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Abstract 

Background and Aim of the study: Lung cancer is the third most common cancer in the 

UK. A significant number of these patients are diagnosed with inoperable advanced-stage 

non-small cell lung cancer. Until recently, the standard of care for these patients was 

radiotherapy with or without chemotherapy but the overall survival remained poor, with 

a 5-year survival of only 13%. Recent studies showed significant improvement in overall 

survival in patients who are suitable for, and have received, immunotherapy, in addition 

to chemotherapy and radiotherapy. Radiotherapy aims to deliver tumoricidal doses to 

the target volume whilst minimising doses to the surrounding organs at risk (OAR). 

However, achieving this goal could be challenging especially when treating advanced-

stage tumours, as it could increase OAR doses and increase toxicities to an unacceptable 

level. Furthermore, several factors affect the achieved dose distribution including, 

patient’s geometry, treatment technique, planner’s experience, beam geometry, 

optimisation parameters, and interventions used during treatments. It is therefore 

important to develop methods to personalise treatment plan optimisation for advanced-

stage non-small cell lung cancer (NSCLC) patients to achieve minimum OAR doses 

without compromising target doses using patient-specific parameters. This study aims to 

develop knowledge-based planning models (KBP) using patient-specific factors to 

determine personalised treatment planning optimisation for advanced-stage NSCLC 

patients treated with volumetric modulated arc therapy (VMAT) to reduce OAR doses 

whilst delivering intended doses to the target volume.  

Methods: Four KBP models were developed using patient-specific dose and volume 

parameters to predict minimum achievable OAR doses, identify optimal arc parameters, 

trigger adaptive radiotherapy and estimate doses to adapted gross tumour volume using 
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patients’ geometry. The KBP models were verified using independent patient data sets. 

Change in treatment plan optimisation could increase modulation and affect plan 

deliverability therefore, several modulation indexes were calculated and plans were 

measured on the clinical linear accelerator to assess the effect of change in optimisation 

on treatment plan delivery. 

Results: The KBP models developed showed that relatively simple models can predict 

OAR doses and arc parameters and help identify patients for adaptive radiotherapy. The 

models can accurately estimate personalised and progressive dose escalation. The KBP 

resulted in a significant reduction in plan variability in all three studied dosimetric 

parameters, volume of lungs receiving 5Gy (V5), 20Gy (V20) and mean lung dose (MLD) 

by 4.9% (p=0.007, 10.8% to 5.9%), 1.3% (p=0.038, 4.0% to 2.7%) and 0.9Gy (p=0.012, 

2.5Gy to 1.6Gy), respectively. The individualised arc geometry resulted in a significant 

reduction in lungs (V5 = - 15.1%, MLD = - 1.0Gy) and heart (MHD = - 1.4Gy) doses without 

compromising target coverage. The models, which were developed to predict changes in 

PTV coverage (∆𝑉95𝑃𝑇𝑉) using a specific biomarker (Programmed death-ligand 1 (PD-L1 

expression)) and the difference in ‘planning’ and ‘fraction’ planning target volume (PTV) 

centre of the mass (characterised by mean square difference, MSD), could predict change 

in PTV coverage within ± 1.0% for 77% of the total fractions. Furthermore, the models 

developed for predicting personalised and progressive dose escalation predicted doses 

within 0.4% and 0.7% respectively. Additionally, the plan complexity and deliverability 

measurements show that plan complexity could increase but may not affect treatment 

delivery significantly. 

Conclusion: The studies performed show that altering the ‘standard’ treatment planning 

optimisation approach could significantly reduce OAR doses and improve target 



iv | P a g e  

 

coverage. This will help reduce toxicities and improve local control and overall survival 

and outcome for inoperable advanced-stage NSCLC patients. 
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1.0 Introduction 

This chapter is published in a book, and therefore the text presented here is adapted from 

the article. My contribution consisted in performing a literature search and writing the 

manuscript with input from the co-author. Reference:  Andrzej Wieczorek*, Tambe, N. S.*; 

‘The Role of Radiotherapy in the Management of Lung Carcinoma, Frontiers in Lung 

Cancer Perspectives in LungCancer 2020,1:214. https://doi.org/10.2174/97898114595 

6612001 0013. 

1.1 Lung cancer 

Lung cancer is triggered due to exposure to inhaled carcinogens (e.g. tobacco smoke, 

arsenic, asbestos, beryllium, cadmium, coal and coke fumes, silica, nickel, and radon) to 

the bronchial epithelium cells. The biological changes eventually lead to carcinoma by the 

activation of carcinogens or inactivation of tumour suppression genes (p-4, Jeremic, 

2011)  (Jeremic, 2011; Massion P P, 2016). In addition to the environmental factors, lung 

cancer can have a familial origin due to common genetic or environmental factors among 

family members (Kanwal, Ding and Cao, 2017). Almost 8% of total lung cancers occur due 

to familial factors (Kanwal, Ding and Cao, 2017).   

1.1.1 Incidence of lung cancer  

Lung cancer is the third most common cancer in the UK, accounting for 13% of the total 

cancer patients and resulting in 35,137 deaths per year (Cancer Research UK, 2019). In 

years 2015 to 2017, approximately 47,800 new lung cancer cases were reported in the 

UK per year (Cancer Research UK, 2019). A recent study reported 1.32 fold increase in 

lung cancer cases over twenty years (Chen, Mo and Yi, 2022). Lung cancer incidence is 

https://doi.org/10.2174/97898114595
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highly related to age, with the highest incidence rate in the older population. On average, 

44% of total new lung cancer cases are in people aged 75 years and over (see Figure 1.1) 

and the median age at presentation of lung cancer is 70 years (see Figure 1.2) (Cancer 

Research UK, 2019). The majority of these patients have smoking-related co-morbidities 

such as emphysema and cardiovascular disease (Kanwal, Ding and Cao, 2017; Cancer 

Research UK, 2019). As a result, many of these patients are not suitable for surgery 

(Leary, 2012; Maconachie et al., 2019). Radiotherapy with or without chemotherapy is 

considered the standard of care for those patients who are not suitable for surgery (Leary, 

2012; Maconachie et al., 2019). 

For those diagnosed with lung cancer, the median life expectancy in the 19th century was 

about 13.2 months (Fowler J K, 1898). This has improved over the years but not 

significantly, with the average five-year or more survival in the UK only 8% to 11% (Neal 

and Hoskin, 2012; Cancer Research UK, 2016). In the last 40 years, five years of overall 

survival had only improved by 3% to 5% in the UK despite the advancement in the 

treatment modalities (Cancer Research UK, 2016). 

1.1.2 Lung Cancer Classification 

There are two main types of lung cancer: small-cell lung cancer (SCLC) and non-small cell 

lung cancer (NSCLC) (Kernstine and Reckamp, 2010). SCLC accounts for about 10 - 15% 

of lung cancer patients whereas the majority are diagnosed with NSCLC (Kernstine and 

Reckamp, 2010). NSCLC is further divided into lung adenocarcinoma (ADC, the most 

common type of NSCLC), lung squamous cell carcinoma (SCC), and lung large cell 

carcinoma. Accurate histological diagnosis to assess cancer subtypes is very important as 

SCLC and NSCLC cancers grow and spread very differently (Sher, Dy and Adjei, 2008; 

Zappa and Mousa, 2016). SCLC generally spreads quite rapidly, whereas NSCLC spreads 
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relatively slowly (Sher, Dy and Adjei, 2008; Zappa and Mousa, 2016). The standard of care 

for SCLC patients is chemotherapy with or without radiotherapy; surgery is performed in 

approximately 2% of patients (Cancer Research UK, 2016). However, for a majority of 

NSCLC patients standard of care is radiotherapy with or without chemotherapy; in these 

patients, surgery is performed in approximately 15% of patients (Cancer Research UK, 

2016). The majority of all lung cancer patients are diagnosed with advanced disease, 

stage III or IV (see Figure 1.3) (Cancer Research UK, 2016).  

1.2 Treatment of NSCLC 

This thesis is focused on the personalised optimisation of radiotherapy treatment 

planning for NSCLC patients, as the majority of lung cancer patients are diagnosed with 

NSCLC and the standard of care for inoperable patients is radiotherapy with or without 

chemotherapy (Cancer Research UK, 2016; Maconachie et al., 2019; Cancer Research UK, 

2019). In recent years, the gold standard in oncology is the use of a combination of 

treatment modalities (Maconachie et al., 2019). The selection of treatment modality(s) 

for NSCLC patients is dependent on tumour staging, age, lung function, and performance 

status (see Tables 1.1 and 1.2) (Maconachie et al., 2019). Early-stage lung cancer patients 

with performance status 2 (see Table 1.2 for description) (Maconachie et al., 2019) and 

who are suitable for lobectomy are treated with limited surgical resection. If not, these 

patients are treated with stereotactic radiotherapy or radical radiotherapy depending on 

tumour size and location (i.e., centrally located tumours are treated with radical 

radiotherapy). In addition, a standard of care for patients with stage III disease is 

chemotherapy plus radiotherapy, but patients with impaired performance status may 

undergo palliative radiotherapy to control symptoms (Maconachie et al., 2019). 

Treatment options based on staging are displayed in Table 1.1. 
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Figure 1.1: Incidence of lung cancer by age in the UK between 1993 and 2016 

Lung cancer incidence is higher in elderly patients compared to younger patients. The 

data show an increase in the incidence of lung cancer in patients aged 80 years and above 

in recent years (Cancer Research UK, 2016; Cancer Research UK, 2019). 
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Figure 1.2: Age-specific incidence of lung cancer 

The figure shows the average number of new lung cancer cases diagnosed per year and 

age-specific incidence rates per 100,000 population, in the UK (Cancer Research UK, 

2019). 
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Figure 1.3: Lung cancer staging at diagnosis in England, Scotland and Northern 

Ireland 

The proportion of lung cancer cases at each stage, all ages, in England, Scotland and 

Northern Ireland. It can be seen that a significant number of patients are diagnosed at an 

advanced stage (Cancer Research UK, 2016). 
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Table 1.1 Lung cancer staging and management (p-3 to 15) (Cox, Chang and 

Komaki, 2007) 

Staging  Treatment 

Stage I and II Surgery ± adjuvant chemotherapy 

Patients unfit for surgery or patients who prefer 
SABR or radiotherapy to surgery – SABR or 
radiotherapy   

Stage IIIA and IIIB Chemotherapy + Radiotherapy +/- adjuvant 
immunotherapy or radiotherapy alone (if 
patient unfit or patient preference) 

Stage IV Chemotherapy, targeted therapy, 
immunotherapy, palliative RT 

 

Table 1.2  Performance status defined by World Health Organisation (Maconachie 

et al., 2019)  

Grade/Status Explanation of activity 

0 Fully active, able to carry on all pre-disease performance without 
restriction 

1 Restricted in physically strenuous activity but ambulatory and able to 
carry out work of a light or sedentary nature, e.g., light housework, 
office work 

2 Ambulatory and capable of all self-care but unable to carry out any 
work activities. Up and about more than 50% of waking hours 

3 Capable of only limited self-care, confined to bed or chair for more 
than 50% of waking hours 

4 Completely disabled. Cannot carry on any self-care. Confined to a bed 
or chair 

5 Dead 
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1.2.1 Surgery  

Surgery is a standard of care for NSCLC patients with limited/early-stage disease and who 

are suitable for operation (Maconachie et al., 2019). Lung surgical resections are 

generally pneumonectomy, lobectomy, or wedge recession (Maconachie et al., 2019). 

However, surgical resections have 2% to 4% associated fatal side effects (Cancer 

Research UK, 2016; Maconachie et al., 2019). Survival of patients undergoing surgery is 

higher for limited/early-stage cancer patients compared to advanced-stage disease, 

mainly due to remaining microscopic diseases (p-5, Cox, Chang and Komaki) (Cancer 

Research UK, 2019; Cox, Chang and Komaki, 2007). A number of studies have reported 

that the overall survival of advanced-stage non-small cell lung cancer (NSCLC) patients 

undergoing surgery is similar to the patients who have had chemo-radiotherapy (p-5, 

Cox, Chang and Komaki) (Pöttgen et al., 2017; Cox, Chang and Komaki, 2007). However, 

Pöttgen et. al. 2017 also reported that early mortalities (within 6 months of the 

treatment) were higher in patients treated with surgery (Pöttgen et al., 2017). 

1.2.2 Chemotherapy 

Chemotherapy is considered for patients with stage II and III NSCLC who are not suitable 

or have declined surgery (Maconachie et al., 2019). Cisplatin-based combination 

chemotherapy can be offered to patients with tumour stage T1A–4, N1–2, M0 and WHO 

performance status of 0 or 1 in the postoperative setting or a preoperative setting for 

patients with tumour staging TIIIA–N2 (Maconachie et al., 2019). Radiotherapy with or 

without chemotherapy is the standard of care for patients who are not suitable for 

surgery (Maconachie et al., 2019). Chemotherapy is given either sequentially (i.e. course 

of chemotherapy is completed before starting radiotherapy) or concomitantly (i.e. 

chemotherapy is given during radiotherapy) depending on the patient's age and lung 
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function (Maconachie et al., 2019). Concomitant chemo-radiotherapy improves patient 

survival but it also results in higher toxicity compared to sequential chemo-radiotherapy 

(Maconachie et al., 2019). The survival of patients that receive sequential chemo-

radiotherapy is approximately 4% less than those that receive concomitant chemo-

radiotherapy (Curran et al., 2011). In addition, most chemotherapy agents used have 

associated normal tissue toxicities (Rancati et al., 2003). 

1.2.3 Radiotherapy 

The aim of radiotherapy is to deliver the intended dose to a target volume whilst 

minimising the dose to healthy tissues (organs-at-risk, OARs), but achieving the desired 

target coverage whilst minimising the OAR dose can be challenging, especially, when the 

target volume is in close proximity with the dose-limiting structures (e.g. spinal cord) 

(Newhauser, 2009). Unlike systemic treatments (e.g. chemotherapy), radiotherapy is a 

localised treatment modality. Most commonly, radiotherapy treatment is delivered using 

a linear accelerator (see Figure 1.4) producing high-energy (megavoltage (MV)) x-rays 

(p-40, Khan, 2012) (Khan, 2012; Symonds et al., 2012). The treatment beams are shaped 

to the tumour volume using multi-leaf collimators (MLC) to minimise radiation dose 

spillage into healthy tissues surrounding the tumour volume (p-230, Khan, 2012, p-160, 

Symonds, 2012) (Khan, 2012; Symonds et al., 2012). This reduction of dose to healthy 

tissues is highly important to reduce post-treatment toxicities (p-28, Symonds, 2012) 

(Symonds et al., 2012). The radiation dose deposited is characterised by the energy 

imparted per unit mass of a given material, and the unit of dose is the Gray (Gy); 1 Gy = 1 

J/kg (Leary, 2012). 
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Figure 1.4. Schematic of a linear accelerator, p43 (Khan, 2012) 

Image A shows a schematic of the X-ray mode of a Varian linear accelerator and image B 

shows a Varian linear accelerator with On-Board Imaging (OBI). OBI is used for acquiring 

3D cone beam computerised tomography (CBCT) and/ or 2D planar kilo-voltage images 

(2D-kV) images). An electronic portal imaging device (EPID) panel is also shown this is 

used to acquire megavoltage (MV) 2D images and/ or portal dose image prediction 

(PDIP) measurement to assess the deliverability of treatment plans. 

   

OBI EPID 

kV source 
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1.2.3.2 Radiotherapy treatment pathway  

Treatment management of cancer patients is decided in multidisciplinary team meetings 

(MDT: a team that includes experts from different disciplines/specialties of medicine, e.g. 

medical speciality, clinical oncology, medical oncology, surgery, radiology, pathology), 

taking multiple factors into account including disease stage, prognosis, lung function, 

cardiovascular function, and age. Once the decision has been made and if the patient is to 

have radiotherapy, they are referred to a consultant clinical oncologist. The clinical 

oncologist discusses treatment (dose and fractionation) and related toxicities with the 

patients and gains informed consent from the patient. Patients then undergo the 

following processes at Hull University Teaching Hospitals (HUTH), see chart 1.1.   

CT simulation  

At HUTH, a treatment-planning CT scan is acquired on a Siemens Pro™ CT scanner. The 

CT scan is performed, to obtain a volumetric data set to be used for delineating targets 

and organs at risk volumes. CT images are reconstructed from measured exit radiation 

fluence, having irradiated the patient with an x-ray beam over a 360-degree arc. An 

attenuation coefficient (Hounsfield Units (HU)) can be determined from these scans, to 

characterise tissue density and is used for treatment plan optimisation and dose 

calculations. The acquired CT images allow the generation of a digitally reconstructed 

radiograph (DRR) and/ or the CT volumetric data set can be used for treatment 

verification prior to delivering treatment (p-29, Beets-Tan, Oyes and Valentini 2020) 

(Beets-Tan, Oyen and Valentini, 2020).  
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Chart 1.1: Showing radiotherapy patient pathway at HUTH. 

•Patient 
positioning

• immobilisation

•Breathing 
assessment/ 
coaching: 4DCT

•Exporting images 
to planning 
system

CT 
Simulation

• Identify 
Max/Mid/Min 
breathing phases

•Contour target 
and OAR volumes

•Prescription 

Target and 
Organs at 

Risk 
delineation

•Treatment plan 
optimisation

•Review dose 
distribution and 
approve plan

Treatment 
planning

•Position patient 
as planned

•Pre-treatment 
verification 
imaging

•Setup corrections 
and treatment 
delivery

Treatment 
Delivery

•Perform 
independent 
checks

•Treatment plan 
delivery QA

Plan check 
and patient 
specific QA



13 | P a g e  

 

Patient positioning and immobilisation: Lung cancer patients are positioned supine 

with their arms above their head (to avoid treating through arms) using a wing board 

with hand poles and knee rest. If both arms cannot be raised above the head, then every 

attempt is made to raise one arm only. Both the wing board and knee rest are fixed to the 

couch using locking bars. The position of the locking bars, arm poles and head position is 

recorded on the patient setup sheet to ensure consistent patient positioning during 

radiotherapy treatment as the CT simulation scan is carried out only once prior to 

starting treatment. Any deviation from the planned/simulated treatment position could 

introduce errors in treatment delivery (especially if pre-treatment imaging is not 

performed), (p-150, Marcu, Bezak and Allen, 2012) (Marcu, Bezak and Allen, 2012). 

Immobilisation devices limit patient motion during treatment so that treatment can be 

delivered as planned (p-132, Marcu, Bezak and Allen, 2012)  (The Royal College of 

Radiologists, 2008; Marcu, Bezak and Allen, 2012).  

Target and organs at risk (OAR) volume delineation: At HUTH, target volumes used 

are consistent with international standards: gross tumour volume (GTV: includes the 

tumour volume (primary and nodes) that can be seen by the eye (or palpation) either on 

the patient or with the help of imaging), no additional margins are added to this 

structure); clinical target volume (CTV: is a volume that contains the GTV and/or 

subclinical microscopic malignant disease); and planning target volume (PTV: includes 

gross tumour and clinical target volumes with a margin added for set-up errors) 

(International Commission on Radiological Units, 1993; International Commission on 

Radiological Units, 1999; Newhauser, 2009). Target volumes, GTV, nodes and CTV are 

contoured by clinical oncologists and the clinician also construct PTV by adding a marging 

to CTV.  
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In addition, organs at risk (OAR) volumes including lungs (i.e. lungs excluding GTV), 

heart, spinal cord, and spinal cord PRV are contoured on the averaged 4D-CT scan (a scan 

reconstructed using average pixel density from the binned data). The PRV is the planning 

organ at risk volume: the PRV includes a margin to compensate for setup variations 

similar to the PTV, ensuring the critical tissues/ structures do not exceed the dose limit) 

(International Commission on Radiological Units, 1993; International Commission on 

Radiological Units, 1999). At HUTH, the spinal cord PRV is generated by adding a 0.5 cm 

isotropic margin for setup errors to ensure the dose to the spinal cord does not exceed 

the acceptable limit. 

Treatment planning: Individualised treatment plans are then produced for each patient. 

The goal of treatment planning is to deliver the intended dose to the target volume whilst 

keeping OAR doses within the clinical constraints and/or reducing as low are reasonably 

practicable beyond the dose constraint (Emami et al., 1991; Newhauser, 2009; Bentzen 

et al., 2010; Marks et al., 2010b; Appelt et al., 2014). Different techniques are used to 

produce conformal treatment plans and treat lung cancer patients.  

Radiotherapy dose and fractionation:  Radiotherapy is conventionally delivered in 

several smaller doses, called fractions, over a period of weeks to a total prescribed dose 

value (Newhauser, 2009; Maconachie et al., 2019). The conventional fractionation regime 

delivers a radiation dose of 1.8 Gy – 2 Gy per fraction (per day) for five days a week 

(Newhauser, 2009). Generally, the total radiotherapy dose varies between 60 Gy – 70 Gy, 

delivered in 30 – 35 fractions over six to seven weeks (Nyman et al., 2016; Maconachie et 

al., 2019). The fractionation schedule allows normal tissues to recover from the sub-

lethal damage caused by radiation (p-127, Whitson, 1972) (Whitson, 1972). The time 

between fractionations also allows the redistribution of tumour cells from a radio-
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resistant phase of the cell division cycle (i.e., S phase) to more radio-sensitive phases (i.e., 

late G2 and M) (p-185, 191, Whitson, 1972) (Whitson, 1972). Furthermore, it allows re-

oxygenation of hypoxic tumour cells, improving tumour cell killing (p-194, Whitson, 

1972) (Whitson, 1972). Repair and repopulation of the normal cells during a break 

between fractionations also improve the tolerance of normal tissue (p-104, Whitson, 

1972) (Whitson, 1972). One of the disadvantages of long-scheduled fractionation is the 

unwanted repopulation of tumour cells that starts after 4 weeks of treatment (Withers, 

Taylor and Maciejewski, 1988; Maciejewski and Majewski, 1991; Petereit et al., 1995; Kim 

and Tannock, 2005; Chen et al., 2011). This can be avoided by accelerated treatment 

schedules or by hypo-fractionated dose regimes (e.g. 55 Gy delivered in 20 fractions). 

These fractionated regimes are recommended for unresectable stage III (T1-T3/N0-N2) 

lung cancer patients (Maconachie et al., 2019). Hyper-fractionated dose regimes, where 

smaller doses per fraction are delivered more than once a day, can be considered for 

advanced-stage NSCLC patients (Maconachie et al., 2019).  

In recent years, early-stage inoperable cancers are treated using stereotactic ablative 

body radiotherapy (SABR) (see Table 1.1). The SABR fractionation regime differs 

significantly from the conventional fractionation regime, delivering a high radiation dose 

over a short period of time (54 Gy/ 3#s: SABR lung) to potentially ablate early-stage 

NSCLC (UK SABR Consortium, 2016; Nyman et al., 2016; Bergsma et al., 2017; Dan and 

Williams, 2017; Kennedy, Corkum and Louie, 2017; Shah and Loo, 2017; Sun et al., 2017; 

Boon et al., 2017; Yu, Dai and Xu, 2017; UK SABR Consortium, 2019). Finally, an emerging 

technique and one of the major and promising breakthroughs in radiation oncology is 

FLASH-radiotherapy (FLASH-RT) (Bourhis et al., 2019; Vozenin, Bourhis and Durante, 

2022). It delivers ultra-fast radiation doses with an intra-pulse dose rate higher than 
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1.8x105 Gy/s helping to limit normal tissue toxicities and hence could allow dose 

escalation (Bourhis et al., 2019; Vozenin, Bourhis and Durante, 2022). FLASH therapy has 

the additional benefits of reducing treatment time and issues related to organ motion. 

The pre-clinical animal studies show promising results, but due to technological 

challenges it might take a few years for being used routinely for treating cancer patients 

(Bourhis et al., 2019; Vozenin, Bourhis and Durante, 2022).  

The biologically effective dose (BED) is a way of comparing the biological effects of the 

dose delivered by a particular combination of dose per fraction and total dose to a given 

tissue characterised by a specific α/β ratio. BED delivered with different fractionation 

regimes can be calculated using equation 1.1.  

𝐵𝐸𝐷 = 𝑑 × 𝑓 (1 +
𝑑

𝛼
𝛽⁄

)       Equation 1.1 

Here, d is the dose per fraction, f is the total number of fractions (d x f = total prescription 

dose), and α/β is used to quantify the fractionation sensitivity of the tissues (Steel, 2002). 

The α/β ratio describes the dose where the linear, as well as the quadratic component, 

cause the same amount of cell killing. A low α/β (0.5 – 6 Gy) value is characteristic of late-

responding normal tissues, and higher values (7 – 20 Gy) are characteristic of early-

responding normal tissues and tumours (Steel, 2002).  

Tumour control and normal tissues complication probability (TCP/ NTCP): TCP is a 

parameter used to quantify the percentage of tumour killing for a given radiation dose 

whereas, its effect on normal tissue damage is defined as NTCP. Both TCP and NTCP 

depend on fractionation dose and cell biology such as repopulation, repair, redistribution 

and re-oxygenation (Nuraini and Widita, 2019). 
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In this thesis, TCP was calculated using Biosuite software (Uzan and Nahum, 2012) and 

the estimated TCP values were used for comparing the clinical and test plans. The 

Biosuite software uses a dose-volume histogram and a number of set parameters 

(describing how different tissues will respond to the given ionising radiation) to predict 

TCP and NTCP. For more information about the parameters and the values used in the 

thesis please see section 6.2.3. 

Organs at risk (OAR) dose constraints: OAR dose constraints (i.e., tolerance dose), that 

is, doses related to acceptable or tolerable side-effects, are obtained based on previous 

experiences, as reported by Emami et al (Emami et al., 1991) and QUANTEC (Marks et al., 

2010b). Dose constraints include maximum dose, mean dose and/or dose to a percentage 

of volume. For example, to limit the risk of symptomatic radiation pneumonitis below 

20%, the dose to 30 to 35% of healthy lung tissue should be less than 20 Gy (i.e., V20Gy < 

30-35%) and/ or a mean lung dose should be lower than 20 to 23 Gy (Bradley et al., 2005; 

Marks et al., 2010a). 

Lower OAR doses are associated with lower toxicities, which can be achieved with IMRT 

and/or VMAT treatments (Yom et al., 2007; Jiang et al., 2012). Numerous studies have 

compared treatment outcomes for patients treated with 3D-CRT and IMRT/VMAT and 

reported that the rate of grade 3 and/or higher toxicities are significantly lower for 

patients treated with IMRT/VMAT compared to 3DCRT patients (Yom et al., 2007; Jiang 

et al., 2012). This was despite treating larger target volumes with IMRT (Yom et al., 2007; 

Jiang et al., 2012). In addition, Wijsman et al compared toxicities and outcomes for 

advanced-stage NSCLC patients treated with IMRT and VMAT; the study found no 

significant differences in the acute and late pulmonary toxicities, however, the VMAT 

patients showed higher acute oesophageal toxicities compared to the IMRT patients 
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(Wijsman et al., 2017). This study did not find any differences in the overall survival 

between patients treated with IMRT or VMAT (Wijsman et al., 2017). 

Radiotherapy planning techniques: The radiotherapy treatment planning pathway for 

the management of cancer patients includes clinical and technical treatment planning 

(see Chart 1.1). Clinical planning dictates treatment intent, treatment modality, radiation 

dose prescription to the target volumes and clinical structures. Conversely, the technical 

plan derives the patient’s position, immobilisation, treatment beam geometry, aperture 

and X-ray beam energy to produce individualised optimal treatment plans (p-5, Xia, 

2018) (Xia et al., 2018).  

Different radiotherapy treatment planning and delivery techniques have been developed 

over the years. Even after megavoltage, radiotherapy became the norm following the 

introduction of Co-60 and linear accelerator units in the 1950s and 1960, treatment was 

planned using 2D images acquired on a conventional simulator (p-17, Barrett, Dobbs and 

Roques, 2009) (Barrett, Dobbs and Roques, 2009). Treatment fields were defined based 

on poorly differentiated anatomical and tumour boundaries and dose distribution and 

treatment times were calculated manually using 2D dosimetric data until the early 

development and introduction of computer treatment planning in the 1960s and 1970s 

(p-210, Levitt et al, 2008; p-49, Xia, 2018)  (Levitt et al., 2008; Xia et al., 2018). Following 

the development of the CT scanner in the  1970s, there has been a significant 

improvement in radiotherapy planning (Bortfeld, 2006). 3D CT images are used for 

delineating target volumes and establishing a true 3D target volume. After 1999, the 

further development and wider availability of 3D treatment planning systems (TPS) and 

multi-leaf collimators (MLC) allowed the shaping of treatment beam apertures to the 

target volume using the beam’s eye view (BEV) resulting in the superior conformation of 
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isodoses to the target volume whilst minimising dose to OARs (Barrett, Dobbs and 

Roques, 2009). In 3D-CRT, multiple static fields are placed around the target volume 

using the beam’s eye view (BEV). BEV helps to avoid and/or minimise beam incidence 

through critical structures (p-21, Barrett, Dobbs and Roques, 2009) (Barrett, Dobbs and 

Roques, 2009). 3D-CRT treatment plans are optimised by changing treatment beam 

weighting, using wedges to compensate for body obliquity or increasing the number of 

beams and changing collimator angles. Target conformity increases in 3D-CRT plans 

compared to 2D plans (p-21, Barrett, Dobbs and Roques, 2009)  (Barrett, Dobbs and 

Roques, 2009). However, delivering intended doses to target volumes can be limited due 

to the proximity of OAR volumes (p-21, Barrett, Dobbs and Roques, 2009) (Barrett, Dobbs 

and Roques, 2009). Furthermore, one of the limitations of this technique is that the dose 

to the OAR volume located in the groove region of a concave target volume sometimes 

cannot be reduced below the prescription dose unless target coverage is compromised 

(Cho, 2018; Maconachie et al., 2019). 

In 1982, the intensity-modulated radiotherapy (IMRT) planning technique was first 

proposed by Brahme et al (Cho, 2018). Since then, the use of IMRT in clinical practice has 

increased significantly and it has become a standard of care for treating a range of cancer 

sites. IMRT is a more complex form of conformal radiation therapy where dose 

conformity to the target, or more specifically dose to exclusion to the OARs, is achieved 

by using the beams with modulated intensity (Barrett, Dobbs and Roques, 2009) which 

adds to create exquisite dose distribution. Each IMRT field consists of multiple 

segments/beamlets shaped using MLC, whose individual intensities (defined by the 

associated monitor (MUs)) superpose within the overall irradiated field to produce the 

beam modulation. 
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IMRT can produce significantly more conformal dose distribution compared to 3DCRT 

(p-21, Barrett, Dobbs and Roques, 2009) (Barrett, Dobbs and Roques, 2009). In addition, 

IMRT can produce homogeneous dose distribution across PTV and achieve sharper dose 

fall-off at the PTV edge (Barrett, Dobbs and Roques, 2009). Sharper dose fall-off from the 

PTV boundary allows for a significant reduction of the volume of OAR receiving higher 

doses (p-23, Barrett, Dobbs and Roques, 2009)  (Barrett, Dobbs and Roques, 2009). These 

features may allow dose escalation to target volume whilst keeping OAR doses in 

tolerance to improve treatment outcomes. Reduction in OAR doses reduces the 

complication rate and improves the quality of life (p-23, Barrett, Dobbs and Roques, 

2009) (Barrett, Dobbs and Roques, 2009).   

IMRT plans are delivered either in ‘step and shoot’ or dynamic techniques (p-145, Webb, 

2015) (Webb, 2015). In ‘step and shoot’ treatments, the radiation beam is turned off 

whilst MLCs are moving to the next segment and between gantry rotations, whereas in 

dynamic delivery, the radiation beam is only off during gantry rotation (moving to the 

next planned position) (p-143, Webb, 2015) (Webb, 2015). 

The Volumetric Modulated Arc Therapy (VMAT) was first introduced in 2007 (Teoh et al., 

2011), it is an even more complex strategy for dynamic delivery because the beam 

remains on during gantry rotation; gantry speed, dose rate and MLC speed change 

continuously during treatment delivery (Teoh et al., 2011; Hoskin, 2012). VMAT plans 

can be more conformal compared to IMRT plans as there are more degrees of freedom 

(Teoh et al., 2011; Hoskin, 2012). The total number of monitor units in VMAT plans are 

significantly lower compared to IMRT plans (Rana, 2013) which allow faster treatment 

delivery. However, a larger volume of normal tissues can be exposed to low radiation 

dose (i.e., increased low dose bath) in VMAT plans compared to IMRT and 3DCRT plans 
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due to the nature of delivery (i.e., arc delivery) (p-314, Gunderson and Tepper, 2015; p-

60, Xia, 2018) (Gunderson and Tepper, 2015; Xia et al., 2018).  

Treatment plan optimisation: Treatment plans are optimised using forward planning 

or inverse planning depending on the treatment technique (p-8-9, Xia, 2018) (Xia et al., 

2018). In the forward planning technique, beam angle, aperture shape, beam weighting, 

wedge (if needed), and wedge angle are iteratively adjusted, by an experienced human, 

until the desired uniform dose to the target volume is achieved. 2D and 3D conformal 

plans are created using forward planning (p-8-9, Xia, 2018) (Xia et al., 2018).  

With the inverse planning technique, optimisation objectives are entered into a computer 

optimizer (i.e. the Treatment Planning System) with appropriate priorities (the optimiser 

assigns a cost function to each of the clinical goals to be achieved, based on constraints, 

priorities and weights. The cost function is a measure of how close the achieved dose 

distribution is to the desired dose distribution) to achieve optimal dose distribution for 

both IMRT and VMAT treatments (p-311, Gunderson and Tepper 2015; p-464 

Winchester, 2006; p-12, 14, Xia, 2018) (Winchester et al., 2006; Gunderson and Tepper, 

2015; Xia et al., 2018). Inverse plan optimisation is performed either directly or in two 

steps. In two-step optimisation, the optimizer generates an ideal fluence without taking 

the physical and mechanical limitations of the treatment machine (e.g. dynamic MLC 

(DMLC) and dose rate) into account and then the generated fluence is converted into an 

actual deliverable fluence using the leaf motion calculator within the treatment planning 

system (TPS) (p-8-9, Xia, 2018) (Xia et al., 2018). The second step ensures that the fluence 

can be delivered but it could reduce the quality of the original fluence. In direct aperture 

optimisation, the aperture shapes and weights of beams or arcs are optimised 

simultaneously and MLC constraints (i.e., physics and mechanical parameters of the 
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treatment machine) are considered during the optimisation process. This method 

produces deliverable plans without losing the quality of plans (p-8-9, Xia, 2018) (Xia et 

al., 2018). 

In inverse planning, clearly defined planning objectives are extremely important, as any 

conflicting/competing objectives may result in an undesired effect on dose distribution 

(p-9-11, Xia, 2018) (Xia et al., 2018). The optimiser then finds an optimal solution by 

minimising the cost function (p-9-11, Xia, 2018)  (Tol et al., 2015a; Xia et al., 2018). The 

optimisation processes are done by the optimiser, whereas plan objectives are set by the 

human planner during optimisation. Higher objectives are set for PTV to achieve the 

desired coverage (e.g. at least 99% of PTV receives 95% of the prescription dose). 

Whereas, low dose objectives are set to limit the volume of PTV receiving higher (≥ 107% 

of the prescription dose) doses (e.g. at most 0% of PTV receives 107% of prescription 

dose). Similarly, OAR doses are limited by setting lower objectives. The quality of 

treatment plans depends on the plan objectives set during optimisation (p-11, Xia, 2018) 

(Xia et al., 2018). Therefore, any variation in the plan objective setting by planners can 

increase variability in the plan dosimetry achieved. This highlights the importance of 

patient-specific optimisation objective setting during optimisation, as every patient’s 

anatomy and target volume is different. Variations in plan quality between planners can 

be reduced significantly using knowledge-based planning techniques. 

Knowledge-based planning: KBP methods have been developed to tackle challenges in 

radiotherapy and to improve quality and efficiency (Ge and Wu, 2019). Knowledge  (i.e., 

dose distributions) gained from previously treated patients (i.e., past clinical plans) is 

utilised to predict achievable dose distributions for prospective patients (Schreibmann 

and Fox, 2014; Fogliata et al., 2015b; Nwankwo et al., 2015; Tol et al., 2015b; Chang et al., 
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2016; Delaney et al., 2017; Powis et al., 2017; Wang et al., 2017; Wall, Carver and 

Fontenot, 2018). Mainly there are two approaches for KBP, the rule-based approach (also 

known as automated planning systems).  This utilizes planning knowledge to 

automatically generate beam angle, optimisation structures and optimisation objectives 

to produce clinically acceptable plans (Zhang et al., 2011b; Ge and Wu, 2019). The second 

is a data-driven method, where the knowledge is gained from retrospective clinical 

plans/data-sets to develop models predicting achievable treatment plans for prospective 

patients (Ge and Wu, 2019). The data (including anatomical information, dose 

distribution and arc parameter, biomarker, variation in day-to-day treatment setup, and 

anatomical changes during treatment) can be used effectively to develop KBP models. 

This thesis presents four knowledge-based planning models developed using linear 

regression and multivariate analysis. Patient-specific dose and volume information was 

collected and analysed to develop the models. The method used for each model is 

described in the following chapters. Several KBP models have been developed and 

evaluated for prostate and head and neck planning but it had not been fully explored for 

lung cancer patients (Schreibmann and Fox, 2014; Fogliata et al., 2015b; Nwankwo et al., 

2015; Tol et al., 2015b; Chang et al., 2016; Delaney et al., 2017; Powis et al., 2017; Wang 

et al., 2017; Wall, Carver and Fontenot, 2018). In addition, a commercial knowledge based 

KBP engine, the RapidPlanTM, is available and being used clinically (Fogliata et al., 2014b; 

Fogliata et al., 2014a; Fogliata et al., 2015b; Fogliata et al., 2015a; Hussein et al., 2016; 

Chin Snyder et al., 2016; Fogliata et al., 2017; Foy et al., 2017). The RapidPlanTM is a 

statistical model that is produced from a library of high-quality clinical plans using 

principal component analysis (PCA) to identify the strongest co-relation between 

geometric and dosimetric features. The geometric features include the percentage 

overlap between the target volume and OAR and the dosimetric features include the 
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fraction of OAR receiving a given radiation dose. The model estimates DVH for the new 

patient, which could be achieved if the patient is planned using the same technique as the 

library plans. The model can also generate optimisation objectives to achieve the 

predicted DVH (Hussein et al., 2016). However, RapidPlan software was not available in 

our clinic at the time of the study, and it has cost implications. In addition, the RapidPlan 

software cannot predict arc parameters or trigger adaptive radiotherapy or estimate 

dose escalation. Therefore, in-house knowledge-based planning models were developed 

in this thesis. 

Dose calculations: Radiation doses are calculated using two different types of calculation 

algorithms, type A and type B (p-160, Jeremic, 2011) (Jeremic, 2011). The type A 

algorithm (e.g. pencil beam algorithm) is a simple calculation algorithm, relatively faster 

and does not require high computational power. However, these algorithms do not take 

into account varying lateral scatter produced from different-density tissues (p-160, 

Jeremic, 2011) (Jeremic, 2011). The type B algorithm (e.g. Monte Carlo, AcurosXB) 

requires higher computational power, relatively slow but accounts for lateral scatter 

generated from different-density tissues (p-160, Jeremic, 2011) (Jeremic, 2011). Type B 

algorithms are highly recommended for dose calculation where tissue heterogeneity is 

higher (e.g. lung), whereas, type A algorithms are only recommended for dose calculation 

in water-equivalent tissues (e.g. prostate) (p-143, Battista, 2019) (Battista, 2019). 

Treatment plan assessment: The treatment plan or planned dose distribution is 

assessed qualitatively by reviewing doses on CT images and quantitatively on the dose-

volume histogram (DVH). Although the DVH is a quick and effective tool to assess doses, 

it does not provide any spatial information (p-323, Hoskin, 2012) (Hoskin, 2012). 

Therefore, it is also important to review doses on planning scans (Figure 1.5). DVH is a 
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two-dimensional plot that summarises planned/simulated dose distribution to the 

volume of interest of a patient. (Figure 1.5). DVHs allow quantitative assessment of 

treatment plans, e.g., to assess if OARs exceed the tolerance doses or target achieves 

expected coverage (p-323, 326, Hoskin, 2012) (Neal and Hoskin, 2012; Hoskin, 2012). 

DVHs are generated only for volumes that are contoured in the planning system. In 

addition, DVHs can be used for comparing two plans by putting them on the same plot 

and this helps determine the optimal plan for an individual patient (p-323, Hoskin, 2012) 

(Hoskin, 2012). 
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Figure 1.5: Comparing dose distributions produced by 3D CRT and VMAT plans.  

Image A: dose-volume histogram (DVH) displaying lung (pink), spinal cord PRV (cyan), 

heart (green) and PTV (orange) curves for both 3DCRT (in a triangle) and VMAT (in 

square) plans. It can be seen from the DVH plot that VMAT (B and E) increases the volume 

receiving lower doses and reduces the volume receiving higher doses compared to the 

3DCRT (C and F) plans. The axial slices show dose distribution in a colour wash display, 

B and C: colour wash with 90% dose threshold and E and F: with 50% dose threshold. It 

can be seen from these images that dose conformity is significantly higher in the VMAT 

plan (B and E) compared to the 3DCRT plan (C and F). D and G: dose legend scale. 
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Plan check and patient-specific QA: At HUTH, following the plan approval, all plans are 

independently checked. In addition, due to the nature of the treatment technique (i.e., 

associated complexity of arc modulation), patient-specific quality assurance is performed 

for all patients to ensure that the treatment can be delivered as planned. In addition, the 

source of errors between planned and delivered doses can be identified by calculating 

complexity metrics. The higher the modulation/complexity, the greater the potential for 

error in the delivery.  The level of modulation depends on dosimetric constraints used for 

optimising plans, patient-specific volumes, and optimisation algorithms. The plan 

complexity can be quantified using machine parameters and different plan properties, 

such as fluence, and MLC parameters: aperture, speed, position, dose rate, gantry speed, 

and MU (Olofsson, 2012; Crowe et al., 2014; Younge et al., 2016; Miften et al., 2018; 

Chiavassa et al., 2019). In this thesis, several plan complexity metrics are calculated and 

delivery measurements were performed for both the clinical and test plans to assess the 

deliverability. 

Treatment delivery and image guidance: Image-guided radiotherapy (IGRT) has 

become a standard of radical treatment (The Royal College of Radiologists, 2008). 

Treatment is delivered in a fractionated regime.  For each treatment fraction, patients are 

positioned on a linear accelerator couch in the same position as the treatment planning 

CT simulation (The Royal College of Radiologists, 2008). 2D (planar kV or MV) or 3D cone 

beam computerised tomography (CBCT) images are acquired prior to treatment delivery 

to confirm the treatment position (The Royal College of Radiologists, 2008). Pre-

treatment CBCT images are compared/ matched with planning 3DCT images and the 2D 

planar images are compared with a digitally reconstructed radiograph (DRR) generated 

within the planning system (The Royal College of Radiologists, 2008).  
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Any errors in the position of a patient are corrected prior to treatment delivery. Locally, 

volumetric (CBCT) imaging is performed prior to each fraction for lung cancer patients. 

CBCT images display both soft tissues and bony anatomy whereas 2D planar images 

mostly display bony anatomy (Figure 1.6). Anatomical changes (internal or external 

anatomy) can be visualised in CBCT images, which help to assess if a patient required 

adaptive radiotherapy planning (ART). In ART, the treatment plan is adjusted to fit the 

anatomical changes seen in images (Bertelsen et al., 2011). Recent development in 

onboard imaging technology allows performing 4D-CBCT, which enables assessing 

tumour motion prior to treatment delivery. In addition, CBCT images can be used to 

assess treatment response during treatment (Jabbour et al., 2015). 

Post-radiotherapy toxicities: OARs are categorised into serial and parallel organs (p-

212, Hoskin, 2012) (Hoskin, 2012). Serial organs are organs where damage to a small 

part of the organ could result in loss of function (e.g. spinal cord), whereas for parallel 

organs damage to a small part of the organ only reduces the function of the organ as 

undamaged parts of the organ function normally (e.g. lungs) (p-212, Hoskin, 2012)  

(Hoskin, 2012). For serial organs, the dose limit is the maximum dose received by the 

organ, whereas for parallel organs dose limit is applied to the volume (e.g. mean dose). 

Therefore, target coverage (i.e. dose received by the target volume) is compromised near 

the serial organ to keep the dose within the tolerance limit (Tepper, 2020).  
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Figure 1.6: Images acquired on the treatment machine prior to the treatment 

delivery 

Image A: is a planar image acquired with the gantry at 90o and B: is a CBCT image with 

planning target volume (PTV) and spinal cord PRV (planning at risk volume) volume. 
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1.2.4 Radiotherapy for NSCLC 

Radiotherapy is an important modality for the management of lung cancer as more than 

40 – 50% of lung cancer patients require radiotherapy during their lifetime (p-27, Cox, 

Chang and Komaki) (Cox, Chang and Komaki, 2007; Chan et al., 2014). Radiotherapy is 

used to cure primary lung cancer patients (also known as radical radiotherapy, p-377 

Balci et. al., 2013), as well as to palliate symptoms (known as palliative radiotherapy, p-

411 Balci et. al., 2013) (Balcı, 2013; Maconachie et al., 2019). Radiotherapy is used 

primarily in combination with systemic treatment, and/or less frequently with surgery 

in various therapeutic sequences (Balcı, 2013; Maconachie et al., 2019). However, in 

early-stage NSCLC, radiotherapy can be used as the mono-therapy with curative intent 

(p-378 Balci et. al., 2013) (Balcı, 2013; UK SABR Consortium, 2016; Boon et al., 2017; 

Maconachie et al., 2019; UK SABR Consortium, 2019). 

Selection of NSCLC patients for radiotherapy:  Radical radiotherapy is indicated for 

patients with stage I to III NSCLC who have a WHO performance status of 0 or 1: ( see 

Tables 1.1 and 1.2) (Maconachie et al., 2019). Patients with better performance status 

may also be considered for radical (curative) radiotherapy (See Tables 1.1 and 1.2) after 

a careful assessment of lung function (Maconachie et al., 2019). 

Treatment simulation for lung cancer patients: One of the challenges when treating 

lung cancer patients with radiotherapy is tumour motion due to breathing (p-134, 

Jeremic, 2011) (Jeremic, 2011). Significant tumour motion could lead to geometric miss 

(i.e., not treating the entire tumour volume due to motion), therefore, it is important to 

account for the tumour motion during radiotherapy treatment planning and delivery (p-

134, Jeremic, 2011) (Jeremic, 2011). To account for tumour motion, lung cancer patients 

with regular breathing undergo four-dimensional (4D) CT scans (p-64, Cox, Chang and 
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Komaki) (Cox, Chang and Komaki, 2007). The 4D-CT scanning enables capturing tumour 

motion due to the respiratory breathing cycle (p-134, Jeremic, 2011; p-64, Cox, Chang and 

Komaki, 2007; p-256, Dieterich, 2015) (Cox, Chang and Komaki, 2007; Jeremic, 2011; 

Dieterich et al., 2015). Patients with irregular breathing may not be suitable for 4D-CT as 

it could cause significant motion artefacts in the resultant scans and could affect target 

delineation (p-39, Ehrhardt and Lorenz, 2013) (Ehrhardt and Lorenz, 2013). Patients 

with irregular breathing undergo a traditional 3D-CT scan. During 4D-CT acquisitions, the 

patient’s breathing cycle is monitored and recorded with Varian’s respiratory gating for 

scanners (RGSC) system at HUTH. The RGSC system captures the breathing trace/ signal 

using external surrogates (e.g. infrared-reflective marker block position on the patient’s 

chest/ abdomen) (see Figure 1.7) and the signal is stored in the database.  

Following the completion of the scan, each breathing cycle is split into different phase 

bins (6 to 12 bins; 10 bins are used in our clinic) with respect to time, and the CT slices 

are sorted by bin (p-64, Cox, Chang and Komaki; p-256, Dieterich, 2015) (Cox, Chang and 

Komaki, 2007; Dieterich et al., 2015). Each bin is reconstructed into a 3DCT data set 

(representing an equal percentage of the breathing cycle), resulting in ten 3DCT data sets 

for ten bins. In amplitude binning, the data are binned based on the amplitude within each 

breathing cycle. An average scan is produced using the binned images; the target 

structures contoured on phased images are transferred on to the average scan. This scan 

is used for treatment plan optimisation and dose calculation (p-34, Beets-Tan, Oyes and 

Valentini 2020) (Beets-Tan, Oyen and Valentini, 2020). 

NSCLC target and OAR delineation at HUTH:  For patients with a 4D-CT scan, GTV is 

contoured on selected phases (e.g. maximum inhale, maximum exhale or mid-phase) (see 

Figure 1.8A, 1.8D and 1.8K) ensuring full tumour travel is captured (p-35, Ehrhardt and 
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Lorenz, 2013) (Ehrhardt and Lorenz, 2013). CTV (0.6 cm for SCC and 0.8 cm for ADC), is 

also contoured on the corresponding phase images by applying a symmetric margin to 

account for microscopic spread (Giraud et al., 2000; Ozyigit, Selek and Topkan, 2016; 

Maconachie et al., 2019). For 4D-CT patient scans, the term CTV is not used and instead 

the term internal target volume (ITV: is the volume encompassing CTV, which takes into 

account the variation in position, shape and size of the CTV) is used, as this volume 

incorporates target motion (International Commission on Radiological Units, 1999; 

Ozyigit, Selek and Topkan, 2016) (Figure 1.9). The ITV may be modified such that healthy 

structures (e.g. vertebral body) are edited out if they are included inappropriately. The 

planning target volume (PTV) is produced by adding an isotropic margin to the ITV 

accounting for setup errors (e.g. ITV + 0.5 cm). For 3D-CT patients, the PTV is produced 

by applying large asymmetric margins to account for setup error and tumour motion, and 

in our clinic, we use 1.2 cm superior-inferior and 0.9 cm circumferentially.  

In addition, organs at risk (OAR) volumes including lungs (i.e., lungs excluding GTV), 

heart, spinal cord, and spinal cord PRV are contoured on the averaged 4D-CT scan (a scan 

reconstructed using average pixel density from the binned data) by the planning staff.  

The PRV - planning organ at risk volume: includes a margin to compensate for setup 

variations similar to the PTV ensuring the critical tissues/ structures do not exceed the 

dose limit) (International Commission on Radiological Units, 1993; International 

Commission on Radiological Units, 1999). At HUTH, for lung cancer patients, the spinal 

cord PRV is generated by adding a 0.5 cm isotropic margin for setup errors to ensure the 

dose to the spinal cord does not exceed the acceptable limit. 
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Figure 1.7: Varian’s real-time positioning management (RPM) system 

Image A showing an infrared marker block placed on the patient’s chest and the infrared 

camera in image B records the real-time breathing trace shown in image C. The breathing 

trace is saved on a local RPM database and used to segregate the acquired CT data into 

the required number of bines. 
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Figure 1.8: Tumour motion in a 4D-CT scan  

Images shown are superior and inferior directions around cross-hair. The gross tumour 

volume (GTV) is shown in red. Locally, 4D-CT images are binned into ten phases, phase 0 

to phase 90, images A to J correspond to phase 0 to phase 90 respectively and images K 

and L show the range of target motion observed in two different image planes within a 

patient.  Images A-J are in coronal plane and Image K is in saggital plane 
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Figure 1.9: Illustration of different PTV volumes constructed following 3D- and 4D-CT 

scans (Wolthaus et al., 2008) 

The PTV volume is generated using a large margin for the patient undergoing a 3D scan 

to account for unseen target motion. A: conventional free-breathing; B: Internal target 

volumes (ITV) volume generated taking full target motion into account; C: ITV 

constructed using exhale phase; D: ITV constructed using mid-ventilation phase images.    
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Post-radiotherapy toxicities: Radiation-induced toxicities are divided into acute (early) 

and chronic toxicities. Acute toxicities generally occur within the first six months of the 

treatment, such as radiation-induced pneumonitis (RP). However, chronic (late) 

toxicities usually develop between six months to several years after treatment, such as 

lung fibrosis (Common Terminology Criteria for Adverse Events CTCAE v4.0) (p-213, 

Hoskin, 2012) (National Cancer Institute, 2009; Hoskin, 2012). 

Lung toxicities: Patients with RP may present with shortness of breath, cough, 

congestion and low-grade fever (National Cancer Institute, 2009). Generally, patients 

with RP respond well to steroids, but severe RP can cause severe respiratory distress, 

may require hospitalisation and could result in death (p-114, Jeremic, 2011)  (Berkey, 

2010; Jeremic, 2011). Additional acute toxicities include pleuritic pain due to irradiation 

of the pleura, and cough due to irradiation to the trachea and bronchus  (Berkey, 2010; 

Jeremic, 2011). These can be treated with anti-inflammatory, pain relief and cough 

medication (p-588, Jeremic, 2011) (Berkey, 2010; Jeremic, 2011). Pulmonary fibrosis is 

the most prominent late toxicity of thoracic irradiation (p-611, Jeremic, 2011) (Berkey, 

2010; Jeremic, 2011). It causes radiological changes in the majority of patients and, in 

some patients, it could cause dyspnoea (p-332, Jeremic, 2011)  (Berkey, 2010; Jeremic, 

2011). Pulmonary fibrosis is irreversible, so the goal of treatment is symptom relief (p-

312, Jeremic, 2011)  (Berkey, 2010; Jeremic, 2011). This generally includes anti-

inflammatory medication, although some patients may need oxygen (Jeremic, 2011). 

Rarely, the patient may get bronchial stenosis, bronchomalacia, and mediastinal fibrosis 

with recurrent laryngeal nerve injury (p-611, Jeremic, 2011)   (Jeremic, 2011). The 

occurrence and severity of radiation toxicities are dose-dependent (p-598, Jeremic, 2011)  

(Jeremic, 2011). 
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Gastrointestinal (GI) toxicities: Other common toxicities include oesophageal toxicities 

with severe toxicities (e.g. grade 3 and 4) requiring IV fluids, tube feeding or total 

parenteral nutrition for more than 24 hours (p-640, 779, Jeremic, 2011)   (Bentzen et al., 

2010; Jeremic, 2011). Symptoms are mostly managed with supplements, painkillers, or 

local anaesthesia (Bentzen et al., 2010). In most of these patients, symptoms are relieved 

after treatment (Bentzen et al., 2010; Jeremic, 2011). Rarely, late effects e.g. oesophageal 

stricture are seen (p-639, Jeremic, 2011)    (Bentzen et al., 2010; Jeremic, 2011). 

1.2.5 Immunotherapy 

A recent development in the management of lung cancer is the use of immune checkpoint 

inhibitors that help to reverse cancer immunosuppression and amplify antitumour 

immunity (Moya-Horno et al., 2018). These include monoclonal antibodies directed 

against cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and programmed cell 

death protein (PD-1) and programmed cell death-ligand-1 (PD-L1) (Antonia et al., 2017; 

Antonia et al., 2018; Brahmer et al., 2018; Paz-Ares et al., 2020). A recent trial, PACIFIC, 

reported significant improvement in overall survival for the patients treated with 

adjuvant durvalumab immunotherapy in addition to concurrent chemo-radiotherapy 

(Paz-Ares et al., 2020). Durvalumab is a human IgG1 monoclonal antibody that blocks PD-

L1 binding to PD-1 and CD 80 (ligand of CTLA-4) allowing T cells to recognize and kill the 

tumour cell (Antonia et al., 2017; Antonia et al., 2018; Brahmer et al., 2018; Paz-Ares et 

al., 2020). This has become a new standard of treatment for inoperable advanced-stage 

NSCLC patients with good performance status (Antonia et al., 2017; Antonia et al., 2018). 
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1.3 Aims and objective of the thesis 

Treatment of lung cancer patients with radiotherapy has evolved significantly, including 

the use of IMRT/ VMAT (Chan et al., 2011; Abo-Madyan et al., 2014; Diwanji et al., 2017), 

the development of gated radiotherapy systems (Wolthaus et al., 2008), and development 

of type B dose calculation algorithms for accurate dose calculation (Knöös et al., 2006). 

However, personalised optimisation of treatment plans has not developed fully and still 

has scope for further development. This thesis aims to address some of these gaps in the 

field, including the themes noted below. 

Aim and objectives of the thesis: The key aim of this thesis is to use patient-specific 

information determined from treatment plans and the knowledge gained from the 

patient population to personalise optimisation when planning individual patient 

treatments. 

Overarching hypothesis: Data characterising patients can be used to find the most 

optimal plans for advanced-stage inoperable non-small cell lung cancer patients treated 

with volumetric modulated arc therapy. 

This thesis will examine various ways to personalise and optimise lung cancer 

radiotherapy, as follows: 

1.3.1 Reducing variability in treatment plans: Treatment plans produced by 

different human planners can increase variability (i.e. variability is the difference 

between the achieved OAR dose and the minimum dose that could be achieved for 

an individual patient) in treatment plans. Variability is caused by things such as 

the planner's experience, subjective plan optimisation preferences and clinical 

workload. Larger variation in achieved OAR doses could increase toxicities 
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especially when the achieved doses are significantly larger than the minimum 

achievable doses. The variability in treatment plans can be reduced using 

knowledge-based planning (KBP) models (Fogliata et al., 2015b; Chang et al., 

2016; Wang et al., 2017). The KBP models can predict minimum achievable OAR 

doses prior to treatment plan optimisation based on individual patients’ anatomy. 

The planner can aim to achieve the predicted doses during the plan optimisation 

process. This helps reduce variability in the achieved doses and improves overall 

treatment plan quality. A reduction in OAR doses could reduce post-treatment 

toxicities and improve patients’ quality of life.  

Specific Aim 1: to reduce variability (i.e. to reduce the difference between the 

achieved OAR dose and the minimum dose that could be achieved for the individual 

patient) in treatment plans produced by planners with varying degrees of 

experience. 

Chapter 3 discuss the method and results of the KBP model developed locally.  

1.3.2 Personalising VMAT arc geometry: multimodality treatment has become the 

standard of treatment for the management of lung cancer patients (Maconachie et 

al., 2019). Patients with pre-existing co-morbidities are generally not suitable for 

surgery so radiotherapy with and without chemotherapy is the standard of 

treatment for these patients (Maconachie et al., 2019). In addition, many 

chemotherapy drugs have associated pulmonary toxicities (Rancati et al., 2003). 

Therefore, reducing OAR radiation dose is important to limit toxicities and 

improve the quality of life of the patient. In addition, advanced radiotherapy 

techniques such as VMAT increase the OAR volume receiving lower doses and a 

number of studies have reported that lower doses are also associated with fewer 

toxicities (Wang et al., 2006; Khalil et al., 2015). Both the rate and severity of 
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toxicities increase with the volume of OAR receiving lower radiation doses. 

Therefore, reducing OAR doses is crucial. Numerous alternative planning 

techniques have been studied to reduce lung doses; these techniques have 

reduced lung doses but resulted in an increase in heart doses (Mayo et al., 2008; 

Dumane et al., 2010; Chan et al., 2011). Furthermore, some studies reported 

increases in treatment time (mainly due to the use of the step-and-shoot IMRT 

technique). It is, therefore, essential to develop a planning technique that reduces 

both lung and heart doses and treatment time without compromising target 

coverage.  

Specific Aim 2: to investigate if OAR doses can be reduced by personalising VMAT 

arc geometries for treating advanced-stage NSCLC patients, with curative intent, 

without compromising target coverage. Secondly, to develop and validate a 

knowledge-based planning model to predict arc geometry based on individual 

patient geometry.  

Chapter 4 demonstrates a method developed locally and the results. 

1.3.3 Personalising adaptive radiotherapy: anatomical changes during radiotherapy 

treatments are inevitable and significant changes could alter planned dose 

distribution and affect treatment outcomes. Numerous publications recommend 

adapting treatment plans halfway through the treatment or twice during the 

treatment (Guckenberger et al., 2011; Kataria et al., 2014). However, different 

patients respond differently to treatment and as seen before the treatment regime 

(i.e. combination of treatments) differs between patients so a ‘standard’ approach 

may not be suitable for the patient population. Furthermore, adapting every plan 

once or twice during treatment may not be necessary and could increase the 
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clinical workload significantly. It is, therefore, important to investigate methods 

to identify the patients who would benefit from ART.  

Specific Aim 3: To investigate optimal adaptive strategies for the treatment of 

inoperable locally advanced NSCLC patients treated with VMAT and to develop 

knowledge-based models for identifying patients requiring ART. 

Chapter 5 discusses different ART methods and the method developed locally and the 

results. 

1.3.4 Personalised and progressive adaptive dose escalation to adapted GTV: A 

number of clinical studies have reported that dose escalation improves local 

control and overall survival (Rengan et al., 2004; Kong et al., 2005; Rosenzweig et 

al., 2005; Lee et al., 2006; Gillham et al., 2008; Nielsen et al., 2014; Ramroth et al., 

2016; Fleming et al., 2016; Fleming et al., 2017; Higgins et al., 2017; Tekatli et al., 

2017). However, dose escalation for locally advanced lung cancer patients could 

be challenging due to the proximity of OAR volumes. The alternate method has 

been investigated, this includes inhomogeneous dose escalation (i.e., dose 

escalation to GTV) by (Nielsen et al., 2014). Although this method allows safer 

dose escalation (i.e., without increasing OAR doses significantly), further methods, 

e.g. progressive dose escalation to adapted GTV, could significantly increase target 

doses and improve survival.  

Specific Aim 4: To determine if GTV dose can be escalated continuously during the 

course of treatment and to develop a knowledge-based planning model to determine 

achievable dose escalation for inoperable locally advanced stage NSCLC patients 

treated with curative intent.   

Chapter 6 of this thesis discusses a feasibility study investigating continuous dose 

escalation to adapted GTV whilst delivering prescription doses to PTV. 
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2.0 General Materials and Methods 

This chapter describes the generic methods used for simulation, contouring, planning, 

and patient-specific quality assurance testing for advanced-stage non-small cell lung 

cancer patients in our centre. Methods specific to the different studies have been 

described in the relevant chapters. 

2.1 Patient data background and data storage plan 

At the Medical Physics department at Hull University Teaching Hospitals NHS Trust, all 

studies/projects performed using retrospective patient data do not require additional 

Health Research Authority (HRA) or ethics committee approval; permission has been 

granted by our local R&D committee to use this data as long as certain local governance 

commitments are met. Patients’ data security is very important and it is recommended to 

store the data securely, such as within the hospital network, and all patients’ data used in 

this study were stored securely within the hospital oncology network that operates 

within the hospital's hardware firewall protection. Patients’ CT and CBCT images are 

stored on Onc-ARIA image network and demographics and plan data are stored on Onc-

ARIA DB database. The data is backed up using VEEAM® backup and recovery software. 

All the test plans produced were saved separately from the clinical course and named 

clearly so that they can be easily identified. 

2.2 Data acquisition, treatment simulation, and contouring 

In our clinic, lung cancer patients capable of breathing regularly undergo a four-

dimensional computerised tomography scan (4DCT) (as well as a free-breathing (FB) 

scan). Those with irregular breathing simply undergo the FB (3DCT) scan. The 4DCT 

scans are binned into ten temporal phases and the gross tumour volume (GTV) is 
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contoured on at least three binned phases (i.e., max-inhale, max-exhale, and mid-phase) 

ensuring full tumour motion is captured. These individual phase GTVs are accumulated 

onto the free-breathing (FB) scan and their union/ combination is used to describe the 

4D-GTV. The organs at risk (OAR) volumes are also contoured on FB images.  The FB scan 

is used for treatment plan optimisation and dose calculations. The ITV (4DCT) / CTV 

(3DCT) are produced by expanding the 4D-GTV/ GTV with isotropic margins (see Figure 

1.9), to account for the microscopic spread, of 0.6 cm for squamous cell carcinomas and 

0.8 cm for adenocarcinomas respectively. The PTV is produced using a 0.5 cm isotropic 

margin from ITV for 4D patients, whereas, for 3DCT patients, PTV is produced by applying 

0.9 cm circumferential and 1.2 cm superior and inferior margins to the CTV. 

2.3 Treatment planning 

All patients included in the study were planned with RapidArc®/ VMAT (volumetric 

modulated arc therapy) using the EclipseTM treatment planning system (Version 13.7, 

Varian Medical Systems, Palo Alto, CA) with 6MV (flattened) beams. Two partial arcs for 

both right- and left-sided tumours were used, and direct beam entry through the 

contralateral lung was avoided in each case to minimise the dose received by it. The 

planned dose was calculated using the Acuros® algorithm (dose to water) with a uniform 

dose grid of 0.25 cm. The prescribed dose for patients included in the study was 55 Gy in 

20 fractions. Treatment plans were optimised to meet the planning goals as described in 

Table 2.1.  

The normal tissue objective (NTO) function was used to limit the dose to healthy 

structures with the same priority as the PTV. The NTO has the same purpose as a ring 

structure when optimising treatment plans. The NTO is a function available in the Eclipse 

planning system which reduces the dose to healthy tissue surrounding the target volume 
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as a function of distance from the PTV’s outer border (Olofsson, 2012; Indrayani et al., 

2022). There are two types of NTO functions available in the Eclipse planning system,  

automatic/ default setting utilizes vendor-defined formula and the limits, (i.e., distance 

from target border 1.0 cm, start dose 105 %, end dose 60 % and fall-off 0.05) with priority 

set to a locally determined value of 300. Whereas in the manual NTO setting, the planner 

defines the limits. NTO is mathematically defined as a function f(x) at a distance x from 

the PTV border (Indrayani et al., 2022). 

𝑓(𝑥) = {
−𝑓𝑜𝑒−𝑘(𝑥−𝑥𝑠𝑡𝑎𝑟𝑡) + 𝑓∞(1 − 𝑒−𝑘(𝑥−𝑥𝑠𝑡𝑎𝑟𝑡)), 𝑥 ≥ 𝑥𝑠𝑡𝑎𝑟𝑡

𝑓𝑜′                                                                               𝑥 < 𝑥𝑠𝑡𝑎𝑟𝑡
                                     Equation 2.1 

fo is the start dose -  i.e., the upper constraint that should not be exceeded by dose outside 

the PTV volume; f∞ is the end dose – i.e., the minimum dose constraint that is accepted by 

areas outside the PTV region; k is the dose fall off – i.e., the strength of dose decrease and 

affecting the location of end dose, f∞,; and xstart is the distance from the PTV border 

(Indrayani et al., 2022). 
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Table 2.1. Treatment planning clinical objectives and wish-list (planning goals) are used 

for planning advanced-stage NSCLC patients at our clinic. Wish-list priorities were 

generated following the recommendations from lung clinicians at HUTH. 

  Clinical objective Constraints 
 

Spinal Cord PRV Max Dose ≤ 50Gy / 45Gy for 55Gy/20# 
(Mandatory)  

PTV V95% ≥ 95% 
 

Max (1.8cc) ≤ 107% of the prescription dose  
Lungs-GTV V20Gy ≤ 35% 

 
V5Gy ≤ 60% 

 
Heart Mean dose ≤ 26Gy 

V30Gy ≤ 46% 

Wish-list priority PTV V95%  ≥ 99% 

Lungs-GTV  V5Gy  < 60% 

V20Gy  ≤ 30% 

Heart Mean Dose  ≤ 20Gy 
V30Gy ≤ 30% 

Spinal Cord PRV  Max Dose ≤ 45Gy / ≤ 40Gy for 55Gy/20# 
Lungs-GTV V20Gy  As low as possible 

V5Gy As low as possible 

Heart Mean Dose  As low as possible 
V30Gy As low as possible 

Spinal Cord PRV  Max Dose Max (As low as possible) 

2.4 Data collection 

The clinical data for the entire patient cohort is archived daily in our local database. For 

the studies, retrospective patient data used included planning CT images, structure set, 

treatment plan data, and treatment images (i.e., CBCT images acquired prior to treatment 

delivery) for NSCLC patients treated with radical intent between 2015 to 2018. The 

patient demographics are reported in Table 2.2.  

 A total of 80 (40 to build and 40 to validate) patient data sets were randomly 

selected and used to build and validate knowledge-based planning models. 
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 30 patients' data sets were used to develop and validate our knowledge-based 

planning model to predict optimal arc geometry for inoperable NSCLC patients 

treated with VMAT.  

 25 patients’ data sets were used to determine and verify our knowledge-based 

planning model triggering adaptive radiotherapy and finally.  

 11 patients' data sets were used to determine personalised and progressive 

adaptive dose-escalation methodology and knowledge-based planning models 

estimating dose escalation to adapted GTV. 

Table 2.2: Demographics of patients included in this thesis. 

 Mean/Frequency/Range 

Mean age (SD) 70.37 (6.72) Years 

Gender 38 Male/ 42 Female 

Laterality 48 right/ 32 left 

Location 26UL*/31ML†/23LL‡ 

Staging T1N1/T4N3 

PTV volume (cc) range 161.0 – 707.0 

Lungs volume (cc)# range 1926.7 – 6267.7 

Heart volume (cc) range 301.5 – 1110.4 

# Total lung volumes subtracted from GTV, *UL: upper lobe, †ML: middle lobe, ‡LL: lower lobe. 

2.5 Treatment verification 

At our clinic, all radical lung patients undergo CBCT imaging prior to every fraction to 

verify their position. Deviation in the patient’s position could lead to geometrical misses 

and/or could significantly alter the planned dose distribution and affect treatment 
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outcomes. Deviations in patient position (in the lateral, longitudinal and vertical 

direction) are corrected prior to treatment delivery.  

The pre-treatment CBCT images were processed within the Velocity adaptive 

radiotherapy software (Varian Medical Systems, Palo Alto, CA) to produce synthetic CT 

(sCT) images. The sCT images were used to develop a knowledge-based planning model 

for triggering adaptive radiotherapy (see Chapter 5) and also to study adaptive dose 

escalation for advanced-stage in-operable NSCLC patients treated with VMAT (see 

Chapter 6).  

2.6 Production of synthetic CT (sCT) 

Anatomical changes are inevitable during radiotherapy and could affect the delivered 

dose distribution, to be significantly different to that planned (and therefore assumed 

delivered) and therefore treatment outcomes. To overcome this, adaptive radiotherapy 

is recommended where the planned treatment is updated throughout the course of the 

treatment to match the anatomical changes and the patients undergo a full re-planning 

process, (i.e., simulation, based on a planning CT, contouring, treatment plan 

optimisation, plan check and QA). However, this significantly increases clinical workload 

especially when anatomical changes are not significant and adaptive radiotherapy may 

not actually prove beneficial. To avoid the need to acquire a new planning CT and 

therefore improve efficiency, commercial adaptive radiotherapy software can be used 

where pre-treatment CBCT images are processed to produce synthetic CT scans (sCT) 

that include anatomical information from the CBCT images and Hounsfield Units (HU) 

from the planning CT scan (see Figure 2.1). In this thesis, Velocity (V4.0, Varian Medical 

Systems) adaptive software was used and sCTs were produced for all the treated 

fractions for the patients included in the study.  
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Figure 2.1: Planning CT image (A), cone beam computerised tomography (CBCT) 

image (B) and a synthetic CT image produced within the Velocity software (C). 

The CBCT image (B) includes artefacts due to discrepancies between the mathematical 
modelling and the actual physical imaging process (Schulze et al., 2011) so the HU are 
significantly different from the planning CT image (A). Both artefacts and the HU are 
updated in the synthetic CT image (C). This is required for accurate dose calculations. 
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To facilitate the image processing within the Velocity software, the following process was 

undertaken: 

1. The planning CT (pCT) and CBCT images were initially rigidly registered using the 

same transformation obtained during the respective treatment session, to 

remove the impact of residual setup errors (Wang et al., 2020a).  

2. The setup corrected CBCT images were deformably registered to the pCT images 

excluding the most superior and inferior slices (as these slices do not include full 

anatomy due to the divergence of the cone beam) to produce a synthetic 

verification image set (sCT). 

3. A secondary structure data set was produced in the sCTs, including GTV and 

organs at risk (OAR) volumes. The registration and volumes for each sCT were 

reviewed by experienced physicists and clinical oncologists (any uncertainties 

with the target and the OAR contours can be reduced by peer-review of the 

contours as recommended by the RCR (The Royal College of Radiologists, 2022)). 

The volumes were edited where required, target volumes by clinical oncologists 

and OARs by a physicist. 

2.7 Plan complexity and deliverability 

Treatment plan complexity depends on the total number of MU and the level of 

modulation within a plan. Simpler treatment plans (i.e. lower MU, less modulated with 

larger leaf pair opening) are preferable as these are relatively less dependent on MLC 

motion/position accuracy during delivery (Olofsson, 2012). Highly complex plans 

generally have a higher number of MU, which increase treatment delivery time, increase 
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the dose to the patient - due to MLC transmission - and are more susceptible to interplay 

effects (Younge et al., 2016). 

A number of treatment plan complexity metrics were calculated both for the original 

plans as well as the test plans (see Table 2.3).  

Small aperture score (SAS: calculated as the ratio of open leaf pairs where the aperture 

was less than a defined criterion to all open leaf pairs (Crowe et al., 2014)) were 

calculated using a locally developed script, see equation 2.2. The effect of change in 

optimisation technique on plan complexity was assessed. 

   Equation 2.2  

where x is the aperture criteria, i is the number of segments in the beam, N is the number 

of leaf pairs not positioned under the jaw, and a is the aperture distance between 

opposing leaves (Crowe et al., 2014).  
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Table 2.3. Plan complexity metrics were calculated for both original clinical plans 

and the test ‘optimal’ plans. 

Complexity metrics  Description 

MUperGy Number of monitor units per Gy  

MUPerDegree Number of monitor units per degree of the arc  

MeanDoseRate Mean dose rate of the radiation beam 

MeanLeafSpeed Mean speed of multi-leaf collimator (MLC) 

MeanLeafTravelPerMU Mean leaf travel per MU 

FractionMUthrough<5cc Fraction of the total MU delivered through MLC segments 

less than 5 cc (cubic centimetre)  in size 

IslandsPerCP A total number of islands per control points 

MeanIslandSize Mean island size 

FractionIslandBelow1cc A total number of islands below 1 cc as a fraction of total 

islands 

SAS02 Small aperture score (SAS: calculated as the ratio of open 

leaf pairs where the aperture was less than a defined 

criterion to all open leaf pairs (Crowe et al., 2014)); here the 

defined criteria is 2 mm, 5 mm, 10 mm and 20 mm. 

SAS05 

SAS10 

SAS20 
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Figure 2.2: Illustrating portal dosimetry predicted (A) and measured (C) images. 

Image B is a comparison of predicted and measured images using the gamma criteria used 

locally. Image C is acquired on a TrueBeam linear accelerator using EPID. The image 

analysis was performed in portal dosimetry software within the Eclipse planning system 

(V 15.6). 
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Furthermore, to evaluate the effect of change in optimisation technique on treatment plan 

deliverability, portal dosimetry measurements were performed on a TrueBeam linear 

accelerator for all test plans and gamma analysis was performed using our standard 

clinical criteria (i.e., percentage of pixels where gamma is less than 1 using the criteria of 

3%/2 mm with a threshold of 20%) by comparing predicted fluence with the measured 

fluence. The fluence for each beam was measured using an electronic portal imaging 

device (EPID) and compared in the portal dosimetry software within the EclipseTM 

planning system (see Figure 2.2). 

2.8 Statistical analysis  

Treatment plans produced using different methods were compared with the original 

clinical plans and statistical differences between the original and the test plans were 

calculated using Student’s t-test. The normality of data was tested with Kurtosis analysis 

(p-442, Reinard, 2006) (Reinard, 2006) before the t-test. p values < 0.05 were considered 

statistically significant. This analysis was performed in Excel (Microsoft office 2016). 
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3.0 Validation of locally developed knowledge-based planning models 

for predicting minimum achievable lung dose-volume matrices for 

patients treated with VMAT 

The research in this chapter was published in a peer-reviewed journal and therefore the 

text presented here is adapted from the article. My contribution consisted in 

conceptualising the research strategy, performing the research and writing the 

manuscript with input from my supervisors on designing and planning the work and 

editing the manuscript. Reference: Tambe, N. S.; Pires, I. M.; Moore, C.; Cawthorne, C.; 

Beavis, A. W., Validation of in-house knowledge-based planning model for advance-stage 

lung cancer patients treated using VMAT radiotherapy. Br J Radiol 2020, 93 (1106), 

20190535”. 

3.1 Introduction 

Technological advancements in radiotherapy planning and delivery techniques, such as 

volumetric modulated arc therapy (VMAT), have allowed the reduction of dose to critical 

structures whilst maintaining target coverage (Mayo et al., 2008; Oliver et al., 2009; Rosca 

et al., 2012). Nevertheless, achieving the lowest possible organ-at-risk (OAR) doses for a 

given patient geometry remains challenging as there are large population variations in 

OAR and target structure geometries (Nelms et al., 2012; Batumalai et al., 2013). Several 

studies have reported large heterogeneity in treatment plans produced by human 

planners with different levels of experience (Nelms et al., 2012; Batumalai et al., 2013; 

Moore et al., 2015; Berry et al., 2016). A treatment plan meeting OAR constraints and with 

adequate target coverage may still be considered suboptimal if it is possible to reduce 

OAR doses further without compromising target coverage. 
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To reduce variability between planners, different knowledge-based planning (KBP) 

methods have been implemented. KBP utilises prior patients’ geometries, plans, and 

resultant dosimetric coverage to estimate the lowest achievable OAR doses for 

prospective patients prior to treatment plan optimisation (Fogliata et al., 2014a). KBP 

offers several benefits including improvements in treatment plan quality, reduction of 

inter-observer variability and improvement of treatment planning efficiency (Fogliata et 

al., 2015b; Chang et al., 2016; Wang et al., 2017). In addition to OAR dose prediction, KBP 

methods have also been used successfully to determine optimal gantry angles for IMRT 

patients (Pugachev and Xing, 2002; Zhang et al., 2011b). 

A number of different metrics have been explored for predicting OAR doses prior to 

treatment plan optimisation. The most commonly used metric is an overlap volume 

histogram (OVH: it is a 2-dimensional (2D) curve that describes the geometric 

relationship, such as distance, shape and relative location between PTVs and OARs 

volumes. The 2D curve shows the ratio of PTV within and outside OAR volume) to 

characterise the 3D spatial relationship between an OAR and a target (i.e., PTV) (Wu et 

al., 2009; Kazhdan et al., 2009; Wu et al., 2013). Other metrics can include an overlap of 

OAR volume with target structure(s) (Hunt et al., 2006), OAR volume within and outside 

a target structure (Yuan et al., 2012) and similarity coefficient between retrospective and 

prospective patients’ geometry (Schreibmann and Fox, 2014). 

KBP methods have been largely used for prostate and head and neck planning (Zhu et al., 

2011; Fogliata et al., 2014a; Tol et al., 2015b; Powis et al., 2017). However, only a limited 

number of studies have reported its benefit for lung cancer patients (Fogliata et al., 

2014a; Cui.W et al., 2015). A study performed by Fogliata et al utilised commercial 

software (Varian’s RapidPlanTM) for VMAT lung planning and reported that the 
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RapidPlanTM KBP model facilitated achieving the desired clinical constraints in 4% more 

patients compared to the plans produced without a model (Fogliata et al., 2014a). Cui et 

al produced an in-house model for predicting lung doses using a line of best fit to the data 

for patients treated with IMRT fields (Cui.W et al., 2015). In this study, fifteen ring 

structures from the planning target volume (PTV) were produced and the overlap of 

lungs with each of the rings was used to determine V10 (i.e. volume receiving 10 Gy), V20 

and V30. Furthermore, Zawadzka et al developed an in-house model to predict the 

minimum achievable mean lung dose (MLD) for a given geometry (Zawadzka et al., 2017). 

They predicted MLD using the dose calculated from 36 equidistance fields.  

At the time of writing, none of the studies in the literature includes predictions of 

minimum achievable V5 (percentage of lungs receiving ≥ 5 Gy dose) and minimum 

achievable V20 for lung cancer patients treated with VMAT. V5 is a valuable metric as it 

has been widely reported as a predictor of radiation pneumonitis for advanced-stage lung 

cancer patients, not limited to only mesothelioma patients (Wang et al., 2006; Oh et al., 

2009; Zhuang et al., 2014; Ren et al., 2018). V5 constraints are routinely used at our 

institution for all advanced-stage lung cancer patients therefore a KBP modelling study 

involving this metric has been of particular interest to our department and would be a 

useful addition to the literature. 

Therefore, the aim of this study was to reduce variability (i.e. to reduce the 

difference between the achieved OAR dose and the minimum dose that could be 

achieved for the individual patient) in treatment plans produced by planners with 

varying degrees of experience.  
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3.2 Methodology 

In order to do this, in-house KBP models were developed for inoperable advanced-stage 

NSCLC patients to predict minimum lung dose constraints for V5, V20, and MLD for a given 

patient geometry. Combinations of volumes and dose-volume histogram (DVH) were 

used to build the models on a trial-and-error basis. Of note is the fact that treatment plans 

optimised using the lower bound model (i.e., a model that predicts the lowest achievable 

doses for given geometry) to achieve the lowest OAR doses could produce highly 

modulated plans, thereby increasing uncertainties in treatment delivery as compared to 

the plan optimised without the model. Furthermore, any error in treatment plan delivery 

could significantly alter delivered dose distributions, especially within high-dose 

gradient regions. Therefore, an important objective of our study is to verify the treatment 

delivery accuracy of plans produced using KBP models and compare it with the respective 

delivery accuracy of plans optimised without the model so that an optimal trade-off 

between lower OAR dose and plan delivery can be established. In the present study, the 

produced treatment plans were verified using treatment planning and measurements on 

the TrueBeamTM (V2.5 Varian Medical Systems, Palo Alto, CA) linear accelerator which is 

a novel approach not yet reported in the KBP field. 

A total of forty pre-existing, clinically accepted, treatment plan datasets from our 

database were selected randomly and used to build the models in this study. All plans 

were calculated with the Acuros algorithm within the same version of the Eclipse 

planning system. Volumes (in cubic centimetres (cc)) for numerous structures including 

gross tumour volume (GTV), PTV, lungs (lungs minus GTV), PTV outside lungs, an overlap 

of lungs with PTV, lungs volume cropped back from the PTV by 1 to 5 cm (with 1 cm 

increment) and field size were collected. These volumes were selected on a trial-and-
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error basis, and additional volumes were added/considered when a poor correlation 

between the volume and dosimetric metrics was observed. Dosimetric parameters, 

percentage of lungs volume receiving ≥ 5 Gy (V5), V20, and MLD were collected from the 

Eclipse treatment planning system for the above. 

3.2.1 Development of KBP Model 

To determine suitable volumes (including the ratio of different volumes (e.g. 

Lungs/PTV)) for our KBP model, correlation coefficients (R2) of all collected volumes 

with the dosimetric data (i.e., V5, V20, and MLD) were determined. The commonly used 

parameters (i.e., overlap volume histogram) and several volumes (e.g. lungs, PTV, lungs 

within PTV etc) showed a very poor positive correlation. Finally, the residual lung volume 

(LungResidual) was calculated using equation 3.1. 

𝐿𝑢𝑛𝑔𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
(𝑉2−𝑉1)

𝑉2
      Equation 3.1  

where V2 is total lung volume excluding GTV and V1 is the total lung cropped back from 

PTV by 5 cm (V1: Lungs5cmCrop – volume was produced by cropping total lung (total 

lung = lungs-GTV) volume extending inside PTV with an additional margin of 5.0 cm using 

the crop function within the planning system) demonstrated in Figure 3.1. Furthermore, 

in this study, a lower bound model was developed (see Figure 3.2) to predict the lowest 

achievable volume-dose (Predictvolume-dose) for a given geometry (i.e., LungResidual) (see 

Equations 3.1 and 3.2). 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑉𝑜𝑙𝑢𝑚𝑒−𝐷𝑜𝑠𝑒 = 𝑚 × 𝐿𝑢𝑛𝑔𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑐   Equation 3.2 

A lower bound prediction model was developed based on the prescription of 55 Gy in 20 

fractions (typically used in our clinic). However, to use the model for different 
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prescriptions (i.e. 66 Gy in 33 fractions and 60 Gy in 30 fractions), it was normalised using 

the factor ∆ (see equations 3.3 and 3.4) to predict minimum achievable doses. Note: the 

55 Gy model data was used in the normalised model. 

     Equation 3.3 

    Equation 3.4 

3.2.2 Verification of Model Using Treatment Planning 

A total of forty previously treated patients (not included in the training data) were re-

planned using the values predicted by the models. For re-planning, optimisation 

objectives for V5, V20 and MLD were set to achieve the model-predicted values, whereas 

all other objectives were kept the same as the original plans. The difference in dosimetric 

parameters between 1) predicted and replanned 2) predicted and original, and 3) 

replanned and original plans were compared. 

In addition, the prediction accuracy of the normalised model (see equation 3.4) was 

assessed by re-optimising ten plans from the test dataset (originally prescribed 55 Gy in 

20 fractions but for the validation of the model prescription doses were changed within 

the planning system). The differences between predicted and achieved doses were 

calculated for both 60 Gy and 66 Gy prescriptions. 

3.2.3 Verification of Model Using Treatment Delivery 

All VMAT plans are routinely verified with portal dosimetry measurements on a linear 

accelerator prior to delivering them to patients. All the plans optimised using the KBP 

model were verified by measuring the fluence on the electronic portal imaging device 
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(EPID) panel, without the presence of a patient, and comparing it with the planned 

fluence in the portal dosimetry image prediction software (PDIP) within the Eclipse 

planning system. Gamma analysis (criteria 3%/2mm ≥ 98% (optimal tolerances set 

locally) or ≥ 95% (mandatory tolerance)) results were collected and compared with the 

original plan results to assess the effect of KBP on plan delivery. Analysis was carried out 

in absolute dosimetry mode, with doses normalised to the maximum dose. For analysis, 

a global normalisation was used and the lower dose cut-off threshold was set to 20%, the 

measured and predicted images were auto-aligned and improved gamma evaluation was 

used. 
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Figure 3.1: Example image showing the construction of residual lung volume (LungResidual) 

Displaying the total lung volume excluding GTV (volume V2) in magenta and the volume V1 (i.e. 

the lung volume cropped back from PTV (pink) by 5 cm (blue). 
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Figure 3.2: Lower bound models developed using LungResidual volume.  

These KBP models were developed using equation 3.2, a total of forty patients’ data was used to 

build the models. Later the models were verified using forty patients’ data, the plots showing 

training and verification data and the linear line showing the lower bound model for V5 (A), V20 

(B), and MLD (C).  The slope and intersections of the models are shown in Table 3.2. 
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3.2.4 Plan Complexity Measurements 

Treatment plan complexity is dependent on the total number of MU and the level of 

modulation within a plan. Simpler treatment plans (i.e., lower MU, less modulated with 

larger leaf pair opening) are preferable as these are relatively less dependent on MLC 

motion/position accuracy during delivery (Olofsson, 2012). Highly complex plans 

generally have a higher number of MU, which increase treatment delivery time, increase 

the dose to the patient - due to MLC transmission - and are more susceptible to interplay 

effects. A number of treatment plan complexity metrics were calculated both for the 

original plans as well as the plans produced using the KBP model. The treatment plan 

complexity parameters, including MU/Gy, MU/Degree, islands below 1cc (i.e. small 

islands), small aperture score (SAS: calculated as the ratio of open leaf pairs where the 

aperture was less than a defined criterion (2 mm, 5 mm, 10 mm and 20 mm in this study) 

to all open leaf pairs (see equation 2.2) (Crowe et al., 2014)) were calculated using a 

locally developed script. 

3.3  Results 

The clinical KBP models were developed to determine the minimum achievable dose 

metrics using the LungResidual volume (Figure 3.1). LungResidual volumes calculated using 

5.0 cm crop volume showed the highest correlation with all the dosimetric parameters 

studied (see Table 3.1). The slope and intersection of the KBP models are displayed in 

Table 3.2. 

A significant reduction in variability in treatment plans amongst different planners was 

observed following the implementation of the model (see Table 3.3 and Figure 3.4).  

 



64 | P a g e  

 

Table 3.1. Showing correlation coefficients for different structures and three dosimetric 

metrics.  

Volume Parameters Correlation coefficient (R2) 

V5 V20 MLD 

(Lungs-Lung'1cmCrop)/Lungs 0.73 0.62 0.80 
(Lungs-Lung'2cmCrop)/Lungs 0.73 0.61 0.80 
(Lungs-Lung'3cmCrop)/Lungs 0.75 0.60 0.79 
(Lungs-Lung'4cmCrop)/Lungs 0.77 0.61 0.80 
(Lungs-Lung'5cmCrop)/Lungs 0.81 0.64 0.81 
(Lungs-Lungs2cmCrop)/Lungs 0.55 0.62 0.77 
(Lungs-Lungs3cmCrop)/Lungs 0.71 0.80 0.84 
(Lungs-Lungs4cmCrop)/Lungs 0.78 0.87 0.81 
(Lungs-Lungs5cmCrop)/Lungs 0.79 0.88 0.81 
Lung(cc) 0.08 0.02 0.09 
Lung'(cc) 0.52 0.35 0.54 
Lung'/Lungs 0.74 0.62 0.80 
Lung'/Lungs2cmCropLungs 0.70 0.58 0.73 
Lung'/Lungs3cmCropLungs 0.62 0.50 0.68 
Lung'/Lungs4cmCropLungs  0.46 0.34 0.54 
Lung'/Lungs5cmCropLungs  0.19 0.10 0.27 
Lung'1cmCrop 0.52 0.35 0.54 
Lung'1cmCrop/Lungs 0.73 0.62 0.80 
Lung'2cmCrop 0.53 0.36 0.55 
Lung'2cmCrop/Lungs 0.73 0.61 0.80 
Lung'3cmCrop 0.55 0.37 0.57 
Lung'3cmCrop/Lungs 0.75 0.60 0.79 
Lung'4cmCrop 0.58 0.39 0.59 
Lung'4cmCrop/Lungs 0.77 0.61 0.80 
Lung'5cmCrop 0.62 0.42 0.62 
Lung'5cmCrop/Lungs 0.81 0.64 0.81 
Lungs/LungsInPTV 0.37 0.30 0.54 
Lungs/PTV  0.55 0.40 0.61 
Lungs2cmCrop(cc) 0.17 0.08 0.19 
Lungs3cmCrop(cc) 0.23 0.14 0.25 
Lungs4cmCrop(cc) 0.32 0.22 0.34 
Lungs5cmCrop(cc) 0.43 0.33 0.43 
LungsInPTV(cc) 0.23 0.33 0.47 
Lungs-Lung'(cc) 0.38 0.43 0.39 
Lungs-Lungs2cmCrop(cc) 0.39 0.61 0.55 
Lungs-Lungs3cmCrop(cc) 0.38 0.60 0.46 
Lungs-Lungs4cmCrop(cc) 0.36 0.56 0.38 
Lungs-Lungs5cmCrop(cc) 0.33 0.52 0.33 
Lungs-PTV(cc) 0.32 0.06 0.16 
PTV(cc) 0.27 0.25 0.42 

! Lung’ volume is defined in figure 3.3. 
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Figure 3.3: Displaying construction of Lung' volume in yellow. 

The lung’ volume was produced by deleting lungs-GTV volume overlapping axially with the PTV, 

leaving the superior and inferior parts of the lung-GTV from the PTV as it is. The lung’ volume is 

shown in yellow and the lung-GTV and PTV volumes in magenta and orange respectively. 
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Figure 3.4: Reduction in variability in the plans produced after the model. 

Plots A, B and C show a consistent reduction in plan variability in plans produced after the models 

compared for V5, V20 and MLD respectively. The original plans were planned without model-

predicted values, whereas achieved values were obtained by re-optimizing plans with the model-

predicted values. Three separate models were produced for each dose-volume parameter shown 

in Figure 3.2, using residual lung volume. The minimum achievable dose-volume parameters 

were predicted prior to the plan optimisation and the predicted values for each parameter were 

entered in the optimiser. 
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Table 3.2. Showing slope and intersection of the clinical KBP models. 

Model Slope (M) Intersection (C) 

A (V5) 111.67 -3.4 

B (V20) 63.33 -5.6 

C (Mean Dose) 27.05 -0.98 

 

Table 3.3. Mean and standard deviation of the differences between achieved and 

predicted dose-volume parameters for lung before and after implementation of the 

model for 55Gy/20 fractions regime. 

Dose-volume 

parameter 

Before model After model p-value 

Mean SD Mean SD 

V5 10.8% 7.1% 5.9% 4.6% 0.007 

V20 4.0% 3.1% 2.7% 2.1% 0.038 

MLD 2.5 Gy 1.6 Gy 1.6 Gy 1.0 Gy 0.012 

 

Furthermore, the plans optimised using the model showed a significant reduction in 

differences in dose-volume in all three, V5, V20 and MLD, dosimetric parameters (see 

Figure 3.5). The mean difference between predicted and achieved values was reduced 

from 10.8% to 5.9%, 4.0% to 2.7% and 2.5 Gy to 1.6 Gy for V5, V20 and MLD respectively 

using the model (see Table 3.3). In Figure 3.4, it can be observed that negative differences 

indicate that the model predicted values were higher than the achieved values and 

positive differences indicate model predicted values were lower.  
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Furthermore, treatment plans produced using the model-predicted values resulted in a 

concurrent reduction in all three dosimetric parameters compared to the original plans 

(Figures 3.5 and 3.6). The average reduction observed in V5, V20 and MLD was 6.6% 

(range: 0.4% – 19.78%), 1.1% (range: -0.93% – 7.77%) and 0.7 Gy (range: 0.03 Gy – 2.38 

Gy) respectively. The reduction in lung doses was achieved (see Figure 3.6) without 

compromising the overall plan quality. All test plans were evaluated by a clinician and 

were deemed acceptable for clinical delivery.  

In addition, the model developed for the prescription used in our clinic (55 Gy in 20 

fractions) was normalised for use with different prescriptions. The normalised model 

(equation 3.4) was validated for two additional prescriptions (66 Gy in 33 fractions and 

60 Gy in 30 fractions) by replanning ten patients. The indicated accuracy of the models 

was clinically acceptable; the mean difference between predicted and achieved doses at 

V5 was 0.5% and 2.3% for 66 Gy and 60 Gy prescriptions respectively and for V20 and 

MLD it was 2.1% and 1.2 Gy for both prescriptions respectively (see Figure 3.7). 

It was noted in the KBP model-based plans that the total number of MU increased 

significantly in the majority of plans compared to the original clinical plans (mean 

increase = 46.21 MU (range: – 48 MU – 186 MU), p = 0.011). Therefore, a number of 

treatment plan complexity metrics were calculated using a locally developed script for 

both the original and re-optimised plans. The results are shown in Table 3.4. 
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Table 3.4. Comparison of treatment plan complexity measurements for the original 

and re-planned plans. 

Parameters Original Plan* SD Re-planned Plan* SD p value 

MU/Gy 236.6 29.0 253.4 29.4 0.0002 

MU/Degree 1.8 0.2 2.0 0.2 0.0001 

Fraction of islands < 1cc 0.49 0.2 0.58 0.1 0.0002 

Islands/control point 

SAS2 

SAS5 

SAS10 

SAS20 

3.9 

0. 19 

0.22 

0.28 

0.40 

2.1 

0.1 

0.1 

0.1 

0.1 

4.9 

0.23 

0. 27 

0.34 

0. 48 

2.3 

0.1 

0.1 

0.1 

0.1 

0.0001 

0.0003 

0.0002 

0.0002 

0.0002 

      * Means of noted parameters; SD = standard deviation 

 

The results show that all studied complexity metrics increased significantly in the re-

plans optimised using KBP models when compared to the original plan (see Table 3.4). 

This indicates that KBP plans were relatively highly modulated compared to the original 

plans. 

Treatment verification measurements performed on linear accelerators showed that 

both original and KBP plans were delivered as planned. Differences in treatment 

verification measurements for all parameters were within the optimal tolerance limits 

set locally (≥ 98% pixels passing with gamma criteria of 3%/2mm) except two arcs from 

the KBP plans showed slightly higher differences with gamma pass rates at 96.9% and 

97.2%. However, these were within the mandatory tolerance limit of ≥ 95%; therefore, 

these plans were deemed clinically acceptable for treatment delivery. 
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Figure 3.5: Difference in dose-volume parameters before and after the model. The 

concurrent reduction was seen in all the dosimetric parameters studied V5 (A), V20 (B) and MLD 

(C) after the model. The achievable dosimetric parameters were determined using the models 

prior to optimisation and the predicted values were entered in the optimiser.  
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Figure 3.6: Example images displaying dose distribution achieved with and without KBP 

models. 

Higher dose spillage was seen in the plans produced without a model (V5: compare A and B) and 

(V20: compare D and E) where the plans without a KBP model are A and D and with a KBP model 

are B and E. The plans produced using the knowledge-based planning models achieved more 

conformal dose distribution and low dose spillage in OARs (e.g. lungs) is less compared to the 

previous/original clinical plans (B and E). 

  

A B C 

D E F 
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Figure 3.7: Difference in dose-volume parameters before and after the model for 66 Gy in 

33 fractions (A) and 60 Gy in 30 fractions (B) prescriptions.  

The normalised model was verified using ten plans. The minimum achievable doses were 

predicted using the normalised model and the predicted values were used during plan 

optimisation. 
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3.4 Discussion 

The aim of treatment planning is to achieve optimal target coverage whilst reducing OAR 

doses as low as reasonably achievable without compromising target coverage (Mayles, 

Nahum and Rosenwald, 2007). However, in routine clinical practice, due to treatment 

planners’ experience and clinical workload, this is not always achieved for all patients 

(Nelms et al., 2012; Batumalai et al., 2013; Moore et al., 2015; Berry et al., 2016). 

Furthermore, not all plans meeting target coverage and OAR constraints are optimal if 

there are opportunities to minimise OAR doses further without compromising target 

coverage. This balance may be difficult to be achieved efficiently in the absence of KBP 

methods, especially for relatively inexperienced treatment planners.  

3.4.1 Model development  

Building KBP models for lung cancer patients could be more complex compared with 

some other sites (e.g. prostate) as there are large variations in the location, shape, size 

and orientation of lung tumours with respect to OAR volumes. Several combinations of 

volumetric parameters (e.g. PTV and OAR volumes, overlap volumes, field size) and their 

correlation with studied lung dose-volume parameters were evaluated. However, by trial 

and error, we found that the LungResidual volume that was calculated using total lung 

volume and the lungs crop back from PTV by 5.0 cm (equation 3.1) had the highest 

correlation with all the studied lung dose-volume parameters. 

Only two studies have reported on the use of in-house KBP modelling for optimising lung 

plans (Cui.W et al., 2015; Zawadzka et al., 2017). These studies predicted V30, V20 and V10, 

using the best fit model (Cui.W et al., 2015) and minimum achievable mean lung dose 

(Zawadzka et al., 2017). However, as none of these models predicts the minimum dose to 
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V5 and V20 of lungs, we felt it was important to develop local models that predict the 

minimum achievable dose to these percentages of lung volumes for a given patient’s 

geometry. Furthermore, none of the studies in the literature has investigated the effect of 

KBP models on the complexity of plans and the deliverability of these plans. In this study, 

the accuracy of the models was verified using a planning study while the effect of KBP 

models on plan complexity and delivery was assessed by calculating complexity metrics 

and performing measurements on a linear accelerator. 

3.4.2 Validation of KBP models 

Our models were built to predict minimum doses to three lung dose parameters for lung 

patients treated with VMAT. This study demonstrated that minimum lung dose-volume 

prediction models can be developed and used in the routine clinical setting. Relatively 

simple and cost-effective models reduced variability/heterogeneity in treatment plans 

significantly compared to the original clinical plans, which was the primary aim of this 

study. Predicting dose-volume parameters prior to optimising a plan could reduce the 

number of optimisations/iterations required to achieve the optimal plan and reduce the 

overall planning time. 

Additionally, the treatment planning study performed showed that the use of a KBP 

model led to a larger reduction in V5 as compared to V20 and MLD (Figure 3.4). The 

moderate reduction observed for the V20 (1.4%) and MLD (0.7 Gy) may be attributed to 

the use of the NTO function in the original and re-optimised plans with the same priority 

as PTV. Results from a number of commercial auto-planning software platforms showed 

similar results as our in-house developed model (Zhang et al., 2011a),(Quan et al., 2012; 

Della Gala et al., 2017). One of the auto-planning studies reported a statistically 

insignificant increased V5 whereas our study showed a consistent and significant 
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reduction in this dosimetric parameter (Quan et al., 2012). The normalised model (see 

Equation 3.4) shows that the model could be used for different prescriptions. 

In addition, we also assessed the accuracy of the model for oesophageal cancer 

(commonly treated with 45 Gy and 50 Gy in 25 fractions), treated with full-arc geometry 

but the prediction accuracy of V5 was not clinically acceptable. Significantly higher 

differences were seen between the predicted and achieved V5 values; this could be due to 

differences in the arc geometry (start-stop angle) used for planning these patients. The 

full arcs treating through both (right and left) lungs deliver a low radiation dose (e.g. 5Gy) 

to large lung volume compared to the half arcs used for treating lung patients. However, 

the prediction accuracy of V20 and MLD was clinically acceptable but the difference seen 

between predicted and achieved doses was higher compared to the lung plan. The mean 

difference between predicted and achieved values for 50 Gy and 45 Gy prescriptions were 

V5 = 29.7% and 30.8%, V20 = 1.8% and 3.4% and MLD = 2.3 Gy and 2.1 Gy respectively. 

This could be due to the difference in the beam geometry and the gradient of the DVH 

curve at V5 could be significant and a small shift in the DVH curve could result in higher 

differences. 

Furthermore, it was noted that the largest reduction in all three dosimetric parameters 

investigated was achieved with the use of KBP models in the subset of plans produced by 

relatively less experienced planners, compared to experienced planners (see patient 

numbers 2, 4, 17, 19, 30 and 39 in Figure 3.4), due to not driving the optimiser harder. 

However, almost all the original clinical plans considered met the planning goals given in 

Table 1.1 and were therefore acceptable, although some were not classed as ‘optimal’ as 

lung dosimetric parameters could be reduced further to some extent without 

compromising target coverage. Some of these plans were produced by experienced staff 
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indicating the potential benefits of KBP for all planners. In addition, a relatively smaller 

reduction in the studied parameters was noted in plans where lung constraints were 

either exceeding or were very close to the tolerance levels in the original plans as 

compared with the plans where lung constraints were well within tolerance – potentially 

due to the fact that the original plans were increasingly optimised to bring doses within 

tolerance. These results indicate the importance and efficiency of KBP modelling for this 

type of patients in reducing OAR dose variability in treatment plans produced by planners 

of variable experience. 

3.4.3 Assessment of treatment plan complexity 

Webb et al and Abdellatif et al reported that plan complexity increases with an increasing 

number of small segments, MU/cGy and the number of MUs per control point (Webb, 

2003; Abdellatif and Gaede, 2014). An increase in the total number of MUs seen in the 

KBP optimised plans warranted further investigation: Treatment plan complexity 

metrics were calculated and delivery verification measurements were performed on a 

linear accelerator. Plan complexity metrics indicated a significant increase in smaller 

islands (i.e., smaller than 1.0 cc), number of MUs per control point and small aperture 

segments in the KBP plans. These plans were optimised to achieve minimum achievable 

doses, rather than generic OAR tolerances; therefore, an increase in plan complexity was 

expected. A study by Crowe et al reported that SAS could be used as an indicator of the 

level of plan modulation; they showed a positive correlation between quality assurance 

(QA) results and SAS was set at 0.5 cm (Crowe et al., 2014). In this study, SAS increased 

for all test plans indicating an increase in modulation in these plans. 
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3.4.4 Treatment plan deliverability  

Although the plan complexity parameters for KBP model-based plans were relatively 

higher than the ones for clinical plans, their impact on the measured fluence was 

relatively minimal for the majority of the test plans. Similar results are reported in the 

literature (Zhen, Nelms and Tome, 2011; Younge et al., 2016). The measurements showed 

overall good agreement with the planned fluence except for two arcs where differences 

exceeded the locally determined optimal gamma tolerance limits. These measurements 

showed that KBP may increase modulation and hence affect delivery therefore the model 

must be verified using treatment delivery measurements prior to implementing it 

clinically. Furthermore, in this study, delivery measurements were performed using an 

EPID panel (without a patient or moving phantom) that does not fully verify the impact 

of an increase in modulation on the robustness of the plan. Further investigation, using a 

moving phantom, is needed to quantify the effect of high modulation of the delivery, 

especially for the treatment of thoracic tumours.   

3.4.5 Clinical implementation of KBP models 

Finally, the model was implemented clinically in our clinic using the Eclipse scripting tool 

(ESAPI: Eclipse Scripting Application Plugg-In). Planners produce the structure 

(Lungs5cmCrop = crop total lung volume extending inside PTV with an additional margin 

of 5.0 cm) using the crop function and then run the script within the Eclipse planning 

system prior to proceeding with plan optimisation. The script displays the minimum 

achievable dosimetric metrics based on the residual lung volume for the selected patient. 

The predicted values are then manually entered in the optimiser (priorities are set within 

the clinical protocol template) during the optimisation of the plan.  
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The reduction of lung dose-volume parameters will not only reduce toxicities and 

improve the quality of life for NSCLC patients but the reduction in lung doses also 

provides an opportunity for dose escalation that may improve local control and overall 

survival. A subsequent dose-escalation study is described in Chapter 6. 

3.5  Conclusion 

This study showed that a relatively simple knowledge-based planning model can 

significantly reduce variability in lung planning between planners. The models are 

implemented clinically and have demonstrated an increase in lung-sparing. It is, however, 

important to assess plan deliverability prior to the clinical implementation of such 

models to ensure that the potential increase in plan complexity will not affect the 

dosimetric accuracy required. 
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Appendix: Chapter 3 

Several volumes were considered to develop the lower bound model, and correlations 

between the volumes and the dosimetry parameters were assessed (see Table 3.1). 

However, most of these structures did not show a strong correlation with the dosimetric 

parameters. The volumes, Lungscrop (lungs crop back from PTV) and Lung’ (see figure 

3.3), and their ratio to the total lung volumes showed a strong correlation with the 

dosimetric parameters. To find out the highest correlation, several crop volumes were 

produced for lung and lung’ volumes with a margin of 2 cm to 5 cm from the PTV and 

correlated with the dosimetric parameters. The planning system did not allow more than 

5 cm crop in a single operation so we did not assess the correlation of volumes that are 

cropped back with a margin > 5 cm. The results showed a higher correlation with the 

volumes cropped back by 5 cm (see Table 3.1). In this thesis, we decided not to use the 

Lung’ volumes, as the correlation was similar the lung5cmcrop volume and it was time-

consuming to produce the lung’ structure. 

Several KBP models were produced using LungResidual volume. Initially, the lower bound 

models were produced with the model line encompassing all the data points shown in 

Figure 3.2. These models were verified by re-planning patients from the verification data 

set. The verification results showed that these models were over-ambitious (the slope 

and intersection of the clinical and the initial model are shown in Table 3.5) as the 

achieved dose-volume parameters were significantly different from the predicted dose-

volume parameters. Any attempts made to achieve the predicted values were 

significantly affecting the PTV coverage and hence were considered not suitable for 

clinical use. Furthermore, qualitative assessment from the treatment planners showed 

that the initial models were not efficient and required additional optimisations/ 
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iterations to achieve clinically acceptable target coverage whilst trying to achieve 

predicted lung doses. 

Table 3.5. Showing slope and intersection of the clinical KBP models. 

Model Slope (M) 

Clinical 

Intersection (C) 

Clinical 

Slope (M) 

Initial 

Intersection (C) 

Initial 

A (V5) 111.67 -3.4 103.4 -3.6 

B (V20) 63.33 -5.6 58.0 -8.4 

C (Mean Dose) 27.05 -0.98 28.7 -2.5 

Therefore, the initial models were revised and some of the data points were excluded 

from the lower bound model (see Figure 3.2). These models were verified using an 

independent data set. The results showed a significant reduction in the achieved and 

predicted dosimetric metrics (see Figure 3.4) compared to the initial models. In addition, 

these models were efficient (fewer iterations were required to achieve the predicted 

values) and produced clinically acceptable results (i.e., achieving desired target 

coverage). 
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Figure 3.8: The initial lower bound models developed using LungResidual volume.  

The initial KBP models were developed including all the data points. These models were verified 

using independent data, but the discrepancies between the predicted and the achieved values 

were not clinically accepted. Therefore, some of the points from the lower bound models were 

excluded.  The slops and intersections of the models are shown in Table 3.8. 
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4. Predicting personalised optimal arc parameters using knowledge-

based planning model for inoperable locally advanced lung cancer 

patients to reduce organ at risk doses 

The research in this chapter was published in a peer-reviewed journal and therefore the 

text presented here is adapted from the article. My contribution consisted in 

conceptualising the research strategy, performing the research and writing the 

manuscript with input from my supervisors on designing and planning the work and 

editing the manuscript and clinical inputs from clinicians Dr. A Wieczorek, and Dr. S 

Upadhyay. Reference: Tambe, N. S.; Pires, I. M.; Moore, C.; Wieczorek, A.; Upadhyay S.; 

Beavis, A. W., Predicting personalised optimal arc parameters using knowledge-based 

planning model for inoperable locally advanced lung cancer patients to reduce organ at 

risk doses. Biomed. Phys. Eng. Express, 2021. 7.065002. 

4.1    Introduction 

Radiotherapy treatment planning aims to maximize the therapeutic ratio, that is, to 

achieve higher tumour control whilst lowering the risk and severity of associated 

toxicities (Mayles, Nahum and Rosenwald, 2007). This is achieved by minimizing organ 

at risk (OAR) doses whilst delivering a prescription dose designed to control tumour cells 

to the target volumes. Treatment planning and delivery techniques have evolved 

significantly over the years from parallel opposed fields to multiple conformal fields to 

advanced techniques such as intensity-modulated radiation therapy (IMRT) and 

volumetric modulated arc radiotherapy (VMAT), which have improved overall treatment 

plan quality. This has led to a relatively larger number of patients receiving the intended 

tumour dose without exceeding OAR doses.  
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Three-dimensional conformal radiotherapy (3D-CRT) and VMAT/IMRT treatments 

reduce higher doses to OARs due to the conformity of the high doses to targets. However, 

due to the nature of VMAT/IMRT techniques, the low-dose bath increases significantly 

(Marks et al., 2009; Diwanji et al., 2017). Several studies have reported that lower doses 

to a larger portion of healthy lung volume increased the incidence of grade 3 radiation 

pneumonitis (Wang et al., 2006; Marks et al., 2009). Additionally, patients undergoing 

combination chemo-radiotherapy and who have associated co-morbidities are more 

prone to chemo-associated toxicity (Rancati et al., 2003). Finally, increasing the low-dose 

bath in IMRT and VMAT plans could also increase the risk of secondary malignancies 

(Abo-Madyan et al., 2014). Therefore, it is critical to keep doses to the lung as low as 

possible. 

Several studies have reported that IMRT reduces V20 (lung volume receiving 20 Gy) but 

may increase V5 (the lung volume receiving 5 Gy) when compared to 3D-CRT plans (Li et 

al., 2018; Yin et al., 2012). Furthermore, lung V5 and mean lung dose (MLD) increased in 

VMAT plans for lower and middle oesophageal cancer plans when compared to IMRT 

plans, whereas V20 of lung and V30 of heart decreased slightly in VMAT plans with a 

comparatively lower treatment time (Yin et al., 2012). Recently, a study reported an 

increase in grade 3 cardiac toxicities for oesophagus patients where the mean heart dose 

is greater than 15 Gy (Wang et al., 2020b). Therefore, reducing doses to both lungs and 

heart is important. 

Numerous treatment planning methods have been studied to reduce lung doses including 

the use of avoidance sectors in VMAT, 4 pi, and hybrid planning. Regarding the latter, a 

study combined 3D conformal fields with IMRT fields and reported that, for lung cancer 

plans, V5 increased by 3.7% in the hybrid IMRT plans compared to the 3D conformal plans 
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and reduced by 4.8% and 9.8% for four/five and nine fields IMRT plans respectively 

(Mayo et al., 2008). The V20, and MLD were reduced by 4.3% and 0.5 Gy respectively. 

However, the same hybrid plans increased heart V30 dose by 6.3% compared to IMRT and 

3D conformal plans (Mayo et al., 2008). Another study demonstrated that lung V5 can be 

reduced using a hybrid RapidArc (Varian’s VMAT) technique compared to a 240o 

RapidArc plan but is still increased compared to the 3D conformal plans (Chan et al., 

2011). In addition, an increase in total treatment time was reported in the hybrid 

RapidArc plans (Chan et al., 2011).  

Further studies have reported the benefit of RapidArc with avoidance sectors (the linear 

accelerator switches the beam off in the defined avoidance segment/sector of the arc 

treatment) for head and neck, abdomen, pelvic and stereotactic ablative body 

radiotherapy cases (Dumane et al., 2010; B and ChihYao, 2013; Huang et al., 2015; Rana 

and Cheng, 2013; Pursley et al., 2017). Furthermore, a study performed by Rosca et al  

(Rosca et al., 2012) demonstrated that restricted arc (i.e. arcs with avoidance sectors) 

plans reduce lung doses but the heart dose increases compared to full arc plans (Rosca et 

al., 2012). One of the shortcomings of this evaluation was that it only investigated the 

restricted arc technique for centrally located tumours. Recently, the use of the 4 pi 

technique has been investigated for stereotactic ablative body radiotherapy for lung 

cancers, this study reported a significant reduction in lung V5, V10 and V20 (Dong et al., 

2013). The 4 pi technique includes non-coplanar IMRT beams distributed on the 4 pi 

spherical surface; the beam optimisation begins with a pool of 1162 non-coplanar IMRT 

beams with 6o separation in the 4 pi solid angle space. The optimiser then eliminates the 

beams that could collide with the couch/patient and the plan is optimised using the 

remaining beams (Tran et al., 2017). 



85 | P a g e  

 

All these studies recommended using a single protocolised treatment plan for all patients 

irrespective of patient anatomy (e.g., fixed restricted arcs or hybrid arcs). However, 

tumour shape, size and location and its overlap with OAR volumes could vary significantly 

among patients with locally advanced-stage lung cancer disease. Therefore, a single 

protocolised, fixed arc parameter approach may not be the most optimal planning 

method across the patient population. The field size, multi-leaf collimator (MLC) 

sequencing and the isocentre can be optimised by the planning system for IMRT and 

VMAT treatments. Here we are addressing arc parameters that are not automatically 

selected by the planning system or the optimiser, such as start-stop arc angle and 

avoidance sectors. 

The aim of the present study is to investigate optimal arc geometries using a 

personalised arc parameter approach for planning inoperable locally advanced-

stage lung cancer patients treated with curative intent. This strategy hopes to reduce 

low-dose bath and OAR doses whilst maintaining target coverage. Furthermore, a 

knowledge-based planning model was developed to predict the optimal arc parameter 

using patient-specific parameters. 

4.2 Methodology 

4.2.1 Patients and prescription  

In our clinic, all locally advanced-stage lung cancer patients are treated using RapidArc 

(Varian’s solution for VMAT), as previously described (Tambe et al., 2020). Treatment 

plans were produced using the EclipseTM treatment planning system (V15.6, Varian 

Medical Systems). A total of 30 previously treated patients’, clinically accepted plans were 

randomly selected from our database treated between January 2017 and December 2019 
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(excluding patients/plans used in the previous study), of which 20 were used as baseline 

‘training’ plans and ten reserved for validation of the model. Patient demographics are 

summarized in Table 2.2. The prescription dose was 55 Gy in 20 fractions (i.e., ≥ 99% of 

the PTV receives ≥ 95% of the prescription dose (see Table 2.1)). For imaging protocol 

and contouring protocols see section 2.2, and for planning and treatment delivery please 

check sections 2.3 and 2.5. 

4.2.2 Re-planning with different arc geometries 

A total of twenty patients were re-planned, each with the seven different arc parameters 

illustrated in Figure 4.1; different arc parameters (gantry start and stop angles, see Table 

4.1) were selected using trial and error based on clinical experience.  The test plans 

include a range of active treatment angle arc geometries to minimize entry through whole 

lungs, contralateral lung, or heart, and a range of treatment angles from 360o arcs to 90o 

arcs. The 90o arc was placed in the same quadrant as the PTV. Optimization objectives 

were kept the same as the original clinical plans so that the effect of change of arc 

parameter on lung,  heart and spinal cord PRV doses could be assessed. In addition to 

different arc parameters, five patients were planned with three different collimator angle 

settings, 30o and 330o, 20o and 340o and 10o and 350o to assess their impact, within the 

study aims, and all other patients were planned with one collimator angle setting (i.e., the 

collimator angle that reduced overall OAR doses). All the plans, including the original 

clinical plans, were blind reviewed (i.e., without knowing arc parameters) by both clinical 

oncologists, and a preferred plan was selected for each patient following the pre-defined 

clinical criteria (see Table 2.1), including target coverage and OAR doses at specified 

dose-volume tolerance level (e.g. lung V5 or V20). The optimal plans were then compared 

with the original clinical plans (i.e., arc parameter A). In addition, the conformity index 
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(CI) and homogeneity index (HI) were calculated as defined in ICRU (International 

Commission on Radiation Units and Measurements) report 83 ('Preface,' 2017) for 

clinical and test plans (using equations 4.1 and 4.2) and compared. 

Conformity Index (CI) =
𝑉95%

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑇𝑉
     Equation 4.1 

where V95% is the volume of PTV covered with at least 95% of the prescription dose. 

Homogeneity Index (HI) =
𝐷2%-D98%

𝐷50% 
     Equation 4.2 

where D2%, D50% and D98% are the doses received by 2%, 50% and 98% of the planning 

target volume. 
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Table 4.1. Arc parameters used for planning test and clinical plans (arc parameters are 

displayed in figure 4.1). 

Arc 

parameter 

Start and stop angle Avoidance sector(s) 

A 0o to ± 180o None 

B 0o to ± 180o For right-sided tumours: 220o to 300o 

For left-sided tumours: 140o to 60o 

C ± 30o to ± 180o For right-sided tumours: 220o to 300o 

For left-sided tumours: 140o to 60o 

D ± 60o to ± 180o For right-sided tumours: 220o to 300o 

For left-sided tumours: 140o to 60o 

E 181o to 179o 220o to 300o and 140o to 60o 

F 181o to 179o For right-sided tumours: 220o to 300o 

and 0o to 140o 

For left-sided tumours: 140o to 60o and 

0o to 220o 

G 181o to 270o Or 179o to 90o Or 

90o to 0o or 270o to 0o 

None 

H 181o to 179o None 
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Figure 4.1. Arc parameters for test plans and clinical plans  

Different arc parameters can be seen in the figure. A: is the clinical arc parameter, whereas, B to H are the test arc parameters. Start and 

stop angle and avoidance sectors used for different arc parameters are given in Table 4.1.  
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4.2.3 Development of knowledge-based planning model 

The plans for a training subset of 20 patients were used to develop a knowledge-based 

planning (KBP) model to predict the optimal arc parameter. A number of patient-specific 

volumes (i.e., PTV, Lungs, Heart, and overlap of heart with PTV) and the location of the 

volumes/ structures were recorded and used to develop the KBP model. In addition, each 

arc configuration was given an identification index (1 to 8) that was used in the 

correlation analysis to identify/ describe it. Essentially, these indices were used as the 

predicted arc parameter by the models (see Figure 4.1: 1 to 8, parameters A to H 

respectively). The KBP model was developed using Multivariate regression analysis in 

Excel 2016, (see equations 4.3 and 4.4) to predict the arc parameter that will provide the 

most optimal OAR sparing whilst achieving adequate target coverage for prospective 

patients. The patient factor was calculated using the patient-specific geometric volumes 

and the coefficients predicted by the multivariate regression analysis. Several patient 

factors were produced, firstly using all the patient-specific volumes (see Table 4.2), then 

the important volumes were identified using the individual p-values and the model was 

refitted using only significant terms. The predicted arc parameter, i.e., geometry number, 

was rounded to the nearest whole number and compared with the clinician's chosen arc 

parameter, this was required as the model uses continuous functions to predict a discrete 

parameter. 

𝐴𝑟𝑐 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑚 × 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟    Equation 4.3 

𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 = [(𝑚1 ×  
𝐿𝑢𝑛𝑔𝑠𝑐𝑐

𝑃𝑇𝑉𝑐𝑐
) + (𝑚2 × 𝑀𝑆𝐷𝑃𝑇𝑉 𝑎𝑛𝑑 𝐻𝑒𝑎𝑟𝑡) + (𝑚3 ×

𝑀𝑆𝐷𝑃𝑇𝑉 𝑎𝑛𝑑 𝐶𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝐿𝑢𝑛𝑔)]      Equation 4.4 

where MSD: mean square difference in centre of mass between the referenced structures 
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Table 4.2 Patient-specific volumes and their location used to build different KBP models 

using multivariate analysis 

Volumes Description 

PTV Vol Planning target volume (cc) 
PTV_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of PTV 

centre of mass 
Lung Vol Total lungs subtracted from gross tumour volume (Lungs-GTV) volume 

(cc) 
Heart Vol Heart volume (cc) 
Heart_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of the 

Heart centre of mass 
CLLung Vol Contralateral lung volume (cc) 
ClLung_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of 

Contralateral centre of mass 
IlLung Vol Ipsilateral lung volume (cc) 
IlLung_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of 

Ipsilateral centre of mass 
PTVHeartOverlap PTV and heart overlap volume (cc) 
Body_X, Y, Y X, Y and Z coordinate (lateral, vertical and horizontal distance) of Body 

centre of mass 
Lungs_2cmCropVol Lungs-GTV crop back from PTV with a margin of 2 cm (cc) 
Lungs_2cmCropVol_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of lungs 

crop back 2 cm from PTV centre of mass 
Lungs_3cmCropVol Lungs-GTV crop back from PTV with a margin of 3 cm (cc) 
Lungs_3cmCropVol_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of lungs 

crop back 3 cm from PTV centre of mass 
Lungs_4cmCropVol Lungs-GTV crop back from PTV with a margin of 4 cm (cc) 
Lungs_4cmCropVol_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of lungs 

crop back 4 cm from PTV centre of mass 
Lungs_5cmCropVol Lungs-GTV crop back from PTV with a margin of 5 cm (cc) (see Figure 

3.1) 
Lungs_5cmCropVol_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of lungs 

crop back 5 cm from PTV centre of mass 
LngHrt_2cmCropVol Lungs-GTV crop back from Heart with a margin of 2 cm (cc) 
LngHrt_2cmCropVol_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of lungs 

crop back 2 cm from the Heart centre of mass 
LngHrt_3cmCropVol Lungs-GTV crop back from Heart with a margin of 3 cm (cc) 
LngHrt_3cmCropVol_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of lungs 

crop back 3 cm from the Heart centre of mass 
LngHrt_4cmCropVol Lungs-GTV crop back from Heart with a margin of 4 cm (cc) 
LngHrt_4cmCropVol_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance) of lungs 

crop back 4 cm from the Heart centre of mass 
LngHrt_5cmCropVol Lungs-GTV crop back from Heart with a margin of 5 cm (cc) 
LngHrt_5cmCropVol_X, Y, Z X, Y and Z coordinate (lateral, vertical and horizontal distance)  of 

lungs crop back 5 cm from the Heart centre of mass 
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4.2.4 Verification of arc parameter prediction model  

The model was verified using ten independent patients; a total of 80 treatment plans 

including original clinical plans were used for verification. All ten patients were re-

planned using all seven geometries (i.e., parameters B to H, see Figure 4.1) and the 

preferred plan was selected for each patient using blind review. These calculations and 

subsequent selection of clinician preferences were done before the knowledge-based 

planning model was used to predict which arc parameter should be utilised. This was 

done to ensure the exclusion of any potential bias of choice by the clinician. 

Following the (clinician) selection of the optimal plan, via local protocol/ criteria, the KBP 

model was used to predict the preferred arc parameter (see equations 4.3 and 4.4) and 

the prediction accuracy of the model was calculated. Furthermore, the target coverage 

and OAR doses achieved with the optimal plans (i.e., clinician’s selected arc parameters) 

were compared with the original clinical plans (i.e., plans produced using arc parameter 

A). 

4.2.5 Plan complexity and deliverability 

Treatment plan complexity metrics small aperture score (SAS: calculated as the ratio of 

open leaf pairs where the aperture was less than a defined criterion (2 mm, 5 mm, 10 mm 

and 20 mm in our study) to all open leaf pairs (see equation 2.2) (Crowe et al., 2014)), 

MU/Gy, MU/control-point, islands < 1 cc) were calculated using an Eclipse scripting 

application programming interface (ESAPI) script and compared with those for the 

original clinical plans.  

To evaluate the effect of the avoidance sectors on the deliverability of plans, all plans were 

measured on a TrueBeam linear accelerator and gamma analysis was performed using 



93 | P a g e  

 

our standard clinical criteria (i.e., percentage of pixels where gamma is less than or equal 

to unity using criteria of 3%/2 mm (global gamma) with a threshold of 20%) by 

comparing predicted fluence with the measured fluence. The fluence for each beam was 

measured using an electronic portal imaging device (EPID) and compared in the portal 

dosimetry software within the EclipseTM planning system. 

4.3 Results 

4.3.1 Effectiveness of personalised arc parameter 

The results show that different arc parameters and collimator angles resulted in different 

dose distributions to OAR volumes, whereas dose to target volume was mostly similar 

between different arc parameters (see Table 4.3, Figure 4.2). Overall, for all arc 

parameters, the plans produced using collimator angle of 10o and 350o provided lower 

OAR doses for similar target coverage. All 240 treatment plans (including the original 

clinical plans) were reviewed; for each patient, the preferred plans (meeting the local 

protocol: plans with lowest OAR doses and adequate target coverage) were identified. 

None of the original clinical plans (i.e., arc parameter A plans) was selected as the 

preferred optimal plan and, more importantly, different patients required different arc 

parameters to minimize OAR doses. 

The clinician chosen plans were compared with the original clinical plans and the results 

showed a reduction in OAR doses (see Table 4.4). The reduction in V5, mean lung dose, 

mean heart dose and mean body doses were statistically significant whereas the 

reduction in lung V20 and heart V30 were not statistically significant. Furthermore, an 

increase in the total number of MUs was observed, however, this was not statistically 

significant. 
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4.3.2 Validation of knowledge-based planning model 

The model was validated using 80 plans (n = 10 patients) outside the model. The model 

developed to predict the optimal arc parameter using equation 4.3, predicted the optimal 

arc parameter accurately for 80% of patients as compared to clinician-selected (i.e., the 

total optimal plans) best plans (see Figure 4.3). The m-values (see equation 4.4) are 

shown in Table 4.5. OAR sparing achieved with the model-predicted arc parameters are 

displayed in Table 4.6. 

4.3.3 Planning complexity and deliverability analysis 

A number of complexity metrics were calculated and are presented in Table 4.7. Some of 

the complexity parameters, (MU/Gy, MU/Degree, mean dose rate and mean leaf speed), 

suggested the optimal plans were more complex than the original clinical plans. The 

remaining metrics considered did not indicate an increase in complexity. 

The selected (clinician-chosen arc parameters) plans were measured on a Varian 

TrueBeam linear accelerator. Gamma comparisons of the measured and predicted beam 

fluences were performed at 3%/2 mm. The results showed overall good agreement with 

all plans passing the local accuracy standard, which requires ≥ 98 % pixels with gamma 

less than or equal to unity with a 3%/ 2 mm criteria. 
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Figure 4.2. Dose distribution achieved with the different arcs defined in Figure 4.1. 

Different arc parameters resulted in different dose distributions to OAR, whereas the 

dose to PTV was mostly similar except for five plans from geometry F and one from 

Geometry B.  
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Table 4.3. The difference in dose parameters achieved with different arc parameters compared to the half-arc parameter (A) 

and p values.  

Plan Parameters A B p C p D p E p F p G p H p 

PTV V95 ≥ 99% 99.6 -1.2 0.000 -0.6 0.001 -0.2 0.145 -0.5 0.002 -1.4 0.000 -1.8 0.000 0.2 0.061 

V107 < 0 0.0 0.1 0.001 0.1 0.001 0.2 0.014 0.1 0.000 0.2 0.030 0.8 0.010 0.0 0.240 

Spinal Cord PRV D0.01cc < 45Gy 33.8 2.9 0.069 2.6 0.158 1.5 0.381 2.7 0.120 4.5 0.009 -0.8 0.694 0.3 0.803 

Lungs-GTV V5Gy < 60% 51.6 -13.6 0.000 -14.1 0.000 -9.3 0.000 -10.6 0.000 -14.8 0.000 -1.8 0.165 0.4 0.734 

V20Gy < 35% 21.8 -0.5 0.224 0.2 0.743 1.2 0.064 0.5 0.439 -0.5 0.340 -2.2 0.006 -0.8 0.195 

MLD < 20Gy 11.9 -1.0 0.001 -0.9 0.005 -0.3 0.173 -0.5 0.062 -1.0 0.003 -0.2 0.432 -0.1 0.821 

Heart V30Gy < 46% 6.8 1.0 0.283 2.7 0.002 2.2 0.017 2.8 0.011 1.0 0.208 1.6 0.046 0.0 0.938 

MHD < 26Gy 9.0 -0.8 0.138 -0.4 0.426 0.3 0.388 0.5 0.259 -1.2 0.014 0.5 0.371 0.0 0.991 

Total MU     626.8 -33.8 0.017 69.8 0.000 91.3 0.000 -19.5 0.283 27.2 0.035 13.5 0.497 123.2 0.000 

Body (mean Gy)   6.9 -0.5 0.000 -0.5 0.000 -0.2 0.002 -0.3 0.004 -0.5 0.000 -0.2 0.010 0.1 0.082 
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Table 4.4. Dose differences between the original clinical plans (i.e. half-arc plans) and the optimal plans selected for an 

individual patient. 

Structures Clinical Goals Clinical SD Mean  SD p 

PTV V95 99.6 0.63 -0.78 0.48 0.000 

V107 0.0 0.02 0.09 0.13 0.003 

CI†   1.19 0.05 0.03 0.08 0.028 

HI††   0.06 0.02 0.02 0.01 0.000 

Spinal Cord PRV D0.01cc 34.8 6.62 2.31 9.14 0.119 

Lungs-GTV V5Gy 52.2 9.60 -15.05 11.20 0.000 

V20Gy 22.1 7.96 -0.48 7.79 0.348 

MLD 12.1 3.10 -0.97 3.52 0.003 

Heart V30Gy 7.7 7.45 0.53 8.39 0.453 

MHD 9.4 5.30 -1.39 5.23 0.008 

Total MU 624.70 69.18 12.10 48.95 0.375 

Body (mean Gy) 7.1 1.84 -0.54 1.88 0.000 

†Conformity index (CI- calculated using equation 4.1), ††Homogeneity index (HI- calculated using equation 4.2) 
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Table 4.5. Showing coefficient (m-values) of the knowledge-based planning model developed using patient-specific volumes.  

Patient-specific volumes Coefficient (m-values) 

Intercept 9.386 

Lungs/PTV -0.202 

MSD! between PTV and Heart -0.011 

MSD! between PTV and contra-lateral Lung -0.009 

! MSD: mean square difference calculated using the centre of the mass of the structures 
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Table 4.6. Dose differences between the original clinical plans (i.e., arc parameter A) and the optimal plans predicted using the 

model. 

Structures Clinical 
Goals 

Clinical plan SD Optimal plan 
Mean  

SD p 

PTV V95 99.9 0.63 -0.81 0.08 0.000 

V107 0.0 0.02 0.23 0.02 0.003 

CI†   1.19 0.05 0.03 0.08 0.028 

HI††   0.06 0.02 0.02 0.01 0.000 

Spinal Cord PRV D0.01cc 30.3 6.62 -1.11 6.19 0.119 

Lungs-GTV V5Gy 49.3 9.6 -13.51 12.36 0.000 

V20Gy 19.3 7.96 1.00 6.73 0.136 

MLD 11.1 3.1 -0.83 2.78 0.033 

Heart V30Gy 5.5 7.45 1.02 7.91 0.090 

MHD 7.4 5.3 -0.41 5.25 0.031 

Total MU 662.75 69.18 14.60 57.40 0.559 

Body (mean Gy) 6.0 1.84 -0.66 1.70 0.077 

†Conformity index (CI- calculated using equation 4.1), ††Homogeneity index (HI- calculated using equation 4.2)
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Figure 4.3: Optimal arc parameter and predicted arc parameter for the test plan.  

Arc parameters were calculated using equation 4, and the predicted arc parameter 

number was rounded to the nearest number and compared with the optimal arc 

geometries to validate the model. 
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4.4    Discussion 

Modern arc-based intensity-modulated radiotherapy treatment planning and delivery 

techniques enable the reduction of the volume of critical structures (OARs) receiving 

higher doses but increase the volume receiving lower doses (Marks et al., 2009; Diwanji 

et al., 2017), which remains a concern. In view of the new knowledge (Wang et al., 2006; 

Marks et al., 2009; Wang et al., 2020b), both dose to the lungs and the heart needs 

consideration, which means the planning or radiotherapy treatment is considerably more 

difficult and hence the need for new/ individualized approaches. This study investigated 

the use of full-arcs (i.e., arc parameter H), short-arcs (i.e., arc parameter G), and arcs with 

multiple avoidance sectors for treatment planning of inoperable locally advanced lung 

cancer patients, aiming to reduce OAR dose without compromising target coverage. 

The technique presented here separates continuous, half and full, arcs into segmented 

ones with avoidance sectors, in order to avoid direct (incident) irradiation of normal 

tissues. Whereas from a dose reduction perspective this follows a simple maxim of 

conventional radiotherapy, in the context of intensity modulation it also reduces the 

degrees of freedom available to the optimizer to deliver the required dose to the target. 

Under these circumstances, an unwanted coincidental effect may be a reduction in the 

control of the dose to the target or larger contributions from ‘allowed’ directions which 

may increase the complexity of delivery, possibly significantly.  
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Table 4.7. Plan complexity metrics calculated for both the original clinical plans 

and the test plans. 

Complexity metrics  Mean 

Original clinical plans 

SD Mean  

Test plans 

SD p-value 

MUperGy 224.65 21.93 242.01 9.95 0.001 

MUPerDegree 1.73 0.17 2.36 0.10 <0.001 

MeanDoseRate 483.27 38.94 521.97 8.08 <0.001 

MeanLeafSpeed 10.82 0.48 7.53 0.39 <0.001 

MeanLeafTravelPerMU 0.97 0.09 1.00 0.06 0.144 

FractionMUthrough<5cc 0.00 0.00 0.00 0.00 0.056 

IslandsPerCP 3.62 1.54 3.66 0.44 0.911 

MeanIslandSize 1433.82 694.14 1317.52 201.73 0.410 

FractionIslandBelow1cc 0.47 0.18 0.49 0.04 0.674 

SAS02 0.17 0.04 0.17 0.02 0.813 

SAS05 0.20 0.05 0.20 0.02 0.582 

SAS10 0.25 0.07 0.26 0.02 0.292 

SAS20 0.36 0.09 0.37 0.03 0.376 

 

In this study, we report that deliverable, clinically acceptable VMAT with ‘optimised 

avoidance sectors’ plans can be produced using different arc parameters and collimator 

angles. Treatment plans produced with different arc parameters and collimator angles 

provided different amounts of OAR sparing. A clinical review of all plans produced for 

each patient indicated that, although meeting (OAR dose) acceptability criteria, when 

using the KBP prediction model more optimal plans were always found in preference to 

original clinical plans. OAR sparing was relatively higher for collimator angles of 10o and 

350o compared to other collimator angles used but this was not significant compared to 

the OAR sparing achieved with the arc parameters. 
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It was also noted that patient-specific arc parameters provided the highest OAR sparing 

without clinically significantly compromising target coverage. This shows the importance 

of the personalization of arc geometries based on each patient’s anatomy. A standardized 

(i.e., arc parameter A or H) arc parameter may not be the optimal solution for treating 

these patients especially when there are larger variations in target size, shape and 

location with respect to the OARs volume. The reduction in lung doses is significantly 

higher in our study compared to other studies (Chan et al., 2011; Mayo et al., 2008), but 

more notably, our study also reports a reduction in heart doses (significant reduction in 

mean heart dose), whilst the other studies (Chan et al., 2011; Mayo et al., 2008) reported 

a systematic increase in heart dose. Additionally, it was noted that the personalization of 

arc parameters also resulted in a reduction in the mean dose delivered to a patient, 

despite a small increase in MUs. 

Various arc geometries were tested and compared to the original clinical plan. These 

included full arcs (i.e., arc parameter H), short arcs (i.e., arc parameter G) and arcs with 

different avoidance sectors (i.e., arc parameter B to E) except for three arc geometries 

(i.e., arc parameter A (the original clinical arc parameter), G and H). For these arc 

parameters, avoidance sectors were not used. The 90o arcs were placed in the same 

quadrant as the tumour. 

It was interesting that the original clinical plans (i.e., the plans produced using arc 

parameter A) or plans produced using arc parameters G and H were not selected as the 

optimal plans for any of the patients. These arc parameters resulted in significantly 

higher OAR doses compared to the other test plans. A difference in the target coverage in 

the plans produced using different arc parameters was not clinically significant, except 
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for the four plans produced using arc parameter G where the target coverage dropped 

below 95.0 %. 

Moreover, a number of relatively simple knowledge-based planning models were 

developed to predict arc parameters using OAR volumes, target volume and their centre 

of mass location. The KBP model developed using, lungs, PTV and mean square difference 

in the centre of mass of PTV, heart and contralateral lung predicted optimal arc 

parameter accurately for 80 % of the patients. This model will improve planning 

efficiency by predicting optimal arc parameters and help reduce OAR doses whilst 

maintaining target coverage. For two patients, the predicted arc parameters did not 

match those selected by the clinician, we considered this likely due to the difference in 

the tumour geometry for these patients compared to the other test patients and the 

model may be improved in any further work. Furthermore, fine-tuning the arc geometry 

(start angle, stop angle, avoidance sector span) may provide further benefit in optimal 

OAR sparing, however, prediction of the ‘baseline’ arc parameter will potentially save 

many initial ‘iterations’ in the planning process. For the patients where the model 

predicted arc parameter did not match the one selected in the blind review, the predicted 

plan had lower OAR doses compared to arc parameter A, but the doses were slightly 

higher compared to the plan with optimal arc parameter.  

The conformity and homogeneity indices were calculated and compared for the clinical 

and the test plans. The results showed statistically significant differences between the 

clinical and the test plans, but differences were clinically not significant. The mean 

difference in CI and HI was 0.03 and -0.02 respectively compared to plans with arc 

parameter A. The CI for the test plans was clinically similar to the original clinical plans 

(arc parameter A plans) as doses outside the PTV structure were controlled by using a 
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ring structure. At HUTH, the dose outside the PTV is controlled using the NTO function 

and a ring structure (an optimisation structure: produced by adding an inner margin of -

0.5 cm and an outer margin of 1.5 cm). During plan optimization, an upper limit of 0% of 

the ring structure receiving < 5Gy less dose than 95% of the prescription dose was used. 

Furthermore, the results from the clinical review showed that arc parameter F was 

chosen more frequently than the other arc parameters: this arc parameter consists of two 

full arcs with avoidance sectors (see Figure 4.1), so it is important to verify gantry 

clearance prior to treatment delivery to avoid collision issues. In our experience, this will 

not be a problem for the majority of patients, but for those where the lateral shift is ≥ 10 

cm from the midline, verification will be required prior to treatment delivery. 

A number of studies reported that plan complexity is dependent on the number of small 

segments, MU/Gy and number of MU per control point (MU/Degree) and reduction in 

these parameters could reduce the plan complexity and reduce errors in delivery (Webb, 

2003; Abdellatif and Gaede, 2014). An increase in the total number of MU seen in the 

optimal plans could mean that these plans are more complex to deliver. In order to test 

this hypothesis, treatment plan complexity metrics were calculated for both plans. The 

deliverability was assessed by measuring plans on a TrueBeam linear accelerator. The 

results showed a significant increase in MU/Gy, MU/degree, mean dose rate and mean 

leaf speed in the test (i.e., optimal) plans, however, the plans were shown to be 

deliverable within our ‘challenging’ accuracy acceptable requirements.  

The results show significant reductions in lung V5 with mean lung V5 reduced below 42 

% (a threshold reported by Wang et al). Therefore, this approach should significantly 

limit lung toxicities below grade 3 for these patients. Furthermore, our study reported 

significant reductions in mean heart dose; this approach would help reduce mean heart 
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dose below 15 Gy, where severe cardiac toxicities are reduced significantly (Wang et al., 

2020b). A reduction in toxicities may improve the quality of life for these patients. Also, 

reductions in OAR doses can facilitate dose escalation for these patients.  

The current version/license of the planning and delivery system at our clinic does not 

allow the use of non-coplanar arc geometries. Therefore, this was not investigated in this 

study. Further evaluation would be required to assess if non-coplanar arcs can help 

reduce OAR doses for inoperable advanced-stage NSCLC patients.  

4.5  Conclusion 

Overall, treatment plans produced using personalized arc parameters were superior 

compared to the clinical plans. This method not only utilizes the benefits of the VMAT 

planning technique (reducing the volume of healthy lungs receiving higher doses without 

compromising target coverage) but also reduces OAR doses. This could reduce toxicities 

and improve the quality of life for locally advanced-stage lung cancer patients treated 

with VMAT radiotherapy. The model has been implemented clinically for lungs where 

doses to healthy lung volume are either close to tolerance or exceeding the tolerance 

values (approximately 30% of the total radical lung cancer patients are planned using the 

model) and all oesophagus patients and we will report the toxicity data in future. 
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5.0 Validation of in-house knowledge-based planning model for 

predicting change in target coverage during VMAT radiotherapy to 

in-operable advanced-stage NSCLC patients 

The research in this chapter was published in a peer-reviewed journal and therefore the 

text presented here is adapted from the article. My contribution consisted in 

conceptualising the research strategy, performing the research and writing the 

manuscript with input from my supervisors on designing and planning the work and 

editing the manuscript and clinical inputs from clinicians Dr. A Wieczorek, and Dr. S 

Upadhyay. Reference: Tambe, N. S.; Pires, I. M.; Moore, C.; Wieczorek, A.; Upadhyay S.; 

Beavis, A. W., Validation of in-house knowledge-based planning model for predicting 

change in target coverage during VMAT radiotherapy to in-operable advanced-stage 

NSCLC lung cancer patients. Biomed. Phys. Eng. Express, 2021. 7.065002. 

5.1 Introduction 

Adaptive radiotherapy (ART) is an interactive process where treatment plans are 

modified to account for internal and/or external anatomical changes observed on 

volumetric images acquired prior to treatment delivery (Berkovic et al., 2015; Li, 2011; 

Yan et al., 1997; Britton et al., 2007; Juhler-Nottrup et al., 2008; Fox et al., 2009). 

Anatomical changes, such as atelectasis, tumour baseline shift (0.5 cm (Tennyson et al., 

2017) to 1.5 cm (Mao et al., 2017)), infiltrative changes, tumour progression, and pleural 

effusion, are inevitable during radiotherapy (Bosmans et al., 2006; van Zwienen et al., 

2008; Fox et al., 2009; Britton et al., 2009; Britton et al., 2007; Juhler-Nottrup et al., 2008; 

Kwint et al., 2014; Moller et al., 2016). Significant anatomical changes could alter the 

planned dose distribution to an unacceptable level that could affect treatment outcomes 

(Kataria et al., 2014; Langendijk et al., 2008). Work performed by Britton et al reported 

an average reduction in the dose to 95% of the planning target volume (PTV) and internal 
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target volume (ITV) by – 11.9% ± 12.1% and – 2.5% ± 3.9% respectively compared to the 

original clinical plan distribution (Britton et al., 2007; Britton et al., 2009). Furthermore, 

several studies have also reported an increase in organs at risk (OAR) doses as a result of 

a change in internal anatomy (Britton et al., 2007; Britton et al., 2009; Kataria et al., 2014). 

These studies have shown that ART improves treatment outcomes (Kataria et al., 2014) 

for advanced-stage non-small cell lung cancer (NSCLC) patients as prescription doses are 

delivered as planned, OAR doses are reduced and it allows dose escalation (Yan et al., 

1997; Britton et al., 2007; Juhler-Nottrup et al., 2008; Fox et al., 2009; Li, 2011; Kataria et 

al., 2014; Berkovic et al., 2015; Sibolt et al., 2015; Ramella et al., 2017). 

Different thresholds have been used to initiate adapting planning, including an increase 

in OAR doses and/or reduction in ITV and PTV V95 coverage compared to the original 

clinical plans (V95: volume of PTV or ITV receiving ≥ 95% of the prescription dose). 

Treatment plans were adapted for the patients where PTV and/or ITV volume(s) 

receiving 95% of the prescription dose reduced by ≥ 3% and/or ≥ 1% respectively 

(Britton et al., 2007; Britton et al., 2009; Spoelstra et al., 2009; Moller et al., 2016). In 

addition to the target coverage threshold, Moller et al investigated if ART could be 

triggered using surrogate volumes, using ring structures around the gross tumour 

volume (GTV) and lymph nodes with margins of 2 mm and 5 mm respectively. ART was 

considered for the patients where the target volumes move outside the ring structures. 

They reported that 98% of the patients were identified correctly for adaptive planning 

using the reported trigger criteria (Moller et al., 2016). 

However, implementing ART clinically is challenging, especially in identifying the 

patients who may benefit from ART in a timely manner. Some may not benefit where 

anatomical changes or tumour baseline shift is not sufficient enough to warrant plan 
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adaption. The typical processes used for identifying the patients for adaptive planning 

are time-consuming and require the patients to undergo the full planning process (i.e., 

rescanning, re-contouring and re-optimising). This could significantly increase the 

clinical workload and also increase the radiation burden on these patients. Therefore, it 

is important to develop alternative methods to accurately identify patients for ART, 

without sending the patients through the full re-planning process for efficiency and 

convenience. 

This study aims to investigate different adaptive strategies for inoperable 

advanced-stage NSCLC patients treated with VMAT and to develop in-house 

knowledge-based planning (KBP) models to identify patients requiring adaptive 

radiotherapy (i.e., models predicting changes in planning target volume coverage). 

A combination of patient-specific parameters and the change in PTV V95 coverage were 

used to build the models. Finally, the models were verified by comparing their prediction 

accuracy with the ones calculated on synthetic computerised tomography (sCT). 

5.2 Methodology 

5.2.1 Data collection 

A total of twenty-five pre-existing patients’ data were collected from the Eclipse 

treatment planning system and LorenzoTM electronic patient record databases. A number 

of parameters, including, patient demographics, histopathology, tumour staging, immune 

histology, PTV volume in cubic centimetres (cc), and dose-volume histogram for PTV for 

each treated fraction were collected. The original clinical plans were produced as 

described in section 2.3. This study was performed with prior approval from the local 

research and development department. 
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5.2.2 Assessment of adaptive planning  

Production of synthetic CT (sCT): the cone beam computerised tomography (CBCT) 

images acquired prior to each treatment fraction were imported in the Velocity ‘adaptive 

radiotherapy’ software (Velocity 4.0, Varian Medical Systems, Palo Alto, CA). To facilitate 

image processing within Velocity, the following was undertaken. The CBCT images are 

reconstructed with a slice thickness of 0.3cm to match the planning CT images.  

1) The treatment planning CT (pCT) and CBCT images were initially rigidly 

registered using the same transformation obtained during the respective 

treatment session, to remove the impact of residual setup errors (Wang et al., 

2020a).  

2) The setup corrected using translational corrections only (6 degrees of freedom 

correction is not available in our clinic).  CBCT images were deformably registered 

to pCT images excluding the most superior and inferior slices to produce a 

synthetic image set (sCT).  

3) A secondary structure data set was produced in the sCTs, including GTV and 

organs at risk (OAR) volumes. The registration and volumes for each sCT were 

reviewed. 

Evaluation dosimetric variations: sCTs produced within the Velocity software platform 

were imported into the Eclipse treatment planning system. The GTV for each fraction was 

reviewed and edited where required by the experienced clinical oncologist to account for 

tumour baseline shift and anatomical changes. Furthermore, clinical and planning target 

volumes were produced on each sCT by applying the same margin as the clinical plan. 

Then, doses were calculated on each synthetic CT (daily) using the same monitor units 



111 | P a g e  

 

(MU) as the original clinical plan and the difference in PTV V95 coverage (∆𝑉95𝑃𝑇𝑉) for 

each fraction was calculated (equation 5.1) and used to build the models. 

Dose calculations in Eclipse V15.6: The planning system was upgraded to V15.6 prior to 

the experiment, so all the original clinical plans were recalculated in V15.6 using the same 

MUs as the original clinical plan (i.e. V13.7). Doses were calculated on sCT in V15.6 and 

compared with the clinical planned dose distribution calculated in V15.6. The PTV 

coverage by 95% of the prescription dose is denoted V95PTV; the coverage planned on the 

planning scan is given a subscript ‘planned’  and the delivered dose calculated on the 

synthetic scan is given a subscript ‘delivered’. 

∆𝑉95𝑃𝑇𝑉 = (𝑉95𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
𝑃𝑇𝑉 − 𝑉95𝑃𝑙𝑎𝑛𝑛𝑒𝑑

𝑃𝑇𝑉 )    Equation 5.1 

Target volume baseline shift:  the baseline shift of the centre of the mass (CoM) between 

the planned PTV (i.e. PTV from the original clinical plans) location and the adapted PTV 

(i.e. PTV produced on each sCT) was recorded. The mean square difference (MSD) of the 

CoM shift was calculated for each fraction, being [
1

3
∑ ∆𝑋𝑖2] where i represents the x, y, 

and z components of the shift vector. 

Immune-histology: Recent clinical trial results showed significant improvement in 

overall survival in patients who received consolidation treatment with Durvalumab 

(immunotherapy) (Antonia et al., 2017; Brahmer et al., 2018; Antonia et al., 2018; Paz-

Ares et al., 2020). Durvalumab is a human monoclonal antibody that selectively binds to 

programmed death ligand-1 (PD-L1), blocking its interaction with its receptor, PD-1 

(programmed death-1) (Antonia et al., 2017; Antonia et al., 2018; Paz-Ares et al., 2020). 

In the trial, Durvalumab was administered to patients who have had stable disease or 

treatment response following chemo-radiotherapy (Antonia et al., 2017; Brahmer et al., 
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2018; Antonia et al., 2018; Paz-Ares et al., 2020). In our clinic, immune histological testing 

for PD-L1 expression in NSCLC patients started in 2017. Cell samples taken at biopsy 

were sent to immune-histology labs to assess PD-L1 expression using the Dako PD-L1 IHC 

22C3 pharmDx test. These data were stored in the electronic patient record-keeping 

system, LorenzoTM and available for this study. 

5.2.3 Development of model 

Four knowledge-based planning models were developed using multivariate analysis. 

Twenty patients’ data were used to develop the models and that for five patients were 

retained for verifying the model predictions. PTV V95 coverage was calculated for each 

fraction; PTV volume, lungs-GTV (total lungs volume subtracted from GTV) volume, Heart 

(cc) volume, as contoured at planning in cubic centimetres (cc) and MSD, for each 

fraction, were calculated and used to develop the models. Three models were developed 

using MSD, PD-L1 and PTV volume parameters to predict the change in PTV V95 coverage 

for each fraction. The PD-L1 parameter was readily available for all the patients included 

in this study, the initial intention was to assess if it can predict tumour response, and 

hence help trigger ART. No correlation was observed so later it was included to develop 

the models. Model 1 was developed using MSD (fraction term) and planning PTV (patient 

term) (see equation 5.2), Model 2 using all three parameters, fraction term (MSD) and 

patient term (PD-L1 and PTV) (see equation 5.3) and the Model 3 was developed using 

MSD and PD-L1 (see equation 5.4) and Model 4 was developed using PTV and PD-L1 (see 

equation 5.4). The prediction accuracy of each model was calculated using equation 5.6 

(where j refers to the model index) and assessed. 
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𝑀𝑜𝑑𝑒𝑙_1 = [(𝑚𝑀𝑆𝐷 × 𝑀𝑆𝐷) + (𝑚𝑃𝑇𝑉(𝑐𝑐) × 𝑃𝑇𝑉𝑐𝑐)]           Equation 5.2 

𝑀𝑜𝑑𝑒𝑙_2 = [(𝑚𝑀𝑆𝐷 × 𝑀𝑆𝐷) + (𝑚𝑃𝑇𝑉(𝑐𝑐) × 𝑃𝑇𝑉𝑐𝑐)  + (𝑚𝑃𝐷𝐿1 × 𝑃𝐷 − 𝐿1)]   Equation 5.3 

𝑀𝑜𝑑𝑒𝑙_3 = [(𝑚𝑀𝑆𝐷 × 𝑀𝑆𝐷) + (𝑚𝑃𝐷𝐿1 × 𝑃𝐷 − 𝐿1)]           Equation 5.4 

𝑀𝑜𝑑𝑒𝑙_4 = [(𝑚𝑃𝑇𝑉 × 𝑃𝑇𝑉) + (𝑚𝑃𝐷𝐿1 × 𝑃𝐷 − 𝐿1)]           Equation 5.5 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 ∆𝑉95𝑃𝑇𝑉 = 𝑚 × 𝑀𝑜𝑑𝑒𝑙_𝑗              Equation 5.6 

5.2.4 Verification of the models 

The models were verified by predicting a change in PTV V95 coverage (∆𝑉95𝑃𝑇𝑉) for five 

patients that were independent of those used for creating the models. The predicted 

change for each fraction (using all three models) was compared to the dose coverage 

calculated on each fraction’s synthetic CT. 

5.3 Results 

5.3.1 Development of models 

The knowledge-based planning models were developed to predict the change in PTV V95 

coverage (∆𝑉95𝑃𝑇𝑉) using combinations of PD-L1 expression as a biomarker, MSD: 

tumour baseline shift, PTV, lungs-GTV, and heart size (Figure 5.1). However, the models 

developed using OAR volumes did not improve prediction accuracy. A total of 400 

fractions (n = 20 patients) were used to develop the models (see Table 5.1 for patient 

demographics). The observed range of the data was: MSD 0.0 to 20.23 mm, PD-L1 0.0% 

to 100.0% and difference in PTV V95 coverage -11.8% to 10.1%. 
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Table 5.1: Patient demographics for the patients included to build and verify the 

models. 
 

Mean/Frequency/Range 
Within Models 

Mean/Frequency/Range 
Verification (outside 
models)  

Age mean (+/- SD) 70.37 (6.72) Years 69.42 (7.32) Years 

Gender 
 

 

Male 9 3 

Female 11 2 

Staging T1aN0/T4N3 T1aN0/T4N3 

PTV volume (cc) 325.6/164.0 – 507.2 269.7/97.8 – 476.41  

Histology 
 

 

Adenocarcinoma 10 2 

Squamous cell carcinoma 10 3 

5.3.2 Accuracy of models 

∆𝑉95𝑃𝑇𝑉 was predicted using all three models for 100 fractions (n = 5 patients) (Figure 

5.2). Model 1 showed statistically significant differences (i.e. model 1 did not model the 

change in PTV coverage volume well) between the prediction and calculated PTV V95 

coverage with p = 0.018, whereas models 2 and 3 did not show significant differences 

with p = 0.163 and 0.509 respectively.  

Furthermore, the percentage of fractions with ∆𝑉95𝑃𝑇𝑉 between ± 0.5% and ± 1.0% was 

calculated (Table 5.2). The results show that model number three, developed using PD-

L1 and MSD, predicted 77% of the total fractions within ± 1.0%. The percentage of such 

fractions was lower for models 1, 2 and 4, 48%, 59% and 29% respectively. The 

coefficients (m values) for all three models are shown in Table 5.3. 
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Table 5.2. Percentage of total fractions of the test plans within the different trigger 

limits. 

  ±0.5% ±0.6% ±0.7% ±0.8% ±0.9% ±1.0% 

Model1 24% 28% 34% 37% 43% 48% 

Model2 32% 39% 42% 45% 53% 59% 

Model3 58% 65% 71% 74% 75% 77% 

Model4 14% 16% 19% 22% 29% 29% 

 

Table 5.3. Coefficients of the models developed for predicting change in target 

coverage.  

  Model1 Model2 Model3 Model4 

Patient 
factor Coefficients 

 

Intercept -2.228 -1.342 0.237 -3.890 

MSD -0.577 -0.669 -0.727 N/A# 

PD-L1 N/A# -0.012 -0.017 -0.002 

PTV Vol (cc) 0.005 0.004 N/A# 0.005 

 # the volumes were not included in the models so do not have a coefficient.  

These data are depicted over a broader range of comparison thresholds in Figure 5.1 and 

plots of individual fraction prediction against measured difference, for all the test 

fractions, are shown in Figures 5.2A-C. 
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Figure 5.1: Percentage of total fractions within plus and minus the defined 

threshold.  

The models were developed using equations 5.2, 5.3, and 5.4. The results illustrated that 

model 3 had superior accuracy compared to models 1 and 2, 4, especially at stricter 

tolerances.  
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Figure 5.2: Verification data for all three models.  

A) Results from the model developed using mean square difference (MSD) and PTV 

volume (cc); B) Results from the model developed using MSD, PTV volume and PD-L1; C) 

Results from the model developed using PD-L1 and MSD. 
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5.4 Discussion 

Anatomical changes, either internal (e.g. atelectasis, tumour shrinkage or growth, or shift 

tumour location) and/or external (patient weight loss), commonly occur during the 

course of radiotherapy for inoperable advanced-stage NSCLC patients. Significant 

changes in anatomy could alter planned dose distribution and affect treatment outcomes 

for patients if treatment plans aren’t adapted. Several studies have demonstrated the 

benefits of adaptive radiotherapy. 

Furthermore, the frequency of adaptations is important especially when the patients are 

treated with fewer numbers of fractions (hypo-fractionated radiotherapy, e.g. 55 Gy in 20 

fractions) as compared to conventional fractionated radiotherapy (66 Gy or 60 Gy in 33 

or 30 fractions respectively). Volumetric imaging and time-consuming re-planning are 

required to assess and make treatment management decisions. This could significantly 

increase clinical workload and also increase the radiation burden due to additional 

planning CT (over and above the daily CBCT) to the patients who do not benefit from 

adaptive planning. Therefore, more efficient methods are required to assess if the 

patients would benefit from adaptive planning or not and to assess the optimal time for 

adaption. 

A percentage drop in PTV V95 coverage has been commonly used to trigger ART planning 

(Britton et al., 2007; Britton et al., 2009; Spoelstra et al., 2009; Moller et al., 2016). To 

efficiently estimate PTV coverage we felt it was important to develop in-house KBP 

models using patient-specific parameters with/without data available from patient set-

up at the beginning for the fraction. The ‘fraction data’ considered were PTV 

characteristics, specifically the difference between the planned PTV and the PTV at the 

treatment fraction as represented by the MSD of the shift between their respective 
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centres of mass. The results showed that relatively simple models can predict change in 

PTV V95 coverage efficiently and accurately, as compared to recalculations based on 

original clinical plans, which was the primary aim of this study. The models will be 

implemented clinically at HUTH using ESAPI scripting. The script can obtain PTV size 

from the planning system, whereas the PD-L1 value will have to be entered manually as 

this data is stored outside the planning system. The script can calculate PTV coverage and 

compare it with the local trigger value of 3%.   

It was interesting to observe that the model developed using both PTV characteristics 

and PD-L1 data (patient term) combined had higher predictions than the model 

developed using the PTV characteristics or MSD only. Higher PD-L1 values were 

associated with a higher drop in PTV coverage (i.e., patients with higher PD-L1 values will 

require more adaption compared to the patients with lower PD-L1 values). However, the 

model built with PD-L1 data and the single ‘fraction’ PTV characteristic representing the 

relative change between plan and fraction presentation had higher accuracy compared 

to the model produced using these along with the ‘planning’ PTV size (patient term). This 

points towards the necessity or importance of having a term that represents the physical 

changes between the plan and the delivery fraction. A fourth model was investigated that 

used the planning PTV data and PD-L1 data, however, extremely poor correlation or 

predictive potential was noted and this option was discarded early in our study. 

Validation of the models indicated a superiority of the predictive benefit of a combination 

of the PD-L1 data and the shift of PTV centre of mass at very exacting comparison criteria 

(≤ 1%); we note that for more forgiving thresholds (i.e., ≥ ± 2.0%) the three models 

converged. Compared to the study by  Moller (Moller et al., 2016), the prediction accuracy 

of models 1 and 2 was higher at a locally used trigger level of 3% for adaptive planning 
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(i.e., a 3% reduction in PTV coverage triggering the decision) whereas it is the same for 

the model 3. However, the approaches in that study and ours were very different; our 

study does not require to produce any additional structures which is the basis of their 

methodology, as described by Moller (Moller et al., 2016). At a 5% trigger level (Britton 

et al., 2007; Britton et al., 2009; Spoelstra et al., 2009; Moller et al., 2016), the prediction 

accuracy is 100% for all three of the models presented here. Furthermore, unlike other 

studies, the models presented in our study can predict trends and could help manage 

workload. 

The parameters used in this study are readily available for all advanced-stage inoperable 

lung cancer patients. The patient-specific (PTV volume and PD-L1) parameters are 

available before starting radiotherapy: PD-L1 is acquired for all advanced-stage NSCLC 

patients to decide if the patient is suitable for immunotherapy and the PTV volume is 

contoured for all radical lung patients prior to starting treatment (a new PTV will be 

generated for patients requiring adaptive radiotherapy and the new PTV size will be used 

in the models for succeeding prediction). The treatment fraction-specific information is 

available (in some form) for all patients who undergo volumetric image-guided 

radiotherapy and is obtained prior to delivering each treatment fraction. This means that 

our models can trigger adaptive radiotherapy using readily available information and 

more importantly prior to the delivery of each fraction. We continue to consider and 

explore models that will help predict the likelihood a patient may benefit from an 

adaption strategy, based on characteristics independent of radiotherapy 

planning/treatment. 

In this study (reflecting our clinical capability) we only considered the use of 3 Degrees 

of Freedom (3DOF) registration and corrections. This requires that a greater translation 
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in the registration may be needed, to offset the lack of rotational correction, and would 

be represented by a larger MSD term in our calculations. In our models, this leads to a 

larger estimate of the predicted change in PTV coverage which, if greater than the trigger 

level for re-planning, may lead to a replan (adaption) that wouldn’t have been required 

should a 6DOF correction have been available. However, we do not consider this to be a 

limitation of our methodology since the replanning is triggered in response to the 

capabilities of the treatment system under consideration.  

5.3 Conclusion 

This study showed that relatively simple KBP models can accurately and efficiently 

predict change in the PTV (V95) dose coverage without the need for full-dose 

calculations. We found that a model based on a parameter (MSD) representing the spatial 

shift of the PTV between planning and treatment verification scan and a patient-specific 

parameter (PD-L1) resulted in better accuracy of prediction. The application of such 

methodologies will help to streamline the adaptive radiotherapy planning process for 

advanced-stage inoperable non-small cell lung cancer patients. These models could be 

used in the context of on-table adaption or in a more conservative approach where a 

trend over ‘fractions to date’ are considered to predict a likely need for adaption on a 

‘near future fraction’. More importantly, in this study, a patient-specific biomarker (PD-

L1), which is independent of the radiotherapy planning or treatment (verification) 

parameters, has been used for the first time and shown to be valuable in developing a 

model for predictively triggering Adaptive Radiotherapy. 
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Appendix Chapter 5 

 

 

 

Figure 5.3: Showing a correlation between MSD and change in PTV coverage.  

A correlation value of -0.65 was found between MSD and PTV coverage. 
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6.0 Predicting personalised and progressive adaptive dose escalation 

to gross tumour volume using knowledge-based planning models 

for inoperable advanced-stage non-small cell lung cancer patients 

treated with volumetric modulated arc therapy 

The research in this chapter was published in a peer-reviewed journal and therefore the 

text presented here is adapted from the article. My contribution consisted in 

conceptualising the research strategy, performing the research and writing the 

manuscript with input from my supervisors on designing and planning the work and 

editing the manuscript and clinical inputs from clinicians Dr. A Wieczorek, and Dr. S 

Upadhyay. Reference: Tambe, N. S.; Pires, I. M.; Moore, C.; Wieczorek, A.; Upadhyay S.; 

Beavis, A. W., Predicting personalised and progressive adaptive dose escalation to gross 

tumour volume using knowledge-based planning models for inoperable advanced-stage 

non-small cell lung cancer patients treated with volumetric modulated arc therapy 

Biomed. Phys. Eng. Express, 2022. 8. 035001. 

6.1    Introduction 

Several studies have reported that high radiation doses could improve local control and 

hence the overall survival compared to low-dose radiotherapy for NSCLC patients 

(Rengan et al., 2004; Kong et al., 2005; Rosenzweig et al., 2005; Lee et al., 2006; Gillham 

et al., 2008; Nielsen et al., 2014; Ramroth et al., 2016; Fleming et al., 2016; Fleming et al., 

2017; Higgins et al., 2017; Tekatli et al., 2017). However, dose escalation is often 

restricted by the presence of critical healthy structures in close proximity to the target 

volume. A significant increase in radiation dose to these organs at risk (OAR) could 

increase toxicities to an unacceptable level, especially when treating inoperable 

advanced-stage tumours (Cho et al., 2009; Bral et al., 2010). Additionally, it has been 

suggested that dose escalation could stimulate immune checkpoint inhibitors (ICI) that 
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could considerably increase pneumonitis (Zehentmayr et al., 2020). Therefore, it is 

crucial to limit OAR doses as low as possible whilst escalating the tumour doses.  

A number of methods have been proposed to escalate doses for advanced lung cancer 

patients, including conventional fractionation or hypo-fractionated regimes. However, 

dose escalation with conventional fractionation increases overall treatment time 

allowing tumour repopulation (Withers, Taylor and Maciejewski, 1988; Maciejewski and 

Majewski, 1991; Withers et al., 1995; Petereit et al., 1995; Kim and Tannock, 2005). This 

has a detrimental effect on local control and overall survival (Withers, Taylor and 

Maciejewski, 1988; Maciejewski and Majewski, 1991; Withers et al., 1995; Petereit et al., 

1995; Kim and Tannock, 2005). Therefore, dose escalation with standard-dose 

fractionation cannot be considered a standard of care (Yom, 2015) and it is recommended 

to shorten the overall treatment time to improve survival (Rengan et al., 2004; Kong et 

al., 2005; Rosenzweig et al., 2005; Nakamura et al., 2008; Gillham et al., 2008; Baumann 

et al., 2011; Nielsen et al., 2014; Fleming et al., 2016; Fleming et al., 2017; Higgins et al., 

2017; Tekatli et al., 2017). Additionally, stereotactic ablative radiotherapy studies 

reported significant improvement in survival for limited-stage peripheral NSCLC patients 

(UK SABR Consortium, 2016; UK SABR Consortium, 2019). 

Different methods have been proposed for dose escalation, such as using positron 

emission tomography (PET) scans for contouring boost volume (Gillham et al., 2008) 

whilst other studies used inhomogeneous dose escalation to GTV contoured on planning 

CT images (Nielsen et al., 2014; Fleming et al., 2017). Furthermore, Higgins et al (Higgins 

et al., 2017) and Doyen et al (Doyen et al., 2018) studied combinations of conventional 

fractionation radiotherapy with stereotactic ablative body radiotherapy. Higgins et al 

reported that 20 Gy in two fractions following 44 Gy in 22 fraction regime was a tolerable 
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dose (Higgins et al., 2017) as no grade 3 or higher toxicities were reported, whereas 

Doyen et al reported that three fractions of 11 Gy were safe following 46 Gy in 23 fraction 

chemo-radiotherapy (Doyen et al., 2018).  

Several methods have been used for dose escalation (Rengan et al., 2004; Kong et al., 

2005; Rosenzweig et al., 2005; Lee et al., 2006; Gillham et al., 2008; Nielsen et al., 2014; 

Fleming et al., 2016; Ramroth et al., 2016; Fleming et al., 2017; Higgins et al., 2017; Tekatli 

et al., 2017), however, none of the studies have evaluated the possibility of multiple 

adaptive dose escalation to the adapted GTV during the course of radiotherapy for 

inoperable advanced-stage NSCLC patients. In this study, a personalised progressive dose 

escalation to adapted GTV was studied without increasing OAR doses compared to the 

original clinical (i.e., ‘homogeneous’ – no dose escalation plan). Furthermore, knowledge-

based planning models were developed to predict the dose for the initial dose escalation 

and the adapted (during treatment) dose escalation whilst maintaining OAR doses similar 

to the non-dose escalation plans and hence, without having to go through a full planning 

process, to enable prediction of whether adaption was worth taking forward or not.  If so, 

then re-planning could be carried out. 

6.2 Methodology 

6.2.1   Data collection 

Twenty-five previously treated patients’ data were curated from our Eclipse treatment 

planning system database; patient’s demographics (see Table 5.1, chapter 5), 

histopathology, tumour staging, PTV volume in cubic centimetres (cc), GTVClinical volume, 

adapted GTV (GTVAdaptive) volume and dose-volume histogram (DVH) for target 

structures were collected. 
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6.2.2    Assessment of adaptive planning  

Production of synthetic CT (sCT):  the sCT images were produced using the method 

described in section 5.2.2.  

Evaluation of dosimetric variations: The sCT datasets were imported into the treatment 

planning system. The associated GTV for each fraction was reviewed and edited where 

required by experienced clinical oncologists to account for tumour baseline shift and 

anatomical changes. Furthermore, clinical and planning target volumes were produced 

on each sCT by applying the same margin as the clinical plan. The GTV contoured on each 

fraction was evaluated and the fractions where the GTV volume reduced compared to the 

original GTVClinical were noted and considered for dose escalation. 

6.2.3    Dose escalation strategies 

For this planning study, two dose-escalation strategies were considered for each patient: 

1. Personalised Dose Escalation (PDE); where dose to the GTVClinical was 

escalated, beyond the conventional prescription dose, within the constraints of 

the individual patient’s delineated anatomy. 

2. Adaptive Dose Escalation (ADE); where dose escalation was considered for 

individual ‘fractions’ when the GTVAdaptive volume seen on the sCT was reduced in 

comparison to the previous fractions. 

For both PDE and ADE plans, the dose to GTV was allowed to be increased/escalated until 

the OAR doses reached a similar level to those obtained in the original clinical plan and 

constraining the PTV dose to that intended in the clinical protocol (see Table 2.1, chapter 

2). A mixture of traditional and bespoke prescriptions within the PTV (depending on the 
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patient’s anatomy) were used, we characterise this prescription configuration as being 

heterogeneous.  

Adapted dose-volume histogram: The dose to 99% (D99) of GTVClinical, GTVAdaptive, 

PTVClinical, and PTVAdaptive volumes were recorded from the PDE plan (#0) and for the ADE 

fractions and the total estimated dose was calculated for target structures and OARs by 

summation over all fractions. The distribution for an adapted fraction was used for 

subsequent fractions until a new adaption was made, to estimate the total dose to the 

GTV, PTV and OAR volumes using this technique. 

The OARs doses for each metric (see Table 2.1, chapter 2) were calculated and compared 

with the original clinical plan. 

Biological equivalent dose (BED): BED was calculated for GTVClinical, GTVAdaptive, 

PTVClinical, and PTVAdaptive, volumes using D99% statistics for the original clinical (no dose 

escalation) plans and dose escalation plans (PDE: GTVClinical and PTVClinical; ADE: 

GTVAdaptive_Total and PTVAdaptive_Total). BED was calculated using equation 1.1 with an α/β 

value of 10 (this is referred to as BED10 below). Finally, a total BED was calculated by 

summing BED over all fractions. 

Tumour control probability (TCP): TCPs for GTVClinical and GTVAdaptive and PTVClinical and 

PTVAdaptive structures were calculated using the Linear Quadratic (LQ: this is referred to 

as TCPLQ below) model within the Biosuite software (Uzan and Nahum, 2012) for clinical 

plans, fraction ‘0’ plans and for total plans using the parameters identified by Nahum et 

al for non-small cell lung cancer. These are, an α/β = 10 Gy, α = 0·307 Gy−1, a clonogen 

density of 107 and a clonogen doubling time of 3·7 days (Nahum et al., 2011). Note: here 
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we acknowledge the use of the generic parameters for TCPLQ calculations and that the 

TCP values are used for relative comparison only in this study. 

6.3    Development of knowledge-based planning (KBP) Model 

Knowledge-based planning models were developed to predict achievable D99 of GTVClinical 

and GTVAdaptive without increasing OAR doses. Two KBP models were developed to 

predict achievable dose-escalation, first to the GTVClinical and the second for GTVAdaptive. 

The process to develop the model consists of finding plan signatures (volumes) that show 

a strong correlation to the achieved dose metrics of interest. The (best-fit) relationship 

describing the correlation is then used as the predictive function. Initially, a number of 

patient-specific volumes were considered including, GTVClinical, GTVAdaptive PTVClinical, 

PTVAdaptive, PTV-GTVClinical and Adaptive, Lungs-GTV and Heart to develop the models. Initially, 

a number of patient-specific volumes were considered including, GTVClinical, GTVAdaptive 

PTVClinical, PTVAdaptive, PTV-GTVClinical and Adaptive, Lungs-GTV and Heart to develop the 

models. Their correlation with the achieved doses in the clinical plans were assessed. 

Doses achieved to the GTVClinical and GTVAdaptive structures were correlated with the 

GTVClinical, and GTVAdaptive volumes to develop the models.  

PDE: The model was developed using fifteen patients’ plans and verified using ten 

independent patients’ plans. For the verification, the test plans were optimised to achieve 

the predicted D99 to GTVClinical whilst ensuring the OARs did not exceed the doses achieved 

in the original clinical plan and the PTVClinical received the originally intended (prescribed) 

dose. Differences between predicted and achieved doses were calculated. 
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ADE: A total of seven patients (n = 20 plans) data were used to develop a model. The 

model was then verified using four independent patients’ (n = 11 plans) data. Finally, 

differences between the predicted and the achieved doses to GTVAdaptive were calculated. 

6.4   Results 

6.4.1 Personalised and Adaptive dose escalation: A total of twenty-five patients were 

initially included in this study; however, only eleven patients demonstrated a 

reduction in GTV volume ‘during’ their treatment and were therefore considered 

for adaptive dose escalation. 

6.4.2 Development of KBP models: A number of volumes (i.e., GTVClinical, GTVAdaptive 

PTVClinical, PTVAdaptive, PTV-GTVClinical and Adaptive, Lungs-GTV and Heart) and their 

combinations were considered to develop the models. For the PDE model, the 

GTVClinical size in cubic centimetres showed the strongest correlation with the 

achieved D99 of GTVClinical (see Figure 6.1A). Whereas, for ADE, the percentage 

change in GTVAdaptive compared to the GTVClinical had the strongest correlation with 

the percentage increase in D99 of the GTVAdaptive (see Figure 6.1B). 

The average dose escalation results are given in Table 6.1 and Figure 6.2. The average 

total dose to GTV can be increased by 15.1 Gy (28.0%) compared to the original clinical 

plans with personalised and adapted dose escalation methods (i.e, PDE and ADE) 

compared to the original plans (without dose escalation). Whereas, it was increased by 

8.7 Gy (16.1%) with a single personalised dose escalation (i.e., PDE). Neither statistical 

nor clinical differences were seen in the OAR doses between dose-escalated and clinical 

plans (Table 6.1 and Figure 6.2). 
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Figure 6.1: Verification of models produced to predict the achievable D99 of GTVClinical (A) 

and GTVAdaptive (B) without exceeding OAR doses achieved in the non-dose escalated plans. 

The models were verified using the independent data set and the results are shown in the plots. 

The variable, constant and the R2 values for model A were -0.0214, 66.159 and 0.886 and for 

model B, -1.826, -0.003 and 0.974 respectively. 

 

55.0

58.0

61.0

64.0

67.0

70.0

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0

D
9

9
o

f 
G

TV
C

lin
ic

al
(G

y)

GTVClinical (cc)

AModel Verification

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

-18.0% -15.0% -12.0% -9.0% -6.0% -3.0% 0.0%

%
 In

cr
e

as
e

 in
 D

9
9

o
f 

G
TV

A
d

ap
ti

ve

Change in GTVAdaptive Volume (%)

BModel Verification



131 | P a g e  

 

Table 6.1: Mean dose-volume statistics for the original clinical plans and mean 

difference in target and OAR dose-volume compared to the original clinical plans. 

DE_#0 shows the average dose difference between the original clinical plans and the PDE 

plans and Total_DE shows the mean dose difference between the original clinical plans 

and the total estimated escalation doses (PDE and ADE). 

Parameters Original 

Clinical 

Plans 

DE_#0 p Total_DE p 

PTV_DVH‡ D99% (Gy) 51.3 2.3 0.045 3.3 0.010 

GTV_DE‡‡ D99% (Gy) 54.0 8.7 0.000 15.1 0.000 

Lungs-GTV V5Gy (%) 46.0 -0.3 0.959 0.4 0.929 

  V20Gy (%) 17.8 -0.7 0.761 -0.6 0.785 

  Mean Dose (Gy) 10.5 0.2 0.886 0.4 0.721 

Heart V30Gy (%) 6.4 -0.5 0.848 0.1 0.969 

  Mean Dose (Gy) 9.5 -0.2 0.924 0.2 0.950 

Spinal Cord PRV D0.01cc (Gy) 32.8 -2.7 0.509 -2.3 0.590 

PTV_DVH BED10 (Gy10) 64.5 3.4 0.044 5.0 0.009 

GTV_DE BED10 (Gy10) 68.6 13.9 0.000 24.5 0.000 

PTV_DVH TCPLQ (%) 35.0 25.0 0.000 36.0 0.000 

GTV_DE TCPLQ (%) 36.5 48.0 0.000 57.1 0.000 

‡ PTV_DVH = PTV – GTV + 0.5cm, ‡‡ GTV_DE = GTV + 0.5cm 
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Figure 6.2:  Adaptive dose-escalation comparison.  

Plots depict doses escalated to GTV volume (A) and doses received by PTV volume (B) in 

fraction 0 and total plan compared to the original clinical plans (B). Doses reported here 

are to the 99.0 % of target volumes. Target coverage had to be compromised for patients 

2 and 9 (image B) due to its proximity of PTV to the spinal cord. Doses were compromised 

to respect the spinal cord tolerance limit; PTV volume was cropped back from spinal cord 

PRV and the cropped volume was used for optimising the plan.  
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6.4.3  BED and TCP: The BED10 and TCPLQ were calculated and were seen to increase 

significantly for both GTVClinical, GTVAdaptive, PTVClinical and PTVAdaptive volumes, 

compared to those for the original clinical plans. BED10 for GTVDE and PTVDVH 

increased by 20.3% and 5.3% for PDE plans and 35.7% and 7.7% respectively for 

adapted plans (i.e., PDE + ADE) based on a comparison of the accumulated doses 

against the original clinical plans. TCPLQ values increased from 36.5% to 84.5% and 

35.0% to 60.0% for PDE plans and 36.5% to 93.9% and 35.0% to 71.0% for 

accumulated plans for GTVAdaptive and PTVAdaptive volumes respectively (see Table 

6.1). 

6.4.4  Validation of knowledge-based planning models: The prediction accuracy of the 

models was verified using independent data sets. PDE, the mean difference between 

predicted and the achieved D99 GTVClinical was 0.4% (range = 1.3% to -0.7%) (Figure 

6.3A) and for ADE, the average difference was 0.7% (range = 2.5% to – 1.6%) (Figure 

6.3B). The OAR doses achieved in the adapted plans were not statistically 

significantly different compared to those in the original clinical plans whereas 

PTVClinical and PTVAdaptive coverage improved compared to the clinical plans (Figure 

6.2 and Table 6.1). 
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Figure 6.3: Verification of KBP models developed using patient-specific 

parameters. Images A and B, showing predicted and achieved doses for GTVClinical 

and GTVAdaptive and the percentage difference between achieved and predicted 

doses.  

The model was developed for predicting maximum D99% of GTVClinical (PDE) and 

GTVAdaptive (ADE) respectively whilst keeping the OAR dose similar to the original clinical 

plans. 
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6.5   Discussion 

Several studies have demonstrated that increasing prescribed doses can lead to an 

increase in the overall survival in NSCLC patients, including those with inoperable 

advanced-stage disease (Rengan et al., 2004; Kong et al., 2005; Rosenzweig et al., 2005; 

Lee et al., 2006; Gillham et al., 2008; Nielsen et al., 2014; Fleming et al., 2016; Ramroth et 

al., 2016; Fleming et al., 2017; Higgins et al., 2017; Tekatli et al., 2017). However, an 

increase in organs at risk doses can adversely affect patients’ quality of life and, 

potentially, survival. It is therefore important to investigate methods for dose escalation 

that increase the therapeutic ratio by increasing the probability of disease control and by 

reducing the probability of toxicity.  

Single inhomogeneous ‘personalised’ dose escalation was studied by Nielsen et al 

(Nielsen et al., 2014), optimising prescription dose to the pre-treatment imaging. They 

reported an increase of 3.6 Gy (from 64.8 ± 0.9 Gy to 68.4 ± 2.9 Gy) dose to the GTV98% 

whereas, in our study dose to GTV D99% increased by 8.7 Gy (from 54.0 ± 0.6 Gy to 62.8 ± 

2.9 Gy). However, the present study reports personalised progressive adaptive dose-

escalation where, following personalisation, the opportunity to dose-escalate was 

continually assessed prior to each fraction. In this method, OAR doses and PTV (see 

Figure 6.2B and Table 6.1) dose coverage were kept very similar to the original (non-dose 

escalated) plans that had been used clinically. Doses were escalated whilst keeping the 

total number of fractions the same, with the dose per fraction to the adapted GTV 

increased in each escalated plan. 

A number of patients in this study had treatment volumes comprising of primary plus 

nodal volumes and some had volumes in close proximity to the spinal cord volume, 

nevertheless, adaptive dose escalation was achievable whilst keeping the OAR doses 
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similar to the original clinical plans for all patients. We noted that patients with apical 

tumours were able to receive higher doses compared to the patients where the tumour 

appears on the same slices as the heart and tumours near the spinal cord.  

The application of our method to identify patients that would benefit from progressive 

dose escalation following the initial personalisation of prescription dose increased their 

mean GTVAdaptive dose and TCPLQ by 10.2% and 10.8% respectively compared to those 

receiving personalised dose (escalated) prescription only, without increasing OAR doses 

or compromising PTV coverage. Thereby demonstrating that personalised progressive 

adaptive dose escalation is feasible and may lead to significantly increased tumour 

control probability compared to the standard or personalised prescription plans for 

inoperable advanced-stage NSCLC patients.  
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Chart 6.1: Showing steps from the initial dose escalation (PDE) to the adaptive dose 

escalation (ADE), including online and offline adaption.  
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A knowledge-based planning model was successfully developed in this study to predict 

the maximum achievable doses to GTVAdaptive using our approach. Model accuracy was 

assessed and prediction accuracy for PDE (initial plan personalisation) plans was 

observed to be superior compared to ADE plans (i.e., subsequent adaption), this could be 

due to the relatively small number of the training dataset. However, the model was 

deemed acceptable to use clinically and could therefore be used as an efficient tool to 

predict if spending time performing additional plans, either in the planning stage or at 

the Linac to consider ‘on-table adaption’ would be worthwhile. From a pragmatic 

perspective, the benefit afforded by the use of the KBP planning prediction of which 

patients may benefit is the streamlining of the decision-making process for on-table 

adaption. Without requiring a full dose calculation, appropriate patients can be quickly 

identified and in the case that a beneficial adaption is not predicted the planned 

treatment can continue without any further time-consuming interruption. The steps 

requiring adaptive dose escalation are shown in chart 6.1. 

One of the objectives of this study was to assess if the dose to GTV(Clinical and Adaptive) can be 

increased without increasing OAR doses compared to the original clinical plans (i.e., the 

homogeneous plan) so that tumour control probability can be increased without 

increasing toxicities or reducing the quality of life; our results showed this to be possible. 

Furthermore, potentially significant increases in TCP, over the standard or personalised 

prescription plans were demonstrated by the personalised progressive adaption 

strategy. Whilst such calculations may be considered subjective, we considered the 

results of the Biosuite software to at least indicate relative probabilities for the structures 

considered.  
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This objective was set to ascertain if we could achieve personalisation and progressive 

adaptive dose-escalation within (potential) treatment toxicities that we are clinically 

comfortable with. We consider this to be an experience-based isotoxicity regime, 

however, we acknowledge that further and potentially more beneficial dose escalation 

might be achievable if we extended our isotoxicity considerations to literature-based 

tolerance doses.  However, although increased dose to target volume could improve local 

control,  increases in OAR doses could significantly affect survival (Bradley et al., 2005; 

Brower et al., 2016) and so we considered such as approach outside the scope of our 

study. 

In this study, we assumed that the adaptive GTV contoured sCT (produced using CBCT) 

represents the ‘true’ GTV (i.e., similar to the one contoured on 4DCT scans – including the 

full extent of motion). The CBCT image is acquired over a period of few breathing cycles 

and hence should demonstrate full tumour motion as seen on the 4DCT images. 

Furthermore, we did not investigate if the CBCT slice thickness used locally has any 

impact on the quality of the sCT images and the target delineation. Whereas these might 

be considered as limitations of the study, however for clinical implementation, a 4DCT 

scan and/ or PET-CT scan will be required to accurately delineate target and OAR 

volumes thus removing the impact of these observations. However, the model should 

help identify patients for dose escalation based on GTV contoured on CBCT images. 

6.6   Conclusion 

We demonstrated that a Personalised Progressive adaptive dose-escalation strategy 

could significantly increase the dose to adapted GTV and relative TCPLQ without 

increasing OAR doses. This may improve local control and overall survival of the patients 

with inoperable advanced-stage NSCLC without an increase in toxicities compared to the 
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non-dose escalated plans. Limiting OAR dose will also help these patients maintain their 

quality of life and we based our dose levels on our clinical experience. In this study, we 

present the first report of the development of a knowledge-based planning model for 

rapidly predicting D99 of the GTV, whilst maintaining OAR doses and PTV coverage similar 

to our current clinical protocol requirements, thus remaining within our experience 

bounds. The model can be used as a predictive tool to assess the potential for adaption 

prior to performing the treatment planning itself and therefore to streamline the adaptive 

planning decision-making processes.  
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7.0 Discussion and conclusions 

Radiotherapy plays a very important role in the treatment of advanced-stage non-small-

cell lung cancer. A large number of patients (27% to 42%) with advanced-stage disease 

receive radiotherapy with curative or palliative intent compared to surgery (National 

Cancer Registration & Analysis Service and Cancer Research UK, 2017). Until recently, 

radiotherapy with and without chemotherapy was a standard of care for inoperable 

advanced-stage NSCLC patients. The recent clinical trials reported a significant increase 

in overall survival in the patients who received immunotherapy (Antonia et al., 2017; 

Antonia et al., 2018; Brahmer et al., 2018; Yoneda et al., 2019; Paz-Ares et al., 2020). 

Furthermore, radiotherapy treatment planning and delivery techniques have evolved 

significantly over the past few years, including the development of intensity modulation 

radiotherapy and volumetric modulated radiotherapy. The outcomes of treatment plans 

produced using these techniques are highly dependent on the optimisation 

parameters/objectives used during optimisation or the beam/arc geometry. If the same 

or similar optimisation objectives or arc geometries are used for planning all patients, 

then it could result in suboptimal dose distribution (i.e., higher OAR doses or inadequate 

target coverage) due to large variations in patients’ anatomy.  

7.1    Key findings of the thesis 

This thesis aimed to extract patient-specific information that could facilitate the 

prediction of personalised optimisation parameters to limit OAR doses whilst achieving 

optimal target coverage and/ or whilst using dose escalation. This thesis developed four 

personalised solutions for optimising plans for advanced-stage non-small cell lung cancer 

patients treated with VMAT. 
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Chapter 3. The aim of this study was to reduce variability in treatment plans produced 

by planners with varying degrees of experience. The knowledge-based planning models 

were developed using patient-specific factors to predict minimum achievable doses to 

lung V5Gy, V20Gy and mean lung dose. The results showed that the models can predict the 

doses accurately for a range of prescriptions. However, the model predictions were 

unacceptable for oesophageal patients as these are planned with significantly different 

arc geometries (two full-arcs as compared to two half-arcs). Furthermore, the plans 

produced using the models showed a concurrent reduction in lung doses and reduced 

variability between planners. The delivery measurements performed on a linear 

accelerator showed that the plans produced using the model can be delivered as 

expected, except for two arcs where gamma results exceed the optimal tolerance but 

were within the mandatory tolerance level. Therefore, these plans would have been 

considered acceptable for clinical delivery. In conclusion, the patient-specific anatomy 

can be used to predict minimum achievable lung doses accurately for different 

prescriptions and improve the inter-patient consistency of treatment plans. 

Chapter 4. The aim of this study was to investigate optimal arc geometries using a 

personalised arc parameter approach for planning inoperable locally advanced-stage 

lung cancer patients treated with VMAT. Target volume geometry can significantly vary 

between patients and if these patients are planned with the same arc parameter then it 

could result in a suboptimal dose distribution (i.e., higher OAR doses or reduced target 

coverage). In this chapter, we studied the personalised arc parameter approach to 

produce optimal plans (i.e., the plans achieving minimal OAR doses whilst maintaining 

adequate target coverage). Eight arc parameters were studied, and these resulted in 

different dose distributions to OAR volumes whereas target coverage was similar for 
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most of the geometries. Furthermore, the ‘optimal’ plan for each patient was selected 

using a blind review following local clinical protocol. The optimal plan resulted in a 

significant reduction in OAR doses compared to the original clinical plan whilst 

maintaining adequate target coverage. Additionally, a knowledge-based planning model 

was developed using patient-specific factors to identify optimal arc parameters for 

prospective patients. The accuracy of the model was assessed by predicting optimal arc 

parameters for the patients outside the model (i.e., these patients were not included to 

develop the model), and the prediction accuracy was 80%. In conclusion, the patient-

specific factor can help predict an optimal arc parameter for advanced-stage NSCLC 

patients and reduce OAR doses significantly compared to the plans produced using 

standard arc parameters. Reducing the dose to healthy tissues can reduce toxicities and 

help improve patients’ quality of life. 

Chapter 5. The aim of this study was to investigate different adaptive strategies for 

inoperable advanced-stage NSCLC patients treated with VMAT and to develop in-house 

knowledge-based planning models to identify patients requiring adaptive radiotherapy. 

Following the personalised treatment plan optimisation (discussed in chapters 3 and 4), 

the next stage is to ensure/monitor that the doses are delivered as planned and 

anatomical changes do not alter the planned dose distribution significantly, as a 

significant anatomical change could alter the planned dose distribution and affect 

treatment outcome. If the anatomical changes can be identified using pre-treatment CBCT 

imaging and shown to be significant, the treatment plan can be adapted to the changes 

seen. Adaptive radiotherapy is becoming a new standard of treatment and has been 

proven beneficial when treating these patients. Recent technological developments, for 

example, magnetic resonance imaging (MRI) linear accelerators (MR-Linac) allow real-
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time anatomical visualisation and facilitate online/ on-table adaption. The method used 

widely (Yan et al., 1997; Britton et al., 2007; Juhler-Nottrup et al., 2008; Fox et al., 2009; 

Li, 2011; Kataria et al., 2014; Berkovic et al., 2015; Sibolt et al., 2015; Ramella et al., 2017) 

requires the patient to undergo a full planning process (i.e., CT simulation, target 

delineation, treatment plan optimisation, treatment plans check and QA), which is a time-

consuming process and could increase workload and patient stress, especially for the 

patients who do not require adaptive planning. In this chapter, we developed knowledge-

based planning models to trigger adaptive radiotherapy, allowing quick and accurate 

assessment to identify patients who may benefit from adaptive radiotherapy. Three 

different models were developed using patient (i.e., PTV size and PD-L1) and a fraction 

(i.e., the mean square difference in centre of mass between PTV at planning and delivery) 

specific factors. Importantly, we identified a biomarker (i.e., PD-L1), currently being used 

as a target for immunotherapy, which can be used to identify patients for adaptive 

replanning. In conclusion, the patient-specific factors evaluated in this study accurately 

identify patients for adaptive radiotherapy without increasing patients’ stress (i.e., 

sending the patient through the whole planning process) and increasing the overhead of 

a busy clinical service. 

Chapter 6. The aim of this study was to investigate personalised and progressive dose 

escalation without exceeding OAR doses (compared to the non-dose-escalation plans) for 

advanced-stage NSCLC patients treated with VMAT and to develop knowledge-based 

planning models predicting GTV doses. Several studies have shown that higher 

radiotherapy doses could improve local control and overall survival for NSCLC patients 

(Rengan et al., 2004; Kong et al., 2005; Rosenzweig et al., 2005; Gillham et al., 2008; 

Nielsen et al., 2014; Fleming et al., 2016; Fleming et al., 2017; Higgins et al., 2017; Tekatli 
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et al., 2017). However, dose escalation could be very challenging and limited for 

advanced-stage NSCLC patients especially when the tumour is in proximity to critical/ 

dose-limiting structures (e.g. spinal cord). In this chapter, we have identified an alternate 

method for dose escalation. A personalised and progressive dose escalation to the 

visible/adapted gross tumour volume was studied whilst keeping the OAR dose and PTV 

coverage similar to the original clinical plan, i.e., non-dose escalation plans, treated PTV 

‘homogeneously’ with 55Gy in 20 fractions. The dose-escalation strategies (personalised 

and adaptive dose escalation) developed in this thesis could increase tumour control 

probability by 1.5 times higher compared to the non-dose escalation plans (clinical 

plans). More importantly, this was achieved without increasing organs at risk doses. 

Thus, higher tumour control could be achieved without increasing toxicities. 

Furthermore, we developed knowledge-based planning models using patient-specific 

factors to predict the maximal dose to the visible/adapted GTV without increasing OAR 

doses or affecting PTV coverage. The models can predict personalised doses and will 

reduce variability in the achieved doses as seen in chapter 3. In conclusion, the method 

used allowed a significant increase in dose to GTV and most importantly the reports that 

dose escalation can be performed without increasing OAR doses or toxicities. The KBP 

models could accurately predict ‘safe doses’ (i.e., without increasing OAR doses) for 

escalation. 

7.2 Impact of these findings 

The knowledge-based planning model developed to predict minimal lung doses (Chapter 

3) has been implemented in our clinic following discussion and approval from the 

treatment planning medical physics expert (MPE). An ESAPI script was developed by a 

colleague that predicted lung doses using the patient-specific geometry before starting 
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plan optimisation. The predicted values can be entered in the optimisation with the 

appropriate priority. 

The personalised arc parameters study (Chapter 4) results were discussed with the 

radiotherapy planning MPE and also with the oesophageal and lung cancer clinicians. It 

is initially implemented clinically in our centre for planning oesophagus patients as the 

lung doses were significantly higher with the arc parameter (arc parameter H: see Figure 

4.1) used for planning these patients previously. For these patients, the tumour is located 

centrally so most of the treatments for these patients are planned using arc parameter E 

(see Figure 4.1). For the patients where the heart dose exceeds the tolerance limit, other 

geometries are used to achieve the optimal plan. Whereas for NSCLC patients, the model 

is currently being used only for the patients where lung and/or heart doses exceed the 

tolerance limits due to the clinical workload and resource issues, however, we are in the 

process of implementing the arc geometry model for all the NSCLC patients. A script will 

be developed to predict the best arc parameter for planning and treating these patients 

routinely. A number of quality documents will be produced (protocol and guidance 

documents) will be uploaded to the quality system. This technique has allowed us to treat 

patients (oesophagus and NSCLC) without compromising (or reducing overall dose) to 

the target volume whilst limiting OAR doses below tolerance level. This means that the 

use of the methodology has potentially extended the survival of these patients.  

Similarly, the ART models (Chapter 5) will be implemented locally for NSCLC patients 

following approval from an MPE and clinical oncologist. The method and the results of 

the study will be presented and discussed with physicists (including MPE) and clinicians 

and the relevant staff will be trained to perform and check the tasks. The dose-escalation 

study (Chapter 6) demonstrated that significant dose escalation can be achieved and 
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implemented safely for inoperable advanced-stage NSCLC patients. However, it would 

require ethical approval from the health and research authority (NHA) as this would 

change the management of these patients and would need validation through a clinical 

trial.  The primary endpoints of the clinical trial would be to assess local control, early 

and late toxicities and overall survival following personalised and progressive dose 

escalation. 

7.3    Caveats of the studies  

A knowledge-based planning model was developed for predicting minimal achievable 

doses to lung volume (Chapter 3). Similarly, several patient-specific volumes, such as 

heart size, heart overlap with PTV, and the difference in centre of mass of the heart and 

PTV were studied to develop knowledge-based planning to predict minimal achievable 

doses to the heart and spinal cord volumes but could not find the patient-specific volumes 

that correlate with dose-volume parameters. Furthermore, the model could not 

accurately predict minimal achievable doses to lung volume for oesophageal cancer 

patients. This could be due to the difference in arc geometry used for planning 

oesophagus patients.  

Similarly, the personalised arc geometry model (Chapter 4) that was developed, included 

co-planar arc geometries but non-coplanar geometries were not studied as the current 

version of the planning system does not allow the use of non-coplanar arcs. The non-

coplanar geometries may help reduce OAR doses further but this may significantly 

increase the risk of gantry collision. This will be explored when the planning system 

allows using non-coplanar geometries clinically. The arcs delivered with the couch 

rotation will reduce radiation dose exiting through the contralateral lungs and heart and 

help reduce the dose to these structures. 
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The knowledge-based models (Chapter 5) developed for triggering adaptive planning 

used the CBCT images registered using 3 degrees of freedom only as it is reflecting our 

clinical capability. The rotational (i.e., pitch, roll and rotation) corrections were not 

considered, therefore the models may not be optimal for the patients where the 6 degrees 

of freedom registration is being used for matching and treating patients. This could be 

considered to be a limitation of the study; however, in this study, the replanning is 

triggered in response to the capabilities of the treatment system used locally. 

Furthermore, the adaptive dose escalation (Chapter 6) was evaluated using sCT 

(produced using CBCT) images. The GTV contoured on the sCT images was assumed to 

be the ‘true’ GTV (i.e., includes full tumour motion similar to the 4DCT images), since the 

CBCT images are acquired over a period of few breathing cycles and could represent full 

tumour extent similar to the 4DCT images. However, for clinical implementation 4DCT 

images and/ or PET-CT images would be required for accurate delineation of target and 

OAR volumes.  

7.4    Future work  

The models developed in this thesis will be implemented clinically using ESAPI scripts. 

and their benefits, such as reducing variability in treatment plans, OAR doses, efficiency-

saving, and clinical outcomes will be reported. Then the clinical benefits of the techniques 

developed to personalise treatment plan optimisation will be studied by collecting 

clinical follow-up information and assessing the impact of the studies on local control, 

OAR toxicities and the quality of life of the patients. The outcome data will be correlated 

with the delivered dose as it was seen that there could be a significant difference in the 

planned and delivered dose. These results will be published when available.  
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In addition, the current KBP model (Chapter 3) only predicts minimum achievable lung 

doses. New models will be developed to predict minimum achievable heart and spinal 

cord doses, using new patient-specific parameters like the distance between the OARs 

and target volume, an overlap with target volume etc. Currently, the non-coplanar VMAT 

delivery technique is not available clinically; once this is available, we will evaluate if non-

coplanar arcs can help reduce OAR (lung, heart and spinal cord) doses without affecting 

target coverage and if the treatment can be delivered safely. 

The use of machine learning in radiotherapy planning has increased in recent years 

(Meyer et al., 2018); including target volume delineation (Boon, Au Yong and Boon, 

2018), radiotherapy patient-specific quality assurance (Chan, Witztum and Valdes, 

2020), adaptive radiotherapy (Tseng et al., 2018). Future work will involve developing a 

machine learning model to automate the personalised treatment planning optimisation 

process (i.e., predict minimal OAR doses and optimal arc-geometry based on patient-

specific factors). Furthermore, ‘big data’ includes patients’ age, gender, histology, staging, 

weight (before, during and after treatment), biomarkers, radiomics parameters, 

treatment combinations, delivered radiation dose, change in tumour volume during 

treatment, change in densities (e.g. tumour, lungs, patient), CT scan, standardized uptake 

volume (SUV) from positron emission tomography (PET) imaging will be collected using 

machine learning scripts to develop models predicting clinical outcomes such as, 

toxicities, local control, local recurrence, metastasis, and overall survival based on 

tumour and patient-specific information. The patient who may have higher chances of 

local recurrence could be treated using progressive adaptive dose escalation to achieve 

superior local control. 
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This thesis showed simple and cost-effective KBP models can be very beneficial in 

planning for advanced-stage NSCLC patients treated with VMAT. The methodology 

developed here can be used to develop KBP models for other sites, such as brain, head 

and neck, prostate, and gynaecological cancers. In this thesis, we noted that the 

personalised arc geometry model reduced OAR doses significantly compared to the 

clinical plans, so it would be interesting to assess if it can be beneficial for these other 

sites and if KBP models can be developed to predict optimal arc parameters for them. 

In addition to personalising treatment planning, efforts can be made to reduce variations 

in delineated target volume(s) with the help of functional imaging such as PET-CT images. 

However, a 3D PET-CT is not optimal for delineating target volumes for patients with 

significant tumour motion (e.g. lungs and oesophagus), as the motion can degrade image 

quality. For these patients, 4D PET-CT might be beneficial and could help reduce 

uncertainties in target delineation. A 4D PET-CT protocol could be developed and 

implemented clinically for these patients. 

7.5    Conclusions 

In conclusion, the studies performed in this thesis showed that patient-specific 

information could be used to personalise treatment planning optimisation. The 

knowledge-based planning models developed can be used clinically for predicting OAR 

doses, arc parameters, triggering adaptive radiotherapy, and personalised and adaptive 

dose-escalation accurately and effectively. Additionally, the models can be used to make 

predictions that can make the ART decision more efficient and practical. 
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