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Abstract

The concept of a Frobenius manifold was invented by Boris Dubrovin as a geo-
metric interpretation of solutions of the WDVV equations with additional con-
straints. The theory of Frobenius manifolds contains a rich mathematical struc-
ture transcending many disparate fields of study. In this work, consideration will

be restricted to so called semisimple Frobenius manifolds and their submanifolds.

Chapter 1 introduces the concept of a Frobenius manifold and gives constructions
of the closely linked Coxeter group and Hurwitz space based classes. The concept
of almost duality is also introduced; this is the notion that from any Frobenius
manifold, one may construct a second solution to the WDVV equations adhering

to most of the axioms of a Frobenius manifold.

Chapter 2 introduces submanifold geometry and natural submanifolds, on which
the induced multiplication coincides with that on the ambient manifold. Such
submanifolds are classified in terms of caustics and discriminants. Caustic sub-
manifolds of an arbitrary genus zero Hurwitz space are then considered in chapter

3, extending the idea contained within the main example of [25].

Chapter 4 constructs dual WDVYV solutions for A, Coxeter type and genus zero
Hurwitz Frobenius manifolds, including their discriminants. The result of section
4.2 appeared in [21]. It also draws a link, via a twisted Legendre transformation,

between certain almost dual solutions. This idea was published in [22].

Finally, chapter 5 deals with the Hurwitz space H; ,, which may be thought of in
terms of a Jacobi orbit space. In particular, almost dual solutions of the WDVV

equations are constructed on the discriminants, giving a generalised version of

the result published in [21].



Chapter 1

Frobenius manifolds

1.1 The WDVYV equations

The Witten-Dijkgraaf-H. Verlinde-E. Verlinde, or WDVV equations, first ap-
peared in the papers [28] and [8] on topological field theory in the early 1990s.
They have been studied from a variety of perspectives including integrable sys-
tems, singularity theory, Seiberg-Witten theory and topological quantum field
theory.

Definition 1.1 The WDVYV equations of associativity are the system of partial
differential equations:

FPF *F O°F A OF
DIeBIBOR | DROLD | DPOPOP | OtrotIor

,a,8,v,6=1,...,n (1.1)

In the various applications of these equations, additional constraints (such as
quasihomogeneity) are often imposed. The formulation below follows [10]. The
equations require that a function F = F(¢!,#2,...,t") be found such that the

third derivatives

PF(t)

Capr(t) 1= 5ommory (1.2)

1



Frobenius manifolds 2

have the following properties:

W1

w2

W3

Normalization: The matrix with components

Nap ‘= Clap (t)

must be constant and non-degenerate. This matrix will be used for lowering

indices, while the inverse matrix
(n°?) == (Nap) ™"
will be used to raise indices.

Associativity: On an n-dimensional space with basis e;, ..., e,, an associa-

tive algebra A; is defined at a point ¢ by

€a €5 = clﬂ(t)e’)’a

where ¢l = 7"Ceap(t). These algebras will also be commutative; this is

guaranteed by (1.2) above.
Quasihomogeneity: F(t) must satisfy the equation
F(cht', ¢, ..., c%t") = PR (¢4, 12, ... ),

for some dy,...d,,dr and for all ¢ # 0.

Note that the conditions W1 and W2 above imply the associativity equations

(1.1),

though even condition W1 may be weakened, for example by choosing 7 to

take a different form (which may be a function of, or even independent of, F).

Definition 1.2 Let E be a vector field of the form

E= Z dyt?0,.

Then E is the Euler vector field for F'.
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The Euler field implicitly represents the quasihomogeneity condition W3 through
the ‘equation

LeF(t) = E°0,F(t) = dp - F(2),

where Lg represents the Lie derivative along E. In the case of d, = 0 for one or

more of the coordinate indices «, it is possible to generalise E so that it takes

the form:

E=) dat®0a+ »_ Taba

a|da=0
It should be noted that the Lie derivative along E of the identity vector e = 0; is
Lre = —d,e.

Attention is now turned to a generalisation of F and of condition W3. If a non-
homogenous quadratic function of t!,...,t" is added to F, the third derivatives
Cagy Will be unchanged. Hence the associativity equations which define the alge-
bras .A; are not changed by the addition of this function. In other words, if F is
such that

LeF(t) = dpF(t) + Agpt®t? + B,t® + C,

then the c,, would still be quasihomogenous. Provided that dp # 0, dp—d, # 0
and dr — dy — dg # 0 for all o, B, then the extra terms in Lz F(t) above can be

killed by adding a quadratic form to F'.

Example 1.3 In two dimensions, the associativity equations are vacuous. How-

ever, condition W1 restricts the form solutions of WDVV may take to

1
F(ty,t) = Etftg + f(t2).

Applying W8 and noting the permissible forms of E then restricts the form of

f(t2) so that all two dimensional solutions to WDVV are equivalent to one of the
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following, as can be seen in [10]:

1
F(ty,ty) = Etft2+t'2°,
1
F(t,ty) = §tft2+t%logt2,

1
F(t,t) = 5tita+logty,

1

F(ti,t) = §t§t2+e§‘2,
1

F(ty,ty) = Et%tQ.

Note that in the above formulae, the indices of the ¢* have been written subscript
rather than superscript purely for typographical convenience. This convention

will be used in all solutions of WDVV presented in this work.

Example 1.4 Following [10], let us consider a three dimensional solution to

WDVYV of the form:

1 1
F(ty,ta, t3) = §ﬁzt3 + §t1t‘;’ + f(ta, ta).

By differentiating F', one can calculate the c,p-, the non-zero values of which are

listed below (recall that the ordering of the indices does not affect the value of

caﬂ”r) .

cnz =1 ciz2 =1 o2 = for

Co23 = f223 Co33 = f 233 €333 = f333

In the above, and throughout this example, fi;; = E%Z%tk" In particular, we have

0 01
Nag = 010 =17
100

aﬁ.

One is now able to calculate the clg. The non-zero values are listed below:
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1 2 _ _
¢, =1 cfp =1 ci3 =1
1 2 3 _

Cog = fa23 Cyo = fa2o Cy =1,
1 2 _ 1 _

Cy3 = fass €53 = fazz C33 = faas,

c§3 = fa33

Therefore the multiplication defined by F has the following table:

€ €2 €3

€116 €2 €3
ez | ez fazser + foozes +e3  fazzer + faozen

es3 | €3 fazser + foozez fazzer + fazzes

Clearly, e, is an identity under this multiplication, so for associativity one needs

only to consider the equations
2 —
€y €3 —-62'(62'63)
and
_ 2
(62 . 63) +€3 = €7 €3,

as all of the other associativity equations are trivial.

The first equation ezpands to

faazes + faza(fosser + faozez) + (fazzer + foazer)

= foszez + fa23(faszer + froze + €3),
which simplifies to
f2223 = fa33 + fazofo3s.

It turns out that the second associativity equation simplifies to the same partial

differential equation for f(ts,13).
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1.2 Definition of a Frobenius manifold

The concept of a Frobenius manifold was first introduced by Boris Dubrovin in [9)].
A comprehensive account on the subject was provided by Dubrovin in [10]. To
introduce the concept of a Frobenius manifold, one must first define a Frobenius

Algebra. The following definition and example have both been take from [10].

Definition 1.5 Let A be an algebra over C with a multiplication -. A 1s said to
be a Frobenius Algebra if the following four conditions are satisfied:
FA1 A is a commutative algebra.
FA2 A is an associative algebra.
FA3 A unit element e exists in A such thate-a =a, for alla € A.
FA4 A non degenerate inner product <,>: A x A — C exists and satisfies
< ab,c >=<a,bc >,

for all a,b,c € A. This final condition is known as the Frobenius property.

Example 1.6 Let {A;},i=1,2,...n be a set of n one dimensional semisimple

algebras. Then their direct sum

is a Frobenius algebra. Moreover, a basis {e;}, 1 = 1,2,...n may be chosen by

selecting e; € A; such that it is a generator for the algebra A;. In terms of this

basis, a suitable multiplication may be defined by
eiej = 1;]'6,;.

The algebra may then be parameterised by A = (t',...,t") where ' =< e;,e; >.
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Lemma 1.7 Given a Frobenius algebra A, one may apply rescaling transforma-

tions to the multiplication on A, of the form
a-b—ka-b,
and
e — ke,

for any non-zero k. Under such rescalings, the algebra will still be Frobenius.

Proof: Under such a rescaling, the associativity and commutativity of the algebra
will obviously be preserved and an identity element will remain. For the Frobenius

property to still hold, we require that
<ka-bc>=<a,kb-c>.

But as the inner product is bilinear, we can take the k outside the inner product

to leave
k<a-bc>=k<a,b-c>,

which is equivalent to the original definition of the Frobenius property.

Having defined a Frobenius algebra, one may now move on to defining a Frobenius

manifold, again by following [10].

Definition 1.8 An n-dimensional manifold M is said to be a Frobenius Mani-

fold if the following conditions are satisfied:

FM1 For every point x on M, a Frobenius algebra may be described on the tan-

gent space T, M. These algebras must vary smoothly with x.
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FM2 The invariant inner product <, > defines a flat metric on M. In the pres-
ence of such a metric, a set of coordinates (distinguished to within a linear
transformation), known as the flat coordinates of <, > exist [14] such that

the components of <,> are constant in these coordinates.
FM3 A unity vector field e may be defined satisfying
Ve =0,
for the Levi-Civita connection of the metric.
FM/ The four-tensor
(V) (u,v,w)
is symmetric in the vectors u,v,w, z for

c(u,v,w) ;=< uv,w > .

FM5 An Euler vector field E satisfying
V(VE) =0

may be determined on M such that the correspondent one-parameter group
of diffeomorphisms acts by conformal transformations of the metric <,>

and rescalings of the Frobenius algebras T, M.

Examples of Frobenius manifolds will be provided later. One may observe obvious
similarities between the definition of a Frobenius manifold and the definition of
the WDV'V equation; for example the requirement that an associative algebra be
defined in each case and the presence of an Euler vector field. In fact conditions
W1-W3 and Frobenius manifolds are equivalent, as originally shown by Dubrovin

and as expressed in the following theorem (taken from [10]).
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Theorem 1.9 Given any solution of the WDVV equations defined in a domain
t € M, and subject to d, # 0, the structure of a corresponding Frobenius manifold

may be defined. The multiplication of tangent vectors
0
aa = a?
s given by

80, . 6ﬁ = Czﬂa—y.

The invariant inner product between two tangent vectors on T, M vectors is de-

fined as
< Og, 08 >:= 1yp.
The identity vector will be given by
e:= 0.
Finally, the Euler vector field will be of the form:
LeF(t) = dpF(t) + Aapt®t? + B,t* + C.

Conversely, given a Frobenius manifold M, one may (locally) reconstruct a so-

lution to the WDVYV equations by using the above formulae and an Euler vector
field of the form

E(t) = (g3t + r*)0,.
Proof: It follows immediately from the conditions of the WDVV equations that
the multiplication defined on the tangent space will be commutative, associative

and will have an identity element e = 9,. To show that a Frobenius algebra is

defined, one requires

< Oy '35,87 >=< 60,65 -37 >,
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Using the multiplication formula, the left hand side becomes:
< 05,0y >= ClaNsy = Capy.
Similarly, the right hand side becomes:
< B, )05 >= €} Nas = Cya = Capy-

Hence a Frobenius algebra has been determined. FM2 is automatically satisfied,
as the components of 7,4 are all constants, thus ensuring flatness. FM3 is also
automatically satisfied, as 7,5 is not only flat but also expressed in terms of its
own flat coordinates. As such, covariant derivatives are equal to the correspond-
ing partial derivatives and so the identity field e = 8, is covariantly constant.

Similarly, condition FM4 is satisfied as

V;¢(0a; 08, 0y) = OsCapys
O*F
oteotbot ote

Finally, recalling that E = )__ d,t®0,, it is obvious that FM5 is also satisfied.

To prove the converse statement, one notes that as the metric is flat, a set of
flat coordinates {t*} (defined up to a linear transformation) exists such that the
components of 7,5 are constants. By performing a linear transformation, one
may then set e = gr. In these coordinates, the condition FM4 is equivalent to
saying 0sc,p, is symmetric in o, §,7,8. Noting that c,g, is also symmetric in all
of its indices, FM4 therefore becomes a potentiality condition, i.e. it guarantees

the existence of a function F' = F(¢) such that

A BF
51 Bttt
From the definition of a Frobenius manifold, the algebra defined by the c,g, will
be commutative and associative. Finally, the axiom FM5 ensures that F will be

quasihomogenous. Hence conditions W1-W3 have been satisfied.
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1.3 The intersection form and flat pencils of

metrics

In addition to the metric 7,43 defined on a Frobenius manifold in section 1.2, one
may introduce a second metric g,p. It is easier to define this metric as an inner

product, (,)*, of two 1-forms on the cotangent bundle T} M:
(wy,ws)* := ip(w - wa).

In the above formula, ig is the operator of contraction of a 1-form along the Euler
vector field, whilst the product of two 1-forms is the dual of the product of their
dual vectors on T;M. In the flat coordinates {t'}, we may therefore define g

in the obvious way, namely

g°f = (dt®, dt?)*.

Definition 1.10 The metric g°°, above, is known as the intersection form of the

Frobenius manifold.

Where it is defined, the matrix inverse of the intersection form can be used to

define a metric (,) on T;M, that is to say:
(Ba» B5) = gap = (¢°°)~".
This new metric is in fact related to the invariant inner product by the formula
(E - u,v) =<u,v>.

Note that g, is therefore not defined at those points where F is not invertible.

Definition 1.11 The locus in M on which E~! is not defined is known as the

discriminant of M.
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Lemma 1.12 The metric (,) inherits the flatness of <,>.

Proof: Deferred; this fact will follow automatically from the proof of a stronger

statement about flat pencils of metrics in theorem 1.14.

Definition 1.13 Two metrics ¢°° and ¢2° are said to form a flat pencil if:
g3 = g%’ + Ag5’

is itself a flat metric for all values of ) and the Christoffel symbols for the Levi-

Civita connection for gfﬂ obey the equations:
I‘f\’k =T% + Al%,

where T is the Christoffel symbol T for the metric g9 (likewise T, for g5 and
T'Y, for g7), defined by:
F? = _giar\is'

Theorem 1.14 The metrics n** and g°® form a flat pencil.

Before proving this statement, one recalls some standard facts of differential
geometry (see, for example, {14]). For an arbitrary metric g;; in a coordinate
system {z'}, the Christoffel symbols for the Levi-Civita connection are defined
by

1
I‘fj(w) = 5g’”’(@,-gsj + 0;9is — 059i5)-

From this definition, it is obvious that they are symmetric in the lower indices,
i.e. T'¥;, =T'%. A contravariant Levi-Civita connection for g* may then be defined

by
[} (2) = —g*(2)T3 ().
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It is uniquely determined by the equations
Ty +T1 = Og”,
T = T
One may then calculate the Riemann curvature tensor
RJ* .= g**(9,Tj* — gTi*) + TVT§* — Ti*ry,

which will be identically equal to zero for a flat metric.

Proof: One may now prove theorem 1.14. Denote by F:”k the Christoffel symbols
for n¥. Likewise I"Zc for g;; and T'%, for (g — An)¥. We require that

Y =5 + AT
If we use the flat coordinates {t*}, then n°? is constant, and so the components

of the Levi-Civita connection vanish. Therefore we require

4=,
or equivalently
T +T% = kg, (1.3)
gTi = ¢°Ti. (1.4)

Expanding the right hand side of
I+ T = Ol — An)?
yields
B(g — )Y = Beg” — Aok,
= 89",

due to the constancy of 1/ in the flat coordinates. Hence equation (1.3) holds

true. To prove (1.4), we use the fact that

(g — An)*T%k = (g — An)?°TiE.
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Recall from above that
(g — M) = (t'n — An + g%, ..., t"))".

By substituting this and comparing the coefficients of the highest power of ¢!, it
immediately follows that
n°The = n°Th,
which in turn implies
gy = #°T,.
Finally, by recalling that
g7 = (t'n+9)",
we obtain
9T = " T,

as required.

Corollary 1.15 For the intersection form g of an arbitrary Frobenius manifold
M, there exists a set of distinguished (to within a linear transformation) set
of coordinates {p*} such that the matriz g*#(p) is constant, the so called flat

coordinates of the intersection form.

Proof: The above lemma implies that g is flat. Therefore the existence of coor-

dinates in which g is constant follows automatically.

Note that the intersection form expressed in its own flat coordinates will be

denoted by G,g.
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1.4 Semisimple Frobenius manifolds and canon-

ical coordinates

Definition 1.16 An arbitrary point t on a Frobenius manifold M is said to
be a semisimple point if the Frobenius algebra defined on TyM is semisimple,
i.e. contains no nilpotents. A Frobenius manifold on which a generic point t is

semisimple is known as a semisimple (or massive) Frobenius manifold.

Lemma 1.17 In a neighbourhood of a semisimple point of an n-dimensional

Frobenius manifold, there exists a local set of coordinates {u'} such that:

0 .0 _s 9
out ouw U oul
Proof: As the algebra on T, M is semisimple, there exists a set of n vectors
which are idempotents of this algebra. Denote these by {9;}, i =1,...,dim(n).
By definition, one has

8; - 8; = &:;0;.

In order for a coordinate system {u’'} such that 9; = 5%; to exist, one requires

that these vectors commute, i.e.
[0:,8;] = 0.

But this may be shown to be true using the curvature properties of the so called

deformed flat connection, V. The reader is referred to [10] for full details of this.

Definition 1.18 The coordinates {u'} as defined above are known as canonical
coordinates for the Frobenius manifold. Note that in general, Roman indices will
be used to denote the use of canonical coordinates, whilst Greek indices will denote

flat coordinates.
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Lemma 1.19 In canonical coordinates, the invariant inner product <,> takes

the form
Nij = Uii5ij,

the identity field in takes the form

€ = ZE),,

and the Euler field (with a suitable choice of scaling of the coordinates) takes the

form

Proof: From the definition of multiplication in canonical coordinates and the

Frobenius property of the invariant inner product:
i = <06,0;>,
= < 65 . a,;, Bj >,
= < 8,-, 0; - 8j >,
= < 0;,00; >,

= 7:ibij.

The second statement is obvious, as applying e to an arbitrary basis vector J;

yields

and so e-v = v for any v € T, M. The final statement is also obvious, as rescalings
generated by E act on the idempotents by 8; — k~10;. An appropriate rescaling

of u? provides u* — kut, as required.

As can be seen from the lemmas above, canonical coordinates are an advantageous

representation of a Frobenius manifold in that they yield a simple multiplication
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law, a diagonal metric and identity and Euler fields of a simple form. Further-

more, the intersection form takes a simple form. By considering

du® - dv! = n"du’é;;,

it immediately follows that
9" (u) = u'n"y;.

However, there are drawbacks to canonical coordinates; whereas in flat coordi-
nates, the invariant inner product is a constant matrix (and automatically defines
a flat metric), this is not necessarily the case in canonical coordinates. Therefore
it may no longer be possible to express a Frobenius manifold in terms of a prepo-
tential function satisfying the (linear) WDVYV equations, as is possible in the flat
coordinates {t'}. Instead, the structural data of a semisimple Frobenius manifold
may be considered in terms of the what Manin describes as the ‘Darboux-Egoroff

picture’ in [19].

Returning to the definition of a Frobenius manifold, one now considers the for-
mulation of a semisimple Frobenius manifold in terms of canonical coordinates
on a manifold M. It follows immediately from the definition of multiplication in
canonical coordinates that the algebras on the tangent space will be commutative
and associative. Showing that the inner product obeys the Frobenius property is

also simple. By taking the inner product of three idempotents, we require that:
<0 Bj,ak >=< 6,—,6,- - O >, V1,5, k.

But both sides of this equation are equal to d;;x7ii, so the metric is Frobenius.
Hence in the presence of a covariantly constant identity field (and a flat Euler
field), the only obstruction to M being a Frobenius manifold is flatness of the
metric 7. In order for a metric to be flat, we require that the (2,2) curvature
tensor RZ obeys:

ij _
Rkl_ ’
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for all possible combinations of 7, j, k and I. We recall from standard Riemannian

geometry that for an arbitrary metric g,
R;cjl = gis (Bkaq, - alFZk + Fi)krgl - F:; ng) )
1
Ly = ‘2“9’"’ (0;9pi + 0i9pj — 0pgij) -

For the diagonal metric 7;;, the inverse 7 is also diagonal. Hence the above
equations simplify to:
1
T, = 5’)““ (0jMki + Oime; — Okmij)

Ry = n* (Bkal — T + Fiszgl -r %) -

For notational convenience in subsequent calculations, one will rewrite 7 in terms

of squared components, i.e.
My = 0i;(Hi)™.
It is also convenient for curvature calculations to introduce the rotation coeffi-

cients of n, defined by

_ 94,

=g,

Note that in general v;; # 7;. One now proceeds by calculating the Christoffel

Yij

symbols FfJ These calculations are split into four parts for varying combinations
of distinct and identical indices.
Case I: 1,5,k distinct

As the metric is diagonal, all terms vanish so
Iy =0.

CaseIl: i=j#k
We have

1
i = gnkk(ainki + OiMki — Okmis)-
But as 7 is diagonal, the first two terms in the bracket are zero, so:

1
Ffi = —Enk"é’kmi,
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= ),
H; O H;

Hy Hy '
H;

= —E%i-

Case III: i =k # j

19

Note that as I'!; is symmetric in its lower indices, this is the same as j = k # 1.

J

By similar calculations to those above, we obtain
. H,
G = 5 i
1

Case IV:i=35=k

Again, using similar methods to those above, one obtains the result

i = Y-

One may then use the Christoffel symbols to calculate the curvature tensor.

Again, these calculations split into several cases corresponding to the possible

combinations of distinct and identical indices:

Case I: i,7,k,l all distinct:

ij
R kl

" (8l — A%, + T0,T5 - T %),
= 0,

as every term in the sum contains a zero value of I".

CaseIll: 1 =3

It is easy to show that in this case,

i __
kl _0’

irrespective of the values of k and ! (including the cases where they are equal to

each other or 7).
Case Il k=1,i#j

Again, it is easy to show that
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Case IV:i=k,i# j,i# 1,5 #1

We have
R = H2 (BT — AT%) + oo (TT% ~ TAIT).
Ty

The two parts of this may then be calculated separately.

1
A = H (al ’sz)a

)

H, H;
= H, (&( J)’Ygz Eaﬁji),

1 (H,~6,H,-—H,-3,H,~7 +H,-87)
= 79 1 T YUY4i
H? H? A

_ A A 3

B = o (tLr-T),
= . (Fn il F‘;lez—Pleiz)’

1

_ 1 Hi Hl Hl Hi Hl - Hi '

- (7)) - (72m) () - () ()
H, H 1 |

—m’m’m + m%ﬂjl - F}Iﬂ’”‘"

Adding A and B then yields

ii 1 H,
Ri{ = HH (H (711'711 '7]1'7!]) + al')’]z - ]l’)’h) . (1.5)

Case V:i=k#j,j=1
Similar calculations to those in case IV show:

i1
Rj = H;H; (a"%‘j + 05vji + Z '7pj7pi) . (1.6)

p#iJ

In order for an arbitrary diagonal metric to be flat, one therefore requires that
(1.5) and (1.6) both be equal to zero. In the case of a Frobenius manifold, it

transpires that these equations simplify.
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Definition 1.20 A diagonal metric
n=_ gi(du')’
i

15 said to be Egoroff if there exists a metric potential ® such that

0%
gll - auz'

Lemma 1.21 The rotations coefficients v;; for an Egoroff metric are symmetric

in i and j, i.e.
Yii = Yjie

Conversely, any metric whose rotation coefficients are symmetric will be Egoroff.

Proof: For an Egoroff metric, we have

&
5

Yij =

D
)
S %
S .

N —= DN =
e s
>
I R

0\-

S
e .

®
Y
&
.e\.

I
=

To prove the converse, one equates 7;; and ;; to obtain
0iv9i _ 9iv/9is
VY5i V9ii

Applying the chain rule to expand 9;,/g;; and rearranging terms then yields the

potentiality condition
3;9i = 0:9j5,

as required.
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Lemma 1.22 The metric on a semisimple Frobenius manifold expressed in terms

of canonical coordinates is Egoroff.

Proof: For a Frobenius manifold, one has Ve = 0. If e = }_ €'9;, then one may

split Ve = 0 into component equations:
Viej = 8i€j + Z F‘Zkek,
k

all of which must be equal to zero. Noting that in canonical coordinates, ' = 1

for all 4, this simplifies to leave

> T =0
k

Splitting this sum and using earlier calculations of the Christoffel symbols for a
diagonal metric gives the following:
Z T} = Z T} +T%+ F;k’
k k#i,j

H; H;
E’in - E’Yij-

But as this must be equal to zero, so v;; = ;i- Hence the metric is Egoroff by

lemma 1.21.

Theorem 1.23 A diagonal metric on a semisimple Frobenius manifold (ezpressed

in its canonical coordinates) is flat if and only if
ovi; —yavq = 0, (1.7)

e(v;) = 0. (1.8)

Proof: For the metric to be flat, we require that (1.5) and (1.6) both be equal

to zero. The equation (1.7) follows immediately from applying the condition
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Yij = ;i to (1.5). Substituting the symmetry of -;; along with (1.7) into the

requirement that (1.6) be equal to zero gives
0 = By + 0%+ Y sy
PFEL]
= Zap%j,
P
= e(7is)-

Hence two equations equivalent to the flatness of the metric have been found.

Definition 1.24 The equations (1.7) and (1.8) above are known as the Darboux-

Egoroff equations.

In addition to the Darboux-Egoroff equations, there is a third equation relating

the Euler field of a Frobenius manifold to the rotation coefficients of the metric

n.

Lemma 1.25 For the rotation coefficients vy;; of the diagonal metric n;;, one has:

E(’Yz‘j) = —%ij.

Proof: In canonical coordinates, the intersection form takes the form
9i; = 6ijui77ii-
If one denotes u'n; by BZ (so B; = (u)7 H;), then the rotation coefficients of the
intersection form are given by
. 1
6jB,- ut 2
Bij = ‘E = w Yij- (1.9)
Noting that the intersection form is flat, one has R;c’, = 0 for all i,j,k,! (where
R}, now denotes the curvature of g). In particular, one therefore has

o1
R -2 (s, + 05,4 X 0u) -0
B.B;

p#ig
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By substituting in (1.9) and Darboux-Egoroff equations, one obtains

uu’é
(HH <U+Zu8 %J)zo.

Noting that F = Zp uP0p, this implies the required result.

A final property of semisimple Frobenius manifolds is the existence of a Landau-
Ginzburg (LG) superpotential. Such a function allows the invariant metric, the
intersection form and the trilinear tensor ¢(d,8",9") =< &' - 9",0" > to be

expressed by various residue formulae.

Theorem 1.26 For a semisimple Frobenius manifold, one is able to construct a

function A = A(z;t) such that the following formulae hold:

<d,0'> = _Z‘u 08’)\6' z, (1.10)
"o ' (log M)0" (log \)

@,0") = —Zd]m 0T d(log)) dz, (1.11)

o, 9, 8") = _Zd&ezsogw(&ﬂdz. (1.12)

Proof: One must choose a function A = A(z;t) such that its critical values

coincide with the canonical coordinates, i.e.

/\(qi;t) = ui’
d

—_ = 0.
dz | z=¢i

Near any critical point ¢, A must have an expansion of the form

; (Z_Qi)2 3
A=u'— —=— +0(z — q;)°.
2n;; (z - )

Hence, near these points, the inverse z = z(\;t) will be of the form

z=q,-+2\/7ﬂ\/ui—/\+0(u,-—/\).

The existence of such a function will be assumed here; the reader is referred to

[10] proof of existence and an explicit construction.
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With such a function in place, one may now verify the three formulae above.
It is convenient to work in canonical coordinates for these calculations. Firstly,

consider

8/\6/\
——Zd)\ =0

(recalling that 9; = 22 etc). The points at which d) = 0 are precisely the {g;}.

Hence we have

il Y A,
< 8,',81- >= _erem N

Consider the right hand side of this. Near any point z = ¢;, we have
Oi|z=q = Oit-

Hence the residues are zero except for when i = j = [. At these points, we have

< 0,0, > = ——zregt W
_ 1
- J%2+O(z—-q,)
_ 1 1
B zrfg.-z—q,-;,%+0(z—qi)’
_ 1
- #+O(z—qi) 2=q;
=7

Therefore
< 0;,0; >= 6ijmis,

as required. Similar calculations (remembering that 0;log A = Qj\i) yield

(8:,8;) = 6y

u"

(05,0;,0k) = 06j0ikmis.

Definition 1.27 The function X, as defined above, is known as the Landau-

Ginzburg (or LG) superpotential for a Frobenius manifold.
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1.5 Polynomial Frobenius manifolds

Let n be a strictly positive integer. Polynomials of degree n+1 may be considered
as maps from the Riemann sphere to itself (with an n+2 branch point at infinity).

If an arbitrary polynomial is of the form
p(2) =a_12" +ap2™ + a1 2" + ... +ap,

then one may use the freedom z — bz + ¢ (noting that there will still be an n+2
branch point at infinity) to set a_; = 1 and ap = 0. The space of such functions

may then be parameterised by the coordinates a,,...,ay.

Theorem 1.28 Denote by A, the affine space of polynomials of the form
p(z) = 2" + a2+ .. +ap.
If consideration is restricted to the subset of A, where

P =L =+ 1) [z - )

has n distinct (simple) roots, then the structure of a semisimple Frobenius man-

ifold exists with the following structural data:

e Canonical coordinates {u'} will be defined by
u' = pla).

e A flat diagonal metric is defined by the residue formula

8
du} ouw’
7;j = res S dz.
VT )
This metric will be Egoroff, with potential

n+1

¢ =
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o The identity field will be:

e The Euler vector field will be:

1 i+1 0
n+lzn+1ai6_ai'

1

Proof: Firstly, one may use the linear independence of the u' to calculate gf—’;:

Oou’

51;,

o(p(a))
ouw

(Sij =

Hence gu% has (n—1) roots at z = «;,7 # j and is equal to 1 at z = ;. Therefore

QQ_H (2~ o)

A (- o)

i

-
Consideration is now turned to the formula for the metric, noting that the residue
at infinity of a meromorphic function is equal to the negative of the sum of the
residues at all other singularities. As the only places where this can occur are
the zeros of p'(2), we therefore have

T’~- _ _ res Hl;ﬁi az,‘_—aa[ m#y l:j_—aam d
g S T+ DILG - o)

In the case that i # j, then every one of the factors (z — ;) in the denominator
appears at least once in the numerator, hence the residue is of something finite
and so is equal to zero. In the case where i = j, we have
!z—a !2
Hk#i (a,-—:k)

i = — res dz,
i z=a; (n + 1) HI(Z - 0![)
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l‘[ (z_ak)
= —res k7 { dz,

s (4 Dz — o)

— _ 1 H (z—ak)
n+1k#(ai—ak)2

R
n+1k¢iai—ak'

)
z=a;

But noting that

p'(z) = n+1)ZH(z — ag),

J o k#i
we have
_ 1
= e
To show that this metric is Egoroff, firstly recall that
dp
bij = 5 5(e)-
This can be considered as a polynomial in z, so:
&ij 6%7 z=a;

For a fixed value of 7, this is a polynomial of degree (n — 1) with zeros at all of
the «; for i # j. Therefore

n

As c is the coefficient of 2"~! in the right hand side, equating coefficients yields

_ 8a1
T oud’
But from the fact that
; aik.z""'c =1,
3u3 z=aj
=1
we can deduce that
1
c =

I
!
—~~
3
+
—
~—
3
.
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Therefore

3 —a

Bun+l "

L.e. the metric is Egoroff with potential — 2.

Similar calculations show the desired results for the identity and Euler fields, as

can be seen in [19].

Finally, one must show flatness of the metric 7;;. This could be done by using
the Darboux-Egoroff equations introduced above. However, one will instead con-
struct flat coordinates {¢t*} in which the metric has constant coefficients. To do

this, a new function is introduced:
1
k(z) := An+1,
Near z = oo, this has the Puiseaux inverse series

t tn 1
z=k+7c—+"'+—k_:;+0(k"_+1_)'

One may then take ¢;, 7 = 1,...,n as flat coordinates. To prove that these are flat
coordinates, one uses the tangent vectors 5% in the LG-superpotential formula

(1.10) for the metric. The result is the antidiagonal metric

Nap = 5a(n+1—a) .

Details of this calculation are omitted; see [10] for explicit proof.
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1.6 Frobenius structure on orbits of Coxeter groups

Definition 1.29 A Coxeter group s a finite group of linear transformations

generated by reflections on a vector space V = R".

There are many works outlining the full classification of Coxeter groups, e.g. [6].
The action of a Coxeter group can be considered to act on S(V'), the group of
polynomials of coordinates of V. One may also consider a sub-ring R = S(V)¥
of polynomials which are W-invariant. R will be generated by n linearly inde-
pendent polynomials 3!, ...,y", whose degrees are d;,...,d, respectively. The
degrees d; will be fixed by the choice of the group W, and will satisfy the inequal-
ity

h=di>dy>...>dp_1>d, =2.
They also satisfy the duality condition
di + dn—'i+l = h + 2

Definition 1.30 The mazimal degree of an invariant polynomial of a Cozeter

group, denoted above by h, is known as the Coxeter numberof the group.

The table below lists all Coxeter groups and the degrees d; of their invariant

polynomials.
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Coxeter Group dp,...,d;
An 2,3,...,n+1
B, 2,4,6,...,2n
Dy, 2,4,...,2k —2,2k,2k,2k+2...,4k - 2
Doy i1 2,4,...,2k,2k+ 1,2k + 2,2k + 4, ..., 4k
Es 2,5,6,8,9,12
E; 2,6,8,10,12,14,18
Eg 2,8,12,14,18, 20, 24, 30
Fy 2,6,8,12
G- 2,6
Hj 2,6,10
H, 2,12,20,30
Ly(k) 2,k

Example 1.31 I1(k) is the symmetry group for the regular k-gon in the plane
R2. This group can be generated by a reflection and a rotation through 27", which
on C = R? are defined by the transformations z — % and z — e%z respectively.

Under such transformations, it is easy to see that the invariant polynomials are

The action of a Coxeter group W may be extended to a complexified space
M =V ®C/W. On this space, the invariant polynomials act as coordinates, and

are defined up to an invertible transformation
¥ =W,

where 7' is a graded homogenous polynomial of degree d; in the variables {y}.
The vector field 8, := %; (to within multiplication by a scalar) will be invariant

under such transformations, due to the inequality d; > d,. Also, the invariant
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quadratic y™ may be chosen to be

where {z'} are orthonormal coordinates with respect to the W-invariant Eu-

clidean metric (,) on V.

Definition 1.32 A regular orbit is an open subset of M, and is the image of
precisely h distinct elements V ® C under the quotient map Q : VR C - V Q®
C/W = M.

Definition 1.33 The complement of the space of regular orbits is known as the

discriminant locus of W, or as the space of irregular orbits.

The Euclidean metric (,) induces a contravariant metric on the space of orbits,
defined by
Oy Oy

97 (y) = (dy'; dy’)* == 3% 5

The components of the Levi-Civita connection are given by

_ dy' 0%y b

O = 5 e agm ™

Lemma 1.34 Both the metric gV, above, and its Christoffel symbols are polyno-
mials in x, and their degrees are given by

degg”(y) = di+d; -2,

degT¥(y) = di+d;—dp—2.

Proof: As y* is a homogenous polynomial in ¢ and degy’ = d;, it immediately

follows that differentiating once with respect to z® yields a polynomial of degree
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d; — 1. Therefore g*/, which is the sum over a of the product of two polynomials

of degrees d; — 1 and d; — 1 must be a polynomial of degree
(di—1)+(dj—-1)=d;+d; — 2.
Similar reasoning shows that
deg 'Y (y)dy* = d; + d; — 3.
Noting that deg y* = dj, one obtains

deg I‘Z’(y) = di + dj - dk - 2.

Corollary 1.35 The functions g“(y) and T'} (y) depend at most linearly on y'.

Proof: As
d; < h,
with h being the degree of y*, so
deg g¥ < 2h.

Therefore y' can only appear in a linear way in g*(y). Likewise for T (y).

Definition 1.36 The function

D(y) := det(g”(y))

18 known as the discriminant function of W.

This term is used because the discriminant locus of W coincides with the region

where D(y) = 0, i.e. where z* fail to be local coordinates for V.
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Definition 1.37 A new contravariant metric, known as the Saito metric, may

be defined by the formula:

1 (y) := 019" (y).

Note that the definition above is strictly only of a (0, 2) tensor. In order to show
that it is a metric, one must also show that it is non-degenerate (see corollary
1.39 below) and symmetric (which follows immediately from the symmetry of
9%).
Lemma 1.38 The Saito metric will be of upper triangular form

79 =0, i+j>n+1,
with nonzero antidiagonal elements

¢ 1= it t1=D),

Proof: From the definition of 7, one has
degn” =d;+d; — h — 2.
From the duality condition
di +dpny1-yy = h+ 2,
and the fact that the d; decrease with 7, one has

deg(n) > 0, i4+j<n+1,

< 0, i+3>n+1

As a polynomial of negative degree does not exist, one concludes that 7"/ (y) must

be zero for i + j > n+ 1. Hence the triangular form is proved. To show that
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c; # 0, consider g“®*t1-9, But deg ¢*»*1~*) = h, so one may express g"™*1~% as

a series
n
E akyla
k=1
with @, being a nonzero constant. Hence

ni(n+l—i) - — 61 Zakyi,
k=1

= Cl-

Corollary 1.39 The function
c := det(n*)

18 a nonzero constant.

Proof: As ¥/ is triangular, it follows immediately from the definition of a deter-

minant that

n
c= (—l)n n2—1 HC;’.

i=1
But from the above lemma, the ¢; are all non zero constants, so ¢ is itself a

nonzero constant.

Lemma 1.40 The metric n¥ is flat. Moreover, ¢ and n* form a flat pencil.

Proof: Proof is omitted. The reader is referred to [23], for a full proof.

For the contravariant metric <, >* defined by 7%/, the Christoffel symbols will be

7 (y) == 8T (y).
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Lemma 1.41 The degree of *yfcj is given by:

deg'yij:di—{-dj—dk—h—Q.

Proof: We have

degvt = deg I — deg 3!,
= (di+d;—dg—2)— h.

Theorem 1.42 There erists a set of homogenous polynomials t'(z),. .., t"(z),
of degrees di, ...,d,, such that 1 (t) is a constant matriz. They may be chosen

in such a way that n takes the antidiagonal form

nij — §iln+1-9)

Proof: From the flatness of 77/, the existence of a set of flat coordinates in which

7 is constant is assured. These flat coordinates are the solutions to the system:
1% 0,0t + 7;° 0yt = 0.
Substituting & = 0jt, this becomes
1 05&; + ’Y;'sfs =0.

Noting that (7:;;(y)) := (7 (y)) ! exists (and is in fact a polynomial in {y'}), the

above system may be rewritten as

Oy + M€, = 0.

This overdetermined holonomic system has an n-dimensional space of solutions.

If one defines

fla = alta,
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then by setting

&(0) = &,
t2(0) = o,

we have functions which are analytic for small y and the space of solutions is

invariant under
yi — % yi.

Hence t*(y) are quasihomogenous in y with degrees d,,...,d,. Therefore they
are polynomials in {y'} as the degrees are all positive integers. Therefore the
t* = t*(y(x)) are polynomials of a polynomial function of {z'}, so {t*} are

polynomial functions of {z'}.

Definition 1.43 The flat coordinates {t*} from the above theorem are known as

the Saito flat coordinates.
One is now able to state the following theorem, first proved by Dubrovin in [12].

Theorem 1.44 Let t!,...,t" be Saito flat coordinates on the space of orbits of a
finite Cozeter group and n°® the Saito metric. Then there exists a quasihomoge-

nous polynomial F(t) such that

(dte, dtP) = Tt 9o =2 Zﬂ —2

NP4 8,0,F(t). (1.13)

The function F(t) will be the prepotential for a Frobenius manifold and is uniquely

determined (to within an equivalence) by the choice of the Cozeter group W.

Proof: The proof below is an outline of the proof given in [10]). For a rigorous

proof, the reader is referred to [10] or [12].



Frobenius manifolds 38

Begin by noting that as 7/ and ¢ form a flat pencil, with 7/ being constant in

the coordinates of theorem 1.42, one has
B _ 1ab
Ay =T,

where A% is the difference tensor introduced in [10], appendix D. Using the

equation D.1a from [10], one may express the Christoffel symbols of g*# by
T = n™6.0,f°(t),

for some vector field f2. This is then used in conjunction with the homogeneity
of the invariant polynomials to obtain (via an application of the Euler identity)

the equation
(dy —1)g" = (dy + ds — 2)770 . (1.14)

Using this equation along with the symmetry of g*? and 7®#, one obtains a new

symmetry:
nﬁeaef'r _ T)"‘&fﬂ

Defining a new field
hf?

F"i= —
dy-1

one obtains the symmetry
0. F = n" 0. FP.
But this is integrable; there exists a function F'(t) such that
F® = n%0.F(t).

It follows clearly (from the homogeneity of the invariant polynomials) that F
itself will be quasihomogenous (with degree 2h + 2). Also, (1.14) implies that F
will in fact satisfy (1.13). Having established the existence of F', one must now
prove that it is a solution to the WDVV associativity equations. Using the dual
structure constants

c‘;’ﬂ = 1%0?¢0;0.0,F,
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1t is possible to show that

Recalling that in this case, A% =T'%#, one may substitute this into the equation

D.2 from [10], appendix D to obtain associativity.

Corollary 1.45 The Frobenius structure on the orbit space of a finite Cozeter

group will be semisimple.

Proof: The complete proof of this is beyond the scope of this text (see [10] and
[12] for full details), but the main ingredient is a polynomial in an auxiliary

variable u defined by

P(U;yl,-n,yn) = D(yl_U,y2a---ayn)'

If one denotes the discriminant of this with respect to u by Dy(yy,...,ys) then
one may show that 7,M has no nilpotents outside of the zeros of Dy [12, 10].
But D, does not vanish identically on the space of orbits, so the algebra on T, M

will have no nilpotents at a generic point. Hence the desired resulit.

Example 1.46 Recalling the I;(k) ezample from above, we have invariant poly-

nomials
y' = o +-Zk’
1
2 —
= —2Z.
4 %

In these coordinates, one may calculate g* to be

- (2k)k+l(y2)k——l yl
g7 = . 2
Y £y

Therefore the Saito metric is given by

01
10

n¥ =
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As this is already in constant antidiagonal form, y' and y? coincide with the Saito

flat coordinates. Hence the set of differential equations defining F(t) are

(2k)k+1(y2)k—1 _ 2kk— 26262F(t),

yl = 6162F(t)a
y2 - 8181F(t).

It is easy to see that

(2k)k+l

m(y2)k+l

(¥")*(¥*) +

s the solution to these equations. Note that this is equivalent to the first of the

two dimensional solutions to WDVYV listed in section 1.1.

1.7 Hurwitz Frobenius manifolds

Let Hyyo .. be the Hurwitz space of equivalence classes [\ : £ — P'] of N-fold
branched coverings A : £ — P!, where £ is a compact Riemann surface of genus

g and the holomorphic map A of degree N is subject to the following conditions:

e it has n (where n is the dimension of the space given by the Riemann
Hurwitz formula below) simple ramification points P,..., P, € £ with

distinct finite images l1,...,l, € C C P;

e the preimage A\~!(0o) consists of m + 1 points: A~!(o0) = {00y, ...,00m},

and the ramification index of the map ) at the point oo; is n; +1 (0 < n;).

The ramification index (above) at a point is the number of sheets of the covering
which are glued together at that point. A point oo; is a ramification point if and
only if n; > 0. A ramification point is simple if the corresponding ramification

index equals 2.
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Such a space will have a dimension n given by the Riemann-Hurwitz formula

m
n=2g+2ni+2m.
i=0

Example 1.47 The Hurwitz space Hy, o consists of all functions of the form
9 b
M2)=2"+a+—.
z—c
The Hurwitz space Ho.q, consists of all functions of the form
Mz) =2 a2 + L+,

More generally, the Hurwitz space Hypgn,

the form

nm Will be the space of functions of

.....

m ny
. +1 ng—1 Crys
)\(Z) =2 4+ 012" 4t ag, + E E ———(z—ﬂ,)’“'

Finally, as a higher genus example, the Hurwitz space Hy, o will consist of hy-

r=1 s=0

perelliptic curves of the form

Note that in the above example, one has assumed that there is no 2™° term in the
genus-zero cases. This will be the case for all Hurwitz spaces, so that one may
use the critical values of A as coordinates on the space, i.e.

: dA\
u' = Aps), EL,:,,'. =0

One will assume that the critical points are distinct, i.e. p; # p; for i # j
Similarly, in higher genus cases, one will take critical values of the projection

(A, 1) = X as coordinates.

Theorem 1.48 The structure of a semisimple Frobenius manifold exrists on an
arbitrary Hurwitz space Hgnom,,...nm- The coordinates {u?}, defined above as the
critical values of A\, will be canonical coordinates on the manifold. The function

A will be a Landau-Ginzburg superpotential for the Frobenius manifold.
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Proof: A full proof is given in chapter 5 of [10], the main components of this
proof are included below. Dubrovin’s proof begins by introducing an admissible
inner product. Such an inner product, denoted <, >4, will be compatible with

the multiplication - in the usual way. Its action on arbitrary tangent vectors &
and 0" is defined to be

<d,0" >= 0.0, 9").
The one-form (2,2 above is defined in terms of what Dubrovin calls a primary

deifferential, ¢, by:

Using the covering

A

H=Hgnp..w = {(C; N Koy kmy a1y, 0g, b1, by)},

where k; is a branched root of A near oo; (i.e. k"' =~ A\(z) near oo;) and {a;, b;}

is a marked symplectic basis.

Dubrovin then gives a list of five admissible primary differentials. They are:

1. Normalised abelian differentials of the second kind with poles only at branch
points 00y, ...,0m. The orders of these poles will be less than the corre-

spondant orders of the differential d.

¢ = E Qi Pyi-
i=1

Here the coefficients 4; are independent of the point on M. The differentials

¢, are second kind abelian differentials on C, their principal part takes the

form

¢yi = —d\ + regular terms

£w=u

near oo;, subject also to
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¢ = Z OG-
1=1

As above, the a; are independent of the point on M. However, the ¢, will
now be abelian differentials of the third kind, with simple poles at ooy and

00;, whose residues will be —1 and 1 respectively.

g
¢=> Bitr,
i=1

with B; independent of point on M. The components ¢,: are normalised

multi-valued differentials, with increments along cycles b; defined by
¢r"(P + bJ) - ¢r'(P) = _6ijd)‘,

with no singularities other than those prescribed by the line above.

g
¢ = Z 7i¢s‘7
i=1

with 7; independent of the point on M and ¢, holomorphic differentials

f ¢ri == 61:’.

normalized by

By defining
P
P =vp. [ 9,

o 31]

one may set ¢ = dz, which allows A to be used as a superpotential for the mani-
fold. Dubrovin then goes on to show that the flat coordinates for this Frobenius

manifold also consist of five parts:

A o Ty
th= (" i=0,....,ma=1,...,n;50¢,;7;¢,7=1,...,9),
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where
5 = resk; “pdA, (1.15)
. l o0i
p = v.p./ dp, (1.16)
0o
¢ = —Trese,Adp, (1.17)
b= }{dp, (1.18)
b;
§ = __1_}{,\(1;;. (1.19)
271 J,,
The invariant inner product in these coordinates takes the form:
1
Ntisagiis = méijéa+ﬂ.ni+l,
1
Myiwi = ————ni+1 ij
1
Nrigi = %51']"
nag = 0 otherwise.

Example 1.49 Consider again the Hurwitz space Hy, 9. This consists of the
space of functions of the form A = 2?2 + a + -z—f—c For convenience (and without

loss of generality) one may instead assume that they are of the form

1 b
A=2+a+ .
2 z—c

Using a,b and c as coordinates on this space, one may, using the LG formula

(1.10), easily show that
100

mj=1 0 0 1
010
Similarly, using (1.12), one may show that

Coaa =1 Cope = 1
_ 1 —
Cobb = 3 Cbec — 1
2

Cecc
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and is otherwise zero. As the metric is constant, the coordinates are already flat,
so these may be integrated up to give (to within addition of quadratic terms) a

prepotential
F=2a® 4 abe + 2t logh + ~bc®
= —a’ + abc + = —=bc”.

6 9" 8YT G

Some properties of genus zero Hurwitz spaces will be studied in greater detail in
chapters 3 and 4. For higher genus examples, one needs to introduce the notion

of elliptic functions. A simple example, taken from [10] is given below.

Example 1.50 The Hurwitz space H, . is the space of elliptic curves of the form
u2 = 4A3 + (1,1/\2 + a2/\ + aj. (120)

Using a Weierstrass normalization and the primary differential

_dz

dp = —
P 2%’

a superpotential
Ap) = p(2wp;w,w') + ¢

may be constructed. The constant c is such that the squared term in the equation

(1.20) ezpressed in terms of (A—c) vanishes. Dubrovin constructs flat coordinates

te g(ed)
2 = l,

w
B = ‘i'.

w

These were constructed using modified versions of the formulae (1.15-1.19) such

that the metric takes the form

ds? = dt'dt® + (dt?)? + dt3dt'.

Further examples of Frobenius manifolds on genus one Hurwitz spaces will be

considered in chapter 5.
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1.8 Almost duality

Let M be a Frobenius manifold and denote by ¥ the discriminant of M (recall
that the discriminant is the locus where the Euler field E is not invertible). One

may define a new multiplication * on M* = M\X by
uxv:=E1. u-v.

Lemma 1.51 This new multiplication, coupled with the intersection form (,),

defines a Frobenius algebra.

Proof: Associativity and commutativity follow immediately from the definition
of x. Likewise, it is easy to see that F will be a unity element with respect to the

new multiplication. Finally, one must show that
(uxv,w) = (u,v*w).
But from the definition of x:

(uxv,w) = (—,w),

< E,—-—E >,

Theorem 1.52 The multiplication x, along with (,) and a unity E (which will
also act as the Euler field) satisfy all of the azioms of a Frobenius manifold except

for covariant constancy of the unity element.

Proof: The existence of a Frobenius algebra has been shown above. Furthermore,

as the metric is just the intersection form of the original Frobenius manifold,
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flatness follows automatically. To show that FM4 is satisfied, one will instead

consider the (equivalent) condition of
\VAPLl
)

being symmetric in «, 3,7y, where V is the Levi Civita connection of the inter-

section form. One has
Ves? = g0} —T7c)’ —T7%¢ + T)ct?
Noting that as 0ccpap is symmetric in all four indices, one also has:
ngafcgﬂ = g"0,cP.
Coupling this with
0p(cPg*7) = g0, + 2P (T +T7Y),
one has
V"c;‘,’ﬂ = 6,,(6?’5 g - I‘Z"‘cf,ﬂ -8 o — 2P rer.
Using the result from [13] that
d—1

P:ﬂ = c?re("2_ + VnE)fv

where V, is the Levi Civita connection of <,> and associativity, this then be-

comes

d—1 d-1 agd—1
Ve = 0,(c2g) [P N E G+ VBN 3+l N (= + Vo Eff e (= + Y, B)a .

The symmetry of the second term (i.e. the one is quare brackets) is obvious. To

show that the first term is symmetric in o, 3,7, note that
P g = ig(cPPdt - dt") = ig(dt® - dtP - dt"),

which is symmetric in «, 3, as required.
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Corollary 1.53 A function F* ezists such that

PFr ot 9p° Bp (b
Op'opiopF G’“G”’a k ota 9B Y (t).

This function will satisfy the WDVV associativity equations

ab ab_x
z]aG cbkl - clJaG Cbkz
Proof: The existence of a function F* whose third derivatives are equal to

c*( 6‘2 T 37 —,;) follows from the above theorem (existence of a prepotential for a

Frobenius manifold not being reliant upon covariant constancy of the unity).

Noting that the multiplication x will define the same multiplication on the cotan-

gent space as - does, one has

ch(t) = c;"ﬂ (t).

Performing a change of variable from ¢ to p on this (2, 1) tensor and lowering the
upper indices using

Gi; = (GY)™
where G¥ is the intersection form expressed in terms of its own flat coordinates

{p'} provides the desired result.

Example 1.54 Consider the Frobenius manifold with the prepotential and Euler
field given by:

1
F(tl, t2) = §t¥t2 + etz,
E = t,0, +20,.
The intersection form is
2et? 1
Gag =
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One may easily show that the flat coordinates for g are given by
tl = - (ez‘ + sz) y
t2 = 21+ 29.

In these coordinates, the intersection form takes the form

0 1
Gij =
10
One may then apply the almost duality formula (1.53) to obtain
e*
= =z = P
e*
Cpop = —Clog = P

These may then be integrated to obtain F*. In order to do this, one requires the
polylogarithm function Li,, defined by
x® _r
Lin(z) =Y = (1.21)

n
r=1 r

This series is convergent for |z| < 1 and may be defined by analytic continuation

elsewhere. It satisfies

L’l:()(Z) = y

d . 1
d—z-Lz,,(z) = ;LG_l(z).

Integrating the cjj, three times yields

o= o (o)) - o (4 29) + 5 (Lise" ™+ Liset~0) . (122)

For more detailed examples of such calculations, see section 4.3.

Consideration is now turned to semisimple Frobenius manifolds. On such mani-

folds, the dual multiplication * in the canonical coordinates of - is given by:

1
Ox0; = —Z'Jal(ai'aj),
:

= Y 2a,0,
] u

- —.6,'_1'6,'.
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Lemma 1.55 For a semisimple Frobenius manifold, the almost dual multiplica-

tion x will be semisimple. Canonical coordinates for this multiplication are given

by
= log u'.
Proof: Using the notation!
0 0
P = 6; = Y
O ort’ out
one has
ou’ ;
3,. = -6—7:;81 =u 6,-.

Substituting this into formula for the almost dual multiplication yields

O0ix0, = al;.(sij(ui)?ai,
= ‘Sijuiaia
= ;0.

Hence the multiplication x is semisimple and {7'} are the canonical coordinates

for it.

Corollary 1.56 Let M be a semisimple Frobenius manifold with an LG superpo-
tential . Then the trilinear tensor c*(8',8",3") may be erpressed by the residue

formula

o ) oy & (log )" (log )8" (log A) ,
@,9",0") Z res 2og ) 2. (1.23)

Proof:  Canonical coordinates will be used to prove this theorem (as only
semisimple Frobenius manifolds are being considered, the existence of such co-

ordinates is guaranteed at a generic point). Consider the left hand side of the

Note that throughout this proof, there will be no summation over repeated indices.
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above formula:

c*(0;,0;,0c) = (0; x 0, 0k),

1

= —6,(83),
1

= 5000
(w7

Next, consider the right hand side:
d’'(log A)0" (log )0 (log A) _ O A OjA OkA A
-2k, d(log \) dz = XI:J._‘?,?: A

= — Z res ——ai/\aj)\ak/\dz.
— 2= AN
But near z = ¢!, we have 9;\ = d;. Therefore the residues are zero, except for
when i = j = k, in which case the residue will be non zero at the point z = ¢*
(but zero everywhere else). Note that at z = ¢;, A will be nonzero (in fact it will
be equal to u’). Hence :\1—2 may be brought outside of the residue to give

1 di;Oik

G = T N dz.

But if ¢ = j = k, recall from above that this is the same residue as occurred in

the calculation of 7;;. Therefore

1
Chik = 0105k W‘sijéjkmia

as required.

Example 1.57 Consider the Frobenius manifold on the Hurwitz space Hy.o o with

superpotential

/\(z)=z+z_b.

Using the residue formulae (1.10) and (1.12), one may show that a and b are flat

coordinates and that the prepotential is

F(a,b) = %an + %az log (a - g) :
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One may also show using the formula (1.11) that the flat coordinates of the in-

tersection form are the zeros of A, i.e. if one writes

(z—2)(z—2)
z — (21 + 22)

Az) =

then z; and z, are the flat coordinates of the intersection form. One may therefore

use the tangent vectors £ in the formula (1.23) to obtain (by simple residue
calculations)
.o 11
mo= T T
Clps = !
.
1
Clos = ,
122 o
1 1
Crgg = — — .
222 % 23—

These may be integrated up to give the almost dual prepotential

F* = = (2llog(21)® + 2% log(22)® — (21 — 22) log(z1 — 22)%) . (1.24)

1
4

Full details of similar calculations can be seen in sections 4.1 and 4.2.

1.9 Legendre transformations

Definition 1.58 A symmetry of the WDVV equations is a transformation of the

form

~

t — i
Nag — Tas)

A

F - F,

such that F' is a solution to the WDVV equations.
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One type of symmetry of the WDVV equations is a Legendre transformation.

These were defined in [10] in the following way:
Definition 1.59 The Legendre transformation Sy defines new coordinates

fo = 9,00 F(2).

The new prepotential F' is defined implicitly by the differential equation

PF  OF
ofepis  Oteots’

(1.25)

whilst the metric remains invariant;
Tlaf = Nag-

Note that tangent vectors in the two coordinate systems are linked by the rela-

tionship

Putting o = k, one obtains

Finally, consider a new metric defined by
<a,b>=< 0 0k,a-b>.

It follows immediately that this metric will be Frobenius. Moreover, by putting

a = 0, and b = 83, one obtains:

<5a,3ﬂ >k = <8k~6k,5a-3ﬂ >,

< 6k°éa,ak 'éﬂ >,

= < 0,08 >.

Hence the new metric <, > is 7l,5. Also, as t@ are flat coordinates for 7,4, so £
Nap ) Nap

must be flat coordinates for 7j,s.
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Example 1.60 This ezample appeared in [10], and applies the Legendre trans-

formation S, to the prepotential
1
F= -2-(t1)2t2 +et’,

The new variables are defined by

tt = £,
t2 = logt!,
From (1.25), one obtains
Aii = t?2 = lngl,
i, = 1 = P,
F@‘ = et2 = fl.

Integrating yields the prepotential
F= %(52)21?1 + %(t“f (logf‘ _ g) .

In summary, the concept of a Frobenius manifold has been introduced and two
particular classes of semisimple Frobenius manifolds - those on the orbit space of
a Coxeter group and those on a Hurwitz space - have been constructed. These
two categories are closely linked, as illustrated by the fact that the polynomial
Frobenius manifolds introduced in section 1.5 lies in both classes. The rest of this
thesis will be laid out as follows. Chapter 2 will introduce the idea of submanifold
geometry for Frobenius manifolds, in particular the idea of natural submanifolds
which may be classified in terms of caustics and discriminants. Chapter 3 will
then deal with caustic submanifolds of genus zero Hurwitz spaces. Chapter 4
again studies genus zero Hurwitz spaces, this time considering the application
of the almost duality of section 1.8 to discriminants. A modified version of the
Legendre transformations introduced in section 1.9 will be constructed and used
to link certain almost dual solutions of the WDVV equations. Finally, chapter 5
will continue to study almost duality, but this time for a special class of genus

one Hurwitz spaces.



Chapter 2

Submanifolds

2.1 Induced structures

The relationship between the geometry of a submanifold and its ambient manifold
is one of the oldest problems in the field of differential geometry. Therefore it
is an obvious problem, given a Frobenius manifold, to study the geometry of
its submanifolds, and whether the rich mathematical structure of a Frobenius
manifold carries over to the submanifold. In order to do this, a brief recap of

induced structures on a submanifold will be given.
Let M be a manifold (of dimension m) such that a commutative multiplication
o: oM x T,M — T,M

is defined on the tangent space at every point p. Also, assume that a metric
n =<, > exists on M. Then for any n-dimensional submanifold N' C M, one

may define an induced multiplication

x: TN x TN = TN

55
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by
a*xb=pr(aob),

where a and b are arbitrary vectors on T,A and pr() is the projection using 1.

This idea is illustrated in the diagram below.

XoY
T,M
project
Y
X
pr(X oY) TN

Definition 2.1 N is said to be a natural submanifold of M if
axb=aob, Va,beT,NCT,M

i.e. no projection is necessary.

The definition above can be extended to manifolds not endowed with a metric

by expressing it as the equivalent condition

TN o T,N C T,N.

In addition to the induced multiplication, one may define an induced metric 7y

on N. Let {t'} be local coordinates on M. Then N may be parameterised by
t=t(r"),a=1,...,n

Hence % forms a basis for T,N, defined by the formula

o oo
ore — Ore ot
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With these coordinate systems, the components of 7/, denoted by 744, are given
by the formula o
ott or!

Mo = 5 5ol (2.1)

One may reconstruct a basis for T,M from the basis of T,A by adding an or-

thogonal compliment, i.e.

0 0 0 0

_ _ 1
%—Af‘é;;+n?b;, a—l, ,m—-n, 6Va€(TpN) .
Hence, using n and ny, '
o_ ap. OF
Af=nq nijﬁ-

Theorem 2.2 If o and n satisfy the Frobenius condition
<aobc>=<a,boc>,

for a,b € T,M, then the induced multiplication and metric (x and ny) will satisfy

the Frobenius condition on an arbitrary submanifold N C M.

Proof: Let ch denote structure constants defining the multiplication on T, M by
0;00; := cfjak.

Induced structure constants c}; such that 0, x s = c] 40, may be defined in the

following way:

ot ot
aTa 031,9 = %W ijINak,
ot ot
= 5550 IN(ALdr, +n]d,,).
Projecting this onto N yields
ot o
aTa * 6TB = %—a_ﬁcfleAzaT'V’

but
6tq
AZ = 777677’01357__5'
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Therefore
ott atr ot 5k
o8 = Gra r? grs Tl Gkl
Now note that the Frobenius condition is equivalent to symmetry (in all three

indices) of the tensor
!
Cijk = MkiCyj-
On N, one has

ott otd ot

_ 5 k
Cafy = %Wﬁmenkﬂf’ Cik |n.

A suitable reordering of the terms and summations therefore yields

_ ot oY ot
81 = ra 978 o1 VN

which is symmetric in all three indices as required.

2.2 Frobenius submanifolds

Definition 2.3 Let M be a Frobenius manifold and N an arbitrary submanifold
of M. N is said to be a Frobenius submanifold if it is a Frobenius manifold with

respect to the induced structures defined above.

Recalling the large number of conditions which must be satisfied in order for a
manifold to be a Frobenius manifold, it becomes immediately apparent that gen-
erally a submanifold of a Frobenius manifold will not be a Frobenius submanifold.
For example, the metric on a Frobenius manifold must be flat, but this will not
automatically be the case for the induced metric on the submanifold. Similarly,
the induced multiplication on the submanifold may not inherit the associativity

of the multiplication on the ambient manifold.

If one considers the simplest non-trivial case, namely a two dimensional subman-

ifold of a three dimensional Frobenius manifold, then a suitable condition for



Submanifolds 59

a submanifold to be a Frobenius submanifold may be expressed easily by the

following lemma.
Lemma 2.4 Let M be a three dimensional Frobenius manifold and N a two
dimensional submanifold. If the identity field e is tangential to N at all points

t € N, then N is a Frobenius submanifold.

Proof: The tangentiality of e implies the submanifold may be parameterised

t 71 a(7s)
ta | = 0 + | aa(rm)
t3 0 (13(7'2)

In order for the submanifold to be in its own flat coordinates, we require

01
0

w =Ny =

Recalling the equation (2.1) and using 712 = 1, one has:

ot o3 a2 8 o ot
71972 T Briort | Bl ore
o3

1 =

Hence, taking the constant of integration to be zero,
t3 = Tao.

Similarly, using ny92 = 0, along with the above result, one obtains:

ot! + ot? o2
or?  0r?20r?

1 a2\*
a1=—§/(5ﬁ) dTg.

One may now consider the algebra on the submanifold. As 8,, = e, it automati-

2

=0,

or

cally follows that
Or, *Or, =0y, Op *x0r, =0,.
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Finally, one may show that

4
+(——a'23 + 0'220222|N + 2a5¢923| & + C233|A) 00,

3 4 3 2
%0, = | =50y + a5 Conly 2 Cona|w 2C233|n + caaslw ) Or
Or, * O, ay + a5 o2 |n + 3aj ozl + 3agcass| v + cassla ) O

where

!
8,, - 6t2 - a2a7-1,

which is orthogonal to /. Therefore

3
8,2 * a,.2 = (-Za'; + a,230222|N + 3(1’220223 |N + 3(1’20233|N + C333l/\[) 6

This multiplication is trivially associative (as it is two dimensional) and hence

the induced structure is a Frobenius manifold. The prepotential is given by

FN‘(Tl,Tz ——7'17'2+///(———a2 +a26222|/\/+30,226223|N+3&’26233|N+C333|N) dT23

Corollary 2.5 The Frobenius manifold from the above theorem is natural if

(—aqu’ + a,226222|/\/ + 2&’26223|N + CQ33|N) =0.

Proof: If a, satisfies this equation, then it immediately follows that aob =ax b

for all a,b € N. Hence the submanifold is natural.

Example 2.6 Consider the Frobenius manifold corresponding to the Cozeter

group As. In flat coordinates, it has prepotential

1 1 1 1
= t2t A
F = 3+ 2 1ts + 102 + 60

8
The two dimensional submanifold to which e = 0, is always tangential may be
parameterised (in its own flat coordinates) by:

tl T1 —_ f(:‘rbz )2d7'

12 = 0 + b(Tg)

t3 0 Ta
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Consideration of the quasihomogeneity conditions then implies that to = b(mp) =

3
kr? andt, =1 — k372

Theorem 2.7 Let M be an m-dimensional Frobenius manifold and N a two
dimensional submanifold. If the identity field e is tangential to N at all points
t €N, then N is a Frobenius submanifold.

Proof: The proof of this statement is a direct generalisation of the three dimen-

sional case. Begin by parameterising the submanifold by

t Ty ai(72)
t 0 a» (T

2 — + 2(. 2)
tm 0 am(Tg)

The flat coordinates are given by setting

m
_l 1.1 d
2 ;0 41-i0T2,
1=2

aym = To.

ay

A prime denotes differentiation w.r.t. 7, in the above formula. The rest of the

proof then follows in the same way as in three dimensions.

Example 2.8 Let M be the four dimensional Frobenius manifold corresponding
to the Cozeter group Fy. Then its prepotential is

1
252

1

2t
34t 185328

ty.

1 1 1 1 1
F = §t§t4 + titats + 6t3t4 + I—Z—tgt4 + 6t2t§ti + Etgti +

One may parameterise the two dimensional submanifold (in its own flat coordi-

nates by)
t n —3 [ a%al + ajahdr,
ta 0 a ()
= +
3 0 a3(T2)
t4 0 T2
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The quasihomogeneity condition then implies

4
a; = szz,

as = kng.
This in turn allows one to calculate

a; = —2k2k37'26.

For submanifolds of dimension greater than two, formulating necessary conditions
for a Frobenius submanifold becomes considerably harder, as the associativity is
no longer trivially guaranteed. In the case of a natural submanifold however,
an elegant expression of necessary conditions for a Frobenius submanifold was

provided in [24], and is stipulated in the theorem below.

Theorem 2.9 Let N be a flat natural submanifold of a Frobenius manifold M.
If the identity field e and Euler field E are both tangential to N at allt € N,

then N is a Probenius submanifold.

Proof: A sketch of the proof will be given here; see [24] for full details.

To prove that such a submanifold is a Frobenius submanifold, the WDVV formu-
lation of a Frobenius manifold will be used. Firstly, one considers the existence

of an induced prepotential F)y satisfying

_ oFe
Cabr = Brapréor

The integrability condition for this is

0c0ﬂ7 6Caﬂ5 -0

ort orv

Strachan shows how, due to the submanifold being natural, the obstruction to

integrability vanishes.
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Secondly, the existence of a covariantly constant identity field is proven. This is

done by parameterising the submanifold

t' = 4 fi(rt T, (2.2)
tt = fi(+%,...,™), 2 <<n, (2.3)
" = T (2.4)
Hence
0 i}
e=— = —.
i~ ort

Also, using the relevant formulae, one has, in these coordinates,

CiaB = Nap,

as required by the WDVV equations.

Finally, Strachan shows that the Euler field on N is linear in 7 and satisfies the

quasihomogeneity condition
LECaB'y = dFCaB'ya

hence meaning that F) is not only quasihomogenous but is of the same degree

as F'.

2.3 Semisimple natural submanifolds

As stated earlier, a submanifold of a Frobenius manifold will not, in general, be
a Frobenius submanifold. It is therefore natural to consider which (if any) of the
properties of the ambient Frobenius manifold a given submanifold will inherit.

The following definitions will be useful in addressing this questions.

Definition 2.10 A manifold M endowed with a commutative and associative

multiplication

o: TpM x TM = T,M
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defined on the tangent space at every point p is an F-manifold if

ony(O) =X O,Cy(O) + Yo Ex(o), VX,Y € TpM

An Fg-manifold is an F-manifold on which a quasihomogenous FEuler field is
defined, such that
Lg(o)=d-o.

An F,-manifold is an F-manifold on which a metric n =<, > satisfying the Frobe-

nius condition is defined.

An F-manifold is a manifold which adheres to the axioms of both an Fg-manifold

and an Fy-manifold, as well as the additional condition
Le<,>=D<,>,

for some constant D.

Consideration is now restricted to semisimple F-manifolds. On such a manifold,
the tangent space decomposes into one dimensional algebras, and so a set of

canonical coordinates {u'} exist such that
8,~ o] Bj = 5,-1-6,-.

This is entirely analogous to semisimple Frobenius manifolds (a Frobenius man-
ifold being a special case of an F-manifold). In the case of a semisimple Fg-

manifold, the Euler field takes the familiar form

E = Zu‘@i.

Similarly, on a semisimple F,-manifold, the metric will (in canonical coordinates)

take the diagonal form

Mij = OijTi-
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Definition 2.11 A submanifold defined by the condition u* = 0, for one or more

values of 1 is a discriminant hypersurface, and will be denoted D.
A submanifold defined by the condition u* —u’ = 0 for some pair u' and uw?, where

t # 7, s known as a caustic, and will be denoted K.

A suitable ordering of the coordinates allows such manifolds to parameterised

1 my _ (.1 1. .= n.
(u'y...,u )—Q’,...,TJ,...,I ooy 750,...,0).
. N

k1 kn m-3_ k;

The submanifolds may then be denoted

(k1. .., kn,0,...0).

Definition 2.12 A submanifold of the form (ky, ..., k) is known as a pure caus-

tic. A submanifold of the form (1,...,1,0...,0) is known as a pure discriminant.

Lemma 2.13 Submanifolds of a semisimple F-manifold of the form X ND are

natural F'-manifolds.

Proof: The proof of this statement follows automatically from the definitions.

Lemma 2.14 Let M be a semisimple Fg-manifold. Then any submanifold N' =
KN D will be a natural Fg-manifold. Moreover, the Euler field will be tangential
to N, that is Exr = E|y.

Proof: The Euler field on M is

; 0
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Noting that on N, u* = 0 for i € D, this becomes

z' 6
Ely = Zu Sl
igD

But u* = 7@, where ¢ € 1,...n, and

g or* 0o 0

oui 0wl Ore  9ro)

Noting that there are ko of the u* equal to 7, the Euler field is therefore

Eln = Zkaw%.

But this is tangential to A, so and so defines an Euler field Exy = E|y. As
the multiplication and Euler field on N are the same as they are on M, so the

quasihomogeneity property must also follow.

Lemma 2.15 Any submanifold of a semisimple F-manifold which is of the form
KN D will be a natural F-manifold.

Proof: It follows from the above lemma that such a submanifold will be a natural
Fg manifold, and the existence of an induced metric ensures it will also be an F;

manifold. Therefore all that is left to prove is that
Ley <,>n=D <, >n.
However, noting that Eyr = E|y and that the induced metric is

Nap = 50:/3 Naas

with

Noea = Z Mis

iire=ul
the quasihomogeneity property of the ambient manifold is automatically inher-

ited.
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Lemma 2.16 The only natural submanifolds of a semisimple F-manifold are

those of the form KN D, i.e. the intersections of caustic and discriminant hyper-

surfaces.

Proof: Firstly, note that using the inclusion map ¢ : N' — M, one may push

forward vectors from TN to T;M by the formula
i ot 0
“ore ~ Bre o

Also, tangent vectors on T;M may be orthogonally decomposed:

& .9 0
o =Yg TN

Hence one has (noting that the multiplication is canonical)

0,0 _ novor o
ore ~ orf £~ gre 9rP out
m o
B ou* ou' [, O p O
B £ Ore orB (Ai ore +N; ov ”)
As the submanifold is natural, the orthogonal component must vanish to give the
equations
—b = Ou' O Nt =0

Zaf = ore orb
=1

It is convenient at this point to use a Monge parametrisation! of N:

uw = 1,i=1,...,n,
u"tt = Kb(p), b=1,...,m—n,

With this parametrisation of A, one has:

o _ N Ou O, g~ O B
Taf T & gre 9rf " 5, 0 orf
X Ohi O
_ b
= ZszaﬂN +Zaraw [
'~ Oh dhi
= 0aN2 + 0

Ore §rB Itn
i=1

!Note that if u* = 0 for some i < n, this parametrisation breaks down.

be overcome by a suitable reordering of the ut.

However, this can
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Now observe that A/ may be described as the intersection of level sets:
N = ﬂ {¢® = 0},
b=1

where ¢® = h®—u"*®. Noting that V¢® is orthogonal to the hypersurface described

by ¢® = 0, one may choose the 525 so that

d¢°
N} = —.
o out
This splits into two cases:
oh®
Nlb = %, i=1,...,n,
= =" i=n41,...,m.

Using these values for N}, the Zf 5 become:

Ont <~ OW oW, ..
pus ¥ 24 Bragrs\ “rn)

j=n

=b
:‘aﬂ = 60,3

But this must be equal to zero. Also, note that on N, u* = u(r), and so in

particular (by applying the chain rule) one has:
0 0

ow o 'S™

Combining this with the above and equating to zero gives

Oh®  OR® AR

g ore ~ dredrh 0.
Hence
b
M _ o, arnl),
ore
= 1, a=mn(),

for a single value m(b) (the existence of which is possible but not guaranteed).
Hence either h® = a® or h® = u™® 4+ @, where a’ is an arbitrary constant. Now,

observing that
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h® must be a homogenous function of degree 1, so a® = 0. Hence either h®* = 0
or h* = u™®_ Therefore the conditions h® — u®*® = 0 become the discriminant

condition (if A®=0) or the caustic condition (if h® = u™*?).

Theorem 2.17 Let M be a semisimple F-manifold and N' be a natural sub-
manifold. The identity field e will be tangential to N if and only if N is a pure

caustic.

Proof: The semisimplicity condition implies that the identity field takes the

form
0
=2 5a
on M. On a submanifold NV, there will be a unity field
;.
ENn = ; 5’-’_—‘;.
On a natural submanifold, the orthogonal decomposition of e may be expressed

(in the coordinates and notation of the previous theorem) as

LA, 0 i "o\ &
2w = m%'z(l‘jzl a) i

b=1

Hence, for e to be tangential to NV, one must have

n b
(69]71' =1, b=1,...,(m—n).
7=1

But as h® = 0 or h* = u™®), this condition is only satisfied in the second case,
which corresponds to a caustic. It must be true for all b = 1,...,(m — n), in
order for e to be tangential to /. Therefore e being tangential implies N is a

pure caustic.

Corollary 2.18 Any flat pure caustic of a semisimple Frobenius manifold is a

natural Frobenius submanifold.
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Proof: Noting that a Frobenius manifold is a special case of an F manifold, from
the theorems above, one has that a pure caustic is natural submanifold and that
e and E are tangential to it. Hence the criterium of theorem 2.9 are adhered to.

Therefore the flat caustic is a natural Frobenius submanifold.

This result gives a theoretical way to find Frobenius submanifolds, though in

reality finding flat caustics is computationally difficult.

2.4 Coxeter subgroups and Frobenius subman-

ifolds

One large class of Frobenius manifolds are those arising from the orbit space of a
Coxeter group, as introduced in section 1.6. Where the Coxeter group contains a
Coxeter subgroup (which itself corresponds to another Frobenius manifold) one
may look for Frobenius submanifolds. In particular, the examples 2.6 and 2.8
respectively correspond to the facts that I5(4) C A3 and I,(12) C Fy. These can
also be thought of in terms of the foldings of the Dynkin diagrams of the Coxeter
groups. For example, the folding of A3 to give I5(4) is represented by the diagram

below:

l fold l

A full list of Coxeter groups and their corresponding subgroups is given below.
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Coxeter group | Subgroup
Aony B,
Dy B,

D, H;
Eg Fy
Eg H,
w I(h)

In the last line above, W is an arbitrary Coxeter group and h is the Coxeter

number of W.

2.5 The Frobenius structure on the A, caustics

The following example, which originally appeared in [25], is a submanifold of a
Frobenius manifold which inherits many of the properties of a Frobenius manifold.

However, its curvature prohibits it from being a Frobenius submanifold.

Recall that a Frobenius manifold corresponding to the Coxeter group A, may be

expressed in terms of a superpotential
p(2) = 2" + 012"+ .. +a,.

Differentiating this with respect to z gives

p(z)=(n+1) H(z - ;).

Canonical coordinates were defined on this manifold as the critical values of p,

i.e. by the formula
u' = p(ay).
This relied on the assumption the n roots of p' were distinct. If one allows such

roots to be equal, however, then u’ = u/ for some i # j, hence this condition is



Submanifolds 72

equivalent to that of a caustic submanifold. Therefore one may define a caustic

by the condition

m

P2) =+ 1) [z~ an)*,

i=1
where Y k; = n and at least one of the k; is greater than or equal to 2. Strachan
shows in [25] that canonical coordinates {7} may still be defined on such a
submanifold. It is also shown that a metric exists, given by the familiar residue

formula?
m; = — res 99T gz
=ai p/(2)

and that this metric is diagonal and has an Egoroff potential

a
n+1

The submanifold also carries an covariantly constant identity field

0

Oa,’

e

and an Euler field E. Proof of these statements is deferred to chapter 3, where
the same theorem will be proved for the more general case of an arbitrary genus
zero Hurwitz space (recall that the A, type Frobenius manifold corresponds to

the simplest class of genus zero Hurwitz space).

2.6 Caustics and discriminants of A,

Recall from above that A, type Frobenius manifolds may be expressed in terms of
a superpotential A and that the canonical coordinates are defined as the critical
values of A. A Discriminant submanifold may be described by the condition
u* = 0 for some i. This is equivalent to saying A and )’ have a common root at
z = @;. This condition may be defined in terms of the resultant function defined

below.

2Note that in [25), this formula differs by a factor of (—1).
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Definition 2.19 The resultant of two polynomials f(2) = fm [z, (2 — &) and
9(2) = gm [1;(z — B;), denoted R(f,g), is defined by the formula
R(f,9) = frap [T [ I(es = 80),
=0 j=0

where o; is a root of f(2) and B; is a root of g(z).

From the definition above, it is obvious that if the resultant of two polynomials is
zero, then they must have a common root. A remarkable fact about the resultant
function is that it can be defined in a second way. If one considers f(z) as a

series, i.e.
f(2) = fm2™ + 2™ 4+ o
and likewise

9(2) = gn2" + gu12” M 4.+ g0,

then the resultant of f and g is equal to the determinant of the Sylvester matrix

defined below.

Definition 2.20 The Sylvester matrix of two polynomials f and g, of the form
above, is an (m + n +2) X (m + n + 2) matriz. It is constructed by placing the
coefficients fm through to fy in the first m entries of the first row. One moves
down a row and right a column and repeats until the entries reach the right hand
side. The next row has the coefficients g, to gy as its first n + 1 entries and the
process of moving down a row and right a column is repeated. All other entries are

equal to zero. This is easier to understand if visualised as the following matriz:

This provides a way to define the discriminant locus of an A, Frobenius manifold

in terms of {a;} by the equation

RO\, N) =0.
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Noting a further property of resultants, namely that for an arbitrary polynomial
f(z),

R(f, f) = [ J(es = )%,

i

the above equation is therefore satisfied if an only if A has a repeated root.
Example 2.21 The A3 superpotential is

A=2"+a,2% + a2 + a;.
Differentiating with respect to A gives

N = 423 + 2(1,12 + as.

Therefore the discriminant condition is

(10 ai a a3 0 0 0 ©)
01 0 a a a3 0 0 O
00 1 0 a a a3 0 O
00 0 1 0 a a a 0
00 0 0 1 0 a a a3

det| 4 0 2¢y ap 0 0 0 O0 0 }=0
04 0 2a a O 0 0 O
00 4 0 2a; a2 O 0 O
00 O 4 0 2a;, a0 0 0
00 0 0 4 0 24 a O
\0 0 0 0 0 4 0 2, a)

Calculating the determinant then leaves
~4a3a2 + 16ata; + 144a,02a;3 — 1284343 — 27a3 + 25643 = 0.

This equation gives the swallowtail surface.

One now turns consideration to the caustics of A,,. The condition for a caustic

was u' — v/ = 0, for some i # j. This is automatically satisfied if A’ has a
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repeated root, i.e. ; = a; for some ¢ # j. In terms of the resultant function,

this is equivalent to requiring that

RN, \") = 0.

Example 2.22 Again, the A; case is considered. Differentiating X' gives
N =122% + 2a,.
One may therefore calculate
R(N,\") = 512a? + 1728a2.

Setting this equal to zero, and nvotz'ng that a3 may take an arbitrary value, this
surface is the cylinder over a semi cubic parabola. If one writes X' = (2 — a)(z —

a)(z + 2a), canonical coordinates for As are given by

u' = Ma) = T
w? = Ma) = 1,
v = AM-20) = 72

Hence, tangent vectors are given by

Ot = Oy + Oy,
02 = O,s.

The multiplication of these vectors (on the ambient manifold) is given by:

001 = Op+02 = On,
O -0z = 0,
0202 = 0 = O

Hence no projection is necessary in order to define the induced multiplication x,

s0 the caustic is a natural submanifold (this fact was already guaranteed by lemma
2.13)
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Using theorem 2.17, one also observes that e should be tangential to the caustic.

This can easily be verified:
e =0, + 0,2+ 0ys = 0yt + Ore.

Therefore the Az caustic is a two dimensional submanifold with a tangential iden-

tity field, and so is a (natural) Frobenius submanifold by theorem 2.7.

A further case satisfying v —u/ = 0 for an A, type Frobenius manifold, without
requiring o; = «;, will now be considered. The locus on which this occurs is
known as the Marwell strata and is defined by the condition A(a;) = A(e;) for

some «; # a;.

Example 2.23 One again considers the Az case. One has
N'=4(z - a)(z - B)(z + a + ),
with a # B. Comparison of coefficients then gives

oy = —2(a®+af+ B2,
a; = 4of(a+pB).

Noting that the equation for the Mazwell strata is A(a) = A(B), one obtains
ot + 410 + a0 + a3 = B + a1 8% + @y + aa.

Substituting the above equations for a, and a,, and noting that the choice of as

18 arbitrary, one then obtains:

(a* — ) —2(c? - BH)(a? + aB + B%) + 4(a — B)af(a+ B) = 0.

This factorises to give
(a=B)(a+B8)=0.

Hence the only solution (subject to the earlier assumption that o # ) is

a=-p.
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Substituting this into the equations for a, and ay, one obtains

a, = —a,

02:0.

Therefore the Mazwell strata of As is a half plane.

2.7 Genus-zero Hurwitz caustics and discrimi-

nants

Recall that for an arbitrary genus-zero Hurwitz space Ho.p,.... .., the superpoten-

tial was of the form

Ny

m
c
— notl ngo— l _ brs
AMz) =2"" 4+ a5z et Gy, + _S_ oA

r=1 s=0

This may be written as the quotient of two polynomials:

m (Z - ﬂz)nrH

For convenience, denote the denominator of this by g(2). Similarly,

n s+lc”
/\'(Z) = (n0+1)z O 4 4G, 1—22 s+2

r= 1.9—0

may be rewritten as

h(z)
9(2) [IZ:1(z = B)

N(z) =

Hence the discriminant of the Frobenius manifold occurs when

R(f(2),h(2)) = 0.

However, if one instead obtained )\’ by differentiating -5, it would appear in the

form

V) - L) =)
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Hence if f and f’ have a common root, this will also be a root of X'. Therefore

the discriminant can be found by solving

i.e. by requiring that f(z) has a repeated root.

Similarly, if h(z) has a repeated root, two critical values of A will coincide, hence

this is a condition for finding caustics.

Example 2.24 Consider the space Hy, o of functions of the form

M2)=22+a+ b .
z—c

This may be rewritten as

3 _ )2 _
/\(z)zz cz® +az (b+ac).

2 —C

Regquiring that the numerator of this has a repeated root gives the condition

(ac + b)(9ac + 27b + 4c?) = 0.

Differentiating A gives

b
! = —_——_—
N(z) = 2z o
228 —42%c+2%2-b
B (2 —c)? '

Hence the caustic condition may be calculated using the equation
R(22% — 4c2® + 2¢®2 — b,62% — 8¢z + 2¢*) = 0.
Therefore the caustic is defined by the equation
27b = 8¢°,

with the value of a being arbitrary.
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The material contained within this chapter motivates a closer study of caustics
and discriminants of Frobenius manifolds. Whilst the theorems have been pro-
vided in a very much abstract context, the examples contained within the last
two sections show that concrete examples of caustics and discriminants can be
defined for certain classes of Frobenius manifolds. Consideration will therefore
be given to the Frobenius structures on caustics of a genus zero Hurwitz space
in chapter 3. Discriminants of such a Frobenius manifold will then be considered
in chapter 4. In particular, the notion of ‘almost duality’, which conventionally
relies on E~! being well defined (recall that E~' is not well defined on a discrim-
inant) will be induced on such discriminants. Finally, an example on a higher

genus Hurwitz space will be considered in chapter 5.



Chapter 3

Caustics of genus zero Hurwitz

spaces

The result from [25] that caustic submanifolds of a Frobenius manifold corre-
sponding to the Coxeter group A, carry a set of canonical coordinates, a di-
agonal Egoroff metric and a covariantly constant identity field has two obvious
generalisations. The first is to an arbitrary caustic of any other Coxeter group.
However, recalling that the A, type Frobenius manifold also corresponds to the
Hurwitz space Hp.,, one may attempt to generalise this idea to other Hurwitz

spaces. Here, an arbitrary genus zero Hurwitz space will be considered.

Recall that a Frobenius manifold on the Hurwitz space Hongn,,....n, Will have a

superpotential of the form

m nr
__ .mo+l no—1 Cr,s
A(z) = 2™t! 4 gy 2™ —!—...+ano+;=1 sgzo _——(z—ﬂr)"“'

The dimension of this space is

m
dim=ng+ ) (ni+1)+m.

i=1

The first ng parameters are {a;}. There are Y ., (n;+1) parameters {c,,}, whilst

80
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the remaining m parameters are {;}. Differentiating A with respect to z gives

dA n - =3 Lot Der,
d_z:(no+1)z°+(no-1)2"°2+ U ZZ sr+2

r=1 s=0
Lemma 3.1 % may be written as the quotient of two polynomials:
dA MitG-a) _ f(2)

—_— = (’no + 1) m - = .
dz Hj:l(z =Bt g(z)

This quotient will be in its simplest form, i.e. there is no cancellation of factors
between the numerator and denominator (which is equivalent to the condition

o; # B, for all possible i and j).

Proof: To prove that may be written in the quotient form above is trivial; one
needs only to multlply every term by ﬁ:nil(—z_—/s‘w The numerator will therefore
j=1\#—05;

be a polynomial of degree no+Y ;- (n;+2) = dim. Note also that if one considers

f — ’\’H(Z _ ﬁi)n,-+2’

i=1

then (z — ;) multiplies every term except ﬁ—%—w Hence
J#i

(i + 1)¢im,

H#i(ﬂi - Bj)""”'

But as ¢; », # 0 (or the pole at of A at 2 = 5; would be of a lower degree and so

f|z=ﬂi =

the function A would belong to a different Hurwitz space), this must be non-zero,

and so (z — f3;) is not a factor in the numerator of %

As the critical points of X are precisely the o;, the critical values of )\, which are
(canonical) coordinates on the manifold are given by u' = M), If a; = ; for

some i # j, one has u* = u’ and that point is on a caustic. On a general caustic,

one has

k.
(no—i-l)l_II-[l 1(2_ 3+2, ki € N, Zki = dim.
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Hence ¢ coordinates can be defined by
= Mag), i=1,...,q.

Lemma 3.2 The multiplication in these coordinates will be canonical, 1.e.

0o 0 0

ou u - ou

Proof: If one denotes the original canonical coordinates on the ambient manifold

by {z'}, then u® will be equal to k; of these, i.e.

ut =z = ... =z,
Hence
0 or* 0
ou? - out Oz’

-y 0
B - Ozt

Multiplying two vectors of this form will then yield
%'5%? - Xk:afik';%’
DI
— < Ozt Qxit

Now, noting that i; # j; for all k£ and ! (provided i # j), this must be zero for.

For i = j,
0 0 0
b g = 22 g
0
- zk:ﬁ,
0

out’

Lemma is proved.
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As the coordinates {u’} are independent, we have

ou?

o7~ 0

Now introduce a new function

) Sou)r
1= 5 = S w7

where v, and w, are functions of @ = (au,...,q,). Differentiating f(a;) with

respect to u’, one has
M — (Z v () (a;)" )
Ou’ 8u’ Z wS(ﬁ)(a])
_ e vr(@)(@) (3, v(@)(ey)) g 1, wi(B)(ey)’

B Z wS(B)(aJ) (Zs ws(ﬂ)(@j)s)2 ’
Y, O S u()r(ep) o
N Y, ws(B)(a)?

(S, ve@)e)) (S, 24052 4 5, w, (B)slo) 1 24)

out

(22, wa(B)(2)°)? ’

%ﬁT -a] lz Otj%%'L _ fllz:aj (3u'|z =q; + Iz aja_:})

f2|z-a, (f2|z=aj) ’
8
— 55 z=aj fl z=ay Bu' z=0y + aaj %lz:aj _ f1|z=aj%%|z=aj
falz=a; (fale= a,-)2 o f2|z=a,~ (f2|z=aj)2 ,
6_f + L Ba]
O lz=a; ' OUl dz |-

._QJ

If one now sets f = A, then

5O 0
A Bu" z=a; Bui dz z=a,"
But q; is a root of 2, so
P
v a'u’ z=aj.
This gives ¢ equations for . Next consider the case of f = ﬂé.
o dFx d* o\

Bui dzF — dzF Bui’
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Restricting this to z = a;, one has

oy _ ko
Out dzF lz=a; dz*F Ouili=q;’
dk
R

=0, 1<k<k -1

Hence one has a further ) (k; — 1) equations for %‘;. Coupling the equations
above with the other ¢ equations, one may determine %. Note in particular

that 22 will have a zero of degree k; at a;, for j # i.

Lemma 3.3 %,— must be of the form
oA k.
517{ = fi(2) H(z - ay)

where p¥)(2) is a polynomial of degree k; — 1.

Proof: Differentiating A with respect to u* = u'(a, c, 8), one has

6_'\ = i no+l1 no-—1 - _ G
5 = aui(z + a2 +"'+a”°+zz(z—ﬁ,)s+l ,

r=1 s=0
m nr 6

— da, ng—1 aa'ﬂo 9 G
= ui’ +...+ ou +ZZaui(z_5r)s+1'

r=1 s=0

But
0 Cr,s Jcr 4 1 0B 1

i (z= B ) - B (2= By Bl (2 - B)

Putting everything over a common denominator of []2,(z — 8;)™*2, one obtains

_(zi B p(i)(z)
out [T, (z — B)m+?’
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where P1)(2) is a polynomial of degree ng — 1+ Y =, (n + 2) = dim — 1. One
may now, recalling that the A have zeros of respective degrees k, at a,, s # i

factor out [],.,;(z — a,)*. Hence
ox _ PY(2) [Lopalz — @)

oui I (2~ B)m?
The degree of p®(z) must be

deg(p¥(2)) = (dim — 1) = Y ks = ki~ 1,

s#1

as required.

Lemma 3.4 In the canonical coordinates {u'}, a diagonal metric is given by the
formula:
NN

dut dul
= — res 22U g2,
Mg dA=0 —i'z\

Proof: This metric may be calculated explicitly, with consideration being given

to the two possible cases of ¢ and j either being distinct or equal.

Case I: i # j

dz.

Xq: pt(2) 2) [, 2:(2 — a,)kip!(2) Hs;éj(z — )k
an —Otz (no + 1) [Ti_,(z — ax)* [T, (z — Bu)~(m*?

Noting that (2 — o;)* is a factor in the numerator at least once for [ =1,...,q,

the residues are of a finite function at these points. Hence the residues are all

zero and so n;; = 0 for ¢ # j.

Case 2. i =

()\2 2 — )2
i = — Z res (p ) Hr;éz'f r) _
L z=ar (ng + 1) [T1_, (2 — ae)® T (2 — Be) (D)

dz.

This is finite at all of the oy where [ ;é i. Hence the only residue is that at z = ¢;.

But recall from above that 2 pon B | —a; = 1. Hence

: 1
Ti = — res (E) dz.
Y\ dz
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Therefore a diagonal metric exists in the coordinates {u'}.

Lemma 3.5 The metric n Egoroff, with potential ® = —;l—()‘ﬁ—l.

Proof: Firstly, note that
1 [T,z = B2 Hs;éi(z — )

% B (mo + 1)(2 — ay)ks

Define a new function

m

W9 =[G - 87 ] - e

r=1 8#£1
As this function is analytic at z = a;, it may be expressed as a Taylor series
o i
, h(l)( 7 — o)
pi = e (2 ai)
;0 s!
Also, as b # 0 in a neighbourhood of a;, its inverse h{~*) may also be expressed
as a Taylor series in (2 — «;):
o0 -1
: bz — o)
A=) = =
82___:0 s!

Using the trivial fact that A®@h{=%) =1, one has

| = 3 Ae— 0t g AT - )

pore s! ~ t
_ i Z T!hgi)hg-l) (Z — a,-)’
- =\ s't! rt

Comparing coefficients of ascending powers of (z — ;) then yields the system of
equations

1 = h{'R{,

0 = KPR +AORS,

r

r N
0=y hORT).

s=0 s
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This system determines the RS if the AL are known. One may now substitute

the function A(~? into the formula for 7;; to obtain

1 :
o= JASURW
v (e ) -
1 2 - az
= h d
no+1zre§.(z—a Z ) “

_ 1 hfﬂ,‘—l

N n0+1(k,-—1)'

We now recall that

aa,;\i — p(i)(z) H(z _ /Br)"(nr+2) H(z _ Ots)k",

r=1 s#£1

= EHIG),

As p%(z) is simply a polynomial of degree (k; — 1), it has a finite Taylor series

ki—1

Zp

Recalling that
1))

dui

=1,

Z=0y

comparison of coefficients yields
Py hy = 1.

Similarly,
d¥ o\

5| _ =0 1<k<k-1
VA U

=ay

becomes

dk
0 = 5 () |,

_ kZ o1} (o7 ) e )
N dz* dzr-*

r=0 r $=0 8

=0y

This is clearly satisfied by

r r .
Z pgi)hgz—)-s =0, r<k-1

=0 s
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Therefore for known hgi), the pﬁi) are defined by the system

1 = h'pp,

0 = KP4 pp0

Rl —1

S

s=0 s

h(l)pScZ)— 1—s°

But these are identical to the first k; equations in the system for h{™. Therefore
p =hlD s <k -1

Hence @
1 pk. -1

’n,o+1(k, b 1)

Nii = —

As (zF71) is the highest power of z in p{®), so its coefficient will be the same

irrespective of whether the function p is expressed in terms of z or (z — o). So

pf:,) 1

k=l — coefficient of 2%~ !in p( )
(ki — 1)! )

Recalling that

2 = [ - A2 [ - ),
r=1

s#1
we see that p() , must also be the coefficient of the highest power of z in gf;.
Therefore
@ _ Bal
Pri-1 = Gyi-

But this is true for all 7, and so

1 601 0 —a)

T e+ 10w Buing+ 1

Therefore the metric is Egoroff with potential
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Lemma 3.6 The identity field may be expressed by
3}

Oan,

€

Proof: By the chain rule, _
0 _ ou _Q_
Oan, Oan, Oui’

But as u' = A(a),

0 o
day, - 21: oui’

Recalling that {u'} are canonical coordinates, this is the identity field as required.

Lemma 3.7 The Euler field on the caustic will be the same as the Euler field on

the ambient manifold.

Proof: As {u'} are canonical coordinates, we must have
; O
— t_
E = E,- e

But recalling the definition of % from lemma 2 along with u* = 2t = ... = g%,

one may write:

; 0
E = Zzuaxif,
J J
.8
B ZZJ:JB:E*J"
1 J

But this is equal to the Euler field on Hy.y,,...s,., 8 required.

Combining the results of this chapter, one obtains the following lemma:

Lemma 3.8 On caustics of a genus zero Hurwitz space, the following aspects of

the structure of a Frobenius manifold remain:



Caustics of genus zero Hurwitz spaces

e a set of canonical coordinates {u'},

90

e a diagonal Egoroff metric defined by the familiar residue formula and with

a potential ® = ”afi—v

e an identity field equal to a—fﬂ—o-.

Proof: The proof of this theorem follows immediately from the lemmas in this

chapter, as it is a collation of their results.

Whilst it has been shown that much of the structure of a Frobenius manifold

exists on the caustics of Hyp,,..n,., an arbitrary caustic will not (in general) be a

Frobenius manifold. This is due to curvature; whilst the existence of a diagonal

metric has been shown, this metric (just as in the A, case) will in general be

curved.

Example 3.9 Consider the Hurwitz space Hy,1 0. Recall that this has as super-

potential of the form

Me)=22+a+ b :
z—c

Also recall from chapter 2 that the caustic condition is b— %cs. Substituting this

into X', one obtains

22(z —¢)? — &¢3

)\,(Z) — (z — 0)2 27 ,
_ =99
(z—c)? )

These values of z may be substituted into A to obtain the canonical coordinates

{u}:
ut = é +a+ 3—b
) 2¢’
2 16¢ 3b
uw? = — +4a+—
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Using the residue formula 1.10, one may calculate the metric:
4
5 O

1
0 18

n:

Note that as the coefficients in this metric are constants, this metric is in fact
flat. But as curvature was the only obstruction to a caustic submanifold being
a Frobenius submanifold, so this caustic is a Frobenius submanifold, as predicted
by theorem 2.7. Note, however, that one may not immediately integrate up to a
prepotential; whilst the canonical coordinates are a flat set of coordinates for the

two dimensional submanifold, they are not the distinguished set of flat coordinates

of the WDV'V equations.

Having shown which aspects of the structure of a Frobenius manifold are retained
by a caustic submanifold of a genus zero Hurwitz space, a natural generalisation
would be to consider the same problem for higher genus cases. One would expect
similar results (some of which are guaranteed by the theorems in Chapter 2),
namely that in addition to an associative algebra being defined on the tangent
space, canonical coordinates, a diagonal Egoroff metric and a tangential identity
field would still exist. However, as even the simplest example of a higher genus
Hurwitz space (namely Hj.,) involves an elliptic superpotential, calculations in
such a case would be problematic, and would become worse for more complicated

genus one or even higher genus Hurwitz spaces.

Another interesting point raised by this chapter is that whilst most of the struc-
ture of a Frobenius manifold remains intact on a caustic, curvature prevents
structure constants being integrated up to a prepotential. This raises an obvious
question of how one could find flat caustics. Whilst it is possible to derive condi-
tions for a caustic to be flat, finding specific examples would be computationally
very difficult. Note, however, that some examples of flat caustics have been found,
e.g. the planes studied by Zuber in {29] by utilising various symmetries on the

orbit spaces of Coxeter groups.



Chapter 4

Almost duality for genus zero

Hurwitz discriminants

4.1 A, discriminants

Recall from chapter 1 that the locus in a Frobenius manifold over which the Euler
field is not invertible (and so the intersection form is undefined) is known as the
discriminant. As the almost duality formulae contained in [13] and outlined in
1.7 are defined in terms of E~! and g;;, the ideas of almost duality may not be
applied directly to a discriminant of a generic Frobenius manifold. However, if one
restricts consideration to semisimple Frobenius manifolds, one has an alternative
tool to describe structural data on an almost dual manifold; namely the residue

formula (1.23). This formula does not rely explicitly on E~! or g being well
defined.

Also, recall from chapter 2 that for the familiar A, type Frobenius manifolds, the

condition for a discriminant is that the superpotential A has a repeated root. For

92
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an arbitrary discriminant, A will be of the form

m

Mz) =[]z = 2)",

i=0
with > ki = n+1 and Y z;k; = 0. The second of these two conditions implies

that
k; z,

2!0220(21,...,Zm,k0,..., E

Noting that {2;},i = 1,...,m are coordinates for the dlscrlmlnant submanifold,
one may use tangent vectors ~, in the formula for ¢*(&,9",8"). For notional

convenience, one will denote ¢*(z2, 2, 7o) by ¢}j. Hence

. Olog AdlogAdlog A\ A
Cisk _Zdlogz\ 0( 8zt 921 OzF ydz.

Lemma 4.1 Fori,j, k distinct,

kkkk kkkk 1 1 1
Cl]k__ Zo_zr < + +z0_zk>'

20— 2 2 — Zj

Proof: One begins by explicitly calculating —},‘—’zﬁ,—, taking care to remember the
z; dependence of z:

Olog A ?@6log/\+610g/\
0z; az,- 0z 0z '

a m
= ko azozklogz—z, B—Z i log(z — z;),

1 1
Z2—2 zZ— 23

Substituting this into the residue formula yields:
G = bR
(1 1)(1 1)(1 I)A(z)
- - - dz.
2—2g z—z)\z—2 2z—-2)\z2—20 z—2) N(2)

One is now faced with a problem; residues are taken at points where d—l“i’zﬂ = 0 but

the roots of this are not known explicitly. However, by a deformation of contours
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argument (which relies on the fact that the sum of residues of a meromorphic
differential over all points on the Riemann sphere is zero), it can easily be shown

that

Gk = kikjky (res + res + res + res + res)

z=z; z=z; 2z=zp Z=Z0 2Z=00
1 1 1 1 11\ M)
z—zy z-2z) \z—2 2z—2 z—zg z—2zr) Mz)

As taking residues obeys the distributive law for addition, this can be split up

into five separate residue calculations. Firstly, consider the residue at z = oo.

Noting that as z becomes very large,

1 1 1 _ 1 1 _ 1 /\(Z)Nkikjkk
z2—zy z2—2)\z2—2 2—-2)\z2—20 2Z—2z Nz~ 22

the residue at z = oo is zero.

Next, consider the residue at z = z;. Observing that (z — 2;)* is a factor of ), so

(z — 2z)%~! is a factor of )\, and hence

AMz) Y — 21k
NG) - ( i),

with ); being a rational function which is finite and non-zero at z = z;. Hence

1 1 1 1 1 A
res k;k;ky ( 1 _ ) ( - ) ( - ) ,(z) dz,
2=z z2—20 2-—2% -2 2—2% z2—2zy z—2z) N(2)
1 1 1 1 1 ~
= res kikjkk ( ! - ) ( - ) ( - ) (Z - z,-)/\,-dz,
1=z z—zy z—z)\z—2 z2-z)\z—2 2—2z

- % 1 1 1 1 N
= res k‘ik‘jk‘k (Z % - 1) ( - ) ( - ) /\,-dz,
=24 zZ—2 zZ—2 2 —Zj Z2—2 Z — 2

= 0,

as the function whose residue is being taken at z = 2; is finite there.

Repeating this argument, one can also show that the residues at 2 = z; and

z = z; are equal to zero.
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Hence
1 1 1 1 1 1 A
¢ty = res kikik - - - Zd
ik zrz(a:asol]k<z—z0 z——zi>(z—zo z—zj> (z——zo z—zk))\’ %
Q R
/_/k Y l -

1 1 1 1 1\
= kik;k - +
J kzrffo{ (z —20)3 (22— 2)? (z—zi z— z +z—zk)

1 1 1 1
T ((z— 2E-7) G- we—a) (- z)- zk))

>

k3
B 1 }/\(z) i,
£z —zi)(z — zj)(z — zk)J N(z)
T
A A A A
= kikjkk (zl‘=ezSO del - zr:e§0 R—)\—'dz + zl':ezSO SXI—dz - zl':ezSo T;dZ) .
One firstly considers Q:
1 1 1 A
zrze;so m%dz = coeflicient of p— in Laurant expansion of m—)—ay,
= coefficient of (z — 2)? in Taylor expansion of %,
_1d& 2
- 2dz2 N z=zo.

If one writes ) as

A= (2 — z0)¥ ),

with

m

Ao = H(z - z;)k,

i=1

then one has

N = (z—z)¥ N, + ko(z — 20)Fo 1.
Differentiating  twice therefore yields:

PAL B -
dz2 N lz=2 dz? (Z - Zo)ko/\6 + ko(z - Zo)ko_lx\o 2=z
P
e e,
£ (Z - Zo)AO
d2? (z — 29) Ag + koA

By

q

9
2=29
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_d (p pd
T dz q q?

_ (P_" _ Iﬂ) _ (P"I' +pg" 2210(1’q’)

)
z2=zp

qg ¢ q? Q3 2=z
_ 2"~ 2p'q — pg" + 4p(q)’
q2 2220’
_ qpll _ 2plql
q2 2220’

The last line above is obtained by noting that p|,—,, = 0. Every term which
appears in the last line above may then be considered individually:
QIzzzo - kO/\0|z=zo-
ql|z=zo = (’\:) + (z - zO)’\g + kOA{))IZ=Zo7
= (1+ kO)’\6|z=Zo-

p’|z=m = ((¢ - zO))‘:) + )‘0)|2=zo,

= A()I‘..":?:o’
p”|z=zo = ((= - ZO)’\{)’ + 2’\6)|222m
= 2Xp|z=z0-

Substituting these into the equation above gives:
gp" —2p'¢ 2koAoAg — 2(1 + ko) Mo Ao
q2 2=2zp k(z)/\g z=zo,
20
kng z=zo'

Recalling the definition of Ay from above and differentiating with respect to z
gives
Ny = Z ke (z — z,)% ! H (z = z5)*.
r=1 s#r,0
Using this, along with the definition of Ay, we see that:

S e
k§ Ao le=20 - k3 H:n=1(z — 2 )k =29
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1 o 2k,
= “EXiTa

0 =1

zzo

Therefore

1 v k
resQ dz = — 22 .
korl

z=29 zo—z,'

Next, consider R. Recalling the definition from above

A 1 1 1 1 A
= 24
ZI'eSoR/\,dZ =2 (z — 20)? (z—zi+z—zj+z—zk> N

( 1 ( 1 1 1 )/\)
- + + )
z—2\2—2 z—2z; z—2z)N)l:=

A ( 1 1 1 >
+ + :
z=z9 \ R0 — %5 20 — Zj 20 — Rk

(z — 29) N
Whilst (z “w May appear singular at z = 2g, recall that (z — zg)*° is a factor

in A, and so this singularity is cancelled out. Therefore it is possible to evaluate

this (by defining the value at z = 2y to be the limit as z tends to z):

A - (z = z0)*~" Hz;éO(z — z;)k
(2 = 20) N lo=z0 Zm_ok (2 — z;)* Hk;é (2 — 2 )Rk | z=2z’
— Hi;ﬁo(z - Zz)k
ko HJ#O(z - z]) + (z - zo) Zk#o(z - zk)kk—l l_[l?soyk(z - Zk)k z:zo,
1
" ko
Therefore

A 1 1 1 1
res R— = — + + .
=2 N kg \20—2 20—2% 20— 2%
Next, consider the residue

resS/\dz= res 1 (1 + ! + ! ))‘dz,

z=29 N =02 -2 \2—2 2—2 2—2z) N

But from above, ﬁ is equal to t at z = 2z, whilst Z—_lz— etc are obviously

finite there. Therefore this is a residue of something finite and so must be equal
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to zero. Finally, it follows trivially that

res Tidz =0,

z=20 N
as T is finite and % = 0 at 2 = z5. Adding these four results, one obtains

. kikikp e kr kik ks, 1 1 1
Cijk = — kJZ Z P - kO <z + + ) 3

0 —1 0 — %r 0 — R 2p — Zj 2o — 2k

as required.

Lemma 4.2 For precisely two identical indices, c}; takes the form

k2kj ~ k k2k; 2 1 1 1
= r kik; - .
Ciig k2 ; 20—2r ko \2zo— 2 M 20 — Zj TRk Zi— 20 %%

Proof: Using the same reasoning as above, one may immediately write

1 1 \*/ 1 1\ A2)
* = 2k, — — d
i (’rg i zESO) ik (z —2 Z- Zi) (Z —2 Z- zj) N(z) ®

_ (' 1 1 2 1 \
- fff.-_*'zrffo (z—2)? (z—2)?\z2—2z 2z-2z

1 1 9 ) \
+f — 2 ((z — 2;)? + (z—z)(z — zj)) T - 2)?(z - zj),) :\—,dz.

= kZk; (res U2 dz + res VA ds+ res Uz + res V}—) dz.

=z A 2=z, N z=z9 M\ 2=z N

Calculating these residues individually, one immediately realises from the results

in the previous theorem that:

A
zr__(_azUydz = 0,

A
zrffoVydz = 0

Next, calculate

A 1 1 2 1 A
Uldz = - 9%,
LAt zr=e:§o<(Z—zo)3 (z — z)? (Z_Zi+z—zj)) N
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Also, note that

1 A
U; = res ( 2 + = )—dZ,

=20 (2 —20)2 \2—2i 2z2—2;) N
with z; = z;. This was calculated in lemma 4.1, and so one may immediately

write

Finally, consider

rff, 1% i\, dz

—res( ! <1 - 1)+ 2 )—/\—dz

Cemn\(z—z)2 \2z—-2 2-2) (F-z)z-z)z-z)) N
1 1 1 A

="r§§*<(z“zi)2 (z“zo—z—zj)y)dz

(1 1 1\ A

_<Z—Zi<Z—ZO_Z—Zj)S\7) 2=z

1/ 1 1
_k‘i Z2i — 2p Zi—Zj )

The last line above was obtained by recalling from earlier that

b

A
(z — zg) N

z=2q kq

Combining the above results, one obtains

1 1 1 1 2 1 «—
= k2k; - - — — ”
s (ki (zi—zo z,-—zj) ko (zo-—z,- + zo—zJ) k2 leo —z,)
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But this is equal to

k?k] K2k [ 2 1 1 1
- kzk - )
i = Zzo—zr (zo—zi+zo—zj>+ J(zi~z0 zi—z]->

as required.

Lemma 4.3 For three identical indices,

K~ k 3k} 1 1 k
= — & L + 3k2 +hi Y —
ki St 20— 2 ko 20— zi T e 2

Proof: By applying the same reasoning as in lemma 4.1, it is possible to show

that
1 1 \%A
3
c:ii = (zrez-*-zrezso) kl (Z — 20 - zZ— Zi) ydz,

v
T 3 )
_ 3 _
=N ( i es) ( (z—2)P (z-2)—2)
3 B 1 ) /\dz
(—2)(z—2)? (2—z) /X ’
w
= k res V/\dz+ res W)‘dz+ res V/\dz+ res W)‘dz
2=zp N 2=z N\ 2=z z=2

The four components of the above equation may now be considered individually:

A 1 A 3 A
= ———dz — —d
=2 V/\’ dz = (z— 23 X b (z ~20)%(z— 2z;) N &
Il k31
- k2 20 — 2r koZO—Zi’

by earlier results. Similarly,

res W— A dz = res 3 A —dz — res ! A

=20 M\ z=20 (2 — 29)(2 — )2 N 2=z (2 — 2;)3 e
= 0
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may also be obtained by using earlier results. Likewise,

zrei V;\,dz =0

follows immediately from the proof of lemma 4.1. Finally, one must calculate

A 3 A 1 A
= —dz — ——dz.
Tes V)\ dz = Ies ez =) N 2 - Ies TEPAESY z

But these are analogous to earlier calculations, and so

A 1 1 k;
res W—dz= — 5 - .
2=2 N kz,—zo ki T#Oizi——zr

Therefore combining the various individual resides leaves us with

. 3 1 li": ke 3 1
Ciii ki 2 — 2o k2 ‘%= % k(?,szlzo—-zéi kozo— 2z |

A simple rearrangement of terms can then show that this is equal to the required

result.

Theorem 4.4 The c x calculated above may be integrated up to a prepotential

ZZk ky(2r — 25)% log(z, — 2,)*.

r=0 s#r

Proof: To prove this theorem, one simply needs to differentiate F™* three times
(with all possible permutations of distinct and identical indices) to obtain the
required values of cjj,. Firstly, note that using the laws of logarithms and rear-

ranging the summation, F* may be written in the following way:

Zkok (20 — 2r)%log(20 — 2y) Z Z keky(zp — 2,)% log(z, — 2,) .

t=1 s#t,0

- —

A B

Recalling that 2y = —3- 37" kp2, We have

AP _ 0204 DA 0B
dZi N 32,- aZ() 62,- Bz,-
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The three individual components of this may be considered separately:

0z A ki 1
az(? -670 = _k_0§ Z kOk‘r (2(20 — ZT) lOg(Z() — Zr) + (Z() — Z,-)) y
? r=1
_ A m 20 — Rr
- - ;kokr ((20 — 2) log(20 — &) + “ ) :
0A kok;
5 = 02 (2(z0 — ) log(zo — 1) + (20 — 1)) ,

= —kok; ((Zo - zi) log(zo - zi) + 20 ; Zi) .

62,’

r#i,0

— __Zkk » — %) log(z, = 2i) + (2, — 2)),

r#i,0

_ —Zkk( 2) log(z, )+z';z").

r#i,0

Combining these three results gives

D

v .

~

arr ks Zkokr ((zo — z)log(zo — 2,) + % ; ZT)

_koki ((Zo—z,') lOg(Zo—Zi)'f'ZO;Zi) }E
_Zkk ( - — %) log(2, —z,~)+zr_2—zi).

r#t,0

N >

-~
G

Differentiating again with respect to 2; gives

PF* _ 920D 9D  0udE  OF 3G
dz? Bz Pzy 0z 0z 0z 0z 0%

(k_;) ; kokr (log(zo —z)+ g) + (2k7 + kok;) (log(
+ ) kek; (log r— ) + 2)

r#4,0

102

0B _ azz ( Z kyki(2, — 2z;)?log(2, — z) + terms independent of zi> )

2 — )+§
0 2i 2
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Differentiating a further time with respect to z; then gives
PF

— = .
3 1117
0z;

as required. Similarly, by differentiating ‘%g— with respect to z;, one obtains

DPF*

*

—=5 = Cii;-
9.2 U]
0202

Recall %% from above and differentiate with respect to z;. One obtains:

d*F* k; k] 3 3
dzidz = Zko (log ) 5) + kikj (log(zo — zj) + 5)

+kik; (log(zo —z)+ 2) — kik; (log(zi - 2;) + g) .

Differentiating this with respect to z; then yields the final required result, i.e.

63 F* .
A A oo = Gijk
02,02;0%; J

It should be noted that by setting all of the k; = 1, one is dealing with the original
A, Frobenius manifold. In this special case, the result of theorem 4 agrees with
the prepotential derived by Dubrovin in [13]. Also, this function agrees with
the results derived geometrically in [16]. It should be noted that as discriminant
submanifolds of Frobenius manifolds are not themselves Frobenius manifolds [25],

there is no prepotential to which F™* is itself dual.

4.2 Genus zero Hurwitz space discriminant

Given that A, type Frobenius manifolds correspond to those on Hy,,, and obvious

generalisation of the ideas in the previous section is to a wider class of Hurwitz
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spaces. Here, one considers an arbitrary genus zero Hurwitz space. Recall that
the discriminant of such a space corresponded to the superpotential expressed in
the form

Az) = /(z)

9(z)’
where f and g are polynomials in z written in their simplest form, having a

repeated root (i.e. f(z) having a repeated root). The exact form of f and g is

now considered. Begin by taking a superpotential on Hy.p,....n,. Of the form

,\(z) = pnotl 4 a2 by o4 Qpg + ZZ Crs

r= 13—0

S-H

One may express this as a polynomial by putting every term over a common

denominator os [, (z — 8;)™+":

n:nzl(z _ IBr)nr+1 (Zno+1 +a2™ 4+ .+ Qn, + Zr 1 Es Lo AT jsrra‘+
[Tz - Br)n'+1

Noting that the numerator evaluated at z = f; is equal to ¢;,, # 0, so (z — ;)

). (4.1)

cannot be a factor in the numerator. Therefore this quotient is in its simplest

form. The numerator is a polynomial whose degree, denoted by (n + 1), is:

m
n+tl=ng+1+4) (ni+1),
=1

i.e.

n = dim —m.

Hence the numerator can be expressed as a product

H(z - ;). (4.2)
=0

Consideration now the coefficient of z" in this polynomial. From expanding the
numerator in (4.1), one obtains that it must be equal to — 3.~ (n; + 1)5;. Sim-
ilarly, from expanding (4.2), this coefficient must be equal to — ). ; a;. Hence

one derives the condition

n

Z Zn,+lﬂ,,

1=0
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or equivalently
n m
Qg = — Zai + Z(n] + I)B,
i=1 =1

The Hurwitz space may be parameterised by the (n + m) coordinates {«;}, i #
0 and {f3;}. An arbitrary discriminant corresponds to coinciding roots in the
numerator of A\, and so will be of the form
] .
A — Hi:o(z - zi)kl
EREEATE

with ). k; = n + 1. Relabelling 5; as 2,4, and (n; + 1) as —k;4;, one then has

+m

A= H(Z - Z,‘)ki.

One also has

N
zO:’ZO(ZI)"'aZN)k(),---akN)=" E
i=0

kiz;
ko

This is analogous to the superpotential for the A, discriminants, except that k;

may now take negative values (in fact all k; will be negative for ¢ > n).

Lemma 4.5 For ) as defined above, one has

A -
v == zi) A,

where \; is a rational function which is finite and non-zero at z = z;.

Proof: Differentiating A = H;.Vzo(z — z;)% with respect to z, one obtains

N
N(2) = D ki(z—2z)%7 [[(z - )",
J=0 k#j
= (z—z)8! (’%’H(Z —G)l +(z-2)) (e—a)* T [[ - zk)k") :
j#i k#i l#i,k

Dividing A by this leaves

A (z — ) [T (2 — 2)¥
X Vi [lja(z = 23)% + (2 = 2) Dgpaz — 200 [ (2 — )
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But (z — 2;) is not a factor in the numerator or denominator of the fraction part

of the above equation, so the lemma is proved, with )i taking the form of this

fraction.

Theorem 4.6 The results of section 4.1 may be generalised to the Hurwitz space
Hop,,...nn- That is, for a superpotential

N
A= H(z - Zi)ki, k; € Z,

i=0
an almost dual prepotential exists and is of the form:

F*= 12N:Zk,ks(z, — z,)%log(z, — 2,)*. (4.3)

83 s#r

Proof: The proofs of lemmas 4.1-4.3 and theorem 4.4 do not rely explicitly on
k; being positive integers. There is a possibility that A and )’ having poles other
than at z = oo affects the calculations. However, as their appearance the residue
formula is in the from %, which according to lemma 5 behaves the same near the
z; when one allows for negative k; as it does for positive k;, this does not affect the
calculations. Therefore cjj; take on the same form as they do in lemmas 4.1-4.3,

and so integrating up three times yields the desired result for F™*.

It should be noted that the result derived here agrees with that which appeared
in [16]. However, the result here allows for negative values off the parameters k;
and offers a geometric interpretation: the negative k; determine which Hurwitz
space one is dealing with, whilst the positive k; determine which discriminant the

solution comes from.
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4.3 Extended affine Weyl groups

Let

dim

= g 'mé H “/’J (4.4)

From the theory contained within [15], this is the superpotential for a Frobenius
manifold corresponding to the extended affine Weyl group W™(A4;). One will
denote such manifolds by M(k,m). If one replaces € with z, this appears very
similar to the superpotential for Ho,x_1 m-1, the only difference being the absence
of the condition that the roots must sum to zero. In fact the link between such

Frobenius manifolds may be formalised:

Lemma 4.7 Frobenius manifolds on Hog—1m-1 are linked to those on M(k, m)

by a Legendre transformation.

Proof: A full proof will not be given. However, noting that the two superpo-
tentials correspond to the same Hurwitz data with a different choice of primary
differential, it immediately follows that they are linked by a Legendre transfor-

mation s [10].

Lemma 4.8 The discriminants of M(k,m) correspond to a factor (e'® — ei%*)

in X\ being repeated, i.e. an arbitrary discriminant is of the form

—1m¢ H 1¢J

with at least one of the k; being greater than or equal to 2.

Proof: Recall from chapter 2 that the discriminant condition is equivalent to A

and X having a common root. Differentiating A with respect to ¢, one obtains

dA —im -
- - _ ] 1¢ im¢ 1¢ kp—1 z¢ 1¢
= me I I — e'%i k; + ie E k P P I I '

a#p
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o~ imé H(ew _ ei¢j)kj_l (—imH(ei"’ _ eww) + je'? Z ky H(ew _ ei¢q)> .
7 w

P qFp

Hence for any j such that kx > 2, ¢; is a common root of both A and X'

Noting that {¢;} may be taken as coordinates for the discriminant submanifold,
it is possible to calculate structure constants for the almost dual manifold using
the formula 1.23. It is easy to show that
Ologh ik,et®r
opr —  eid — eidr’

and so the formula 1.23 becomes!

==Y _ (P kekohe™eheh A
dlog A=0 (¢ — ei¢r) (e — eibs)(ei® — eide) N

From this formula, direct calculation is then possible.

Lemma 4.9 For distinct indices v, s and t,

* _ ikrkskt
Crot = — m

Proof: One begins by using a substitution e’ = v, noting that

N(g) = iwX(v),
dp = —idv.

For notational convenience, one will also use e*¥* = v, etc. Hence

. iv,.’lls'vtkrkskt A(U) d
G =D 43108 (U — 17) (0 — U5) (v — V) V2 X (V) v

However, one is now faced with a problem; the zeros of 5’—‘355 are not known

explicitly. However, one can say with certainty that they do not occur at roots

of A (i.e. points where ¢ = ¢; or equivalently v = v;). Therefore the same

1As in previous sections, one has written c,, instead of c*(O4r,84+,04) for notational

convenience.
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deformation of contours argument that was used in section 4.1 may be applied

to obtain

— 10, VsV kr kg ks _/l ’
v—1v)(v—v)(v —v)vE N

Crgt = | res +res+ res + res + res
v=00 v=0 (

V=V, U=, V=4
These residues may now be calculated individually. Noting that as v becomes
very large,

-~

(v—0v)(v—vs)(v — V) N viyk-m

But this tends to zero as z tends to infinity, so the residue at infinity is zero.

— 10, VsV kg ks A =i vk ks kv

Next, consider the residue at v = 0:

res — —ivrvsvtkrkskt A — lim ‘—Z‘Ur’l)svgkrkskt _/l
v=0  (v—10)(v =) (v —Vv)VEN 50 (v — v (v — V) (v — V)V N’
— 10,050k ko ks LA

= 1 =,
o0 (v =v)(v—ve)(v—vy) o0 ON

Evaluating the first limit in the final line above is possible simply by replacing v
with zero. For the second part, noting that A = v™™ (v — v;)%,
A

lim —
v—=0

: v [1;(v - v;)"
= lm(l)
0 (0 Ty k(v — v Ty — )b — ) [T, (0 — )
. Hj (v— vj)kj
= lim

" (05, ky(v — )~ Ty (0 = 00)) = m T, (0 = v)te
1

m

il

¥

Therefore the residue at v = 0 is

(cotc) () -5

Thirdly, consider the residue at v = v,. Observe that A is a rational function of

v, with (v — v,) being a factor. Therefore, as in section 4.1, & can be expressed

in the form

% = (’U - Ur))\r,
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where ), is a rational function which is finite and non zero at v = v,. Therefore

res — 10, Us U kr gk A ~ res — v, v Uk kgky
v=ur (U — 0, ) (v — vg) (v — V) V2N v=vr (v — ) (v — vy)v2

But this must be zero, as it is the residue of something which is finite at v = v,.
Likewise, the residues at v = v, and v = v; are zero. Combining these results

gives

as required.

Lemma 4.10 For two identical indices,

. ik2ky  ikokge™®

e = T T T gibr — eith

Proof: Using the same reasoning as in the previous lemma, one immediately

ik%k —iv2v,k2k A
. o=—-—"= res + res r iy
e m (v=vr * v=v..) (v — vp) (v — vy)v2 N

where again v = ¢’ etc. Also, it immediately follows that as above, the residue

obtains

at v = v, is zero, so only the residue at v = v, needs to be calculated. But

res —iwivskiks A lim —wivklk, A
v=r (0 — 0, )2(0 — V) V2N oo (v —vp) (v — V)V N
i k2
lim ZrVakrky lim A

v, (U — V)02 v (U — v )N

The first limit above is calculated simply by substituting in v = v,. Calculating

the second one is more involved:

lim A
vovr (U — v )N

-mIY (y — v)k
— hm 1 v H](v UJ)

v=vr 0 = U, 0™ Y k(v = vp) % [ (v = vg)ke — mu=mHD T (v — vy )be”
= lim 1 Hj(v - Uj)
vor v — v, 3 kp [ (v — vg) — mu [, (v — )’
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= lim Hj;ér(v - vj)
v=vr Ky [ (0 = ) + 20 b Tl (v — vg) = mo= ', (v - V)
1
Tk
Therefore
—wivkZk, X —iviuklks 1
o (v —v,)2(v —v)v2 N (v — )02 Ky
_ —wgkks
h (vr —vs)

Combining this with the residue at v = 0, and replacing v, with €**" etc, one

obtains

. 2 . y
o _ —iklks ik, kjei®
8 m eitr — ei¢, ?

as required.

Lemma 4.11 For three identical indices,

ket ik?
q Wy 32
Crpp = tkr gé e L+ 2ik; —imk,.
qFT

Proof: Using the same reasoning as above, it is immediately possible to show

that

. —ik} i —iv3k? /\d
Grr T T T (v —v,)30Z N
—ik3 1A
= — i2kd res ——— ——
m ot (v —v)3 2N

But the residue above is equal to the (v — v,)? term in the Taylor expansion of

TEN that is:
1 A, 1d& X
bid (v —v,)3 02N YT 210 2N fu=s,
In order to calculate this, observe that A = (v — v,)¥r )., with the function A,

being finite and non zero at v = v,. Differentiating this with respect to v gives

N = (v = vk A+ k(v — v) 71,
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SO
p
et N
A _ ('U - Ur)/\r
2N v (v — v AL+ kN,

~ s
s

q

Using the same techniques as were used in the proof of lemma 4.1, this reduces

to
d2 A _ qpn _ 2plql

dZ2 'U2/\’ V=Up q2 'u:v,.

Individual components may then be considered:

p' Iv:vr = /\r |v=vr 3
p” |v=vr = 2)‘; I'U='Ur )
Q|v=v,- = 'U2kr)\r |v=vr y

@ o=, = VXL + kAL + 20k, A,

Substituting these in gives:

2 A 208 4vk,\?

A2 2N o=,  0UKZAZ lu=v.  vRR2AZlo=v,’
2 X 4
o —’U;‘.’k?)\_r vV=vy - ’U?kr

But as we know A, = v™™[[_..(v — v,)*, differentiation yields

A= v_"‘z kp(v — vp)*e H (v — vg)* — my~™+! H(v T

p#r qE£p,r w#r

Using these explicit expressions, one may then evaluate
/\_’,
A

kq m

U g

U —vUg Uy
Combining all of the results above (being careful to remember that the residue at

v = v, was preceded by a factor of —iv3k3 etc), c*.. has been calculated explicitly:
rr rrr

ik3 krk
Crpp = ?’ + i'UrZ " — ik.m + 2ik2.
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Finally, replacing the substituted {v;} with {e*¥/} provides the desired result.

As in the A, and genus zero Hurwitz cases, the coordinates which have been used
are a set of flat coordinates for the almost dual manifold, and so it is possible

to integrate the c*,, three times to obtain a prepotential. This prepotential is

T8t

expressed in terms of the polylogarithm function Li,, as introduced in example

1.54

Theorem 4.12 The almost dual prepotential is:

o= %ZZk,,k,,Liae“%-%) (4.5)
p=1 q¢#p
+ Z Al + Z Y Budiéu + Z D) Conbebodu, (4.6)
b=1 us#b c=1 v>c w>v
where
1., tkgm ik3 i
A = 3k~ "G 22'““'“"’
q#a
_ tkpky, ikZk,
B = = " m
tkekyky
Ccvw et ’_"'m—-

Proof: To prove this theorem, one simply needs to differentiate F* three times.

Begin by considering the L3 part of F*. Differentiating this once gives

5 sz k,Lize'®r—%a) = Zk ky(iLipei®r=9a) — §Ljpeida=¢r).

6¢' q#r

Differentiating a second time then gives

3¢2 2 Zz kpkqLize' i(dp—dq) — Z k.k (log(l 1(¢r—¢q)) + log(1 — ei(¢‘,_¢,)).

P q#p q;ér

But by noting that

idg _ oidr igr _ otd
E_q._e_ and 1 _ ei(¢0_¢") P E__e__q_

— eMor—8q) —
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one may use the laws of logarithms to show that

% 1 e
Tﬁﬁzzkpkquge (¢p-4)

=3 Z k.k,(log(e*® — €%7) + log(e'®" — e%) — loge'® — loge*®").
g#r

Differentiating this a further time with respect to ¢, then gives
21 ; 1 —ie'¢r ie®r
_- - el - —
863 2 DD hpkgLige'® 80 = 2 P (eid)q mprrais sl

ieir i
= Y kk, (em_em 5).

gFr

The only other non zero third derivative when differentiating three times with

respect to ¢, is that of A¢3:

»P
g%

6A,

ik -
2ik? — ik,m +5 Zkk
q#f

Adding the two results above gives c},, as required. Next consider c},,. The only
terms in F* who which can be non zero after differentiating with respect to ¢,

twice and ¢, once are the Lis terms and B@2¢,. It is simple to show that

i
06,097

For the third derivative of the Liz terms, one differentiates %,(Li;; type terms)

B¢, = 2B.

from above once with respect to ¢, to obtain

OPF* 1 Kk 't €'t :
d¢,002 2 (e"‘i’q TR T

Combining these two results provides the correct form for ¢},,. Finally, one needs

to show that

i
009,00, "
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But by observing that the only term containing the three variables ¢,, ¢, and ¢,

is C¢,py¢;, all other terms become zero under differentiation. Therefore
83

W(C¢r¢s¢t) = C,

But this is equal to c},, as required.

Corollary 4.13 Outside of the discriminants, i.e. when the superpotential is of

the form (4.4), the almost dual prepotential will be:

Fr— % ELisei(as.-—qu) + A Z &3 + Z $2¢; — C Z $i®; Dk (4.7)

i#j i i£] i#£j#k
with
i
A = —m—m((m—2)(m—1)-—mk),
B = —4L(2—m),
c= -+
m

Proof: This follows immediately from theorem 4.12; it is obtained simply by

setting all of the k; equal to one. in (4.6

This prepotential is very similar to the solutions to the generalised WDVYV equa-
tions studied in [20], which also consist of a trilogarithm of an exponential term
and cubic components. In fact if one considers the 2 dimensional case (with k

and m both equal to 1), the solutions are equivalent, as shown in the example

below.

Example 4.14 Set k=1, m=1. By corollary 4.13, the almost dual prepotential

18

F* = (L’I:;;ei(d’l ~¢2) + Liaei(¢2_¢l)) + {'2‘(¢? + ¢g) - %(¢%¢2 + ¢1¢§)

N =
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Under a linear coordinate change

(ZSI — —iwl—i-wg,

¢2 — iw1+w2.

Under this transformation, the prepotential becomes

1
F* = % (Lize " + Lize®) — 2i (%wg + §M2W2) :

But this is precisely the 2-dimensional ansatz obtained in [20] with the root system

+1, ko =4 and c = 4.

Whilst this simple example coincides with [20], the presence of two parameters (k
and m) ensure that this generates a more generalised set of results. Furthermore,
as these solutions are closely linked to sums over root systems, it is likely that a

direct link may be drawn with the V-systems derived by Veselov in [26].

4.4 Twisted Legendre transformations: a link

between almost dual solutions

The aim of this section is to construct a link between some of the almost dual
solutions constructed in sections 4.2 and 4.3. One begins by recalling from sec-
tion 1.9 that certain solutions of the WDVV equations are linked via Legendre
transformations. To each of two such solutions, F and F, one may construct

almost dual solutions F* and F*. Schematically:
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Lemma 4.15 The ezists a transformation §, mapping F* to F*.

Proof: The almost duality map from F' to F* is invertible [13]. Composing this
inverse with S, and the almost duality transformation from F' to F™* will provide

the desired transformation.

However, whilst this abstract proof ensures the existence of such a function, it is
not clear whether such a transformation may be expressed explicitly in a simple
form. However, it turns out that it can, as shown in the theorem below (also
see [22]). Before stating this theorem, however, one notes the form which the

multiplication and metric on the tangent space of F* must take:

F:{<a,b>,0,F} i F:{<a,b>,¢:=<Bnoa,c,aob>,o,E}
! {
(a,b) == <Eloa b> . (a,b)x ;= <E'oa,b>,
F*. F*:
axb = FEloaob axb = E-'oaob

Theorem 4.16 The vector field
O = E -0

generates a twisted Legendre transformation 3, from F™ to F* s0 that the metric
(, )k is defined by
(a,b)x = (8 * Oe, a % b).

Proof: Using the definition of the intersection form and *, one has:
(a,b)y = <E7'-a,b>y,
= <8:-0c,Fla-b>,
= <0 0c,axb>,
= (E -0k -0k axb),
= ((E-0x)*(E-0k),axb).



Almost duality for genus zero Hurwitz discriminants 118

But as 8, = E - 9y, this is the required result.

Corollary 4.17 Almost dual prepotentials of the form (4.6) and (4.8) are linked

by a twisted Legendre transformation.

Proof: According to lemma 4.7, the original Frobenius manifolds are linked by
a Legendre transformation. Hence applying theorem 4.16 immediately yields the

desired result.

Example 4.18 The prepotential
1 o1y2,2 12
F= 'é(t ) t“+e 3
with Euler field E = 10, + 20, generates an almost dual prepotential

1
F* = %2122 (zf + Z%)) - 1_12 (Z? + 2:23) + 5 (Liaen—zz + Li3ez2_zl) ,

as shown in example 1.54. Alternatively, one may apply the Legendre transfor-

mation Sy to F (example 1.60) to obtain

But it was shown in ezample 1.57 that the almost dual prepotential to this (1.24)
is

F = 5 (B 10g(0)? + & log(hs)? — (i — )7 log(hs — &)%)
By theorem 4.16, F* and F™* above are linked by a twisted Legendre transformation

generated by the vector
8y = ('8 + 2835) - 8,.
Note that 8, # 2.

To summarise this chapter, an almost dual prepotential has been explicitly con-

structed for an arbitrary genus zero Hurwitz space (and any of its discriminants).
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A natural subject for further study would be to generalise this idea to a higher
genus Hurwitz space. The simplest such example, namely Hy,, will be considered

in the next chapter.



Chapter 5

Almost duality for a genus one

Hurwitz space

In this chapter, almost dual solutions to the WDVV equations will be calculated
for the Hurwitz space Hy,,. The approach will mirror that used in chapter 4;
one will use a superpotential A and the formula (1.23) to calculate dual structure

constants cyg, corresponding to third derivatives of the prepotential F™.

One begins by considering the form that such a superpotential must take. The
Hurwitz space H,,, consists of holomorphic maps from the (complex) torus to
the Riemann sphere with (n + 2) simple ramification points and n sheets glued
at 0o. The functions in such a space will be elliptic. But an elliptic function is

determined by:

e the locations of its zeros and poles,
e a modular parameter 7 and

e a general scaling factor u, which may be expressed in the period form e%™.

120
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Now note that without a loss of generality, one may choose the branch point of
the Hurwitz space to be zero, and so the superpotential will be of the form
, 0, (v — z|r
A(v) :emu]‘[ bulv — zlr) Zz, =0 (5.1)

pair 61 (v|7)

Note that by the Riemann-Hurwitz formula, this space is of dimension n + 2.

This case may alternatively be thought of as the orbit space of a Jacobi group.
Such a space, denoted €2/J(g), where g is a complex finite dimensional Lie algebra
with Weyl group W, carries the structure of a Frobenius manifold [4, 5].

one uses a Lie algebra with Weyl group A,, then (in an abused notation) the
Jacobi orbit space 2/J(A,) is a Frobenius manifold with a superpotential of the
form (5.1) [4, 5]. As such, the contents of this chapter may be thought of as a
generalisation of the Coxeter group construction to Jacobi orbit spaces as well as

a generalisation from a genus zero to a genus one Hurwitz space.

A digression is now made to consider the function 6, in greater detail. A compre-
hensive introduction to this (along with the other Jacobi theta functions) may

be found in [27]. The notations used in [27] will be used here.

Definition 5.1 One defines 0, by the infinite sum

(v,q) = 22 1)"¢™*+3) sin(2n + 1)v. (5.2)

n=0
The variable q above is known as the nome. Note that 8, may instead by expressed
in terms of the half-period ratio 7. In such cases, it will be denoted 6, (v|T). The
nome and half-period ratio are connected by the equation
g=¢e
The function 0, is doubly quasi-periodic, obeying the equations:
61(v+2nir) = 01(v|7),

O(v+2n7|r) = e ™ e 29, (v|T).
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It follows from (5.2) that 6;(v|7) is an odd function and so may be expressed as

a power series of the form

01(vlr) = 8 (0l + S8 (O)0* + O0). (5.3)

As 6, is an odd function, it also follows that 6,(0|7) = 0. As such, the z; are
the roots of A. Hence, analogous to the genus zero case, setting 2; = z; for some
t # j creates a repeated root in the superpotential and so is the condition for a

discriminant. Therefore for an arbitrary discriminant, the superpotential will be

of the form
oy O (v — 2| T)
Av) =™ | | ———, 5.4
o) = =5 ame (5.4)

subject to the constraints

Returning to the properties of 6, note that it is possible to express 8, as an

infinite product rather than a series:

6i(vlr) = 2Ggisinv [J(1 - g [[(1 - ¢*e™?), (5.5)
n=1 n=1
where
G=[[0-¢" (5.6)
n=1

In addition to being able to differentiate 6, with respect to v, one may also
differentiate with respect to the half period 7. This gives [27] the heat equation:

601 (’U|7’) i "

N — g, 5.7
or 4" (5.7)
Similarly, one may consider the function A and its derivative with respect to
7. In order to do this, one utilises the elliptic connection which sends modular

functions of order k¥ to modular functions of order k + 2 (see, for example, [4]').

!Note that the factor preceding the F’ is 7= in [4] rather than the % used here due to a

different normalisation of the 6; function being used there.
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Definition 5.2 The elliptic connection is defined by its action on modular func-

tion F' of weight k by:

(DWFYoI) = V. F(olr) - T R i),

— 772kar (17_2kF(’U|7‘)) _ 0'1(11[7') m

0, (v|7) 2
Here n denotes Dedekind’s 7 function. A definition of this function can be found

F'(v|r),.

in [3]. However, as it will only appear to the power zero below, its precise defini-

tion is not necessary here.

Noting that A is a modular function of weight 0, the elliptic connection takes a

particularly convenient form? when applied to A

87' 2im N

Using the facts above, one may attempt to calculate the intersection form in terms
of coordinates {u,7,2; (¢ =1,...,m)}. This will be done using the discriminant
superpotential 5.4. However, as the formula 1.11 contains terms of the form

@ log ), it is necessary to calculate these derivatives, as shown the lemma below.

Lemma 5.3 The derivatives of log A with respect to the coordinates u, T and z;

are
6155,\ = 2m (5.8)
o - — i (JO=H0) 0D,
trd o (lezsiy_stomd) 610

Proof: Noting that

log A = 2miu + Z kilog6,(v — zl|T) — (n + 1) log 6, (v|7),
=0

2For convenience the function %%(—(H% has been denoted by ©.
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the equation (5.8) follows immediately. Recalling (5.7), one may also immediately

write (5.9). Finally, in order to obtain (5.10), note that zp = — Y| '3,‘51 and so

(in a slightly abused notation):
d 0 0z 0

dzt 9z + 021 020

The desired result follows from differentiating log A with respect to z; in this way.

For notational convenience, a new function

61 (v — z7)
Q=+ =7
91(U|7)
is defined so that
Jdlog A
a7 = k;(©p — 6;).

It is also useful at this point to consider the function ©; in slightly more detail.
Using the power series of the odd function 6, around v = z;, one may also express

6] as a power series in even powers of v — z;, and so

8,(0|7) + %67 (0|7)(v — 2:)2 + O(v — z)*
01(07) (v — i) + 367 (0|7) (v — %) + O(v — )3’
1 1070

— - — — )3
= v—z,~+30’1(0|'r)(v z) + O(v — z)°.

©;

One may now move onto calculating the components of g in the coordinates

{u, 7,2}, as shown in the lemmas below.

Lemma 5.4 For components relating to z;, i = 1,...,m, the components of g

are.

kik;
g,;j koJ + 61]]6

Proof: Consider firstly i # j.

o OlogAdlog A
g = Zanffio ( 074 0z /\’) @,
A
= - Zdlgef 90 —_ 9,) (E-)o - 6_7) ;dv
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By similar reasoning to that used in chapter 4, one may apply a deformation of
contours argument (noting that ©; is singular at v = z; and that A is singular at

v = 0) to obtain

gij = (res + res + res + res) kik; (B0 — 6;) (B0 — ©;) —/\—dv.

v=v; v=v; v=v9 v=0 N

But whilst A is singular at v = 0, the quotient % ~ 0 there, and so the residue
at v = 0 is zero. Expanding the remaining terms and using the fact that the
residues at points with no singular terms will automatically be zero, the equation

above becomes

gi; = 1I€8 k,-k,-@,-(@j - @0)%@0 + res kikj@j(e,' - 60)%61’0
v=z; v=2z;
A A
+ vlfzso k,k,(-)g;dv - UIEEO kikjeo(ei + @])—/i—,dv

These terms may be considered individually. Beginning with the residue at z;
note that ©; and ©, are finite at v = z;, so the only singularity arises from the
6, (v — z;|7) in the denominator of ©;. However, as (v — z;|7) is a factor in ), this
singularity is cancelled out. Therefore the residue at 2; is of something which
is finite there and so must be equal to zero. Likewise, the second and fourth
residues in the expression above are equal to zero. In considering the third term,

one utilises the power series expansion of ©2. Using (5.3), it is easy to show that

0 = (v_——_l—zo)—2 +0(1).

Therefore
, A : . .
res kik,-eo-:\;dv = coefficient of (v — 2) in expansion of k;k;
v=20

()

In order to calculate this, write

X?a

v=2g

/\ = OIICO(U—Z()lT)/\o,
AI

kob¥ (v — 20|7)0} (v — 20|T) M0 + 8% (v — 2|7 Np.
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By writing the quotient and dividing the top and bottom by 8%~!(v — z|7), one

has

A 61 (v — zo|T) Ao

N kb (v — 20|T) Ao + 01 (v — 20|T) NG
But differentiating this gives®

(k-k-’i)' (9/\0+91/\’ (ko(0’1’/\0+0’1/\g)+0’1/\3+01)\{,’)01/\0)

p

kobi Ao + 0124 (kobi Ao + 6175)?
Evaluating this at v = 2, noting that 6, (0|7) = 67(0|r) = 0, one obtains

p\’ 1
k;k;— = —.
( ) Jq) vezo kO
Therefore
kik;
9i; = ko

Similar reasoning to that used above implies that in the case of ¢ = j,

A
gii = <res + res) k2 (09 — ©;)° = dbv,
v=z0 =2 N
= k20?— A d k22 A —d
= vrfzso Y v+ res v v,
k2
= k—o + k;.

Lemma is proved.

Lemma 5.5 For terms in g relating to the coordinate u, one has

9w = 0, (5.11)
Jui = 0’ (512)
Qur = —-7!'2. (513)

Proof: The equation (5.11) may be obtained simply:

g A

= — res (2mi) —dv
Guu Z:dlog,\ =0 ’

= res(27rz) :\)—‘;dv,

= 0.

3NB 6; (v — 20|7) has been denoted 6, for typographical convenience here.
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Similarly, by using the arguments contained within the proof of lemma 5.4, one

may immediately write

A
ui = — Edlorgefzo ki(© — @i)27m;dv,
A
= (res + res + res) ki(©9 — ©;)2midv,
v=z; v=z9 v=0 A
= 0.
Finally consider
6)\ A
Qur = —Zdbrgef 027rz B /\,dv
DX — =o)X
—_ ; 2
= —2m Z dlcfge)§=0 N dv,

I
o
2.

N

res (ﬂ - Z—”@)

dloga=0 \ )\
: DA
- _2mzdkfge§ onv’
the last line following from the fact that © is analytic everywhere except v = 0

(and so is analytic where dlogA = 0). The fact that DA is elliptic allows the

usual deformation of contours argument to be applied to give:

DA
Qur = 2wt Ies Tdv

= 2m res (8)",\ ) dv.

This may then be split into two individual parts:

(229 res dlog A A
v=0 A v=0 O N\’
= 0,

as all parts are analytic at v = 0. Using the expansion of ©, it is also possible to

calculate the second part of the residue:

res %de = Zres (— + O(v)) ,
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Remembering the preceding factor of 27, one therefore has

2
Gur = —T7,

as required.

Lemma 5.6 The remaining components of g are zero; that is to say

gri = 0, (514)
gr = 0. (5.15)

Proof: Using the usual residue formula,

i = 6/(v — zr) 67 (v|7) A
I = —Zdlgff =0 (Z 6, (v — z]|7) ~(n +1)0 (v|7) /\,dv,

17 A A
= 7 (szeA)\ dv—vr_efoG)OA)\ dv)

Noting that A is analytic near v = 2z and v = 2;, one may therefore use the
argument that the singularities of ©y and ©; cancel with the zeros of A. This

both of the residues are zero, and so g,; must also be zero.

Moving on to g,,, applying the formula (1.11) yields:

rr = ZdlogA =0 /\’ ’

_ (DX - Z6X)?
- _ZdlogA—O /\' '

(DN? | DXO 7n?0%N
= -—E res - —
dlog A=0

i -
AN A 4 A
P Q R

But as A’ does not appear in the denominators of Q and R, they are analytic

at points where dlogA = 0, and so the residues of ) and R are zero. By then
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applying the usual deformation of contours argument, the remaining residues may

be moved to give

9rr = (Z res + res) (D)\)2

A=0  v=0/ AN’ .
_ A+ ZON)?
= () T
U v w
d 2 r
- T o2t
= Zres (0, log \)? +Zresz7r@ (0r log)\) ng% 49 1
AI
+res(6 log A)? x+res im©(0, log /\) — res I@"’ 3

s Y z
These residues may then be considered individually. Using similar techniques to

those employed earlier in this chapter, it is possible to show that

U = 0
Vo= 0
S 0’1(z,-|r))2
W= '4%(01(%”) !
X = 0
w2 6! (z|7) w2 0”’(0|7')
Y = Zzol @ n+ 1) oS o)’
_ " AP s 2 6! (z|1)
4= Tg((m(mﬂ) 6, (zil7)
201/;07.
Ho+ )T 0,((0|'))

Summing these then gives the desired result of g,, = 0.

Lemma 5.7 In the coordinates {u,,2; (¢ =1,...,m)}, the intersection form is
g= Z Z b ’dz,dz, + Z ( ) - 2n2dudr.
i=1 i#j

Proof: This theorem follows immediately by combining the results of the lemmas

above.
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Corollary 5.8 The coordinates {u, T, z;} are flat coordinates of the intersection

form.

Proof: From the lemma above, the components of the intersection form are all
constant in these coordinates. Therefore it follows automatically that they are

flat coordinates of g.

As {u, 7,2} are flat coordinates for the intersection form, it follows that the

tensor c¢*(8,, dp,0,) coincides with the dual structure constants c%gz. , where d,,

afy>
03 and 9, are basis vectors in this coordinate system. Therefore it is possible to
use such vectors in the formula (1.23) to calculate the cjg.. These calculations
will again be performed in such a way that they are applicable on an arbitrary

discriminant.

Lemma 5.9 For distinct z;, z; and z,

kik;k
Ciik = sz : ((n+ 1)6(20) — Y _ k:O(20 - Zr))
0

r#0

_ kikike

%o (9(20 - Z,') + @(Zo —_ Zj) + 9(20 — zk)) ,

where

Proof: From the formula 1.23, we have
A
Uk_—z s kk k(B0 — ©;)(69 — ©;)(6¢ ek)/\,d
Applying a deformation of contours argument and expanding the brackets, this

becomes

ik = kikjky (res + res + res + res + res)

v=vo  v=v;  v=v; v=y, v=0

A

(85 — 3(8: + ©; + 61) + ©o(6:8; + 6,64 + 6:6)) — ©,6,64) ;v
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Note that as £ is finite (in fact zero) at v = 0 and all other terms are finite there,
the residues at v = 0 are all themselves zero. Note also that where v = v; and
©; appears only to the power one, the singularity caused by 6;(v — z;|7) in the

denominator of ©; is cancelled by a corresponding zero in $;, and so such residues

w
also vanish. This leaves

Ciix = kikjk (res @Oidv — res ©3(6; +©; + @k))\,dv> :

v—rp
Consider the first residue by using the expansion of Oy:

1 1
(v—20) wv—2

A

E

res ©3 Adv = res (

v=zg - N v=29

As 2 3% is zero at v = 2, the simple pole is cancelled out and so

3 A 1 A
s Oyl = IS A
= coefficient of (v — 29)?in the expansion of v’
_ (&
o 2 d’02 )\' v=zo'
By writing
AP
N g

in the same way as in the calculation of g;;, and using similar reasoning to that
used in chapter 4, one may immediately show that differentiating this twice and

evaluating at v = 2y gives:

ﬁi)
dv? X

Considering the components of this individually (noting that as 6, is an odd
function, 6,(0|r) = 6/(0|r) = 0), we obtain:

B pnq _ 2p’q’

v=2¢ q2 v=20

Pli=ee = 01(v = 20|7) dojv=z:
p”lv:zo = 20’1 (’U - 20'7')/\6‘,,—_—20,
Q|U=Zo = kooll ('U - ZOIT)AOlv=ZOa

Qlo=zg = (1+ ko)6, (v — 20|T) Aglv=zo-
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Therefore

pnq _ 2])'(1’ B 2/\6
q2 v=2p - kg/\o
2 dlog Ao

k2 dv

b
v—2z0

=19

But from its definition,
Hr;ﬁo ellcr (U - Z,-|T)

Ao =

67+ (vlr)
Therefore
‘“Og’\“ =Y k6, - (n+1)8,
40
and so*
vreso Goi\,dv = ’:2 ((n+1 ©(2) ;k +O(20 — 2 ) . (5.16)

Next consider, again by using the expansion of ©g, the residue

)\
res ©3(0; + O, + 6x)—

v=zp )\’

A
= res + 0(1)) (6,- + @j + @k)ydv

1
v=z20 \ (v — 2)?
A

= coefficient of (v — z) in expansion of (; + ©; + ©O) Y

Noting that ©;, ©, and ©; are analytic at v = 2o one may, therefore, show that

A O(20—z)+0(20— 2;) +O(2 —
res (©; + ©; + (-)k)@gy — (20 — z) + (zoko z;) + O(z zk)’
v=29

by using the same technique as in the calculation of g;;.

Combining this with 5.16 (being careful to remember the appropriate factors

which multiply them), one therefore obtains the desired result. Lemma is proved.

Lemma 5.10 For precisely two repeated indices, i.e. for distinct z; and z;, the

dual structure constant takes the form:

4Here the function ©(z) will denotes g-i-—gl%.
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k2k.
G = ;92’(n+1 O(29) — Zk@zo—z,)
0 r#0
k2k:

ko (2@(20 — Zl) @(Z() - Zj)) + kzkj (@(Zl - Zo) - @(Z, - Zj)) .

Proof: By the same reasoning as used in lemma 5.9, it follows that

A
Cjk = k2k; (regﬁ- res + res + res) (09 — 0:)*(0g — ©;)~—dv,

v=20 U=z V=2 py

A
= kZk; (522 0}(6g — @j)%dv - Ies 03(20; + ©; )/\,dv + res CH :,dv)

But using the same techniques as those used in lemma 5.9, it can be shown that

xes ©7(6y - ©,) de+ - kl (02 — 20) — B2 - 2;)) ,
1
res @0(29 + 0, ) d’U = k_ (2@(2:0 - Z,') + (“)(Zo - Zj)) ,
V=20 0
es /\dv - L (n+1)0 E k.O(z —
vl'=ezso 0)\’ - kg “ 0 Zr .

Substituting these in above will then yield the desired equation.

Lemma 5.11 For three identical indices, the dual structure constants are

. k]
Ciii = -k—2(’n+1 Zk@ )"—k—o—@(Zo—zi)

r#0

+3k20(z — 20) + ki (Zk O(z —25) — (n+ 1)9(2,-)) .

s#t

Proof: Again using the same reasoning and techniques as in lemma 5.9, one may
immediately write

i = K (res + reS) (60 — ©)° —%dv,

v=v; =%

= K (res 93:\/\—dv — res 3036; :\\,dv)

y=vo v=20

+k? (res (-)260 -dv — res O — dv)

v=2; v=2; L\
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The calculations for the residues above are entirely analogous to those in the

previous two lemmas, and so one may immediately derive the desired result.

Having constructed the structure constants relating solely to the z; coordinates,
it is possible to introduce a function f(z|7) such that

o
é% = mk(z'T) (517)

In order to do this, we begin by noting the following fact. The function log 6, (z|7)
may be expressed as the following:
log 0 (2|7) = log(iGq*) — iz — (Z Li(¢*"e**) + Z Li (g*te™%* ) , (5.18)
n=0
where, as above, G takes the form (5.6) and ¢ = €™, To show this, one uses the

infinite product representation (5.5):

00 00
8.(z|r) = 2Ggisinz H(l — g*re??) H %)
n=1 n=1
1 ezz —€ i 1 = 2n 2:2 = ——21z
= 2G 2% 1_e2izH Hl_q ’
n=0 n=1
o0 oo .
— qu%e—iz H(l _ q2ne2tz) H(l _ q2ne—212).
n=0 n=1

Hence, by taking the logarithm of this,

IOg 01(2'7') = log(ng%) — 1z + Z(l — q2"62"z _|_ Z log 2n —212)

n=0
But recalling that

Liy(z) = —log(1 — 2),

the desired result is obtained. The expression of log#; above will offer a conve-
nient representation of the function A,, defined (for an arbitrary integer suffix)

by the infinite series below.

Definition 5.12 A new function Ay is defined by the series

AN(Z,(]) — 222 (Z Lz q2ne212) +( 1 N+1 ZLZ 2n -2z ) .

n=0
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This function is, to within a polynomial, the elliptic polylogarithm function (see

[18]) and so shares its convergence properties.

The function A, is related to 6;(z|7) by the following equation:
Av(z,q) = loghi(2|r) — log(iGg?). (5.19)

This equation follows immediately from the definition of A, and (5.18). Consid-
eration is now moved to differentiating Ay with respect to z. This gives rise to a
simple differential equation. The derivative of Ay(z, g) with respect to z is linked

to Ay_; by the differential equation

d

EAN(Z,(]) = 27:AN_1. (520)

To prove this, note that from the definition of Ay, it immediately follows that

2 = . —2iz
AN 1(2 q) 'I,Z (Z L’L _1 2n 2zz (_I)NZL,LN_I(q%e 2 )) )
=1

Differentiating An(z,q) with respect to z yields

d

EAN(Z) Q)
12iN(2i)N-1

-2 N

Lin_1(¢*"e**) N o om—2iz Lin—1(g*me7)
(Z 2ig™e"* g2neiz + (_I)NHZ_zzqzﬂe ’ g2ne—2iz ,
n=1

=2 ( IEQLZ_NT)I') _ 9 (Z Lin_ 1 2n 2:':) + (_I)NgLiN_l(q%e—m’z)) ’

n=0
= 27:AN—1(Z’ Q)’

as required. Note also that the function A satisfies

1 6(2|7)

AR

(5.21)

This follows immediately from differentiating (5.19) with respect to z using the
lemma above. One may then use the function A3, along with the lemmas above,

to introduce a function f(z|7) satisfying the equation (5.17).
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Lemma 5.13 The function

f(z|r) —"HZkAg (2) ——ZkkAg r = 2s)
r#8

3 kiz;=0

where indices for the sums run from 0 to m, satisfies (5.17).

Proof: To prove this, one needs simply to differentiate f three times with respect
to z;, z; and z; and show that the result (for appropriate combinations of distinct

and identical indices) coincides with cj;,. Firstly, differentiate f with respect to

Zi.
0 ‘ k;
fa(;lr) _ 2z(n4+ 1) (k Ag(2z) — koAz(ZO)) gkikp(Ag(zp — z) = Aoz — 2))
K
%_k_o %% kokp(A2(20 — 2p) — Aa(2p — 20)

Differentiate again with respect to 2;, ¢ # j to obtain

Pf(zlr) _ kik; 1, . N
azjazi - _(n + 1) kO Al(zo) 2k k](Al(zJ zi) + Al(zi - z])
+——k0k (Ai(z0 — 2) + A1(zi — 29))
2 ko
1 k;
5% —kjko(A1(20 = 2;) + A1z — 20)) +
0
1kk
==Ly " kpko(Ar (20 — 2p) + Ai(2p — 2))- (5.22)
2 ki o

Differentiating a further time, with respect to 2, k # i, j gives

& kik;k ik
3zkf3(:j|;ii = 2i(n+1)= kAO( 0) — ko £ (Ao(z0 — 2) — Ao(2i — 20))
iKj k k;k
_ikzll?kk (Ao(zo 7j) = Ao(2; — 20) = k £ (Ao(20 — 2x) — Ao(2k — 20))
0 0

kikjk
__z_sz_" Z ky(Ao(20 — 2p) — Ao(2p — 20)-

0 p#o

Substituting in the result from equation (5.21) that

_16i(2l7)
Aol9) = 528, Gir)’
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and noting that
01 (—2lm) _ _6i(z|7)

O1(—z|T) — Oi(z|r)’

one obtains the desired result of

i) _ .

02k02102F — Uk

Similar reasoning and techniques may be applied to show that this holds for

t=j#kandfori=j5=k.

Recall that the third derivatives of F* must satisfy

oF*
900BIy oY

for all o, B3, 7 including u and 7. The function f(z|7) does not, therefore, neces-
sarily coincide with F*. One now moves on to considering c; 5, where o and 3

may be any of the coordinates.

Lemma 5.14 The non-zero dual structure constants ¢,z are:

kik;
¢ty = 27ri( W +k6,,)

c = —2in?,

with

wui — Cuir — Curr = Cyuu

Proof: Applying the formula (1.23), one may easily show that for o, 8 being any

of the coordinates z;, u, 7, the following formula holds.

Y
x —_— — — J—
Cuap = Zd|§g§ " a g N

= 2migag.

The lemma follows automatically from this.
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Lemma 5.15 The function

9" (u, 2z, 7) = 2mi (uzz z,zJ +uZ (k + ko) — 5T Tu ) (5.23)

=1 )>1
satisfies the differential equations

»*g* _ o
Oudadp ~ e

Proof: Proof is obvious; differentiating g* immediately yields the desired results.

Note that the entire u-dependence of F* must therefore be included in ¢g* (ignoring

any quadratic terms which vanish under triple differentiation). Hence if one writes
F* = g"+ FY,

the function F} must be independent of u. Also, observe that

Fg*
Baaﬂafy—o’ a,ﬂ”Y#u'
Therefore
o'F Gl o, B, # u.

9adpdy _ 9adfOY’

But this must be equal to cj4,. Now write

= f+ fi.

From theorem 5.13 and the line above, one must have

iy

* = 0. 5.24
020202 3e0n.07. 11— 1) ( )

Integrating this gives rise to the following lemma.

Lemma 5.16 The function f,(z|7) above is of the following form:
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Proof: The proof of this follows immediately from integrating the equations

(5.24) to obtain:

Fl(z|T) — f(z|r) =

l\DIv—l

iiz‘luz,z] iBi(T)Z,' + C(7).
i=0

1=0 j=0

But as F} — f = fi, the lemma is proved.

Note that the functions A;;, B; and C are functions only of 7, i.e. they are
independent of the z;. Differentiating F} with respect to z;, z; and 7, one obtains

P f(z|t) | dA;
Cris(2l7) = 0702;,0z; + dr

But as A;; is independent of 2, one may evaluate f(z|r) at z = 0 to obtain

(T) - c‘rz] (OlT) - g;—g%

z=0'
Similar reasoning leads to
O3 f(z|r
B = o) - Shal)]
Bf(z|T
() = &0 - L8|

It transpires that the third derivatives in the above equations all take simple

forms.

Lemma 5.17 The derivatives

Bf(z|T) 03 f(z|)
groz04 4 Bz

are both zero when z = 0.

Proof: From the proof of lemma, 5.13, we already know that —[;%’1? is of the form
(5.22) Using the fact that
z=0) ’

& f(alr)
07021027

_ 0 (& f(z|)
=0 Or \ 02027
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one may evaluate the second derivative of f and then differentiate the result with

respect to 7. But

0% f(z|r) o kik;
323657 lieo = l{%(‘("ﬁq) kOA(Zo) zkk(/\( z) + Ai(zi — %)
1k;
+——]k0ki(/\1(20 - Zi) + Al (Zi - Z()))
2 ko
lk
k kQ(A1(20 - Z]) + A1( P — Z())) +
2k0
1 k;k;
215 2 holteo =)+ ey~ )
p

But noting that the all of the A;(z; — z;) terms are functions of linear functions
of the z;, they will all (assuming that z — O in a suitable way) behave like

lim, ,o A1(2) as z — 0. Therefore they may be grouped in the limit, and so one

obtains
62f(Z|T) . k k kikjko kikj
aiA.7 = +ki—ki— —— - — A ,
02:027 1z=0 il—lftl) (n+1)5 ko ko ko g;kp 1(2)
_ ’“kﬁ (n+1) = ko — (n+1 — ko)) lim A (2)
0 22—
= 0.

Differentiating this with respect to 7 therefore trivially yields

3 f(z|7)
01021029

z=0

By recalling 3 —L and applying similar reasoning to that used above, it is possible

to immediately write:

0 (2 ki
P, = i (Y (ktate) - Ehotate)) + S k(0a() ~ o)

+——Zko (As(z) — AQ(z)))
0 p#0
= 0.
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Differentiating this twice with respect to 7 trivially gives zero, as required.

It follows automatically from this lemma that

Agj (1)
BI(r) =

O|r) and

'rz](

0|7)

TT‘E(

In order to proceed, one needs to evaluate cj;;(0|7), c;,;(0|7) and ¢}, (0|7),

though it is not necessary to calculate these functions everywhere.

Lemma 5.18 Fori # j:
(0]r) =0.

n]

Similarly, in the case where i and j coincide, one has

c:ii(OIT) =

Proof: By using the formula (1.23), one obtains

Gilelr) = =3 res kik;(6 — ©.)(€0 - ©))

—iT 6 (v — z,|7) v|r) | A
1 —d
4 Zokre(v-z,h') (nt1)g Y

~ s
i

A

But A is finite everywhere (with the possible exception of infinity), so by the

usual deformation of contours argument, this becomes

v=20 V=24 V=2z;

= kikjAl

A
cri;(zlT) = (res + res + res) kik;j(©0 — 6;)(60 — Gj)Aydv

v=29’

_ z7rk kik; (;k 01(20 — 2|7) (n+ 1)‘;’1'(7'0'7)) . (5.25)

B1(20 — 2I7) 1(2l7)

Note that
8y (vl7)
v0 0y (o]7)
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is well defined, and so one may take this value to be equal to ((

)) Hence if one
evaluates the above at z = 0, there are 3k, = (n + 1) positive g (( )) terms and

(n + 1) negative terms. These cancel out to give

(0]7) =0.

Tl]

Similar calculations can show that

& (alr) = k2 (Z G 0’1’(zi—zrlr))

"61(z — 2 |T)  61(zi — z|T)

9 07 (z0l7)  67(z|1)
+Zki (n+1) (Gl(zolr) + 01(zilr)> :

Again it is easy to show that evaluating this at z = 0 gives ¢},,(0|7) = 0.

Whilst in the above lemma, c7,; was calculated everywhere and then evaluated at
z = 0, such calculations for ¢}, and c},, grow in complexity, and so a different

approach will be used in proving the following lemma.

Lemma 5.19 Ewvaluating c;.; at z = 0 leads to:

TTL

TT‘I (0|T)

Proof: One begins by utilising the WDVV associativity equations. In particular,

consider the equation
cz]ac]rﬂg J]a t"ﬂg

Noting for which o and 8 the components g*? are zero, this becomes

v * TU pq
( z]‘r J'ru + ct]ucj‘r'r g + § : t]p rqupq ( _1_11' rru + c]_yu rr'r g + § : ]]pcrrqg .
Pq

But ¢},, = ¢}, = 0 and c};; = 2mig;;. Furthermore, one may easily show that

gt = ;5 Substituting these in and rearranging the terms yields

2
c* 2 x — L B gt »q
ko (k k] TTj 2k rr:) - § :(cjjpc‘riq cijpcqu)g .
pq

v

L
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Similarly, one may show that

‘Pjiz (kkc‘r'rz_ k2* )

2 TT]
Adding 2k;P;; to k; P;; therefore gives
—sz k

- * 1\ gPa
Crri § : (2kiC35CT50 — 2kiChipCiq + kichipCliq = kiClipChig) 97
P

One may obtain ¢*,,(0|7) by evaluating this at z = 0.

Consider now the individual terms, e.g. ¢j;,c7;,. We know that ¢}, (0|7) = 0 and

it is easy to see that c¥;_(0|7) is singular. In order to show the behaviour of their

z]p(
product near z = 0, one considers the terms from which they are formed. Begin

with cf;,, which is the sum of terms of the form
0:(2l7)
01(2|7)’
where Z is something linear in the 2;. The expansion of this near Z = 0 is of the
form 1
z + O(2).

Hence Cjjp 1s the sum of terms which have simple poles at z = 0, and so cm, must

itself have a simple pole there. Move onto, ¢ ;g, Which is the sum of terms of the

form
01 (ZI7)
01(2lr)’
which have expansions of the form
c+ O(3%).

But c7,,(0|7) = 0 (obtained by adding the same number of ‘positive’ and ‘neg-
ative’ terms), and so it must have a zero of order 2 at z = 0. Therefore at

z=0,

CiipCrig = (pole of order 1) x (zero of order 2),

= (zero of order 1).
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Hence c},; is the sum of terms which all individually have zeroes at z = 0 and so

must itself have a zero (of order one) there.

Lemma 5.20 The final structure constant, c;,.(z|7) adheres to

TTT

&, 0lr) = 0.

Proof: The modularity properties of cj5, will be considered. Begin by noting
that the function 6, (v|7) obeys the modularity equation (where A is a constant,

the precise value of which is not needed here):

. —iv? v, —1
A01(v|7') = ~1€ 77 01(;'7)

Differentiating this with respect to v, one obtains

—27/0 —iv? -1 —iv2 1 -1

Afi(vlr) = —i——e 01(-|—)—ze - ;0’(—[———)
=20 -iv? 1 . zin? ] -1
= e - e a1

Dividing this by A6,(v|r) gives

0 (v|r) -2 + 1622
0,(v|t) ~ wT T91(§|:T—l)’

or upon a simple rearrangement of terms:

Note that for small v, this is therefore a modular function of weight 1. Similar

reasoning leads to the analogous relationship

1) _ 6’”(v|T) 6ir
Sy 01(v|7') +— + O(v?). (5.26)

for small v.
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One now moves on to considering the modular properties of c};;. Begin with the

case of ¢, j and k being distinct:

i) = M2 ((n+ 1)(20) ~ Y ksl — a))

r#0
k ki kk 21
]Co T

_ k k kk 21(( 20 — Zz) (zo - zj) + (Zo - Zk)) + TC:jk(le)‘

—((20 — 2:) + (20 — 2;) + (20 — 2)) + T (2]7),

Noting that cj;, is singular at z = 0, one now considers the limit® as z — 0 of
the ratio
ie(215) —RER B (29 — 2) + (20 — 2j) + (20 — 2t))
ka(ZIT) B ijk(z|T)

It is easy to see that as z — 0, the right hand side tends to 7.

Similar calculations show the same result for c};; and cj;. Consideration is now

turned to the modularity properties of c7,;.

Substituting the modularity equation (5.26) into (5.25) gives (for small 2)
z, 1 —im kik; erT) 01 (20]7)
* (=]=) = z kT 20 — 1)F2 20t/
CT:J(TIT) 4 kO (rz 01 Z0 — zr|T) (n + )T 8, (zolT)

z7rkk Gzr
Y (Ek - n+1)+0(v2).

But as ) k. = (n + 1), one has

cﬂ](_|_) = T Tz](z‘T) + O(zz)a

for small z. Hence c*;; is modular of weight 2 near z = 0. In order to obtain

j
the modularity properties of ¢%,;(0|7) in the absence of an explicit formula for
cr,:(z|7), one utilises the WDV'V associativity equations. Recall from the previ-

ous lemma that

sz k?
e Crri = Z (2k CjipC ﬂq — 2k cthcTJq +k; cnpc‘f:q k; cm)c"q) g

®Note that as one is dealing with a multivariate limit, one must be careful as to how the

limit is taken.
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One now restricts this to near z = 0 and considers the individual terms®. From

the equations above, one has

(313l (B1F) _
2 Ol?’_) - rzq(0|T)

Sin
If one multiplies both sides by cj;,(0|7), the right hand side is finite (from the

proof of lemma 5.18). Hence

**0_1 3**

CJJPCTW(7.|T) =T Cjjp nq(OIT)

Therefore c3;,c};,(0]7) is a modular function of weight 3. Moreover, c;,;(0[7) is

a sum of modular functions of weight 3, and so is itself a modular function of

weight 3.
Attention is now turned to the modularity properties of c;..(0|7). By considering

the associativity equation

* aﬂ_c

*
Crra ciiﬂg TiQ 'nﬁg

one may (by substituting in known g*# and Chpy) Obtain the equation:

_ ko ( ¢t )g™
-rrr - i k2 sz ﬂq T'rp uq .

At z = 0, the Chip terms all vanish. By applying similar logic to that used in

lemma 5.19, it is possible to show that

CrrpCiiq(0]7) = (zero of order 1) x (pole of order 1),

= something finite.

Also observe that

(213 (1) _

(0f7),
Ciq(0l7) oy
which implies
« x 0,1
-rrpcuq(T |T) - T cﬂ'p uq(olT)

8More formally, one should take the limit as z — 0 in a suitable way.
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Therefore c},,cf;,(0|7) is a modular function of weight 4. Hence c},, is a sum of

T

modular functions of weight 4 and so is itself a modular function of weight 4.

Having established that ¢¥ . is a modular function of 7 (of weight 4), we now
consider its behaviour as ¢ — 0 (or equivalently 7 — ioc). Begin by considering

ci;x(z|7), which is the sum of terms of form —l But from [27], it follows that

’ o 2n
1(z]7) g*"sin 2nz
=cotz+4
61(z|7) ; 1— g
Therefore for small ¢,

01 (2|7)
L7 = 0(1),
ozl ~ O

and so c};,(z|7) = O(1) also. Moving on to ¢};;, which contains terms of the form

7}, note that differentiating

and dividing through by 6, gives
2
0y (2|7) 1 = ng*" cos 2nz = ¢*"sin 2nz
= =|- +8)y ——— cot z + 4 .
6:1(z|7) sin® 2 nz=:1 1— g2 Z

Hence as ¢ — 0,

87 (2[7)
01(z|'r)
Substituting this into the formula (5.25) for ¢7,; and noting that there are n +

— -1+ 0(g?).

1 —(n+1) = 0 constant terms, one therefore has that as a function of g, and for

small g,
chij(zl7) = O(g*).

The same argument holds for c*;; (which contains precisely twice as many constant

terms which cancel out with each other).

In order to consider the small g behaviour of c;;, recall that from the associativity
equations (where k,, is the appropriate constant obtained by substituting in all

known constants):

T-rz le Zk q ijp T]q

Pa
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Hence for small g,

Cri = Z kp0(1)0(q"),

p.q
= 0(g*).
Similarly,
Crr = kaq(CIi,,CZiq = CrrpClig):
P

Therefore ¢!, (0|7) is a modular function of 7 which tend to zero as ¢ tends to
zero. This means it is a cusp form [17]. But the only cusp form of weight k < 12

is the zero function [1]. Hence

c..(0|r) =0,

TTT

as required.

Corollary 5.21 The functions A;j, B; and C are (to within a quadratic term):

A,‘j = 0,
Bi = 07
= —f(@7)ls=0-

Proof: The first two equations above follow immediately from integrating A;; = 0

and B = 0, taking the constants of integration to be zero. The final line comes

from integrating

0°f(2|7)

C”l = _
013  lz=0’

-2 el

again taking the constants of integration to all be zero.
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Noting that

(2| e 0_"“21“\3 0)——ZkkA3

1#]
the function F}' must therefore be:
Ff = f(z|r)|:=0 (5.27)
+1
= oY (hia() - As(0)) - 5 Z kik;(As(zi — zj) — A3(0))(5.28)

i t#J
This may be rewritten in a more convenient form by introducing a new function,

known as the elliptic polylogarithm, as constructed in [18] and [2].

Definition 5.22 The elliptic polylogarithm function Li, is defined for odd r by

the series

Lir(g,¢) = ZLzr (¢%¢) +Z "¢ = xr (9, 0),

n=0

where x,(q,() is defined, with B; being the Bemoullz numbers, as:

X(0:0) = 3 et o C ") loga)’

n=0

Lemma 5.23 The third elliptic polylogarithm satisfies

. 1 1
Lis(¢*,€**) = —As(2,q) + 3 (log q)%2% + g—o(logq)“-

Proof: The proof of this follows immediately from the definitions of Li,(q, ()
and An(z,q).

Lemma 5.24 The function F} may be ezpressed in terms of the elliptic polylog-
arithm. Ezxplicitly,

%Z (Lia(¢®, 7)) ~ Lis(¢%, 1)),
i
+1 . 12 .
~TT 3 (Lis(h ¥ - Lig(%, 1))

i
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Proof: It follows immediately from lemma 5.23 the equation above may be

rewritten as:

Ff = %Z kik; (—Aa(zi —z)+ -:lg(log 0)*(zi — ;)" + Aa(0)>

i#]

I + ! Zk < As(z) + %(logq)2z,~2 + A3(0)> .

Counting the number of (log q)? terms, one finds that there are of N them, where

S kb — 2 - D S g2

t#J
But using Y k; = (n+ 1) and )_ kiz; = 0, N may be simplified:

24N = ) kikj(# — 222 +25) — 2(n +1) Zk 22,

i#]
= 2) kiki7 - 2Zkkz,z,+22k Zk 2,
i) i£]j
= 2 kikjz? -2 kikjziz; — 2Zk,k,,z, -2 k22,
i#j i#£] r#£s r
= =2 (ZZk,zrkaz,) ,
_ 0‘ r 8

Hence F} expressed as a sum of elliptic polylogarithms (above) agrees with (5.27).

Adding this to g* therefore gives the almost dual prepotential for the discrimi-

nants of Hy.,.

Theorem 5.25 The almost dual prepotential is

F* = 23 ks (Lis(g?, %) - Lis(%, 1))
#J
n+1

Ek (L’L3 2 212' Lia(q2,1))

+2mu(22kkz,z,+z(k+ )522 %%u).

=i j>i
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Proof: Proof is obvious; this theorem is a the collation of the results of the

lemmas in this chapter.

Note that this theorem generalises the result of [21] to an arbitrary discriminant
of Hy,,. As with the genus zero case, as the discriminant submanifold this was
calculated on is not actually a Frobenius manifold, there is again no prepoten-
tial to which this function is actually dual. However, if all of the k; = 1, the
superpotential (5.4) defines a Frobenius manifold rather than a discriminant sub-
manifold, and in such a case the solution F* agrees with the result in [21]. An
obvious generalisation to this theorem would be to find an analogous result for
an arbitrary genus one Hurwtiz space. Though this will not be considered here,
one would expect conjecturally that such a function, like in the genus zero case,
would be of the same form but would allow negative values of the parameters k;.
Beyond this, an obvious generalisation would be a Hurwitz space of an arbitrary

genus.



Chapter 6

Conclusion

The work contained in this thesis has been based around the idea that a Frobenius
manifold with a polynomial superpotential is the simplest example of a construc-
tion on a Hurwitz space (namely Hy,,). This affords a generalisation in one of two
directions; to an arbitrary Hurwitz space of the same genus or to a simple Hur-
witz space of a higher genus. Chapters 3 and 4 generalised their respective ideas
of induced Frobenius structures on caustic submanifolds and almost duality for
discriminants in the former of the two directions, whilst chapter five generalised

discriminant almost duality in the latter. Schematically:

{Ho;n} - {HO;"Ov--'"m }cha.pters 3&4
\ \)
{Hl?"’}chapter 5 — {Hl;no ..... nm}

The first obvious extension to the this work is to generalise the ideas of chapter
3 to Hy;,. As mentioned earlier, one would expect that this would become com-

putationally difficult due to the superpotential being elliptic. Similarly, the ideas

152
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of chapter 5 may be generalised to a higher genus Hurwitz space Hy,. Such a
construction would be based around a superpotential, which one would expect
to be expressed in terms of higher genus functions. As such, some aspects of the
construction of an almost dual prepotential would mirror the H,., case. However,
technical difficulties would be expected, for example where the elliptic connection
was used in chapter 5, one may need to use some sort of higher genus analogous

connection in its place.

Alternatively, analogous to generalising Hy., t0 Hon,,....n..» ON€ may generalise the
ideas of chapter 5 to Hi.n,,...n,, (Which would complete the diagram above). One
would expect that if a suitable superpotential were to be constructed in terms of
the function 6, (v|7) that the calculations involved would follow very closely from

those contained within chapter 5.

Finally, going back to the motivating example of a Frobenius manifold with poly-
nomial superpotential, recall that this also corresponds to the orbit space C*/A,.
From this perspective, the obvious generalisation is to extend the ideas of dis-
criminant almost duality to other Coxeter groups. Results for this, based around
deformed root systems, can be found in [16]. However, such results could be
instead derived by direct calculation using an LG superpotential. For example,

in the case of B, the superpotential would be of the form'.

n n

A= H(22 - 7)) = H(Z - z)(z + z).

i=1 i=1
Note that this is the same as the superpotential for A,_, subject to a certain
constraint on the {z;}. This is expected though; recall that B, C A,,_;. Note
also that in this particular case, the calculation of structure constants cjj, would
actually become easier than in section 4.1, as the sum of the roots would auto-

matically be zero, thus removing the condition zy = 29(21, ..., zn).

In order for the superpotential to define a discriminant, one would require repeated roots,

i.e. zj = z; for some i # j
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Analogous to the genus zero extension to other Coxeter groups, one notes that
Hy, = Q/J(AN), and so the ideas of chapter 5 may be extended to other Jacobi
orbit spaces. One would expect that this again would be possible in terms of
root systems, particularly if one notes that terms in F* for H,,, are functions of

2; — z;j and so appear to be linked to the A, root system.

Finally, one moves on to considering applications of the results derived here. The
ideas of chapter 3 may be applied to bi-Hamiltonian structures; as the caustics
are natural submanifolds. It is already guaranteed by [25] that the submanifolds
considered will be bi-Hamiltonian, and although no construction was given, one
may show that the induced intersection form is (in the canonical submanifold

coordinates 7%
9= 7m(dr).
:

The ideas of chapter 5 have a perhaps surprising application in 6d Seiberg-Witten
theory. Discussion of this is given in [7]. Finally, the ideas of chapters 4 and 5
appear closely linked to the ideas of deformed root systems discussed in {26, 16]
and may provide a way of finding further examples of V-systems. The result (4.3)
extends the result in [16] to include negative integer values of the parameters k;.
It also provides a geometric interpretation of this result, with the negative k;
determining which Hurwitz space the solution comes from and the positive k;

determining the precise discriminant in that space.



Bibliography

[1] APOSTOL, T. Modular Functions and Dirichlet Series in Number Theory
Second Edition Springer, New York (1990)

(2] BEILINSON, A., LEVIN, A. The Elliptic Polylogarithm In: Jansen, U.,
Kleiman, S., Serre, J.-P. (eds) Proceedings of the Symposium in Pure Math-
ematics, vol. 55.2. American Mathematical Society, Providence RI. 123-190

(1994)
[3) BERNDT, B. Ramanujan’s Notebooks, Part IV Springer, New York (1994)

[4] BERTOLA, M. Frobenius manifold structure on orbit spaces of Jacobi
groups; Part I Differential Geom. Appl. 13 19-41 (2000)

[5] BERTOLA, M. Frobenius manifold structure on orbit spaces of Jacobi
groups; Part II Differential Geom. Appl. 13 213-233 (2000)

[6) BOURBAKI, N. Lie Groups and Lie Algebras Chapters 4-6 Translation:
Pressley, A. Springer, Berlin Heidelberg (2002)

[7] BRADEN, H., MARSHAKOV, A. MIRONOV, A., MOROZOV, A. WDVV
equations for 6d Seiberg-Witten theory and bi-elliptic curves Preprint hep-
th/0606035

[8] DIJKGRAAF, R., VERLINDE, E., VERLINDE, H. Notes on Topological
String Theory and 2D Gravity In: Green, M. et al (eds) String Theory and

155



Bibliography 156

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Quantum Gravity Proc. Trieste Spring School 1990. 91-156 World Scientific
Publishing, River Edge NJ (1991)

DUBROVIN, B. Integrable systems in topological field theory Nuclear Phys.
B 379 627-689 (1992)

DUBROVIN, B. Geometry of 2D topological field theories. In: Francaviglia,
M., Greco, S. (eds) Integrable Systems and Quantum Groups, Lecture Notes
in Math. vol. 1620. Springer, Berlin Heidelberg 120-348 (1996)

DUBROVIN, B. Flat pencils of metrics and Frobenius manifolds In: Saito,
M.-H., Shimizu, Y., Ueono, K. (eds) Integrable systems and algebraic geom-
etry Proc. Tanaguchi Sympos. 1997. World Scientific Pulishing, River Edge
NJ 47-62 (1998)

DUBROVIN, B Differential geometry of the space of orbits of a Coxeter
group In: Terng, C., Uhlenbeck, K. (eds) Surv. Differ. Geoem. IV: Integral
systems International Press, Boston MA. 181-211 (1999)

DUBROVIN, B. On almost duality for Frobenius manifolds In: Geometry,
Topology, and Mathematical Physics Amer. Math. Soc. Transl. Ser. 2. Amer-
ican mathematical Society, Providence RI. 75-132 (2004)

DUBROVIN, B., FOMENKO, A., NOVIKOV, S. Modern Geomoetry- Meth-
ods and Applications Part I Springer, New York (1991)

DUBROVIN, B., ZHANG, Y. Extended affine Weyl groups and frobenius
manifolds Compos. Math. 111 167-219 (1998)

FEIGIN, M., VESELOV, A. Logrithmic Frobenius structures and Coxeter
discriminants To appear in: Adv. Math. (2007)

KOBLITZ, N. Introduction to Elliptic Curves and Modular Forms Second
Edition Springer, New York (1993)



Bibliography 157

—

[18] LEVIN, A. Elliptic polylogarithms; an alaytic theory Compos. Math. 103
267-282 (1997)

[19] MANIN, Y. Frobenius manifolds, quantum cohomology, and moduli spaces
Amer. Math. Soc. Collog. Publ. vol. 47. American mathematical Society,
Providence RI. (1999)

[20] MARTINI, R., HOEVENAARS, L. Trigonometric solutions of the WDVV
equations from root systems Lett. Math. Phys. 65 15-18 (2003)

[21] RILEY, A., STRACHAN, L. Duality for Jacobi group orbit spaces and elliptic
solutions of the WDV'V equations Lett. Math. Phys. 77 221-234 (2006)

[22] RILEY, A., STRACHAN, 1. A note on the relationship between rational and
trigonometric solutions of the WDVV equations J. Nonlinear Math. Phys.
14 82-94 (2007)

(23] SAITO, K. On a linearstructure of the quotient variety by a finite reflection
group Preprint RIMS-288 (1979)

[24] STRACHAN, 1. Frobenius submanifolds J. Geom. Phys. 38 285-307 (2001)

[25] STRACHAN, I. Frobenius manifolds: natural submanifolds and induced bi-
Hamiltonian structures Differential Geom. Appl. 20 67-99 (2004)

[26] VESELOV, A. Deformations of the root systems and new solutions to gen-
eralised WDVV equations Phys. Lett. A 261 297-302 (1999)

[27] WHITTAKER, E., WATSON, G. A Course of Modern Analysis, 4th Edition
Cambridge University Press, Cambridge (1927)

[28] WITTEN, E On the structure of the topological phase of two-dimensional
gravity Nucl. Phys. B 340 281-332 (1990)

[29] ZUBER 1J.-B. On Dubrovin topological field theories Modern Phys. Lett. A
9 749-760 (1994)



