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Abstract 

This thesis considers a stochastic partial differential equation which may be viewed 
as a stochastic version of the nonlinear heat equation studied by Eells and Samp­
son. The special case of loops on a compact Riemannian manifold M is studied, 
where the loop is parametrised by the unit circle. Using ideas of Eells and Sampson 
and the theory of stochastic evolution equations on infinite dimensional M-type 2 
Banach spaces, existence and uniqueness of an M-valued solution is shown, where 
M is a certain Sobolev-Slobodetski space of loops on the manifold M. In particular 
M is an infinite dimensional manifold modelled on an M-type 2 Banach space. 

Finally, an approximation result of the Wong-Zakai type for Stratonovich inte­
grals in M-type 2 Banach spaces is given. 
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Chapter 1 

Introd uction 

This thesis is concerned with stochastic partial differential equations, SPDEs, of the 
following general form 

du(t) = 6u(t) + "noise". (1.0.1) 

6 is the nonlinear Laplacian acting on smooth maps u : N -+ M, where N, Af C ]W.d 

are Riemannian manifolds. The noise term involves a suitable space-time white 
nOIse. 

Equations of the form (1.0.1) are motivated by physical literature where they 
appear in the kinetic theory of phase transitions and in the theory of stochastic 
quantisation, see [Fu,92j and references therein. Even so, for the case N = 51, 51 
the unit circle, equation (1.0.1) is of interest as it defines a diffusive motion of loops 
on the manifold At, where the loop is parametrised by (j E 51. 

Equation (1.0.1) may be considered as a stochastic version of the nonlinear heat 
equation studied by Eells and Sampson, [Ee/Sa,64]. Eells and Sampson proved 
that, given j E COO(N, AI), where N is a general compact manifold and Af C ]W.d is 
a compact Riemannian manifold with nonpositive sectional curvature, there exists 
a unique 1 : [0,00) x N -+ At satisfying 

01,( ) as x) = 6/,(x , s > 0, x E N, (1.0.2) 

with 10 = j. Here we have written 1,(') := I(s, .). Hamilton, [Ha,75J, extended this 
result to include the case where Af has a boundary. Ottarsson, [Ot,84]' considered 
the special case of loops on the manifold M. Indeed, in this simpler case, it was 
shown that one may drop the curvature restriction on A!. 

'We now make our problem more explicit. Let Wt be an E-valued \Viener process 
defined on some complete probability space (0,.1", IF), where E is a suitable Banach 
space of loops on R m, i.e. 'T] : 51 -+ R m. For 'l.L : [0,00) X 51 x 0 -+ Af, consider the 
following quasilinear SPDE 

(1.0.3) 

where we write Ut{(j) := u(t, (j) and we have suppressed the dependence on wEn. 
We explain the meaning of the terms in the equation (1.0.3) : 

( a) v is a smooth vector field on .M 

(b) h is a smooth section of a bundle IF over fl.t, whose fibres are lFx = L(Rm, TxAl), 
x E AI, .. 

1 
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(c) odwt denotes the Stratonovich differential. 

Equation (1.0.3) will often be referred to as the stochastic nonlinear heat equation, 
SNHE. 

Existence of a solution to (1.0.3) (in terms of generalised functions) was proved 
by Funaki, see [Fu,92]. (Strictly speaking, the Wiener process used by Funaki was 
of a different form to the one in (1.0.3), but the idea of proof is still the same.) 
Using an ad hoc version of Trotter's product formula, Funaki constructs a solution 
to (1.0.3), as an infinitesimal composition of a solution to (1.0.2) and a solution to 
the following stochastic differential equation 

(1.0.4) 

(The idea of composing two different solutions is not dissimilar to the Fractional Step 
Method used by Kotelenz, see [Kot,92], [Go/Kot,96] and references therein.) More 
precisely, corresponding to each partition 7r of the interval [0, T], Funaki constructs 
the process !7r as a composition of the solutions to (1.0.2) and (LOA). Existence of 
a solution to (1.0.3) is then a consequence of the following three theorems 

(i) The family of distributions {P7r} corresponding to {!7r} is tight in the space 
C(O, T; M), where M is a certain Sobolev-Slobodetski space of loops on A!. 

(ii) Every limit P of {P7r }, as mesh7r -+ 0, solves the Martingale problem corre· 
sponding to the SPDE (1.0.3). 

(iii) The SPDE (1.0.3) and the Martingale problem are equivalent. 

The main technicality arises in proving (i), where Funaki calculates deep (kinetic 
and potential) energy estimates for the processes !7r' This method, although quite 
ingenius, is very probabilistic in nature, and nontrivial to say the least. 

In this thesis we propose a different method of solving (1.0.3). This method is 
more direct and more in the spirit of the ideas used in the deterministic case, in 
particular, those of Hamilton. \Ve briefly describe Hamilton's method. Imbedding 
the target manifold !II! in some Euclidean space lItd and extending the metric on }vI 

to lItd, one first solves the problem (1.0.2) uniquely in Euclidean coordinates. The 
extension of the metric is carried out to ensure existence of an involutive isometry i 
on the tubular neighbourhood U of A!. In particular i has !vI as its fixed point set. 
By showing that i o! also solves (1.0.2) on some short time interval, where! is the 
original solution, Hamilton deduces that if f starts on the manifold then it must 
remain there for a short time period. To prove this is true on the half time-line, he 
employs the method of energy estimates used by Eells and Sampson. 

\Ve now give a description of our work. We first consider (1.0.3) as an SPDE 
in Euclidean coordinates. This requires extending the metric (as in Hamilton), but 
also the maps v and h, suitably to JRd. In these Euclidean coordinates the nonlinear 
Laplacian then takes the form 

b:. = -A + F (1.0.5) 

where -A = dd;2 is the standard Laplacian and F is a nonlinear term. VVe then 
reformulate the SPDE (1.0.3) as a stochastic evolution equation, SEE, on a suitable 
function space, i.e. 

du(t) + Au(t)dt = F(u(t))dt + V(u(t))dt + lI{u(t)) 0 dw(t), (1.0.6) 
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where V and H are the Nemytski maps corresponding to the extensions of v and h. 
Equation (1.0.6) is an example of an SPDE with multiplicative noise. The the­

ory for such equations in Hilbert spaces began with the works of Curtain and Falb, 
[Cu/Fa,71j, Pardoux, [Par,75], [Par,79] and in Banach spaces, Krylov and 
Rozovskii, [Kr/Ro,79], but to name a few. Many of the ideas and techniques used 
to solve SPDEs are generalisations of those used for deterministic partial differen­
tial equations, PDEs. For example, Bensoussan, Ternan and Pardoux, [Ben/Te,72]' 
[Par,75]' [Par,79], developed a theory for SPDEs for monotone coercive operators 
by generalising the method of monotone operators developed by Lions, [Li,69]' to 
solve nonlinear PDEs. Another example is in the case of stochastic Navier-Stokes 
equations, see, for example, the works of Bensoussan and Ternan, [Ben/Te,73]. 

For our problem we use the semigroup approach to SPDEs. Although the 
operator -A is unbounded, it is well-known that it is the generator of an analytic 
semigroup. In such cases, it is a standard technique in PDEs to look for a solu­
tion in terms of the semi group, see, for example, [Fr,69]. Such a solution is often 
referred to as a mild solution. Dawson, [Da,75]' first considered this approach in 
the case of SPDEs on Hilbert spaces. The theory was essentially developed by Da 
Prato in collaboration with authors such as Iannelli, Tubaro and Zabczyk. We refer 
the reader to the book [DP /Z,92] which gives an extensive treatment of this theory 
in the Hilbert space case. See also the papers by Ichikawa, [Ic,78] and Flandoli, 
[FI,92]. In the papers [Br,95] and [Br,97]' Brzeiniak continued this line of research 
by considering stochastic evolution equations on M-type 2 Banach spaces. M-type 
2 (also known as 2-uniformly smooth) Banach spaces are a class of Banach spaces, 
on which one can define Ito integration, see [Ne,78], [De,91] and references therein. 

We consider equation (1.0.6) as an SEE on the Sobolev-Slobodetski spaces 
W",P(St, JW.d), e E (0,00) \ N, P ~ 2, which are defined by the real interpolation 
method, see [Tr,78]. The choice of function space is essentially at our disposal, 
provided that the equation (1.0.6) is well posed. The spaces W",p(Sl, JW.d) are par­
ticularly well suited to our problem for two reasons. For p ~ 2, they are examples 
of M-type 2 Banach spaces. Secondly, the Nemytski maps F, V and II satisfy nice 
regularity properties on these spaces. In particular, F, V and H are smooth and 
satisfy a local Lipschitz condition, see [Br/EI,98]. (Indeed, if v and h are extended 
to functions of compact support, then V and H are also of linear growth.) 

U sing the theory developed by Brzeiniak, we prove existence of a local (and 
maximal) solution in the space Wa,P(St, ]Rd), ~ > s > 1 + 1, P > 2. This is the best 
we can hope for when using such general methods, consiJering that the term F is 
not of linear growth. Even in the case of ordinary differential equations, without the 
linear growth condition, there are well known examples of solutions which are not 
global. Although the general procedure follows that in [Br,97], we prove stronger 
estimates on the solutions and moreover we consider SEEs on real interpolation 
spaces, whereas in [Br,97], the author considers the complex interpolation spaces. 

We explain briefly why we work in different spaces. The complex interpola­
tion method gives rise to a different class of Sobolev spaces, denoted H(I,p(Sl, JW.d), 
f1 E (0,00) \ N, P ~ 2. Although these spaces are M-type 2, the regularity results 
for the Nemystki maps, mentioned above, may not hold. The reason for this is that 
the Lipschitzian properties of F, V and H depend on a specific characterisation 
of the spaces W(I,P(S\ JW.d), see [Tr,78]. Such a characterisation is unknown for the 
HIl,P(Sl, JW.d) spaces. 
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The second step is to prove that our solution lies on the loop manifold 
M = W·,p(Sl, M), which is a closed submanifold of the infinite dimensional Banach 
space W·,P(Si, JRd). The Nemytski map I corresponding to i is an involution on the 
open set W·,p(Sl, U), where U is the tubular neighbourhood of M. Moreover I 
has M as its set of fixed points. By considering the notion of a weak solution, we 
show that both u and I(u) are solutions to the problem (1.0.6). Using the fixed 
point properties of J and the uniqueness of solution, we deduce that u lies on the 
manifold M for the time it is defined. The use of Stratonovich integrals (instead of 
Ito integrals) plays an important role in this step, along with the following crucial 
identities: 

J'(·)V(·) = V(1(·)), 

1'(.)ll(·) = ll(I(·)), 

1'(·)6(·) = 6(1(·)), 

(1.0.7) 

(1.0.8) 

(1.0.9) 

where l' is the Frechet derivative of I. The identities (1.0.7) and (1.0.8) are partic­
ular to our choice of extensions of v and h. The identity (1.0.9) just follows from 
the works of Hamilton. To make use of the above identities we need to approximate 
our mild solution (written in terms of the semigroup) by strict solutions, which is 
the main difficultly for this part. 

Finally, to prove that our solution is global, we calculate energy estimates for the 
maximal solution, which gives us a bound for the nonlinear term F. Thus, on any 
finite time interval, we can show that the norm of the solution does not 'explode', 
i.e. the solution is global. For this step we will need certain results on energy 
estimates found in [Ee/Sa,64j. Moreover we will again need to use an approximation 
proceedure similar to above. 

We now briefly descibe the layout of this thesis. In Chapter 2 we present the 
necessary material needed for our work. This should make the thesis fairly self con­
tained. We omit nearly all the proofs and just give references. We present a proof of 
the Stochastic Fubini Theorem in M-type 2 Banach spaces. Although such a result 
is well known and well used, the author does not know of any proof of this (in the 
M-type 2 case) in the literature. 

In Chapter 3 we discuss the problem (1.0.3) in more detail and state a precise 
definition of a solution. The remainder of this chapter focuses on the extensions of 
the maps v and h and the regularity properties of the Nemytski maps. 

Existence of a maximal solution is proved in the second part of Chapter 4. 
The first being dedicated to studying the regularity properties of the generalised 
stochastic convolution process. This uses the Da Prato-Kwapien-Zabczyk Factori­
sation method, see [DP /K/Z,87]. 

In Chapter 5 we prove that our solution lies on the manifold M and then we 
prove globality of solution in Chapter 6. This will conclude our work on this partic­
ular problem. At the end of Chapter 6 we briefly discuss ideas concerning further 
research relating to this problem. 

In Chapter 7 we prove an approximation result of the Wong-Zakai type for 
Stratonovich integrals in M-type 2 Banach spaces. This is a generalisation of a re­
sult proved in the PhD thesis by Dowell, [Dow,80j, who considered the Hilbert space 
case. There are certain implications of this result regarding the equation (1.0.3). 
One may be tempted to think that we used the Stratonovich differential in (1.0.3) 
(as opposed to the Ito differential) just because it 'works'. This result suggests that 
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when dealing with stochastic equations on manifolds, the Stratonovich differential 
is the most natural choice. 

In the appendix we prove that the factorisation operator, used in the Da Prato­
Kwapien-Zabczyk Factorisation method, is the fractional power of a certain abstract 
parabolic operator. Although this result was essentially proved in [Br ,97], we present 
here all the necessary details and proofs not included there. 



Chapter 2 

Preliminary Material 

2.1 Co-Semigroups, Fractional Powers of Opera­
tors, Analtyic Semigroups 

Co-semigroups 

The definitions and results of this subsection are standard and we refer the read­
er to [Paz,83] for more details and proofs. 
Let X be a complex Banach space with norm I . Ix. (If X is a real Banach space then 
we take its complexification). Let L(X) := L(X, X) be the space of all bounded 
linear operators from X into X endowed with the supremum norm, denoted I . IL(X)' 
When it is clear from the context which norm we are using we will often write I . I 
instead of I . Ix or I . iL(x). 

Definition 2.1.1 A Co-semigroup on X, {Tdt~o' is a family of bounded linear 
operators on X such that 
(a) Tt+I = TtT" Vt,s 2: 0 and To = I, where I is the identity operator on X, 
(b) limtlO Ttx = x, for every x EX. 

For a Co-semigroup {Tt}t~o there exist constants p 2: 0 and M 2: 1 such that 

I Tt I::; M ept for t 2: O. (2.1.1) 

If p = 0 then {Tt } t>O is said to be uniformly bounded. If in addition M = 1, then 
{Te}t>o is called a contraction Co-semigroup. Using (2.1.1) one can show that for 
every-x E X, the function T(·)x: [0,00) -+ X, t -+ Ttx, is continuous. 

The linear operator A defined by 

D(A) := {x EX: lim Ttx - x eXists} 
tlO t 

and 
. Ttx-x 

Ax = hm for x E D(A) 
flO t 

is called the infinitesimal generator of the semi group {Td 1>0' A is a closed operator 
and D(A), the domain of A, is dense in X. Moreover D(A) is a Banach space with 
respect to the graph norm I . ID(A), where 

I x ID(A):=I x I + I Ax I, x E D(A). 

6 
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The following properties hold for the infinitesimal generator A. 
For x E X, f~ Tsxds E D(A) and 

A (1t 
Tsxds) = Ttx - x. 

For x E D(A), Ttx E D(A) and 

d 
dt Ttx = ATtx = TtAx. 

It follows from (2.1.3) that 

Ttx - Tsx = 1t ATrxdr = 1t TrAxdr. 

7 

(2.1.2) 

(2.l.3) 

(2.l.4) 

The resolvent set p(A) of a linear operator A is the set of all complex numbers ,\ 
for which ('\I - At!' (the resolvent of A), is a bounded linear operator in X. The 
following theorem characterises the generators of Co-semigroups. 

Theorem 2.1.2 (Hille-Yosida) Let A : D(A) C X -+ X be a closed operator. 
Then A is the generator of a Co-semigroup {Ttl t>o that satisfies (2.l.1) if and only 
if D( A) is dense in X, p( A) contains the set {,\ E C : Re'\ > p} and 

I(,\-Arnl ~ (,\~p)n' Re'\>p,nEN. 

Remark 2.1.3 It is a consequence Theorem 2.1.2 that for Re'\ > p, 

(,\ - Arl = 100 e->.tltdt. 

Remark 2.1.4 Using the identity 

A('\ - Arl = ,\(,\ - Arl 
- I, Re'\ > p, 

it is straightforward to show that, for Re'\ > p, 

(,\ - Arl 
: X -+ D(A) 

is linear and bounded, where D(A) is endowed with the graph norm. 

(2.l.5) 

(2.1.6) 

(2.1.7) 

(2.1.8) 

Let A be the generator of a Co-semigroup. For each n E N one defines the Yosida 
Approximations, An, of A by 

(2.1.9) 

One can show that 
lim n(n - Ar1x = x, \/x E X 

n-oo 
(2.1.10) 

and 
lim Anx = Ax, \/x E D(A). 
n-oo 

(2.1.11) 

Positive Operators and Fractional Powers 
The following two definitions are taken from [Tr,78]. 
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Definition 2.1.5 A closed and densely defined linear operator A on X is said to be 
positive if (-00,0] c p(A) and there exists C ;::: 1 such that 

C 
I (Il+ At l

l :S 1 +Il' Il E [0,00). (2.1.12) 

Definition 2.1.6 Let A be a positive operator on X. For a E (0,1), the fractional 
power of AJ A -0' J is defined through the formula 

(2.1.13) 

Note that if A is positive, then A -0', a E (0,1), is a well defined bounded linea.r 

operator. 
The proofs of the following assertions can be found in [Paz,83] or [Tr,78j. 
Let A be a positive operator on X. Then 

(i) there exists a constant C > ° such that 

I A-O' I :S C for a E [0,1]. 

(ii) For a, {3, a + {3 E [0,1] we have 

A -(O'+.ln = A -0' A -f3. 

(iii) For each a E (0,1], A-O' is one-to-one. 

In view of (iii) one defines 

(2.1.14) 

(2.1.15) 

(2.1.16) 

One then sets D(AO') := R(A-O), where R(A-O) is the range of A-o. AO is a closed 
densely defined operator and D(AO') is a Banach space endowed with the norm 
I . IV(AQ)l where 

I x IV(AQ)=I AOx I . 
Finally, we have the following properties: 

(iv) For a, {3, a + {3 E (0,1], 
(2.1.17) 

(v) if a ;::: {3 > 0 then 
(2.1.18) 

Analytic Semigroups 
One can extend the notion of a Co-semigroup {Ttl t>O on X to that of an analytic 
semigroup {T"lzer on X, where the index set r.is some sector of the complex plane. 
Clearly to preserve the semi group structure, see Definition 2.1.1, this sector must be 
an additive semi group of complex numbers. For our definition we restrict ourselves 
to angles around the positive real axis. 

Definition 2.1.7 Let r = {z E C: </>1 < argz < </>2,</>1 < 0 < </>2}, where argz 
is the argument of the complex number z and </>1, </>2 E !R.An analytic semigroup, 
{T"l:er on X, is a family of bounded linear operators on X, such that 
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(a) z ~ Tz is analytic in f, 

(b) TZl +Z2 = TZl Tz2 , for Zl, Z2 E f and To = I, where I is the identity operator on 
X, 

(c) limz .... o Tzx = x, for every x E X and z E f. 

From the definition one can see that the restriction of an analytic semigroup to 
the real axis is a Co-semigroup. If the analytic semigroup restricts to a contraction 
(respectively, uniformly bounded) semigroup then we call it a contraction (respec­
tively, uniformly bounded) analytic semigroup. There are many advantages of using 
analytic semigroups over Co-semigroups and these are highlighted in the following 
Theorem. 

Theorem 2.1.8 Let A be a positive operator on X such that -A is the generator 
of an uniformly bounded analytic semigroup. We denote its restriction to the T'eal 
axis by {e- tA } . Then for a E (0,1]' 

t~O 

(a) e-tA : X ~ D(AQ) for every t > O. 

(b) For every x E D(AQ), e-tAAQx = AQe-tAx. 

(c) For t > 0, AQe-tA is bounded and there exists a constant C1(o') > 0 such that 

(d) There exists a constant C2(o') > 0, such that, for x E D(AQ), 

1 e-tAx - x I~ C2(O')tQ I AQx I, t 2:: O. 

2.2 Real Interpolation Spaces 

The Real Interpolation Spaces (X, D(A))o,p 
Suppose three Banach spaces X, Y and D satisfy 

Ye D eX, 

(2.1.19) 

(2.1.20) 

where C denotes continuous imbedding, then D is called an intermediate space 
between X and Y. If, in addition, for every linear operator T E L(X), such that 
TIY E L(Y), where TIY denotes the restriction of T to Y, one has TjD E L(D), 
then D is called an interpolation space between X and Y. There are various ways 
of constructing interpolation spaces between X and Y and this theory is covered 
extensively in, for example, [Be/Bu,67]' [Ber,Lo,76) and [Tr,78], see also [Lu,95] for 
a concise yet sophisticated presentation. We are interested in those spaces defined 
using the real interpolation method with exponents 0 E (0,1), p E [1,(0) and 
they are denoted (X, Y)o,p' A deep understanding of this theory is not necessary for 
reading our work. Indeed, we are only interested in the special case when Y = D(A), 
the domain of an operator A. In particular, we assume that A is a positive operator 
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with -A the generator of an analytic semigroup {e- tA }t>o' In this case, see [Tr,78]' 

the spaces (X, D(A))o,p can be characterised as follows. For 0 E (0,1) and p E [1, (0), 

(X, D(A))o,p = {x E X :I x lo,p:= 10
1 

I t1-0-~Ae-tAx IP dt < oo} . (2.2.21 ) 

The spaces (X, D(A))o,p are Banach spaces with the norm I . lo,p and, for 0 < 8 < 0, 
we have the following inclusions which are continuous and dense 

D(A) c (X, D(A))o,p C (X, D(A))o,p C X. (2.2.22) 

In particular, the spaces (X, D(A))o,p satisfy the interpolation property mentioned 
above, i.e. if a linear operator T: X ---. X is such that T E L(X) and T E L(D(A)) 
then T E L((X, D(A))o,p) for each 0 E (0,1), P ~ 1. Moreover, there exists a 
constant C(B,p) > ° such that 

IT IL((X,D(A))9.P):5 C(B,p) IT It(D(A))1 T Il(~) . 

The spaces (X, D(A))o,p also satisfy the following: 

(i) For I" E (0,1), p > 1, 

(ii) For s, 1",1"11 1"2 E (0,1), p > 1, 

with equivalence of the respective norms. 

(iii) For a> 0, 
D(AQ) C (X, D(A))o,p' 

(2.2.23) 

(2.2.24) 

(2.2.25) 

(2.2.26) 

Note that (2.2.22), (2.2.23) and (ii) hold for any real interpolation space (X, Y)o,p, 
where Y C X, not just in the case Y : D(A). Note that (ii) is a version of the 
so-called Reiteration Theorem, see [Tr, 78]. 

The Sobolev-Slobodetski Spaces 
The contents of this subsection can be found in [Tr,78]. For p E [1, (0), n E Nand 
o an open bounded interval of R, the Sobolev space lVn,p( 0, R) is defined as the 
the vector space of all functions u : 0 ---. II whose weak derivatives Dau , a E N, 
a ~ n, belong to £1'(0, R), the space of Lebesgue p-integrable functions. Recall that 
v E LP(O,~) is the nth weak derivative of u E LP(O,~) if 

10 u(x)q&(n)(x)dx = (_I)n 10 v(x)q&(x)dx 

for every test function 4>. v is then denoted Dnu. For n EN, p E [1,00), the Soholev 
spaces wn,p(o,~) are Banach spaces with the norm 

1\ 

/ u /n,P:: L: / Diu /LP (2.2.27) 
i=O 
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where I . ILl> denotes the norm on LP( 0, JW.). 
For 8 E (0,00) \ N, the Sobolev-Slobodetski space }VS,P( 0, JW.) is defined via the real 
interpolation method, i.e. 

(2.2.28) 

where n EN is such that; = 0 E (0,1). 
Different Sobolev spaces are obtained using other interpolation methods, yet one 
reason for the choice of these particular Sobolev spaces is the following useful char­
acterisation: 
u E WS,P( 0, JW.) if and only if u E Wn,p( 0, JW.), where n = [8]' the integer part of s, 
and 

111 DnU(XI) - D
n

U(X2) IPd d I I Xl X2 < 00. (2.2.29) o 0 Xl - X2 Hap 

For oS E (0,00) \N, the spaces W8,P(0,JW.) are Banach spaces with the norm 

(2.2.30) 

where n = [8] and I . In,p is given by (2.2.27). Note that we have used the same 
notation for the norms of the spaces (X, D( A ))s,p and }VS,p. It will always be clear 
from the context to which space they refer. Finally we say that U E }VS,P( 0, JW.d) if 
and only if each of the real-valued coordinate functions of U belong to vVS,P(O, JW.). 
We will need the following theorem: 

Theorem 2.2.1 (The Sobolev Imbedding Theorem) Suppose 8 > n + 1) then 
P 

the imbedding map 

is well defined and bounded. 

Here Cn(O,JW.d) is the space of continuous functions on 0, the closure of 0, whose 
derivatives up to order n exist on 0 and have continuous extensions to 0. 
We end this subsection with an example of an analytic generator of a semi group on 
LP(O, JW.d), where ° = (0,211'). Theorem 2.2.1 implies that 

W 2,P(0, 211'j JW.d) '-+ C1([0, 211']; JW.d). 

Thus, each U E W2,p(0, 211'; JW.d) can be identified with a continuously differentiable 
function il, where il and its (classical) derivative, il' , have continuous extensions to 
the whole of the closed interval [0,211']. We denote u by u. Consider the operator 
Q := D2 with the boundary conditions u(O) = u(211') and u'(O) = u'(211'). One can 
show, see [Tr,78], that Q is the generator of a contraction analytic semigroup on 
LP(O, 211'j JW.d) with domain 

D(Q) = {u E W 2,P(0, 211'j JRd) : u(O) ='u(211') and u'(O) =: u'(211')} . (2.2.31) 

The space defined by the RIlS of (2.2.31) will be denoted W;~~(O,211'i JW.d). 
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2.3 Manifold Theory 

We present the basic theory required for our work. There are many classical texts 
where our presentation can be found, e.g. [Ko/No,63] and [Sp,75]. The author refers 
the beginner to the book [O'Ne,83], which is an excellent introduction to this theory. 

By a smooth m-dimensional manifold M we mean a topological second countable 
Hausdorff space along with a complete atlas of dimension m. For each p E AI we have 
a tangent space TpM which is an m-dimensional vector space. Using the topology 
of AI one can glue these spaces together to obtain the Tangent Bundle TAt of AI, 
I.e. 

TAI = U TpM. 
pEM 

(2.3.32) 

T M has the structure of a 2m-dimensional smooth manifold. A smooth vector field 
von M is a smooth map v : M -+ T M, such that v(p) E TpM for p E M. We denote 
the vector space of these maps by COO(M, T M). For each p E AI, let .c2(TpM j JR) 
denote the space of bilinear, symmetric and nondegenerate forms on TpM. A smooth 
map 9 on M, which assigns to each p E M an element g(p) = g(p)(-'.) E .cHTpAI; JR), 
is called a metric on AI. In particular, for each p EM, g(p) is an inner product 
on the tangent space TpM. Sometimes we will write gp for g(p), p E AI. As an 
example, the Euclidean metric <, >0 on JRd is defined by 

d 

< vp, up >1':= L UjVj, P E JRd 
i=1 

(2.3.33) 

where, for example, vp = (p,v) E TpJR d with v = (Vl" .. ,Vd) E JRd. Thus, the 
Euclidean metric just assigns the standard inner product on JRd to each tangent 
space TpIRd, p E JRd. 
Let Wi, i = 1,2 be open sets in M and i : WI -+ W2 a diffeomorphism. Then i is 
said to be an isometry if 

g(p)(U,V) = g(i(p))(i'(p)u,i'(p)v), p EM, U,V E TpM, (2.3.34) 

where i' is the derivative of i and for each p E M, i'(p) : TpA1 -+ Ti(p)AI is a linear 
map. Let a : I -+ M be a smooth curve in M, where I is an open interval on the 
real line. Suppose that a(a) = p E M for some a E I, then there exists a map P, 
associated with the Levi-Civita connection on M, such that for any bEl 

p;(b) : TpM -+ Tc;(b)Al. 

P is called Parallel Translation along a. In particular, for the isometry i described 
above, let P be translation, along the curve i 0 a, from Ti(p)M to Ti(q)A1 where 
q = a(b) E AI. One can prove, see [O'Ne,83], 

i'(q) 0 P: = P/(~l 0 i'(p). (2.3.35) 

Note that Parallel Translation depends on the smooth curve a. 
We may imbed M smoothly into some Euclidean space, Jld, d> m, and thus view 
(the image of) M as a submanifold of Rd and (the image of) each TpAf as a linear 
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subspace of TpJlll. d• As a result, for each p E M, there is a direct sum decomposition 
of the tangent space TpJlll. d

, i.e. 

where 
TpAll. := {v E TpJlll. d :< v, U >p= 0, 'iu E 1~1\J} . 

Here <, >0 is the Euclidean metric on JllI.d given by (2.3.33). 
Given the decomposition (2.3.36) one defines the Normal Bundle of 1\J by 

N 1\1:= U TpMl.. 
pEM 

(2.3.36) 

(2.3.37) 

(2.3.38) 

The Normal Bundle has the structure of a d-dimensional smooth manifold. There 
exists a smooth projection map 7rN : N AI -t 1\J given by 

(2.3.39) 

We now introduce the notion of a tubular neighbourhood, which will play an 
important role in our work. Using the above notation, there exists an open neigh­
bourhood U of AI in JllI.d and a diffeomorphism c.p from an open set V in N AI onto U. 
This U is called the tubular (or Normal) neighbourhood of 1\1 in JllI.d. The existence 
of a tubular neighbourhood for AI is a nontrivial result. Most texts prove the result 
for the case M is compact, which will suffice for us. See [O'Ne,83] which deals also 
with the noncompact case. On an intuitive level, the tubular neighbourhood can be 
described as follows, see [Bo/Tu,82]. Suppose AI is a curved length of string in JllI.3, 

where M is imbedded in a tube U. U can be thought of as being made up of cross 
sectional discs each of which is perpendicular to the string at the center. 

2.4 Stochastic Analysis and Stochastic Integra­
tion in M-type 2 Banach Spaces 

Stochastic Analysis 
We assume basic knowledge of stochastic processes and present here certain defi­

nitions and results for completeness. The following notation will be used throughout. 
Let X be a metric space and (O,:F, IF) be a probability space with given increasing 
right-continuous filtration {:Fd t~a C :F with :Fa complete. 

Definition 2.4.1 A stopping time T is a random function T : n -t [0,00] such that 

{T $ t} := {w EO: T{W) $ t} E:Ft for each t ~ O. (2.4.40) 

Proposition 2.4.2 If T and (1 are stopping times then so are mint T, (1} := T 1\ (1) 

max{ T, (1} := T V (1 and T ± (1. Furthermore if {Tn} nEN is a sequence of stoppin.q 
times then sUPnEN Tn is also a stopping time. 
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Proposition 2.4.3 Let ((t), t 2: 0, be a X -valued stochastic process with continuous 
paths and U an open set in X. Define 

TU:= inf{t E [0,(0): ((t) ~ U}, 

with the convention that TU := 00 if e never leaves the set U. Then TU is a stopping 
time. 

The proofs of the above Propositions can be found in [We,Sl]. Following [Sr/El,9S], 
see also [Kun,90], we call a stopping time T accessible if and only if there exists a 
sequence of stopping times {Tn} such that 

Tn < T a.s. and 

For a stopping time T we set 

lim Tn = r a.s .. 
n-oo 

flt{r) := {w En: t < r(w)}, 

[0, T) X n := ((t,w) E [0, (0) X n : ° ~ t < r{w)}. 

(2.4.41) 

(2.4.42) 

(2.4.43) 

A process e: [0, T) X fl -+ X, written e{t), t < T, is said to be admissible if and only 
if 

(i) elfl.(T) : nt{T) -+ X is Ft-measurable for any t 2: 0, i.e. e is adapted, 

(ii) for almost all wEn, [O,T{W)) 3 t 1--+ e(t,w) E X is continuous. 

Stochastic Integration in M-type 2 Banach Spaces 
The following definition is fundamental for our work. 

Definition 2.4.4 A Banach space X is called M-type 2 if and only if there exists 
a constant C(X) > ° such that for any X-valued martingale {Md the following 
inequality holds 

supE 1 Mk 12~ C(X) EEl Mk - Mk- 1 12. 
k k 

(2.4.44) 

For the definition of a Banach space valued Martingale see [Me,82]. Using the 
properties of the conditional expectation, see [DP IZ,92], one can prove that any 
Hilbert space is M-type 2. Furthermore for 2 ~ p < 00, LP(O, JRd) are M-type 2, 
see [Br,95]' and using this fact one can show that for 2 ~ p < 00 and 0 E (0,1) the 
spaces WO,I'(O, JRd) are also M-type 2, see [Br/EI,9S]. 

The theory of stochastic integration in infinite dimensional Hilbert spaces has 
been developed and is well understood, see [DP IZ,92] and [Ic,83] for a summary of 
this theory. It is known that for general separable Banach spaces there are difficulties 
even in the finite-dimensional case. In an unpublished thesis by Neidhardt, [Ne,78]' 
a theory of stochastic integration was developed for a certain class of Banach spaces 
known as 2-uniformly smooth Banach spaces, which are Banach spaces which satisfy 

(2.4.45) 

for some constant A > 0. Similar work was carried out independently by Dettweiler, 
see [De,91] and references therein. It is known, see [Pi,76], that a Banach space is 
2-uniformly smooth if and only if it is M-type 2. What we present here is taken from 
[Br/EI,98]. Some results in [Br/EI,98]' which have been proved using the inequality 
(2.4.44) instead of (2.4.45), are stronger than those in [Ne,78]. 
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Definition 2.4.5 For separable lIilbert and Banach spaces II and X we set 

M(II, X) := {T : II --+ X : T E L(II, X) and T is ,-radonifying} (2.4.46) 

By ,-radonifying we mean the image T( /H) of the canonical finitely additive Gaus­
sian measure ,H on II is (I-additive on the algebra of cylindrical sets in X. 

Remark 2.4.6 The algebra of cylindrical sets in X generates the Borel (I-algebra, 
E(X) on X, see [Kuo,75j. Thus T({H) extends to a Borel measure on E(X) which 
we denote by VT. In particular, VT is a Gaussian measure on E(X), i.e. the image 
measure ).(VT) is a Gaussian measure on E(~) for each), E X·, the dual of X. If 
).(VT) has mean value 0 for each), E X·, then VT is called a centered/symmetric 
Gaussian measure. 0 

For T E M(II, X) we put 

(2.4.47) 

As VT is Gaussian, then by the Fernique-Landau-Shepp Theorem, see [Kuo,75j, 
IT IM(H,X) is finite. Furthermore, see [Ne,78], M(II,X) is a separable Banach space 
endowed with the norm (2.4.47). 

Definition 2.4.7 Let E be a separable Banach space. We say that i : 1I '---t E i8 
an Abstract Wiener Space, A WS, if and only if i is a linear, one-to-one map and 
i E M(II,E). Ifi: II '---t E is an AWS, then the Gaussian measure Vi on E will be 
denoted by p and called the canonical Gaussian measure on E. 

Remark 2.4.8 The notion of an AWS was introduced by Gross, [Gr,65]' who named 
it thus since the classical Wiener space is the most familiar example. There is a vast 
literature on the theory of AWS's, yet the above definition will suffice for our needs. 
We refer the interested reader to [Kuo,75j and [Ro,93j for more details and references. 
We point out that many authors require i(II) to be dense in E in the definition of 
an AWS, in alignment with the work of Gross. This is an unnecessary restriction for 
us. Indeed, Sato, [Sa,69j, proved that given a separable Banach space with Gaussian 
measure p, then there always exists a Hilbert subspace II C E such that i : II '---t E 
is an AWS, with p = Vi, where i is the inclusion mapping. 0 

Remark 2.4.9 The Hilbert space II appearing in the above definition is often re­
ferred to as the reproducing kernel Hilbert space, RKHS, of (E, pl. 

As an example relevant to our work, let 0 be an interval and 1I1,2( 0, ~d) be the 
Hilbert space of functions f such that f and its weak derivative D f both belong to 
L2(O,lRd ). Then, see [Br,96]' i: }{l,2(O,lRd) '---t W 9,p(O,lRd ) is an AWS, where 
() E (0, ~), P ~ 2. Here H 1,2(O,lRd

) is the Hilbert space of functions u E L2(O,~d) 
whose weak derivative u' also belongs to L2(O, ~d). Moreover, the range of 
IIl,2(O,lRd) is dense in W 9,p(O,lRd). Another example is given by 

H1,2(O 211"lRd) '---t W 9,P(O 211"lRd) per " per , , , 

with () as above, where 
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and 
W:~~(o, 27r; m.d) = {u E WO,P(O, 27r; m.d) : U(o) = u(27r)}. 

o 
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Suppose that a triple (n,:F,]F) is a complete probability space and let i : Il ~ E 
be an AWS. Let w(t), t ~ 0, denote the canonical E-valued Wiener process, i.e. a 
continuous process on E such that 

(i) w(o) = ° a.s.; 
1 

(ii) the law of the random function t- 2 w(t) : n ~ E equals /-l, for any t > 0; 

(iii) if:Fa is the cr-algebra generated by w(r), r E [0, s], then w(t) - w(s) is indepen­
dent of :Fa for any t ~ s ~ 0. 

Remark 2.4.10 We explain what we mean by canonical Wiener process. Given 
any separable Banach space E with Gaussian measure /-l then there may exist a 
variety of Wiener processes related to /-l. Due to the result of Sato, there exists IJ 
and i such that i : H ~ E is an AWS. Let {ed k>l be an orthonormal basis of II and 
{,Bk(t)}k>l a sequence of independent, identically distributed real-valued Brownian 
motions.- For each t ~ 0, the series 

00 

W(t) = ~ ,Bk(i)i( ek) 
k 

(2.4.48) 

converges almost surely in E and is an E-valued Wiener process, as described above. 
We refer to this Wiener process as the canonical Wiener process. Although we will 
not make use of the representation (2.4.48), we will always make this canonical 
choice of Wiener process. 0 

Let S be a Banach space and T E (0,00]. Let N(O, Tj S) be the space of (equivalence 
classes of) functions e : [0, T) x n ~ S which are progressively measurable, i.e. 

[0, t] x n ~ (s,w) ~ e(s,w) E S 

is B[o,t] X :Ft measurable for each i E [0, T), where B[o,t] is the class of Borel subsets 
of [0, i]. Let Nstep(O, Tj S) be the space of all e E N(O, Tj S) for which there exists 
a partition ° = to < tl < ... < in = T such that e(t) = e(tk) for t E [tk, tk+d, ° $ k $ n - 1, kEN. 
For p E [1,00) we define 

M'(O, T: S) := {e E N(O,T: S) :Ie Iw:= IE J.T 1 e(s) I' ds < "'+ (2.4.49) 

MP(O, Tj S) is a closed subspace of LP([O, T] x 0; S) and is thus a Banach space. Set 
M:tep(O, Tj S) := MP n Nstep. For e E MP(O, Tj L(E, X)) define a measurable map 
I(e): 0 ~ X by 

n-l 

I(e) := E e(tk)(W(tk+1) - W(tk)). 
j=1 

(2.4.50) 
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Lemma 2.4.11 Suppose i : II -+ E is an A WS with canonical E -valued Wiener 
process w(t), t ~ 0, X is an M-type 2 Banach space and T E (0,00]. Then for 
e E M:tep(O, T; L(E, X)), 1(e) E L2(Oj X), JFJ(O = 0 and 

IE I 1(0 I~ $ C faT IE I e(t) 0 i lit(H,X) dt. (2.4.51 ) 

The proof of Lemma 2.4.11 uses the M-type 2 property defined earlier. Furthermore 
it uses the fact that if i E M(II, E) and A E L(E, X) then A 0 i E M (II, X) with 
I A 0 i IM(H,X) $ C I A IL(E,X), see [BrjEI,9S]. 
The fundamental property of the map 1 is that it extends uniquely to a bounded 
linear map from M2(0, Tj M(H, X)) into L2(0; X). This is a consequence of (2.4.51) 
and the fact, proven in [Ne,7Sj, that M~ep(O, Tj L(E, X)) is dense in 
MP(O, Tj M(H, X)). For e E MP(O, T; M(II, X)), the value of this extension will be 
denoted by fer e(s)dw(s). 
Let T be a finite stopping time with respect to the filtration {Ttl, i.e. T < 00 a.s .. 
For e E MP(O, 00; M(II, X)) we define 

loT e(s)dw(s) := 10
00 

1[O,T)e(s)dw(s) (2.4.52) 

where 1[O,T) is the characteristic function of the stochastic interval [0, T). Vie have, 
see [Br,97] and [BrjEI,9S], 

Theorem 2.4.12 Suppose i : II -+ E is an AWS with canonical E-valued Wiener 
process w(t), t ~ 0, and X is an M-type 2 Banach space. Assume that 
e E M2(0,oojL(E,X)) and let 1(t) := f~e(s)dw(s) for t > O. Then, 1(t) is a 
continuous X -valued martingale and for any p E (1,00) there exists a constant 
Cp > 0 such that, for any finite stopping time T > 0, 

IE sup I 1(s) 1~::5 Cp {loT IE I e(s) lit(H,X) ds}~. 
0$5$T 0 

(2.4.53) 

The inequality (2.4.53) is the Burkholder inequality. The case p = 2 was proved in 
[Ne,78] and later, using the M-type 2 inequality, (2.4.44), was proved in [De,91] for 
p ~ 2. 

Remark 2.4.13 In the above we may replace Al(II, X) by L(E, X). In particular 
foT e(s)dw(s) exists for any e E M2(0,T;L(E,X)) and satisfies ' 

IE sup I r e(r)dw(r) I~$ Cp {faT IE I e(s) li(E,X) ds}~. 
0$4$T 10 0 (2.4.54) 

Henceforth we will work with processes e E M 2(O,TjL(E,X)). The following lo­
calization property of the Ito integral, defined in (2.4.52), will be of some importance. 
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Theorem 2.4.14 Suppose i : 1I -+ E is an AWS with canonical E-valued Wiener 
process w(t), t ~ 0, and X is an M-type 2 Banach space. For k = 1,2, let 
ek E M2(0, 00; L(E, X)). Assume that we have a stopping time T and no E F, such 
that JlD(F) > ° and T > ° on no. Suppose further that, for each t > 0, 

C1(t) = 6(t) a.s. on {w E no: t < T(W)}. 

Then, for any stopping time a, satisfying a ::; T a.s. on no, it follows 

1u 

t1(s)dw(s) = 1u 

6(s)dw(s) a.s. on no . (2.4.55) 

Before we state the Ito formula we need to introduce some additional notation. 
By L2 (E; X) we denote the space of bounded bilinear maps, A : E x E -+ X. Let 
i : H -+ E be an AWS. We define the map tr : L2(E; X) -+ X by 

trA := k A(e, e)dfl(e), (2.4.56) 

where fl is the canonical Gaussian measure on E. In view of the Fernique-Landau­
Shepp Theorem, tr is a bounded linear map. Note also that the tr map depends on 
the choice of AWS. 

Theorem 2.4.15 (Ito Formula) Suppose i : H -+ E is an A WS with canonical 
E-valued Wiener process w(t), t ~ 0, and X and Yare M-type 2 Banach spaces. 
Assume that a function f : [0, T) x X -+ Y is of C1 ,2 -class, i. e. ¥t, ~ and ~ exist 
and are continuous on [0, T) X X with values in the appropriate space. Suppose we 
have a process e(t), t E [0, TJ, given by 

t(t) = t(O) + fat a(s)ds + l b(s)dw(s), (2.4.57) 

where a E M1(0,T;X) and b E M2(0,T;L(E,X)). Then, for all t E [O,T), the 
Y -valued process f(t, e(t)) is given by 

f(t, t(t)) - f(O, t(O)) = fat ~~ (s, t(s))ds + fat ~~ (s, t(s))a(s)ds 

+ fat ~~(s,e(s))b(s)dw(s) 

+ ~ 1t tr {~~(s,e(s)) 0 (b(s), b(S))} ds (2.4.58) 

The following Theorem and Proposition will be needed. The author does not know 
of any proofs in the literature which cover the M-type 2 Banach space case and so 
we present them here. The proofs are not dissimilar to the Hilbert space case, see 
[CujPr,78], but we present them for completeness. 

Theorem 2.4.16 (Stochastic Fubini Theorem) Suppose i : If -+ E is an AWS 
with canonical E-valued Wiener process w(t), t ~ 0, and X is an M-type 2 Banach 
space. Let T E (0,00]. Suppose 

hE L2([0, T) x [0, T) x n; L(E, X)) 

is such that, for almost alit E [O,T), h(·,t) E M2(0,T;L(E,X)). Then, for all 
t~O 

fat fat h(s, r)dw(s)dr = fat fat h(s, r)drdw(s) a.s .. (2.4.59) 
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Proof: Let h E L2([0, T) x [0, T) x 0; L(E, X)) such that, for almost all, a.a., 
t E [0, T), h(., t) E M;tep(O, T; L(E, X)). Then 

J.' J.' h(s, r )dw( s )dr = J.' (% h(t" r)( w(t'+I) - w(t,ll) dr 

= % (lot h(tk' r)dr) (w(tk+d - W(tk)) 

= lot lot h(s,r)drdw(s) a.s.. (2.4.60) 

Let h E L2([0,T) x [O,T) x O;L(E,X)) such that a.a. t E [O,T), 
h(·,t) E M2(O,T;L(E,X)). There exists a sequence 

{hn}nEN C L2([0, T) x [0, T) x 0; L(E, X)) 

which are step functions in the first variable and 

It It 2 
lE 10 10 I hn(s, r) - h(s, r) Ix dsdr --+ 0, as n --+ 00, (2.4.61 ) 

see [Ne,78]. Using (2.4.60), the Holder and Burkholder inequalities, we have the 
following sequence of inequalities 

IE I fat fat h{s, r)dw(s)dr - fat fat h(s, r)drdw(s) I~ 

:5lE I lot lot h(s,r) - hn{s,r)dw(s)dr I~ 

+ lE I lot lot hn(s, r) - h(s, r)drdw(s) I~ 

:5 ttlE lot I lot h(s, r) - hn(s, r)dw(s) I~ dr 

+ ClE fat I fat hn(s,r) - h(s,r)dr I~ ds 

:5 C(t)lE lot lot I h(s,r) - hn(s,r) I~ dsdr 

+ C(t)lE fat it I hn(s, r) - h{s, r) Ii drds. 

Let n tend to infinity, then (2.4.61) and the standard Fubini Theorem imply (2.4.59) . 

• 
Proposition 2.4.17 Suppose i : H --+ E is an AWS with canonical E-valued 
Wiener process w(t), t ~ 0, and X is an M-type 2 Banach space. Let T E (O,oo]. 
Suppose h E M2(0, T; L(E, D(A)) where D(A) is the domain of a closed densely 
defined linear operator A on X. Then for each t 2:: ° 

fat h(s)dw(s) E D(A) a.s. (2.4.62) 

and 
A fat h(s)dw(s) = fat Ah(s)dw(s) a.S .. (2.4.63) 
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Proof: Note that M:tep(O, T; L(E, D(A))) is dense in M2(0, T; L(E, D(A))) where 
D(A) is endowed with the graph norm. For h E M2(0, T; L(E, D(A))) there exists 
a sequence 

such that for each t 2: 0 

(2.4.64) 

as n -+ 00. It is straightforward to show that for each t 2: 0 and n EN, 

(2.4.65) 

Denote 

x(t) := 1t h(s)dw(s), xn(t):= lot hn(s)dw(s) and y(t) := 1t Ah(s)dw(s). 

Note that as A E L(D(A), X) then Ah E M2(0, Tj L(E, X)) and so y is well defined. 
Moreover the definition of the stochastic integral for Ah E M2(0, Tj L(E, X) is 
independent of the approximating sequence. As {Ahn } approximates Ah, we have, 
for each t 2: 0, 

lim AXn(t) = y(t) in L2(0, X), 
n ..... oo 

(2.4.66) 

It then follows that, for each t 2: 0, 

lim (xn(t), Axn(t)) = (x(t), y(t)) in L2(0, X x X). 
n ..... oo 

(2.4.67) 

(2.4.67) then implies that there exists a subsequence of {(xn(t), Axn(t))}, denoted 
({xn(t), AXn(t))} again, such that 

(Xn(t), Axn(t)) -+ (x(t), y(t)) a.s. in 0, t 2: 0. (2.4.68) 

(2.4.62) and (2.4.63) now follow from the closed ness of A . 

• 
Stratonovich Integrals 

The following two definitions are taken from [Br/EI,98]. 

Definition 2.4.18 Suppose i : II -+ E is an AWS with canonical E-valued Wiener 
process w(t), t 2: 0, and X is an M-type 2 Banach space. Let T E (0,00] and ((t), 
t E [0, T] be a stochastic process such that for any t 2: 0 

e(t) = e(O) + lot a(s)ds + lot b(s)dw(s) a.s. 

where a E M1(0, Tj X) and bE M2(0, Tj L(E, X)). Then for a C1 map 
h : X -+ L(E, X) we define the Stratonovich Integral of h(e(t)) as 

r r 1 r 10 h(e(s)) 0 dw(s) := 10 h(e(s))dw(s) +"210 tr[h'(e(s))b(s)]ds. 

(2.4.69) 

(2.4.70) 
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• 
Definition 2.4.19 Suppose i : H ---. E is an AWS with canonical E-valued Wiener 
process w(t), t ~ 0, and X is an M-type 2 Banach space. Let T E (0,00]. Let h be 
as above and let f : X - X be a continuous function. We say that a process 
e(t), t E [0, TJ, is a solution to the Stratonovich equation 

de(t) = f(e(t))dt + h(e(t)) 0 dw(t) (2.4.71) 

if and only if it is a solution to the Ito equation 

de(t) = {f(e(t)) + ~tr{hl(e(t))h(((t))}} dt + h(e(t))dw(t). (2.4.72) 

Thus e(t) is a solution to (2.4.71) if and only if it satisfies for each t ~ 0 

e(t) = e(O) + [t f(e(s)) + ~tr{h'(e(s))h(e(s))}ds 10 2 

+ 10
t 

h(e(s»dw(s) a.s .. (2.4.73) 

2.5 Some Inequalities 

Lemma 2.5.1 (Gronwall Inequality) Let u : [0, oj ---. m. be continuous and non­
negative. suppose C ~ 0, I< ~ ° are such that 

u(t) :::; C + I< 1t u(s)ds 

for all t E [0, oj. Then 
u(t) :::; CeKt (2.5.74) 

for all t E [0, a]. 

Lemma 2.5.2 (Young Inequality) Assume p, q and r E [1,00] satisfy 

1 1 1 
- = - + - - 1. (2.5.75) 
r p q 

If f E D'(m.d, m.) and g E U(m.d, m.), the convolution f * g, given by 

(f * g)(x) = [ f(x - y)g(y)dy, lm d 

exists almost everywhere, belongs to U(m.d, m.) and satisfies 

(2.5.76) 

(2.5.77) 

If p and q are conjugate exponents then f * g is bounded and uniformly continuous 
on m.d • 
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The Stochastic Nonlinear Heat 
Equation 

3.1 The Stochastic Nonlinear Heat Equation 

Let M be a smooth compact m-dimensional Riemannian manifold with metric 9 
and let 3 1 be the unit circle. Let Wt be an E-valued Wiener process defined on some 
complete probability space (O,:F, JP», where E is a suitable Banach space of loops on 
~m, i.e. 7] : 3 1 -+ ~m. For u: [0,00) X 3 1 X 0 -+ M, we will consider the following 
stochastic partial differential equation, SPDE, 

(3.1.1) 

where we write Ut(o-) := u(t, 0-) and we have suppressed the dependence on w E O. 
We explain the notation used in (3.1.1). 

(i) v E COO(M,TM) i.e. v is a smooth vector field on M. 

(ii) h E COO(M, L(~m, T M)) i.e. h is a smooth section of a bundle IF over M, whose 
fibres are IFx = L(~m, TxM), x E M. 

(iii) odWt denotes the Stratonovich differential. 

(iv) 6 is the nonlinear Laplacian, i.e. for a C2 map u : N -+ M, where N is a 
smooth manifold, 60u is the trace of the second derivative of u. For our case, i.e. 
N = 3 1 , as 3 1 is one dimensional, 60u is just the second derivative of u. 

Let 0- E 3 1 and ([;, c.p) be a chart covering the point u( 0-) EM, i.e. [; is an open 
set in M with u( 0-) E [; and <p : (; -+ ~m is a diffeomorphism onto some open set 
in ~m. The local expression for 6ou(0-) E TU«(f)M with respect to this chart, where 
TU«(f)M is the tangent space of M-at the point u(a), is given by 

(3.1.2) 

see [Ha,75]. For i,j, k = 1, ... , m, r~j : U -+ ~ are the Christoffel symbols on M, 
corresponding to the metric g. In the case of M = ~d with 9 taken as the usual 
Euclidean metric, the Christoffel symbols vanish and we are left with the standard 
Laplacian. 

22 
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The following discussion will motivate a satisfactory definition of a solution to 
(3.1.1). Given (M,g) we may imbed M smoothly into some Euclidean space ]W.d. 
Furthermore the metric on M can be extended to a metric on ]W.d, which we denote 
by 9 again. Thus M is an imbedded submanifold of (]W.d,g). Moreover as (]W.d,g) 
is covered by a single chart, then for a C2 function u : S1 -+ ]W.d, the nonlinear 
Laplacian of u takes the form 

D.u = -Au + F(u), (3.1.3) 

where -A = d~2 and for u E SI 

(3.1.4) 

For i,j, k = 1, ... , d, rfi : ~d -+ ]W. are now the Christoffel symbols relating to the 
metric 9 on ~d. Note that these functions need not vanish, as in the case of the 
Euclidean metric. If we extend v and h to v and h, which are defined on the whole 
of ]W.d, then we may then consider the SPDE (3.1.1) as an SPDE in the Euclidean 
space ]W.d, i.e. for u : [0,00) X SI x n -+ ~d, 

(3.1.5) 

We may reformulate (3.1.5) as a stochastic evolution equation, (SEE), on a suitable 
function space, i.e. 

du(t) + Au(t)dt = F(u(t))dt + V(u(t))dt + H(u(t)) 0 dw(t). (3.1.6) 

Here F(u) has the same meaning as in (3.1.4). V and H are the Nemytski maps 
corresponding to v and h, i.e. for a map u : SI -+ ]W.d, V and H act through the 
following formulas 

V(u)(u) = v(u(u)), 

H(u)(u) = h(u(u)), 

where u E S1. If, for each u E S1, u(u) E M, we have 

V(u)(u) = v(u(u)), 

H(u)(u) = h(u(u)). 

(3.1.7) 

(3.1.8) 

(3.1.9) 

(3.1.10) 

By a solution to (3.1.6) we would ideally want a D(A)-valued process u(t), where 
D(A) is the domain of the operator A, satisfying the following integral equation 

u(t) + lot Au(s)ds = u(O) + lot (F(u(s)) + V(u(s))) ds 

+ lot H(u(s)) 0 dw(s). (3.1.11) 

Such a solution is often referred to as a strict solution. To prove the existence of such 
a solution is nontrivial to say the least. The difficulty lies in the fact that A is an 
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unbounded operator. It is known that -A is the generator of an analytic semigroup, 

{e-tA } , on U(Sl, ~d) with domain D( -A) = W2,p(Sl, ~d). Furthermore, see 
t>o 

[Ic,83], for example, if a strict solution exists then the solution also satisfies a mild 
version of (3.1.11), i.e. 

u(t) = e-tAu(O) + 10
t 
e-(t-.)A (F(u(s)) + V(u(s))) ds 

+ 10t 
e-(t-.)AH(u(s)) 0 dw(s). (3.1.12) 

To prove existence of a process satisfying (3.1.12) is easier because, for each t ~ 0, 
e-tA is a bounded linear operator. Such a solution is called a mild solution. After 
the statement of our Theorem we discuss the possibility of a mild solution also being 
a strict solution. 
The function spaces we will be working in will be the Sobolev-Slobodetski spaces, 
WI/,P(Sl, ~d), (! > 0, p ~ 1, whose precise definition we will give later. We define for 
s > ~, p> 1, 

(3.1.13) 

By the Sobolev Imbedding Theorem, W.t,P(S·, ~d) ~ C(SI, ~d), for s > 1, where 
p 

C(St, ~d) is the space of continuous functions, and so (3.1.13) does make sense. We 
are now in a position to define what we mean by a solution to problem (3.1.1). 

Definition 3.1.1 Let w(t), t ~ 0, be an E-valued Wiener process defined on a 
complete probability space (n, .1", IlD), where E is a Banach space of loops on ~m, i. e. 
"l : SI -+ ~m. Let {.1"tlt>o C .1" be a right continuous filtration such that w(t) is 
adapted to this filtration -and the increment w( t) - w( s) is independent of .1". for 
each t, s ~ O. 
A stochastic process u( t) defined on (n, .1", IP') is a mild solution to (3.1.1) if 

(i) for some s > 1 + !, p > 1, u(t), t ~ 0, is a continuous progressively measurable 
W.t,P(SI, M)-valued process, on [0, TJ, for each T > 0, and 

(ii) for each t E [0, TJ, u( t) satisfies the following mild stochastic integral equation 

u(t) = e-tAu(O) + 1t e-(t-s)A (F(u(s)) + V(u(s))) ds 

+ 1t e-(t-s)A H(u(s)) 0 dw(s) a.s., 

where F, V and H are defined as in (3.1.4), (3.1.7) and (3.1.8). 

(3.1.14) 

Remark 3.1.2 The requirement that s > 1 + ; is to guarantee that the term 
involving the nonlinear map F, given by (3.1.4), makes sense classically. Indeed if 
s > 1 + ; then by the Sobolev Imbedding Theorem, Ws,p(SI, ~d) ~ C l (St, ~d), 

where Cl(Sl, ~d) is the space of continuously differentiable functions from SI to ~d. 
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Before we state our result we first explain how to extend the metric 9 from At to 
~d. We follow Hamilton's construction, see [Ha,75]. We first imbed AI smoothly 
into some Euclidean space ~d. In doing so, we identify M with its image, which we 
denote by M again, and the tangent spaces TpM, p E M, with linear subspaces of 
Tp~d, which we denote TpM again. Let U be the tubular neighbourhood of At in 
~d. As M is compact, there exists c > 0 such that M C Ue C V where 

Ue := {x E ~d : d(x, M) < c}. (3.1.15) 

Here d is the distance function on ~d. It is worth noting that if 0 < Cl < € then 
defining Uel , as in (3.1.15), we have M C Uel CUe. Moreover Ue and Vq are also 
tubular neighbourhoods of M. As AI is compact then there exists R > 0 such that 
U C B(O, R), where B(O, R) is a ball of radius R in ~d. 

From the definition and properties of a tubular neighbourhood there exists a 
smooth map i : ~d -+ ~d which vanishes outside the ball B(O, R), maps Ue to itself 
and i 2 = identity on Ve. This also holds when we replace Ue with Uel for any 
o < Cl < c. Furthermore i satisfies 

i(m) = m ¢} m E M. (3.1.16) 

We wish to obtain a metric on ~d so that i becomes an isometry on Ut;. The metric 
9 on M can be extended smoothly to Ut giving a map gl : Ut -+ £;(~d; ~). Now 
define g2 : Ut: -+ £~(~d;~) by averaging the metric gl under i, i.e. 

g;(u, v) := ~ {g;(u, v) + ghp)(i'(p)u, i'(p)v)} 

where p E Ue. In particular, this makes i : Ue -+ Ue an isometry and indeed 
i : Uel -+ Uel an isometry for any 0 < Cl < C. Now extend g2 to the whole of ~d so 
that outside the ball B(O, R) it coincides with the usual Euclidean metric. This new 
metric on ~d we denote by 9 again and we consider m.d as a Riemmanian manifold 
with this metric. By construction, the metric induced on M as a submanifold of ~d 
coincides with the original metric on M. For this reason, along with the isometric 
properties of i : Ue -+ Ue , we have the following results, whoose proofs can be found 
in [Ha,75]: 

Proposition 3.1.3 Suppose that u : SI -+ M c B(O, R) is of C2 class. Then 
6u may be calculated in two ways. We may calculate the nonlinear Laplacian of u 
treating u as a map into B(O, R), where we consider B(O, R) with the metric 9 we 
have just constructed. This we denote 6. B u. Or, treating u as a map into AI, We 

may calculate 6. u. It follows that 
-M 

(3.1.17) 

• 
Proposition 3.1.4 Suppose that u : [0,00) X SI -+ Ue is a solution to the deter­
ministic nonlinear heat equation 

f)us(u) _ A ( ) 0 E SI 
-----'- - WU s q , s > , q , 

f)s - (3.1.18) 
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(3.1.19) 

where we have denoted us (-) := u(s,·) and we consider UI! with the constructed 
metric g. Then i 0 u is also a solution to (3.1.18) with initial value i 0 v. Moreover 
we have the following identity 

i'(u).6.u = .6.(i 0 u). (3.1.20) 

Finally, note that as g coincides with the Euclidean metric outside the ball B(O, R), 
then the Christoffel symbols appearing in (3.1.4) will vanish outside B(O, R). Thus 
we may deduce that these functions are of compact support. 
We now give a statement of our main Theorem. 

Theorem 3.1.5 Let w(t) be a WO,P(St, JRd)-valued Wiener process, where () E (~,~), 

p > 2. Let Uo E Lq(n, Fo; WS,P(St, M)) where the numbers q and s satisfy q > p 

and ~2 - 1 > s > 1 +!. Then there exists a continuous, progressively measurable 
q P 

W',P(S1, M)-valued process, u(t), t ~ 0, with u(o) = un, such that u is the unique 
mild solution to (3.1.1) with initial value uo. In particular, for each t ~ 0, u(t) 
satisfies 

u(t) = e-tAu(O) + lot e-(t-s)A (F(u(s)) + V(u(s)))ds 

+ l e-(t-s)A H(u(s)) 0 dw(s) a.s .. (3.1.21) 

Remark 3.1.6 We can choose Uo E U(n, Fo; W·,p(S1, M)). Note though that 

3 2 1 
- - - > 1 + - {::> P > 6, 
2 p p 

i.e. we have a solution only if p > 6, see Chapter 4. 0 

Remark 3.1.7 The above Theorem gives the existence of a mild WS,P(SI,m. d )­

valued solution, s > 1 +;. We do not say whether this process takes values in 

D(A) := W 2,P(St, ~d) or not. It will become clear from the proof of our Theo­
rem that the low regularity of the space variable of u(t) is due to the choice of 
Wiener process. We have chosen w( t) as a Wiener process in the space WO,P( S1, m. d), 
;; < () < t, which guarantees only that for each t ~ 0, w(t) E C(St, JRd). If w(t) 
were W O+l,p(S1, JRd)-valued, then it turns out, using a simplification (!) of our 
methods, that the mild solution, denoted u(t), would be a ws+1,P(Sl, M)-valued 
solution, with s as above. In particular, u( t) E D( A) and so, see [Dr ,95] or [lc,83]' 
u( t) would satisfy 

u(t) = u(O) + lot -Au(s) + F(u(s))ds + lot V(u(s))ds 

+ lot H(u(s)) 0 dw(s). (3.1.22) 

Furthermore as s+ 1 > 2+;, then u(t): Sl -+ M is C2 class for each t ~ O. (3.1.3), 
(3.1.17) and (3.1.22) then imply 

u(t) = u(O) + l6M u(s)ds + lot V(u(s))ds 

+ lot H(u(s)) 0 dw(s). (3.1.23) 
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This observation reinforces Definition 3.1.1 as a satisfactory definition of a mild 
solution to (3.1.1). 0 

3.2 The Extensions of v and h 

Before proceeding with constructing the extensions of v and h, we need to look more 
closely at how the map i : lW. d -+ lW. d is constructed. There exists a diffeomorphism 
r.p : V -+ V, where V is an open set in N M, the normal bundle of AI, and V is the 
tubular neighbourhood of M. We define T : V -+ V by 

T(V):= -v, v E V. (3.2.21 ) 

T corresponds to multiplication by -1 in the fibres TpM 1., P EM. Note that T is 
an involution, i.e. T2(V) = v, for each v E V. Furthermore there exists a smooth 
map "p : lW. d -+ lW., such that 0 ~ "p ~ 1, with "p == 1 on V£ and "p == 0 on V, where 
€ > 0 is chosen as in (3.1.15). The map i : lW. d -+ lW. d is then defined as 

(3.2.25) 

Using the canonical projection map 7rN : N M -+ M, define the smooth map 
.,,: V -+ M, by 

-1 ." := 7rN 0 r.p • (3.2.26) 

Lemma 3.2.1 On U£ we have 

.,,(i(p)) = .,,(p) = i(.,,(p)), p E V~. (3.2.27) 

Proof: The second equality is trivial as i(m) = m <=} m E M. For the first 
equality, note that if 7](i(p)) i= T}(p) then by the definition (3.2.26), there exists 
r,s EM, r i= s such that 

Using (3.2.25) and the fact that p EVe, then 

c.p -1 ( i (p )) = r.p -1 0 r.p 0 T 0 r.p -1 (p) = T 0 r.p -1 (p) E Tr M 1. • 

As T is an involution, 

which is a contradiction. It follows that .,,(i(p)) = 1J(p) . 

• 
For a, b E Ue let p! : TaRd -+ nRd be parallel translation with respect to the 
constructed metric g. (Note that we need to specify the choice of curve, but we 
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simply take the straight line from a to b). Then as i is an isometry on Vo we have 
for p, q E VI! 

i'(p) 0 P: = p/(~! 0 i'(q). (3.2.28) 

Finally, see [Ha,75], we have for m EM, 

i'(m)v = v <=> v E TmM. (3.2.29) 

We are now in a position to define our extension v. For p E R d, define 

v(p) := 1/;(p) {P:(p) 0 v(ry(p))}. (3.2.30) 

V is a well-defined smooth vector field on m,d. It is an extension of v and it is of 
compact support. Furthermore it has the following property: 

Lemma 3.2.2 For each p E VI!) 

i'(p)( v(p)) = v( i(p)). (3.2.31 ) 

Proof: Let p E UI!' Then, using the definition (3.2.30), and the properties (3.2.27), 
(3.2.28) and (3.2.29), we have 

i'(p)v(p) = i'(p)P:(p) 0 v(ry(p)) 

= p/g{p» 0 i'(ry(p))v(ry(p)) 

p~~f{p» 0 i'(ry(p))v(ry(p)) 

= P~~f{p» 0 v(ry(p)) 

= p~~f{p» 0 v(ry(i(p))) 

= v( i(p)). 

• 
Similarly, we define the extension h of h by 

(3.2.32) 

h is well defined, smooth and has compact support. Furthermore for each p E VI! 

i'(p)(h(p)(e)) = h(i(p))(e), e E Rm. (3.2.33) 

This is proved in an identical manner to Lemma 3.2.2. The extensions of v and h 
are complete. Before considering their corresponding Nemytski maps, we will give 
a precise definition of the Sobolev-Slobodetski spaces of loops on Rd. 

3.3 Sobolev-Slobodetski Spaces Of Loops 

The Spaces WIJ,P(Sl, lR) 
Throughout this section we will write U(Sl) for U(St,m,) and 1"(0,211') for 

U(O, 211'; lR), with analogous abbreviations for the spaces W",P(Sl, lR). 
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Let SI be the unit circle and ISI .da the integral with respect to IIaar measure on 
SI. In particular, using the map 

(3.3.34) 

we may write 

1 1 1211" . u(a)da = - u(elt)dt. 
SI 211" 0 

(3.3.35) 

The space U( SI), p ~ 2, is defined in an obvious manner, i.e. as the space of 
measurable functions u : SI -+ lR such that 

( \ u(a) \P da < 00. 
lSI 

(3.3.36) 

The Sobolev spaces Wk,p(SI), k E M, are then defined as the space of loops on lR 
whose weak derivatives up to and including order k EM belong to LP(Sl). 
Define the operator U, acting on functions 9 : [0,211") -+ m., through the following 
formula 

(Ug)(eit
) = g(t), eit E SI. (3.3.37) 

By direct calculation, one can show that: 

(i) U: U(0,211") -+ U(SI) is an isomorphism, 

(ii) U: W;~~(0,211") -+ W1,p(SI) is an isomorphism, 

where 
(3.3.38) 

Note that the latter is well defined because by the Sobolev Imbedding Theorem, 
every u E W l ,P(O, 211") has a representative which is a continuous function on [0, 21r J. 
In what follows, we restrict ourselves to choosing 0 E (~, 1), p ~ 2. Using real 
interpolation, the properties (i) and (ii) imply that 

(3.3.39) 

is an isomorphism, where (.,. )o,p are real interpolation spaces. It is known, see 
[1'r,78], 

(3.3.40) 

where 
(3.3.41) 

Denoting 

(3.3.42) 

see Chapter 2, one can show that 

U · We,P(O 21r) -+ WO,P(SI) • per , , (3.3.43) 

is an isomorphism. We deduce that 

(3.3.44) 
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One can easily extend the above ideas to cover the case when 0 E (1,00) \ N. The 
starting point is showing that 

U . Wk,P(O 27l') ~ Wk,P(Sl) kEN, • per , , (3.3.45) 

is an isomorphism. Here, Wp~~(O, 27l') is the space of functions u E Wk,P(0,27l') such 
that 

u(n)(o) = u(n)(27l'), for each 0 :S n :S k - 1, n EN, 

where u(n) denotes the nth weak derivative of u. 

(3.3.46) 

The Contraction Semigroup On LP(Sl,~) 
Let Q := ::2 be the Laplacian acting on functions u E W;~~(o, 27l'). Then, see Chap­
ter 2, Q generates a contraction analytic semi group {Rdt>o on LP(O, 27l'). Define a 
family of operators {Tdt;::o -

by 
Ttu = (U 0 Rt OU-I) u, u E LP(sl). 

One can show, see [Tr, 78], 

(i) {Tdt~o is a contraction analytic semi group on LP(Sl). 

(ii) If B is the generator of {Tt } t~O' then 

D(B) = {u E LP(Sl) :U-1u E D(Q) = W;~~(0,27l')} = W2,P(Sl), 

with Eu = UQU- 1u for u E D(B). 

(3.3.47) 

(3.3.48) 

(3.3.49) 

(iii) Eu = D2u, where D2 denotes the second weak derivative, i.e. the Laplacian 
acting on functions u E W2,p(Sl). 

Remark 3.3.1 In the case of real-valued loops, i.e. u : Sl ~ ~, we henceforth 
denote B by b.. 

Remark 3.3.2 In a similar fashion, one can show that -A := d~2' where t2 is the 
Laplacian acting on functions u E W 2,P(St, ~d), is the generator of a contraction 
analytic semigroup on LP(Sl, ~d), which we henceforth denote {e- tA } • 

t~O 

3.4 The Regularity Properties of the Nemytski 
Maps 

We now construct the Nemytski maps corresponding to v and h as maps on the 
Sobolev-Slobodetski spaces W",p(Sl,~d), {! > ~,p ~ 2. Note first that, for 0 E (~, ~), 
p > 2, i : Hl,2(St, lid) '--+ W8,P(St, ~d) is an abstract Wiener space, see [Br/EI,98]. 
We thus have a canonical W8'P(St,~d)-valued Wiener process, denoted w(t), t ~ 0, 
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corresponding to this AWS. We choose () E (~, t), p > 2 as this guarantees that 

WO,P(Sl,JRd) ~ C(Sl,JRd), and, as a result, for each a E S1, Wt(a) := w(t)(a) is a 
JRd-valued Brownian motion. 
The Nemytski maps corresponding to v and h are defined as follows 

V(u)(a):= v(u(a)), u E W",P(St,JRd), a E S\ 

H(u)(17)(a):= h(u(a))17(a), U,17 E WII,P(SI,JR d), a E SI. 

(3.4.50) 

(3.4.51 ) 

Recall that v and it are smooth with compact support. The proof of the following 
result, which can be found in [BrjEl,98], relies heavily on the characterisation of the 
spaces WII,P(SI, JRd), see 3.3.42 and Chapter 2. 

Proposition 3.4.1 V and H are smooth maps satisfying 

V : W/I,J'(S\ JRd) -+ W",P(S\ JRd) 

H : WII,P(S\ JRd) -+ L(W""P(S\ JRd), W"',P(S\ JRd)). 

for any (! > ~ and p 2: 2. They and all their derivatives are Lipschitz continuous on 
each ball in WII,P(Sl, JRd). Furthermore V and H are both of linear growth. 

We now consider the nonlinear term F given by (3.1.4). We first quote a result that 
we need and which can be found in [Am,91]: 

Proposition 3.4.2 Let (3 : JRd x JRd -+ JRd be given by f3( u, v) = (Ul VI, ... , UdVd). 
Now if p E (1,00) and s E (0,00) are such that s > ! then the bilinear mapping 
~ I' 

(3 : WS,p(S\ JRd) x Ws,p(SI, JRd) -+ WS,P(SI, JRd) given by 

~(u, v) := f3 0 (u, v) 

is continuous and hence smooth. 

The next proposition is fundamental in our work. 

Proposition 3.4.3 The nonlinear map F is a smooth locally Lipschitz map from 
W"H,p(Sl, JRd) to WQ,p(Sl, IRd), for any {! > ~, p 2: 2. 

Remark 3.4.4 As (! > ~ then W,,+l,p(Sl,JR d) ~ Cl(Sl,JRd) and so F(u) makes 
sense classically for u E WIIH,p. <:; 

Proof: Throughout this proof we will denote W",p(St, JRd) by WII,p. 
Recall that the norm on W"H,p, (! E (0,1), is given by 

(3.4.52) 

Using (3.4.52) it is straightforward to show that the map "V : WU+1,p -+ WI/,p 
given by "Vu := (~:l, ... , dt) is linear and bounded. For i = 1, ... , d, the map 

Ti : W",p -+ W",p given by Ti( u) := (u i , ... , ui ) is linear and bounded. For 
i = 1, ... , d, define "Vi = Ti 0 "V Then "Vi is a bounded linear map from WI/H,p 
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to W",P, given by Vi(u) := (~~' , ... , ~~i). 

Using 'fi, as given in Proposition 3.4.2, we define, for i,j = 1, ... ,d, 
V ij : W"H,p -+ W",p by Vij(u) := 'fi(Viu, Vju). Note that each Vii is smooth as a 
composition of smooth maps. Moreover for U E W,,+l,p and (7 E 51 

Using Proposition 3.4.2 we now show that Vii is locally Lipschitz. For u, v E W/lH,p 

with I U II1H,p, I v I"H,p::; R, we have 

I Viju - Vijv I",p = I 'fi(Viu, Vju) - /3(Viv, Vjv) I/I,p 
= I 'fi(Viu - Viv, Vju) - 'fi(Viv, Viv - Vju) I",p 
< I 'fi(Viu - Viv, Viu) I",p + I /3(V i v, Viv - Viu) I",p 
< J( I VjU I",pl ViU - Viv I",p 

+ J( I ViV I",pl VjV - VjU I",p 
< J(R (I ViU - Viv II/,p + I Viv - Vju II/,p) 
< C R I U - v I "H,p . 

Thus Vii: WI/H,p -+ WI/,P is Lipschitz on each ball in WI/H,p. 

We now turn to the functions rfj : JRd -+ JR, i,j, k = 1, ... , d. Define r ii : JRd -+ JRd by 

rij := {nj , ••• , r1i }, for i,j = 1, ... , d. Each r ij is smooth and of compact support 

as its component functions are. Thus the Nemytski map I'ij associated with r ij is a 
smooth map I'ij : WI/,P -+ W",P, which is locally Lipschitz and of linear growth, see 
Proposition 3.1.7. Now define Fii : WI/H,p -+ WI/,P by Fij{U) := /3 (I'ij(u), Vii(U)), 
i.e. for each (7 E 51 

Fij is smooth as /3, I'ij and Vij are. We now show that it is locally Lipschitz on 
WI/H,p. As above we have for I U II/H,p, I v II/H,p::; R 

I Fij(U) - F;j(v) I",p ::; J( I I'ij(u) II/,pl VijU - VijV I",p 
+ J( I Viju I",pl I'ij(u) - I'ij(v) I",p . 

Using the local Lipschitz properties of I'ij and V ij gives 

Thus for each pair (i,j), i,j = 1, ... ,d, Fii is a locally Lipschitz map from WI/+l,p 

to WI/,p. Our proof is therefore complete once we notice that F = E1,i=1 Fij . 

• 
It is clear that our map F need not be of linear growth. We do though have the 
following estimate which will be crucial in our work: 
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Corollary 3.4.5 For u E W,,+l,p(Sl, ~d), e > ~, p ~ 2, we have the Jollowing 
estimate 

I F(u) I",p~ C(p, d) {I u 1!+l,P + I u 1~+l'P} 
where C(p, d) is a constant independent oj u. 

Proof: Using the notation from the proof of Proposition 3.4.3, we have 

d 
I F(u) I",p < C(p,d) L I fi(fij(U), \7ij (u)) I",p 

i,j=l 

d 
< C(p,d) 2: I l';j(u) 1!I,pl V';j(u) 1!I,p 

i,j=l 

d 
< C(p, d) 2: (1+ I U lu+1,p) I U I~,p 

i,j=l 

< C(p, d)(1 u I~+l,p + I U 1~+l,P)' 

where the third inequality follows from the linear growth property of l'jj . 

• 

(3.4.53) 

3.5 SNHE As A Stochastic Evolution Equation 

We are thus in a position to reformulate the SPDE (3.1.1) as the following stochastic 
evolution equation, 

du(t) + Au(t)dt = F(u(t))dt + V(u(t))dt + IJ(u(t)) 0 dw(t) (3.5.54) 

Note that (3.5.54) is a Stratonovich equation and so, see Chapter 2, u(t) is a solution 
to (3.5.54) if and only if u(t) is a solution to the following Ito SEE: 

du(t) + Au(t)dt = V(u(t))dt + F(u(t))dt + lI(u(t))dw(t) 

+ ~tr{H'(u(t))II(u(t))}dt. (3.5.55) 

The addition of the correction term does not pose more difficulty. In fact as with 
the other Nemytski maps this correction term tr(H' H) is a locally Lipschitz map 
from WU,p(Sl, JRd) to itself and is of linear growth, as we will now show. 

Proposition 3.5.1 Leti: Hl,2(St,JRd) '--+ WO,P(St,JRd) be our AWS with 0 E (~, ~), 
p > 2 and H : WO,p(Sl, JRd) -+ L(WO,P(St, JRd), WO,P(Sl, JRd)) be as above. Then the 
map ir(H'Ii) is a well defined smooth map from WO,P(St, JRd) to itself, where 

tr(H'Ii)(u):= tr{Ii'(u)Ii(u)}, u E WO,P(S\JRd). 

Furthermore tr(Ii'Ii) is locally Lipschitz and of linear growth. 

Proof: As in the proof of Proposition 3.4.3 we denote WO,P(Sl, JRd) by We,p. 
Recall that with respect to i , the map ir : L2(We'Pj WO,P) -+ WO,p is a bounded 
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linear map. Recall also that H and its derivative H' are locally Lipschitz and of 
linear growth. For u E Wo,p we have 

H(u) E L(Wo,p, Wo,p) and lI'(u) E L(Wo,p, L(Wo,P, Wo,p)) 

and so 

H'(u)H(u) E L(Wo,P, L(Wo,p, Wo,p)) ~ L2(WO,p; Wo,P). 

Thus tr(H' H) is well defined and moreover it is smooth as tr and II are. To prove 
the local Lipschitz property let I u 10,1" I v lo,p:::; R. Let I . ILil II . II and I· IL2 denote 
the norms on L(We,p, We,p), L(We,p, L(WO,p, WO,p)) and L2 (WO,P; WO,P) respectively. 
It then follows that, for some generic constant 1< 

I tr(H'H)(u) - tr(H'H)(v) 10,1' < I tr IIII'(u)H(u) - Il'(v)JJ(v) IL2 
< ]( I H'(u)[ll(u) - ll(v)] 

- [ll'(v) - Il'(u)]ll(v) IL2 
< J( IIII'(u) III H(u) - JJ(v) ILl 

+ J( II H'(v) - H'(u) 1111J(v) ILl 
< CR I u - v 10,1' . 

Finally for the linear growth condition, note first that 

I tr(H'H)(u) 1o,,, :::; J( I H'(u)H(u) IL2 
= 1< sup 1 ll'(u)II(u)(x)(y) 10,1" 

Ixl=IYI=1 

where x, y E WO,P, The term 

H'(u)H(u)(x)(y) E WIJ,p 

acts through the following formula 

(H'(u)H(u)(x)(y))(a) = (h'(u(a)){h(u(a))x(a)})y(a), a E SI, 

(3.5.56) 

(3.5.57) 

Clearly the 1"(SI, ~d) norm of (3.5.56) is bounded by a constant. We need to 
consider the following term, where we write UUI for u( al), similarly for x and y, 

I 

{ r I h'(uuIHh(uuI)xuJYuI - h'(UU2){h(uU2)XUJYu2 II' da
l
da

2
}P. (3.5.58) 

JSIXS1 I al - a2 11+"" 
For aI, a2 E 51 we denote 

1i(al,a2) :=1 h'(UUIHh(uuJxuJYul - h'(UU2Hh(uU2)XU2}Yu2 I· 
Using the fact that hand h' are of compact support and that SUPuESl 1 XU I::::; 1 and 
SUPuESl I Yu I::::; 1 we infer that 

1i(al,a2) < 1 h'(UU1Hh(uU1)XU1}Yu1 - h'(UU2){h(uU2)XU2}Yul I 

+ 1 h'(uU2 Hh(uU2)XU2 } (Yul - Y(2) 1 

< I h'(UU1)h(uU1)XU1 - h'(UU2)h(uU2)Xu2 1L1 YU1 1 

+ 1 h'( UU1 )h( UUI )XU1 IL 1 YU1 - YU2 I 

< 1 XU1 - XU2 1 + 1 YU1 - YU2 1 

< 4 (3.5.59) 
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where 1 . IL denotes the norm on L(JRd, JRd). It follows that tr(Jf' JI) is bounded in 
Wo,p and so in particular, it is of linear growth . 

• 
3.6 Summary 

To summarise, we consider the following problem 

du(t) + Au(t)dt = F(u(t))dt + V(u(t))dt + l/(u(t)) 0 dw(t), 

u(O) = Uo, 

(3.6.60) 

(3.6.61) 

where Uo is some initial value, w(t), t 2: 0, is a WO,P(Sl, JRd)-valued Wiener process, 
() E (~, ~), p > 2. The Stratonovich differential appearing in (3.6.60) takes the form 

1 
H(u(t)) 0 dw(t) = Il(u(t))dw(t) + "2tr{H'(u(t))II(u(t))}dt, (3.6.62) 

where the tr map relates to the AWS i : Hl,2(SI, JRd) '-+ WO,P(SI, JRd). Assuming 
that Uo E Lq(O, Fo, W 8,p(Sl, JRd)), where q and s are numbers satisfying q > p > 2 
and ;!2 - ~ > s > 1 + 1, we first will show existence of a maximal solution taking values 

q p 

in the Banach space W 8,p(Sl, ~d). This is done in Chapter 4. Chapter 5 is dedicated 
to proving that our maximal solution lies on the loop manifold M = W 8,p(Sl, M), 
which is a closed submanifold of W8,p(St,~d), see [Br,99]. For this we need to 
assume that the initial value Uo belongs to Lq(O, Fo, W 8,P(St, M)), where q and s 

are as above. Finally, in Chapter 6 we prove that our maximal solution is in fact a 
global solution. 
We end this chapter with some important observations. Henceforth we will write 
U for U(St, ~d) and W",p for W",P(St, ~d). For () E (;, ~), p > 2, we fix the AWS 

i : JIl,2(Sl,~d) '-+ Wo,p and denote X := LP, E := Wo,p, and 1I := JI1,2. Let 

-A := dd
2

2 and let {e- tA } denote the semi group it generates. {e- tA } is a 
U t>O t>O 

contraction analytic semigro-up on X. Thus, in particular, D(A) = W 2 ,p. Recall, 
see 3.3.44 and Chapter 2, that for (! E (0,1) 

(X, D(A))",p = (LP, W 2,P)",p = W 2",p. 

In terms of our 'abstract' notation the Nemytski maps appearing in (3.6.60) and 
(3.6.62) are locally Lipschitz maps as follows 

V, ~tr(H'H) 
F 

H 

for some suitable 'Y > O. 

(X, D(A))-y,p -+ X 

(X, D(A))-y,p -+ X 

(X, D(A))-y,p -+ L(E, E) 

Remark 3.6.1 Let Y" := W"'P, (! E (0,2).Then since Y" C X one can define a 

family of operators, {e- tAQ } , on the space Y" by restriction i.e 
t~O 

e-tAEu '.= e-tAu ror U E v l' I Q' (3.6.63) 
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One can show that {e- tAQ } is an analytic semi group on Y,,, whose generator -A" 
t>O 

satisfies -

A"u = Au, for u E D(A,,) := {u E D(A) : Au E Y,,}. (3.6.64) 

In particular, we have 

(3.6.65) 

Furthermore, as for each t 2: 0, e- tA E L(X) and e- tA E L(D(A)), with 
I e- tA IL(D(A)):$ 1, then using the interpolation property, see Chapter 2, we deduce 
that 

(3.6.66) 

for some constant M 2: 1. Hence {e- tAQ } is an uniformly bounded analytic 
t>o 

semi group on Y". Moreover, its resolvent satisfies 

(3.6.67) 

Thus, in particular, A" is nonnegative. Furthermore, noting that D(A2) = W4 ,p, 
using the Reiteration Theorem and the identity 

see Chapter 2, one can show that for /) E (0,1) 

(3.6.68) 

with equivalent norms. For details of the above statements, see [Br,95j and [Tr,78j. 
For E := We,p, where E belongs to the AWS i : Ii <-+ E, we will denote Ae := AE 

and the semigroup {e- tAe } by {e- tAE } • In particular, we have for v E (0,1) 
t~O t~O 

(E, D(AE ))II,p = (X, D(A))II+~'P' (3.6.69) 

with equivalent norms. 0 

Remark 3.6.2 The above abstract notation will be fixed throughout Chapter 4. 
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Existence Of A Maximal Solution 
To The Stochastic Nonlinear Heat 
Equation 

4.1 The General Assumptions 

In this chapter we consider the following problem: 

du(t) + Au(t)dt = F{u(t))dt + H(u{t))dw(t) 

u(O) = uo, 

where F and Hare Nemytski maps as in Chapter 3. 

(4.1.1) 

(4.1.2) 

Let X be a Banach space and {e- tA }t?:o a Co-semigroup on X. It will be stated 
when we use the following additional assumptions. 

(AI) X is an M-type 2 Banach space. 

(Ah) E is an M-type 2 Banach space. Moreover E c X, where X is as in (AI) 
and C denotes continuous imbedding. 

(A2) i: H -+ E is an AWS, where H is a separable Hilbert space and E is a 
separable Banach space. The canonical E-valued Wiener process, defined on some 
complete probability space (0, F, {Ft }, JID), is denoted by w(t), t ~ O. 

(A3) -A is the generator of a contraction analytic semigroup {e- tA }t>o on X. 
Furthermore A satisfies -

i.e. A is a nonnegative operator on X. Recall that L(X) := L(X, X) is the space of 
bounded linear operators on X. 

(A3*) - AE is the generator of an uniformly bounded analytic semi group 
{e-tAEh~o on E. Furthermore, for some M ~ 1, the resolvent of AE satisfies 

11 M I (>. + AEt L(E)~ T' >. > O. 

37 
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Remark 4.1.1 The above assumptions relate to the set-up described at the end 
of Chapter 3, i.e. X = LP(st, JRd), E = WIJ,P(St, JRd), () E (~, t), p > 2, II = 
Hl,2(Sl, JRd) and so on. We remark that, whenever we refer to p > 2 it is the 
corresponding p from LP and WIJ,p. <> 

Remark 4.1.2 For a positive operator A on X one may define the fractional powers 
A-V and AV, for v E (0,1). Suppose A satisfies (A3), in particular, A is nonnegative. 
Then for each "I > 0, "I + A is positive and so we may define its fractional powers, 
(1J + A)" and (1J + A)-V, v E (0,1). The spaces D((1J + A)V) := R((1J + A)-V) are 1J 
independent with mutually equivalent norms. One sets D(AV) := D((TJ + A)V), and 
we denote the norm on this space by I . Iv. Moreover for "I > 0, -("I + A) generates 
the analytic semigroup {e- 17te- tA h~o and we have for v E (0,1), 

(4.1.3) 

where C(X) is a constant depending on the space X only. Similarly for 1J > 0, 
-(1] + AE) generates the analytic semigroup {e-l7te-tAE }t>o and we have for v E 
(0,1), -

(4.1.4) 

where C(E) is a constant depending on the space E only. For proofs of the above 
assertions see [Paz,83] and [He,81]. <> 

4.2 RegUlarity Properties Of The Generalised S­
tochastic Convolution Process 

For A ~ ° and a suitable process e we define the generalised stochastic convolution 
process x~(t) by 

(4.2.5) 

For q > 1 and a Banach space Y we set MI~c(O, OOj Y) to be the space of all progres­
sively measurable processes e : [0,00) x n -+ Y which satisfy 

IE loT I e(s) I~ ds < 00, for each T> 0. 

Assume (A3) holds. If e E MI~c(O, OOj L(E, X)), q ~ 2, then the integrand in (4.2.5) 
is progressively measurable on n x [0, t), for each t ~ 0, and we have 

IE I lot e-t~e-(t-')Ae(s) li(E,X):5 Ce-~tlE lot I e(s) li(E,x) ds. 

It follows that e-t~e-(t-.)Ae(-) E M2(O, tj L(E,X)), t ~ 0. Thus, along with the 
assumptions (AI) and (A2), x~(t) is well defined. (Note that the above is true for a 
general Co-semigroup, {e- tA h~o, on X.) 
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Remark 4.2.1 Suppose that we have a stronger assumption on ~, i.c. 

where E is as in (Ah). Then for e E E, e(s)e E E and so 

e-t,xe-(t-S)AEe(s)(e) = e-t,xe-(t-s)Ae(s)(e). 
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(4.2.6) 

It then follows that the convolution process x,x(t), given by (4.2.5), may also be 
written 

x,x(t) = lot e-t'\e-(t-.)AE~(s)dw(s). 
o 

(4.2.7) 

To study the regularity properties of this process we use the so-called DaPrato­
Kwapien-Zabczyk Factorisation Method, which is based on the following classical 
formula 

it (t - s)O-I(s - rrOdr = f(a)f(a - 1), r ~ s ~ t, a E (0,1), (4.2.8) 

where f(a) = fooo to - 1e-tdt is the Euler Gamma function. 
This method was first described in [DP /K/Z,87] in a Hilbert space framework 

and was then later generalised to the Banach space setup in [13r,97]. In both pa­
pers though only the process xo(t) was considered. We will generalise the results in 
[Br,97] to deal with our process x,x(t), >. > O. 
We begin with introducing the operator R;, which we call the generalised factorisa­
tion operator. Let a E (0,1], q E (1, (0) be fixed. For any f E U(O, 00; X) define, 
for >. ~ 0, 

(4.2.9) 

It is a straightforward consequence of the Young inequality that, for>. > 0, R; is a 
bounded linear map from Lq(O, 00; X) to itself. Under the assumption (A3) then a 
stronger result is true. 

Theorem 4.2.2 Assume (A3), a E (0,1], q > 1 and>' > 0. If j3 E [0, a), then 
R~ is a bounded linear map from Lq(O, 00; X) to Lq(O, 00; D(Ai3)). If 8 E [0, a - !) 

q 

then R; is a bounded linear map from Lq(O, 00; X) to C(O, 00; D(A5)). Moreover the 
following inequality holds 

sup I (R,)J)(t) I~ + roo I (R,)J)(t) I~ dt ~ CII:(>') roo 1 f(t) 11- dt 
t~O 10 10 (4.2.10) 

where C is independent of f and>' and 11:(>.) -t 0 as >. -t 00. 

Remark 4.2.3 The above result was first proved in a l-Iilbert space setting, see 
[DP /K/Z,87] and [Sei,93]. For the Banach space case, see [13r,97]. In these papers 
only the case>. = 0 was considered and as a result they were restricted to finite 
intervals [0, T], T > O. Our proof is a generalisation of those in the above cited 
papers. 0 
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Proof: For the first assertion note that for an analytic semigroup on X, e- tA x E 
D(AII), /J E [0,1]. Thus in particular for t ~ 0, (R'}J)(t) E D(AII), /J E [0,1]. For 
.\ > 0 fixed, choose TJ > 0 such that .\ > ", > O. Then, using (4.1.3), a straightforward 
calculation gives 

fo'XJ I (R,)J)(t) I~ dt < C fooo(fot(t - s)'"-l-,oe-(t-s)(>'-7) I f(s) Ix dS)9dt 

= C I hI * h2 11q(o,oo;1lI) 

where hI * h2(t) = f~ hI (t - S )h2( s )ds with hI (s) = S<>-I-,6 e- S (A-7), hI E Ll(O, 00; lR) 
and h2(s) =1 f(s) lx, h2 E U(O, 00; lR). Note also that the constant C is independent 
of t. By an application of the Young inequality 

(4.2.11) 

where we have denoted Kl(.\) =1 hI 1£1(o,llI)= fooo s<>-l-,6e-s(>'-7)ds. The first assertion 
now follows as K1(.\) < 00. The integrand in Kl(.\) tends to zero pointwise as .\ tends 
to infinity. With an application of the Lebesgue Dominated Convergence Theorem, 
(LDC), in mind, we note that for sufficiently large .\ 

<>-1-{3 -.(>'-7) < {S<>-I-,6 if s E [0,1) 
s e - e-' ifsE[1,oo). 

Thus by LDC ICI (.\) --. ° as .\ --. 00. 
For the second assertion we begin with proving the following estimate 

sup I (R~f)(t) I~ ~ CK2(.\) roo I f(t) Ik dt 
t~O Jo 

(4.2.12) 

where C is independent of f and .\ and 1C2(.\) --. 0 as .\ --. 00. As in the proof of 
the first assertion, for t ~ 0, .\ > TJ > 0, 

Applying the Holder inequality gives, for t ~ 0, 

I (R~f)(t) I~ ~ C(fo
oo

(t_s)(<>-1-6)q!re-(t-')(>'-7)-0ds)Q-l If liq 

= CIC2(.\)Q-l If lig (4.2.13) 

where I . ILq denotes the norm on L9(0, 00; X) and 

K2(.\) = fooo (t - S)(<>-1-6)-0 e-(t-s)(>'-1/)-0 ds. 

The integrand in 1C2P.) converges pointwise to zero. Noting that for sufficiently large 
.\ 

{ 

(a-I-6)-L' f [0 1) 
(Q-I-6)-L -s('\-1/)-L < s q-l 1 S E , 

S q-I e q-l 
- e- S if s E [1,00) 

then, by LDC, 1C2(.\) tends to zero as A tends to infinty. Note that as C and 11:2(.\) 
are independent of t, then (4.2.12) follows from (4.2.13). The estimate (4.2.10) now 
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follows from (4.2.11) and (4.2.12). 
To prove R)J E C(O, 00; D(AO)), suppose first that f E Cer(O, 00; X). Then by 
a direct calculation one can show that R,)J is differentiable, as a D(Ab)-valueu 
function, with derivative 

In particular R)J is continuous. The density of Cer(O, 00; X) in Lq(O, 00; X), the 
closed ness of C(O, 00; D(AO)) in LOO(O, 00; D(AO)) and the estimate (4.2.12) together 
imply the result for f E Lq(O, 00; X) . 

• 
Using (A3*) instead of (A3) we deduce the following: 

Corollary 4.2.4 Assume (A3*), a E (0,1]' q > 1 and>' > 0. If fJ E [O,a), then 
R~ is a bounded linear map from Lq(O, 00; E) to 19(0, 00; D(A~)). If {) E [0,0:- 1) q 

then R~ is a bounded linear map from 19(0,00; E) to C(O, 00; D(A~)). Moreover 
the following inequality holds 

sup I (R'AJ)(t) Ik Ii + foo I (R'AJ)(t) 1k.f3 dt :::; eK(>') foo I f(t) I~ dt 
t~O ' 10 10 

(4.2.14) 

where C is independent of f and>' and K(>.) -+ ° as >. -+ 00. I . IE,o denotes the 
norm on D(A~) and I . IE,f3 denotes the norm on D(A~). 

Remark 4.2.5 In the Appendix we prove that the generalised factorisation oper­
ator R~ is the fractional power (>. + At(:., where A is a certain abstract parabolic 
operator. <:;. 

The following theorem was proved in [Br,97] for the process Xo. We extend the proof 
to include the process X,\, >. > 0. Let Y be a Banach space. For>. > 0, we define 

M1(0, ooj Y) := {e E MI~c : JE 100 

I e-,\te(t) I~ dt < oo} . 

Theorem 4.2.6 Assume (AI), (A2), (A3), (Ah) and (A3*) all hold. Let q ~ p > 
2, ( E Up' ~ - ~) and I E [0, ~). Furthermore assume that the stochastic process 
e is such that e E MHO, ooj L(E)) for>. > 0. Let X,\, >. > 0, be the generalised 
stochastic convolution process (4.2.5). Then there exists a modification x,\( t) of the 
process x,\(t), i.e. a process satisfying x,\(t) = x,\(t) a.s. for each t ~ 0, such that 

X,\ E ZOO,"I,( := Mq(O, ooj (X, D(A))-r,,,) n Lq(O; C(O, 00; (X, D(A)k,,)). 

Moreover the following estimate holds 

JEsup I x,\(t) I~" +lE (>0 I x,\(t) I~,,, dt :::; CK(>') foo I e-t'\~(t) 11(E) dt (4.2.15) 
t~O ,10 10 

where C = C(q,E,X) is independent ole and A, and K(>') tends to 0 as A tends to 
00. 
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Proof: The process 

y>.(t) = 1) t(t _ srO'e-t>'e-(t-s)AE'(s)dw(s) 
f(1 - Q Jo (4.2.16) 

is well defined for e E M/~c(O,oo;L(E)), q 2:: 2, provided Q E (0, t). Applying the 
Burkholder inequality gives 

It then follows by an application of the Young inequality, as in the previous proof, 
that 

(4.2.17) 

where K3().) = fooo s-20'e-2s(>')ds. As K3().) < 00 then 1000 I y>.(t) I~ dt < 00 a.s .. 
Note also that K3().) tends to zero as ). tends to infinity. 
We now define our modification :h, for)' > O. For each wEn such that y;.,(-,w) E 
U(O, 00; E) define x>.(·,w) := R;(y>.(.,w)). In view of the definition of R;, see 
(4.2.9), then a.s.,:C>, : [0,(0) -+ D(Ae) is a continuous mapping, for any /I E [0,1]. 
Moreover X>. is adapted and so is a progressively measurable D(Ae)-valued process. 
Suppose that Q, a and 8 are nonnegative numbers that satisfy 

111 
a + q < a < 2' and 8 < a < 2' 

then in view of the Corollary 4.2.4 we deduce that 

x>.(·) E C(O, 00; D(AE)) n Lq(O, 00; D(A~)) a.s. 

with the following inequality holding a.s. 

sup I x>.(t) IkIT + ['XI I x>.(t) Ik6 dt ~ C(q,X)K(>.) roo I y>.(t) Ik dl. (4.2.18) 
t~O ,Jo' Jo 

Using the fact that, for (! < /I and p> 1, D(AE) <-+ (E, D(AE))u,p, we deduce that, 
for any /I E (0, t -~) and fL E [0, t), 

x>.(·) E C(O, 00; (E, D(AE))v,p) n £9(0,00; (E, D(AE))",p) a.s. 

with the following inequality holding a.s. 

~~~ I x>.(t) Ikv,p + 10
00 

I x>.(t) Ik,,,,p dt ~ C(q,X)K().) laoo 

I y>.(t) Ik dt. (4.2.19) 

where I . IE,v,p denotes the norm on (E, D(AE))v,p and I . IE,,,,p denotes the norm on 
(E, D(AE))",P' Recall from Chapter 3 that, for {} E (0,1), 

( 4.2.20) 

with equivalent norms. Thus, denoting ( := /I + ~ and 'Y := Jl + ~ it follows that 

x.\(·) E C(O,ooj(X,D(A))(,p)n£9(O,ooj(X,D(A))-y,p) a.s. (4.2.21 ) 
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with the following inequality holding a.s. 

sup I x,\(t) I~ p + roo I x,\(t) I~ p dt ~ C(q, X)K(A) roo I y,\(t) 11: dt. 
t;::O ,10' 10 ( 4.2.22) 

We deduce that X,\ E ZOO,'"f,c' Moreover taking expectations in (4.2.22) and using 
(4.2.17) we obtain the estimate (4.2.15). To complete the proof of Theorem 4.2.6 
we need to show that X,\ is a modification of x,\. For t ~ ° fixed we have 

X- \ (t) = 1 r(t )"'-1 -(t-a),\ -(t-a)A ()d " r(a) 10 - see y,\ s s 

= 1 r r (t _ s)"'-1(s _ r)-"'c-t'\c-(t-r)A~(r)dw(r)ds 
r(a)r(l - a) 10 10 

1 r iT (t _ s)0-1(s _ r)-"'e-t'\e-(t-r)A~(r)dsdw(r) 
r(a)r(l - a) 10 r 

= lot e-t'\e-(t-r)A~(r)dw(r) a.s. 

where we have used both the Stochastic Fubini Theorem and (4.2.8) . 

• 
We introduce some new notation. Fix ° < T ~ 00 and let r : n -+ [0, T] be a 

stopping time. Define the process a: [0, T] x n -+ {O, I} by 

{
I if s < r(w) 

a(s,w) = ° if s ~ r(w) (4.2.23) 

a is the characteristic function of the stochastic interval [0, T). Note that a is a 
right continuous adapted process. In particular, a has a progressively measurable 
modification. 

Theorem 4.2.7 Assume (AI), (A2), (A3), (Ah) and (A3*) all hold. Let q ~ p > 
2, ( E (2~' ~ - ~) and, E [0, ~). Let ° < T < 00 be fixed but arbitrary. Let 
~ E Mq(O, Tj L(E)) and x be the stochastic convolution process 

x(t) = !at e-(t-a)A~(s)dw(s). 

Then, there exists a modification x of x such that 

fj E ZT,'"f,( := Mq(O, Tj (X, D(A))..,.,p) n Lq(nj C(O, Tj (X, D(A))(,p))' 

Moreover, for any stopping time q : n -+ [0,00] we have 

iT lTAU 
IE sup I x(t /\ q) I~ p~ C(T) IE I ,8(s)~(s) Il(E)~ C(T)IE I ~(s) 11(E) ds, 
O~t~T ' 0 . 0 

( 4.2.24) 
where ,8 is the characteristic function of [0, 0') and C(T) is a constant independent 
of ~ and q. 
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Proof: We only need to prove the estimate (4.2.21). Recall how i is defined. First 
define y by 

1 1t y(t) = ( ) (t - stC>e-(t-s)A~(s)dw(s), t E [0, T]. 
fl-o: 0 

There exists a set of full measure n such that y(·,w) E Lq(O, T; E). For wEn we 
set 

i(t,w) = fto:) 1t (t - s)c>-le-(t-s)Ay(s,w)ds, t E [0, TJ. 

Let wEn be fixed. From the proof of Theorem 4.2.6, see (4.2.22), we have for each 
t E [0, T] 

I i(t,w) I"p~ CT 1t I y(s,w) Ij;; ds, 

where CT is a constant independent of y (and hence w). In particular, for each 
t E [0, T /I. a(w)] we have 

r™(wj 
I i(t,w) I~,p~ CT Jo I y(s,w) Ij;; ds. 

It follows that 

l
TM(W) 

sup I i(t,w) I~,p~ CT I y(s,w) Ij;; ds. 
O$t$TM(w) 0 

( 4.2.25) 

Indeed (4.2.25) holds for all wEn with the same constant CT. Noting that 

sup I i(t /I. a) I~,p= sup I i(t) I~,p, 
O$t$T O$t$TM 

it follows that 

l
t7I1T 

sup I i(t /I. 0') I~ p~ CT I y{s) Ij;; ds a.s .. 
O$t$T '0 

Taking expectations gives 

l
t7I1T 

IE sup I i(t /I. 0') I~ p~ CTIE I y(s) Ij;; ds. 
O$t$T ' 0 

( 4.2.26) 

Note that 

rllT rT rT 
IE Jo I y(s) Ij;; ds = IE Jo I j3(s)y(s) Ij;; ds = Jo IE I j3(s)y(s) Ij;; ds. ( 4.2.27) 

Define the process 

Yf3 is well defined and for s E [0, T] 

{ 
y{3(s) on {j3(s) = I} 

j3(s)y(s) = 0 on {j3(s) = a}. ( 4.2.28) 
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Thus 

lE 1 {3(S)Y(S) Ik = [ 1 {3(s,w)y(s,w) Ik dlP'(w) 
J{{3(S)=l} 

< [ 1 {3(S,W)Y(S,W) Ik dlP'(w) + [ 1 y{3(S,w) 11· dlP'(w) 
J{{3(s)=l} J{{3(s)=O} 

= lEIY{3(s)lk' 

Thus 

faT lE 1 {3(S)Y(S) Ik ds ~ IE loT 1 y{3(S) Ik ds ~ GTIE loT 1 {3(S)~(S) 11(E) ds. 

The inequality follows from the proof of Theorem (4.2.6), see (4.2.17). As 

[T [TM 
IE Jo 1 {3(s)~(s) 11(E) ds ~ IE Jo 1 ~(s) 11(E) ds, 

we have 
[T [TAU 

J
o 

IE I {3(S)Y(S) Ik ds ~ GTEJo 1 ~(S) 11(E) ds. (4.2.29) 

The estimate (4.2.24) follows now from (4.2.26), (4.2.27) and (4.2.29). This com­
pletes the proof. 

• 
Corollary 4.2.8 Under the assumptions of Theorem 4.2.7, let 

x(t) = fat e-(t-s)Ae(s)dw(s) and x{3(t) = fat e-(t-s)A{3(s)~(s)dw(s), t E [0, TJ, 

where {3 is the characteristic function 0/[0,0'). Then 

IE sup 1 x(t 1\ 0') - x{3(t 1\ (7) IL,= O. 
O~t~T ' 

Proof: Let 

z(t) = x(t) - X{3(t) = fat e-(t-s)A(1_ {3(s))~(s)dw(s), t E [0, T]. 

By Theorem 4.2.7 z has a continuous modification z which satisfies 

l
Tl\tT 

IE sup Iz(tI\O')I~p~GTIE l(l-{3(s))e(s)ll(E)ds. 
09~T ' 0 

Noting that for s E [O,T 1\ O'(w)), 1- {3(s,w) = 0, we deduce that 

IE sup 1 z(t 1\ 0') I~,p= O. 
O~t~T 

This completes the proof. 

• 

( 4.2.30) 
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Corollary 4.2.9 Assume (AI), (A2), (A3), (Ah) and (A3*) all hold. Let q ~ 
p > 2, ( E (21p, ~ - ~) and'Y E [0, ~). Let 0 < T < 00 be fixed but a7'biiraTY and 
T : 0 -+ [0, T] be a stopping time. FUTthermore assume that ~(t), t < T is an 
admissable L(E)-valued process with 

Let a be the characteristic function of the interval [0, T) and set 

Then, there exists a modification Zcr of Zcr such that 

Zex E ZT,-y,( := Mq(O, Tj (X, D(A))-y,p) n U(Oj C(O, Tj (X, D(A))(,p)). 

Moreover, for each t E [0, TJ, 

IE sup I Za(s A r) I~ p~ C(T) rt lEI a(s)e(s) 11(E) ds, 
O$3$t ' ~ 

( 4.2.31) 

where C (T) is independent of e and r. 

Proof: Define the process "I : [0, T] X 0 -+ L(E) by 

T/(s,w) = a(s,w)e(s,w). 

As e is admissable and a is right continuous and adapted, then "I right continuous and 
adapted. In particular, ." has a progressively measurable modification. Moreover, as 

IE foT I T/(s) 11(E) ds = IE loT I e(s) 11(E) ds < 00, 

then "I E Mq(O, Tj L(E)). It follows, by Theorem 4.2.7, that the process Zex is well 
defined and has a continuous modification za with Zcr E ZT,-y,(. Furthermore, for 
each t E [0, T], 

l
tl\T 

IE sup I zcr(s 1\ r) I~ p~ C(T)[ I a(s)e(s) 11(E) ds, 
O$3$t • 0 

( 4.2.32) 

where C(T) is independent of e and T. Note that 

[ fo
tAT 

I a(s)e(s) 11(E) ds = lot lEI a(s)e(s) 11(E) ds. 

Thus for each t E [0, T] 

[sup I za(s 1\ T) I~.p~ C(T) r [I a(s)e(s) 11(E) ds. 
O$3$t Jo (4.2.33) 

This completes the proof. 

• 
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4.3 The Existence Theorems 

We now turn to existence of solutions to the problem (4.1.1)-(4.1.2). We first define 
what we mean by a solution to (4.1.1)-(4.1.2). 

Definition 4.3.1 An admissible (X, D(A)kp-valued process u(t), t ~ 0, ( E (0,1), 
is called a mild solution to (4.1.1)-(4.1.2) if and only if there exists numbers q, 
p E (2,00), with q ~ p, and 1 > "y ~ ( such that for each T > 0, 

u E ZT,-y,( := Mq(O, Tj (X, D(A))-y,p) n Lq(Oj C(O, Tj (X, D(A)kp)) 

and u(t) satisfies the following mild integral equation 

u(t) = e-tAuo + fot e-(t-s)A F(u(s))ds + fot e-(t-s)A II(u(s))dw(s) (4.3.34) 

a.s. for each t ~ O. 

A theory for stochastic evolution equations, SEEs, on M-type 2 Banach spaces has 
been developed in [Br,97]' see also [Br ,95], and this is applicable to our set-up. Al­
though spaces defined via the complex interpolation method were used in [Br,97], 
only minor changes are necessary to obtain results for the real interpolation spaces 
we are dealing with. In spite of this, what we present here does differ from [Br,97] 
and [Br, 95]. As in [Br,97]' we first prove existence of a unique solution in the 
linear case. The estimates (4.2.10) and (4.2.15) give us stronger estimates on the 
solution. The effort needed to obtain these estimates is paid off in the subsequent 
sections. Under the assumption that the coefficients F and II are Lipschitz we use 
the Banach Fixed Point Theorem, (BFP) to prove existence of a global solution. 
In [Br,97] and [Br,95]' using the BFP Theorem they show existence of a solution 
on some small time interval. To obtain a solution on any finite time interval they 
use a gluing procedure to extend their original solution. Such a technique is well 
known, see [DPjZ,92]. Our estimates (4.2.10) and (4.2.15), in conjunction with the 
BFP Theorem, give us a unique process, defined on the half line [0,00), such that 
when restricted to any finite time interval [0, T], is the unique solution to (4.1.1)­
(4.1.2) on [0, T]. This avoids using the technical gluing procedure and is similar to 
approaches by [Sei,93] and [Ic,83]. They worked in Hilbert space settings. Further­
more they use the norm SUPt>o IE. 1 u(t) 1 whereas we prove results in the stronger 
norm IE.sUPt>o 1 u(t) I. -
Finally given locally Lipschitz coefficients we construct approximate coefficients 
which are globally Lipschitz. The global solutions to the equations with the ap­
proximated coefficients are then used to construct a local solution. The proof of this 
theorem is similar to those in [Br,97] and [Sei,93]. 

Theorem 4.3.2 ( The Linear Equation Theorem) Assume that (AI), (A2), 
(A3), (Al*) and (A3*) hold. Let q ~ p > 2, ( E Up' ~ - !), "Y E [(, ~). If 
hE MX(O, 00; L(E)), f E MX(O, OOj X) and Uo E Lq(O,Fo;(X,D(A))(,p) then there 
exists a unique mild solution to the problem 

du(t) + Au{t)dt = h(t)dw(t) + f(t)dt 

u(O) = Uo 
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i. e. for any T > 0, u E ZT,"I,( and u( t) satisfies the following mild integral equation 

u(t) = e-tAuo + fat e-(t-s)A f(s)ds + l e-(t-s)Ah(s)dw(s) 

a.s., for each t ~ 0. Moreover for .\ > ° the following estimate holds: 

JE roo I e-tAu(t) Iq dt Jo ",/,p 

< CI\:(.\)JE 1000 

{I e-tAh(t) II(E) + I e- t
>. J(t) Ik }dt 

+ C (1 + I) JE I Uo I"p (4.3.35) 

where C = C(q, E, X) is a constant independent of f, h, Uo, A and I\:(A) tends to 
zero as A tends to infinity. 

Proof: The proof is carried out in a number of steps. 
Step 1 : Define the process Ut(t) := f~ e-(t-s)Ah(s)dw(s). Then x>.(t) = e- t>'ul(t) 
and in view of Theorem 4.2.6, for A > 0, there exists a modification x>.(t) of x>.(t) 
satisfying xA E Zoo,,,,/,(. For w E fl, set Ut(-'w) = e·>'x>.(.,w). Then Ut is a modifi­
cation of Ut satisfying e-'Aul E Zoo,,,,/,,. Thus for any T > 0, Ut E ZT,"I,( with the 
following estimate holding 

+ JE 1000 

I e-t>'17t (t) I~,p dt 

< C(q, E)I\:(.\)JE 1000 

I e-t>'h(t) 11(E) dt ( 4.3.36) 

where C(q, E) is independent of h and A, and 1\:(.\) tends to zero as .\ tends to 
infinity. 
Step 2 : Given f E Ml(O,oo;X) then c·>'f(·,w) E Lq(O,oo;X) for wE nj, where 
p(n,) = 1. Define the process U2 by 

172(t,W) = fat e-(t-s)A f(s,w)ds for wE nf 

Note that 172 is a continuous (X, D(A))II,p-valued process, g E (0,1), which is adapted 
and thus progressively measurable. Consider 

-t>.- (t) lot -(t-a)>. -(t-a)A -SAf( )d e U2 = e e e s s. 
o 

As e-'>' f(·) E Lq(O,OOjX) a.s., then in view of Theorem 4.2.2, for A > 0, we may 
deduce that, in particular, e-'Au2 E Zoo,,,,/,(. So for any T > 0, 172 E ZT,"I,( and for 
any A > ° we have 

JEsup I e-t>'172(t) I~,p + IE 10
00 

I e- t>'172(t) I~,p dt 
t~O 

$ CI\:(.\)JE 10
00 

I e-tAI(t) I~ }dt ( 4.3.37) 

where C = C(q, X) is a constant independent of I, h, Uo, A and I\:(A) tends to zero 
as A tends to infinity. 
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Step 3 : Define the process U3(t) = e-tAuo. Note that Uo is adapted and thus so is 
U3. It is straightforward to show that U3 is a (X, D(A»{!,p-valued continuous process, 

for any (! E (0,1). One uses the strong continuity of the semigroup {e- tA } and 
1>0 

the foHowing characterisation of the space (X, D(A»II,p, see Chapter 2, -

x E (X, D(A))e,p {:}I x I:,p= looo I rl-II-~ Ae-rAx I~ dr < 00. 

It follows that U3 is progressively measurable and for .x > ° we have 

lE.~~b I e-
t'\u3(t) I(,p +lE. faoo I e- t'\u3(t) I~,p dt :S (1 + ±) lE.1 Uo I(,p . ( 4.3.38) 

As a result for any T > 0, U3 E ZT,,,(,( 
Step 4 : We now define our mild solution. Set u = Ut + U2 + U3. Then u is clearly 
unique and it satisfies the required regularity conditions. The desired estimate 
(4.3.35) follows from (4.3.36), (4.3.37) and (4.3.38).This completes the proof. 

We now consider the problem (4.1.1)-(4.1.2), under the assumption that F and If 
satisfy a global Lipschitz condition. 

Theorem 4.3.3 (The Global Existence Theorem): Assume (AI), (A2), (A3), 
(Ah) and (A3*) hold. Let q ~ p > 2, ( E (2~'~ -~) and, E [(,~). Let 
Uo E Lq(O, Fo; (X, D(A))(,p)' Assume that Hand F are Lipschitz maps from 
(X, D(A»,,(,p to L(E) and X respectively, in the following sense: there exists a 
constant J( > 0 such that for u, v E (X, D(A»).."p 

I H(u) - H(v) IL(E) < J( I u - v !c,p 
I F(u) - F(v) Ix < J( I u - v k,p 

Then, there exists a unique process u such that for each T > 0, u E ZT,..,,( and u is 
the unique solution to the problem (4.1.1)-(4.1.2) on [0, T]. 
Note that the above Lipschitz conditions imply the following linear growth conditions: 

I H(u) IL(E) < C(1+ I u k,p) 
I F(u) Ix :S C(I+ I u k,p) 

where C = max(J(, I F(O) lx, 11I(0) IL(E)' 

Proof: For .x ~ 0 and a Banach space Y we introduce the space C,\(O, 00; Y) as 
the space of continuous V-valued functions which satisfy 

I u k= sup I e-tJ\u(t) Iy < 00. 
t~O 

CJ\(O, 00; Y) is a Banach space with norm! U !J\. Define now 

Z~,"(" = Mj(O, 00; (X, D(A),,(,p) n Lq(O; CJ\(O, 00; (X, D(A)kp)). 
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We endow Z~.'Y., with the norm 

I u li~ = lE roo I e-t'\u(t) I~.p dt + lEsup I e-t,\u(t) I~.p . 
00."Y.( Jo t;::O 

which is the norm inherited from the Banach space 

L':x,.'Y.( := Lq(O; LHO, 00; (X, D(A))'Y'p)) n 19(0; C,\{O, 00; (X, D(A)kp))· 

It can be shown that Z!'.'Y.( is a closed subspace of L':x,.'Y.( and is thus a Banach 
space. We now define a map J;" : Z~.'Y.( -+ Z;".'Y.( by 

v = J;'(u) if and only if a.s. for each l 2: ° 
v(l) = e-tAuo + 1t e-(t-s)A F{u(s))d(s) + 1t e-(t-s)A lI(u{s))dw{s). 

We will show that, for A > 0, J;" is a contraction mapping from Z;'.'Y.( to itself 
and then the BFP Theorem infers the existence of a unique u E Z;'.'Y.( such that 
u = J;"(u). For each T > 0, u restricted to [O,T] is the unique solution to the 
problem (4.1.1)-(4.1.2) on [0, T]. 
Step 1 : We show that J! does actually map Z;"."I.( to itself. 
• Define the map \lI~ on Z;"'Y.( by 

\lI~(u)(-) = 10' e-(·-s)A H(u(s))dw(s). 

To show that \lI~ maps Z!."I.( to itself it is enough to show that 

H(u(·)) E M1(O, OOj L(E)). 

This is because if H(u(·)) E M1(O, OOj L(E)) then by applying Theorem 4.3.2 with 
f == 0, Uo == ° and h(·) = H(u(·)) we have, by (4.3.36), that \lI~(u) E Z!,'Y.(. 
Note that II is a continuous mapping independent of (t,w). If u E Z!,'Y,(' then 
u is progressively measurable and hence so is ll(u). As II is of linear growth and 
(X, D(A))'Y.p <-+ (X, D(A)kp then 

lEfooo I e-6,\H(u(s)) 11(E) ds < C(q,')',()lE 1000 

e-SQ ),(1+ I u(s) I~,p)ds 

< C(q,,),, (,T) {:}+ I u 1~1(0,oo;(X'D(A))6.P)} 
which is finite and so ll(u) E M1(O,oojL(E)). 
• In a similar fashion we can show that the map cI>~, defined by 

cI>~(u)(·) = 10' e-('-6)AF(u(s))d(s), 

maps Z!."I.( to itself . 
• The map r~ where r~(u) = e-(·-s)Au maps Lq(O, Fo; (X, D(A)kp) to Z~,"I'( as 
was shown in Theorem 4.3.2, which completes Step 1. 
Step 2 : We now show that the map J! is Lipschitz. 
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• Consider the map \lI~ : Z~, .. y.( -+ Z~''Y'(' Let h(,) = H(u(·)) - II{v(·)). Using 
the linear growth of H one can show that for u, v E Z~''Y'< 

E [00 e- sq>. I h(s) li(E) ds ~ J(q I u - v li~ Jo 00,"1,' 
(4.3.39) 

Thus h(.) E Ml(O, ooj L(E)). Applying Theorem 4.3.2, with f == 0, Uo == 0, the 
estimates (4.3.36) and (4.3.39) imply 

I \lI~(u) - \lI~(v) Iz!,,'Y,' < C(q,X)II:(A)E loT I e-s>'h(s) li(E) 
< C(q, J(,X)II:(A) I u - v li~ (4.3.40) 

00,...,,( 

where C is a constant independent of u, v, A. It is important(!) to note that 
II:(A) -+ 0 as A -+ O. 
• Using the same argument as above we can prove that <I>~ is Lipschitz from Z~ 
to itself with the following estimate holding 

(4.3.41) 

where 6 is a constant independent of u, v, A. Again it is important(!) to note that 
II:(A) -+ 0 as A -+ O. This completes Step 2. 
Step 3 : From Step 1 and Step 2 we may deduce that for each A > 0, J~ maps 
Z~'''Y'< to itself and from (4.3.40) and (4.3.41) we have, for u, v E Z~'''Y'<' 

where II:(A) -+ 0 as A -+ 00. Thus for large enough A the map J~ is a contraction 
and so there is a unique fixed point which is the unique solution to our problem . 

• 
The proof of the following Corollary follows along the lines of similar results in 
[Br,95] and [Ic,83]. 

Corollary 4.3.4 Let u be the unique mild solution of Theorem 4.3.3. Then, for each 
JL > 0, the process ul'(t) := JL(JL + A)-lU(t) belongs to the space Mq(O, Tj D(A» n 
U(nj C(O, Tj D(A») for each T> 0, Moreover for each t ~ 0, it satisfies 

ul'(t) + lot AUI'(t)dt = ul'(O) + lot FI'(u(s»ds + lot 1I1'(u(s»)dw(s) a.s. (4.3.42) 

where ul'(O) := fL(fL + A)-lu(O), Fp. := fL(fL + Atl F and HI' := fL(fL + A)-Ill. 

Proof: As (JL + A)-I : X -+ D(A) is a bounded linear map, then all we need 
to prove is that u>'(t) satisfies (4.3.42). u is a mild solution satisfying (4,3.34). 
Applying the bounded linear operator p(JL + Atl to both sides of (4.3.34), noting 
that (JL + Atl and e-tA commute, we have for each t ~ 0 

ul'(t) = e-tAu~ + lot e-(t-a)A Fp.(u(s»ds + lot e-(t-a)A Hp.(u(s»dw(s) a.s .. 
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For each s ~ 0, e-(t-s)AF/L(u(s)) E D(A) a.s. and 

foT fot I Ae-(t-s)A F/L(u(s)) Ix dsdt < 00 a.s .. 

For each e E E, e-(t-s)A HjJ(u(s))(e) E D(A) a.s. for s ~ ° and 

foT fot I Ae -(t-a)A H A u( s)) IL(E,X) dsdt < 00 a.s .. 

It then follows, by the Fubini Theorem, that 

fot for Ae-(r-s)AFjJ(u(s))dsdr = fot it Ae-(r-s)AF/L(u(s))drds. ( 4.3.43) 

Furthermore, by the Stochastic Fubini Theorem 

fot for Ae-(r-s)AHjJ(u(s))dw(s)dr = fot it Ae-(r-s)AH!'(u(s))drdw(s). (4.3.44) 

Note that, as u!'(s) E D(A) a.s., for s ~ 0, 

Au/L(s) = Af.l(f.l + A)-Iu(s) = f.lu(s) - f.l(f.l + At1u(s) a.s. 

so that AujJ(s) is integrable. It now follows from (4.3.43), (4.3.44) and the identity 

i
t A -(t-r)A d -(t-a)A e xr=x-e , 

s 

see Chapter 2, that 

fot AujJ(s)ds = 10t 
Ae-sAujJ(O)ds + 10

t 
10

8 

e-(r-s)A FjJ(u(s))dsdr 

+ fot fo8 Ae-(r-s)AH/L(u(s))dw(s)dr 

= u!'(o) - e-tAu/L(O) + lot FjJ(u(s)) - e-(t-s)AFjJ(u(s)) ds 

+ 10
t 
HjJ(u(s)) - e-(t-s)AH!'(u(s)) dw(s), 

which completes the proof. 

• 
We have a stronger version of Theorem 4.3.3, where we relax the global Lipschitz 
condition to that of a local Lipschitz condition. These are precisely the conditions 
we have on the Nemytski maps from Chapter 3. We first define a local solution 
which is a solution defined up to a stopping time. 

Definition 4.3.5 Assume (AI), (A2), (A3), (Ah) and (A3*) hold. Let T be an 
accessible stopping time and let u(t), t < T be an admissible (X, D(A)kp-valued 
process, for some p > 2 and ( E (0,1). Then u(t), t < T is a local solution to the 
problem (4.1.1 )-( 4.1.2) if and only if there exists an increasing sequence of stopping 
times, {Tn}n>l, satisfying Tn < T and Tn -+ T a.s., such that for any t E [0,00) and 
n E N the folzowing integral equation holds, a.s. 

(4.3.45) 
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The term YOn appearing in (4.3.45) is the continuous modification of the process YOn' 
defined by 

Yc.>n(t) = it e-(t-s)Aan(s)JJ(u(s))dw(s), 

where an is the characteristic function of the interval [0, Tn). 
Furthermore, we require that, for some q ~ p > 2 

IE rn I u(s) I~,p +IE sup I u(s) !~,p< 00, 
Jo 09:$1"n 

for each n E N. 

Remark 4.3.6 The term Yorn appearing in (4.3.45) may be considered informally 
as 

'itATn e-(tATn-s)AH(u(s))dw(s)'. ( 4.3.46) 

Although the stochastic convolution 

it e-(t-S)AH(u(s»)dw(s) 

does make sense (for suitable Hand u), the integrand appearing in (4.3.46) is not 
necessarily progressively measurable. As a result (4.3.46) does not make sense. The 
term Yon(t /\ Tn) does make sense though. In Chapters 5 and 6, when writing the 
equation (4.3.45), we will always write 

'latATn 
e-(tATn-s)A H(u(s))dw(s)' 

with the understanding that it is to be interpreted as 'Yc.>n(t /\ Tn)', as given in the 
above definition. 

The proof of the following theorem is analogous to those in [Br ,97]' and [Sci ,93]. 

Theorem 4.3.7 (The Local Existence Theorem) Assume (AI), (A2), (A3), 
(Ah) and (A3*) hold. Let q ~ p > 2, ( E (2~' ~ - ~) and'Y E [(, ~). Let 
Uo E U(O, .1'0; (X, D(A)kp). Assume that Hand F are local Lipschitz maps from 
(X, D(A».."p to L(E) and X respectively, in the following sense: For each R > 0, 
there exists a constant J(R > 0 such that for u, v E Bc(O, R) = {x E (X, D(A)kp :! 
x k,p$ R} 

I H(u) -lI(v) IL(E) $ J(R I u - v !"p 

I F(u) - F(v) Ix $ J(R I u - V k,P 
Then there exists a (X, D(A»"p-valued process u(t), t < T, which is a local solution 
to (4.1.1)-(4.1.2), where T is an accessible stopping time. 

For the proof of Theorem 4.3.7 we need the following lemma. 

Lemma 4.3.8 (Local Uniqueness Lemma) Assume (AI), (A2), (A3), (AI*) 
and (A3*) hold. Let q ~ p > 2, ( E (21pl ~ - !) and'Y E [(, ~). For i = 1, 2, let 
UO,i E Lq(O, Fa; (X, D(A)kp) and let Hi and Fi be maps from (X, D(A».."p to L(E) 
and X respectively. Suppose that on some open subset U of (X, D(A»"p we have 
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• Fi and Hi are uniformly Lipschitz. 

• FI = F2 and HI = H2. 

• There exists a measurable set no of positive measure, such that 

UO,1 = UO,2 E U a.s. on no. 

Suppose that for i = 1,2, Ui(t), t E [0, T], a < T < 00, are solutions to the problem 

dUi(t) + AUi(t)dt = Fi(ui(t))dt + lI;(ui)dw(t), 

Ui(O) = UO,i' 

Let Ti := inf {t E [0, T] : Ui(t) (j. U}. Then it follows that TI = T2 a.s. on no and 

sup I UI(t) - U2(t) k,p= a a.s. on no. 
O~t~Tl 

Proof: For simplicity let us assume that FI and F2 are equal to zero. We may 
further assume that no = n since we can normalize lP' on no such that lP'(no) = 1. 
Similarly we can assume that a.s. 

Let a = TI A T2. Consider z : [0, T] X n -+ (X, D(A)kp given by 

z(t) = Ul(t) - U2(t) = lot e-(t-s)A (H1(UI(S)) - H2(u2(s))) dw(s). 

Let «s) = H1(UI(S)) - H2(U2(S)), then < E Mq(O, Tj L(E)). By Theorem 4.2.7, z 
has a continuous modification z such that for each t E [0, T] 

l
tl\~ 

IE. sup I z(t A a) I~ C(T)IE I «S) Il(E) ds. 
0~8~t 0 

Since HI and H2 coincide on U and are also uniformly Lipschitz, we have 

IE sup I z(t A 0") I~ p:5 C(t) ft IE I ,8(S)(UI(S) - U2(S)) I~ p ds, 
o~.~t 'io ' 

where,8 is the characteristic function of [0, a). Noting thai 

IE sup 1.B(S)(Ul(S) - U2(S)) I~ p ds < IE sup I (Ul(S A a) - U2(S A a)) I~ p ds 
0:S8~t '0::;.9 . 

= IE sup I z( t A a) I, p' 
0~8~t ' 

we deduce, that for each t E [0, T], 

IE o~~~t 1.B(S)(Ul(S) - U2(S)) I~,p ds ~ C(T) lot IE I ,8(S)(Ul(S) - U2(S)) Itp ds. 

By the Gronwall inequality 

IE sup 1.B(S)(Ul(S) - U2(S)) I~,p ds = 0, t E [0, T]. 
0::;s9 
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As a result, for each t E [0, TJ 

The continuity of the processes Ul and U2 implies, that for a.a. w 

Ul(',W) = U2(',W) on [O,O'(w)). 

We may further deduce, that for a.a. W 

using the continuity of the paths again. It follows that 

Finally, as 0' = 71 A 72, then Ul(O'(W),w) = U2(0'(W),w) rt. U. By definition of 7\ and 
72, it follows that T} = T2 a.s .. This completes the proof. 

• 
Proof (of Theorem 4.3.7) : Let ° < T < 00 be fixed but arbitrary. For each 
n E N define Fn and Hn so that they are uniformly Lipschitz continuous and they 
coincide with F and H respectively on the set 

{U E (X,D(A))c.,,:1 U Ie,,,::; n}. 

Define 

u (0 w) = {uo(w) if 1 uo(~) k,,,::; n 
n , 0 otherwIse. (4.3.47) 

For each n E N there exists a unique process Un E ZT,"I,( which satisfies (4.3.34), with 
Uo, F and H replaced with un(O), Fn and Hn respectively. Moreover there exists a 
set of full measure n such that each Un is continuous on n. For each n E N define 
the stopping time Tn(W) := inf{t E [O,T] :1 un(t,w) k,,,2: n}, with the convention 
inf 0 = T. Using Lemma4.3.8 one can show that {Tn}n>1 is a nondecreasing sequence 
of stopping times. Define T := SUPnEN Tn = limn_:' Tn, then T is an accessible 
stopping time. For each n, define An := {w E n :1 Uo k,,,$ n}. Then {An}n>} is an 
increasing sequence of sets whose union n', is a set of full measure. Using Lemma 
4.3.8, one can show that, for wEAn, 

Un(t,w) = um(t,w) for 0::; t ::; 7n{W) and m> n. 

For each wEn n n' we define a process u by 

U(t,w) = um{t,w), 0::; t ::; Tm(W), m ~ n, wEAn. 

As each Un is continuous then so is u. Moreover as Uo is adapted and each Un is F t-
measurable on Ot(Tn) = {w EO: t < Tn{W)} , then it follows that U is Ft-measurable 
on Ot(T) = {w En: t < T(W)}, i.e. U is adapted. Thus u{t), t < 7 is a well-defined 
admissible (X,D(A))(,p-valued process. For u(t), t < T, to be a local solution we 
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need to show that it satisfies (4.3.45) for each t E [0, TJ and n E N. Fix n E N. 
Then, for each t E [0, TJ 

un(t) = e-tAun(O) + lot e-(t-s)A Hn(un(s))dw(s) + lot e-(t-s)A Fn(un(s))d.s a.s .. 

Let .In be the continuous modification of Xn, where 

Xn(t) = lot e-(t-s)AHn(un(s))dw(s). 

For each t E [0, T] we have 

un(t) = e-tAun(O) + .In(t) + 10t 
e-(t-s)AFn(un(s))ds a.s .. 

In particular, 

(tATn 
un(t 1\ Tn) = e-tMnAun(O) + .In(t 1\ Tn) + Jo e-(tMn-s)AFn(un(s))d.s a.s .. 

Note that, by construction, 

Un(O,w) = u(O,w), un(s,w) = u(s,w) and Fn(un(s,w)) = F(u(s,w)), 

for 0 < s ~ Tn(W), wEAn. It follows, that for each t E [0, TJ 

(tMn 
u(t 1\ Tn) = e-tMnAu(O) + xn(t 1\ Tn) + Jo e-(tMn-.)A F(u(s))ds a.s. on An. 

We aim to show 

Corollary 4.2.8 implies 

where 

IE sup I .In(t 1\ Tn) - XOn(t /\ Tn) I~.,,= 0, 
09:5T 

( 4.3.48) 

XOn(s) = lot e-<t-s)Aan(s)Hn{un{s))dw(s) 

and an is the characteristic function of the interval [0, Tn). 
As Hn(un(r)) = H(u(r)), r ~ S < Tn(W), wEAn, then, it follows that for a.a. w 

XOn(-,w) = Y"'n(',w) on [O,Tn(W)). 

Using (4.3.48) and the continuity of the processes .In and Y"'n we deduce that 

Xn(',w) = Y"'nhw) on [0, TnJ. 

In particular, for each t E [0, TJ 

xn(t /\ Tn) = YOn(t /\ Tn) a.s. on An. 

It follows, that for each t E [0, T] 
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Note that if w rt. An, then Tn(W) = O. In particular, the integral equation holds 
trivially. So, for each t E [0, T] 

(tAT" 
u(t 1\ Tn) = e-tM"Au(O) + Ya,,(t 1\ Tn) + Jo e-(tM,,-.)A F(u(s))ds a.s .. 

The proof is complete once we note that the above argument will hold for any n EN . 

• 
The following Corollary will be used in a later chapter. It's proof relies on the above 
proof of Theorem 4.3.7. 

Corollary 4.3.9 Let u(t), t < T, be our local solution. Then for each Il > ° 
the process ull(t) := 1l(1l + A)-lU(t), t < T, is an admissible D(A)-valued process 
satisfying, for each t E [0,(0) and kEN, 

( 4.3.49) 

Proof: Corollary 4.3.4 implies that the approximate solutions Un satisfy (4.3.42). 
To show that the constructed local solution satisfies (4.3.49) one just repeats the 
arguments in the proof to Theorem 4.3.7 . 

• 
We now give the definition of a maximal solution. 

Definition 4.3.10 Let T be an accessible stopping time. A local solution u(t), t < T 

is said to be maximal if for any other accessible stopping time f, such that u( t), 
t < f is also a local solution, then f :5 T, a.s .. 

We need the following Lemma, see [EI,82]. 

Lemma 4.3.11 (The Amalgamation Lemma) Let A be a family of accessible 
stopping times with values in [O,ooJ. Assume that for each a E A, lOi : [0, a) x n ~ 
(X, D(A)kp is an admissible process and that for any t < 00, a, (3 E A, Ia(t) = I(j(t) 
a.s. on {t < a 1\ (3}. Then, there exists an admissible process I : [0, T) X n -t 

(X,D(A)kp, where T:= sup{a: a E A}, such that 

let) = la(t) a.s. on {t < a}. ( 4.3.50) 

Moreover, if j: [0, T) X n ~ (X, D(A))o,p is any other admissible process satisfying 
(4.3.50), then l(t,w) = i(t,w) a.s. on {w : t < T(W)}. Furthermore, T can be chosen 
as the limit of some increasing sequence {an }n>l' where an E A for each n EN. 

The following Theorem and proof is taken from [Br,97], see also [Br/EI,98]. 

Theorem 4.3.12 Under the assumptions of Theorem 4.3.7, there exists a maximal 
solution u(t), t < T to the problem (4.1.1)-(4.1.2) 
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Proof: Let 

CS:= {(U,T): u{t),t < 1', is a local solution to (4.1.1)-(4.1.2) }. 

By Theorem 4.3.7, CS is nonempty. By the Amalgamation Lemma, there exists a 
unique admissible (X,D(A))c,p-valued process il and an accessible stopping time f, 
such that, for every stopping time l' with (U,T) E CS, il(t) = u(t) a.s. on {t < T}, 
t E {O,TJ. Moreover, usatisfies (4.3.45), which is proved as in Theorem 4.3.7, noting 
that f can be taken as the limit of an increasing sequence of stopping times {Tn }n>l, 

where for each n, (Un,Tn) E CS. Thus (il,f) E CS. By Definition 4.3.10, u(l), 
t < f, is maximal. 

• 
We turn now to the question of uniqueness of maximal solutions. (Henceforth we 
assume that the assumptions of Theorem 4.3.7 are satisfied). We need the following 
lemma, see [Br/EI,98J. 

Lemma 4.3.13 Let u(t), t < l' be a maximal solution to the the problem (4.1.1)­
(4.1.2). Then 

lP' {T < T and lim sup 1 u(t) Ic.p< oo} = O. 
t-1' 

(4.3.51) 

Remark 4.3.14 Let u(t), t < l' be a maximal solution to (4.1.1)-(4.1.2), with 
{Tn }n>l the corresponding sequence of stopping times with Tn < l' and Tn --+ T. For 
each n EN, define 

Un = inf{t E [0,1'):1 u(t) k.p~ n}. 

By Lemma 4.3.13, Un is a well defined stopping time. Furthermore, Lemma 4.3.13 
also implies that 

Tn A Un --+ l' a.s .. 

Theorem 4.3.15 (Uniqueness of Maximal Solutions) Suppose that u(t), t < l' 
and v(t), t < T are maximal solutions to the problem (4.1.1) with the same initial 
value Uo E L9(n, Fo; (X, D(A))(,p). Then 

IE sup _ 1 u(s) - v(s) I~,p= O. 
O~8<1'I\1' 

( 4.3.52) 

Proof: From the definition of a local (maximal) solution, there exist sequences of 
stopping times {Tn }n>l and {Tn }n>l such that Tn --+ l' and Tn --+ f. Define the 
stopping times Un ana Un by -

Un = inf {t E [o,T):1 u(t) k,p~ n} A Tn, 

an = inf {t E [0, T) :1 v{t) k,p~ n} A Tn. 

Using the maximality of u and V, we have Un --+ 7' and an --+ f. Set Kn = Un A an 

and K = 7' A f, then Kn --+ K. 

Consider the process z(t), t < K given by 

z(t) = u(t) - v(t), t < K. 
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For each t E [0, T] and n E N we have 

z(t 1\ Kn) = u(t 1\ Kn) - v(t 1\ Kn) 

= Y~Jt 1\ Kn) - Y~Jt 1\ Kn), 

where ii~n and ii~n are the continuous modifications of 

Y~n = fat e-(t-s)A.Bn(s)H(u(s))dw(s), 

Y~" = fat e-(t-s)A.Bn(s)H(v(s))dw(s), 

with .Bn denoting the characteristic function of [0, Kn) Thus 

z(t 1\ Kn) = fat e-(t-s)A.8n(s) (H(u(s)) - H(v(s))) dw(s). 

Corollary 4.2.9 implies 

IE. sup 1 z(s 1\ Kn) I~ p~ C(T)IE. t .8n(s) 1 (lI(u(s)) - II(v(s))) IL(£) ds. 
O~s$t • io 

H is Lipschitz on B(D, n) C (X, D(A)kp and so 

IE. sup 1 z(s 1\ Kn) I~ p~ C(n, T)JE r .Bn(s) 1 (u(s) - v(s)) IL(E) ds. 
O~8~t • io 

Observing that 

we have 

IE sup l.8n(s)(u(s) - v(s)) I~ p~ C(n,T)IE r .Bn(s) 1 (u(s) - v(s)) IL(E) ds. 
o~.~t . io 

The Gronwall inequality then implies, that for each t E [0, T] 

i.e. for each t E [0, T] 

JE sup l.8n(s} (u(s) - v(s)) IL,= 0, 
O~89 

u(t} = v(t} on {t < K,,}. 

By the continuity of u and v, for a.a. w we have 

u(·,w) = v(·,w) on [O,K,,(W)). 

This holds for each n EN. In particular, if we let n -+ 00 then for a.a. w 

u(·,w) = v(·,w) on [0, K(W)). 

This completes the proof. 

• 

59 



Chapter 4 60 

Corollary 4.3.16 (Uniqueness of Global Solutions) Let 0 < T < 00. Let u(t) 
and v(t), t E [0, T] be global solutions to the problem (4.1.1) with the same initial 
condition Uo E L9(O, .1'0; (X, D(A))c,p). Then 

lE sup I u(t) - v(t) I~ p= O. 
09ST ' 

Proof: As u and v are global solutions, then u(t), t < T and v(t), t < T are both 
maximal solutions to the problem (4.1.1)-(4.1.2). Theorem 4.3.15 implies that 

lE sup I u(t) - v(t) I~ p= O. 
09<T ' 

As u and v are both defined and continuous on the interval [0, T] then we can deduce 
that 

lE sup I u(t) - v(t) I~,p= O. 
O::;tST 

This completes the proof. 

• 
4.3.1 Existence Of A Maximal Solution To The SNHE 

We consider now the stochastic nonlinear heat equation, SNIIE. Our problem is 

du(t) + Au(t)dt = V(u(t))dt + F(u(t))dt + II(u(t)) 0 dw(t) 

u(O) = Uo 

where the term involving the Stratonovich differential may be written 

1 
H(u(t)) 0 dw(t) = H(u(t))dw(t) + '2tr{H'(u(t))H(u(t))}dt. 

( 4.3.53) 

( 4.3.54) 

( 4.3.55) 

The coefficients appearing in (4.3,53) and (4,3.55) are locally Lipschitz maps with 

V, ~tr(H'H) 
F 

H 

(X, D(A))"I,p -. X 

(X, D(A))"I,p -+ X 
(X, D(A))"I,p -. L(E, E) 

for any 'Y > ! + ~, p > 2. Note that 'Y is chosen as such to guarantee that F(u) 
makes sense classically for u E (X, D(A))"I,p, see Chapter 3. In terms of the Sobolev­
Slobodetski spaces, the maps satisfy 

V, ~tr(ll' H) 

F 

H 

W",P(St, ~d) -+ U(St, Rd) 

W"+l,P(S\ Rd) -. U(St, Rd
) 

W",P(St, Rd) -. L(W9,P(S\ Rd
), W9,P(St, lid)) 

for any (} > () () E (1 1) p> 2. 
-, p' 2 ' 

The following Theorem is a consequence of Theorem 4.3.12 above. 
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Theorem 4.3.17 Existence of a Maximal Solution: Let w(t), t ~ 0, be a 
WO,P(Sl, JRd)-valued Wiener process, () E (~, ~L p > 2, relating to the AWS i : 
Hl,2(Sl, JRd) ~ WO,P(Sl, JRd). Let Uo E U(O, Fa; W·,p(Sl, :R d )), where q > p and 
~ - ~ > s > 1 + ~. Then, there exists an accessible stopping time T and an admissible 

W',P(Sl, JRd)_ valued process u(t), t < T, which is the maximal solution to the problem 
(4.3.53)-( 4.3.54). 

Proof: Let Uo, q and s be as stated. Note that 

where ( := ~ E (~ + 21p' ~ - ~). Thus Uo E Lq(O, .1'0; (X, D(A)kp) and since the 
Nemytski maps V, F, H and ~tr(H'H) satisfy the requirements of Theorem 4.3.12 
the result follows. 

• 
Remark 4.3.18 Suppose we take our initial value Uo satisfying 

Uo E LP(O, Fa; W",P(St, m.d )), 

then we would need s E (1 +! ~ - ~). Note that 
p' 2 P 

3 2 1 
- - - > 1 + - ¢:> P > 6. 
2 p p 

Thus if Uo E LP( 0, Fa; W .. ,"( S1, JRd)) then our results give a solution only in the case 
p> 6. 
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Existence of a Maximal Solution 
on the Loop Manifold M 

5.1 Properties of the Nemytski Map I 

In this chapter we are concerned with proving that our maximal solution u(t), t < T, 

lies on the loop manifold M = W·,P(Sl, M), s > 1 + ~, p > 2, where 

WB,P(St,M):= {u E W·,p(St,~d): u(O') E M, \:10' E S1}. 

The assumption we need to impose is, for q ~ p, as chosen in Chapter 4, 

Uo E Lq(Oj WB,P(St, M)). 

We first recall the involution map i : ~d -+ ~d and its properties, see Chapter 3. i is 
a smooth map with compact support, that satisfies 

i(m) = m <=> m E M. (5.1.1) 

Moreover i : U -+ U, where U is the tubular neighbourhood of the manifold M. 
There exist c > 0 such that Me U, c U, where 

Uf := {x E m.d : d(x,M) < f}. (5.1.2) 

Furthermore, c can be chosen small enough so that the following properties hold: 

i'(p)ii(p) = v(i(p)), p E U" 

i'(p)h(p) = h(i(p)), p E Uo 

(5.1.3) 

(5.1.4) 

where ii : ~d -+ ~d and h : ~d -+ L(m.dj ~d) are the smooth maps constructed in 
Chapter 3. Henceforth we assume that e > 0 is chosen small enough so that the 
properties (5.1.3) and (5.1.4) hold for p E Ue • 

For the open set U C m.d we define WB,p(S1, U) as 

W·'P(S1,U):= {u E WS,p(S\~d): u(O') E U, \:10' E S1}, 

with an analogous definition for WB,p(Sl, U,). As U is open it is straightforward 
to show that WB'P(S1, U) is an open subset of W·,p(S1, ~d). We now define the 
N emytski map I of i by 

I(u) := i 0 u. (5.1.5) 

We have the following important Proposition. 

62 
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Proposition 5.1.1 Let I be the Nemytski map of i as defined in (5.1.5). Then I 
is a smooth map I : WS,P(SI, JR,d) -+ WS,P(SI, JR,d), which is locally Lipschitz and oj 
linear growth. Furthermore, I satisfies the following properties: 

(i) For u E WS,P(Sl, JR,d), 

I(u) = u ¢} u E WS,P{Sl,M). 

(ii) I maps WS,P(S\ U) to itself. Similarly, I maps WS,P(S\ U~) to itself. 

(iii) For u E WS,P(Sl, Ue ), 

1'(u)V(u) = V(I(u)), 

1'(u)H(u) = H(I(u)), 

(5.1.6) 

(5.1.7) 

(5.1.8) 

where V and H are the Nemytski maps corresponding to v and h respectively, see 
Chapter 3, and I' is the derivative of I. 

(ivy For u E COO(Sl, U~), 
I'(u)6.(u) = 6.I(u), (5.1.9) 

where 6. is the nonlinear Laplacian. 

Proof: For the first statement, see Proposition 3.4.1. (i) follows from (5.1.1). (ii) 
follows in a similar fashion as i maps U to itself and Ue to itself. (iii) follows directly 
from (5.1.3) and (5.1.4). The proof of (iv) is a little more intricate. By Proposition 
3.1.4, any f : [0,00) -+ coo(Sl, Ue ), which is a solution of the heat equation, satisfies 
(5.1.9). Moreover, see [Ee/Sa,64] or [Ot,84], given any u E coo(Sl, Ue ), there exists a 
unique f : [0,00) -+ COO(St, JR,d) which is the solution to the nonlinear heat equation 
with f(O) = u. By continuity, for some small t > 0, f(s) E COO(Sl,Ue ), S E (O,t), 
and so 

I'(J(s))6.f(s) = 6.I(J(s)), s E (0, t). (5.1.10) 

Thus, by continuity, (5.1.10) will hold for f(O) = u which proves the result. 

• 
Remark 5.1.2 As I is smooth, then so is its first derivative I', where 

1': W 8 ,p(Sl,JR,d) -+ L(W"p(St,JR,d), W"p(St,JR,d)). 

Furthermore, I' acts through the following formula 

J'(u)(v)(O") = i'(u(O"))(v(O")), u,v E W 8 ,P(St, JR,d), 0" E SI. (5.1.11) 

(; 

We briefly desci be the contents of this chapter. To show that u( t), t < 7", is an M­
valued process we follow the idea used in [Ha,75]. Given our maximal mild solution 
u(t), t < 7", we show, using Proposition 5.1.1, that, for some stopping time f $ 7", 

the process v(t) := I(u(t)), t < f, is a weak solution to our problem. We then 
show that our maximal solution is also a weak solution. In particular, under the 
assumption that uo E M a.s., we have, by (5.1.6), that v(O) = I(u(O)) = u(O). So v 
and u are both weak solutions to the same problem, up to the stopping time f. Using 
a well known result that if the coefficients are locally lipschitz and u is a unique mild 
solution, then it is also a unique weak solution, we deduce that v(t) = u(t) for t < f. 
This then implies, by (5.1.6), that u(t) E M for t < f. It is then straightforward to 
show that f = 7", a.s .. 

Q 
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5.2 The Approximating Processes 

Recall that our unique maximal solution is an admissible W·,p(Sl, JP?d)-valllf'd pro­
cess, where s > 1 + 1. Furthermore, for t E [0,00) and kEN, u satisfies 

P 

where {O"khEN is a sequence of increasing stopping times such that O'k < T, for each 
kEN, and O"k ~ T. We have written the mild equation in the Stratonovich form 
but we may also write it in Ito form as: 

(5.2.12) 

The maps V and H satisfy the properties (5.1.7) and (5.1.8), whereas this need not. 
be true for the map F. We do have condition (5.1.9) and 6. involves the map F. 
A problem arises, in that, to make use of (5.1.9), we needour maximal solution 
to be W 8+t,P(Sl, JRd)-valued, which then implies that it is C2(Sl, JP?d)-valued. u 

is only W·,P(Sl, JRd)-valued and as a result only satisfies a mild integral equation. 
This problem may be overcome if we approximate our maximal solution with a 
sequence of processes, defined up to the stopping time T, which are of a higher 
regularity in the space variable than our solution. As a result, they will satisfy a 
strict integral equation and we may apply condition (5.1.9). We begin with defining 
the approximations. For simplicity of notation only, we leave out the term V. 
Recall that the operator (n + At!' n E N, may be considered as a map 

(n + Art: w·,P(St, JP?d) ~ w·+2,P(St, JP?d). 

It is linear, bounded and it commutes with e-rA , r ;?: O. For each n E N define the 
process un(t), t < T, by 

It follows that un(t) , t < T, is an admissible W 8 +2,P(st,JRd)-valued process and, in 
particular, it is also C2(St, JP?d)-valued. 

Remark 5.2.1 Clearly, by the definition of un and the continuity of u, we have 
that un ~ u as n -+ 00, pointwise on [0, T(W)), for almost all wEn. Using the 
boundedness of n(n + At! and the Lebesgue Dominated Convergence Theorem, 
(LDC), we have, for each kEN and t E [0,00), q ~ p, 
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where I . Is,p is the norm on W 8 ,p(Sl, ~d). I . b will denote the norm on £P(SI, ~d). 
As / is continuous, then /(u n ) -+ /(u) pointwise on [0, T(W)), for almost all W E f2. 
In fact, as un -+ U in Lq(f2; U(Sl, ~d)), then the following inequality 

I I(u) ILP~ C I U ILP, U E W·,p(Sl ,~d), 

(where C is a constant independent of u), and the LDC Theorem imply that for 
each kEN, t E [0,(0) 

I(un(t 1\ O'k)) -+ I(u(t 1\ O'k)) III U(f2; LP(Sl, ~d)). 

o 
For each n E N, we apply n(n + A)-l to both sides of (5.2.12). We then have, for 
t E [0,(0) and kEN, the following mild integral equation holding a.s. 

(tMk 
un(t 1\ O'k) = e-(tMk)Aun(o) t Jo e-(tMk-S)An(n + A)-l F(u(s))ds 

tMk + Jo e-(tMk-S)An(n + A)-l II(u(s))dw(s) 

1 (tMk 
+ 2 Jo e-(tMk-S)An(n + Arltr{II'(u(s))H(u(s))}ds. 

Henceforth, we write Fn = n(ntAtl F, Hn = n(ntAtlH and trn = n(ntAtltr. 
Recall that un(t) is W 2,P(St, ~d)-valued and so un(t) E D(A) a.s .. As a result, see 
Corollary 4.3.9, for t E [0,(0) and kEN the following strict integral equation holds 
a.s. in LP(St, ~d) 

We may rewrite this as 

As a result we have 

(5.2.13) 

Remark 5.2.2 For any sequence of stopping times {TdkEN' such that Tk < T and 
Tk -+ T, the above integral equations will hold with O'k replaced by Tk, see [BrjEI,98]. 
o 



Chapter 5 

5.3 The Weak Solution I(u(t)), t < 7. 

We first introduce the notion of a weak solution to the problem 

du(t) + Au(t)dt = F(u(t»dt + II(u(t» 0 dw(t) 

u(O) = uo. 

We use the following notation: for u, v E L2(S1, ]Rd) we set 

< u, v >L2:= { < u(a), v(u) > da, lSI 

where < ',' > is the inner product on ]Rd. 
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(5.3.11) 

(5.3.15) 

Definition 5.3.1 (Weak Solution) An admissible W·,p(Sl, ]Rd)-valued p1'ocess 
u(t), t < T, is a weak solution to the problem (5.3.14)-(5.3.15), if for each 
</> E COO (S1, ]Rd) the following weak integral equation holds, for each kEN and 
t E [0,(0) 

{'lIuk 
= < u(O), </> >L2 + 10 < Vu(s), V</> >L2 ds 

{tMIt 
+ 10 < F(u(s», </> >L2 ds 

{'lIuk 
+<10 H(u(s»odw(s)'</»L2 a.s., ( 5.3.16) 

where {Uk} are a sequence of increasing bounded stopping times with Uk < T and 
Uk -+ T. 

We will later show that our maximal mild solution is also a weak solution in the 
above sense. We will first prove the following result which is more difficult. Before 
stating the Theorem we define the stopping time i'. Let f > 0 be sufficiently small 
so that properties (5.1.7) and (5.1.8) hold for any u E W·,P(S1, Uf ). Define now 

(5.3.17) 

T :::; T is a well-defined stopping time since the process u( t) is continuous and the 
set W',P(St, Uf ) is open. 

Theorem 5.3.2 Let u(t), t < T, be our W',P(St, ]Rd)-valued maximal solution. The 
process v(t) := J(u(t», t < i', is an admissible W·,p(Sl, ]Rd)-valued process which 
satisfies the following weak integral equation: for each kEN, t E [0,(0) and </> E 
COO(S\ ]Rd) we have 

{tf'TIt 
= < v(O), </> >L2 + 10 < Vv(s), V</> >L2 ds 

{tMIt 

+ 10 < F(v(s», </> >L2 ds 

{tMIt 
+<10 H(v(s))odw(s),</»L2 a.s. (5.3.18) 

where Tk := T 1\ Uk. 
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Proof: We first apply the Ito formula with the map J to the integral equation 
(5.2.13). Thus for each t E [0,00) and kEN the following equation holds a.s. 

Denote 

J(un(t 1\ Tk)) = J(un(O)) + latATk 

I'(un(s))6un(s)ds 

{tATk + io I'(un(s)) (Fn(u(s)) - F(un(s))) ds 

1 {tATk + 2 io I'(un(s)) (trn{II'(u(s))lI(u(s))} )ds 

+ latATk 

J'(un(s)) (Hn(u(s))) dw(s) 

1 {tATk + 2 io tr {I"(un(s)) (Iln(u(s)), IIn(u(s)))} ds. 

rATk 

J(un(t /\ Tk)) = J(un(O)) + io J'(un(s))[-Aun(s) + F(un(s))]ds 

(5.3.19) 

+ J~(tk) + J;(tk) + I;(tk) + J;(tk). (5.3.20) 

For any ¢ E Coo(S!, JRd) it follows, using (5.3.20), that 

< J(un(t /\ Tk)), ¢ >£1 = < J(un(O)), ¢ >L2 

rATk 

- io < I'(un(s))(Aun(s)), ¢ >£1 ds 

rATk 

+ io < I'(un(s))(F(un(s))),¢ >L2 ds 

+ < If(tk) + I;(tk), ¢ > £1 

+ < I;(tk) + I;(tk), ¢ >£2 . (5.3.21) 

In view of Remark 5.2.1, 

I ( un (t 1\ Tk)) -+ I ( u (t 1\ Tk)) 

in U(S1; LP(St, JRd)). Now if ¢ E COO(S!, JRd), then ¢ is bounded. It follows that 

IE < I(un(t /\ Tk)) -I(u(t /\ Tk)), ¢ >£1~ IE I J(un(t /\ Tk)) - I(u(t 1\ Tk)) 11p, (5.3.22) 

which implies 

in U(O, IR). 
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Remark 5.3.3 For a sequence of processes {Zn(t)} and Z(t), to prove 

in Lq(n, ]R), it suffices to prove, by (5.3.22), that 

We wish to calculate an integral expression for < I(u), ¢ >£2. We may not simply 
take limits as n ~ 00 in (5.3.21). This is due to the fact that u(t) 1:. D(A), a.s. and 
so the term" < I'(u(s))(Au(s)), ¢ >L2" would not make sense. To over come this 
problem we have the following Lemma. 

Lemma 5.3.4 For u E W 2,P(SI, ]Rd), 

- < I'(u)(Au), ¢ >£2= f < \7u(O'), \7 A(U(O'))¢(O') > dO' 
lSI 

Remark 5.3.5 Note that the RHS of (5.3.23) now does make sense for 
u E WS,P(Sl, ]Rd) where 2 > s > 1 + ;. 0 

Proof: Using (5.1.11) we have 

- < J'(u)(Au), ¢ >£2= f < i'(U(0'))dd2~(0'), ¢(O') > da. 
lSI 0' 

(5.3.23) 

(5.3.24) 

Recall that i' : ]Rd ~ L(]Rd,]Rd) and so for x E ]Rd, i'(x) E L(~d,]Rd). Thus for y, 
z E ]Rd it follows that 

< i'(x)y,z >=< y, [i'(x)]*z > 

where [i'(x)]* E L(~d,~d) is the adjoint of i'(x). Define the map A:]Rd -+ L(]Rd,]Rd) 
by A(X) := [i'(x)]*. Then A = * 0 i', where by * we mean the operation of taking 
adjoints of elements of L(]Rd, ]Rd). * is linear and continuous and hence smooth. 
Moreover, as i' is smooth then so is >.. We rewrite (5.3.24) as 

f d2u 
- < I'(u)(Au), ¢ >L2= lSI < d0'2 (a), >.(u(a))¢(a) > da. 

(5.3.23) now follows using integration by parts . 

• 
Denoting u(s, 0') by us(O'), we will show that for any ¢ E coo(Sl, ]Rd), 

1tl\1'1< 1 
o SI 

< \7u.(O'), \7>.(us(a))¢(O') > dads 

+ < 8(t /\ Tk), ¢ >£2, 
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as n --+ 00, in L9(n, ~), where the process B{t), t < f, is given by 

B(t 1\ Tk) = J{u{O)) + fo tATIc 
I'{u(s))F(u{s))ds 

1 ftATIc + 2 Jo I'(u(s)) (tr{H'(u(s))ll(u(s))}) ds 

rtMIc + Jo I'(u(s)) (H(u(s))) dw(s) 

1 ftATIc 
+ 2 J

o 
tr {II/(u(s)) (JI(u(s)), Jl(u(s)))} ds. 

69 

By uniqueness of limits we will then have, for rP E coo(SI, ~d), t E [0,00) and kEN, 

where equality holds a.s.. This would be the first step in proving our Theorem. 
Before we formulate the next Lemma let us introduce the following notation 

Lemma 5.3.6 With the above notation: for each t E [0,00) and kEN, 

(5.3.25) 

as n --+ 00, in L9(n,LP(st,~d)). 

Proof: For s E [0, t 1\ Tk)' un(s) --+ u(s) pointwise in W 8 ,P(Sl, ~d) a.s .. Moreover, 
for each (1 E SI, we have 

(5.3.26) 

With an application of the LDC Theorem in mind, we wish to find integrable bounds 
for the terms 1 -yn(tk) 19 • Note that as i is of compact support, then there exists 
some constant C such that 

sup 1 A(X) 1= sup 1 [i'(x)]* 1= sup 1 i'(x) I~ c, 
x x x 

where the supremum is taken over x E Rd. Moreover, 1 rP 1£2~ CI , for some constant 
Cl, and so 

The last inequality follows from 
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In particular, we have 

Since lE (I~Mk / u( s) /LP ds r < 00, the result follows by LDC . 

• 
Of the remaining terms the difficult term is 

We first prove the following 

Lemma 5.3.7 For each t E [0,00) and kEN 

as n ~ 00. 

Proof: We will first prove that, for u E WB,P(Sl, JRd), 

where un := n(n + At1u and Fn = n(n + A)-l F, n E N. 
Using (5.1.11) and the fact that i : lRd ~ JRd is smooth with compact support, then, 
for u E WS,P(St, lRd), v E U(St, lRd), 

/ J'(u)v /~p = r / i'(u(O'))v(O') /P dO' lSI 
< sup / i'(x) /P r / v(O') /P dO' 

X lSI 
< C / V /LP 

for some constant C independent of u. (In the second step, we have taken the 
supremum over x E JRd.) If v E COO(St, JRd) approximates u E W·,P(St, JRd) then 
vn = n(n + Atlv E COO(Sl,lRd) approximates un E W·,P(S1,JR d). This can be seen 
from the inequality 

/ un - vn /s,p ::; / u - V /s,p . 

Moreover, by the continuity of F, given f > 0, then 

for u, v sufficiently close. For such u, v it follows that 

/ I'(un) {Fn(u) - F(unn /LP < / Fn(u) - F(un) /LP 

< / Fn(u) - Fn(v) /LP + / Fn(v) - F(v) /LP 

+ / F(v) - F(vn) /LP + / F(vn) - F(un) b 
< f + / Fn(v) - F(v) /LP 

+ / F(v) - F(vn) /LP, 
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where the last inequality follows as I n(n + Atl IL(LP,LP)~ 1. Letting n tend to 
infinity we have 

We deduce that 

In particular, for s E [O,t /\ Tk), t E [0,(0) and k E W, it follows that 

With the LDC Theorem in mind we need to find an integrable bound. Now, by 
Corollary 3.4.5, we have 

I Fn(u) - F(un) Itp < I Fn(u) Itp + I F(un) I~p 
< I F(u) Itp + I F(un) Itp 
< C(p, d) (I u I;,p + I u I~,p) 

+ C(p, d) (I un I~,p + I un I~,p) 
~ (2 3 ) < C(p, d) I u Is,p + I u Is,p . 

Recall that our maximal solution satisfies, for some q ;::: p > 2, 

rMIc 
IE Jo I u(s) I~,p ds < 00. 

If q ;::: 3 then we may apply the LDC Theorem and this will complete the proof of 
Lemma 5.3.7. If p ;::: 3, then clearly q ~ 3. If though p E (2,3) then, see Theorem 
4.3.17, q is automatically chosen so that q> 4p(p - 2tl, in particular q > 3. Thus 
for any p > 2, q always satisfies q ~ 3 and hence we can apply the LDC Theorem 
to obtain our result. 

• 
In view of Remark 5.3.3 we deduce that, for t E [0, (0) and k E W, < Ij(ik), </> >£2-+ ° 
as n -+ 00 in £9(0, ~). 

U sing the same line of proof along wi th the Li pschi tz properties of F, If and If', 
and the continuity of I, I' and I" one can prove 

rMIc tMk 
Jo I'(un(s))(F(un(s)))ds -+ Jo I'(u(s))(F(u(s)))ds 

1 tMIc 
I;(tk) -+ 2' Jo I'(u(s)) (tr{H'(u(s))ll(u(s))}) ds 

1 Iot
",r

lc 

I;(tk) -+ - tr {I"(u(s))(f/(u(s)), IJ(u(s)))} ds, 
2 0 

where the convergence is in L9(O, LP(Sl, Jltd)). The term involving the stochastic 
integral possesses no difficulties. One needs to apply the Burkholder inequality and 



Chapter 5 72 

then, again following along the lines of the proof of Lemma 5.3.7 above, one may 
deduce that in Lq(O; U(SI, JRd)) 

tMk 
I;(tk) -+ lo I'(u(s)) (H(u(s))) dw(s). 

Consequently, see Remark 5.3.3, it will follow that for each </J E Goo(SI, ~d) 

1 la tllTk 

< I;(tk)' </J >£2-+ - < I'(u(s))(trH'(u(s))Jl(u(s))) ds, </J >£2, 
2 0 

(tMk 

< I;(tk)' </J >£2-+< lo I'(u(s)) (H(u(s))) dw(s), </J >L2, 

1 la tllTk 

< I:(tk), </J >£2-+ - < tr {II/(u(s)) (H(u(s)), H(u(s)))} ds, </J >£2 . 
2 0 

The fact that < I(un(O)),</J >£2-+< I(u(O)),</J >£2 follows from Remarks 5.2.1 and 
5.3.3. Thus, in view of the discussion earlier, uniqueness of limits implies that, for 
kEN, t E [0,00), the following weak integral equation holds a.s. 

< I ( u (t /\ Tk)), </J > L2 = < I ( u ( 0 ) ), </J > L2 

where we have denoted 

+ tMk ( < \7us (O'), \7).(us (O'))(</J(O')) > dO'ds 
lo lSI 

+ < fotMk 

I'(u(s))(F((u(s)))ds,</J >£2 

1 + 2 < I2(tk), <P >L2 

(tllTk 
+ < lo I'(u(s)) (lI(u(s))) dw(s), </J >£2 

1 + 2 < I4(h),<p >L2, (5.3.27) 

I2(tk) ._ fotMk 

I'(u(s)) (tr{II'(u(s))lI(u(s))}) ds 

tMk 
I4(tk) .- lo tr {II/(u(s)) (H(u(s)), II(u(s)))} ds. 

The following Lemma is crucial. We continue to use the notation of Lemma 5.3.4. 

Lemma 5.3.8 For u E W·,p(Sl, Ue) the following equality holds, for any </J E 
COO (51 , JRd),' 

( < \7u(O'), \7)'(u(O'))¢>(O') > dO' + < I'(u)F(u), <p >L2 lSI 
= < \7 J'(u), \7</J >L2 

+ < F(I(u)), <p >L2. (5.3.28) 
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Proof: Let u E Coo(S1, Uf)' Then, using (5.1.9), we have, for any <I> E coo(S1, w. d ), 

< J'(u)t:::..u,<I> >£2=< t:::..J(u),</> >£2. (5.3.29) 

Consider the RHS of (5.3.29). We have the following equalities 

< t:::..J(u) , </> >£2 = - < AJ(u), <I> >Ll + < F(I(u)), </> >£2 
= < "1 J(u), "1<1> >£2 + < F(l(u)), <I> >£2. (5.3.30) 

Considering now the LHS of (5.3.29): 

< I'(u)t:::..u, <I> >£2 = - < J'(u)Au, <I> >£2 + < J'(u)F(u), </> >£2 

= [ < "1u(O'), "1,\(u (0')) <1>(0') > dO' 1Sl 
+ < J'(u)F(u), </> >£2, (5.3.31) 

where the last equality follows from (5.3.23). Putting (5.3.30) and (5.3.31) together 
gives us (5.3.28) for any u E coo(S1, Uf)' To extend this to functions in W·,p(Sl, Uf), 
note first that (5.3.28) does actually make sense for functions in W·,p(S1, U,). Fur­
thermore, all the terms in the expression are continuous and so using the density of 
Coo (SI, Uf ) in WS,p(SI, U,) gives us our result . 

• 
As a consequence of Lemma 5.3.8, (5.3.27) now reads 

[tMk 
< J(u(t /\ 1'k)),<I> >L1 = < J(u(O)),</> >£2 - < Jo "1J(u(s))ds, "1</> >£2 

+ < fo tMk 
F(I(u(s)))ds, <I> >Ll 

1 + 2 < J2(tk), ¢> > Ll 

[tMk 
+ < Jo J'(u(s))(H(u(s))) dw(s), ¢> >Ll 

1 + '2 < J4 (tk), <P >£2, (5.3.32) 

w here we recall 

rMk 
J2(tk) .- Jo J'(u(s))(tr{H'(u(s))H(u(s))}) ds 

rMk 
J4(tk) ,- Jo tr {I"(u(s)) (H(u(s)), H(u(s)))} ds. 

As our Wiener process is WO,p(S1, JRd)-valued we consider J/ as a map 

see Chapter 3. Furthermore, J is a smooth map satisfying 
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and so its derivative I' satisfies 

I' : WiI,P(St, ~d) -+ L(WiI,P(St, ~d), WiI,P(Sl, ~d)). 

Define a map J: W9,p(St,~d) -+ L(WiI,p(St,~d), WiI,p(Sl,~d)) by 

J(u) := I'(u)H(u). 

J is a well-defined smooth map. An application of the chain rule gives 

J'(u)(.) = I"(u)(·)H(u) + I'(u)H'(u)(.), u E W·'P(Sl,~d). (5.3.33) 

If u E W',P(St, Ul ) then J(u) = H(I(u)), using (5.1.8), and so in this case we have 

J'( u)(.) = H'(I( u) )1'( u)(.). (5.3.34) 

It then follows from (5.3.33) and (5.3.34) that 

tr {I"(u)(H(u))H(u) + I'(u)H'(u)(H(u))} = tr {H'(I(u))I'(u)(IJ(u))}. 

Using (5.1.8) again we get 

tr {I"(u)(H(u))JI(u) + ]'(u)JI'(u)(H(u))}. = tr {/I'(I(u))/I(1(u))}. (5.3.35) 

Finally, from the definition of the map tr and the fact that I'(u), u E W',P(Sl,rw. d ), 

is a bounded linear map, we have 

I'(u)tr {JI'(u)JI(u)} = tr {I'(u)Jl'(u)/I(u)}. (5.3.36) 

Using (5.3.32), (5.3.35) and (5.3.36), we have, for kEN, t E [0,00) and 4> E 
COO(Sl, ~d), the following integral equation holding a.s. 

ftl\'Tk 

< I(u(O)), 4> >L2 - < Jo ~](u(s))ds, ~4> >£2 
ftl\'Tk 

+ < J
o 

F(I(u(s))ds,4> >L2 

+ < ltA'Tk JI(I(u(s)))dw(s), 4> >£2 
1 tA'Tk 

+ 2 < Jo tr {H'(I(u(s)))H(I(u(s)))} ds, ¢ >Ll . 

Writing this in Stratonovich form gives 

tA'Tk 
< I(u(t/\TIc)),4>>Ll = <I(u(O)),¢>Ll+<Jo F(I(u(s))ds'¢>L2 

rA'Tk 
+<10 H(I(u(s)))odw(s)'¢>Ll, 

which is the required weak integral equation (5.3.18). This concludes the proof of 
Theorem 5.3.2. 

• 
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5.4 Existence Of An M-valued Solution 

The following Theorem states that u(t), t < T, is a weak solution to the problem 
(5.3.14), (5.3.15). We only give a sketch proof, as this proof is similar and simpler 
to that of Theorem 5.3.2. 

Theorem 5.4.1 u(t), t < T, is a weak solution to the problem (5.3.14)' (5.3.15). 

Proof: As in the previous proof one first shows that, for each if; E c oo (5 1
, lR d

), 

t E [0,00) and kEN, 

< un(t 1\ O'k), if; >£2-t< u(t 1\ O'k), if; >£2 in Ll(O, lR). 

Then using the fact that the approximations satisfy a strict integral equation we 
may write, for each kEN, t E [0,00), 

tMk 
< un(O), if; >£2 - < Jo \7un(s)ds, \lif; >L2 

tMk + < Jo F(un(s))ds, if; >L2 

+ < lMk {Fn(u(s)) - F(un(s))}ds, if; >£2 

tMk + < Jo Hn(u(s))dw(s), if; >£2 

1 ltl\Uk + - < trn{H'(u(s))H(u(s))}ds, if; >£2 
2 0 tMk 

-t < u(O), if; >£2 - < Jo \7u(s)ds, \lif; >£2 

t""k + < Jo F((u(s))ds, </> >£2 
tMk + < J
o 

H(u(s))dw(s), if; >L2 

1 ltl\Uk + - < tr{Jl'(u(s))Jl(u(s))}ds,</> >L2 • 
2 0 

The proof of the above is straightforward as we do not have to concern ourselves 
with the map I and so the results of Lemmas 5.3.4, 5.3.6 and 5.3.8 do not apply in 
this case. Note that the above convergence is in Ll (OJ lR) and so by uniqueness of 
limits we may infer that u(t), t < T, satisfies the required weak integral equation, 
see (5.3.16), and hence is a weak solution . 

• 
Corollary 5.4.2 If Uo E Lq(O; W 8 ,p(SI, M)) then the maximal solution u(t}, t < T, 

is an admissible M -valued process. 

Proof: Due to the conditions imposed on u(O) = Uo we have v(O) = J(u(O)) = u(O), 
see Proposition 5.1.1. Theorems 5.3.2 and 5.4.1 imply that, on [0, f), u and v satisfy 
the same weak integral equation with the same initial condition. As u is the unique 
mild maximal solution, then, see [KrfRo,79], it is also the unique weak solution. 
Thus we must have u = v = I( u) on [0, f). This holds if and only if u E M on [0, f). 
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It is straightforward to show that f = T. Indeed, suppose P( f < T) > O. Then, for 
wE {f < T}, u(f(w)) is well-defined and by the continuity of u, u(f) E W',P(SI, U~), 
which lies strictly inside the set W!,P(Sl, Uf)' see (5.1.2). This, though, contradicts 
the definition of T, see (5.3.17). So we must have P(f < T) = 0 i.e. P(f = T) = 1. 
We may therefore conclude that our maximal solution u(t), t < T, is an M-valued 
process. 

• 
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Chapter 6 

Existence of a Global Solution on 
the Loop Manifold M 

6.1 Introduction 

We are now concerned with proving that our maximal M-valued solution is in fact 
a global solution. As previously mentioned, general results on global existence re­
quire the coefficients to satisfy both local Lipschitz and linear growth conditions, 
see [Br ,97], for example. Recall that the term F is not of linear growth. As in 
the case of deterministic PDEs one needs to consider different methods depending 
on the particular problem studied. For example, in [Br/Ga,9S]' where they con­
sider stochastic reaction-diffusion equations on Banach spaces, they prove globality 
of solution by using certain dissipativity properties of the drift term. As another 
example, see [Ca/Cu,91], [FI/Ga,95]' where they consider stochastic Navier-Stokes 
equations, they use the fact that the drift term satisfies some orthogonality condi­
tion to prove global existence of a solution. 

The method we employ is motivated (again!) by the works of Eells and Sampson. 
We calculate certain energy estimates for our maximal solution. These estimates 
play the role of the linear growth condition for F and ensure that the norm of our 
solution does not 'explode', i.e. the solution is global. 

Notation: Throughout we adopt the following notation. W",P:= W"'P(Sl, JRd) and 
we denote the norm on this space by 1 . I",p' We denote the norm on LP(S1, JRd) by 
1 . IL: and that on U(Sl, JR) by 1 • ILP. For a map U on S1 we will sometimes write 
U u := u(O') and \7/7u:= (\7u)(O'), for 0' E S1. 0 

6.2 Some Fundamental Lemmas 

First we recall how F is defined: for suitable U : S1 -+ JRd and 0' E S1 

d ( dui duj dui duj 
) 

F(u)(O'):= ij;l rJ,(u(O')) dO' (0') dO' (0'), ... ,rtj(u(O')) dO' (0') dO' (0') . 

We have the following fundamental Lemma. 

77 
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Lemma 6.2.1 For u E W 8 ,p with s > 1 + 1 
p' 

1 F(u) lip~ C(p,d) 1 Vu I~p 
d d 

for some constant C(p, d) independent of u. 

78 

(6.2.1) 

Proof: As s > 1 + ~, then Vu E C(Sl, ~d) and so in particular Vu E J}l'(SI, ~d). 

On ~d we use the norm 1 x 1= '£,1=1 1 Xi 1 for x = (Xl,"" Xd). For a E SI we have 

For i,j, k = 1, ... , d, ffi : ~d -+ ~, are smooth with compact support and so 

sup 1 r:j(u(a)) I~ sup 1 r:j(x) I~ M ijk ~ C 
<1ESI xEm d 

where C = max{Miik : i,j, k = 1, ... , d} and is independent of u. Thus 

1 F(u)(a) 1 ~ C(d) t 1 du
i 

(a) " du
j 
(a) 1 

.. 1 da da ',)= 

= C(d) ~ (t, 1 ~~ (u) I) 1 :: (u) 1 

= C(d) 1 Vu(a) 1 ~ 1 ~~ (a) 1= C(d) 1 Vu(a) 12. 

Thus for some constant C(p, d) independent of u we have 

f 1 F(u)(a) IP da ~ C(p,d) f 1 Vu(a) 1
2p da. 

lSI lSI 

• 
Definition 6.2.2 The energy density of a function u : SI -+ ~d of Cl-class, zs a 
real valued function e( u) : SI -+ ~ defined by 

(6.2.2) 

where g is the metric on Rd as constructed in Chapter 3. 

The following inequality gives us the estimate we require for our term F and the 
result is particular to our metric. 

Corollary 6.2.3 For u E W',P, S > 1 + 1, 
P 

1 F(u) IL~:5 C(p,d,R) 1 e(u) ILP (6.2.3) 

where C(p, d, R) is a constant independent of u. R > 0 depends on the manifold M. 
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Proof: Recall that our metric 9 is a smooth function which coincides with the 
Euclidean metric outside some closed ball, B(O, R) c m. d , of radius R, which contains 
both the manifold M and its tubular neighbourhood U. It follows that 

g(x)(~,O =< ~,~ >, ~ E m.d, x E B(O,R)". (6.2.1) 

Now as 9 is smooth it attains its minimum on the ball B(O, R), i.e. there exists 
y E B(O, R) such that 

g(y)(~,O ::::; g(x)(~,O, x E B(O, R), ~ E m.d• (6.2.5) 

As 9 is a metric on m. d and y depends on R, there exists a constant C(d, R) > Osuch 
that 

1 ~ 12::::; C(d, R)g(x)(e, 0, x E B(O, R), ~ E m.d• 

Putting (6.2.4), (6.2.5) and (6.2.6) together, we deduce that 

1 e 12::::; C(d,R)g(x)(e,e), x,e E m. d• 

Using (6.2.7) we have 

1 \1 aU 12::::; C(d, R)g(u(u))(\1 aU, \1 aU). 

The result now follows from (6.2.8), (6.2.2) and (6.2.1) . 

• 
The following result will play an important role. 

Corollary 6.2.4 For U E WS,P(st, M), s > 1 + ~, 
I U 1~;2p ::::; C(p, d, R) (1+ I e(u) I~p) 

(6.2.6) 

(6.2.7) 

(6.2.8) 

(6.2.9) 

where C(p, d, R) is a constant independent of u. R > ° depends on the manifold M 
and I . it.2p is the norm on the space W t ,2P. 

Proof: Note first that I u 1~;2P = I u I~p + I \1u I~p, As W 8 ,P(St, M), then the 
range of u is contained in M. It follows that 

I u I~p ::::; C(p, R), 

where C(p, R) is a constant independent of u and depends on the manifold M. The 
result now follows as in Corollary 6.2.3 . 

• 
The estimates (6.2.3) and (6.2.9) will be essential in proving the following result: 

• For the energy process e(u(t)), t < T, where u(t), t < T, is our maximal 
solution, we have, for each t E [0, T) and k E f:I, the following estimate 

IEI e(u(t A Uk)) Itp::::; C(p, d, T) {IE I e(u(O)) Ii-P(st,l.) +1} eC(p,d,T) (6.2.10) 

where the constant C(p, d, T) is independent of k and u and {ud is an in­
creasing sequence of bounded stopping times with Uk < T and Uk -+ T. 

This is the fundamental inequality needed to prove global existence of our solution. 
The proof of the estimate is quite lengthy and technical. So as not to lose sight of 
Our goal, i.e. that of global existence, we first assume the above estimate and show 
how to use it to obtain our result. The estimate is then proved in section 4 of this 
chapter. 
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6.3 Existence Of A Global Solution 

Theorem 6.3.1 Given any T > 0, fixed but arbitrary, then our maximal solution 
is defined on [0, Tj, i. e. our solution is a global solution. 

Proof: To prove the Theorem we just need to show that T = T a.s .. We follow 
the method used in [Br/EI,98] where in place of their linear growth condition we use 
the energy estimate above. To ease notation we will ignore constants unless they 
depend on t or k. C will denote a generic constant. We begin with quoting the 
following result from [Br/EI,98]: 

Proposition 6.3.2 Suppose that a.s on a measurable set n1 C Fo, T < T and 
limsupt/T I u(t) I~,p< 00 then JP'(nt} = 0 . 

• 
For each kEN define Tk := inf{t < T :1 u(t) I~,p> k}, where I . I .. ,p is the norm on 
W"'p. Proposition 6.3.2 implies Tk is a well-defined stopping time. Moreover, in view 
of Remark 5.2.2, our maximal solution satisfies the following Ito integral equation: 

rMk 
u(t 1\ Tk) = e-(tMk)Au(O) + 10 e-(tMk-S)A (F(u(s)) + V(u(s)))ds 

rMk 
+ 10 e-(tMk-S)A H(u(s))dw(s) 

+ - e-(tMk-s)Atr{H'(u(s))H(u(s))}ds 1lat
l\Tk 

2 0 

for each t E [0, T) and kEN, a,s .. Henceforth we omit the terms V and ~tr(lI' J/) 
to ease notation. Using the triangle inequality, we may write 

(6.3.11) 

Using the estimate of Theorem 4.3.2 and (6.2,3) we have 

(6.3.12) 

Recall that the semigroup {e-tA } may be viewed as a semigroup on W"'p, see 
t>o 

Chapter 3. In particular for any t E [0, T) and kEN 

(6.3.13) 

Applying (6.3.13) and (6.3.12) to (6.3.11), followed by the Burkholder inequality and 
the linear growth property of H, we obtain the following sequence of inequalities, 
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which hold for t E [0, T) and kEN, 

t M
• 

C(T)JE I u(O) I~,p + C(T)JE Jo I e(u(s)) I~p ds 

lo
t"T. 

+ C(T)T1-fJE IJI(u(s)) I~p ds 
o d 

{t"T. 
< C(T)JE I u(O) I~,p + C(T)JE Jo I e(u(s 1\ Tk)) I~p dB 

{tMk 
+ C(T)Tl-~JE Jo 1+ I u(s) I~,p ds 

< C(T)JE I u(O) I~,p + C(T)JE fat I e(u(s 1\ Tk)) I~p ds 

+ C(T) + C(T)Tl-~JE fat I u(s 1\ Tk) I~,p ds. 

Using the estimate (6.2.10) it then follows that 

JE I u(t 1\ Tk) I~,p ~ C(T) + C(T) 10
t 

JE I u(s 1\ Tk) I~,p ds 

where C(T) = C(T){IE I e(u(O)) Itp +1}eC(T). So by Gronwall we have, for each 
t E [0, T) and kEN, 

(6.3.14) 

Note that for fixed t E [0, T) 

lElu(tl\rk)I~,p= { IU(Tk)I~,pdJIll+ { lu(t)I~,pdJIll. 
J{t>1'k} J{t$Tk} 

This implies kPJIll(t > Tk) ~ IE I u(t 1\ Tk) I~,p, which in conjunction with (6.3.14) gives 

C(T)eC(T) 
JIll ( t > Tk) ~ kp . 

Note though that as Tk < r a.s. for each k then {t > r} c {t > TA:}. SO we have for 
each kEN 

C(T)eC(T) 
JIll(t> r) ~ kp . 

This implies, by letting k -+ 00, JIll { t > T} = 0 and so t ~ T a.s .. This holds for any 
t E [0, T) and so we deduce that T = T a.s .. This completes the proof . 

• 
It thus follows from Theorem 6.3.1 that on any time interval [0, T], T < 00 there 

exists a unique mild solution to the Stochastic Nonlinear Heat Equation, (SNIIE), 
with our solution belonging to the loop manifold M = W 8 ,P(St, M), s > 1 + 1. 

P 
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6.4 Calculation Of The Energy Estimates 

We are left with proving the following theorem. 

Theorem 6.4.1 For the energy process e(u(t)), t < T, where u(t), t < T, is our 
maximal solution, we have, for each t E [0, T) and kEN, the following estimate 

JE I e(u(tt\uk)) Itp :$ C(p,d,T){JE I e(u(O)) Itp +l}eC
(p,d,T) 

where the constant C(p, d, T) is independent of k and u. 

(6.4.15) 

Proof: We briefly explain the idea behind the proof. We need to somehow 
calculate, using Ito formula, an expression for the process e(u(t)), t < T and then 
prove that the estimate (6.4.15) holds. The problem is that our maximal solution 
only satisfies a mild integral equation which involves the semigroup operators e-tA , 

t ~ 0 and this is very restrictive for calculating the estimate (6.4.15). To overcome 
this difficulty, we approximate our maximal solution with a sequence of processes, 
{un(t)}n~t, t < T, which are of a higher regularity in the space variable. These 
approximation processes satisfy a strict integral equation. We calculate the energy 
of these processes using the Ito formula. As they are strict solutions the integral 
equations they satisfy do not involve the semi group operators. We then calculate 
estimates for the energy of the approximation processes, using results of Eells and 
Sampson. These estimates are similar to the estimate (6.4.15) above. (6.4.15) follows 
by taking limits as n -+ 00. The proof will consist of a number of steps. 
Step 1: We use the same approximation processes as in Chapter 5, i.e. for each 
n E N, un(t) = n(n + At1u(t), t < T. For each n, un(t) , t < T, is an admissible 
W S +2'P-valued process. In particular, as un(t) E D(A) a.s., then for t E [0, T) and 
kEN, un satisfies 

Step 2: We now wish to obtain integral equations satisfied by the sequence of 
energy processes e(un(t)), t < T. In the subsequent, we will let u, v and w will 
denote elements of W··p. 
The metric 9 on m.d is a smooth map 9 : m.d -+ £~(m.d; m.). The Nemytski map G of 
g, defined by G(u) := 9 0 u, is a smooth map satisfying 

G: W"" -+ W""(S\ .c~(m.d; m.)), 

where £2 is the space of bilinear symmetric maps. The first and second derivatives, 
G' and Gil, act through the following formulas: 

a(u)(v)(O') = g'(u(u))(v(u)){-,·), (6.4.16) 

G"(u)(v, w)(u) = g"(u(O'))(v(O'), w(u))(.,.) + 2g'(u(0'))(v(0'))(.,.) 
+ 2g'(u(u))(w(u)(·,.) + 2g(u(u))(., .), (6.4.17) 
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where u, v and w E Ws,p and u E Sl. Note that for each u E S1, G'(u)(v)(u) 
and G"(u)(v, w)(u) belong to C~(~d; ~). We omit the proofs of (6.4.16) and (6.4.17) 
which are quite lengthy, referring the reader to [I3r/El,98] where calculations of a 
similar nature are carried out. Define the map 1/J on Ws,p through the formula 

(6.4.18) 

The following Lemma will be needed. It is important as it gives us explicit formulae 
for the first and second derivates of 1/J. 

Lemma 6.4.2 For s > 1 + 1, 1/J is a smooth map 
p 

Moreover its derivatives, 1/J' and 1/J", act through the following formulas 

(6.4.19) 

1/J"(u)(v,w)(u) = g"(uO')(vO',w,,)('\7O'u, '\7"u) + 2g'(uO')(v,,)('\7O'w, '\7O'u) 

+ 2g'(u,,)(wO')('\7O'v, \7"u) + 2g(uO')(\7O'v, \7O'w), (6.4.20) 

where u, v and wE Ws,p and u E Sl. 

Proof: \7 : Ws,p ~ ws-l,p is a bounded linear map, see Chapter 3. As G is 
smooth it follows that the map 

A: w"p ~ WS'P(St,C;(~dj~)) X ws-1,p X W,-l,P, 

given by A(u) = nG(u), '\7u, '\7u), is smooth. Define the trilinear map 

r : ws ,p(Sl, C~(~d; ~)) X ws- 1,p X ws - 1,p ~ WS-1'P(St,~) 

by 
r(L,x,y)(u) = L(u)(x(O'),y(O')), for 0' E S1. (6.4.21 ) 

As s - 1 > 1 then, see [Am,91], r is bounded and hence smooth. Finally note that 
p 

1/J = r 0 A and so 1/J is smooth. The first and second derivatives of 1/J satisfy 

1/J' : ws,p ~ L(WS,P j WS-1,P(St, Itt)), 

1/J" : ws,p ~ C2 (W"P j W'- 1 ,P(S1, ~)). 

We now prove (6.4.19). Using the chain rule we have 

1/J'(u)v = r'(A(u))A'(u)(v). 

Recalling that '\7 is linear and bounded then A'(u)(v) = (G'(u)(v), '\7v, \7v). More­
over as r is a bounded trilinear map we have, see [Ca, 71], 

1/J'(u)(v) = r(G(u), \7v, '\7u) + r(G(u), \7u, \7v) + r(G'(u)(v), \7u, \7u). (6.4.22) 
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Now (6.4.22), (6.4.21) and (6.4.16) together give us (6.4.19). The proof of (6.4.20) 
follows in an identical manner. 

• 
For each n EN, define the process en (t), t < 7', by 

(6.4.23) 

From Lemma 6.4.2, with s replaced by s + 2, we deduce that en (t), t < T, is an 
admissible WS+1'P-valued process. Moreover, by applying the Ito formula we have 
for each kEN and t E [0, T), 

(6.4.24) 

We aim to obtain an estimate for lE I en(t 1\ 0'1.) lir The difficulty lies with the 
integrand ~'(un{s))[Fn{u(s))-Aun(s)], where for u E ws,P, with un = n(n+At1u, 

This may be rewritten as 

~'(un)[Fn(u) - Aun] = ~'(un)[Fn{u) - F{un)] 
+ ~'(un)[F(un) - Aunj. (6.4.25) 

In view of the fact that we will be taking limits as n -+ 00 we leave the first term 
on the RHS for the moment. To deal with the second term we have the following 
crucial Lemma, which relies on a result from [Ee/Sa,64]' see also [Ot,84]. We first 
state this result. 

Theorem 6.4.3 For each u E COO(S\ m,d) there exists a unique solution 
f : [0,00) X S1 -+ m,d to the deterministic nonlinear heat equation 

(6.4.26) 

with fo = u, where we have denoted fsO := f(s,.), s ~ O. Moreover the following 
equality holds 

(6.4.27) 

for s > 0, 0' E S1. 

Remark 6.4.4 In Theorem 6.4.3, !::,. denotes the Laplacian acting on real-valued 
loops, i.e. y : S1 -+ m" see Chapter 3. 

Lemma 6.4.5 For u E W'1,P, 1/ > 3 + ~, 

~'(u)(O')[{-A+ F)(u)](O') = !::"e(u)(O')-1 !::"u(O') 12 , 0' ESt. (6.4.28) 
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Remark 6.4.6 Note that the terms on both sides of the equality (6.4.28) belong 
at least to W'1-3,p and hence, as T) > 3 + 1, are continuous. It thus makes sense to 

p 

talk about equality holding for all u E Sl. 0 

Proof: Let v E coo(St,m.d) be given and let fs be the solution to (6.4.26) with 
initial value fo = v. For s > 0 

ae(Js) = a1jJ(Js) = 1jJ'(Js) afs = 1jJ'(fs)6.fs = 1jJ'(Js)( -A + F)(Js). 
as as as -

(6.4.29) 

Using (6.4.27) and (6.4.29) we have for u E Sl and s > 0 

(6.4.30) 

Now as f is a continuous function in time then all the terms in (6.4.30) are. So by 
continuity (6.4.30) will hold for s = O. So, recalling that fo = v, we have 

1jJ'(u)(u)[(-A+ F)(u)](u) = 6.e(u)(u)-16u(u) 12. 

As COO(St, m.d ) is dense in W'1,P, then (6.4.28) holds for all u E W'1,p . 

• 
Before proceeding we note that en(t) is a W s+1,P(Sl, m.)-valued process and so in 
particular en(t) is a D(6)-valued process where 6 is the Laplacian on £P(S1, m.) 
with D(6) = W2,p(St, m.). Thus 6.en(t) is well-defined and moreover, for T) ~ 2, 
6 : W'1,P(St, m.) -+ W'1-2,P(St, m.) is linear and bounded. As a result the process 
6en (t), t < T, is pathwise continuous and thus pathwise integrable. Using (6.4.25) 
and (6.4.28), (6.4.24) may be written 

As un(t) E WS+2,p(St, m.d) we may apply Lemma 6.4.5 to obtain 
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To simplify notation we define for u E WS'P 

Kr(u) 
K;( u) 

K;( u) 

._ 1/l'(un)[Fn(u) - F(un)], 

1/l'(un)Hn(u), 
1 

.- 2tr1/l"(un) (Hn(u), Hn(u)). 
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6. is the generator of an analytic semigroup {Tt}t>o on LP(S!, ~), which in fact is a 
contraction semigroup, with domain D(6) = W2,P-(St, ~), see Chapter 3. Moreover, 
(6.4.31) can be considered as a linear equation in en(s) and so it may be written as 
an equation in mild form, i.e. 

Step 3: We are now in a position to calculate estimates for lE I en(t 1\ O"k) I~p, We 
have the following Proposition: 

Proposition 6.4.7 The following estimate holds for each k, n E f:! and for each 
t E [O,T), 

IE I en(t 1\ Uk) I~p < C(p, d, T) {lE I en(O) Itp +1 + IE 101 Au" I e(u(s)) I~p dS} 
rMic 

+ C(p, d, t)lE 10 An(u(s))ds (6.4.33) 

where C(p, d, T) is a constant independent of nand k and 

(6.4.34) 

Proof: The proof of this proposition will be carried out in a number of lemmas. 
Recall that our base space is £V(S!, ~d). Now fix t E [0, T) and kEf:! and denote 

In the following Lemma we find estimates for the terms lE I vn(t 1\ O"k) I~p, As earlier 
We ignore constants unless they depend on n, k and t. 

Lemma 6.4.8 For k, n E f:! and t E [0, T) the following estimate holds 
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Proof: Note that if u(a) ~ 0, a E 8 1 then (Ttu) (a) ~ 0 for all t ~ O. Thus wc have 
for each a E 8 1

, (Tt I 6u 12) (a) ~ 0, t ~ O. Moreover, as our maximal solution 
is W"P-valued and has, almost surely, continuous paths, thcn it follows that, al­
most surely, the processes I<f(u(s)) and I<;(u(s)) defined above, are W·-l,p(SI, ~)­
valued, at least, with continuous paths. Working pathwise we may then deduce that 
for each, a E 8 1, 

( 

rtAak ) rtAak 
io I<~(u(s))ds (a) = io I<~(u(s))(a)ds a.s .. 

Similarly for the integral involving K;. It follows that, for a E 8 1 , 

rtMk 
Vn(t 1\ ak)(a) ::; (TtMken(O)) (a) + io (TtMk-sI<f(u(s))) (a)ds 

rMk 
+ io (TtMk-sI<;(U(s))) (a)ds a.s .. 

Using the Holder inequality followed by the Fubini Theorem gives 

which holds a.s .. (6.4.35) now follows by taking expectations and noting that {Ttl t>o 
is a contraction semigroup. -

• 
Using the triangle inequality and (6.4.35), it follows from (6.4.32) that for t E [0, T) 
and kEN, 

An application of the Burkholder inequality and using the contraction property of 
{Tdt~o then gives 

1 rtMk 
lE I en(t 1\ ak) It" < lE I en(O) It" +T1-plE io II I<;(u(s)) 112 ds 

1 rMk 
+ T l -plE io (I I<f(u(s)) Itp + I I<;(u(s)) Itp)ds 

where II . II is the norm on L(WIJ,p, LP(St, m.)). 
We need now to calculate estimates for the terms involving I I<f(u(s)) ILP, 
I I<;(u(s)) ILP and II I<f(u(s)) II. For this we need the formulae (6.4.19) and (6.4.20) 
for the first and second derivatives of l/J, see Lemma 6.4.2, and the following Lemma, 
which again is particular to the extension of our metric. 
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Lemma 6.4.9 The metric 9 satisfies the following estimates: for any a, b, x, y and 
z E JRd 

g(x)(a,b) ~ C I bile I, 
g'(x)(y)(a, b) ~ C I y II a II b I, 

g"(x)(y, z)(a, b) ~ ely II z II a II b I, 

(6.4.36) 

(6.4.37) 

(6.4.38) 

where C(d, R) is independent a, b, x, y and z E JRd, and R depends on the manifold 
M. 

Proof: Recall that 

9 : JRd 
g' : JRd 
g" : JRd 

-+ 

-+ 

-+ 

C;(JRd; JR) 
L(JRd; C~(JRd; JR)) 
L2(JRd; C~(JRd; JR)) 

are all smooth maps and so on the closed ball B(O, R) (see the proof of Corollary 
6.2.3) we have 

sup {Ig(x) Iq + Ig'(x) IL + Ig"(x) ILl} ~ C 
xeB(O,R) 

(6.4.39) 

where I . Ie., I . IL and I . IL2 are the norms on CHJRd; ~), L(~d; C~(JRd; ~)) and 
L2(JRd

; .q(JRJ; JR)) respectively. Furthermore 9 coincides with the Euclidean metric 
outside B(O, R), i.e. for x E B(O, R)C 

g(x)(v,w) =< V,w >, V,w E ~d, (6.4.40) 

which implies that g' and g" vanish outside the ball B(O, R). This observation along 
with (6.4.39) and (6.4.40) imply the estimates (6.4.36), (6.4.37) and (6.4.38). This 
completes the proof. 

• 
We begin with estimating I I<f(u) ILP, for u E WS,P(Sl, M), where we recall 

with un = n(n + A)-lu and Fn = n(n + A)-l F. 

Lemma 6.4.10 For u E W·,P(Sl,M), s> 1 +~, the following estimate holds 

I I<f(u) Itp~ C(p, d, R)(l+ I e(u) Itp +An(u)) 

where C(p, d, R) is independent of u and n and An is given by (6.4.34). 

Proof: Using (6.4.19), (6.4.36) and (6.4.37) we have 

r {g'(u:)(Fn(uO') - F(u:)(Vu:, Vu:np dO' lSI 
+ r {g(u:)(Vu:,VFn(uu)-VF(u:)}"dO' lSI 

(6.4.41) 
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< f I Fn(u,,) - F{u~) IPI Y'u; 12P da 
lSI 

+ f I Y'u; IPI Y' Fn(u,,) - Y' F(u;) IP da 
lSI 

< sup I Fn(u,,) - F(u~) " Y'un I~p 
"ESI d 

+ sup I Y'u; IPI Y'(Fn(u) - F(un)) I~p 
"ESI d 

< {I Y'un I~p + I un I~,p} I Fn(u) - F{un) Ir,p' 
The result follows by noting that 
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I Y'un I~p $ I un 1~;2P $ I u 1~:2p, (6.4.42) 
d 

and then applying (6.2.9). 

• 
We now turn to estimating I I<j(u) It I' for u E ws,p(Sl, M), where we recall 

I<;(u) = ~tr{1j1I1{un) (Jln{u), lIn(u))}. 

Note also that 1j1"(un)(Hn(u) , Hn(u)) E L2(W8,P j U(St, ~)) and for 
(x,y) E W 8,p x Wli,p we have 

t/J"(un) (Hn(u), Hn(u)) (x, y) = t/J"(un) (IIn(u)x, IIn(u)y). 

Lemma 6.4.11 For u E WS,P(St, M), s > 1 + ~, we have the following estimate 

I I<;(u) ILp$ C(p,d, R)(l+ I e{u) ILl') , (6.4.43) 

where C(p, d, R) is a constant independent of nand u. 

Proof: Recalling that tr : L2(WIi ,Pj U(Sl, Jlt)) -+ U(St, ~)) is linear and bounded, 
then we have, again ignoring constants depending on p only, 

I I<;(u) ILl' < "~t/JII(un)(Hn(u),Hn(u)) IIL(WB,p;Lp(SI,m)) 

= sup I !t/J"(un) (Hn{u)x, Hn(u)y) ILl' 
IxI9,p=lyI9,p=1 2 

= sup 1 I !1j1I1(Un) (Hn{u)x, Iln(u)y) (0') IP dO'. 
Ixle,p=lyle,p=l SI 2 

Denoting X := Hn{u)x and Y:= Hn{u)y, then using (6.4.20), (6.4.36), (6.4.37) and 
(6.4.38), we have 

I I<;(u) It I' $ sup f (12g{u;)(Y'~, Y'X,,) 
Ixl=lyl=l lSI 

+2g'(u;){X" )(Y'Y", Y'u~) 
+2g'{u;)(~){Y'X", Y'u;) 
+9"(U~){X", Y" )(Y'u;, Y'u~) IP) dO' 

< sup f {2 I Y' X" IPI VY" IP 
Ixl=IYI=l lSI 

+2 I X(O') IPI VY" IPI Vu; IP 
+21 Y(O') IPI V X" IPI Vu; IP 
+ I X" IPI Y" IPI Vu: 1

2P} dO'. (6.4.44) 
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To complete the proof we need the following: 

Lemma 6.4.12 For u E ws,P, S > 1 +~, x,y E Wo,p wilh I x lo,p=1 y lo,p= 1, there 
exist constants C1 (p) and C2 (p) independent of x, y, u and n such tlwl foT' all a E SI 

I X(a) I + 1\7 X(a) I~ C1 (p) (6.1.15) 

and 
I Y(u) I + I \7Y(u) I~ C2(p). (6.4.16) 

Proof: It is enough to prove the estimate (6.4.45). Thus note that in particular 
X E W 2

,p and so \7 X is continuous with the following sequence of inequalities 
holding 

I X.,. I + I \7 Xa I~ sup {I X.,. I + I V X.,. I} ~ Cp I X 12,p , (6.4.47) 
.,.ESI 

Note that 

I X b,p~ Cp I Il(u)x ILP . 
Recall that H is the Nemytski map corresponding to h which is smooth with compact 
Support. As I x lo,p= 1, we have 

This along with (6.4.47) proves (6.4.45) . 

• 
Using (6.4.45) and (6.4.46) our estimate (6.4.44) for I Kj(u) I~p now reads, for some 
constant C (p) depending on p only: 

I K;(u) lip ~ C(p) lsI {I \7u: 1
2P + I Vu: IP +1} du. 

Note that, for all x E m., x~ ~ 1 + x, and so 

I Vu: IP~ 1+ I \7u: 1
2P 

• (6.4.48) 

Using the estimate (6.4.42) then gives us the estimate (6.4.43), 

I \7un I~p ~ C(p,d,R) {1+ I e(u) I~p}, (6.4.49) 

• 
In a similar manner we obtain the estimate for 

Lemma 6.4.13 For u E W a,P(SI, M), s > 1 + !, the following estimate holds 

II K;(u) II~ C(p,d,R) {1+ I e(u) I~p}, (6.4.50) 

where C(p, d, R) is a constant independent of u and n. 



Chapter 6 

Proof: It follows from (6.4.19), (6.4.36), (6.4.37), (6.4.45) and (6.4.48) that 

1If{;(u(s))IIP = sup 1 {lg'(U~)(X<7)(\7u~,\7u~) 
Ixlo,p:! 51 

+ 2g(u~)(\7u~, \7XIT ) IP dO"} 

< C(p) hI I \7u~ 1
2p + I \7u~ IP dO" 

< C(p) hI {1+ I u~ 1
2P

} dO". 

Now applying (6.4.42) and (6.2.9) gives us the result. 

". 

The estimates (6.4.41), (6.4.43) and (6.4.50) imply 

IE I en(t 1\ O"k) I~p ~ C(p, d, T)IE{l+ I en(O) I~p} 

r AITk 

+ C(p, d, T)IE io I e(u(s)) I~p ds 

r AITk 

+ C(p,d,T)JE io An(u{s))ds. 

This completes the proof of Proposition 1. 

". 
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Step 4: \Ve now prove the estimate (6.4.15) for the energy process e(u(t)), t < T. 

We first prove the following: 

Lemma 6.4.14 For each t E [0, T) and kEN 

(6.4.51) 

Proof: Recall that en {·) == 1y&(un
(.)) and e(u(.)) == 1y&(u(.)). As ¢ is continuous and 

un = n(n + At!u -+ '11, as n -+ 00, then we have, for each t E [0, T) and kEN, a.s. 

Furthermore, noting that 

I en(t 1\ Uk) - e(u(t 1\ Uk)) Itp ~ C(p) I en(t 1\ Uk) Itp + I e(u(t 1\ Uk)) Itp 
~ C(p) I e(u(t 1\ Uk)) I~p, 

then as IE I e(u(t 1\ Uk)) Itp< 00 we may apply the LDC Theorem to obtain our 

result. 
". 

The proof of the following Lemma follows in exactly the same manner as in Lemma 

5.3.7 and so is omitted. 
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Lemma 6.4.15 For each t E [0, T) and kEN, 

[tll(7 Ie 

lE lo An(u(s))d8-+ as n -+ 00 (6.1.52) 

where An(u) is given by (6.4.34), i.e. 

An(u) = {I e(u) I~p + I u I~,p} I Fn(u) - F(un) li,p, u E TVs,p . 

• 
Recall the estimate (6.4.33) for lE I en(t A O"k) I~p: 

IE I e.(t A <1k) II:, ::; C(p,d,T) {IE I e.(O) II:, +1 + IElatA •• I e(u(s)) II:, dS} 

[tMk 
+ C(p,d,T)lE lo An(u(s))ds. 

Then, in view of (6.4.51) and (6.4.52), we let n -+ 00 and deduce that 

Note the following 

tMIc 
IElo le(u(s))I~pds 

[ tllt:lle 

- lE lo le(u(sAO"k))I~pd8 

< lE fat I e(u(s A O"k)) I~p ds 

- fat IE I e(u(s A O"k)) I~p ds. 

It then follows that for each t E [0, T) and kEN, 

lE I e(u(t A O"k)) I~p $ C(p,d,T) {IE I e(u(O)) I~p +l} 

+ C(p, d, T) fat lE I e( u( s A O"k)) I~p ds. 

By applying the Gronwall Lemma to the function 

we have for t E [0, T) and kEN, 

This completes the proof of Theorem 2 . 

• 
This concludes our work on this particular problem. 



Chapter 6 93 

6.5 Further Work 

There are still avenues left open for further research. The line of work the au­
thor wishes to continue in would involve investigating the qualitative behaviour 
and ergodic properties of the solution to the SNHE. This should proceed along the 
following lines of thought; solution flows, Lyapunov exponents, attractors and/or 
invariant measures. In particular, suppose u E M and u(t), t ~ 0 is our solution 
starting at u. Define the transition operator Pt by 

(Ptf)(u) := JE[J(u(t))], f E Cb(X), (6.5.53) 

where Cb(X) is the space of real-valued bounded continuous functions defined on 
X:= W B ,P(51,lRd). The family {Ptlt~O is the transition semigroup corresponding to 
u( t), t 2: O. We would be interested in studying Feller and strong Feller properties, 
as well as irreducibility of this transition semigroup, see [DP /Z,96] and references 
therein. Existence and uniqueness of invariant measures for {Ptl 1>0 would be a 
challenging problem. Indeed existing theory does not meet our criteria since our 
process takes values in the loop manifold M. For example, uniqueness of invariant 
measures needs to be stated properly as M is not a connected manifold. 
It would also be of interest consider the SNIIE and similar problems in the case when 
the starting manifold 51 is replaced with a higher dimensional compact manifold, 
possibly with boundary. One of the motivations for this comes from Quantum Field 
Theory, see [BrjLe,99] and references therein. In this paper, they are concerned with 
diffusion processes over spaces of maps u : N -+ AI, where N is two dimensional 

manifold with boundary. 
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An Approximation Result on 
Stratonovich Integrals 

7.1 Introduction 
In this chapter we prove an approximation result of the Wong-Zakai type for S­
tratonovich integrals in M-type 2 Banach spaces. In particular, consider a process 
x: [0,T1 x n -+ X, T < 00, given by 

x(t) = x(O) + fat h(x(s)) a dw(s) (7.1.1) 

where w(t), t 2: 0 is a Banach space valued Wiener process, h is a suitable function 
of C1 class and the integral in (7.1.1) is the Stratonovich integral, as defined in 
Chapter 2. By considering piecewise linear approximations of w( t), we prove that 
x is the almost sure limit of solutions to certain ordinary differential equations in 
C(O, T; X), the space of X-valued continuous functions on [0, T]. The first result of 
this type was proved in [WojZa,] in finite dimensions. Since then there has been 
considerable work done in this area relating to stochastic ordinary and partial d­
ifferential equations, both in finite and infinite dimensions, see [Ma,84]' [Mo,88]' 
(Tw,92], [Br/Fl,95], for example, and references therein. Our result is a gcneraJisa­
tion of a result in [Dow ,80], where they treat the Hilbert space case. Before ending 
this subsection we recall certain facts about abstract Wiener spaces, AWSs, and 
M-type 2 Banach spaces. 

Let i : lI'-+E be an AWS and {w(t)}t~O the canonical E-valued Wiener process 
defined on some complete probability space (n,F,lF). Let {Ft}t>o be the standard 
filtration induced by {w(t)h~o. Note that the law of the rando~ function 
(t-stt(w(t)-w(~)) : n. -+ E equals J-L where It is the canonical Gaussian probability 
measure on E. It IS straIghtforward to show that for p 2: 0, 

(7.1.2) 

Furthermore by the Fernique-Landau-Shepp Theorem, sec [Kuo,75)' mp < 00 for 
each p 2: O. Let X be an M-type 2 Banach space. Recall that, under this assumption, 
we have the following Burkholder inequalities, see [Dc,91]: 
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• For any X-valued martingale {A1n}nEN and p E [2, (0) we have 

lEsup I A1n I~::; C(p, X)lE{L I J\;ln - Mn- l I~} r, 
nEN n (7.1.3) 

where C(p, X) is independent of n. 

• ForT any progressively measurable process e taking values in L(E, X) with 
lE Jo I e( t) II(E.x) dt < 00 we have 

lE sup I rt e( s )dw( s) I~::; C(p, X)lE[ rT 
I e( s) li(E X) ds) ~ 

09~T Jo Jo" (7.1.4) 

where C(p, X) is independent of T and e. 

7.2 The Approximation Result 

Suppose f : X -. X a Lipschitz map which is bounded. Let h : X -. L(E, X) be a 
Cl map, i.e. h is differentiable with continuous derivative h' : X -. L(X, L( E, X)). 
Assume that hand h' are Lipschitz in X and that they are bounded. As a con­
sequence the map tr(h'h) : X -. X is Lipschitz and bounded where ir(h'h)(x) :== 
tr{h'(x)h(x)}, x EX. Here ir: L2(E;X) -. X is a bounded linear map relating 
to the A WS i : H -. E, see Chapter 2. For each T < 00, fixed but arbitrary, there 
exists a unique continuous progressively measurable process x : [0, TJ x n -+ X 
satisfying, for t E fO, TJ, 

x(t) = x(O) + lot f(x(s))ds + lot h(x(s))dw(s) 

+! rt tr{h'(x(s))h(x(s))}ds, a.s., 
2 Jo (7.2.5) 

where x(O) = IO E LP(f2, X) and p ~ 2, see (Ne,78J. In particular x is a solution to 
the Stratonovich equation 

dx{t) == f(x(t)) + h(x(t)) 0 dw(t) (7.2.6) 

and x may be written as 

x(t) == x(O) + 10' f(x(s))ds + lot h{x(s)) 0 dw(s), (7.2.7) 

where the last integral on the RHS is a Stratonovich integral. 
Using the Burkholder inequality (7.1.4) and the boundedness of the maps f, h 

and tr( h' h) one may show directly that for s, t E [0, T] 

1£ I x(t) - x(s) I~::; C(p,T,X) I t - s If . 

Thus x is ~.Holder continuous considered as a map x: [0, TJ -. LP(n, X). 
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For n E N, let 11"n be a partition of [O,T], i.e. 

a = to < tl < t2 < ... < tN(n) = T. 

We assume the partition satisfies 

mesh11"n := max 1 tktl - tk 1< C1 

O$k$N(n)-l - n ' (7.2.8) 

(7.2.9) 
where C1 and C2 are constants independent of n. For a fixed partition 11" = 11" we 
consider the following piecewise linear approximation of w(t): n, ' 

t - ti 
W1t(t) = w(t j ) + titl _ ti (w(titd - W(ti)), t E [tj, tittl. 

For each partition, 11" = 1!'n, of [0, T), let X 1t : [0, T] x 0 -+ X be the solutions to the 
family of ODEs, indexed by w E 0, 

dx (t) dw (t) ;t = h(x1t(t)) ;t + f(x 1t (t)), (7.2.l0) 

where x 1t (O) = Xo and 0 ~ t ~ T. In particular, for t E (ti, titd, X 1t takes the form 

Theorem 7.2.1 For p ~ 2 and n EN 

Furthermore 

IE sup Ix(t)-x1tn(t) I~ ~Cn-~. 
095T 

X1tn (.) -+ x(·) in C(O, Tj X), a.s. 

(7.2.11) 

(7.2.12) 

(7.2.13) 

as n -+ 00. Here C(O, T; X) is the space of X valued continuous functions on the 
interval [0, T]. 

Remark 7.2.2 The constant C appearing in (7.2.12) depends on the space X p 
T m and the bounds and Lipschitz constants of j, h, hI and ir. A. ' , , p v 

Remark 7.2.3 This theorem is an extension of a result proved in [00w,80]. There 
the case p = 2 with X being a Hilbert space was treated. Most of the proof presented 
in [00w,80], which itself is a generalisation of a similar result in [McS,74], carries 
over with no difficulty to the case where p ~ 2 and X is an M·type 2 Banach space. 
The Burkholder inequality (7.1.4) is the main tool we use here. Even so, there are 
still problems that arise which require more work. Although Dowell was familiar 
with stochastic integration in 2-uniformly smooth Banach spaces and the inequality 
(7.1.4) (for p = 2) he was not able to .deal wit~ the Banach spa~e case because of 
the term involving the ir map. There IS a conslder~ble level of (iIfficulty in dealing 
with the ir map in Banach spaces as opposed to HJlb~rt spac.es. To deal with this 
we make use of the M-type 2 property of our space, III partIcular, the inequality 

(7.1.3). 
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Proof: Fix a partition rr = rrn = {O ::; to ::; t1 .. · ::; tN(n) = T} and denote X1r by 
y. Set Xj = x(tj), Yj = y(tj) = x1r (tj), ~jt = tj+l - tj and ~jW = W(ti+l) - w(tj). 
To simplify notation we put f identically zero. This will not affect the result owing 
to the conditions put on J. Moreover, C will denote a generic constant depending 
only on the space X, p, T, mp the bounds and Lipschitz constants of 11.,11,' and tr. 
For each t E [0, TJ, let k be the largest integer such that t E [tk' tk+l)' Moreover, for 
r > t, r E [O,T], set R(n) = max{m: tm ::; r}. Then, using the triangle inequality, 
we have 

IE sup I x(t) - y(t) I): < CIE sup {I x(t) - X(tk) I~ + 1 y(tk) - y(t) I~} 
O$t$r O$t$r 

+ CIE sup 1 X(tk) - y(tk) I~ . (7.2.14) 
O$k$R(n) 

Suppose, for the time being, we have the following estimates 

IE sup {I x(t) - X(tk) I:\' + 1 y(tk) - y(t) I~} ::; C7](rr), (7.2.15) 
O$t$r 

(7.2.16) 

where 
,(s) = sup Ix(l)-y(l)I~ 

O$l~s 
(7.2.17) 

and 7]( rr) is independent of k and satisfies 

7](rr)::; Cn-~. 

(Note, for example, that (meshrr)r is a term of the form 7](rr).) From (7.2.14), 
(7.2.15), (7.2.16) and (7.2.17) we may deduce that for all r E [0, T] : 

1E,(r) = IE sup 1 x(t) - y(t) I):::; C7](rr) + C r lE(,(s))ds. 
O$t$r Jo 

An application of Gronwall's Lemma implies that 

IE(,(T)) ::; C7]( rr) expCT, 

I.e. 
IE sup 1 x(t) - y(t) I):::; Cn-~. 

09$T 

To complete the proof of Theorem 7.2.1 we need to prove the estimates (7.2.15) and 
(7.2.16). We begin with (7.2.15). 

Lemma 7.2.4 fVith the above notation 

IE sup {I x(t} - X(tk) I): + 1 y(tk) - y(t) I):}::; C(meshrr)~. (7.2.18) 
09$r 

Proof: Note first that from (7.2.5) and the boundedness of the maps hand tr(h'h) 

we have 

IE sup I x(t) - x(h) I~::; C(meshrr)P + CIE sup lit h(x(s))dw(s) I~ . 
09$r O$t~r t" 
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It then follows using the Burkholder inequality and the boundedncss of II, that 

1E sup I x(t) - X(tk) I~::; CT~(mesll7l")~. 
O$t:$r 

Recall Taylor's formula in integral form, see [Ca,71j: 
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y(a) - y(b) = fa1 (a - b)y'(b + r(a - b))dr. (7.2.19) 

For some 0 ::; s ::; 1 we have, using (7.2.19), (7.2.10) and the boundedness of h, 

I y(t) - y(tk) I~ - I y(tk + sfl.kt) - y(tk) I~ 

- I fa1 y'(tk + r(sfl.kt))(sfl.kt)dr I~ 

- I fas y'(tk + rfl.kt)(fl.kt)dr I~ 

- I fas h(y(tk + rfl.kt))(~kw)dr I~\' 
< C I fl.k w I~ . (7.2.20) 

Using (7.1.2) we infer that 

1E sup I y(t) - y(tk) I~::; C(mesl11r)~. 
O:$t:$r 

This completes the proof of Lemma 7.2.4 . 

• 
Fix an interval [ti, ti+d in the partition 1r. We quote another form of Taylor's 

formula, see [Ca,71]: 

y(a) - y(b) = (a - b)y'(b) + fa1 (1 - s)y"(b + s(a - b))(a - b, a - b)ds. (7.2.21) 

Using (7.2.21), the chain rule and (7.2.10) we obtain 

y(ti+l) - y(ii) - fl.jty'(tj) + fa1 (1 - S)y"(tj + sfl.jt)(fl.jt, fl.jt)ds 

_ h(yj)fl.jW 

+ 11(1 - s)[h'(y(tj + sfl.jt))h(y(tj + s6jt))(fl.jW, fl.jw)]ds. 
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Recalling that 

tk 1 [tk 
X(tk) = x(O) + 10 h(x(s))dw(s) + 2" 10 tr{h'(x(s))h(x(s))}ds, 

we may write 

where 

We begin with proving: 

Lemma 7.2.5 Using the above notation we have 

IF. sup I Ak + Dk + Ek + Fk 1~:5 C(mesh7r)~. 
l::;k::;R(n) 

Proof: Consider the term Ak = E7==J r j , where 

r j := 11(1 - s){h'(y(sj))h(y(sj))(6 jw, 6 jw) - h'(Yj)h(Yj)(6jw, 6 j w)}ds. 
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The boundedness and Lipschitz properties of hi and h, along with (7.2.20) imply 

that 

I rj Ix ::; 11 I {h'(Y(Sj)) - h'(Yj)}h(Y(Sj))(6j w, 6 j w) Ids 

+ 10
1 

I h'(y(sj))(h(y(sj)) - h(Yj))(6jw, 6 jw) Ix ds 

< C 16jw I~I Y(Sj) - Yj I 
< C 16jw I~ . (7.2.22) 

Using (7.2.22) and Holder's inequality for sums we have 

N(n)-l 

lE sup I Ak I~$ CN(n),,-llE 2: 16jw lIt . 
l::;k::;N{n) j=O 
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Applying (7.1.2) (with p replaced by 3p) gives us 

N(n)-l 

lE sup I Ak Ij::; CN(n)p-l L I fljt I¥ . 
1 $k$N(n) j=O 

It then follows, using (7.2.8) and (7.2.9), that 

P 1:!E 2 lE sup I Ak Ix::; CnP
- (meshll') 2 n ::; C(meshll')2 . 

l$k$N(n) 

Consider the term Dk = I:;:~ h{xj)b.jW - fci k h(x(s))dw(s). Define 

h(s) = { Oh(xj) for tj::; s < tj+J 
if s > tk 
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(7.2.23) 

h(s) is well-defined, adapted to the filtration {F"L>o and moreover, fci h(s)dw(s) 
makes sense for all t E [0, T]. We may write -

Dk = fotlc[h(s) - h(x(s))]dw(s). 

Using the Burkholder inequality, the Lipschitz property of h and the properties 
(7.2.8) and (7.2.9), it follows that 

lE sup I Dk Ij < lE sup llat[h(s) - h(x(s))]dw(s) Ik 
l$k$R(n) O$t$r 0 

< ClE{for I h(s) - h(x(s)) Il(E,x) ds}~ 
R(n)-1

1tt1 
- ClE{ fa tjJ I h(xj) - h(x(s)) Il(E,x) ds}~ 

R(n)-1 t tl 

< ClE{ L i J IXj-x(s)lids}~ 
j=O tJ 

< ClE sup I X(tl) - x(t) Ik 
O$t$r 

where I is such that t E [t[, tl+d· Using Lemma 7.2.4 we deduce that 

lE sup I Dk Ij::; Cmeshll'~. 
l$k$R(n) 

Consider the term Fk. Then 

I F.lx = I ~f+>[tr{h'(Xj)h(Xj)} - tr{h'(x(t))h(x(t))}Jdt Ix 

k-l rtJt1 
< 'fa itJ I tr{h'(xj)h{xj) - h'{x(t))h{x(t))} Ix dt 

k-l rtJt1 
< C fa itJ I h'(xj)h(xj) - h'(x(t))h(x(t)) IL2(E,X) dt 

k-l I'Jt l 

< C "faiti {/ h'(xj)h(xj) - h'(xj)h(x(t)) IL2(E,X) 

+ I h'(xj)h(x(t)) - h'(x(t))h(x(t)) /L2(E,X)} dt. 

(7.2.24) 
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U sing the bounded ness and Lipschitz properties of 9 and h', we deduce that 

k-l

1
tJ +1 

I Fk Ix < C L: I Xj - x(t) Ix dt 
;'=0 t} 

< CT sup I x(t/) - x(t) Ix dt, 
09:<:;r 

where 1 is such that t E [t/, t/+l)' Again, using Lemma 7.2.4, we conclude that 

IE sup I Fk I~ ~ Cmesh7r ~ . 
l:<:;k:<:;R(n) 

Finally, we deal with the term Ek and we will prove 

JE sup I Ek 1~:5 Cmesh7r~. 
l:<:;k:<:;R(n) 

(7.2.25) 

(7.2.26) 

This part of the proof differs considerably from [Dow,80]. Dowell proves (7.2.26) 
using the properties of the inner product on a Hilbert space and the proof is quite 
straightforward. We do not have an inner product to work with and instead we 
make use of the M-type 2 property of our space X. Let Ek == Ej:J Aj where 

(7.2.27) 

We first show that Ek is an X-valued martingale with respect to the discrete filtration 
{F

tk
}l<k<R(n) • For 0 ~ j :5 k - 1, Xj : n ~ X and w(tj+d - w(tj) : n ~ E are 

Ft}+1 measurable. Using the continuity of the maps h, h' and tr(h'h) it follows that 
each Aj is Ft}+1 measurable. We deduce that Ek is Ftk measurable. To prove Ek is 
a martingale we are left with showing that JE( Ek I Ftk _1 ) == Ek-l. For this it suffices 
to prove that JE( Ak-l I F tk _ l ) == O. 
Denote 

Then 

IE(Wk-lIFk-d - IE[h'(Xk-dh(Xk-d(~k-lW'~k-lW) I Ftk _ l ] 

IE[h'(Xk-dh(Xk-l)(~k-lW, ~k-1 w)] 

- (tk - tk-d L h'(Xk_l)h(xk_d(e, e)dp(e) 

- (~k_lt)tr{h'(xk_dh(Xk_l)} 

- IE[(~k_lt)tr{h'(xk_dh(Xk_l)} I F tk _,]. (7.2.28) 

As Xk-l is Ftk_1 measurable, then so is tr{h'(xk-dh(Xk-d}, which explains the 
final step. Thus (7.2.27) and (7.2.28) imply that IE(Ak-l I Ftk _ 1 ) = O. VYe con-

clude that {Ed ~l~) is an X -valued martingale with respect to the dicrete filtration 
{Ft"}l::;k::;R(n) • Since X is an M-type 2 Banach space it follows that 

R(n)-1 

JE sup I Ek I~$ CIE{ L: I Ej - Ej - 1 I~}¥. 
l::;k::;R(n) j=l 
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Thus k-l R(n) 

lE sup I L:Aj I~::; CIE{ L: I Aj - 1 li}~· 
l~k~R(n) j=O j=1 

Applying the Holder inequality for sums gives 

k-l R(n) 

lE sup I L: Aj I~ < CR(n)~-IIE L: I Aj- 1 I~ 
19~R(n) j=O j=1 

N(n) 

< CN(n)~-1 L: lE I Aj - 1 I~ . (7.2.29) 
j=1 

Note that 

lE I Aj I~ < lE{(1 h'(xj)h(xj)(~jW, ~jw) Ix + I tr{h'(xj)h(xj)}(~jt) Ix}P 

< CIE{I ~jW I~ + I ~jt IP} 
< C(~jt)p. (7.2.30) 

It follows from (7.2.29) and (7.2.30) that 

N(n) 

IE sup I Ek I~ < CN(n)i-l L: (~jt)P 
l~k~R(n) j=l 

N(n) 

< CN(n)~-l L: (mesll1r)p 
j=1 

< CN(n)~(mesh7r)P 
< Cmesh7r~. 

Lemma 7.2.5 now follows from (7.2.23), (7.2.24), (7.2.25) and (7.2.31) . 

• 
Lemma 1.2.6 For a constant C independent of k and r 

Proof: As in the proof of Lemma 7.2.5, define 

Y(s)::: { h(Yj) - h(xj) ~f tj ::; s < t)+I' where 0 ::; j ::; k - 1 
o If s > tk. 

(7.2.31 ) 

(7.2.32) 

Y(s) is well-defined, adapted to the filtration {:F,} ,~o and fJ Y(s)dw(s) makes sense 
for all t E [0, T]. Moreover, 

I Bk I~:::I fo t
" Y(s)dw(s) I~ . 

Using the Burkholder inequality and the Lipschitz properties of h, it follows that 

lE sup I Bk I~ - lE sup I r Y(s)dw(s) I~ 
l$k~R(n) O$t~r Jo 
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< CIE(fo
r 

I Y(s) li(E,X) ds)~ 
R(n)-l t +1 

- CIE( L 1) I h(Yj) - h(Xj) li(E,X) ds)~ 
j=O tJ 

R(n)-l 

< CIE( L I Yj - Xj I~ ~jt)~ 
j=O 

R(n)-l 

< CIE( L I(tj)~~jt)~. 
j=O 

Applying the Holder inequality for sums gives 

R(n)-l 

IE sup I Bk I~ < CR(n)~-IIE L l(tj)(~jt)!} 
lSkSR(n) j=O 

R(n)-l 

< CN(n)~-l(mesh7r)!}-l L IEb(tj)~jt) 
j=O 

< C for IEb( s) )ds, 
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which constitutes the first in proving Lemma 7.2.6. Consider the final term Ck • 

Then 
k-l 

I Ck Ix - I L(h'(Yi)h(Yj) - h'(xj)h(Xi))(~jW, ~jw) Ix 
j=O 

k-l 

< L {I (h'(Yj) - h'(xi))h(xi)(~jW, ~iw) Ix 
j=O 

k-l 

< C L I Xi - Yi Ixl ~jW Ik· 
j=O 

Applying the Holder inequality gives 

k-l 
I Ck IP~ CN(n)P-l L I xi - Yi I~I ~jW I~ . 

j=O 

On taking supremum over k and then expectations we get 

R(n)-l 

IE sup I Ck I~~ CN(n)p-l L lE I xi - Yi I~I ~jW I~f . 
ISkSR(n) i=O 

Since both Xi and Yi are .rt,-measurable and ~iw is independent of .rtj then using 
the properties of conditional expectation and (7.1.2) we have 

lE(1 xi - Yi I~I ~jW I~) IE(lE(1 Xj - Yj I~I ~jW 1~I.rtJl 
- IE[I xi - Yi I~ I£(I ~iw I~I FtJ )] 

- lEU Xj - Yi I~ lE(1 ~iw I~)] 
< C I ~it IP JE(I Xj - Yj I~). (7.2.33) 
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It then follows using (7.2.33), (7.2.8) and (7.2.9) that 

R(n)-l 

lE sup I Ck I~ < CN(n)P-l L lE I Xj - Yj I~I ~jt IP 
l$k$R(n) j=O 

R(n)-l 

< CN(n)p-l(mesh7r)p-l L (~jt)lE sup I x(r) - y(r) I~ 
j=O O$r$t) 

R(n)-l 

< C L lE( ,(tj )~jt). 
j=O 

Since ,(s) is nondecreasing we can conclude that 

lE sup I Ck I~$ C r lE(,(s))ds, 
l$k$R(n) Jo 

which concludes the proof of Lemma 7.2.6. The proof of Theorem 7.2.1 is now 
complete. .. 
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Appendix: A Result On Fractional 
Powers 

Introd uction 
The aim of this Appendix is to prove that the generalised factorisation operator, 
introduced in Chapter 4, is the fractional power of a certain abstract parabolic 

operator. 
Let Y be a Banach space and A a positive operator on Y, i.e. ex + Ati is bounded 
for)' ;::: a and for some C ;::: 1 we have 

I (). + Atl IL(Y)~ 1 ~ ).' ).;:::. (S.O.I) 

One may then define the fractional powers A z, z E C, of A, through the formula 

(S.0.2) 

where x E Y, m, n E No with -n < Rez < m - nand r is the Euler Gamma 
function, see Chapter 4 .. As A is positive, then AZ is a bounded linear operator. In 
particular, noting that 8m~o) = r(O)r

1
(I_O)' the fractional power A-o, ll' E (0,1), is 

given by the formula 

A-ax = sin{1I"ll') roo ).-O(). + At1xd)', X E Y. 
11" Jo (S.0.3) 

Let X be a Banach space. Fix a < T < 00 and p E [1,00). Consider the operator 
AT defined on a subspace of LP(O, Tj X) (whose norm we denote I . ILp) through the 

formula 

(ATu)(t) = (ATU)(t) + (BTU)(t) = Au(t) + u'(t), a.e. t E [0, T], 

where -A is the generator of an analytic semigroup on X and u' denotes the weak 
derivative of u E LP(O, Tj X). We aim to prove that for)' ;::: 0, ll' E (0,1) and 
u E LP(O, Tj X) 

(8.004) 
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where R~ is the factorisation operator, given by 

(R~u)(t) = fot(t - st-Ie-(t-s)"e-(t-s)Au(s)ds. (8.0.5) 

To prove (8.0.4), we first show that AT generates a semigroup {l\,fdt~o on LP(O, Tj X) 
and then we will use the representation 

(A + Atl = 10
00 

e-"s Mads. 

Given this, we show that AT is positive and then we apply the formula (S.0.3) above. 

Remark 8.0.7 This result was essentially proven in [Br,97]. We collect together 
here the relevant background material and results needed to prove (8.004), which 
were not explicitly stated in [Br,97]. Although most of the results given here are 
considered well known, we often provide proofs which could not be found in the 

literature. 

Throughout this Appendix we assume that -A generates a Co-semigroup 
{e- tA h?;o on X. It will be stated when we use the following additional assumptions: 

(al) A is a positive operator, i.e. (). + A)-I is bounded for all ). ;::: 0. In particular 
there exists l\,f ;::: 1 such that 

I (). + Atl 1:5 1 ~ ). , ).;::: O. 

(a2) For all s E m., Aia is bounded and there exists J( ;::: 1 and 0 :5 v < ~ such that 

I Ais 1:5 J( ellisi • 

Remark 8.0.8 (a2) will only ever be used in conjunction with (al), so that the 
imaginary powers appearing in (a2) will make sense. Furthermore, (al) and (a2) 
together imply that -A is the generator of a uniformly bounded analytic semigroup 
on X, see [Pr/So,90]. <:; 

The Operator AT 
For p E [1,(0), T E (0,00) define a linear operator AT on LP := £1'(0, Tj X) through 

the formula 
(ATU)(t) = Au(t), a.e. t E [0, T], u E D(AT), (S.0.6) 

where 
D(AT) := {u E LP(O, Tj X) : loT I Au(t) IP dt < oo}. (S.0.7) 

We endow D(AT) with the graph norm. Note that as A is closed then D(A) is 
a Banach space endowed with the graph norm and hence LP(O,T;D(A)) is also a 
Banach space. Noting that D(AT) = LP(O, Ti D(A)) with equivalent norms then 
D(AT) is also a Banach space and therefore AT is closed. 
We now define a Co-semigroup {Pdt~o on LP(O, Tj X) which acts through the for-

mula 
[Ptu](r) = e-tA(u(r)), a.e. r E [0, T], u E LP(O, Tj X) . (S.O.S) 

{Pth?:o is a Co-semigroup on LP(O, T;X), which is a simple consequence of the fact 
that {e-tAh?:o is a Co-semigroup on X. Moreover we have the following 
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Proposition 8.0.9 -AT is the generator 01 the Co-semigroup {Pdt~o. 

Proof: Let C be the generator of {Pdt~o. We need to show that D( -AT) = D(C) 
and -ATU = Cu for U E D( -AT) = D( C). Let I E D( -AT) and consider 

I Pd
t
- I + ATI I~p= faT I e-tA(f(sl) - I(s) + AI(s) I~ ds. 

Since IE D(-AT)' then I(s) E D(A) a.e. s E [O,T]. Thus as -A generates 
{e- tA }t~O the above integrand tends to zero a.e. as t -+ O. Using the following 

inequality 
I e-tA(x) - x I~:::; f{(p, T)t P I Ax I~, x E D(A), 

where f{(p, T) is a constant, see Chapter 2, we have, a.e., 

I e-tA(f(sl) - I(s) + AI(s) I~:::; f{(p, T) I AI(s) I~ . 

The RHS is independent of t and is integrable since I E D(AT)' The Lebesgue 
Dominating Convergence Theorem then implies 

Pd-I I t + AT f I Lp -+ 0 as t -+ 0, 

i.e. D( -AT) c D(C) and for I E D( -AT)' -AT 1= C f. 

For the converse let u E D( C). Then for any ..\ > 0, U E R( (..\ - Ctl) and so there 
exists a unique I E LP(O, T; X) such that 

u = (..\ - Cr i f = faoo e->-.tPddt. 

Assume that f is continuous and so, in particular, (..\ - ct l f is continuous. Thus 
u has a continuous representative in £1'(0, T; X). It follows that for each s E [0, T] 

(8.0.9) 

Moreover for each s E [0, T], u(s) E D(A) with the following equality holding 

Au(s) = A("\ + Arl(f(s)) = I(s) - ..\(..\ + Art I(s). (8.0.10) 

The RHS of this equality defines a function belonging to LP(O, T; X) and so 

~T 1 Au(s) I~ ds < 00 ,i.e. u E D(-AT}. 
Now consider the case where u = (..\ - ct l f with f E LP(O, T; X). Let {/n}n>l C 
C(O, T; X) with In -+ I in LP(O, Tj X). By what we have just proved -

Un = (..\ - Crl In E D(AT)' 

As (..\ - ct t is bounded then 

I u - Un ILP-+ 0 as n -+ 00. 

Using (8.0.10) we deduce that 

I ATUn - ATUm 10'-+ 0 as n, m -+ 00, 
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i.e. {ATUn}n>l is Cauchy in LP(O, Tj X) and so has a limit, y, say. Thus (un, ATun) -t 

(u,y) and so-by the closedness of AT we deduce that U E D(AT)' It follows that 
D(C) C D(AT), which completes the proof . 

• 
(8.0.9) and (S.0.10) imply the following equalities for f E LP(O, T; X) 

(A + ATt1f(s) = (,\ + Atl(J(S)) a.e. 

AT('\ + ATtl f(s) = A('\ + Atl(J(s)) a.e. 

(8.0.11) 

(S.0.12) 

Remark 8.0.10 (a1) =} (AT1) and (a2) =} (AT2) where (ATl) and (AT2) are the 
same assumptions just with A replaced by AT. Moreover constants M,]{ and v 
appearing in (a1) and (a2) are the same for (ATl) and (AT2). To see this just 
note that (al) =} (AT1) follows from Proposition S.0.9 and (8.0.11). (a2) =} (AT2) 
follows from (S.0.12) and the general formula for fractional powers, see (S.0.2). 0 

Remark 8.0.11 The two conditions (ATl) and (AT2) together imply that the semi­
group {Pdt~o generated by -AT is a uniformly bounded analytic Co-semigroup, see 
Remark 8.0.8. 0 

The Operator BT 
For p E [1,00) and T E (0,00) fixed, let BT be the linear unbounded operator in 
LP(O, Tj X) defined by 

BT == u' U E D(BT), 
where D(BT) := {UE W1,P(0,TjX):u(0) ==O}. 

Recall that u' is the weak derivative of u. 

(S.0.13) 

(S.0.14) 

It is well known, see [G/G/K,90] for example, that the operator -BT generates a 
Co-semigroup of contractions on the Banach space LP(O, Tj X) and this semigroup, 
denoted by {Sdt~O' acts through the formula 

[Stu](r) :::; { u(r - t) if 0 ~ t. ~ r 
o otherWIse (S.0.15) 

for a.e. r E [0, TJ, u E LP(O, Tj X) 
It follows that -BT is a densely defined, closed, linear operator. In fact even more 
is true from the following result, see [Do/Ve,S7]: 

(BTl) BT is positive i.e. for'\ ;::: 0, (,\ + BT)-1 is bounded and there exists Ml such 

that 
(8.0.16) 

(BT2) If X is an UMD Banach space, then for s E ~, B¥ is bounded and for some 

J{2 > 0 
I Bf; I~ J{2(1 + s2)e Ilsl . 

~ 

(8.0.17) 
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The Semigroup {Mt}t~O 

The two semi groups {Sdt~O and {Pdt~O enjoy the property that they are commuting 
semigroups, i.e. for s, t ~ 0, 

StPs = PsSt. (8.0.18) 

To see this, let f be continuous and so for all r E [0, T] we have 

[St(PsJ)](r) { ~P.fl(r - t) if 0 :::; t :::; r 
- otherwise 

{ ~"A f(r - t) if 0 ~ t ~ r 
- otherwise 

- e-sA [(Sd)( r)] 

- [Ps(Sd)](r). 

The case of a general f E LP(O, Tj X) follows by the standard limit argument. 
There are two important consequences of this fact. The first follows directly from 
the Fubini Theorem and property (8.0.18). The second is a consequence of (8.0.18) 
and the semigroup properties of {Pdt~O and {Stlt~o. 

Lemma 8.0.12 -AT and -BT are resolvent commuting, i.e. for all \ JL > 0 

• 
Proposition 8.0.13 Set Mt - PtSt = StPt, t > O. Then {Mdt~o is a 0 0 -

semigroup on L1I(0, Tj X). 

• 
Remark 8.0.14 Under the assumptions (al) and (a2) then, see Remark 8.0.11, 
{Pdt~o is uniformly bounded, i.e. 

3Af2 ~ 1 such that 1 Pt I:::; M 2 , Vt ~ 0 

As {St}t~O is a contraction semigroup on L7>(O, Tj X) we then have 

i.e. {A1tlt~o is a uniformly bounded Oo-semigroup with the same uniform bound as 

{Pdt~o. <> 
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The Parabolic Operator AT 

Define the linear operator AT on LP(O, T; X) by 

AT := BT + AT, 
D(AT) := D(BT)nD(AT)' 
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(8.0.19) 

(8.0.20) 

Assuming A is injective and hence also AT, we endow D(AT) with the graph norm 

I U Ib(Ar)=1 ATu I~p + I BTu I~p . 
Since BTl is bounded then D(AT) is complete with respect to this norm. 

We first show that the operator -AT is the generator of the semigroup {Mdt>o. 
The proof of the following Theorem relies on the closedness of the operator AT. 
Although AT is the sum of two closed operators AT and BT, in the case of general 
Banach spaces, it does not necessarily follow that their sum is closed. Dore and Venni 
first considered the problem of the closedness of the operator AT, see [DojVe,87]. 
They showed that one needs to impose conditions on both the Banach space X and 
the operators AT and BT to guarantee closed ness of AT. The conditions imposed 
on the operators are: positivity, see (AT1) and (BTl); resolvent commutativity, see 
Lemma 8.0.12; boundedness of the imaginary powers, see (AT2) and (BT2). For 
the Banach space we need to impose the so-called UMD condition, or equivalently 
the (-convexity condition, see [Bu,86] and references therein. This property relates, 
in some sense, to the geometry of the Banach space. A necessary and sufficient 
condition for a Banach space X to be UMD is that the Hilbert transform is a 
continuous operator from LP(~, X) to itself. Any Hilbert space is UI\1D. Moreover 
the interpolation spaces of UMD spaces are again UMD. Finally, if X is UMD, then 

so is LP(O, T; X), p ~ 1. 
For a discussion on the motivations for the conditions sufficient for the closed ness 
of AT) see [DojVe,87] and references therein. 

Theorem 8.0.15 (Dore-Venni) Let X be an UAfD Banach space and assume (al) 
and (a2) hold. Then AT is a densely defined, closed, nonnegative operator with ATl 
bounded. In particular for each f E LP(O, T; X) there exists a unique U E D(AT) 

with ATu = f and 
(8.0.21 ) 

where C = C(p, v, R, T, X) is a consiant independent of !. 
The following Theorem is fundamental in what we aim to eventually prove. 

Theorem 8.0.16 Assume that X is an U!vlD Banach space, (a1) and (a2). Then 
-AT is the generator of the Co-semigroup {AIt}t~o. 

Proof: Let Q be the generator of {Aft h~o. We first show that D( AT) c D( Q) and 
-ATf = Qf for f E D(AT). Let f E D(AT) then we have 

I AId - f + AT f I _ I StPt{ -! + AT! I 
t 

< I StPd
t
- Sd + StAT! I + I AT! - StAT! I 

+ I Sd -! + BT f I 
t 

-+ Oast-+O 
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since {Stlt~O is strongly continuous and bounded and -AT, -BT generate {Pdt>o 
and {St }t>o respectively. -
For the c;nverse, note that Q (being the generator) is closed and AT is closed by 
Theorem 8.0.15. Thus there exists A > 0 such that (A - Qtl and (A + AT)-l are 
both everywhere defined bounded linear operators, see [Yo,69]. Let f E D(Q) and 
so (A - Q)f EX. There exists g E D(AT ) such that 

(A + AT)g = (A - Q)J. 

In particular, as D(AT) C D(Q) then (A + AT)g = (A - Q)g. We deduce that 

which implies D(Q) C D(AT)' This completes the proof of Theorem 8.0.10 . 

• 
We can say even more about our operator AT: 

Corollary 8.0.11 Assume that X is an UA1D Banach space, (al) and (a2). Then 
AT is positive and for /1 > 0, f E LP(O, T; X), we have 

(8.0.22) 

Proof: Since -AT generates {Mdt~o then for /1 > 0 we have 

(8.0.23) 

Let f E C(O, Tj X), then (/1+AT tl f is continuous. Using (8.0.23) and the defintion 
of Aft, one may show by calculation that for each s E [0, T] 

[C/1+ATr 1 f](s) = 108 

e- JJ(s-u)e-(s-u).4f(u)du. 

Using the boundedness of (/1 + AT tl, (8.0.22) follows for general f E LP(O, Tj X) 
by the standard limit argument. To prove positivity, recall that, by Theorem 8.0.15, 
(/1 + AT tl is bounded for /1 ~ O. Vv'e are thus left with proving the inequality of 
the form (8.0.1). Using (8.0.22) and the Young inequality we have for /1 > 0 

I (/1+ATr 1 f Ii,p < ePTMP laT(la S 

e-(JJ+l)(s-u) I feu) Ix du)Pds 

:5 cC T if) I f Ii,p 
p" 1 + /1 . 

As ATI is bounded then we can deduce that 3 Cl ~ 1 such that 

1 I C1 

I (jj + AT r :5 1 + JL' 

• 
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The Fractional Powers Aya 

We will now prove that R~ is actually the fractional power A"T Oi of the operator AT, 
modulo the constant r(a). 

Theorem 8.0.18 Assume that X is an UMD Banach space and that (al) and (a2) 
hold. Then for a E (0,1), -\ 2 a and f E LP(O, Tj X) 

P + AT tOi f = r!a) R~f, 

where R~f is given by (8.0.5). 

Proof: Since -AT generates {A-lth~o then for any -\ > 0, -Ai· := -(-\ + AT) 
generates {e- At A-ft1t~o. Thus for 11 > a we have for f E C(O, T; X) 

[(11 + A}t1 f](t) = (foOO e-(>.+Jl)SMsfds) (t) = fot e-(A+Jl)"e-tAf(t - s)ds. 

Using (8.0.3), the Fubini Theorem and noting that 5in~0i) = r(Oi)l(l-Oi)' we have, for 

a E (0,1), 

((-\ + ATtOi f)(t) - r(a)r~l _ a) fooo -\-01 fot e-(A+Jl)se-sAf(t - s)dsdll 

- r(a)r~l _ a) 1t e-Ase-sAf(t - s)(1°O -\-Oi e-IJ.8dll)dt. 

Making the substitution u = Ilt, then 

It then follows 

((-\ + ATtOi f)(t) _ _1_ [t sOi-le-Ase-sA f(t _ s)ds 
r( a) Jo 

- r!a) fot(t - s)0i-l e-(t-s)A e-(t-s)Af(8)ds 

- R~f(t). 

The case of general f E LP{O, Tj X) follows by the standard limit argument . 

• 
Remark 8.0.19 The results of this chapter rely essentially on the Dore-Venni The­
orem. The assumptions necessary to apply this result are quite strong. In particular, 
one needs to assume that both AT and BT are invertible with bounded inverse. In 
the paper [Pr /So,90], Pruss-Sohr were able to prove the same result (i.e. Theorem 
8.0.15 ) under the weaker assumption that AT is only nonnegative. This reduces to 
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assuming that the operator A is nonegative, i.e. we may replace (al) with 
(al *) (>. + A)-l is bounded VA > 0 and there exists AI ~ 1 such that 
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The assumption (a2) is still needed. For a nonnegative operator, one may still define 
the fractional powers, see [Kom,66], but the formulas for them are more involved 
than the formula (8.0.2). On inspection of our proof though, we do not explicity use 
the representation (8.0.2) for the imaginary powers Ais, we only need to know they 
are bounded. Thus our result holds also in the case where our operator A satisfies 
(al *) and (a2). In particular, see [Se,7l], the operator -A := d~2 on LP(Sl, JRd) 
used in the problem of the stochastic nonlinear heat equation satisfies the required 
assumptions. 
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