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Abstract 

In this thesis we generalize the theory of value distribution associated to a Her- 

glotz function. Compositions of Herglotz functions are studied, and some results 

regarding the integral representation of a composed Herglotz function are ob- 

tained. Properties of spectral measures corresponding to Herglotz functions are 

derived, and an application to the Schrödinger equation is given. 
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Chapter 1 

Introduction 

A main theme of this thesis will be the spectral theory of Herglotz functions, 

that is functions analytic and with positive imaginary part in the upper half 

plane C+ = {z EC: Imz > 0}. To look into the spectral properties of a 

given Herglotz function, we need to consider the associated measures. A general 

Herglotz function F(z) has the representation 

F(z) = aF + bFz +fIt1z 
t2 +1 

}dp(t), (1.1) 

where aF and bF are real constants (bF > 0), the `spectral function' p(t) is non- 

decreasing and right-continuous and the convergence condition 

j1 dp(t) < oo (1.2) 
1+t2 

is satisfied. For given F(z), the values of aF and bF are determined by 

aF = ReF(i), bF = lim 
ImF(is) (1.3) 

, -"°° 8 
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Chapter 1. Introduction 4 

(s -º oo through real values), and the function p(t) is determined up to an addi- 

tive constant. Hence p determines a v-finite measure p= dp, where p((a, b]) = 

p(b) - p(a) for finite intervals (a, b], and p extends to a measure on Borel subsets 

of it Measures satisfying (1.2) are called Herglotz measures since they may be 

used to define a Herglotz function, and we refer to It as the Herglotz measure 

corresponding to F. 

The spectral measure p may be decomposed into its absolutely continuous 

and singular parts, p= µaß + As through an analysis of the boundary behaviour 

of F as z approaches the real axis. In this thesis we will be interested mostly in 

the absolutely continuous measure for a given Herglotz function. We will denote 

by F+ (A) the boundary value of F as z approaches the real axis; that is 

F+(ý) = lim F(, \+ ie), 
c 0+ 

for each AE fi for which this limit exists finitely. The theory of boundary values 

of analytic functions tells us that F+(A) is defined for (Lebesgue) almost all A. 

The density function of p,, c is -! ImF+(A). In the case of a Herglotz function 

with purely singular measure, the boundary value is real almost everywhere, 

and hence the Herglotz function defines a real valued boundary value function 

f (A) = F+(A) 
. 

Although one might think that the two cases are independent, any 

Herglotz function with complex boundary values may be obtained as a limit of a 

sequence of Herglotz functions F,, with real boundary values almost everywhere. 

We shall show in Chapter 5 that, if p� are the measures corresponding to the 

functions F1z, we have in that case IL, -º p. Hence even in looking at Herglotz 

functions with absolutely continuous measure, the case of singular measure will 

also be important. In fact, in the spectral analysis of Herglotz functions one 

needs not one but many Herglotz functions, that is a whole family of them. 
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Thus, given a Herglotz function F, we generate a corresponding one-parameter 

family of Herglotz functions F,, (y E R) defined by 

Fy(z) =1 71 F(z) 

We turn now to the idea of value distribution for real valued functions. By 

value distribution of a real valued, Lebesgue measurable function f, we shall refer 

to a corresponding mapping M assigning a non-negative extended real number, 

which we shall denote by M (A, S; f ), to each pair of Borel subsets A and S. In 

the case of a Herglotz function F with purely singular measure, we define (and 

denote) the value distribution corresponding to the real valued function f (A) by 

M(A, S; F) = 
j(A)dy, (1.4) 

where p, are the measures corresponding to the Herglotz functions F. We refer 

to the integral in (1.5) as the value distribution associated with the Herglotz 

function F. Moreover, we have in this case 

jiiy(A)dy 
= IA n F; '(S)ß, (1.5) 

where 1.1 denotes Lebesgue measure, so that M (A, S; F) is the Lebesgue measure 

of the points AEA for which F+ (A) E S. Note that the value distribution for- 

mula (1.4) may be regarded as a formula for some kind of average (over Lebesgue 

measure) of the spectral measure. For an analysis of the value distribution in 

(1.4) see [23]. Because an absolutely continuous Herglotz measure can be ap- 

proximated by a sequence of singular Herglotz measures, we can also associate a 

value distribution with a general Herglotz function. 

A major argument in this thesis will be to generalize this theory in two 

directions: 
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(i) We will consider the case in which Lebesgue measure dy in (1.4) is replaced 

by a measure da corresponding to a Herglotz function qS; that is, we will take 

the average of the spectral measure over other measures. 

(ii) We will examine the case in which IA n F+ 1(S) I becomes vs (A n F; 1 (S)), 

where vs is some measure other than Lebesgue measure. 

In fact these two directions are not independent because dvs is related to 

do. We shall find in Chapter 3 that vs satisfies the convergence condition (1.2), 

and thus may be used to define a Herglotz function through the formula (1.1). 

Furthermore, we will show that there is a close connection between vs and the 

measure corresponding to the composed Herglotz function ¢s o F. 

In Chapter 5 we will apply the generalized theory of value distribution to 

the Schrödinger equation 

- 
d'f (x) 

+V (x) f (x) =zf (x), zEC, (1.6) 
dxz 

where V is a locally integrable potential giving rise to absolutely continuous 

spectrum. The crucial link is the Weyl-Titchmarsh rn-function of equation (1.6), 

which is a Herglotz function and defined by the condition that 

u(., z) + m(z)v(., z) E L2(0, oo), 

where u and v are solutions of (1.6) satisfying specific initial conditions. Our 

main result, to obtain which we shall need to impose certain conditions, may 

be regarded as the generalized value distribution for the logarithmic derivative 

q(v) = v'/v of the solution v of (1.6). In this Chapter we will use some ideas 

of the geometry of the upper half plane, namely the angle subtended O(z, S) at 

a point zE C+ by a Borel set on the real axis, and the distance of separation 

7 (zl, z2) of two points z1, z2 EC. 



Chapter 2 

Mathematical background 

2.1 Introduction 

This Chapter serves as a mathematical background for the rest of the thesis. The 

subjects to be discussed are: measure theory, analysis, complex analysis, Herglotz 

functions, analysis of measures, existence and uniqueness theorems for differential 

equations, and the Weyl-Titchmarsh m-function. The material presented in each 

section is drawn either from all the references mentioned in that section and only 

those, or otherwise, from the references that we state at the end of the section. 

2.2 Measure theory 

Definition 2.1 (a-algebras of sets). Let X be an arbitrary set. A collection A 

of subsets of X is a a-algebra on X if: 

(i) XEA, 

(ii) for each set A that belongs to A the set A' belongs to A, where A° = X\A is 

the complement of A in X, and 

7 



Chapter 2. Mathematical background 8 

(iii) for each infinite sequence {A; } of sets that belong to A the set Uß_1 A; 

belongs to A. 

Thus a u-algebra on X is a family of subsets of X that contains X and is 

closed under complementation and under the formation of countable unions. The 

most common u-algebra is the Borel u-algebra B(R) on R, which is generated by 

the collection of all open subsets of R. 

A collection A' of subsets of X is an algebra on X if it satisfies conditions 

(i) and (ii) in definition (2.1), and also condition (iii) for a finite sequence {A; } 

of sets that belong to X. 

Definition 2.2 (Measures). Let X be a set, and let A be a or-algebra on X. A 

measure on A is a function µ: ,A -º [0, ool that satisfies: 
(i) µ(O) = 0, and 

(ii) µu: 1 A=) µ(As), for each infinite sequence {Ai} of disjoint sets, 

that belong to A (Since µ(A=) is non-negative for each i, the sum Eß°1 µ(A; ) 

always exists, either as a real number or as +oo. ) 

The sets in A are said to be measurable with respect to p. 

We refer to condition (ii) in definition (2.2) as the countable additivity prop- 

erty of measures. A measure It is called a finite measure if µ(X) < +oo, and is a 

a-finite measure if X is the union of a sequence A1, A2,... of sets that belong to 

A and satisfy p(Ai) < +oo for each i. If X is a set, A is a v-algebra on X, and p 

is a measure on A, then the triple (X, A, p) is called a measure space. Likewise, 

if X is a set and Aa a-algebra on X, then the pair (X, A) is often called a mea- 

surable space. The following lemmas give some elementary but useful properties 

of measures. 
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Lemma 2.3 Let (X, A, p) be a measure space, and let A and B be subsets of 
X that belong to A and satisfy ACB. Then p(A) < µ(B). If in addition A 

satisfies µ(A) < +oo, then µ(B\A) = µ(B) - µ(A). 

Proof. The sets A and B\A are disjoint and satisfy B=AU (B\A); thus the 

additivity of µ implies that 

p(B) = µ(A) + µ(B\A). 

Since µ(B\A) > 0, it follows that µ(B) > ji(A). In case µ(A) < +oo, the relation 

µ(B) - µ(A) = µ(B\A) also follows. 

Lemma 2.4 Let (X, A, p) be a measure space. If {Ak} is an arbitrary sequence 

of sets that belong to A, then 

Uw 0" Ak) > µ(Ak). 
k=1 k=1 

Proof. Define a sequence {Bk} of subsets of X by letting Bi = Al and Bk = 
Ak\(U i A; ) if k>1. Then each B1. belongs to A and is a subset of the 

corresponding Ak, and so satisfies p(Bk) < p. (Ak). Since in addition the sets Bk 

are disjoint and satisfy Uk Bk = Uk Ak, it follows that 

it(UAk 1= µ(Bk) ý Ep(Ak). 

k/kk 

Thus the countable additivity of µ implies the countable subadditivity of p. 

Lemma 2.5 Let (X, A, p) be a measure space. 

(i) If {Ak} is an increasing sequence of sets that belong to A, then µ(Uk Ak) _ 
limk µ(Ak). 

(ii) If {Ak} is a decreasing sequence of sets that belong to A, and if µ(A�) < +oo 

holds for some n, then p(nk Ak) = limk p(Ak). 
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Proof. First suppose that {Ak} is an increasing sequence of sets that belong to A, 

and define a sequence {B; } of sets by letting Bl = Al and letting B; = A; \A; 
_1 

if j>1. The sets just constructed are disjoint, belong to A, and satisfy Ak _ 
kB for each k. It follows that UA; Ak B and hence that 

IL(UAk) _ µ(B. i) = limEµ(Bj) 
kjk j=1 

/k 
=1 imp U Bi) = liýmp(Ak). 

j=l 

This completes the proof of (i). 

Now suppose that {Ak} is a decreasing sequence of sets that belong to A, 

and that µ(A,, ) < +oo holds for some n. We can assume that n=1. For each 

k let Ck = Al\Ak. Then {Ck} is an increasing sequence of sets that belong to 

A, and Uk Ck = Aj\(fk Ak). It follows from part (i) that p(Uk Ck) = limk A(Ck) 

and hence that 
(A1\(flAk)) 

= limµ(Ai\Ak). 
k 

In view of lemma (2.3) and the assumption that µ(A1) < +oo, this implies that 

µ(nk Ak) = limk µ(Ak). 

Definition 2.6 (Null sets). Let (X, 
, A, µ) be a measure space. A subset B of X 

is said to be µ-null if there is a subset A of X such that AEA, BCA, and 

A(A) = 0. 

Definition 2.7 (Simple functions). A simple function f is a function which 

admits a finite number of values. 

Definition 2.8 (Measurable functions). Let (X, A) be a measurable space, and 

let A be a subset of X that belongs to AA function f: A -º [-oo, +oo] is 

A-measurable if for each real number t the set {x EA: f (x) < t} belongs to A. 
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The following basic result is needed in order to obtain more powerful results 

like, for example, the monotone convergence theorem. 

Lemma 2.9 Let (X, A) be a measurable space, let A be a subset of X that belongs 

to A, and let f be a [0, +oo] -valued measurable function on A. Then there is a 

sequence I fn} of [0, +oo) -valued simple measurable functions on A that satisfy, 

at each z in A, 

ýi) fi(x) <_ f2(x) <..., and 
(ii) f (x) = tim, A(x). 

Proof. For each positive integer n and for k=1,2, ..., n2" let A,,, k = {x EA: 

(k-1)/2" <f (X) < k/2'}. The measurability off implies that each A,,, k belongs 

to A. Define a sequence I fn} of functions from A to R by requiring fn to have 

value (k - 1)/2" at each point in An, k (for k=1, 
..., n2") and to have value n at 

each point in A\ Uk An, k. The functions so defined are simple and measurable, 

and it is easy to check that they satisfy (i) and (ii) at each x in A. 

We now construct the integral. The construction will take place in three 

stages. We begin with the simple functions. Let (X, A) be a measurable space. 

We shall denote by S the collection of all real-valued simple A-measurable func- 

tions on X, and by S+ the collection of non-negative functions in S. 

Let it be a measure on (X, A). If f belongs to S+ and is given by f= 

E=='"1 aiXA;, where a1, """, am are non-negative real numbers and A1, 
""", A,,, are 

disjoint subsets of X that belong to A, then ff dµ, the integral of f with respect 

to it, is defined to be E1 ai p(Ai) (note that this sum is either a non-negative 

real number or +oo). The integral ff dp depends only on f, and not on a,,..., am 

and A,,..., Am. 
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Next we define the integral of an arbitrary [0, +oo]-valued A-measurable 

function on X. For such a function f let 

f fdµ=sup {f gdµ: gES+and g< f}. 

Before we proceed to the last stage of the construction of the integral, we 

give some properties of the integral defined so far. 

Lemma 2.10 Let (X, A, p) be a measure space, let f be a [0, +oo]-valued A- 

measurable function on X, and let If,, } be a non-decreasing sequence of func- 

tions in S+ for which f (x) = limn f,, (x) holds at each xEX. Then ff dµ = 

limn f fndµ. 

Proof. See [10], Prop. (2.3.3), p. 63. 

Lemma 2.11 Let (X, A, µ) be a measure space, let f and g be [0, +00] -valued 
A-measurable functions on X, and let a be a non-negative real number. Then 

(i) fafdp=af fdµ, 

(ii) f (f + g)dp =ff dµ +f gdµ, and 

(iii) if f (x) < g(x) holds at each x in X, then ff dµ <f gdp. 

Proof. Choose non-decreasing sequences if,, } and {g�} of functions in S+ such 

that f= lim,, f,, and g= limn g, a 
(see lemma (2.9)). Then {a f�} and {f,, +g�} 

are non-decreasing sequences of functions in S+ that satisfy af= limn a f" and 

f+g= lim,, (f,, + g,, ), and by using lemma (2.10) we conclude that 

Jcxfdp 
= lirn f afndµ=lima 

f fndµ=a' f fdl. 

and 
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J(f 
+ g)dz = iirn ýfn-F'9,, )dµ=urn( Jf d t+ 

f 
g,, dl. L 

= 
JfdJL+ Jgd. 

Thus parts (i) and (ii) are proved. For part (iii), note that if f<g, then the 

class of functions h in S+ that satisfy h<f is included in the class of functions 

h in S+ that satisfy h<g; it follows that ff dµ <f gdµ. 

Finally, let f be an arbitrary [-oo, +oo]-valued A-measurable function on 

X. The positive part and the negative part of f are the extended real-valued 

functions defined by 

f +(x) = max (f (x), 0), f (x) =- min (f (x), 0) 

If ff +dµ and ff -dµ are both finite, then f is called integrable (or ti-integrable), 

and its integral ff dµ is defined to be 

1f dµ = 
Jf+d_ff-d 

µ. 

The integral of f is said to exist if at least one of ff +dµ and ff -dµ is finite, 

and again in this case ff dp is defined to be ff +dµ -ff -dl-t. 

We proceed to prove the basic limit theorems of integration theory, which 

are extremely important. We shall use these results repeatedly. 

Theorem 2.12 (The monotone convergence theorem). Let (X, A, µ) be a mea- 

sure space, and let f and fl, f2,... be [0, +oo]-valued A-measurable functions on 

X. Suppose that the relations 

(i) fl (X) f2 (x) <..., and 
(ii) 

J 
(x) = limn 

Jn 
(x) 
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hold at every x in X. Then, we have 

14 

ff djc =1inm 
f fndµ. (2.1) 

Proof. The monotonicity of the integral (part (iii) of lemma (2.11)) implies that 

f fldµ <f f2dµ < ... <1 fdp; 

hence the sequence if f tide } converges (perhaps to +oo), and its limit satisfies 

lirn f f,, d, u <ff dµ. We turn to the reverse inequality. For each n choose a non- 

decreasing sequence {gf, k}01 of simple [0, +oo)-valued measurable functions such 

that fa= limk gn, k (lemma (2.9)). For each n define a function h� by 

hn = MaX(91, n7 92, n, .... 9n, n)" 

Then {h7, } is a non-decreasing sequence of simple [0, +oo)-valued measurable 
functions that satisfy h, a < f, a and f= lima h0. It follows from these remarks, 
lemma (2.10), and the monotonicity of the integral that 

ff dµ =1 nm 
f h�dµ< 1 

nm 
f fadµ. 

Hence ff dp =1im,, f fndµ. 

Theorem 2.13 (Fatou's Lemma). Let (X, A, p) be a measure space, and let 

If,, } be a sequence of [0, +oo] -valued A-measurable functions on X. Then 

f lim inf f�dµ < 1im inf f f�dµ. 

Proof. For each positive integer n let g� = infk>n fk. Each g� is A-measurable 

(see [10), Prop. (2.1.4), p. 51), and it is easy to check that 
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9i(x) 92(x) < ... 

and 

liminf fn (X) = urn g 
(x) 

hold at each x in X. Thus it follows from the monotone convergence theorem 

(2.12) and the inequality g, < < f,, that 

f lim inf f�djc =1 nm 
f 

g,, dµ < 1im inf f fndµ. 

Theorem 2.14 (Lebesgue's dominated convergence theorem). Let (X, A, µ) be 

a measure space, let g be a (0, +oo)-valued integrable function on X, and let f 

and f1, f2,... be [-oo, +oo]-valued A-measurable functions on X such that the 

relations 

(i) f (x) =1im,,, f� (x), and 

(ii) Ifn(x)I <_ 9(x), n=1,2,... 

hold at every x in X. Then f and fi, f2,... are integrable, and 

ff dµ =1 nm 
f f�dµ. (2.2) 

Proof. The integrability off and of fl, f2i 
.. 

follows from that of g; (see [10], Prop. 

(2.3.7), (2.3.8), p. 66-67, and part (iii) of our lemma (2.11)). Note that {g + f} 

is a sequence of non-negative A-measurable functions such that (g + f) (x) = 

lirn (g +f,, )(x) holds at each x in X, and so Fatou's lemma (Theorem (2.13)) 

implies that 

f (g +f )dµ < lim inf J(g + f,, )dµ 

and hence that 
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ff dµ < 1im inf f f,, dµ. 

A similar argument, applied to the sequence {g - f,, }, shows that 

f (g -f )dµ < lim inf f (g - f�) dµ 
n 

and hence that 

1im sup 
f fndp <ff dµ. 

n 

Consequently, (2.2) is proved. 

16 

Definition 2.15 (Absolutely continuous measures). Let (X, A) be a measurable 

space, and let µ and v be measures on (X, A). Then v is absolutely continuous 

with respect to µ if each set A that belongs to A and satisfies µ(A) =0 also 

satisfies v(A) = 0. We write v«µ to indicate that v is absolutely continuous 

with respect to It. 

The following result, which we shall only state, is very important. 

Theorem 2.16 (Radon-Nikodym theorem). Let (X, A) be a measurable space, 

and let p and v be o -finite measures on (X, A). If v is absolutely continuous with 

respect to p, then there is an A-measurable function g: X -º [0, +oo) such that 

v(A) = fA gdp holds for each A in A. The function g is unique up to µ-almost 

everywhere equality, that is g is unique except on a p-null set. 

Proof. See [10], Thm. (4.2.2), p. 132. 

Definition 2.17 (Singular measures). Let (X, A) be a measurable space. A 

measure µ on (X, A) is concentrated on the A-measurable set E if ti(E) = 0. 
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Suppose that a and v are measures on (X, A). Then µ and v are said to be 

mutually singular, (or singular with respect to each other), if there is an , - 

measurable set E such that µ is concentrated on E and v is concentrated on E°. 

We write µJ-v to indicate that µ and v are mutually singular. 

We conclude this section with another very important result, which states 

that a finite or o-finite measure can be split into an absolutely continuous and a 

singular part. 

Theorem 2.18 (Lebesgue decomposition theorem). Let (X, A) be a measurable 

space, let tc be a measure on (X, A), and let v be a finite or a ofinite measure 

on (X, A). Then there are unique measures va and v, on (X, A) such that 

(i) va is absolutely continuous with respect to µ, 

(ii) v8 is singular with respect to t. c, and 

(iii) v= va + v,. 

The decomposition v= va + v, is called the Lebesgue decomposition of v, while 

va and v8 are called the absolutely continuous and singular parts of v. 

Proof. We begin with the case in which v is a finite measure. Define At by 

Nµ= {BE A: p(B)=0}, 

and choose a sequence {BB} of sets in Nµ such that 

l im v(B? ) = sup{v(B) :BE A' }. 

Let N= U1 B;, and define measures va and v, on (X, A) by va(A) = v(A f1 NC) 

and v, (A) = v(A n N). Of course v= va + v,. The countable subadditivity of µ 
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implies that µ(N) =0 and hence that v, is singular with respect to it. Since 

v(N) = sup{v(B) :BE Np}, 

each A-measurable subset B of Nc that satisfies µ(B) =0 also satisfies v(B) =0 

(otherwise NUB would belong to, and satisfy v(NUB) > v(N)). The absolute 

continuity of vn follows. 

Now suppose that v is a o-finite measure, and let {Dk} be a partition of X 

into A-measurable sets that have finite measure under v. For each k let Ak be 

the v-algebra on Dk that consists of the A-measurable subsets of Dk, and apply 

the construction above to the restrictions of the measures It and v to the spaces 

(Dk, Ak). Let N1, N2, ... be the p-null subsets of D1, D2, .. thus constructed, and 

let N= Uk Nk. Then the measures va and v, defined by va(A) = v(A n Nc) and 

v, (A) = v(A n N) form a Lebesgue decomposition of v. 

We turn to the uniqueness of the Lebesgue decomposition. Let v= va + v, 

and v= va + v, be Lebesgue decompositions of v. First suppose that v is a finite 

measure. Then 

vQ-Va=v, -v,; 

since 
(va 

- Ya) «µ and (v, - v, )1µ, it follows that 

Ya-Üa=va-U, =O. 

Thus va = va and v, = v,. The case where v is a o, -finite measure can be dealt 

with by choosing a partition {Dk} of X into A-measurable subsets that have 

finite measure under v, and applying the preceding argument to the restrictions 

of va, v� P. and v, to the A-measurable subsets of the sets Dk. 

One sometimes goes a step further for a finite measure v on (R, 13(R)). Let 

C= {x ER: v({x}) 0}, and note that C is countable (for each positive 
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integer n there are only finitely many points x such that v({x}) > 
n). 

Let vl 

be the measure on 5(R) defined by vi (A) = v(A n C), and let v2 and v3 be the 

singular and absolutely continuous (with respect to Lebesgue measure) parts of 

the measure A -º v(A n C'). Then v= vl + v2 + v3 is a decomposition of v 

into the sum of a discrete measure, a continuous but singular measure, and an 

absolutely continuous measure. It is easy to check that the measures appearing 

in this decomposition are unique. 

2.3 Analysis 

Definition 2.19 (Functions of bounded variation). Let f (x) be a real-valued 

function which is defined and finite for all x in a closed bounded interval a<x 

b. Let 

r= {x0, xi, ..., xm} 

be a partition of [a, b]; that is, r is a collection of points xi, i=0,1, ..., m, 

satisfying xo = a, xm = b, and x; _1 < x;, for i=1, ..., m. With each partition 

r, we associate the sum 

m 
Sr = Sr[f; a, b] _ If (xi) - .f 

(xi-1) 1. 
i=1 

The variation of f over [a, b] is defined as 

V =V[f; a, b] =sup Sr, 
r 

where the supremum is taken over all partitions I' of [a, b]. Since 0< Sr < +oo, 

we have 0<V< +oo. If V< +oo, f is said to be of bounded variation on [a, b]; 

if V= +oo, f is of unbounded variation on [a, b]. 
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Corollary 2.20 A function f is of bounded variation on [a, b] if and only if it 

can be written as the difference of two bounded increasing functions on [a, b]. 

Proof. See [28], Cor. (2.7), p. 19. 

Theorem 2.21 If f is of bounded variation on [a, b], then f' exists almost ev- 

erywhere in [a, b], and f' is integrable on [a, b]. 

Proof. See [28], Cor. (7.23), p. 113. 

Definition 2.22 (Points of density). Let EC lR be measurable with respect to 

Lebesgue measure, and let xEE. Then, x is called a point of density of E if and 

only if 

lim 
IEn[x-h, x+h]I 

_1 h_-. o+ 2h ' 

where 1.1 denotes Lebesgue measure. 

Theorem 2.23 Let ECR be measurable with respect to Lebesgue measure. 

Then, almost every point of E is a point of density of E. Note that, unless 

otherwise stated, `almost everywhere' will refer to Lebesgue measure. 

Proof. See [28], Thm. (7.13), p. 107. 

Definition 2.24 (Approximately monotonic, constant, and oscillatory functions). 

Let f be a Lebesgue measurable real valued function, finite almost everywhere on 

IR and let IF = {x ER: f (x) is finite}. Then, f is said to be approximately right 

monotonic increasing at xE IF provided that 

lim I{t E [x, x+ h] n IF :f (t) >f (x) }I /h =1, h-+0+ 
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and approximately left monotonic increasing if 

lim {t E [x - h, x] n IF :f (t) <f (x)}l/h = 1, 
hýo+ 

where 1.1 denotes Lebesgue measure. Approximately right (left) monotonic de- 

creasing functions are defined similarly. A function which is both approximately 

right and left monotonic increasing at a point x is said to be approximately mono- 

tonic increasing at x. 

We say that f is approximately constant at a point xa if xo is a point of 

density for f -1({ f (xo)}) . 
We say that f is approximately oscillatory to the right at a point x, if there 

are sequences of real numbers hn, h' >0 approaching zero, such that both 

{t E [x, x+ hn] f1 IF :f (t) <f (x)}I /hn 

and 
I{t E [x, x+ h; 

º]n IF :f (t) >f (x)}I/h 

are arbitrarily close to zero. In a similar way we define f to be approximately 

oscillatory to the left at x. A function which is approximately oscillatory both to 

the right and to the left of x will be described as approximately oscillatory at x. 

Theorem 2.25 Let f be a measurable and finite almost everywhere function. 

Then, at almost all x, f is either 

(i) approximately monotonic increasing, or 

(ii) approximately monotonic decreasing, or 

(iii) approximately constant, or 

(iv) approximately oscillatory. 
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Proof. See [13], Thm. 3, p. 494. 
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Definition 2.26 (Component Interval). Let S be an open subset of R. An open 

interval I (which may be finite or infinite) is called a component interval of S if 

ICS and if there is no open interval J 54 1 such that ICJCS. 

Theorem 2.27 Every point of a nonempty open set S belongs to one and only 

one component interval of S. 

Proof. See [2], Thm. (3.10), p. 51. 

Theorem 2.28 (Representation theorem for open sets on the real line). Every 

non-empty open set S in R is the union of a countable collection of disjoint 

component intervals of S. 

Proof. See [2], Thm. (3.11), p. 51. 

2.4 Complex analysis 

Definition 2.29 (Connected sets, domains). A set S is said to be connected if 

there do not exist disjoint open sets U and V satisfying the following conditions: 

(i) UUVDS, 

(ii) UnS00, VnSe0. 

An open connected set is called a domain. 

The `negative' definition for connectedness is sometimes difficult to visu- 

alize. But when the connected set is a domain, we have the following useful 

property. 
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Lemma 2.30 Any two points in a domain can be joined by a polygonal line that 

lies in the domain. 

Proof. See [251, Thm. (2.2), p. 21. 

Definition 2.31 (Simple and closed curves, simply connected domains). A con- 

tinuous curve in the complex plane is defined parametrically by 

z(t) = x(t) + iy(t), a<t<b, (2.3) 

where x(t) and y(t) are real valued, continuous functions of the real parameter t. 

For a curve C defined by (2.3), the point z(a) is called the initial point and z(b) 

the terminal point. If the initial and terminal points coincide (z(a) = z(b)), then 

C is said to be a closed curve. If z(tl) z(t2) when ti ; t2i so that C does not 

intersect itself, the curve is said to be simple. A closed curve that is simple in 

the interval a<t<b is said to be a simple closed curve. A domain V is simply 

connected if all points enclosed by any simple closed curve contained in V are 

elements of V. 

Definition 2.32 (Analytic functions). A function f (z) of the complex variable 

z is said to be analytic at a point zo if f is differentiable in a `neighborhood' of 

zo. A function which is analytic at every point of the complex plane is called an 

entire function. 

Theorem 2.33 (Cauchy's integral theorem). Let V be a simply connected do- 

main, and let f (z) be a single-valued analytic function on D. Then, 

jf(z)dz=O, (2.4) 

where C is any closed curve with finite 'length', contained in V. 
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Proof. See [19], Thm. (13.1), p. 268. 
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Definition 2.34 (Harmonic functions, Cauchy-Riemann equations). A function 

u(x, y) of two real variables is said to be harmonic on a domain G if the partial 

derivatives 

IOU au 02u ä2u 02u 

äx' äy' 8x2' äxäy' äy2 

exist and are continuous on G, and if at every point of G, u(x, y) satisfies the 

partial differential equation 
02u ä2u 

_ äx2 + äy2 - ý' (2.5) 

known as Laplace's equation. Let u(x, y) and v(x, y) be two functions harmonic 

on a domain G, which satisfy the Cauchy-Riemann equations 

au äv äu äv 
äx äy' äy äx 

(2.6) 

at every point of G. Then u(x, y) and v(x, y) are said to be conjugate harmonic 

functions (on G), and each of the functions u(x, y), v(x, y) is said to be the 

conjugate harmonic function (or simply the harmonic conjugate) of the other. 

There is an intimate connection between harmonic and analytic functions, 

as shown by the following result. 

Lemma 2.35 A necessary and sufficient condition condition for a function f (x) = 

u(x, y) + iv(x, y) to be analytic on a domain G is that its real part u(x, y) and 

imaginary part v(x, y) be conjugate harmonic functions on G. 

Proof. See [20], Thm. (5.1), p. 144. 
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Theorem 2.36 Given a function u(z), harmonic in a simply connected domain 

D, there exists an analytic function f (z) such that Ref (z) = u(z) in D. 

Proof. See [25], Thm. (10.1), p. 268. 

Theorem 2.37 (Cauchy's theorem on the expansion of an analytic function in 

a power series). Let f (z) be an analytic function on a domain G, let zo be an 

arbitrary (finite) point of G, and let A= 0(zo) be the `distance' between zo and 

the boundary of G. Then, there exists a power series 

00 
f(z)=>a�(z-zo)' (2.7) 

n=o 

converging to f (z) on the disk {z EG: Iz - zo < 0}. 

Proof. See [19], Thm. (16.7), p. 361. 

Theorem 2.38 Let u(x, y) be a harmonic function on a domain G, with harmon- 

ic conjugate v(x, y), let zo be an arbitrary (finite) point of G, and let A= 0(zo) 

be the distance between zo and the boundary of G. Then u(x, y) and v(x, y) have 

expansions of the form 

00 
u(x, y) = u(r, B) = ao +E (an cos n9 - ßn sin nO)rn, (2.8) 

n=1 

00 

v(x, y) = v(r, 0) = go +E (/3 cos nO + an sin nO)rn (2.9) 
n=1 

on the disk Iz - zoI < 0, where z- zo = retie 

Proof. According to theorem (2.36), there is a function f (z) which is analytic 

on G and has u(x, y) as its real part. According to theorem (2.37), f (z) has the 

power series expansion 

u 

F-'ýt' 
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00 
f (z) =E an(z - zo)n (2.10) 

n=0 

on the disk Iz- zog < A. To obtain (2.8), we substitute 

/ý an=an'+'ZNn, z- zo=re 
iB 

into (2.10) and then take the real part of the resulting equation 

00 

f (z) =E (an + ißn)rneine. (2.11) 
n=0 

To obtain (2.9), we take the imaginary part of (2.11). 

Lemma 2.39 The series 

p2 - r2 
=1+2E 

00 (r)n 
cos n(B - q5), 

p2 + r2 - 2pr cos(B - 0) 
n=l p 

2pr sin(9 - 0) 
__ 2Z 

00 (ysinn(e_) 
(l 

y 
p2 + rz - 2pr cos(B - ¢) p 

(2.12) 

converge uniformly on every compact (that is, closed and bounded) subset of the 

disc Iz - zol <p. 

Proof. See [20], Lem. p. 149. 

The integral 

1 Zir p2 - r2 d 
27r 

with the `kernel' 

p2-r2 
=Relpe'o+(z-zo)lý 

p2 +r2- 2pr cos(9 - 0) `pe'g - (z - zo) J 

is called Poisson's integral. As we now show, a characteristic feature of harmonic 

functions is that they can be represented as Poisson's integrals: 
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Theorem 2.40 With the same notation as in theorem (2.38), we have 

(T, e) 1 27r /p0) p2 -T2 dO (2.13) u= 
2-- 

J 
u(, 

p2 + r2 - 2pr cos(B - 0) 

1 21r 
= _ý 

P2-r2 
v(r 0) v(P, 0) 

p2 + r2 - 2pr cos(B - 0) 
dq5 (2.14) 

' 27rlo 

for r<p<A and arbitrary 8. Moreover 

1 %2r 2pr sin(B - v(r, 0) = Qo + 
2ý Jo u(P, 0) 

p2 + r2 - 2pr cos(0 - 
dOý (2.15) 

in terms of u(r, B). 

Proof. We start from formula (2.8), with r replaced by p (p < A), 0 replaced by 

¢, and n replaced by m: 

00 

u(p, q5) = ao +> [am cos(mo) - ßm sin(mc )]pm. (2.16) 
M=l 

Using the uniform convergence of (2.16) in 0 for every p<A, we multiply (2.16) 

by cos(no) and integrate term by term with respect to 0 between 0 and 2ir. The 

result is 

1 271 
a0 27r u(p, qi)d0, 

(2.17) 

an = 
7r1 

j27r 
u(p, 0) cos(no)dO (n 1 1). 

Similarly, multiplying (2.16) by sin(n) and integrating term by term with re- 

spect to 0 between the same limits, we obtain 

91 _ 
1n r27r 

n(p, 0) sin(no)dcb (n > 1). (2.18) 
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Substitution of (2.17) and (2.18) into (2.8) and (2.9) gives 

00 21r n 

u(r, 0) = 
2ý f 

u(p, q5)dq5 +f u(p, ý) (p) 
cos n(0 - 0)dcb, 

n-1 

(2.19) 

00 

I T) n 
sin n(B - ¢)d0. v(r, e) = ßo +E1f u(p, q5)/ 

n=1 \P 

Formulas (2.13) and (2.15) now follow at once from lemma (2.39), after multi- 

plying the series (2.12) by 

1 
Tu(P, c5), 

integrating term by term with respect to 0 from 0 to 2ir for fixed r and p (r < 

p), and comparing the results with (2.19). Moreover, since (2.13) holds for an 

arbitrary harmonic function on G, we can replace u(r, 0) by v(r, 0), obtaining 

(2.14). 

Lemma 2.41 (Schwarz's Lemma). Suppose f (z) is analytic for IzI <R with 

f (0) = 0. If If (z) 1<M in Izj < R� then 

If(z)I :5 RM 
r, IzI =r<R, 

with equality only for f (z) = (M/R)e'az, a real. 

Proof. See [25], Lem. p. 218. 

Theorem 2.42 Let f (z) be a bounded analytic function in the unit disk {z EC: 

IzI < 1}, and 0, A, B be points on the boundary of the disk {z EC: Iz) = 1} 

such that the chords OA and OB are of equal length. If f (z) converges to the 

number a as z approaches the point 0 along a simple curve y, then f (z) converges 
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to a also if z approaches 0 along any other simple curve ry' ending at 0 and lying 

entirely within the angular sector AOB. 

Proof. See [8], §307-308, p. 39. 

The following result regarding boundary values of bounded analytic functions in 

the unit disc is very important. 

Theorem 2.43 (Fatou's Theorem). Let f (z) be a bounded analytic function in 

the unit disc IzI < 1. Then, the points at which 

lim f (reie) 

fails to exist constitute a set of Lebesgue measure zero. 

Proof. Because of theorem (2.42), we need prove the theorem only for radial 

approach to the boundary. Also, we may assume without loss of generality that 

f (0) = 0, since this can always be achieved by merely adding a constant. 

Let f (z), then, be analytic in IzI<1, and let If (z) I<M in this disc. We 

introduce the function 

F(p, 0) =fBf (Pe'o)d9 =f 
PeiB f (z) 

dz. (2.20) 
op iz 

The second integral in this relation can be taken along any path that joins the 

points z=p and z= peie and lies entirely within IzI < 1, since L is analytic 

in the disc IzI <1 (we define this function to have the value lif'(0) at z= 0). 

Thus F(p, 0) is a single-valued function in Izi < 1, whence in particular, 

F(p, -ir) = F(p, r) (2.21) 
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follows. Now by (2.20), 

30 

F'(p + Op, 0) - F(p, B) I <_ Jp P+P f (z) 
dz . }- 

j(p+tp)e° 
Bf 

2z) 
dz < 2MIpl. 

(2.22) 

Here we have used the fact that 

fýzýl 
<M 

holds, by Schwarz's lemma (Lemma (2.41)). On the other hand, if we fix p and 

let 0 vary we obtain 

(F(p, O + OB) - F(p, 9)I < MIAOI. (2.23) 

From (2.22) we infer that 

F(O) = leim F(p, B) (2.24) 

exists for every 0, and that the convergence is uniform. By (2.23), the function 

F(O) satisfies the relation 

F(O + MB) - F(B)I 
< 

AB 

which shows that F(O) is continuous and which implies that F(O) is of bounded 

variation. 

We now set z= ei° and apply the Poisson integral to the circle IzI=p<1, 

where r<p, obtaining 

2_2 

f (z) = 2- 
i: f (peil 

P2 - 2r os(0 6) + r2 
d¢. 

Upon integrating by parts, we see from (2.21) that the first resulting term (the 

one which is not an integral) vanishes, so that 
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f (z) = -i, j F(p, 0) 
dg 

I p2 - r2 

d0. ý pz - 2rp cos(¢ - B) + r2 

The left-hand side of this equation is independent of p. Since the integrand 

converges to a continuous function of 0 as p tends to unity, we may set p=1 in 

the last formula, obtaining 

1 ir d1- T2 f (z) =- 2', 
ý 

,ý 
F(O)j0 L1- 

2r cos(¢ - 0) + r21 
d¢. (2.25) 

An analogous formula holds in the case that f (z) is a constant C; for in this case, 

we can write 

r2 C 
2irJ7r 

C1-2rcos(q5-9)+r2 ' 

which after an integration by parts yields 

C(1 - r2) 
_1df1- 

r2 
1+ 2r cos B+ r2 2Ir J-, ý 

C070 ll- 2r cos( - B) + r2 
] do. (2.26) 

In particular, for C=1 and 0=0, 

2r J-ý d6 
L1- 

2r cos o+ r2 + r)2 1+1' 
(2.27) 

Let ei°° be a point of the unit circle at which F(q5) has a finite derivative F'(90). 

We shall show that in this case, 

lim f (reie0) = Fß(00) (2.28) 

holds. Here it suffices to take 00 = 0, since we can reduce the general case to the 

special case 90 =0 by a rotation of the coordinate system. By (2.25) and (2.26), 

l% [1- 2r r F'(°) _ -F'(°) 
C11+rJ 

27 J-ý 
[F(O) - OFl (°)J do 

2r cos o+ r2 
1 do. 
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Now we select a positive number A< 7r and set 

32 

H(r' A) 
2r 

JA 
x 

[F(¢) - ¢F'(0)] o[1- 2r cos O+ r2 
] d¢ (2.29) 

and 

J(r, A) 
2ý lI+IJ 

(2.30) 

(with the same integrand), so that 

f (r) - F'(0) = -F'(0) 
(i 

+ 
r) + H(r, A) + J(r, A) (2.31) 

holds. If we note that (2.20) and (2.24) imply that F(0) = 0, and if we set 

F(cb) = cF'(O) + q5i7(0), (2.32) 

and denote the least upper bound of 177(¢)I in the interval from -A to A by h(A), 

we find that 

lim h(A) = 0. (2.33) 
A-o 

From (2.29) and (2.32) it follows that 

1 %a df1- rý H(r' ý) = 21r J-a 
ýýýýý 

d¢ L1- 2r cos 0+ r2I 
dý' 

and if we note that 

d1- r2 
_ 

2r(1- r2)ß sin' 
-0 

l>0 (2.34) 
d¢ 1-2rcos0+r2J (1-2rcos¢+r2)2 - 

holds, we obtain 

h(A) d 1-r2 
ok- 2r cos + r2] 

do 
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_h 
(A) 

J_ 
%i, 

r 

df 1- r2 
2, 

OT, 
L1 - 2r cos 0+ r2] 

dý' 

and hence finally, by (2.27), 

(H(r, A)I < 
-(A1 

< h(A). (2.35) 
r 

In order to obtain a bound for J(r, A), we first observe that by (2.23) and (2.24), 

IF(&)l < 7rM 

holds in the interval of integration, and that in the same interval, we have 

df1- r2 l 2r(1 - r2) 2(1 - r2) 
dý L 1- 2r cos q5 + r2 J< (1 - 2r cos A+ r2)2 

< (1 - cost \)2 

Hence (2.30) yields 

< 
21r (M +IF'(O)I) (2.36) 

sin4 A 

Finally, we obtain from (2.31), (2.35) and (2.36) that 

If (r) - FA(O) I< h(A) + 
127c(M n4I A ý(0) I) 

+ (Il +r )l2)(1 - r2). (2.37) 
r s 

Given any positive number e, then by (2.33) we can choose A so small that 

h(a) < 2. It then follows from (2.37) that for sufficiently small values of 1- r2, 

If (r) - F'(O)I < E. (2.38) 

This shows that for every Oo where F(0) is differentiable, the given function f (z) 

converges to the value F'(90) as z approaches e"'0 radially. 

According to Theorem (2.21), both the real and the imaginary part of F(O) 

are differentiable except at most on a set of measure zero, and this, together with 

the result stated above, proves Fatou's Theorem. 
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Definition 2.44 (Möbius transformations). A Möbius transformation L(z) is a 

transformation of the form 

Lz =az+b zE ýý 
cz+d' 

ý' 

where a, b, c, d are arbitrary complex numbers satisfying ad - be # 0. 

A characteristic feature of Möbius transformations is the following. 

Theorem 2.45 Every Möbius transformation maps a circle or line onto a circle 

or line. Moreover, if the circle or line K is mapped onto the circle or line K*, 

then one of the complementary domains of K is mapped onto one of the comple- 

mentary domains of K*, and the other complementary domain of K is mapped 

onto the other complementary domain of K*. (For a circle, the two complemen- 

tary domains are the interior and the exterior of the circle. In the case of a line 

the complementary domains are two half planes, one on each side of the line). 

Proof. See [19], Thm. (10.4), p. 169, and Rem. p. 170. 

Definition 2.46 (Symmetric points). Two points zl and z2 are symmetric with 

respect to a given straight line ic if x is the perpendicular bisector of the line 

segment joining zi and z2. Two points zl and z2 are symmetric with respect 

to a given circle K if every straight line or circle passing through zl and z2 is 

orthogonal to K. 

The following theorem shows that Möbius transformations preserve symmetry. 

Theorem 2.47 Let zl and z2 be any two points symmetric with respect to a given 

straight line or circle n, and let L(z) =w be any Möbius transformation. Then 
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the points wl = L(zi) and W2 = L(z2) are symmetric with respect to the straight 

line or circle K= L(rc). 

Proof. See [19], Thm. (10.8), p. 178. 

2.5 Herglotz functions 

Theorem 2.48 (Helly's selection theorem). Let the real non-decreasing func- 

Lions fa(x) and the positive constant k be such that 

lf�(x)1 <k, (n=0,1,...; a <x <b). 

Then, there is a set of integers no < nl < ... and a non-decreasing bounded 

function f (x) such that 

slim 
fn., (x) =f (x), (a <x< b). 

Proof. See [26], p. 165. 

Theorem 2.49 If W (z, t) is a continuous function of two variables: the complex 

variable z ranging over the open set G, and the real variable t ranging over the 

interval [a, b], then the function 

H(z) =fbW (z, t)dt 

is continuous in the set G. 

If, in addition, for each tE [a, b] the function W (z, t) has, at every point 

zEG, a partial derivative TV'(z, t) continuous with respect to both variables z 

and t, then the function H(z) is analytic in G and 
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H'(z) =fb W(z, t)dt. 

Proof. See [24], Chapter II, Thm. (3.1), p. 107. 

Theorem 2.50 A necessary and sufficient condition that a function f (z), ana- 

lytic in the circle IzI < 1, satisfy the condition Ref (z) >0 for IzI <1 is that 

f(z) be representable as an integral 

+7re'ý+x 
.f 

(x) = 
e'0 zdr(b) 

+ ic, (2.39) 

where T(O) is a real non-decreasing function, -ir <0< +ir, with the properties 

T(-? r) = 0, r(1 + 0) = T(-1), -7C <e< +7r, 

and c is a real constant, equal to Im f (0). When this representation is possible, 
it is unique. 

Proof. A function f (z) defined by an integral of the type described in the theorem 

is single-valued, and analytic in the circle Izi <1 by Theorem (2.49). If we put 

z= re`B, where r= IzI, we see at once that 

+lr 1-r2 
Ref (z) = 

f-, 
r 1- 2r cos(9 - ýi) + r2 

dT )-0 

for r<1, since the integrand is positive under this condition. Hence the integral 

representation is sufficient for f (z) to have the indicated properties. 

If f (z) is a single-valued function analytic in the circle IzI <1 and if 

Ref (z) >0 for I zI < 1, we consider the function f,, (z) =f(! . z). The function 

Re f,, (z) is harmonic and non-negative in the closed region IzI <1 and assumes 
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continuous non-negative boundary values u,, (6) = Re fn(z) on the circumference 

z= ei0. By Poisson's integral formula (Theorem (2.40)) we have 

+7r 1- r2 Re f� (z) =f1- 2r cos(B - 3/i) + r2 
d7-�(, 0) 

where 

T. N5) = 27r J-a 
2Gn(8)d8 

is a continuous real monotone-increasing function for -r <0< +7r. When 

z=0, this formula becomes 

Ref (0) = Re f,,, (0) =L 
+a 

drn('0) = r,, (7r) -r (-7C) = Tn(7C)" 

Hence the sequence {r (0) } satisfies the conditions of Helly's theorem (Theorem 

(2.48)). We can therefore determine a sequence of integers In(k)} and a real 

monotone-increasing function r(V)) such that 

aim 
n(k) = oo, um rf(k)(O) = T(i)), 0< T(ai) < Re f (0), 

for -7r < Vi < +ir. If we allow n to tend to infinity through values in the sequence 

{n(k)} in the formula for Refn(z) given above, we find by virtue of the relations 

just noted and of the further relations 

liym f,, (z) =f (z), lam Re fn(z) = Ref (z), IzI < 1ý 
noo 

that 

+w 1- r2 Ref (x) fir 1- 2r cos(O - ? P) + r2 
dr(i) 

for IzI < 1. The function Im f (z), harmonic in the open region IzI < 1, is now 

determined by the fact that it is conjugate to Ref (x) and assumes the value 

Im f (0) for z=0. Hence it is given by the formula 
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Im f (z) - 
+ý 2r sin(B -1- 

2r cos(B - 
dT(0) + Im f (0). 

Ii) + r2 

By combining the expressions for Ref (z) and Im f (z), we find that 

ei"P +z f (z) =f ei7 -z 
dr(0) + ilm f (0) 

for IzI < 1. The function T() may not have all the properties demanded by the 

theorem; but it can be replaced by the function r *(, O) defined by the equations 

T*(-7r) = O; T*(Tr) = 7-(7r) - r(-7r); 

T(Zb + 0) - T(-7r + 0), -ir <0< +7rß 

a function which has the desired properties. 

Since we make little use of the uniqueness of the integral representation 

under discussion, we omit the proof of it. 

Theorem (2.50) is the basis for the following result which we shall use repeatedly. 

Theorem 2.51 (Integral representation of Herglotz functions). A Herglotz func- 

tion F(z) admits the representation 

F(z) = a, + bFz -I- 
r+00 1+ tz 

J oo t-z 
(2.40) 

where bF, >0 and aF are two real constants, and p(t) is a non-decreasing function. 

Note that the representation (2.40) can also be written in the form 

00 t 
F(z) = aF + bFz +j. 

IF- 
x1+ t2 

Idp(t), (2.41) 

where dp(t) = (1 + t2)dp'(t). 
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Proof. The transformation given by the equations 

(2.42) 
i -I- ý1 +z 

maps the half plane Im( >0 on the disk IzI < 1, in such a manner that, 

when C increases through real values from -oo to +oo, z lies on the unit circle 

Iz) =1 and the variable 0= argz increases from -ir to +ir. When z and C 

are connected by these relations, the equation if (z) = F(() sets up a one-to-one 

correspondence between the class of all functions f (z) which are single-valued 

and analytic in the circle (zI <1 and have positive real parts in that region, 

and the class of all functions F(() which are single-valued and analytic in the 

half-plane Im( >0 and have positive imaginary parts there. Similarly, when z 

and ( are connected by these relations, we can write 

-c +if 
ý7 

eta +z dr(o) = aF + b, (-+" Lýý 1ýS dPý(t) 

where 
- 

iýi 

zý =2 arctan t, t=i1+ ei'ý 
= tan (2 ), TM = p'(t) 

for -ir <0< +ir and -oo <t< +oo, bF, = r(7r) - r(7r - 0), and aF = -c; 

the functions r(, 0) and p'(t) are real monotone-increasing functions subject to 

the conditions stated in theorem (2.50) and in the present theorem respectively, 

and the equation holds in the sense that, if the integral on either side exists, the 

integral on the other also exists and is equal to it. By combining these facts with 

the result stated in theorem (2.50), we see that a function F(() single-valued 

and analytic in the half plane Im(> 0 satisfies the condition ImF(() >0 for 

ImC >0 if and only if F(C) is representable by the integral formula 

F'ýý) - aF + bF(+ f. o- ± dp'(t) 
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where aF, bp and p(t) are subject to the conditions indicated in the statement 

of the present theorem. This completes the proof. 

We see, further, that this representation is unique. When F(C) is a func- 

tion analytic in the half planes Imp' > 0, Im( < 0, it satisfies the condition 

ImF(() >0 for Imp' >0 if and only if it is representable in the half plane 

Imp' >0 by the indicated integral formula. This formula is significant in the 

half plane Im( <0 also; but it represents F(() in this half plane if and only if 

F(c) satisfies the functional relation F(ý) = F(C). When the latter relation is 

valid, the inequality ImF(() > 0, Im( >0 implies the inequality ImF(() < 0, 

ImC<0. 

Corollary 2.52 Let F be a Herglotz function. Then, the boundary values of F, 

as z approaches the real axis, exist almost everywhere. 

Proof. If F is bounded, the result follows from Fatou's Theorem (2.43) through 

the transformation (2.42). In particular, the boundary values of F exist almost 

everywhere as ̀ wedgy' limits, that is along any curve y which approaches the real 

axis in a non-tangential way. 

If F is unbounded, note that 

G(z) 
1 

F(z)+i 

is a bounded Herglotz function, and the existence of boundary values for G implies 

the existence of boundary values for F. 

Lemma 2.53 Let F be a Herglotz function with integral representation 

F(z) = aF, + bFz +f{i1 
iz 

+1J dµ(t)" (2.43) 
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Then, the constants aF and bF are determined by 

aF = ReF(i), bF, = lim 
I mF(is) 

8-400 s 

Proof. From (2.43) we have 

F(i) = aF +i 
(bF 

+f12 dµ(t) 
R 1+t 

Thus, aF. = ReF(i). We also have 

41 

ImF(is) (ZS) 
= bF +J 

t2 -+S 
1 

2 
dµ(t). (2.44) 

Since 

t2 -+S 2-1 -+t 2 
ýs > 1), 

which is integrable with respect to p, we can apply the Lebesgue dominated 

convergence theorem in (2.44) in the limit s -º oo to obtain lim, 
_,,,, 

I'" ä"= bF. 

The following lemma characterizes measures corresponding to Herglotz func- 

tions. 

Lemma 2.54 A sufficient condition for the representation of F(z) in (2.43) to 

converge is that 

dp(t) < +oo. (2.45) 
R 1+t2 

Proof. Note that 

1t 1+tz 
t-z1 -+t2 _ (t - z)(1 + t2)' 

where the function G(t, z) =J is bounded for tER and fixed zEC. [As 

t --> ±oo G(t, z) -º z and so there is an N such that G(t, z) < 2z provided 
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t>N. Also, being a continuous function, G attains its maximum on the interval 

tE [-N, N]. ] Therefore, if condition (2.45) is satisfied, then the representation 

of F(z) in (2.43) converges absolutely. 

2.6 Analysis of measures 

Let p be a function having the following two properties: 

(i) p(A) is a non-decreasing function of A, 

(ii) p(a) is continuous from the right, i. e. 

lim p(\ + e) = p(a). 
Eo+ 

Then we can define a measure ti on the Borel algebra by 

µ((a, b]) = p(b) - P(a). 

We refer to µ as the Borel-Stieltjes measure generated by p. For a Borel-Stieltjes 

measure, a single point AO will have strictly positive measure if and only if the 

function p(A) is discontinuous at Ao. The measure of the single point AO is given 

by 

µ({, Xo}) = p(a0) - £u 
p(Ao - e). 

Points having strictly positive measure will be referred to as the discrete points 

of the measure. For a Borel-Stieltjes measure there are at most countably many 

discrete points; if there are no discrete points, so that the function p(a) is con- 

tinuous, we refer to a continuous measure. For any continuous Borel-Stieltjes 

measure the measure of any countable set of points will be zero. 

By the Lebesgue decomposition theorem (2.18), given a Borel-Stieltjes mea- 

sure p, we can decompose it into its absolutely continuous and singular parts with 
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respect to Lebesgue measure, ti = µa, + µ,. The singular component µ, may be 

decomposed further into its singular continuous and discrete components respec- 

tively. Thus µ,, is a singular measure that is also continuous in the sense that 

single points have zero measure, or equivalently µ,, (a, x] is a continuous func- 

tion of x. On the other hand, the discrete component µd of the measure µ is 

concentrated on those points (finite or countable in number) that have strictly 

positive measure. These are the so-called discrete points of the measure. Writing 

As = /2sß + µd, we then have the complete decomposition 

A- lac'+'Isc+Ad- 

The following lemma provides a local comparison of the measure µ with Lebesgue 

measure, which will be denoted by I. I. 

Lemma 2.55 Let p be a Borel-Stieltjes measure, and let 5,,, be a Borel set such 

that, for each AE Sri,, and for 6>0 sufficiently small (how small depends on A), 

µ(l) mill (2.46) 

for every subinterval 1, containing the point A, of the interval [A - 6, A+ 6]. 

Then 

µ. (S. )< mISmI. (2.47) 

Proof. (i) Consider first of all the case in which the set S,,, is closed and bounded. 

Then, given e>0, there is an open set So such that S, C So and 

Isol 
_< 

IS- 1+E. (2.48) 

For each AE Sm we find an open interval Za containing A such that (2.46) is 

satisfied for subintervals Z, containing )A, of Za. Without loss of generality, it may 
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be assumed that I,, is taken sufficiently small that TA C So in each case. The 

collection of intervals {TA} constitute a covering of S�, by open intervals, and by 

the Heine-Borel theorem (see [2], Thm. (3.29), p. 58) the set Sm will be covered by 

a finite subset of the {IA}. By removing intervals if necessary, this finite covering 

may be assumed to be minimal, in the sense that no further intervals may be 

removed without uncovering some point of S�a. It is then possible to shrink each 

interval (if necessary), while retaining the property AEZ.,, in such a way that 

the intervals do not overlap, and such that Sm is still completely covered. (The 

shrunk intervals need no longer be open, however. ) 

For example, if Zal = (Al - e1, ý1 + e1) and 2a, = (A2 - e2, A2 + 62) are two 

overlapping intervals with Al < A2 then they could be replaced by T1= (A1 - 

61,2 (Al + A2)) and 1A2 = (2 (A1 + A2), A2 + 62), which do not overlap, but which 

together cover the same set of points. 

Now, for each of the shrunken intervals, we have 

µ(za) <_ mIT I. 

Adding this inequality over the TA, we find that the total µ-measure of the finite 

covering of Sm cannot exceed m times its Lebesgue measure. Since the finite 

covering is also contained in So, we have 

µ(Sm) 5 miSol, 

so that, from (2.48), 

µ(S,. ) < m(ISmI +--). 

But this inequality holds for all e>0, and we may deduce (2.47). 

(ii) We now let Sm be an arbitrary Borel set satisfying the hypothesis of the 

lemma. Since 
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It(8m) = ý1 p(Smº n [-N, N]) 

and 

I'5ml um Ism(1[-N, N]I, 

in order to prove (2.47) it will be sufficient to consider sets that are contained in 

a finite closed interval [-N, N]. 

We suppose then that S7z C [-N, N], and let Sc,, denote the complement 

of Sm with respect to [-N, N] (i. e. Sc,, = [-N, N]\S,,, ). Given e>0, we cover 

Sm by an open set So such that 

p(S) : N(Sm) + E. (2.49) 

If (So)' denotes the complement of So with respect to [-N, N] then (So)c C Sm 

and is a closed bounded set satisfying the hypothesis of the corollary. Hence by 

(i) above we have 

µ((Sö)c) < ml(Sö)`I" (2.50) 

Also, 

p[-N, NJ = li(Sm) + p(S, 
n) :5 NL(SÖ) + µ((S; )'). 

Rom (2.49) and (2.50) we now have 

µ(sm) < µ((Sö)`) +e< mI (Sö)'I +c. 

But (So)' C Sm, so that 

µ(Sm) < mISm) +e. 

Since this inequality holds for all c>0, (2.47) follows and the Lemma is proved. 

In the following theorem, we shall say that is bounded, for some fixed 

A, if there exists m>0, which may be different for different A, such that µ(Za) < 
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mlIAI for all intervals Za containing A such that IZa < const. We shall say that 

lima, l, o 9ä ý=c, , say, if this limit exists and is the same for every sequence of 

intervals" such that limn, 1"1 1=0. It is easy to see that this will be so if 

and only if 

lim µ«, \> \+ e]) 
= lim p((A - e, a]) 

£-*. o+ 6 E--+o+ e 

_ 
fliö 

µ((A -Zýa+e)) = CA (2.51) 

In other words, for any constant c, the function µ((c, A]) should be differentiable 

at the point A. This function is locally of bounded variation and differentiable 

for almost all values of A. It follows that as converges to a limit, and hence in 

particular it is bounded, for almost all A. 

The following Theorem gives a local characterization of the respective sup- 

ports of the measures µac and µ,. 

Theorem 2.56 For a Borel-Stieltjes measure it let S be the set of values of A at 

which µ(TA)/jI,, I is bounded. Then 

(i) the absolutely continuous part of µ is given by 

µnß =I I5 (restriction of µ to S); 

j has density function f (A) given (for almost all A) by 

f(A) _ýu mo(2.52) 

and any Borel set of points A for which this limit is zero has µ-measure zero; 
(ii) the singular part of µ is given by 

As = µßs,. (restriction of µ to the complement of S). 
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Moreover, the measure µ is singular (i. e. µ= Ii, ) if and only if 

lim µ(TA)ýýIAý =0 (2.53) 
Izalco 

for almost all values of A. 

Remark 2.57 If F is the Herglotz function corresponding to it, then an alterna- 

Live characterization of the supports of µaß and p, is ([23], p. 131) the following: 

µa,, =µ restricted to {a ER: ImF(A + ic) is bounded in 0<e< 1}, 

M, = ti restricted to {A ER: lim ImF(\ + ie) = oo}. 
E"o+ 

Proof. That S is a Borel set follows from [22], p. 53. We next prove that the 

restriction of µ to S is absolutely continuous. The restriction to S is defined by 

(i I5)(E) = µ(E n S), 

and to demonstrate absolute continuity it will be sufficient to show that, for any 

subset A of S, 

JAI =0= µ(A) = 0. (2.54) 

Suppose then that JAI = 0. Consider S,,, as in lemma (2.55). Then we can write 

S= Uri,, Sm as m runs over the set of positive integers. Moreover, IA n 5,,, I = 0, 

where the set An Sm satisfies the hypothesis of lemma (2.55), so that 

µ(AnSm) <mIAnSmI. 

It follows that µ(A fl Sm) = 0. Hence, we have 

µ(A) = µ(A n s) = limo µ(A n Sm) = 0, 



Chapter 2. Mathematical background 48 

so that (2.54) is satisfied and II, s is absolutely continuous. 

Since µ(Za)/ýT is bounded for almost all A, it follows that the complement 

of S has Lebesgue measure zero. Hence pl, is a measure concentrated on a set 

of Lebesgue measure zero, and is therefore singular with respect to Lebesgue 

measure. It follows immediately that 

µ= Mac + As i 

with 

µac = µ1s and µa = N-Isc. 

We now consider a Borel set E of points A for which the limit on the right-hand 

side of (2.52) is zero. Then Lemma (2.55) may be applied to the set E, with 

the value m arbitrarily small in (2.46). From (2.47) in the limit m -º 0, with 

Sm= E, we have µ(E)=0. 

The next step in the proof is to show that, for almost all A, 

lim = 0. (2.55) 
Izal-O 

Let S, be the set of values of A such that is bounded. From the first 

part of the theorem, applied to p� we know that the absolutely continuous part 

of µ, is However, µ, is purely singular, so that 0, or, in other 

words, µ, (S, ) = 0. 

Consider the set Em of points A at which the limit on the left-hand side of 

(2.55) exceeds rn-1. Then for each AE E�a, and for any 0>0, 

/-is (ZA)/IZAI > (m + 9)-i, 

for 11; k I sufficiently small. Inverting this inequality then gives 
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(Zak < (m + B)µ, (Z, ). 

Lemma (2.55) may now be applied, with the roles of 1.1 and a, exchanged, and 

we have 

IEml < ým BýµsýEmý" 

However, E,, C S, and µ, (S, ) = 0, so that JE, nI = 0. This means that the limit 

on the left-hand side of (2.55), which exists for almost all A, is less than or equal 

to m'1 for almost all A, independently of the (positive) value of m. The Lebesgue 

measure of the set of points at which this limit differs from zero is I Um Emd, where 

m runs over the set of positive integers. Since I U�a Em! = lim,,,. 00 
(Eml = 0, we 

have proved (2.55) for almost all A. 

The density function for µac is almost everywhere given by 

f (t) 
_ 

Apac(A), 

where pay is the function that generates the measure pQý. Thus 

Jim p., (za)/Izal, 

which gives (2.52) on setting µo,, = kc - p, and using (2.55). If (2.53) holds then 

f (A) =0 for almost all A, in which case /1cc = 0, and the measure it is purely 

singular. On the other hand, if p is singular, so that it = pc� then (2.55) 

(2.53). So (2.53) is a necessary and sufficient condition for a singular measure, 

and the proof is complete. 

The above theorem provides a necessary and sufficient condition for a mea- 

sure to be singular, and a sufficient condition for the measure to be absolutely 

continuous. Namely, µ will be purely absolutely continuous provided p(ZA)/IZAI 

is bounded for all values of A. If, on the other hand, µ(ZA)/TAI is bounded for 
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all except a countable set of values of A, one may deduce µ8C = 0, since a singular 

continuous measure, restricted to a discrete set of points, must vanish. In that 

case p decomposes into an absolutely continuous and discrete component. 

Theorem 2.58 Let p be a finite Borel-Stieltjes measure, generated by p(. \), and 

define v(z) by 

v(z) = 
1-0,000 

(A - )z + y2 
di (A), (z =x+ iy). (2.56) 

Then 

(i) for almost all x, 

lim v(x + iy) _ 'rdp(x) (2.57) 
y- o+ dx 

(ii) if 0 is any real continuous function such that 1imx--. ± ¢(x) =0 then 

lim f 
v(x + iy)q(x)dx =if ý(A)dp(a), (2.58) 00 

y-+O+ -co co 

Proof. See [22], lem. (2.8), p. 63. 

Lemma 2.59 Under the hypothesis of the above theorem, if (a, b] is any finite 

interval such that neither a nor b have positive µ-measure then 

b 

µ((a, b]) = 
Ali 

m+ 
1f 

v(x + iy)dx. (2.59) 

Proof. Equation (2.59) follows from (2.58) if we are allowed to take, for ¢, the 

characteristic function of the interval (a, b]. However, such a choice for 0 would 

not be continuous, and the best we can do is to take, for 0, a smooth function 

that satisfies 0< q5(x) < 1, and (for small positive e) 
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1 (a<x<b), 

fi(x) =0 (x <a- E), 

%0 
(x >b+ e). 

The contributions to the right-hand side of (2.58) from integration over the in- 

tervals (a - e, a] and (b, b+ e] respectively vanish in the limit as e -º 0, and to 

prove (2.59) it remains only to show that, as c and y both tend to zero, 

lim fa 
v(x + iy)dx = Jim f 

b+c 
v(x + iy)dx = 0. 

But this is again a consequence of applying (2.58) respectively to functions 0=0. 

and Ob satisfying 0< q5(x) <1 and 

1 (a -e< a), 

fa(x) =0 (x <a- 2E), 

0 (x >a+ 2E). 

1 (b<x<b+e), 

¢6(x) =0 (x <b- 2e), 

0 (x >b+ 2e). 

We have, for example, 

ja lim v(x + iy)dx <limfoo v(x + iy)Oa(x)dx 
-£ 00 

= 7r lim 1,00 q54(A)dp(A) 

a-I-2e 
< it lim Ja_2 dp( A) = 0, 

e 

since a does not belong to the discrete set of points of the measure µ. Similarly 

lim fe+E v(x + iy) dx = 0. These two results allow us to replace 0 in (2.58) by the 

characteristic function of (a, b], and (2.59) follows. 
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Remark 2.60 If F is a Herglotz function with it as corresponding measure and 

having the representation (1.1) in Chapter 1, then we find from this representation 

that 

v(z) = ImF(x + iy) - bFy. 

Noting that the term bF, y will not contribute to the integral in (2.59), (this follows 

by an application of the Lebesgue dominated convergence theorem), and writing 

z=A+ ie, we can rewrite (2.59) as 

µ((a, b]) = 
Eu 

-Ib ImF(A + ie)d. \. (2.60) 
0+ 7r a 

Equation (2.60) characterizes the Herglotz measure of an interval (a, b] whose 

endpoints are not discrete points of the measure, in terms of the corresponding 

Herglotz function. 

Reference: [22]. 

2.7 Existence and uniqueness theorems for dif- 

ferential equations 

At the end of Chapter 5 we will be dealing with differential equations. In this 

section, we give an existence and uniqueness theorem for differential equations. 

Definition 2.61 Suppose that a function f (x, y) is defined in an open set D in 

the (x, y) plane and suppose that there exists k>0 such that if (x, yi), (x, y2) E D, 

then 

If (x, yi) -f (X) Y2) I5kI yi -1121. 
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Then we say that f satisfies the Lipschitz condition with respect to y in D, and 

k is a Lipschitz constant for f. 

Theorem 2.62 Let D be an open set in the x, y plane. Let (xo, yo) ED and let 

a, b be positive constants such that the set 

R={(x, y): Ix-xol <a, ly-yol<-b} 

is contained in D. Suppose that the function f is defined and continuous on D 

and satisfies a Lipschitz condition with respect to y on R. Let 

M= max If (x, y) j, A= min{a, b/M}. 
(x, y)ER 

Then the differential equation 

dx =f (x, y), (2.61) 

has a unique solution y(x) on (xo-A, xo+A) such that y(xo) = yo. This solution 

y(x) is such that 

l y(x) - yol <_ MA 

for all xE (xo - A, xo + A). 

Proof. We shall prove this theorem by the method of successive approximations 

which goes back to the days of Isaac Newton. 

We first note that a necessary and sufficient condition that' the function 

y(x), continuous in x and satisfying the condition y(xo) = yo, is a solution of 

(2.61) on the interval (x0 - r, xo + r) (r > 0) is that y(x) satisfies the equation 

y(x) = yo +I0f (t, y(t))dt. (2.62) 
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If y(x) satisfies (2.62), then since f and y are continuous, we can differentiate 

(2.62) and the result is (2.61). If y(x) satisfies equation (2.61), then, taking the 

definite integral from xo to x where xE (x0 - r, xo + r) on both sides of the 

equation, we obtain 

Jxa dsds = y(x) - y(xo) =fof (s, y)ds 

which gives the result. 

The remainder of the proof of the theorem consists in showing that the 

sequence 

yo(X) = yo 

y, (x) = yo +jf (t, yo) dt, 
0 

a 
y2(x) = YO +fof (t, yi(t))dt, 

Yo +fo 
.f 

(t, yn-1(t))dt 

converges on [xo - A, xo + A] to a function which is a solution on (xo - A, xo + A) 

of (2.62), and then showing that this solution is unique. We will show that the 

sequence converges on [xo, xo + A] and that the limit function is a solution on 

[xo, xo + A] of (2.62). A similar argument applies to the interval [xo - A, xo]. 

We first show that for each m, the function y,,, (X) is defined and continuous 

on [xo, xo + A], and moreover if xE [xo, xo + A] then 

I Ym(x) - Vol < Mix - xol. (2.63) 



Chapter 2. Mathematical background 55 

If m=0, the statement is clearly true. If the statement is true for m=q, then 

for xE [xo, xo +A], 1y. (x) - yo < MA < b. Therefore f (x, y. (x)) is defined for 

xE [xo, xo + A]. Since f (x, yq(x)) is a continuous function of x, then 

Yq+i(X) = Yo + f(t, ya(t))dt 
xp 

is defined and continuous. Also, 

l Yq+i(x) - yol 
xof 

(t, yv(t))dt < M(x - xo). 

Next we show that the sequence { y, (t) } converges uniformly on [x0, xo + A] to 

a continuous function y(x). 

We will use the Weierstrass M-test (see [19], Thm. (15.2), p. 323) to prove 

that the series 
00 

Yo(x) +E [y. +1(x) - yn(X)] (2.64) 
n=0 

converges uniformly on [xo, xo + A]. For xE [xo, xo + A], let 

An(x) = Iyn+l(X) - Yn(X)I" 

Then, for each n, we have 

A. (x) =Ifx [f(t, yn(t)) - .f 
(t, yn-1(t))]dt 

xo 

x fol. f (t, ýJýº(týý -f (t, y�-1(t))I dt 

£ Jynýtý - yn-l(t)I dt 

=kf 0�-1(t)dt 
xp 
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where k is a Lipschitz constant for f on D. 

Now we obtain an estimate for O, a(x) by induction. We have seen that, 

Ao(x) = Iyi(t) -yo(t) I< MIX - xoI , for XE [xo, xo + A]. 

Assume inductively that if xE [xo, xo + A], then 

Qn(x) <M 
kn+l(x - Xp)n+l 

k (n + 1)! 

In that case, 

+l X On+l (x) <k 
x0 

An(t) dt <kF (n + 1)! Jxo(t - xO )n+ldt 

_M 
kn+2 1 

k (n+l)! n+2ýx-xý)n+2' 

which verifies the inductive hypothesis. Thus, if xE [xo, xo + A], we have 

00 M oo kn+l x_ x0)n+l E An(X) :57 i n=0 n-0 

M oo kn+'An+l 

_M--ek (n+1)! k() n=O 

56 

Thus the uniform convergence of (2.64) follows from the Weierstrass M-test, by 

using the convergence of the exponential series. 

Next, we show that the function y(x) defined by the series (2.64) is a solution 

of (2.62) such that y(xo) = yo. First we show that for xE [xo, xo + A], I y(x) - 

yob < b, and hence that for all xE [xo, xo + A], f (x, y(x)) is defined. If xE 

[xo, xo + A] and if &>0, then if m is sufficiently large, we have 

Iy(x) - Jot <- Iy(x) - Ym(X)I + Iym(x) - Yol <E+ M(2 - xo). 
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Therefore, 

ly(x)-yol<M(x-xo) <MA<b. 

By the Lipschitz condition on f, we have: for e>0, 

f0 [f fit, yet)) - .f 
fit, ym(t))]dtl 

foI. f (t, yet)) -f fit, ym(t))I dt 

<kxo1 y(t) - ym(t)I dt < ke(x - x0) < keA, 

provided m is sufficiently large. Therefore 

lim f(t, ym(t))dt =x f(t, y(t))dt. m-°o 
2 

f 
xo 

Taking the limit in m on both sides of the equation 

Ym+l(x) = Yo +fo 
.f 

(t, ym(t))dt, 

we obtain 

x 
y(x) = yo +j f (t, y(t))dt, 

so that (2.62) is satisfied. 

57 

Finally, we show that the solution y(x) of (2.62), which satisfies the initial 

condition y(xo) = yo, is the only solution of (2.61) which satisfies this initial 

condition. 

Suppose there exist solutions y(x) and Y(x) of (2.62) on an interval (xo - 

r, xo + r), where r is a positive number, such that y(xo) = Y(xo) = yo" By 

induction, we obtain an estimate on I y(x) - Y(x) I for xE [xo, xo +r- 6] where 

0<6<r. A similar estimate can be obtained for xE [xo -r+6, xo]. Since 

y(x), Y(x) are continuous on [xo, xO +r- 6] for fixed 6 there exists B>0 such 

that, if xE [xo, xo +r- S], then I y(x) - Y(x) I<B. But 
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Iv(x) -Y (x) I: fo if (t, y (t)) - ,f 
(t, Y (t)) I dt 

<kzo (y(t) - Y(t)Idt. (2.65) 

Therefore 

Iy(x) - Y(x)I < kB(x - xo). 

Assume inductively that 

Iy(x) - Y(x) 1G 
k' 
k' B(x - x0)m, 

for ma positive integer. Then by (2.65), 

km+l 
Iy(x) - Y(x)) 

(m -I-1)! 
B(x - xo)M+1, 

which is the (m+2)th term in the (convergent) series for Bek(x-x0). Therefore for 

any e>0 we have I y(x) - Y(x) I<e; hence y(x) = Y(x) for xE [xo, xo +r- 6]. 

Since 6 is arbitrarily small, y(x) = Y(x) for xE (xo, xo + r). This completes the 

proof of Theorem (2.62). 

We emphasize that the uniqueness result, although straightforward to prove, 

is crucially important both in later development of the theory and in applications 

of ordinary differential equations. 

Extension of the Method of Successive Approximation to a system of 

Equations of the First Order. 

Consider the system of equations 

dy1 
_ - , 

fl(x1YIiY2) 
... I ym)) T 

dy2_ 
d- - 

f2 (X) Y1> y2, ..., ym), 



Chapter 2. Mathematical background 59 

dym 

_ 
Cýx - 

f,. (X, yl7 y2) ..., ym). 

Then, under conditions which will be stated, there exists a unique set of continu- 

ous solutions of this system of equations which assume values y°, y2,..., y, °� when 

x= x0. A bare outline of the proof will be given; the method follows on the lines 

of our preceding discussion. 

The functions fl, f2,..., f,,, are supposed to be single-valued and continuous 

in their m+1 variables when these variables are restricted to lie in the domain 

D defined by 

Ix 
- xol :5a, Iyi 

- y°I :5 bi 
...... 

Iym-YmI :5 bm. 

Let the greatest of the upper bounds of fl, f2,..., f,,, in this domain be M; if A is 

the least of a, m, ..., 
M, let x be further restricted, if necessary, by the condition 

Ix - xo I<A. The Lipschitz condition to be imposed is 

Ifr(;; Yi, Y2,... 
rYm) - fr(X) yl, y2,..., ym)) 

<kiIYi-ylI+k2JY2-Y21+... +kmlYm-yml, 

for r=1,2, ..., m. Now define the functions yi (x), y2 (x),..., ym(x) by the relations 

yr ýxý =y+fx fr (t, 2Ji -1 (t) ýJ2 -1 (t), 
xp 

Then, it can be proved by induction that 

yn(x) - yT -1(xß I< M(k1 + k2 + ... 
+k 

m)n-1 Ix 
- X01 , r\ -' n! 

n 

and the existence, continuity, and uniqueness of solutions follow as in previous 

arguments. 
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Extension of the Method of Successive Approximation to a differential 

Equation of Order m. 

Since the differential equation of order m 

dmy dy dri`-1y 
dx'a = .f 

(x, 
yI dx *" dxm-1 

) 

is equivalent to the set of m equations of the first order 

dy 
_ 

dyl dym-2 
_ Cox 

= Yl, dx = Y2 ...., (fix 
Ym-1 r 

dym-1 
_ ix -f 

ýxý y) yip... ' ym-1ýý 

it follows that if f is continuous and satisfies a Lipschitz condition in a domain 

D, the equation admits of a unique continuous solution which, together with its 

first m-1 derivatives, which are also continuous, will assume an arbitrary set of 

initial conditions for the initial value x= xo. 

As a final remark for this section, we note that the method of successive 

approximations can be extended, with slight changes, to differential equations 

which contain a complex parameter z. 

References: [11], and [17]. 

2.8 The Weyl-Titchmarsh m-function 

Consider the Schrödinger equation 

d 'f 
+ V(x)f(x) =zf (x), 0<x< +00, (2.66) 

where the potential V(x) is real valued and integrable over compact intervals of 

R, and z is a complex parameter. Let u and v be two independent solutions of 

(2.66) determined by the initial conditions 
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u(0, .)=1 V(0,. ) =0 (2.67) 
u'(0,. )=0 v'(0,. )=1 

Then, the functions u(x, z) and v(x, z), together with their derivatives u'(x, z) 

and v'(x, z) are entire functions of z. 

We note that 

u(x, z) = u(x, z), v(x, z) = v(x, z) (2.68) 

which may be verified as follows. Taking the complex conjugate of 

_d 
u (X, z) 
dx2 + V(x)u(x, z) = zu(x, z) 

we obtain 
d2u(x, z) 

dx2 +V (x)u(x, z) = zu(x, z). 

Hence u(x, z) is a solution of the differential equation 

-d 
2f (x) 

+V (x)f (x) = xf (x) 
dx2 

satisfying the initial conditions 

f (o, z) = 1, f'(o, z) = o. 

On the other hand, according to its definition, f= u(x, z) is also a solution of the 

above equation satisfying the same initial conditions. Therefore, the uniqueness 

of the solution implies 

u(x, z) = u(x, z). 

The corresponding property of v may be verified in the same manner. 
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Lemma 2.63 Suppose that yl(x, zl) and y2(x, z2) are solutions of (2.66) with 

corresponding complex parameters zl and z2 respectively. Then, we have Green's 

formula 

(z2 - z1)1 
x 

yiy2dx = WO(yi2 Y2) - Wx(yi, y2), (2.69) 

where WW(yl, Y2) is the Wronskian of yl and Y2, defined by 

WW (y1) y2) = yi(X)yä(x) - 4(X)y2(X) (2.70) 

and Wo(yi, Y2) =W (yi) y2) Ix-o 
" 

Proof. The identity 

(z2 
-zl)yl(X)zl)y2(X)z2) _ -ýx[y1(x, zl)y2(X)z2) -yi(x)z1)y2(x, z2)1 

can easily be verified. Equation (2.69) follows on integrating both sides of the 

above equation on the interval (0, x). 

Now let y= y(x, z), y= y(x, z) be solutions of (2.66) such that either y=u 

or y=v. Suppose that at x=N we have 

y cos ,ß+ y' sin ß=0, (2.71) 

ycosß+ y sing = 0, (2.72) 

where 0 is a real number. By Green's formula (2.69) we have 

(z - z)1 
N 

y(x, z)y(x, z)dx = Wo(y, F) - WN(y, y)" (2.73) 

By the conditions (2.67), Wo(y, y) = 0. Also, if we multiply (2.71) by y cosß, 

(2.72) by y' cos ß and subtract the two obtained equations we obtain 
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(yy - y'y) cos2 0=0. (2.74) 

In a similar way, if we multiply (2.71) by y sin, 6, (2.72) by y sin # and subtract 

the two obtained equations, we have 

(yy - y'y) sin2 Q=0. (2.75) 

From equations (2.74) and (2.75) it follows that WN(y, y) = 0. Furthermore, 

since y(x, z) = y(x, z) the integrand in (2.73) is just Iy(x, z)12. Thus, we have 

N 

(z - z) 0 
1y(x, z)I2dx=0. 

Since the conditions (2.67) exclude the trivial solution y(x, z) = 0, we must have 

z=z, that is z is real. This proves the following: 

Theorem 2.64 Let N be a positive number and fl a real number. Then every 

zero of the entire function 

u(N, z) cos ,6+ u'(N, z) sin ß (2.76) 

is real. The same is true for v(N, z) cos 0+ v'(N, z) sin P. 

For any number p, the expression u(x, z) + pv(x, z) satisfies the equation 
(2.66). We now choose p so that u(x, z)+pv(x, z) satisfies the boundary condition 

[u(N, z) + pv(N, z)] cos 0+ [u'(N, z) + pv'(N, z)J sin ,8=0 
(2.77) 

at the point x=N and we denote p by 2N (z). Then QN (z) must satisfy 

u(N, z) cos Q+ u'(N, z) sin, Q 
ýN (z) 

v (N, z) cos ß+ v'(N, z) sing ' 
(2.78) 
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Since u(N, z), v (N, z), u'(N, z) and v'(N, z) are all entire functions of z, f,, (z) is a 

meromorphic function of z, that is, a ratio of two entire functions. Furthermore, 

by Theorem (2.64), all the poles of 2N (z) lie on the real axis. We write 

- _u(N, 
z)(+u'(N, z) QN (z' () 

v(N, z)( + v'(N, z)' 
(2.79) 

where (= cot ,8 
is real (C infinite corresponding to sin P=0 and £N _-y). If 

N and z are fixed, and ( varies, (2.79) may be written as 

e_ a(+b 
c( + d' 

where a, b, c and d are fixed. 

(2.80) 

This is a Möbius transformation, which we defined in section 3. Since 

Ibc - add =I u(N, z)v'(N, z) - u'(N, z)v(N, z)) ; 0, 

the transformation (2.80) is a one-to-one mapping which transforms circles into 

circles; straight lines being considered as circles with infinite radii. Therefore, if 

Imz 0, then . fir, 
(z, () varies on a circle C. (z), with a finite radius, in the 

plane, as ( varies over real values. The circle C,, (z) is the image of the real line 

with respect to the Möbius transformation. 

The centre and the radius of the circle C,, (z) may be determined as follows. 

The centre of the circle is the symmetric point of the point at infinity with respect 

to the circle. Thus if we set 
tN 001 

. er, (z, (") = the centre of C,, (z), 

then c" must be the symmetric point of (' with respect to the real axis of the 

plane, namely, (' _ (". On the other hand, 
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QN (z, 
- 

v(Ný zý 1= 00, (2.81) 

as can be seen from (2.79). Therefore, the centre of the circle CN (z) is given by 

2z- v' (N, z) WN(u, v) (2.82) 
N v(N, z)) WN(v, v)" 

The radius rN (z) of the circle CN (z) is equal to the distance between the centre 

of CN (z) and the point i,, (z, 0) on the circle C,, (z). Hence 

u'(N, z) 
_ 

WN(u, v) 
rN (z)_- I 

v'(N, z) WN(v, z) 

u-vv - u'Uv' - v'uU' + v'Uu- v"WN (v, v) 

_ 
ti (uv' 

- u'71) WN (U, v) 
-( v'WN(V, y) 

I- IWN(V, 

V) 

On the other hand, by virtue of (2.67), 

WN (u, v) = Wo (u) v) = 1. 

Further, by virtue of (2.67), (2.68) and by making use of (2.69), we have 

21mz IN N 
Iv(x, z)I2dx = 2lmz fN 

v(x, z)v(x, z)dx (2.83) 

= iWo[v(x, z), v(x, z)] - iTVjy[v(x)z), v(x, z)] 

_ -itiýN 
[V (X, z), V (X, z)] " 

Therefore, we obtain 

) r', ' 
(z) = 2jImzl fö I1 v(x, z)I2di* 

2.84 

We shall now prove the following: 
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Theorem 2.65 If Imz > 0, then the lower half plane of the ( plane is mapped 

onto the interior of the circle CN(z) by the transformation (2.79). 

Proof. Since the circle CN (z) is the image of the real axis of the ( plane by the 

transformation (2.79), the lower half plane of the ( plane is mapped onto either 

the interior or the exterior of the circle C,, (z), and further, the point V 
-, ((NN, z) of 

the ( plane is mapped onto the point at infinity of the £ plane. 

On the other hand, by making use of (2.68) and (2.83), we obtain 

Im - 
v'(N, z)l 

=i 
v'(N, z) 

_ 
v'(N, z) (2.85) 

v(N, z) J2 v(N, z) v(N, z) 

_ 
-i WN(v, U) Imz fö IV(X) z) I2dx 

> 0. 
2I v(N, z)12 I v(N, z)l2 

This means that výN z') belongs to the upper half plane of the ( plane. Hence the 

upper half of the ( plane is mapped onto the exterior of CN (z), and so the lower 

half plane of the ( plane is mapped onto the interior of CN (z). This completes 

the proof. 

Since Wo(u, v) = 1, the transformation (2.79) has a unique inverse which is 

given by 

v'(N, z)1,, + u'(N, z) 
v(N, z)QN+u(N, z) 

(2.86) 

In view of Theorem (2.65), if Imz > 0,1 belongs to the interior of the circle 

CN(z) if and only if Imp' < 0, namely, i(C - Z) > 0. From (2.86) it follows that 

v'(N, z)¬+u'(N, z) v'(N, z)e+u'(N, z) i(ý - ý) -i- 
v(N, z)e + u(N, z) 

+ 
v(N, z)Q + u(N, z) 

_ 
iWN(U+ev, ü+TV-) 
lv(N, z)t+'u(N, z)l 
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Therefore, Im( <0 if and only if 

ZWN (u + Qv)26 +)>0. 

By Green's formula (2.69), we have 

jaN 21mz Iu+£v12dx = i[Wo(u+Pv, ü+Pv) -WN(u+Pv, i+Pi)}. 

We obtain further by (2.67) 

Wo(U+tv, is+iv) 

= Wo(u, i)+Wo(v, ic)Q+Wo(u, v)e+Wo(v, v) tl2 

_ -e+e = -2ZImt. 

Consequently, we obtain the following: 

67 

Theorem 2.66 If Irnz > 0, then 2 belongs to the interior of the circle C,, (z) if 

and only if 

JN Iu(x, z) + ¬v(x, z)12dx < (Imz) 
(2.87) 

and £ lies on the circle C,, (z) if and only if 

JN (u(x, z) + ev(x, z)= (2.88) 1 dx 2 
(Imz) 

Remark 2.67 It is easy to see that Theorem (2.66) also holds when Imz < 0. 

If 2 belongs to the interior of the circle C,, (z) and 0< N' < N, then 

ýN IU + Qv12dx < jN IU + Qv12dx < (Imz) 

Hence, from Theorem (2.66), we have the following: 
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Theorem 2.68 If Imz # 0, and 0< N' < N, then we have 

CN (z) 9 CNS (z) 

where CN (z) is the set composed of the circle C,, (z) and its interior. 

Theorem (2.68) implies that, if Imz 0, then the set 

n CN(z) = C. (z) = m(z) (2.89) 
N>O 

is either a point or a closed disc with a non-zero finite radius. 

The function m(z) is the Weyl-Titchmarsh m-function. According as m(z) 

is a point or a disc, the singular boundary point x= oo is said to be in the limit 

point case or the limit circle case. 

According to this definition, the classification would appear to depend upon 

both V (x) and z. However, it depends only on V (x), as is shown in the following 

Theorem: 

Theorem 2.69 (i) If for some zo, Imzo 0 0, the point x= oo is in the limit 

circle case, then, for every z, every solution f (z) of the equation 

(2.90) - 

d2f(x) 
+ V(x)f(x) = zf(x), 0<x< 00 

dx2 

satisfies 

(2.91) I If(x, z)12ax < 00. 

(ii) If for some zo, Imzo 0 0, every solution of the equation 

d 
dx(2) + V(x)f(x) = zo f (x), 0<x< 00 (2.92) 

satisfies (2.91) with z= zo, then the point x= oo is in the limit circle case for 

this zo. 

r 
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Remark 2.70 According to Theorem (2.69), the classification is independent of 

z. Thus, the point x= oo is in the limit circle case if and only if, for every z 

every solution f (x) of (2.90) satisfies 

100 (f(x)I2dx<00. 

The point x= oo is in the limit point case if and only if, for every z, there exists 

at least one solution of (2.90) such that 

0lf 
(x) 12dx = oo. 

Remark 2.71 Even if the point x= oo is in the limit point case, there exists, 

for every z, Imz 0 0, at least one solution of (2.90) such that 

f0O 1f (x)J2dx < oo. 

In fact, from Theorem (2.66), it follows that 

I u(x, z) + Qv(x, z) I2dx < (Imz) < 00, 

where /=C,,. (z) = m(z). 

Proof of (ii). By assumption, we have 

1000 Iv(x, zo)I2dx < oo. 

Hence, by virtue of (2.84), the radius rN (zo) of the circle CN (zo) remains positive 

as N -º oo. Thus the proof is completed. 

Proof of (i). See [29], Thm. (43.4), p. 166. 
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Theorem 2.72 In the limit-point case the limit point m(z) is an analytic func- 

tion of z for Imz >0 (and Imz < 0). Also, Imm(z) >0 for Imz > 0. 

Proof. From (2.82), (2.83) and (2.84) it follows that the center and the radius 

of the circle CN(z) are continuous functions of z, for Imz # 0. Therefore, since 

CN, (z) C CN(z) for N' <N (Theorem (2.68)), if z is restricted to any bounded 

domain A of the z plane which does not meet the real axis, the circles PN (z) 

are uniformly bounded as N --+ oo. It can then be shown (see [9], Thm. (2.3), 

p. 229) that m(z) is the uniform limit of a sequence of analytic functions, and is 

thus analytic. Moreover, since m(z) is inside C,, (z), it follows from (2.87) that 

Imm(z) >0 for Imz > 0. 

We have treated the case of the Schrödinger operator defined on the positive 

real line. The results obtained can be shown to hold for the negative line in a 

similar way. In particular, we have shown that the function m(z) is an exam- 

ple of a Herglotz function. The analysis of Herglotz functions which arise from 

differential operators provides an important tool of Spectral Theory. 



Chapter 3 

Generalized Value distribution of 

Herglotz functions. 

3.1 Introduction 

We begin this chapter by introducing the notion of value distribution for a real- 

valued, measurable function f: a -º a. We then explain what we mean by the 

value distribution associated to a Herglotz function F, and indicate how we can 

generalize this idea. Finally, we show how this generalized value distribution may 

be related to the composition of pairs of Herglotz functions. 

3.2 Value distribution 

Given a (Lebesgue) measurable function f: R -º IR, and any two Borel sets A 

and S, we are interested in quantities such as 

M(A, S)=I{AEA: f(A)ES}1 =jAnf-1(S)I. 

71 
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Here 1.1 stands for Lebesgue measure, and Jul (A, S) is the measure of the points 

AEA for which f (A) E S. The mapping M: (A, S) --º M(A, S), which assigns 

an extended real non-negative number to pairs of Borel subsets of IR, has the 

properties 

(i) A -º M (A, S) defines a measure on Borel subsets of R, for fixed S; 

S -º ,M 
(A, S) defines a measure on Borel subsets of II8, for fixed A; 

(ii) M(A, R) =I A1, hence in particular the measure A -º M(A, S) is absolutely 

continuous with respect to Lebesgue measure; 

In addition, we shall assume that 

(iii) the measure S -º M (A, S) is absolutely continuous with respect to Lebesgue 

measure. 

Definition 3.1 Any mapping (A, S) -º .M 
(A, S), where A, S are Borel subsets 

of R, and satisfying properties (i) - (iii) above, is called a value distribution 

function. 

Properties (ii) and (iii) imply that any value distribution function M may be 

represented in terms of measures {p, } (y E R) as 

M(A, S) = 
jiz(A)dy. X3.1) 

In considering the notion of value distribution for Herglotz functions, the family 

of measures in the integral in (3.1) will arise from the Herglotz integral represen- 

tation, and these measures will be Herglotz measures. The precise construction 

will be given in the next section. 
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3.3 The one parameter family of Herglotz func- 

tions Fy 

Given a Herglotz function F, we may construct a one parameter family of Herglotz 

functions Fy, defined by 

F(z)yEI 
(3.2) 

Suppose that the functions FF have representations 

F. (z) = a. + byz +f{t1 
+11 

dmy(t), (3.3) 
z 72 

so that dµy(t) are the measures corresponding to the Herglotz functions F. We 

refer to the integral in (3.1), where the measures µ� are now the measures corre- 

sponding to the Herglotz functions Fy, as the value distribution associated with 

the Herglotz function F. Moreover, we have the following result. 

Lemma 3.2 Suppose that F has real boundary values almost everywhere, so that 

i is purely singular. Then, for any Borel sets A, SCR we have 

jILy(A)dy= IA n F+1(S)I, (3.4) 

where F+ denotes the boundary value of F as z approaches the real axis, and 1.1 

denotes Lebesgue measure. 

Proof. Note that the functions Fy will also have real boundary values almost 

everywhere, and so the measures py will be purely singular as well. Denote by 

Supp py the support of µy, and note that Supp py = {A ER: F+(a) = y} (see 

remark (2.57)). Hence, for YES we have Supp py C F+1(S) and we can write 
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j 
pv(A)dy = Js py(A n F+1(S))dy. 

However, for yýS we have Supp µy n F+ 1(S) = 0, and so 

f 
µb(A nF '(S))dy = 

fR 
uy(A nF '(S))dy. 

We now use the remarkable identity (see [23]) that 

fav(A)dy= IAI (3.5) 

for any set ACR, to obtain 

is 
i , (A)dy = JA n F. F 1(S)I, 

and the lemma is proved. 

Corollary 3.3 With the same notation as in lemma (3.2), suppose that F has 

real boundary values almost everywhere on A. Then, equation (3.4) again holds. 

Proof. Let it"', µ-' denote the absolutely continuous and singular components 

of py respectively. The assumption that F has real boundary values almost 

everywhere on A implies that the set Supp µy° (l A has zero Lebesgue measure, 

and on this set µa° vanishes. Thus, µß, (A) = µy(A) and corollary (3.3) now 

follows by our previous argument. 

It will be important for later calculations to know how the constants by in 

(3.3) depend on y. The next lemma provides an answer to this question. 

Lemma 3.4 For a given Herglotz function F(z), the non-negative constants by 

appearing in (3.3) are zero, except possibly for a single value of y. Moreover, 
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it is possible for by to be strictly positive for some value y= yo; for any given 

yo E R, the condition by0 >0 is equivalent to the condition that the point t=0 is 

a discrete point of the measure dg(t), where dg(t) is the measure corresponding 

to the Herglotz function G(z) defined by 

G(z) = yo _1F, (_s). 
(3.6) 

Proof. By lemma (2.53), the constants by are determined by 

1 by= um 
SImFy(is)= 

liým 
SIm[y_F(is)t' 

Suppose that F(is) = a(s) + iß(s), with a, p real. Then, 

by = 1-o S1 
p(s) 

[y - a( )]2 + [ß(s)]2. 

If by > 0, then a(s) -+ y and 6(s)-ºDas s-ºoo, so that F(is)-ºyas $-ºoo. 

That is, F(is) -º y as s -º oo is a necessary condition for by > 0, where y is any 

real number. This means that there can only be at most one value of y such that 

by > 0, since F(is) can not tend to two different limits as s -º oo. 

Consider now the Herglotz function G(z) defined in (3.6), and in particular, 

the limit 

f= lim wImG(iw), wER. 
w-+0+ 

Writing w=ä, we have 

lam 
s 

Irrt[yo 
- F1 (is)1 

Therefore, by0 = Q, and thus bv0 >0 is equivalent to Q>0. 

Suppose that G admits the representation 
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G(z) = as + baz +j{t1x 
t2 +1 

Idg(t). 

Then, 

Q= lim wImG(iw) = lim fw dg(t). 
w-+0+ w-. 0+ R tZ + w2 

76 

(3.7) 

The integrand in the above equation has 0 as its pointwise limit, as w -º 0+, 

except in the case when t=0, in which case the limit is 1. Also, note that 

2 
w_1<1 for0<w<1 

t2 + w2 +1- tz + 1' ' 

where 

%12 d9(t) < 00, JR1+t 

since the measure dg(t) defines a Herglotz function. Hence, we can apply the 

Lebesgue dominated convergence theorem in (3.7), to deduce that 

lim f WZ dg(t) =j lm 
z 

dg(t) = g({0}). 
w-º0+ R t2+ 2U w-+0+ t2 + 2U 

So, by0 >0 is equivalent to t=0 being a discrete point of the dg(t) measure. 

Now we show how to construct a family of Herglotz functions P 
, (z), such 

that, for a given (real) value of y, the constant by appearing in the representation 

of the functions Py(z) is strictly positive. We first take a Herglotz function d(z), 

whose corresponding measure dg(t) has a discrete point at t=0. A Herglotz 

measure has a discrete point at t= to, provided that the non-decreasing function 

which gives rise to this measure has a discontinuity at the point t= to. Suppose 

for example that we take 

ot<o, 
P(t) _ t+1 t> 0, 
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so that dg(t) is the zero measure on the negative real line, and is equal to Lebesgue 

measure on the positive real line. Now let the Herglotz function F(z) be defined 

by 

G(z) = 
v1 - 

F(_; 
), yi E R, 

which implies on inverting the equation that 

(-s). 
F(z)=y1-G 

Next, define a family of Herglotz functions P 
, (z) by 

1- 
E 

Then, it follows by our previous analysis that the constant by� appearing in the 

representation of the Herglotz function Fyl (z), is strictly positive. Moreover, we 

then have by =0 for any y0 yl. 

3.4 Generalized Value distribution of Herglotz 

functions, and its dependence on composi- 

tion of Herglotz functions 

We now extend the idea of the value distribution of a Herglotz function, which 

was defined in the previous section. Given a Herglotz function F(z), and a Borel 

subset S of IR, we define the integral-measures v and vs by 

v(X) = 
jp(X)do(y) (3.8) 

and 
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vs (X) = 
is (3.9) 

respectively, for any Borel subset X of R. Here, the measures py are the measures 

corresponding to the Herglotz function Fy, which were defined in (3.2), and da 

is any Herglotz measure. In the remainder of the section, we will obtain some 

results which describe the measures v and vs. 

Lemma 3.5 Suppose that the measure do- is absolutely continuous. Then, the 

measures v and vs are absolutely continuous. 

Proof. We will use the identity (3.5). Assuming IAI =0 we then have ([10], 

Cor. (2.3.11), p. 68) µy(A) =0 almost everywhere, and since by assumption the 

measure da is absolutely continuous it follows ([10], Prop. (2.3.8), p. 67) that 

v(A) = vs (A) = 0. This proves the absolute continuity of v and vs. 

Lemma 3.6 Suppose that F has real boundary values almost everywhere, so that 

the measure M is purely singular. Then, we have 

vs(A) = vs(A n F; '(S)) = v(A n F4'(S)). (3.10) 

Proof. The result follows from the proof of lemma (3.2) and the definitions of v 

and vs from which we have 

vs (A) = Js µb (A)dcr(y) = 
fiz(A n F+ 1(S))da(y) = vs (A n F+ 1(S)) 

= 
f1u(A n F; '(S))da(y) = v(A n F+ 1(S)). 

Thus vs agrees with v on F+ 1(S), though in general they are different. 

Lemma 3.7 The measure vs is a Herglotz measure. 
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Proof. We shall first of all verify the identity 

fh(t)dzis(t) 
= Js 

{jh(t)dy(t)}do(y), (3.11) 

where h is any measurable function for which these integrals are absolutely con- 

vergent. (In fact, it is enough that either the left-hand side or the right-hand side 

is absolutely convergent). Suppose first that h is the characteristic function of a 

measurable set ECR. Then, 

1XE(t)dzIs(t) 
= vs(E) = 

jP(E)dc7(y) 

Js 
{ fEt)}da(y) = Js 

{JRxtdYCt}dY. 

Hence the identity holds in the case h(t) = XE(t). Next, suppose that h is a 

simple function, h(t) = F, 1 a; X.,, (t). Then, we have 

, º(t)dvs 
(t) _ 

LE 
aiX.; (t)dvv (t) =a 

JR 
X 

XA1(t)dµy(t)}du(y) = = 
i=l 

fs {fX,, 
ý(t)dµv(t)}da(y) =f{ ail 

, _1 

= 
1, n 

JS , 

and hence (3.11) is proved in this case also. 

Now suppose that h is a non-negative measurable function. Thus, by lemma 

(2.9) there is a sequence If,, } of simple functions such that 

(1) fl(t) < f2(t) < ..., and 

(2) limnýý f,, (t) = h(t). 

Then, we have 
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jh(t)dv3(t) 
=f lftOo iým f�(t)dvs(t) = li m1 f�(t)dvs(t), 

by an application of the monotone convergence theorem. By the previous part 

of this proof, and another application of the monotone convergence theorem, we 

see that the above expression is equal to 

I 
nýoo 
iM JS l ct 

f,, (t) dpv(t) I du (y) =SI 
film ff(t)d(t)}d(y). 

Finally, by another application of the monotone convergence theorem, we see that 

this integral is equal to 

IS {f lam f�(t)dµv(t)}da(y) = Js JR h(t)dµv(t)}do(y)t 

which shows that (3.11) holds in this case as well. 

Suppose now that h is any measurable function. Then, h= h+ - h-, where 

h+, h- are respectively the positive and negative parts of h, and h+ and b- 

are non-negative, measurable functions. Hence, (3.11) follows from the second 

part of this proof. Note that the integrals involving h+ and h- are finite, since 

IhI = h+ + h-, and by our assumption IhI is integrable. 

We now consider the function p(t) = 1/(1 + t2), which is continuous and 

hence measurable. We will show that, with h(t) = p(t), the double integral on 

the right hand side of (3.11) is finite. This will imply that the integral on the left 

hand side of (3.11) is also finite, (having the same value since the two sides are 

equal), which implies that vs is a Herglotz measure. 

From the representation of the Herglotz functions Fy in (3.3), we obtain 

�2 
Im F, (i) = by+ IR 

1-- 
IR 

1+ -t2dmv(t). 
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Therefore, we have 

1s l Jai 1-1 tzdgm(t)}do, 
(y) =j {ImFy(i) - by}da(y). (3.12) 

Let us consider 

j ImFF(z)do(y) = 
is Im 

ly-1 Jda(y)" 

Suppose that, for any fixed z, F(z) = A; + iBs, with B, > 0. Then, 

(y -A 
)a 

+ Bs 
da (y)" is 

= 
fs 

.- 

Consider now the function 

H(y) = 
BZ(1 + y2) 

(y-A: )2+Bs. 

This function tends to BZ as y -º ±oo. Hence, there exists a constant yo >0 

such that, if h i! > yo, then H(y) < Bz + 1. Since the function H is continuous 

on the closed interval [-yo, yo], it attains its maximum. Let c= maxH(y) on 

the interval [-yo, yo], and let K, = max{Bs + 1, c}. Note that Ks = K(z) will 

depend on the value of zE C+. We then have 

1 B,. 
(y-A: )Z+Bs <Kzl+y2' 

and since 1/(1 + y2) is o-integrable, it follows that 

fImF(z)dc7(y) < +oo. 

By noting that Im F. (z) - by < Im F. (z), since by is non-negative, and setting 

z=i, we obtain from (3.11) and (3.12) 
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fs{ Im FF(i) - by}dc(y) =f1+ t2 
dvs (t) < +oo, 

which proves from (3.12) that dvs (t) is a Herglotz measure, for arbitrary Borel 

sets S. 

Now let Hs (z) and ¢(z) be Herglotz functions corresponding to the Herglotz 

measures dvs (t) and dc(t), respectively, with the following representations: 

t 
Hs (z) = aX + bH z+{t1z1+ t2 

I dvs (t), (3.13) 

1I 
da (t). (3.14) O(z) = ao + bkz +fIt1z t2 +t 

Let also cs (z) be the Herglotz function having the same representation as that 

of q5(z) in (3.14), except that, now integration takes place over the set S instead 

of II8, that is 

0S (z) = ao + biz + is {t1x 
tz -}t -1 

}da(t). (3.15) 

Moreover, let the composed Herglotz function (0 o F)(z) have the following 

representation: 

+1I 
dý(esoF) (t). (3.16) (ýs o F)(z) = a(esoF) + b(esaF)z + f. 

lt1z T2- 
t 

The following lemma shows how the measure vs is related to the measure 

Lemma 3.8 For any Borel subset B of R, we have 

vs(B) = bjµ(B), 

where is the measure corresponding to the composed Herglotz function 

(¢s o F), p is the measure corresponding to the Herglotz function F, and the 
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constant bo appears in the representation of the Herglotz function 0s in (3.15) 

(and also in (3.14)). Note that here we do not use absolute continuity of the 

measure v. 

Proof. From the representation of Hs (z) in (3.13) we have 

ImHH(z) = bHlmz+ jim[t (3.17) 

The function Im [1/(t - z)] is a continuous, and hence measurable function, and 

thus we have from equation (3.11) 

I im 
lt 

1 
z] 

dvs (t) = 
IS {I Im 

[t 
1 

Z] 
dµy(t)}du(V). (3.18) 

R 

The representation of the functions FF(z) in (3.3) leads to 

ImFF(z) = byImz+ f Im lt 1 

x]dµy(t). 
(3.19) 

R 

Substituting (3.19) into (3.18) 
, and then (3.18) into (3.17) we obtain 

ImII(z) = bXImz+ f {ImFF(z) -b. Imz)do(y) 
s 

=bXlmz+/Im[y-F(z)Jdo(y)- 
/bImzdcT(y). (3.20) 

In (3.20), fs by Im z dc(y) may be identified with the integral fs f (y)dv(y), where 

bvImz = 
10 by Imz y= y', 

f(y)= 
y0y*l 

where y* is the point for which by > 0, if this point exists. Hence, 

= 
by(Imz)o({y}) yE S, 

(3.21) jbylmzdcr(y) 0 Y. S. 
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Also, from (3.15) we have 

Imgs(z) = boImz+ fs Im[t 
1 

z]do(t). 
(3.22) 

- 

With (3.21) and (3.22), we obtain from (3.20) 

ImHs(z) =biImz+Imo (F(z))-b, ImF(z)-by. (Imz)Q({y'}f1 S), (3.23) 

where y* is the point for which by > 0, whenever such a point exists. 

Suppose that the points a and b are not discrete points of the measure vs. 

By using lemma (2.59) (also remark (2.60)) and equation (3.23) we then have 

1/b {bHIm(A+ie)+Im$(F(ý. +i))- vs ((Q, b]) =£ im 
71- o+ 7r . 

-boImF(A+ie) - bv. Im(A+iý)o({y'} nS)}da = 

= bH lim 
1f6 Im (A + ie)da + lim 1fb Im ¢s (F(.. \ + ie))dA- 

E-+0+ 7a t-"0+ 7r a 

bo lim IbImF(A+ie)dA-by. 
Q({y'}nS)tu I 

1bIm( a +ie)d. A. (3.24) 

However, 
6 

lim 
1f Im (A + ic)da = 0. 

£o+ it a 

Hence, we have from (3.24) 

vs((a, b]) =u1f 
bImos(F(A+ie))d\-b# 

liö 16ImF(A+ie)da. 
c-+o+ 7r C- ir 

Suppose that the points a and b are not discrete points of any of the measures vs, 

or µ. (The set of discrete points of each of these measures is a countable 

set of points. This is because the functions that generate Herglotz measures are 
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non-decreasing, and thus can only have a countable number of discontinuities. ) 

By using again the characterization of Herglotz measures of intervals (a, b], we 

now have 

vs ((a, b]) = lý«soFý((a, bl) - b, µ((a, b]), (3.25) 

We shall now show that (3.25) holds, for arbitrary points a and b. As noted 

above, the set of discrete points of the measures vs, and it is countable. 

Take points a and b. Then, given any e>0, there are points in the intervals 

(a - e, a) and (b, b+ e) respectively, which are not discrete points of either of the 

measures vs, µ(OsaF) I or it. This is because the intervals (a-c, a) and (b, b+c) are 

both uncountable, having positive Lebesgue measure c. Hence, we can construct 

two sequences of such points, {cj}; 
E,, and {d; }; 

E�, with c; -º a_ and d; -+ b+. We 

then have, on taking the limit of vs((ci, d1)) 

vs([a, b]) = Qa, b]) - bjµ([a, b]). 

By the same argument, we have 

vs({x}) = µ«S, Fý({z}) - biµ({z}), VxER. 

Combining these two equations, we obtain 

v3((a, b]) = uýrSeF>((a, b]) - bmµ((a, b]), (3.26) 

for all points a and b of a 

Equation (3.26) implies that vs and - bei) are measures defined 

on the algebra of countable unions of intervals of the form (a, b]. The fact that 

vs is a Herglotz measure, implies that vs ((-N, N]) is finite for any integer N. 
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Since R= UNEN(-N, N], it follows that vs, and also - boll), are a-finite 

measures. Hence, there is a unique extension of these measures to the collection of 

Lebesgue measurable sets, called the corresponding Lebesgue-Stieltjes measure, 

and restricting this measure to the Borel sets, we have a unique extension to all 

Borel sets. Therefore, with this extended measure we have shown that 

v. (B) = µýmSoFý(B) - boµ(B), (3.27) 

for all Borel sets B, and lemma (3.8) is proved. 

In view of the significance of the composition (qs o F) in (3.27) for the 

measure vs, we shall give further results for compositions of Herglotz functions 

in Chapter 4. 



Chapter 4 

Compositions of Herglotz 

functions 

4.1 Introduction 

The composition of two Herglotz functions is a Herglotz function. Given two 

Herglotz functions, the question arises how the Herglotz representation for the 

composed function will depend on the Herglotz representation for the two given 

Herglotz functions. We shall answer this question: 

(a) with respect to the coefficient bFz in the Herglotz representation formula 

(1.1); how does the coefficient bF in this term depend on the representation of 

the two given functions? 

(b) with respect to the measure dp(t) in the Herglotz representation formula 

(1.1); in the case that dp(t) is absolutely continuous we know ([23], p. 131) that 

the density function h is given by h(A) _ Im lima-o+ F(. \+ie). So the question 

arises how does the boundary value for the composed function depend on the 

boundary values of the two given functions. In fact, we will answer this question in 

87 
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more generality, and we will make no additional assumptions about the measures. 

4.2 The term linear in z in the representation 

of a composed Herglotz function 

The following result provides a criterion for a Herglotz measure to be finite. 

Lemma 4.1 Let a function c(s) be defined for sER by 

1 
c(s) = JR s2 + t2 

dg(t), 

where dg(t) is an arbitrary Herglotz measure. Then, c(s)s2 -º a< +oo as 

s -º oo, if and only if the measure dg(t) is finite. If G(z) is a Herglotz function 

associated with the measure dg(t), the above condition is the same as sImG(is)- 

bas2 -º a< +oo as s -º oo, where ba is the constant appearing in the Herglotz 

representation of G(z). Note also that this implies c(s)s2 -º +oo as s -+ oo if 

and only if the measure dg(t) is infinite. 

Proof. Suppose that c(s)s2 --+ a< +oo, as s -º +oo. We will show that the 

measure dg(t) is finite. Assume on the contrary that dg(t) is infinite. Then, there 

is an No EN such that g([-No, No)) > a, and we have 

a l-m J 
s2 + t2 

dg(t) 
- 

1-. 
J-No 82+ to 

dg(t) 

No 2 

=J 
No oo S2 

s+, 

t2 
dg(t) 

by an application of the Lebesgue dominated convergence theorem, since for 

tE [-No, No], we have 
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2 
2) 

1 

32+t2 
<1< (1+N0 

1+t2l 
Vs E lý. 

Note that for tE [-No, No], s2/ (s2 + t2) = 1, and hence we obtain 

a= 9([-No, No]) > a, 

which is a contradiction. 

Now suppose conversely that dg(t) is finite. Then, 

lam c(s)s2 = lim IR 
s2 + t2 

d9(t) = g((-oo, 00» 
$-+00 soo 

< +oo, 

89 

by the Lebesgue dominated convergence theorem (since in this case- <1 

which is integrable with respect to the measure dg(t)). 

Remark 4.2 We note in passing that, if c(s)s2 -º 0 as s -º oo, then dg(t) is 

the zero measure. To see this, note that 

I. 
1+ t2 

dg (t) :5 JR s2 + t2 
d9(t), Vs>1, 

and Jim, 
_� c(s)s2 =0 would imply fR 

l 
dg(t) = 0. Hence, for any interval 

[-N, N] we would have 

0- iN1 
-+t2 dg (t) - (1 + N2)9 

([-N, N]), 

so that g([-N, N]) =0VNEN, and thus 

9((-oo, +oo)) = Nimo g([-N, N]) = 0. 

Theorem 4.3 Let F(z) and G(z) be two arbitrary Herglotz functions with the 

following respective integral representations: 
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F(z) = aF, + bF, z +f{t1z 
t2 +1 

dg (t), (4.1) 

G(z) = as + bz +f{t1z 
tz +1 

Idg(t). (4.2) 

Consider the composed Herglotz function (F o G)(z), and let bF, az be the term 

linear in z appearing in its representation. Then, if ba ,E0, we have b,, 
Q = 

bFbo. If bQ =0 and the measure dg(t) is infinite, then bF, 
a = 0, (so that again 

bF, 
o = bFbG holds), and if bG =0 and dg(t) is finite, then b,, 

o = äµ({to}), where 

a= g((-oo, oo)) < +oo, and 

to = a° -/1t t2 
d9(t). 

Note that if dg(t) is the zero measure, then bo 0 0. 

Proof. The constant bF00 is given (lemma (2.53)) by b,, a = lim,., Im 

F(G(is)). From (4.2) we have 

G(is) = as + bais +f{s 
+yt2 1t t2 

}dg(t) 

aQ +% 
t(1- sz) dg(t)+i b° 

JR s+ s% 
1 

dg(t)1. JR (s2 + t2) (1 + t2) s2 + t2 J 

Let the functions A(s) and c(s) be defined by 

A(s) = a,, + JR t(1 - sz) dg(t)c(s) =f1 dg(t). (4.3) (S2 + t2) (1 + t2) R S2 + t2 

Here, 

i 
im c(s) = 0. (4.4) 

This follows by an application of the Lebesgue dominated convergence theorem, 

since 
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s2 + t2 
<1+1 

t2' 
fors > 1, 

where the function 1/(1 + t2) is integrable with respect to dg(t). So, we have 

G(is) = A(s) + i[bas + c(s)sj, (4.5) 

and from (4.1) we obtain 

F(G(is)) = aF + b1{A(s) + i[bas + c(s)s]}+ 

%1_t + 
JR It - A(s) - i[b0s + c(s)s] t2 +1 

}dµ(t) 

= aF + b, A(s) + ib,,, bGs + ib, c(s)s+ 

+ft- 
A(s) + i[bos + c(s)s] 

-t dµ(t), 
[t - A(s)]' + [b0s + c(s)s]Z t2 +1 

implying that 

1S ImF(G(is)) = bFba + bF. c(s) + be; 
[t - A(s)]Z + s2 [ba + c(s)]2 

dµ(t)+ 

% C(s) dµ(t) + 
�R [t - A(s)J2 + s2[bo + c(s)J ý 

Equation (4.4) implies that bFc(s) -º 0 as s -º oo. Thus, we have 

bF00 = lim 1ImF(G(is)) 
= b, ba+ 

8-00 3 

lim 
-00 

{b0 JR 
[t - A(s)]2 + s1 2[b0 + c(s)]2 

dµ(t)+JR 
[t - A(s)] + sz[be + c(s)] 

dµ(t)} 

(4.6) 

[Note that if dg(t) is the zero measure, (in which case bo 96 0), then A(s) = aQ 

and c(s) = 0, and thus 



Chapter 4. Compositions of Herglotz functions 

bFoo = bFbo + lim b0 
R (t ft- aQ )2+ s2b 

dµ (t). 

0 
It is straightforward to show that 

(t -a )2 + szb2 
const l+ t2, 

VtE IR, s>1, 
oa 

92 

which is integrable with respect to dp(t), and hence an application of the Lebesgue 

dominated convergence theorem gives bF, a = bFb0]. 

Suppose first that bC = 0. Then, from (4.6) we obtain 

bFoc = lam 
t-As 

c( 
+ s2 cs 

dli(t) 

1 
= -400 [t - A( )]2 + s2c(s) 

dµ(t). (4.7) 

We now distinguish the two subcases. Suppose first that the measure dg(t) is 

finite. Note that 

t(i -zz 1, 
(s2+t2)(1+t2)I 

< 
(s2+t2)(1+t2) 

< 1, for s> 

and since dg(t) is finite, an application of the Lebesgue dominated convergence 

theorem gives 

l 
8ý00 00 
im A(s) = lim {ate 

+L 
t(1 - s2) 

(s2 + t2)(1 + t2) 
d9(t)} 

- a0 Jß 1+ t2 
d9( t) to, (4.8) 

where Ito < +oo. Note also that by the proof of Lemma (4.1) we have c(s)s2 -º 

a= 9((-oo, oo)), as s -+ oo. 

We claim that 
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t2+1 
A(s)] 2+ c(s)s2 

tonst., (4.9) 

for s sufficiently large and for all real values of t. There is an So >1 such that, 

if s> So then c(s)s2 >2 and IA(s)I < Vol + 1. Fix N such that N> 4(Itol + 1). 

For tE [-N, N] and s> So we have 

tz+i 
< 

t2+1 
<2 N2+l 

ýý, ý [t - A(s)]2 + c(s)s2 - c(s)s2 -a( 
)' 

and for tE [-N, N]c and s> So we have 

t2+1 t2+1 

ýýs 
[t 

- A(S)]2 + C(S)SZ - (t 
- A(S)J 

_ 
i+3 1+1/16(1+Itol)2 

c(8) 11 
At a_2 Ata 

J c(sý L1 
-2 

Aat 

J 

1< 
2c(s) + 16(1 + Ito 1)2 <21+ 16(1 + Itol)2) 

JR 
s2 

2 

+ t2 d9(t) 

11<21+ 

16(1 + Itol)2 9((-oo, +oo)) =2+ 16(1 + Ito1) a< oo. 
Thus, if s> So, then 

t2+1 
<max 

2(N2+1) 
2 1+ 

1a 

ýýe 
[t - A(s)]' + c(s)s2 -a 16(1 + Itol) ' 

and (4.9) is verified. Therefore, by an application of the Lebesgue dominated 

convergence theorem in (4.7), (since µ is a Herglotz measure and so the function 

1 is integrable with respect to p), we obtain 

bFoo =f lim 
[t - AC )]2 + c(s)sZ 

dµ (t). (4.10) 
cs 
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Since c(s) --º 0 as s -+ oo, the limit in the integrand in (4.10) is zero, provided 

t0 to. Thus, if the point to is not a discrete point of the measure dp(t), then 

bFoo = 0. If the point t= to is a discrete point of the measure dµ(t), then 

bFoc = µ({to}) 1ý0 
[to - A(s)]2 + c(s)s2 

(4.11) 
ca 

Consider the term 
c( s) 

[to - A(s)]2. Note that 

to - A(s) = as -f1+ t2 
d9(t) - a° 

Z 
-J (S2 + t2)(1 + t2) 

dg(t) 

= -t -I s2 + tZ 
d9ýt)ý 

and also that 

JR 82 

I+ 
t2 

d9(t) =f 
s2 + t2 sI+ t2 

dg (t) 

+ t2 
dg(t)}I (4.12) 1 11 

s2 + tz 
dg(t) 

J{f sz 
t2 

2 

= Cýsý 
{ 

JR s2 + t2 
d9 (t) 

} 

by the Schwarz inequality, since the integrals in (4.12) are finite (the integrands 

being bounded functions with dg(t) finite). Hence 

Jim 
c(s) 

[to - A(s)]2 < Jim IR 
Z 

ts 
a 

d9(t) _ 0, 
S +t 

by an application of the Lebesgue dominated convergence theorem. Thus, from 

(4.11) we obtain bF, 
o = µ({to}) lim, 

., 
ý= ä({to}), where a= g((-oo, oo)). 

This completes the case bG =0 in the subcase when dg(t) is finite. 

We note here a useful inequality for A(s). For s>1 we have 
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IA(S) 
- acl < 

IR 

(s2 + t2)(1 + t2) 
dg(t) 

S 
IR 

.1 

sltl dg(t) 
s2 + t2 s2 + t2(1 + t2) 

22 1< 
81 

fR 
sa + t2 

dg(t)1 
12 

t JR (s2 + t2) (1 + t2)2 
dg(t)ý (4.13) 

Y 
s=8 c(s) 

{f 
(s2 + t2) (1 + t2)2 

dg(t) }= 
as c(s), (4.14) 

where a= a(s) ={ fR (e +t)1 
dg(t)}l < +oo. We have again used the 

Schwarz inequality, since the integrals in (4.13) are finite (for s>1 each of 

the integrands is less than or equal to coast. /(1 + t2), which is integrable with 

respect to the Herglotz measure dg(t)). We shall be using this estimate later. 

Now consider the second subcase, for which dg(t) is infinite with again 

bG= 0. This implies c(s)s2 --ý +oo as s --º +oo, by remark (4.2). We claim that 

t2+1 
A(s)]' + c(s)s2 

z 

+ c(s)sý 
const., (4.15) 

ä [t - A(s)]2 + c(s)sz 
+1 [t - A1 

< 
() c(s 

for s sufficiently large and for all real values of t. In this case, A(s) may not tend 

to a finite limit as s -º oo, and so our previous treatment does not apply. 

Since 

1< 
const. (t-a0)2+1 - 1+t2' 

it will be sufficient to show 

(t-a0)2+1 
<_ const. 

c(a 
It - Aýs)ý2 + C(s)s2 
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But with t' =t- a0, this is the same as 

(t')2 +1< 
const., (A(s) - aß)]2 + c(s)s2 - 

where now A(s) - aG does not have the constant term. So without loss of gener- 

ality we can deal with the case as = 0. 

We proceed instead as follows. There is an Si >0 such that if s> Sl then 

c(s)s2 > 1. Thus, for s> Si we have 

(S)]2 + C(S)S2 - c()32 
`1' 

and so in order to verify (4.15), it is sufficient to show that 

t2 

cI 
[t - A(s)]2 + c(s)s2 

< const., 

or equivalently, 

, (, 5[t - A(s)]2 + c(s)s2 
> kl > 0, (4.16) 

t2 

for s sufficiently large and for all real values of t, where kl is a (positive) constant. 

Let us solve the quadratic 

c(s) 
[t - A(s)]' + c(s)s2 - Kit' = 0, Kl > 0. (4.17) 

Rewriting this we obtain 

\s (t2 c(s) - 
Ki I- 

c( S)) 
t+ 

c(sý) 
+ c(3), 92 = 0. 

Using the standard formula for the roots of the quadratic, we find that the ex- 

pression inside the square root, except from a factor 4, is 

-sZ + 
ý) 

[A(s)]2 + Kic(s)s2, 
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and by (4.14) in the case a. =0 we have 

-s2 + 
c(s) 

[A(s)]2 + Kic(s)s2 < -s2 + K1a2s2 + Klc(s)s2 

= s2(Kia2 + Kic(s) - 1). 

An application of the Lebesgue dominated convergence theorem gives 

=% 
s2t2 1ýý a2 1' 

JR (s2 + t2) (1 + t2) 2 
dg(t) 

_ 
JR 

= 
t2 

(1 + t2)2 
dg(t) =ä< oo, 
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and so there is an S2 >0 such that, if s> S2 then a2 < 2&. Set Kl = 1/4ä. 

Since c(s) -º 0 as s --+ oo, there is also an S3 >0 such that, if s> S3 then 

Kic(s) < 1/4. Let S= max{S2, S3}. Then, if s>S we have 

Kia2 + Kic(s) -1<0. 

This shows that the quadratic in (4.17) has no real root, for s>S. Note also 

that, when t=0 the value of this quadratic is 

A(ss) 
+ c(s)s2 > c(s)s2, 

where c(s)s2 --+ oo as s -º oo. Hence, the quadratic is positive, for s>S and 

VtER Therefore, the condition in (4.16) is satisfied, with kl = 1/4&. If, 

furthermore, s> max{S, Sl}, then the bound in (4.15) is verified and extends 

to the case aC 0 (though with a different constant), and we can apply the 

Lebesgue dominated convergence theorem in (4.7) to deduce that bf, 
o = 0, since 

the denominator is greater than or equal to c(s)s2 which diverges in the limit 

s -+ oo. This completes the case b0 = 0. 
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Now suppose that bG > 0. As before, we will apply the Lebesgue dominated 

convergence theorem in (4.6). This will imply that the limits of both integrals 

in (4.6) are zero, since the denominator of both integrands is bounded below by 

bäs2, which tends to infinity as s -º oo and c(s) -º 0. It will be sufficient, in order 

to use an argument based on the Lebesgue dominated convergence theorem, to 

verify that 

(t2 + 1) 
[t - A(s)]2 + s2[b0 + c(s)]2 

P1 
[t - A(s)]2 + s2[b0 + c(s)]2 

+ It --A (S)]2 + s2[ba + c(s)]2 
tonst., (4.18) 

for s sufficiently large and for all real values of t. Again, by our previous argument, 

we can assume aG = 0. There is an Sl >0 such that, if s> Sl then bQ s2 > 1. 

Thus, if s> Sl we have 

[t - A(s)]2 + s2 [b0 + c(s)]2 - s2 [b0 + c(s)]2 ; 2bä 1. 

So, in order to prove (4.18) it is sufficient to show that 

t2 
< const., [t - A(s)]2 + s2[bo + c(s)]2 - 

or equivalently that 

[t - A(s)]2 +S2 [b0 + c(s)]2 
t2 > k2 > 0, (4.19) 

for s sufficiently large and for all real values of t, where k2 is a (positive) constant. 

Let us solve the quadratic 

[t - A(s)] 2 +s 2 [% + c(s)]2 - K2 t2 = 0, K2 > 0. 

Rewriting this we have 
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(1- K2)t2 - 2A(s)t + A2(S)+S2 [% + c(s)]2 = 0. (4.20) 

By the standard formula for the roots of this quadratic, we find in this case that 

the expression inside the square root, except from a factor 4, is 

s2[ba + c(s)]2(K2 - 1) + K2[A(s)]2 

and by (4.14) we have, with ao = 0, 

s2[b0 + c(s)]2(K2 -1) + K2[A(s)]2 < s2[ba + c(s)]2(K2 - 1) + K2a2sz c(s) 

= s2{[ba + c(s)]2(K2 - 1) + K2a2c(s)}. 

Fix K2 in the interval 0< K2 < 1. Since a2-ºa<ooas s-ºoo, and c(s)-º0 

as s --> oo, it follows that K2a2c(s) -+ 0 as s -º oo. Thus, there exists an S>0 

such that, if s>S then K2a2c(s) < (1 - K2)bö. Then, for s>S the expression 

inside the square root is negative. This shows that for s>S the quadratic in 

(4.20) has no real root. Note also that when t=0, the value of this quadratic is 

A2 (s) + s2 [ba + c(s)]2 > s2bä > 0, 

for s>S. Therefore, this quadratic is positive for s>S and VtER, and so 

the condition in (4.19) is satisfied with fixed k2 in the interval 0< k2 < 1. If, 

furthermore, s> max{S, SI}, then the condition in (4.18) is satisfied. Hence, 

we can apply the Lebesgue dominated convergence theorem in (4.6) to obtain 

bF, o = bF ba . This completes the proof of the theorem. 

4.3 Boundary values of composed Herglotz func- 

tions 
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Theorem 4.4 Let O(z) and F(z) be two arbitrary Herglotz functions, and denote 

by IF, IF the sets IF = {A ER: F+(A) exists and F+(A) E R} and IF = {A ER: 

F+ (A) exists and ImF+(A) > 0} respectively, where F+(A) = lime-. o+ F(A+ie) is 

the boundary value of F at the point A. (The boundary value c+(A) of 0 at the 

point A is defined similarly). Then, at almost all points AER we have 

lim (0 o F) (A + ie) = (0 o F')+(, \) = 
0+(F'+(, \)) AE IF, 

(4.21) 
Eo ý(F'+(A)) AE IF. 

Proof. It is straightforward to see that, if AE IF so that F+(A) is a complex 

number with strictly positive imaginary part, then (¢oF)+(A) = lim,. o+ O(F(A+ 

ic)) = q5(F+(A)), since ¢ is analytic and thus continuous in the upper half-plane. 

As a result, it remains only to consider points AE IF. 

By a wedge-shaped area with vertex the point AER we shall mean a set 

of the form {z EC: a< Arg(z - A) < Q, 0<a<ß< 7r}. By the `wedgy' 

limit of 0 at the point AER we shall mean the limit as z approaches A along a 

simple curve ending at A and lying entirely in a wedge-shaped area with vertex 

the point A. By corollary (2.52) we know that if the limit of 0 at A exists along 

a simple curve, then it also exists along any other simple curve ending at A and 

contained in a wedge-shaped area with vertex the point A (and the two limits are 

equal). We will denote by 0. (A) the wedgy limit of 0 at AER. 

Let A be the set 

A= {A E IF : 0+(F+(A)) and cw(F+(A)) exist}, 

and note that CIF\AI = 0. [The fact that «(z) is a Herglotz function implies that 

the set of points AE i8 for which 0+(A) does not exist has zero Lebesgue measure. 

By corollary (3.3) with ISI =0 and A= IF we have 
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{a E IF : F+(a) E S}I = 0. ] (4.22) 

We consider first the case when F has real boundary values almost every- 

where, so that the complement of IF has zero Lebesgue measure. In this case we 

have IAi = 0. We define the function f by f (A) = F+(a), so that f is almost 

everywhere the real boundary value of F. The function f is real-valued, measur- 

able, and finite almost everywhere, and thus it follows from Theorem (2.25) that 

at almost all AER, (and at almost all AE A), f is either approximately mono- 

tonic increasing, approximately monotonic decreasing, approximately constant, 

or approximately oscillatory (see definition (2.24)). 

None of the points in IF, (and so none of the points in A), is a point 

of approximate constancy for f: If f was approximately constant at a point 

ao E IF, then, from the definition of approximate constancy we would have 

I {a E IF : F+(A) =f (Ao)} > 0, and (4.22) would be violated with S= {f (Ao)}. 

[In fact, f can not be approximately constant at points AE 1F either, because F 

has real boundary values almost everywhere. ] Therefore, at almost all points in 

A, f is either approximately monotonic increasing, or approximately monotonic 

decreasing, or approximately oscillatory. 

We shall show that for points AEA at which f is either approximately 

monotonic increasing, or approximately monotonic decreasing, or approximately 

oscillatory, we can find sequences z,, = A+ic,, with c, a -º 0+ such that the points 

F(A + ie, a) lie in a wedge-shaped area with vertex the point f (A). 

Define now the log function for complex argument in the upper half plane 

by 

log(re'0)=logr+iB forr>0,0<0<ir, 
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Then, we have 

Arg (F(a + is) -f (a)) = Im log (F(A + ie) -f(. 1)). 

Now z -º log (F(z) -f (A)), with AEA fixed, defines a Herglotz function H(z) 

with 0< ImH(z) < ir. Any Herglotz function H with bounded imaginary 

part has a representation with absolutely continuous measure C(t)dt, where the 

density function fi(t) is given by lim,..., o+-irIm H(t + ie). In this case, we find 

H(z) = log IF(i) - f(a)d +f It 1z1 
+t2 

}e(t)dt, 

where for almost all t we have 

fi(t) =1 lim Arg (F(t + ie) -f (A)) =1f 
(t) <f (A)' 

(4.23) 
ir ¬ O+ 0 otherwise. 

Hence e(t) is almost everywhere the characteristic function of the set {t E IF : 

f (t) <f (A)}. Thus, we have 

Arg(F(a + i&) -f (A)) = Im H(\ + ic) = 
JR c (2dt 

2. 
(4.24) 

( t-a) +£ 

which gives the angle between the real axis and the direction from f (A) to F(A + 

ic), for fixed e>0 and ). E R. The limit as e -º 0+ of the integral in (4.24) may 

be equated (see [22], Lem (2.4), p. 44) with 

lim 7r 
f A+h 

-( dt, 
h-40+ A-h 2h 

(4.25) 

in the sense that if either limit exists then both exist and they are equal. We 

then have 

lim Arg (F(A + ic) -f (X)) 
e o- 
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=2 Ali 
ö {t E [A - h, A+ h] n IF :f (t) <f (4.26) 

Suppose that A is any point of A at which f is either approximately mono- 

tonic increasing, or approximately monotonic decreasing. In this case, the limit 

in (4.26) equals 1, so that the limiting angle limE. o+Arg (F(A+ic) -f (A)) is ir/2. 

Thus, for e sufficiently small, the points F(A + i6) will make an angle arbitrary 

close to ir/2 relative to the point f (A) on the real axis. Therefore, the points 

F(A + i. -) will all lie, for small enough values of s, in any given wedge-shaped 

area with vertex at the point f (A). Since AEA, the limit lim,. o+ O(F+(A) + ie) 

exists as does the wedgy limit, and it follows that 

ýý o F)+(a) = 
£u 

m (q o F) (, \ + ic) 

=l im O(F(A + ie)) = lino O(F+(A) + ic) = 0+(F'+(A)). 

Now take any point AEA at which f is approximately oscillatory. Then, 

for any co with 0< eo <4 there are sequences h� and h' of positive numbers 

with hn --> 0, h, --> 0, (without loss of generality we may assume hl > hi > h2 > 

h' > ... 
), such that for all nEN we have 

Ift E [A - h, A+ hf] n IF :f (t) <f ())}I > 2hn(1- co), (4.27) 

{t E [A - hn, A+ hl, ] n IF :f (t) >f (A)}l > 2hn(1- cp). (4.28) 

Note that ImF(A+ih,, ), ImF(A+ih;, ) >0 for all n, and consider first the angle 

given by 

% 00 hiE(t) 
Arg (F(, \ + ihl) -1(A)) = J-00 

dt 
(t - A)2 + hi 

hie(t) 
> 1, \+hl 

dt (4.29) 
-h, (t-a)2+hi 
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Note that the integrand in (4.29) is bounded above by 1/hl and that 

i dt - 
ir Lh1 +hi 

(t - A)2+ h1 2 

From (4.27) we have I{t E [A - hl, A+ h1] n IF : fi(t) = 0} I< 2hleo, and hence 

we obtain 

2- 2hleo 
1 

Arg (F(a + ihl) -f (\)) < ir. Ti- 
ý- 

Next consider 

00 h1(t 
Arg (F(\ + ihi) -f (A)) =f2 dt 

(t - \)2 + (hl) 

t 

-fh, ý(t) fA+hl ýýc) (4.30) -hiA+hil (t - a)2 + (hi)2 
dt + 

A-ni (t - 

hA)2 
+(h' )dt. 

Note that 

(t - a)2 + (ßi)2 
dt - -n; (t - a)2 + (hi) 

dt 
2 

and from (4.28) we have I{t E [A - hi, A+ hi] n IF : fi(t) = 1}1 < 2h, co. Thus, 

(4.30) implies that 

0< Arg (F(. \ + ihi) -f (a)) <2+ 2hleo 
h. 

i 

Continuing in this way, we can construct a strictly-decreasing sequence ej with 

ej -4 0, by setting -1 = hl, e2 = hi, e3 = h2,... (c3 taking the values of h,, and 

h' successively), such that 

-- 2e0 < Arg (F(, \ + iej) -f (A)) < 7r, (4.31) 
2 

if j is odd, and 
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0< Arg (F(. \ + i, -j) -f (a)) <2+ 2c(), (4.32) 

if j is even. 

We now construct a sequence of positive numbers -'. with s'. -º 0, such that 

2- 2e < Arg (F(, A + iej) -f (A)) <2+ 2e0, (4.33) 

for all j, as follows. If (4.32) is also satisfied with j=1, (as well as (4.31)), we 

set ei = el. If that is not the case but (4.31) is satisfied with j=2, (as well as 

(4.32)), we neglect ei and set ei = e2. If we have none of these two cases, then 

there must exist a positive number e1,2 with e2 < E1,2 < Ej, such that both (4.31) 

and (4.32) are satisfied with e= e1,2. Such a number must exist because of the 

continuity of F. In this case we set ei = e1,2. Proceeding in this way, we generate 

a sequence eý with E, 1 -+ 0 such that (4.33) is satisfied, implying that the points 

F(. + ie'. ) lie in a wedge with vertex at f (A). (The angle of the wedge is 4c0, 

where co >0 was arbitrary, and the angle between either side of the wedge and 

the perpendicular at f (A) is 2, -0. ) Since AEA, the limits lime-. o+ «(F+(A) + ie) 

and qv, (F+(A)) exist, and we have 

ýý o F)+(, \) =u q5(F(, \ + is)) 

_ý imm q5(F(A + i, -I')) = Cliým 
c5(F+(A) + ic) _ +ýF'+ýý))" 

This completes the case when F has real boundary values almost everywhere. 

Now consider the general case when F takes boundary values with strictly 

positive imaginary part on a set of positive Lebesgue measure. As noted at the 

beginning of this proof, for points AE IF we have (0 o F)+(a) = cb(F+(A)). Thus, 

we only have to consider points AE IF. 
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Define a function f by 

F+ (X) AE IF, 
f(A)= 

0 AEIF. 

The function f is real-valued, measurable, and finite almost everywhere, and 

therefore at almost all A, f is either approximately monotonic increasing, or ap- 

proximately monotonic decreasing, or approximately constant, or approximately 

oscillatory (Theorem (2.25)). 

Since IF and IF are measurable, almost all points of IF are points of density 

of IF, and almost all points of IF are points of density of IF (Theorem (2.23)). 

Points of density of IF are points of approximate constancy of 1, (with value 0), 

and hence at almost all points AE IF, f is approximately constant. On the other 

hand, only points AE IF with F+(A) =0 can be points of approximate constancy 

of f, (because of (4.22)), and the set of these points has zero Lebesgue measure 

(again from (4.22)). 

Denote by Ad the set of points AEA which are density points of A, and 

note that the complement of Ad in IF has zero Lebesgue measure. With \E Ad 

we have in this case 

1tE IF and I(t) <l (A), 
(4.3ý) 

10 tE IF and f (t) > ! (A), 

and 0<e(t)<l for tE IF. Hence, (4.26) in this case becomes inequality, with 

the left hand side being greater than or equal to the right hand side. However, 

for AE Ad and in the limit h -º 0+ we have 

lim I{t E [A-h, A+h] nIF}I/h=2. h-, 0+ 



Chapter 4. Compositions of Herglotz functions 107 

Hence, for points AE Ad at which f is either approximately monotonic increasing 

or approximately monotonic decreasing the limit in (4.26) equals 1, so that the 

limiting angle lim,, O+ Arg (F(A + ie) -f (A)) is again 7r/2. Therefore, by the 

same argument used in the first part of this proof, it follows that (¢ o F)+(A) _ 

0+(F'+(A))" 

For points AE Ad at which f is approximately oscillatory, we can apply 

our treatment for the corresponding case in the first part of the proof, with slight 

changes. There exist sequences h,, and h' of positive real numbers converging 

to zero, which satisfy (4.27) and (4.28) respectively, as before. Inequality (4.29) 

holds, where now I It E [A - hl, A+ hl] : fi(t) , --A 1}I < 2h1c0, and so again we 

have 

2- 2eo < Arg (F(A + ihl) - 1(, \» < ir. 

Also, (4.30) holds, where now If tE [A - hi, ). + h' ]: fi(t) ,E 0} I< 2h'Eo. Hence, 

we have 

0< Arg (F(, \ + ihi) - 
! (. X» <2+ 2co. 

Hence the result follows in this case as well by the same argument that we used in 

the corresponding case in the first part of the proof, and the proof of the theorem 

is completed. 

Corollary 4.5 Suppose that the measure do, corresponding to the Herglotz func- 

tion F is absolutely continuous. Suppose also that the constant bo appearing 

in the representation of the Herglotz function cb in (3.15) in Chapter 3 is ze- 

ro. Then, the measure corresponding to the composed Herglotz function 

(0S o F) is absolutely continuous, and moreover, (with the same notation as in 

Theorem (4.4)), the density function h(a) of I oF) 
is given almost everywhere 
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by 

Im (q5s)+(F'+i, \)) AE IF, 
h(ý) 

Im ýs(F'+(, \)) AE IF. 

Proof. From lemma (3.8) we have 

VS A= A(OS. F) l8/ 
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for any Borel set B, where the measure vs was defined in (3.9). By lemma (3.5), 

the absolute continuity of or implies the absolute continuity of vs. Hence µ("s, F) 
is also absolutely continuous, with density function h= h(a). By definition, 

h(A) = 1-Im (0s o F)+(a), and Corollary (4.5) now follows from Theorem (4.4). 



Chapter 5 

Averaged Herglotz measures and 

the Schrödinger equation. 

5.1 Introduction 

In this Chapter we consider some convergent sequences of Herglotz functions and 

derive some consequences for spectral theory. In section 5.2 we examine uniformly 

convergent sequences of Herglotz functions and their limiting measures. In section 

5.3 we present a remarkable estimate regarding convergence in the limit S -º 0+ 

of the value distribution associated to a Herglotz function F8(z), which has been 

obtained from a given Herglotz function F(z) by translation through a small 

increment iS parallel to the imaginary axis. This estimate will be used in section 

5.4, in applications to the Schrödinger equation. 

109 
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5.2 Herglotz functions and uniform convergence 

Here we consider sequences of Herglotz functions F,, (z), with corresponding mea- 

sures du (t), having the respective integral representations 

a,,, + bnz FRt1zt 
2+1 

We suppose that the functions F,, (z) converge uniformly in the limit n -º 00 

to the Herglotz function F(z), on compact subsets of the upper half-plane. We 

are interested in the behaviour of the family of measures dµn(t) in this limit. 

Moreover, we define a corresponding family of Herglotz functions Fn (z) (y E R) 

by 

F'n(z)' 

having measures µ' and the integral representations 

Fý (z) = a' +b'z+ J {t 1z1 
+tz}dµy(t). 

(5.2) 

We shall use the following result later. 

Lemma 5.1 Let F,, be a sequence of Herglotz functions such that F�(i) -+ q as 

n -+ co, with Imq > 0. Then, for any fixed N and any yER µy ([-N, N]) is 

bounded, and there exists a constant c>0 independent of y such that 

+ 
2, nEN. µy([-N, N]) < cl 

y 

Proof. Since F,, (i) -+ q as n -º oo with Imq > 0, there exists a compact set D of 

the upper half plane such that for all n, the points F. (i) = An+iB,, lie in D. Let 

KD be a constant such that IzI < KD for all zED, and bD = infsED Imz > 0. 
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[Such a SD exists: otherwise there exists a sequence of complex numbers z,, in 

D such that limnýý Imz71 = 0. Also, since D is a compact set, there exists a 

subsequence zrik of z� such that zn, k --º zo, with zo E D. Since Imz is a continuous 

function, we have Imz,,, 
k -º 

Imzo = 0, which is a contradiction. ] For any yER 

and nEN we have 

Ay ([-N, N]) = 
LN dµy (t) 5(1+N2) fN1+ 

t2 
d ,n (t) 

< (1 + N2) f1+ 
t2 

dµY(t) = (1 + N2)(ImFy (i) - bv) 

(1+ N2)ImFL (i), 

since by >0 for all yEu and nEN. Note that 

ImFY'(i) = 7m [1_ Bn 

y- Fn(i) (y - An)2 + Bn 

where 0< SD < B. < KD and IA,, ) < KD. It is straightforward to show that 

ImFF (i) is bounded, and thus that µ"([-N, N]) is bounded for all yER and 

nEN. Moreover, it is also straightforward to show that ImF7 (i) < cl l+- , 

where cl is a constant. The second assertion of the Lemma follows with c= 

(1 + N2)c1, and the proof is completed. 

Lemma 5.2 Let F(z) be a Herglotz function with representation (1.1) and Her- 

glotz measure dp(t). If the point a is not a discrete point of the measure du(t), 

then, 

ý 62 ä 

'O JR (t 
- a)2 + 62 

dµ(t) = 0. 

Proof. Note that 
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Sa 

(L)2+S2 
- t_a2 +l 

< 
(t_ a1)2+1, 

dt E DB, 
6 

for 0<6<1. Moreover, 

62 0 ta, 
6. o+ (t 

- a)2 + SZ 
1t=a. 

Hence, by an application of the Lebesgue dominated convergence theorem we 

obtain 

lim 
r az 

dµ(t) = µ({a}) = 6-. o+ JR (t 
- a)2 + 62 

since a is not a discrete point of dp(t). 

Lemma 5.3 Let F�(z) be a sequence of Herglotz functions, given by equation 

(5.1), converging uniformly to the Herglotz function F(z) on compact subsets 

of the upper half-plane. Let F(z) have the Herglotz representation (1.1), with 

Herglotz measure dp(t). Suppose that the points a and b, a<b, are not discrete 

points of the measure da(t). Let e>0 be given. Then, there exists a positive 

number bo with 0< Sa < Nall and an No EN depending on bo and c, such that if 

n> No then µn(Jo) < e, where Jo = [a - So, a+ bo] U [b - So, b+ bo]. 

Proof. From (5.1) we have 

SImF�(a + iS) = b�6 2+ý Sz 
JR (t 

- a)2+62 

and from the representation of F(z) in (1.1) 

SImF(a + iS) = bFS2 +z (t - a)2+62 
dµ(t). 
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Similar expressions hold for SImF, ti(b + ib) and SImF(b + iö). It follows from 

Lemma (5.2) that 

lim SImF(a + iS) = lim SImF(b + iS) = 0. (5.3) 
6 o+ 6-o+ 

Let e>0 be given. In view of (5.3), we can choose So >0 such that 

SoIm[F(a+iöo) +F(b+iöo)] < e/8. (5.4) 

Since the functions F0(z) converge to F(z) at the points z= a+iöo and z= b+iba, 

there is an No EN such that, if n> No then 

SoI Im { Fn(a + iöo) - F(a + iSo) + Fn(b + iSo) - F(b + ibo) }I < e/8. (5.5) 

It follows from (5.4) and (5.5) that, for n> No we have 

SoIm[Fn(a + iöo) + Fn(b + iSo)] 

= 2bß Sö -I- JR L (t - )b2 
62 

2 +602+ (t - b)2+62] 
dµn(t) < 4. (5.6) 

Since b,, S0 > 0, (5.6) implies 

JR{(t-a)2-f-S2+(t-)2+So]dFýn(t)<4s 

so that 

62 62 
dµn (t) < I 

(t - )2 +60 
dµ,, (t) <4 and 

f 
(t - 

b)2+62 

In particular, specializing to the intervals [a - bo, a+ bo], [b - bo, b+ bo], we have 

a+60 62 c b+bo 62 E 
dg,, (t) < 4" Ja-6o (t - a)2 + bo 

dµ�(t) <4 and 
-ao (t - b)2 + 602 
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For tE [a - So, a+ So] we have (t - a)2 < bö, so that 

60,1 

(t-a)2+Sö 2' 

and hence, 
a+bo 1 a+bo 

(0 
la-6o 

2 dµnltý 
Ja-bo 

(t 
- a)2 + S0 

dý"n(t) < 

Therefore, for n> No we have 

An([a - So, a+So]) < e/2. 

Similarly, for n> No we have 

µ�([b - bo, b+ öo]) < e/2. 

Hence µn(J) < e, provided n> No, as stated in the Lemma. 

Remark 5.4 On examination of the proof of Lemma (5.3) the reader will find 

that, a sufficient condition is that the functions Fn(z) converge to F(z) at the 

points z=a+ i6o andz=b+iSo. 

Lemma 5.5 With the same notation as in the statement of lemma (5.2), suppose 

that the points a and b (a < b) are not discrete points of the measure p, and let 

e>0 be given. Then 6>0 can be chosen such that 

1 (t-a) (t-b) 
, 

(5.7) 
?r 

In IJ1(t_a)2+s2_(t_b)2+s2]dt)}d8He 

where c>0 is arbitrary, J= (a - 6, a+ 6) U (b - b, b+ b), and ö is taken to lie 

in the interval 0<6< b2a. 
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Proof. Let c>0 be a constant, and define a function K(c, t) by 

Jo [(t_a)2+s2 (t - al It - bi l (c, t) =+ (t - b)2 + Si J ds, 

so that 
tan 1 

(b 
`al t=a or t=b, 

K(c, t) _ 

{tan_'+t_1tcb 

t54 a, t, -b, 

and hence K(c, t) < 1. Since p({a}) = µ({b}) = 0, it follows that there is a Sl >0 

such that µ((a - 61, a+ Sl)) < 2, and a S2 >0 such that µ((b - 62, b+ S2]) <2 

Let 6= min{Si, 62i''}, and J= [a - b, a+ 6] U [b - S, b+ b], so that µ(J) < e. 

Note that the double integral 

ds dµ (t) 
JI 

jc [ (t-a) (t-b) 
J (t 

- a)2 + s2 (t 
- b)2 + 82 

is absolutely convergent, so that we can change the order of integration in (5.7), 

and obtain 

1ý %f (t - a) 
_ 

(t - b) 
µ( ) 

7r 
fa t 

JJ L(t - a)2 + s2 (t - b)2 +S2 
It Ids 

fý K(c, t) dii(t) < µ(J) < c, 

by our choice of 6 in the definition of J, and (5.7) is proved. 

We are now ready to prove the first theorem of this section regarding the 

limiting behaviour of a family of Herglotz measures dµ�(t), where the correspond- 

ing functions F,, (z) converge uniformly to a Herglotz function F(z), on compact 

subsets of the upper half-plane. 

Theorem 5.6 Let F,, (z) be a sequence of Herglotz functions with corresponding 

measures µ,,,. Suppose that the points a and b (a < b) are not discrete points 
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of any of the measures µ� (n E N) or p, the measure corresponding to the Her- 

glotz function F(z), and that the functions Fn(z) converge uniformly to F(z) on 

compact subsets of the upper half-plane. Then, we have 

! ýn((a, b]) -' µ((a, b]). (5.8) 

Proof. We start with the standard result regarding Herglotz measures of intervals 

(a, b], whose endpoints are not discrete points of the measure (lemma (2.59) and 

remark (2.60)). With this result, we have 

I p,, ((a, b]) - µýýaý bý)ý 

= lim 1fb 
Im F�(, \ + iw)da - lim 1f 6Im 

F(A + iw)da . 
(5.9) 

w-. 0+ it a w-+0+ it a 

The problem is to control the behaviour of the functions FF(z) and F(z) close to 

the real axis, without imposing additional restrictions on the behaviour of these 

functions. We achieve this by using ideas from complex contour integration, 

which allow us to rely on properties of the functions F�(z) and F(z) in the upper 

half-plane, where, by assumption, they satisfy convergence conditions. We shall 

also need to control the behaviour of integrals near the endpoints a and b of the 

interval (a, b], on a contour perpendicular to the real axis. We proceed as follows. 

Given any e>0, first set 

c7r 
CO 

6M(b - a)' 

where the constant M is defined to be 

M=? ImF(iso) + 1, 
SO 
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for any so > 0. The role of co and the constant M will become clear shortly. 

Let z=A+ iw, for some fixed w, 0<w< co, so that dz = da. Also let 

A=a+ iw, B=b+ iw. We thus have 

ýµn((a, b])-µ((cc, b]) I=I lýö 
1 

Im 
A 

F,, (z)dz- l im 
1 

Im (B F(z)dzl. (5.10) 

Now let C=b+ ieo, D=a+ iea, and consider the contour ABCD. Since the 

functions F�(z) and F(z) are analytic in the upper half complex plane, it follows 

by Cauchy's theorem (Theorem (2.33)) that 

f 
BCD 

F�(z)dz = 
fABCD F(z)dz = 0, 

so that 

JA F(z)dz = F,, (z)dz +1C F(z)dz +fB F(z)dz. 
ADC 

A similar expression holds for F(z). On the contour AD, let z=a+ is, for 

w<s< co, so that dz = ids. On the contour DC let z=s+ ieo, for a<s _< 
b 

so that dz = ds, and on the contour CB let z=b+ is, for w<s< so, which 

implies dz = ids. Then, 

fA Fn(z)dz = 
fw' iFn(a + is)ds +fb Fn(s + iso)ds +fo iFn(b + is)ds. 

Therefore, 

Im f' F,, (z)dz = Re fwO F�(a+is)ds+Im fb Fn(s+ieo)ds-Re 1 F. (b+is)ds 
w 

= Ref o [F�(a+is) -F�(b+is)]ds-{-Im 
f bFn(s+ie0)ds. 

From equation (5.1), it follows that 
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Re [F,, (a + is) - F,, (b + is)] 

b)b,, +f 
(t - a) 

- 
(t - b) ldýyn(t), (5.11) fR 

1(t - a)2 + s2 (t - b)2 +S2 J 

and thus we have 

Im fA F�(z)dz =1 
o(a 

- b)b�ds + Im fb F�(s + iso)ds+ 

a) (t 
- b) 

IGn( )} 
l) +Jw SIJR I`(t-a)2+s2 (t-b)2+s2 

dt ds. 5.12 

In a similar way, we obtain 

ý(a 
- b)bF, ds + Im ]b F(s + ico)ds+ Irrt fB F(z)dz =w 

co I( /r (t -a_ 
tJ lt -bI ý()} () (t - b)z + s2 

dt ds. 5.13 +wR (t - a)2 +. 92 

Hence, from equations (5.10), (5.12) and (5.13) we have 

Ip�((a, b]) - µ((a, bl )I 

< lim 1JfolJ[ (t -a) 
2 

(t b) 
zýdµn(t)}ds- w-ý0+ 7r wR 

(t 
- a)2 -I- S (t 

- b)2 -i- S 

-1 
Jfo fJr (t - a) (t - b) 1-"0 

7r wR l(t - a)2 + S2 (t - b)2 + S2] 
dµ(t)}d3 + 

+ lim 
1 co I (a - b) (b,, -bF, )ds +f 

bIm[F�(s+ico)-F(s+iso)]ds 
. (5.14) 

w--40+ 7r w 7r 

The last term of the above inequality is the result of integrating along the con- 

tour CD, and is a straightforward estimate. The other terms are the result of 

integrating along the contours BC and AD. The term involving the constants b� 

and bF is also not difficult to be dealt with, and we begin with this term. 
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From the representations of the functions F�(z) and F(z) in (5.1) and (1.1) 

respectively, we have 

S 
ImF�(is) = bn + JR 

t2 -f- s2dµ"(t), 

and 
s 

ImF(is) = bF +f 
tz + 

32dµ( 

Thus, 

bF <1 ImF(is), VsER, 

b, a < 
1ImFn(is), Vs E IIt, 
s 

In particular, bF <ö ImF(iso), and b� <ö ImF,, (iso). Since F, ' -+ F, as 

n -ý oo, at z= iso, there is a Nl E N, such that if n> N1, then 
öI 

Im [F. (iso) - 
F(iso)] ý<2. So we obtain bn <ö Im F(iso) +ä. Hence, 

Ibn - bFI < bn + bF < 
SO 

ImF(iso) +2<M. 

From this result, with an application of the Lebesgue dominated convergence 

theorem, we have 

lim 1f Eý(a 
- b) (b,, - b, )ds < lim 1 Iýý(b - a)Ibn- b, Ids 

w-+0+ 7r w w-+0+ 7f w 

<f 
ýý(b 

- a)Mds = 
-(b 

- a)Meo = 
6. (5.15) 

Since, by assumption, F�(z) -; F(z) uniformly as n -º oo, on the horizontal 

contour joining the points a+ ieo and b+ ie0, there is an Nz EN such that if 

n> N2 then IFn(s + ieo) - F(s + ieo)I < sýb"Q a<s<b. Hence, we also have 
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1fb 
Im [F, 

a(s + ico) - F(s + ieo) ]ds <1 rb ý Im [F,, (s + ieo) - F(s + iso)] I ds 
Ir n- 9r Ja 

< lb IF,, (s + iEO) - F(s + iso) ids < -. (5.16) 

We now consider the double integrals appearing in (5.14). The idea here is 

to split the real line, over which the integration with respect to d4c�(t) and dµ(t) 

respectively is taken, into two subsets. The first subset, which is the union of 

two intervals surrounding the points a and b, has arbitrary small measure in each 

case. On the second subset, which is the complement of the first, we can obtain 

appropriate bounds for the integrand. The detailed argument is as folows . 

By lemma (5.3), there is a Sl > 0, a corresponding set Jl = [a - öl, a+ 6i] U 

[b - öl, b+ 6k], and an N3 EN such that, if n> N3, then 

µn(11) < 
i8. 

Note that the integral 

_ 
fo! %f (t -a( 1w l 

1j1 
L (t - a)2 + s2 (t 

tb)2 
+ s2 

] dµn(t) } ds 

is absolutely convergent, so that we can change the order of integration, and by 

an application of the Lebesgue dominated convergence theorem we obtain 

ý 1J Eo 
lL 

[ (ta) 
- 

(t-b) 1 dpn(t) ds u 
7C wl 

(t 
- a)2 + s2 (t 

- b)2 -}- s2 
J 

=11 
co [ (t - a) 

_ 
(t - b) 

ds dµ,, (t) 
7C J1 

Jo 
(t-a)2+s2 (t-b)2+s?. J 

1fK 
t)dpn(t) -5 µn(Ji) <, 

7f Jl I$ 

provided that n> N3. The function K(c, t), tER and any c>0 fixed, is defined 

in the proof of lemma (5.5). 
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Also, by lemma (5.5), there is a S2 >0 and a corresponding set J2 = 

[a - 82i a+ 62] U [b - 82i b+ 621 such that the following inequality holds: 

1 to (t - a) (t - b) e 

T fo fJJ2 I Idµ(t)}ds < -. (t - a)2 + s2 (t - b)2 + sz 18 

By a change in order of integration, and an application of the Lebesgue dominated 

convergence theorem we now have 

1 joJJ2 (t - a) 
_ 

(t - b) 
ut L(t 

- a)' + s2 (t - b)2 + s2, 
dµ(t)Ids 

=1% 
Eof (t - a) 

_ 
(t - b) 1 

J2 
if0 

L (t - a)2 + s2 (t - b)2 + s21 
ds } dµ(t) < 18. 

We can choose 6= min{Sl, S2}, and set J= [a - 6, a+ S) U [b - 6, b+ 6], which 

then gives 

1 co Jj ( (t 
- a) (t 

- b) 
u 

7rJw 
I[(t-a)2+s2 

(t-b)2+sl1d tI ds+ 

Ep 

+ lim 1ff (t - a) 
- 

(t - b) ýdµ(t)}ds 
< ý. (5.17) 

w--, O+ wj L(t - a)2 + s2 (t - b)2 -}- s2 9 

From the inequalities (5.15), (5.16), and (5.17) we may deduce from (5.14) that 

I g,, ((a, b]) - µ((a, b]) I 
Co 1 

9ý + liö 
7r Jw lf /J 

L(t (ta)i 
+ S2 (t 

(tb)2 
+ 32]d/c, ý(t)}ds- 

- lim 1f fý {fI 
(t a) 

z- 
(t b) ]du(t)}dsl. (5.18) 

w-, o+ ,rw ýIJ L (t - a)2 + S2 (t - b)2 + S2 

It remains to estimate the integrand for tE R/J, and on this set we have 

(t-a) 
_ 

(t-b) 
c1 (t-a)2+sz (t-b)2+s21' '1+t2' 
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for some constant c, > 0. 

[ To verify this bound, note that 

(t - a) 
_ 

(t - b) 
(t-a)2+s2 (t-b)2+s2 

a)[(t - b)2 -{- s2] - (t - b)[(t - a)2 + s2] 
[(t 

- a)2 + s2][(t - b)2 + sz] 

- 
(a - b) [t2 - (a + b)t + ab - s2] 

[(t 
- a)2 + s2][(t - b)2 + s2] 

after some algebraic manipulation. Since tE ii /J, the denominator of Ll (t) is 

bounded below by a positive constant. Consider now the function 

L(t) = Ll(t)(1 + t2). 

Note that L(t) -+ 1 as t --> ±oo, and it is straightforward to show that L(t) is 

bounded for all s>0. ]. 

The fact that dµ,, (t) and dp(t) are Herglotz measures now implies that the 

integrals 

_/( 
(t-a) 

- 
(t-b) 1t 

cl fR/J 1(t 
- a)2 + s2 (t - b)2 + S2 J dPn( ), 

and 

_t -a_ t -b ý2 - 
L, 

j1(t_a)2+s2 
f 

(t - b)2 + s2, 
dµ(t)I 

converge absolutely. Note that 

(5.19) Icil <C f1 
+ t2 

dpn(t) = c., (ImFn(i) - bn) c. ImF. (i), 

and thus cl is bounded uniformly in n, since ,, (i) -º F(i). Hence, it follows by 

the Lebesgue dominated convergence theorem that 
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1 Eo - a) (t - b) 
n() 

lim. 
O 

Jw f [(t-a)2+s2 

(t 
- b)2+s2]d 

t 
}ds= 

1 jeo (t - a) (t b) 
du (t) ds, (5.20) _ 

(f]RR/. 
' 

r--1 
L (t-a)2+s2 (t-b)2+s2] j 

and similarly for the second double integral. This shows that the integration 

with respect to Lebesgue measure ds in equation (5.18) must be performed on 

the interval [0, col. 

Suppose that IciI < K, for all nEN, for some constant K>0. We now let 

c'= max{K, Ic21}, C1 =L, and set c' =2 min{El, eo}. We then have 

-a - dt)ds- _1ý 
{JR/J ( (t )_ (t b) ll 

Jo L(t - a)2 + s2 (t - b)2 +S2 J1 

EI (t ) (t ) 

-1r(r(-a-- 
býdµ(t)}ds 

< ý, (5.21) Jo tJ 
R/i 

L(t 
- a)2 +s2 (t - b)2 + s2 9 

From (5.18), (5.20), and (5.21) we have 

Ipn((a, b]) - µ((a, b)) I 

5, 
+1% 

(t - a) (t - b) ld 
t ds- 

9 7r 
fro 

l Jýýý 
[ 
(t - a)2 + s2 (t - b)2 + s2J 

ý"ý )J 

1 rfo rJ[ (t - a) 
- 

(t - b) l dµ(t)}dsl. (5.22) 
ýr 

fEý l R/J (t - a)2 + sz (t - b)2 + s21 

But our previous arguments show that 

1 co 
l[ 

(t - a) (t - b) ldµ,, (t) ds < 18c , f, j (t-a)2+s2 (t-b)2+S2J 
I 

provided n> N3, and 

1 co [ (t - a) 
2- 

(t b) 
z]dli(t)ldsl 7r E1 j (t - a)2+ s (t - b)2 +s 18 
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Therefore, from (5.22) we find 

I12�((a, bJ) -µ((a, bl)I 
2e 

+11 jfo 
l 

(t - a) (t - b) 
dµ�(t)1ds- 

3 7JRL(t-a)2+s2 (t-b)2+s2J J 

rf ()_ (t - b) 

. ýEl Jý L(t 
ta)2 

+ s2 (t - b)2 + sZI 
dµ(t)Ids (5.23) 

By using equation (5.11) and a similar expression for F(z) which can be obtained 

from the representation of F(z) in (1.1), and substituting in (5.23), we obtain 

I p, º((a, b]) - µ((a, b]) I 
. - 
3 7r 

+- fEo IRe[F�(a+is) -F(a+is)]Ids+ 

+1 'Co I Re [F(b + is) - F�(b + is)] Ids +1fc "(b 
- a)Ib, - bnI ds 

<3+1fL IF�(a + is) - F(a + is) I ds+ 

+ 160 IFn(b + is) - F(b + is)lds +-I (b - a)Ib, - bnIds. (5.24) 
7r 7r 

Since F,, (z) -º F(z) uniformly, on compact subsets of the upper half-plane, as 

n -º oo, we can find an N4 EN such that if n> N4, then 

1f Eo lFn(a + is) - F(a + is) Ids +1ffo (F�(b + is) - F(b + is) ids <' 
7r 7r 

Also, from (5.15) we have 

f fo (b - a)jb, - b,, Ids <f c"(b 
- a)Ib, - b�Ids < 7r 7r 

Let N= max{Nl, N2, N3, N4}. Then, if n>N, we have from (5.24) 
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Iµn((a, bI) - µ((a, b]) I< c' 

so that Theorem (5.6) is proved. 

Corollary 5.7 Suppose, as in Theorem (5.6), that the points a and b (a < b) are 

not discrete points of any of the measures dµ�(t) (n E N) or dp(t), and moreover, 

that the Herglotz functions Fn(z) converge to F(z) as n -º oo at a point z= iso, 

for any so > 1, and uniformly on the II-shaped contour consisting of the following 

parts: the horizontal contour joining the points a+ieo and b+ieo, and the vertical 

contours {z =a+ is : e' <s< co}, {z =b+ is : e' <s< co}, where the positive 

constants co, e' were defined in the proof of Theorem (5.6). Then, 

Pn((a, b]) -' µ((Q, b]). 

Proof. On examination of the proof of Theorem (5.6) it is found that the Theorem 

holds provided the convergence conditions stated in Corollary (5.7) are satisfied. 

Note that (5.19) is modified here as follows: 

Icl l<c, JR 
1+ t2 

4 (t) < c' 
JR 

t2 .} s2 
dµn(t) (since so >_ 1) 

0 

_ 
c- (ImF�(iso) - b�so) < c' ImF�(iso), 
so so 

and thus cl is uniformly bounded for all n, since by assumption Fn(iso) -º F(iso). 

A further consequence of uniform convergence of F�(z) to F(z) on compact 

subsets of the upper half-plane is that we also have convergence of the corre- 

sponding value distributions. We shall prove this result in theorem (5.9), but 

first we prove a lemma which will be useful in later estimates. 
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Lemma 5.8 Suppose that the measure dv(y) is absolutely continuous with respect 

to Lebesgue measure, and let ho(y) be the density function of da(y). For nEN, 

let a family of sets Xn be defined by X� = {y E IR : ho(y) > n}. Then, 

lim IX. 12 dcT(y) = 0. (5.25) 
1+y 

Proof. Let X,, (y) be the characteristic function of the set X, and note that 

X" (y) 
<1 yER, nEN, i+y2 - 1+y2' 

where 1/(1 + y2) is integrable with respect to do(t). Hence, by an application of 

the Lebesgue dominated convergence theorem we have 

-+OO Jet 1+y 
da(y)= 

JR 
l im 

1+y 
da(tJ). 

By the Radon-Nikodym theorem, the density function h, (y) is finite Lebesgue 

almost everywhere, and thus limnýý Xn(y) =0 almost everywhere. The lemma 

now follows from the fact that da(y) is absolutely continuous with respect to 

Lebesgue measure. 

The above lemma provides a way of estimating and controlling h, (y), the 

density function of the measure da(y), by means of a splitting of the real line in 

two sets, which we call respectively So and S1. On Si ho(y) takes large values, 

although the contribution of this set to the integral in (5.25) will be arbitrary 

small. On the set So h, (y) is bounded, and as a result we will be able to bound 

the measure dcr(y) on this set, by means of Lebesgue measure. More precisely, 

we let the sets So and Sl be defined by 

So = {y ES: h, (y) < C}, Si = {y ES: h, (y) > C}, (5.26) 
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where C>0 is a constant. The larger the constant C, the smaller the contribu- 

tion of the set Sl to the integral in (5.25). This technique will provide us with a 

useful tool for estimation in our generalization, in the case when Lebesgue mea- 

sure is replaced by a Herglotz measure do, which is absolutely continuous with 

respect to Lebesgue measure. 

Theorem 5.9 Let Fn(z) be a family of Herglotz functions with corresponding 

measures µn, such that Fn(z) -º F(z) uniformly, as n -- oo, on compact subsets 

of the upper half-plane. Suppose that the measure do is absolutely continuous 

with respect to Lebesgue measure. Then, for any Borel set S, and any bounded 

Borel set B, we have 

HM j j. (B)dQ(y) =f 'v(B)da(y), (5.27) 

where the measures Ec' appear in (5.2), and the measures µy in (3.3) in Chapter 

3. 

Proof. Suppose BC [-N, N], and consider the family A of all Lebesgue measur- 

able subsets A of [-N, N] which satisfy equation (5.27). A is non-empty; to see 

this, first note that by lemma (5.1) there exists a constant Kl >0 such that 

µy ([-N - 1, N+ 1]): 5 Kl 
1+ y2 . 

(5.28) 

Thus, for any subinterval (a, b] of [-N, NJ, an application of the Lebesgue dom- 

inated convergence theorem gives 

li*m IS 
p' ((a, b])da(y) = 

IS Jim µy«a, b])da'(y)" 
Y 
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Since Fyn(z) -+ F, (z) uniformly, as n -+ oo, on compact subsets of the upper 

half-plane, it follows by Theorem (5.6) that In ((a, b]) -º py((a, b]) as n -º oo, 

provided that the endpoints a and b are not discrete points of any of the measures 

µn or py. Hence, the above equation implies that such an interval (a, b] satisfies 

(5.27). 

We will prove that every Borel subset of [-N, NJ satisfies (5.27). First, 

however, we need to show that A is closed under countable unions of disjoint 

sets. Let, thus, {Ak} be a sequence of disjoint sets in A. We need to show that 

l im fs 
ý( 

00 
Ak) do(y) _ 

JV(Ud4k)7(Y). (5.29) 
k=1 k=1 

We will split integration over S, to integration over the two disjoint sets So and 

S1, whose union is S. There also exists a constant K2 >0 such that 

N+ 1]): 5 K21 
1 

y2, 
(5.30) 

for all yE JR and nEN. (This follows in a very similar way as the result in lemma 

(5.1)). 

Let e>0 be given. Then, (5.28), (5.30), and lemma (5.8) enable us to 

choose the constant C in the definition of the sets So and Si in (5.26), such that 

we have both 

fl 
µn ([-N - 1, N+ 1])do(y) < i, (5.31) 

and 

I 
µy([-N - 1, N+ 1))do(y) < 6. (5.32) 

Therefore, 
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1, N+ 1])da(y) <6 (5.33) fl 
µy 

(U Ak) da(y) j([_N_ 

and 

Jl 
Py 

(kU Ak) do(y) ý fsý 
Fpv([-N -1, N+ 1])da(y) < 6. (5.34) 

Also, for each k 

jI(Ak)dcr(Y) ýC fso 
µn(Ak)dy 

<Cf µn(Ak)dy = ClAkI, 

where 1.1 stands for Lebesgue measure. Since 

I: CIAk j<_ CI [-N, N] I= 2NC < +oo, 
k 

it follows by a discrete version of the Lebesgue dominated convergence theorem 

that 

lim Ef µ4(Ak)du(y) _ lim µv(Ak)da(y)" nýoo k S0 k S0 

Therefore, we get 

li, oo 
fso 

µY 
(U Ak) da(y) = lam E 

Jso µy (Ak)da(y) 
k_ 

lim f 
µy(Ak)dv(y) =E 

iso 
Ii (Ak)do(y) 

k so k 

= fspy(UAk)da(y). ok 

Hence, there is an Nl EN such that, if n> Nl then 

<3. (5.35) ISO 
µy 

\U 
Ak) da(y) - 

ffo 
pv lU 

At) da (y) 
1 2c 

kk 
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Combining (5.35), (5.33) and (5.34), we see that for n> Nl we have 

f, (UAk)da(y)- 
Js µy 

(U Ak) da(y) < C, 

which proves (5.29) and shows that A is closed under countable unions of disjoint 

sets. 

Now take any measurable subset B of [-N, N]. We shall show that B 

satisfies (5.27) as well. There is an open (and hence measurable) set G such 

that GDB and IGý < ABI + sc. (We may assume that GC [-N - 1, N+ 1]). 

Suppose G=BU Bo where B and Ba are disjoint, so that Bo = G\B and 

thus Bo is measurable. Then, IGI = IBS + IB0I, which implies that 1Bol < 

se " We have µý (G) = µn (B) + µy (BO), and since (5.28) implies that µy (Bo) 

is bounded, we can subtract µv (Bo) from both sides of the equation to obtain 

n (B) = µn (G) - µn (Bo). Similarly, we have µy (B) = µy (G) - µy(Bo). Therefore, 

Js ýý(B)dc (y) - 
Is 

pt"(B)do, (y) 

=If {µy (G) - µý(Bo)}do (y) - Js 
{pv(G) - fiv(Bo)}do(y)I 

If 
µb(G)do(y) -f µv(G)do(y)I + 

+ fs 4 (Bo)da(y) +j ia+(Bo)du(y). (5.36) 

As before, we split integration over the set S to integration over the disjoint sets 

So and Si. From (5.31) we have 

f 
µY(Bo)do(y) < fs 

ji ([-N -1, N+ 1j)do(y) < 1" (5.37) 

Also, 
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f 
µ"(Bo)dc(y) C fso 

µy(Bo)dy 

<Cj/ (Bo)d(y) = ClBol 5C '6 
= 

6. (5.38) 

Combining (5.37) and (5.38), we obtain 

Js A'(Bo)dc(y) < 3. (5.39) 

Similarly, we have 

I 
µv(Bo)dc7(y) < 3. (5.40) 

Since it is an open set, G is the union of a countable collection of disjoint com- 

ponent intervals of [-N - 1, N+ 1]. Thus, by the first part of this proof, (where 

now, we consider disjoint measurable subsets of [-N - 1, N+ 1], rather than 

[-N, N], satisfying (5.27)), it follows that there is an N2 EN such that if n> N2 

then 

Js µ' (G)da(y) - Js py(G)da(y)I < 3. (5.41) 

Combining (5.39), (5.40) and (5.41), we see from (5.36) that, if n> N2 then 

f 
µY(B)da(y) - Js µv(B)dcT(y)I < c, 

which completes the proof. 

5.3 An estimate for the Value distribution of a 

translated Herglotz function F5(z). 

In this section we will obtain a remarkably precise estimate of the rate of con- 

vergence in the limit as 6 --º 0+. Given a Herglotz function F(z), define first a 
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Herglotz function F8(z), obtained from F(z) by translation through an increment 

i6, thus 

F5(z) = F(z + iS), 6>0. 

We can also define a family of translated Herglotz functions FY 6(z), by 

F5(z)= 
16 

>0, yE R.. 
y- Fa (z) 

Lemma 5.10 We have F5(z) --º F(z) uniformly as 6 -º 0+, on compact subsets 

of the upper half plane. 

Proof. Let D be any compact subset of the upper half plane. From the represen- 

tation of F in (1.1) in Chapter 1 we have 

1F5(z) - F(z) I 

t 
= 

I+ 
bF (z + i6) +Rt 

-Z - 
iä 

1+t2 

1 
du 

\t/ ý 

Z-1 
1_t 

-a. - bFz - 
, IR ltz1t t2 

I dµ(t)I 

= 
Ibpi6 

+1{t-Z- iS t1z 
}tj 

= 
IbFi5 

+ 
1 i6 

(t -z-: b)(t - z) 
dµ(t) 

< bFS +S1 dµ(t). (5.42) fR 
It -z- iblIt - xI 

Since It-z-i6IIt-zI > (t-zI2, we have 

111 
It -z- iSlt-zI - it-z12 (t-Rez)2+(Imz)2' 

There are constants KD, ED >0 such that IRezI < KD and 0< cD < Imz < KD 

for all zED. It is straightforward to show that 
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(t-Rez)2+(Imz)2 - C1+t2 

for some constant c>0, which shows that the integral in (5.42) is finite. Hence, 

taking the limit as S -º 0+ we see that (F5(z) - F(z)j -º 0 uniformly for all 

zED. Since D was an arbitrary compact subset of the upper half plane, the 

result follows. 

Lemma 5.11 We have FV 6(z) --+ Fe(z) uniformly as 6 --+ 0+, on compact subsets 

of the upper half complex plane, where the functions Fy were defined in (3.2) in 

Chapter 3. 

Proof. By definition, 

IF, 6(z)-FF(z)I=1 1 ly- 
F(z + ib) y- F(z) 

_ 
IF(z + ib) - F(z) I 

ly-F(z+ib)Ily-F(z)) 

Let D be any compact subset of the upper half plane. There is an cD >0 such 

that ImF(z) > eD for all zED. Thus, 

I y- F(z) I> ImF(z) >e,, VzED. 

Since F6(z) -º F(z) uniformly as S -º 0+ on D, there is a öo >0 such that if 

S<6 then IImF(z + ib) - ImF(z)I < `-2 
. Hence, if 6< bo, then lImF(z + 

ib)ý >-ý and so ly - F(z + ib)ý > ImF(z + ib) > `-z 
. Thus, if 6< bo then 

ly-F(z+iS)lly-F(z)l > ý-ý, 
and 1/ly-F(z+i6)jjy-F(x)j < 2/(eD)2. Given 

any e>0 there exists a bl >0 such that if 6< bl then IF(z+ib)-F(z)I < <`ý-`. 

Hence, if 6< min{So, Sl} we have IFy (z) - FF(z)) < e, for all zED. Since D 

and e were arbitrary the lemma follows. 
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We introduce now the idea of angle subtended 9(z, S) at a point zEC. by 

a Borel set S on the real line, defined by 

O(z, S) = JsImLt 
1 

z]dt. 
(5.43) 

We shall refer to 0 as the `standard' angle subtended. Moreover, for zE C+ we 

define w (., S; F) by 

w(z, S; F) = 
10(F(z), S), (5.44) 

so that w(A, S; F) =1ima--, o+ w(A + iö, S; F) for AER. For almost all AER, we 

have 

1 
w(A, S; F) =0 

B(F'+(, X), S) 

F+(A) ER and F+(A) E S, 

F+(a) ER and F+(Ä) e S, 

Irn F+(a) > 0, 

where F+(A) = limfýo+ F(A + ie) is the boundary value of F at A. Hence, in 

the particular case that F+(A) is almost everywhere real, w(., S; F) is (almost 

everywhere) the characteristic function of F+ 1(S) 
. In the case of the translated 

Herglotz function Fa we set w(A, S; F6) = w8(A, S; F) = *O(F(A + ib), S) . 
Because in Chapter 3 we considered the average of the spectral measure over 

other measures than Lebesgue measure, we will need to generalize the notion of 

angle subtended. Thus, for any point zE C+ and any Borel set S on the real 

line, we define a `generalized angle subtended' 9, (z, S) by 

01 (Z, S) = 
jim[t 1 }da(t), (5.45) 

where the measure do- corresponds to the Herglotz function ¢. Correspondingly, 

we define wQ (., S; F) by 

w. (z, S; F) = 
10, (F(z), S), (5.46) 
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so that w, (A, S; F) =1imb-. o+ wo(A+iS, S; F), and we set w, (A, S; F6) = wö(A, S; F) 

=-rB, (F(A+ iS), S). 

The following lemma implies that if the measure da is absolutely continuous, 

then for fixed zEc and any Borel set S the generalized angle subtended 0o(z, S) 

is bounded. 

Lemma 5.12 Suppose that the measure do(t) is absolutely continuous with re- 

spect to Lebesgue measure, let S be any Borel set, and z be a point of the upper 

half complex plane. Then, given any c>0, we can choose a constant C(e) >0 

depending on e, such that 

BQ(z, S) < Co (Z, S) + e. 

Proof. By definition, 

9°(z, S) = 
IIlm[t 1 

Z]do(t) 

= 
'so Im[ 1 ](t) 

+j Im[ 
1 ]dcr(t), 

t-z l t-z 

where the sets So and Si are defined in (5.26). Since Im 1/(t - z) < const. /(1 + 

t2), given any e>0, we can choose a constant C(e) > 0, such that 'Si Im 1/ (t - 

z) da(t) < 6. Also, we have 

/Im[t 1] 
du(t) <Cf Im[ 

1 , dt Cf Im[ 1 ]dt 
= CB(x, S). 

-z so t -x 
is 

t-x 

Hence, we have 

ea(z, S) < CO(z, S) + e. 
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Lemma 5.13 Let µb be a family of measures corresponding to the Herglotz func- 

tions FF, for S>0, yER, and da an arbitrary Herglotz measure. Let A be any 

bounded Borel set, and S any Borel set. Then, we have 

ji4(A)dcr(y) 
= 1IAI(b( oF) - 

bob,, ) +- 
19(t + iS, A)dvs(t), (5.47) 

where bo is the constant appearing in the representations of the Herglotz func- 

tions ¢S and 0 in (3.15) and (3.14) respectively in Chapter 3, bF is the constant 

appearing in the representation of the Herglotz function F in (1.1) in Chapter 1, 

b(OsoF) is the constant appearing in the representation of the composed Herglotz 

function (¢s o F) in (3.16) in Chapter 3, the measure vS was defined in (3.9) 

in Chapter 3, and O(z, S) was defined in (5.43). Moreover, if the measure do is 

absolutely continuous, then 

[�4(A)do. (y) _ 
-' f B(t + i5, A)dvs (t). (5.48) 

Proof. Fix b>0. Then, the Herglotz function F5(z) has boundary values with 

strictly positive imaginary part, as do the functions FF (z). The measures p6 are 

thus absolutely continuous, having density functions x Im Fy(A + ib), and hence 

we have 

is 
µ4(A)dv(y) = Js l! 

1 ImFi, (a + ib)da}da(y) 
A 

- Sl7r 
JAlm[ 

y- F(A+ib)]dA1du(y)" 
(5.49) 

Since A is confined in the bounded set A, we have Irn[y_F ä+ta ]< const. l . 
Hence, the integral above is absolutely convergent, and we can change the order 

of integration to obtain 
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1s p6 (A) - Ja l Js Im[ 
y- F(A + ib)] 

d°(y)}da. (5.50) 

From the integral representation of Os (z) in (3.15) in Chapter 3 we have 

(5.51) Im q5s (F(a + iS)) - boIm F(A + i6) = 
is Im[ 

1 
)] 

du (t). 
st- F(A+iS 

Substituting (5.51) into (5.50) we have 

µy(A)da(y) _ 
JA {Imcs(F(A+iö)) - b, 6 ImF(A+ib)}da. (5.52) j 

From the representation of the composed Herglotz function (¢s o F)(z) in (3.16) 

in Chapter 3, we have 

Im (ýS o F)(, \+ iö) = b«S0F)S + IR 
(t - A)2 + öz 

dµ( 
5OFý(t). 

(5.53) 

Also, from the representation of F(z) in (1.1) in Chapter 1 we have 

ImF(A + iö) = bFS + JR 
(t - \)2 + 62 

dµ(t). (5.54) 

Substituting (5.53) and (5.54) into (5.52) we obtain 

is 
µy(A)dQ(y) = 7r JA 

S(b(e 
F) - 

bib, )dA+ 

L 
(t - a)2 + 62 

dýcm30 t) - bo 
JR (t - a)2 + ba 

dµ(t)}d. ý. 
1 

+7 JA I. 

In lemma (3.8) in Chapter 3, we obtained the relation 

vs (B) = lz(,, 
s., ) 

(B) - bjµ(B), (5.55) 

for any Borel set B. Thus, we have 
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f14(A)dcr(y) 
= 

16IAI(b(Ö3OF) 
- bFb4)+ 

t- A)2 + 62 
d(ý( 

0)(t) - bmµ(t))}da + JA{J 
( 

- bIAl(b( 
SoF) - 

bFbo) + JA l 
JR 

(t - , \)2 + bs 
dus(t)}dý, 

since all the above integrals are convergent. The above double integral is also 

absolutely convergent, since, from the representation of the Herglotz function 

Hs (z) in (3.13) in Chapter 3 we have 

L22 du(t) = ImH5(A+iS) -< ImH5(A+ib), 
(t - a) +S 

which is uniformly bounded for A in the bounded set A. Hence, by changing the 

order of integration we obtain 

is 
_ 

BSI AI (b( 
SoF) - 

bFbo) +! JR l1 (t - a)2 -}- ba 
dA}dus(t) 

A 

- bIAI (b(eSoF) - b, b, 0) + fR6(t+ib, A)dvs(t), 
7 7r 

from the definition of the angle subtended 0(z, S). If, furthermore, the measure 

dv(y) is absolutely continuous, then the term 
, -rcIAI(b(tjsOF)- bFb#) vanishes by 

Theorem (4.3) in Chapter 4, and the lemma is proved. 

Now let the Herglotz functions 0o (z), 0, (z) and the composed Herglotz 

functions (0 o F) (z), (0, o F) (z) have the following respective representations: 

ýo (z) = ao + boz +It-z t2 +J 
dQ(t) (5.56) 

q1(z) = Jsl lt1zt+1} 
do (t), (5.57) 

z 
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(0o o F)(z) = ao + boz +I 
{t 1z 

t2 
t 

-11dvo(t), 
(5.58) 

(¢1 o F) (z) = al + bl z+f{t1z- t2 
+1I dv, (t), (5.59) 

for any Borel set S, where the sets So and Sl were defined in (5.26). 

Lemma 5.14 Let F, Fl, and F2 be arbitrary Herglotz functions which satisfy 

F(z) = Fi(z) + F2(z) for all z, and which have corresponding measures p, µl, 

and P2 respectively. Then, for any Borel set B we have 

i(B) = µ1(B) -+' µ2(B). 

Proof. By using the characterization of any Herglotz measure for intervals (a, b], 

where the points a and b are not discrete points of the measure, we have 

b 

µ((a, b]) = lim 1f ImF(a+ie)dA 
e-. 0+ Ir a 

= lim 1f 6Im(F, 
(A+ie)+F2(A+ie))dA=µ1((a, b])+µ2((a, b]), 

e-"o+ 7f a 

provided that the endpoints a and b are not discrete points of any of the measures 

µ, it, or µ2. Now the lemma follows by the same argument which we used in the 

proof of lemma (3.8) in Chapter 3. 

Corollary 5.15 For any Borel set B we have 

ß(�s., 
) 

(B) 
= v0 

(B) + v1 (B), 

and also 

vs (B) = vo (B) + vi (B) - boµ(B)" 

Here, the measures µ(,, 
s., ), 

v,,, v1, vs, and p, correspond to the Herglotz func- 

tions (ßßs o F), (q5(, o F), (01 o F), Hs, and F respectively. 
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Proof. The first assertion of corollary (5.15) follows from lemma (5.14) and the 

observation that for all z, we have 

(Os o F)(z) = (0o o F)(z) + (0,0 F)(z)" 

Having obtained the first one, the second assertion follows from equation (5.55). 

Lemma 5.16 Suppose that the measure do is absolutely continuous with respect 

to Lebesgue measure. Then, with the same notation as in corollary (5.15) we have 

0< vo (B) - boµ(B) < CI BI, 

where the constant C>0 appears in (5.26), and 1.1 denotes Lebesgue measure. 

Proof. Suppose that the points a and b are not discrete points of either of the 

measures vo or IL. Then, 

vo((a, b]) - boµ((a, b]) 

6 

= lim 1f {Im (cbooF)(A+ie)-b#Im F(A+ic)}dA. 
e-o+ %r 6 

From (5.56) we have 

Im(cbo o F)(A+ie) = b, ImF(A+ie) +fso Im[ 
- F(A+ . )]dor(t), t 

and hence 

Im(ýo o F)(A+ie) - b, ImF(A+ic) = 
isoIm[ 

- F(A+ . )]dv(t) t 

r1 Cl Irrt{ -t 
Idt 

= Cr, 
R t-F(A+ie) t2+1 

since 

n 
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Im fR{t 1z 
tz+l}dt=7r, 

VzEC+. 

Thus, 
b 

vo((a, b}) - bop((a, b]) <J CirdA = CI (a, b]I "1 7r " 

Note that since Im fso 1/[t - F(z)]da(t) >0VzE C+, va((a, b]) - bmµ((a, b]) 

is non-negative. 

Now take any points c and d. We can construct sequences {c; } and {d; } 

which are not discrete points of either of the measures vo or p, such that c; -º c_ 

and di --+ d+. Hence, 

vo i(c, d]) - boµ((c, d]) = vo 
(lim (c;, d, j) - boµ( lim (c;, d, J) 

1-00 
t--600 

= lim (v0((c, dJ) - boµ((ci, di]) < )j im CI (c+, di]I 

= Cl lim (cj, dgl l=CI (c, d] I" 

Note also that since v,, ((cj, d2J) -bOp((c;, d1]) > 0, V i, it follows that vo((c, d]) - 
bop((c, d]) is non-negative, for any points c, dER. By the same argument, it 

follows that va({x}) - b, 5µ({x}) = 0, Vx E a. Hence, for any open interval 

(c, d) we have v,, ((c, d)) - boµ((c, d)) < CI (c, d) 1. 

Let B be any open Borel set. Then, B= Uk Ak, where Ak are disjoint open 

intervals, and thus we have 

vo (B) - bp(B) = vo 
(U Ak) - biµ (U At) 

kk 

{vo (Ak) - bOµ(Ak)} <E CIAki = CIBI. 
kk 

Observe that vo(B) - bop(B) > 0, because vo(Ak) - bip(Ak) is non-negative, 

for all k. 
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Now let B be any bounded Borel set. For any s>0, there is an open set 

G containing B such that IGI < IBI + ý. Suppose G=BU BI, where the sets B 

and Bl are disjoint, so that JBlI < ý. Then, 

vo(G) - bjµ(G) = vo(B U B1) - boµ(B U B1) 

= vo(B) + vo(Bi) - bO IL (B) - boµ(B1). 

We can assume that G is bounded, which implies that vo(B1) and bjp(B1) are 

bounded, and thus obtain 

vo(B) - bmµ(B) = v. (G) - bmµ(G) - {vo(Bj) +bmp(Bj)} 

< vo(G) - boµ(G) < CIGI < C(I BI + , -IC) = CIBI + c. 

Since e>0 was arbitrary, we can infer that 0< vo(B) - bjµ(B) < CIBI. 

Finally, let B be any Borel set. Then, we have 

vo (B) - boµ(B) = vo 
(U Bn [-N, N]) - bO 2 

(U Bn [-N, N]) 
NN 

=l im {vo(B n [-N, N]) - bmµ(B n [-N, N])) 

l im =CIBI, 

by our previous argument. This completes the proof. 

Lemma 5.17 Take any points a and b with a<b, and fix 6>0. Then, for 

tE[a-1, b+1]cwe have 

9(t+i6, [a, b]) <_ öall+t ' 2 

where 6(z, S) was defined in (5.43), and al >0 is a constant depending on a and 

b but not on 6. 
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Proof. For tE [a - 1, b+ 1]c we have 

O(t + iö, [a, b]) = tan-' 
(t a) 

- tan-' 
(t b) 

= tan-1 
( S(b - a) 

62+(t-a)(t-b) ' 

and note that the expression inside the brackets is positive. We now use the fact 

that . 1tan-'x<1, x>0. [For x>0 we have 

tan-1x= fý 1 
dt<1xdt=x, 

0 1-F t2 0 

and by L' Hopitals rule we have 

tan-1 x l im = lý01-+ 
+ x2 

= 1. ] (5.60) 
x 

Thus, it follows that for tE [a - 1, b+ 1]° we have 

6(t+iS, [a, b]) <2 
S(b - a) 

62 + 

However, it is straightforward to show that for tE [a - 1, b+ 1]c we have 

b-a b-a 1 
62+(t-a)(t-b) - (t-a)(t-b) -al1-F-t2' 

for some constant al >0 independent of 6, and hence the lemma is proved. 

Lemma 5.18 Let A be any bounded set, contained in the interval [a, b). Let al 

be chosen as in lemma (5.17), and a2 = max{1 + (a -1)2,1 + (b+ 1)2}. Suppose 

that the measure do, (t) is absolutely continuous with respect to Lebesgue measure. 

Let e>0 be given, and take S with 0<S<1. Define the set Sl as in (5.26). 

Then, the constant C= C(e) can be chosen such that 
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(al/ir + a2) 
I Im [t 

- F(i)] 
du(t) < e. (5.61) 

In that case, with the same notation as in corollary (5.15), we then have 

(i) 19(t + iS, A)dvl (t) <e and (ii) 110 (t + ib, A`)dvl(t) < E. 
7r A- A 

Proof. We will first obtain inequality (i). We have 

7I 
O(t+iS, A)dvl(t) 

=1 8(t + ib, A)dv, (t) +1f 0(t + ib, A)dvl (t). 
7r A 

Since AC [a, b], we have O(t + iS, A) < O(t + ib, [a, b]), and it follows from lemma 

(5.17) that 

1 0(t + iS, A)dv1(t) 
7 

ýAcr(a-l. 

b}1]° 

_< 
1 Sal 11 dvl (t) <_ 

1 Sal IR 1 dv1(t). (5.62) 
A°f1[a-l, b+l)e 

1+ t2 it 1+ t2 

Moreover, 

1f 0(t + iö, A) dvl (t) <f X[a-l, b+lj 
(t)dv1(t) 

7r Acfl[a-1, b+1j R 

< a2 
1 

dvl (t), (5.63) 
Z 

fR 

1+t 
where a2 = max {1 + (a -1)2,1 + (b + 1)2} . From (5.59) we have 

Im (0i o F)(i) = bi + 
,I11 t2 

dvi (t) (5.64) 

and from (5.57) 

Im 0, (F'(z)) = Js, 
Imlt 

- F(i)Jdor(t). 
(5.65) 
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From (5.62) and (5.63) we obtain 

fA- B(t + ib, A)dvl (t) < (bal/ 7r + as) 
f1+ 

t2 
dvl (t). (5.66) 

By substituting (5.64) and (5.65) into (5.66) we obtain 

11 O(t+ ib, A)dv1(t) < (bal/7r+ a2) 
f, Im [t 

- F, (=)] 
do(t) - b, 

1< (Sal/ir + a2) 
I Im[t 

- F(i)] 
der (t). 

Since Im 1/ [t - F(i)] < tonst. /(1 + t2), the constant C can now be chosen, by 

lemma (5.8), such that (5.61) holds, and inequality (i) in the statement of the 

lemma follows. 

To see that inequality (ii) holds, note that 

f B(t + iS, A") dvj (t) f 
XA(t) dv, (t) az 

it 1 +t2 
dv, (t). 

Therefore, by our previous argument we have 

zr Ja 
0(t + ib, A`)dvl (t) 

_< a2 
I Im [t 

- F(i) J 
du (t), 

and by our choice of C inequality (ii) follows as well. 

Lemma 5.19 With the same notation as in corollary (5.15), and the same as- 
sumptions as in lemma (5.18) we have 

e(t + iö, A)d(vo(t) - &,, (t)) <_ CEA(a), 
A- 

and 

fA O(t + ib, Ac)d(vo(t) - b, 4µ(t)) < CEA(6), 
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where EA(6) is defined by 

9(t + iS, A`)dt. (5.67) EA(S) _ 
fAc 9(t + iS, A)dt = 7r A 

If, in particular, A= [a, b], then 

(b6 a) 
+ In [(b - a)2 + S2] -26 1n 5. (5.68) EA(S) =2 (b - a) tan-' 

W- 7r 7r 

Proof. By lemma (5.16), (v0 - bqc)(B) < CIBI, for any Borel set B. Therefore, 

I O(t + iS, A)d(vo (t) - boµ(t)) <2fc O(t + iS, A)dt, 
7r A- 

and 

1f e(t + Zs, Ac)d(vo (t) -b jµ(t)) <_ Cf e(t + Zs, A°)dt. 7C A 7r A 

Note that 

(t + iS, A)dt EA(6) =1f 9(t + iS, A)dt =1f 9(t + is, A)dt - 
IA O 

AR 9f 

{ýr - O(t + i5, Ac)}dt =If o(t + ia, A)dt -A 

7r 
J{f 

(t - A)2 +. 62 
da}dt - JAI +i JA 

6(t + iö, Aý)dt 

_ 
fA 9(t + iS, A`)dt, 

by a change in order of integration in the double integral. If A= [a, b], then 

1b6 EA(S) fA O(t + M, A`)dt = Ja 
ýý 

- Ja (a - t)2 + as 
dt1da 

_(b-a)--1 
lb 

lJ a 

b(A-t)2+bzdt}da. 

The above equation is equal to the expression in (5.68) (see [5]). 
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Lemma 5.20 Define the measures µ6 as in lemma (5.13), and EA(6) by (5.67). 

With the same assumptions as in lemma (5.18), and for any given c>0 we then 

have 

1 
µ6(A)da(y) - Js µv(A)da(y)I < CEA(6) +e, 

where C= C(e) is a constant depending on c. 

Proof. By lemma (5.13) we have 

f, 4(A)dcr(y) _! 
f 0(t + iS, A) dvs (t). (5.69) 

Also, from (3.11) in Chapter 3 we have 

is 
= 

IR 
XA(t)dvs(t)" 

Therefore, 

j 
µy(A)da(y) - Js µy(A)da(y) 

=If 
{-O(t+ib, A)-X,, (t)}dvs(t) 

-I 
IA { 

Ir 
0 (t + ib, A) -1 

} dvs (t) +f. O(t + ib, A)dvs (t) 

-IA 0(t + ib, A°)dvs(t) +1 9(t + ib, A)dvs(t)I. 
A. 7r 7r ý, 

In the above expression, the integral on the left is negative and the integral on 

the right is positive. Hence, an upper bound for this expression is 

sup 
fA 9(t + iö, Aý)dvS (t), fA O(t + ib, A)dvs (t) . 

From corollary (5.15) we have vs (B) = vo (B) + v, (B) - bpµ(B), for any Borel 

set B, and thus 
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1f O(t + iS, A)dvs (t) =1f 6(t + iS, A)dvl (t)+ 
7r A° 7f A° 

+- I B(t + i6, A)d(vo(t) - bO L(t)), 

and 

fA 9(t + iö, A`)dvs (t) _ 
fA 0(t + i8, A`)dvl (t) + 

+! 19(t + iö, A`)d(vo(t) - boµ(t)). 
7r A 

Lemma (5.20) now follows from lemmas (5.18) and (5.19). 

Corollary 5.21 With the same assumptions as those in lemma (5.18) we have 

l im 
Is 

4it6 
(A)do(y) -f ßy(A)da(y)1 = 0, 

with the convergence being uniform over all Borel sets S and over all Herglotz 

functions F such that F(i) belongs to some compact subset of the upper half plane. 

Proof. The function EA(b) defined in (5.67) is a non-decreasing function of 6 

(see [5]), and lima . o+ EA(b) =0 by an application of the Lebesgue dominated 

convergence theorem. (The specific expression for EA(b) in (5.68) in the case 

when A= [a, b] illustrates the convergence of EA(b) to zero in the limit b -º 
0+. ) Corollary (5.21) now follows from lemma (5.20), since e>0 was arbitrary. 

The requirement for F(i) to belong to a compact subset of the upper half-plane 

emerges from lemma (5.18). If this condition is satisfied we then have Im 1/ [t - 
F(i)] < 1/ (1 + t2), and by using lemma (5.8) we can choose the constant C such 

that (5.61) in the statement of lemma (5.18) is satisfied. 
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Theorem 5.22 Let EA(S) be defined by (5.67), K be a compact subset of C+, S 

be any Borel set, and take 6 with 0<6<1. With the same assumptions as in 

lemma (5.18), and given e>0, the constant C= C(e) can be chosen such that 

fa 
wö(A, S; F)dý - 

JA 
wv(A, S; F)dal < CEA(6) + c, (5.70) 

for any Herglotz function F(z) such that F(i) E K. 

Proof. We will show that 

Js 4(A)dv(y) = 
JA 

o4)t, S; F)dA, 

and 

fp(A)d7(y) 
= 

jcijI7t, S; F)dA. 

The above equations are the generalization of results to be found in the work 

of Breimesser and Pearson in [5] and [6], in the case when Lebesgue measure is 

replaced by a Herglotz measure do which is absolutely continuous with respect 

to Lebesgue measure. 

We have from (5.50) 

f. 
L4(A)dcr(y)=JI! lir islmly-F(A+ib)Jdo, (y)}da 

=1 
-Bv(F(A 

+ M), S)d.. \ = JA W, (1\, S; F6)dA 
A 

-f w'(, \, S; F)da. 

From the definition of the measure vs in (3.9) in Chapter 3 we have 

v5(A) = 
j, 

i(A)da(y). 
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Here vs, according to (5.55), is the measure associated with the Herglotz function 

(cs o F) - bkF. From the representations of the Herglotz functions 0s in (3.15) 

in Chapter 3, and F in (1.1) in Chapter 1, we have 

0s (F(z)) - boF(z) = ao + 
}do(t). fsft-F(z) 

1+t2 

Let h�S be the density function of vs. Then, h�s is determined almost every- 

where by the equation h�3 (A) = lima-. o+ x 
Im [ (F) - boF] (A + ib), and is thus 

given by 

-o+ t- F(A + ib), 
da(t) (5.71) h"S (A) 

67 Js 
Im[ 

= lim 
19, (F(A + iö), S) = w, (A, S). 

6- o+ 7r 

So, 

j(A)da. (y) - Ja 
(A, S) da. 

Therefore, 

JA(A, S; F) da - 
JA (A, S; F)dA 

-I Js 
4(A)du(y) - Js /ty(A)da(y)), 

and Theorem (5.22) now follows from lemma (5.20). 

Corollary 5.23 Let h�s be the density function of vs, and denote by F+(a) the 

boundary value of F at AER, defined by F+(A) =1im6... a+ F(A + ic). Then, at 

almost all points A we have 

lO (F+(A) S) F+ (A) E C+, 
Its (A) _w (5.72) 

S lima-. o+ -19, (F+(1\) + ib, S) F+(a) E R. 
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Proof. If F+(A) E C, then for sufficiently small values of 6 the points F(\ + iS) 

lie in a compact subset of C and we have Im coast. 1j. Thus, 

the first assertion of the corollary follows from an application of the Lebesgue 

dominated convergence theorem in (5.71). 

Otherwise, if F+(A) E lib, note that by Theorem (4.4) in Chapter 4 we have 

limaýo+ 0s (F(\ + iS)) = limb-.. o+ ¢s (F+(A) + iS), so that 

lim [os oF- boF] (A + ib) 
6 0+ 

}do(t) 
- býF+(a), =äl, ö ak + bo(F+(a) + ib) + is {t- 

(F+(, \) + iö) 1+ t2 

Hence, 

h�s (A) =1 Im lim [0, oF- boF] (A + ib) 
7r aýo+ 

= ]im IS 1]= lim B, (F+()%) +'61 S), 
ir a-ao+ Js lt - (F+(A) + ib) J is a-"o+ 

as the corollary states. 

5.4 Application to the Schrödinger equation 

In this section we will show how the theory of value distribution of Herglotz 

functions can be applied to solutions of the Schrödinger equation on the half- 

line, at real spectral parameter A, through the `'Veyl-Titchmarsh m-function and 

its boundary values. We shall assume that there is an absolutely continuous 

component to the spectrum of the Schrödinger operator, and take A to belong 

to an essential support of the absolutely continuous component of the spectral 

measure. We will see that applications of the theory of value distribution to the 
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Schrödinger equation are closely linked to geometrical properties of the upper 

half complex plane. We begin by establishing the notation. 

Let a potential function V(x), defined for 0<x< oo, be given, with 

V real-valued and integrable over bounded subintervals of [0, oo). We make no 

special assumptions regarding the behaviour of V (x) in the limit as x -+ oo. 

We associate with V the differential expression r= -M + V. Then r may be 

used to define the self-adjoint operator T=- + V, acting in L2(0, oo) and dxT 

subject to Dirichlet boundary conditions at x=0. We are assuming here that 

the differential expression r belongs to the limit-point case at infinity (see section 

7 of Chapter 2), in which case no boundary condition at x= +oo is required to 

define T as a self-adjoint operator. The alternative assumption, that r belongs 

to the limit-circle case, is known to lead to purely discrete spectrum for T (see 

[9]). Since we are primarily concerned here with the absolutely continuous part 

of the spectrum, we need not allow for the possibility of limit-circle at infinity. 

We define u(x, A), v(x, A), in the case of real spectral parameter A, and 

u(x, z), v(x, z), where the spectral parameter z is complex with zE C1., to be 

solutions of the Schrödinger equation 

- 
d'f (x�\) 

+V (x)f (x�\) = )f (x�\), (5.73) 
dxz 

- 
d'f 

d(x2' 
z) +V (x)f (X, z) = zf (X, x), (5.74) 

respectively, in each case on the half-line 0<x< oo, which satisfy for J1 ER 

u(o, A) =i v(o, A) =o (5.75) 
u'(O, A)=o v'(O, A)=1 

and the corresponding initial conditions for u(x, z) and v(;, z), for zEC... For 

all zEC, the Weyl Titchmarsh rn-function is defined (assuming limit-point case 
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at infinity) by the condition that 

u(., z) + m(z)v(., z) E L2(0, oo). (5.76) 

Then m is a Herglotz function. An alternative characterization of m is through 

the observation that m(z) = f'(0, z)/ f (0, z) for any (non-trivial) solution of 

equation (5.74), such that f (., z) E L2(0, oo). 

In addition, we will be interested in the rn-function related to the differential 

expression 7- +V where V (x) is defined on the truncated interval N<x< dXT 

oo, for any N>0. Taking for simplicity the case of Dirichlet boundary condition 

at x=N, we may define the self-adjoint operator TN = --dý's +V acting in 

L2(N, oo), subject to boundary condition f (N) = 0. Correspondingly, solutions 

uN(., z), vN(., z) of equation (5.74) with Im z>0, may be defined subject to 

initial conditions 

uN (N, z) =1 

(uN)'(N, z) =0 

vN(N, z) =0 

(VN )'(N, z) =1 
(5.77) 

and the rn-function m''(. ) with Dirichlet boundary condition at x=N is deter- 

mined by the condition that 

UN(. ß z) + MN(z)V'(., z) E L2(N, oo) 

Note that m'(. ) is the standard m-function for the Dirichlet Schrödinger operator 

-y. j +V (x + N) acting in L2(0, oo). An alternative characterization of m'(. ) 

is through the observation that mN(z) =fN; = for any (non-trivial) square- 

integrable solution f (., z) of equation (5.74). Since u(., z) + m(z)v(., z) is just 

such a square-integrable solution, we can write explicitly 

M'(z) _ 
u'(N, z) + m(z)v'(N, z) (5.78) 
u(N, z)+m(z)v(N, z) 
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Before we proceed to our main result, we introduce the notion of `distance 

of separation' ry(zl, z2) of two points zl, z2 EC defined by 

7(z1' Z2) 
Izl - z21 (5.79) - Imzl Imz2 

Lemma 5.24 Let KCC be a compact set, c>0 be a constant, and E= {z' E 

C+ : ry(z', z) < c, VzE K}. Then, there exists a compact set Kl C C+ such that 

ECKT. 

Proof. Let z;, be any sequence of points in E. Then, by assumption we have 

'i K', z) _ 
12" - zi <C (5.80) 

limn Imz 

for all n and zEK. We note first that Imzn is bounded. Otherwise, if Imz,, -+ 

oo as n --> oo then (5.80) would not hold, because y(zn, z) is greater than or 

equal to 
IImz'� - ImzI 

(5.81) 
mz Imzn VI- 

which tends to +oo as n -º oo in this case (since z is restricted in the compact 

set K), which is a contradiction. Similarly, if IRez'�I -º oo as n -º oo then (5.80) 

would again not hold, because ry(zl, z2) is also greater than or equal to 

IRez;, - RezI 
Imzn Imz 

which tends to +oo as n --i- oo in this case (since z is restricted in the compact 

set K and Imzn is bounded). Hence Jz'nl is bounded for all n. Moreover, Imzn 

is bounded below by a positive constant; otherwise, if Imz'� -º 0+ as n -+ oo, 

then (5.80) would not hold, as can be seen from (5.81). Therefore, there exists a 

compact set Ki Cc such that z,, E Kl for all n, and the lemma follows. 
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The following lemma provides an estimate of the generalized angle subtend- 

ed 8, in terms of the distance of separation ry. 

Lemma 5.25 Let zl and z2 be two points in the upper half complex plane, and 

let S be any Borel set. We then have, for any Herglotz measure do, 

ýO (zi, S) -O (z2) S)I <'Y(xi7 z2) eo(zi, S) ea(z2, S) 
- 

Proof. By definition of 0, we have 

ýO (zi, S) - Oci, (z2, S) l=I1 Im[ 
t1 zl 

]du(t)-jIm[t 1 

z2 
]do(t) I 

(5.82) 

Im 
s (t 

(zl)(t 

- z2)dQ(t)I 
<I fs 

(t 
(zi)(t s) 

z2)dý(t) 

Izl - z21 du(t). 
Js lt -zilit-z21 

From the definition of the distance of separation ry in (5.79) we obtain (zl - z21 

ry(zl, z2) Imzl Imz2. Thus, we have 

% 
ea(zi) S) - ear (zzi S)I 7(zi9 za) 

Im zl m z2 
Js lt - zl i lt - z21 

du(t) 

1 

<_ 7(ziiz2) 
is 

lt 
Im Z, du(t) 

13-Z, 

12 

1f is 
it 

m 
z21zdu(t) 

1 

(5.83) 

='Y(zii za) eo(zii s) eo(x2i s)1 (5.84) 

where we have used the Schwarz inequality. 

Theorem 5.26 Suppose that the measure dcr is absolutely continuous, with den. 

sity function h, and let A be a bounded Borel subset of an essential support 
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of the absolutely continuous part µaß of the spectral measure µ for the Dirichlet 

Schrödinger operator T=-ä+V, acting in L2(0, oo); moreover, we make the 

following assumptions: 

(i) For any fixed zE C+, there exists a compact subset KZ of C+ such that for 

all N sufficiently large we have - v1(Ný E K. 

(ii) There is a compact subset Kl of C such that for all AEA and N suffi- 

ciently large we have m+(A) E K1, and also for all N sufficiently large we have 

vý N, i 
- �-ýN 

E K1. 

(iii) For z=A+ iS, AEA and any S>0 fixed, we have K, C Kl. 

Then, for any Borel subset S of R we have 

Ilimo 
Iv 

S 
(A) fA 0of (m+ (, \), S)da = 0, (5.85) 

- 7r 

where the measure i is defined by vs (X) = fs Ai(X)da(y) for any set X, the 

measures µN correspond to the family of Herglotz functions 

1 
�LN: +yER, Y+ v(N, s) 

the set -S is defined by -S = {A ER: -A E S}, and the measure da,. has 

density function h0. , given by h, (t) = h, (-t). (Thus, h, is the reflection of by 

in the vertical axis). 

N, 
N ja Remark 5.27 From the proof of Theorem (2.65) in Chapter2 we see that-! I'; ' 

s 
is a Herglotz function. 

Proof. The proof is based on the proof of Theorem 1 in [6], and other results 

therein. Let m(z) denote the Weyl-Titchmarsh m, -function for the differential 

operator T. An essential support for µnc is the set of all AE IIt at which the 
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boundary value m+ (A) of m(z) exists with strictly positive imaginary part. Hence 

we may assume without loss of generality that Imm+(A) >0 for all AEA. 

We construct a finite partition A= AO U Al U ... U A, a of A into (n + 1) 

disjoint sets, with JA0I < plAI, where p is a positive number, in the following 

way: Points AEA at which BAI or Im+(A)I are large, or at which Imm+(a) is 

small, are put into the set A0. This leaves the set A\Ao. The range of m+ (A), 

as A runs over A\Ao, is contained in a compact subset D of C+, and a partition 

D= Dl U D2 U ... U D,, of D into disjoint subsets can be found such that, for all 

j=1,2,..., n, we have z1i z2 E Dj * y(zl, z2) < p, where p is a positive number. 

We then take A; = (A\Ao)lm+1(D; ), and complex numbers m(i) = m+(ai) E C+ 

for fixed A, E Aj, and hence we have 

ry(m+(A), m(i)) <p (all AE A� j=1, ..., n) (5.86) 

Let K be a compact subset of C to be determined later. There exists a positive 

number So such that for arbitrary Borel set S and for j=1, ..., n we have 

IL1 , w, (a, S; F)da -f w, (A, S; F)dA < plAjl, (5.87) 
Al 

for any Herglotz function F(z) such that F(i) E K. That such bo exists follows 

from Theorem (5.22). A priori we can define 6 separately for each value of j; thus 

S is a function of j. However, by taking the minimum value öo of 5(j) as j runs 

from 1 to n, we may assume that bo is independent of j. 

From (5.78) we obtain an expression for the boundary values of the m- 

function rnN(. ), namely 

N_ u'(N, A) + m+(A)v'(N, A) 
m+ (a) 

u(N, A) + m+(A)y(N, A) . 
(5.88) 
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Hence, for fixed N and A the mapping from m+(A) to m+(A) is a Möbius trans- 

formation with real coefficients and discriminant acv'- vu' = 1. From lemma 2 

of [6] which asserts the invariance of ry(., .) under such Möbius transformations, 

we see that (5.86) implies 

(N u'(N, )A) + m(j)v'(N, A) 
7 ̀ m+ 

(A)' 
u(N, A) + m(i)v(N, A) J :5p all AE Aý 

.7=1, ..., n. (5.89) 

Since, by assumption, m+ (A) E Kl for all AEA and N sufficiently large, it 

follows by (5.89) and lemma (5.24) that there exists a compact subset K2 of C+ 

such that 

u'(N, A) + m(j)v'(N, A) 

u(N, A) + 7nýýv(N, A) E K2, all AE A1, j=1, ..., n, and N su ff. large. 

Let do,, be an absolutely continuous measure with density function h,,, where 

h, (t) = ho(-t). By lemma (5.25), applied to the measure da, and lemma (5.12) 

we have 

Bý, (m+ (a), s) - eýr ýu'(N, A) + mU)v'(N, A)S) I` pc l (5.90) u(N, A) + mU)v(N, A)' 

where the constant C1,2 depends on the compact sets Kl and Kz. Then, integra- 

tion with respect to A over A5 leads to the bound 

1rN1 (u'(N, a) + mU)v'(N, a) 1 
j9 (m (A), S)dA -- Bar sS da PlajICI, 2 it A; + 7r A; u(N, A) + mU)v(N, A) 

(5.91) 

valid for all AE A� j=1, ..., n, and N>0. 

Now, for j=1, ..., n define the subset ABO of C, consisting of all zEC. of 

the form z=A+ i5o, for AE A3. Thus A6 is the translation of AJ by distance ö0 

above the real axis. Since Al is bounded, ABO is contained in a compact subset 

of C.. Hence the corollary to lemma 3 of [6] implies that 
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'y 
r_ vº(N, z), uº(N, z)+m(')vº(N, z) 

-+0 (5.92) l v(N, z) u(N, z) + i)v(N, z) 
) 

uniformly in m(j) and for all zE Aj6°, j=1, ..., n, as N -º oo. We may again 

obtain an estimate of the generalized angle subtended, by using lemmas (5.25) 

and (5.12). There is an No such that if N> No, and with z=A+ ibo, we have 

11 eo (- v'(N, A+ ibo), 
_S) dA- 

A; lt' l v(N, A+iöo) 

10, u'(N, A+iöo)+mU)v'(N, A+iöo) 1 fA ( Sd. 1 < plAl, (5.93) -; 7r \ u(N, A+iSo)+m(. i)v(N, A+ido)' 7c 

forallAEA1, j=1,..., n, where-S={AER.: -AES}. 

Each of the two integrals in equation (5.93) is of the form fAi w; ° (A, -S; F)dA 

for some F; namely 

v'(N,. ) 
F=Fi=v(N, ), 

F= FZ u'(N,. ) + m(i)v'(N, ") 
. u(N,. ) + mU)v(N, .) 

By assumption, INE Kl for all N sufficiently large. By the corollary to 

lemma 3 in [6], there exists an Nl such that (5.92) holds for N> Nl and with 

z=i. Thus, by lemma (5.24) there exists a compact subset K4 of C+ such that 

tu'(N, i) + i! J)v'(N, i) 
E K4, N> Ni. 

u(N, i) + mWv(N, i) 

Now let K, the compact subset of C on which the choice of So in (5.87) depends 

on, be given by K= Kl U K4. Then, by using (5.87) in each case, we may 

compare the difference between the two integrals in (5.93) with the corresponding 

difference in the limit as 6 -º 0+. Let Fy be the family of Herglotz functions 
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[y + ;, ýN zý ], yER, N>0, with corresponding measures µy . Then, 

we have 

lim 1 JAj (v'(N, a+ ib) 
= lm f1f Irrt ,1 dv(y) dA 

7r v(N, a+ ib) a-. o+ a, 7 
IS 

y . }, v N, A+: a 
v(N, a+i6) 

do(y) m da = 
fs 1 {'A, 

' 
y+ 

v(lYýa+ia) 

= lim 
f{1f 

Im Fy (A+ iö)da}da(y) 
b-+0+ S l7r Aj 

AN (A. i)da(y) =v s(A3)" (5.94) = äßö Is 
µy'b(A. i)dcr(y) - 

I- 
sY 

We were able to change the order of integration, since, for A in the bounded set 

U'ý1 A;, we have the estimate, valid for any fixed 6>0 

Im 
y+ v' 

N, 
A+iö < const. 1+ y2. 

v(N, A+ib) 

Moreover, equation (5.94) follows from Theorem (5.9), since -v Nis 41 -vN,: 

uniformly on compact subsets of C, as 6 -º 0+. Therefore, we arrive at the bound 

vN (A) - 7r 
1f BQ ( u'(N,. A) + )y'(N,? ), 

-S)dA < PI A1I(2+1/r). (5.95) 
s Aj u(N, )) + -m-U)v(N, A) - 

Since 9, (z, S) = B, 
r 
(-z, -S), we obtain from (5.95) 

v s(Ai) - Ir JA; 
0,,,. 

u(N, A) + rrý(j)v(N, A) ' 
S) da 

_< plAsl(2 + 1/zc), (5.96) 

which holds for all AE A1, j=1, ..., n and N> max{No, Nil. Combining 

inequalities (5.96) and (5.91) now yields 

üN (Aj) - 7r JA; 0, (m+ (A), s)dA < gip)Aj IC1. a + pIAj ((2 + 1/7r), (5.97) 



Chapter 5. Averaged Herglotz measures and the Schrödinger equation 161 

for all AE Aj, j=1, ..., n and N> max{No, Nl}. We now have for all N> 

max{No, Nl} 

v s(A) 
IA e°'('n+ýý) S)da 

EIiS (A5) 
7r 

fý 9o, (ýn+ ia), S) dAI 

< i(A0) +- BQr mN S)dA +- p(l + 27r +CA. 
j=1 

We have 

v (Ao)do, (y) s (Ao) = 
I-S AN 

= 
ISO AN (Ao)da(y) +f 

Sl 
A (Ao)d0(y), 

where -So = {y E -S : h, (y) < Co}, for some constant Co, and -S1 = 

-S\(-So). Suppose that Ao C [-No, No]. From the proof of lemma (5.1) we 

have AN (Ao) < (1 +No) Im E. (i) 
. By assumption -'NE Ki for all N>0, 

which implies that ImFy (i) < const. /(1 + p2). Let e>0 be given. Then, we 

can choose Co such that f_Sl µy (Ao)dc(y) < e, for all N>0. Therefore, we 

have 

P S(Ao) <_ Co f AN (Ao)dy+E = CoIAol+C. (5.98) 
R 

Also, we have 

1f 0er(m+(A), S)dA < 
1IAoICý,, 

" 7C Ap 1C 

Noting that AO was chosen such that IA0I < pJAI, we now have, for N >_ 

max{No, Nl} 

li; N 
s(A) 

faelT'(m+(A), S)da 
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<_plAICo+e+ 1pIAIG'ß. 
2+1pIAI(1+27r+C,., ) 

_ 
1pIAI(1 

+2ir+Coir+2C,,, ) +e. 

Since p>0 and e>0 were arbitrary, we have verified equation (5.85) and 
Theorem (5.26) is proved. 

Remark 5.28 On examination of the proof of Theorem (5.26), it will be found 

that all of the bounds are uniform over Borel subsets S of R. It follows that 

equation (5.85) remains valid if we replace the single Borel set S by an arbitrary 

family {SN} of Borel sets, parametrized by N. If the family {SN} is chosen in 

such a way that -ir fA 60', (, rnN (A), S)da converges to a limit as N -+ oo, then the 

measures vs (A) will converge to the same limit. 



Chapter 6 

Conclusions and further research 

In this thesis we generalized the idea of value distribution associated with a Her- 

glotz function, and showed that the resulting Herglotz measure v3, defined by 

(3.9), is related to the measure corresponding to a composed Herglotz function. 

We thus studied compositions of Herglotz functions, and gave two nice results: 

one regarding the coefficient bF, 
a of the term linear in z in the representation of 

a composed Herglotz function, and one regarding the boundary values of a com- 

posed Herglotz function. We then derived some important properties of Herglotz 

measures, obtained some results regarding the generalized value distribution of 

Herglotz functions, and gave an application to the Schrödinger equation. 

An interesting question which arises from Theorem (4.3) is with regard to 

the constant term aF, o in the representation of a composed Herglotz function 

FoG: How does this constant depend on the constants ar., as appearing in 

the representation of the Herglotz functions F and G respectively undergoing 

composition? 

It would also be interesting to see how does the measure vs look like for 

163 
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a given Herglotz function F and Herglotz measure do r. We have given a result 

regarding the density function of vs in the case when it is absolutely continuous, 

but this would be best illustrated with some specific examples, by using lemma 

(3.8). 

Finally, developing the theory in the case when the measure da is singular 

and obtaining corresponding results is an exciting prospect. 
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