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Abstract

The concept of a Frobenius manifold was invented by Boris Dubrovin as a geo-

metric interpretation of solutions of the WDVV equations with additional con-

straints. The theory of Frobenius manifolds contains a rich mathematical struc-

ture transcending many disparate fields of study. In this work, consideration will

be restricted to so called semisimple Frobenius manifolds and their submanifolds.

Chapter 1 introduces the concept of a Frobenius manifold and gives constructions

of the closely linked Coxeter group and Hurwitz space based classes. The concept

of almost duality is also introduced; this is the notion that from any Frobenius

manifold, one may construct a second solution to the WDVV equations adhering

to most of the axioms of a Frobenius manifold.

Chapter 2 introduces submanifold geometry and natural submanifolds, on which

the induced multiplication coincides with that on the ambient manifold. Such

submanifolds are classified in terms of caustics and discriminants. Caustic sub-

manifolds of an arbitrary genus zero Hurwitz space are then considered in chapter

3, extending the idea contained within the main example of [25].

Chapter 4 constructs dual WDVV solutions for An Coxeter type and genus zero

Hurwitz Frobenius manifolds, including their discriminants. The result of section

4.2 appeared in [21]. It also draws a link, via a twisted Legendre transformation,

between certain almost dual solutions. This idea was published in [22].

Finally, chapter 5 deals with the Hurwitz space H1,n, which may be thought of in

terms of a Jacobi orbit space. In particular, almost dual solutions of the WDVV

equations are constructed on the discriminants, giving a generalised version of

the result published in [21].
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Chapter 1

Frobenius manifolds

1.1 The WDVV equations

The Witten-Dijkgraaf-H. Verlinde-E. Verlinde, or WDVV equations, first ap-

peared in the papers [28] and [8] on topological field theory in the early 1990s.

They have been studied from a variety of perspectives including integrable sys-

tems, singularity theory, Seiberg-Witten theory and topological quantum field

theory.

Definition 1.1 The WDVV equations of associativity are the system of partial

differential equations:

83F All 83F
at0at/3 atA1J atllat"Yat°

(1.1)

In the various applications of these equations, additional constraints (such as

quasihomogeneity) are often imposed. The formulation below follows [10]. The

equations require that a function F = F (t1 , t2, •.. , tn) be found such that the

third derivatives

C Q (t) . __ ~_F..:......:(t)_
OjJ"Y .- 8to8tf'at"Y (1.2)
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Frobenius manifolds 2

have the following properties:

WI Normalization: The matrix with components

must be constant and non-degenerate. This matrix will be used for lowering

indices, while the inverse matrix

will be used to raise indices.

W2 Associativity: On an n-dimensional space with basis e., ... , en, an associ a-

tive algebra At is defined at a point t by

where c~/3 = r(Yfcm/3(t). These algebras will also be commutative; this is

guaranteed by (1.2) above.

W3 Quasihomogeneity: F(t) must satisfy the equation

for some d1, ... dn, dF and for all c =1= o.

Note that the conditions WI and W2 above imply the associativity equations

(1.1), though even condition WI may be weakened, for example by choosing 'fJ to

take a different form (which may be a function of, or even independent of, F).

Definition 1.2 Let E be a vector field of the form

o

Then E is the Euler vector field for F.
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The Euler field implicitly represents the quasihomogeneity condition W3 through

the equation

where LE represents the Lie derivative along E. In the case of d.; = 0 for one or

more of the coordinate indices a, it is possible to generalise E so that it takes

the form:

It should be noted that the Lie derivative along E of the identity vector e = 01 is

Attention is now turned to a generalisation of E and of condition W3. If a non-

homogenous quadratic function of tl, ... ,tn is added to F, the third derivatives

cafh will be unchanged. Hence the associativity equations which define the alge-

bras At are not changed by the addition of this function. In other words, if F is

such that

then the caf3'Y would still be quasihomogenous. Provided that dr =f 0, dp - do =f 0
and dp - do - df3 =I 0 for all a, /3, then the extra terms in LEF(t) above can be

killed by adding a quadratic form to F.

Example 1.3 In two dimensions, the associativity equations are vacuous. How-

ever, condition Wi restricts the form solutions of WDVV may take to

Applying W3 and noting the permissible forms of E then restricts the form of

f(t2) so that all two dimensional solutions to WDVVare equivalent to one of the
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following, as can be seen in [10j:

F(tl' t2)

ru; t2)

F(tl' t2)

F(tl' t2)

F(it, t2)

4

Note that in the above formulae, the indices of the to have been written subscript

rather than superscript purely for typographical convenience. This convention

will be used in all solutions of WDVV presented in this work.

Example 1.4 Following [10j, let us consider a three dimensional solution to

WDVV of the form:

By differentiating F, one can calculate the co{3-y, the non-zero values of which are

listed below (recall that the ordering of the indices does not affect the value of

co/3-y).

Cll3 = 1

C223 = 1223 C233 = 1233 c333 = fa33

C122 = 1 C222 = f222

In the above, and throughout this example, fijk = 8t.~J8tk. In particular, we have

001

"'o{3 = 0 1 0 = ",ofJ.

1 0 0

One is now able to calculate the c~/3. The non-zero values are listed below:
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ci1 = 1 cI2 = 1 c3 - 113 -

C~2= 1223 C~2= 1222 C~2 = 1,

C~3= 1233 C~3 = i223 C13 = 1333,

C~3 = 1233

Therefore the multiplication defined by F has the following table:

Clearly, el is an identity under this multiplication, so for associativity one needs

only to consider the equations

and

as all of the other associativity equations are trivial.

The first equation expands to

h23e3 + h22(f233el + h23e2) + (f333el + h33e2)

= /233e2 + h23(h33el + h22e2 + e3),

which simplifies to

It turns out that the second associativity equation simplifies to the same partial

differential equation for f (t2' t3).
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1.2 Definition of a Frobenius manifold

The concept of a Frobenius manifold was first introduced by Boris Dubrovin in [9].

A comprehensive account on the subject was provided by Dubrovin in [10]. To

introduce the concept of a Frobenius manifold, one must first define a Frobenius

Algebra. The following definition and example have both been take from [10].

Definition 1.5 Let A be an algebra over C with a multiplication·. A is said to

be a Frobenius Algebra if the following four conditions are satisfied:

FAl A is a commutative algebra.

FA2 A is an associative algebra.

FA3 A unit element e exists in A such that e . a = a, for all a E A.

FA4 A non degenerate inner product <, >: A x A -+ C exists and satisfies

< ab,e >=< a,be >,

for all a, b, e E A. This final condition is known as the Frobenius property.

Example 1.6 Let {A}, i = 1,2, ... n be a set of n one dimensional semisimple

algebras. Then their direct sum
n

A=EBA
i=l

is a Frobenius algebra. Moreover, a basis {ei}, i = 1,2, ... n may be chosen by

selecting e, E A such that it is a generator for the algebra Ai' In terms of this

basis, a suitable multiplication may be defined by

The algebra may then be parameterised by A = (tI, ... , tn) where ti =< ei, e, >.
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Lemma 1.7 Given a Frobenius algebra A, one may apply rescaling transforma-

tions to the multiplication on A, of the form

a . b ---* ka . b,

and

for any non-zero k. Under such rescalings, the algebra will still be Frobenius.

Proof: Under such a rescaling, the associativity and commutativity of the algebra

will obviously be preserved and an identity element will remain. For the Frobenius

property to still hold, we require that

< ka . b, c >=< a, kb . c > .

But as the inner product is bilinear, we can take the k outside the inner product

to leave

k < a· b, c >= k < a, b· c >,

which is equivalent to the original definition of the Frobenius property.

Having defined a Frobenius algebra, one may now move on to defining a Frobenius

manifold, again by following [10].

Definition 1.8 An n-dimensional manifold M is said to be a Frobenius Mani-

fold if the following conditions are satisfied:

FMl For every point x on M, a Frobenius algebra may be described on the tan-

gent space TxM. These algebras must vary smoothly with x.
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FM2 The invariant inner product <, > defines a flat metric on M. In the pres-

ence of such a metric, a set of coordinates (distinguished to within a linear

transformation), known as the flat coordinates of <, > exist [141 such that

the components of <, > are constant in these coordinates.

FM3 A unity vector field e may be defined satisfying

V'e = 0,

for the Levi-Civita connection of the metric.

FM4 The four-tensor

is symmetric in the vectors u, v, w, z for

c(u, v, w) :=< uv, w > .

FM5 An Euler vector field E satisfying

V'(V'E) = 0

may be determined on M such that the correspondent one-parameter group

of diffeomorphisms acts by conformal transformations of the metric <, >
and rescalings of the Frobenius algebras TxM.

Examples of Frobenius manifolds will be provided later. One may observe obvious

similarities between the definition of a Frobenius manifold and the definition of

the WDVV equation; for example the requirement that an associative algebra be

defined in each case and the presence of an Euler vector field. In fact conditions

Wl-W3 and Frobenius manifolds are equivalent, as originally shown by Dubrovin

and as expressed in the following theorem (taken from [10]).
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Theorem 1.9 Given any solution of the WDVV equations defined in a domain

t E M, and subject to dl # 0, the structure of a corresponding Frobenius manifold

may be defined. The multiplication of tangent vectors

is given by

The invariant inner product between two tangent vectors on TxM vectors is de-

fined as

The identity vector will be given by

Finally, the Euler vector field will be of the form:

Conversely, given a Frobenius manifold M, one may (locally) reconstruct a so-

lution to the WDVVequations by using the above formulae and an Euler vector

field of the form

Proof: It follows immediately from the conditions of the WDVV equations that

the multiplication defined on the tangent space will be commutative, associative

and will have an identity element e = 81, To show that a F'robenius algebra is

defined, one requires
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Using the multiplication formula, the left hand side becomes:

Similarly, the right hand side becomes:

Hence a Frobenius algebra has been determined. FM2 is automatically satisfied,

as the components of "la/3 are all constants, thus ensuring flatness. FM3 is also

automatically satisfied, as %/3 is not only flat but also expressed in terms of its

own flat coordinates. As such, covariant derivatives are equal to the correspond-

ing partial derivatives and so the identity field e = a1 is covariantly constant.

Similarly, condition FM4 is satisfied as

Finally, recalling that E = La data8a, it is obvious that FM5 is also satisfied.

To prove the converse statement, one notes that as the metric is flat, a set of

flat coordinates {ta} (defined up to a linear transformation) exists such that the

components of "la{3 are constants. By performing a linear transformation, one

may then set e = Itr. In these coordinates, the condition FM4 is equivalent to

saying 86ca{3-y is symmetric in o, /3, 'Y, 8. Noting that ca{3-y is also symmetric in all

of its indices, FM4 therefore becomes a potentiality condition, i.e. it guarantees

the existence of a function F = F(t) such that

From the definition of a Frobenius manifold, the algebra defined by the ca{3-y will

be commutative and associative. Finally, the axiom FM5 ensures that F will be

quasihomogenous. Hence conditions W1-W3 have been satisfied.
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1.3 The intersection form and flat pencils of

metrics

In addition to the metric 'r/a/3 defined on a Frobenius manifold in section 1.2, one

may introduce a second metric gaf3. It is easier to define this metric as an inner

product, (,)*, of two l-forrns on the cotangent bundle TtM:

In the above formula, iE is the operator of contraction of a l-form along the Euler

vector field, whilst the product of two 1-forms is the dual of the product of their

dual vectors on TtM. In the flat coordinates {ti}, we may therefore define ga/3

in the obvious way, namely

Definition 1.10 The metric t~/3, above, is known as the intersection form of the

Frobenius manifold.

Where it is defined, the matrix inverse of the intersection form can be used to

define a metric (,) on TtM, that is to say:

This new metric is in fact related to the invariant inner product by the formula

(E· u, v) =< u, v> .

Note that gaj3 is therefore not defined at those points where E is not invertible.

Definition 1.11 The locus in M on which E-1 is not defined is known as the

discriminant of M.
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Lemma 1.12 The metric (,) inherits the flatness of <, >.

Proof: Deferred; this fact will follow automatically from the proof of a stronger

statement about flat pencils of metrics in theorem 1.14.

Definition 1.13 Two metrics g~/3 and g~/3 are said to form a flat pencil if:

is itself a fiat metric for all values of >. and the Christoffel symbols for the Levi-

Civita connection for g~/3 obey the equations:

where r?k is the Christoffel symbol r~ for the metric gij (likewise r~k for g;j and

r~k for g~), defined by:

rij = _gisrjk ks:

Theorem 1.14 The metrics rl:./3 and gQ/3form a flat pencil.

Before proving this statement, one recalls some standard facts of differential

geometry (see, for example, [14]). For an arbitrary metric gij in a coordinate

system {Xi}, the Christoffel symbols for the Levi-Civita connection are defined

by

From this definition, it is obvious that they are symmetric in the lower indices,

Le. rfj = rJi' A contravariant Levi-Civita connection for gij may then be defined

by
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It is uniquely determined by the equations

rij + rjik k

gisr{k

8 gijk ,

One may then calculate the Riemann curvature tensor

which will be identically equal to zero for a flat metric.

Proof: One may now prove theorem 1.14. Denote by r;k the Christoffel symbols

for rlj. Likewise rik for gij and r~kfor (g - AT} )ij. We require that

rij - rij 'rijAk - gk + A 11k'

If we use the flat coordinates {to}, then T}0f3 is constant, and so the components

of the Levi-Civita connection vanish. Therefore we require

rij rij
Ak - gk'

or equivalently

8 gijk , (1.3)

(1.4)nJsrik
9 AS'

Expanding the right hand side of

yields

8kgij - A8kT}ij,

8kgij,

due to the constancy of T}ij in the flat coordinates. Hence equation (1.3) holds

true. To prove (1.4), we use the fact that
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Recall from above that

By substituting this and comparing the coefficients of the highest power of tl, it

immediately follows that

which in turn implies

Finally, by recalling that

we obtain

as required.

Corollary 1.15 For the intersection form 9 of an arbitrary Frobenius manifold

M, there exists a set of distinguished (to within a linear transformation) set

of coordinates {pal such that the matrix gaf3(p) is constant, the so called flat

coordinates of the intersection form.

Proof: The above lemma implies that 9 is flat. Therefore the existence of coor-

dinates in which 9 is constant follows automatically.

Note that the intersection form expressed in its own flat coordinates will be

denoted by Ga/3.
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1.4 Semisimple Frobenius manifolds and canon-

ical coordinates

Definition 1.16 An arbitrary point t on a Frobenius manifold M is said to

be a semisimple point if the Frobenius algebra defined on TtM is semisimple,

i. e. contains no nilpotents. A Frobenius manifold on which a generic point t is

semisimple is known as a semisimple (or massive) Frobenius manifold.

Lemma 1.17 In a neighbourhood of a semisimple point of an n-dimensional

Frobenius manifold, there exists a local set of coordinates {ui} such that:

a a a
aui . auj = 6ij aui .

Proof: As the algebra on TuM is semisimple, there exists a set of n vectors

which are idempotents of this algebra. Denote these by {ail, i = 1, ... ,dim(n).

By definition, one has

In order for a coordinate system {ui} such that ai = 8~' to exist, one requires

that these vectors commute, i.e.

But this may be shown to be true using the curvature properties of the so called

deformed flat connection, V. The reader is referred to [10] for full details of this.

Definition 1.18 The coordinates {ui} as defined above are known as canonical

coordinates for the Frobenius manifold. Note that in general, Roman indices will

be used to denote the use of canonical coordinates, whilst Greek indices will denote

flat coordinates.
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Lemma 1.19 In canonical coordinates, the invariant inner product <, > takes

the form

the identity field in takes the form

and the Euler field (with a suitable choice of scaling of the coordinates) takes the

form

Proof: From the definition of multiplication in canonical coordinates and the

Frobenius property of the invariant inner product:

The second statement is obvious, as applying e to an arbitrary basis vector 8i

yields

and so e·v = v for any v E TuM. The final statement is also obvious, as rescalings

generated by E act on the idempotents by 8i ~ k-18i. An appropriate rescaling

of ui provides ui ~ ku", as required.

As can be seen from the lemmas above, canonical coordinates are an advantageous

representation of a Frobenius manifold in that they yield a simple multiplication
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law, a diagonal metric and identity and Euler fields of a simple form. Further-

more, the intersection form takes a simple form. By considering

it immediately follows that

However, there are drawbacks to canonical coordinates; whereas in flat coordi-

nates, the invariant inner product is a constant matrix (and automatically defines

a flat metric), this is not necessarily the case in canonical coordinates. Therefore

it may no longer be possible to express a Frobenius manifold in terms of a prepo-

tential function satisfying the (linear) WDVV equations, as is possible in the flat

coordinates {ti}. Instead, the structural data of a semisimple Frobenius manifold

may be considered in terms of the what Manin describes as the 'Darboux-Egoroff

picture' in [19].

Returning to the definition of a Frobenius manifold, one now considers the for-

mulation of a semisimple Frobenius manifold in terms of canonical coordinates

on a manifold M. It follows immediately from the definition of multiplication in

canonical coordinates that the algebras on the tangent space will be commutative

and associative. Showing that the inner product obeys the Frobenius property is

also simple. By taking the inner product of three idempotents, we require that:

But both sides of this equation are equal to 8ijkTJii, so the metric is Frobenius.

Hence in the presence of a covariantly constant identity field (and a flat Euler

field), the only obstruction to M being a Frobenius manifold is flatness of the

metric TJ. In order for a metric to be fiat, we require that the (2,2) curvature

tensor R~ obeys:

R~ =0,
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for all possible combinations of i, j, k and l. We recall from standard Riemannian

geometry that for an arbitrary metric g,

For the diagonal metric "'ij, the inverse ",ij is also diagonal. Hence the above

equations simplify to:

1 kk"2'" (aj"'ki + ai'T]kj - ak'TJij) ,

",ii (akril - a1rik + r~kr~l - r~lr~k).

For notational convenience in subsequent calculations, one will rewrite", in terms

of squared components, i.e.

It is also convenient for curvature calculations to introduce the rotation coeffi-

cients of "', defined by
o.n,

"V ._ J»< tr:
J

Note that in general lij =1= Iji. One now proceeds by calculating the Christoffel

symbols rfj. These calculations are split into four parts for varying combinations

of distinct and identical indices.

Case I: i,j,k distinct

As the metric is diagonal, all terms vanish so

Case II: i = j =1= k

We have

But as 'TJ is diagonal, the first two terms in the bracket are zero, so:

1 kk
--rl akrl"2" 'm,
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Case III: i = k =1= j

Note that as rfj is symmetric in its lower indices, this is the same as j = k =1= i.

By similar calculations to those above, we obtain

ri _ H,
ij - H. "(ji·

z

Case IV: i = j = k

Again, using similar methods to those above, one obtains the result

ri -ii - "(ii·

One may then use the Christoffel symbols to calculate the curvature tensor.

Again, these calculations split into several cases corresponding to the possible

combinations of distinct and identical indices:

Case I: i, j, k, l all distinct:

R~ l1ii(akri, - a,rik + r~krf,- r~,rfk),
0,

as every term in the sum contains a zero value of r.
Case II: i= j

It is easy to show that in this case,

irrespective of the values of k and l (including the cases where they are equal to

each other or i).

Case III: k = l, i =1= j

Again, it is easy to show that
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Case IV: i = k, i =1= j, i =1= l, j =1= l

We have

Rii - 1 (8ri 8 ri ) 1 (ri rp ri rp)
it - H~ i il - l ii + H2 pi il - pl ii .

I I'----_----'
A B

The two parts of this may then be calculated separately.

A =

B

Adding A and B then yields

(1.5)

Case V: i = k =I j, j = l

Similar calculations to those in case IV show:

(1.6)

In order for an arbitrary diagonal metric to be flat, one therefore requires that

(1.5) and (1.6) both be equal to zero. In the case of a Frobenius manifold, it

transpires that these equations simplify.
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Definition 1.20 A diagonal metric

'"' i 2".,= L- gii(du )
i

is said to be Egoroff iJ there exists a metric potential <I>such that

8<I>
gii = 8ui'

Lemma 1.21 The rotations coefficients 'Yij [or an EgorofJ metric are symmetric

in i and j, i. e.

'Yij = 'Yji'

Conversely, any metric whose rotation coefficients are symmetric will be EgorofJ.

Proof: For an Egoroff metric, we have

'Yij
8j~
~'

1 8i8j<I>
2~~'
1 8j8i<I>
2~../M'
8i~
~'

'Yji·

To prove the converse, one equates 'Yij and 'Yji to obtain

8jYG;; _ 8i.j9ij
.j9ij - y'9ii'

Applying the chain rule to expand 8jy'9ii and rearranging terms then yields the

potentiality condition

as required.
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Lemma 1.22 The metric on a semisimple Frobenius manifold expressed in terms

of canonical coordinates is EgoroJJ.

Proof: For a Frobenius manifold, one has Ve = O. If e = :L: eiai, then one may

split Ve = 0 into component equations:

Viej = aiej +L rikek,
k

all of which must be equal to zero. Noting that in canonical coordinates, ei = 1

for all i, this simplifies to leave

Splitting this sum and using earlier calculations of the Christoffel symbols for a

diagonal metric gives the following:

L rik + r1i + r1k'
k;j=i,j

i,ji - i'ij.

But as this must be equal to zero, so '"'Iij = '"'Iji. Hence the metric is Egoroff by

lemma 1.21.

Theorem 1.23 A diagonal metric on a semisimple Frobenius manifold (expressed

in its canonical coordinates) is flat if and only if

e( '"'Iij) O.
(1.7)

(1.8)

0,

Proof: For the metric to be fiat, we require that (1.5) and (1.6) both be equal

to zero. The equation (1.7) follows immediately from applying the condition
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/ij = /ji to (1.5). Substituting the symmetry of /ij along with (1.7) into the

requirement that (1.6) be equal to zero gives

p:f-i,j

LOp'ij,
p

e(rij) .

Hence two equations equivalent to the flatness of the metric have been found.

Definition 1.24 The equations {1.7}and {1.8}above are known as the Darboux-

Egoroff equations.

In addition to the Darboux-Egoroff equations, there is a third equation relating

the Euler field of a Frobenius manifold to the rotation coefficients of the metric

TJ·

Lemma 1.25 For the rotation coefficients "Iij of the diagonal metric TJij, one has:

Proof: In canonical coordinates, the intersection form takes the form

_ r i
gij - Vij U TJii·

If one denotes UiTJii by Bl (so B, = (ui)~Hi)' then the rotation coefficients of the

intersection form are given by

fJ,; = a;::, = (~) l1,;.

Noting that the intersection form is fiat, one has R~ = 0 for all i, i.k, l (where

(1.9)

R~ now denotes the curvature of g). In particular, one therefore has

Rg = B~B' (Od3ij + OJ{3ji + ~ (3Pi{3Pj) = o.
, J p#i,j
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By substituting in (1.9) and Darboux-Egoroff equations, one obtains

Noting that E = Ep upap, this implies the required result.

A final property of semisimple Frobenius manifolds is the existence of a Landau-

Ginzburg (LG) superpotential. Such a function allows the invariant metric, the

intersection form and the trilinear tensor c(a', a", a''') =< a' . a", a''' > to be

expressed by various residue formulae.

Theorem 1.26 For a semisimple Frobenius manifold, one is able to construct a

function A = A(Z; t) such that the following formulae hold:

a' Aa" A
- ~ res dA dz,

~dA=O

L a'(logA)a"(logA)d- res z,
dlogA=O d(log A)

a' Aa" Aa''' A
- ~ res dA dz.

~dA=O

< a' 8" >, (1.10)

(8', a") (1.11)

c(8',8",8''') (1.12)

Proof: One must choose a function A = A(Z; t) such that its critical values

coincide with the canonical coordinates, Le.

A(qi; t)

~~t. o.

Near any critical point qi, A must have an expansion of the form

A = ui _ (z - qd2 + O(z _ qi)3.
2"1ii

Hence, near these points, the inverse Z = Z(A; t) will be of the form

The existence of such a function will be assumed here; the reader is referred to

[10]proof of existence and an explicit construction.
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With such a function in place, one may now verify the three formulae above.

It is convenient to work in canonical coordinates for these calculations. Firstly,

consider

(recalling that ai = 8~' etc). The points at which dA = 0 are precisely the {qi}.

Hence we have

Ln ai Aaj A< ai, aj >= - res dA dz.e=su
l=l

Consider the right hand side of this. Near any point z = q!, we have

Hence the residues are zero except for when i = j = l, At these points, we have

1
- res \f'z=qi A

1
res 2( ,_no \ ,z=qi ~ + O(Z _ q.)22T/ii t

1 1
res -- 1 '
z=qi Z - qi -'1" + O(Z - qi)

"

.l.. + O~Z - q.) Iz=q.'T/ii t'

Therefore

as required. Similar calculations (remembering that ai log A = ¥) yield

(ai, aj)

(ai, aj, ak)

n«6ij-.,ut

Definition 1.27 The function A, as defined above, is known as the Landau-

Ginzburg (or LG) superpotential for a Frobenius manifold.



Frobenius manifolds 26

1.5 Polynomial Frobenius manifolds

Let n be a strictly positive integer. Polynomials of degree n+ 1may be considered

as maps from the Riemann sphere to itself (with an n+2 branch point at infinity).

If an arbitrary polynomial is of the form

( ) n+l + n + n-l + +p Z = a_IZ aoz alZ . . . an,

then one may use the freedom Z -+ bz + c (noting that there will still be an n + 2

branch point at infinity) to set a_I = 1 and ao = o. The space of such functions

may then be parameterised by the coordinates al, ... , an.

Theorem 1.28 Denote by An the affine space of polynomials of the form

() n-l-l + n-l + +p z = z alz . . . an.

If consideration is restricted to the subset of An where

d n
p'(z) = dP = (n + 1) II(z - Qi)

z i=l

has n distinct (simple) roots, then the structure of a semisimple Frobenius man-

ifold exists with the following structural data:

• Canonical coordinates [u'] will be defined by

• A flat diagonal metric is defined by the residue formula

~~
'TJi· = res Bu' BuJ dz.

J z=oo P'(z)

This metric will be Egoroff, with potential

-al~=--.
n+1
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• The identity field will be:

a
e = Ba;'

• The Euler vector field will be:

_I-I: i+1aiJ_.
n + 1 . n + 1 aa~ .

Proof: Firstly, one may use the linear independence of the ui to calculate l!!,r:

Hence I:!r has (n - 1) roots at z = ai, i =j:. j and is equal to 1 at z = ai. Therefore

ap I1 (z-a·)_ J

aui - (o, - ay
ii:j , J

Consideration is now turned to the formula for the metric, noting that the residue

at infinity of a meromorphic function is equal to the negative of the sum of the

residues at all other singularities. As the only places where this can occur are

the zeros of p' (z), we therefore have

In the case that i =j:. j, then everyone of the factors (z - aq) in the denominator

appears at least once in the numerator, hence the residue is of something finite

and so is equal to zero. In the case where i= i, we have

TI (z-ak)2
ki:i (a;-ak)2 d- res z,

z=ai (n + 1) TI,(z - a,)7Jii
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But noting that

p"(z) = (n + 1)L II(z - O!k),
j kh

we have

1
7]ii = - "( ).P O!i

To show that this metric is Egoroff, firstly recall that

This can be considered as a polynomial in z, so:

For a fixed value of i. this is a polynomial of degree (n - 1) with zeros at all of

the O!i for i of- j. Therefore

As c is the coefficient of zn-l in the right hand side, equating coefficients yields

Ba,
c= auj'

But from the fact that

t aa~zn-kl = 1,au) z=o·
k=l )

we can deduce that

1
c TIi#/ O!j - O!i) ,

-(n + 1)7]jj.
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Therefore

a -al
----'11--auj n + 1 - "))'

i.e. the metric is Egoroff with potential - na._;l .

Similar calculations show the desired results for the identity and Euler fields, as

can be seen in [19].

Finally, one must show flatness of the metric TJij' This could be done by using

the Darboux-Egoroff equations introduced above. However, one will instead con-

struct flat coordinates {to} in which the metric has constant coefficients. To do

this, a new function is introduced:

1

k(z) := An+l.

Near z = 00, this has the Puiseaux inverse series

One may then take ti, i = 1, ... ,n as flat coordinates. To prove that these are flat

coordinates, one uses the tangent vectors Ita in the LG-superpotential formula

(1.10) for the metric. The result is the antidiagonal metric

TJo{3 = 8o(n+1-o)'

Details of this calculation are omitted; see [10] for explicit proof.
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1.6 Frobenius structure on orbits of Coxeter groups

Definition 1.29 A Coxeter group is a finite group of linear transformations

generated by reflections on a vector space V ~ Rn.

There are many works outlining the full classification of Coxeter groups, e.g. [6].

The action of a Coxeter group can be considered to act on S(V), the group of

polynomials of coordinates of V. One may also consider a sub-ring R = S(V)W

of polynomials which are W -invariant. R will be generated by n linearly inde-

pendent polynomials yl, ... , yn, whose degrees are di, ... ,dn respectively. The

degrees d; will be fixed by the choice of the group W, and will satisfy the inequal-

ity

h = d1 > d2 > ... > dn-1 > dn = 2.

They also satisfy the duality condition

di + dn-i+l = h + 2.

Definition 1.30 The maximal degree of an invariant polynomial of a Coxeter

group, denoted above by h, is known as the Coxeter number of the group.

The table below lists all Coxeter groups and the degrees di of their invariant

polynomials.
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Coxeter Group dn,···, d,

An 2,3,... ,n+1

En 2,4,6,... ,2n

D2k 2,4, ... ,2k - 2, 2k, 2k, 2k + 2 ... , 4k - 2

D2k+l 2,4, ... , 2k, 2k + 1, 2k + 2, 2k + 4, ... ,4k

E6 2,5,6,8,9,12

E7 2,6,8,10,12,14,18

E8 2,8,12,14,18,20,24,30

F4 2,6,8,12

G2 2,6

H3 2,6,10

H4 2,12,20,30

12(k) 2,k

Example 1.31 12(k) is the symmetry group for the regular k-gon in the plane

]R2. This group can be generated by a reflection and a rotation through 2:, which

on C = ]R2 are defined by the transformations z ~ z and z ~ e 2; z respectively.

Under such transformations, it is easy to see that the invariant polynomials are

The action of a Coxeter group W may be extended to a complexified space

M = V®CjW. On this space, the invariant polynomials act as coordinates, and

are defined up to an invertible transformation

i -i( 1 n)y ~y y, ... ,y ,

where iii is a graded homogenous polynomial of degree di in the variables {yi}.

The vector field 81 := a'!ir (to within multiplication by a scalar) will be invariant

under such transformations, due to the inequality d1 > d2• Also, the invariant
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quadratic yn may be chosen to be

where {Xi} are orthonormal coordinates with respect to the W-invariant Eu-

clidean metric (, ) on V.

Definition 1.32 A regular orbit is an open subset of M, and is the image of

precisely h distinct elements V ® C under the quotient map Q : V ® C -+ V ®

C/W=M.

Definition 1.33 The complement of the space of regular orbits is known as the

discriminant locus of W, or as the space of irregular orbits.

The Euclidean metric (, ) induces a contravariant metric on the space of orbits,

defined by

ii( ) _ (d -:« i)* ._ L oyi oyig Y - y, y .- .oxa oxa
a

The components of the Levi-Civita connection are given by

ii k _ {)yi {)2yi b
rk (y)dy - -{) 0 {) bdx .xa xa X

Lemma 1.34 Both the metric gii, above, and its Christoffel symbols are polyno-

mials in x, and their degrees are given by

deg gii(y)

degr~(y)

d·+d·-2, J ,

Proof: As yi is a homogenous polynomial in x" and deg yi = di, it immediately

follows that differentiating once with respect to z" yields a polynomial of degree
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d; - 1. Therefore gij, which is the sum over a of the product of two polynomials

of degrees d, - 1 and dj - 1must be a polynomial of degree

Similar reasoning shows that

ij k _degfk (y)dy - di + dj - 3.

Noting that deg yk = dk, one obtains

Corollary 1.35 The functions gij(y) and f~(y) depend at most linearly on v'.

Proof: As

with h being the degree of yl, so

deggij < 2h.

Therefore yl can only appear in a linear way in gij (y). Likewise for f~ (y).

Definition 1.36 The function

D(y) := det(gij(y))

is known as the discriminant function of W.

This term is used because the discriminant locus of W coincides with the region

where D(y) = 0, i.e. where Xi fail to be local coordinates for V.



Frobenius manifolds 34

Definition 1.37 A new contravariant metric, known as the Saito metric, may

be defined by the formula:

Note that the definition above is strictly only of a (0,2) tensor. In order to show

that it is a metric, one must also show that it is non-degenerate (see corollary

1.39 below) and symmetric (which follows immediately from the symmetry of

gij).

Lemma 1.38 The Saito metric will be of upper triangular form

TJij = 0, i+ j > n + 1,

with nonzero antidiagonal elements

C. '= ni(n+l-i)
t· '/ '

Proof: From the definition of "I, one has

From the duality condition

di + d(n+l-i) = h + 2,

and the fact that the d, decrease with i, one has

deg(TJij) > 0, i+ j < n + 1,

- 0, i+ j = n + 1,

< 0, i+ j > n + 1.

As a polynomial of negative degree does not exist, one concludes that TJij (y) must

be zero for i + j > n + 1. Hence the triangular form is proved, To show that
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c, ::j:. 0, consider gi(n+1-i). But deg gi(n+1-i) = h, so one may express gi(n+1-i) as

a series

with a1 being a nonzero constant. Hence

'TJi(n+1-i)
n

= 81Lakyi,
k=l

Corollary 1.39 The Junction

is a nonzero constant.

Proof: As 'TJijis triangular, it follows immediately from the definition of a deter-

minant that
n

C = (-1) n(n2-1) IICi·
i=l

But from the above lemma, the Ci are all non zero constants, so C is itself a

nonzero constant.

Lemma 1.40 The metric 'TJijis flat. Moreover, gij and'TJij Jorm a flat pencil.

Proof: Proof is omitted. The reader is referred to [23], for a full proof.

For the contravariant metric <, >...defined by 'TJij,the Christoffel symbols will be
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Lemma 1.41 The degree of 1'~ is given by:

Proof: We have

deg r~ - deg yl ,

(di + dj - dk - 2) - h.

Theorem 1.42 There exists a set of homogenous polynomials t1(x), ... , tn(x),

of degrees d1, ••• , dn, such that 1]ij(t) is a constant matrix. They may be chosen

in such a way that 1] takes the antidiagonal form

Proof: From the flatness of 1]ij, the existence of a set of flat coordinates in which

1] is constant is assured. These flat coordinates are the solutions to the system:

Substituting ~l = Bit, this becomes

Noting that (1]ij(Y)) := (1]ij(y)tl exists (and is in fact a polynomial in {yi}), the

above system may be rewritten as

This overdetermined holonomic system has an n-dimensional space of solutions.

If one defines



Frobeni us manifolds 37

then by setting

~r(O) 8r,
t" (0) 0,

we have functions which are analytic for small y and the space of solutions is

invariant under

Hence ta(y) are quasihomogenous in y with degrees d1, ••• ,dn. Therefore they

are polynomials in {yi} as the degrees are all positive integers. Therefore the

ta = ta(y(x)) are polynomials of a polynomial function of {Xi}, so {tal are

polynomial functions of {xi}.

Definition 1.43 The flat coordinates {to} from the above theorem are known as

the Saito flat coordinates.

One is now able to state the following theorem, first proved by Dubrovin in [12].

Theorem 1.44 Let tl, ... .t" be Saito flat coordinates on the space of orbits of a

finite Coxeier group and 'f}0f3the Saito metric. Then there exists a quasihomoge-

nous polynomial F(t) such that

(dtO, dtf1)* = da + ~f1- 2 'f}0).'f}f3Jl.8).8/-1F(t). (1.13)

The function F(t) will be the prepotential for a Frobenius manifold and is uniquely

determined (to within an equivalence) by the choice of the Coxeter group W.

Proof: The proof below is an outline of the proof given in [10]. For a rigorous

proof, the reader is referred to [10]or [12].
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Begin by noting that as T]ij and gij form a fiat pencil, with T]ij being constant in

the coordinates of theorem 1.42, one has

where ~~t3 is the difference tensor introduced in [10], appendix D. Using the

equation D.1a from [10],one may express the Christoffel symbols of go.t3 by

for some vector field ft3. This is then used in conjunction with the homogeneity

of the invariant polynomials to obtain (via an application of the Euler identity)

the equation

(1.14)

Using this equation along with the symmetry of g0t3 and T]0t3, one obtains a new

symmetry:
T]t3f{)J"Y T]"Yf{)Jt3

d"Y - 1 - dt3 - 1 .

Defining a new field

one obtains the symmetry

But this is integrable; there exists a function F(t) such that

It follows clearly (from the homogeneity of the invariant polynomials) that F

itself will be quasihomogenous (with degree 2h + 2). Also, (1.14) implies that F

will in fact satisfy (1.13). Having established the existence of F, one must now

prove that it is a solution to the WDVV associativity equations. Using the dual

structure constants
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it is possible to show that

faf3 _ df3 - 1 af3
'Y - h c'Y.

Recalling that in this case, ~~f3 = f~f3, one may substitute this into the equation

D.2 from [10], appendix D to obtain associativity.

Corollary 1.45 The Frobenius structure on the orbit space of a finite Coxeter

group will be semisimple.

Proof: The complete proof of this is beyond the scope of this text (see [10] and

[12] for full details), but the main ingredient is a polynomial in an auxiliary

variable u defined by

If one denotes the discriminant of this with respect to u by DO(Yl, ... , Yn) then

one may show that TyM has no nilpotents outside of the zeros of Do [12, 10].

But Do does not vanish identically on the space of orbits, so the algebra on TyM

will have no nilpotents at a generic point. Hence the desired result.

Example 1.46 Recalling the I2(k) example from above, we have invariant poly-

nomials

In these coordinates, one may calculate gij to be

Therefore the Saito metric is given by

.. (0 1)TJ'1 = .
1 0
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As this is already in constant antidiagonal form, yl and y2 coincide with the Saito

flat coordinates. Hence the set of differential equations defining F(t) are

2k - 2
k 8282F(t),

8I82F(t),

8I81F(t).

It is easy to see that

is the solution to these equations. Note that this is equivalent to the first of the

two dimensional solutions to WD VV listed in section 1.1.

1.7 Hurwitz Frobenius manifolds

Let Hg;no, ...,nm be the Hurwitz space of equivalence classes [A: £ -+ JPI] of N-fold

branched coverings A : C -+ pI, where C is a compact Riemann surface of genus

g and the holomorphic map A of degree N is subject to the following conditions:

• it has n (where n is the dimension of the space given by the Riemann

Hurwitz formula below) simple ramification points PI, ... ,Pn E C with

distinct finite images 11, ... ,In EeC pI;

• the preimage A-l(OO) consists of m + 1 points: A-l(OO) = {oos, ... , oo.,},

and the ramification index of the map A at the point OOj is nj + 1 (0 ~ nj).

The ramification index (above) at a point is the number of sheets of the covering

which are glued together at that point. A point OOj is a ramification point if and

only if nj > O. A ramification point is simple if the corresponding ramification

index equals 2.
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Such a space will have a dimension n given by the Riemann-Hurwitz formula
m

n = 2g +Ln; + 2m.
i=O

Example 1.47 The Hurwitz space HOj1,o consists of all functions of the form

bA( z) = Z2 + a + --.
z-c

The Hurwitz space HOjno consists of all functions of the form

More generally, the Hurwitz space HOjno,nl, ... ,nm will be the space of functions of

the form
m nr

() no+l no-l ""'''"' Cr,sA Z = Z + alZ + ... + ano + f:t ~ (z _ f3r )s+1 .

Finally, as a higher genus example, the Hurwitz space Hgj1,o will consist of hy-

perelliptic curves of the form
2g+1

J.L2 = IT (,,\- ui).
i=1

Note that in the above example, one has assumed that there is no zno term in the

genus-zero cases. This will be the case for all Hurwitz spaces, so that one may

use the critical values of ,,\as coordinates on the space, Le.

One will assume that the critical points are distinct, Le. Pi f. Pj for i f. j
Similarly, in higher genus cases, one will take critical values of the projection

(.,\, J.L) -+ ,,\as coordinates.

Theorem 1.48 The structure of a semisimple Frobenius manifold exists on an

arbitrary Hurwitz space Hgjno,nl, ... ,nm' The coordinates {ui}, defined above as the

critical values of A, will be canonical coordinates on the manifold. The function

,,\ will be a Landau-Ginzburg superpotential for the Frobenius manifold.
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Proof: A full proof is given in chapter 5 of [10], the main components of this

proof are included below. Dubrovin's proof hegins by introducing an admissible

inner product. Such an inner product, denoted <, >¢2, will be compatible with

the multiplication· in the usual way. Its action on arbitrary tangent vectors 8'

and 8" is defined to be

The one-form n¢2 above is defined in terms of what Dubrovin calls a primary

deifferential, ¢>, by:

Using the covering

where k, is a branched root of A near OOi (i.e. k~i+l ~ A(z) near OOi) and {ai, bd
is a marked symplectic basis.

Dubrovin then gives a list of five admissible primary differentials. They are:

1. Normalised abelian differentials of the second kind with poles only at branch

points 000, ... ,OOm' The orders of these poles will be less than the corre-

spondant orders of the differential d):

2.

m

¢> =L a-il/)wi •

i=l

Here the coefficients <Si are independent of the point on M. The differentials

¢>vi are second kind abelian differentials on C, their principal part takes the

form

¢>vi = -d)" + regular terms

near OOi, subject also to
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3.
m

<p =2: O:i<Pwi.
i=l

As above, the O:i are independent of the point on M. However, the <Pwi will

now be abelian differentials of the third kind, with simple poles at 000 and

OOi, whose residues will be -1 and 1respectively.

4.

9

<p = 2: f3i<Pri,
i=l

with f3i independent of point on M. The components <Pri are normalised

multi-valued differentials, with increments along cycles bj defined by

with no singularities other than those prescribed by the line above.

5.

9

<P =L Ii<Psi ,
i=l

with Ii independent of the point on M and <Psi holomorphic differentials

normalized by

By defining

z(P) ==l: <p,
000

one may set <P = dz, which allows A to be used as a superpotential for the mani-

fold. Dubrovin then goes on to show that the flat coordinates for this Frobenius

manifold also consist of five parts:

tA - (ti;a ,; - 0 m 0: - 1 n··pi. qi . rj• 8j J. - 1 g)- ,.- ,... , , -, ... , " , ,, , , - , ... , ,



Frobenius manifolds 44

where

r= resk;opdA,
OOi

pi V .p.lOO; dp,
000

qi -resoo; Adp,

ri
t;dP,

si -~i Adp.
27rZ a;

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

The invariant inner product in these coordinates takes the form:

1--<5 .. <5 Il 1n; + 1 lJ o+f',n;+ ,

1
ni + 1<5ij,
1

-2 .<5ij,
7rZ

TJo{J o otherwise.

Example 1.49 Consider again the Hurwitz space HO;l,O. This consists of the

space of functions of the form A = Z2 + a + z~c. For convenience (and without

loss of generality) one may instead assume that they are of the form

1 b-A = Z2 +a+ --.2 z-c

Using a, band c as coordinates on this space, one may, using the LG formula

(1.10), easily show that

TJij = 0 0 1

010

100

Similarly, using (1.12), one may show that

Caaa = 1 Cabc = 1

C - 1
bbb - Ii

Ccce = b,

Cbcc = 1
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and is otherwise zero. As the metric is constant, the coordinates are already fiat,

so these may be integrated up to give (to within addition of quadratic terms) a

prepotential

Some properties of genus zero Hurwitz spaces will be studied in greater detail in

chapters 3 and 4. For higher genus examples, one needs to introduce the notion

of elliptic functions. A simple example, taken from [10] is given below.

Example 1.50 The Hurwitz space HI;I is the space of elliptic curves of the form

(1.20)

Using a Weierstrass normalization and the primary differential

d _ dz
p- 2w'

a superpotential

A(p) := p(2wp; w, W') + c

may be constructed. The constant c is such that the squared term in the equation

(1.20) expressed in terms of (A-c) vanishes. Dubrovin constructs fiat coordinates

tl ~ (-c+ 17) ,
7rZ W

e 1,w

t3 w'
w

These were constructed using modified versions of the formulae (1.15-1.1g) such

that the metric takes the form

Further examples of Frobenius manifolds on genus one Hurwitz spaces will be

considered in chapter 5.
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1.8 Almost duality

Let M be a Frobenius manifold and denote by E the discriminant of M (recall

that the discriminant is the locus where the Euler field E is not invertible). One

may define a new multiplication * on M* =M\E by

u * v := E-1 • u· v.

Lemma 1.51 This new multiplication, coupled with the intersection form (,),

defines a Frobenius algebra.

Proof: Associativity and commutativity follow immediately from the definition

of *. Likewise, it is easy to see that E will be a unity element with respect to the

new multiplication. Finally, one must show that

But from the definition of *:

u·v
(E'w),

u·v
- < E2 ,w >,

u v·w
- < E'E>'

(u,v*w).

Theorem 1.52 The multiplication *, along with (,) and a unity E (which will

also act as the Euler field) satisfy all of the axioms of a Frobenius manifold except

for covariant constancy of the unity element.

Proof: The existence of a Frobenius algebra has been shown above. Furthermore,

as the metric is just the intersection form of the original Frobenius manifold,
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flatness follows automatically. To show that FM4 is satisfied, one will instead

consider the (equivalent) condition of

being symmetric in 0, (3, "I, where V is the Levi Civita connection of the inter-

section form. One has

Noting that as 8fcpaP is symmetric in all four indices, one also has:

Coupling this with

one has

Using the result from [13] that

raP _ af(d - 1 "E)f3
'Y - c'Y -2- + v '1 e '

where YO'1is the Levi Civita connection of <, > and associativity, this then be-

comes

The symmetry of the second term (Le. the one is quare brackets) is obvious. To

show that the first term is symmetric in 0, (3, 'Y, note that

which is symmetric in 0, (3, "I as required.
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Corollary 1.53 A function F* exists such that

83 F* _ 8fY 8pa 8pb n{3

8pi8pi8pk - GiaGjb8pk 8tn 8tf3c, (t).

This function will satisfy the WD VV associativity equations

* Gab * * Gab *Cija Cbkl = Clja Cbki·

Proof: The existence of a function F* whose third derivatives are equal to

c*(a~i , a~ , ~) follows from the above theorem (existence of a prepotential for a

Frobenius manifold not being reliant upon covariant constancy of the unity).

Noting that the multiplication *will define the same multiplication on the cotan-

gent space as . does, one has

Performing a change of variable from t to p on this (2, 1) tensor and lowering the

upper indices using

where Gij is the intersection form expressed in terms of its own flat coordinates

{pi} provides the desired result.

Example 1.54 Consider the Frobenius manifold with the prepotential and Euler

field given by:

The intersection form is
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One may easily show that the flat coordinates for g are given by

In these coordinates, the intersection form takes the form

One may then apply the almost duality formula (1.53) to obtain

These may then be integrated to obtain F*. In order to do this, one requires the

polylogarithm function Lin, defined by
00 r

Lin{z) := ""' ~. (1.21)~rn
r=l

This series is convergent for Izl < 1 and may be defined by analytic continuation

elsewhere. It satisfies

Lio{z)

:z Lin(z)

z
1- z'

!Lin-1 (z).z
Integrating the eijk three times yields

F* = !ZlZ2 (z~ + z~)) - _!_ (z~ + z~) + -21(LiaeZl-Z2 + LiaeZ2-Z1) .(1.22)4 12
For more detailed examples of such calculations, see section 4.3.

Consideration is now turned to semisimple Frobenius manifolds. On such mani-

folds, the dual multiplication * in the canonical coordinates of . is given by:



Frobenius manifolds 50

Lemma 1.55 For a semisimple Frobenius manifold, the almost dual multiplica-

tion * will be semisimple. Canonical coordinates for this multiplication are given

by

Proof: Using the notation!

one has

Substituting this into formula for the almost dual multiplication yields

Hence the multiplication * is semisimple and {ri} are the canonical coordinates

for it.

Corollary 1.56 Let M be a semisimple Frobenius manifold with an LG superpo-

tential A. Then the trilinear tensor c*(8',8",8''') may be expressed by the residue

formula

*(~ ~, ~") = - L 8'(logA)8"(logA)8'''(logA)d
c u, u ,u res d(l ') z.

doX=O og 1\
(1.23)

Proof: Canonical coordinates will be used to prove this theorem (as only

semisimple Frobenius manifolds are being considered, the existence of such co-

ordinates is guaranteed at a generic point). Consider the left hand side of the

1Note that throughout this proof, there will be no summation over repeated indices.
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above formula:

Next, consider the right hand side:

La' (logA )8" (logA )8''' (logA) d
- ~ Z

d,\=O d(log A)

But near z = ql, we have aiA = t5i1• Therefore the residues are zero, except for

when i = j = k, in which case the residue will be non zero at the point z = qi

(but zero everywhere else). Note that at z = qi, .,\will be nonzero (in fact it will

be equal to ui). Hence {2 may be brought outside of the residue to give

* 1 t5ijt5ik
CiJ'k = --( ')2 res ~dz.u' Z=Zi A

But if i = j = k, recall from above that this is the same residue as occurred in

the calculation of 1]ii. Therefore

as required.

Example 1.57 Consider the Frobenius manifold on the Hurwitz space Ho;o,o with

superpotential
a

A(Z) = Z + --b.z-
Using the residue formulae (1.10) and (1.12), one may show that a and b are flat

coordinates and that the prepotential is

( ) 1 2 1 2 ( 3)F a, b = 2b a + 2a log a - 2 .
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One may also show using the formula (1.11) that the flat coordinates of the in-

tersection form are the zeros of A, i.e. if one writes

then ZI and Z2 are the flat coordinates of the intersection form. One may therefore

use the tangent vectors g. in the formula (1.23) to obtain (by simple residue
z

calculations)

*
1 1

CUI ,
ZI Zl - Z2

*
1

CU2 ,
Zl - Z2

*
1

CI22 ,
Z2 - ZI

*
1 1

c222
Z2 Z2 - ZI

These may be integrated up to give the almost dual prepotential

(1.24)

Full details of similar calculations can be seen in sections 4.1 and {2.

1.9 Legendre transformations

Definition 1.58 A symmetry of the WDVV equations is a transformation of the

form

t -t t,

F -t F,

such that F is a solution to the WDVVequations.
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One type of symmetry of the WDVV equations is a Legendre transformation.

These were defined in [10]in the following way:

Definition 1.59 The Legendre transformation Sk defines new coordinates

The new prepotential F is defined implicitly by the differential equation

82F 82F
8ia8i(3 - 8ta8t(3' (1.25)

whilst the metric remains invariant;

Note that tangent vectors in the two coordinate systems are linked by the rela-

tionship

Putting a = k, one obtains

Finally, consider a new metric defined by

It follows immediately that this metric will be Frobenius. Moreover, by putting

a = 80t and b = 8(3, one obtains:

< 8k• 8k,aOt• a(3 >,
< 8k • e;8k • 8(3 >,

< 8a, 8(3 > .

Hence the new metric <, >k is TJOt(3. Also, as tOt are flat coordinates for TJa(3, so tOt

must be flat coordinates for TJOt(3.



Frobenius manifolds 54

Example 1.60 This example appeared in [10j, and applies the Legendre trans-

formation 52 to the prepotential

F = ~(e )2t2 + et2 •
2

The new variables are defined by

p ,

log f1 ,

From (1.25), one obtains

FU t2 log f1 ,
Eh t1 [2 ,

F22 t2 rie t .

Integrating yields the prepotential

F = ~(P)2£l + ~(£l)2 (lOg£! - ~) .

In summary, the concept of a Frobenius manifold has been introduced and two

particular classes of semisimple Frobenius manifolds - those on the orbit space of

a Coxeter group and those on a Hurwitz space - have been constructed. These

two categories are closely linked, as illustrated by the fact that the polynomial

Frobenius manifolds introduced in section 1.5 lies in both classes. The rest of this

thesis will be laid out as follows. Chapter 2 will introduce the idea of submanifold

geometry for Frobenius manifolds, in particular the idea of natural submanifolds

which may be classified in terms of caustics and discriminants. Chapter 3 will

then deal with caustic submanifolds of genus zero Hurwitz spaces. Chapter 4

again studies genus zero Hurwitz spaces, this time considering the application

of the almost duality of section 1.8 to discriminants. A modified version of the

Legendre transformations introduced in section 1.9 will be constructed and used

to link certain almost dual solutions of the WDVV equations. Finally, chapter 5

will continue to study almost duality, but this time for a special class of genus

one Hurwitz spaces.



Chapter 2

Submanifolds

2.1 Induced structures

The relationship between the geometry of a submanifold and its ambient manifold

is one of the oldest problems in the field of differential geometry. Therefore it

is an obvious problem, given a Frobenius manifold, to study the geometry of

its submanifolds, and whether the rich mathematical structure of a Frobenius

manifold carries over to the submanifold. In order to do this, a brief recap of

induced structures on a submanifold will be given.

Let M be a manifold (of dimension m) such that a commutative multiplication

is defined on the tangent space at every point p. Also, assume that a metric

TJ =<, > exists on M. Then for any n-dimensional submanifold N c M, one

may define an induced multiplication

* :TpN x TpN -+ T,N

55
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by

a * b = pr(a 0 b),

where a and b are arbitrary vectors on TpN and pr() is the projection using 'rI.

This idea is illustrated in the diagram below.

XoY

Y

Definition 2.1 N is said to be a natural submanifold oj M iJ

a * b = a 0 b, Va, b E TxN c TxM

Z. e. no projection is necessary.

The definition above can be extended to manifolds not endowed with a metric

by expressing it as the equivalent condition

In addition to the induced multiplication, one may define an induced metric 'rIN

on N. Let {ti} be local coordinates on M. Then N may be parameterised by

Hence 8~o forms a basis for TpN, defined by the formula

a ati a
ara: - ara: ati .
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With these coordinate systems, the components of 77Jv, denoted by TJo{3, are given

by the formula
ati atj

TJo{3 := aTo aT{3TJij' (2.1 )

One may reconstruct a basis for TpM from the basis of TpN" by adding an or-

thogonal compliment, i.e.

~=Ao~+n~~ 1t ,a = ,... ,m - n,ati t aTo. aI/a
a ,ul.-a E (Tp-''') .I/a

Hence, using TJ and TJN,

Ao _ o{3 atj
i - TJ TJij aT{3 .

Theorem 2.2 If a and TJ satisfy the Frobenius condition

< aob,c >=< a.b o c >,

for a, b E TpM, then the induced multiplication and metric (* and TJN) will satisfy

the Frobenius condition on an arbitrary submanifold N eM.

Proof: Let cfj denote structure constants defining the multiplication on TpM by

Induced structure constants c~{3 such that ao * a{3 = c~{3a"Y may be defined in the

following way:

Projecting this onto N yields

but
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Therefore
"! _ ati atj Bt" "!~ k

Ca/3 - aTa aT/3 aT~'f}kT'f} ciklN.

Now note that the Frobenius condition is equivalent to symmetry (in all three

indices) of the tensor

On N, one has
ati atj atT

cafh = aTa aT/3 aT~ 'f}"!l 'f}kr 'f}"!~Cfk IN.
A suitable reordering of the terms and summations therefore yields

ati atj atk
Ca/3"!= aTa aT/3 aT"! Cijk IN,

which is symmetric in all three indices as required.

2.2 Frobenius submanifolds

Definition 2.3 Let M be a Frobenius manifold and N an arbitrary submanifold

of M . .N is said to be a Frobenius submanifold if it is a Frobenius manifold with

respect to the induced structures defined above.

Recalling the large number of conditions which must be satisfied in order for a

manifold to be a Frobenius manifold, it becomes immediately apparent that gen-

erally a submanifold of a Frobenius manifold will not be a Frobenius submanifold.

For example, the metric on a Frobenius manifold must be flat, but this will not

automatically be the case for the induced metric on the submanifold. Similarly,

the induced multiplication on the submanifold may not inherit the associativity

of the multiplication on the ambient manifold.

If one considers the simplest non-trivial case, namely a two dimensional subman-

ifold of a three dimensional Frobenius manifold, then a suitable condition for
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a submanifold to be a Frobenius submanifold may be expressed easily by the

following lemma.

Lemma 2.4 Let M be a three dimensional Frobenius manifold and N a two

dimensional submanifold. If the identity field e is tangential to N at all points

tEN, then N is a Frobenius submanifold.

Proof: The tangentiality of e implies the submanifold may be parameterised

o
o

al (T2)

+ a2(T2)

a3(T2)

In order for the submanifold to be in its own flat coordinates, we require

~=~IN= C ~)
Recalling the equation (2.1) and using 1JN12 = 1, one has:

otl ot3 ot2 ot2 at3 atl
1 OTI aT2 + arl ar2 + arl ar2 '

at3

or2•

Hence, taking the constant of integration to be zero,

Similarly, using 'TJN22 = 0, along with the above result, one obtains:

atl at2 at2
2ar2 + ar2 ar2 = 0,

or

One may now consider the algebra on the submanifold. As OTI = e, it automati-

cally follows that
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Finally, one may show that

OT2* OT2 = (_~a~4 + a~3c2221N + 3a~2c2231N + 3a~c2331N + C333IN) OT!

+(_a~3 + a~2C2221N + 2a~C2231N + C233IN)Ov,

where

which is orthogonal to N. Therefore

OT2* OT2 = ( _~a~4 + a~3c2221N + 3a~2c2231N + 3a~c2331N + C333 IN) OT1'

This multiplication is trivially associative (as it is two dimensional) and hence

the induced structure is a Frobenius manifold. The prepotential is given by

FN(Tl' T2) = ~TtT2+! !! (_~a~4 + a~3c2221N + 3a~2c2231N + 3a~c2331N + C333 IN) dTi.

Corollary 2.5 The Frobenius manifold from the above theorem is natural if

Proof: If a2 satisfies this equation, then it immediately follows that a 0 b = a * b

for all a, bEN. Hence the submanifold is natural.

Example 2.6 Consider the Frobenius manifold corresponding to the Coxeter

group A3• In flat coordinates, it has prepotential

12 1 2 122 15
F = "2tlt3 + "2tlt2 + 4t2t3 + 60t3'

The two dimensional submanifold to which e = Ot! is always tangential may be

parameterised (in its own flat coordinates) by:

o
o

-~f(:~)2dT2

+ b(T2)
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Consideration of the quasihomogeneity conditions then implies that t2 = b(72) =
3

k 2 d t - 9 k2 272 an 1 - 71 - 16 272.

Theorem 2.7 Let M be an m-dimensional Frobenius manifold and N a two

dimensional submanifold. If the identity field e is tangential to N at all points

tEN, then N is a Frobenius submanifold.

Proof: The proof of this statement is a direct generalisation of the three dimen-

sional case. Begin by parameterising the submanifold by

o
+

o
The flat coordinates are given by setting

A prime denotes differentiation w.r.t. 72 in the above formula. The rest of the

proof then follows in the same way as in three dimensions.

Example 2.8 Let M be the four dimensional F'robenius manifold corresponding

to the Coxeter group F4. Then its prepotential is

F - !2 !3 _!._ 4 ! 3 3 _!._ 2 5 _1_ 2t1 1 13
- 2 t1t4 + t1t2t3 + 6 t2t4 + 12 t3t4 + 6 t2t3t4 + 60 t2t4 + 252 t3 4 + 185328 t4 .

One may parameterise the two dimensional submanifold (in its own flat coordi-

nates by)

t1 71 1J"+"d-2" a2a3 a3a2 72

t2 0 a2(72)
+

t3 0 a3(72)

t4 0 72
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The quasihomogeneity condition then implies

This in turn allows one to calculate

For submanifolds of dimension greater than two, formulating necessary conditions

for a Frobenius submanifold becomes considerably harder, as the associativity is

no longer trivially guaranteed. In the case of a natural submanifold however,

an elegant expression of necessary conditions for a Frobenius submanifold was

provided in [24], and is stipulated in the theorem below.

Theorem 2.9 Let N be a flat natural submanifold of a Frobenius manifold M.
If the identity field e and Euler field E are both tangential to N at all tEN,

then N is a Frobenius submanifold.

Proof: A sketch of the proof will be given here; see [24] for full details.

To prove that such a submanifold is a Frobenius submanifold, the WDVV formu-

lation of a Frobenius manifold will be used. Firstly, one considers the existence

of an induced prepotential FN satisfying

The integrability condition for this is

Strachan shows how, due to the submanifold being natural, the obstruction to

integrability vanishes.
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Secondly, the existence of a covariantly constant identity field is proven. This is

done by parameterising the submanifold

T1 + f1(T2, ... , r"),

fi(T2, ... ,Tn), 2:'S< n,

(2.2)

(2.3)

(2.4)

Hence
a a

e = at1 = aT1'

Also, using the relevant formulae, one has, in these coordinates,

as required by the WDVV equations.

Finally, Strachan shows that the Euler field onN is linear in TO and satisfies the

quasihomogeneity condition

hence meaning that F,N is not only quasihomogenous but is of the same degree

as F.

2.3 Semisimple natural submanifolds

As stated earlier, a submanifold of a Frobenius manifold will not, in general, be

a Frobenius submanifold. It is therefore natural to consider which (if any) of the

properties of the ambient Frobenius manifold a given submanifold will inherit.

The following definitions will be useful in addressing this questions.

Definition 2.10 A manifold M endowed with a commutative and associative

multiplication
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defined on the tangent space at every point p is an F-manifold if

An FE-manifold is an F -manifold on which a quasihomogenous Euler field is

defined, such that

.cE(O) = d· o.

An FlI-manifold is an F-manifold on which a metric 'T1 =<, > satisfying the Frobe-

nius condition is defined.

An F-manifold is a manifold which adheres to the axioms of both an FE-manifold

and an FlI-manifold, as well as the additional condition

LE <,>= D <,>,

for some constant D.

Consideration is now restricted to semisimple F-manifolds. On such a manifold,

the tangent space decomposes into one dimensional algebras, and so a set of

canonical coordinates {ui} exist such that

This is entirely analogous to semisimple Frobenius manifolds (a Frobenius man-

ifold being a special case of an F-manifold). In the case of a semisimple FE-

manifold, the Euler field takes the familiar form

Similarly, on a semisimple FlI-manifold, the metric will (in canonical coordinates)

take the diagonal form
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Definition 2.11 A submanifold defined by the condition ui = 0, for' one or more

values of i is a discriminant hypersurface, and will be denoted V.

A submanifold defined by the condition ui - uj = 0 for some pair ui and uj, where

i =I i. is known as a caustic, and will be denoted K.

A suitable ordering of the coordinates allows such manifolds to parameterised

The submanifolds may then be denoted

(kl' ... , kn' 0, ... 0).

Definition 2.12 A submanifold of the form (kl, ... ,kn) is known as a pure caus-

tic. A submanifold of the form (1, ... ,1,0 ... ,0) is known as a pure discriminant.

Lemma 2.13 Submanifolds of a semisimple F -manifold of the form K nV are

natural F -manifolds.

Proof: The proof of this statement follows automatically from the definitions.

Lemma 2.14 Let M be a semisimple FE-manifold. Then any submanifold N =
K n V will be a natural FE-manifold. Moreover, the Euler field will be tangential

to N, that is EN = EIN.

Proof: The Euler field on M is

'" . {)E = ~u'{)ui'
i
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Noting that on N, ui = 0 for i E 1), this becomes

But ui = Ta(i), where a E 1, ... n, and

o
OTa(i) .

Noting that there are ka of the ui equal to r", the Euler field is therefore

EIN = LkaTa a~a'
a

But this is tangential to N, so and so defines an Euler field EN = EIN. As

the multiplication and Euler field on N are the same as they are on M, so the

quasihomogeneity property must also follow.

Lemma 2.15 Any submanifold of a semisimple :F-manifold which is of the form

JC n 1) will be a natural :F-manifold.

Proof: It follows from the above lemma that such a submanifold will be a natural

FE manifold, and the existence of an induced metric ensures it will also be an F'T/

manifold. Therefore all that is left to prove is that

However, noting that EN = EIN and that the induced metric is

with

the quasihomogeneity property of the ambient manifold is automatically inher-

ited.



Submanifolds 67

Lemma 2.16 The only natural submanifolds of a semisimple F-manifold are

those of the form JC nV, i. e. the intersections of caustic and discriminant hyper-

surfaces.

Proof: Firstly, note that using the inclusion map z :N ---t M, one may push

forward vectors from TtN to TtM by the formula

o oui 0
Z -- - ----* ora - ora aui .

Also, tangent vectors on TtM may be orthogonally decomposed:

a a 0 b 0-a . = Ai -a + Ni !l b'ut ra uV

Hence one has (noting that the multiplication is canonical)

a 0
--0-- =
ora or{3

As the submanifold is natural, the orthogonal component must vanish to give the

equations
m . .

~b ~ ou' aU' b
=af3= ~ ara orf3Ni = O.

i=l
It is convenient at this point to use a Monge parametrisation! of N:

i i· 1u r, Z = , ... ,n,

With this parametrisation of N, one has:

~b ~ oui oui b ~ ouj ouj b
=af3 = ~ ora orf3N; + ~ ora orf3 N; ,

i=l j=n+l

n i i b m-n ohj ohj b
L8a8f3Ni + L ora or{3Nj+n
i=l j=l

m-n oM ohj
8a{3N!+ L ora or{3NJ+n

j=l

1Note that if ui = 0 for some i < n, this parametrisation breaks down. However, this can

be overcome by a suitable reordering of the ui.
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Now observe that N may be described as the intersection of level sets:
m-n

N = n {4)b = O},
b=l

where cl} = hb_unH. Noting that \lcli is orthogonal to the hypersurface described

by cl} = 0, one may choose the b so that

b _ 8c1}
Ni--8·· ut

This splits into two cases:

i = 1, ... ,n,
_<5~+n, i = n + 1, ... ,m.

Using these values for Nf, the 2~,8become:

But this must be equal to zero. Also, note that on N, ui = ui(r.), and so in

particular (by applying the chain rule) one has:

8 8
8ui - 8ri' i ~n.

Combining this with the above and equating to zero gives

8hb 8hb 8hb

80:,88ro: - 8rO: 8r,8 = O.

Hence

- 0, a =1= 7r(b),

- 1, a = 7r(b),

for a single value 7r(b) (the existence of which is possible but not guaranteed).

Hence either hb = ab or hb = U7r(b) + ab, where ab is an arbitrary constant. Now,

observing that
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hb must be a homogenous function of degree 1, so ab = o. Hence either hb = 0

or hb = u7r(b). Therefore the conditions hb - unH = 0 become the discriminant

condition (if hb=O) or the caustic condition (if hb = un+b).

Theorem 2.17 Let M be a semisimple :F -manifold and N be a natural sub-

manifold. The identity field e will be tangential to N if and only if N is a pure

caustic.

Proof: The semisimplicity condition implies that the identity field takes the

form
o

e =L oui

on M. On a submanifold N, there will be a unity field

n a
eN =L oro·

0=1

On a natural submanifold, the orthogonal decomposition of e may be expressed

(in the coordinates and notation of the previous theorem) as

m a a n-m ( n Ohb) a
~ OUi = ~ oro - t; 1- ~ ori ovb•

Hence, for e to be tangential to N, one must have

n ohbL ori = 1, b = 1, ... , (m - n).
j=1

But as hb = 0 or hb = U7r(b), this condition is only satisfied in the second case,

which corresponds to a caustic. It must be true for all b = 1, ... , (m - n), in

order for e to be tangential to N. Therefore e being tangential implies N is a

pure caustic.

Corollary 2.18 Any flat pure caustic of a semisimple Frobenius manifold is a

natural Frobenius submanifold.
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Proof: Noting that a Frobenius manifold is a special case of an :F manifold, from

the theorems above, one has that a pure caustic is natural submanifold and that

e and E are tangential to it. Hence the criterium of theorem 2.9 are adhered to.

Therefore the flat caustic is a natural Frobenius submanifold.

This result gives a theoretical way to find Frobenius submanifolds, though in

reality finding flat caustics is computationally difficult.

2.4 Coxeter subgroups and Frobenius subman-

ifolds

One large class of Frobenius manifolds are those arising from the orbit space of a

Coxeter group, as introduced in section 1.6. Where the Coxeter group contains a

Coxeter subgroup (which itself corresponds to another Frobenius manifold) one

may look for Frobenius submanifolds. In particular, the examples 2.6 and 2.8

respectively correspond to the facts that 12(4) c A3 and 12(12) CF4• These can

also be thought of in terms of the foldings of the Dynkin diagrams of the Coxeter

groups. For example, the folding of A3 to give 12(4) is represented by the diagram

below:

- 4

t ----=::.fo=ld----,1

A full list of Coxeter groups and their corresponding subgroups is given below.
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Coxeter group Subgroup

A2n-1 Bn

Dn+l Bn

D4 H3

E6 F4

Ea H4

W 12(h)

In the last line above, W is an arbitrary Coxeter group and h is the Coxeter

number of W.

2.5 The Frobenius structure on the An caustics

The following example, which originally appeared in [25], is a submanifold of a

Frobenius manifold which inherits many of the properties of a Frobenius manifold.

However, its curvature prohibits it from being a Frobenius submanifold.

Recall that a Frobenius manifold corresponding to the Coxeter group An may be

expressed in terms of a superpotential

() n-l-I n-l + +p z = z + alz ... an.

Differentiating this with respect to z gives

n

p'(Z) = (n + 1)II(z - ai)'
i=l

Canonical coordinates were defined on this manifold as the critical values of p,

i.e. by the formula

This relied on the assumption the n roots of p' were distinct. If one allows such

roots to be equal, however, then ui = uj for some i i= j, hence this condition is
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equivalent to that of a caustic submanifold. Therefore one may define a caustic

by the condition
m

p'(z) = (n + 1)II(z - ai)ki,
i=l

where L:k; = n and at least one of the k, is greater than or equal to 2. Strachan

shows in [25] that canonical coordinates Ir'} may still be defined on such a

submanifold. It is also shown that a metric exists, given by the familiar residue

formula/
.EE_ .EE_

T}ij = - res aT
i
aTi dz

z=a; p'(z) ,

and that this metric is diagonal and has an Egoroff potential

<I> = - _!:!___ .
n+1

The submanifold also carries an covariantly constant identity field

8e=-,Ba;

and an Euler field E. Proof of these statements is deferred to chapter 3, where

the same theorem will be proved for the more general case of an arbitrary genus

zero Hurwitz space (recall that the An type Frobenius manifold corresponds to

the simplest class of genus zero Hurwitz space).

2.6 Caustics and discriminants of An

Recall from above that An type Frobenius manifolds may be expressed in terms of

a superpotential A and that the canonical coordinates are defined as the critical

values of A. A Discriminant submanifold may be described by the condition

ui = 0 for some i. This is equivalent to saying A and A' have a common root at

z = ai. This condition may be defined in terms of the resultant function defined

below.
2Note that in [25], this formula differs by a factor of (-1).
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Definition 2.19 The resultant of two polynomials f(z) = fm n::l(z - G:i) and

g(z) = gm nj(z - (3j), denoted R(f,g), is defined by the formula

m n

R(j, g) = f;::g~ II II (G:i - (3i),
i=O j=O

where G:i is a root oj J(z) and i3i is a root oj g(z).

From the definition above, it is obvious that if the resultant of two polynomials is

zero, then they must have a common root. A remarkable fact about the resultant

function is that it can be defined in a second way. If one considers f (z) as a

series, Le.

and likewise

( )
n n-l9 z = gnz + gn-lZ + ... + go,

then the resultant of f and 9 is equal to the determinant of the Sylvester matrix

defined below.

Definition 2.20 The Sylvester matrix of two polynomials f and g, of the form

above, is an (m + n + 2) x (m + n + 2) matrix. It is constructed by placing the

coefficients f m through to fo in the first m entries of the first row. One moves

down a row and right a column and repeats until the entries reach the right hand

side. The next row has the coefficients gn to go as its first n + 1 entries and the

process of moving down a row and right a column is repeated. All other entries are

equal to zero. This is easier to understand if visualised as the following matrix:

This provides a way to define the discriminant locus of an An Frobenius manifold

in terms of {ai} by the equation

R().., >/) = o.
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Noting a further property of resultants, namely that for an arbitrary polynomial

f(z),

the above equation is therefore satisfied if an only if ,.\ has a repeated root.

Example 2.21 The A3 superpotential is

,.\ 4 2=Z +alz +a2z+a3.

Differentiating with respect to ,.\ gives

X = 4z3 + 2alZ + a2.

Therefore the discriminant condition is

1 0 al a2 a3 0 0 0 0

0 1 0 al a2 a3 0 0 0

0 0 1 0 al a2 a3 0 0

0 0 0 1 0 al a2 a3 0

0 0 0 0 1 0 al a2 a3
det 4 0 2al a2 0 0 0 0 0 =0.

0 4 0 2al a2 0 0 0 0

0 0 4 0 2al a2 0 0 0

0 0 0 4 0 2al a2 0 0

0 0 0 0 4 0 2al a2 0

0 0 0 0 0 4 0 2al a2

Calculating the determinant then leaves

-4a~a~ + 16a1a3 + 144ala~a3 - 128a~a~ - 27a~ + 256a~ = o.

This equation gives the swallowtail surface.

One now turns consideration to the caustics of An. The condition for a caustic

was ui - ui = 0, for some i =1= j. This is automatically satisfied if N has a
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repeated root, i.e. ai = aj for some i #- j. In terms of the resultant function,

this is equivalent to requiring that

R()..', )..11) = O.

Example 2.22 Again, the A3 case is considered. Differentiating)..' gives

One may therefore calculate

R(X, )..11) = 512a~ + 1728a~.

Setting this equal to zero, and noting that a3 may take an arbitrary value, this

surface is the cylinder over a semi cubic parabola. If one writes )..'= (z - a) (z -

a) (z + 2a), canonical coordinates for A3 are given by

)..(a)

)..(a)

)..(-2a)

Hence, tangent vectors are given by

8T1 811.1 + 811.2,

8T2 811.3•

The multiplication of these vectors (on the ambient manifold) is given by:

Hence no projection is necessary in order to define the induced multiplication *,

so the caustic is a natural submanifold (this fact was already guaranteed by lemma

2.13)
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Using theorem 2.17, one also observes that e should be tangential to the caustic.

This can easily be verified:

Therefore the A3 caustic is a two dimensional submanifold with a tangential iden-

tity field, and so is a (natural) Frobenius submanifold by theorem 2.7.

A further case satisfying ui - uj = 0 for an An type Frobenius manifold, without

requiring ai = aj, will now be considered. The locus on which this occurs is

known as the Maxwell strata and is defined by the condition A(ai) = A(aj) for

some ai =F aj.

Example 2.23 One again considers the A3 case. One has

A' = 4{z - a)(z - {3)(z + a + {3),

with a =F {3. Comparison of coefficients then gives

al -2(a2 + a{3 + {32),

a2 4a{3(a + {3).

Noting that the equation for the Maxwell strata is A(a) = A({3), one obtains

Substituting the above equations for al and a2, and noting that the choice of a3

is arbitrary, one then obtains:

This factorises to give

Hence the only solution (subject to the earlier assumption that a =F {3) is

0= -{3.
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Substituting this into the equations for al and a2, one obtains

o.

Therefore the Maxwell strata oj A3 is a halJ plane.

2.7 Genus-zero Hurwitz caustics and discrimi-

nants

Recall that for an arbitrary genus-zero Hurwitz space HO;no, ... ,nm, the superpoten-

tial was of the form
m nr

no+l no-l ~ ~ Cr,s
,x(z) = Z + alZ + ... + ana + f;;: ~ (z _ ,sr)s+l'

This may be written as the quotient of two polynomials:

For convenience, denote the denominator of this by g(z). Similarly,

, () ( ) no ~ ~ (s + 1)Cr,s
,X Z = no+lz + ... +ano-l-f;;:~(Z_,sr)S+2

may be rewritten as
X(z) = ~(z) .

g(z) lli=l (z - ,si)

Hence the discriminant of the Frobenius manifold occurs when

R(J(z), h(z)) = O.

However, if one instead obtained ,XI by differentiating L, it would appear in the
9

form
\'( ) = f'(z)g(z) - J(z)g'(z)
1\ Z g(zP .
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Hence if J and t' have a common root, this will also be a root of )..'. Therefore

the discriminant can be found by solving

R(f(z), f'(z)) = 0,

i.e. by requiring that J(z) has a repeated root.

Similarly, if h{z) has a repeated root, two critical values of .x will coincide, hence

this is a condition for finding caustics.

Example 2.24 Consider the space HO;l,O of functions of the form

b.x (z) = Z2 + a + --.
z-c

This may be rewritten as

.x (z) = Z3 - cz2 + az - (b + ac) .
z-c

Requiring that the numerator of this has a repeated root gives the condition

(ac + b)(9ac + 27b + 4c2) = O.

Differentiating .x gives

.x' (z) b
2z---

z - c2'
2z3 - 4z2c + 2c2z - b

(z - C)2

Hence the caustic condition may be calculated using the equation

Therefore the caustic is defined by the equation

27b = 8c3,

with the value of a being arbitrary.
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The material contained within this chapter motivates a closer study of caustics

and discriminants of Frobenius manifolds. Whilst the theorems have been pro-

vided in a very much abstract context, the examples contained within the last

two sections show that concrete examples of caustics and discriminants can be

defined for certain classes of Frobenius manifolds. Consideration will therefore

be given to the Frobenius structures on caustics of a genus zero Hurwitz space

in chapter 3. Discriminants of such a Frobenius manifold will then be considered

in chapter 4. In particular, the notion of 'almost duality', which conventionally

relies on E-1 being well defined (recall that E-1 is not well defined on a discrim-

inant) will be induced on such discriminants. Finally, an example on a higher

genus Hurwitz space will be considered in chapter 5.



Chapter 3

Caustics of genus zero Hurwitz

spaces

The result from [25] that caustic submanifolds of a Frobenius manifold corre-

sponding to the Coxeter group An carry a set of canonical coordinates, a di-

agonal Egoroff metric and a covariantly constant identity field has two obvious

generalisations. The first is to an arbitrary caustic of any other Coxeter group.

However, recalling that the An type Frobenius manifold also corresponds to the

Hurwitz space Ho;n, one may attempt to generalise this idea to other Hurwitz

spaces. Here, an arbitrary genus zero Hurwitz space will be considered.

Recall that a Frobenius manifold on the Hurwitz space HO;no,nl, ... ,nm will have a

superpotential of the form
m nr

'() no+l no-l + ~ ~ Cr,s
A Z = Z + alz + ... + ano ~ ~ (z _ (3r)s+l'

The dimension of this space is
m

dim = no+ L(ni + 1)+ m.
i=l

The first no parameters are {ail. There are E::l(ni+1) parameters {cr,s}, whilst

80
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the remaining m parameters are {;3d. Differentiating ,\ with respect to z gives

m nrz ( )
d'\ _ ( ) no ) no-2 ""'" ""'" S + 1 cr,sdz " no+lz +(no-lz + ... +ano-l-~~(z_;3r)S+2·

Lemma 3.1 :: may be written as the quotient of two polynomials:

d'\ ( ) n::~(z- ai)
-d = no+l nm ( _ ~.)n'+2
Z j=l Z fJJ J

f(z)
g(z)'

This quotient will be in its simplest form, i.e. there is no cancellation of factors

between the numerator and denominator (which is equivalent to the condition

ai # ;3j, for all possible i and j).

Proof: To prove that :; may be written in the quotient form above is trivial; one

needs only to multiply every term by R£:~;=~;~:~;~.The numerator will therefore

be a polynomial of degree no+ L~l (ni+2) = dim. Note also that if one considers

m

f = X II(z - ;3i)ni+2,
i=l

then (z - ;3i) multiplies every term except n (nitl~'?+2' Hence
j#Ci z- J J

I (ni + l)ci,ni
f Z={3i = n ((.I. _ (3.)n·+2·j'l:i fJ, J J

But as ci,ni # 0 (or the pole at of A at z = (3i would be of a lower degree and so

the function A would belong to a different Hurwitz space), this must be non-zero,

and so (z - ;3i) is not a factor in the numerator of ~; .

As the critical points of A are precisely the ai, the critical values of A, which are

(canonical) coordinates on the manifold are given by ui = '\(ai)' If ai = aj for

some i f= j, one has ui = uj and that point is on a caustic. On a general caustic,

one has

L:ki = dim.



Caustics of genus zero Hurwitz spaces 82

Hence q coordinates can be defined by

Lemma 3.2 The multiplication in these coordinates will be canonical, i. e.

a a a
aui . auj = 5ij aui .

Proof: If one denotes the original canonical coordinates on the ambient manifold

by {xi}, then ui will be equal to k, of these, i.e.

Hence

Multiplying two vectors of this form will then yield

a a-.-aui auj

Now, noting that ik #- jt for all k and I (provided i #- j), this must be zero for.

For i = i,
a a

Lemma is proved.
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As the coordinates [u'} are independent, we have

Now introduce a new function

where u; and ui, are functions of a = (al, ... ,aq). Differentiating f(aj) with

respect to ui, one has

B (~r vr(a)(ajt)
Bui ~s ws(,8)(aj)s '
fur ~r vr(a)(ajY (Er vr(a)(aj)r) fur ~s ws(3)(aj)S
~s Ws(j3) (aj)s (~s ws(f3)(aj)s)2

~r 8vr~:!a;+ ~r Vr(a)r(ajy-l~
~s ws(f3) (aj)s

(~r Vr(a)(ajy) (~8 a(w~~)aj) + La ws(3)s(aj)S-1~)

(~s ws(j3)(aj)s)2

~ Iz=aj + ~ Iz=aj ~ it Iz=aj (~Iz=aj + ~ Iz=aj ~ )
hlz=aj (hlz=aj)2

~Iz=aj _ itlz=aj~lz=aj Baj (~Iz=aj _ itlz=aj~lz=aj)
hlz=aj (hlz=aj)2 + Bui hlz=aj (hlz=aj)2 ,

Bf I + Baj df I
Bui z=aj Bui dz z=aj·

If one now sets f = .x, then

But aj is a root of ~~,so

This gives q equations for ~. Next consider the case of f = ~.
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Restricting this to z = aj, one has

a dk)..
aui dzk Iz=aj

dk a)..
dzk [)ui Iz=aj ,

dk
dzk s.;
0, l<k<k·-l.- - J

Hence one has a further E(kj - 1) equations for %:.. Coupling the equations

above with the other q equations, one may determine %;.. Note in particular

that %;. will have a zero of degree kj at aj, for j # i.

Lemma 3.3 %;. must be of the form

The function fi{z) will be of the form

m

p(i)(z) I1(z - ,Br)-(nr+2),
r=l

where p(i) (z) is a polynomial of degree ki - 1.

Proof: Differentiating A with respect to ui = ui(a, c, ,B), one has

a ( m nr )no+! no-l ~ ~ Cr,s
- aui Z +a1Z + ... +ano+f=:.~(Z-,Br)S+l'

aal no-1 aano ~ ~ a Cr,B
aUi Z + ... + aUi + L..J L..J aUi (z _ R )B+1 .

r=l 8=0 fJr

But
a Cr,B aCr,s 1 a,Br 1

[)ui (z - ,Br)s+l = [)ui (z - ,Br)B+l - Cr,B[)ui (z - ,Br)s+2'

Putting everything over a common denominator of n~l(z -,Br )nl+2, one obtains

a).. p(i)(z)

aUi n;:l (Z - ,B,)nl+2'
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where p(i) (z) is a polynomial of degree no - 1+ L;:l (nl + 2) = dim - 1. One

may now, recalling that the g:. have zeros of respective degrees ks at (ts, S i= i
factor out ns;i:i(z - as)ks. Hence

8)" p(i)(z) nSii(z - as)ks
8ui n;:l (z - f3l)n,+2

The degree of p( i) (z) must be

deg(p(i)(z)) = (dim - 1) - L k, = ki - 1,
sii

as required.

Lemma 3.4 In the canonical coordinates {ui}, a diagonal metric is given by the

formula:
8>' 8>'

~ 8ti'atiJdTJij = - L...J res d>' Z.
d>.=O -dz

Proof: This metric may be calculated explicitly, with consideration being given

to the two possible cases of i and j either being distinct or equal.

Noting that (z - al)kl is a factor in the numerator at least once for l = 1, ... ,q,

the residues are of a finite function at these points. Hence the residues are all

zero and so TJij = 0 for i i= j.

Case 2: i = j

This is finite at all of the al where l i= i. Hence the only residue is that at z = ai.

But recall from above that g:, Iz=ai = 1. Hence

TJii = - res (:>.) dz.
z=ai dz
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Therefore a diagonal metric exists in the coordinates {u'}.

Lemma 3.5 The metric 'T] EgorojJ, with potential cl> = - n:~l.
Proof: Firstly, note that

flm ( (3 )nr+2fl ( )-k.r=l Z - r sjei Z - Qs

Define a new function
m

h(i) = II(z - (3r)-(nr+2) II(z - Qs)ks.

r=l sfi

As this function is analytic at z = Qi, it may be expressed as a Taylor series

00 h(i) ( )s
h(i) = '""' s Z - Qi

~ s!
s=O

Also, as Mi) 1= 0 in a neighbourhood of Qi, its inverse M -i) may also be expressed

as a Taylor series in (z - Qi):

00 h(-i)( )s
h(-i) = '""' s Z - Qi

~ s!
s=o

Using the trivial fact that h(i)h(-i) = 1, one has

00 h(i) ( )s 00 h( -i) ( )t
'""' s Z - Qi '""' t Z - Qi

~ s! ~ t! '
s=O t=O

~ ('""' r!h~i)h~-i)) (z - Qit

~ ~ s!t! r!
r=O s+t=r

1 =

Comparing coefficients of ascending powers of (z - Qi) then yields the system of

equations

1

o
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This system determines the h~-i) if the h~i) are known. One may now substitute

the function h(-i) into the formula for 'T/ii to obtain

'T/ii =

We now recall that
m

p(i){z) II {z - ,Br)-(nr+2) II (z - os)k.,
r=l sf.i

p(i) (Z)h(i) (z).

As p(i)(Z) is simply a polynomial of degree (ki - 1), it has a finite Taylor series

k'-l
(i)( ) _ 0 (i) {z - oit

p z - ~Pr ,
T.

r=O

Recalling that

8>'1 = 18ui Z=O; ,

comparison of coefficients yields

(i)h(i) - 1Po 0 - •

Similarly,
dk B>'--I =0dzk 8ui Z=Oi '

1< k < k·-1- - I

becomes

o

This is clearly satisfied by

~ ( r ) p(i)h(i) = 0 T < k· - 1.~ s r-s , - I

s=O S
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Therefore for known h~i), the p~i) are defined by the system

1 h(i) (i)
o Po ,

o h~i)pii) + hii)p~i),

But these are identical to the first k; equations in the system for h~-i). Therefore

Hence
(i)

1 Pk'-l
rJii = - '.no + 1 (ki - 1)!

As (Zki-l) is the highest power of z in p(i), so its coefficient will be the same

irrespective of whether the function p(i) is expressed in terms of z or (z - ai)' So
(i)

Pki-1 = coefficient ofzki-l inp(i)(z).
(ki - 1)!

Recalling that

we see that pi~)-lmust also be the coefficient of the highest power of z in g:..
Therefore

But this is true for all i, and so

1 Ba, 0 -al
rJii = - no + 1oui = QUi no + 1.

Therefore the metric is Egoroff with potential

<I> = _ al
no + 1
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Lemma 3.6 The identity field may be expressed by

Q
e---- Qano'

Proof: By the chain rule,
a aui a

Qano Qano QUi'

Q Q
Qa =L QUi'

no i

Recalling that {ui} are canonical coordinates, this is the identity field as required,

Lemma 3.7 The Euler field on the caustic will be the same as the Euler field on

the ambient manifold,

Proof: As [u'} are canonical coordinates, we must have

"'" ,a
E = L...J u' QUi'

i

But recalling the definition of 8~' from lemma 2 along with ui = xiI = , , , = Xik;,

one may write:

But this is equal to the Euler field on HO;no,,,,,nm, as required,

Combining the results of this chapter, one obtains the following lemma:

Lemma 3.8 On caustics of a genus zero Hurwitz space, the following aspects of

the structure of a Frobenius manifold remain:
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• a set of canonical coordinates [u'},

• a diagonal EgorofJ metric defined by the familiar residue formula and with

a potential q, = - _I!L_
no+l '

• an identity field equal to -88 .
anO

Proof: The proof of this theorem follows immediately from the lemmas in this

chapter, as it is a collation of their results.

Whilst it has been shown that much of the structure of a Frobenius manifold

exists on the caustics of HO;no, ... ,nm' an arbitrary caustic will not (in general) be a

Frobenius manifold. This is due to curvature; whilst the existence of a diagonal

metric has been shown, this metric (just as in the An case) will in general be

curved.

Example 3.9 Consider the Hurwitz space HO;l,O. Recall that this has as super-

potential of the form
bA(Z) = Z2 + a + --.

z-c

Also recall from chapter 2 that the caustic condition is b - 287c3.Substituting this

into >..', one obtains

A'(Z)
2z{z - C)2 - ~C3

(z - C)2

(z - ~)2 (z - ~)
(z - c)2

These values of z may be substituted into ). to obtain the canonical coordinates

c2 3b-+a+-9 2c'
16c2 3b-+a+-.
9 c
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Using the residue formula 1.10, one may calculate the metric:

Note that as the coefficients in this metric are constants, this metric is in fact

fiat. But as curvature was the only obstruction to a caustic submanifold being

a Frobenius submanifold, so this caustic is a Frobenius submanifold, as predicted

by theorem 2.7. Note, however, that one may not immediately integrate up to a

prepotential; whilst the canonical coordinates are a fiat set of coordinates for the

two dimensional submanifold, they are not the distinguished set of fiat coordinates

of the WD VV equations.

Having shown which aspects of the structure of a Frobenius manifold are retained

by a caustic submanifold of a genus zero Hurwitz space, a natural generalisation

would be to consider the same problem for higher genus cases. One would expect

similar results (some of which are guaranteed by the theorems in Chapter 2),

namely that in addition to an associative algebra being defined on the tangent

space, canonical coordinates, a diagonal Egoroff metric and a tangential identity

field would still exist. However, as even the simplest example of a higher genus

Hurwitz space (namely H1;n) involves an elliptic superpotential, calculations in

such a case would be problematic, and would become worse for more complicated

genus one or even higher genus Hurwitz spaces.

Another interesting point raised by this chapter is that whilst most of the struc-

ture of a Frobenius manifold remains intact on a caustic, curvature prevents

structure constants being integrated up to a prepotential. This raises an obvious

question of how one could find flat caustics. Whilst it is possible to derive condi-

tions for a caustic to be flat, finding specific examples would be computationally

very difficult. Note, however, that some examples of flat caustics have been found,

e.g. the planes studied by Zuber in [29] by utilising various symmetries on the

orbit spaces of Coxeter groups.



Chapter 4

Almost duality for genus zero

Hurwitz discriminants

4.1 An discriminants

Recall from chapter 1 that the locus in a Frobenius manifold over which the Euler

field is not invertible (and so the intersection form is undefined) is known as the

discriminant. As the almost duality formulae contained in [13] and outlined in

1.7 are defined in terms of E-1 and 9ij, the ideas of almost duality may not be

applied directly to a discriminant of a generic Frobenius manifold. However, if one

restricts consideration to semisimple Frobenius manifolds, one has an alternative

tool to describe structural data on an almost dual manifold; namely the residue

formula (1.23). This formula does not rely explicitly on E-1 or 9 being well

defined.

Also, recall from chapter 2 that for the familiar An type Frobenius manifolds, the

condition for a discriminant is that the superpotential A has a repeated root. For

92
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an arbitrary discriminant, A will be of the form
m

A(Z) = II(Z - Zi)k\
i=O

with L k; = n + 1 and L z.k, = o. The second of these two conditions implies

that
~ kiziZo = Zo (Z1' ... , Zm, ko, ... ,km) = - ~ T·
1=1 0

Noting that {zd, i = 1, ... , m are coordinates for the discriminant submanifold,

one may use tangent vectors a~. in the formula for c"([)',a", [)'II). For notional

convenience, one will denote c*(iz" a~]' b) by Cijk. Hence

e. = - ""'" res (OlogAOIogAOlogA) ~dz.
t}k ~ dlog~=O OZi ozj OZk N

Lemma 4.1 For i, j, k distinct,

Proof: One begins by explicitly calculating a~Oz~\taking care to remember the

Zi dependence of Zo:

OZo a log A a log A- + ---::~-
aZi oZo aZi'

-k. 0 m 0 m_'- L kj log(z - Zj) + - L kj log(z - Zj),
ko azo j=O aZi j=O

k. (_1 1_)
, Z - Zo Z - Zi .

Substituting this into the residue formula yields:

(
_1_ _ 1 ) A{Z) dz
Z - Zo Z - Zk N (z ) .

One is now faced with a problem; residues are taken at points where dl~:~ = 0 but

the roots of this are not known explicitly. However, by a deformation of contours
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argument (which relies on the fact that the sum of residues of a meromorphic

differential over all points on the Riemann sphere is zero), it can easily be shown

that

kikjkk (;~~i+ ;!~j + Zr!~k+ ;!~o+ zr!!)

(Z ~ Zo - Z ~ zJ (Z ~ Zo - Z ~ Zj) (
_1_ _ 1 ) A{Z) dz.
Z-Zo Z-Zk N{z)

As taking residues obeys the distributive law for addition, this can be split up

into five separate residue calculations. Firstly, consider the residue at Z = 00.

Noting that as Z becomes very large,

the residue at Z = 00 is zero.

Next, consider the residue at Z = Zi' Observing that {z - Zi)ki is a factor of A, so

{z - Zi)ki-l is a factor of X, and hence

with 5.i being a rational function which is finite and non-zero at Z = z.. Hence

( 1 1)-----
z - Zo Z - Zj

(1 1)( 1 1)( 1 1) -res kikjkk -- - -- -- - -- -- - (z - Zi)Aidz,Z=Zi Z - Zo Z - Zi Z - Zo Z - Zj Z - Zo Z - Zk

(
Z - z. ) (1 1) (1 1) -res k·k·kk --' -1 - -- - A·dzZ=Zi ' J Z - Zo Z - Zo Z - Zj Z - Zo Z - Zk ' ,

(
1 _ 1 ) A(z) dz

z - Zo Z - Zk N{z) ,

- 0,

as the function whose residue is being taken at Z = Zi is finite there.

Repeating this argument, one can also show that the residues at Z

Z = Zk are equal to zero.

Zj and
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Hence

res k.k.kk (_1 __ 1 ) (_1 __ 1 ) ( 1 _ 1 ) ~dz
Z=Zo t J Z - Zo Z - Zi Z - Zo Z - Zj Z - Zo Z - Zk )..1 '

Q R

{
~ 1 (1 1 1)k·k·kk res - -- + -- + --

t J Z=Zo (z - ZO)3 (z - zo)2 Z - Zi Z - Zj Z - Zk

+ 1 ( 1 + 1 + 1 )
Z - Zo (z - Zi)(Z - Zj) (z - Zi)(Z - Zk) (z - Zj)(z - Zk)

T

().. x ).. ).. )kikjkk res Q-dz - res R-dz + res S-dz - res T-dz ,z=zO)..1 z=zo)..1 z=zo)..1 z=zo)..1

One firstly considers Q:

1 )..
res -dz
z=zo (z - ZO)3 )..'

ffici f 1 , L ion of 1 A- coe cient 0 m aurant expansion 0 ( )3 ",
Z - Zo z - Zo A

coefficient of (z - ZO)2 in Taylor expansion of ~,

;1 ::2 ;, Iz=zo '

If one writes A as

with
m

AO = II(z - Zi) ki ,

i=l

then one has

Differentiating ~, twice therefore yields:

~ )..1 ~ (z - zo) ko )..0 I
dz2)..' Z=Zo = dz2 (z - ZO)ko)..~ + ko(z - ZO)ko-l)..O z=zo'

P__....__
~ (z - zo))..o I
dz2 (z - ZO)A~ + kOAO z=zo'

q
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d (p, pq') I
dz q q2 z=ZO'

(
p" _ p'q') _ (p,q, + pq" _ 22Pq1q') I '
q q2 q2 q3 Z=Zo

qp" - 2p' q' - pq" + 4p( q')2
1q2 z=zo'

qp" - 2p' q' I
q2 z=ZO'

The last line above is obtained by noting that plz=zo = O. Every term which

appears in the last line above may then be considered individually:

q'lz=zo

ko.xolz=zo·

(.x~ + (z - zo).x~ + ko'x~)lz=zo'

(1+ ko)'x~lz=zo'

((z - zo),x~ + 'xo)lz=zo,p'lz=zo

'xolz=zo·

"Ip z=zo

Substituting these into the equation above gives:

qp" - 2p'q' I = 2ko.xo'x~ - 2(1 + ko)'xo'x~ I
2 k2\2'q z=zo 0"0 Z=Zo

2A~
- k~.xo L=zo'

Recalling the definition of Ao from above and differentiating with respect to z

gives
m

r=l s#r,O
Using this, along with the definition of AD, we see that:

_ 2'x~ I = _ 2E::l kr(z - Zr )kr-l nS#r,O(z - Zs)k8

1k5'xo Z=Zo k50:.n=1(Z-Zr)kr z=zo'
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Therefore
A 1 m k;

r~s Q A' dz= - k2 2: .
Z-Zo 0 r=l Zo - Zr

Next, consider R. Recalling the definition from above

Whilst (z-;o)>.' may appear singular at Z = Zo, recall that (z - zo)ko is a factor

in A, and so this singularity is cancelled out. Therefore it is possible to evaluate

this (by defining the value at Z = Zo to be the limit as Z tends to zo):

(Z - ZO)ko-l TIi;i:O(z - Zi)k; I
Ej=okj(z - Zj)kj-l TIk;i:j(Z - Zk)kk z=zo'

n.,« - Zi)ki I
ko TI#o(z - Zj) + (z - zo) Ek;i:O(Z - Zk)kk-1 TII;i:O,k(z - Zk)k z=zo'

1
ko·

Therefore
A 1 (1 1 1)res R- = - + + .

Z=Zo A' ko Zo - Zi Zo - Zj Zo - Zk

Next, consider the residue

A
res S,dz =
z=zo A'

1 (1 1 l)Ares -- + -_ + -dz
z=zo Z - Zo Z - Zi Z - Zj Z - Zk A' '

But from above, >"(z~zo) is equal to ~o at Z = zo, whilst z~z; etc are obviously

finite there. Therefore this is a residue of something finite and so must be equal
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to zero. Finally, it follows trivially that

A
res T,dz = 0,
z=zo /I'

as T is finite and f, = ° at z = Zoo Adding these four results, one obtains

as required.

Lemma 4.2 For precisely two identical indices, C7ij takes the form

c*.. =_klkj~ kr _klkj ( 2 + 1 )+k.k.( 1 _ 1 )
UJ k5 f:t Zo _ Zr ko Zo _ Zi Zo _ Zj 'J Zi _ Zo Zi _ Zj .

Proof: Using the same reasoning as above, one may immediately write

a.. (res + res) k~k. ( 1 __ 1 )2 (_1 __ 1 ) A{Z) dz
ttJ Z=Zi z=zo ,J Z _ Zo Z _ Zi Z _ Zo Z _ Zj ,AI (z ) ,

u

Calculating these residues individually, one immediately realises from the results

in the previous theorem that:

AI~~iU ,Aldz 0,
Ares V-dz _ O.

Z=Zo ,AI

Next, calculate

A
res U-dz
z=zo A'

_ res( 1 _ 1 (_2 +_1 ))~dZ
Z=Zo (z _ zo)3 (z _ zo)2 Z _ Zi Z _ Zj ,AI'



Almost duality for genus zero Hurwitz discriminants 99

1 A 1 (2 l)Ares -dz - res -- + -- -dz.
Z=Zo (z - zo)3 A' Z=Zo (z - ZO)2 Z - Zi Z - Zj A'

But VI is identical to res Qf,dz, and so
Z=Zo

Also, note that

1 (2 1) AV2 = res -- + -- -dz,
z=zo (z - ZO)2 Z - Zi Z - Zj A'

with Zk = Zi. This was calculated in lemma 4.1, and so one may immediately

write 1 (2 1)U2 = - + .
ko Zo - Zi Zo - Zj

Finally, consider

The last line above was obtained by recalling from earlier that

1
k'q

Combining the above results, one obtains

* 2 (1 (1 1) 1 (2 1) 1Lm
kr )c···=k·k· - - -- + --

UJ ~ J ki Zi - Zo Zi - Zj ko Zo - Zi Zo - Zj k8 r=1 Zo - Zr .
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But this is equal to

c: .. = _ k;kj ~ kr _ k;kj ( 2 + 1 ) + k.k. ( 1 _ 1 )
UJ k3 f;t Zo - Zr ko Zo - Zi Zo - Zj Z J Zi - Zo Zi - Zj ,

as required.

Lemma 4.3 For three identical indices,

* kr ~ kr _ 3kr 1 + 3k; 1 + ki" ks .
Ciii = - k3 ~ Z - Z ko Zo - z· z· - Zo ~ z· - Zo r= lOs Z Z si'i 1 s

Proof: By applying the same reasoning as in lemma 4.1, it is possible to show

that

( ) ( 1 1)3 A<ii res + res k~ - -- -dz
Z=Zi Z=Zo Z Z - Zo z - Zi A' '

v

kl (res + res) ( 1 _ ...,---_---,-3--,--_---:-
Z=Zi z=zo (z - ZO)3 (z - ZO)2(Z - Zi)

3 1) A+ - -dz
(z - zo)(z - ZiP (z - Zi)3 A' '

The four components of the above equation may now be considered individually:

1 A 3 A
res -dz - res dz,
Z=Zo (z - ZO)3 A' Z=Zo (z - ZO)2(Z - Zi) A'
1 m kr 3 1

- k5 ~ Zo - Zr ko Zo - Zi '

by earlier results. Similarly,

A
res W,dz
z=zo /\'

3 A 1 A
res -dz - res -dz
Z=Zo (z - zo)(z - Zi)2 )..' z=zo (z - Zi)3 )..' ,

o
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may also be obtained by using earlier results. Likewise,

follows immediately from the proof of lemma 4.1. Finally, one must calculate

A 3 A 1 A
res V -dz = res dz - res dz,
Z=Zi A' Z=Zi (z - zo)(z - Zi)2 A' Z=zi (z - ZiP A'

But these are analogous to earlier calculations, and so

A 311 ~res W -dz = - +2" ~ .
z=z' A' k, z, - Zo k: Z:: z. - Z

• 1 , 'r¥O,i' r

Therefore combining the various individual resides leaves us with

e~..= k~ (~ 1 + ]_~ kr 1 ~ ks 3 1 )
ut t k: z· - Zo k~ ~ z· - Z - k02 ~ Zo - Zs - ko Zo - z, .

, t 'r¥i' r s= 1 •

A simple rearrangement of terms can then show that this is equal to the required

result.

Theorem 4.4 The eijk calculated above may be integrated up to a prepotential

F* = ~tL krks(zr - zs)2log(zr - zs)2.
r=O s'/:;r

Proof: To prove this theorem, one simply needs to differentiate F* three times

(with all possible permutations of distinct and identical indices) to obtain the

required values of Cijk' Firstly, note that using the laws of logarithms and rear-

ranging the summation, F* may be written in the following way:
m m

F* = ~L kokr{zo - zr)210g{zo - Zr) + ~L L krks{zr - zs)2Iog{zr - Zs).
r=l t=l s¥t,O

A B

Recalling that Zo = - Io 2:;=1 kpzp we have

dF* azo aA aA aB-=--+-+-dz, aZi azo aZi aZi
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The three individual components of this may be considered separately:

OZo oA

Combining these three results gives

D

k· ~ ( Zo - Z )- k: f;;t kokr (zo - zr) log(zo - zr) + 2 r

(
Zo - Z') }-koki (zo - Zi) log(zo - Zi) + 2 z E

(
Zr-Zi)-L krki (zr - Zi) log(z, - Zi) + 2 .

r#i,O

G

Differentiating again with respect to Zi gives

lFF*
dz~z

OZo eo eo oZo oE se ea--+-+--+-+-OZi oZo OZi OZi oZo OZi OZi'

(!:)'~ kok, (lOg(zo - z,) +D + (2kl + kok,) (lOg(Zo - z,) +D
+ ~ k.k, (lOg(Zr - Zi) + ~) .

r#z,O
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Differentiating a further time with respect to z, then gives

83F*
*~ = Ciii,

uZi

as required. Similarly, by differentiating a;~·with respect to Zj, one obtains
•

Recall rz; from above and differentiate with respect to Zj. One obtains:

Differentiating this with respect to Zk then yields the final required result, i.e.

83F* - *---- - cijk·8zk8zj8zi

It should be noted that by setting all of the k, = 1, one is dealing with the original

An Frobenius manifold. In this special case, the result of theorem 4 agrees with

the prepotential derived by Dubrovin in [13]. Also, this function agrees with

the results derived geometrically in [16]. It should be noted that as discriminant

submanifolds of Frobenius manifolds are not themselves Frobenius manifolds [25],

there is no prepotential to which F* is itself dual.

4.2 Genus zero Hurwitz space discriminant

Given that An type Frobenius manifolds correspond to those on HOin, and obvious

generalisation of the ideas in the previous section is to a wider class of Hurwitz
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spaces. Here, one considers an arbitrary genus zero Hurwitz space. Recall that

the discriminant of such a space corresponded to the superpotential expressed in

the form
\( ) = J(z)
"'z g(z)'

where f and 9 are polynomials in z written in their simplest form, having a

repeated root (i.e. J(z) having a repeated root). The exact form of J and 9 is

now considered. Begin by taking a superpotential on HO;no,...,nm of the form
m nT

C
\( ) _ no+l no-l + + ""'"""'" r,s
'" Z - Z + alZ + ... ano ~ ~ (z _ {3r )S+l .

One may express this as a polynomial by putting every term over a common

denominator os n;.n=l (z - {3i)ni+l:

n;.n=l (z - f3r)nr+l (zno+l + alZno-1 + ... + ana + ~;.n=l ~;:o(z_~;i.+1 )
Il;.n=l(z - f3r)nT+l

Noting that the numerator evaluated at z = {3i is equal to Ci,n; i= 0, so (z - (3i)

(4.1)

cannot be a factor in the numerator. Therefore this quotient is in its simplest

form. The numerator is a polynomial whose degree, denoted by (n + 1), is:
m

n + 1 = no+ 1+L (n, + 1),
i=l

i.e.

n = dim-m.

Hence the numerator can be expressed as a product
n

(4.2)

Consideration now the coefficient of z" in this polynomial. From expanding the

numerator in (4.1), one obtains that it must be equal to - E:o(ni + l){3i' Sim-

ilarly, from expanding (4.2), this coefficient must be equal to - ~~o 0i. Hence

one derives the condition
n m
L °i = L(nj + l){3j,
i=O j=l
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or equivalently
n m

aO = - 2: ai + 2:(nj + l)JJi.
i=1 j=1

The Hurwitz space may be parameterised by the (n + m) coordinates [o.}, i =I
o and {,Bd. An arbitrary discriminant corresponds to coinciding roots in the

numerator of A, and so will be of the form

nl (z - z·)kiA ~=O ~

- n;:1(Z - JJj)nj+1'

with Li ki = n + 1. Relabelling ,Bi as Zi+I, and (n, + 1) as -ki+!' one then has

l+m

A = II (z - Zi) k; •
i=O

One also has
~ kizi

Zo = Zo(Z1' ... , ZN, ko, ... , kN) = - ~ k'
i=O 0

This is analogous to the superpotential for the An discriminants, except that k,

may now take negative values (in fact all k; will be negative for i > n).

Lemma 4.5 For A as defined above, one has

A -
- = (z - Z·)A·A' I "

where ~i is a rational function which is finite and non-zero at Z = Zi.

Proof: Differentiating A = rr,« - Zj)kj with respect to z, one obtains

N

X(z) 2: kj(z - Zj)kj-1 II(z - Zk)k;,

j=O k~j

(z - Zi)ki-1 (ki II(z - Zj)kj + (z - Zi) 2:(z - Zk)kk-1 II(z - Zk)kk) •

#i k~i I~i,k

Dividing A by this leaves

.x _ nj~i(Z - Zj)kj

\1 - (z - Zi) k n ( )k· ( )L ( )k -1n ( )k .
A i j~i Z - Zj 1 + Z - Zi k~i Z - Zk k I~i,k Z - Zk k
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But (z - zd is not a factor in the numerator or denominator of the fraction part

of the above equation, so the lemma is proved, with ~i taking the form of this

fraction.

Theorem 4.6 The results of section 4.1 may be generalised to the Hurwitz space

HO;no, ...,nm• That is, for a superpotential

N

A = II(z - Zi)k;, ki E Z,
i=O

an almost dual prepotential exists and is of the form:

N

F* = ~L L krks(zr - zs)210g(zr - zs)2.
r=O sf.r

(4.3)

Proof: The proofs of lemmas 4.1-4.3 and theorem 4.4 do not rely explicitly on

k; being positive integers. There is a possibility that Aand ,XI having poles other

than at z = 00 affects the calculations. However, as their appearance the residue

formula is in the from ;" which according to lemma 5 behaves the same near the

Zi when one allows for negative ki as it does for positive ki' this does not affect the

calculations. Therefore C~jk take on the same form as they do in lemmas 4.1-4.3,

and so integrating up three times yields the desired result for F*.

It should be noted that the result derived here agrees with that which appeared

in [16]. However, the result here allows for negative values off the parameters ki

and offers a geometric interpretation: the negative k, determine which Hurwitz

space one is dealing with, whilst the positive k; determine which discriminant the

solution comes from.
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4.3 Extended affine Weyl groups

Let
dim

,\= e -imcpII(eiCP- eiCPj).
j=l

From the theory contained within [15], this is the superpotential for a Frobenius

(4.4)

manifold corresponding to the extended affine Weyl group Wm(Ak). One will

denote such manifolds by M(k, m). If one replaces eicpwith z, this appears very

similar to the superpotential for HOjk-1,m-1, the only difference being the absence

of the condition that the roots must sum to zero. In fact the link between such

Frobenius manifolds may be formalised:

Lemma 4.7 Frobenius manifolds on HOjk-1,m-1 are linked to those on M(k,m)

by a Legendre transformation.

Proof: A full proof will not be given. However, noting that the two superpo-

tentials correspond to the same Hurwitz data with a different choice of primary

differential, it immediately follows that they are linked by a Legendre transfor-

mation sk [10].

Lemma 4.8 The discriminants of M (k, m) correspond to a factor (eir/>- eir/>k)

in ,\ being repeated, i. e. an arbitrary discriminant is of the form
n

,\= e-imr/>II(eiCP- eir/>j)kj,
j=l

with at least one of the kj being greater than or equal to 2.

Proof: Recall from chapter 2 that the discriminant condition is equivalent to ,\

and X having a common root. Differentiating ,\ with respect to </>, one obtains
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= e -im</> IT (ei</> - eit/>j )kj -1 (-im IT (ei</> - ei</>w) + iei</> L kp IT (eit/> - ei</>q)) .

J W P qcpp

Hence for any j such that kk ~ 2, </>i is a common root of both .\ and X.

Noting that {4>i} may be taken as coordinates for the discriminant submanifold,

it is possible to calculate structure constants for the almost dual manifold using

the formula 1.23. It is easy to show that

ikreitf>r

ei</> - ei¢r '

and so the formula 1.23 becomes!

From this formula, direct calculation is then possible.

Lemma 4.9 For distinct indices T, sand t,

Proof: One begins by using a substitution eit/J = v, noting that

.\'(</» iv'\'(v),
i

d</> - --dv.
v

For notational convenience, one will also use eit/Jr = Vr etc. Hence

However, one is now faced with a problem; the zeros of dl;f' are not known

explicitly. However, one can say with certainty that they do not occur at roots

of .\ (i.e. points where 4> = </>i or equivalently v = vi). Therefore the same

1As in previous sections, one has written C;st instead of c*(8,pr, a",. ,8",!) for notational

convenience.
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deformation of contours argument that was used in section 4.1 may be applied

to obtain

( )
-ivrvsvtkrkskt >.

C;8t = res + res + res + res + res dv.
v=oo v=o V=Vr V=Vs V=Vt (v - vr)(v - v8)(v - Vt)v2 >"

These residues may now be calculated individually. Noting that as V becomes

very large,
. k k k \ . k k k k-m-~VrVsVt r 8 t /\ -~vrVsVt r 8 tV

(v - Vr)(V - V8)(V - Vt) >.' ~ v5Vk-m

But this tends to zero as z tends to infinity, so the residue at infinity is zero.

Next, consider the residue at V = 0:

Evaluating the first limit in the final line above is possible simply by replacing v

with zero. For the second part, noting that>. = v-m n(V - Vj )kj ,

m

Therefore the residue at v = 0 is

(
-ivrVsVtkrkskt ) ( _ _!_) = _ ikrkskt .

(-Vr)( -V8)( -Vt) m m

Thirdly, consider the residue at V = Vr. Observe that>. is a rational function of

v, with (v - vr) being a factor. Therefore, as in section 4.1, ;, can be expressed

in the form
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where Ar is a rational function which is finite and non zero at v = vr. Therefore

But this must be zero, as it is the residue of something which is finite at v = vr.

Likewise, the residues at v = Vs and v = Vt are zero. Combining these results

gives

as required.

Lemma 4.10 For two identical indices,

Proof: Using the same reasoning as in the previous lemma, one immediately

obtains
* ik~ks ( ) -iV~V8k;k8 A

errs = --- + res + res ( )2( ) 2 \I'm V=Vr v=v. V - Vr V - Vs V "

where again v = eicP etc. Also, it immediately follows that as above, the residue

at v = Vs is zero, so only the residue at v = u; needs to be calculated. But

The first limit above is calculated simply by substituting in v = Vr• Calculating

the second one is more involved:
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Therefore

-iv;vsk;ks 1
(vr - vs)v; kr'
-ivskrks
(u, - vs)'

Combining this with the residue at v = 0, and replacing Vr with eil/>r etc, one

obtains

as required,

Lemma 4.11 For three identical indices,

k il/> 'k3* 'k L: qe r ~ r 2 'k2 'kcrrr = ~r '1/> '1/> - - + Z r - zm r'et r - el q m
q:j;r

Proof: Using the same reasoning as above, it is immediately possible to show

that

-ik3 -iv3 k3 ,\r r r d-- + res ( )3 2 " v,m V=Vr V - Vr V 1\

-ik~ ,3 3 1.x
-- - zvrkr res ( )3 2 "dv,m V=Vr V - Vr V 1\

But the residue above is equal to the (v - Vr)2 term in the Taylor expansion of

vf)"I' that is:
res 1 .x dv = _!_ ~ ~ I '
V=Vr (v - vr)3 v2,Xt 2! dv2 v2,Xt V=Vr

In order to calculate this, observe that ,\ = (v - Vr)kr .xr, with the function .xr

being finite and non zero at v = Vr' Differentiating this with respect to v gives
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so
p.---..--...

A (v - vr) Ar
v2N v2 ((v - Vr)A~ + krAr)

q

Using the same techniques as were used in the proof of lemma 4.1, this reduces

to
d2 ~I = qp" - 2P'q'l
d22\f 2 •
Z V /\ V=Vr q V=Vr

Individual components may then be considered:

p'IV=Vr -

"Ip V=Vr

Substituting these in gives:

:V2 V;N Iv=vr

But as we know Ar = v-m np#(v - vp)kp, differentiation yields

,\'= V-m ~ kp(v - vp)kp Il(V - vq)kq - mv-m+1 Il(v - vw)kw.
P# q:f=p,r w#

Using these explicit expressions, one may then evaluate

m

Combining all of the results above (being careful to remember that the residue at

v = Vr was preceded by a factor of -iv~k~ etc), c;rr has been calculated explicitly:

* ik: . "" krkq Ok 2°k2crrr = - + ZVr L- - Z rm + Z r'
m Vr - Vqq#
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Finally, replacing the substituted {Vj} with {eit/>j} provides the desired result.

As in the An and genus zero Hurwitz cases, the coordinates which have been used

are a set of flat coordinates for the almost dual manifold, and so it is possible

to integrate the C;st three times to obtain a prepotential. This prepotential is

expressed in terms of the polylogarithm function Lin, as introduced in example

1.54

Theorem 4.12 The almost dual prepotential is:

a=l c=l v>c w>v

where

!.k3 _ ika m _ ik! _ i_ ~ k k
3't a 6 6m 12L- a q,

q-:j;a
ikbku ik~ku

- -4-- 2m '
ikckvkw

m

Proof: To prove this theorem, one simply needs to differentiate F* three times.

Begin by considering the Li3 part of F*. Differentiating this once gives

~! ~ ~ k k Li3ei(t/>p-t/>q) = !~k k (iLi2ei(t/>r-t/>q) - iLi2ei(t/>q-t/>r»)act> 2 L- L- p q 2 L- r q •
r q-:/;r

Differentiating a second time then gives

a~2~ ~ L kpkqLi3ei(t/Jp-t/Jq) = ~~ krkq(log(l - ei(t/>r-t/Jq») + log(l - ei(t/Jq-t/Jr»).
r p q-:j;p q-:j;r

But by noting that
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one may use the laws of logarithms to show that

Differentiating this a further time with respect to <Pr then gives

The only other non zero third derivative when differentiating three times with

respect to <Pr is that of A<p~:

'k3 '
2 'k3 'k Z r Z ~ k k

Z r - Z .m - m + 2 ~ r q'
q:f.r

Adding the two results above gives c;rr as required. Next consider c;rs. The only

terms in F* who which can be non zero after differentiating with respect to <Pr

twice and <Ps once are the Li3 terms and B<p~<ps. It is simple to show that

For the third derivative of the Li3 terms, one differentiates -k,(Li3 type terms)

from above once with respect to <Ps to obtain

Combining these two results provides the correct form for c;rs' Finally, one needs

to show that



Almost duality for genus zero Hurwitz discriminants 115

But by observing that the only term containing the three variables <Pr, <Ps and <Pt

is C<Pr<Ps<Pt, all other terms become zero under differentiation. Therefore

[)3

[)<pt[)<Ps[)<Pr (C <Pr<Ps<Pt) C,

ikrksks
m

But this is equal to C~st as required.

Corollary 4.13 Outside of the discriminants, i.e. when the superpotential is of

the form (4.4), the almost dual prepotential will be:

F* =!~Li3ei(tP;-tPi) + A ~ <p~+ ~ <P~<Pj - C ~ <Pi<Pj<Pk, (4.7)
2 i¥j i i¥j i#-j#

with

A
~

- 12m ((m - 2)(m-I) - mk) ,

z
- 4m (2 - m),

i
m

B

C -

Proof: This follows immediately from theorem 4.12; it is obtained simply by

setting all of the k; equal to one. in (4.6

This prepotential is very similar to the solutions to the generalised WDVV equa-

tions studied in [20], which also consist of a trilogarithm of an exponential term

and cubic components. In fact if one considers the 2 dimensional case (with k

and m both equal to 1), the solutions are equivalent, as shown in the example

below.

Example 4.14 Set k=L, m=1. By corollary 4.13, the almost dual prepotential

zs
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Under a linear coordinate change

Under this transformation, the prepotential becomes

But this is precisely the 2-dimensional ansatz obtained in [20] with the root system

±1, ko:= 4 and c = 4.

Whilst this simple example coincides with [20],the presence of two parameters (k

and m) ensure that this generates a more generalised set of results. Furthermore,

as these solutions are closely linked to sums over root systems, it is likely that a

direct link may be drawn with the v-systems derived by Veselov in [26].

4.4 Twisted Legendre transformations: a link

between almost dual solutions

The aim of this section is to construct a link between some of the almost dual

solutions constructed in sections 4.2 and 4.3. One begins by recalling from sec-

tion 1.9 that certain solutions of the WDVV equations are linked via Legendre

transformations. To each of two such solutions, F and F, one may construct

almost dual solutions F* and F*. Schematically:

F

F* F*
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Lemma 4.15 The exists a transformation SK,mapping F* to F*.

Proof: The almost duality map from F to F* is invertible [13]. Composing this

inverse with SK,and the almost duality transformation from F to F* will provide

the desired transformation.

However, whilst this abstract proof ensures the existence of such a function, it is

not clear whether such a transformation may be expressed explicitly in a simple

form. However, it turns out that it can, as shown in the theorem below (also

see [22]). Before stating this theorem, however, one notes the form which the

multiplication and metric on the tangent space of F* must take:

F : {< a, b > ,0 , E}

< E-1 ea, b >K, }
E-1 eaob

Theorem 4.16 The vector field

generates a twisted Legendre transformation SK,from F* to F* so that the metric

(, ) k is defined by

Proof: Using the definition of the intersection form and *, one has:
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But as 8K, = E . aK" this is the required result.

Corollary 4.17 Almost dual prepotentials of the form (4.6) and (4.3) are linked

by a twisted Legendre transformation.

Proof: According to lemma 4.7, the original Frobenius manifolds are linked by

a Legendre transformation. Hence applying theorem 4.16 immediately yields the

desired result.

Example 4.18 The prepotential

with Euler field E = tlal + 2a2 generates an almost dual prepotential

F* = !z Z (Z2 + Z2)) - _!_ (Z3 + Z3) + !tu eZ1-Z2 + Li eZ2-Z1)4 1 2 1 2 12 1 2 2 3 3 ,

as shown in example 1.54. Alternatively, one may apply the Legendre transfor-

mation 82 to F (example 1.60) to obtain

F = !(j2)2£1 + !(£1)2 (lOgil - ~) .
2 2 2

But it was shown in example 1.57 that the almost dual prepotential to this (1.24)
is

~ 1 (L2 ~ 2 L2 A 2 A A 2 A A 2)F = 4 tllog(tt} + t21og(t2) - (tl - t2) 109(tl - t2) .

By theorem 4.16, F* and F* above are linked by a twisted Legendre transformation

generated by the vector

Note that fh i- ~.

To summarise this chapter, an almost dual prepotential has been explicitly con-

structed for an arbitrary genus zero Hurwitz space (and any of its discriminants).
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A natural subject for further study would be to generalise this idea to a higher

genus Hurwitz space. The simplest such example, namely H1;n will be considered

in the next chapter.



Chapter 5

Almost duality for a genus one

Hurwitz space

In this chapter, almost dual solutions to the WDVV equations will be calculated

for the Hurwitz space H1jn• The approach will mirror that used in chapter 4;

one will use a superpotential A and the formula (1.23) to calculate dual structure

constants c~fh' corresponding to third derivatives of the prepotential F*.

One begins by considering the form that such a superpotential must take. The

Hurwitz space H1jn consists of holomorphic maps from the (complex) torus to

the Riemann sphere with (n + 2) simple ramification points and n sheets glued

at 00. The functions in such a space will be elliptic. But an elliptic function is

determined by:

• the locations of its zeros and poles,

• a modular parameter T and

• a general scaling factor u, which may be expressed in the period form e2i7ru•

120
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Now note that without a loss of generality, one may choose the branch point of

the Hurwitz space to be zero, and so the superpotential will be of the form

(5.1)

Note that by the Riemann-Hurwitz formula, this space is of dimension n + 2.

This case may alternatively be thought of as the orbit space of a Jacobi group.

Such a space, denoted OJ J{g), where 9 is a complex finite dimensional Lie algebra

with Weyl group W, carries the structure of a Frobenius manifold [4, 5]. If

one uses a Lie algebra with Weyl group An, then (in an abused notation) the

Jacobi orbit space OJ J{An) is a Frobenius manifold with a superpotential of the

form (5.1) [4, 5]. As such, the contents of this chapter may be thought of as a

generalisation of the Coxeter group construction to Jacobi orbit spaces as well as

a generalisation from a genus zero to a genus one Hurwitz space.

A digression is now made to consider the function (}1 in greater detail. A compre-

hensive introduction to this (along with the other Jacobi theta functions) may

be found in [27]. The notations used in [27]will be used here.

Definition 5.1 One defines (}1 by the infinite sum

00

(}l{V, q) = 2L( _ltq(n+~)2 sin(2n + l)v.
n=O

(5.2)

The variable q above is known as the nome. Note that (}1 may instead by expressed

in terms of the half-period ratio r . In such cases, it will be denoted Od vir). The

nome and half-period ratio are connected by the equation

The function (}1 is doubly quasi-periodic, obeying the equations:

(}l(V + 211'1r)

(}1(v + 211'rlr)
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It follows from (5.2) that (h{vlr) is an odd function and so may be expressed as

a power series of the form

(5.3)

As (}1 is an odd function, it also follows that (}1(air) = o. As such, the Zj are

the roots of A. Hence, analogous to the genus zero case, setting z, = Zj for some

i =1= j creates a repeated root in the superpotential and so is the condition for a

discriminant. Therefore for an arbitrary discriminant, the superpotential will be

of the form

(5.4)

subject to the constraints

Returning to the properties of (}1, note that it is possible to express (}1 as an

infinite product rather than a series:
00 00

(}1 (vir) = 2Gqt sin v IT (I _ q2ne2izv) IT (I _ q2ne-2iv), (5.5)
n=l n=l

where
00

G = IT (1 _ q2n)
n=l

(5.6)

In addition to being able to differentiate (}1 with respect to v, one may also

differentiate with respect to the half period r. This gives [27] the heat equation:

891 (vir) __ i ()"ar - 411' l' (5.7)

Similarly, one may consider the function A and its derivative with respect to

r. In order to do this, one utilises the elliptic connection which sends modular

functions of order k to modular functions of order k + 2 (see, for example, [4]1).

1Note that the factor preceding the F' is 2!>r in [4] rather than the ;; used here due to a

different normalisation of the 91 function being used there.
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Definition 5.2 The elliptic connection is defined by its action on modular func-

tion F of weight k by:

( I
e~(v IT) 7r I I

- V'rF V T) - e ( I ) ---;F (V T),
1 v T 2z

TJ2kOr (1] - 2k F (v Ir)) - ~~~~:~~;iF' (v Ir ), .

Here TJ denotes Dedekind's 1] function. A definition of this function can be found

(D(k) F)(vlr)

in [3]. However, as it will only appear to the power zero below, its precise defini-

tion is not necessary here.

Noting that A is a modular function of weight 0, the elliptic connection takes a

particularly convenient form" when applied to A

aA 1 e
D A = or - 2i1TA' .

Using the facts above, one may attempt to calculate the intersection form in terms

of coordinates {u, r, Zi (i = 1, ... ,m)}. This will be done using the discriminant

superpotential 5.4. However, as the formula 1.11 contains terms of the form

8' log A, it is necessary to calculate these derivatives, as shown the lemma below.

Lemma 5.3 The derivatives of log A with respect to the coordinates u, T and Zi

are

a log A
27ri, (5.8)au -

BlogA _ i1Tt k, (()r(v - zilr)) _ (n + 1) ()r(vlr) (5.9)or 4 i=O ' (h(v - zilr) ()l(vIT)'
alogA k. ((J~(v - ZoIT) _ (J~(v - zilr)) (5.10)
8zi ' (Jl(V - ZOIT) (Jl(V - zilr) .

Proof: Noting that
m

log A = 27riu+ Lkdog(Jl(V - zilr) - (n+ l)log(Jl(vIT),
i=O

2For convenience the function ::~~I~lhas been denoted bye.
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the equation (5.8) followsimmediately. Recalling (5.7), one may also immediately

write (5.9). Finally, in order to obtain (5.10), note that Zo = - L~=l'¥: and so

(in a slightly abused notation):

d 8 8zo 8-=-+--dzi 8zi 8zi 8zo·

The desired result followsfrom differentiating log A with respect to z, in this way.

For notational convenience, a new function

is defined so that

It is also useful at this point to consider the function 8i in slightly more detail.

Using the power series of the odd function (}1 around v = Zi, one may also express

(}~as a power series in even powers of v - Zi, and so

One may now move onto calculating the components of g in the coordinates

{u, T, z'}, as shown in the lemmas below.

Lemma 5.4 For components relating to Zi, i = 1, ... ,m, the components of g

are:

Proof: Consider firstly i 1=- j.

gij = '"' res (810g A 8 logA A) dv
- L....-d1og>.=0 8zi 8zi A' '

- '"' res k.k, (80 - e·) (80 - 8·) ~dv.
L....- dlog >'=0 ' 3 ' 3 A'
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By similar reasoning to that used in chapter 4, one may apply a deformation of

contours argument (noting that ei is singular at v = z, and that A is singular at

v = 0) to obtain

gij = (res + res + res + res) kikj (eo - ei) (eo - ej) A,dv.
v=~ v=~ v=~ v=O A

But whilst A is singular at v = 0, the quotient ~ "" 0 there, and so the residue

at v = 0 is zero. Expanding the remaining terms and using the fact that the

residues at points with no singular terms will automatically be zero, the equation

above becomes

These terms may be considered individually. Beginning with the residue at z,

note that Sj and eo are finite at v = Zi, so the only singularity arises from the

01 (v - z, Ir) in the denominator of ei. However, as O(v - z, Ir) is a factor in A, this

singularity is cancelled out. Therefore the residue at Zi is of something which

is finite there and so must be equal to zero. Likewise, the second and fourth

residues in the expression above are equal to zero. In considering the third term,

one utilises the power series expansion of e~.Using (5.3), it is easy to show that

e~= ( 1 )2 +0(1).v - zo

Therefore

coefficient of (v - zo) in expansion of kikj ;"

kikj (;,)' r.
In order to calculate this, write

A O~O(v - zolr)Ao,

X ko(J~o-l(V - zolr)9~(v - zolr)Ao + O~o(v - ZoIT)A~.
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By writing the quotient and dividing the top and bottom by 9~O-I(V - ziIT), one

has
91(v - ZOIT)AO _ k.k.!!..

koO~(v-zoIT)Ao+91(v-zoIT)A~ - ~ Jq.

But differentiating this gives"

(
k.k.!!")' = ( 9~AO + 91A~ _ (ko(O~AO + 9~A~) + 9~A~ + 91A~)91AO)

~ J q k09~AO + 91A~ (k09po + 91A~)2 .

Evaluating this at v = Zo, noting that 91 (OIT) = 9~(0IT) = 0, one obtains

Therefore
kikj

gij = To·
Similar reasoning to that used above implies that in the case of i = j,

gii = (J~~o+J~~.)k? (80 - 8i)2 ;,dV,
2 2A 2 2A- res ki 9i \,dv + res ki 80 \,dv,

v=zo A V=Zo A

k~
k~ + ki·

Lemma is proved.

Lemma 5.5 For terms in 9 relating to the coordinate u, one has

gUlL 0,

gui 0,

gUT

Proof: The equation (5.11) may be obtained simply:

guu = - '" res (27ri)2 ~,dv,L- d log .\=0 A

- ~~~(27ri)2 ;,dv,
O.-------------------------

3NB lh(v - ZoIT) has been denoted 91 for typographical convenience here.

(5.11)

(5.12)

(5.13)
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Similarly, by using the arguments contained within the proof of lemma 5.4, one

may immediately write

gui = - "'" res ki(eO - ei)27ri~dv,Z:: dlog>.=O »
(J!~i+ !!~o+~~~)ki(eO - ei)27ri~,dV,
o.

Finally consider

gUT L 2 ·~~).d- res 7r'l.-- v,
d log >.=0 ). ).,

D)' - i1r eN
- 27ri "'" res ). 2 dv,

~ dlog>'=O '

_ 27ri"'" res ( D)' _ i7re) dv,
~ d log >.=0 ).' 2

- 27ri "'" res ~). dv,
~ d log ).=0 /\'

the last line following from the fact that e is analytic everywhere except v = 0

(and so is analytic where dlog'\ = 0). The fact that D,\ is elliptic allows the

usual deformation of contours argument to be applied to give:

This may then be split into two individual parts:

a log). ).
res -
v=O aT )."
0,

as all parts are analytic at v = O. Using the expansion of e, it is also possible to

calculate the second part of the residue:

i7r (1 )- res - + O(v) ,2 v=o v
'I.7r
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Remembering the preceding factor of 2i7r, one therefore has

_ 2
gUT - -7r ,

as required.

Lemma 5.6 The remaining components of g are zero; that is to say

0.

(5.14)

(5.15)

0,

Proof: Using the usual residue formula,

- '" res (80 - 8d
~ dlog'\=O

17r( A A )= - res 8iA -dv - res 80A ,dv .
4 V=Zj A' v=zo 1\'

Noting that A is analytic near v = zo and v = Zi, one may therefore use the

argument that the singularities of 90 and Si cancel with the zeros of A. This

both of the residues are zero, and so gri must also be zero.

Moving on to grn applying the formula (1.11) yields:

But as A' does not appear in the denominators of Q and R, they are analytic

at points where d log A = 0, and so the residues of Q and R are zero. By then
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applying the usual deformation of contours argument, the remaining residues may

be moved to give

gTT = ( )
(DA)2

~ res + res \\I'
~ A=O v=O AA

( )
(BTA + i;eX)2

~ res + res AA' ,
~ A=O v=O

u v w

These residues may then be considered individually. Using similar techniques to

those employed earlier in this chapter, it is possible to show that

U 0,

V 0,

W __ 71"2t (O~(Zilr))2
4 i=O 01(Zilr)

z

x
y

Summing these then gives the desired result of gTT = 0.

Lemma 5.7 In the coordinates {u, r, Zi (i = 1, ... ,m)}, the intersection form is

n n k k n (k2 )i j i 2 29 = 2: 2: TdzidZj +L k + ki dZi - 271" dudr.
i=l i#j 0 k=l 0

Proof: This theorem follows immediately by combining the results of the lemmas

above.
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Corollary 5.8 The coordinates {u, T, zd are flat coordinates of the intersection

form.

Proof: From the lemma above, the components of the intersection form are all

constant in these coordinates. Therefore it follows automatically that they are

flat coordinates of g.

As {u, T, Zi} are flat coordinates for the intersection form, it follows that the

tensor c*(8a, 8p, 8-y)coincides with the dual structure constants c~,8-y'where 8a,

8,8and 8-yare basis vectors in this coordinate system. Therefore it is possible to

use such vectors in the formula (1.23) to calculate the c~,8-y.These calculations

will again be performed in such a way that they are applicable on an arbitrary

discriminant.

Lemma 5.9 For distinct Zi, Zj and Zk,

where
e(Z) = (J~(ziT) .

(Jl(zIT)

Proof: From the formula 1.23, we have

Applying a deformation of contours argument and expanding the brackets, this

becomes

ctjk - kikjkk (J,;~o+J!~i+J,;~+Vr,;~k+~~~)
(8~- 8~(8i+ 8j +8k) + 8o(8i8j +8j9k +8k8i) - 8i8j8k) ;,dv.
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Note that as f, is finite (in fact zero) at v = 0 and all other terms are finite there,

the residues at v = 0 are all themselves zero. Note also that where v = Vi and

Si appears only to the power one, the singularity caused by (}l (v - z, IT) in the

denominator of Si is cancelled by a corresponding zero in f" and so such residues

also vanish. This leaves

Consider the first residue by using the expansion of 80:

3A (1 1 )Ares 80 "dv = res ( )3 + -- + 0(1) ,,'
V=Zo /\ v=zo V - Zo v - Zo /\

As f, is zero at v = zo, the simple pole is cancelled out and so

1 A
res ( )3 "dv,v=zo v - Zo /\

coefficient of (v - zo) 2 in the expansion of ~"

~ (:V2 ~,) IV=Zo.
By writing

A p
N q

in the same way as in the calculation of gij, and using similar reasoning to that

used in chapter 4, one may immediately show that differentiating this twice and

evaluating at v = Zo gives:

(
~ A) I p" q - 2p' q' I
dv2 A' v=zo = q2 v=zo'

Considering the components of this individually (noting that as (}l is an odd

function, (}l(OIT) = (}~(OIT) = 0), we obtain:

p'lv=zo - ()~(v - zoIT}Aolv=zo,

"I 2(}~(v - zoIT}A~lv=zo,p v=zo -

qlv=zo - ko(}~(v - zolr)Aolv=ZOl

q'lv=zo - (1 + ko)(}~(v - zoIT)A~lv=zo'
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Therefore

p"q -22P'q' I
q V=Zo

2>.'
- k5;0 Iv-zo'

2 dlog .Ao I
k5 dv v=vo·

But from its definition,

Therefore

dl~:.Ao =Lkr8r - (n+ 1)8,
rto

and S04

(5.16)

Next consider, again by using the expansion of 80, the residue

.A
res 82{8· + 8· + 8k)-dvo I J "V=Zo 1\

= res ({ 1 )2 + 0(1)) (8i + 8j + 8k) ~dv,
v=zo v - Zo 1\

= coefficient of (v - zo) in expansion of (8i + 8j + 8k) ;,.

Noting that 8i, 8j and 8k are analytic at v = Zo one may, therefore, show that

by using the same technique as in the calculation of 9ij.

Combining this with 5.16 (being careful to remember the appropriate factors

which multiply them), one therefore obtains the desired result. Lemma is proved.

Lemma 5.10 For precisely two repeated indices, i.e. for distinct Zi and Zj, the

dual structure constant takes the form:

4Here the function 8(z) will denotes (J(J;~tl.
1 Z T
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Proof: By the same reasoning as used in lemma 5.9, it follows that

C;jk = k;kj (~~~ + ;~~o+ ;~~i+;~~J(eo - ei)2(eo - ej) ;,dv,

( ;\ ;\;\ )
= ktkj ;~~ie~(eo - ej) Ndv - J~~oe~(2ei + ej) Ndv + ;~~oe~Ndv .

But using the same techniques as those used in lemma 5.9, it can be shown that

A
res e~\,dv
v=Zo "

1
k
i
(e(Zi - zo) - 8(Zi - Zj)),

1
ko (28(zo - Zi) + 8(zo - Zj)),

:2 ((n + 1)8(zo) - L kr8(zo - zr)) .
o r#O

Substituting these in above will then yield the desired equation.

Lemma 5.11 For three identical indices, the dual structure constants are

Proof: Again using the same reasoning and techniques as in lemma 5.9, one may

immediately write
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The calculations for the residues above are entirely analogous to those in the

previous two lemmas, and so one may immediately derive the desired result.

Having constructed the structure constants relating solely to the Zi coordinates,

it is possible to introduce a function J{ZIT) such that

fJ3 J(ZIT) *
f) 'f) 'f) k = Cijk(zIT).zt Z3 Z

(5.17)

In order to do this, we begin by noting the following fact. The function log ()1 (z IT)

may be expressed as the following:

log 91(ziT) = log(iGql) - iz - (t.u,(q2ne"') +t,u,(q2ne-';')) , (5.18)

where, as above, G takes the form (5.6) and q = ei7rT• To show this, one uses the

infinite product representation (5.5):
00 00

()1 (ZiT) = 2Gqt sin z IT (1- q2ne2iz) IT (1 - q2ne-2iz),
n=l n=l

iz -iz 1 00 00

2Gqt e -.e , IT(l _ q2ne2iz) IT(l _ q2ne-2iz),
2~ 1 - e21z

n=O n=l
00 00

iGqt e-iz IT (1 - q2ne2iz) IT (1 - q2ne-2iz).
n=O n=l

Hence, by taking the logarithm of this,
00 00

log 81(zIT) = log(iGgt) - iz + ~(1- q2ne2iz) + ~log(l _ q2ne-2iz).
n=O n=l

But recalling that

Lil (z) = -log(l - z),

the desired result is obtained. The expression of log 81 above will offer a conve-

nient representation of the function AI, defined (for an arbitrary integer suffix)

by the infinite series below.

Definition 5.12 A new function AN is defined by the series

AN(Z,q) = -~ (2~1N - (f?iN(q2ne';') + (_I)N+l t,LiN(q,ne-",)) .
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This function is, to within a polynomial, the elliptic polylogarithm function (see

[lB}) and so shares its convergence properties.

The function Al is related to (h(zIT) by the following equation:

(5.19)

This equation follows immediately from the definition of Al and (5.18). Consid-

eration is now moved to differentiating AN with respect to z, This gives rise to a

simple differential equation. The derivative of AN(z, q) with respect to z is linked

to AN-1 by the differential equation

(5.20)

To prove this, note that from the definition of AN, it immediately follows that

( . )N-I ( 00 (0)1 2lZ . 2n 2iz N . 2n 2iz
AN-1(z, q) = -"2 (N _ 1)! - ~ uN -1(q e ) + (-1 ) ~ uN -1 (q e- ) .

Differentiating AN(z, q) with respect to z yields

d
dz AN(z,q)

= _! 2iN(2i)N-I
2 N!

(

00 L· (2n 2iz) 00 L· (2n -2iZ))_ ~ 2i 2ne2iz IN-I q . e + (_l)N+l ~ _2iq2ne-2iz 'IN-l q ~ ,
L...J q q2ne2u L...J q2ne-2u
n=O n=l

= 2· (_! (2iZ)N-l) _ 2· (~L· (2n 2iz) + (_l)N ~ L· (2n -2iZ))
l 2 (N _ 1)! l L...J IN-l q e L...J IN-l q e ,

n=O n=l
= 2iAN_1(Z, q),

as required. Note also that the function Ao satisfies

(5.21)

This follows immediately from differentiating (5.19) with respect to z using the

lemma above. One may then use the function A3, along with the lemmas above,

to introduce a function f (z IT) satisfying the equation (5.17).
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Lemma 5.13 The Junction

where indices Jor the sums run Jrom 0 to m, satisfies {5.17}.

Proof: To prove this, one needs simply to differentiate J three times with respect

to Zi, Zj and Zk and show that the result (for appropriate combinations of distinct

and identical indices) coincides with Cijk' Firstly, differentiate J with respect to

8J(zlr)
8zi

Differentiate again with respect to Zj, i =1= j to obtain

82J(zlr)
8zj8zi

(5.22)

()3J(zlr) _
8zk8zj8zi -

Substituting in the result from equation (5.21) that
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and noting that
o~(-ziT)
01 (-ZiT)

one obtains the desired result of

O~(zIT)
01 (ziT)'

83J(zIT) *
8zk8zi8zk = Ciik'

Similar reasoning and techniques may be applied to show that this holds for

i = j =1= k and for i = j = k.

Recall that the third derivatives of F* must satisfy

8F*-:-- __ -:-- - c*
8a8/38'Y - QfJ-y

for all a, /3, 'Yincluding u and T. The function J(ZIT) does not, therefore, neces-

sarily coincide with F*. One now moves on to considering c~QP' where a and /3

may be any of the coordinates.

Lemma 5.14 The non-zero dual structure constants c~QP are:

with

Proof: Applying the formula (1.23), one may easily show that for a, /3 being any

of the coordinates Zi, u, T, the following formula holds .

.8A 8A A-L res 'Tn-88/3 "dv,
dlogA=O a 1\

The lemma follows automatically from this.
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Lemma 5.15 The function

(
m k k m ( 2) 2 )* . i j ki Zi 1 2 2

9 (U, Zi, r) = 2m ULL TZiZj + uL ki + k "2 - -7r TU
i==i j>i 0 i==l 0 2

(5.23)

satisfies the differential equations

ff3g* *
8u8a8 (3 = cuafJ'

Proof: Proof is obvious; differentiating g* immediately yields the desired results.

Note that the entire u-dependence of F* must therefore be included in g* (ignoring

any quadratic terms which vanish under triple differentiation). Hence if one writes

F* = g*+ Ft .

the function Ft must be independent of u. Also, observe that

ff3g*
8a8{38, = 0, a, /3" =1= u.

Therefore
ff3F* ff3Ft

8a8{38, - 8a8(38,'

But this must be equal to c~fJ"Y' Now write

a, {3" =1= u.

Ft=f+h·

From theorem 5.13 and the line above, one must have

ff3 (F* - f) = O.
8z;f}zj8Zk 1

Integrating this gives rise to the following lemma.

(5.24)

Lemma 5.16 The function fl(zlr) above is of the following form:

1 m m m

fl(zlr) = 22: 2: AijZiZj(r) +2: Bi(r)Zi + C(r).
i=1 j=1 i==l
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Proof: The proof of this follows immediately from integrating the equations

(5.24) to obtain:

1 m m m

Ft(zIT) - J(ZIT) = 2L L AijZiZj(T) +L Bi(T)Zi + G(T).
i=O j=O i=O

But as Fi - I = 11, the lemma is proved.

Note that the functions Aij, B, and G are functions only of T, i.e. they are

independent of the Zi. Differentiating Fi with respect to Zi, Zj and T, one obtains

* ( I ) - 83/(zIT) dAij
CTij Z T - 8 8 8 + d .

T z, Zj T

But as Aij is independent of z, one may evaluate J(ZIT) at z = 0 to obtain

Similar reasoning leads to

G"'( T)

It transpires that the third derivatives in the above equations all take simple

forms.

Lemma 5.17 The derivatives

aa J(ZIT)
8T8zi8zj and

are both zero when z = o.

Proof: From the proof of lemma 5.13, we already know that 8;H;~:)is of the form

(5.22) Using the fact that

~~;~~~ 1.=0 =!(8;~i~~:)1.=0) ,
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one may evaluate the second derivative of J and then differentiate the result with

respect to r . But

But noting that the all of the AI(Zi - Zj) terms are functions of linear functions

of the Zi, they will all (assuming that z ~ 0 in a suitable way) behave like

limz-+o AI{Z) as z -+ O. Therefore they may be grouped in the limit, and so one

obtains

lim (((n + 1) kikj + ki - ki - kikjko - kikj " kp) Al (Z)) ,
z-+o ~ ~ ~ ~#0

kikj ({n + 1) - ko - (n + 1- ko)) limA1{z),ko z-+o
o lim AI{z)z--+o

- o.

Differentiating this with respect to r therefore trivially yields

aaJ{zlr) I = o.
8r8zi8zj z=o

By recalling U and applying similar reasoning to that used above, it is possible

to immediately write:
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Differentiating this twice with respect to r trivially gives zero, as required.

It follows automatically from this lemma that

A~j(r)

B;'(r)

c~ij(Olr) and

c~Ti(Olr)

In order to proceed, one needs to evaluate c~ij(Olr), C~Ti(Olr) and c~TT(Olr),

though it is not necessary to calculate these functions everywhere.

Lemma 5.18 For i =1= j:

Similarly, in the case where i and j coincide, one has

Proof: By using the formula (1.23), one obtains

-i1r t k O?(v - zrlr) - (n + 1)O?(vlr) ).. d
4 r=O r Ol(V - zrlr) O(vlr)..' v

A

But A is finite everywhere (with the possible exception of infinity), so by the

usual deformation of contours argument, this becomes

C~ij(zlr) (J~~o+;~~i+J~~Jkikj(80 - 8i)(9o - 8j)A ;,dv,

- kikjAlv=zo'

_ -i1r kikj (t k; Or(zo - zrlr) _ (n + 1)Or(zolr)). (5.25)
4 ko r=O Ol(ZO - zrlr) 01(zolr)

Note that
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is well defined, and so one may take this value to be equal to :~~~II;;. Hence if one
6"(0IT)evaluates the above at z = 0, there are Ek; = (n + 1) positive ~ terms and

(n + 1) negative terms. These cancel out to give

Similar calculations can show that

Again it is easy to show that evaluating this at z = ° gives C;ii(OIT) = o.

Whilst in the above lemma, C;ij was calculated everywhere and then evaluated at

z = 0, such calculations for C~Ti and C~TT grow in complexity, and so a different

approach will be used in proving the following lemma.

Lemma 5.19 Evaluating C~Ti at z = ° leads to:

Proof: One begins by utilising the WDVV associativity equations. In particular,

consider the equation

Noting for which Cl and f3 the components gaf3 are zero, this becomes

p,q p,q

But CjTU = CiTU = 0 and C~ij = 27rigij. Furthermore, one may easily show that

gTU = ~ Substituting these in and rearranging the terms yields
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Similarly, one may show that

One may obtain C;Ti(OIT) by evaluating this at z = O.

Consider now the individual terms, e.g. cijpc;jq' We know that C;jq(OIT) = 0 and

it is easy to see that cijp(OIT) is singular. In order to show the behaviour of their

product near z = 0, one considers the terms from which they are formed. Begin

with cijp' which is the sum of terms of the form

8~(zIT)
81(ziT)'

where z is something linear in the Zi. The expansion of this near z = 0 is of the

form

~+O(z).z
Hence cijp is the sum of terms which have simple poles at z = 0, and so cijp must

itself have a simple pole there. Move onto, C;jq, which is the sum of terms of the

form
8f(zIT)
81(ziT) ,

which have expansions of the form

But c;jq(OIT) = 0 (obtained by adding the same number of 'positive' and 'neg-

ative' terms), and so it must have a zero of order 2 at z = 0. Therefore at

z =0,

(pole of order 1) x (zero of order 2),

- (zero of order 1).
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Hence c;Ti is the sum of terms which all individually have zeroes at z = 0 and so

must itself have a zero (of order one) there.

Lemma 5.20 The final structure constant, c;TT(zIT) adheres to

Proof: The modularity properties of c~f3'Y will be considered. Begin by noting

that the function (}l (v IT) obeys the modularity equation (where A is a constant,

the precise value of which is not needed here):

Differentiating this with respect to v, one obtains

A(}~ (vIT)
-2iv _i,,2 v -1 -i,,21 v-1

-i-e--;r;-(}l( -1-) - ie--;r;--(}' (-1-),
7rT T TTl T T

-2v _i,,2 v -1 _i,,21 v-1
-e--;r;- (}1(-1-) - ie--;r;--(}~(-1-).
7rT T T T T T

Dividing this by A(}1(vIT) gives

(}~(vIT) -2iv 1(}~(~I~l)_.:....;'--;-~- -- + - _:....;...!...:...~

(}1(vIT) - 7rT T(}1(;1~1)'

or upon a simple rearrangement of terms:

Note that for small v, this is therefore a modular function of weight 1. Similar

reasoning leads to the analogous relationship

(5.26)

for small v.
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One now moves on to considering the modular properties of Cfjk' Begin with the

z -1
c~'k(-I-)
lJ r r

Noting that Crjk is singular at z = 0, one now considers the limit" as z -+ ° of

the ratio
crjk(;I~) -¥~((zo - Zi) + (zo - Zj) + (zo - Zk))
* ( I) = * ( I ) + r.~kzr ~kzr

It is easy to see that as z -+ 0, the right hand side tends to r .

Similar calculations show the same result for ciij and ciii' Consideration is now

turned to the modularity properties of C;ij'

Substituting the modularity equation (5.26) into (5.25) gives (for small z)

c*.. (~I~) = -i7r kikj (f:krr2Bf(zo - zrlr) _ (n + 1)r2 Bf(zolr))
TtJ T T 4 ko r=O Bdzo - zrlr) Bl(zolr)

_ i7r kikj 6ir (f:kr - (n + 1)) + O(v2).
4 ko 7r r=O

But as L:k; = (n + 1), one has

c;ij(~1-1) = r2c~ij(zlr) +O(z2),
r r

for small z, Hence C;ij is modular of weight 2 near z = O. In order to obtain

the modularity properties of c;-ri(Olr) in the absence of an explicit formula for

c;-ri(zlr), one utilises the WDVV associativity equations. Recall from the previ-

ous lemma that
-6ik·k~
__ '_..:!.,J c* - ~ (2k * * 2k * * + k * * k * *) pq7rk 'T'Ti - L- iCjjpC-riq - iCijpC-rjq jCiipC-rjq - jCijpC-riq 9 .

o p,q

5Note that as one is dealing with a multivariate limit, one must be careful as to how the

limit is taken.
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One now restricts this to near z = 0 and considers the individual terms". From

the equations above, one has

* (°1-1) * ((°1-1)Cjjp T T CTiq T T _ 2 * (01 )
~. (01 ) - 7 CTiq 7 T.CJJP T

If one multiplies both sides by cjjp(017), the right hand side is finite (from the

proof of lemma 5.18). Hence

Therefore c;ipc~iq(017) is a modular function of weight 3. Moreover, c~Ti(017) is

a sum of modular functions of weight 3, and so is itself a modular function of

weight 3.

Attention is now turned to the modularity properties of c~TAOI7). By considering

the associativity equation

one may (by substituting in known gOP and c~P'Y) obtain the equation:

* _ 7rko ""( * * * *) pqCTTT - 'k2 L..i CTipCTiq - cTTpCiiq 9 .
1. ., p,q

At z = 0, the C~ip terms all vanish. By applying similar logic to that used in

lemma 5.19, it is possible to show that

c;TPc7iq(0IT) - (zero of order 1) x (pole of order 1),

- something finite.

Also observe that
C* ( Q 1-1) * ( Q 1-1 )
TTp T T Ciiq T T = 73C* (017)7

~. (01 ) TTP'Cnq T

which implies

* * (0 1-1) 4 * * (0 I )CTTpCiiq - - = 7 CTTpCiiq 7.7 7--------------------------
6More formally, one should take the limit as z -+ 0 in a suitable way.
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Therefore c~TPciiq(OIT) is a modular function of weight 4. Hence C~TT is a sum of

modular functions of weight 4 and so is itself a modular function of weight 4.

Having established that C~TT is a modular function of T (of weight 4), we now

consider its behaviour as q -+ 0 (or equivalently T -+ ioo). Begin by considering

Cijk(zIT), which is the sum of terms of form ~. But from [27], it follows that

()~(ZiT) _ 4 ~ q2n sin 2nz
() ( I ) - cot z + L- 1 2 .
1 Z T n=l - q n

Therefore for small q,
()~(ZiT) = 0(1),
(}l(zIT)

and so Cijk(zlr) = 0(1) also. Moving on to C~ij' which contains terms of the form

~, note that differentiating

()' ()~()
1 = (}1 1,

and dividing through by (}1 gives

O~(zlr) ( 1 8Loo
nq2ncos2nz) ( 4Loo

q2nSin2nz)2~;...._;_-'-= --- + + cotz +
01 (zlr) sin2 z 1 - q2n 1 - q2n

n=1 n=1

Hence as q -+ 0,
(}~(ZIT) -+ -1+ 0(q2).
(}l(zIT)

Substituting this into the formula (5.25) for C~ij and noting that there are n +
1 - (n + 1) = 0 constant terms, one therefore has that as a function of q, and for

small q,

The same argument holds for C~ii (which contains precisely twice as many constant

terms which cancel out with each other).

In order to consider the small q behaviour of C~Ti' recall that from the associativity

equations (where kpq is the appropriate constant obtained by substituting in all

known constants):

C~Ti(zIT) =L kpqc:jpC~jq.
p,q
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Hence for small q,

p,q

Similarly,

p,q

Therefore c~TAOlr) is a modular function of r which tend to zero as q tends to

zero. This means it is a cusp Jorm [17]. But the only cusp form of weight k < 12

is the zero function [1]. Hence

as required.

Corollary 5.21 The Junctions Aij1 B, and G are (to within a quadratic term):

C - J(zlr)lz=o'

Proof: The first two equations above followimmediately from integrating A~j = 0

and B: = 0, taking the constants of integration to be zero. The final line comes

from integrating

G'" _ [J3 J(zlr) I
8r3 z=o'

[J3
- - 81'3 (J(zl1')lz=o) ,

again taking the constants of integration to all be zero.
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Noting that

the function Ft must therefore be:

This may be rewritten in a more convenient form by introducing a new function,

known as the elliptic polylogarithm, as constructed in [18] and [2].

Definition 5.22 The elliptic polylogarithm function Li; is defined for odd r by

the series
00 00

Lir(q, () = L Lir(q2() + L(qn(-l) - Xr(q, (),
n=O n=l

where x-i». () is defined, with B, being the Bernoulli numbers, as:

Lemma 5.23 The third elliptic polylogarithm satisfies

Li3(q2,e2iZ) = -A3(z,q) + ~(logq)2z2 + 9~(lOgq)3.

Proof: The proof of this follows immediately from the definitions of Lir(q, ()

and AN(Z, q).

Lemma 5.24 The function Ft may be expressed in terms of the elliptic polylog-

arithm. Explicitly,

Ft - ~L(Li3(q2,e2i(Zi-Zj))-Li3(q2,1)),
i:f:j

- n ; 1 L (Li3 (q2 , e2izi) _ Li3 (q2, 1)) .
i
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Proof: It follows immediately from lemma 5.23 the equation above may be

rewritten as:

Ft =

Counting the number of (logq)2 terms, one finds that there are of N them, where

1 L 2 (n+ 1)L 2N = - k-k·(z· - z·) - k.z:24 I J 1 J 12 z z·
i:j;i i

But using ~ k, = (n + 1) and ~ kizi = 0, N may be simplified:

24N = L kikj(z? - 2ZiZj + zJ) - 2(n + 1)L ksz~,
i~j 8

2L kikjz; - 2L kikjZiZj + 2L krL ksz~,
i~j i¥-j r s

2L kikjz; - 2L kikjZiZj - 2L krksz; - 2L k~ z~,
i~j i~j r~s r

-2 (~~k'Z.k.Z}
O.

Hence Ft expressed as a sum of elliptic polylogarithms (above) agrees with (5.27).

Adding this to g* therefore gives the almost dual prepotential for the discrimi-

nants of H1;n'

Theorem 5.25 The almost dual prepotential is

F* = ~L kjkj (Li3(q2, e2i(Zi-Zj») - Li3(q2, 1))
i~i

- n ; 1L ki (Li3 (q2 , e2izi) - Li3 (q2 , 1))
i

+27riu (tL kikjZiZj + t (ki + k?) z? - !7r2TU) .
i=i j>i i=l ko 2 2
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Proof: Proof is obvious; this theorem is a the collation of the results of the

lemmas in this chapter.

Note that this theorem generalises the result of [21] to an arbitrary discriminant

of H1jn• As with the genus zero case, as the discriminant submanifold this was

calculated on is not actually a Frobenius manifold, there is again no prepoten-

tial to which this function is actually dual. However, if all of the k, = 1, the

superpotential (5.4) defines a Frobenius manifold rather than a discriminant sub-

manifold, and in such a case the solution F* agrees with the result in [21]. An

obvious generalisation to this theorem would be to find an analogous result for

an arbitrary genus one Hurwtiz space. Though this will not be considered here,

one would expect conjecturally that such a function, like in the genus zero case,

would be of the same form but would allow negative values of the parameters ki.

Beyond this, an obvious generalisation would be a Hurwitz space of an arbitrary

genus.



Chapter 6

Conclusion

The work contained in this thesis has been based around the idea that a Frobenius

manifold with a polynomial superpotential is the simplest example of a construc-

tion on a Hurwitz space (namely Ho;n). This affords a generalisation in one of two

directions; to an arbitrary Hurwitz space of the same genus or to a simple Hur-

witz space of a higher genus. Chapters 3 and 4 generalised their respective ideas

of induced Frobenius structures on caustic submanifolds and almost duality for

discriminants in the former of the two directions, whilst chapter five generalised

discriminant almost duality in the latter. Schematically:

~ {Ho;no, ...,nm} chapters 3 & 4

{H1;n} chapter 5 ~ {H1;no, ...,nm}

The first obvious extension to the this work is to generalise the ideas of chapter

3 to Hl;n. As mentioned earlier, one would expect that this would become com-

putationally difficult due to the superpotential being elliptic. Similarly, the ideas

152
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of chapter 5 may be generalised to a higher genus Hurwitz space Hg;n. Such a

construction would be based around a superpotential, which one would expect

to be expressed in terms of higher genus functions. As such, some aspects of the

construction of an almost dual prepotential would mirror the H1;n case. However,

technical difficulties would be expected, for example where the elliptic connection

was used in chapter 5, one may need to use some sort of higher genus analogous

connection in its place.

Alternatively, analogous to generalising Ho;n to HO;no •...•nm' one may generalise the

ideas of chapter 5 to H1;no •...•nm (which would complete the diagram above). One

would expect that if a suitable superpotential were to be constructed in terms of

the function (Jl(vlr) that the calculations involved would follow very closely from

those contained within chapter 5.

Finally, going back to the motivating example of a Frobenius manifold with poly-

nomial superpotential, recall that this also corresponds to the orbit space en / An.

From this perspective, the obvious generalisation is to extend the ideas of dis-

criminant almost duality to other Coxeter groups. Results for this, based around

deformed root systems, can be found in [16]. However, such results could be

instead derived by direct calculation using an LG superpotential. For example,

in the case of Bn the superpotential would be of the form1
•

n n

,\= II (z2 - zl) = II (z - Zi)(Z + Zi).
i=l i=l

Note that this is the same as the superpotential for A2n-1 subject to a certain

constraint on the {Zi}. This is expected though; recall that B; C A2n-1. Note

also that in this particular case, the calculation of structure constants ctjk would

actually become easier than in section 4.1, as the sum of the roots would auto-

matically be zero, thus removing the condition Zo = ZO(Zl,' •. ,Zn).

1In order for the superpotential to define a discriminant, one would require repeated roots,

i.e. Zi = Zj for some i '"j
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Analogous to the genus zero extension to other Coxeter groups, one notes that

H!jn ~ OJ J(AN), and so the ideas of chapter 5 may be extended to other Jacobi

orbit spaces. One would expect that this again would be possible in terms of

root systems, particularly if one notes that terms in F* for H1;n are functions of

Zi - Zj and so appear to be linked to the An root system.

Finally, one moves on to considering applications of the results derived here. The

ideas of chapter 3 may be applied to bi-Hamiltonian structures; as the caustics

are natural submanifolds. lt is already guaranteed by [25]that the submanifolds

considered will be bi-Hamiltonian, and although no construction was given, one

may show that the induced intersection form is (in the canonical submanifold

coordinates r':
~ i i 29 = L- r 1Jii (dr) .
i

The ideas of chapter 5 have a perhaps surprising application in 6d Seiberg-Witten

theory. Discussion of this is given in [7]. Finally, the ideas of chapters 4 and 5

appear closely linked to the ideas of deformed root systems discussed in [26, 16]

and may provide a way of finding further examples of V-systems. The result (4.3)

extends the result in [16]to include negative integer values of the parameters ki.

lt also provides a geometric interpretation of this result, with the negative k;

determining which Hurwitz space the solution comes from and the positive ki

determining the precise discriminant in that space.
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