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Abstract

Machine Learning (ML) methods represent a potential tool to support and optimize virtual
patient-specific plan verifications within radiotherapy workflows. However, previously reported
applications did not consider the actual physical implications in the predictor’s quality and model
performance and did not report the implementation pertinence nor their limitations. Therefore,
the main goal of this thesis was to predict dose deliverability using different ML models and
input predictor features, analysing the physical aspects involved in the predictions to propose a

reliable decision-support tool for virtual patient-specific plan verification protocols.

Among the principal predictors explored in this thesis, numerical and high-dimensional features
based on modulation complexity, treatment-unit parameters, and dosimetric plan parameters
were all implemented by designing random forest (RF), extreme gradient boosting (XG-Boost),
neural networks (NN), and convolutional neural networks (CNN) models to predict gamma
passing rates (GPR) for prostate treatments. Accordingly, this research highlights three principal
findings. (1) The dataset composition's heterogeneity directly impacts the quality of the
predictor features and, subsequently, the model performance. (2) The models based on
automatic extracted features methods (CNN models) of multi-leaf-collimator modulation maps
(MM) presented a more independent and transferable prediction performance. Furthermore,
(3) ML algorithms incorporated in radiotherapy workflows for virtual plan verification are
required to retrieve treatment plan parameters associated with the prediction to support the
model's reliability and stability. Finally, this thesis presents how the most relevant automatically
extracted features from the activation maps were considered to suggest an alternative decision

support tool to comprehensively evaluate the causes of the predicted dose deliverability.
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Chapter 1 Introdcution

Machine learning (ML) applications in radiation therapy (RT) dedicated to patient-specific plan
verification require studies to define what model-reliability involves and what are the actual
applications of those physical aspects, given by the predictors, linked to the dose deliverability.
While other ML applications for organ contouring or detection can be intuitively assessed and
corrected during the RT plan design-optimization process [1], the dose deliverability predictions
based on ML models face several hidden challenges in their actual application due to the implicit
uncertainty of the ground truth definition of a predicted ‘passing’ or ‘failing’ plan [2,3].
Specifically, the no control of physical aspects within the dataset, such as the dose detection
device, the treatment unit hardware, the dose optimization/calculation software, and the
clinical configurations established in each RT facility, impact the minimum conditions needed to
decide if a specific treatment is suitable for delivering to the patient [4-6]. Thus, the dose
deliverability analysis supported by ML models should become a more customized protocol to

attempt more robust prediction.

Considering already reported ML models predicting gamma passing rates (GPRs ) (Section 2.3.1),
the main technical aspects considered in their designs were: the kind of predictors, the ML
algorithms, and the dataset size [2]. However, their potential applications in practice, the
predictors' quality, and their technical limitations have not been thoroughly discussed, which
generates important gaps in the reliability of the published ML models [3]. Therefore, this
research addressed these aspects through a series of studies designing an ML model that
predicts GPR values, oriented to transfer modeled features to physical parameters from the
treatment delivery, promoting reliable ways to verify the prediction quality and model stability,

and suggesting potential indicators of technical tolerance limits for further plan designing.

Accordingly, this thesis is oriented to contribute to the medical physics field, implementing ML
models to support the RT virtual dose deliverability evaluation and defining more
comprehensive challenges and limitations of these models predicting GPRs. Thus, this research
was developed in four main steps, (I) extracting and calculating all the complexity metrics and
plan parameters as predictor features (Chapter 4), (ll) verifying the effect of the dataset
assembling conditions on model performance (Chapter 5), (lll) implementing high-dimensional
features to avoid the numeric calculated predictors (Chapter 6), and (1V) proposing the minimum
aspects needed to implement these ML models in practice (Chapter 7). Correspondingly, the
main contributions of this thesis are (I) the new modulation complexity metrics for treatments
based on dual-layer MLC models, (II) the demonstration of dataset-composition effects in

prediction quality, (lll) the suitability of high-dimensional features implementation to predict
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GPRs, and (IV) the verification of model reliability extracting the activated maps from the high-

dimensional features, and including them within an RT plan verification workflow.

Considering the above-mentioned and the available resources provided by the University of Hull
and the Hull University Teaching Hospitals NHS Trust, the whole research developed in this thesis
was oriented to demonstrating the following hypothesis: “It is possible to use ML models to
support virtual patient-specific treatment verification in prostate radiotherapy, retrieving
critical physical aspects involved in dose deliverability.” Moreover, this hypothesis
encompasses the dataset quality, the virtual patient-specific treatment verification workflow
design, and the verification of model reliability by including the physical plan parameters

associated with the prediction.

Considering these three aspects associated with the hypothesis, the principal aim of this thesis
was to explore the best dataset and model configuration to predict GPR values retrieving
specific features corresponding to physical aspects involved in the dose deliverability.

Accordingly, this objective was developed intending to answer the following research questions:

1. Which input features are more convenient for GPR predictions using ML models?

2. What dataset configuration is optimal for a reliable GPR modelling performance?

3. Are the ML models based on high-dimensional input features suitable for GPR
predictions?

4. What decision-support strategy for virtual plan verification might be beneficial in

practice?

The structure of this thesis, intending to address the research questions, is as follows. Chapter
2 gi