weaker expiration against the closed glottis.

Tim e-am plitude plot of a typ ica l cough sound

Figure 3.13 Time-amplitude plot of a peal of coughs sounds containing two three- 
phase coughs to begin, followed by four two-phase coughs; all following a single

inspiration

While it is impossible to study all non-cough sounds in the same way, simply due to 

the vast number of possibilities, it was considered necessary to study some common 

sounds which could be present on recordings and which could be characteristically 

similar to coughs. These sounds include upper airway sounds other than cough such 

as laughter and speech and also high amplitude sounds such as loud bangs.

Analysis in the time-domain showed that one of the most similar sounds to cough was 

laughter. As it is characteristic for laughter to occur in peals, a three second period of 

laughing can generate 12 high-amplitude spikes, as shown in Figure 3.14, which 

could cause a massive overestimation of cough frequency if these were to be 

mistaken for peals of coughing.
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Tim e-am plitude plot of a typ ica l non-cough sound

Figure 3.14 Time-amplitude plot of a peal of laughter

Speech is very variable and sudden loud speaking can possess similar patterns as 

coughs in the time-amplitude spectrum, although the patterns of general speech are 

usually somewhat different to the typical, high amplitude cough event as discussed 

previously. However, speech can be very similar to the low amplitude coughs shown 

in Figures 3.11 and 3.12 especially when single words are spoken. Figure 3.15 shows 

the time-amplitude plot of a portion of the words ‘’What's your name?” as spoken by 

a female speaker. The patterns possess a number of similarities to the time-amplitude 

plots of cough sounds.
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Tim e-am plitude plot of the speech sam ple "W hat's your nam e?" spoken by a fem ale speaker

Figure 3.15 Time-amplitude plot of the words “What's your name” spoken by a 
female speaker; illustrating the similarities of some speech to some of the cough

events discussed previously

Loud sounds such as a door banging shut typically contain the rapid onset of a high 

amplitude signal that is also associated with a cough event. However, the gradual 

decrease in amplitude is not overly similar to that in a cough sound, the RMS of the 

signal for the bang would appear almost exponential in shape over the course of the 

decay. Due to the introduction of voice into cough sounds, they tend not to be quite 

so uniform. A time-amplitude plot of such a sound is illustrated in Figure 3.16.

116



Chapter 3 -  Results & Discussion

Tim e-am plitude plot of a non-cough sound

Figure 3.16 Time-amplitude plot of the sound of a door hanging; illustrating the 
rapid onset of high amplitude signal that is also associated with cough sounds

The results of this analysis show that features present in the time-domain of cough 

sounds are not adequate to characterise cough sounds as unique with respect to all 

other sound events. Coughs contain a large amount of variation in several aspects 

such as duration, amplitude and general patterns; so much so it would be difficult to 

group so many dissimilar sounds together. In addition to this, the coughs are not 

sufficiently dissimilar to other sounds that have potential to be present in the audio 

recordings. Other groups have used the time-domain in the study of cough sounds. In 

2006, Murata et al. visually inspected the time and spectrographic features between 

voluntary productive and non-productive coughs with a degree of success60. 

However, this is a very different application to the one faced in objective cough 

counting; the process was not automatic and due to a lack of other sounds in the 

recording only the two cough types were being studied. In addition, Widdicombe 

concluded that the tussinophonogram may be of value for studying the mechanisms 

of airway pathology119. Both these studies go to further support the fact that the time 

amplitude plots of coughs vary sufficiently between coughs of different types. This is
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not a desired feature for this application where a characteristic feature needs to be 

determined.

In summary, it seems there are no relevant features in the time-domain that could be 

used for the purpose of cough recognition.

3.3.3.1.2 Frequency-domain analysis

The frequency content of cough and non-cough sounds has been studied using the fast 

Fourier transform (FFT). A Fourier spectrograph can be plotted which deconstructs 

the cough signal into its constituent frequencies and shows their variation over time. 

There are two possible graphical representations of the FFT output; frequency 

spectrograms and power spectra. In this study, both of these forms have been 

investigated.

3.3.3.1.2.1 Frequency spectrograms

A frequency spectrogram is a three dimensional representation which plots time on 

the abscissa, frequency on the ordinate and the intensity represented by colour, 

ranging from red being the highest amplitude to blue being the lowest. Figure 3.17 

shows the spectrogram of the two-phase cough represented in Figure 3.5. From the 

spectrogram, it can be seen that the majority of the high frequencies occur in phase 

one. This is then followed by a gradual reduction in the intensity of the higher 

frequencies over phase two. Where a third phase is present within the cough sound, 

phases one and two take on a similar pattern as before, whilst phase three has an 

increase in the intensities of the lower frequencies, and a slight increase in the higher 

frequencies, as shown in Figure 3.18.
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Time-frequency plot of a typical cough sound
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Figure 3.17 Frequency spectrogram of a cough with two phases to the sound

Time-frequency plot of a typical cough sound
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Figure 3.18 Frequency spectrogram of a cough with three phases to the sound
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Studying the differences of the frequency spectrograms between patients shows a 

very similar pattern. Figure 3.19 shows a three phase cough sound from a different 

patient, which still has the higher intensity high frequencies in the first phase, a 

decline in high-frequency intensities over the second phase and an increase in low 

frequency intensity for phase three [See Figure 3.19],

Time-frequency plot of a typical cough sound
max

min
0 1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

Figure 3.19 Frequency spectrogram of a cough with three phases to the sound

The frequency spectrograms of the low amplitude coughs represented previously as 

time-amplitude plots in Figures 3.11 and 3.12 are shown in Figures 3.20 and 3.21 

respectively. Although with these coughs the higher frequencies don’t achieve 

maximum intensity until later on in the cough event, there is still an obvious change 

in frequencies over the duration of the cough event.
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Time-frequency plot of a typical cough sound
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20 Frequency spectrogram of a two-phase, low amplitude cough following
a minimal inspiration

Time-frequency plot of a typical cough sound
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Figure 3.21 Frequency spectrogram of a three-phase, low amplitude cough 
following a minimal inspiration
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Although there are patterns visible in the spectrograms both for different coughs 

belonging to the same patient and for different patients, there remains no uniformity 

or quantitative patterns in order to perform statistical comparisons. However, 

comparison with other sounds such as speech and laughter and loud bangs does 

highlight some differences.

Inspection of the frequency spectrogram of the peal of laughter discussed previously 

shows that the sound does not reach the high frequencies that the cough events 

achieve [See Figure 3.22].

Time-frequency plot of a typical non-cough sound
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Figure 3.22 Frequency spectrogram of the sample of laughter, previously
represented in Figure 3.14

Looking at the frequency spectrogram of the words ''What’s your name?” spoken by 

a female speaker [Figure 3.23]. although the signal does contain a certain amount of 

the higher frequencies, they remain fairly constant over the portion of speech, unlike 

in the cough events.
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Time-frequency plot of the speech sample "What's your name?" spoken by a female speaker 
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Figure 3.23 Frequency spectrogram of the sample o f speech, “What's your name”, 
spoken by a female, as previously represented in Figure 3.15

The frequency spectrogram of the loud bang of the door shutting is shown in Figure 

3.24, this both contains the high frequencies that the cough events possess and has 

variation over the duration of the event. However, there is a certain degree of 

uniformity to the spectrogram that the cough spectrograms do not possess; the main 

one being the gradual and consistent decrease in the intensity of the higher 

frequencies over the duration of the event.
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Time-frequency plot of a non-cough sound
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Figure 3.24 Frequency spectrogram of the sample of a door banging, previously
represented in Figure 3.16

In summary, it appears from inspection that the frequency spectrograms contain little 

quantitative information which could be used to recognise coughs and distinguish 

them from all other non-cough sounds. However, they do contain more qualitative 

information than the time-amplitude plots studied previously.

Spectral analysis for the study of cough sounds has been the choice for several 

research groups''10" "7 58' 60, 61 for a variety of applications. However, the majority of 

these studies applied the FFT to isolated cough sounds and only had a very specific 

aim such as identifying differences between two sound types. This is very different to 

the application of automatic cough recognition in recordings.

Since it is apparent that spectral features could qualitatively distinguish between 

coughs and non-coughs, it seems the calculation of the cepstral coefficients should be 

continued. In addition, in 1992. Thorpe et al. showed cepstral coefficients to be one 

of the most effective methods for distinguishing between two types of cough"6. Due 

to the lack of quantitative characteristics between the groups, a more general method 

of pattern recognition will be necessary for the classification stage. It would therefore 

seem that neural networks are the most appropriate method of pattern recognition to
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apply in this case. A LVQ neural network was applied successfully by Van Hirtum in 

2002 to achieve 96% accuracy in the discrimination between spontaneous and 

voluntary coughs59.

3.3.3.1.2.2 Power spectra

The power spectrum presents the relative power of all frequencies within the 

measured range of the signal and therefore yields the energy distribution amongst 

frequency components. Power spectra have been used in the past to study cough 

sounds44 :'9. Power spectra of coughs, speech and laughter were produced for 

inspection. Figures 3.25 and 3.26 are the power spectra of two cough events and 

illustrate a degree of similarity within the group. However, Figure 3.27 represents the 

power spectrum of a sample of laughter and Figure 3.28 represents the power 

spectrum of a portion of speech; these power spectra are not dissimilar to those of the 

cough events.

Power spectrum of a typical cough sound
10 -------------I------------- I-------------1-----------

Figure 3.25 Power spectrum of a typical cough sound
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Figure 3.26 Power spectrum of a typical cough sound
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Figure 3.27 Power spectrum of a sample of laughter
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Figure 3.28 Power spectrum of a typical speech sound

Following inspection of the power spectra of both coughs and non-coughs, there 

appears to be insufficient difference between the two groups, and insufficient 

similarity between coughs to consider it as a potentially successful method for cough 

recognition. Applications which have made use of power spectra in the past have 

included discrimination between two cough types by defining power spectral density 

(PSD) characteristics followed by a pattern classification step'4 and also calculation 

of the fundamental frequency as part of a conditions check-list for cough 

identification44. However, neither of these methods indicates that the power spectra 

would be a useful method for cough recognition amongst an infinite amount of other 

sound events.

As a result of this study, it was considered more advantageous to study the frequency 

spectrograms of the sound events in order to perform cough recognition.
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3.3.3.2 Development of data pre-treatnient

3.3.3.2.1 Identification of sound events

The sound events were defined in the same way as described in Section 1.6.2.1.1. As 

the definition of cough by medical experts remains elusive, the definition for this 

work is to be a forced expiratory effort against a closed glottis, irrespective of the 

presence or absence of a prior inspiratory effort, which is associated with a 

characteristic sound. Thus, a peal of coughs following a single inspiration would be 

counted as the number of expulsions made against the closed glottis.

Figure 3.29 shows the labelling of a cough event. This cough consists of one two- 

phase cough immediately followed by a three-phase cough and a final two phase 

cough, all following one inspiratory effort. This would be classed as three coughs, as 

illustrated by the labels. The decrease in relative amplitude following the second 

phase of the first cough identifies the end of this cough, while a subsequent rise 

indicates the beginning of the second.

0.5 -  i

O)

Time

Figure 3.29 Illustration of a cough event showing the labelled region

Since the audio recordings made by the new hardware have a relatively low baseline 

in comparison with the original recordings, it was considered necessary to re-optimise
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the threshold levels. Due to the variety of recordings made which possess a range of 

SNRs, it was not considered appropriate to fix the threshold levels at set values. 

Instead, these were altered as the different recordings were processed and will be 

detailed where necessary.

333.2.2 Training and validation

The aim of this experiment was to create a function which automatically divides the 

labelled data into training and validation sets for use by the neural network. Data is 

labelled manually using the GUI as described in Section 1.6.2.1.3. As non-cough 

sounds make up the majority of the sound events, it was first decided to separate the 

sounds into coughs and non-coughs in order to be able to generate an equal 

distribution of the event types. Separation was achieved by use of the manually 

assigned labels. Following this, the training and validation groups were established. It 

is important to have a separate dataset for validation in order for the neural network to 

be properly tested on data not previously presented to the network. It was considered 

appropriate to have two thirds of the data for training and the remaining third for 

validation. To achieve this, every third point of each group (coughs and non-coughs) 

was taken for validation while the remainder made up the training data. It was 

considered necessary to then reduce the number of the non-cough events to be 

approximately the same as the number of cough events to ensure even training and to 

avoid the neural network becoming over-trained on non-cough events. This was 

achieved by calculating the number of cough events and removing the appropriate 

number of non-cough events, evenly-distributed through the dataset. Throughout 

these steps, the labelling information is maintained including the index number of 

each event, assigned during the identification of the sound events and also the event 

type (cough or non-cough).

The result wus a working function which successfully separated coughs and non­

coughs into both training and validation datasets. The operation was validated by 

taking the outputted datasets from cough studies A1 and Cl confirming that each 

cough and non-cough had been appropriately labelled.
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3.3.3.2.3 Feature extraction

The next stage was to calculate the spectral coefficients of the sound events in order 

to create the feature vectors. It was decided to continue with the format used in the 

existing software as a starting point for this work. Neither MFCC method nor LPC 

have previously been documented as being applied to the analysis of cough sounds, 

with the exception of a study by Thorpe et al. in which cepstral coeffcients were 

compared to several other methods in their ability to distinguish asthmatic and non­

asthmatic coughs56. It was confirmed that these methods could be used effectively in 

such an application. Cepstral coefficients have also been widely and successfully 

used for the purpose of speech recognition.

3.3.3.2.3.1 Mel-frequency ccpstral coefficients (MFCC)

The calculation of the MFCCs has been previously described in Section 1.3.3.2.1. 

The MFCCs represent the amount of each frequency present at each windowed 

portion for the duration of the sound event. The function calculates the frequency 

components of each window and presents the result as a row of coefficients; the 

results of each window are then stacked. For this reason, the resulting data are two- 

dimensional with a uniform length for the dimension representing the individual 

frequencies and a variable length dimension depending on the duration of the sound 

event under analysis. As the length of a window is 256 samples (where a sample is 1 / 

44100 sec), with an overlap of 128 samples, one second of audio data can generate 

approximately 344 windows. Considering that cough events are highly variable in 

duration, no uniform duration size can be assigned for analysis purposes.

In the existing software, data were presented to the neural network in this two-
• * 4 8dimensional format, with each successive window being presented in sequence . 

Flowever. the neural network used was not one that recognised two-dimensional data; 

it was therefore taking each row of coefficients as a separate dataset. This is 

effectively losing the important temporal information associated with the frequency 

change over the duration of a cough event.

As the coefficients are inherently of variable size, a method was required to reduce 

the matrices of the various sound events down to a uniform duration.
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One option was changing the window size of the MFCC calculation to a sufficiently 

large value such that cough events would be captured by just one window. Any 

events smaller than this set window size were then padded out with zeros to maintain 

uniformity. However, following investigation into this, it transpired that as the 

method only calculated one value for each frequency, it was actually giving an 

average value of the frequency components over the cough duration. This resulted in 

non-cough sounds with the same frequency content as a cough, although different 

temporal patterns, possessing similar coefficients to those of a cough; thus leading to 

incorrect classifications. This method was therefore as lacking in temporal 

information as the first approach.

The next option was the generation of the MFCCs in the original way and the 

reduction to a uniform matrix by use of PCA [See Section 3.3.3.2.6].

A further option was to investigate the use of correlation coefficients in order to study 

the change in frequency content over the course of the sound event and also to 

generate a uniform matrix [See Section 3.3.3.2.7].

3.3 3 .23.2 Linear predictive coding (LPC)

It was considered necessary to investigate the value of using LPC coefficients in 

addition to the MFCCs. A contribution chart for the 56 spectral coefficients used in 

the existing software along with a plot of the values of each of the spectral 

coefficients is shown in Figure 3.30.
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Figure 3.30 A contribution chart representing the contribution of each spectra/ 
coefficient (top) and a plot of the values of each spectral coefficient (bottom) for an 

example sound event; the first 42 coefficients are calculated by MFCC while the
last 14 are calculated by LPC

The final 14 coefficients which are calculated by LPC are apparently not contributing 

any useful information to the description of the sound event. The problem with a data 

matrix in which each sample has a common factor, for example the final 14 

coefficients possessing very little variation, is that it introduces the possibility that the 

neural network will use this similarity as a common feature to classify both coughs 

and non-coughs as belonging to the same group.

In addition, Figure 3.31(a) shows the LPC coefficients calculated for a cough event, 

while Figure 3.31(b) shows those calculated for a non-cough event; there is virtually 

no difference between the two groups. The final 14 LPC coefficients were therefore 

shown to be superfluous and not included in any further calculations.

132



Chapter 3 -  Results & Discussion

a)

P lot o f the LPC cofficients for a cough event
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b)

Plot o f the LPC coffic ients  for a non-cough event

S pectra l coeffic ients

Figure 3.31 LPC spectral coefficients for a cough event (top) and LPC spectral 
coefficients for a non-cough event (bottom)

As a further test of similarity between the cough and non-cough coefficients, PCA 

was carried out on the data and the scores plots produced [See Figure 3.32]. The 

separation between the two groups is evidently not adequate.
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PCA scores for the LPC coefficients of a cough and a non-cough event

Figure 3.32 Scores plot of PCI against PC2 for the LPC coefficients o f a cough
and a non-cough event

3.3.3.2.4 Cough in audio recordings

Following the identification of sound events in an audio recording, of which a 

proportion should be coughs, it is important to consider the effect of this proportion 

on the efficiency of any applied recognition system, and thus to highlight the 

importance of an effective data pre-treatment stage. The cough studies C1-C8, 

recorded using the line-in method in the clinical environment contained as much as 

40% coughs due to a quieter environment and lower amount of background sounds 

detected; for example, the cough study Cl contained 44 coughs out of 98 sound 

events detected. The original recordings (A1-A3) were calculated to have 

approximately 6% coughs due to a greater degree of background noise; an example is 

the A1 study which contained 53 coughs out of 849 sound events. This is illustrated 

in Figure 3.33 (a) and (b) which are the time amplitude plots of 20-minute sections of 

Cl and A1 respectively. Both contain approximately 40 coughs, although there is a 

smaller amount of background noise in (a) and the coughs make up the majority of 

the higher amplitude peaks, whereas in (b) there are many more additional sounds. 

The 24 hour recording C9 contained as low as 1% coughs; this is both due to the fact
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that the patient did not cough frequently (23 coughs in one hour) and also the fact that 

a high degree of background noise was recorded. This is represented in Figure 3.33(c) 

and the magnified portion (d) which shows the coughs to be of much smaller 

amplitude, of far lower frequency of occurrence and comprising a much smaller 

percentage of the audio recording.

Approx. 40 coughs

Approx. 40 coughs

Approx. 4 coughs

d One cough

Figure 3.33 Time-amplitude plots of 20-minute portions of three different audio 
recordings: Cl (a),Al (b) and C9 (c) and a magnified portion of C9 (d) illustrating

the large differences between studies

Regardless of the reasons for the varying percentages of cough present in different 

recordings, the effect of this figure on the cough detection accuracy should not be 

overlooked. Using a contingency table, the actual accuracy of cough recognition, 

taking into account system efficiency and percentage composition, was calculated 

[Table 3-1].
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Table 3-1 Summary of the percentage of coughs present in an audio recording and 
the theoretical predicted accuracy of detecting a cough correctly at various system 
efficiencies

System
EFFICIENCY

C o u g h

COMPOSITION (% )
C o u g h  a c c u r a c y  

(%)
80 1 3.9

80 6 20.3

80 40 72.7

99 1 50

99 6 86.3

99 40 98.5

99.8 1 83.4

From these results it can be seen that even with a system efficiency of 99%, a 

recording that contains 1% coughs will only achieve 50% cough detection accuracy at 

best. In fact, the recognition must be 99.8% efficient even to get a cough accuracy of 

over 80%. This clearly illustrates the importance of removing as many non-cough 

sound events prior to the pattern recognition stage as possible in order to increase the 

percentage of coughs and thus achieve improved cough accuracy results.

3.3.3.2.5 Data pre-treatment

Frequently used data pre-treatment methods include mean-centring, auto-scaling or 

smoothing techniques such as Savitsky-Golay smoothing. However, it was considered 

that, for this application, techniques which smooth or remove variation in the data 

would be inappropriate. The ultimate aim is to carry out an effective separation step 

on the two classes of data; coughs and non-coughs. To remove variation or smooth 

the signal would remove characteristics which could potentially serve to highlight the 

differences between the two groups. To confirm this theory, a comparison was made 

between the PCA scores of cepstral coefficients pre-treated by mean-centring, auto­

scaling and Savitsky-Golay smoothing and PCA scores of the untreated cepstral 

coeffcients. As expected, there was a lesser degree of separation of the cough and
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non-cough datasets achieved following data pre-treatment compared to the untreated 

cepstral coefficients.

33.3.2.6 Principal component analysis

The feature extraction step creates a large amount of data, not all of which will be 

valuable to the pattern recognition step. The purpose of applying PCA is to identity 

and remove the coefficients possessing the least useful information to the dataset. In 

this way, PCA both reduces the data to a more manageable size whilst also removing 

the data which will add the least value to the dataset. The desired result following this 

data-pre-treatment stage is two groups of data which are maximally correlated within 

the group and maximally different between groups, thus rendering the pattern 

recognition stage much simpler. PCA has been used in many applications however, 

due to the limited methods used for the analysis of cough sounds it has not been 

extensively studied for this purpose59.

Following MFCC calculation, the data for each sound event consists of 42 columns 

containing the coefficients and a variable number of rows dependent on the duration 

of the sound event (one row for every window of 256 samples).

3.3.3.2.6.1 Reduction of the loadings

An eigen value plot was produced for the spectral coefficients of both coughs and 

non-coughs following PCA in order to establish the amount of variance possessed by 

each coefficient [See Figure 3.34].
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Plot o f the eigenvalues o f M FCCs for a se lection of coughs and non-coughs

Figure 3.34 Eigen values of the MFCCs for a selection of coughs anti non-couglis; 
this shows that the first 15 PCs possess the most variance

Removing the loadings possessing the least variance avoids similar data occurring in 

both datsets, which would then increase the possibility that the neural network will 

find a characteristic common to both groups. From the eigen value information, it was 

decided to use the first 15 PCs. The scores matrix of the first 15 PCs was plotted for 

the coughs and non-coughs [See Figure 3.35]. This plot shows a reasonable degree of 

separation between the two groups, with a small amount of overlap. However, there is 

not a sufficient amount of distance between the two groups to make them appear 

separate. This suggests that simply applying the loadings reduction to the MFCCs is 

not enough to create two distinguishable groups.
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P CA  scores for the  M FCCs o f a se lection o f coughs and non-coughs

PCA scores 
for the 
cough 
events

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01
PC1

Figure 3.35 PCA scores of the MFCCs calculated from a selection of coughs and
non-coughs

3.33.2.6.2 Data reduction to multiple rows

At this stage, the dataset was still in a non-uniform state due to the multiple rows of 

coefficients for each sound event, the number of which is time-dependent. To instil 

uniformity into the dataset for presentation to the neural network, the loadings were 

reduced to create a uniform dataset size according to the number of frames in the 

smallest sound event. However, the shortest sound event gave rise to only one row of 

coefficients, which resulted in very little information for the longer duration events, 

thus leading to an unsuccessful result.

3.3.3.2.63 Data reduction to uniform size

To capture the maximum variance in the dataset whilst also introducing uniformity, 

the MFCC data was squared by its transpose such that the resultant data matrix was 

15 by 15. SVD was then performed on the data followed by calculation of the square 

root. The loadings were then multiplied by the corresponding eigen values for 

scaling. However, once again this results in a matrix that has multiple rows for 

presentation to the neural network.
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3.3.3.2.6.4 Data reduction to single row

To capture maximum variance and information in one row of data, such that all 

relevant data for each sound event can be passed to the neural network together, the 

PCs with the maximum variance were ordered sequentially onto one row. SVD was 

performed on each sound event and the first 15 loadings of the first PC were 

multiplied by their corresponding eigen value to scale according to variance. This was 

repeated with each subsequent PC, which was added to the same line. The numbers of 

PCs tested ranged from two to six. A plot of the resultant scores for two PCs is given 

in Figure 3.36; the scores for all the other combinations of PCs were identical to this 

plot. There is no separation between the coughs and non-coughs suggesting this 

method is not appropriate for application to the data.

P C A  scores for the M FCCs o f a se lection  of coughs and non-coughs

rsio
CL

Figure 3.36 PCA scores of two PCs represented on one row of data

3.3.3.2.7 Correlation coefficients

The aim of this experiment was to investigate if there was any correlation within the 

frequency spectrum over the duration of a cough event. One of the problems with the 

calculation of MFCCs is that the outputs are divided into separate rows for each 

frame of the sound event; thus the temporal relationship of the frequency content
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within a sound event is lost. Correlation coefficients provide a solution to this 

problem by identifying any correlation within a matrix.

Calculating the correlation between two variables gives a summary of the strength of 

the linear association between the variables. The correlation coefficient is a number 

between -1 and +1. A positive correlation indicates that the variables move in the 

same direction, while a negative correlation means that they move in the opposite 

direction. The closer the correlation coefficient is to either -1 or +1 indicates the 

strength of the correlation. Correlation coefficients were calculated to identify any 

correlation within the frequency domain between frequencies as they progressed 

through the sound event.

The correlation coefficients of the first 15 spectral coefficients were calculated and 

compiled into a one row matrix. A reduced number of coefficients were used so as to 

reduce the size of the final dataset; the first 15 coefficients appear to possess the most 

variance of all 42. The training data was then constructed in the usual way, with each 

row this time representing one sound event. PCA was carried out and the scores 

shown in Figure 3.37.

S cores plot of correlation coefficients
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Figure 3.37 PCA scores plot of PCI against PC2 for the correlation coefficients
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Again, the cough event data possesses much more variation than the non-cough data, 

making the problem harder to solve. However, there appears to be more distinction 

between the two groups.

Coloured surface plots representing the relationship between the correlation 

coefficients were produced.
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Figure 3.38 Typical correlation coefficients for the first 15 MFCCs for a cough 
(top) and non-cough (bottom); neither of the datasets show a degree of correlation

None of the plots, either for coughs or non-coughs showed any significant degree of 

correlation; where correlation is indicated by a cluster of positive correlation (i.e. 

values close to +1) on the diagonal, whilst the remaining coefficients have relatively
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low values. In addition, the PCA scores plots do not show any significant separation 

of the two datasets to provide adequate training data to the neural network.

3.3.3.2.H Voice separation

As speech sounds are one of the most common of the interfering sounds present in the 

cough studies, it makes sense to apply a technique for cough recognition that also has 

success with differentiating speech sounds. In this way, if the technique is adept at 

handling speech differences, it has more chance of distinguishing between speech 

sounds and cough sounds.

The initial stage involved taking the FFT of a sound event such that the output was an 

intensity value for each frequency at each time interval. The intensity of each 

frequency was then averaged for the entire duration of the sound event giving a vector 

of mean values for frequency intensity. Applying this to a male and a female sound 

gives the output as shown in Figure 3.39. As expected, the male voice contains much 

higher intensities of the lower frequencies while the female voice contains lower 

amounts of these frequencies and higher intensities of the higher frequencies. 

Applying PCA to 14 male and 14 female vocal sounds gave the PCA scores 

illustrated in Figure 3.40. Thus, from frequency information alone, male and female 

voices show potential for separation.
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Average frequency in tens ities  for tw o  sound events from m ale and fem ale speakers

(M ale) Frequency (Hz) (Fem ale)

Figure 3.39 Frequency intensities averaged over a voiced sound event for a male 
and female speaker; the male voice contains high intensities of the lower 

frequencies whilst the female voice is spread over a wider range and contains more
of the higher frequencies

CNO
Q.

P C A  of the  average spectrogram  output from 14 fem ale sounds and 14 male sounds

PC1

Figure 3.40 PCA scores of the average frequency intensities for 14 male sounds
and 14 female sounds
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While it was demonstrated that PCA could separate a mixture of male and female 

voices, it was not able to successfully separate speakers of the same sex. PCA scores 

of same-sex voices pre-treated in the same way were superimposed due to the 

similarity of the data. It was therefore considered necessary to try a more 

sophisticated technique, capable of analysing more features of the data.

3.3.3.2.) Higher order spectral analysis (HOSA)

At this stage, it seems a further analysis technique is required to identify key spectral 

differences between different signals. Higher-order spectra are defined in terms of the 

higher-order moments or cumulants of a signal and contain additional information 

regarding the signal. They can therefore be used to identify characteristic features in 

signals which can be used for distinction between sound types.

3.3.3.2.9.1 Voice

HOSA was initially used to separate the same vowel sounds as spoken by a male and 

female speaker. Using the dominant frequencies alone, this appeared achievable as 

there was clear separation between the two. However, attempting to apply the same 

technique to same sex voices was not as successful. There was virtually no distinction 

between the dominant frequencies of same-sex speakers. In addition, there was no 

patterns or distinction between the data values for Gaussianity, linearity, skewness 

and kurtosis etc. PCA scores of the values for each of these calculated components 

for each of two female speakers were plotted and showed no separation or clustering.

The fact that male and female voices can actually be separated by a relatively simple 

technique of applying PCA to the average frequency intensities suggests that there is 

sufficient difference between the cepstral coefficients of the two sound types. It is 

therefore assumed from this that there will be an equally sufficient difference between 

the coughs of males and females. This difference further increases the amount ot 

variation which will be necessary within the cough group and thus adds to the 

problem of finding a technique which will be able to classify such a highly varied 

dataset.
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3.3.3.2.9.2 Cough

HOSA was used in combination with a LVQ neural network to attempt to distinguish 

coughs from non-coughs. A selection of HOSA calculations were made and a neural 

network was designed, having a node for each HOSA result such that the first four 

nodes were always used for the linearity test data, the next four were always used for 

the Gaussianity test data, the next three for fundamental frequencies and the final 

three for the remaining data [As described in Section 2.3.4.2.7.3j. To start with, the 

same data was used for training as for validation, with the intention of creating 

separate datasets if the method appeared to have a degree of success. This re­

presentation of the same data to the neural network should have given it an advantage 

and should therefore achieve good separation, if it was going to be possible. 

Following the training, the network identified all eight coughs correctly, however, it 

also labelled six of the non-coughs as coughs, resulting in a validation accuracy of 

55%. Considering the fact that the data had already been presented to the network, 

thus necessitating no generalisation, this suggested that the HOSA technique was not 

going to be a successful one for this application.

A further point is that HOSA is not an easy technique to optimise since it requires 

user input following the observation of power spectra.

3.3.4 Optimum data pre-treatment conditions

Several techniques had been attempted at this point to achieve a suitable degree of 

separation between the two groups, however, so far total separation had not been 

successful. From the results of the previous experiments it was decided to calculate 

the MFCCs of the sound events as carried out in the existing method. These were 

then reduced by SVD, as described in Section 2.3.4.2.5.1 to give a data matrix for 

application to the neural network. Although the data has not been shown to be fully 

separable by PCA, ANNs have an ability to recognise patterns in data that are not 

always obvious when viewed by other methods. It was therefore decided to assess the 

performance of the ANN on the existing data, which is at the highest degree of 

separation that can be attained.
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3.3.5 Sound Separation

Following the pre-treatment of the audio data, the individual sounds require 

classification as either coughs or non-coughs. For this process, a pattern recognition 

step is required in order to identify characteristic features in the data which will 

enable separation. For this application, ANNs were chosen for several reasons. 

Firstly, it would be impossible to create reference patterns for all the sound events 

that could be encountered in a 24 hour study in order to carry out an exact pattern 

comparison stage. For this reason, the ANNs ability to generalise is highly beneficial 

as it allows it to recognise data that is similar to the reference data with which it has 

been trained, without it having to be exact. Secondly, due to the non-uniformity of 

cough events and given the large amount of variation within the two datasets, 

statistical analysis would be highly difficult; an ANN is able to identify patterns and 

characteristics in the data which would be otherwise unobservable by simple 

inspection. Thirdly, the process of applying the ANN can be automated and should be 

relatively efficient. Finally, the use of a PNN in the existing work was shown to be 

highly successful indicating a high chance of success with the new data.

ANNs have been successfully applied to pig cough recognition by Van Hirtum et al., 

several times since 2001. The group have employed self-organising maps (SOMs) 

and PNNs to the calculated PSD data with success rates of over 90% 'll’114.

3.3.5.1 Development of neural network

A PNN, as used in the existing data, is limited to one round of training and must 

therefore be presented with an entire database at once. This type of training is not 

concurrent with the ability to update the neural network at points in the future if an 

unusual cough type is encountered and the neural network has difficulty recognising 

it. It was therefore decided to change the ANN type; two types were evaluated, feed­

forward (FF) and learning vector quantisation (LVQ).

3.3.5.1.1 Feed-forward (FF) neural network

The FF neural network was created by the Matlab function newff to design 

specifications according to desired numbers of hidden layers, number of neurons in
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each hidden layer, transfer functions of each layer, training functions, learning 

functions and performance functions. The purpose of the neural network is ultimately 

to achieve the best convergence between the input and the target output. Thus, it is 

these parameters that require optimising in order to achieve the best performance. To 

determine the optimum number of neurons in the hidden layer, a balance needs to be 

found between the number of input nodes, which would result in too many 

connections and would lead to a lengthy training process, and the number of output 

nodes which would render the hidden layer ineffective. The transfer functions, as 

discussed in Section 1.4.3.1.2, each have merits according to the required application; 

for instance, the use of an ANN to solve a linear problem would only require a linear 

transfer function. Training functions and learning functions each have merits and 

drawbacks and are usually a compromise between time and performance. 

Performance functions assess the ability of the ANN to achieve the desired 

classification or recognition; different functions base performance on different 

factors.

Several parameters were investigated at various levels in order to assess the best 

architecture for the network. The network was trained with real data and then 

validated on additional unseen real data from the cough studies. However, as a result 

of these experiments, there was no clear optimum set of conditions that appeared to 

give the best results; in fact at this stage, the validation errors were relatively high and 

it was decided to try a different type of network.

3.3.5.1.2 Learning vector quantisation (L VQ) neural network

The LVQ neural network was created by the Matlab function newlvq. The number of 

neurons in the hidden layer was specified and the network was tested as described in 

the previous experiment. The cough study used for validation was C5. Comparison of 

the results from the neural network with those obtained by listening to the WAV file 

were positive; sensitivity was calculated at 84%, specificity at 95% and accuracy at 

88%. These were considered to be highly acceptable for the application and a positive 

result. However, when attempting to obtain the same results from other cough studies, 

it was not shown to be repeatable. Cough study C5, as previously discussed, 

contained approximately 40% coughs and very little ambient noise due to the patient
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being limited to the hospital grounds and spending a lot of time within the clinic. This 

result, therefore, does not reflect on the ability of the neural network to perform 

successful cough recognition on the 24 hour cough studies. Further testing of this is 

discussed in Section 2.3.6.4.

3.3.5.1.2.1 Testing the neural networks with simulated data

The neural network required testing to ensure that the type and architecture were 

suitable to solve the problem at hand, which was to distinguish between two groups 

of spectral coefficients. To achieve this, a simulated data set was generated. The 

simulated dataset bore no particular resemblance to the real data as it was simply 

intended to represent a dataset containing two clear sub-groups. The simulated data 

consisted of 400 spectra in total. 100 contained the first spectral peak while another 

100 contained the second spectral peak; each with peak maxima at a suitable 

resolution and containing a reasonable amount of noise. A further 200 spectra were 

composed equally of each of the spectral peaks along with the other spectral peak at a 

much smaller magnitude to represent contamination. The parameters of the data were 

maintained as close to those of the original data set as possible. One quarter of the 

data was removed by sampling at regular intervals throughout the dataset to form the 

validation dataset. The remaining data was to be used for the neural network training.

PCA was then applied to the training data set in the form of SVD. It was decided to 

use the first five PCs to represent the variation in the data. The first five loadings 

values were then multiplied by the training spectra to give the dataset necessary to 

train the network. The validation spectra were treated in exactly the same way by 

being multiplied by the same values.

A LVQ neural network was then created. Five input neurons were created for the five 

PCs and three neurons were specified for the hidden layer; this was to reproduce the 

network architecture used for the spectral coefficients. All of these parameters are as 

defined in the network used for the original dataset.

One epoch of training, which is the presentation of each data point to the network 

once, yielded a validation error of 38%, while four epochs yielded 2% error, therefore 

98% accuracy [See Figure 3.41], Further training lead to an increase in the validation
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error while the training error continued to improve; this is a typical result of the 

network becoming over-trained. At over-training, the network learns to recognise the 

training data so well it loses its ability to generalise for new data; thus, while the 

training error decreases, the validation error increases. It is therefore important to 

monitor the outputs and errors of the neural network during training to prevent this 

occurrence and to avoid attributing a poor validation result to the wrong cause. At 

over-training, the network is no longer suitable for use and must be re-trained from 

the start.

Plot of training errors and validation errors obtained from training the network with the simulated dataset

Epoch

Figure 3.41 Plot showing the decrease in validation error before reaching a 
minimum and increasing again; at the same time the training error gradually 

decreases regardless of the validation error

This experiment showed that the neural network is working and is capable of 

classifying two groups of different spectral information to a high degree of accuracy.

3.3.5.1.2.2 Training the neural networks with real data contaminated with 

artificial noise

To allow the network to generalise from data it receives and tolerate noise in real 

data, it can be useful to train the neural network with both the original data and the
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same data contaminated with artificial noise. A FF neural network with one hidden 

layer and a logarithmic sinusoid transfer function between each layer was created. 

Applying this to the cough study C9, there w'as almost no difference in results 

obtained from the network trained on data with and without noise added sequentially 

and those obtained from the network trained on data alone.

3.3.5.1.2.3 Testing the neural network’s suitability to the real data

A further test for the neural network is its suitability to the data that is to be classified. 

Twenty cough and non-cough spectral features taken from the cough study C9_partl 

were equally separated into training and validation datasets. Data was reduced by 

SVD and the first 15 loadings of the first four PCs were lined up to create a data 

vector of 1 x 60. The spectral features of all coughs were scaled up by various orders 

of magnitude, as summarised in Table 3-2, such that they were all a magnitude larger 

than the non-cough data. The network should be able to distinguish between the two 

groups simply based on the fact that one of the groups is so much larger than the 

other. There are three possible outcomes for this experiment: Firstly, if the network 

cannot distinguish between groups when there is a very large magnitude between 

them, the network is at fault and needs a different architecture. Secondly, if the 

network cannot distinguish between the groups below a relatively large magnitude, 

then there is insufficient difference between the datasets to ever allow separation. 

Thirdly, if the scalar between the datasets is relatively small, the network is most 

probably inadequately trained or requires small alterations to its architecture. The 

performance of a LVQ neural network was then tested at these values and the cough, 

non-cough and overall validation accuracies were calculated.

When using the original data, the cough validation was shown to be 100% accurate 

while the non-cough validation accuracy was at 40%. However, for every magnitude 

greater than 1, the non-cough group was repeatedly classified with 100% accuracy 

while the cough group worsened [See Table 3-2]. This unexpected result could be due 

to the relative variations within each dataset. The fact that scaling up the cough 

dataset improved the recognition accuracy for the non-cough group suggests that by 

making the cough data significantly out of the non-cough data range, the non-cough 

data was much more easily classified. The results also show that in their original
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state, the non-cough data recognition is hindered by the presence of the cough data. 

Ultimately, no matter how separate the cough data is to the non-cough sounds i.e. 

even if cough was the only dataset present, the inherent variation within the group 

makes it very difficult to be correctly grouped by use of a neural network. This 

indicates a significant difficulty for the application of neural networks to this 

problem.

Table 3-2 Results of testing the neural networks ability to classify cough and non­
cough differentiated by scale; magnitude applied to cough dataset

M a g n i t u d e  ( x

O R I G I N A L  D A T A )

C o u g h

V A L I D A T I O N  

A C C U R A C Y ( % )

N o n - c o u g h

V A L I D A T I O N  

A C C U R A C Y ( % )

O v e r a l l

V A L I D A T I O N  

A C C U R A C Y ( % )

1 100 40 70

10 0 100 50

100 40 100 70

1000 40 100 70

10,000 40 100 70
100,000 40 100 70

In order to further test the magnitude effect, the same experiment was carried out, this 

time scaling up the non-cough dataset. The results are summarised in Table 3-3.

Table 3-3 Results of testing the neural networks ability to classify cough and non-

cough differentiated by scale; magnitude applied to non-cough dataset

M a g n i t u d e  ( x

O R I G I N A L  D A T A )
C o u g h

v a l i d a t i o n

A C C U R A C Y ( % )

N o n - c o u g h

V A L I D A T I O N  

A C C U R A C Y ( % )

O v e r a l l

V A L I D A T I O N  

A C C U R A C Y ( % )

1 0 100 50

10 100 0 50

100 100 0 50
1000 100 0 50

10,000 100 40 70

100,000 100 0 50
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Observation of the scaled up data compared to the normal data shows a significant 

difference that the neural network would be expected to recognise. To test whether or 

not the network was performing classification based entirely on patterns and ignoring 

any magnitude information, a simulated dataset was created. All the data followed the 

same basic pattern and the two groups were differentiated only by magnitude. 

Applying the same LVQ neural network to the data gave 100% classification 

accuracy.

Two further questions that required an answer were, firstly whether or not the use of 

the first four PCs was introducing too much similarity between the datasets, thus 

making them harder to differentiate and secondly, whether the fact that the dataset 

contained both positive and negative values was affecting classification. To 

investigate this, only the first 15 loadings of the first PC were used, these were then 

squared and square rooted to find the absolute value of the spectral coefficients. The 

results are summarised in Table 3-4.

Table 3-4 Results o f testing the neural networks ability to classify cough and non- 
cougli differentiated by scale; magnitude applied to non-cough dataset following 
further data pre-treatment

M a g n i t u d e  ( x

O R I G I N A L  D A T A )

C o u g h

V A L I D A T I O N  

A C C U R A C Y ( % )

N o n - c o u g h

V A L I D A T I O N  

A C C U R A C Y ( % )

O v e r a l l

V A L I D A T I O N  

A C C U R A C Y ( % )

1 0 100 50

10 100 40 70

100 100 40 70

1000 100 40 70

10,000 100 40 70

100,000 100 40 70

Although an improvement is seen over the previous attempts, the network is still 

unable to identify the differences between the two datasets, even when one is 100,000 

times greater than the other. These results appear to indicate that the data is variance 

based, having been treated with PCA, and that the neural network is not recognising 

magnitude differences. However, the magnitude information could be as important as
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the variance in performing cough recognition, and could be incorporated by using 

RMS plots as a further input to the network, along with the frequency information.

3.3.5.1.2.4 Number of epochs

The number of epochs used for presentation of the data to the neural network was 

tested. The Matlab function which coordinates the training of ANNs gives a plot of 

the progressive training errors. Once the training errors reach a minimum value and 

either remain at that level or fluctuate slightly above it, it is considered that over­

training has occurred. Observation of these dynamic plots therefore gives an 

indication of when training has reached a maximum number of epochs. Table 3-5 and 

Table 3-8 summarise the validation accuracies achieved from training with rounds of 

25 and 100 epochs respectively. As is apparent from these results, training with 100 

epochs gives slightly better validation accuracies, although there is no massive 

improvement. It has, however, been observed that there was no advantage in taking 

training above 200 epochs since any minimum training error for this data has been 

found well before this level.

3.3.5.1.2.5 Optimising network training using Design of Experiment

The aim of this experiment was to determine the optimum network training 

parameters. Design of experiment (DoE) was used to investigate the optimum 

combination of the number of PCs used to represent the data and the number of 

neurons in the hidden layer of a network.

The response to be determined was the cough validation accuracy achieved by the 

network. The resulting optimum conditions were 4 PCs used to train a network with 6 

neurons in its hidden layer.
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Plot of cough validation accuracy obtained from varying neural network parameters

Highest cough 
_  validation 

accuracy 
achieved

Neurons in the hidden layer

Figure 3.42 Validation accuracies obtained from the various combinations for the 
numbers of hidden neurons and PCs; the highest validation accuracy achieved 

relates to 4 PCs and 6 neurons in the hidden layer

3.3.S.2 Network training

The aim of this section was to create a function to automatically coordinate the 

training and validation of the neural network using the pre-treated data. The files 

‘Ivqnet' and ffnet' [See Appendix A] create the LVQ and the FF neural networks 

respectively and automatically perform the training.

The entire dataset from an audio recording tends to contain a large amount of non­

coughs compared to the relatively small number of coughs. The cough studies have 

shown the recordings to contain as little as 6% coughs, which means that the ANN 

could potentially classify all sound events as non-coughs and still achieve 94% 

accuracy. This has previously been explained in Section 3.3.3.2.4. For this reason, 

three separate validation accuracies are used to assess the performance of the ANN, a 

cough validation accuracy, which assesses the percentage of coughs have been 

correctly classified, a non-cough validation, which works in the same way for non­

coughs, and an overall validation accuracy which includes all sound events.
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A potential problem associated with training ANNs is the possibility of over-training, 

as described previously in Section 3.3.5.1.2.1. The method of automatic training 

therefore requires a degree of decision-making in order to be able to recognise when 

the neural network has been adequately trained. This has been achieved by 

automatically assessing the afore-mentioned validation errors after each set of epochs 

and monitoring the change. If the errors have improved, the weights of the network 

are saved and training continues. If the errors have remained the same, the weights of 

the network are saved and training continues to ensure the error has not simply 

reached a plateau or a local minimum. If the errors worsen, the weights of the current 

ANN are discarded and the network reverts to the weights created on the previous 

training run, training then ceases. In this w-ay, the network is trained to the point 

before over-training occurs.

3.3.5.2.1 Random training

If an ANN is trained on several datasets sequentially, each for a reasonable number of 

epochs, it can adapt to the most recent dataset and essentially “forget” the earlier 

ones. To avoid this all the data must be presented completely randomly. The way in 

which training has been organised so far has presented one cough audio file at a time 

to the neural network. Therefore, to test whether this has had a detrimental effect on 

the network, all cough files were taken together and random training was performed. 

Results obtained were no different to those obtained from the sequential training as 

was previously carried out.

3.3.5.3 Network simulation

To further automate the system, an automatic method for the application of audio data 

to the saved neural network was created. The function netprocess takes the WAV file 

of a previously unprocessed audio recording and firstly identifies the location of the 

valid sound events. Working on 15 minute segments, these are then pre-treated in the 

same way as the training and validation data used to create the ANN; as described in 

Section 3.3.4. The saved ANN is then loaded and the data is passed to the network for 

classification. The ANN will give a two-column output where the first column 

represents the cough class and the second column represents the non-cough class; an
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output of ■ I’ in either column is a positive classification for that group. The results 

are then saved and can be inspected by use of the GUI, as detailed in Section 

1.6.2.1.3. The GUI is set to load the new data as classified by the neural network and 

then graphically represent the decision output for each sound event. Additionally, the 

function summarises the cough count for each 15 minute portion processed for the 

purpose of the graphical representation [See Section 3.3.7.1 ].

3.3.5.4 Analysis of audio recordings

The results of the 24 hour cough studies, as obtained from the application of the 

neural network were analysed. In each case, the first three hour portion of the 

recording was initially used to assess the networks performance for that subject. The 

neural network had been trained on data as summarised in Table 3-5 to give Network 

1. This was the starting point used for the cough study analyses.

Table 3-5 Summary of data used to train the neural network to give Network I

A udio File
Cough
Count

Non-cough
Count Epochs

Validation
A C C U R A C Y

(%)
A1 32 28 25 85

A2 19 14 50 97

A3 11 6 50 88

Cl 20 29 50 92

C4 140 37 50 88

3.3.5.4.1 Co ugh study C9

The number of coughs in the first 60 minutes of the audio recording was manually 

counted in order to provide a point of comparison to measure the performance of the 

network. The results of this count is summarised in Table 3-6. The cough count 

figures are given as the total cough count along with the individual figures of double 

and single coughs; since the method sometimes has difficulty determining the exact 

cough count due to counting double coughs as singles, this was considered useful as a 

point of reference for any underestimating of coughs.
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Table 3-6 Aurally counted coughs in cough study C9

T i m e  s e g m e n t C o u g h  C o u n t C o n s i s t i n g  o f

( m i n s ) D o u b l e  c o u g h s S i n g l e  c o u g h s

0-15 7 0 1

15-30 7 2 A
J

30-45 7 3 1

45-60 2 1 0

Total 23 9 5

The initial results given by the network showed a vast overestimation of cough 

counts, with counts of over 100 coughs. The majority of the wrong classifications 

were laughter and loud vocal sounds. Figure 3.43 is a spectrogram of a sample of 

speech and laughter that, as expected from the results of the cough studies, is a 

common interference in this recording. Study C9 was of a female subject, and as is 

apparent from the spectrogram, the frequencies of the interfering sounds are relatively 

high and may therefore possess similar cepstral coefficients to the cough sounds.

Time-frequency plot of a speech sample followed by laughter extracted from study C9

ff

22050

8820 '

0 2 3 4 5 6
Time (ms)

7

x 104

max

min

Figure 3.43 Frequency spectrogram of a sample of speech and laughter of the
subject in the C9 study
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It was considered that the network was possibly not being trained on enough non­

coughs to represent the higher proportion they made up in the audio recording; it was 

calculated that this audio recording contains only 1% coughs compared to all other 

sound events. The network was re-trained with both twice and four times the number 

of non-coughs shown in Table 3-5, however this made no difference to the networks 

ability to correctly classify the coughs and non-coughs of this recording. It seemed 

the problem was the fact that the bank of non-cough sounds used to train the network 

was not broad enough to incorporate all other sounds. There is potential for the 

network to be periodically updated with “new” sounds, however, it needs to be 

established if this would provide a viable solution to the problem. To test this, five 

cough and five non-cough sounds were isolated and correctly labelled. These were 

then used to re-train the existing network, to give Network 2. The entire audio 

recording was then re-processed through the network. The results gave a cough count 

of 177 for the first hour alone, due to an increased number of vocal sounds being 

incorrectly classified as coughs.

Inspection of the interfering vocal and laughter sounds showed that they are generally 

of lower amplitude relative to the cough sounds, as illustrated in Figure 3.44. Voice 

averages 0.04 to 0.05 in relative amplitude; except for occurrences of loud shouting 

which would be expected to be reasonably infrequent. However, the majority of 

coughs are between 0.08 and 0.1, which means that altering the amplitude threshold 

could exclude a high proportion of interfering sounds.
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T im e-am plitude plot of a speech sam ple followed by laughter extracted from  study C9

T im e-am plitude plot o f a cough sound from  study C9

Figure 3.44 Time-amplitude plots of speech and laughter (top) and a typical cough
(bottom) taken from the study C9

Detecting the coughs is the main objective, therefore the threshold levels need to be 

changed so that they are at the highest possible levels whilst not excluding any 

coughs. The threshold levels implemented are multiples of the baseline value; the 

baseline is calculated using a moving window and is set as the largest value out of the
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minimum RMS for the window, or the default baseline value, set at 0.002 at this 

point. The threshold levels are therefore also theoretically moving values. However, 

analysis of a 30 minute portion of audio recording showed the minimum RMS value 

to be mainly lower than 0.002, resulting in the default value of 0.002 being used for 

the majority of the time. Five coughs were chosen, the threshold values were 

optimised to the point where all five coughs were identified as valid sound events. 

The results are summarised in Table 3-7.

Table 3-7 Summary of the threshold values specified and the resulting number of 
coughs detected

Signal detection
T H R E S H O L D Noise threshold

Number of coughs 
D E T E C T E D  (O U T  OF 5)

18 10 2

16 8 3

16 6 3

i 14 6 3
12 6 3
12 5 4

12 4 4

11 5 5

10 5 5

10 4 5

Using the three sets of threshold values which each allowed the detection of all five 

coughs; the audio recording was re-processed to identify the valid sound events. The 

results were 67, 69 and 50 coughs respectively.

This is still a large over-estimation compared to the actual results and by no means 

provides a solution. Defining the threshold limits so exactly to exclude certain sounds 

will also cause problems due to a natural variation of amplitude between subjects and 

audio recordings.
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It was next decided to experiment with the number of epochs used to train the LVQ 

network [Network 3]. Increasing the number of epochs in one run of training from 25 

to 100 gave the results as summarised in Table 3-8.

Table 3-8 Summary of L VQ network training to yield Network 3

F i l e E p o c h s

C o u g h

V a l i d a t i o n

A c c u r a c y

(%)

N o n - c o u g h

V a l i d a t i o n

A c c u r a c y

(%)
T r a i n i n g

E r r o r

Al 100 91 91 0.09

Cl 100 100 75 0

A2 200 55 100 0.02

C5 100 97 65 0.13

A3 200 95 93 0.09

C4 100 95 59 0.12

Following the new training, the network gave an output of 19 coughs for the first 

hour of the audio recording. However, not all these were correct classifications. Some 

coughs were still missed, some double coughs were only picked up as singles and 

some laughter was still incorrectly classified as coughs. For the whole three-hour 

portion, 24 coughs were correctly counted as coughs, while 23 non-coughs were also 

counted as coughs.

The next step was to aim to reduce the threshold levels. Following experimentation, a 

multiple of 10 was used for the high signal threshold and a multiple of 2 for the noise 

threshold. Five sounds which were repeatedly being misclassified, including the 

subject’s laughter, were isolated along with five coughs. These ten sounds were used 

to re-train the saved network; 60 epochs of training gave a result of 24 correctly 

classified coughs and 14 non-coughs incorrectly identified as coughs [Network 4].

It was decided at this stage to move onto the next cough study to ascertain if these 

problems were a feature of this study alone or of the new 24 hour cough studies in 

general.
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3.3.5.4.2 Couglt study CIO

Study CIO was of a male subject so vocal sounds were expected to cause less 

interference than with the previous study. The first three hour portion of the audio 

recording was processed using the neural network trained on data as summarised in 

Table 3-8 [Network 3]. The threshold levels remained as for the processing of the 

previous cough study C9. However, these levels excluded a number of the lower 

amplitude coughs, therefore these levels were set to multiples of 6 and 1.5 of the 

baseline for the high signal threshold and the noise threshold respectively. This 

produced a count of 84 correctly classified coughs and five non-coughs incorrectly 

classified as coughs; four of these were loud speech sounds. A large number of 

coughs were incorrectly classified as non-coughs, and therefore excluded from the 

cough count. The reason for a large number of coughs being classed as non-coughs 

was perhaps due to the unusual pattern of the signal, a sample of which is illustrated 

in Figure 3.45 and Figure 3.46.

T im e-am plitude plot of a cough sound extracted  from study C1D

Figure 3.45 Time-amplitude plot of a typical cough sound of the subject in the CIO 
study; this shows a double cough with an unusual third phase to the first cough 

sound, and an unusual pattern to the second cough sound
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Tim e-am plitude plot of a cough sound extracted from s tudy C10

Figure 3.46 Time-amplitude plot of a typical cough sound of the subject in the CIO 
study; this shows a multiple cough with unusual patterns to the second and third

cough sounds

It was then decided to further train the saved network by using cough and non-cough 

data from files C2, C3 and C8 for 100 epoch runs [Network 5]. However, this did not 

give any improvement to the cough count results obtained. To ensure the number of 

training epochs was adequate, the training error was monitored for 400 epochs of 

training, at 100 epochs, the training error reached a minimum and then proceeded to 

fluctuate around a set point, suggesting that this was the limit. The final result was 

that, although the network correctly identified a large number of coughs and suffered 

from few false positives, the fact that it missed a large amount of coughs rendered it a 

relatively insensitive method.

As with the previous audio recording, it was decided to attempt to train the network 

on some additional sounds, this time using the coughs as illustrated in Figures 3.45 

and 3.46, that are failing to be correctly identified; this gave Network 6. The result 

was that many more non-coughs were identified as coughs. It was thought this result 

was due to the unusual signal pattern of some of the coughs, which introduced an 

element characteristic of non-coughs into the cough group; having this anomaly in the
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the cough group resulted in many non-cough sounds being generalised as also 

belonging to that group.

The second three-hour portion of this audio recording was then processed using 

Network 5. There was a large amount of interference caused by what was assumed to 

be a budgie [See Figure 3.47] and also sawing [See Figure 3.48] and general D1Y 

sounds. The network was retrained for both of these sounds types [Network 7]. The 

results showed that the budgie sounds had been successfully removed from the cough 

classifications although the D1Y sounds remained; in addition, many more coughs 

had been missed.

It is evident from these two studies that the vast amount of interfering sounds 

encountered in the 24 hour recordings are providing too much of a challenge for the 

neural network. While it remains a possibility that, in future use, the network could be 

updated on occasional unrecognised coughs, the same cannot be done with 

incorrectly classified non-coughs; in practice, knowing that a number of 

classifications within a 24 hour recording are incorrect and require the network to be 

updated is not feasible.

The current approaches to the cough recognition stage are not ideal and need further 

consideration and improvement.
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T im e-am plitude plot o f a non-cough sound extracted from  study C10

Time-frequency plot of a non-cough sound extracted from study C10

Figure 3.47 Time-amplitude plot (top) and the corresponding spectrogram (bottom)
of the sound of a budgie
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T im e-am plitude plot of a non-cough sound extracted from  study C10

Time-frequency plot of a non-cough sound extracted from study C10
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Figure 3.48 Time-amplitude plot (top) and the corresponding spectrogram (bottom)
of the sound of sawing

167



Chapter 3 -  Results & Discussion

3.3.5.4.3 Cough study C ll

Following the large amount of background noise contained in the C9 cough study, 

this recording was carried out at the lower recording level, six, as changed on the 

recording unit.

The first three hour portion of the audio recording was processed and passed through 

Network 3. From this, nine coughs w'ere correctly identified, 51 non-coughs were 

identified as coughs and 14 coughs were incorrectly identified as non-coughs. 

Following the use of Network 4, the number of non-coughs incorrectly identified as 

coughs doubled. Evidently, the lower recording levels had no positive effect on the 

classification step and as several attempts of network training have been made on the 

previous studies without success, it was considered inappropriate to repeat these 

attempts for this study.

3.3.5.4.4 Remaining cough studies

Due to the poor results obtained with the previous three recordings, it was decided not 

to alter the network settings for further optimisation of the remaining cough studies. 

Instead, they were processed using Network 3 with no modifications. Study C12 was 

of a female patient during a stay on the respiratory ward; the recordings were 

therefore unlikely to contain the wide variety of extraneous sounds that were picked 

up on the fully ambulatory studies. The results of the processing were reasonably 

positive, a high proportion of the cough sounds were detected, with the exception of 

some very low amplitude coughs, although there was a large amount of interference 

from the subject’s voice. Further to this, three of the recordings, C l4, C l5 and Cl 6 

were of adolescent males and contained very little coughing but a lot of shouting, 

which was subsequently incorrectly classified as coughs.

It was decided at this point that the current method needed significant modification in 

order to perform adequately with the new recordings.

3.3.6 Additional data pre-treatment

Due to their nature, ANNs have the potential to work for the application of cough 

recognition. They are still considered to be the most appropriate pattern recognition
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technique since the data requiring separation is so variable and requires a high degree 

of generalisation. Van Hirtum et al. have achieved pig cough recognition rates in 

excess of 90% "1 ll4, although they had encountered problems discriminating 

between coughs and metal “clanging’' sounds from machinery113. However, the range 

of sounds detected in the pigs’ environment is, as expected, much more limited than 

the range encountered in 24 hour ambulatory recordings. Equally, the original use of 

the existing system involved a series of cough studies that were all carried out in the 

same clinical environment with the same potential background sounds and with a 

high number of coughs. Thus, the possibility of having already sufficiently trained the 

network with the majority of the sounds that were to be encountered in the validation 

recordings was very high such that the network needed only to generalise a small 

amount to correctly recognise sound events. Despite continuous efforts to 

successfully apply the use of an ANN to the 24 hour cough recognition, the 

variability both within and between the audio recordings have rendered this approach 

ineffective. Several tests were carried out to ensure the neural network had been set 

up correctly and was capable of classification; however, the test of the networks 

suitability to the actual data did not prove positive. It is therefore concluded that the 

problems of classification lie with the data itself; the two datasets in their current state 

are simply not sufficiently different.

Since the network is not effectively separating the data in its current form, it may be 

necessary to perform a different pre-treatment step in order to prepare the data into a 

more suitable format for separation.

The best way to maximise the potential for separation is to remove the information 

that is common to both groups and to leave only the data that contains the variance; 

thus enabling a better chance of separation. The approaches used so far have been 

successful for the shorter duration recordings; though have failed to overcome the 

problems raised by the vast amount of variation introduced by 24 ambulatory patient 

studies. Such variation is present both between the non-cough events and also within 

the cough events. The common factor and the variation therefore both need to be 

identified.
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Focusing initially on the information that can be removed from both data groups; 

referring back to Section 3.3.3.1.2, analysis of the frequency content of cough and 

non-cough events, the common factor to all sound events is the low frequencies. 

Therefore, applying a frequency filter to remove the low frequency information 

common to both groups, could lead to a better degree of separation.

3.3.6.1 Frequency filtering

The aim of this experiment was to exclude any insignificant low frequency 

information common to many sounds and adding no valuable information to the data. 

Frequency filtering has been used in many applications where unwanted frequency 

information is present, however it has not often been applied to the recognition and 

counting of cough. The lack of use is definitely not due to it being a novel 

technology, as in 1967, Loudon demonstrated the use of a frequency specific 

attenuator and amplitude discriminator in order to reduce the number of sound events 

actually recorded onto tape; thus reducing the time required to manually count the 

coughs31. Later in 1988. Salmi et al. used high pass filtering to eliminate low 

frequency noise35.

3.3.6.1.1 Application of a Butterworth filter

The first approach was the application of a Butterworth filter; a narrow' band filter 

which was set to be high pass to remove low frequency information whilst 

maintaining a specified band of high frequency information.

The initial working of the frequency filter was achieved by processing each minute of 

an audio file, one at a time to avoid the memory constraints imposed by working with 

such large WAV files. The signal remaining after frequency filtering represents the 

intensities of the specified frequencies.

Listening to the recording showed it to contain 39 loud coughs and 14 low amplitude 

coughs. The results of applying the Butterworth filter to the cough study Cl showed 

positive results. The initial run using a frequency band of between 14700 Hz and 

15300 Hz (15 kHz filter) gave a result of 49 sound events. Inspection of the 49 sound 

events following the filtering stage revealed them to contain 31 coughs, including two
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that were not picked up by the original sound event detection, six vocal sounds, one 

inhalation sound and nine other sounds.

The threshold level was changed to 1E 4 to test if any of the missed coughs would be 

detected. However, although 97 sound events were identified, most of the coughs 

missed originally remained undetected, whilst a significant number of non-coughs 

were introduced into the results.

The next experiment was to change the frequency filter from 15 kHz to 12 kHz to 

allow more frequencies through and potentially detect more of the cough events. This 

only picked up 32 sound events, 28 of which were coughs and four were non-coughs. 

Lowering the filter frequency further to 11 kHz yielded 33 sound events.

Using a high pass filter without selecting a narrow band allowed all sound events 

containing frequencies above the filter level. A 12 kHz filter with a threshold level of 

2E 4 subsequently gave a result of 240 sound events detected. The reason for this vast 

increase in detected events is due to the wider range of frequencies being used. This 

will give rise to a larger signal, resulting in many more sound events possessing the 

required signal intensity to exceed the threshold level. However, it would be difficult 

to simply increase the threshold and exclude the unwanted sounds, as it would not be 

easy to distinguish which events possessed frequencies attributed to cough sounds 

and which simply contained a relatively uniform amount of each frequency 

throughout the range.

Reverting back to the narrow-band filters and experimenting with the threshold 

levels, three filters of 12, 14 and 15 kHz were created as summarised in Table 3-9.

Table 3-9 Summary offilter frequencies, threshold values and the results obtained

Filter
F R E Q U E N C Y

T hreshold
value

Sound
events

D E T E C T E D

Coughs
C L A S S I F I E D

C O R R E C T L Y

Non-coughs
included

12 76-3 64 39 23

14 7e 3 51 35 16

15 7e"3 48 35 13
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The method that detected the most number of coughs was the 12 kHz frequency filter 

with a 7E~3 threshold. Only one of the loud coughs was missed, however there were 

23 extra non-coughs detected; these included five vocal sounds, three metal sounds, 

three clicks, one rustle, six other sounds and five that were actually parts of other 

coughs.

The frequency information had also been used to identify the start and end times for 

the cough events. However, spectrograms of coughs shown in Section 3.3.3.1.2.1 

showed that many coughs only have high frequencies for the first phase of the cough 

and have lower frequencies for the second and third phase, if present. This would 

result in only half of the event being classified in as a cough. It was therefore decided 

to use the amplitude information. This was partly due to the fact that the method used 

to confirm the occurrence of cough in the recordings is based on sound and audibility. 

Also the use of an amplitude threshold allowed more control over the definition of the 

cough event as opposed to frequency information which may not always be higher 

than the frequency filter passband for some coughs or some parts of coughs.

3.3.6.I.2 Application of additional constraints

Using the 12 kHz filter and the 7E”3 threshold level, the Cl file was processed and 

the results analysed.

A common cause of interference was the occurrence of sector boundary errors (SBEs) 

in the recording. SBEs are portions of signal which have been cut out of alignment 

with the sector boundary; to combat the resulting gap, the signal processing software 

fills it with zeros. When the signal is then played back, the sudden change in 

frequencies from the normal signal to zeros causes a short, high-pitched sound known 

as a SBE. These were investigated and found to have very short durations compared 

to a normal cough sound and were probably only due to the signal chopping being 

carried out to test the system. A minimum duration was implemented to omit these 

sounds, the minimum being below 2000 samples or 0.045 sec. This also served to cut 

out some of the speech fricative sounds which were also high frequency but very 

short.
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For cough sounds in excess of one second duration, the plotcough function was 

applied to determine the actual number of coughs present in the event [See Section

3.3.7.2 for details].

There was also a number of high frequency, low amplitude sounds which would 

probably be excluded by the introduction of an amplitude threshold as discussed 

previously.

3.3.6.1.3 Application of FFT

It was decided that the previously applied step of identifying valid sound events prior 

to further analysis was an important step and still required in this case to avoid 

unnecessary processing of “soundless” regions and also to avoid interference by high 

frequency but very low-amplitude sounds.

Once this step had been implemented, each sound event was processed in sequence 

using FFT; frequencies up to 8 kHz and above 15.5 kHz were then discarded. This 

step replaces the use of the Butterworth filter. A diagram of the frequencies isolated 

for analysis is shown in Figure 3.49. Illustrations of the intensities of the isolated 

frequencies for each window of time for examples of cough and non-cough events are 

shown in Figures 3.50 and 3.51 respectively.

Figure 3.49 A frequency spectrogram illustrating the frequency band isolated for 
analysis and the remaining frequencies to be discarded (shaded)
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Plot of the isolated frequency intensities for each window of time in the cough event
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Figure 3.50 Plot of the intensities of the isolated frequencies for each window of
time in the sample cough event

Plot of the isolated frequency intensities for each window of time in the non-cough event
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Figure 3.51 Plot of the intensities of the isolated frequencies for each window of
time in the sample non-cough event
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Playing the sound of the remaining frequencies of a typical cough gives a sound like a 

very short crackle; there is therefore very little frequency content audible to the 

human ear in this portion. The frequency information was in the form of 45 rows 

representing 45 frequencies at regularly-spaced intervals between 8 and 15.5 kHz. 

The number of columns is time-dependent and so highly variable between events. To 

create a more uniform dataset for further analysis, the 45 rows for each sound event 

were squared by their transpose, processed by SVD and then scaled according to 

relative variance. The PC A scores are shown in Figure 3.52. The aim of PCA was to 

attempt to achieve a significant separation of the two groups, which would indicate 

some characteristic difference between coughs and non-coughs. However, although 

separation was not achieved, the PCA scores did reveal an important characteristic 

difference between the two data sets; while the cough data points are reasonably well 

dispersed, the non-cough data points are superimposed on each other, even those 

from different non-cough events. This suggests that the cough events have a much 

greater degree of variation in the isolated frequency band than the non-cough events. 

This feature highlights the potential for classification as this could be the required 

difference between the two data groups.
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Figure 3.52 PCA scores of the squared FFT data from the isolated 8 -  15.5 kHz 
frequency band offour coughs and four non-coughs, illustrating the relatively 

small spread of the non-cough scores

3.3.6.1.4 Covariance

As the results of the previous experiment have showed the cough data to possess a 

much higher amount of variation than the non-cough data, it was decided to apply 

covariance analysis to the data and attempt to ascertain whether or not there is a 

significant difference between the two groups.

The results of the covariance calculations for the cough and non-cough events are 

shown in Figures 3.53 and 3.54 respectively. For these cases, the cough has a 

maximum value for covariance of approximately 1.6 E 4. whereas the non-cough has 

a maximum of approximately 2.2 £~7.

Applying the FFT filtering step and the covariance calculation to all the sound events 

in the file showed that non-cough events have a maximum covariance of IE 6 while 

cough events have a maximum of 1E~3.
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Frequency x ig  4

Figure 3.53 Covariance of the 8 -  15.5 kHz FFT data for one cough event
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Figure 3.54 Covariance of the 8 -1 5 .5  kHz FFT data for one non-cough event

It was decided to use this difference and introduce a covariance threshold to the 

processing stage. Following the application of the frequency filter to known data, the
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frequency band was further optimised to 6-15 kHz in order to capture the maximum 

amount of relevant data and exclude the lower frequency noise.

In addition, the value for the covariance threshold was tested at varying levels at 

found to be optimum at le‘4; this was chosen as a balance between detecting the 

highest number of coughs whilst also excluding the highest possible number of non­

cough sounds.

3.3.6.1.5 Validation offrequency filtering

The aim of this experiment was to test the performance of the frequency filtering data 

pre-treatment step. The function \fft_process’ was used to apply the described 

techniques to the test dataset [See Appendix A]. A summary of the results are shown 

in Table 3-10. Each section was studied in detail to identify any weaknesses in the 

system. For portions 1 and 2, all coughs were counted, with no extra sounds 

misclassified. Portion 1 was in fact a selection of coughs and non-coughs from the 

audio file CIO which had proven so difficult to classify in the earlier stage [See 

Section 3.3.5.4.2]. Portion 2 was also one of the 24 hour recordings which had not 

had good results from the earlier processing (Cl 1, Section 3.3.5.4.3). Portion 3 was 

taken from the recording C l4, the subject in which was an adolescent male. The 

recording contained a lot of shouting and this was the main source of interference, 

although all three coughs present were identified. In portion 4, only six of the thirteen 

coughs were identified, although there were no incorrect classifications. Portion 5 

gave another positive result, with 15 of the 17 coughs being correctly classified and 

only 2 coughs missed. The one non-cough incorrectly counted as a cough was 

actually a fricative ‘s’ during a portion of speech. The incorrect classifications in 

portion 6 were also due to fricative speech, however a further 29 coughs were not 

detected. It appears the reason for the majority of the missed coughs were due to them 

being very low amplitude sounds. Portion 7 was taken from another adolescent 

subject, the majority of the incorrectly labelled ‘coughs’ were due to shouting, with 

one being due to loud music. In Portion 8, the two incorrectly labelled ‘coughs’ were 

in fact sounds from the subject blowing their nose. Of the 11 missed coughs, 6 were 

actually due to the fact that the amplitudes were not large enough to be classified as 

valid sound events.
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Table 3-10 Summary of results obtained from the application of the filter to the 
“testset” file

Portion Actual C oughs Correct Incorrect M issed

Coughs Counted No. (%) No. (%) No. (%)

1 40 40 40 100 0 0 0 0
2 14 14 14 100 0 0 0 0

3 3 16 j 100 13 81 0 0

4 13 6 6 46 0 0 7 54

5 17 16 15 88 1 6 2 12

6 118 94 89 75 5 5 29 25)

7 8 1 33 7 88 2 67

8 75 66 64 85 2 3 11 15

TOTAL 283 260 232 82 28 11 51 18

In summary, 82% of the cough sounds were classed correctly while the remaining 

18% were missed and of the coughs counted, 89% were correct. With the exception 

of sections 4 and 7 which contained few coughs and subsequently gave a low 

percentage of correct classifications, all other recordings gave highly satisfactory 

results. The majority of the missed coughs were due to them being of too low 

amplitude to be detected. The reason for the discrepancy between the actual number 

and the detected number is actually due to an overestimation in the former. The actual 

number of coughs was counted simply by counting every single audible cough; in 

reality, however, many of the smaller coughs would not need to be classified as 

coughs as they were closer to the category of throat clearings rather than coughs. As 

there is no set definition of cough and also as it is simply a matter of judgement, it is 

very difficult to perform an accurate cough count without ambiguity. To support this, 

portion 6 of the test cough file was listened to once more, this time with an audibility 

threshold in mind so as to ignore very small “throat clearing” coughs. The result was 

89 coughs, exactly the result following filtering. The same was done for portion 8 

which revealed a new count of 69 coughs.
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The frequency filtering work was intended as an additional pre-treatment stage prior 

to the use of a neural network. Thus, the most important figure is the amount of 

coughs that are correctly identified by the method and the amount that have failed to 

be classified. Any issues with sensitivity introduced at the pre-processing stage will 

carry through to the classification stage and no matter how strong the latter is, it will 

not be able to make up for the deficiency. Also important is the ability of the pre­

treatment stage to reduce the number of interfering sounds in order to reduce the 

demands on the neural network. Following the sound identification stage, 1270 sound 

events were identified, of which 260 were coughs (20%). This pre-treatment step has 

therefore increased the cough composition to 82%, referring back to the use of 

contingency tables in Section 3.3.3.2.4, at a system efficiency of 80%, the cough 

accuracy is approximated at 94.7%. Thus, by increasing the ratio of coughs to non­

coughs, the cough detection accuracy has instantly been improved, even without 

improving the accuracy of the classification system. Results for sensitivity are 

calculated to be 82%, specificity is 97% and accuracy is 94%. Personal 

communication with Prof. Alyn Morice (Chair of Respiratory Medicine, Castle Hill 

Hospital, Cottingham) reveal these figures are considered highly acceptable for 

clinical applications and are indeed above some of the quoted results for other cough 

monitors.

3.3.6.1.6 Application of neural network

The next stage was to apply the resultant data from the frequency filtering pre­

processing stage to a neural network in an attempt to remove some of the wrongly 

classified non-cough sounds. All the sound events present in the testset file were 

identified and the MFCCs were calculated. The data was then divided equally into 

two datasets for training and validation; resulting in 98 coughs and 14 non-coughs for 

each group. The results obtained from the application of the neural network correctly 

recognised all but one of the coughs, although incorrectly classified every non-cough 

as a cough.

A theory for this result is that MFCCs are no longer an appropriate choice for this 

data, as these represent the intensities of each frequency present in the signal. Any 

non-coughs that have remained following the FFT filtering stage show an immediate
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similarity with coughs; furthermore, the covariance within the frequency band 

selected is relatively high. Thus, it would suggest that the cepstral coefficients of 

these extraneous non-cough sounds would not be hugely different from those of 

coughs. Since the neural network did not perform particularly well in previous tests, 

applying it to data which is suspected to be very similar is perhaps not the best 

approach. Instead it would perhaps be more effective to use characteristics of the data 

other then those in the frequency domain, for example, RMS data or spectral 

envelope patterns.

3.3.6.2 Application of DSP pre-processing to 24 hour studies

For further validation, the frequency filtering method was applied to the cough 

studies that proved difficult to analyse in Section 3.3.5.4. Results showed a 

significant improvement in the number of coughs detected, although there remained a 

number of non-coughs incorrectly classified as coughs. For the cough study CIO, 84 

coughs were correctly classified in the previous method and this increased to 105 

using the DSP method. The majority of the coughs missed, which were only a few, 

were missed at the amplitude checking stage and would therefore benefit from 

changing the threshold levels. There was a high number of interfering sounds, 71, 

most of which were vocal sounds and loud banging sounds. The time-amplitude and 

spectrogram plots are shown in Figures 3.55 and 3.56 for a loud bang and a typical 

speech sound respectively. Inspection of these plots clearly shows the reason for the 

wrong classifications; the frequency spectrograms, upon which this recognition 

method is based, are very similar to those of coughs. However, inspection of the time- 

amplitude plots shows the potential for separation by shape of the sound event, 

perhaps by use of RMS plots. Coughs generally have an initial high amplitude portion 

followed by a decline, whereas speech is characteristically different. Additionally, 

although loud bangs look very similar to cough sounds, they have a much smoother, 

almost exponential in appearance, decline front high amplitude to low. Again, this has 

the potential to be recognised by RMS patterns.
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Figure 3.55 Time-amplitude plot (top) and spectrogram (bottom) of a loud bang 
wrongly classified as a cough due to the similarity in frequency information

182



Chapter 3 -  Results & Discussion

Sam ples

22060

19845

17640

15435

fr 13230

g -11025 
c

8820 

6615 

4410 

2205 

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time

Figure 3.56 Time-amplitude plot (top) and spectrogram (bottom) of a typical speech 
sound wrongly classified as a cough due to the similarity in frequency information
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3.3.7 Additional Features

3.3.7.1 Graphical representation of results

The output of the cough counting stage is represented graphically as a histogram, 

using the function plotcough [See Appendix A]. Each three-hour portion is 

summarised and plotted in sequence. Due to the importance of considering cough 

severity from multiple angles, two histograms are plotted; one representing the 

number of coughs counted and the other representing the actual time spent coughing 

[See Figure 3.57]. This dual output both serves to give an extra measure of 

comparison when studying patients who have low intensity, small coughs where the 

cough frequency is high but the cough severity is low; but it also counteracts the 

problem of multiple coughs being counted as single events, as the time spent 

coughing would give a more accurate result.

In order to summarise the entire 24 hour recording, the function 'combineplot' [See 

Appendix A] combines all eight three-hour segments for each 24 hour recording into 

one plot [See Figure 3.58].
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Figure 3.57 The two graphical outputs of the function ‘plotcougli' representing 
both the number of coughs in a three-hour segment (above) and the time spent 

coughing during the same three-hour period (below)
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Figure 3.58 Total cough summary for a 24-hour recording

3.3.7.2 Double cough detection

Attempts were made to include a programming step to recognise double or triple 

coughs and avoid them being miscounted as single events. However, due to the 

variation between coughs of the same subject as well as between subjects, no set 

pattern could be used to perform automatic recognition. It was therefore decided to 

introduce user interaction at this point. Due to the way in which the file is processed, 

the time taken to listen to the coughs and enter a manual cough count is minimal and 

is dependent only on the number of cough events present that are in excess of one 

second duration. The one second threshold was introduced as it was decided that it is 

unlikely for a single cough event to be longer than this. Figure 3.59 represents the 

process that occurs during the user-interaction stage.
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1) X cough events longer than one second

2) Do you wish to review the long cough events? (y/n)

» ( f y  the time-amplitude plot o f first event is 
displayed and the sound is played

3) Is this a cough or non-cough? (y/n)

(Or alter "p" to replay sound or "q" to quit)

Is this a cough or non-cough? (c/n)

>> if  n t h e  next event is played and the process 
reverts to step 3, otherwise the user mows to step 4

4) How many coughs?

»  the user enters the number o f coughs and the next 
event is played

Figure 3.59 Screen display during user-inspection of the long ‘cough ’ sounds

Following this process, the function recalculates the cough count and plots an updated 

cough frequency summary. This process was not only found to be useful for 

correcting single cough events, but also for identifying portions of signal which are 

actually non-coughs but have fulfilled all the criteria to be classified as coughs. This 

usually occurs in sound events that remain above the amplitude threshold for a 

reasonably long duration (in excess of one second) and contain high frequencies. 

They then pass the frequency threshold, the minimum duration check and also the 

covariance check simply because they have more variation due to their long duration. 

Non-coughs that are shorter than one second have usually been shown to possess 

lower than threshold covariance values and are excluded earlier.

3.3.S Patient Activity Monitoring

The patient activity marker requires an efficient and accurate processing method to 

locate the occurrence of the marker and the corresponding activity. As with the cough 

recognition software, it would be ideal to have an automatic process by which the 

software can identify the times that the activity marker was used and then compile the 

necessary information. The activity marker is inserted onto the second channel of the 

audio recording. The purpose of this section was to design a method for automatic
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analysis of the audio recording in order to locate the use of the marker and determine 

the activity the patient described.

3.3.8.1.1 Spectral analysis

In order to search for the marker automatically, a characteristic signal needs to be 

used. Spectral analysis of the marker signal was performed to find a feature that 

would identify the occurrence of the marker with maximum sensitivity and minimum 

number of false positives. A simple method of signal identification in an audio 

recording is by use of digital filters to isolate all frequencies with the exception of a 

narrow band. The narrow frequency band needs to be selected according to the 

frequency of the identifying marker. The occurrence of a signal within this narrow 

band can then easily be located. Selection of a frequency that is unlikely to occur, 

other than when the event marker is used, reduces the problem of false positives. The 

frequency spectrogram of the marker is shown in Figure 3.60, while a plot of the 

intensities of each frequency is shown in Figure 3.61. The values for these 

frequencies are 1206, 3445, 5684, 7580, 10136, 12403 and 14642 Hz. The four higher 

frequencies clearly contain the least interference. The second channel has the option 

of being used as a microphone to record background sound such that noise 

cancellation can be carried out if necessary; it was therefore decided to keep this 

option open by using a frequency above that of normal speech in order to identify the 

marker. Normal speech usually stays below 6000 Hz, however, to exclude maximum 

interference, it was decided that the frequency 14600 Hz was the most appropriate for 

this filtering method.
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Figure 3.60 Spectrogram of the event marker showing the frequency content of the 
sound. The dark orange areas represent the most intense frequencies.
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Figure 3.61 Plot showing the intensity o f each frequency in the event marker
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3.3.8.1.2 Application of a frequency filter

Having decided on the appropriate frequency, a frequency filter was designed to keep 

frequencies within the hand 14300 to 14900 Hz and remove all others [See Figure 

3.62]. The remaining signal, only containing this small range of frequencies, should 

therefore only rise above a threshold upon occurrence of the marker sound. The signal 

was automatically processed to locate instances when it exceeded a set threshold. The 

threshold was set such that it was larger than any occurrence of noise in the signal. 

The times at which the marker sound was located in the second channel were 

compiled.

Plot o f frequencies and th e ir in tensities following app lica tion o f the frequency filter
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Figure 3.62 Plot showing the effective percentage of each frequency allowed to 
pass through the digital filter, where 1.0 is the maximum signal allowed.

3.3.8.1.3 Validation of “signal" function

In order to validate this method, the second channel of the file CIO1jpartl was 

analysed according to the described method. This audio recording was a 3 hour 

portion of a 24 hour recording. The patient had been asked to press the event marker 

following a bad bout of coughing and to audibly describe the activity being carried 

out prior to the cough episode. The audio file was listened to and the start times of the
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marker were compiled. These were then compared to the results obtained by the 

software. Table 3-11 shows the comparison of results. All of the uses of the marker 

detected by the listener were also detected by the program. There was one false 

positive detected by the program, which was due to the software detecting the same 

marker twice. However, visual observation of the results by the operator would 

highlight this during normal use, therefore it was not considered to be a problem.

Table 3-11 Comparison of results of marker start times in audio file CIO as 
determined by human listening and HACC software

L istener HACC

00:05:47 00:05:47

00:06:40 00:06:40

00:08:40 00:08:40

00:28:07 00:28:07

00:28:22 00:28:22

00:42:25 00:42:25

00:48:49 00:48:49

01:04:31 01:04:31

01:20:16 01:20:16

01:20:59 01:20:59

01:36:42 01:36:42

01:54:59 01:54:59
— 01:55:00

02:48:38 02:48:38

3.3.8.1.4 Compilation of patient activities

Once the event marker locations had been identified on the second channel, it was 

then necessary to refer to the first channel in order to compile the activities as spoken 

by the subject. Speech recognition technology would not be practical in such a 

situation as it would either require training for each subject under recording or it 

would allow only a limited use of vocabulary to describe activities. For this case,
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there would not only be a wide range of activities to allow for, there would also be a 

number of ways for patients to describe them. Listening to the recordings already 

made, descriptions have often included unnecessary extra words such as “I was just 

talking”, “1 was walking through the hospital” or more simply “stairs”. These types of 

descriptions would require the automatic system to possess semantic knowledge to 

subsequently derive the correct description. It was therefore decided that the most 

practical method was to allow the operator to manually listen to the relevant 

information and enter the appropriate descriptions. The function activity uses the 

marker times compiled previously from the second channel to locate the 

corresponding time on the first channel, into which the subject would have audibly 

described the activity. A short section of the recording, immediately following the use 

of the marker, is then played to the operator, who types in the activity being 

described. Options are available to repeat play if the description was missed, or to 

skip the marker without entering any information, for example if there was no 

description given. The information can then be added on to the 24 cough summary 

plot to indicate the activities and confirm or refute the theory of activities causing an 

increase in cough frequency. An example of the activity information compiled is 

given in Table 3-12. The corresponding signal of the two channels is given in Figure 

3.63 illustrating the times when the event marker was used by the patient.

The result of this experiment is a working piece of software which can accurately 

identify the use of the activity marker and then efficiently compile the necessary 

descriptive information with minimal user input. This design of the event marker also 

creates many more applications other than the one described here. The marker can in 

fact be used for any purpose which requires the ability to identify certain times during 

a recording. One example is the use of the device to record induced cough models 

during pharmaceutical efficacy experiments. In this case, the marker can be used to 

divide up the recording into individual sections, to mark an explanation ot each 

experiment as given by the clinician or to indicate the administering of medication to 

the patient such that the cough frequency immediately after can be assessed.
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Table 3-12 Activity information compiled from the audio recording CIO

T ime A ctivity

00:05:47 walking

00:06:40 walking

00:08:40 walking

00:28:07 driving

00:28:22 driving

00:42:25 driving

00:48:49 driving

01:04:31 driving

01:20:16 walking

01:20:59 climbing stairs

01:36:42 sitting

01:54:59 sitting

02:48:38 sitting

Figure 3.63 Diagram showing the signal measured on both channels of the 
recording and illustrating the times when the event marker was used

193



Chapter 3 -  Results & Discussion

3.4 Case Study

In order to illustrate the methodology developed here, a demonstration of the entire 

process from data collection to obtaining the results will be presented as a case study.

1. Data collection

A patient is identified as a suitable candidate for a cough study and an appointment is 

arranged for them to begin the study. The patient is informed that the study is to 

monitor their cough episodes and to continue their daily activities just as they would 

normally. They are told that they must wear the device all the time, with the 

exception of when showering or bathing, in which case the device can be temporarily 

removed. During the night, the device can either be placed on a bedside table or can 

be hung over a headboard using the strap, in both cases ensuring that the microphone 

is placed close to the patient’s head for continual recording during sleep.

The patient is instructed on how to use the activity marker such that following a 

particularly bad attack of coughing, they must press the event marker button and then 

clearly state the activity they were carrying out prior to the coughing. An example is 

given to illustrate the use and to ensure the patient understands.

The recorder is fitted with a freshly charged battery and a labelled disk (empty apart 

from the buffer) and is set to start recording. The device is then securely locked, fitted 

to the patient and adjusted accordingly to ensure comfort and correct positioning of 

the microphone. The patient is asked to remove the device after 24 hours and to 

return it to the clinic thereafter.

For the next 24 hours, the monitor will continuously record the patients upper airway 

sounds through the chest microphone on the first channel, the use of the event marker 

on the second channel and will then automatically switch off when the 24 hour study 

is complete.
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2. Data transfer

Once the cough monitor has been returned, the disk is removed and placed in a Hi- 

MD walkman for transfer via USB to a PC, using the Sony Sonicstage software. The 

24 hour recording consists of two tracks, one of 999:59 minutes durations (this is the 

maximum a file can contain) and one of the remainder, which is approximately 440 

minutes. The tracks then need dividing into eight 180 minute portions for processing. 

Dividing the first track at every 180 minute interval will give five portions plus an 

additional 100 minutes, the first 80 minutes of the second file must therefore be cut 

and combined with this to make the sixth 180 minute portion. The remainder of the 

file is divided in the same way. Each portion must then be converted to WAV format, 

which is also achieved in Sonicstage and named such that all eight portions are given 

the same core name with a suffix of ”_partl to 8" accordingly e.g. cough_partl, 

cough_part2 etc.

3. Data processing  

Patient activity marker

In order to process the second channel for the patient activity marker information, this 

channel must first be isolated. Using Creative Wave Studio software, the signal on the 

first channel is removed and the whole file is converted into mono format. The signal 

detection processing can then be applied.

Each minute of the 180 minute file is processed in sequence using the function signal. 

The signal is passed through a Butterworth filter to isolate the frequencies around 15 

kHz. The amount of signal remaining following the application of the filter is 

therefore the amount of 15 kHz signal that was present in the recording. If the amount 

of signal is above a set threshold, it is assumed to be a positive occurrence of the 

event marker.

Following compilation of all uses of the event marker, the first channel is then 

analysed in order to identify the activity information. The software automatically 

analyses portions of the first channel immediately following the use of the event 

marker and plays the sound to the operator for a manual entry of descriptions. The
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result is a list of the usage of the event marker and the associated activity 

descriptions.

Cough recognition

In order to perform cough recognition on the first channel, the function (ft process is 

used. This links all the eight portions together and processes each one in sequence. 

The data is prepared by being divided into manageable chunks for processing and a 

structural array is set up to store the obtained information. The signal portions are 

then passed through the digital filter to remove unwanted frequency information and 

to identify potential cough events. Each event is then further analysed; if it possesses 

a covariance value above the set threshold and is above a minimum duration, then it 

is assumed to be a cough event. The information is compiled for later use.

The function plotcough then takes the results of the FFT analysis and represents them 

graphically, initially as three hour portions. The software checks for any events that 

are longer than one second in duration. The operator has the option of listening to 

these to firstly ensure that they are coughs and secondly to input the number of 

coughs in the event. If any changes are made, the plot is updated. Following 

processing of the entire cough study, the function combineplot represents the results 

for the entire 24 hour period.

4. A nalysis o f results

The results of the cough count and the activity marker can then be compared by the 

operator and any correlations or patterns can be noted.

Figure 3.64 is a schematic diagram representing the steps used in the frequency 

filtering method of cough recognition.
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4.1 Conclusions

An objective, ambulatory, 24 hour patient monitor, along with a method for automatic 

analysis, has been developed for the purpose of carrying out cough studies using 

audio recordings. The HACC has been applied to real clinical studies and 

demonstrated high levels of performance.

4.1.1 HACC hardware

The cough monitor is based around a Sony Hi-MD recorder and dual-channel, 

capacitor microphone to make audio recordings of patients. The use of audio 

recordings removes any subjectivity as no patient input of cough frequency or 

severity is required. Thus, the hardware is objective and provides an unbiased account 

of cough frequency over a given study period.

The Hi-MD recording media is capable of making up to 34 hours of recordings using 

the Sony ATRAC method of audio compression. The capability of making 24 hour 

recordings is necessary in order to study the diurnal changes of cough and to assess 

cough frequency over a suitably lengthy time period. Modifications to the power 

source have been necessary in order to make the device portable for 24 hour 

recordings. Full portability is required in order to study patients in their own 

environment and during normal activity. The normal cough episode patterns that the 

patient suffers can then be fully analysed.

In addition, in order to directly and objectively study the correlation of cough 

episodes with patient activities, an event marker has been incorporated into the 

device. The event marker consists of a button which, when pressed, inserts a 

characteristic signal onto the second channel of the microphone; while at the same 

time the patient can speak into the chest microphone. This allows the patient to 

highlight information useful to the operator such as the occurrence of certain events 

which may trigger cough episodes; the effect of these events on cough pattern and 

frequency can then be studied.
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The whole device is enclosed in a secure and convenient case which is non-invasive 

and comfortable for the patient to wear. Thus, the patients become unaware of the 

cough monitor and the study can be as close to normal conditions as possible. Unlike 

some other devices for cough monitoring, the HACC is relatively cheap to build, 

consisting mainly of commercially available products.

The device has been demonstrated to operate successfully in a number of patient 

cough studies. Although is has been developed for the purpose of patient cough 

studies and also for use in cough suppressant efficacy studies, as it is based on audio 

recordings, its use is not limited to cough. The device can essentially be put to use in 

many other applications; examples include overnight snore monitoring and the 

monitoring of infant conditions such as wheezing.

4.1.2 HA CC software

The method for automatic analysis of the produced audio recordings has been based 

around an existing methodology developed prior to this work by Adrie D. Dane. The 

existing system demonstrated the potential of applying a PNN to the spectral 

coefficients of sound events in order to perform cough recognition.

24 hour cough recordings were made using the developed HACC hardware on 

patients with a variety of conditions eliciting cough. The cough recognition system 

required development for use with the new 24 hour recordings which contain a much 

wider range of sounds. It was originally decided to base the new system on ideas 

developed for the existing software. However, the application of this method to the 

new 24 hour cough studies has proven problematic. The original use of the system 

involved a series of cough studies; all carried out in the same clinical environment 

with the same potential background sounds (television, voices of clinic staff etc.) and 

with a high number of coughs due to the subjects being smokers and chronic cough 

sufferers. A selection of all sounds within a set number of recordings was then used 

for the neural network training, which was then applied to the remaining recordings. 

The possibility of having already sufficiently trained the network with the majority of 

the sounds that were to be encountered in the validation recordings was very high and 

thus makes the use of the neural network a successful choice; from the training set,
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the network needed only to generalise to a small degree in order to correctly 

recognise sound events.

However, the new 24 hour cough study data were very different. The number of 

coughs was significantly lower and the range of background noises was vastly 

increased. There was a high amount of variation in both datasets, and even with the 

neural network’s ability to generalise, it could not generalise to a sufficient degree as 

required for this application.

A range of data pre-treatment techniques were employed, in an attempt to make the 

data more easily separable. MFCC and LPC coefficients were calculated, PCA was 

used to reduce variation in the dataset, HOSA was used to identify more complex 

patterns in the signals, PSD plots were calculated to identify any potential for 

separation and correlation coefficients were used to identify any patterns in the 

frequency domain. In addition, a range of ANNs and architecture were tested.

A selection of cough and non-cough sounds were studied in the time and frequency 

domains to identify any characteristics present to allow the classification of similar 

sounds and their subsequent distinction from dissimilar sounds. It was concluded that 

the frequency content of the sounds were most likely to contain the relevant 

information.

Continuing with the idea of working in the frequency domain, focus was then shifted 

from the characterisation of all frequencies by use of cepstral coefficients to the 

application of digital filters in order to study a set range of frequencies. Coughs 

generally contain a wide range of frequencies from low to high, and it was shown that 

by removing the low frequencies common to many sounds, including speech, the 

number of interfering background sounds could be significantly reduced. The 

variation in the frequency content over the duration of a cough was then studied and 

found to be much higher than in most other sounds. Calculation of covariance was 

then found to be a suitable method of distinguishing coughs from non-cough sounds.

Initially, the application of the digital filter was intended as a more effective data pre­

treatment method before classification by a neural network. However, the resultant 

incorrectly classified non-coughs were so similar to the cough data due to possessing
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very similar frequency information, that the ANN could still not achieve adequate 

separation. It was concluded that ANNs were not an appropriate method for this 

application.

The use of the digital filter was therefore developed into a stand-alone, automatic 

cough recognition system. The system has been demonstrated to correctly classify 

82% of all coughs present in audio recordings; the 18% of coughs that were missed 

were mostly very low in amplitude and would not have been classified as coughs by 

an experienced cough listener. This figure of 82% is therefore largely underestimated. 

Only 11% of the events classified coughs were actually non-coughs. Results for 

sensitivity are calculated to be 82%, specificity is 97% and accuracy is 94%. These 

are considered to be highly acceptable for clinical applications.

However, for more accurate use during 24 hour studies, and to avoid the problems of 

encountering more sounds which threaten the performance of the system, it is 

considered necessary to further investigate methods which could follow up from the 

data pre-treatment by digital filtering and perform an additional recognition technique 

to exclude non-cough sounds. It would be recommended to avoid the frequency 

domain for this as it has been shown that the remaining sounds following digital 

filtering are too similar in frequency content to be accurately distinguished. A more 

appropriate technique would be perhaps to investigate the RMS plots of coughs and 

non-coughs in an attempt to remove interfering non-cough sounds.

The event marker has been demonstrated to successfully highlight patient activities 

for correlation with cough episodes. A narrow-band digital filter identifies the use of 

the event marker signal and software then automatically locates the spoken 

information as given by the subject. This information is then compiled by the 

operator to avoid problems with speech recognition software, a process which takes a 

few minutes to complete. Activities such as eating, driving and talking on the 

telephone which precipitate cough episodes in patients with GORD, for instance, can 

then be correlated and aid in diagnosis. Whilst processing the cough studies C5 -  C7, 

the chronic cough patient, who was believed to suffer from GORD, exhibited a three­

fold increase in coughs following a meal; a strong indication of a correct diagnosis.
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4.1.3 Overall conclusions

The HACC device that has been developed was demonstrated to successfully make 

24 hour recordings and then to automatically analyse them effectively and efficiently.

Technologies for objective, portable cough monitoring already exist, although each 

has its disadvantages [See Section 1.2.2.2]. Perhaps the most impressive-sounding 

cough monitor is the Lifeshirt™ developed by Coyle et al. and produced by 

Vivometrics Inc. It boasts high levels of sensitivity and specificity but fails to 

reproduce these quoted figures in real applications. It is relatively invasive and 

constrains the patient to wearing the device, without the potential to remove even for 

bathing, for the entire study. It is also highly expensive. Hiew el al. reported an 

automatic approach to cough monitoring but without the ability to record for 24 

hours . The validation used only sleeping patients and in a study by the same group 

four years later, the automatic processing step had been exchanged for manual 

counting. Another group, Matos et al. developed an automatic cough recognition 

system based on IlMMs, although the sensitivity and specificity figures were not 

impressive . One of the most recently developed systems, by Paul et al. lacked both 

automated analysis and 24 hour recordings47. There is therefore a clear requirement 

for the development of an objective, portable, 24 hour cough monitor along with a 

system for automated analysis.

4.1.4 Reflection

Two of the HACC devices have been sold to Merck (Philadelphia, USA) for use in 

cough suppressant efficacy studies. The recorders are used during induced-cough 

challenges in order to make a permanent record of results for Food and Drug 

Administration (FDA) checks and also to allow manual cough counting for 

independent analysis at a later date. Although the application does not require the use 

of the automatic analysis software, it shows a viable clinical use for the hardware.

In addition, direct comparison studies of the entire HACC system with the Lifeshirt™ 

are to be carried out by Schering-Plough (New Jersey, USA). As IIACC is less- 

invasive, more convenient, cheaper and potentially more accurate than the
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Lifeshirt™, positive results from these studies could result in Schering-Plough using 

the HACC for their drug efficacy clinical trials. The current method of using the 

Lifeshirt™ and having results analysed and compiled by Vivometrics Inc. is 

considered to be too ‘'black-box” for FDA controlled studies. Along with the 

employment of HACC for clinical trials would come FDA approval of the whole 

system for such clinical applications.

The device is not limited to drug efficacy studies. The Hull Cough Clinic, based at 

Castle Hill Hospital, Cottingham, is the world’s leading centre for investigation and 

diagnosis of cough. It is one of only a few specialist cough centres and, as a result, 

patients are referred there from all parts of the U.K. They have a treatment success 

rate of over 90%; with over 70% of patients being treated by anti-reflux therapy for 

GORD related cough. It seems the reason for such a high number of referred GORD 

sufferers is due to frequent misdiagnosis by the patients’ GPs. Unfamiliarity with 

GORD and its symptoms leads to reluctance to diagnose it and results in ineffective 

treatment. Many patients with GORD are instead diagnosed as having asthma and 

waste time and money trying various inhaled medication. In addition, chronic cough 

is associated with severe debilitating effects, and the time lag between the initial GPs 

appointment and the correct diagnosis following referral to the cough clinic can be a 

very traumatic wait. The ideal solution, in order to alleviate the number of patient 

referrals, the time taken for a diagnosis, and the costs of incorrect treatments, is a 

diagnostic package for use by GPs. Thus, the cough monitor could be distributed 

accordingly and software could then process and analyse the results; the characteristic 

patterns of GORD related cough would then be highlighted and therefore aid in 

patient diagnosis. This kind of patient monitoring to assist diagnosis and treatment is 

already employed by some practices in the management of diabetes; patients undergo 

three-day continuous blood-glucose level monitoring by use of a glucose sensor and 

recorder, and then receive advice regarding the use of insulin dependent upon the 

results.

Overall, this work has been successful with the outcome being a usable device for 

acoustic monitoring and a system for the automatic analysis of audio recordings. The

204



Chapter 4 -  Conclusion

desirability of the system is well demonstrated by the interest of pharmaceutical 

companies in using the device for their own clinical trials.

It was considered whether it would be advantageous to produce a system that uses an 

ANN and trains on a series of voluntary coughs at the start of each recording. The 

main problem with this would be that the same wide range of interference would still 

be present and would cause the same problems with recognition. In addition, 

literature has reported that there is a significant acoustic difference between voluntary 

and spontaneous coughs that can be detected by ANNs. Finally, the intended design 

of the system was to be automatic and the process of network training would require a 

degree of operator experience. However, due to the wide range of cough sounds that 

occur, it could be useful to incorporate a feature for automatic updating of the 

network if an unusual cough is encountered. As discussed, this would be unfeasible 

for a non-cough sound, but it would not take a long time to locate the cough sound 

and perform an automatic network update. This could perhaps be the only way to 

approach the problem of being able to classify such a variety of cough sounds into 

one group.

A relatively long time was spent trying to achieve recognition using ANNs without 

ultimate success. Previous work had indicated that ANNs had potential to achieve a 

high level of performance and therefore merited thorough investigation. The work 

carried out to test the ANN’s abilities to separate the real data suggested that it would 

perhaps be advantageous to train the network on a range of information including 

both frequency data and magnitude data such as RMS plots. This suggestion was also 

made following the application of the digital filtering data pre-treatment as a method 

of discriminating between coughs and those sounds that contained very similar 

frequency content. Unfortunately both these conclusions were drawn toward the end 

of the work and time proved to be the limiting factor; it would therefore be a point for 

future study.

4.1.5 Personal development

This work for me was intended as an opportunity to develop my skills and abilities 

and to allow me to enter a new field of work. Having completed a degree in
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analytical chemistry, the move to programming and informatics was indeed a 

challenge, although one which I was keen to accept. A large part of the work has 

involved familiarising myself with Matlab programming language and working 

through the existing methodology in order to understand how it worked; a process 

which was largely self-taught and not an easy task. As a result, the work has not only 

allowed me to develop skills in Matlab and DSP but also several invaluable 

transferable skills. 1 have had the opportunity to travel to Philadelphia to coordinate a 

training course for Merck for the use of the HACC device in their clinical trials. The 

devices were initially only on loan to Merck but it was reassuring to learn that they 

later purchased the devices as a result of their satisfaction. The work has been very 

interesting and feedback from presentations and discussions of the work has been 

very positive; possibly due to the subject being one to which most people can relate.

4.2 Future work

The application of a further classification step following the digital filtering to reduce 

the 11% of incorrectly identified non-coughs would be advantageous. Research into 

the characteristic differences between the coughs and the interfering sounds would 

need to be carried out in order to find potential techniques for recognition. However, 

following the work already carried out, it seems an automatic method to study the 

general patterns to cough such as RMS plots would be an ideal starting point.

The discontinuation of the Sony Hi-MD MZ-RH10 and replacement by an upgraded 

model has called for further development of the device, which therefore allows any 

necessary improvements to be made. Future devices, currently in production, possibly 

would benefit from reverting back to the line-in method of recording, as this was 

shown to possess advantages over the noisier microphone-input.

The automated analysis software requires development into a stand-alone piece of 

software, independent of Matlab, and with a user-friendly front-end for ease of use, in 

order to be able to complete the original aim of creating a diagnostic package for use 

by GPs in treating patients with GORD. The integration of the activity marker results 

and the 24 hour cough summary would be a useful and easily interpretable output.
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Additionally, the system could be designed to perform automatic correlation of 

trigger factors and cough episodes in order to provide an instant diagnosis.
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1 Program code

1.1 Data pre-treatment,

1.1.1 ‘Dataprep’

function [Xtrain,Ytrain,Xval,Yval,caIibindex,validindex] = dataprep(fname) 
% Preparation of data for training network 
% Developed by Samantha Barry' 
global COUGH_

[pname,fname]=fileparts(fname); 
if isempty(pname) 
pname=COUGH_.path; 

end
fname=fullfile(pname,fname);

fnamephn=(fname( 1 :end-4));
extension='.maf;
data='_phn';
fnamephn=[fname, data, extension]; 
if exist (fnamephn) 

load(fnamephn); 
disp('phn loaded') 

end

load(fsname([fname 'j>eaks']),'p');
k=cough(fname);
p=k.p;

% take 1/3 of data for validation
nevents=size(p,2);
reduce=3;

y=zeros( 1 ,(sizefp,2))); 
for i=l:nevents 

y(l,i)=p(i).cough; 
end
% cough and non-cough events are not equal in frequency - need to split up to 
% enable an equal distribution of both events in training and validation sets

% isolating coughs 
coughs=find(y); 
ycough=y(:, coughs); 
xcough=p(:,coughs); 
ncough=length(coughs);

% isolating non-coughs 
noncoughs=find(y==0); 
ynoncough=y(:,noncoughs); 
xnoncough=p(:, noncoughs); 
noncough=length(noncoughs);

% remove chosen validation data to leave training data - coughs! 
xval=xcough(:, I :reduce:ncough); 
yval=ycough(:, 1 :reduce:ncough);

i t
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xtrain=xcough; 
ytrain=ycough; 
xtrain(:,l:reduce:ncough)=[]; 
ytrain(:, I :reduce:ncough)=[];
% do same with indices 
valind=coughs(:,l :reduce:ncough); 
trainind=coughs; 
trainind(:,l :reduce:ncough)=f];

% remove chosen validation data to leave training data - non-coughs
xvalnon=xnoncough(:,l :reduce:noncough);
yvalnon=ynoncough(:,l :reduce:noncough);
xtrainnon=xnoncough;
ytrainnon=ynoncough;
xtrainnon(:,l :reduce:noncough)=[];
ytrainnon(:,l :reduce:noncough)=[];
% do same with indices 
valindnon=moncoughs(:, I :reduce:noncough); 
trainindnon=noncoughs; 
trainindnon(:,l:reduce:noncough)=f];

% performing the features function 
disp('extracting features...')

%whichones=COUGH_.feat.whichones;
std_tresh=COUGH_.features;
%if isa(whichones,'char')
%whichones={whichones};
whichones={'melcepst'};

%whichones={'meIcepst' 'Ipcauto'};

%end
nfeatures=length(whichones);
options=[];
o=getoptions(options);

% perform signal processing on training data 
% choose either just cough data (indices=trainind)
% or just non-cough data (indices=trainindnon)
Xtrain=[];
Ytrain=[];

% decrease size of noncough data to be almost equal to cough data 
a=size(trainind,2); 
b=size(trainindnon,2); 

if b>a
div=(round(b/a)/2);
traincut=trainindnon;
traincut=traincut(l:div:b);

%traincut=traincut'; 
else traincut=trainindnon; 
end

no_rowstr=[];
calibindex=([trainind'; traincut'])'; 
indices=([trainind'; traincut'])';

% calculate features for calibration data 
for i=indices;
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if (get(k,'cough',i)==-l) 
continue 

end

sig=get(k,'peaks_plus',i); 
onlythese=stdsel(sig,std_tresh,'peaks_ plus');

[f]=getfeatures(sig,get(k,'fs'),whichones,nfeatures,onlythese,o);

norovvs=size(f); 
rowsind=[norows i]; 
no_rowstr=[no_rowstr; rowsind];

% Select option...(delete as apt)
%1
[u,s,v]=svd(0; 
loads=(v(:,l .15));

newtrindex=zeros(size(f, 1), 1); 
nsize=size(no_ro\vstr, 1); 
m=l;
for n=l:nsize

if no_rowstr(n,l)=;=l 
newtrindex(m, 1 )=no_rowstr(n,3); 
m=m+l;

elseif no_rowstr(n,l)>l 
dupl=no_rowstr(n,l);
newtrindex(m:(m+dupl)-1,1 )=no_rowstr(n,3); 
m=m+dupl; 

end 
end
%2

data = f*f;
[u,s,v]=svd(data);
s=sqrt(s);
%[u,s,v]=svd(0;
%loads=[(v( 1,1:15).*s( 1,1)) (v(2,l :15).*s(2,2)) (v(3,l:15).*s(3,3))]; 
loads=[(v( 1,1:15).*s(l, 1)) (v(2,1:15).*s(2,2)) (v(3,1:15).*s(3,3)) (v(4,1:15).*s(4,4))]; 
%loads=[(v( 1,1:15).*s(U )) (v(2,1:15).*s(2,2)) (v(3,1:15).*s(3,3)) (v(4,1:15).*s(4,4))]; 
%loads=[(v( 1,1:15).*s( 1,1)) (v(2,1:15).*s(2,2)) (v(3,1:15).*s(3,3)) (v(4,1:15).*s(4,4)) 

%(v(5,l:15).*s(5,5))];
%loads=[(v(l, 1:15).*s(l ,1)) (v(2,1:15).*s(2,2)) (v(3,1:15).*s(3,3)) (v(4,1:15).*s(4,4)) 

%(v(5,1:15).*s(5,5)) (v(6,l :15).*s(6,6))];
%if size(f,l)>2
% load—[(v( 1,1:15).*s( 1,1)) (v(2,1:15).*s(2,2)) (v(3,1:15).*s(3,3))];
%elseif size(f, 1 )==2
% load=[(v( 1,1:15).*s( 1,1)) (v(2,1:15).*s(2,2)) (v(2.1:15).*s(2,2))];
%else load=[(v( 1,1:15) *s( 1,1)) (v( 1,1:15).*s( 1,1)) (v( 1,1:15).*s( 1,1))];
% end

%load=(v( 1,1:20).*s( 1,1));

Xtrain=[Xtrain; loads];
Ytrain=[Ytrain; get(k,'cough',i)*ones(size(f,l),!)];

if p(i).cough==l 
type='cough'; 

else
type='noncough';

end
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end

% perform signal processing on validation data 
% choose either just cough data (indices=valind)
% or just non-cough data (indices=valindnon)

X val=[] ;
Yval=[];
%valindex=[];

% increase size of cough data to be almost equal to non-cough data
a=size(valind,2);
b=size(valindnon,2);

if b>a
div=(round(b/a)/2); 
valcut=valindnon'; 
valcut=valcut(l:div:b); 
valcut=valcut'; 

else valcut=valindnon; 
end

no_rowsva=[];
validindex=([valind'; valcut'])'; 
indices=([valind'; valcut'])';
%indices=valind;
% calculate features for validation data 
for Hndices;

if (get(k,'cough',i)==-l) 
continue 

end

sig=get(k,'peaks_plus',i);
onlythese=stdseI(sig,std_tresh,'peaks_plus');

[f,g]=getfeatures(sig,get(k,’fs'),\vhichones,nfeatures,onlythese,o);
norows=size(0;
rowsind=[norows i];
no_rowsva=[no_rowsva; rowsind];

% Select option...(delete as apt)
%1
[u,s,v]=svd(0;
loads=(v(:,l:15));

newvalindex=zeros(size(f, 1 ), 1 ); 
nsize=size(no_ro\vstr, 1 ); 
m = l  ;

for n=l :nsize
if no_rowstr(n, 1 )==1 

newvalindex(m, 1 )=no_ro\vstr(n,3); 
m=m+l;

elseif no_rowstr(n,l)>l 
dupl=no_rowstr(n,I);
newvalindex(m:(m+dupl)-],l)=no_rowstr(n,3);
m=m+dupl;

end
end
%2

v



Appendix A

data = f  *f;
|u,s,v]=svd(data);
s=sqrt(s);
%loads=[(v( 1,1:15).*s(l,1)) (v(2,1:15).*s(2,2)) (v(3,1:15).*s(3,3))];
loads=[(v( 1,1:15).*s( 1,1)) (v(2,1:15).*s(2,2)) (v(3,1:15).*s(3,3)) (v(4,1:15).*s(4,4))];
%loads=[(v(l, 1:10).*s(l ,1)) (v(2,1:10).*s(2,2)) (v(3,1:10).*s(3,3)) (v(4,1:10).*s(4,4))];

%Ioads=[(v( 1,1:15).*s( 1,1)) (v(2,l :15).*s(2,2)) (v(3,l:15).*s(3,3)) (v(4,l :15).*s(4,4)) 
%(v(5,l: 15).*s(5,5))];

%loads=[(v( 1,1:15).*s( 1,1)) (v(2,l: 15).*s(2,2)) (v(3,1:15).*s(3,3)) (v(4,1:15).*s(4,4)) 
%(v(5,l: 15).*s(5,5)) (v(6,l: 15).*s(6,6))];

%if size(f,l)>2
% load=[(v( 1,1:15).*s( 1,1)) (v(2,1:15).*s(2,2)) (v(3,l: 15).*s(3,3))];
%elseif size(f,l)==2
% load=[(v(l,l:15).*s(l,l)) (v(2,1:15).*s(2,2)) (v(2,1:15).*s(2,2))];
%else load=[(v( 1,1:15).*s( 1,1)) (v(l, 1:15).*s(l, 1)) (v(1,1:15).*s(l, 1))];
% end

%load=(v( 1,1:20).*s( 1,1));

Xval=[Xval; loads];
Yval=[Yval; get(k,'cough',i)*ones(size(f, 1), 1)]; 

end

function options = getoptions(opts)
% GETOPTIONS -
% Usage: options = getoptions(opts)
% Created: MonJul23 15:17:56 2001 
% Update: Fri Nov 09 14:04:00 2001 
% Author: Adrie Dane 
global COUGH_

options=COUGH_.feat.options;

for i=l:2:length(opts),
options=setfield(options,opts{ i} ,opts{ i+1}); 

end

1.1.2 Correlation coefficients

f=getfeatures(sig,get(k,'fs'),whichones,nfeatures,onlythese,o);
correl=corrcoef(0; 
correlrow=[]; 
for r= 1:20

correlrow=[correlro\v correl(r, 1:20)]; 
end

Xtrain=[Xtrain; correlrow];
Ytrain=[Ytrain; get(k,'cough',i)];

%To divide the matrix of correlation coefficients:

f=getfeatures(sig,get(k,'fs'),whichones,nfeatures,onlythese,o);
f(:,16:42)=[];
correl=corrcoef(0;
correlrow=[];
line=[];
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norows=size(correI, 1); 
for r=l :norows

line=correl(r,l :(noro\vs-r)); 
corre!row=[correlrow line]; 

end

Xtrain=[Xtrain; correlrow]; 
Ytrain=[Ytrain; get(k,'cough',i)];

1.1.3 HOSA

Fs=44100; 
sizey=size(y,l); 
x=(y-mean(y))/std(y); 
figno(l) = gef;
subplot(211), plot(( 1 :sizey)* 1000/Fs, x), grid on
xlabel('time in ms')
title('cough() data’)
subplot(212), hist(x,20),
info=[];
fprintf('\n Data and histogram plotted in figure window\n'); 
disp(' The marginal distribution does not appear to be symmetric')
fprintf('\n-----  Summary stats \n');
fprintff Mean %g\n',mean(y));
fprintfC Variance %g\n',std(y).A2 );
fprintf(’ Skewness (normalized) %g\n', mean(x.A3 )); 
fprintfC Kurtosis (normalized) %g\n\n', mean(x.A4) - 3);

avg=mean(y); 
var=std(y).A2; 
skew=mean(x.A3); 
kurt= mean(x.A4) - 3; 
info=[avg; var;skew;kurt]; 
figure

figno(length(figno)+l) = gef;
[spx, f,t] = speegram (x, 512, Fs, hamming(256), 240); 
contour(t’f1000,f,abs(spx),8), grid on 
xlabel('time in ms1), ylabel('frequency in Hz'), 
set(gcf,'Name','speech spectrogram') 
set(gca,'ylim',[0 6000]);

figure, [pxx,a2_l,a2_2] = harmest(x,25,0,'biased',512,2); 
figno(!ength(figno)+l) = gef; 
set(gcf,'Name','speech: power spectra')

figure, [pxx,a4_l,a4_2] = harmest(x,25,0,'biased',512,4);
figno(length(figno)+f) = gef;
set(gcf,'Name','speech: cumulant spectra')

r2_l=roots(a2_l);
r2_2=roots(a2_2);
r4_l=roots(a4_l);
r4_2=roots(a4_2);

[sg, sl]=glstat(x,.51,256);

info=[info; sg; si];
[Bs,w]=bispecd( x, 256, 0, 100, 0);
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figure,
contour(w,w,abs(Bs),4), grid on 

title('Bispectrum estimated via the direct (FFT) method') 
xlabel('fl'), ylabel('f2') 
set(gcf,'Name','sound: bispectrum') 
figno(length(figno)+l) = gcf;

figure,
d=diag(Bs);
plot(w,abs(d)), grid on
figno(length(figno)+l) = gcf;
set(gcf,'Name','sound: diagonal slice of bispectrum')

[loc,val]=pickpeak(d,3,5); 
disp( w(loc)' )

figure,
ar=qpctor(x,25,10,256,100,0,'biased'); 
set(gcf,'Name','sound: QPC detection') 
figno(length(figno)+l) = gcf;

figure
kffl = 2048;
Xf = fft(x,kfft);
Xf = Xf(l :kfft/2); 
if (exist('lf) ~= 1) If = 5; end 
for k=l:4 
L=fix(kfft/(2*k));
S = Xf(l:L).Ak .* conj( Xf(l:k:k*L));
S = abs ( filter(ones(lf,l), 1, S ));
cval(['S' int2str(k)' = S;']);
eval(['subplot(22', int2str(k), ’)'])
w = [l:(L -l)]/k fft* F s;
semilogy(w, S(2:L)), %avoid DC
a= axis; axis([0, round(40/k)*100, a(3), a(4) ]);
ylabel(int2str(k))
txtl = [ 'CX(f) .* X(' int2str(k) 'O' ]; 
eval(['title (txtl)']) 
grid on 

end
figno(length(figno)+l) = gcf;

1.2 Neural Networks

1.2.1 Creation and training of neural networks

1.2.1.1 Learning vector quantisation network, 7vqneV

function [varargout] = lvqnet(fname)
% Network train function 
% Developed by Samantha Barry 
global COUGH_

[pname,fname]=fileparts(fname); 
if isempty(pname) 
pname=COUGH_.path; 

end
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fhame=fullfile(pnaine,fnarne);

fnamephn=(fname( 1 :end-4));
extension='.mat';
data='_phn';
fnamephn=[friame, data, extension]; 
if exist (fnamephn) 

load(fnamephn); 
disp('phn loaded') 

end

if exist(fsname([fname '_XY.mat']),'file') 
load(fsname([fname 'XY.mat'])); 
disp('XY loaded') 

end

if exist(fsname([fname ' peaks.mat']),'file') 
load(fsname([fname ' peaks.mat'])); 
disp('peaks loaded') 

end

[Xcalib, Ycalib,Xvalid,Y valid,calibindex,validindex]=dataprep(fname);

% create a two-column matrix to describe coughs and non-coughs 
nrows=size(Ycalib,l); 

matrix=zeros(nrows,2); 
for i=l :nrows

ifYcalib(i,;)==l %cough 
matrix(i,l)=l;

elseif Ycalib(i,:)=0 %non-cough 
matrix(i,2)=l; 

end 
end
Ycalibmat=matrix;
“/¿column 1 = cough, column 2 - non-cough

extension-.mat'; 
data='_info';
fnameinfo=[fname, data, extension];

%Set to 0 if creating new network or I to re-train existing 
cont=l;

dispfLoading Linear Vector Quantisation neural network...')
% if network doesn't exist, create

if cont==0
save (fnameinfo,'Xcalib','Ycalib’,'Xvalid','Yvalid','Ycalibmat'); 

clear net
fprintf('No nelwork\n Creating new neural network\n') 
net=network;
net=newlvq(minmax(Xcalib'),6,[.5 .5]); 
net.trainFcn='trainr';

save coughnet net;
cont=l;
run=0;
save fnameinfo run
save (fnameinfo,'coni','run','XcaIib',’Ycalib','Xvalid','Yvalid','Ycalibmat'); 
[Y,E,perf]=sim(net,Xcalib');
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else disp('Training existing neural network') 
while cont==l 

load fnameinfo run; 
run=[run+l];
fprintf(['Run %d of network training\n'],run)

save fnameinfo run

load('coughnet');
%[net,tr,Yout,Er]=adapt(net,Xcalib',Ycalib', [],[]);
net.trainFcn='trainr';
net.trainParam.epochs= 100;

[net,tr,Y,err]=train(net,Xcalib’,Ycalibmat');

err=mse(err);
fprintf(['Training error: %3.4f\n'],err)

% validate network 
disp(['Validating network'])
[Ypredic]=sim(net,Xvalid');
pred=Ypredic';
% condense the event information back down to one column of zeros for non-coughs and 
% ones for coughs

%column 1 = cough, column 2 - non-cough 
nrows=size(pred,l);

Y pred=zeros(nrows, 1 ); 
for j=l :nrows

if pred(j,l)==l %cough 
Ypred(j,I)=l;

elseif pred(j,2)==l %non-cough 
Ypred(j,l)=0; 

end 
end

%compile indexed list of predictions and actual coughs to compare 
sizeval=size( Y valid, 1 ); 
result=[Yvalid Ypred]; 
corrcct=zeros(sizeval, I ); 
for i=l:sizeval 
if result(i,l)==result(i,2) 
correct(i,l)=l; 
else 
end 
end
numcorr=find(correct); 
num_correct=size(numcorr, 1 ); 
num=find(Yvalid); 
totalcough=size(num,l); 
totalnoncough=sizeval-totalcough;

%compare actual coughs with predicted coughs to get a COUGH validation
%accuracy
truecough=[];
for i=l:(size(result,l))
true=find(result(i, 1 )== 1 )&(result(i, 1 )=—result(i,2)); 
if true==l
truecouglr-[truecough; true];
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end
end
cough_correct=size(truecough, 1 ); 
totalall=nrows;

%compare actual non-coughs with predicted non-coughs to get a NONCOUGH validation
“/(¡accuracy
truenoncough=[];
for i=l :(size(result,l))
truenon=find(result(i,l)==0)&(result(i,l)==result(i,2)); 
if truenon==l
truenoncough=[truenoncough; truenon];
end
end
noncough_correct=size(truenoncough, 1 );

fprintf('Cough validation accuracy: %d out of %d classified correctly\n', 
cough_correct,totalcough) 

perc_correct=(100/totalcough)*cough_correct; 
perc_incorrectc=( 1O0/totalcough)*(totalcough-cough_correct); 
fprintf('%2.2f %% classified correctin',perc_correct) 
load fnameinfo
save(fnameinfo,'run','conf ,'Xcalib','Ycalib','X valid','Yvalid','Ycalibmat');

fprintf('Non-Cough validation accuracy: %d out of %d classified correctin ', 
noncough_correct,totalnoncough) 

perc_correct=(100/totalnoncough)*noncough_correct; 
perc_incorrect=(100/totalnoncough)*(totalnoncough-noncough_correct); 
fprintf('%2.2f %% classified correctin',perccorrect)

fprintf('Validation accuracy: %d out of %d classified correctly\n', num correct, totalall)
perc_correct=(100/totalall)*num_correct;
perc_incorrect=( 100/totalall)*(totalall-num_correct);
fprintf('%2,2f %% classified correctin',perc correct)

if perc_correct==100
disp('Validation error maximum reached... training stopped and network saved...') 
cont=[];
save(fnameinfo,'run','cont','Xcalib','Ycalib','Xvalid','Yvalid’,'Ycalibmat'); 
save coughnet net 
break 

end
% compare current validation error to previous error 
if ~exist('error','var') 

error=perc incorrecte; 
cont= 1 ;
save(fnameinfo,'run','cont','error','Xcalib','Ycalib','X valid','Yvalid','Ycalibmat'); 
save coughnet net 

elseif perc_incorrectc<error 
error=perc_incorrectc; 
save coughnet net

disp('Validation error smaller than previous run, training continues...') 
cont=l ;
saveffnameinfo,'error','run','conf,'Xcalib','Ycalib','X valid','Y valid','Ycalibmat'); 
save coughnet net 

elseif perc_incorrectc==error 
error=perc incorrecte; 
save coughnet net

comm = input('Validation error equal to previous run, press "y" for training to continue or "n" to 
stop..An','s');
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if comm == y 
dispfTraining continues...') 

cont=l ;
save(fnameinfo,'error','run','cont','XcalibVYcalib','Xvalid','Yvalid','Ycalibmat'); 
save coughnet net 
elseif comm == 'n'

disp('Network saved, training stopped...') 
cont=[];
save(fnameinfo,'error','run','cont','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat'); 
end

elseif perc_incorrectc>error
%do not save...revert back to last saved network
disp('Validation error increased... training stopped and previous network saved...') 
cont=[];
save(fnameinfo,'error','run','cont','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat');

end
end
end

disp('neural network training complete')

1.2.1.2 Feedforward neural network, ffnet ’

function [varargoutj = ffnet(fname)
% Network train function 
% Developed by Samantha Barry 
global COUGH_

[pname,fname]=fileparts(fname); 
if isempty(pname) 
pname=COUGH_.path; 

end
fname=fullfile(pname,fname);

fnamephn=(fname( 1 :end-4));
extension='.mat';
data-_phn';
fnamephn=[fname, data, extension]; 
if exist (fnamephn) 

load(fnamephn); 
dispCphn loaded') 

end

if exist(fsname([fname '_XY.mat']),''file') 
load(fsname([fname ' XY.mat'])); 
disp('XY loaded') 

end

if exist(fsname([fname ' peaks.mat']),Tde') 
load(fsname([fname ' peaks.mat'])); 
disp(’peaks loaded') 

end

[Xcalib,Ycalib,Xval id,Yvalid,calibindex,validindex]=dataprep(fname);

% create a two-column matrix to describe coughs and non-coughs 
nrows=size(Ycalib,l); 

matrix=zeros(nrows,2);
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for i=l:nrows
ifYcalib(i,:)==l %cough 

matrix(i,l)=l;
elseifYcalib(i,:)==0 %non-cough 

matrix(i,2)=l; 
end 

end
Ycalibmat=matrix;
%column 1 = cough, column 2 - non-cough

% change 0 (non-cough) to values of -1 
for n=l:nrows 

if Ycalib(n,l)==0 
Ycalib(n,l)=-1; 

end 
end

extension-.mat'; 
data='_info';
fnameinfo=[fname, data, extension];

%Set to 0 if creating new network or 1 to re-train existing 
cont=l;

disp('Loading Feed Forward neural network...') 
if cont==0

save (fnameinfo,'Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat'); 
clear net
fprintf('No network\n Creating new neural network\n')

%create network 
S1 =6;
S2=4;
[R,Q]=size(Xcalib');
[S3,Q]=size(Ycalib');
P=Xcalib';
net=newff(minmax(P),[Sl,S2,S3],{'tansig','logsig','tansig'},'traingd','learngdm');
%net=init(net);

save coughnet net 
run=0;
save fnameinfo run
save (fnameinfo,'cont','run','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat');

else disp('Training existing neural network') 
while cont— 1 

load fnameinfo run; 
run=[run+l];
fprintf(['Run %d of network training\n'],run)

save fnameinfo run

load('coughnet');

%train network without noise 
S I  =6;
S2=4;
[R,Q]=size(Xcalib');
[S3 ,Q]—size(Y cal ib');
P=Xcalib';
T=Ycalib';
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net.performFcn-nisereg';
net.performParam.ratio=0.5;
net.trainParam.goal=le-5;
net.trainParam.show= 100;
net.trainParam.epochs= 1000;
net.trainParam.mc=0.95;
%learnParam.lr=0.05;

[net,tr,outs,e]=train(net,P,T);

err=mse(e);
fprintf([’Training error: %3.4f\n'],err)

%simulate network
disp(['Validating network'])

result=zeros((size(Xvalid,l)),l); 
for s=l :(size(Xvalid, 1 )) 

test=Xvalid(s,:); 
out=sim(net,test'); 
if ( 1 -out)> 1 

answer=-l ; 
else

answer=l;
end

if answer==l 
result(s,l)=l; 

else
result(s,l)=0;

end
end

% condense the event information back down to one column of zeros for non-coughs and 
% ones for coughs

%column 1 = cough, column 2 - non-cough 
%nrows=size(result, I );

%Ypred=zeros(nrows, 1 );
%for j=l:nrows 
% if result(j, 1 )=—1 %cough
% Ypred(j,l)-1;
% elseifresult(j, 1 )=—0 %non-cough

% Ypred(j,l)=0;
% end 
% end 

Ypred=result;
%compile indexed list of predictions and actual coughs to compare
sizeval=size( Y valid, 1 );
output=[Yvalid Ypred];
correct=zeros(sizeval, 1 );
for i=l :sizeval
if output(i,l)==output(i,2)
correct(i,l)=l ;
else
end
end
numcorr=find(correct); 
num_correct=size(numcorr, 1 ); 
num=find(Yvalid);
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totalcough=size(num,l);
totalnoncough=sizeval-totalcough;

%compare actual coughs with predicted coughs to get a COUGH validation 
“/(¡accuracy 
truecough=[]; 
for i==l :(size(output, 1 ))
true=find(output(i, 1 )== 1 )&(output(i, 1 )==output(i,2)); 
if true==l
truecough=[truecough; true];
end
end
cough_correct=size(truecough, I ); 
totalall=nrows;

%compare actual non-coughs with predicted non-coughs to get a COUGH validation
“/(¡accuracy
truenoncough=[];
for i=1 :(size(output, 1 ))
trucnon=find(output(i, 1 )==0)&(output(i, 1 )==output(i,2)); 
if truenon==l
truenoncough=[truenoncough; truenon];
end
end
noncough_correct=size(truenoncough, 1 );

fprintf('Cough validation accuracy: %d out of %d classified correctly\n', 
cough_correct,totalcough) 

perc_correct=(100/totalcough)*cough_correct; 
perc _incorrectc=( 100/totalcough)*(totalcough-cough_correct); 
fprintf('%2.2f %% classified correctin',perc correct) 
load fnameinfo
save(fnameinfo,'run','cont','Xcalib','Ycalib','X valid','Yvalid','Ycalibmat');

fprintf('Non-Cough validation accuracy: %d out of %d classified correctin ', 
noncough_correct,totalnoncough) 

perc_correct=(100/totalnoncough)*noncough_correct; 
perc_incorrect=(IOO/totalnoncough)’|,(totalnoncough-noncough_correct); 
fprintf('%2.2f %% classified correct ly\n',perc_correct)

fprintf('Validation accuracy: %d out of%d classified correctly\n', numcorreet, totalall) 
perc_correct=(100/totalall)*num correct; 
perc_incorrect=(100/totalall)*(totalall-num_correct); 
fprintf('%2.2f %% classified correctin',perc_correct)

if perc_correct==l 00
disp('Validation error maximum reached... training stopped and network saved...') 
cont=[];
save(fnameinfo,'run1,'cont','Xcalib','Ycalib','X valid','Y valid','Ycalibmat'); 
save coughnet net 
break 

end
% compare current validation error to previous error 
if ~exist('error','var') 

error=perc_incorrectc; 
cont=l;
save(fnameinfo,'run','cont','error','Xcalib','Ycalib','Xvalid','Y valid','Ycalibmat'); 
save coughnet net 

elseif perc_incorrectc<error 
error=perc_incorrectc;
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save coughnet net
disp('Validation error smaller than previous run, training continues...') 
cont=l;
save(fnameinfo,'error','run','cont','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat'); 
save coughnet net 
%elseif perc_incorrcctc==error 

%error=perc_incorrectc;
%save coughnet net

% comm = input('Validation error equal to previous run, press "y" for training to continue or "n" 
to stop..An','s');
% if comm == y  
% disp('Training continues...')
% cont=l;
% save(fiiameinfo,'error','run','cont','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat');
% save coughnet net 
% elseif comm == 'n'

% disp('Network saved, training stopped...')
% cont=[];
% save(fnameinfo,'error','run','cont','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat');
% end
elseif perc_incorrect>error

%do not save... re vert back to last saved network
disp('Validation error increased... training stopped and previous network saved...') 
cont=[];
save( fnameinfo,'error','run','cont','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat');

end
end
end

dispCneural network training complete')

1.2.1.3 Probabilistic neural network, ‘pnnet ’

function [varargout] = pnnet(fname)
% Network train function 
% Developed by Samantha Barry 
global COUGH_

[pname,fname]=fi!eparts(fname); 
if isempty(pname) 
pname=COUGH_.path; 

end
fname=fullfile(pname,fname);

fnamephn=(fname( 1 :end-4));
extension='.mat';
data-_phn';
fnamephn=[fname, data, extension]; 
if exist (fnamephn) 

load(fnamephn); 
disp('phn loaded') 

end

if exist(fsname([fname '_XY.mat']),1'file') 
load(fsname([fname ' XY.mat'])); 
disp('XY loaded') 

end
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if exist(fsname([fname ' peaks.mat']),'file') 
load(fsname([fname ' peaks.mat'])); 
disp('peaks loaded') 

end

[Xcalib,Ycalib,X valid, Yval id, Xall,Yall,calibindex,validindex,allindex]=dataprep(fname); 

%XcaIib(:,16:42)=Q;
% create a vector of ones and twos describe coughs and non-coughs
% respectively
for i=l :size(Ycalib,l)
if Ycalib(i,l)==l
Ycalib(i,l)=2;
elseif Ycalib(i, 1 )==0
Ycalib(i,l)=l;
end
end

Ycalibmat=ind2vec(Ycalib);

extension='.mat';
data-_info’;
fnameinfo=[fname, data, extension];

disp('Loading probabilistic neural network...')
% if network doesn't exist, create

save (fhameinfo,'Xcalib','Ycalib','Xvalid','Yvalid1,'Ycalibmat'); 
clear net

fprintf('No network\n Creating new neural network\n') 
net=network;
net=newpnn(Xcalib',Ycalibmat,0.1);

save coughnet net;
cont=l;
run=0;
save fnameinfo run
save (fnameinfo,'cont','run','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat'); 
[Y,E,perf]=sim(net,Xcalib');
%plot(Xcalib',Ycalib','b-',Xcalib',Y,'r-+'),title('Initial outputs versus targets');

disp('Training existing neural network') 
while cont==l 

load fnameinfo run; 
run=[run+l];
fprintf(['Run %d of network training\n'],run)

%save(fnameinfo,'run','cont','Xcalib','Ycalib'.'X valid','Yvalid','Ycalibmat','traindex','valindex'); 
save fnameinfo run

load('coughnel');
%[net,tr,Yout,Er]=adapt(net,Xcalib', Ycalib',[],[]);

net.trainParam.epochs= 100;

[net,tr,Y,err]=train(net,Xcalib', Ycalibmat');
%save coughnet net

err=mse(err);
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fprinti'(['Training error: %3.4i\n'],err)

% validate network 
disp(['Validating network']) 
fYpredic]=sim(net,Xvalid'); 
pred=Ypredic';
% condense the event information back down to one column of zeros for non-coughs and 
% ones for coughs

%column 1 = cough, column 2 - non-cough 
nrows=size(pred,l);

Ypred=zeros(nrows,l); 
for j=l rnrows

ifpred(j,l)==l %cough 
Y pred(j, 1 )= 1 ;

elseifpred(j,2)==l %non-cough 
Ypred(J,l)=0; 

end 
end

“/(.compile indexed list of predictions and actual coughs to compare 
sizeval=size(Y valid, 1 ); 
result=[Yvalid Ypred]; 
correct=zeros(sizeval, 1 ); 
for i=l isizeval 
if result(i, 1 )==result(i,2) 
correct(i, 1 )= 1 ; 
else 
end 
end
numcorr=flnd(correct); 
num_correct=size(numcorr, 1 ); 
num=find(Yvalid); 
totalcough=size(num, I ); 
totalnoncough=sizeval-totalcough;

%compare actual coughs with predicted coughs to get a COUGH validation
%accuracy
truecough=[];
for i=1 :(size(resuIt, 1))
true=find(result(i, 1 )==1 )&(result(i, 1 )==result(i,2)); 
if true==l
truecough=[truecough; true];
end
end
cough_correct=size(truecough, 1); 
totalall=nrows;

“/(.compare actual non-coughs with predicted non-coughs to get a COUGH validation
%accuracy
truenoncough=[];
for i=l :(size(result,l))
truenon=find(result(i,l)==0)&(result(i,l)==result(i,2)); 
if truenon==l
truenoncough=[truenoncough; truenon];
end
end
noncough_correct=size(truenoncough, 1);
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fprintf('Cough validation accuracy: %d out of %d classified correctly\n', 
cough_correct,totalcough) 

perc_correct=(100/totalcough)*cough_correct; 
perc_incorrect=(100/totalcough)*(totalcough-cough_correct); 
fprintf('%2.2f %% classified correctin',perccorrect) 
load fnanieinfo
save)fnameinfo,'run','conf,'Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat');

fprintf('Non-Cough validation accuracy: %d out of %d classified correctly\n', 
noncough_correct,totalnoncough) 

perc_correct=(100/totalnoncough)*noncough_correct; 
perc_incorrect=(100/totalnoncough)*(totalnoncough-noncough_correct); 
fprintf('%2.2f%% classified correctin',perccorrect)

fprintf('Validation accuracy: %d out of %d classified correctin ', numcorrect, totalall) 
perc_correct=(100/totalall)'l‘num_correct; 
perc_incorrect=(100/totalall)*(totalall-num_correct); 
fprintf('%2.2f %% classified correctly\n',perc_correct)

if perc_correct==l 00
disp('Validation error maximum reached... training stopped and network saved...') 
cont=[];
save(fnameinfo,'run',’cont','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat'); 
save coughnet net 
break 

end
% compare current validation error to previous error 
if ~exist('error','var') 

error=perc_incorrect; 
cont=l ;
save(fnameinfo,'run','cont','error','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat'); 
save coughnet net 

elseif perc_incorrect<error 
error=perc_incorrect; 
save coughnet net

disp('Validation error smaller than previous run, training continues...’) 
cont=l;
save(fnameinfo,'error','run','cont','XcalibYYcalib','Xvalid','Y valid','Ycalibmat'); 
save coughnet net 

elseif perc_ incorrect==error 
error=perc_incorrect; 
save coughnet net

comm = input('Validation error equal to previous run, press "y" for training to continue or "n" to 
stop...\n','s'); 

if comm == 'y' 
disp('Training continues...') 

cont= 1 ;
save(fnameinfo,'error','run','cont','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat'); 
save coughnet net 
elseif comm == 'n'

disp('Network saved, training stopped...') 
cont=[];
save(fnameinfo,'error','run','cont','Xcalib','Ycalib','Xvalid','Y valid','Ycalibmat'); 
end

elseif perc_incorrect>error 
%do not save...revert back to last saved network
disp('Validation error increased... training stopped and previous network saved...') 
cont=[];
save(fnameinfo,'error','run','cont','Xcalib','Ycalib','Xvalid','Yvalid','Ycalibmat');

xtx



Appendix A

end
end

disp('neiiral network training complete')

1.2.2 Implementation of trained neural network

1.2.2.1 ‘Netprocess ’

function varargout = netprocess(varargin)
% Initiation of neural network processing 
% Created by Samantha Barry

global COUGI L  
cdefault;

nargs=length(varargin); 
if (nargs<l) 
cd(COUGH.path);

[filename,pathname]=uigetfile({"l‘.wav')'All WAVE-Files (*.wav)'},...
'Select WAVE File’);

% If "Cancel" is selected then return 
if isequal([fllename,pathname],[0,0]) 
return 

else
% cd(pathname);

filename=fullfile(pathname, filename); 
end
elseif (nargs==l)

filename=fullfiIe(COUGH_.path,varargin{ 1}); 
end

fname=filename;
COUGH_.feat.options.nclasses=2;
reduce=l;
lastchunk=0;
overcount=0;
save(fsname([filante '_fc']),'lastchunk','overcount');

%load(fname)
for mn=l :10 % max number of files since 8 portions of 3 hours in a 24 hour recording
str=num2str(mn);
file=(fname);
extension-.wav';
under='_';
filename=[file, under, str]; 
more=[];
if exist(fsname([filename])) 

next=mn+l ; 
next=num2str(next); 
nextlile=[flle, under, next]; 
stop=0;
if exist('nextfile','file') 

more=l ; 
else

more=0;
end

elseif exist(fsname([file])) 
stop=0;
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more=0;
else

stop=l;
end
if stop~=l
k=cough(filename); 
fnamexy=[fsname(file) '_XY'];
save(fsname([filename '_fc']),'more','lastchunk','overcount');

[x,y,p]=features(k, filename,''halfheight'); 
save(fsname([fname ' peaks']),'p'); 
save(fsname([fname '_XY.mat']),'x','y'); 
else 
return 
end 

end

1.2.2.2 ‘Features'

function [X,Y,p] = features(k,fname,std_tresh,whichones,options)
% FEATURES 
global COUGH_

[pname,fname]=fileparts(fname); 
if isernpty(pname) 
pname=COUGH_.path; 

end
fname=fullftle(pname,fname); 

load(fsname([fname '_fc']));
load(fsname([fname '_fc']),'more','lastchunk','overcount');

options—{'indices’ i}; 
o=getoptions(options);

if nargin<4 | isempty(whichones) 
%whichones=COUGH_.feat.whichones; 

whichones={'melcepst'}; 
end

if nargin<3
std_tresh=COUGH_.features;

end

if isa(whichones,'char')
%whichones={whichones};

whichones={'melcepst'};
end

p=k.p;
%% Addition to split up the wave file into manageable chunks 05/0ct/05

totnumber=[];
mins=15;
chops=mins*l 1025*60; % convert ms to indices
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pends=[]; 
pstarts=[]; 
plengths=[]; 
max=size(p,2); 
lastend=1; 
saveend=0; 
for w=l :max 

starts=p(w).start; 
pstarts=[pstarts; starts]; 
ends=p(w).end; 
pends=[pends; ends]; 
length=p(w). length; 
plengths=[plengths; length]; 

end

a=auin(fname);

if chops>(p(end).end);
filechops=[l a.length]; 

else filechops=[l:chops:a.length a.length]; 
end

ftlechops=filechops'; 
numch=size(filechops, 1);

% correct for lastchunk overlap by making first chunk smaller 
if lastchunk~=0
correct=ones(size(filechops, 1), 1);
correct=(correct.* lastchunk);
corrected=filechops(2;end)-correct(2:end);
filechops=[l; corrected];
marker=l;
else marker=0;
end

alength=a. length;
save(fsname([fname '_fc']),'alength','more','lastchunk','overcount','plengths');

lastpeak=0;
%create array of chop information 
if numch>l 

for ch=2:numch
[peak,no,indvalue]=findnearest(filechops(ch),pstarts,-l);

fc(ch-l ).firststart=p(lastpeak+l).start; 
fc(ch-1 ).firstend=p(lastpeak+1 ).end; 
fc(ch-l).laststart=p(peak). start; 
fc(ch-l).lastend=p(peak).end;

fc(ch-1 ).peak=(peak);

lastpeak=peak;
end

elseif numch==l 
fc(l).start=p(l).start; 
fc(l).end=p(end).end;
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fc( 1 ).peak=size(pstarts, I); 
ch=ch+l; 

end

endchunk(l)=0; 
for z=l:(size(fc,2));

endchunk(z+l)=fc(z).peak;
end

for j=l:(endchunk(end)) 
p(j).nnpred=0; 
p(j).fraction=0; 

end

nfeatures=length(vvhichones);

X=[];
Y=[];

Ypred=k;

extension-.mat'; 
data='_pca';
fnamepca=[fname, data, extension]; 

load fnamepca newload 
ind ices=[ 1 :get(k,'npeaks')]; 
nind=length(i nd ices);

d=l;
while d<size(endchunk,2)
for i=(endchunk(d)+l ):endchunk(d+l)

[X,Y]=features(Ypred,[],[],{'indices' i});

Xpca=X*newload; 
load ('coughnet');

[pred]=sim(net,Xpca');
pred=pred';
%column 1 = cough, column 2 - non-cough 
nrows=size(pred,l);

Ypredict=zeros(nrows,l); 
for m=l:nrows

ifpred(m,l)==l %cough 
Ypredict(m,l)=l; 
elseif pred(m,2)==l %non-cough 
Ypredict(m,l)=0; 

end 
end

p(i).fraction=mean(Ypredict);
p(i).nnpred=p(i).fraction>0.5;

np=size(p(i).p,l);

for j=l:np,
%p(i).pG,4)=mean(Ypredict(p{i).pG,l):p(i).p(j,2))); 
P(0-P(j,4)=p(i).fraction;
p(i).pG,6)=p(i).pG,2)-p(i).pG,i)+i;

end
if p(i)p(:,4)>0.5;
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p(i).p(:,5)=l; 
else p(i).p(:,5)=0; 
end

if p(i).nnpred==l 
p(i).cough=l; 
else p(i).cough=0; 
end

Y pred=set( Y pred,'p',p); 
save([fsname(get(Ypred,'file')) ' peaks'],'p');

% check coughs over 1 sec long are not double coughs 
a=auin(fname);

cs=zeros( 1 ,(size(p,2))); 
for d=l:size(p,2) 
cs(l,d)=p(d).cough; 
end

coughs=find(cs);
cp=p(coughs);

coughtime=ones(size(cp,2), 1); 
for h=l:size(cp,2) 
coughtime(h)=cp(h).length; 
end

long=find(coughtime> 11025);

if isempty(long)
%continue

else lstart=p(long).start; 
lend=p(long).end; 
sound(k,lend-lstart,lstart,'{}');

%save(fsname([fname ' peaks']),'p'); 
%save(fname,'p');

end
ny=zeros(l ,(size(p,2))); 
for r=lastend:endchunk(d+l) 

ny(l,r)=p(r).cough; 
lastend=endchunk(d+l); 

end

number=find(ny); 
numberc=size(number,2); 
totnumber=[totnumber; numberc];

% add on any overcount to first, smaller chunk 
if marker==0

fc(d).count=size(number,2); 
elseif marker==l

fc(d).count=size(number,2)+overcount;
end
marker=0; %revert to normal after first run
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fprintf('Number of coughs identified: %d \n',numberc)

d=d+l;
end

save(fsname([fname '_fc']),'fc','alength','lastchunkVovercount','tnore'); 

sumcough=sum(totnumber);
fprintf('Total number of coughs identified: %d \n',sumcough)

load(fsname([fname '_fc']),'more'); 
if more==l
lastchunk=(fc(end).end-fc(end). start); 

if lastchunk<chops 
incomp=l; % incomplete portion 
overcount=fc(end).count;
save(fsname([fname '_fc']),'fc','alength71astchunk7overcount'); 
fc=fc( 1 :(end-1 )); 

end 
else 

fc=fc; 
end 
end

function options = getoptions(opts)
% GETOPTIONS - 
global COUGH_

options=COUGH_.feat.options;

for i=l:2:length(opts), 
options=setfield(opt ions,opts {i} ,opts {i+1} ); 

end

1.3 FFT Implementation

1.3.1 File preparation, ‘fft process’

function varargout = fft_process(varargin)
% Initiation of fit processing 
% Created by Samantha Barry

global COUGH_ 
cdefault;

nargs=length(varargin); 
if (nargs<l) 
cd(COUGH.path);

[filename,pathname]=uigetfile({'*.wav','All WAVE-Files (*.wav)'},... 
'Select WAVE File');

% If "Cancel" is selected then return 
if isequal([filename,pathname],[0,0]) 

return 
else
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% cd(pathname);
filename=fullfile(pathname, filename); 

end
elseif (nargs==l)

filename=fullfile(COUGH_.path,varargin{l}); 
end

path='C:\MATLAB6p5\Adrie\sound_new\44100V; 
file=filename(end-5:end); 
fname=[path,file];

reduce=l;
lastchunk=0;
overcount=0;
save(fsname([fname '_fc']),'lastchunk','overcount');

%load(fname)
for mn=l :8 % max number of tiles since 8 portions of 3 hours in a 24 hour recording
str=num2str(mn);
extension-.wav';
under='_parf;
peaks='_peaks.mat';
fdename=[fname, under, sir, peaks];
filewav=[fname,under,str,extension];
fileshort=[fhame,under,str];
more=[];
if exist([filename]) 
coughwav=fiIewav(end-15:end-4); 
k=cough(coughwav); 
fnamexy=[fsname(file) '_XY'];
save(fsname([filename '_fc']),'more','lastchunk','overcount');

fprintf('Section %d\n',mn)
[x,y,p]=fft_features(k,fileshort);
%save(fsname([fname '_peaks']),'p'); 
save(fsname([fname '_XY.mat']),'x','y'); 
else 
return 
end 

end

1.3.2 Data preparation, ‘fft features’

function [X,Y,p] = fft_features(k,fname)
% Preparation for processing 
% Created by Samantha Barry

global COUGH_

(pname,fname]=fileparts(fname); 
if isempty(pname) 
pname=COUGH_.path; 

end
fname=fullfile(pname,fname);

if exist(fsname([fname '_fc'])) 
load(fsname(ffname ' fc'])); 
end
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P=k.p;
%% Addition to split up the wave file into manageable chunks 05/0ct/05

totnumber=[];
mins=15;
chops=mins*l 1025*60; % convert ms to indices 
pends=[]; 
pstarts=[]; 
plengths=[]; 
ntax=size(p,2); 
lastend=1; 
saveend=0; 
for w=l :max 

starts=p(w).start; 
pstarts=[pstarts; starts]; 
ends=p(w).end; 
pends=[pends; ends]; 
length=p(w).length; 
plengths=[plengths; length]; 

end

a=auin(fname);

if ehops>(p(end).end);
filechops=[l a.length]; 

else filechops=[l :chops:a.length a.length]; 
end

filechops=filechops';
numch=size(lllechops,l);

alength=a. length;
save(fsname([fname '_fc']),'alength');

lastpeak=0;
“/¿create array of chop information 
if numch>l 

for ch=2:numch
[peak.no,indvalue]=findnearest(f]lechops(ch),pends,-l); 
if isempty(peak) 

peak=0; 
end

% check that in the last chunk, there are still peaks left to be 
% identified...

if lastpeak==peak % no peaks in the section 
fc(ch-l).firststart=0; 

fc(ch-l).firstend=0; 
fc(ch-1 ). laststart=0 ; 
fc(ch-l).lastend=0; 
fc(ch-l).peak=0; 
fc(ch-l).count=0; 
fc(ch-l).length=0; 

else
fc(ch-1 ).firststart=p(lastpeak+l ).start; 
fc(ch-l).firstend=p(lastpeak+l).end; 
fc(ch-l).laststart=p(peak). start; 
fc(ch-l).lastend=p(peak).end;
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fc(ch-1 ).peak=(peak);
fc(ch-1 ).count=(peak-Iastpeak);

lastpeak=peak;
end
end

elseif numch==l 
fc(1).start=p(!).start; 
fc(l).end=p(end).end; 
fc( 1 ).peak=size(pstarts, I); 
ch=ch+l;

end

endchunk=zeros(size(fc,2), 1);

for z=l :(size(fc,2)); 
endchunk(z+l, 1 )=fc(z).peak;

end

x=[];
Y=[];
coughlength=[];

d=l;
while d<size(endchunk,l)

inds=(endchunk(d)+l ):endchunk(d+l);
%inds={ inds};

%need peak indices in (he current chunk to pass to coughid 
filt=fft_coughid(fname, finds]); 
numcoughs=size(filt,2);

if ~isempty(filt(l).ind) 
for m=l:numcoughs 

pos=filt(m).ind; 
p(pos).cough=l; 
clength=filt(m)peaksize; 
coughIength=[coughlength; clength]; 

end 
end

save([fsname(fname)peaks'],'p');

if isempty(coughlength) 
fc(ch-l).length=0; 

else
cumval=cumsum(coughlength);
fc(d).length=cumval(end);
end

ny=zeros( 1 ,(size(p,2))); 
for r=lastend:endchunk(d+l) 

ny(l,r)=p(r).cough; 
lastend=endchunk(d+1);

number=find(ny);
numberc=size(number,2);

xxviii



Appendix A

totnumber=[totnumber; numbercj; 

fc(d).count=numberc;

fprintf('Number of coughs identified: %d \n',numberc)

d=d+l;
end

save(fsname([fname '_fc']),’fc','alength'); 

sumcough=sum(totnumber);
fprintf('Total number of coughs identified: %d Vn'.sumcough) 

end

plotcough(fname);

1.3.3 Identification of cough, ‘fft coughid’

function c = fft_coughid(fname,inds)
% Function passes signal through adaptive filters to identify cough 
% frequencies
% Created by Samantha Barry

global COUGH_

shortfile=fname(end-l 1 :end); 
shortpath=fname(l :end-12); 
fileloc=[shortpath,'44100Y,short file];

ext='.vvav'; 
file=[fname ext];

lile2=[fileloc '_peaks.mat']; 
load (file2)

fs=44100;
ininute=60*fs;
nq=fs/2;

c.start^Hi
c.end=[];
c.sigsize=[];
c.cough=[];
c.peaksize=t];
c.ind=[];
signal=[];

% take the p values of only the indices given 
num=size(inds,2); 
for n=! mum 

current=inds(n); 
peak(n)=p(current); 

end
p=pcak;

siz = wavread(file,'size');
xxix
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fs=44100;
minute=60*fs;
numpeak=size(p,2);
tliresh=le-4;
covmax=[];
Ioopsum=[]; 
eventcounter=l;

for event=l :numpeak;

first=p(event). start;
last=p(event).end;
plength=last-first;
[sig fs]=wavread(file,[first last]);

if plength> 1500
[B,F,T]=specgram(sig(:, 1 ),256,fs,hamming(256), 128);
cutb=B(36:88,:);
absb=abs(cutb);
sqrd=absb*absb';

eventcov=cov(sqrd); 
eventmax=max(eventcov,[],2); 
fmalmax=max(eventmax); 
covmax=[covmax; fmalmax]; 
clear eventcov

if finalmax>thresh 
loopsum=[loopsum event]; 
c(eventcounter).start=first; 
c(eventcounter).end=last; 
c(eventcounter).peaksize=size(sig,l); 
c(eventcounter).cough=l; 
c(eventcounter).ind=mds(event); 
eventcounter=eventcounter+1; 

else 
end

end
end

%events that are too small to be coughs 
lengths=[];

for i=l:size(c,2) 
lengths=[lengtbs; c(i).peaksize]; 

end
short=find(lengths<2000); 
for s=short 

c(s)=[]; 
end

1.4 Plots

1.4.1 Plot of cough summary, ‘plotcough’

function varargout = plotcough(fnante)
% PLOTCOUGH
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% Created by Samantha Barry
global COUGH_
global t y k numcough next

%if exist(fsname([fname '.mat']),Tile') 
load(fsname([fname '_fc']),'fc\'alength'); 
!oad(fsname([fname '_peaks’]),'p');

% taking just the cough events 
cs=zeros(l ,(size(p,2))); 
for d=l:size(p,2) 
cs(l,d)=p(d).cough; 
end
coughs=find(cs);
cp=p(coughs);

cpends=[J;
cplengths=[];
max=size(cp,2);

% compiling a vector of cough lengths 
for w=l :max 
length=cp(w).length; 
cplengths=[cplengths; length]; 
end
pcnds=[];

% compiling a vector of cough ends 
for w=l :max 
ends=cp(w).end; 
cpends=fcpends; ends]; 
end

% finding long coughs 
long=[];
for lp=l:size(p,2)

if p(lp).cough==l & p(Ip).length>44100 
length=p(lp).length; 
detail=[lp length]; 
long=[long; detail]; 

end 
end

numlong=size(long,l); 
extra=zeros(size(long, 1), 1); 
long=[long extra];

% to plot a graph of cough numbers

% calculating the 15min portions 
totlength=size(fc,2); 
totnumber=ones(totlength, 1); 

for t=l :totlength 
totnumber(t)=fc(t).count; 

end
mins=15;
minslong=alength/44100/60; 
numbint=minslong/mins; 
whole=floor(numbint); 
incomp=mod(minslong,mins); 
min=[j; 
if whole~=0 

min=zeros(whole,l); 
for w =l:whole
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min(w,l)=w*15;
end
lastnum=min(end)+incomp;

else
lastnum=incomp;

end

ind=mins*60*44100; 
timeind=ones(wlu)le+l, I); 
for j= 1 :(size(timeind, 1 ))-l 

timeind(j)=ind*j; 
end
timeind(end)=alength;

% preparing the timeind for extra info 
extra=zeros(size(tinieind, 1 ),3); 
timeind=[timeind extra];
% timeind = 4 columns:- [15min interval time (indices) : peakend nearest to end time : 
% length of cough time in each section (indices): cough time (s)]

sizefc=size(fc,l); 
sizetime=size(timeind, 1); 

for g=l :sizetime 
timeind(g,2)=fc(g).lastend; 

end

for h=l :totlength 
length=fc(h).length; 
if-isempty(length); 
timeind(h,3)=length; 
end 

end

for n=l:size(timeind,l) 
timeind(n,4)=timeind(n,3)/l 1025; 
end
numberm in=ones(size(timeind, 1), 1); 
numbermin=numbermin.*timeind(:,4);

intervals=[min; lastnunt]; 
intervals=intervals/60;
tot—[];
tot2=[];

% calculating the plot of number of coughs 
for t=l :size(intervals,l) 

m=totnumber(t); 
c=ones(m,l); 
intmins=intervals(t); 
mult=c.*intmins; 
tot=[tot; mult]; 

end

%calculating the plot of length of time coughing 
for t2=l :size(intervals,l) 

m2=ceil(numbermin(t2)); 
c=ones(m2,l); 
intmins=intervals(t2); 
mult=c.*intmins;
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tot2=[tot2; mult]; 
end

bin=(mins/2)/60;
bins=[bin:(mins/60):intervals(end)];

% plot number of coughs 
figure, hist(tot,bins); 
axis=([0 24 0 Inf]); 
set(gca,'xtick',[0:2;24]); 
title('Cough Frequency') 
xlabel('Time (hours)') 
ylabel('Number of Coughs')

% plot cough seconds 
ligure, hist(tot2,bins); 
axis=([0 24 0 Inf]); 
set(gca,'xtick', [0:2:24]); 
title('Cough Frequency') 
xIabel('Time (hours)') 
ylabel('Coughing Tinie(seconds)')

save (fsname([fname ' plot']), 'tot','tot2', 'bins')

% solution to double cough problem

if isempty(long)
%disp('No cough events longer than one second') 

else
fprintf('%d cough events longer than one secondin', numlong) 

dlsplay=input('Do you wish to review the long cough events? (y/n)\n','s'); 
if display=='y' 

review=l; 
else

review=0;
end

if review==l

next=l;
numcough=l;

forr=l:size(long,l)

pind=long(r,l); 
pstart=p(pind).start; 
pfinish=(p(pind).end); 
plength=(p(pind). length);

%%% up to this point, long coughs correctly identified.
% plotting the sound
wavname=[fname(l :end-l 8), fname(end-l Pend), '.wav']; 
au=auin([wavname]);
Fs=get(au,'fs'); 
file=au.filename;
[sig fs]=wavread(file,[pstart pfinish]); 
h=figure,plot(sig(:, 1)) 
soundsc(sig,44100);

choice=input('Is this a cough or non-cough? (c/n)\n (Or enter "p" to replay sound or "q" to 
quit)','s’);
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if choice=-c' 
id=l;

elseif choice=='n' 
id=0;
coughcount=0; 

elseif choice=='p' 
soundsc(sig,44100);
choice=input('Is this a cough or non-cough? (c/n)\n’,'s'); 
if choice=='c' 
id=l;
elseif choice=='n' 
id=0;
coughcount=0;
end

elseif choice=='q' 
return 

end
if id==l

soundsc(sig,44100);
howmany=input('How many coughs? \n','s'); 
coughcount=str2num(ho\vmany); 

end

close(h)
long(r,3)=coughcount;

end
for longp=l :size(long, 1) 

index=long(longp,l); 
if long(Iongp,3)==0 

p(index).cough=0; 
else 
end 

end
save(fsname([fname ' peaks']),'p');

% locate the portion the long cough is in 
lastpeaks=ones(totlength, 1); 

for f=l :totlength 
lastpeaks(f,l)=fc(f).peak; 
end
lastpeaks=[0; lastpeaks]; 
extra=zeros(size( lastpeaks, 1), 1); 
lastpeaks=[lastpeaks extra];

newcount=0; 
for t=l itotlength 

hilimit=lastpeaks(t+l); 
lolimit=lastpeaks(t);
locport=find((long(:,l)<=hilimit) & (long(:,l)>lolimit)); 
for s=l :size(locport,l) 

g=locport(s,l);
newcount=newcount+long(g,3);

end
lastpeaks(t,2)=newcount;
newcount=0;

end

% add the new coughs to the existing count 
realend=size(lastpeaks, 1)-1;
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modcount=totnumber(:, 1 )+lastpeaks( 1 :realend,2);

% replot cough number graph 
for t=l:size(intervals,l) 

m=modcount(t); 
c=ones(m,l); 
intmins=intervals(t); 
mult=c.*intmins; 
tot=[tot; mult]; 

end
figure, hist(tot,bins); 

axis=([0 24 0 Inf|); 
set(gca,'xtick',[0:2:24]); 
title('Cough Frequency') 
xlabel('Time (hours)') 
ylabel('Number of Coughs')

else
end
end

1.4.2 Combination of three-hour plots to make 24 hour 
s u m in ary, ‘ co m b i n e p 1 ot ’

function | varargout] = combineplot(fname)
% Combine 24 hour plots function 
% Developed by Samantha Barry 
global COUGH_

[pname,fname]=fileparts(fname); 
if isempty(pname) 
pathname=COUGH_,path; 
ext='\44100'; 
pname=[pathname,ext]; 

end
fname=fullfile(pname,fname);
coughcount=[];
coughfreq=[];

core=fname(l :end-l); % remove the final number

for mn=l :8 % max number of files since 8 portions of 3 hours in a 24 hour recording 
str=num2str(mn); 
extension='.mat'; 
suff='_plot';
filename=[core, sir, suff, extension];

load (filename) % giving 'tot', 'tot2' and 'bins'
%need to offset the values 

if mn>l
offset=(mn-l)*3; 
off=ones(size(tot, 1), 1); 
off2=ones(size(tot2,1), 1); 
offsetvaI=offset.*off; 
offsetva!2=offset.*off2; 
tot=tot+offsetval;
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tot2=tot2+offsetvai2;
end

coughcount=[coughcount;tot];
coughfreq=[coughfreq;tot2];

end

mins=15;
minslong=1440;
nmnbint=minslong/mins;
min=zeros(numbint,l);

for w=l :numbint 
min(w,l)=w*15; 

end

intervals=[min];
intervals=intervals/60;
bin=(mins/2)/60;
bins=[bin:(mins/60):intervals(end)];

% plot number of coughs 
figure, hist(coughcount,bins); 
axis=([0 24 0 Inf]); 
set(gca,'xtick', [0:2:24]); 
title('Cough Frequency') 
xlabel('Time (hours)') 
ylabel('Number of Coughs')

% plot cough seconds 
figure, hist(coughfreq.bins); 
axis=([0 24 0 Inf]); 
set(gca,'xtick', [0:2:24]); 
title('Cough Frequency') 
xlabel('Time (hours)') 
ylabel('Coughing Time(seconds)')

1.5 Patient activity monitoring

1.5.1 Event marker locater, ‘signal’

function [varargout] =; signal(fname)
% Signal detection 
% Developed by Samantha Barry 
global COUGH_

[pname,fname]=fileparts(fname); 
if isempty(pname) 
pname=COUGH_.path; 

end
fname=fullfile(pname,fname);

Iength=l80; % minutes in 3 hour wave file 
timeind=length*60*44100; % length of file in samples 
minute=60*44100; % length of a minute in samples 
siz = wavread(fname,'size');
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sf=44100; 
nq=sf/2; 
band 1=14300; 
band2=14900; 
width=50;
bottom=band 1 -width; 
top=band2-width;
Wp=[bandl band2]/nq;
Ws=[14000 15200]/nq;
Rp=3;
Rs=40;
|n,Wn]=buttord(Wp,Ws,Rp,Rs);
[b,a]=butter(n,Wn);

last=0;
beep=[];
peakstart=[];
for m =l: length % start the loop 
first=last+l; 
last=minute*m; 
if last > siz(l,l) 

last=siz(l,l); 
end
[sig fs]=wavread(fname,[first last]); 
yf=abs(filter(b,a,sig)); 

thr=le-3;
eventcounter=l; 
pointer=l; 

if m==l 80
resid=siz(l, 1)-(179*minute); 
minute=resid; 

end
while pointer < minute

if yffpointer) < thr 
pointer=pointer+l; 
else
peakstart(eventcounter)=pointer+(minute*(m-l));

disp(pointer/fs); 
pointer=pointer-t-fs*2; 
eventcounter=eventcounter+l; 

end 
end

beep=[beep peakstart];
peakstart=[];
end

1.5.2 Activity list compiler, ‘activity’

function [varargout] = activity(fname)
% Compile list of activities function 
% Developed by Samantha Barry 
global COUGH_

[pname,fname]=fileparts(fname); 
if isempty(pname) 
pname=COUGH_.path; 

end
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fname=fullfile(pname,fname);

%load ('Timejnd') 
fid=fopen('activity.txt','wt');

for t=l :size(Time_ind)
% take a marker... 
mark=Time_ind(t);

% add two seconds to find the end time 
play=88200; 
mend=mark+p!ay;

%load the sound
[y,fs,au. mode, au.fp]=readwav(fname,'f, play, mark);
% take just the left channel and play
sig=y(:,l);
time=timestr(mark,fs);
soundsc(sig,fs);
activity=input('Please enter activity (or "p" to play again)...',’s');

while activity— 'p' 
soundsc(sig,fs); 
disp('replay')
activity=input('Please enter activity (or "p" to play again)...','s'); 

end
fprintf(fid, 'Sample index at start of marker is %d,\n Corresponding time is %s,\n Activity 

undertaken is %s,\n\n',mark,time,activity);

disp('Press any key for next activity...')
pause

end
disp('End of activities') 
fclose(fid)
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A b s t r a c t

B a c k g ro u n d : Cough recordings have been undertaken for many years but the analysis o f cough 
frequency and the tem poral relation to trigger factors have proven problematic. Because cough is 
episodic, data collection over many hours is required, along with real-time aural analysis which is 

equally time-consuming.

A  method has been developed for the automatic recognition and counting of coughs in sound 

recordings.

M e th o d s : The Hull Autom atic Cough Co u nter (H A C C )  is a program developed for the analysis 

of digital audio recordings. H A C C  uses digital signal processing (DSP) to  calculate characteristic 
spectral coefficients o f sound events, which are then classified into cough and non-cough events by 
the use o f a probabilistic neural netw ork (PN N ). Parameters such as the total number o f coughs 

and cough frequency as a function o f time can be calculated from the results of the audio 
processing.

Thirty three smoking subjects, 20 male and 13 female aged between 20 and 54 with a chronic 
troublesom e cough w ere studied in the hour after rising using audio recordings.

R esu lts : Using the graphical user interface (GUI), counting the number o f coughs identified by 
H A C C  in an hour long recording, to ok  an average of I minute 35 seconds, a 97.5% reduction in 
counting time. H A C C  achieved a sensitivity of 80% and a specificity o f 96%. Reproducibility of 
repeated H A C C  analysis is 100%.

C o n c lu s io n :  A n  automated system for the analysis o f sound files containing coughs and other non­
cough events has been developed, with a high robustness and good degree o f accuracy towards the 
number o f actual coughs in the audio recording.

Background
Cough is the comm onest sym ptom  for which patients 
seek medical advice 11). Population studies reported prev­
alence o f cough to vary between 3% and 40% [2-4]. As

cough affects us all, its m anagem ent has massive health 
economic consequences with the use o f over-the-counter 
cough remedies in the UK being estimated at 75 m illion 
sales per annum  [5|. Cough is conventionally considered
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to consist of an initial deep inspiration followed by expi­
ration against a closed glottis that then opens |6-8 |. As a 
result a characteristic phonation is formed, which is com ­
posed of two distinct com ponents termed first and second 
cough sounds [6,7|.

Whilst the recognition of a single cough event is relatively 
easy, the assessment o f cough frequency over a long 
period of time remains difficult both for clinical and 
research purposes. Part o f the problem is the paroxysmal 
nature of cough necessitating recording over a prolonged 
time period in order to generate an accurate estimate of 
cough frequency. Subjective recording or scoring o f cough 
is unreliable as individual perception of cough differs 
from mild irritation to marked im pairment o f quality of 
life [9 ,10|. In addition, subjective assessment o f cough fre­
quency during the night-time has been shown to be unre­
liable 111,12]. The simple recording of cough sound using 
a m icrophone and cassette recorder allows for counting of 
the cough events, however, analysis is very tim e consum ­
ing even with the application o f sound activated recording 
or m ethods for removing silence [7,8,13,14]. Similarly, 
the use o f cough recorders that incorporate elcctrontyo- 
gram (FMG) f 15,16] or modified Holter m onitor |1 7 ,18] 
require m anual reading of the recorded tapes by a trained 
investigator. Automatic cough recognition from am bula­
tory multi-channel physiological recordings have been 
reported [19]. Mere we describe a m ethod for automatic 
recognition and counting of coughs solely from sound 
recordings which reduces the processing time and 
removes the need for trained listeners.

Materials and methods
The m ethod, Hull Automatic Cough Counter (HACC) 
operates in three steps.

Firstly, the signal is analysed to identify periods o f sound 
within the recordings; these sound events are then 
extracted and any periods o f silence are om itted from fur­
ther analysis. Secondly, digital signal processing (DSP) is 
applied to calculate the characteristic feature vectors 
which represent each sound event. The techniques used 
are linear predictive coding (LPC) and a bank-of-filters 
front-end processor. The resultant coefficients are reduced 
by principal com ponent analysis (PCA); this step high­
lights the com ponents o f the data that contain the most 
variance, such that only these com ponents are used for 
further analysis. Thirdly, the sound events are then classi­
fied into cough and non-cough events by use o f a proba­
bilistic neural network (PNN) |20], The PNN is trained to 
recognise the feature vectors o f reference coughs and non­
coughs and classify future sound events appropriately.

Parameters such as the total num ber o f coughs and cough 
frequency as a function of time can be calculated from the

results o f the audio processing. Currently, the determ ina­
tion of the num ber o f coughs inside each cough event is 
carried out by a hum an listener.

S u b j e c t s  a n d  s o u n d  r e c o r d i n g

Thirty three smoking subjects, 20 male and 13 female 
aged between 20 and 54 with a chronic troublesome 
cough were studied in the hour after rising. The smoking 
histories o f the subjects ranged between 5 and 100 pack 
years with a mean of 21.4. As part o f a previously pub­
lished controlled trial |2 11 a cigarette was administered 20 
m inutes after the start o f recording. All the subjects were 
studied in the outpatients clinic with the subjects am bula­
tory and television and conversation freely permitted.

Sound was recorded at a sampling frequency of 48 kHz 
using a Sony ECM-TIS Lapel m icrophone connected to a 
Sony TCD-D8 W alkman DAT-recorder. For each o f the 
subjects, this recording was converted into 44.1 kHz 16 
bit m ono Microsoft wave format. To m inimise data stor­
age the sound recordings are initially analysed at a sam ­
pling frequency / s o f  11.025 kHz by using only every 
fourth point.

S o f t w a r e  a n d  h a r d w a r e

All software was developed under Matlab* version 6.1 
|2 2 |. The following Matlab toolboxes were used: 
PFS_Toolbox version 2.1.1 123], Signal processing tool­
box version 5.1 |24 |, Neural network toolbox version 
4 .0.1 |25] and Voicebox (a free toolbox for speech recog­
nition) [26]. The programs were executed under Windows 
2000 on a 1.4 GHz Pentium 4 PC with 256 megabytes of 
RAM.

D e t e r m i n a t i o n  a n d  c l a s s i f i c a t i o n  o f  s o u n d  e v e n t s

Figure 1 shows a schematic representation of the HACC 
operation. Table 1 defines the variables and symbols used 
in the analysis.

The first step is the isolation of sound events, as shown in 
Figure 1 (a to h).

The audio recording is initially converted into a 44.1 kHz 
16 bit m ono Microsoft digital wave file. For this process, 
the sound recordings are analysed at a sampling frequency 
of 11.025 kHz. The signal is then analysed using the mov­
ing windowed signal standard deviation o lit,nal, i.e. the 
standard deviation as a function o f time. T he moving w in­
dow works along the entire length of the audio signal, tak­
ing each frame as the centre o f a new window. This 
windowed standard deviation is similar to the more com ­
m only used root mean square signal however, it corrects 
for deviations o f the mean from zero. Portions o f  the sig­
nal containing no sound events will show a reasonably 
constant background signal (baseline) with small devia-
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Zoomed

a) Enure cougli wave file b) 256 samples comprising 
one frame of signal

1

Each portion of signal is 
then analysed in 
sequence whilst 

remaining areas of no 
sound arc ignored from 

further analysis

d) Portions of signal found with a variance from the 
baseline above the standard set level arc identified

c) Standard deviation o f the signal 
within the frame is calculated using 

a moving window

e) First portion
f) Plot o f the standard g) Identification o f peaks that h) Information on the

deviations of each frame arc not significantly larger than valid remaining peaks
the dales either side of them. is compiled.

1

Signal processing carried out 1

k) Spectral analysis carried out on 
entire signal *

j) Each frame windowed to take a 
representation of the signal for 

processing

i) Signal split into frames

: '

* re:

f s-i

1) PC A carried out to determine number 
of components in the data

m) Cluster analysis of data points to 
define coughs and cough-like events

Ì ...... .
Classification

n) The data is passed to the neural network for training 
Exact weight and bias information is saved

o) Neural network trained with training data. The 
trained network will now be able to classify further 

spectral data into the correct groups

Results compiled

Graphical user interface 
produced

F ig u re  I
Pattern Recognition Approach to cough/non-cough classification.
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Table I: Symbols used and their settings.

Symbol Meaning Value

u Sampling Frequency 11025 H i
t Time in milliseconds
t̂ignai Windowed standard deviation of signal Calculated as a function of time
b̂ackground Background interval 11026 points (1000 ms)

t h re s h ^ High (event detection) threshold 1 0 ( * ® background)
tfre s tw Low (event start and end) threshold  ̂(X ̂ background)
b̂ackground Standard deviation of background

N,™„ Number of reference patterns 150 (75 cough/75 non-cough)
nb-o-f Number of met bank-of-filters cepstral coefficients 42(14+14 1lt derivatives +14 2nd derivatives)
nLPC Number of LPC cepstral coefficients 14 (no derivatives)
depurai Total number of cepstral coefficients (nB.0.F + nLPC) 56
NpCA Reduced number of features 45

Settings are based on established values and preliminary experiments. Symbols only used locally are explained in the text.

tion relating to the inherent noise present in the signal. A 
sound event will cause the signal to rise above the baseline 
with a m agnitude proportional to the validity o f the sig­
nal. The m oving window technique ensures the standard 
deviation o f the background signal is not fixed for the 
duration of the signal; instead Cbackground at time ' ' s calcu­
lated as the m inim um  o sjglU| between the start o f  the w in­
dow, t - Arbackground and the end o f the window, t + 
A/bjckgmund' Sound events are thus detected when a slgna| for 
a particular window exceeds the threshold value, thresh- 
peak' m ultiplied by a background for that window. Although 
this procedure means that sound sensitivity varies to a cer­
tain extent, it allows for peak detection in noisy back­
grounds. The start and end values o f a sound event are 
defined as the nearest c sjgna| before and after the peak max­
imum  which are below the defined low level calculated by 
thresh,im,a x o bJckground. Portions o f the signal that are 
below this low level are removed and excluded from fur­
ther analysis (Figure 2). The am ount o f noise within the 
section of signal is then reduced by sm oothing. The stand­
ard deviations for each frame in the section are plotted 
and treated as a series o f peaks. Peaks with variations 
lower than the noise-level are removed. The remaining 
frames o f signal are compiled for signal processing.

The second step is the characterisation of sound events 
using a signal processing step as shown in Figure 1 (i to k). 
The sound events identified by analysis o f the signal are 
then characterised. Each window undergoes a parameter 
m easurement step in which a set o f parameters is deter­
m ined and combined into a test pattern (termed a feature 
vector). Because windowing is used, multiple test patterns 
are created for a single sound event. These test patterns are 
compared with a set o f N,ram reference patterns for which 
the cough/non-cough classification is known. Depending 
on whether the test patterns are more similar to the cough 
or the non-cough reference patterns the corresponding

sound event is classified as a cough or non-cough event 
respectively.

The third step is pattern comparison and decision-making 
as shown in Figure 1 (1 to o). For this HACC uses a PNN. 
This network provides a general solution to pattern classi­
fication problems by following a Bayesian classifiers 
approach. The PNN stores the reference patients.

Instead o f classifying single patterns, HACC classifies 
complete sound events. The pk values for all test patterns 
belonging to the sound event are sum m ed yielding a sum 
o f probabilities Tpk for each class k. The sound event is 
classified as a m em ber o f the class with the largest Xpt .

M a n u a l  cough r e c o g n i t i o n  a n d  c o u n t i n g

In order to create and test the HACC program, reference 
measurements are required. For this purpose a graphical 
user interface (GUI) was developed (see Figure 3). This 
GUI lets the user scroll through a recording while display­
ing the corresponding waveform. The displayed sound 
can be played and coughs can be identified.

C r e a t i o n  o f  t h e  r e f e r e n c e  patterns
Sound recordings from 23 subjects are used to create a set 
of 75 cough patterns and 75 non-cough patterns. The first 
step is to identify suitable cough and non cough events in 
all 23 recordings. Suitability is determined by the clarity of 
the sound, and by its ability to add relevant variation to 
the dataset. Non cough events are sounds present in the 
audio recording which are not coughs. These events are 
combined into a cough pattern matrix X,.ougll (10324 
cough patterns) and a non-cough pattern matrix Xnon.cough 
(254367 non-cough patterns). The length of the feature 
vectors in these matrices is reduced by performing a prin­
cipal com ponent analysis (PCA) |27 |. The combined 
Xfough' x non cough matrix is first auto-scaled (scaling o f the
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F ig u re  2
Sound detection. Th e  top graph shows the original sound signal. In the bottom  graph depicts ctlign4l and the two baseline thresh­
old lines in which lhreshptii= I0 and thresb|lmltI = 1.5. Point 2(a) indicates the first standard deviation larger than th re s h ^  * 
Objckgrouad- pO'nw 2(b) and 2(c) are the points nearest to point 2(a) where a iijnll is smaller than threshhm,„ * a h>ck!rD„„d. The  
whofe region between points 2(b) and 2(c) is a sound even t In the same way, the region between points 2(d) and 2(e) will be 
detected as a sound event.

feature values to zero mean and unit variance (28,29]) 
then as defined by PCA, only the scores that describe more 
than 0.5% o f the variance are used. Experimental data is 
scaled using the means and variances o f the reference data 
and projected onto the principal com ponent space using 
a projection matrix. The reference patterns used for crea­
tion of the PNN are obtained by performing two ft-means 
[30] clusterings (fc = 0.5Nlrajn) o f approximately 2000 
cough and non-cough patterns. The initial 2000 patterns 
are selected from Xcough and Xnor) rough. The reference pat­

terns are then passed through the PNN for future classifi­
cation of cough and non-cough patterns.

For validation, one hour recordings o f a further 10 sub­
jects, not previously used in the creation o f cough pat­
terns, were analysed by two independent listeners 
(m ethods A and B) and HACC (+ listener for actual cough 
counting; m ethod C). I.istener A was an experienced 
cough counter that worked in the cough clinic whilst lis­
tener B was a undergraduate project student with no expe-
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F ig u re  3
Graphical U ser Interface (GUI) for human listener.

rience of cough counting. Cough is defined as an 
explosive sound separated by a fall o f sound level to 
below threshold. Thus, a peel o f  coughs is counted as a 
num ber o f separate coughs. We have recognised that a 
small num ber o f  cough events occur with a double sound 
elem ent o f under one second duration and we have pro­
grammed HACC to recognise these and identify them  to 
the operator who decides whether they wish to classify 
them  as single or multiple coughs.

Currently, HACC identifies coughs and labels them, 
though as yet does not automatically count them. There­

fore a further listener was also used in m ethod C to count 
the labelled coughs using the GUI. Subsequently the GUI 
was used to definitively identify cough and non cough 
events in the recordings to establish HACC's sensitivity 
and specificity.

Results
Table 2 lists the total num ber o f coughs reported by the 
hum an observers and HACC. The experienced observer 
frequently reported fewer coughs, m ean 23.7 than  either 
the inexperienced observer or HACC both 34.2, p < 0.05. 
A Bland-Altman plot comparing the total num ber o f
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Table 2: Counted coughs

A B c

subject I 8 6 8
subject 2 2I 22 25
subject 3 5 6 9
subject 4 26 25 3!
subject 5 I4 30 28
subject 6 9 I3 9
subject 7 8 8 IS
subject 8 20 29 27
subject 9 28 53 50
subject I0 98 150 140

Mean 23.7 34.2 34.2

coughs calculated by the experienced listener (A) and the 
HACC program (C) is shown in Figure 4.

Using the GUI, the average sensitivity was calculated to be 
0.80 with a range o f 0.55 to 1.00 while the specificity was 
0.96 with a range of 0.92 to 0.98. Using HACC it was pos­
sible to identify coughs in an hour long recording in an

average time of 1 m inute 35 seconds, a reduction of 
97.5% in counting time.

Reproducibility o f repeated HACC analysis is 100%.

The average percentage o f false positives compared to tnte 
positives was calculated to be 20%. False positives were 
caused by similar sounds such as laughter, loud bangs and 
other subjects coughing.

Discussion
The clinical importance of the analysis o f continuous 
cough recording lies in the temporal pattern o f cough 
events. Because of the episodic nature o f cough, record­
ings must be undertaken for a prolonged period which 
until the development o f autom atic cough counting 
necessitated an equally long period of analysis. Our study 
introduces the technique of computerised cough sound 
analysis which dramatically reduces analysis time.

To optim ally classify a sound event as cough or non­
cough the feature vectors should obey certain require­
ments. The feature vectors o f coughs from different sub-

o - — f t  
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F ig u re  4
Th e Bland Altman plot showing the difference between the total number o f coughs per subject as recorded by the experienced 
listener (A) compared to the H A C C  program (C).
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jects should have similar values. Non-cough events 
should give dissimilar feature vectors than cough events. 
The features should not be correlated and preferably fol­
low a probability distribution that is well described as a 
sum of Gaussians. It is also desirable that the features do 
not depend on the sound amplitude: the cough loudness 
is not the same for different people and it makes the place­
ment o f the m icrophone less critical.

These requirements are very similar to those in speech rec­
ognition. To recognise speech, a reliable, robust and most 
widely used feature set based on frequency content are 
cepstral coefficients. Cepstral coefficients are the coeffi­
cients o f the Fourier transform representation of the log 
m agnitude spectrum. They are good at discriminating 
between different phonem es (speech sounds), are fairly 
independent o f each other and have approximately Gaus­
sian distribution for a particular phoneme. The cepstral 
coefficients are normally calculated via one of the follow­
ing two pre-processing routes: linear predictive coding 
(LI'C) or a bank-of-filters front-end processor (26, 31, 32].

The recognition performance can be improved by extend­
ing the representation with tem poral cepstral derivative 
information. Cepstral derivatives are obtained by the pub­
lished m ethod |3 2 |. The feature vectors used in HACC 
consist o f a pre-treated com bination of nB OFmel bank-of- 
filters cepstral coefficients with their first and second 
derivatives and nn,c LPC cepstral coefficients (without 
derivatives). Pre-treatment consists o f scaling followed by 
projection into the principal com ponent space obtained 
for the reference samples. This pre-treatment reduces the 
num ber o f features in each pattern front Ncepslra|(= nB O F + 
n[PCin this study 56) to  N PCA(here 45).

The coughs in the cough events need to be counted by a 
hum an listener. For this purpose, the GUI is used. How­
ever, in this procedure only events classified as cough by 
HACC have to  be listened to. This procedure yields a huge 
reduction in listening time (m ean 97.5%) compared to 
hum an counting. Our aim is to improve HACC in the near 
future so that hum an counting is no longer necessary.

The results show a significant increase in the num ber of 
coughs reported by the inexperienced listener and HACC 
compared to those reported by the experienced listener. 
This difference is caused by both the inexperienced lis­
tener and HACC detecting and counting coughs from 
sources other than the subject under study. The subjects 
were recorded in a clinic alongside other patients and as a 
result, o ther coughs are clearly audible on  the recordings. 
The inexperienced listener B and HACC simply counted 
all audible coughs which explains why the data from B 
and C are so similar, and exaggerated. Clearly the experi­
ence of listener A discerns between the subject closest to

the m icrophone and the other cough events that are audi­
ble on the recordings. Thus it is clear that even with this 
slight disparity between the computer and the experi­
enced listener, the computer has in fact classified all the 
coughs on the recordings, but without any distinction as 
to the source of the coughs.

Since HACC is not subject-specific in its cough classifica­
tion, improving the counting accuracy is best achieved by 
excluding the non-subject coughs from the recording. 
Using a different m icrophone with a lower sensitivity will 
ensure only high-amplitude sounds occurring close to the 
m icrophone will be detected, thus discerning the subject's 
coughs from am bient coughs. This modification will also 
diminish problems with background noise. The record­
ings for this study were all made in a similar environment, 
with the subjects ambulatory and television and conversa­
tion freely permitted. The use o f a lower sensitivity m icro­
phone will help to dim inish background noise before any 
processing by IIACC is carried out.

For the developm ent o f HACC processing, hour long 
recordings of each subject were made, it was felt that this 
duration o f recordings contained a sufficient num ber o f 
cough and non-cough events to carry out an assessment o f 
the system.

Future work will lest HACC's ability to process much 
longer duration of recordings containing a wider variety 
o f patient groups.

One of the m ajor advantages of the autom ated recording 
is that it is possible to re-analyse the data with minimal 
effort and achieve consistent results. Thus, when the same 
recordings were reprocessed the events classified as 
coughs in one run were also found to  be coughs in subse­
quent runs. This allows developm ent o f a statistically sta­
ble analysis m ethod with a known statistical confidence 
limit on  the results.

Conclusion
An autom ated system for the analysis o f sound files con­
taining coughs and other non-cough events has been 
developed, with a high robustness and good degree of 
accuracy towards the num ber o f actual coughs in the 
audio recording. Although HACC is unable to distinguish 
between coughs of the subject under study and ambient 
coughs, changes to the hardware could resolve this prob­
lem in the future.
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