
Available online at www.sciencedirect.com

Food and Bioproducts Processing 

journa l  homepage :  www.e lsev ier . com/ loca te / fbp

Improved control strategies for the environment 
within cell culture bioreactors

Jonathan Jonesa, Didier Kindembea, Harvey Brantona, Najib Lawalb,  
Eduardo Lopez Monterob, John Mackb, Shuo Shic, Ron Pattonc,  
Gary Montagued,⁎

a Centre for Process Innovation, Central Park, Darlington DL1 1GL, UK 
b Applied Materials, Daresbury WA4 4AB, UK 
c Department of Engineering, University of Hull, Hull HU6 7RX, UK 
d National Horizons Centre, Teesside University, Darlington DL1 1HG, UK 

a r t i c l e  i n f o

Article history: 

Received 7 November 2022 

Received in revised form 9 January 

2023 

Accepted 8 February 2023 

Available online 16 February 2023

Keywords: 

Cell culture 

Predictive control 

Environment 

Monoclonal antibodies

a b s t r a c t

This paper describes the development of improved control strategies for the standard 

environmental conditions in a fed-batch bioreactor used for monoclonal antibody cell 

culture. The consequences of relying on fixed parameter PID based controllers are con-

sidered and poor performance is demonstrated as a consequence of non-linearity and 

loop interactions. The benefits from adopting a more sophisticated control strategy are 

considered. Model Predictive Control (MPC) relies on a process model that can be identified 

from small system perturbations. It considers the predicted longer-term response and 

consequently can deliver improved control and satisfy user defined constraints. Results 

from experimental trials demonstrate the capability of MPC and the merits are discussed 

with regards to industrial application.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical 

Engineers. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).

1. Introduction

Mammalian cell cultures now account for over 50% of the 
biotherapeutics market and with a large pipeline of products 
this is set to increase (Al-Majmaie et al. 2021). The global 
market for mAbs was valued at USD 122 billion in 2019 and is 
estimated to surpass USD 200 billion in 2024 at a CAGR of 
6.9% (Hong et al. (2018)). Consistent active pharmaceutical 
production is a major concern to the biopharmaceutical in-
dustry, which requires precise control of all manufacturing 
process aspects. Factors influencing the quality of CHO based 
therapeutic proteins are discussed by Ha et al. (2021). They 
categorise the factors into three groupings (culture environ-
ment, chemical additives and host cell proteins) and review 

the literature relating to each. They note the diversity of 
products and changes in sensitivity to variations that result. 
This makes generic statements on degree of impact proble-
matic. However, they raise an important operating principle 
in that while the extent of impact may differ, minimising 
variation of critical quality attributes, with due consideration 
to critical process parameters is key. In this, they stress the 
need for tight environmental control.

It would be reasonable to assume that for those involved 
in biomanufacturing, the effective, tight control and optimi-
sation of the bioreactor would be a prime focus of attention 
to maximise yield and achieve product quality aligned to 
patient need. However, from an operational sense, the reality 
is that control philosophies have changed little over the last 
few decades. Standard environmental measurements (e.g. 
pH, temperature, dissolved oxygen) are controlled using fixed 
PID controllers and operator in the loop offline sampling 
based control is deployed to regulate other crucial 
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parameters. Infrequent offline sampling, system non-
linearities experienced in batch operation and natural bio-
logical variability combine to lead to poor control 
performance. Evolving biopharma-based therapies are char-
acterised by the high cost of media and batch to batch var-
iation through biological variability and yield losses through 
poor control amounting to considerable losses. For example, 
Van Beylen et al. (2020) described the impacts of variability 
on viability, causing around 8% out of specification product 
for a Novartis cell culture product. More generally, estimates 
of between 10%− 20% losses for some products have been 
reported (Hippach et al., 2018).

Existing data gathered during operation and data avail-
able from online process analytical sensors could be used to 
fundamentally upgrade the control systems to address loss 
of yield and reduced quality issues. In addition to the re-
quirement for accurate and responsive online measurement 
of environmental parameters, tight environmental control 
brings with it the need for responsive control systems with 
control strategies suited to the task. However, bioprocessing 
is a complex operation and the conventional control systems 
are not always effective. The pH and dissolved oxygen (DO) 
control loops can interact and nonlinear behaviour is ob-
served as batch characteristics change with culture age, 
making behaviour under conventional PID based control ei-
ther sluggish or oscillatory and frequently impacting on- 
product yield. The predominant industry attitude is to accept 
the status quo and adopt PID control systems that are at best 
a compromise across the nonlinear behaviour or worse, more 
poorly tuned so performance is degraded.

Focusing specifically on the impact of culture environ-
ment variations, Hippach et al. (2018) considered cultures 
exposed to significant high frequency variations in DO con-
centration due to ineffective control. They classified cultures 
into those where significant oscillations were present and 
those where control was effective. It should be noted that for 
those cultures where there was oscillation, the DO levels did 
not fall below acceptable levels for the culture. For those 
experiencing ineffective and oscillatory control, lactate was 
found to accumulate in the latter half of the culture and the 
viable cell density was statistically significantly lower than 
those where control was good. Regarding titre, an average 
24% loss in specific productivity was observed. Although only 
eight batches were considered, the results of their study in-
dicate the potential for a significant loss of productivity from 
ineffective control of DO.

The implications of such yield loss and the motivation to 
act on it can be considered by assessing the financial im-
plications. Using information provided by Xu et al. (2017), if a 
production vessel of 2000 litres is considered as being the 
largest single use reactor, a 20% yield loss would correspond 
in terms of feed costs of value $20 K-$30 K/batch for a typical 
culture. A thorough financial assessment of the financial 
implications of reduced yield is more complex than this but 
this ‘ball-park’ consideration indicates that improving the 
quality of control is a worthy undertaking.

The challenge faced in controlling cell culture environ-
ment throughout the batch is discussed by Simutis and 
Lübbert (2015). They describe how fermenter manufacturers 
deliver systems with single-input single-output PID con-
trollers and that the fixed parameter nature of these con-
trollers results in degradation in performance that is either 
characterised by oscillations or is sluggish. The issue is not 
one of tuning, although clearly poor tuning impacts on 

performance, but of nonlinear system behaviour meaning 
that to be effective the settings of a controller need to change 
during a batch. They point to the solution being controller 
gain scheduling where predefined gains are specified or 
models of the system used to determine gain changes. The 
recognition of the need to modify controller setup to ac-
commodate batch dynamic changes was reinforced in the 
work of Aehle et al. (2011). They demonstrated that with 
appropriate gain changes, tight control of a CHO culture 
could be achieved using conventional control of oxygen up-
take rate. While this is feasible for a fixed process, when 
several processes are going through development, estab-
lishing such a gain schedule is difficult. They also raise the 
use of model predictive control as an alternative but question 
the financial return from a more sophisticated and costly 
control approach.

This paper directly addresses this issue and assesses the 
potential of MPC. The paper considers the pilot scale ex-
perimental system and experimental protocols adopted. MPC 
concepts are then briefly described before discussing the 
performance observed in their implementation in pilot scale 
trials. Finally, the practicalities of the MPC approach are 
discussed with consideration of implementation within a 
regulated manufacturing environment.

2. Model based predictive control

A review of the application of control strategies in biopro-
cessing and future technology prospects was presented by 
Rathore et al. (2021). While they describe a broad range of 
control approaches (from linear through to nonlinear data- 
based model or mechanistic model), of those considered, 
MPC is by far the most common in industrial application. 
Importantly, they stress the need to achieve ‘high levels of 
precision, accuracy and robustness’. Simutis and Lübbert 
(2015) describe how MPC can deliver against such operational 
requirements but questioned the financial benefits given the 
implementation cost. However, based on the arguments of 
Xu et al. (2017) payback has the potential to be rapid for mAb 
implementation. Thus, MPC is a potential financially viable 
route to improved mAb process control. This observation is 
supported by the arguments of Sommeregger et al. (2017)
who argue for the potential of MPC in mAb manufacturing 
but their contribution describes the potential without evi-
dencing capability.

Performance benefits are not the sole criterion of con-
sideration as the implementation of control systems in a 
validated environment must be considered. For example, 
there is a need to incorporate automation at the earliest 
stages of process development if it is to form the basis of 
manufacturing scale control. The concern with the use of 
MPC expressed by Rathore et al. (2021) was the availability of 
robust models required in biotech sector applications. This 
has negative implications for MPC resulting from the paucity 
of model information that could be available at this stage and 
raises the need for automated and robust model develop-
ment. Jelsch et al. (2021) took the opposite view in reviewing 
the opportunities for MPC in biomanufacturing operations. 
They considered the ability of MPC to identify a model of 
complex process as a distinct advantage and stated ‘MPC 
seems to be a promising control strategy for the manufacture 
of pharmaceutical products’. This view was reinforced by Luo 
et al. (2021) who stress the potential but also observe that 
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applications are limited due to a limited number of case 
studies proving the worth.

The algorithms behind model based predictive control are 
well stated in the literature and comprehensively compared. 
An early review by García et al. (1989) provided a summary of 
MPC approaches and progression in the early stages of its 
development. Qin and Badgwell (2003) provide a highly cited 
comparison of the industrial model predictive control algo-
rithms. They clearly describe the common underlying prin-
ciples of the receding horizon algorithm and the objective 
function that the optimisers within the controller attempt to 
solve. Given the paper is nearly two decades old, the latter 
sections considering applications area breadth and next 
generation MPC are a little dated, nevertheless, as a review of 
the principles it stands the test of time. Lee (2011) provided a 
retrospective on MPC developments. In the last decade the 
applications of MPC have grown significantly in number and 
have broadened in scope. A recent review provided a sum-
mary of alternative algorithms and described challenges and 
opportunities in industrial application (Schwenzer et al. 
2021). With the broad application of the algorithms, they 
notably describe how modelling and control skill set can be 
constraining in exploiting MPC, a view echoed by Forbes et al. 
(2015). More recently review papers have also focused on 
applications sector implementations. For example, Su, 
Ganesh et al. (2019) considered the implementation of MPC in 
pharmaceutical manufacturing to achieve Quality by Design 
(QbD) requirements by adopting a Quality by Control (QbC) 
philosophy. They described the whole process benefits be-
fore focusing on a case study implementation on a tablet 
press. Schwenzer et al. (2021) provided an up-to-date review 
of MPC technology applied in pharmaceutical manufacturing 
and again focused on the tablet press as a case study for QbC.

There are a limited number of applications of MPC to 
upstream mAb production that are experimental rather than 
simulation based. Van Beylen et al. (2020) built a model of a 
cell culture process using experimental data and demon-
strated, using the model as a process simulation, that a 
single-input single-output (SISO) MPC was able to offer con-
trol benefits for the regulation of cell growth in the process. 
However, to be effective the MPC required the linear times 
series model to adapt to accommodate changing dynamics 
throughout the batch. Adopting a similar approach of 
building a mechanistic model and investigating MPC control 
improvement, Aehle et al. (2012) considered how oxygen 
consumption could be controlled to a profile to reduce batch 
to batch variability. They also needed to periodically update 
the controller model as dynamics changed throughout the 
batch. Although the operational challenges are somewhat 
different with a secondary metabolite microbial fermenta-
tion, they do possess several common control difficulties. 
Kager et al. (2020) compared the application of model pre-
dictive control and PID control to a penicillin production 
process. Although their results were predominantly from 
simulation, they did undertake limited laboratory trials and 
demonstrated the deleterious effect of batch dynamic 
change on control loop behaviour. The non-linearities ne-
cessitated control system re-tuning or gain scheduling. They 
also observed the improved control performance resulting in 
smoother response and an improved yield of 14% using MPC.

Considering the discussion above, there are potential 
opportunities to be gained from MPC and these need to be 
demonstrated on a laboratory-based system. Furthermore, 
evidence from PID implementation and MPC simulations 

indicates that the MPC implementation may require periodic 
model updating to accommodate through batch dynamic 
variations. To assess these assertions, a series of experi-
mental trials were undertaken.

3. Materials and methods

3.1. Details of cell culture system / bioreactor

The stable CHO cells expressing the recombinant anti-Her2 
IgG1 was used in this study and cultured in a chemically 
defined medium and feed. The base medium used 
throughout was CD FortiCHO (ThermoFisher Scientific). The 
inoculum trains started from vial thaws and were expanded 
in shake flasks with increasing volumes to generate suffi-
cient cell number to inoculate the bioreactors. The shake 
flasks were maintained in 5% CO2 shaking incubators at 
37 °C, 85% humidity and 125 RPM. The bioreactor experi-
ments were carried out in 10-L Biostat B-DCU bioreactor 
(Sartorius Stedim Biotech, Germany) with starting working 
volume of 7 L and was operated in fed-batch mode. The pH, 
DO, temperature and agitation were controlled at constant 
values of 7.00, 30% of air saturation, 36.5 C and 240 RPM, 
respectively. DO was controlled using nitrogen, air and 
oxygen supplied via a sparger. 1 M NaOH and CO2 were used 
to control pH.

3.2. MPC controller implementation

Process models are employed at the heart of the MPC scheme 
to forecast behaviour and subsequently allow control moves 
to be determined. The controller models can be pre-built on 
process data, identified online from a series of identification 
sequences or prebuilt and updated as new information be-
comes available. In all instances, the purpose is to disturb the 
system, observe the response and fit an input / output re-
lationship with an appropriately structured model. Pseudo 
random binary sequence (PRBS) testing is commonly adopted 
as it offers the ability to generate statistically rich data whilst 
producing on-specification product. In undertaking this task 
it is necessary to: 

• Consider what variables need to be perturbed and by how 
much. In this instance as oxygen and air sparge are used 
for DO control and CO2 sparge for pH control, impacts of 
their change need to be studied. Addressing size of 
change, it needs to be sufficient to distinguish process 
output variation from underlying noise but not too large as 
it could drive the process into non-standard areas of op-
eration. A rule of thumb of 10/1 signal to noise is common.

• Specify how many changes are required. There needs to be 
sufficient change to assess impact per individual input as 
well as understand the impact of their change in a positive 
and negative direction. Around 5–10 steps of each input 
variable would be typical.

• Assess alternative model structures for representation 
capability. While there are numerous representation 
forms of linear models (time series, transfer functions, 
state space in continuous and discrete time), it is generally 
possible to transition from one to another. The prime 
challenge is selecting model order and here there is a 
balance between descriptive ability and over-fitting noisy 
data with high order models. Here metrics such as Akaikes 
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Information criteria (balancing error in fit against number 
of parameters) are useful (Ljung, 1999).

A general discussion of the practical aspects of system 
identification can be found in Tangirala (2015).

Step-test data from the Bioreactor was employed to 
identify a prediction model for MPC implementation. The 
linear time-series model used in this work is a special in-
stance of the set of linear models: 

ℳ (θ): y(t) = G(q; θ)u(t) + H(q; θ)ζ (t)                                        

(t) = Λ(θ)δt,s                                                                          

Where, (t) is a ny-dimensional output at time t, (t) is a nu- 
dimensional input and (t) are sequences of independent and 
identically distributed (iid) random variables with zero mean. 
Further, (q; θ) is a function map of dimension ny×nu, (q; θ) is a 
function map of dimension ny × ny and q−1 is the backward 
shift operator such that q−(t) = f(t − p). A recursive least 
squares (RLS) algorithm was used to identify an Output Error 
(OE) 2 × 2 multiple-input multiple-output prediction model 
for pH and DO, this model is a special instance of the set of 
models described above. Such MIMO OE model has the fol-
lowing structure:
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+ +
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Where y(t) is the vector of outputs or controlled variables 
(CVs) → pH and DO; u(t) is the vector of inputs or manipu-
lated variables (MVs) → CO2 and O2 sparge, and n the input / 
output delay. Matrices B1, B2, F1, F2 and I are 2 × 2 matrices.

The MIMO OE model is embedded within an MPC archi-
tecture and used to compute output predictions and the 
difference between such predictions and their desired set-
points. In this work the MPC implementation consisted of a 
standard receding horizon approach, in which the following 
cost function was minimised over every iteration:
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Where: 

e: set-point error
P: set-point weight (tuning parameter)

u: actuation incremental moves
Q: move weight (tuning parameter)
f: input variables’ target
R: target weight (tuning parameter)

The MPC also considered the following constraints when 
minimising the cost function: 

• Maximum incremental value of u allowed for each of the 
two MVs.

• Upper and lower limit values for the MVs.

• Upper and lower limit values allowed for the each of the 
CV setpoints.

For the pH and DO MPC presented in this paper, the MIMO 
linear model identified for the MPC was employed in simu-
lation to perform the initial tuning of the controller and de-
termine the: 

• Prediction horizon (set to be time to steady state for the 
slowest response from an input step change)

• Control horizon (set to match the prediction horizon to get 
smooth MV values)

• Move weights and move limits for the manipulated vari-
ables that reduced MV variability.

• Setpoints upper and lower limits, as well as MVs upper 
and lower limits, were set by the fermentation scientists. 
These limits are based on safe and acceptable operating 
conditions.

Also, white noise (with a 10/1 signal-to-noise ratio) was 
added to the simulation for tuning the MPC. After the MPC 
was tuned in simulation it was deployed in real-time to 
control the bioreactor. Small step changes where then ap-
plied to the pH and DO setpoints to fine-tune the controller’s 
setpoint tracking. A block Diagram of the final controller is 
shown in the Figure below: Fig. 1.

4. Experimental Results

Fig. 2 shows the performance of the bioreactor control for an 
example run prior to the MPC studies. Variation of ±  2% 
dissolved oxygen and ±  0.01 pH are not excessive deviations 
from setpoint, but the control actions needed to achieve this 
are excessively severe, verging on on/off action, leading to 
the cycling of the output variables. The concern here is not 
the deviation from set point but the stress to the organism 
caused by severe control actions. A secondary concern is 
actuator wear and tear.

The potential for MPC to improve the control performance 
was considered and the first stage was to undertake a series 
of step tests on the bioreactor. Control performance has 
proven to be acceptable up to 100 h in the cell culture using 
PID control but when growth increases significantly beyond 
this control problems arise. Thus, the control studies focused 
on post 100 h performance. In this stage there are three po-
tential control ‘handles’ for DO: stirrer speed, air flow sparge 
and oxygen sparge. Clearly the controller can only use one 
and thus a selection based on demand is used. Once stirrer 
speed hits maximum, air sparge is varied from its minimum 
to maximum flow for control. Once demand exceeds this, 
oxygen sparge is added to supplement the airflow for control. 
Hence, typically earlier in the batch there is no oxygen sparge 

Fig. 1 – Block Diagram of the MPC controller implemented at 
the industrial partner, the Data driven model is a 2 × 2 
MIMO OE model used to predict pH and DO in real-time, the 
difference between the prediction and the actual outputs 
are feedback into the control algorithm to compute the CO2 

and O2 values that will drive pH and DO to the desired 
setpoints whilst keeping the system within constraints.

212 Food and Bioproducts Processing 138 (2023) 209–220  



but later control actions are through oxygen sparge, the re-
gion under consideration in this paper. Fig. 3 shows step tests 
when the stirrer is running at it maximum in air sparge and 
oxygen sparge, as well as carbon dioxide sparge at 240 h into 
the batch.

The linear times series model fit to the data is also shown 
in Fig. 3. While a good fit is observed, it is important to assess 
the model characteristics and relate them to qualitative ex-
pectations from a process expert perspective. The most 
straightforward manner to do this is to consider the step 
response characteristics and whether the gains and the 
speeds of response are in line with expectations from ex-
periential and scientific perspective. Table 1 shows the 
model parameters identified at two periods of batch opera-
tion. Note that the model fits included a time delay term but 
in all cases, this was insignificant compared to the time 
constant. Given the magnitude of CO2 sparge change is of the 
order of 50 and O2 sparge is of the order of 40, based on the 
models in Table 1 step changes in CO2 are predicted to have a 
small impact on DO. For example, a model gain of 0.04 and 
steps of 50 in CO2 sparge would result in a 2% change in DO. 
For O2 sparge impact on pH, a change of 40 would result in a 
pH change of approximately 0.01. Thus, in terms of interac-
tions between loops, the impacts are not significant but are 
observable given the probe resolution.

The issue of model variation during a batch also needs to 
be considered. In Table 1 the model fit comparison is be-
tween a model developed at 120 h in the control batch con-
sidered below and 240 h into a prior batch. Some degree of 
batch-to-batch variation will exist but historical results 
suggest this is small compared to the change in mid to end 
batch behaviour. While the fit for the model for 120 h is not 
shown, it is comparable to that at 240 h in Fig. 3. Air sparge 
has not been included in the table of comparison as it is set 
to its maximum value in the case of the model at 240 h. 
Significant changes in the process (and indicated by the 
model) suggest a fixed parameter controller potentially 
failing to provide consistently good performance. For the DO 
/ O2 sparge loop an increase in gain of 50% would be expected 
to reduce loop performance but the extent would depend on 
the tuning. However, a gain decrease of 200% for the pH 
control by CO2 loop would likely lead to sluggish perfor-
mance for a controller tuned to perform well earlier in the 
batch. This issue was of concern and the following simula-
tion indicates that with appropriate tuning a balance be-
tween robustness and performance can be maintained 
across the batch.

Fig. 4b – MPC controller tuned for higher levels of ro-
bustness using 120 h model and reduced overshoot for 240 h 
model but sluggish performance at 120 h.

Fig. 2 – Example of controller response prior to the control studies in the mid stage of a mAb cell culture noting the 
significant and oscillatory nature of the manipulated variable changes. DO is controlled to a set point of 30% and pH to a set 
point of 7 with steady state offset.
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In Fig. 4a perfect model is assumed for the MPC taking 
that at 120 h (Table 1) and a MPC setup to deliver a balanced 
level of robustness in Fig. 4a against a unity set point change 
at 1 h. The output horizon is set to cover a considerable 

portion of the settling time and the control action horizon set 
to one. Changes in controller increment weighting were used 
for fine tuning. It can be seen that for the plant-model mis-
match that would arise at 240 h (Table 1) a significant over-
shoot results. If robustness is increased by more heavily 
penalising control moves (Fig. 4b) overshoot is reduced but 
the response at 120 h is more sluggish. This demonstrates 
that stability will be likely maintained for the DO loop pro-
viding a degree of confidence but the performance / robust-
ness balance will likely need online tuning to provide desired 
behaviour across the batch.

In implementing a new control strategy, questions of ro-
bustness also arise in terms of safety and need to be fully 
addressed. In this instance this involved removing local 
feedback control through PID and implementing a MPC based 
on a local PC writing to the bioreactor control system. To gain 
confidence, the MPC control system was implemented in 
advisory mode and the suggested control actions im-
plemented manually by the fermentation scientist, with the 
PID controllers in open-loop. Given this approach, the ex-
periment is by necessity short. The results arising shown in 
Fig. 5, together with a thorough safety assessment were 
presented to and approved by the industrial partner safety 
committee. Note that the O2 sparge outlier at 30 min was an 
entry error by the fermentation scientist. Of particular 

Fig. 3 – Disturbance sequence applied to manipulated variables and model fits to process data generated offline. A good 
quality of fit is observed for both pH and DO.

Table 1 – First order + transfer function model fits for 
step tests. 

Transfer 
function

Model parameters at 
120 h into batch

Model parameters at 
240 h into batch

DO2 – O2
Gain 0.21 0.329
Time constant 

(hours)
0.10 0.07

DO2 – CO2
Gain -0.04 -0.047
Time constant 

(hours)
0.22 0.025

pH – CO2
Gain -0.01 -0.005
Time constant 

(hours)
Approx. 0.01 (but note 
direction dependent)

0.000001

pH – O2
Gain 0.0002 -0.00002
Time constant 

(hours)
0.657 0.906
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importance to note is the smooth nature of the manipulated 
variable signals compared to that seen in Fig. 2.

With the confidence gained from initial trials, a closed 
loop implementation of MPC followed. A series of model 

identification steps were carried out at 120 h with the model 
summarised in Table 1. The real-time model adaption con-
sisted of applying a series of automated step tests through 
adding non-invasive pseudorandom binary sequence (PRBS) 

Fig. 5 – MPC running in advisory mode with the actions implemented by the fermentation scientist giving the initial 
confidence that MPC will provide effective control.

Fig. 4 – a MPC controller tuned for medium levels of robustness using 120 h model and overshoot for 240 h model. 
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offsets around the control actions. This model was im-
plemented within the MPC once generated and its perfor-
mance monitored automatically throughout the batch to 
determine whether re-identification was necessary due to 
dynamic changes. The performance of the model embedded 
in the MPC was monitored during the entire duration of the 
cell culture. This allowed the detection of increased absolute 
prediction errors, at which point an automated model 
adaption could be triggered if necessary.

Figs. 6–8 show MPC results from the same batch run using 
the model from 120 h and demonstrate how the MPC was 
able to deliver better results when compared to the existing 
system PIDs, even with a sub-optimal model in the later 
batch stages, without the need for re-identification.

Step response and disturbance rejection capabilities are 
demonstrated in Fig. 6 at 215 h into the batch. Set point 
changes in DO early in the experiment are well controlled by 
the MPC controller. A disturbance due to a batch feed addi-
tion is apparent at 0.4 h into the experiment in the DO re-
sponse and the MPC effectively removes this to return to set 
point. The general trend for reduction in CO2 sparge to 
maintain a fixed pH is observable in the early part of the 
response in pH control. This is more clearly seen in Fig. 8
when pH setpoint is held constant. In Fig. 6, pH can be seen 
moving towards set point at around 0.25 h. The feed addition 
at 0.4 h acts as a disturbance and it is not until 0.5 h that 

effective pH is observed. Feedforward compensation of such 
disturbances is possible as their additions are known but was 
not implemented in this instance.

Fig. 7 shows results a day later for set point changes in pH 
and DO. Tight pH control is achieved with very little over-
shoot. The response for pH control demonstrates a direction 
dependency in the response with greater overshoot when 
stepping set point down (4.25 h) than up (1 h). This direction 
dependency is expected given the nature of the pH system 
characteristics and cell behaviour. It is important to compare 
the signals in Figs. 6–8 against the variation of manipulated 
variables seen with PID control in Fig. 2 and noting the 
change in graph scales. A much smoother manipulated 
variable response is likely more conducive to improving cell 
culture performance.

Towards the end of the batch, variation in the process 
would be expected to result in considerable plant-model 
mismatch (as suggested by Table 1). Nevertheless, the results 
from control to a fixed set point (Fig. 8) demonstrate that 
tight control of DO and pH is achieved, with the step like 
nature of the responses being the quantisation of the probe 
signal. The changes in demand of O2 and CO2 during the 
period being indicative of organism demand.

As the process evolved during the batch and the model 
mismatch increased, the MPC performance was consistent as 
seen in Figs. 5–8. This consistency was realised through the 

Fig. 6 – Response of multivariable MPC controller to set point changes at 215 h into a batch. Good set point control and 
disturbance rejection is demonstrated.
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achievement of a suitable performance/robustness balance 
via tuning, the need for which was informed by experience 
from initial trials and demonstrated in Fig. 4. The controller 
tuning was finalised around 124 h into the batch and re-
mained fixed throughout. Tuning parameters are as shown 
in Table 2.

The controller update interval was set to 15 s and the 
prediction horizon was 150 s (or 10 controller intervals). Note 
the large tuning weight for Air Sparge which was set at 
maximum throughout. The tuning was primarily via the 
move weights, with target and setpoint weights left at their 
default values. Thus, the improved performance over PID did 
not require significant additional complexity in controller 
tuning for this implementation.

Overall, the benefits over PID are smother manipulated 
variable actions (a 95% reduction of CO2 sparge standard 
deviation (SD) and a 72% reduction of O2 sparge SD). There is 
also a benefit in pH tracking with MPC offering an 80% re-
duction in pH SD when compared to the original PID control 
approach. This was mainly due to the implementation of a 
SISO PID that is not capable of taking into consideration the 
multivariate nature of the process in the control formulation. 
This is not an issue with MPC as it considers the multivariate 
interaction amongst all inputs and outputs when computing 
the control actions.

Note that model re-identification was not triggered in the 
batch and therefore Figs. 6–8 were achieved with the fixed 
model identified at 120 h. Fig. 4 considered in simulation the 
potential impact of plant-model mismatch. The results from 
the plant trials verified that model degradation did not of 
necessity trigger re-identification. With the initial model 

from 120 h, performance was maintained (i.e. accurate set-
point tracking and smooth MV movements computed by the 
MPC) for the instant the MPC was switched to automatic at 
120 h until harvest.

Fig. 9 shows a comparison of the steady state control 
performance of the PID controller (Fig. 2) with the MPC con-
troller (Fig. 8) for a ‘zoomed-in’ section of the response. For 
dissolved oxygen control a standard deviation of 1.45% with 
PID was reduced to 0.16% with MPC. For pH control the 
standard deviation of 0.0052 was reduced to 0.0004 with MPC. 
Note that in the pH response graph, the MPC response sits on 
set point with variation so small that it is not observable. 
There is insignificant offset from set point for MPC but an 
offset of 0.04 for PID based control is observed.

5. Discussion and implications

This paper aimed to demonstrate that the MPC concept could 
give much improved environmental control in mAb cell 
culture. The intuitive nature of MPC tuning and the inherent 
means by which constraints and process interactions are 
addressed is appealing from an end-user perspective. The 
performance benefits demonstrated indicate that MPC is able 
to deliver a much smoother and well controlled response 
than conventional PID based controllers. However, while this 
study indicated potential, a number of practical considera-
tions remain.

At the outset it was clear that significant dynamic change 
occurs during the batch. Online model identification has 
been demonstrated to effectively capture the current dy-
namic characteristics but online adaptation (particularly if 

Fig. 7 – Response of multivariable MPC controller to set point changes at 240 h into a batch. 
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automated) by its very nature reduces robustness and the 
risk of model corruption through outliers. A well designed 
‘jacket’ to only respond to reliable measurements is feasible 
but adds to the configuration activity. A more robust strategy 
is to fix the process model. If the controller model is fixed, 
changes in dynamic characteristics through the batch give 
rise to the condition of ‘plant-model mismatch’. In con-
tinuous process applications it can arise to a significant ex-
tent due to process change but in batch processes that 
progress through a trajectory and experience dynamic 
change as a consequence, process-model mismatch is an 
inherent characteristic. Methods for detecting significant le-
vels of plant-model mismatch in MPC and reidentifying the 
model are broadly discussed and indeed were implemented 

in this application. While the literature is less comprehensive 
in coverage of performance degradation than MPC more 
widely, examples can be found such as Conner and Seborg 
(2005) and the work of the Shah group at the University of 
Alberta (Badwe et al., 2010, 2009). Reidentification was not 
however triggered in this application, with acceptable per-
formance arising despite the plant-model mismatch. In our 
case, the objective of the controller model is not to provide 
absolute predictions but to be used as part of the MPC ar-
chitecture to determine the impact of incremental changes 
that the inputs have on incremental changes of pH and DO, 
the impact of plant-model mismatch is reduced by the real- 
time feedback of the controlled variables. In other words, 
MPC receding horizon control, updated with new data at 
each sample interval, offers the potential for robustness 
against sub-optimal or a mismatched model that inherently 
occurs in batch operation.

More generally, process-model mismatch does not always 
warrant reidentification as considered by Badwe et al. (2010). 
Maintaining acceptable behaviour in the presence of process- 
model mismatch is complex as it depends on the direction of 
change and also on the manner in which the controller is 
tuned, with less aggressive action being more forgiving. 
Clearly severe circumstances such as gain sign change can be 
catastrophic but a batch process model applicable at a par-
ticular instance of a batch may be more appropriate than 
other instances. For example, models identified mid-batch 
could result in acceptable but not ideal behaviour in other 
periods or models at the end of batch could be more applic-
able – the strategy being dictated by the profile of gain 

Fig. 8 – Control in the latter stages of a batch (321 h) showing that regulatory control is maintained effectively by the MPC. 
The falling values of manipulated variables are indicative of the behaviour towards the end of the batch.

Table 2 – MPC Tuning parameters. 

O2

Move weight (Q) 2.1
Target weight (R) 0
CO2
Move weight (Q) 4
Target weight (R) 0
Air
Move weight (Q) 60
Target weight (R) 0
DO2
Setpoint weight (P) 1
pH
Setpoint weight (P) 1
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change in particular. For such an approach to be effective, 
ideally model applicability across batches would be neces-
sary. To extend this further, if historic information is re-
presentative, process model variation could be captured 
through understanding the linkage between model gain for 
instance and an indicator of current process condition. For 
example, it might be expected that an approximate linkage 
exists between model gain and cell number / batch age. Thus, 
a gain scheduling solution could be proposed avoiding model 
reidentification but allowing model change.

Clearly, practical solutions are available to the model 
building challenge but moves to more personalised treat-
ments where batch numbers for a particular product could be 
very limited bring the challenge of data limitations to further 
compound the modelling problem. In this application, we 
have demonstrated the effectiveness of the MPC algorithm, 
the ability to identify models online and to use these models 
throughout a batch. Broader questions on model develop-
ment and usage remain and will be important to address in 
the application to systems requiring validation.

Validation raises another issue, while the MPC approach 
is clearly effective from a performance perspective, the 
control strategy deviates from the accepted and common PID 
structure. In an industrial sector that is conservative with 
regard to new technology due to the pressures of validation, 
new technologies need to offer significant benefit over and 
above pure financial arguments, with risk being a prime 
consideration. If the model tracking aspects of MPC could be 
used to configure and accommodate through batch dynamic 
change, they could be used to update the parameters of a 
control system of PID structure with feedforward terms 
where appropriate. While it may not reach the performance 
of MPC, the benefits of control structure familiarity may 
outweigh the degradation in performance. In the longer 
term, as the benefits and robustness of MPC are recognised 

by the pharma sector, anxiety to adopt the MPC approach 
will dissipate, especially as performance improvements are 
recognised. From a robustness perspective, the long-term 
performance of the model could be included in an overall 
Continuous Process Verification (CPV) initiative, tracking 
process and controller performance over time. Additionally, 
MPC performance could be monitored using a complimen-
tary PCA process condition monitor built around closed loop 
operation (AlGhazzawi and Lennox, 2009; Mercer et al. 2018).

Finally, based on scientific understanding, practical ex-
perience and limited literature-based evidence, it has been 
assumed that a well-controlled smooth process in terms of 
both critical environmental process parameters and the 
manipulated variables that influence them will lead to im-
proved process behaviour from a yield perspective. A more 
comprehensive experimental study is required to verify this 
to be the case.
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