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Abstract

In this study we look at optimal control theory and differential game theory. In
the control section, to illustrate some of the nonstandard methods which we will be
using, we give existence and uniqueness proofs for standard and Loeb measurable
controls. The standard existence is a well-known result, the proof we give is is due
to Keisler; this proof was given by him in previously ﬁnpublished lecture notes at

the University of Wisconsin ([27]). The uniqueness proof is a simple application

of Gronwall’s Lemma ([31]).

We then show that there is always an optimal Loeb control even in situations
where there is no optimal Lebesgue control. Using this result we are then able to

show the well known result that there is always a standard optimal relaxed control.

In the games section, by using nonstandard analysis we show that, under certain
circumstances, we have the existence of value for two player, zero-sum differential
games played over the unit time interval. We follow the work of Elliott and Kalton
and, as they did, we show that if the Isaacs condition holds then the game has
value in the sense of Friedman. Over the relaxed controls the Isaacs condition is
always satisfied and so there is always value for relaxed controls. Like Elliott and
Kalton, we do not need Friedman’s hypothesis that the variables appear separated
in the dynamics and payoff. By using nonstandard methods we are, unlike Elliott
and Kalton, able to show these results without using the Isaacs-Bellman equation,
other than to explain what the Isaacs condition is. We also find it unnecessary to

impose as many restrictions on the functions as Elliott and Kalton:
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Introduction

Two player differential game theory was developed to study competitiye con-

tests whereas optimal control theory investigates one player optimization problems.

In differential game theory we are looking at a dynamical situation described
by differential equations and, at the end of a fixed period of time, which we take
to be one unit of time, a payoff is computed. (This is equivalent to the cost in
control theory.) We are studying zero-sum games, that is, games where one player

is trying to minimize the payoff and the other to maximize the payoff.

Differential game theory was first studied in the 1950’s by Isaacs, though his
work was not published until 1965 ([26]). His main contribution was to derive,
heuristically, a differential equation, known as the Isaacs-Bellman equation, which
the value of the game should satisfy. The equation however cannot be guaranteed

to have solutions.

Fleming, Friedman and then Elliott and Kalton use this equation to attain
value. We however, manage to achieve the same results without using the Isaacs-

Bellman equation.

A strategy for a player in a game is, roughly speaking, a rule which tells him
what to do on the basis of what has happened so far in the game. Because of the
continuity of time this is a difficult notion to make precise. Fleming ([13], [14],
[15] and “[16] ) avoided this difficulty by studying a sequence of discrete time games

and approximating the differential equations by difference equations.”

Each approximating game has an upper and lower value, W and W7, de-

pending on which player goes first, the minimizer or the maximizer.

Two problems arise, first, do the the values W* and W tend to limits as the

time between stages decreases to zero 7 This is what Fleming refers to as the

convergence problem.

Secondly, are the two limits, if they exist, equal i.e. does W+ =W~ ?



If the opposing control variables appear separated in the dynamics and payoff,

Fleming ([13]) was able to give positive answers to both of these questions.

Ano;cher approach by Fleming ({14], [15]) was to introduce noise into the game
and so into the approximating discrete difference games. Although the Isaacs-
Bellman equation cannot be guaranteed to have solutions, with this small amount
of noise added, the upper and lower value functions satisfy a non-linear parabolic
equation and work done by Friedman ([18]} or Oleinik and Kruzhkov ([29]) shows
that such equations have unique solutions. Therefore, Fleming was able to show
that the upper and lower values of the approximating games approached the solu-
tion of the corresponding non-linear parabolié equation and was able to prove the

convergence of the values as the noise tended to zero.

Thus again he provided positive answers to both of the questions. However
Fleming’s functions had to satisfy a constant Lipschitz condition. We go on to use
the idea of adding noise into the game in section 6.3 but we do not do it in the

context of the Isaacs-Bellman equation.

Friedman ([20], [21], [22]) studied differential games directly not by approximat-
ing them by difference equations; he did however find it necessary to approximate
the idea of a strategy by upper and lower strategies, varying only at a finite number

of division points throughout the interval.

Again, depending on which player goes ﬁrst, Friedman obtained upper and
lower values V* and V, for the game. These functions are monotonic and so tend
to limits V* and V-, (These values are not necessarily the same as the values W+

and W~ obtained by Fleming.)

In order to show that the game G has value i.e. that V* = V~, Friedman
also had to assume the opposing variables appear separated in the dynamics and
payoff however Friedman only required the functions to satisfy a weaker Lipschitz

condition and his payoff was more general than that used by Fleming.

Elliott and Kalton ([10]) give a definition of strategy and then reformulate |

Friedman’s result using approximating games and relaxed controls, without the



separation of variables. They then relate the upper and lower values as obtained
by Friedman to those obtained by Fleming. To do this they use the Isaacs-Bellman
equation and the results of Fleming. Their main result is to show that there is
value when the Isaacs condition is satisfied and since relaxed controls always satisfy

the Isaacs condition, that there is always value with relaxed controls.

Elliott and Kalton first prove these results with a constant Lipschitz condition
but by approximation arguments they are then able to assume a weaker condition

and have a much more general payoff than Friedman.

In this study we use nonstandard analysis to provide the same results without
using the Isaacs-Bellman equation or assuming as many restrictions on our func-
tions. We begin by looking at differential control theory (Chapter 1) and then
extend the study to differential game theory by bringing in another controller.
Many of the results obtained in the control section carry over naturally to the

game theory.

In the control section we start by showing the existence and uniqueness of
solutions with standard Lebesgue controls we then show, by an example, that

there is not always a standard ordinary optimal control.

We look at the idea of extending the class of admissible controls to include Loeb
controls. To be able to do this we have to adapt the dynamics and cost functions
to accommodate nonstandard times (section 1:3). Once this has been done we can
show the existence and uniqueness of solutions corresponding to Loeb controls.
We show that with Loeb controls the minimum cost is the same as with standard
controls. We are able to show that there is always an optimal Loeb control even

in situations were there is no ordinary optimal Lebesgue control.

By using Loeb controls we are able to show that the minimum cost with relaxed
controls is the same as with ordinary controls or Loeb controls and then we give a

nonstandard proof of the well-known result that there is always a standard optimal

relaxed control.

Having got the fact that there is always an optimal relaxed control we then



look at the well-known result which states that there is always a standard ordinary

optimal control if we have convexity.

In section 1.5, we give a proof of this result using the results obtained so far,

however our proof relies on an, as yet, unproven conjecture. (See Lemma 1.5.1 .)

Having studied the differential control problem we extend our study by bringing
in another controller this then becomes differential game theory. We study two

player differential game theory.

We follow the work done by Elliott and Kalton [10], Fleming [14] and Friedman

[20] and study two player zero-sum games.

Like Elliott and Kalton, we are able to show that there is always value if the
Isaacs condition is satisfied and so there is always value with relaxed controls. We
however do not use the Isaacs-Bellman equation at all and find it unnecessary
to assume as many restrictions on the functions. In fact by introducing a new
game H;:m (Chapter 5) and relaxed controls, we are able to show that the values
Wit (W) and similarly Wy (W7;) exist by only assuming one of Fleming’s five
conditions, (F1), that is we assume that f satisfies a constant Lipschitz condition
but it is not hard to see that these results would still hold if we had a weaker

condition on f.

In section 6.2 we recall briefly the Isaacs-Bellman equation, this is only included
so that we can deﬁnelthe Isaacs condition, we never actually use the Isaacs-Bellman
to attain any-of our results. In section 6.3 we use Fleming’s idea of.introducing
noise into the game, by doing this we are able to show that there is always value if
the Isaacs condition holds and so, since over relaxed controls the Isaacs condition

is always satisfied, we can show the existence of value for relaxed controls.

000



Preliminaries

We assume knowledge of the basics of nonstandard analysis as expounded in
[1], [7], [8] and [25]. For standard measure theory we refer the reader to [28] and
[38]. '

Here, to set our notation, we give a brief recollection of some Theorems and
Deﬁr;itions which we shall be using, we give them in the form in which they will

be used.

Given a finite member of z € *R we shall use both notations, °z and st(z) to

mean the standard part of z.

We shall work in a nonstandard superstructure constructed over the reals, R.
We assume ¥;—saturation and note that this is equivalent to countable com-
prehension, so that given a function f.: N — A, where A is an internal set, the

function may be extended to an internal function F': *N — A.

We will also use overflow; recall that this states that if we have an internal

A C *N and n € A for all finite n € *N then there is an infinite N € A.

Throughout this work we frequently refer to the concept of S-continuity as
in ([8]). Recall that given an internal function F' : *[0,1] — *R, F' is said to be
S-continuous if’for all z, y € *[0,1], F(z) = F(y) whenever z = y. We note that
given an S-continuous function F': *[0,1] — *Rif F(0) is finite then there exists a
unique continuous function f : [0,1] — R such that f(t) = °F(¢) for all t € [0,1].
( f(°r) = °F(r) for all 7 € *[0,1]. )

We also observe that if we have a function F': *[0,1] — *R defined by F(r) =
Jo 0(0)do for some internal function 6 then F' is S-continuous if 6 is bounded; this

can clearly be seen by the following. If § is bounded by « and 7/ > 7, 7/ & 7 then
F(r) =~ F(n)| = | [ 8(0)do = [ 0(o)do| < [ |6(0)ldo < (r' = 7) 0.
0 0 . T
We note that given a compact metric space M, functions ¢ : R? x M ->_Rd and
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G : *R¢ x *M — *R? are close (i.e. G & g) in the sense of the compact open

topology iff °G(X, A) = g(°X, °A) for all finite X € *R¢ and all A € *M.

We éhall also assume the knowledge of the Loeb measure construction
which, given a standard measure, constructs a Loeb measure from it — we shall
denote the Loeb measure of a standard measure p by pz. We shall also assume
familiarity with Loeb integration and lifting theorems. Recall two definitions of
lifting:

(1) Given a measure space (2,4, 1) and functions f : } — R and F: @ — *R,
F is called a lifting of f if F is internal and °F(w) = f(w) for a.a. w € Q with

respect to the Loeb measure yup.

(2) Given a discrete time line T = {0, At,2At,--- ,1}, where At = L for some
infinite N € *N, and functions f : [0,1] = Rand F: T — *R, F is a lifting of f
if F is internal and °F(t) = f(°t) for a.a. t € T with respect to the measure ur,

on *[0,1] where y is the internal counting measure on *[0,1].

. v ' F
“0,1] 2T —> R

[0, 1]

A\

Rd

(This is sometimes called a two-legged lifting.)

In particular we shall use Anderson’s Lifting Theorem which states that

(1) Given a hyperfinite probability space (£2,.4,p) and its corresponding Loeb




space (2, L(A),pr) a function f: Q — R is Loeb measurable if and only if it has
a lifting.

(2) Given the standard Lebesgue space ([0,1],B([0,1]),A) and (T, L(A), uz), the
Loeb space associated with the discrete time line T = {0, At,2A¢,---,1} where
At =~ 0, and p is the counting measure, a function f : [0,1] — R is Lebesgue

measurable iff f has a lifting F': T — *R.

Note, in (2) above, R can be replaced by any separable metric space M. (see
[1, page 69] ) The space C(R”,R™) in the compact open topology is a separable
metrizable space ([1, page 58]), we can therefore employ this result with C(R*, R™)
in the compact open topology and then we can say that f : [0, 1] - C(R™,R™) is
Lebesgue measurable iff f has a lifting F': T — *C(R™,R™).

Another result which we shall use frequently is Anderson’s Lusin Theorem,
this states that given a Radon space (X, B, u) with completion (X,C,x) and a
function f: X — Y, where Y is a topological space, then if Y is Hausdorff with a

countable basis of open sets and f is C-measurable then

°(*f(x)) = f(°z) fora.a. z€ X .

000




Chapter 1

Introduction to the theory of

control

In control theory we have a process, that is some action taking place in time.
Along with a process we have a set of controls which can be used to influence
the behaviour of the process in question. We have a structure which governs the
state of the process, which we call the dynamics of the process. When a choice
of control has been made the dynamics provide a means by which, given the state,
z(t), of the process for times ¢ < ¢’ for some arbitrary time ¢’ in our time set, we

can determine the evolution of z(t) for t > ¢'.

The next element requiréd in the formulation of a control problem is the ob-
jective, that is we set some goal to be achieved by our process by applying the
controls. An objective is usually specified by some desired target states of the

process.

One question which arises naturally is whether the means of influencing the
process are strong enough to achieve the desired objective. If such means exist

then we have properly formulated a control structure.

Starting from some arbitrary initial state for the process we may consider the

set of all poséible states which may be attained through the influences available to



us. Such a set is called the reachable set for the process defined relative to some

initial state.

Therefore a more precise meaning of a properly formulated control structure is

when an objective state lies in the reachable set relative to the present state.

There are a number of ways in which the objective may be achieved, for ex-
ample one may systematically choose the ‘best’ approach with respect to some

performance criterion.

If with respect to some performance crlterlon we seek, in the set of all influenc-
ing policies for achieving an objective, the one that is ‘best’ then the formulation

is an optimal control problem.

A common formulation of the dynamics is in the form of an ordinary dif-
ferential equation; in this case the control, whose range is contained in some
pre-assigned control region, is a function belonging to a certain admissible

class.

The performance criterion for such a system is usually the integral of some
real valued function. This is the class of optimal control problems we discuss

in this Chapter.

Some questions which arise in control theory are whether a given initial point
can be ‘steered to the target’ using a certain control, whether controls required to
belong to some special class of functions would also steer this point to the target

and whether an optlmal control exists. [For more information on this see [12], [17],

[23] and [33].]

1.1 Deterministic control problem

In this section we consider a control problem over a fixed time interval I = [0, 1].
At each time ¢ € I, the controller picks an element u(t) from a fixed (separable)

compact metric space M i.e. u : [0,1] — M. Functions of this form play the role of



our controls. The set of all measurable controls u is denoted by U. The situation

we look at is when the dynamics are given by the following equation

(1.1) | z(t) = +/ f(s,z(3),u(s))ds.

Here, z(t) € R? and the function f: I x R* x M — R? is such that there exists

K < 00 satisfying the following conditions
(i) f(t,e,9) is continuous for each t € I
(ii) f is measurable
(iii) |f(t, 2, a)| < w(1 + |2])

(iv) |f(t,z,a) = f(t,y,0)] < K|z -y

whenever z,y € R% a € M, and t € I. Condition (iii) is known as a growth
condition on f and condition (iv) is known as a Lipschitz condition on f; in (iv)

k is a Lipschitz constant for f.

Before we think about our objectives for the process, to illustrate some of the
nonstandard methods which we will be using, we give a nonstandard proof of the
Carathéodory Existence Theorem. This is a well-known resuit which states that,
given a control u € U and an initial state for the process, i.e. z(0), the dynamics

equation (1.1) has a solution z(). The proof we give is due to Keisler ([27]).

-

1.1.1 Existence and uniqueness of solutions

Theorem 1.1.1

For each control u € U, equation (1.1) has a solution z(t).

Proof: If, for any z, we write g(t,z(t)) = f(¢,z(t),u(t)) then equation (1.1)

becomes

(1.2) 2(t) = 5(0) + [ ' (5, 2(5))ds

10



and g is such that there exists a constant & satisfying the following conditions:
(i) g(¢, e) is continuous for all ¢ € I
(ii') g is measurable
(i) lo(t, )| < =(1 + o]
(iv') lg(t,z) — g(t,y)| < klz — Y]
When;ever r,y €R%and t € I.

We want to show that a solution to equation (1.2) exists under conditions
() (i)

Choose N € *Nsuch that N is infinite and let At = - ~ 0. Define a hyperfinite
time line by T = {0, At,2At,--- ,1}.
Let C = C(R% R?), the class of all continuous functions ¢ : R? — R
Let '

(1.3) g(t) = g(t,e)  for eacht € [0,1]

then by (i)
g:[0,1]-¢C

i.e. §(t) € C for each t € [0,1]. Now, by Anderson’s Lifting Theorem (see [1]), we

can take a lifting G of §,

G:T— *C

such that for a.a. t € T

A

G(t) = §(°t)
in the sense of the compact open topology i.e. for a.a. t € T

A

(14) | G(E)(Y) = g(°t)(°Y)

for all finite Y € *R< i.e. for a.a. t € T the following diagram commutes
g g

11



*Rd > *Rd

R? - > R? .
g(°t)

Now define G : T x *R? — *R? by
G(t,Y) = G(t)(Y)
for all Y € *R% Then, by (1.4) we have, for a.a. ¢t € T,
G(t,Y) ~ §(°t)(°Y)
for all finite Y € *R%1i.e. , by (1.3), for a.a. ¢t € T and for all finite Y € *R¢
(1.5) ' G(t,Y) = g(°t, °Y).

Therefore, G is a two-legged lifting of g (see [1]), i.e. the following diagram com-
mutes for a.a. t € T, for all finite Y € *R?:

G
T x *R¢ > *Rd
0 0
[0,1] x R¢ > R¢
g
Now define
J/
e ‘ ‘ X(0) = z(0)

X(t+ At) = X(t) + G(t, X(t)) At

for each t € T. i.e. for each t € T,

(1.6) Xt)y==z(00+ > G(s,X(s))At.

{s€T:0<s<t}

12



We claim that X(t) is S-continuous i.e. X(t) ~ X(¥) if t = ¢/, where ¢, ¢' € T,
and if we define z : [0,1] — R? by letting z(s) = °X(t) for each s € [0,1] when
s~ t, (t € T) then z(s) is a solution to equation (1.2).

First we consider the case where ¢ is bounded. If |g| < k¥ < oo then we can

take G such that |G| < , therefore
(1.7) |IG(t,X(t))| <k forallteT.

Take s > t, s & t, where s, ¢t € T then,

[ X(s) - X®)| = | ; G(u, X(u))At| by (1.6)
< ; |G(u, X (u))|At
< fc_(s — 1) by (1.7)
~ 0 (since s & ¢ and £ < 00).

Therefore, X(t) is S-continuous when g is bounded.

Now, since X(t) is finite for all £ € T, we can take standard parts and define
z € C([0,1],R?) by

(1.8) z(s) = °X(t) when s s t
i.e. X & z in the sense of the uniform topology.

Now, remembering that g is still assumed to be bounded here, we define

(1.9) H(t) = G(t, X (1)) forallte T
and
(1.10) h(t) = g(t,z(t)) for all ¢ € [0, 1]

13



then, by (1.5) and (1.8) above, H is a bounded lifting of A and

»a:(°t) = °X(t)
= °(z(0)+ Y G(s,X(s))At) by (1.6)

- °(:c(0)+:jz:s:H(s)At) by (1.9)

- x<o>+°<0:<tH<s>At>

= =)+ ] hs)ds (by Loeb Theory)
= 2(0)+ [ gls,z(s))ds by (1.10).

Thus, z(t) is a solution to equation (1.2).

Therefore, when g is bounded we have shown that a solution to equation (1.2)
exists.
Now we consider the case where g is unbounded. Each g (bounded or unbounded)

has linear growth by (iii’) on page 11 i.e.

(1.11) lg(s, z(s))| £ k(14 |z(s)|) for all s € [0,1].

Suppose z(t) is a solution to equation (1.2) then,
2(t) = 2(0) + [ (s,2(s))ds
therefore, |
O = [o(0)+ [ o(s,a(s))ds
() +1 [ g(s,2(s))ds]
2O+ [ lo(s, (s))lds

< [o(0)]+ 5 [ (L+ [a(s))ds by (L1D)

IA

IA

Now let y(t) = |z(t)| for all t € {0,1]; then y is continuous and

y(®) < y(0)+ 5 [ 1+ y(s))ds.

Using Gronwall’s Lemma (see [31] and Lemma B.2.2) we get
(1.12) y(t) < (y(0) + st)e™
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so we know that for all ¢ € I, y(t) < L for some constant L < oo, i.e.
(1.13) lz(t)| < L for all t € 1.

Note: Equation (1.13) holds for a solution corresponding to a bounded or un-

bounded g.

Now if we truncate our unbounded g to § where

g(t,z) i |g(t,z)| < w(1+L)
g(t,z) = k(1+ L) if g(t,z)>k(l+L)
—k(1+L) if g(t,z)<—x(l+L)

then solve

(1.14) 2(t) =2(0) + [ " 5(s, 3(s))ds,

by the above we see that there is a solution, Z(t), to (1.14) (since now § is bounded)

and by (1.13), this solution is bounded by L i.e.
|Z(t)] < L forallt € [0,1].
So we lose nothing when truncating g to g. This means
3(5,3(5) = 9(s5,3(s))  for all s € [0,1]

and we have .
: N t
: #(t) = 2(0) + [ g(s,3(s))ds.
Therefore, whén g is unbounded, Z(t) is a solution to equation (1.2). Thus we
have shown that a solution to equation (1.1) exists for any f satisfying (i)-(iv).

O

Now, for completeness, we go on to give a proof of the well-known result that
for each control u € U, given an initial state z(0), equation (1.1) has a unique
solution. This a standard result that can be found in many control theory books;

the proof is a simple application of Gronwall’s Lemma.
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Theorem 1.1.2

Given a control u € U and an initial state z(0), equation (1.1) has a unique solution

which we denote by z,(t).

Proof: In Theorem 1.1.1 we showed that a solution to (1.1) exists, we now need to
show the uniqueness of a solution to equation (1.1). To do this, we show equation

(1.2) has a unique solution.

Suppose there are two solutions, z(t) and z'(t), then

o) = 2(0)+ [ ols,2(s))ds
2(t) = 2(0)+ [ gls,2'(s))ds,
where, as before, ¢(s, z(s)) = f(s, z(s),u(s)).

Let 2(t) = |z(t) — 2'(t)| then we have

20) = | [ g(s,2())ds = [ g(s,2/(s))ds]
< [lgts,a(5)) = gls,()lds
< ® /otl:zz(s)—x'(s)Ids by (iv!

= ﬂ/o z(s)ds

so we have

(1.15) - 0<2(t) < /s;/otz(s)ds.

Since 2(t) is continuous, we can apply Gronwall’s Lemma and show that
(1.16) ' z(t) <0 forallt el
Therefore, by (1.15) and (1.16), we have

z(t)=0 foralltel,

i.e.

z(t)=2'(t) foralltel.

16



So we have shown that, given an initial state z(0), for each control u € U, there is

a unique solution to equation (1.1).
O

Now we can start to think about objectives for the process.

1.1.2 The cost of controls

Definition 1.1.3

Associated with each control u € U for the process, there is a cost which we denote

by J(u). We assume here that the cost is defined by the following equation

(1.17) Iw)= [ (s, 2 (s), u(s))ds + B(za(1))

where, h : [0,1] x R x M — R and h : R? — R are measurable real valued
functions satisfying » > 0 and A > 0. Here, z, is the unique solution to (1.1)

corresponding to the control u € U.

Our objective is to achieve the lowest cost for our process, so we define Jy as .
follows

(1.18) -  Jo = inf J(u).

u€Y

-

In general, if we restrict ourselves to ordinary controls of the form u € U, it is not

always possible to achieve this objective.

To illustrate this we now give a well-known simple example where, using stan-

dard ordinary controls, the minimum cost is not attainable.

Later, in this Chapter, we will show that, by extending the class of admissible
controls to include Loeb measurable controls (explained later), the minimum cost

is always attainable.
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. Example 1.1.4

We consider the following control problem:
The dynamics are given by

(1.19) — = u(t).
The class of admissible controls, ¢, is the set of all measurable (;ontrols of the form -
(1.20) u:[0,1] = {-1,1}.
The cost of a control u € U is given by |

Iw) = [ ledlds

where z,(t) is the unique trajectory corresponding to the control u € U. Note,

J(u) >0 for all u € Y.

Now, for each integer n € N, let A, = 2" and define the control Uy, by

1 if te[0,A,]
un(t) = .
(=1 if teljAn, (G +1)A,] forj=1,2,---2" -1

i.e. the control u, alternates from 1 to -1 on intervals of length A, starting

with value 1 on [0, A,).

A, H° Ty

NSNS AN

0 97,  4A,  6A, 1 —4A, 1-2A, 1

For each integer n € N, the cost of the control u, is given by

T = [ lew(t)ldt

2n+1’

where z,, denotes the unique trajectory corresponding to the control u,.

18



Thus, as n — 0o, J(u,) — 0. Therefore, since J(u) > 0 for all u € U, we have
Jo= zlarelfl J(u)=0.
We now show that there is no control u € U satisfying J(u) = 0.

Suppose there is a control @ € U such that J(@) = 0. Then, z3(t) = 0 for all
t € [0,1] which means %2 = 0 for all ¢ € [0,1], but by (1.19), this would imply

that @(t) = 0 for all ¢ € [0,1] — however we know this cannot be true since, by .

(1.20), u(t) € {—1,1} and so we have a contradiction. Therefore we cannot have

an optimal control in U.

a

1.2 Relaxed controls

Since, in the standard situation, the minimum cost is not always attainable, the
idea of extending the class of admissible controls was introduced. It was found
that if the class of admissible controls was extended to include measurable controls

of the form
(1.21) v [0,1] - A(M),

where A(M) is the set of all probability measures on the compact space M, and
the definition of the function f was extended to F : [0,1] x R x A(M) — R, by

-

the following d_eﬁnition,

(1.22) Fit,e,n) = [ f(t,2,0)dp(a)

then an optimal control could always be found. We give a proof of this well-known

result later in section 1.4 (Corollary 1.4.5).

Controls of the from (1.21) are called relaxed controls and we shall denote
the class of all such measurable controls by R. Relaxed controls were first used in

control theory in [37].
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Note, by identifying each a € M with the probability measure 6, concentrated
at a, it can be shown that M is a closed subset of A(M) and we have by (1.22),

F(t,2,6) = [ f(t,2,0)dba(a) = f(t,,a).

Thus we can denote the extension of f by f. For each control u € U we have

F(t,z,8,0) = f(t,z,u(t))

and so we have Y C R, using the above identification.

Since A(M) is a compact metric space (with the Prohorov metric ([34])) , and
the extended function f satisfies (i)-(iv) (as on page 10), all of the above results

hold for relaxed controls.

We shall return to relaxed controls later in section 1.4; first we look at Loeb

measurable controls.

1.3 Loeb measurable controls

In this section we look at the idea of extending the set of admissible controls to

include measurable controls of the form
(1.23) : ' v: *[0,1] —- M.

We denote this éxtended collection of all such Loeb measurable controls of the

form (1.23) by.V and define the minimum cost, jo, as follows .

[

A

(1.24) Jo = inf J(v)

where J(v) denotes the cost of the Loeb measurable control v.

(Note: We have not yet extended the dynamics or the cost function to deal with
Loeb measurable controls, this will be done later.)

We ask if, with this extended collection of admissible controls, we can lower the
minimum cost i.e. can we get jo < Jo. We also ask if there is a v € V which
satisfies J (v) = jo i.e. 1is jo in our reachable set when the class of admissible

controlsis V 7
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1.3.1 The dynamics equation for Loeb measurable controls

Before we can find answers to the above questions, we first have to extend our
definitions of dynamics and cost to cope with timesT € *[0,1} and Loeb measurable

controls of the form (1.23).
We need to adapt the functions f, g and & to accommodate times r € *[0, 1].

We need a function F : *[0,1] x R x M — R¢ which naturally extends f so
that the dynamics can be defined by the following equation

(1.25) 2(r) =2(0) + [ F(o, 2(0), v(0))dos

where o, is the Loeb measure associated with *Lebesgue measure.
There are two natural choices for F
(i) Fa(r,2,0) = °(*f(7,2,0))
(ii) F3(r,z,a) = f(°1,z,q).

We shall show that these are in fact equivalent in the sense that, for almost all

T € *[0,1], the following diagram commutes

‘ ‘ *f .
. *0,1]xREx M > *Rd
(o] [o]
RN N2
S/ [0,1] x RYx M > R¢

e ;

We actually prove a more general result and note afterwards, in Corollary 1.3.2,

that the result we require is an application of this more general result.
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Proposition 1.3.1

For almost all 7 € *[0,1]
°(*f(r, X, A)) = f(°1,° X, °A)
for all finite X € *R% and all A € *M.

Proof: Given f : [0,1] x R? x M — R let C(R? x M,R?%) = Y and define

f:00,1] > Y by

(1.26) F(t) = f(t,0,9)

ie. f(t):R%x M — R?for each ¢ € [0, 1].

Using Anderson’s Lusin Theorem (see [3]) we see that for a.a. 7 € *[0,1]
“f(r) = f(°7)

in the sense of the compact open topoloéy ie. for a.a. T € *[0,1]
*(F(r)(X, A)) = f(°r)(°X, °A)

for all finite X € *R?¢ and all A € *M. i.e. by (1.26), for a.a. 7 € *[0,1],
(*(r, X, A)) = f(°r, °X, °A)

for all finite X E. *R?¢ and all A € *M.

O

Corollary 1.3.2

For almost all 7 € *[0,1],

°(*f(r,z,0)) = f(°1,3,a).

for all z € R?% and all a € M.

22



Proof: Take z = X € R? and A = a € M in Proposition 1.3.1. Then, z = X =
°X and a = A = °A and so for a.a. 7 € *[0,1],

°(*f(r,z,a)) = f(°1,2,0)

forallz € R%and all a € M.
O

We will use the notation of the second definition and so we define
F(r,z,a) = f(°7,z,a).

Thus, by (1.25), for a given Loeb measurable control v € V, the dynamics are
given by '

(1.27) 2(r) = 2(0) + [ 1(°0,2(0),0(0))do

where the integral is a Loeb integral.
Definition 1.3.3

We say that z(7) is a solution to the dynamics equation (1.27) if
(i) z(7) is Loeb measurable.

(ii) f(°o,z(0),v(0)) is Loeb integrable.

(iii) ac(T) satisfies (1.27).

Remarks 1.3.4

(a) z(r) =z(7) if 7 = 7.

(b) If we let Z : [0,1] — R? be defined by z(¢) = z(¢) then Z is continuous.

Proof of (a): Let g(0) = f(°0,2(0),v(0)), then if 7 =~ 7’ where 7 > 7/

!

z(r) — .’E(‘T,) = z(0)+ /OT g(o)dor, — z(0) — /OT g(o)doy,
= /TT g(o)doyr,

= 0  since g is Loeb integrable and [7/, 7] is null.
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Proof of (b): Consider a sequence of times in *[0,1] decreasing to a time? i.e.
(1.28) tnlt asn— oo
then for each n we have
o(ta) — 2(t) = | " g(o)do |

(where as before g(c) = f(°a,z(c),v(c)) ) and so, since by (1.28)

or([t,t.]) — 0 as n — 00,
we have
(1.29) z(t,) — z(t) = /[t,t,.] g(o)dor, - 0 asn — oo.
Now, z(t) = z(t) for all ¢ € [0, 1] therefore, by (1.29), Z is continuous.

a

1.3.2 Existence and uniqueness for Loeb controls

Our aim now is to show the existence and uniqueness of solutions for Loeb mea-

surable controls.

In Theorem 1.1.1 it was shown that for each control u € U there exists a

standard solution to (1.1) i.e. a solution to

o(t) = 2(0) + | (s, 2(s), u(s))ds
and, by (1.12), for all ¢ € [0, 1] |
(1.30) ) £ ()] + st)e

where & is the growth constant for f as in (iii). Therefore, by the transfer principle,
we know that for" each control U € *U, there exists a nonstandard solution, X (7),

satisfying
(1.31) X(r)=2(0)+ [ *f(0, X(0),U(0))do
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and that, by (1.30), for all 7 € *[0,1]
(1.32) [ X(7)] < (Jz(0)] + &7)e™.

So we have the existence of finitely bounded nonstandard solutions to (1.31). We
consider these finitely bounded nonstandard solutions which are also S-continuous

and show that their standard parts are solutions to equation (1.27).
Pfoposition 1.3.5

Given @ control v € V, if U € *U satisfies
(1.33) v(r) = °U(r) for a.a. 7 € *[0,1],

then the standard part of the nonstandard solution to (1.31), Xy, corresponding
to the control U € *U is itself a solution to the dynamics equation (1.27) when

the control is v.

Proof: Xy is a solution to (1.31) and so we have

°XU(T)

I

“@(0)+ [ *(o,Xu(0),U())do)
= 2(0) + /0 " o(*f(0, Xu(0),U(c)))dor  (by Loeb theory)

= 2O+ [ 10, °Xu(0), *Ul0))dor

(by Anderson’s Lusin Theorem (see [3]) and continuity of f)
= o(0)+ [ 1(°0, “Xu(0),0(0))dor
(since v(7) = °U(7) for a.a. T € *[0,1]).

We now show the existence of a solution when the class of admissible controls

is V.
Theorem 1.3.6

For each Loeb measurable control v € V, equation (1.27) has a solution z(7).

25
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Proof: If v is a Loeb measurable control of the form
0,1 M

then, by Anderson’s Lifting Theorem, v has a lifting U i.e. there exists a control
U € *U satisfying (1.33), therefore, by Proposition 1.3.5, we see that °Xy is a
solution to the dynamics equation (1.27) where °Xy is the standard part of the

nonstandard solution to (1.31) corresponding to this control U.
a

Therefore, we have shown the existence of a solution to the dynamics equation

when the class of controls is V.

We now go on to show that for any control v € V this solution is unique.
Theorem 1.3.7

For each v € V there is a unique solution to the dynamics equation (1.27) which

we denote by z,(7).

Proof: We know by Theorem 1.3.6 that for each v € V there exists a solution to
(1.27).

Suppose there are two solutions z(7) and x'(T) then
o(r) =2(0) + [ 9(0,2(0))dox

- 2'(r) = z(0) + / 9(0,2'(0))doy,
where :
9(0,2(0)) = £(°0,2(0),v(0)).
Let z(r) = |z(r) —-‘x’(r)l then we have
(1) = | [ g(,3(0))dor = [ g(o,2(0))dosl
o [ lg(0,2(2)) = 9(0,2'(0))ldor
(1.34) - < & /0 l2(0) = 2'(0)|doy,
=« ]OTz(a)daL.

IN
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Note: We cannot use Gronwall’s Lemma directly here since the integral is a Loeb

integral.

By Remarks 1.3.4 (a) we see that z(r) and 2/(r) are constant on monads.

Therefore, z(7) = |z(7) — 2'(7)| is also constant on monads.

Now, if we define
zZ(t) = |z(t) - Z'(¢)] for all t € [0,1]

where T and 7’ are related to z and z’ in the sense of Remarks 1.3.4 (b), then since

z and #’ are continuous, Z is continuous and clearly z(t) = () for all ¢ € [0,1].

We need to show that z(t) = 0 for all ¢ € [0, 1]. Then we would have z(t) = Z'(t)
for all ¢ € [0,1] and so, z(7) = 2'(7) for all € *[0,1].
Now, by (1.34), for all ¢ € [0,1],
t
Z(1) < doy,.
Z(t) < K/o z(0o) vaL
If we had
Z(t) < /c/t z(s)ds
Z(t) < A
then we could apply the standard form of Gronwall’s Lemma to get
Z(t)=0  forallt €0,1].
Therefore, we are done if We'can show that
‘ t t
. < z .
(1.35) /(; z(o)dor < /0 Z(s)ds
We can actually show equality in equation (1.35).
Note, since z(c) = z(°0) = 2(°0) for all o € *[0,1],
t ¢
(1.36) /0 2(0)doy = / #(°0)doy.

0

Now, Z is continuous, therefore
| t—' o t Of %=
/0 #(°0)dor, = /0 (*2(0))doy
(1.37) : = °(/Ot *Z(0)do) (since Z is bounded)
= /Ot z(s)ds.
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This, (1.37), together with (1.36) establishes (1.35) and so

t

0<z(t) < /c‘/o E(S)ds.

We now have a standard integral and so, since Z is continuous, we may use Gron-

wall’s Lemma to obtain
Z(t)=0 foralltel0,1) |
ie.
Z(t) = Z'(t) forallte [0,1]
= z(r) = a'(r) forall 7 € *[0,1]
so the solution is unique.

O

Therefore we have shown the existence and uniqueness of solutions to the dynamics

equation (1.27) for Loeb measurable controls.
Corollary 1.3.8

Given a Loeb measurable control v € V, if U € *U is a nonstandard control

satisfying (1.33) then,

(1.38) °Xy(r) = z,(r) for all 7 € *[0,1]

where z,, is the unique Loeb solution corresponding to the control v € V and Xy

is the nonstandard solution to (1.31) corresponding to the control U.

Proof: Clearly, a:vv is a solution to (1.27) and in Proposition 1.3.5 it was shown
that, if U is the control in *U satisfying (1.33) then °Xy is a solution to (1.27),
where °Xy is the standard part of the nonstandard solution corresponding to this
control U. In thé proof of Theorem 1.3.7 it was shown that this equation has a

unique solution and so °Xy = z,,.

O
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1.3.3 The cost of Loeb measurable controls

Now, as for the standard controls, associated with each v € V, there is a cost
J(v). To be able to define this cost, we have to adapt our functions & and A to
accommodate 7 € *[0,1]. We adapt & and A in exactly the same way that we

adapted our function f.
Definition 1.3.9

For each control v € V, the cost J(v) is given by
1 -
(1.39) J(v) = /0 h(°0,2,(0), v(0))dor + B(zs(1))

where z, is the unique solution to (1.27) corresponding to the control v.
Proposition 1.3.10

Given a control v € V, if U € *U satisfies (1.33) i.e.
v(r) = °U(r)  for a.a. 7 € *[0,1]

then
J(v) = °(*J(U)).

Proof: For U € *U, ‘ -

1

(V)= [ *hlo, Xu(), U(e))do + *B(Xu(1))

where Xy is the solution to (1.31) corresponding to the control U € *U. Now, by
Corollary 1.3.8, since U satisfies (1.33), z,(r) = °Xy(7) for all T € *[0,1] (where
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Xy is any nonstandard solution corresponding to the control U) so we have
IO = ([ ko, Xo(o),U(o)do + Xo()
= [ *(*h(o, Xu(0), U(o)))doz + *(*B(Xu(1))
(by Loeb Theory)
= " h(°o, °Xu(e), “U(0))dos + B(*Xu (1))
(by Anderson’s Lusin Theorem)
- [ Ch(°0, 24(0), v(0))dos + Fzo(1))
(by Corollary 1.3.8 and the fact that v(r) = °U(r) for a.a. 7)

= J(v).

Now recall our objectives; we asked if Jo < J, and if there exists a v € V such

that J(v) = Jo .

Remember, Jy and Jo are defined as follows

(1.40) Jo = 3‘2{1 J(u)
(1.41) Jo = inf J(v).

We now show that for each control U € U there is a corresponding control

V € V which has the same cost.
Proposition 1.3.11

For each u € U, there is a v € V such that
J(u) = J(v)

namely the v € V given by
| v(r) = °("u(r)).

Proof: If v(7) = °(*u(r)) then, since *u € *U, by Proposition 1.3.10 we have

J(v) = °("J("w)) = J(u).
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Theorem 1.3.12 jo =Jg

Proof: By Proposition 1.3.11 above we know

Jo= i ) < g T ) =
ie.
(1.42) Jo < Jo.

Now we show that jo > Jo. Take any v € V, v: *[0,1] —» M, now take a lifting U
of v, U: *[0,1] —» *M, then, U € *U.

Now,
ueld = J(u) 2 Jo

therefore by transfer,

Ue U = "J(U) > J.

Now, by Proposition 1.3.10, J(v) ~ *J(U) > Jo hence by taking standard parts

we have
J(v) 2 Jo.
Therefore we have
(1.43) inf J(v) = Jo > Jo
i.e. by (1.42) and (1.'43) we have
_ Jo =‘J0.

Hence we cannot lower the minimum cost by using this extended class of con-

trols. i.e. we do not have jo < Jo.

We now look at the other question, is there a v € V such that J(v) = Jo ? The

answer is yes as we now show.
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Theorem 1.3.13

There is a v € V such that J(v) = Jp.

Proof: Let
u, : [0,1] - M

be a sequence of standard controls i.e.
u:N—->U where u(n) = u, for each n € N

such that

J(un) | Jo as n — oo.

By taking liftings of these u,, n € N we have
U, : *[0,1] = *M,
a sequence of nonstandard controls, i.e.
U: N — *U  where U(n)=U, foreachnéeN.

Now, *U is internal and so, by ®;—saturation, we can extend the sequence U :

N — *U to an internal sequence
U:*"N—-"U '
so we have a seqﬁence (Un)ne*N Where,
) U,:*0,1] - *M ~ foreachn € *N. ‘
Note, for all finite n € *N, u, = °U, a.s. therefore, by Prdposition 1.3.10, we have

I (un) = °(*J(Un))

for all finite n € *N. Now, without loss of generality, we can arrange the u,’s so

that J(u,) < Jo ,+% therefore, we see that

Jo < “IU) < Jot -
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for all finite n € *N so, by overflow, there exists an infinite N € *N such that

1
< * —
Jo < J(UN)<J0+N

so we see that

*J(UN) ~ .]0.

Now let v = °Up for this infinite N then, by Proposifion 1.3.10 and Theorem
1.3.12 we see that
i J(v) = °(*J(Un)) = Jo = Jo,

1.e. we have shown that there exists a v € V such that

J(’U) = jo - Jo.

Therefore, when we let our dynamics be determined by equation (1.27) and
our set of admissible controls be V, if we let our objective be to achieve the lowest
cost, then we have a properly formulated optimal control problem since using this
class of admissible controls, the lowest cost is in our reachable set. i.e. there is

always an optimal Loeb control.

Now, to illustrate this, we go back to Example 1.1.4, where there is no standard

optimal control.
Example 1.3.14

The dynamics are given by

The class of admissible controls, V, is now the set of all measurable controls of the

form

v:*[0,1] - {-1,1}.
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The cost is given by
1
) = [ lenldrs,

where z, is the unique trajectory corresponding to the control v.
By Example 1.1.4 and Theorem 1.3.12

Jo = 11}2{"} J(v) =0.

We now give details of optimal controls for this example.

For each integer n € *N consider the control U, € *U as given in Example

1.1.4 i.e. the control U, alternates from 1 to -1 on intervals of length A, starting

with value 1 on [0,4,], where A, = 27", Then,

* ! 1
(U = [ Xo (r)ldr = =

where Xy, denotes the trajectory corresponding to the control U,. Now, let
v, = U, for each n € *N

then v, € V for each n and by Proposition 1.3.10, the cost of v, is given by

T(wn) = *(I(U) = °([ Ko (0)ldr) = “(557)

so for any infinite N € *N,

1
oN+1

J(on) = °(5x7) =0

i.e. when N is infinite, vy is an optimal control for this example.

O
Notation 1.3.15

Here we give a summary of the notation used for the different classes of controls.

We denote by U the class of ordinary controls of the form
u:[0,1]— M
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and

Jo = inf J(u).

u€eU .

We denote by R the class of relaxed controls of the form
v: [0,‘1] — A(M)

and
R _
Jo = 32£J(V)

We denote by V the class of Loeb controls of the form

v:*[0,1] — M
and
Jo = irel{") J(v).

We denote by S the class of relaxed Loeb controls of the form
¢:*[0,1] — A(M)

and
As .
= inf :
Jo = inf J(£)
By identifying each a € M with the Dirac measure §, concentrated at a we have

M C A(M) soUd C R similarly, V C S.

1.4 The existence of a relaxed optimal control

We now go back to relaxed controls. Using Theorem 1.3.13, we give a proof of
the well-known result that there is always an optimal relaxed control. To do this
we first show that from a relaxed Loeb control, £ € S, we can obtain a standard

relaxed control, v , which gives the same trajectory and has the same cost as £.

The proof of this is based on work done by Cutland ([6])-
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A weak *topology (see [35]) is defined on U by means of a set K defined as
follows:

(1) K is the set of bounded measurable functions
g:[0,]]xM->R

with g(t, e) continuous for each ¢ € [0, 1].
(2) For u € U and g € K, the action of u on g is defined by

1
u(g) = [ glt,u(®))dt.
0
(3) The K-topology on U has as subbase of open neighbourhoods the sets
{u: Ju(g)l < e}gexeo-

The topology on U is extended to R by extending each g € K to [0,1] x A(M)
with the definition

(La1) g(t,n) = [ g(t,a)du(a)
for p € A(M), and so, for v € R and g € K
o) = [ oltm(e))de

(1.45) - /01( [ sta)dn(t)(a)dt by (14a)
Lemma 1.4.1

Given any relaxed Loeb measurable control ¢ : *[0,1] — A(M), let Q¢ be the
measure on *[0;1] x M defined by ’

(1.46) QYCx D)= /C ¢(r)(D)dry
for Loeb measurable C C *[0,1] and Borel D C M. From this define a standard
measure ¢¢ on [0,1] x M by

(1.47) - ¢*(B x D) = Q*(st™}(B) x D)

for B C [0,1] ‘an;i D C M. Then we have the following
(i) For a Borel set A C [0,1], ¢*(Ax M) = A(A) where ) denotes Lebesgue measure.
(i) ¢° is a probability measure on [0,1] x M.
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Proof of (i): st™1(A) is Loeb measurable for a Borel set A C [0,1]. So

F(Ax M) = QYst™H(A) x M) by (1.47)
= [ SO by (1.46)
- /st_l(A) drp (since £(r)(M) = 1)

= tAs(sti(A))
= AA).
Therefore, for Borel sets A C [0, 1] we have
(1.48) ¢*(A x M) = A(A).

Proof of (ii):
(a) ¢4(10, 1] x M) = A([0,1]) = 1 by (L.48)
(b) o-additivity of ¢¢ follows from the o-additivity of Q¥.

0O

Lemma 1.4.2

Given any Loeb measurable control ¢ € S, the measure ¢¢ as constructed in Lemma

1.4.1 can be disintegrated to give v¢ : [0,1] — A(M), i.e. vz € R, with the property

(1.49) ' ¢(Ax B) = /A ve(t)(B)dt

for Borel A C [0,1] and B C M. ‘ .
Proof: See [6] and [34].

a

Lemma 1.4.3

Given a Loeb measurable control ¢ € S, for any g € K, let £(g) be given by

(1.50) ) = [ o(r ()i
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where

(151) g(* &) = [ g(°r,a)de(r)(a)

then, for all g € K, we have

(1.52) - £(g) = ve(g)

where v¢ is constructed from ¢ as in Lemma 1.4.2 i.e. for all g € K,

(1.53) [ oCnmdn = [ ot et
Proof:
o) = [ o(°r € by (1.50)
= /01(/M g( °T,a)d£(r)(a))dTL by (1.51)

= °r,a)dQ%(t, a
ol QD
= /[o,1]ngU,a)dq€(t’a)

L[ gt a)dve(t)(a)dt

|| tt ve()at by (1.44)
= v(9) by (1.45).

Proposition 1.4.4 . -

Given a relaxed Loeb measurable control £ € S, there is a corresponding control
ve € R satisfying
ze(t) =z, (t) forallte(0,1]

and

J(&) = J(ve)-

Consequently, given an ordinary Loeb control v € V there is a corresponding

control v, € R such that J(v) = J(v,).
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Proof: Given a control ¢ € S, by Theorem 1.3.7 there exists a unique solution

z¢(7) corresponding to this control, and
(1.54) ze(r) = z¢(°r)  for all T € *[0,1].

From Lemma 1.4.3 it can be seen that given a control £ € S we can construct a
control v such that

1

1

(1.55) | émdm = [ glt,vew))at

for all g € K, where K is the set of all bounded measurable functions
g:[0,1] x A(M)—-R

with g(¢,e) continuous for each ¢ € [0, 1].

Now, given f : [0,1] x R% x A(M) — RY, for each ¢t € [0,1], z € R and
u € A(M),

(1.56) Ftz, 1) = (fultyz, ), -, fult,z, 1)

where f;:[0,1] x R x A(M) = R fori = 1,--- ,d. Now, for each fixed s € [0,1]

if, for each 2 = 1,--- ,d in turn, we take

0 . otherwise

g(t,p) = { fi(t’xf(t)’ﬂ) ift<s

for t € [0,1] and 4 € M where z¢(r) denotes the trajectory corresponding to the
control £ € S then, by (1.55), we have -

(1.57) | £ naeon), e = [ f(t,aet), ve(®)de.
for all s € [0,1].
Now, z¢(0) = z,,(0) = z(0). The above means that

ze(t) = 2(0) + [ f(°r,z¢(r),é(r))dry  (by definition)
= 2(0)+ [ f(°r,ae(°r) E(r))dm, by (1.54)
= 2(0)+ [t f(s,ae(s), ve(s))ds by (LT)
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for all ¢, so z¢ is the unique solution for the control v i.e.
(1.58) ze(t) = z,, (1) for all’t € [0,1].
Similarly, by considering

g(t, p) =’h(t,$5(t),ﬂ) for t € [0,1] and p € A(M)

it can be seen that

J(€) = L h(or, ze(r), £(7))drr + h(ze(1))  (by definition)
= Jo h(°m2(°7),€(7))drr + h(z¢(1)) by (1.54)
= o h(t,ze(t), ve(t))dt + h(ze(1)) by (1.55)
= fo h(ty 2. (t), ve(t))dt + h(z (1)) by (1.58).
= J(ve) (by definition).

The fact that V C S gives us the second part of this Proposition.

d
Corollary 1.4.5

There is always an optimal relaxed control i.e. there is a v € R such that

Proof: By Theorem 1.3.13, there exists an optimal Loeb measurable control © € V.

Let v € R be given by v = v then, by Proposition 1.4.4

J(w) = J(®) = Jo = Jo.

This Corollary leaves open the possibility that a lower cost can be achieved by
using relaxed controls — however it is well known that this cannot happen. We
complete the picture by giving a proof of this using the above results and the fact

that Loeb controls cannot lower the cost.
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Definition 1.4.6

A control u € U is a step control if there exist times
0=t0<t1<".<tn=1

such that u(t) is constant on each interval Jtn, tns1].
Proposition 1.4.7

Given a standard relaxed control v € R, there is a corresponding Loeb measurable

control v, € V satisfying
z,(t) =z,,(t) forallte]|0,1]
and
J(v) = J(v,).
Proof: By restricting the work done by Cutland in [6] to [0,1], it can be seen that
given a v € R, there is a step control U, € *U satisfying
U(*g)=wv(g) forallgek

l.e.

(1.59) ,/01 *g(, U, (1))dr ~ /Olg(t,z/(t))d.t for all g € K.

Now, let °U, be denoted by v, then, using Anderson’s Lusin Theorem and Loeb
Theory, this gives us

1

(1.60) /0 L g(°r, v, (7)) dry = / g(t,v(t)dt  forall g € K.

0

Now, by Section 1.2, M is a closed subset of A(M) and by (1.56)

f(taxaﬂ) = (f1(t,1',lt),' ©t ,fd(t’xa/"’))

for all t € [0, 1], z € R? and p € A(M). Therefore, if for each fixed s € [0,1], we

take, for each i = 1,.-- ,d in turn,

g(t,pu) = { fit, 2o, (t),u) - ift<s

0 otherwise
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for t € [0,1] and g € A(M) where z,, denotes the trajectory corresponding to the
control v, € V then, by (1.60) we have |

(1.61) | /f (°7, 24, (°7), vu(T dTL——/ flt, 2y, (2), v(t))dt.

for all s € [0, 1]. We know that v, is a Loeb measurable control and so, by Theorem

1.3.7, there exists a unique solution z,,(7) corresponding to this control and
(1.62) Ty, (T) = 2, (°7)  for all 7 € *{0,1].
We also know that z,,(0) = z,(0) = z(0), therefore we have

Ty, (1) = +/ °o,2y,(0),v,(0))dor,  (by ;ieﬁnition)
= 2(0)+ /0 F(°0, 20, (°0),v,(0))doy by (1.62)
= z(0) +/0t f(s,24,(8),v(s))ds by (1.61)
for all t, 50 &y, is the unique solution for the control v i.e.
(1.63) 2o (t) = 2,(t)  forall ¢ € [0,1]

Similarly, by letting g(t, u) = h(t, z,(t), p) for ¢t € [0,1] and p € A(M), we see that

J(v,) = o0 h(°T, 24, (1), v, (7))L, 4 R(24, (1)) (by definition)
BT, 20 (07, v+ B(ea (1) by (162)
= B2 (8), ()it 4 BaD) by (1.60)

# 3 h(t, (1), v(1))dt + h(z,(1)) by (1.63)

.= J(V) (by definition)

Corollary 1.4.8
J0=j0=j65=ng.

Proof: We already have (Theorem 1.3.12) Jo = Jo. By Proposition 1.4.4 and the
fact that V C S we have



and by Proposition 1.4.7

From this we see that

1.5 The existence of ordinary optimal controls

In this section we look at, in the context of the preceding work, the well-known
result that if the set {f(¢,z,a) : @ € M} is convex, for each fixed ¢ and z, then we

can find an ordinary control u € U which is optimal.
Lemma 1.5.1

Given any relaxed control v € R if the set {f(t,z,a) : @ € M} is convex then

there exists a control u, € U satisfying
z,(t) = z,,(t) forallte0,1]

and

J(v) = J(w).

Note: The ‘proof’ we are about to give involves defining a function u, : [0,1] —» M
(see (1.65) ) we would like this to be a control function; for this to be true we need
u, to be measurable and as yet we have not been able to show that this is true.

Therefore the following ‘proof’ relies on a conjecture.
‘Proof’: Fix v € R. For each t € [0,1]. Fix t € [0,1] then by (1.22) we have

(1.64) L fta®),u®) = [ f(ta(t), a)dv(t)(a).

Now, let ‘
f(t,z(t),a) = g:(a) foreacha € M
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then by (1.64) we have

fta(®),v0) = [ gl@)dv(t)(@)

Now, by LemmaE.1.1 we can find ay, - -+ ,ay € *M such that M = {°ay, -, %an}
and by Lemma E.1.2 we can find an internal sequence of disjoint *Borel subsets
of *M, Ay,---, An, such that

N

, ou(@)ev(2)(@) = °(3 “au(as) w(2)(A)

Therefore, by transfer of the convexity of the set {g;(a) : a € M}, we have

[ o@dv@) = *(a@) for some . € *M

= g¢(°ay)  (since g; is continuous).
So in terms of f, for each fixed ¢t € [0, 1] we have
£(t,2(t), v(t)) = f(t,2(t), °@) for some a € *M.

Now, if we define u, : [0,1] — M by
(1.65) u,(t) = °a;  for each t € [0, 1]
then we have

[t z(t),v(t)) = f(t,z(t),u,(t))  for each t € [0,1].
From this it can 'bej seen that |
(1.66) - Ty, (1) =z,(t) foralltel0,1].
Similarly, by considering
(1.67) h(t, z,(t), v(t)) = /M h(t, (1), a)dv(t)(a),
and, for each fixed ¢ letting |

h(t,z,(t),a) = gi(a) foreachae M

we see that

/M gi(a)dv(t)(a) = g:(°ay) for some at_ € *M
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i.e. in terms of h, by (1.65) we see that this is

(6 2 (8), (1)) = hlts 22(0) 0 (1)
and so, by (1.66), since z,,(t) = z,(t) for all t € [0,1], we see that
h(t,x,,(t),by(t)) = h(t,zy,(t),u,(t))  foreachte[0,1].

From this it can be seen that
J(uy,) = J(v).
Proposition 1.5.2

Given a compact metric space M, if the set

{f(t;z,0) :a € M}

is convex then there exists a standard ordinary optimal control of the form

u:[0,1] - M
ie. u €U and J(u) = Jo.
Proof: By Corollary 1.4.5 there exists a control 7 € R satisfying

(1.68) J(7) _ Jo

and, by Lemma 1.5.1 ( Note: Lemma 1.5.1) relies on a conjecture ), if the set

{f(t,z,a) : a € M} is convex then there exists a control u; € U satisfying

(1.69) J(up) = J()

i.e. u; € U and by (1.68) and (1.69)
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1.6 General cost functions

In this section we consider what happens if we bring in a more general cost function.

Consider the above situation except that now, the cost J(u) is given by the

following equation

(1.70) T = [ hls,zuls),u(s))ds + n(zu(s))

where h is as before but now, 2(z(1)) has been replaced by a more general function
p, where p is a continuous real valued function on the space of continuous functions

z:[0,1] - R%

We see that Proposition 1.3.10 still holds with this more general cost function,
Proposition 1.3.5 states that when v = °U, z, = °Xy and so since p is continuous

in the uniform topology we have

*("u(Xu(7))) = p(°Xu(r)) = p(z.(7))

for all 7 € *[0,1].
Therefore all of the results above hold for this more general cost function. This

more general cost function will be used in the proof of Proposition 2.5.3.

In the next Chapter we consider what happens if we bring in another controller

with his own set of controls. This is known as a two player game.

- ————— 000 ———— w
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Chapter 2

Differential game theory

Game theory can be regarded as control theory with two or more controllers or

players. We, as in the control theory section, consider a dynamical situation

governed by a differential equation.

The game is played for some fixed time, say‘ one unit of time, then a payoff is

computed, this payoff is usually in the form of an integral of a real valued function.

We shall be looking at two-player zero-sum games, that is games where one

player is trying to minimize and the other to maximize the payoff.

A strategy for a player is a rule telling the player what to do next on the basis
of what he and the other player have done previously in the game. [For more

information on_this see [10], [20].] | ;

2.1 Definition of the game G

We consider a general game G being played by two players J; and J; over the
fixed time interval I = [0,1]. At each time ¢t € I, J; chooses an element y(t) from
a fixed (separabie) compact metric space ), and J; chooses an element z(t) from
a similar space Z, in such a way that the functions y : ¢ — y(t) and z : t — 2(t)

are measurable. The functions y(t) and z(t) are the controls for the players J; and
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Ja respectively.
Notation 2.1.1

My is the set of all measurable functions y : I — Y, modulo the identification of
any two functions equal almost everywhere. This is the class of admissible controls
for player J;. ;

The class of admissible controls for player J;, M, is defined similarly with Z
replacing Y.

The dynamics of G are determined by the following equation

(2.1) 2(t) = 2(0) + " Fs,2(5),y(s), 2(s))ds

where z(t) € R? and ,
f:IdexyxZ‘—ﬂRd

is a continuous function such that there exists a constant £ < oo satisfying the

following Lipschitz condition

(2'2) |f(t,x1,y,z)—f(t,:cz,y,z)l < ﬁlxl _'772'

whenever z;, z, € Rt € I,y € Y and 2 € Z; & is known as a Lipschitz constant

for the function f.
O - - -

From (2.2), the Lipschitz condition on f, it can be seen that there is a growth

condition on f. To show this we need the following Lemma.
Lemma 2.1.2

Given any t € [0,1], z € R¢, y € Y and z € Z, for each fixed constant L < oo,

if |z| < L then there exists a constant R, < oo satisfying
If(t7x’yaz)| < Rp
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Proof: Fix L < co. Since f is continuous on the compact set
C=00,1]x{zeR*:|z|<L}xYxZ

the set
{If(t,2z,9,2)]: (t,2,y,2) € C}

has a greateét element which we shall denote by Rf, .

O

We can now show that the Lipschitz condition on f implies the following growth

condition on f.
Proposition 2.1.3

There exists £ < oo such that

(23) |f(t,2,y,2)| < &(1 + [z])

whenever z € R% ¢t € I, y € Y and z € Z; here & is known as a growth constant

for the function f.

Proof: Let ; = z and z; = 0 in the Lipschitz condition, (2.2), then we have

|f(¢,2,9,2) = f(2,0,9,2)| < «lz]

hence
[f(tz,y,2)] < |f(4,0,9,2)| + slz] g
< Ry + «lz| (by Lemma 2.1.2 ; Ry < oo is a constant)
< A1+ |z) |

for some constant & < co. Hence we have a growth condition on f.
O

From here onwards we shall simply take our Lipschitz and Growth constants
for f to be a common value & < oco. (Clearly this can be done since we can just

take max{«,k})
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2.1.1 Existence and uniqueness of solutions

We now have a Lipschitz and growth condition on f and so by considering the
product space (Y x Z) it can be seen from Theorems 1.1.1 and 1.1.2 that for any

pair of control functions, y(t) and 2(t), corresponding to any given initial state
z(0), there is a unique solution to equation (2.1). Throughout this thesis we shall

take z(0) = 0. (This is not necessary, if z(0) is restricted to some bounded region

everything still works.)

Notation 2.1.4

The resulting solution z(t) is called the trajectory corresponding to (y(t),(t))
and is, where necessary, denoted by z¥*(t), to identify which controls the solution
corresponds to — however in most cases this will not be necessary as it will be clear
from the context which controls are being used and so it will simply be denoted

by z(t) to simplify later notation.

2.1.2 Conditions on f

Here we show that, since during this work we will only be interested in

£t 5(t), (1)

when z € R? is the solution z¥*(¢) corresponding to the controls y € M; and
z € Mjie. '

[, 27*(1), y(2), (1)),

we can essentially take f to be bounded. To do this we need the following Lemma.
Lemma 2.1.5

The solution ‘:ry"(t) is uniformly bounded for all ¢ € [0,1] and all controls y € M;
and z € M,.
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Proof: Let
A={z*(t):t€[0,1], y€e My, =z€Ms}

then,
*A={XY%(r): 1€ *0,1], Y€ *M;, Ze*My}

By (1.13) we know that X"Z() is finite for all 7 € *[0,1] i.e. for all a € "4, a'is
finite therefore, ‘

*AC[0,N]  for all infinite N € *N

so by overflow,

*AC[0,n]  for some finite n € *N

therefore by transfer we have
A C[0,n] for this n.

This means that ¥ (t) is uniformly bounded for all t € [0,1], y € M; and z € M,
i.e. for some constant L < oo,

2 ()] < L

for all controls y € My, z € M3 and all t € [0, 1].

O

We now show that f is essentially bounded.

Lemma 2.1.6

- -

There exists Ry < oo such that
|f(t,2%*(2),y(t), 2(t))| < Re
for each y € My, z € My and t € [0,1].

Proof: By Lemma 2.1.5, we know that for y € My, z € M; and ¢ € [0,1], there

exists a constant L < oo such that
(2% (), y(t), 2(1)) € [0,1] x {z € R?: Ja] S L} x Yx Z=C
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and so, by Lemma 2.1.2, there exists a constant Ry, < co such that

|£(£,2%%(2), y(t), 2(8)| < Re.

a

Therefore the conditions we are assuming on the function
f:IxRIxYxZ-R?

are, without loss of generality, that there exists a constant k < oo and a constant
R < oo satisfying
(1) f is continuous

(2) f satisfies the following Lipschitz condition

(24) If(t’mlay,z) - f(t,x%yaz)l < K)|.’E1 —Z2

whenever z,, z; € R4t € I,y € Y and z € Z.
(3) f is bounded i.e.

(2.5) | |£(t,2,y,2)| < R

for each t € [0,1],y €Y, 2 € Z and = € R%

2.1.3 The payoff for the game G

Given a pair of controls for the game G, we assume there is a payoff, p(y, z), which

is given by

1 .

(26) p(,2) = [ Bl (0),y(8), 2(0)dt + u(z"* (1))

where h is a continuous function |
R:IxRIxYxZ-R

and g is a continuous real-valued function on the Banach space [C(I)]¢ of contin-

uous functions z : I — R4,

Note: Here, if we deal with the functions A and g in the same way as we did the

function f, without loss of generality, h and y can be assumed to be bounded.
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The game is zero-sum so that the objective of player J; is to maximize the payoff
p, while the objective of player J; is to minimize p. At each time ¢, both players

are aware of the complete history of the game as played so far.

2.2 Value in the sense of Elliott and Kalton

In this section we give a brief summary of the idea of value used by Elliott and

Kalton ([10]).

2.2.1 Strategies for the game G

Any map a: M; — M, is a pseudo-strategy for J;. It gives a means by which
Ji may determine his own choice of control function given J,’s choice of control

function.
Each pseudo-strategy o has a value
27) wle) = inf ple,2)

which gives the worst possible outcome of the game for J; if he uses the pseudo-
strategy o. Similarly, a pseudo-strategy for J; is a map 8 : M; — M, and its

value is given by

(2.8) - v(B) = sup p(y, By)-

In practice not all pseudo-strategies are ‘reasonable’, for they imply foreknowledge

of the other players choice of control function so the following definition is made.

Definition 2.2.1

The map a: Mz — M is a strategy if whenever 0 < T'< 1

z1(t) = 2o(t) ae 0<t<T
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= az(t) = az(t) ael0<t<T.

A strategy for player J; is similarly defined.
The set of all strategies for J; is denoted by I', and the set of strategies for J; by
T.

2.2.2 Value for the game G

The value of the game G to J; is the best he can force by using a strategy i.e.

(2.9) U= ilé}r)‘ u(aA)

while the value to J; is
(2.10) V= érelgv(ﬂ)

If U = V then the game @ is said to have value, in the sense that neither player

can force a better result for themselves than V, and both players can (almost)

force V.

It is not always true that U = V, as illustrated by the following classical
example due to Berkovitz ([4]) - also cited in Elliott and Kalton ([10]).

Example 2.2.2

Let Y = Z = [=1,1] and suppose the dynamics of G are given by

dx 2
Z{_(y"z)

where z € R. Let the payoff be given by
1
p(y, 2) = /0 z(t)dt.

It is easy to see that a best strategy & for J is given by

&Z(t)={ 1 .ifz(t)<0
-1 if2(¢) >0

34



while a best strategy 3 for J; is given by

By(t) = y(t)
Then
U = ilégzg}\gzp(az,z)
= p(&zo,20) where 29 =0
. ,
- /tdt
)
-1
2

and similarly,

V = inf su
inf sup p(y, By)

= 0.
Clearly, for this example U # V.
O

Note: The above example can easily be changed to make it have value. All that
is required is to change Z from [-1,1] to [0,1], then U and V have the common

value of %

2.3 Valué in the sense of Friedman

In this section we describe an alternative definition of value used by Friedman
([20]) and discussed by Elliott and Kalton ([10]). This involves a game which we
shall denote by E} , this game relates very closely to those described by Friedman
([20]). This game will then be adapted in section 2.4 to make a new game which
we will denote by Et.

Then for comi)leteness we give our own proofs to results stated but not proved
in [10]. We then go on to give alternative proofs to those included in [10] using

nonstandard methods.
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Later in our work we need to distinguish between different partitions of [0,1];

to do this we use some notation which we shall introduce here.
Notation 2.3.1

Throughout this work we shall use a function which \.zvé define by
A, =2"" for each intéger n € N.
We determine a discrete time line T, by
T, = {0,A,,2A,,3A,,---,1} | for each inteéer n
and given an integer n, we denote the divisions of [0,1] by

nII = [OaAn]
"I = 1§ —1)An,jA]

for y =2,3,-.-,2".

2.3.1 The game E;

Here we give a brief description of the game E; as in [10], we then go on to show

that as n increases, the value of the game decreases.
Definition 2.3.2 (The game E}) m -

Let n be an integer, then define ™I; as above, i.e.
n.Il = [O,tl]
Moo= ot
for j = 2,---,2" where t; = jA,.

The game EF has the same dynamics, initial condition and payoff as G given

by equations (2.1) and (2.4)-(2.6) but is played in the following manner: J; first
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selects his control z; on "I; and then J; selects his control function y; on ™Iy, and
the players play alternately, J; selecting his control z; on "I; before J; selects his

control y; on "I; at the j** step

i.e. Jy plays a varying control y(t)

Y2 ys v Yar-1
Yon
t; ¥1 22 ¥3

t2"-—2 tzn_l t2n

and J, plays a varying control z(t)

F4) 24 Zyn..1 Zon

23

21

to tl tz t3 t2n_2 t2n_1 t2n

Notation 2.3.3

" M and "M denote the spaces of measurable functions

yj:nlj-ﬁy ana Zj:an—>Z
respectively, for j = 1,--+,2" in which as before, two functions which are equal

almost everywhere are identified.

Then, ™M is the class of controls for J; of the form y = (y1,: -+ ,y2n) where for
eachj=1,---,2",y; € "M
Similarly, "M, is the class of controls for J; of the form 2z = (21, ,22n) where

foreachj=1,.--,2", 2 € M3,
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2.3.2 Strategies for the game E;}

Later in our work we find it necessary to distinguish between strategies for different
games EY and E} with n # m; because of this we find it necessary to introduce
some slightly different notation to that of [10], we simply tag each symbol with an

n if it refers to the game E;f.
A strategy for J; in the game E7 is a collection of maps
2 = (21,"' ,Ezn)

where
Tt "ML e x "M "M
] 2 2 1

for each j = 1,---,2". Similarly, a strategy II for J, in E;} is an element z; of

n

" M} together with a collection of maps (ITg, - - - ,IIn) where for each j = 2,-++,2
I : "Mlx...x "MJ™t > "M,

i.e. II; = z; where z; € "M}.

Let I' denote the class of all strategies for player J; in the game E} and

similarly, let T™ denote the class of all strategies for J; in the game E.

A pair of strategies ¥ € I'* and II € T™ determine rules of procedure for J;
and J, respectively. The game has alternate play and so, if two such rules, & and

II, are played against each other in the game E} then a pair of controls, y € "M,

-

and z € "M; ie.
y=(y1,¥2, - ,y2m) and z= (21,22, ”Zzn)
are generated and a payoff
(2.11) pE(Y,2) = pp(z1,51, 22, y2n) = P(E,11)
can be computed_, where 3 € I'™ and I € T™ are the strategies used to select the

controls y and z respectively.

(We have tagged the payoff symbol with the letter E for the game E7 since

later we will need to be able to distinguish between the payoffs for different games.)
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2.3.3 Value for the game E;

From the theory of alternate move games we have the following result

(2.12) . sup Pp(Z, 1) = sup inf, pE (5, 1II).

Let this value be denoted by V,*. The game E} has value V}. [For details of this

approach see [20].]

Note: Since, by (2.11)
Pe(Z,11) = pg(y, 2)

where y = Iz € "M; and 2z = Xy € "M, we have

(2.13) pg(5,11) = p(y,II) where y = E(II) € "M,
and
(2.14) pp(5, 1) = pi(XZ,2) where z =II(X) € "M,

Therefore the value V' can be written in several ways including

+ n
Vi o= ng"yselﬁ Pe(y,1I) by (2.13)
(2.15) = sup _inf pr(y,I) by (2.13)
yEN M, I[IeTn
= inf pL(X . by (2.14).
sup inf pi(Z,2) y (2.14)
= z€1'{1/i\'42 SélanpE(Z’z) by (2.14).

- -

For completeness, we include our own proof of (2.12) in Proposition 2.3.6 below.

First we give a Lemma which we then go on to use in the proof of this Proposition.
Lemma 2.3.4

Given a control y € "M, for J; and a control z € "M, for J, in the game E7
the following two statements hold

(i)VzlEIyl- . 'V22n3y2np%(21, Y1y 0"y 220,y yzn) 2 T@HE € r~vil € T”pg(E, H) 2 r
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(11)321Vy1 . -3z2n‘v’y2np}§(z1, Y1, 0y 220, yzn) <ré& HH € T"VZ € F”p%(Z, H)< T.

Proof: (i) ‘<’ 7

If the right hand side holds then we can find ¥ € I'" for J; which, when played
against any Il € T" Which Jy uses, forces the payoff greater or equal to r.

Now, given any z;, 23, , z2n We can consider the strategy I, € T™ which tells J;
to do 21,22, ,22n no matter what J; does, if we fix ¥ = ¥’ and play it against .

this IL we have
Va1 Vagnp(21, "Ei(21),++ , 22n, "Egn(21, -0y 220)) 21
(since "X’ against any II € T makes the payoff greater than or equal to r)
=> Va1 Vaeryanpp(zr, "T1(21), 0, "By (21,000 s 22m1), 220, Y2n) 2T
(take yon = Eha(z1,- -+, 22n))
=> Vz1- - Vaoen_13yan_1Vaenyanpp (21, 21(21), - - 5 22n—1, Yano1, Z2n, Yon ) 2T

(take yans = Tjn_y (21, ,220-1))
We continue in this way replacing ¥!(zq,--- ,2) by y; for all i =1,2,--. ,2™ until
we have

V2 3y Vo dys - - sznayznp}lg(zl, Y1,22,Y2," " 5 22n, yzn) 2.

‘=’ Conversely, if the left hand side holds
(2.16)  VeuIyiVaedys -+ Ve Iyanpg (21, Y1, 22, Y2, o+ 220, §2m) 2 7

Let ¥' € I'* be_the strategy which, at the jth stage, tells J; to do a y;.€ "M in
response to the (zy,- -+, z;) played by Js, thus making pg(z1,y1,-+* , 22n,y2n) > 1.
(We know there is one by (2.16) )

ie. let Xi(21,+++ ,2;) = yj for j =1,2,---,2" as given by (2.16), then we have
(217) VZ1 v v22n._1\7’22np2~(21, 2’1(21), trry Zon, 2,27,(21, e ,Zzn)) Z r.

Now suppdse we are given a strategy II € T" for J,. If we put zy = IIy,
(21 (z1)),- -, fﬂén(E’zn_l(---E’l(zl))---) as 2,43, - ,2zn respectively i.e. for
J=2,--+,2" put

7 = I(Z)y (s (- (Da(Zh()) )
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(recall IT; is just a z;) then by (2.17) we have
VILy, -+, Vgnp (T, B4 (1), Ta(25 (), -+ o, Bgn (Tan(--+))) 2 7

ie. VIIe Y"pi(X, 1) >r

and so we see that

i.e.3T € IVII € Y"p(Z,10) > T
Proof: (ii) Similar.
O

From Lemma 2.3.4 above, we obtain the following Corollary.
Corollary 2.3.5

Given r € R, either (a) or (b) below holds
(a) 3L € VIl € Trp (X, 1) > r

(b) 3T € T*VE € T p}(S,1I) < r

Proof: By Lemma 2.3.4 we see that

(1)Vz13y1- - VzonVyanplh(21, Y1, * +) 220, Yon ) 2138 € TVIL € TP (T, > 7
and '

(i1)321¥y1- - F2anVyanpl (21, 41, y22m,y2n) <r >3 € TVE € Ipp (T, M)<r

therefore, since
~(Vz13ys -+ VeanIyanpp (21, 41, + 5 220, Y2n) 2 1)

= 32, Vy1+ - - FzanVyanpp(21,y1, -+ y 220, Y20 ) < 1

we see that by (i) and (ii), if (a) does not hold then (b) must hold.
a

We now go on to prove (2.12) using Corollafy 2.3.5 above.
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Proposition 2.3.6

For strategies & € I'* and IT € Y™ for J; and J; in the game EF

inf sup pp(X,I) = sup 1nf pe(5,10).
IIeT™ pern sern I

Proof: Fix Il =II' € T, then for each fixed ¥’ € I'* we have
pe (¥, 1) < sup p(E, IT')
T ,

= irl_llfp%(E', II) < irﬁf sup pg(Z,II)  for each ¥’
T

(2.18) => sup irﬁfp%(z, II) < irﬁfsupp}_f;(E, II).
3 x -
Conversely, suppose that

(2.19) sup 1nf pe(E,10) < 1nf sup pg(X, )
Tern Il " zelrn

then there exists r € R such that

(2.20) S&Pn H1€n;n (5, I)<r< 1nf sup pp(Z, I0).

Now , by Corollary 2.3.5 we see that either (a) or (b) below holds
(a) AL e I*VII € TrpE(X, 1) > r

(b) Il € T"VE € I"pE(E, 1) < r
Now, if (a) holds then we have

X el™: Hiélenp’}f;(E,_H) >r
so we have

f ¥, 10) >
- Sgﬁnn‘élran( )zr -

which contradicts (2.20), therefore (b) must hold, but if (b) holds we see that
I e T": sup pp(E,II) < r
Telrn

so we have

f L,I0) <
i SSIP,.‘DE( )T

which also contradicts (2.20), therefore (2.19) cannot hold and so by (2 18) we

have

nlen“;n SéllglpE(E ) = sup 1nf _pp(5,10).
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2.3.4 Friedman’s upper and lower values

In [10] it is stated without proof that V 2 V,t 1 for all n, i.e. when the length of
the intervals ™I; are decreased, the value of the game decreases. For completeness,

we include our own proof of this result. (For an alternative proof leading to this

result we refer the reader to [20].)
Theorem 2.3.7

V.k >V, for all integers n.

Proof: A play of the game E} with J; using a strategy ¥ € I'" and J; using a
strategy II € T™ generates a pair of controls y € "M; and z € "M, i.e.

y= (yl,y2, tee )y2") and 2= (z1722a cr 7z2")

wherey; : "I; — Y and z; : "I; — Z foreach j = 1,-..,2". Corresponding to this
pair of controls and strategies there is a payoff pk(y, 2) = ph(21, Y1, +* , 2an,Yan) =

pE(Z,II). Note,
P (o1, 1,22, U+ 220, yn) = (a2 -y (2172 -+ 20))
By the definition of V}, equation (2.12), given any € > 0,
e TVE € rnpg(z,ﬁ) <Vi+e
theréfore, by Lemma 2.3.4 (ii) we have
321 Vy1322Vy2 - - - Jeanyan (PE (21,4150 + s 22m, y2n) < V5 +€)
(2.21)
=> 3212 V132925 Vya - - 325 20 Vyan (P (2127, Y1, 5 Zhn2in, Yan) < VIF +€)

(since for each j.=1,-++,2", we can split 2z; into z; and 2 over the two halves of

"I; i.e. 2} acts on "t1],;-1 and 2} acts on "*'1,; )
1
= aziazilvyivy{, tet az;naz;,nvy;nvygn(p%-*' (Zi, Zi’, yi, y;",-" . ,y;n, y,ZIn) < V,n++6)
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(since, for each j = 1,---,2", any pair y} on "t!I3;_; and y] on n+l],; is simply

a y; on "I; and by (2.21) it holds for all such y; )

(2.22)

= VY, 3Vy! - A2 VPt

Therefore, by letting

(:’71,:’?2,?3,"‘) = (y,laylllayIZa"') and (21)22,5&'

we have §; € "HM{ and Z; € "HM%, ie. § = (41,

v
(zlaylazlayl)"'

nooon +
,Zzn,y2n) < Vn +6'

) =(z1,z1’,z§,--~)

oo Ggmer) € "M, and

Z=(Z1, " ,Zm+1) € "T'M, . Therefore, § and Z are controls for the game E;f,;

and by (2.22), we have
321V§1322V§2 e 22n+1\7’372n+1p%+1 (21, gz, L
so we have, by Lemma 2.3.4 (ii)

311 € THHVYE € I pat (3, I0)
= 3Me T : sup piti(S,I0)
Telnti
= Jnf Sup, pEH(E,10)
1.e.

+
V;L+1 S Vn+‘

d

We now define Friedman’s upper and lower values.

Definition 2.3.8

s Zont1, g2n+1) < Vn+ +¢€

Vi +e
Vi +e
/AR

Since V,* decreases with increase in n, we can take the limit

n—00

(2.23) vt = lim V.

V* is the upper value of G in the sense of Friedman ([20]).
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The game E is defined to be the game played in the same way as E} except
that at each stage Jy plays first. By similar methods to those above, it can be
shown that E- has a value V,” with

Voo <V for all integers n

and so we may take the limit. The lower value of G in the sense of Friedman, is

defined by
V™= lim V.

n—oo

We immediately have that V- < V¥ for all n and so V- < V+.
Definition 2.3.9

G is said to have value in the sense of Friedman ([20]) if V= = V*,

2.4 Friedman’s upper and lower values in terms
of pseudo-strategies

Elliott and Kalton ([10]) give a re-interpretation of the Friedman values V~and

V7 in terms of pseudo-strategies. Since some of the main results we go on to give

proofs of rely upon this work we find it necessary to include a summary of this

section of their work for the readers convenience.

2.4.1 Pseudo-strategies and reaction times

Definition 2.4.1

For —1 < s <1, T(s) is defined to be the set of pseudo-strategies o for J; such
that for all 7' > 0

21(t) = z,(t) ae. 0<t<T
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= az(t) = az(t) a.e. 0 <t <min(T +s,1).

Y(s) for J; is defined similarly. Thus I'(s) is the set of strategies available to J;
if he has reaction time s (which may be negative, in which case he is anticipating

his opponents play).

Definition 2.4.2

Let

(2.24) U(s) = sup u(a)
a€l(s)

(2.25) V(s = it o(B),

then, since U and V' are monotone functions (U decreases and V increases with

increase in s.) the following definitions are made

(2.26) | U*(s) = lim U(i)
(2.27) U (s) = lim ()
(2.28) | Vt(s) = ltigl V(t)
(2.29) ] V=(s) =limV(2). )

It is from here onwards that nonstandard methods come into use.
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2.4.2 The game E;

Elliott and Kalton ([10]) show that V*(0) = V* and V—(0) = V~, later we shall
give a proof of this using nonstandard methods. First we use ideas related to those

of Elliott and Kalton ([10]) to introduce a new game which we denote by E;f. We

shall then use this game to show the above result.
Definition 2.4.3 (The game E)

The game EF has the same dynamics, initial condition and 'payoff as the game
E7F. The game is played in the following manner: J; first selects his control z; on
"I, then J; selects his control y; on "I, the players continue playing alternately,
with J; choosing his control z; on "J; at the 7t stage before J; chooses his control

y;on "I; forj=1,-..,2"

The difference between this game and the game E7 is that in this game the

choice of controls available to player J; is restricted.

2.4.3 Controls for the game E;F

In the game E7, player J is still using the class of controls "M i.e. measurable
functions of the form y : [0, 1] = Y with y = (y1,+-+ ,y2n) where y; € " M3 for
each j=1,--- ,2" and "M is the space of all measurable functions of the form

yj : an - y - | / ]
Player J; however, is restricted to those controls z€ " M, which satisfy
z(t)=c iftelttii+(An)?] forj=1,...,2

where c is a member of Z which is fixed throughout the game.

We denote this restricted class of controls by " M; and observe that "M, C
"Mj. Similarly, for each j = 1,-:-,2", we define "/\;tg to be the class of all
controls z; € "Mj which satisfy

Zj(t) =c if ¢ G]tj—l,tj—l + (An)z]
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Note: Given a pair of controls y € "M; and z € "M for the game E}, there is
a naturally corresponding pair of controls y € "M; and 7 € "M for the game
E7, y is the same control in both games and the control z for the game E7f is

given by

(2.30) 5(t) =

c if ¢ €]tjo1,tj-1+ (An)’]
At) it Eltio+ (An)h 8]

where z is the control in the game E.

Note: We need the closed interval in the definition for the case j =1 so as to get

2(t)={ e e (A
At) it el(An)n)

i.e. when z(t) for the game E} is given by

Z ‘ ‘ 2(t)

to t ty t3 tgn_g  tan_g  ign

Z(t) for the game E} is given by

] | ! 1 | !

| ] ] N i I

| | [ : ] i 5
Z | \ :\_/\ ) f\‘ | 2(t)

] | ] ! ( |

11 ] I . ] -

c 4/\4—4 — = r—nl/\/ :

| ! ] ] -— L L

to tl t2 t3 tzn_2 t2n_1 tzn

2.4.4 Strategies for the game £}

A strategy for Jy in the game Et is a collection of maps

E = (21,"' ,E-zn)
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where for each j =1,---,2"
T "MLxx "ML = "ML

Similarly, a strategy for J; in the game E; is a member of "M} together with a

collection of maps (Il,--- ,IIsn) where for each j = 2,---,2"
I : "Mx.ox "MITH = "M,

Let I™ denote the class of all strategies for J; in the game E; and similarly, let

Y™ denote the class of all strategies for J; in the game E;.

2.4.5 Value for the game E¥

Playing a pair of strategies © € ' and IT € T" in the game E} generates a pair
of controls y € "M, and z € "M,;. A payoff can be computed

PE(Y, 3) pe(Z,10)

where y = ¥z and z = Ily.

The game E} has value given by

(2.31) V= inf sup pg(X,II) = sup 1nf pg(%,1I).
‘ e Eef‘n velfn IleYn

Note: Given a strategy II € T" for J; in the game E}, there is a natufally corre-
sponding strategy I1 € T" for J; in the game E}. Here, II consists of (II;, -+ ,II3n)
where for each j =1,---,2" '

c if ¢ E]tj_l,tj_l + (A )2]
ILi(y1y e+ 5 y5-1) if t €]t + (An)%, 8]

i.e. the strategy II € T" corresponding to the strategy IT € T™ tells J; to respond

(2'32) ﬁj(yl’ e ’yj—l) =

to a control y € "M, in the game E7 in exactly the same way as he would by
using Il in the game E} except that for j = 1,--+ ,2" , he must play the constant

¢ for a short time at the beginning of each interval *I; .
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Note: If Il € T corresponds to II € Y™ in the sense of (2.32), then for each
y € "M

(2.33) [y =TIy € "M,.
Note:
(2.34) T" CT" . for each integer n

since if 1 € T then  II;: "Ml x--- x "Mi{™ = "M;j
and if T € Tr then  IL: "Mlx ... x "Mi™ = "M}

and we know that "M} C "Mé for each j =1,---,2".

Therefore we have the following result

Lemma 2.4.4

(2.35) Vi<V
Proof: By (2.15) V. can be written as
V= inf sup ph(y,II
v =i, sup PE( 1Y)

and V* can be written as

VY= inf sup pi(y,II
v =iy, sup PE(, 1Y)

so it follows immediately from (2.34) that
/AR-QA
a

Note: We could similarly define a game E based on the game E.
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2.5 The game E' compared to the game Ef

In this section we compare the two games E¥ and E}. We show that if we use
internal controls and let N € *N be infinite then the value in E% is infinitely close

to the value in Ef; .

First we show that for a fixed pair of controls, the trajectories and payoffs in the
two games are infinitely close, in the sense of the uniform topology, when N is

infinite.

To do this we introduce some notation.

Notation 2.5.1

Recall, for a fixed integer n, the dynamics for the game E} and E} are given by

2 (8) = 2(0) + [ f(5,8%%(s),y(s), 2(s))ds.

For a fixed pair of controls y € "M; and z € "M, , let Z € "M, be as given by
(2.30) then, we denote the solution corresponding to y and z in E} by z¥*(t) and

the solution in EF corresponding to y and z by z¥%3(t).

Using the above notation in the nonstandard setting we have the following
result.
Proposition 2.5.2
For a fixed infinite NV, given a fixed pair of controls Y € Y *M; and Z € V*M,
ie.
(2.36) Y0, =Y and Z:*[0,1] - *Z
for each initial s;cate, 2(0), X¥'% ~ X¥7Z in the sense of the uniform topology, i.e.

sup |XVZ(r) = X¥Z(r)| = 0.
7€ *[0,1] _
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Proof: Let U : *[0,1] — *M be given by
(2.37) U(r) = (Y(7),Z(r)) - forall 7 € *[0,1]

where *M = *() x Z), then °U : *[0,1] — M is a Loeb measurable control in V.
Similarly, let U : *[0,1] — *M be given by

(2.38) U(r) = (Y(r),Z(r)) forallt € *[0,1]

where Z corresponds to Z in the sense of (2.30), then °U : *[0,1] — M is a Loeb

measurable control in V.

Now, U(7) = U(7) a.a. T € *[0, 1] since the controls only differ on the intervals
Jti—1,tj-1 + (AN)? for j = 1,--- 2V therefore, if we let v : *[0,1] — M be given
by v = °U then

(2.39) v(t) = °U(r) = °U(r) for a.a. T € *[0,1]
From (2.39) we see, by Theorem 1.3.7 and Corollary 1.3.8, that
z,(7) = °Xy(r) = °Xp(r) for all T € *[0,1]

i.e.

oXY,Z(T) - oXY’Z(T) for all 7 € *[0,1]. _

We now show that the payoffs in the games are infinitely close when N is

infinite.

Using the above notation in the nonstandard setting we have the following

result.
Proposition 2.5.3

For each fixed iﬁﬁnite N € *N and fixed pair of controls Y € V¥ *M,; and
ZeN*M;

(2.40) PY(Y,Z)~ P}(Y,Z).
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Proof: Let U € *U and U € *U be given by (2.37) and (2.38) then, by (2.39) and

Proposition 1.3.10 with the generalised cost function (see section 1.6 ) we have
J(v) = °(*J(U)) = °(*J(U))

1.e.

PY(Y,Z)~ PY(Y,2). -

Corollary 2.5.4

For a fixed infinite N € *N, given any strategy II € TV let Il € TV be as given
by (2.32), then
PY(v,1IY) ~ PY (¥, 1IY)

for allY € V*M;.
Proof: Fix Y € V*M,. Given I € TV
PY(Y,IY) ~ PY(Y,TIY) by (2.40)
and if Il € TV is related to IT € TV in the sense of (2.32) then
PYWTIV) = BY(Y,TY) by (239

i.e.

. PY(v,1iY) = PY (v, TIY). -

We have shown that the trajectories and payoffs in the two games are infinitely

close when N is infinite, so we can now go on to show that the values are close.
Theorem 2.5.5

For all infinite N € *N



Proof: Fix N € *N infinite and fix Y € ¥ *M;. By (2.34), we know that
. N : N
nlen’rfN Pg(V,1IY) 2 HleanN Pg (Y,1IY)
now suppose there exists 0 < r € R such that
: | i N > N
(2.41) HlerlffN Pg (Y, IIY) > nleIl’rfN Py (Y,IIY) +r
then, by the definition of infimum

3 € YY) : PY(Y,ITY) < inf PY(Y,11Y) +

N3

and by Corollary 2.5.4
I e V) : PY(Y,I'Y) = PY(Y,II'Y)
Now, by (2.41),
|PE (v, 1Y) - PY(v, 1Y) 2 5
which is a contradiction, therefore (2.41) cannot hold and so we have

. N ~ N
[nf PY(Y,TIY) ~ inf PY(Y,1IY).

And so , since the operation sup preserves the infinite closeness (see Lemma D.1.1)

we have _
inf PY(Y,TIY) ~ inf PY(Y,IIY).
B n BV A o o, e (BT
le.
Vi = Vi
- .

Note: By comparing the games £ and E7 it could be seen that

Vi = Vy.

2.5.1 The connection between V*(0) and V*

Here we give a nonstandard proof of V*(0) = V*. To do this we use the following

two propositions which build on ideas of Elliott and Kalton ([10]).
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Proposition 2.5.6

For each fixed integer n

VE<V(An).
Proof: We first show that each 8 € T(A,) gives a strategy IIg € T such that
PE(y, gy) = pi(y, By) for all y € "M;. '

Given 8 € T(A,) we define IIz by
gy = By for each y € "M;.
We now have to show that Ilg is in T™.

We have 3 € T(A,) therefore, by Definition 2.4.1, we have

y1(t) = y2(t) ae 0<t<T,whereT >0
= By(t) = Bya(?) a.e. 0 <t <min(T + A,, 1)
ie.
Hpy:(t) = Tgya(t) a.e. 0 <t <min(T+ A,,1).

This means that for each j =1,.--,2" if J; knows what J; has done on all of
"I; i.e. up to time ¢;, then he knows what z;41 = Ilg(y1,- - ,y;) to play on the

interval "I;;1, therefore Ilg € T".

Therefore we have shown that for each § € T(A,) there is a cor_respbnding
IIz € T" such that

pE(y, By) = pp(y, Hay) for each fixed y € "M,

and so for each § € T(A,) there is a corresponding II5 € T"such that

sup pE(y,By) = sup pr(y,gy).
"My

D
ye YyE" M,
Now, there are more II's in T™ than those which correspond to a § € T(A,) so

we have

inf sup pR(y,Iy)< inf sup »%
i, sup Pe(y,Ily) < dnf ye&lpE(y,ﬂy)

75



l.e.

V< V(A,).

O

Proposition 2.5.7

For each fixed integer n

V((Aa)') SV
Proof: First we show that each IT € T gives a strategy An € T((A,)?) such that
p5(y, Bny) = pE(y,Hy) for all y € "M;.

Given a strategy I € T" we define S by
Bny = Iy for each fixed y € "M,

then, B : "My — "M;. We now have to show that Sy is in T((A,)?). For
each j = 1,---,2" given y(t) on all of "I;, J; knows z = Iy on "I;4; + (An)?
but, if he only knows what J; has done on part of ™I, i.e. up to a time T where
tj—1 < T < tj then J; only knows z = Ily as far as ¢; + (A,)? (he can go beyond
t; to t; + (A,)? since he knows that he is going to have to play the constant ¢ on
the interval ]¢;,%; + (As)?] ) he can only go beyond ¢; + (A,)? if T = ¢;.

Yi-1

1
T
tia tin ST 1 tis1

If J; plays as far as T then

| | | | |
L % I : | If T =t; then
| i ( I J1 can play as
‘ /\/ w : | :/far as tiy1 + (An)’
op 1k

iz tj-1 T tj\ tiv1

Jz can play as far as t; + (A,)?
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Now, t; 4+ (A,)? could be as small as T + (A,)? since T could be equal to jA,,
so given y up to time T', J; can only be certain of Sny = ITy up to time T + (A,)?
and so Oy is in T((An)?).

Therefore we have shown that for each II € T™ there is a corresponding fr €
T((A)?) satisfying
Pe(y, Bny) = pg(y,Ily)  for each fixed y € "M,

and so for each II € T™ there is a corresponding B € T((A,)?) such that

sup P(v:Pny) = sup Pi(y, Ily).
yen ﬂ'/\,{1
Now, there are more #’s in T((A,)?) than those which correspond to a strategy

IT € Y", therefore we have

in sup pg(y, < inf su I
ﬂer((An)Q)yenJgAlpE(y ﬂy)_n yenzlpE(y y)
i.e.
V((An)?) <V}
a

If, in the nonstandard setting, we put these two Propositions together with The-

orem 2.5.5, we have the following result.
Theorem 2.5.8

VH0)=V*+. _ | .
Proof: By (2.28) and (2.23), we have

Vvt = lim V.t and V*(0) = ltil%l V(t),
therefore, if N € *N is infinite we have Ay & 0 then,

AV+ ~ V+ and V(AN) ~ V+(O) ~ V((AN)Z)

By Theorem 2.5. 5, Proposition 2.5.6 and Proposmon 2.5.7, with N infinite, we
have

VN = Vi SV(AN) = VH(0) & ((AN) ) < V§
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and so we have

VHO)= V= VT

le.

VHO) = V.

a

Note: Similarly, by considering the game E, it can be seen that V=(0) = V.

Note: As observed by Elliott and Kalton ([10]), V* is the value to player J; if
he can in some sense anticipate the actions of player J, since V*+ = U~(0). The
value V is the value to player J; if his reactions are instantaneous. The smallest
value V'~ is the realistic value to Ji, it is obtained by giving J; a reaction time

and letting this reaction time tend to zero.

000
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Chapter 3
Discrete time games

In this chapter we show, using nonstandard methods, the results which appear in
[10], that the Friedman values V* and V'~ of the game G, may be obtained by
considering discrete versions H} and H of the games E} and E; respectively.
We also give details of the game K which appears in [10] — we will use this game

in subsequent chapters.

We assume throughout this section that the payoff function for the game G is
given by (2.6).

3.1 The game H

Here we give a brief description of the game HY asin [10].

Definition 3.1.1 (The game H})

The class of controls for each player in the game H; is exactly the same as in E}.
The players play the game H; in exactly the same way that they would play the

game E} i.e. they play alternately with J; selecting his control z; € "M} on "I;

at the j** stage, for j = 1,---,2", before J; selects his control y; € "M{ on "I;
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i.e. Ji plays a varying control y(t)

Ya
Y2 Y3 Yan_1

Y 31 | _ /‘\ Yor )

to t iy t3 tan_g  fgn_y ton

and J; plays a varying control z(2)

Z22 24 Zon_q Z9n
2| 4 \/\ /\\/ /\ (1)
to t ta t3 tan_g  fony  ign

The difference between the game H and the game E; is that in the game H;}
the dynamics equation is defined only at the discrete time points ¢ € T, . The

dynamics for the game HY are given by

ZH(0) = a(0)
B SRt = o)+ [ et v, (0)d

where t; = jA, for j =0, ,2".

The payoff is given by

62) A= X [ At ah(to), v (0, 20)d + g(z(1).

=174
3.1.1 Strategies for the game H}

The sets of stra‘ﬁegies for each player in the game H} are exactly the same as for
the game E} i.e. J; uses strategies & € I'™ and similarly, J; uses strategies II € T

for each integer n.
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3.1.2 Value for the game H;}'

By the general theory of alternate move games, in exactly the same way as for the
existence of the value V,t for the game E;, it can be shown that H;} has a value

which is denoted by S;F.

Note: Similarly, a game H, (based on E;) can be aeﬁned and this game has
value denoted by S, .

We now consider the nonstandard version of the game H.

Proposition 3.1.2

For each fixed infinite N € *N, given a pair of controls Y € ¥ *M; and

Z € N*M,, for each initial state, z(0), XY : Ty — *R? is S-continuous.

Proof: Take t; > t; with ¢; = t; where ¢; and t;x € Tn then,

) = X6 = 1+ 3 [ e, X (1), Y(0), 2(0))do

kot -
~2(0) =3 i, X (tim0), Y (0), Z(0))do]
> [ e X ), Y(0), 20l
i=k41 “ -1
< R(tj—ty) by (25)

IN

0.

Q

We would like to be able to define X N(o) for o ¢ Tn therefore we make the

following definition.
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Definition 3.1.3

The function z? is extended so that z7 : [0,1] — R? with the following definition.

For s €]t;-1,t;], we define z%(s) by linearly joining up z%(t;-1) and z%(¢;)

2 (s)

xmt,’-l)k
.’ : H(t5)

Le. if s €]t;-1,t;], 2% (s) is given by
n n . S n . 8
zh(s) = 2g(t;)(1 = j + 1) + 25(t-1) (7 — £)-

Remarks 3.1.4

(1) In the nonstandard setting with the above definition of XH(7) for ¢ Ty, we
see that if N € *N is infinite then we have a function X§ : *[0,1] — *R? which is

S-continuous.

From here onwards when we refer to the functibn XY we will mean the extended

version XY : *[0,1] — *R?i.e. X¥ is defined for all 7 € *[0,1].

(i) Using the above S-continuity property and the continuity of &, we see that
given a pair of controls Y € Y *M; and Z € V*M, , when N € *N is infinite,
the payoff in the game Hp satisfies

PE0GZ) = X[ hlson, X, Y (0,20 4 g(XH () by (32

=1 31

&

[} hr XE )Y (), 2(r))dr + o(XE(1)
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since, for each j = 1,--+,2N, if 7 €]t;_1,t;] where ¢t; = jAy then, 7 & t;_1 = ¢;

and X () ~ XJ(t;j-1) =~ XJ(t;).

We now show that °XJ solves equation (3.3); this will then be used in section

3.2 to show that the games Ef; and Hj; have the same value.
Proposition 3.1.5

For a fixed infinite N € *N, given a fixed pair of controls Y and Z of the form
Y:*[0,1] - Y and Z:0,1] - "Z
the trajectory °X}(7) solves the following equationb
(3.3) 2(r) = 2(0) + /0 " 1(°0,2(0), °Y (), °Z(0))dox.
Proof: For 7 €]t;_1,1;]
°xN(r) = °XH(t;)  (since X is S-continuous)

= °(z(0) + Zi;/t.t:l ‘*f(ti—l 7‘X}]},(ti—1)7 Y(o), Z(0))do)

= O+3 [ 0. X3(0),Y(0),2(0)do)
(by S-continuity of XY and continuity of f)
= @)+ [ (0, X§(2), Y (0), Z(0))do)
= 2(0)+ [ (S0, XH(0), Y(0), 2(¢)))dor
(by Loeb Theory)
= 20)+ [ f(°0, XH(0), Y (0), °Z(0))dor
(by Anderson’s Lusin Theorem)

and so we see that °XJ solves equation (3.3).
a

Here we show that if we play the H game over two different discrete time lines
T, and T, i.e. if we play the games H} and H*, then the trajectories and payoffs
are equal in both games if both n and m are infinite. This result will be use in

Chapter 5.
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Corollary 3.1.6

If N, M € *N are both infinite then for any pair of controls of the form

Y:*0,1]]—=*Y and Z:7[0,1] - *Z

the corresponding trajectories in the games Hz and H}; are infinitely close in the

sense of the uniform topology i.e.
XN (r) = XY () for a.a. 7 € *[0,1].

Proof: By Proposition 3.1.5 we see that since N and M are both infinite, °X%
and ° XM both solve equation (3.3) and it was shown in the proof of Proposition

1.3.7 that this equation has a unique solution.

a

Proposition 3.1.7

If N, M € *N are both infinite then for any pair of controls of the form
Y:*0,1] > *Y and Z:*0,1]> *Z
the payoffs in the games Hy and Hj; are infinitely close i.e.
PN, 2) ~ PY(Y,2),
Proof: By Remarks 3.1.4 (i) we see that

BY(V,2) ~ [ *h(r, X5(r), Y (), 2(r)dr + *a(X} (1)

® /ol “h(r, X3 (7),Y (1, Z(r))dr + “g(X}{ (1))

(by Corollary 1.3.6 and continuity of A and g)

2

P{(Y,2).

This result will be used in the proof of Theorem 5.2.1.
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3.2 The game H compared to the game E;

In this section we compare the two games E} and H;f. We show that for a fixed
pair of controls and a fixed infinite N € *N, the trajectories and payoffs in the

two games are infinitely close. We then show that the values are infinitely close

when N € *N is infinite.

Recall that in the nonstandard setting, X§(7), a solution in the game E¥

corresponding to fixed controls Y € ¥V *M; and Z € N *M,, is given by
(3.4) XF(1) =2(0)+ [ *f(0,XE(0), ¥ (0), Z(0))do.

We know that since this is the same as equation (1.31), for each fixed infinite
N € *N, given a pair of controls Y € ¥*M; and Z € N *M,, for each initial

state, z(0), X§ : *[0,1] —» *R?is S-continuous.
Proposition 3.2.1

For a fixed infinite N € *N, given a fixed pair of controls Y and Z of the form
Y:*0,1]—*Y and Z:*0,1] — Z

the corresponding trajectories in the games Hj; and Ej; are infinitely close in the

sense of the uniform topology i.e.

CXN(r) =~ X§(r) for a.a. r€ *0,1].

Proof: Given a fixed infinite N € *N,

XE(r) = @O+ [ f(0,X5(0),Y(0), 2(0))do)
= 2(0)+ [ £(°0, "X (0), °Y (), "Z(0))dor

(by Anderson’s Lusin Theorem and the continuity of f)

and so we see th;at‘ ° X} solves (3.3). By Proposition 3.1.5 we know that ° X} also

solves (3.3) and so the result follows since equation (3.3) has unique solution.

O
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So we have shown that if N € *N is infinite then given any controls Y € *M;
and Z € *M, the corresponding trajectories in the games Ef; and Hj; are inﬁqitely

close.

We now go on to show that for fixed controls, and a fixed infinite IV, the payoffs

in the two games are infinitely close.
Proposition 3.2.2

For a fixed infinite N € *N, given a fixed pair of controls of the form
Y:*0,1]]-*Y ad Z:7*[0,1]—=*Z
we have
PY(Y,Z) ~ P (Y, 2).
Proof: Fix N € *N infinite. By Remarks 3.1.4 (ii), we see that
FY2) ~ [ *ho XR(0),¥(0), Z(o)do + *g(XH (1)

[ b, XE(0), Y (0), 2(0))do + *g(XE (1)

(by Proposition 3.2.1 and the continuity of 2 and g )

Q

Q

Py (Y, 2).

Therefore, by comparing the two games Hf; and E} we have shown that for
a fixed infinite’ N and a fixed pair of controls, the trajectories and payoffs in the

two games are infinitely close.
We now go on to use nonstandard methods to show that the values of the two

games are equal.

Theorem 3.2.3 .

(3.5) : lim S} = V*.

n—oo
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Proof: Fix N € *N infinite. We need to show that

~ II
A AL S

We know that
PY(Z, M)~ PY(E,II) forallZelN, eV

and so since the operation inf preserves the infinite closeness (Lemma D.1.2) we
have
. N ~ N
nleanN Py (L,1I) =~ Hlen'IfN Pz (%,10)
which means

sup inf PY(Z,II) =~ sup 1nf PY(x,10)
sern leT¥ serw IeT

since the operation sup also preserves the infinite closeness (Lemma D.1.1) i.e. for
each infinite N € *N

St~ VE,
and we know by definition

Vi~ Vvt

for all infinite N € *N. Therefore we have

St=Vt
for all infinite N € *N and so
Jm Sy =V,

O

Note: Similarly, by comparing the games E; and H, it can be seen that

(3.6) lim S, =V~.

Therefore we have shown that for a fixed pair of nonstandard controls, the value
of the game Ejf; where the dynamics are defined continuously on *[0,1] and the
value of the game Hy where the dynamics are only defined at discrete time points

in Ty are equal if VN is infinite.

We now give details of a variation of the game H} which is denoted by ﬁ: .
We will use this game in a later chapter to show that, under certain circumstances,

we have value in the sense of Friedman.
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3.3 The game H}

Notation 3.3.1

Let ”./\;11 denote the class of all functions

y: [0, 1] -y
which are constant on the intervals "I; for jr = 1,-++,2" Similarly, let "My
denote the class of all functions

z:00,1] = 2
which are constant on the intervals "I; for j = 1,---,2" Then, for each j =
1,--+,27 , "M is the class of all constant functions y; : *I; — ) and "M is

the class of all constant functions z; : "I; — Z.

Note:
(i) For i = 1,2 we have "M; C "M;.
(ii) If n > m then ™"M; C "M;  fori=1,2.

Definition 3.3.2

A control y : [0,1] = Y is said to be n-constant if y € "M;. Similarly z : [0,1] —
Z is said to be n-constant if z € "M,.

A pair of controls y : [0,1] — Y and 2z : [0,1] — Z is said to be n-constant if

both y and z are n-constant.

In subsequent chapters, when we have a varying control for one of the players
against an n-constant control for the other player we would like to be able to replace
the varying control by an m-constant control, for some m, without changing the

outcome of the game.

With this in mind we look at a variation of the game H?, the game H.
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Definition 3.3.3 (The game fI:)

The game H¥ has the same dynamics (discrete), initial condition and payoff as

H7 and is played in exactly the same way except that in the game ISI,;" the class

of controls for J, is restricted.

3.3.1 Controls for the game ﬁ,;“

In the game ﬂ:, J1 is free to play any control y € "M, while J; is restricted to

n-constant controls, z € "M,

l.e. Ji plays a control y(t) of the form

ton

& ys S Yar-1
Yy
y Yan
to 11 2 i3 Ton_g fon.q
and J; plays a control z(t) of the form
24
21
Z 23
Zon
V-4) Zon.q
to tl t2 t3 t2"—2 t2"—1

3.3.2 Strategies for the game H;

tgn

2(t)

A strategy for player J; in the game IA{:‘ is a collection of maps £ = (X4, , Xan)

where for j =1,---,2"

S0 "MIx e x "M - "M
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Similarly, a strategy for J; in the game H; is a member of "M} together with a

collection of maps (Il,- -+ ,II;») where for j = 2,---,2"
I : "M xeox Mo MY,

Let I'™ denote the class of all strategies for J; in the game H,j‘ and similarly, let

T denote the class of all strategies for J; in the game fI,;*‘ .

Note: For each integer n,

(3.7) Tr e
since if IT € T™ then I : "Ml x oo x "MI™t o "M
and if I € Y™ then  IL;: "Ml x ... x "Mi™ = "M]

and we know that "M} C "MJ for each j = 1,--- , 2",

3.3.3 Value for the game H;}

Clearly H7} has a value which we denote by S+ where

(3.8) St = inf sup pi(%,10).
Ilelln ):Ef‘n

We now give a result which we shall use in Chapter 10.
Proposition_3.3.4 ) .

For each integer n,

5+ > St
Proof: By definition and (2.15) it can be seen that
+ = inf a(y, 11
Sa = inf, sup Ph(y1ly)
and
A+ —

inf sup pi(y,Iy)
IIeTn yE T M,
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therefore, by (3.7) it is clear that
St > st
|

Note: Similarly, by considering the game H: which is the same as H; except

that at each stage J; is forced to play a constant control, it can be seen that

A

Sp =5,

for each integer n.

The game H;* will be used later in Chapter 4.
We now give details of Fleming’s approach to the existence of value.
3.4 Value in the sense of Fleming

In this section we give details of the game K which appears in [10]. We then use

this game and go on to compare two games, each based on different discrete time

lines.

3.4.1 The game K

The game K, is the same as H except that now, at each stage both players are

forced to choose a constant control function.
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Definition 3.4.1 (The game K;})

The game K is played in exactly the same way as the games E} and H} i.e.

the players play alternately with J, selecting his control on "J; at the j* stage,

for j =1,---2", before J; selects his control on "I;.

The difference between the game K and the game H; is that in this game

both players are forced to play a constant control at each stage and so at the

completion of the game J; will have selected a sequence y = (y1,"-- ,Yan) Of

elements of ) i.e. an n-constant control y € "M; and J; will have selected a

sequence z =(z1,-- ,22n) of elements of Z i.e. an n-constant control z € "M,

i.e. J1 plays a control y(t) of the form

Y4

Y2
y : _ Yona

Y1 Yan

to t to i3 ton_g tan.1

and J; plays a control z(t) of the form

24

21

Zon

22 ‘ Zan_1

g 11 t2 t3 tjn_g fon_1

Remarks 3.4.2

(i) If a control is n-constant then it is also m-constant for any m > n.

ton

(ii) If a control is to be used by a player in the game K} then this control must be

n-constant, a control which is m-constant for m > n but is not n-constant cannot

be used in the game K.
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As in the game H;, the dynamics equation is only defined at the discrete time
points ¢ € T,. For controls y = (y1,-** ,y2») € "My and z = (21, -+ ,230) €
" M,, the dynamics of the game K} are given by

2%(0) = a(0)

(3.9) tx(t;) = Tx(tis1) + Anf(tj-1,2%(ti-1),¥5)25)

where as before, t; = jA, for j =0,---,2

For controls y € "M and z € "My, the payoff in the game K is given by

2"
(3.10) Pk (y,2) = An 3 h(tio1, 2% (4-1),¥j> 23) + (25 (1)).
5=1 . .

3.4.2 Strategies for the game K;

A strategy for J; in the game K} is a collection of maps ¥ = (X1, -+ ,Xn) where

foreach y =1,---,2"
N "MLxex "M — PME

Similarly, a strategy for J; in the game K, is a member of "./\;ié together with a

collection of maps (Ilz,- - ,II3n) where for each j = 2,--- ,2"
I : "MEx oo x "MI™t o "M,

Let I™ denote the class of all strategies for J; in the game K} and let T denote

the class of all strategies for J; in the game K,T :

Note: In the game K a strategy only needs to be able to cope with n-constant
controls whereas in the games EYand H;} they have to cope with varying controls.

Therefore we have

(3.11) | I"cr® and T"cY™

3.4.3 Value for the game K’

Since K is an alternate play game, by the same methods used to show that EY

and H;} have value, it can be seen that K has a value which we shall denote by
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W where

Wt = inf sup Pg(Z,II).
IleTn Eef‘n

Note: We could similarly define a game K in which J; plays first at each stage.
Having noted that K is actually the game H; with the classes of controls
restricted to n-constant controls for both players, we make the following remarks.

Remarks 3.4.3

(i) Just as we did in the game H, by using Definition 3.1:3 to define z}%(s) for

s ¢ Ty, we can extend z% to 2% : [0,1] — R%.

From here onwards, when we refer to the function X% we will mean the ex-

tended version so that X% (r) is defined for all 7 € *[0,1].

(ii) By Proposition 3.1.2, in the nonstandard setting, for each fixed infinite N €
*N, given a pair of N-constant controls, the resulting nonstandard solution X¥ :
*[0,1] — *R?is S-continuous. |
(ii1) By Proposition 3.1.5, for each fixed infinite N € *N, given a pair of N-constant
controls Y € ¥ *M; and Z € N * M, the trajectory ° X% (7) solves equation (3.3).
(iv) For each fixed infinite N € *N , by the S-continuity of X¥ the payoff in the

game K satisfies

(12)  PYZ)w [ *hr XE(), Y(r), Z()dr + *o(XE(D)
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The obvious question which arises from this is whether the limit of the values
W} and W as n — oo exist. To show this Fleming used the Isaacs-Bellman
equation (we will look at this in Chapt'er 5) , we however manage to show the
existence of these limits without using the Isaacs-Bellman equation and without
as many restrictions as imposed by Fleming — this forms the main content of the

following chapters.

We are keen to show that these limits exist since then, we are able to show that
under certain circumstances the values V+ and V- are equal and so the game G

has value in the sense of Friedman.

Before we do this we give a brief summary on relaxed controls in the context
of game theory (see section 1.2 for relaxed controls in control theory) since relaxed

controls will be used in subsequent chapters.

000
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Chapter 4

Rélaxed Controls

Since the subsequent chapters involve relaxed controls, here, in this chapter, we
give a brief summary of relaxed controls. Relaxed controls were first introduced

into control theory in [37] (see Section 1.2) and into game theory in [11].

4.1 Relaxed play games
We gave the definition of relaxed controls in section 1.2.

Notation 4.1.1
Let "R, denote the class of all relaxed controls for J;. Similarly, let "R, denote
the class of all relaxed controls for J;.

Similarly, we denote the class of all n-constant (see Definition (3.3.2) relaxed

controls for J; by "R, and those for J; by "R,.

Note: Just as in Section 1.2, we note that "M; C "R, for : = 1,2.
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With this definition of relaxed controls, we need to extend the definitions of

the functions f and A. The function f : I x R% x A(Y) x A(Z) — R? is defined by

(t1) fttm) = [ [ Aty dun)dy(e)

for i = 1,2,-++ ,d and the function & : I x R? x A(Y) x A(Z) — R is defined by

(4.2) h(t,z,p1,v) = L/),h(t,w,y,z)du(é)dv(Z)-

With the above definitions, it is easy to verify that the extended f and h will
satisfy Lipschitz and continuity conditions of the same type as satisfied by the
original f and h.

Since A(Y) and A(Z) are compact metric spaces, all of the results in Chapters

2 and 3 hold for relaxed controls.
Notation 4.1.2

There are four versions of the game G which can be considered. The original game
where both players are using ordinary controls is denoted by G, the game where
player J; is allowed to use relaxed controls while J; is still restricted to ordinary
controls is denoted by G;. Similarly, the game where J; is allowed to use relaxed
controls and J; is restricted to ordinary controls is denoted by G and the game

where both players J; and J; are allowed to use relaxed controls is denoted by

Gha.

All four of the games can be treated as in the preceding discussions. From here
onwards a subscript 1, 2 or 12 denotes the fact that a quantity refers to the game

G1, G2 or G5 respectively.

4.2 The game K,

In this section we give a brief description of what we mean by the game K} itis

actually the game K} with player J pérmitted to use relaxed controls of the form
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above. We will then, in section 4.3, compare this game with the game H} ( section

3.3) . By comparing these two games we are then able to show that, under certain

circumstances, a varying control can be replaced by a constant relaxed control,

without changing the outcome of the game.

Definition 4.2.1 (The game K;,)

The game K, is actually the game K} except that now player J; is allowed to

use n-constant relaxed controls of the from

(4.3)

v:[0,1] —= A(D)

i.e. J; uses controls v € ™R, while J; is still using n-constant ordinary controls,

ZEan

i.e. Ji plays a control v(t) of the form

Vg
v
A(y) Vgn_1q
V3
Y Von
to , tl tz t3 2n-2 t2n_1
and J; plays a control z(t) of the form
24
21
Z 23
Zon
22 Zon_1
to} t]_ tg t3 t2n_2 t2n_1

Recall, from (3.9), the dynamics for the game K7, are given by

m?{(tj) = .Z'(O) + i Anf(ti;la w?\"(ti—l)) Vi, Z,')

=1
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and the payoff is given by
271

px(r,2) = An)_ h(tj-1, 7k (ti-1),vir 2) + 9(2k (1))
=1
2"

= 3 [ bt okton) (0, 2(0)dt + 9(()

i=1 Y ti-1
where f and h are now the extended versions so that they can cope with relaxed

controls (see (4.1) ).

Since A()) is a metric space we know the game has value. We denote the value

of the game K, by Wj,.

We now go on to compare this game to the game H} (section 3.3).

4.3 The game K., compared to the game ﬁ,’f

Here we compare the two games K7, and H + and show that under certain circum-
stances a varying control can be replaced by a constant control without changing

the outcome of the game.

Elliott and Kalton ([10, page 41]) showed that,.over each interval I; for
Jj=1,--+,2" from a varying ordinary control y(¢) for player J;, a constant relaxed
control can be defined which has the same effect against a constant control for Ja.
We give a more general result; we show that from a varying relaxed control v(t)
for J; we can define a constant relaxed control which has the same effect against

a constant control for J;, as the original varying control.

Lemma 4.3.1

Given a varying control v € "R; for J;, we can define an n-constant relaxed

control 7 = (g, ,0sn) € "R, by
(4.9) .‘ [, ew)dz) = 1 / o(v(t))dt

99



for all continuous functions ¢ : Y — R% Clearly 7; € A(Y) foreach j =1,---,2".

Proof: Since every compact metric space is a locally compact Hausdorff space,
for each j = 1,--- ,2, given a control v(t) on the interval I;, by defining a linear

functional on C(Y) by

0o = Ai [ et

= /t » / y)dv(t)(y)dt

for each ¢ € C(Y), the result follows from the Riesz Representation Theorem (see
[32, page 42]) i.e. - -
[ e@dnie) = 1= [ o)

y I An tj-1

Clearly, Elliott and Kalton’s result (given below) is a Corollary to ours:
Corollary 4.3.2 (Elliott and Kalton ([10, page 41]) )

Given a varying control y € "M, for J;, we can define an n-constant relaxed

control 7 = (7y,+++ ,7gn) € "Ry by

_ 1t
(5 Jewinw) =z [* el
for all continuous functions ¢ : Y — R4 Clearly 7; € A(Y) for each j = 1.+ ,2"
Proof: This follows directly from Lemma 4.3.1 since "M; C "R;.

a

From Lemma 4.3.1 we obtain the following result.

Proposition 4.3.3

If in the gafne I;Infl, J plays an n-constant control z = (zy,-++ ,2m) € " M, and

Ji responds with a varying control v € "R; then J; could achieve the same result
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by playing the relaxed n-constant control # = (7, ,an) € "R, where b; € "Ri

is given by (4.4) for each j = 1,--- ,2" against J;’s control z in the game K,

i.e. for each j = 1,---,2", given a varying control v € "R over the interval "I;
there exists a constant relaxed control 7; € "I acting on "I; such that given a

constant control z; € "M for J; acting on "I

”
A(Y) 2 played against yat
Zj
tj-1 tj tj-1 t
is exactly the same as
v(t) :
A(Y) played against Z
Zj
ti—1 t; tj—1 tj

Proof: Since the dynamics equation for both of the games H+1 and K, is the

same we shall, for simplicity, just denote the trajectories by z in this proof.

z(t;) = +Z f i—1,&(tic1), v(t), 2;)dt

i=1 YHi-1

= z(0) + iAn/;)f(t;-l?x(ti;l),y,z;)dﬂi(y) by (4.4)

- = w(O)+iAnf(ti—lyx(ti—l)aDi,zi)' by (4.1)

=1

Similarly, by (4.2) and (4.4), we have
2" tj .
Z/t h(tj-1, @5 (tjm1),v(t), 2;)dt = ZA h(tj-1, 2% (tj-1), 5, 25)
j=1v%-1

= pp(v,2) = pk(7,2).
Thus J; can egactly duplicate the effect of any control function (even a varying

control) in I:I:{ , by a constant control function in K.

a
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Note: From Proposition 4.3.3, for each j = 1,- -, 2", since "M; C "R;, we could
equally well replace a varying ordinary control y(t) for J; over the interval I; by a
constant relaxed control. With this in mind we obtain the following Corollary to

Proposition 4.3.3 which we will use in Chapter 10.
Corollary 4.3.4

For any integer n,

St<wh.
Proof: We have shown ( Proposition 4.3.3 ) that whatever J; can achieve by using
a control y € "My in the game I:I;f he can equally well achieve by using the n-
constant relaxed control v € ™R, as given by (4.5) in the game K},. Note, this

comes from the fact that "M; C "R;. Therefore, K} is at least as favourable to

Jy as H7.
O

Note: Similarly, by comparing the game K, against the game H> we could

obtain

102



Chapter 5
The game H;'?L,n

At this stage we have described the games K} and their values W} but unlike for
the games E} and H it is not clear that these values actually tend to a limit. To
show this Fleming found it necessary to solve the Isaacs-Bellman equation (details
of which will be given later) and he also had to impose certain conditions on the
functions f, ¢ and h. We, trying to avoid having to do this, investigate what
happens if we allow the constant governing the length of the intervals of time and
the constant which governs the time points at which the dynamics are defined to
be different in the game H;}. This gave us a new game of our own which we denote
by HY .. Using this new game we are able to show some of the same results as
Fleming without using the Isaacs-Bellman equation or all of the restrictions on the

functions.

5.1 The game H

Here we give details of our new game H} , .
Definition 5.1.1 (The game H} )

The game H  is played in exactly the same way as the game H} i.e. the players

play alternately on the intervals "I; for j =1,.-- ,2" with J, selecting his control

103



at the j** stage before J; selects his.

The difference between the game H. , and the game H,f is that in the game

H,,‘t,n the players are restricted in their choice of controls, and the dynamics are

defined at the time points ¢ € T,, (not T, as in the game H;).

5.1.1 Controls for the game H

The class of controls for each player in the game

m,n

is exactly the same as in

the game K i.e. J; uses n-constant controls y € "M, and J, uses n-constant

controls z € ”./\;lz

i.e. Jy plays a control y(t) of the form

ton

Ya
Y2
Yy Yonaa
Y3
Y1 Yan
t() tl t2 t3 t2n._2 t2"—1
and J; plays a control z(¢) of the form
24
z1 .
Z 23
Z9n
- 22 29n_1
to t t2 i3 ton_1

where [t; —t;_1| = Ap for j=1,---,2".
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5.1.2 Dynamics and payoff for the game H ,

Given a pair of n-constant controls, y € "M, and z € "M,, for the game HY

the dynamics equation is the same as for the game H} and is given by

w0 = 20 |
(51)  aF"() = () + / G () y(0) (o))

where t; = jA,, for j =0,1,.--,2™.
The payoff is given by
(52) pTIY-}(ya A Z h(t] 1"7"H 1),yj,2j) + g(xrfr},n(l))

where t; = jA,, for j =0,1,--- ,2™.

5.1.3 Strategies for the game H ,

A strategy for player Ji in the game H,  is a collection of maps ¥ = (X1,--+ ,Eszn)
where

i "Mix.oox "My "M forj=1,..-,2"

while a strategy for player J, is a member z; € "M! along with a collection of
2 g

maps (I3, -+ ,II3n) where
I : "Mix.ox "MITP 5 "MS forj =2, ,2"

i.e. Player Jiuses strategies ¥ € I"™ and player J, uses strategies II € T™ and so
we see that the set of strategies for both players in the game H}  is exactly the

same as for the game K}

5.1.4 Value for the game H

The game H} has value which we shall denote by S}, . This value is given by

(5.3) St .= inf sup pH(E II).
Ile "Eel‘n
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Notation 5.1.2

In the game H}  , we refer to m as the dynamics mesh, this denotes the fact
that the dynamics equation is defined at the time points ¢t € T,,. We refer to n
as the play mesh, since it denotes the fact that the players play alternately on

intervals of length A, using n-constant controls.

5.2 Varying the dynamics and play mesh

We now investigate what happens when we allow the dynamics mesh and/or the

play mesh to vary.

5.2.1 Varying the dynamics mesh

Here we consider what happens if we keep the play mesh fixed but allow the

dynamics mesh to vary i.e. fix n in the game H}, , but allow m to vary.
Theorem 5.2.1
For infinite 4N, M e *N
SarL ™ SN L
for any constant L.
Proof: By Proposition 3.1.7, when N and M are both infinite and L is a constant
PY(S,T1) ~ PY(3,1T)

for each & € I'Z and IT € TZ and so, since the operations sup and inf preserve the

infinite closeness (Lemmas D.1.1 and D.1.2) we have

inf sup PM(Z,1) ~ inf PY(z,1I
g, S 7 (Z,1) onf, sup m (%, 1)
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when N and M are both infinite i.e. we have
S;'t},L R SJJ\rf,L
when N, M € *N are infinite and L is a constant.

O

5.2.2 Varying the play mesh

Here we consider what happens when we keep the dynamics mesh constant but

allow the play mesh to vary.

Theorem 5.2.2

For infinite N, M € *N

Sitwa < Siaa

ifN>M.
Proof: By the definition of Sy 5,; we have

Ve > 0311 € TMVE € TMPY(S,11) < Sippra + e
ie. Ye> 0
(54)  3ZVvre-- 3ZguNvgu PY(Za,vnye -+ Zypay vane) < Siypgy + €
where Z; € M*./\;ié and v; € M*?é{ for each j = 1,.--,2M, Thereforé,
AZN (e v2") - 32N (Viar - V2 P Bl V2 Frty Vb - Vi) <Siy g1 e

where L is a constant, this works because we know, by Proposition 4.3.3, that if we

have varying control vjv? - VJ'*'L against a constant control Z; on the interval M J;
then we can replace the varying control by a constant control v; on the interval
MT. without changing the outcome of the game and then, we know that for all

such v; € M*R], there exists a Z; € M*Mj, satisfying (5.4) which means
VA IZEE -V,/12L_ - 3ZymV g - -VV2211C4P}AI'I(Z1,V11,- . -,foZz,- N ZVREE 1/22:4)<SX}’M,1+ €
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378322 V2 32 - 32 - R PEY(ZL - i) <Sity ara e

(Since for each j = 1, ,2M we can split Z; into Z}, Z2,-- - ,ZJ?L over the interval
MT. where Z} acts on M+LIZL(j_1)+,- foreach j=1,---,2M andi=1,---,2L.)
= 3ZIVIZIV - AZBE PR (2, vl 2, Vi) < Sipana + €

Therefore, for each € > 0 we have
3 € TMHLYS € TMHEPIHE(E,TT) < Sipary + €
= I e TM sup PYHL(Z,I) < S¥tma e

Eef‘M+L

= inf sup PMtL(z 1)< St te
He'i‘M+L2€f~A£)+L w51 < MM:1

+ +
= Sirm+ry S Sarma

i.e.
+ +
Syna < Sirma

when N > M.

O
Remarks 5.2.3

The same argument shows in fact that

+ < ot
SM,(N+1),1 < Suna

for N > M and hence,

+ +
Swmra < Sia

when L >N > M.

5.3 The game H,  compared to the game K

m,n

If we consider what happens when we make the play mesh and dynamics mesh

equal in the game H}  i.e. if we look at the game H}  then we see that this is in
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fact exactly the same as the game K. We can now go on to use Theorems 5.2.1

and 5.2.2 to show that the limit of the values W}, as n — oo exists.

Theorem 5.3.1
Given N, M € *N infinite,
Wiza 2 Wiy
if N> M.
Proof: For an infinite NV, by Theorems 5.2.1 and 5.2.2, we have
Wi, = S}T/I,M,l 2 S]t!,N,l ~ S{Ng = WI-\iI-,l

when N > M 1i.e.
Wi 2 Wity

when N and M both infinite and N > M.

a

5.4 The existence of Wi, W55, Wit and Wy

We are now in a position where we can show the existence of the limits of the

values W, and W, as n — oo exist.
Theorem 5.4.1

The values W,f; of the games KT, tend to a limit denoted by W i.e. the limit

lim W, = Wit

n—oo

exists.

Proof: Let I = inf{ °Wj, : N infinite }. Then given any € > 0 3 infinite M € *N
such that '
1< Wi <l+e
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and we know, by Theorem 5.3.1, that for any N > M
I < Wiy < Wi <l+e
i.e. for all N > M we have
l—e< Wi, <l+e-
so by transfer we have
Y(e> 0)ImV(n > m)|W -1 <e

l.e.

Wh -1 asn— oo

Corollary 5.4.2

i

The values Wy, of the games K}, tend to a; limit denoted by Wi, i.e. the limit
Ji_.rﬂlo W:,n =W

exists. |

Proof: By considering the game (12, this follows directly from Theorem 5.4.1.

O

Note: By considering the games K, and K, ;, we can, by analogous methods
to those used above, show the existence of the limits of the values W, and W,
as n — oo i.e. we can also show (without using the Isaacs-Bellman equation as

Fleming found necessary) that
lim W, =W, and lim W, = Wp,

© p—oo ™ n—00

exist.
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Remarks 5.4.3

At this stage we have the existence of the limits Wy}, Wi, W3 and W without
using the Isaacs-Bellman equation which Fleming found necessary and we have
only assumed one of the five conditions on the functions f, g and A that Fleming
required. For details of the Isaacs-Bellman equatibn and Fleming’s conditions,
see section 6.2. We have, at this stage, only assumed Fleming’s condition (F1) -

however this method fails to provide us with the existence of the remaining values

W3, W and the ones we require most of all, W+ and W-.

We therefore go on to give another methoc‘l, using the ideas of Fleming (still not
using the Isaacs-Bellman equation or assuming as many restrictions as he found
necessary), which when combined with the above results provides the existence of
the remaining limits and also provides a way of showing that some of these limits

are in fact equal.

00o -
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Chapter 6

The Isaacs-Bellman equation

In this chapter we give a method which provides the existence of the remaining
limits W+(W;") and W= (W;"). This method also provides a way of showing that
some of these values are in fact equal, it is based on the game K (¢;,(), as used

by Fleming, and an adaption of this game which we shall denote by KT, (t;,().

We first give details of the game KT (¢;,() and then a brief summary of the
work done by Fleming using the Isaacs-Bellman equation. We then go on to give
details of the new game K,t,\(tj, ¢) and use this new game ‘to show, still without
the Isaacs-Bellman equation, the existence of the limits W* and W~. To do this
we have to impose some of the restrictions on the functions that Fleming found

necessary but not all of them.

6.1 The game K,;*(t,-,C)
Here we give details of the game Kt (t;, () which appears in [10].
Definition 6.1.1 (The game K} (t;,())

The game K} (t;,() is the same as the game K} except that in the game K (¢;,(¢)

the play begins at time t; = jA, with initial value z(%;) = ¢.
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6.1.1 Controls for the game K (t;,()

After a complete play of the game K (¢;,() player J; will have a selected a se-
quence y = (yYj+1," " ,Yan) where for each i = (§+1),--- ,2" the control y; € nMi
i.e. y; is a constant function on the interval ™I;. Similarly, J, will have selected
a sequence z = (2zj41,"* ,22n) where for each ¢ = (5 + 1),-+-,2" the control

2; € anz

6.1.2 Dynamics and payoff for the game K}(¢;,()

Since it is clear that here we are working in the game K (t;,() with n fixed, we
drop our usual notation z% etc... to make the necessary notation less cumbersome.
In the game Kt (t;,() we denote the trajectory corresponding to a pair of controls

y= (yj+1, T ,yzn) and z = (Zj+1, v ,zzn) by x§ where
z5(t;) = ¢ |
(6.1) ‘ xﬁ(ta) = wﬁ(t;_l) + Anf(t,'_l,wg(t,--l),yi, z;).

Remarks 6.1.2

We see that the trajectory a:JC;_l is such that
it =2f(t)  foralli> (j+1).

where

¢ = ¢+ Anf(ti, ¢ Yiens 2341).

The payoff in K (¢;,() corresponding to such a pair of controls is given by

2n
(6.2) p§(zj+1,y,'+1,--- s Z2n, Yon ) =g($§(1))+ > Anh(ti—lawg(ti—l)ayi,Zi)'
C . 1=j+1

Note: The payoff for the game KF(t2n, () is just given by

Pin = g(25-(1)) = g(¢).
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The game K (t;,() has value denoted by W, (¢;,() where

(6.3)
: . . ¢
Wi (t;,¢) = min_ max - mn o max D3 (Ziv1s Yigr, o 5 Z2ms Yan)-
ziperMtyipenitt mpnenMI” yanenMi

Note: For the game K (t2n,() the value is just given by

Wi (tan, ¢) = pin.
Lefhma 6.1.3

For j = 0,1,---,(2" — 1), the value W}(¢;,() can be expressed in the following

way
(6.4) W (t;,¢) = mipmaxd W (t41,¢') + Anh(tr (9, 2)}
where

(6.5) ("= (4 Anf(t5,¢,9,2)

and

(6.6) Wt ¢) = 9(0).

Proof: For j = 2" by (6.3) we have

W (tan, ) = g(25n(ten)) =.g(9«°§n(1)) = 9(¢)-

Now consider the game K (t;, ¢) for some j where 0 < j < (2" — 1), the controls
Zi41 € nMé‘"‘l, Yit1 € nM{+1,_ e ,227 c nM%n and Yon € n./\;t%n are still to be

chosen and we know by (6.3) that

W:(tja C)
~ minmaxminmax- - min max{p§(zj+1, Yitlyt " »Zan,Yan)}

Zj+1 Yj+1 242 Y42 zn yon

271-
= minmaxminmax---minmax{g(w§(1))+ > Anh(t,-_l,m§(t,~_1),y,-,z,-)}

Zj+1 Yj41 Zj4+2 Y542 zn . yom =541
(by (6.2) )
2"
— : .eemi ¢ . ¢(+. -
- E?i{l%?f({rz’?i?rﬁff I?zinrilﬁx{g(%(l)) + i=§-2 Anh(tt—laxj(tz-l),yuzz)}

) +Anh(tj> C) Yi+1, zj+1)}
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then by Remarks 6.1.2 we see that this is the same as

27!
= mi i .o omi ¢ 28 (¢ . 2
= minpamin e minmacl(efu() + 35 Aublhos,afi(tion) o)

+AnA(t5, ¢y i1, 2i41) }
where (' = z§(tj41) i.e. { = ¢+ Anf(4, ¢, ¥iv1, zi41) by (6.1)
= minmax{minmax- - minmax{pi (52 s 2 vn))
+AzR(45, ¢, Y1, 2i41)}
(by (6.2) )

= minmax{W; (t41,¢) + Auh(t;, G yjen,zi1)}) by (63).

Zj+1 Yi+1

This can simply be written as

Wi (t5,¢) = min max{ W (tj41,{") + Anh(t;,¢,,2)}

2€2Z ye)¥

where
CI = C + Anf(tj7Cayaz)-

So we have shown that (6.7) holds for all j = 0,1,-- , (2" -1).

O

Note: If we take the game K;F(0,0) this is exactly the same as the game K} as
described in Chapter 3 i.e. |

z5(t) = zJ(t) for allt € T,

and

px(y,z) = pd(y,z)  for all n-constant controls y and z

and so

W0,0) = W7

6.2 The Isaacs-Bellman equation

Considering games of this kind led Isaacs to derive heuristically the Isaacs-Bellman

differential equation for the upper value R(t, {) of the game G, subject to the initial
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condition z(t) = ¢ and with payoff given by

(6.7) | p(y,2) = /tl h(s,z(s),y(s), z(s))ds + g(z(1)).

Note: The value R is in fact the value W+ but we don’t have the existence of

this yet.

The Isaacs-Bellman equation is the following partial differential equation

(6.8) %% + F*(t,({,VR) =0
where
N d
FH(&6p) = migmadd pifilts (9,2) +h(t (v, 2))
(6.9) = minmax{p.f + h}

z2€Z yey

forp=(p;) €R%, (€R%and t € 1.

However, there are no theorems guaranteeing the existence or uniqueness of
solutions to (6.8). Fleming developed an approach ([14], [15], [16]) to avoid this
difficulty and produce a reasonable solution to (6.8). To do this he had to impose
certain restrictions, (F1)-(F5) which are as follows

(Fl)Forte I, z1,z2€ Ry, yeYandz€ Z

If(t,mlay,z) - f(taxZaywz)I S ’ilxl — T

(Note, we already assume this.)

(F2) Fortel, zy,z: € R4, yeYand 2 € 2 .
lh(t?wlayaz) - h(t,x%yaz)l .<_ DI$1 — X2
(F3) For z;, z, € R¢

l9(z1) = g(22)| < Q|z1 — 22|

(F4) For t1, t, € I, z € R% y € Y and z € Z there exists a constant A > 0 such
that ' -

If(tlax,yaz) - f(t27$7y7‘z)l S Altl - t2|

|h(t1,2,y,2) — h(ts, 2, y,2)| < Alts — &3
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(F5) The function g is twice continuously differentiable and its derivatives

dg g
B—xi and axiaxj

each satisfy Lipschitz conditions in z.

Games satisfying these conditions (F1)-(F5) are said to be of type F.

For games of type F Fleming considered the parabolic equation

2
(6.10) ’\?VzR + % + F*(t,(,VR) =0

subject to R(1,¢{) = ¢(¢).

Quoting the results of Friedman ([19]) or Oleinik and Kruzhkov ([29]), he ob-
serves that this equation has a unique solution, Wyt (¢,¢) for A > 0, and that W
is continuously differentiable in ¢ and twice continuously differentiable in the space

. . e . aw} oaw} a*wt .
variable z. Furthermore, Wi and its derivatives 5 e and TR each satisfy
i 106,

Hoélder conditions of the form
[$(t,¢) — (¢, ¢ < QU= ¢')F + |z — 2']].

For A > 0 and § = 27" with n an integer, Fleming considers a stochastic difference

equation related to (6.4)

(611) W;A(tj’ C) = min ma‘x{]E[Wr-:/\(tj+17C’) + Anh(tka C’ Y, 2’)]}

zeZ ye)y
where
(6.12) ¢'= ¢+ Anf(t ¢y, 2) + (Bn) A
Here (no,* - ,n2n-1) is a sequence of normalised mutually independent Gaussian

random variables (and E denotes the expectation). Wy, is determined for t; =

JAn, j=0,1,---,2" by the boundary condition

(6.13) W (1,¢) = Wi (t2n, €) = 9(¢).
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Using this difference equation Fleming obtains the following Theorems (see [16]) .

Theorem A

lim Wi, (t,¢) = Wi (t,()

n—00 !

for A >0 énd dyadically rational ¢, uniformly on compacta.
Theorem B
lim Wity (8,€) = Wi (4,€)

uniformly in n for each dyadically rational ¢, and n such that ¢ = p2=" with p an

integer.

From these he deduces:
Theorem C
lim W (2,¢) = lim W, (¢, ()

for dyadically rational ¢.

In particular,

W* = lim W7,

7n—+00

It can also be deduced that
im Wi (t,0) = WH(t,0)
exists for all ¢t € I and all ( € R%

Fleming shows that the function W is a generalised solution of the Isaacs-
Bellman equation (6.11), this is known as the Fleming solution of the Isaacs-

Bellman equation.

Elliott and Kalton ([10]) observed that the Fleming solution depends only on
the function F*(t,(,p) (see (6.12)) (and the boundary condition g(¢)).

The same analysis can be applied to the values W of the games K, and the
existence of the limit
W= = lim W

n—o0
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can be deduced, where W~ = W(0,0) and the function W~(¢,() is the Fleming

solution of the equation

%§+F (t(VR)—O

where

F_(t,C,P) = maxmln{zp,fl t C,ya )+h(taC’yaz)}

yeY 262
(6.14) = max Izrgg{p-f +h}

for p = (p;) € R% ¢ € R% and ¢ € I. Again, R must also éatisfy the boundary

condition

R(1,¢) = 9(¢).
Definition 6.2.1

The game G is said to satisfy the Isaacs condition if for each t € [0,1], ¢ € R¢ and
p € R? the following holds

(6.15) F*(t,{,p) = F~(t,¢,p),

where F'* and F~ are given by (g) and (h)

Elliott and Kalton ([10]) go on to use the work done by Fleming to show that
if G 1s of type F and satisfies the Isaacs condition then W+ = W~.

(For more details on this see [10]).

We however, avoid the Isaacs-Bellman equation completely; we simply define a
game which has (6.14) as its value and then show, using this new game, that the
values W of the games K tend to a limit as n — co. Our method also requires

fewer restrictions on the functions f, g and h.

We now give details of this game.
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6.3 The game K, ,(t;,()

We are still trying to show that the limits W* and W~ exist. We want to avoid
using the Isaacs-Bellman equation - to do this we develop a game, KI\(t5,0),
whose value is given by equation (6.14). We then compare K, (t;,() to the

original game K} (t;,().
First we give some notation which we will use in the definition of the game
-K:,A (tj ) C)

Notation 6.3.1

Given a collection (ng,+* ,72n—1) of normalised mutually independent Gaussian

random variables, we denote the expectation with respect to the single variable n;

by

E
and we denote the expectation with respect to the variables 7;,: -+ ,n2n-1 (i.€. 7;
upwards) by

E;

Definition 6.3.2 (The game K, (t;,¢))

The game K, (t;,¢) is played in exactly the same way as the game K} (¢;,()
i.e. play starts at time ¢; = jA, with initial value z(¢;) = (. Play continues

alternately with J; playing first at each stage.

Player J; plays a sequence y = (y;j41, -+ ,Y2n) Where y; € "./\;1'1 for each
i=(y+1),---,2" Similarly, J, plays a sequence z = (2;41," " ,22n) Where

z € "M, for each 1 = (5 + 1),--+ ,2".
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6.3.1 Dynamics and payoff for the game K,‘f’,\(tj,C)

The difference between the game K7 (t;,¢) and the game K} (¢;,() is that in the
game K}, (t;,() the dynamics are given by

?g,,\(tj) = ¢ (

(616) xi)‘(ti) = $§’)\(t¢_1) + Anf(ti—l, x§,A(ti—l)7 ?./i, Z.;) + )\(An)%nz—l

where (7o, -+ ,72n-1) is a sequence of normalised mutually independent Gaussian

random variables.

Note: As for the game K (t;,() we have dropped the usual notation of % etc...

Remarks 6.3.3

The trajectory :cg;l_,\ is such that
:c§+1’,\(t,~) = xg-’,\(t;) forall i > (j+1)

where

¢ =+ Dnf(ti ¥iens zign) + A(An)E7;.

The payoff in K}, (t;,() is given by

, | X ‘ 2n
Pia(Zians Yians o+ 2am 9an) = Bilg(z (1)) + 30 Anh(ticy, 255 (ti-1), yir )]
=741 '

Note: For the game K1\ (t2n,¢) the payoff is just given by
¢ _ ¢ (1) =
Don \ = 9(332",,\( )) =9(¢)
The game K, (t;,() has value denoted by W(t;,¢) where

(6.17)

+ (1. — : : ¢
Wn,)\(ti’ C) = mn 41 max TP min = mnax n{pj,)\(zj+1, Yi+1y* 0"y 22m, y2")}
Zj41 € "M% Y;+1€ "M{ 2n € "M% Yan € "M§

Note: For the game I{:A(tzn, ¢) the value is just given by
Wi (tan, ¢) = pin s
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Lemma 6.3.4

For 7 = 0,1, ,(2" — 1), the value W::)‘(tj, ¢) can be expressed in the following

way

(618) , Wy-:)\(tj) () = minma‘x{]Ej[thA(tj+1aCI) + Anh(tj’ Ca Y, Z)]},

2e2 yey
where

(6.19) = ¢+ Anf(t;, G, 2) + MAn)
and

(6.20) Wia(tan, €) = g(¢).

Proof: For j = 2" by (6.20) we have

W (B0, ¢) = g(25 ,(1)) = g(¢).

Now consider the game I(:;,\(tj, z) for some j, where 0 < j < (2" —1) , the controls
Zjy1 € "Mi“, Yi+1 € "A;l{+1,--- , Zgn € "Mg" and yon € "./\;lf" are still to be

chosen and so by (6.17) we have

+ (4.
Wn,/\(tJ’ C)
=min max minmax -+ - min max{p‘;)‘(zjﬂ, Yj41,° " ,Z2n, Y2n)}
Zi41 Vil Zi+2 Y42 Zmn oy D ,

: N ‘ 2"
=minmax minmax - - - min max{E; [g(ng(l)) + > Aph(tiog, xil\(t,-_l),‘y,-, z)]}

Z i Zi42 42 Zon n L -
41 Vi+l Zj+2 Yi+ 2 Y2 =711

- i

. 2n
—mi i . R (a(z$ 28 (s 2
~minmax{minmac: - minmax(la(ed,(1)+ 2 Aublti,afs(ti1),0i 7))

+Anh(tj7 Ca Yi+1, Zj+1)}

2"
=minmax{E;[minmax- - - minmax{E;+, [g(xg,\(l)) + ) Anh(tio, xg’,\(t;_l), i, 2i)|}

Zj+1 Yj+1 Zj+2 Yi+2 Z2n Y2 i=j+2
+ARA(t;, (s Y41, 2541)]}

which by Remarks 6.3.3 we see is the same as

271
—mi 0. [min max: - -mi i Ta(aS 2l (fi) vz
=min max{E;|min max rgl,,nr;gax{lEm[g(w,-ﬂ,x(l))J::%Lfnh(t,_l,:ch,A(t,_l),y,,z,)]}

+Anh(tj’ <7 Yi+1s Zj+1)]}
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. 1
where ¢! = 28, (tjq1) ie. €' =+ Anf(t5, ¢, Yja1, 2541) + A(An)2n;
. . . ¢!
e %}ﬁ({mj [rz?i? Thax: max{pjs1a(Zi+2, Yive, 0 2om yan)}
+ARh(t5,C,Yit1s Zi41)] }
=minmax{E;[W7(t;+1,(") + Anh(t;, {, yi41, 2i1)]}

Zj41 Yjt1

(by (6.17) ).

This can simply be written as

Wr-:/\(tj) C) = min max{]Ej [W'rj:)\(tj"l'la C,) + Anh(tj, C’ Y, Z)]}

2€EZ yeY

where . .
= ¢+ Anf(4, ¢y, 2) + MAn) .

So we have shown that (6.18) holds for all j = 0,1,--+,(2" - 1).

O

Now, just as we noted that the game K (0,0) is actually the game K}, using

the above game, KT, (t;,(), we can define a game K}, = K},(0,0) as follows.

6.4 The game K,

Definition 6.4.1 (The game I{I,\)

Given a pair of controls y = (y1,-+ ,y2n) € "M; and z = (21, ,22n) € "M,
the correspoiiding trajectory is given by i
zxa(to) = 2(0)
n n n i
(6.21) zxa(t;) = g a(tio1) + Anf(tio1, 2R a(ti-1), U5, 25) + AM(An) 201

where 79, -+ ,m2n_1 1s a sequence of normalised mutually independent Gaussian

random variables.

Note: For this game we have gone back to our original notation for the dynamics

and payoff — this is because later we shall be comparing this game with the game

K*.
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The payoff corresponding to such a pair of controls is given by
2"
(6.22) Px (Y, 2) = Ko[g(z% (1)) + An Z h(tj-1, 2k A(tj-1), Vi, zj)}-
. =
Note: The sets of strategies for both players in the game K, are exactly the

same as for the game K i.e. J; uses strategies & € I'™ and J; uses strategies

e
The garﬁe K\ has value which we denote by W,y given by

Wiy = min max -~ min  max {pk,(z1,91, " ,2n,Y2n)}
z1€" M} yre "M} 2n € " M2” yan € " M3

by considering strategies we see that this is equivalent to

(6.23) Wty = inf sup pk,(Z,10).
Ne¥n veln

a

Note: Similarly, we could define a game K, in which J; plays first at each stage,

this game has value denote by W, ,

6.4.1 The dynamics for the game K,

If we go back to the dynamics for the game K,‘;  we see that

xKA( ) = x( 0)+ZAnf(t1 1,$A A(ti- 1),y1,z,)+/\z Ni-1.

=1 =1

Now we chau;ge the notation. For each j = 0,-++,(2" —1) let
(6.24) AB(t;) = (&),

then we see that this gives

wh A(t) +ZAnf i— 17371{,\( :-—1) yuzz)"‘/\ZAB(tz 1)

=1 . =1
and if we let
; _
(6.25) B(w,t;) = ZAB(t,--l) with B(w,0) =0

i=1

124



then, for each B(w,t;) is defined for j = 0,1,--+,2" and we have

J

(626)  hn=2(0) + 32 Anf(tioss 2a(tir)s vir %) + AB(w, 1)
. =1

Now, using the information on the Gaussian distribution given in Appendix A and

the fact that
(621) 7 ~ N(0,1)

for each j = 0,1,-- ,(2" — 1) we get the following results:
Lemma 6.4.2

(i) AB(t;) ~ M(0,A,) for all j = 0,1,---,(2" —1).
(ii) B(w,t;) ~ N(0,¢;) for all j = 0,1,--- ,2" and each fixed w.
(iil) E[B(w, 3)*] = 53 for each fixed w
Proof (i): Fix j and w.
E[AB(4)] = E{(An)3n;] = (An)3Efy;] = 0

var[AB(t;)] = TE[(AB(t)—E[AB(t )] = E[(AB(t;))*]

= E[((An)n;)7] by (6.24)
= A, by (6.27).
Proof (ii): Fix j and w.
E[B(w,1;) ]—E[EAB 'I)I—ZIE[AB ti1)] =0 by (i)
var(B(w,t;)] = S0 var[AB(tiiy)] = jAn = t; by (6.25).
Proof (iii): Fix w. |
E[B(w, zln)] = E[(AB(t))"] by (6.25) since & = #;
= E[((An)m0)] by (6.24)
= (A )ZE[WO]
= 3(A,)? by (A.5)
3 . 1
= om . since A, = TR
O
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We now give, for completeness, a result which can be found in [7] and [9] and

is essentially Anderson’s construction of Brownian motion ([2]).
Proposition 6.4.3

For each infinite N € *N, B(w,e) is S-continuous for a.a. w with respect to the

Loeb measure.

Proof: Let

Q= {w:3i:0<i <2Vt e [sz, z;nl

then B(w, e) is S-continuous < VYnIm(w € Q;, ). Therefore to show that B(w, )

}: 1B, =) ~ B0l 2 7},

is S-continuous for a.a. w with respect to the Loeb measure, we have to show that
,UL(ﬂn Um an,n) =1

le.
,uL(Un Ny Qm,n) = 0.

This is equivalent to showing that

Vopr(Qmns) =0  as m — oo.
2t i 141 i 1
pQmn) < D u({w:3t e 2—,,,,?—] : |B(W,2—m) — B(w,t)| > =})
1=0 n

= 2™u({w: 3t €0, -2-1;] : | B(w, 0) — B(w,t)| 2 %})
< 2x 2" u({w : lB(w,El;)l 2 ;1;})
= 2"({w : |B(w, 2%)2| 2 %2'})

< 2"ptE(B(w, .2_1;)4) by Chebychev’s inequality (see (A.6) )

3
= 2m+1n4§2? by Lemma 6.4.2 (iii)
4
= ?ZL"‘ — 0 as m — oo.

Therefore B(w, ¢) is S-continuous for a.a. w.
O

The above Proposition give us the following result.
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Corollary 6.4.4

If A &~ 0 then for a.a. w, AB(w,t;) ~ 0 for all ¢; where j = 0,1,---,2" where
N € «N\N.

g

Proposition 6.4.5

For each fixed infinite N € *N, given a pair of N-constant controls ¥ € ¥ M,
and Z € V*M; for each initial state, z(0), the trajectory XX, : Ty — *R%is

S-continuous for a.a w.

Proof: Take t; > tx with ¢; ~ t; where t; and ¢ty € Ty then,
IXI]\Y,A(tj) - ijg,x(tk”

= [0(0) + An Y "Flticn, Xir(tict), Yo Z5) + AB(w, )

=1
k
—2(0) = An Y " f(tio1, XR 2 (tim1), Y3, Zi) — AB(w, 1)

=1

i
A D7 1" f(tica, X a(ti-1), i, Z0)| + |AB(w, t5) — AB(w, )|

i=k+1
< R(tj — tk) + AIB(w,tj) - B(w,tk)l by (25)

IA

X

R(t; — tx) _ by Proposition 6.4.3

0 } since tj ~ tk.

Q

-

We would like to be able to define X§ , (o) for o ¢ Ty therefore we make the

following definition.
Definition 6.4.6

The function %, is extended so that z% , : [0,1] — R? with the following defini-
tion. '

For s €]t;j_1,1;], we define z% ,(s) by linearly joining up z% ,(t;-1) and z% ,(t;)

127



zi A (tj-1) /
T ()

Le. if s €]tj_1,t;] then x} ,(s) is given by
s s

Tha(s) = g a(t)(1 -5 + A )+ xx A (ti-1)(J — A_n)

Remarks 6.4.7

(i) In the nonstandard setting with the above definition of X ,(7) for 7 ¢ Ty, we
see that if N € *N is infinite then we have a function X¥, : *[0,1] — *R? which

1s S-continuous a.s.

From here onwards when we refer to the function X % )\ we wi_ll mean the extended

version X¥ , : *[0,1] — *R?¢ie. X§, is defined for all 7 € *[0,1].

Proposition 6.4.8

- el

For a fixed infinite N € *N, given a pair of N-controls Y € N */\;11 and Z e N */\;12

then if A & 0 then for a.a. w, °X§, is a solution to equation (3.3).
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Proof: For a.a. w, for 7 €]t;_1,1;]

*XRA(t5)

(since X}\YA is S-continuous)

OX}:{,,\(T)

= (m(O +A Z f i laXI\A(tt 1) Z')+)‘B(w7tj))

t;
- +Z/_1 (b1, X\ (ti-1), Yoy Zi))do + AB(w, 1))

= °(2(0) + / (0, XN \(0), Y (0), Z(0))do + AB(w,;))
(by S-continuity of X%  and continuity of f)
= 2(0)+ [ F(°0, "X 2(0), °Y (0), “Z(0))dos + *(AB(e,1;))
— 2(0) + /0 " £(°0,°XN (o), °Y (o), °Z(0))dos,
(by Corollary 6.4.4 )

and so we see that °X§ , solves (3.3) when N € *N is infinite and A = 0.

O

6.5 Comparing the games K, and K,

We now show that in the nonstandard setting, for a fixed pair of N-constant con-
trols where N is infinite, the trajectories in the games K3 and K3, are infinitely
close when A is infinitesimal. |

Theorem 6.5.1

For a fixed pair of N-constant controls Y € N«pf,and Ze N */\;tz if NV is infinite
and A = 0, the trajectories X/ () and X% , (1) are close in the sense of the uniform

topology i.e. for a.a. w

sup |XR(r) — Xga(r)| = 0.

7€ *[0,1]
Proof: By Remarks 3.4.2 (iii) we know that if N € *N is infinite then °XY(r)
solves equation (3.3) and by Proposition 6.4.8 we know that if N € *N is infinite

129



and A &~ 0 then °X% ,(7) also solves equation (3.3) for a.a. w. Now, it was shown

in Proposition 3.2.3 that (3.3) has a unique solution and so, for a.a. w

“XR\(r)=°XR(r) forallr € *[0,1].

We have shown that when N € *N is infinite and A & 0, the trajectories in
the two games K7 , and K} are infinitely close. We now show that if N € *N is

infinite and A & 0 then the payoffs in the two games are also infinitely close.
Proposition 6.5.2

Given an infinite N, for each fixed pair of N-constant controls ¥ € ¥*M; and
PIQ’,A(Y’Z) ~ PIQI(Y,Z)

if N is infinite and A =~ 0.

Proof: Fix the controls and fix A &2 0 then we have the following

A 2V ty
PRAY.Z) = Bl [7 hltioas Xialtioa), Y5 Z3)dor + *g(XEA(D)

~ Bl *h(, X¥A(0), Y(0), 2(0))do + *(XR,(1))]
= /O "h(0, X% (0), Y (0), Z(e))do + *g(XR (1))
(by Theorem 6.5.1 and continuity of A and g)
- =~ PJ(Y,Z)  (by Remarks 3.4.2 (v) ). -

Using the above we go on to show that the values of the games K and K ,

are infinitely close when N € *N is infinite and A = 0.
Theorem 6.5.3

For a fixed infinite N € *N,
WI'\F,/\ ~ WR
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for all A >0, A = 0.
Proof: Fix N € *N infinite and A = 0, A > 0.

Wi = inf sup PY(Z,1I)
NeYVN pefn

Wi, = inf sup P{,(Z,10)
MeTN e’V ! ’
By Proposition 6.5.2
PR (Z,10) ~ Pg,(2,10)

for all © € I'V and I € TV. Therefore, since the operations sup and inf preserve

the infinite closeness (Lemmas D.1.1 and D.1.2) the result follows.

O

Similarly, by comparing the nonstandard versions of the games K, and K, ,

it can be seen that

WN,)\ ~ WN

for all infinite N € *N and all A > 0, A = 0.

a

oQ0o
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Chapter 7

Lipschitz conditions and W;’ NZNS

7.1 The Lipschitz condition in (

In this chapter we show that the values W:: » and W, satisfy a uniform Lipschitz
condition in z. To do this we have to place further constraints on our functions,
namely Flemings conditions (F1)-(F3) but still find it unnecessary to assume the

remaining two conditions, (F4) and (F5).
Proposition 7.1.1

If G satisfies Fleming’s conditions (Fl)-.(F3). then for all § = 0,1,---,2" there

exists a constant c; such that

(7.1) Wi (5, ¢) — Wix(tj,fz)l < ¢l = Gl

whenever (i, (; € R%
Proof: Fix an integer n and fix A > 0.

Consider j = 2"

Wik (tamy 1) = Wi (tam, G2)] = 19(G1) — 9(62)] < Q161 — Gl

where Q is the Lipschitz constant on g, so here we use Fleming’s condition (F3).

Therefore if we let c3n = @ then (7.1) holds when j = 2",
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Now assume (7.1) holds when j = (s +1) i.e.
(7-2) IWn+,,\(ti+1,C1) - W::,\(tiﬂ,@)l < Ci+1|C1 - Czl

whenever (1, (; € R% We show assuming (7.2) that (7.1) holds when j = .

Now recall, from Lemma 6.3.4
n)\(tHC) mmmax{]E [W ( 1+1,C’) +Anh(ti7<7y7z)]}

where
¢'= (4 Anf(tiz,y,2) + MAR)
and
Wiy (t2n, ) = 9({).

For each fixed y € Y and 2 € Z consider the following

“E,' [W,::A(ti+1, <1+Anf(ti7 Cl, Y, z)+(An)%/\7h)+Anh(tn Cl) Y, Z)]
—E: Wi (b1, AR f (2, Gy, 2 HAR) A AR (i, G2y, 2)]]

< EWiE(fipns AR (b, Gy Yy 2 AR) FAT)]
_]El[ nA(t1+11<2+Anf(tza<2>y7 ) (An)%)‘ni)]+An]h(ti1Cl)yaz)_h(tiaC%y,z)l
< E[Wi(tin, GHARS (8 Gy vy 27 AR) E ;)

- ;A(ti+1aC2+An'f(t1'aC27y)z)+(An)%Ani)|]+An|h(ti7Chy’z)_h(ti,C%y)z)I
S C,'+1|C1 +vAnf(ti,Cl)y’Z) - <2 - Anf(ti’c% y,z)l + AWDICI - C2|

by the assumption (7.2), where D is the Lipschitz constant on A, so we have used

Fleming’s condition (F2). This gives us

IN

cin([G1 = Gl + Ankléy = Gl) + AaDIG = G| by (24)
< (cir1(l +Ank) + AnD)|G = (]
cilGr — _C2|

where

& = cp(l+Azk)+AD
and cn = @
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k is the Lipschitz constant for f, so we have used Fleming’s condition (F1) , @ is

the Lipschitz constant for ¢ and D is the Lipschitz constant for A.

Now, by Lemma C.1.1 and the above, we have

I min maX{Ez[ ( i+1y C1+Anf(tu Clay) ) (An)%An'zH’Anh(tn Cl) Y, Z)]}

z€Z yeY

~min max{E (Wi (tiga, AR f (8, 2, Y, 2H(AR) A0 HARA(E:, Gy, 2)]]

z€Z yeY
< )l - ¢l

i.e. by Lemma 6.3.4 we see. that this is the same as
Wt 6) = Wi (6, )] < aila = Gl
therefore equation (7.1) holds when j = .
Hence equation (7.1) holds for all j =0,1,--- ,2" by induction.

Note: To get to this result we have only used Fleming’s conditions (F1)-(F3) and
not (F4) or (F5). ‘

a

Note: Similarly, by considering the game K, it can be seen that for each

j=0,1,---,2" there exists a constant ¢; such that

(7.3) | Wan(ti, 1) = Was(ti, )| < €516 — o
‘where {; and (; € R?

-

Similarly, this result only requires Fleming’s conditions (F1)-(F3).

We now show that in the nonstandard setting, if N € *N is infinite then we

actually have a uniform Lipschitz condition in (.
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Theorem 7.1.2

If G satisfies conditions (F1)-(F3) then, for each fixed infinite V € *N, there exists

a finite constant ¢ such that

W A(ti, C1) — Wi A(t,(2)] < CKI — (|
for all j =0,1,---,2Y, when (3, (; € *R<
Pr;)of: By Theorem 7.1.1 we have

WAt Q) = WRA( Gl < ¢léi = Gl
for each j = 0,1,--+ ,2" where

¢ = cip(l+Ank)+AnD fori=0,1,---,(2" = 1)
and v = Q

where k, Q and D are the Lipschitz constants on f, ¢ and h respectively as in

Fleming’s conditions (F1)-(F3).
Now, we consider a function defined by

0(0) = @
0(t+An) = 6(t)+ (0(t)s + D)An

i.e. 0(t;) = cyn_; for each j =0,1,--- 2%,
Note, 6(0) > 0 which implies 6(t) increases with ¢.

Os+D = 0t)e + 550(0)
< 0(t)k + 0—(%9(”

= FE6(t) where F=(k+ %) is a constant.
Therefore we have

O(t+ An) < 0(t)+ E6(t)An
= (1+EAN)O(t)
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and so

0(t;) < (1+ EAN)0(0)
= (14 3EiBNO(0)
= (1+§Etj)fo(0)
~ 0(0)efY

forallj =0,1,--- ,2V. So

0(t;) S c  where c = Qe~.
Thus there exists a ¢ such that
(7.4) ¢;<c<oo forallj=0,1,---,2".
Therefore by (7.4) and Proposition 7.1.1 we have the required result.
O

Note: Similarly, by considering the game Ky, with N € *N infinite, it can be

seen that there exists a constant ¢ such that

[WRA(ti, () = Wya(ti, () < cfG = Gl

for all j =0,1,---,2V, (4, (; € *R

000
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Chapter 8

The existence of the Valqes W

and W™

In this chapter we show that the value W+ exists and that W+ = W} and similarly
W~ exists and W~ = Wy,

To do this we consider the game K., with one player using relaxed controls
and compare this to when both players are using ordinary controls. Therefore we

give details of this first and then go on to show the existence of W+ and W~.

8.1 The game K,;’,A(tj,C)'co‘mpared to K7y 1(t5,0)

The game I{:’)\,l(tj, ¢) is played in exdétly the same way as the game I{,,t)\(tj, ¢)
except that now player J; is allowed to use relaxed controls while J; is still re-

stricted to the ordinary controls.

Theorem 8.1.1

If G satisfies (F1)-(F3) then, for each infinite N € *N, there exists A > 0, A =~ 0
such that -

(81) W;,A(tja(.) ~ WI.\il-,)\,l(tj,C) ;
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for all j =0,1,---,2" and all ¢ € *R%

Proof: Here, for ease of notation we set d = 1; all of the results hold for R¢ with

only notational changes.
Fix an infinite N € *N, fix A > 0 and ¢ € *R%

Take j = 2V
Wia(taw, €)= "g(C) = Wi s 1(t2w, ()

so (8.1) holds when j = 2V,
Now we assume that (8.1) holds when j = (i‘-l-l), i.e. assume that for each ¢ € *R¢

(8.2) W (tig1,$) — Wiy 1(tig, O)] < €ia

where €;41 = 0.
Now consider j =i , let

¥(¢) = E[Wﬁ,x,l(ti+1,6 + (An)7 ;)]
and let
0(v,Z) = *f(t:,¢,v,Z) and 8(v,Z) = *h(t;,(,v,Z) for each v € *A(Y)
and )
$(¢ + Anb(v, 2)) + Anb(v, Z) = O(v, 2).

By Appendix B, Lemma B.1.1 we know that 1 is twice differentiable and so we
can use Taylor’s series to obtain the following: '

For each fixed Z € *Z and v € *A())

B(C+ Anb(x, 2))
= P(Q)+ Anb(, Z)(0) + 5 (An) 00, 2V8(0)
- for some { between 0 and ¢ and so by Lemma B.2.1 (ii) we have
= W0+ Anb(n Z)H(Q) + e
where |¢| < 2(Ay)FR?¢,/2 (here c is the Lipschitz constant as

in Chpt 7 and R is the bound on f)
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and so for each fixed Z € *Z we have

max O(v,Z)
ve*A(Y)

= e $(0) + A 2W(Q) + And(, 2) + ¢

where |¢/| < -;-(AN)%R"":\C—\/% and so by Lemma D.2.1 we have
= pax(() + AnO(Y, 2)¢'(() + Anb(Y, Z) + €

which by Taylor’s series is
= }1,%%>§@(V,Z)+e +€

where by Lemma B.2.1 (ii) |¢”| < %(AN)%R2§\/§

i.e. for each fixed Z € *Z we have

2
- < J oy
|, mmax O, 2) — max O, 2)| < (An)* B 31/~
Now by Lemma D.2.2 we see that

. _ . 3 22 g
| fain max O(r, 2) ~ min max O(Y, 2)| < (An)* R34/~

From this, since
V(¢ + ANO(v, Z)) = B[ Wi 51(ti1, ¢ + AnO(v, Z) + (An)FAmi)]
and 0(v,Z) = *f(t;,(,v,Z) we see that

l eren...% Ven.lﬁ‘z(y){Ei[WJ.\if-,/\,l(ti+17 (+AN *f(tia C, v, Z)+(AN)%A771)]+AN *h(ti’ A Z)}

- ZII'GII‘I]Z }I;Iéa.‘.))(,{]Ei [WI-\*”,,\,l(tHl, C+AN *f(tia Ca Ya Z)+(AN)%’\T]1)]+AN *h(ti, Ca Y, Z)}I

< (AN)%_RZ’%\/%

and so by the assumption, (8.2), this means

1

I eren.% ugié){mi[wﬁ,)\,l(tﬁh C’*‘AN *f(tia Ca v, ZH(AN)i)‘m)]'I'AN *h(ti’ 92 Z)}

— in, max (B (Wi (v, GHAN " F (8 G, Y, ZHAN) D) AN *h(5, €, Y, 2)H

' 2
< (AN)%R2§\-\/;—;+C,’+1.

By Lemma 6.3.4 this is the same as

c

. 3 5
IW];'/-',\,l(thC) - WI-VF,)\(ti,C)I < (AN)ERZX\/;'F €ig1-
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Now, by definition Wy ,(t2n,¢) = Wiy 1(tan, ) = g({) therefore e;v = 0 which

means for each ¢ =0,1,--+ ,2V

y . . 3 C 2
Wy 1(1 —iAN, () = Wi A(1 —iAn, ()] < Z(AN)’sz\'\/;-

Now if we require

83) Wiaa(ti, €) = Wi (¢, )
for all j = 0,1,-++,2" then we require :
vt 2 o
i.e. we require
A l
(8.4) SN

1
i

Such A exist, one such A is given by A = (An)%.

a

Corollary 8.1.2

If G satisfies (F1)-(F3) then, for each fixed infinite V € *N there exists A = 0 such
that

(8.5) Wj\b,l = Wﬂ,",\.
Proof:
(8.6) Wi a1 = Wiy 1(0,0) and Wy ,(0,0) = Wy,

therefore th{s result follows directly from Theorem 8.1.1.
O

Similarly, by considering the game K , it can be seen that if G satisfies (F1)-
(F3) then, given any infinite N € *N there exists A ~ 0 such that

(8.7) ’ - ’ W]G,Aﬂ ~ WI;;,)\'

Note: The set of \’s satisfying (8.5) is the same as the set of X’s satisfying (8.7)
- both are given by (8.4).
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8.2 The existence of W+ and W~

We can now go on to show the existence of the values W+and W~ without having

assumed all of the conditions which Fleming found necessary.
Theorem 8.2.1
If G satisfies (F1)-(F3) then, the values W} of the games K} tend to a limit
denoted by Wt i.e. the limit
Wt = lim W}
n—00
exists and W+ = Wit.

Proof: By Theorem 6.4.3 and Corollary 8.1.2 given an infinite N € *N there
exists A = 0, A > 0 such that

Wiy ® Wi = Wf\;,\ ~ Wy
so for infinite N € *N we have
Wi, ~ WR.
By Theorem 5.4.2 we know that W, ~ W1+. for infinite N therefore
lm W} =W*  exists

and

Wt = Wi,

From the above Theorem applied to the game G;, we clearly have the existence

of the limit
if G satisfies (F1)-(F3) and W; = W,
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Theorem 8.2.2

If G satisfies (F1)-(F3) then, the values W of the games K, tend to a limit
denoted by W~ i.e. the limit

W~ = lim W,

n—o0

exists and W~ = Wj".

Proof: An analogous proof to that of Theorem 8.2.1 above gives the required

result.
0

From the above Theorem applied to the game G, we clearly have the existence
of the limit
Wi = lim W

n—oo

if G satisfies (F1)-(F3) and Wi = Wﬁ.

o0o
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Chapter 9

The values W, W~ and the

Isaacs condition

In this chapter we show that if the Isaacs condition holds then we can guarantee

the existence of value.

First we give a proposition which we will then use to prove the result which

leads to the proof of the above claim.

9.1 Wt =W~ given the Isaacs condition

Proposition 9.1.1

For a fixed infinite N € *N, if G satisfies (F1)-(F'3) and the Isaacs condition (6.15)
holds then A > 0, A & 0 such that

(9.1) WA, ¢) = Wy a(t,¢)
forall j=0,1,---,2%, (¢ *RY.

Proof: As in the proof of Theorem 8.1.1, for ease of notation, we set d = 1 in this

proof however it generalises to R? with only notational changes.
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For j = 2V we see that

Wy (ten, ¢) = "g(() = Wy \(t2n, ()

and so we see that equation (9.1) holds for j = 2V,

Now assume that equation (9.1) holds for j = (i + 1) i.e. assume
W A(ti41,¢) = Wi a(tisn, )] S €41 =0 for all ¢ € *R%
Now consider j = i where 0 < < 2V. Let
0Y,2) = *f(t,,Y,2) and B(Y,Z) = “h(t;,(, Y, 2)

and let
e1(¢) = Wi, (tis1,{) and  5(¢) = Wy, (ti+1,¢)
and for k = 1,2 let
¥e(¢) = E:lpr(C + (An)5ny)]

and

(¢ + ANO(Y, Z)) + ANO(Y, Z) = O(Y, Z)
By Taylor’s Series we see that (as before) for k =1,2 andeach Y € *Y, Z € *Z,
Pr(¢ + AnO(Y; Z))

= h(Q) + ANO(Y, ZW(0) + 5(An)6(Y; 2)(0)
(9.2) ' for some { between 0 and. ¢

= () + AnB(Y, ZWH(O) + e
- where |d| < J(AW)TR?S, /2. :
Now, for k =1 and 2, let
(9:3) 8x(Y; Z) = () + AnO(Y, Z)9i(¢) + AnO(Y, 2)
then by Lemma D.2.3 we see that

. ] —_ 4 /
(9.4) - min ﬂa_§ek(Y, Z)= Joiy max o(Y,Z) + €

and by Lemma D.2.4

. _ . "
(9.5) max min O4(Y, Z) = max min ¢k(Y,l‘Z) +e
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where

1 2
(9.6) l€'],]€"] < E(AN)%R2—§\/;.

Now, the Isaacs condition (6.14) states that for k = 1,2

0.7 min max (Y, Z) = max mig ¢,(Y, 2)

and so for £ =1 and 2, by (9.4) we have

(9.8) | poin max ©x(Y, Z) ~ max min ¢i(Y, 2)| < €|

and so by (9.5)
. . / "
(9.9) | min max @k(KZ)—,I;g%gl_g@k(KZ)l < €| + |€"].

Ze*ZYery

Our assumption is that

[1(¢) = ¢2(¢)] < €41 =0 for all ¢ € *R?

therefore, by Lemma A.1.1, we have

[91(¢) = ¥2(¢)] < €41 for all ( € *R?

and so
: _ : <E *Tod
puax min () — max min ¢(¢)] < € forall { € "R
where
el < €ita.

Therefore, b;r (9.9) we have

Igél% )r,ré§§®1(Y, Z)—}r,réqic] érél_% 0:(Y, Z)| < |€'] + |€"] + |¢]

ie.

ming X B W5 s (tisn, €+ Aw (8,6, Y, 2) + MAN)n)] + An"h(t,(, Y, 2))

— max min {E Wy, (tis, ¢ + An " f(8,0,Y, Z) + MAw)ini)] + Aw *h(1:,(, Y, Z)}

Ye*Y Ze+2Z

'3 2
< (AN)5R2§\/; + €iq1.
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By Lemma 6.3.4 we see that this is the same as

Wy (t:,¢) = Wia(t:, )] < (AN)%Rzg\/g-i- €it1

for each ¢ =0,1,---,2V.
So assuming that

[WRA(tir1,¢) = Wy a(ti1,¢)| S €41~ 0 for all ¢ € *R?

3 2
= [WxA(t:,¢) — Wya(t, Q)] < (AN)ERZ)';‘"\/;-F €it1-

Now, our aim is to show that
(910) WJ-\‘/-,A(tja C) ~ WJG,)\(tJ'v C) for all 7=0,1,-- 72N-
Note, e;v = 0 since,

Wy altan,{) = "g({) = Wy \(tan, ()
therefore, we see that

. - . : 3..,C |2
Wi A(1 = jAN, C) = WrA(1 = AN, Q)| < J(AN)SRZX 2

T

for each j = 0,1,--- ,2" and so for (9.10) to hold we need

2
11 N 3 25,/_z
(9.11) 2N(AN)2R T\ o 0
i.e. we need

(An)?
A

Such A exist. One such A is given by A= (AN)%.

(9.12)

~ 0.

O
Corollary 9.1.2

For each ﬁxed; infinite N € *N, if G satisfies (F1)-(F3) and the Isaacs condition
holds then, there exists A &~ 0 such that

(9.13) Wi\ &~ Wi -
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Proof:
WJ-\JF,/\ = W]?f-,A(O)O) and WJG,A = Wﬁ’)\(0,0)

and so this follows directly from Proposition 9.1.1.

O

Note: The set of A's satisfying (9.12) is exactly the same as the set of A’s which
satisfy (8.5) and (8.7) and is given by (9.11).

From Proposition 9.1.1, by considering limits we obtain the following results.
Theorem 9.1.3

If G satisfies (F1)-(F3) and the Isaacs condition (6.18) holds then we have
Wt =w-.

Proof: If the Isaacs condition holds, by Theorem 6.4.3 and Proposition 9.1.1,
given an infinite NV € *N, there exists A =~ 0 such that

Wy m Wi, =Wy, ~ Wy
and so for an infinite N € *N provided the Isaacs condition holds we have
Wi ~ Wy.

Therefore, by considering limits, which we know exist by Theorems 8.2.1 and 8.2.2, |
we have

Wt=w-.
O

The following results now follow from the above.

Corollary 9.1.4

If G satisfies (F1)-(F3) and the Isaacs condition (6.18) holds then we have
Wit =wjy.
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Proof: If the Isaacs condition holds, by Theorem 9.1.3, Wt = W~. Therefore,
since by Theorem 8.2.1 Wit = W+ and by Theorem 8.2.2 W5 = W=, we have the

required result.

O

9.2 Wy =Wy “without” the Isaacs condition

In this section we show that we always have Wi, = Wp3.
Theorem 9.2.1

If G satisfies (F1)-(F3) then W, = Wp;.

Proof: Since, by Wald’s Theorem (see Appendix E, Theorem E.2.1 or [36] ) with
relaxed controls the Isaacs condition is always satisfied, this follows directly from

Theorem 9.1.3 applied to the game Gi.

a

This in fact gives us the following Corollary.

Corollary 9.2.2

If G satisfies (F1)-(F3) then

+ W = W = W
W12-"W2_ 1 = 12

Proof: This follows from Proposition 8.2.1, Proposition 8.2.2 and Theorem 9.2.1.

0Q0o
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Chapter 10

The existence of value

10.1 Value and the Isaacs condition

Proposition 10.1.1

If G satisfies (F1)-(F3) then
wt>vt and W-<V~.

Proof: By Theorem 8.2.1, Corollary 4.3.4, Proposition 3.3.4 and Theorem 3.2.3
for a fixed infinite N € *N we have

Wi~ Wiy 2 5% > St~ VY
so by taking limits (which exist by Theorems 8.2.1 and 2.3.7 ) we have |
wt>vt,

Similarly, by Theorem 8.2.2, Corollary 4.3.4, Proposition’ 3.3.4 and Theorem 3.2.3
for each fixed infinite N € *N we have

Wy m Wy, < Sy <Sy=Vy
and so by taking limits (which exist by Theorems 8.2.2 and 3.2.3 ) we have

W-<V-.
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At this stage we have achieved the same results as Elliott and Kalton ([10])
and can now go on to show by their method, that if the Isaacs condition holds

then value for the game G exists in the sense of Friedman.
Theorem 10.1.2

If G satisfies (F1)-(F3) and the Isaacs condition holds then G has value in the
sense of Friedman i.e.

V.=Vt
Proof: By Proposition 10.1.1 and Theorem79.1.3 if the Isa,acﬁs condition holds then
W<V <Vt <wt=w-
i.e. if the Isaacs condition hold then

W=V =Vt=wt

Therefore we have shown that if the game G satisfies (F1)-(F3) and the Isaacs

condition then the game has value.

10.2 Existence of value for relaxed controls

- ”

Here we give the main and final result, that is we show that there is always value

for relaxed controls.
Theorem 10.2.1

If G satisfies (F1)-(F3) then there exists value for relaxed controls i.e.

Vis = Viz.
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Proof: We know by Wald’s Theorem that relaxed controls always satisfy the
Isaacs condition, therefore this result follows directly from Theorem 10.1.2 applied

to the game Gya.
O

Therefore it follows that even if the game G does not satisfy the Isaacs condition

we can Introduce relaxed controls and obtain a value
Vie=V; =V

for the game.

000
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Appendix A

Preliminaries and notation for the

(Gaussian distribution

In this Appendix we give details of the Gaussian distribution.

A.1 The Gaussian distribution

The Gaussian Distribution with mean 0 and variance 1 is referred to as the Normal

Distribution. If 7 is a normalised Gaussian random variable we denote this by

n ~N(0,1).

The Normal Distribution has density function given by

(A.1) ¢(z) =

and distribution function given by

ploine) o)== [ o

=22

1e2
Jor

i.e. given a set A

—u?

A2 o A e2 d

(a2  pese)eat=— [ Fau

If n ~ N(0,1) then the expectation of a functlon of n is given by
(A3) [F(m)] = / () dy.
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If ny,--- , 7, is a sequence of normalised mutually independent Gaussian random

variables then
(Ad)  plw:imw) € A1, (W) € An} = T} p{w : n;(w) € Aj}

The sum of normalised mutually independent random variables is a random vari-

able.
If n ~ M(0,1) then
(A.5) E[n?] =3

and
2

Elexp(an - =)] = 1.

For n ~ N(0,1) Chebychev’s inequality states:

2
(A.6) P(n| > @) < E["z] if a>0.
o

Therefore, if 7 is N'(0,1), then we have for & > 0 the well-known estimates

3
(A P(l) > @) <
and

—a?
(A8) P(y 2 @) < exp(=2).
Lemma A.1.1

If functions ¢; and 3 are such that

lp1(2) — pa(z)| < €

and n ~ N(0,1) then we have

|Eler (z + am)] — Elpa(z + an)]| < e.
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Proof:

|Elp1(z + an)] — Elpz(z + an)]]
1 00 :ﬁ [’ :y_"’_
= 7_2?'/_00%(‘”0‘”)6 ? dy—/_wsoz(eray)e 2" dy|

< --——-1 / I ( + )— (:c—i—a )l 22d
P11z T+ @Y e

= /—2 1 Y 2 3/- )

< ———\/1_/ ce 22dy

= €.

For more information on probability and random processes see [5] and [24].
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Appendix B

Expectation functions and

derivatives

In this Appendix we give some expressions which we use in Chapter 8.

B.1 Derivatives

Lemma B.1.1

We are now working with d = 1.

If p : R — R is Lipschitz with constant c i.e.

(B.1) (o(e1) = p(22)] < eler — 22

where z; and z, € R?, and

(B.2) | ¥(2) = Ele(z + an)

—

where « is a constant and n ~ A(0,1) then ¢ is differentiable and

¥(z) =

Rir

Ele(z + an)n]

and

V'(e) = {"Elp(z + an)(n* - 1)]
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Proof: Note that from (A.3) for a random variable n ~ N(0,1) we have

(B.3)

Therefore we have

Now,

(=)

S
Y

]

and

¥z +6)

Therefore,

wl/(m)

I

27

E[f(n)]

/ fly)e™ " dy.

Elp(z + an)] by (B. 2)

vl
E[z + 6 + an)]

o(z + ay).e dy by (B.3)
by(B.2)

1 &) _2 .
Wr /; p(z+6+ay)e? dy by (B.3)

1 0o —(y—gﬂ
=/ vlatay)e™ T dy.
i P& 1 8) — ¥(2)
60 )
~(y=£)? -y
. R e e 2
lim (/_w ¢(z + ay)| 5 ]dy)
1 oo | 2
am/_mw(x+ay)ye 2 dy
1
~Elp(z + an)n]

1
= ~Elp(z + 6+ an)n]
_ 1 . =
= —=/ oz +6+ ay)ye™ dy
1 6 _(y-g)z
= a\/2_7r ~ ‘P(w'i'ay)(y_’&) dy
Y+ 6) = ¥(s)
6—0 )
5y =(v=%)? =2
. o0 y—gle 2z —ye2
i [ e o=
L % oo+ ay)(y? - Ded
—_ 2
N _oo‘P z + ay)(y )e y

—Elp(z + am)(n* - 1))
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B.2 Bounds
Now we look at the bounds on %’ and ¥”.

Proposition B.2.1

O (@)l < e and (ii)|¢"(w>|s§\/§

where ¢ is the Lipschitz constant on .

Proof: (i)
[¥'(z)| = a\/ﬁ oz + ayye ™ dy|

- 5=/ w(w(w+ay)—<P(w)+<ﬂ(w))ye:"ﬁdy|
= m}—l/z><> w(w+ay)—90(f_v))ye:53dy+so(w) /_: yetdy|
= - 27r|/ o(z + ay) — p(a))ye ¥ dy|
< - m oz + ay) — plz)yle T dy
< [ eyt
= = vt
= ¢

a ]
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(i)

["(2)] = az\/2—7; oo +ay)(y* — e dy

B a2\/27 | /.oo(so o+ ay) - 9(@))(y* — Ve dy + () /_o;(y2 — e dy

= 5l [ (ele + o) — ol@) s - DeFay

< = [ lplat o) - @)@ - DleFdy

1 e 2 =
o . " calylly? ~ 11 ¥ dy
= ——1 e™? d
- f—% y(y® - 1)] y

—yleEdy.
a,——zﬂj_wy yle = dy

Now since |y®> — y| is an even function we have

Wl < —= [0 - neTay

- o (f enenFars [Ceneta)

= = (T - [T Fa+ [Tt a)

Lemma B.2.2 Gronwall’s Lemma

If fis a continuous function on [0,1] such that

t
t) < K d
| f)SCHEK [ fls)ds
for some positive constants C (C may be 0) and K then
f(t) < Ccef.
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Proof:

Therefore,

i.e.

and so

i.e.

this means

% {e'm /Ot f(s)ds}

_ _Ke K /0 " F(s)ds + KU (D)
_ Kt <f(t) - K /Ot f(s)ds) .

< e (K | ‘fls)ds+C— K / t f(s)ds>

— Ce—Kt

/Ot (% {e'KT /OT f(s)ds})”dt < /Ot C’e’K”dﬂt

-, [t 1 - C
_Kt < Lokt ©
e fof (s)ds s —gCe+ 3

C .

= Z(1-— ~Kt

gl

t
K /0 fls)ds < CeKi(1 — e Kt
= Cef'-C

t : -
C+K /0 f(s)ds < CeK?

fly<c+ K[ f(s)ds < CeX*.
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Appendix C
Lipschitz inequalities

This Lemma is used in Chapter 7 as part of the proof that Wy , and Wy , satisfy

Lipschitz conditions in z.

C.1 Lipschitz conditions
We assume the notation of Chapter 7 for this Appendix.
Lemma C.1.1

If for each fixed ¢z we have

IIE, [Wr:':)\(ti+17 C1+Anf(ti’ Cl, Y, z)+(An)%)‘77i)+Anh(ti7 Cl 'Y, z)]
_Ei[W'r;‘,-)\(ti+1a C2+Anf(t1'a Cza Y, z)+(A'ﬂ)%’\771)+Anh(th C27 Y, Z)”

< alG - (2]
then for each fixed ¢ we have

| rzfé{,:{l gleajgf{Ei[WI,A(tm, CHARF (tiy 1, Yy 2HHAR) EAR AL Rty G, 9, 2)]}

- — minmax{E W, (tir1, GHAn f(tir Gy ¥y 2 HAR) EAG HARR(Eiy (o, ¥, 2)]]

2€Z2 yey

< all — Gl
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Proof: Fix ¢ and let
A(Cja Y, z) = ]Ei [W::A(ti+1, (j+Anf(ti1 Cja Y, ZH(An)%/\nz)‘l’Anh(tn ij Y, Z)]

for j = 1 and 2 then we know that

IA(C1,y,Z) - A(C%y’z)l S ci|<.'1 - C2I
foreachy €Y, z € Z and (3, {; € R?.

"Let
I?E%(A(Q’yaz) = A(Cj’y.hz) forj = ,1)2

then for all z € Z we have
(a) |A(¢1,91,2) = AC2y 91, 2)| < s — Gl
(b) A(¢2,92,2) 2 A(C2,91,2)
(c) |A(C2y 92, 2) — A(G1,92,2)] S cilCy = G
(d) A(G, 91, 2) 2 A(C1y 92, 2)

and so A((1,y1,2) — cilCi — G| < A((2,y1,2) < A(C2,¥2,2) < A(Gr,91,2) +

¢i|¢1 — (2| hence

ITea‘)})(A(Clayaz) - TE%%{A(@):U’Z)I < Cz'ICl - CZI

the dual of the above result gives the fact that

- -

| minmax A(G1, y, 2) — minmax A(Cz,y, 2)| < alGy = G

which in the notation of Chapter 7 is

l min ma‘x{]Ei[Wr-:/\(ti+1a C1+Anf(t‘i, Cl) Y, 2H(An)%/\771)+Anh(tu CI, Y, Z)]}

z€Z yeY

- I}élzr,l rileaj;({]Ei[Wyt,\(ti+l) C2+Anf(ti) CZ, Y, z)+(An)%)‘ni)+Anh(th CZ, Y, Z)]l

< alG - C2|

O
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Lemma C.1.2

If for each fixed ¢ we have

IEt [Wn_,)\(ti+l1 <1+Anf(ti7 Cla Y, Z)'I’(An)%)‘m)'i'Anh(tia Cla Y, 2)]
~E W\ (tig1, Gt AR £, (2, 9, AL A AR (i, G2, 1, 2))|

< alG =Gl

then for each fixed i we have

I max m]n{IEi [Wn_,)\(ti-l-la <1+Anf(tia Clv.ya z)+(An)%/\771)+Anh(tn (la Y, Z)]}

ye€Y 2€2

—max min{Ei [Wr;-,/\(tH-l, C2+Anf(ti, C27 Y, z)+(An)%)‘nz)+Anh(tn CZ7 Y, Z)]l

y€Y z2€2
< il — ol

Proof: The proof of this is analogous to that of Lemma C.1.1.

0
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Appendix D

Min and max inequalities

In this Appendix we give some useful inequalities which we use in Chapters 8 and

9.

D.1 Preservation of closeness

The following Lemma shows that the operations of supremum and infimum pre-

serve infinite closeness.

Lemma D.1.1

Given internal functions A and B such that *Y x *Z — *R where ) and Z are
compact metric spaces, if |

A(Y,Z) = B(Y, Z)
foreachY € *Y and Z € *Z then

sup A(Y,Z) = sup B(Y,Z)
Yery Yery

for each fixed Z € *Z.

Proof: Fix Z € *Z then we know that

A(Y,2) ~ B(Y,2) < sup B(Y,2)
Yery
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for each Y € *Y. This gives that for fixed Z € *Z
sup A(Y, Z) X sup B(Y,Z2).
Yery - Yery
Similarly by exchanging the roles of A and B we have
sup B(Y,Z) < sup A(Y,Z)
Yery Yery .
which gives

sup A(Y,Z) ~ sup B(Y,2)
Yery Yey

Lemma D.1.2

Given continuous functions A and B such that *) x *Z — *R where )Y and Z

are compact metric spaces, if
A(Y,Z) ~ B(Y, 2)
foreach Y € *Y and Z € *Z then
inf A(Y,Z)~ inf B(Y,Z)
Ze*Z Ze+*Z
for each fixed Y € *).

Proof: This follows as a dual result of Lemma D.1.1.

a

D.2 Min and max inequalities

Lemma D.2.1

Using the notation of Chapter 8, for each fixed Z € *Z we have

e B(O-+ANO(v, 20 () +ANT(v, Z) = pax $(O)+ANO(Y, 2 (O+AND(Y, 2)
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Proof: For each fixed Z € *Z, let
A(¢,v,2) = $(¢) + AnO(v, 2)¢'(C) + Anb(v, Z)  for v € *A(D)
and
A(GY, 2) = $(Q) + ANV, 2)W(C) + AnB(Y,Z)  for Y € *Y
then for each fixed Z € *Z
AlCv,Z)= | A((,Y,2)dv(Y
(Cw2)= [ AGY,Z)dv(Y)
for each v € *A(Y). Now we see that for each Z € *Z we have
AGn2) = [ AGY,2)in(Y) < max ALY, 2) [ du(Y) = max ALY, 2)

= max, / SAGY, 2)du(Y) = max, A(C1,2) < ax A Y, 2)

For the other direction,

ACY,2)= [ ALY, Z)dbr(Y)

where by satisfies
1 ifa=Y
by(a) =
0 ifa#Y

Therefore we have

> =
max / LAY, 2)du(Y) 2 max / LAWY, 2)dér(Y) = max A(G,Y, 2)

i.e.

- > -
Verg/%()(y)A({,u zZ) 2 max A(C Y,2).

Therefore for each Z € *Z we have

(D.1) max A((,v,Z) = max A(C,Y Z)

ve*A(Y)

which implies

D.2 =
(D.2) o ngl*%uerr}%zgi)A(C’V \Z) = rm%)l;nax A((,Y, 2).
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By an analogous method it can also be shown that for each fixed Y € *),

min, $(C)+ANOY, )W (O+ANI(Y, £) = min B(O+AND(Y, 2)U(+AN(Y, 2).

pE*A(Z

0
Lemma D.2.2

Using the notation of Chapter 8 we show that for each fixed Z € *Z if

- <K.
|V€rr_12€<y)@(u,Z) Yezp)c)@(Y,Z)l_I&

where K < oo then

| min max O(v,Z) — min max O(Y,2)| < K
Z€%Z ve *A(Y) ZE*ZYEDY

Proof: For each fixed Z € *Z let
uerr}gzcy)@(u, Z)=A(Z) and ;réa%()@(Y, Z) = B(Z).

then we know that for each Z € *Z
(D.3) |A(Z) - B(Z2)|< K
and we want to show that

|er€11‘% A(Z) - ig B(Z)| < K.

Let

Join A(Z) = A(Z)  and min B(Z) = B(Z).
then we have

|A(Z)~B(Z)] <K by (D.3)
B(2) < B(Z)
|B(Z)~ A(Z) <K by (D.3)

A(Z) < A(2).
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Therefore,
A(Z)-K<B(Z)<B(Z)<A(Z)+ K < A(Z)+ K

$0
|A(2)-B(Z)| < K
ie
|Zn€11% A(Z) - Join B(Z)| < K
which in the notation of Chapter 8 is

| min max O(Y, Z) — min- max O(v,Z)|< K.
ZEZYErY Z€*Z ve*AY)

Lemma D.2.3

Using the notation of Chapter 9, if for k = 1 and 2
0k(Y, 2) — 4u (Y, 2)| < K
foreachY €* Y and Z € *Z, where K < oo then for £ =1 and 2 we have
| min max O4(Y, Z) ~ min max (¥, 2)| < K.
Proof: We will do this in two stages, first we will show that
) I}gréa.>3c)®k(Y, Z) - }r,rézz)lc)m(Y, 2)| < K.
and then use the proof of Lemma D.2.2 to show that
]Zr%i‘%}rlré@)()@k(l’, Z)— Zneli*% )r,ré%)Jc)M(Y, Z) LK.
We know that for each Z € *Z and Y € *Y
(D.4) - 10x(Y,2) — ¢(Y, Z)| < K
and we want to show that

| max O4(Y, Z) — max ¢i(Y, Z)| < K.
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Fix Z € *Z and let
max O(Y, 2) = 0x(Y,2)  and  maxdu(V,2) = 4u(¥, 2).

then we have

10k(Y,2) — (Y, Z)| < K by(DA4)
0x(Y,2) < 0x(Y, Z)- '

10k(Y, Z) — (Y, Z)| < K by(D.4)
8e(V,2) < (¥, 2).

Therefore,

A

(Y, 2) =K < (Y, 2) < (Y, 2) < OWY,Z) + K <O(Y,Z) + K

SO

0k(Y,2) - $1(Y,2)| < K

i.e for each fixed Z € *Z
| ;max Ok(Y, Z) — max ¢i(Y, Z)| < K.

Now, for each fixed Z € *Z let

max Ox(Y,2) = Ax(2)  and  max ¢i(Y, 2) = Bi(2).

then we have just shown that for each Z € *Z
(D.5) - |Ax(Z) — Bx(2)| < K
and we want to show that
| i Ax(Z) — min Bi(2)| < K.
The proof of this is identical to that of Lemma D.2.2 i.e. let
min Ay(Z) = Aw(Z)  and min Bi(Z) = By(2).

then we have

|Ak(Z) = Be(2)| < K by (D.5)
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By(Z) < Bu(2)
|Bx(2) — A(Z)] < K by (D.5)
An(Z) < Aw(2).
Therefore,

A(2) - K < Bu(2) < BUZ) S AlZ)+ K S AuD) + K

SO .

|Ax(Z) — Bi(Z)| < K
i.e

which in the notation of Chapter 8 is

| poin max O4(Y, Z) — min max ¢x(Y, Z)| < K.

Lemma D.2.4

Also using the notation of Chapter 9, if for £k =1 and 2
10k(Y,Z) — ¢i(Y, 2)| < K
foreachY € Y and Z € *Z, where K < oo then for £ =1 and 2 we have

. _ . <
| max min O4(Y; 2) P pin, #(Y,2)| < K.

Proof: The proof of this is analogous to that of Lemma D.2.3.

O
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Appendix E
Wald’s Theorem

In this Appendix we give a nonstandard proof of Wald’s Theorem which we use in

Chapter 9. First we give, without proof, some well-known Lemmas which we need
when proving Wald’s Theorem. For a standard proof of this Theorem we refer the

reader to [36].

E.1 Preliminaries for Wald’s Theorem

Lemma E‘. 1.1

Given a compact metric space ) with metric d, there exists an infinite NV € *N

-

and elements *ay,--- , *any € *Y such that Y = {°(*a1), -+, °(*an)}.

Proof: The compact metric space ) is separable so has a countable dense subset
i.e. Ja : N — Y therefore, by transfer *a: *N — *).

Let N € *N\N and let Y denote the internal set {*a1,---,*an} C *Y. Since Y
is compact, every point in *) is nearstandard, and so {°(*a;), -, °(*an)} C V.
For the other direction, we have to show that given any y € Y, there is an element

*a;i €Y satisfying *a; & y. Consider the closed balls
* * 1 * * * 1
B(*y,z)={be¥:"d(*y,b) < 7}.
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By density, for each £ € N
1. o«
By, )NV £

therefore, by overflow, there exists K € *N\N such that

1

)NV #D

and so

Yy~ *a; for some a; € Y

hence Y C {°(*ai1), -, °(*an)}.

a

Lemma E.1.2

Given a compact metric space ), we have shown in lemma E.1.1 that there

exists an N € *N\N and an internal set Y = {*a1,--- *any} € *Y satisfying

Y ={°(*a1), -, °(*an)}. We now show that we can find an internal sequence,

A1, -+, Ay of disjoint *Borel subsets of *) satisfying

UY,4;="Y and A; Cmonad(°(%a;)) foreachi=1,---,N.

Having got these sets, we then show that given any Borel probability measure v

on Yie. v:B(Y)— [0,1], and any continuous function g : Y — R

N
(E.1) ] /y g()dv(y) = °(3_ "9(a:)p})
=1
where p¥ = *v(A;) foreach i =1,--- ,N.
Proof: Let Ay,---, Ay be defined by

Al *B( *a1,6)

An+1 = *B(*an+1a5)\ U?:l An

where

*B(*a;,6) ={be*Y: *d(b, *a;) <6} and é=supm
bery =
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Now, given a continuous function g, for each ¢ = 1,--- , N
|*g(b) — *g("ai)| = 0 for all b € A;

and if we let

N * %
6—m«'ztxsupl "g(b) — "9("a))| = 0

=1 peg
then
N
0 ~ CZ *v(A;)  since TN, *v(A) = v(Y) =1
= 6;/,4,-d*y(b)
N |
O RORRIEDIIC
> Iz WA *a;))d"v(b)
= 1 [, "o u(e) - z o(*a) [ dv(®)
Nl—
= | fo@dvy) = 32 "g("a) v 4]
/g(y)dv (v) = "2_; "g("a:) "v(4:).
Hence, since for each 2 = 1,--- , N we have p¥ = *v(A;) this gives
/ 9(y)dv(y) = Z 9("a:)py).
a

Definition E.1.3

Given a compact metric space ) we have show n in lemma E.1.1 that there exists
N € *N\Nand aset Y = {*as,+++,*an} C *Ysuchthat Y = {°(*a1), -, °(*an)}.
With this notation we now go on to show that if p = (p1,-++ ,pn) is an inter-
nal sequence of elements of *[0,1] with YN, p; = 1 and p; > 0, and we define
vp : B(Y) = [0,1] by

(E2) - vo(A) = (st (4) N )
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for all A € B(Y) where for each i =1,--+,N , u(*a;) = p; then

N
/y g(y)dv(y) = °(3 *9(*a)pi)-

=1
Proof: The function *g satisfies °(*g(a;)) = g(°a;) for all ¢ = 1,- ,N.

If we define f : Y — R by f(*ai) = ¢( °(*a,~))’for each 7 = 1,--- ,N then
°(*g(*a;)) = f(*a;) for all ¢ = 1,--+ , N therefore, by Loeb Theory,

[, owdvv) = [, 8 st = (}: "oCep)

Lemma E.1.4

If YV is a compact metric space, then given any Borel probability measure v on Y
ie. v:B(Y) — [0,1], v is of the form v, for some p, namely p = p* (where v, and

pv are as defined in (E.1.2) and (E.1.3) respectively.)
Proof: Given v, if we define p” as in Lemma E.1.2 then

(E.3) / 9(y)dv(y) Z 9(*a:)pY)

and if we apply Lemma E.1.3 to this p” then we have

E-4 - d v 1 1 i
(B4) [ o)) = z o(*a)e))
and so by equating (E.3) and (E.4) we have

[, 9wdr(y) = [ o(w)dup ()

for each g € C(Y) and so v = v,

O
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E.2 Wald’s Theorem

In this section we give a nonstandard proof of Wald’s Theorem using the results

of the previous section.
Theorem E.2.1 (Wald’s Theorem)

If Y, Z are two compact metric spaces and ¢ is a continuous function g : YxZ — R

then

inf // 9(y,2)dv(y)dp(z) = inf. sup // 9(y, 2)dv(y)dp(2).

ueA(y) PEA(Z)JZ PEA(Z) VGA(J’)

Proof: By Lemma E.1.1 there exists N € *N\N and elements y1,-+ ,yn € *Y
such that Y = {°y1, -+, °y~n} and by Lemma E.1.2 there exists an internal se-
quence Aj,-+- , Ay of *Borel subsets of *) such that given a Borel probability
measure v on YVi.e. v : B(Y) — [0,1] ifwe define *v(4;) = p/ foreachi=1,--- ,N

then "N, p¥ = 1 and for any continuous function g : ) —» R

®3) [ savts) = *(3- “otoe0)

If we do the same thing for a similar compact metric space Z and a Borel proba-
bility measure p : B(Z) — [0,1] then there exists an M € *N\N and a sequence
z1,-+* ,2Z2N € *Z such that Z = {°2;, -+, °2p} and we can find an internal se-

quence By, -+, By of disjoint *Borel subsets of *Z such that .

(E6) [ 9@dn(z) = °(3 9(z)a})

i=1

where ¢° = (¢f,- -+, qyy) is defined from p as in Lemma E.1.2.

Now we consider the product space Y x Z, we have

[, [ ot 2)v(w)de(z) = (3 “olui )2t 0)

j=1i=1

for all g € C(Y x Z).
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Now, if we are given an internal sequence of elements of *[0,1], p = (p1, -+ ,pN)

satisfying YN, p; = 1, p; > 0 and define v, as in Lemma E.1.3 then we have

(E.7) /yg Ydv,(y) Z 9(yi)p

If we do the same thing for Z and a given mternal sequence of elements of *[0,1],

q=(q1,"*- ,qm), then we have
M

(E.8) /z E 9(z;) q]

where p, is constructed from ¢ as in Lemma E.1.3.

Now considering the product space Y x Z we have

(E9) [, [ otw, )i 2) = (% ‘o2

j=11i=1

for all g € C(Y x Z).

If we let the left hand side of (E.9) be denoted by g(v,, p,) and the right hand
side by °G(p, q) then

(E-10) 9(vp, pg) = °G(p, q)-
Using the standard Minimax Theorem (see [30]) we know that a saddle point

exists, suppose it occurs at p, ¢ then for all p, ¢ we have
°G(p,4) < °G(p,4) < °G(p,q)
= 9(vp,04) < 9(v5,04) < 9(v5,04)

Let v3 = v’ and p; = p' then, since by Lemma E.1.4 every v is of the form v, for

some p and every p is of the form p, for some ¢, we have

- L

g(v, ") < gV, p') < g(v', p)
hence
sup g(v,p") = g(v',p') = inf g(',p)

veA(Y) PEA(Z)
therefore

), 808, 9020) = I3 90 0) = sup o) = s ind a(vr0)

PEAZ) veA(y) PEA(Z) eA(Y) ueA(y) PEA(Z)
1.e.
inf su v,p) = su inf
peA(z),,eAfy)g( ,p) = ueA(I;)PEA(Z)g( ' P)-
0
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