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Abstract

This thesis considers a stochastic partial differential equation which may be viewed
as a stochastic version of the nonlinear heat equation studied by Eells and Samp-
son. The special case of loops on a compact Riemannian manifold M is studied,
where the loop is parametrised by the unit circle. Using ideas of Eells and Sampson
and the theory of stochastic evolution equations on infinite dimensional M-type 2
Banach spaces, existence and uniqueness of an M-valued solution is shown, where
M is a certain Sobolev-Slobodetski space of loops on the manifold M. In particular
M is an infinite dimensional manifold modelled on an M-type 2 Banach space.

Finally, an approximation result of the Wong-Zakai type for Stratonovich inte-
grals in M-type 2 Banach spaces is given.
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Chapter 1

Introduction

This thesis is concerned with stochastic partial differential equations, SPDEs, of the
following general form

du(t) = Au(t) 4 "noise”. (1.0.1)
A is the nonlinear Laplacian acting on smooth mapsu : N — M, where N, M C Rr¢
are Riemannian manifolds. The noise term involves a suitable space-time white
noise.

Equations of the form (1.0.1) are motivated by physical literature where they
appear in the kinetic theory of phase transitions and in the theory of stochastic
quantisation, see {Fu,92] and references therein. Even so, for the case N = §!, §!
the unit circle, equation (1.0.1) is of interest as it defines a diffusive motion of loops
on the manifold M, where the loop is parametrised by o € S*.

Equation (1.0.1) may be considered as a stochastic version of the nonlinear heat
equation studied by Eells and Sampson, [Ee/Sa,64]. Eells and Sampson proved
that, given f € C®(N, M), where N is a general compact manifold and M C R is
a compact Riemannian manifold with nonpositive sectional curvature, there exists
a unique f :{0,00) x N — M satisfying

%‘é—’.(x) = éf,(:r), s§s>0, z€ N; (102)

with fo = f. Here we have written f,(-) := f(s,). Hamilton, [Ha,75], extended this
result to include the case where M has a boundary. Ottarsson, [Ot,84], considered
the special case of loops on the manifold M. Indeed, in this simpler case, it was
shown that one may drop the curvature restriction on M,

We now make our problem more explicit. Let w, be an E-valued Wiener process
defined on some complete probability space (2, F,P), where E is a suitable Banach
space of loops on R™, i.e. n: S' — R™. For u:[0,00) x §' x ! — M, consider the
following quasilinear SPDE

duy(0) = Duy(0)dt + v(u(0))dt + h(u(0)) o dwy(o), t>0, 0 €S,  (1.0.3)

where we write u,(0) := u(t,0) and we have suppressed the dependence on w € .
We explain the meaning of the terms in the equation (1.0.3) :

(a) v is a smooth vector field on M

(b) h is a smooth section of a bundle F over M, whose ﬁbrés are Fp = L(R™, T, M),
T €M, . S : : =
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(c) odw; denotes the Stratonovich differential.

Equation (1.0.3) will often be referred to as the stochastic nonlinear heat equation,
SNHE.

Existence of a solution to (1.0.3) (in terms of generalised functions) was proved
by Funaki, see [Fu,92]. (Strictly speaking, the Wiener process used by Funaki was
of a different form to the one in (1.0.3), but the idea of proof is still the same.)
Using an ad hoc version of Trotter’s product formula, Funaki constructs a solution

to (1.0.3), as an infinitesimal composition of a solution to (1.0.2) and a solution to
the following stochastic differential equation

duy(0) = v(uy(0))dt + h(u(o)) o dw,(o), t > 0,0 € S, (1.0.4)

(The idea of composing two different solutions is not dissimilar to the Fractional Step
Method used by Kotelenz, see [Kot,92], [Go/Kot,96] and references therein.) More
precisely, corresponding to each partition 7 of the interval [0, T], Funaki constructs
the process fr as a composition of the solutions to (1.0.2) and (1.0.4). Existence of
a solution to (1.0.3) is then a consequence of the following three theorems

(i) The family of distributions {P,} corresponding to {f} is tight in the space
C(0,T; M), where M is a certain Sobolev-Slobodetski space of loops on M.

(i1) Every limit P of {Px}, as meshr — 0, solves the Martingale problem corre-
sponding to the SPDE (1.0.3).

(iii) The SPDE (1.0.3) and the Martingale problem are equivalent.

The main technicality arises in proving (i), where Funaki calculates deep (kinetic
and potential) energy estimates for the processes fr. This method, although quite
ingenius, is very probabilistic in nature, and nontrivial to say the least.

In this thesis we propose a different method of solving (1.0.3). This method is
more direct and more in the spirit of the ideas used in the deterministic case, in
particular, those of Hamilton. We briefly describe Hamilton’s method. Imbedding
the target manifold M in some Euclidean space R? and extending the metric on M
to R¢, one first solves the problem (1.0.2) uniquely in Euclidean coordinates. The
extension of the metric is carried out to ensure existence of an involutive isometry 1
on the tubular neighbourhood U of M. In particular ¢ has M as its fixed point set.
By showing that i o f also solves (1.0.2) on some short time interval, where f is the
original solution, Hamilton deduces that if f starts on the manifold then it must
remain there for a short time period. To prove this is true on the half time-line, he
employs the method of energy estimates used by Eells and Sampson.

We now give a description of our work. We first consider (1.0.3) as an SPDE
in Buclidean coordinates. This requires extending the metric (as in Hamilton), but
also the maps v and h, suitably to R%. In these Euclidean coordinates the nonlinear
Laplacian then takes the form

A=-A+F (1.0.5)

where —A = 2% is the standard Laplacian and F is a nonlinear term. We then

reformulate the SPDE (1.0.3) as a stochastic evolution equation, SEE, on a suitable
function space, i.e. ‘

du(t)+‘Au(t)dt=F(z).(t))dt-i-V(q(t))dt +Hu®) o du(t), »(1'}70.6) 
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where V and H are the Nemytski maps corresponding to the extensions of v and h.
Equation (1.0.6) is an example of an SPDE with multiplicative noise. The the-
ory for such equations in Hilbert spaces began with the works of Curtain and Falb,
[Cu/Fa,71}, Pardoux, [Par,75], [Par,79] and in Banach spaces, Krylov and
Rozovskii, [Kr/Ro,79], but to name a few. Many of the ideas and techniques used
to solve SPDEs are generalisations of those used for deterministic partial differen-
tial equations, PDEs. For example, Bensoussan, Teman and Pardoux, [Ben/Te,72],
[Par,75], [Par,79], developed a theory for SPDEs for monotone coercive operators
by generalising the method of monotone operators developed by Lions, [Li,69], to
solve nonlinear PDEs. Another example is in the case of stochastic Navier-Stokes
equations, see, for example, the works of Bensoussan and Teman, [Ben/Te,73].

For our problem we use the semigroup approach to SPDEs. Although the
operator —A is unbounded, it is well-known that it is the generator of an analytic
semigroup. In such cases, it is a standard technique in PDEs to look for a solu-
tion in terms of the semigroup, see, for example, [Fr,69]. Such a solution is often
referred to as a mild solution. Dawson, [Da,75], first considered this approach in
the case of SPDEs on Hilbert spaces. The theory was essentially developed by Da
Prato in collaboration with authors such as Iannelli, Tubaro and Zabczyk. We refer
the reader to the book [DP/Z,92] which gives an extensive treatment of this theory
in the Hilbert space case. See also the papers by Ichikawa, [I¢,78] and Flandoli,
[F1,92). In the papers [Br,95] and [Br,97], Brzezniak continued this line of research
by considering stochastic evolution equations on M-type 2 Banach spaces. M-type
2 (also known as 2-uniformly smooth) Banach spaces are a class of Banach spaces,
on which one can define It6 integration, see [Ne,78], [De,91] and references therein.

We consider equation (1.0.6) as an SEE on the Sobolev-Slobodetski spaces
Wwer(S1,RY), o € (0,00) \ N, p > 2, which are defined by the real interpolation
method, see [Tr,78]. The choice of function space is essentially at our disposal,
provided that the equation (1.0.6) is well posed. The spaces WeP(S?, R?) are par-
ticularly well suited to our problem for two reasons. For p > 2, they are examples
of M-type 2 Banach spaces. Secondly, the Nemytski maps F', V and H satisfy nice
regularity properties on these spaces. In particular, F', V and H are smooth and
satisfy a local Lipschitz condition, see [Br/El,98]. (Indeed, if v and h are extended
to functions of compact support, then V and H are also of linear growth.)

Using the theory developed by Brzeiniak, we prove existence of a local (and
maximal) solution in the space W"”(Sl,m"’), % >s>141 p>2 Thisis the best
we can hope for when using such general methods, consi(fering that the term F is
not of linear growth. Even in the case of ordinary differential equations, without the
linear growth condition, there are well known examples of solutions which are not
global. Although the general procedure follows that in [Br,97], we prove stronger
estimates on the solutions and moreover we consider SEEs on real interpolation
spaces, whereas in {Br,97], the author considers the complex interpolation spaces.

We explain briefly why we work in different spaces. The complex interpola-
tion method gives rise to a different class of Sobolev spaces, denoted H er(S1 RY),
0 € (0,00) \N, p > 2. Although these spaces are M-type 2, the regularity results
for the Nemystki maps, mentioned above, may not hold. The reason for this is that
the Lipschitzian properties of F', V and H depend on a specific characterisation
of the spaces WeP?(S*,R?), see [Tr,78]. Such a characterisation is unknown for the
Her(SY, RY) spaces.
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The second step is to prove that our solution lies on the loop manifold
M = W*?(S?, M), which is a closed submanifold of the infinite dimensional Banach
space W*?(51,R?%). The Nemytski map I corresponding to ¢ is an involution on the
open set W*P(S,U), where U is the tubular neighbourhood of M. Moreover I
has M as its set of fixed points. By considering the notion of a weak solution, we
show that both u and I(u) are solutions to the problem (1.0.6). Using the fixed
point properties of I and the uniqueness of solution, we deduce that u lies on the
manifold M for the time it is defined. The use of Stratonovich integrals (instead of
It6 integrals) plays an important réle in this step, along with the following crucial

identities:
r'e)yve)=vyue), (1.0.7)
r'()H() = H(I(-)), (1.0.8)
r'¢)A() = AU()), (1.0.9)

where I’ is the Frechet derivative of I. The identities (1.0.7) and (1.0.8) are partic-
ular to our choice of extensions of v and h. The identity (1.0.9) just follows from
the works of Hamilton. To make use of the above identities we need to approximate
our mild solution (written in terms of the semigroup) by strict solutions, which is
the main difficultly for this part.

Finally, to prove that our solution is global, we calculate energy estimates for the
maximal solution, which gives us a bound for the nonlinear term F. Thus, on any
finite time interval, we can show that the norm of the solution does not ’explode’,
i.e. the solution is global. For this step we will need certain results on energy
estimates found in [Ee/Sa,64]. Moreover we will again need to use an approximation
proceedure similar to above.

We now briefly descibe the layout of this thesis. In Chapter 2 we present the
necessary material needed for our work. This should make the thesis fairly self con-
tained. We omit nearly all the proofs and just give references. We present a proof of
the Stochastic Fubini Theorem in M-type 2 Banach spaces. Although such a result
is well known and well used, the author does not know of any proof of this (in the
M-type 2 case) in the literature.

In Chapter 3 we discuss the problem (1.0.3) in more detail and state a precise
definition of a solution. The remainder of this chapter focuses on the extensions of
the maps v and h and the regularity properties of the Nemytski maps.

Existence of a maximal solution is proved in the second part of Chapter 4.
The first being dedicated to studying the regularity properties of the generalised
stochastic convolution process. This uses the Da Prato-Kwapien-Zabczyk Factori-
sation method, see [DP/K/Z,87].

In Chapter 5 we prove that our solution lies on the manifold M and then we
prove globality of solution in Chapter 6. This will conclude our work on this partic-
ular problem. At the end of Chapter 6 we briefly discuss ideas concerning further
research relating to this problem.

In Chapter 7 we prove an approximation result of the Wong-Zakai type for
Stratonovich integrals in M-type 2 Banach spaces. This is a generalisation of a re-
sult proved in the PhD thesis by Dowell, [Dow,80], who considered the Hilbert space
case. There are certain implications of this result regarding the equation (1.0.3).
One may be tempted to think that we used the Stratonovich differential in (1.0.3)
(as opposed to the Itd differential) just because it 'works’, This result suggests that
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(&3]

when dealing with stochastic equations on manifolds, the Stratonovich differential
is the most natural choice.

In the appendix we prove that the factorisation operator, used in the Da Prato-
Kwapien-Zabczyk Factorisation method, is the fractional power of a certain abstract
parabolic operator. Although this result was essentially proved in [Br,97], we present
here all the necessary details and proofs not included there.

Y
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Preliminary Material

2.1 Cp-Semigroups, Fractional Powers of Opera-
tors, Analtyic Semigroups

Co-semigroups

The definitions and results of this subsection are standard and we refer the read-
er to [Paz,83] for more details and proofs.
Let X be a complex Banach space with norm | - |x. (If X is a real Banach space then
we take its complexification). Let L(X) := L(X,X) be the space of all bounded
linear operators from X into X endowed with the supremum norm, denoted | - |(x).
When it is clear from the context which norm we are using we will often write | - |
instead of | - |x or | - [L(x).

Definition 2.1.1 A Cy-semigroup on X, {Tt}oo» is a family of bounded linear
operators on X such that

(a) Teys = TiT,, Vt,8 20 and Ty = I, where I is the identity operator on X,
(b) limyjo Tz = z, for every z € X

For a Cyp-semigroup {Tt}tzo there exist constants p > 0 and M > 1 such that
| Ty |< Me for t > 0. (2.1.1)

If p =0 then {T,}t>° is said to be uniformly bounded. If in addition M = 1, then
{Tt}»o is called a contraction Cop-semigroup. Using (2.1.1) one can show that for
every z € X, the function T(:)z : [0,00) — X, t — T,z, is continuous.

The linear operator A defined by

D(A) := {a: € X :lim 2 =®
ti0

exists}

and

d for z € D(A)

Az =lim
tl0

is called the infinitesimal generator of the semigroup {T}},,,. A is a closed operator
and D(A), the domain of A, is dense in X. Moreover D(A) is a Banach space with
respect to the graph norm | - |p(a), where

|z lpay=lz | + | Az |, z € D(4).

6
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The following properties hold for the infinitesimal generator A,
For z € X, [; Tyzds € D(A) and

A([ Tiads) =T
( Tz s) =Tz — z. (2.1.2)
For z € D(A), Tiz € D(A) and
It follows from (2.1.3) that
t t
Tie — Tye = / AT.zdr = / T, Azdr. (2.1.4)

The resolvent set p(A) of a linear operator A is the set of all complex numbers A
for which (A — A)™!, (the resolvent of A), is a bounded linear operator in X. The
following theorem characterises the generators of Co-semigroups.

Theorem 2.1.2 (Hille-Yosida) Let A : D(A) C X — X be a closed operator.
Then A is the generator of a Co-semigroup {T,},,, that satisfies (2.1.1) if and only
if D(A) is dense in X, p(A) contains the set {\ € C: Rel > p} and

M
A=—A)"| € ———, ReA>p,nEN. 2.1.5
0= € p (21.5)
Remark 2.1.3 It is a consequence Theorem 2.1.2 that for Re) > p,
(A= A) = /0 e MTydt. (2.1.6)
Remark 2.1.4 Using the identity
AN =A) T =2\ = AT =1, Re) > p, (2.1.7)

it is straightforward to show that, for Re) > p,
(A= A)"1: X — D(A) (2.1.8)
is linear and bounded, where D(A) is endowed with the graph norm.
%

Let A be the generator of a Cp-semigroup. For each n € N one defines the Yosida
Approximations, A,, of A by

An=nAn— A" =n*(n- A" —nl (2.1.9)
One can show that ’ ~ |
limn(n—A)'z=z, VzEX (2.1.10)
and |
lim A,z = Az, Vz € D(A).. - (2.1.11)

Positive Operators and Fractional Powers ,
The following two definitions are taken from [Tr,78].
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Definition 2.1.5 A closed and densely defined linear operator A on X is said to be
positive if (—o0,0] C p(A) and there ezists C 2 1 such that

(b4 A7 < s € [0,00). (2.1.19)

Definition 2.1.6 Let A be a positive operator on X. For o € (0,1), the fractional
power of A, A~®, is defined through the formula

sinmo

Aoz = /0°°t-a(t + A)'zdt, z € D(A). (2.1.13)

Note that if A is positive, then A~%, a € (0,1), is a well defined bounded linear

operator.
The proofs of the following assertions can be found in [Paz,83] or [Tr,78].

Let A be a positive operator on X. Then
(i) there exists a constant C > 0 such that
| A= | £C for a €[0,1]. (2.1.14)

(ii) For e, B, + B € [0,1] we have
ATEA) = 7oAl (2.1.15)
(iii) For each a € (0,1], A™ is one-to-one.
In view of (iii) one defines
A% = (A"*)"! with A= I (2.1.16)

One then sets D(A®) := R(A™*), where R(A™") is the range of A~%. A% is a closed
densely defined operator and D(A®) is a Banach space endowed with the norm
I . ID(AQ), where N :

| z |p(as)=| A%z | .

Finally, we have the following properties:

(iv) For a, B, + B € (0,1],
AP = A% AP (2.1.17)
(v)ifa> >0 then
D(A*) c D(A®). (2.1.18)

Analytic Semigroups

One can extend the notion of a Co-semigroup {Ti},5, on X to that of an analytic
semigroup {T;},.r on X, where the index set T' is some sector of the complex plane,
Clearly to preserve the semigroup structure, see Definition 2.1.1, this sector must be
an additive semigroup of complex numbers. For our definition we restrict ourselvcs
to angles around the positive real axis,

Definition 2.1.7 Let ' = {z EC: ¢ <argz < ¢g,¢1 < 0 < ¢}, where argz
is the argument of the complez number z and ¢1, ¢, € R. An analytic semigroup,
{T, }zel‘ on X, is a famzly of bounded linear operators on X, such that
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(a) z — T, is analytic in T,

() Toyyzy = T2y Tsyy for 21,22 € T and Ty = I, where I is the identity operator on
X,

(c) lim, o T,z = z, for every r€X andz €T,

From the definition one can see that the restriction of an analytic semigroup to
the real axis is a Co-semigroup. If the analytic semigroup restricts to a contraction
(respectively, uniformly bounded) semigroup then we call it a contraction (respec-
tively, uniformly bounded) analytic semigroup. There are many advantages of using
analytic semigroups over Cop-semigroups and these are highlighted in the following
Theorem.

Theorem 2.1.8 Let A be a positive operator on X such that —A is the generator
of an uniformly bounded analytic semigroup. We denote ils restriction to the real
azis by {e"A}DO. Then for € (0,1],

(a) e7*4 : X — D(A*) for every t > 0.
(b) For every z € D(A®), e"'4 A%z = A%e™z.
(c) Fort >0, A%e™** is bounded and there exists a constant Cy(a) > 0 such that

| A%~ |< Cy(a)t™® (2.1.19)
(d) There exists a constant Ca(a) > 0, such that, for z € D(A%),

e "z — 2 |< Cyla)t* | A%z |, t > 0. (2.1.20)
V)

2.2 Real Interpolation Spaces

The Real Interpolation Spaces (X, D(A))s,
Suppose three Banach spaces X, Y and D satisfy

YcDcCX,

where C denotes continuous imbedding, then D is called an intermediate space
between X and Y. If, in addition, for every linear operator T' € L(X), such that
Tiy € L(Y), where Tjy denotes the restriction of T to Y, one has Tjp € L(D),
then D is called an interpolation space between X and Y. There are various ways
of constructing interpolation spaces between X and Y and this theory is covered
extensively in, for example, [Be/Bu,67], [Ber,L5,76] and [Tr,78], see also [Lu,95] for
a concise yet sophisticated presentation. We are interested in those spaces defined
using the real interpolation method with exponents 6§ € (0,1), p € [1,00) and
they are denoted (X,Y)s,. A deep understanding of this theory is not necessary for
reading our work. Indeed, we are only interested in the special case when Y = D(A),
the domain of an operator A. In particular, we assume that A is a positive operator
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with — A the generator of an analytic semigroup {e"”‘}tm. In this case, see [Tr,78§],
the spaces (X, D(A))s,, can be characterised as follows. For 6 € (0,1) and p € {1, o0),

1 |
(X, D(A))sp = {x € Xialoy= [ |67 A s Pt < oo}. (2.2.21)

The spaces (X, D(A))s,» are Banach spaces with the norm | - [o,, and, for 0 < 6 < 0,
we have the following inclusions which are continuous and dense

D(A) C (X,D(A))gp C (X,D(A))sp C X. (2.2.22)

In particular, the spaces (X, D(A))s, satisfy the interpolation property mentioned
above, i.e. if a linear operator T : X — X is such that T' € L(X) and T' € L(D(A))
then T € L((X,D(A))sp) for each 0 € (0,1), p = 1. Moreover, there exists a
constant C(8,p) > 0 such that

| T lex.0anen< C0,9) | T |5oiap! T 11ixy - (2.2.23)
The spaces (X, D(A))o, also satisfy the following:
(i) For p € (0,1), p > 1,
(X, D(A))up = (X, D(A*)) e, (2.2.24)
(ii) For s, p, pua, p2 € (0,1), p > 1,
((Xs D(A))us s (X, D(A)) sz p) i = (X, D(A)) (1=5)11 #3125 (2.2.25)

with equivalence of the respective norms.

(iii) For a > 0,
D(A%) C (X, D(A))sp. (2.2.26)

Note that (2.2.22), (2.2.23) and (ii) hold for any real interpolation space (X,Y)sp,
where Y C X, not just in the case Y = D(A). Note that (ii) is a version of the
so-called Reiteration Theorem, see [Tr,78].

The Sobolev-Slobodetski Spaces

The contents of this subsection can be found in [Tr,78]. For p € [1,00), n € N and
O an open bounded interval of R, the Sobolev space W™?(O,R) is defined as the
the vector space of all functions u : O — R whose weak derivatives D*u, o« € N,
a < n, belong to LP(O, R), the space of Lebesgue p-integrable functlons Recall that
v € LP(O,R) is the n'* weak derivative of u € LP(O,R) if

. (n) = {1\
L u@)#™(@)dz = (-1)" [ o(z)p(e)dz
for every test function ¢. v is then denoted D™u. For n € N, p € [1,0), the Sobolev

spaces W™P(O, R) are Banach spaces with the norm

1=0

lubp= [ Dulee  (222)
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where | - |1» denotes the norm on LP(O,R).
For s € (0,00) \ N, the Sobolev-Slobodetski space W*?(O, R) is defined via the real

interpolation method, i.e.

w*?(O,R) := (L7(O,R?), W"*(O,RY)) (2.2.28)

P

where n € N is such that £ =0 € (0,1).

Different Sobolev spaces are obtained using other interpolation methods, yet one
reason for the choice of these particular Sobolev spaces is the following useful char-
acterisation:

u € W*?(O,R) if and only if u € W™P(O,R), where n = [s], the integer part of s,
and

/ / | D™u(zy) — D™u(zs) |P

Tor — 20 57 dzidr,; < oo. (2.2.29)

For s € (0,00) \ N, the spaces W*?(O, R) are Banach spaces with the norm

Du(zy) — D*u(ea) P
ulgi=l v hop + [ [ | Drulen) = Dz g, (2.2.30)

l Iy — I |1+ap

where n = [s] and | - |ap is given by (2.2.27). Note that we have used the same
notation for the norms of the spaces (X, D(A))s, and W*P. It will always be clear
from the context to which space they refer. Finally we say that u € W*P(O,RY) if
and only if each of the real-valued coordinate functions of u belong to W*P(O, R).
We will need the following theorem:

Theorem 2.2.1 (The Sobolev Imbedding Theorem) Suppose s > n+: 1 then
the imbedding map .

W*?(O,R?) — C*(O,R?)
1s well defined and bounded.

Here C™(O,R%) is the space of continuous functions on O, the closure of @, whose
derivatives up to order n exist on O and have continuous extensions to O.
We end this subsection with an example of an analytic generator of a semigroup on

LP(O,Rr?), where O = (0,2r). Theorem 2.2.1 implies that
- WE(0,2m;RY) — C([0,27]; RY).

Thus, each u € W??(0, 2r; R?%) can be identified with a continuously differentiable
function i@, where @ and its (classical) derivative, 4’ , have continuous extensions to
the whole of the closed interval [0,2x]. We denote @ by u. Consider the operator
@ := D? with the boundary conditions u(0) = u(2r) and «/(0) = u/(2r). One can
show, see [Tr,78], that @ is the generator of a contraction analytic semigroup on
L7(0,27; R%) with domain ‘

D(Q) = {u € W?(0,2m;R?) : u(0) = (27r) and w/(0) = w'(27)}.  (2231)

The space defined by the RHS of (2.2.31) will be denoted W2 (0,2m; RY).

©
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2.3 Manifold Theory

We present the basic theory required for our work. \There are many classical texts
where our presentation can be found, e.g. [Ko/No,63] and [Sp,75]. The author refers
the beginner to the book [O0’Ne,83], which is an excellent introduction to this theory.
By a smooth m-dimensional manifold M we mean a topological second countable
Hausdorff space along with a complete atlas of dimension m. For each p € M we have
a tangent space T, M which is an m-dimensional vector space. Using the topology
of M one can glue these spaces together to obtain the Tangent Bundle TM of M,
ie.
™ = |J T,M. (2.3.32)
PEM
T'M has the structure of a 2m-dimensional smooth manifold. A smooth vector field
von M is a smooth map v : M — T'M, such that v(p) € T, M for p € M. We denote
the vector space of these maps by C(M,TM). For each p € M, let L5(T,M;R)
denote the space of bilinear, symmetric and nondegenerate forms on T,M. A smooth
map g on M, which assigns to each p € M an element g(p) = g(p)(-,) € LY(T,M; R),
is called a metric on M. In particular, for each p € M, g(p) is an inner product
on the tangent space T,M. Sometimes we will write g, for g(p), p € M. As an
example, the Euclidean metric <, >() on R? is defined by

uivi, p € R* (2.3.33)

d
< UpyUp 2pi=

=1

where, for example, v, = (p,v) € T,R? with v = (v1y...,va) € R% Thus, the
Euclidean metric just assigns the standard inner product on R? to each tangent
space T,R?, p € RY,

Let W;, i = 1,2 be open sets in M and i : W) — W, a diffeomorphism. Then i is
said to be an isometry if

9(p)(w,v) = g(i(p))('(p)u, i'(p)v), p € M, u,v € T, M, (2.3.34)

where ' is the derivative of i and for each p € M, #'(p) : T,M — TipyM is a linear
map. Let o: I — M be a smooth curve in M, where I is an open interval on the
real line. Suppose that a(a) = p € M for some a € I, then there exists a map P,
associated with the Levi-Civita connection on M, such that for any be [

PeO i T, M = Ty M.

P is called Ijarallel Translation along a. In particular, for the isometry 4 described
above, let P be translation, along the curve i o o, from Ty M to Tiyq)M where
g = a(b) € M. One can prove, see [0’Ne,83],

ip

i"(q) 0 P = Pi{%) 0 #'(p). | (2.3.35)

Note that Parallel Translation depends on the smooth curve a.
We may imbed M smoothly into some Euclidean space, R%, d > m, and thus view
(the image of) M as a submanifold of RY and (the image of) each T,M as a linear
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subspace of T,,le. As a result, for each p € M, there is a direct sum decomposition
of the tangent space T,R?, i.e.

T,R* = T,M @ T,M* (2.3.36)

where

T,M* = {v € T,R? :< v,u >,=0,Yu € T,M}. (2.3.37)

Here <, >(, is the Euclidean metric on R? given by (2.3.33).
Given the decomposition (2.3.36) one defines the Normal Bundle of M by

NM:= |J T,M*. (2.3.38)
peEM

The Normal Bundle has the structure of a d-dimensional smooth manifold. There
exists a smooth projection map mn : NM — M given by

mn(v)=p if ve T,M*, pe M. (2.3.39)

We now introduce the notion of a tubular neighbourhood, which will play an
important réle in our work. Using the above notation, there exists an open neigh-
bourhood U of M in R? and a diffeomorphism ¢ from an open set V in NM onto U.
This U is called the tubular (or Normal) neighbourhood of M in R% The existence
of a tubular neighbourhood for M is a nontrivial result. Most texts prove the result
for the case M is compact, which will suffice for us. See [O’Ne,83] which deals also
with the noncompact case. On an intuitive level, the tubular neighbourhood can be
described as follows, see [Bo/Tu,82]. Suppose M is a curved length of string in R3,
where M is imbedded in a tube U. U can be thought of as being made up of cross
sectional discs each of which is perpendicular to the string at the center.

©

2.4 Stochastic Analysis and Stochastic Integra-
tion in M-type 2 Banach Spaces

Stochastic Analysis

We assume basic knowledge of stochastic processes and present here certain defi-
nitions and results for completeness. The following notation will be used throughout.
Let X be a metric space and (£, F,P) be a probability space with given increasing
right-continuous filtration {F;},5, C F with Fo complete.

Definition 2.4.1 A stopping time 7 is a random function 1 : Q — [0, 00] such that
{r<t}:i={we:r(w) <t} €F for eacht > 0. (2.4.40)

Proposition 2.4.2 If 7 and o are stopping times then so are min{r,0} =7 A0,
maz{r,o0} := 7V o and T £ 0. Furthermore if {r,} nexy U5 @ sequence of stopping
times then sup, cy 1',l is also a stopping time.
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Proposition 2.4.3 Let{(t), t > 0, be a X-valued stochastic process with continuous
paths and U an open set in X. Define

Ty = inf{t € [0,00) : {(t) ¢ U},

with the convention that Ty 1= oo if £ never leaves the set U. Then Ty is a stopping
time,

The proofs of the above Propositions can be found in [We,81]. Following [Br/E1,98],
see also [Kun,90}, we call a stopping time 7 accessible if and only if there exists a
sequence of stopping times {7,} such that

T.<7 as and lim T, =71 as. (2.4.41)
Nn—00
For a stopping time 7 we set
Q(r)i={we:t<r(w)}, (2.4.42)

[0,7) x Q:={(t,w) € [0,00) xN:0< t < T(w)}. (2.4.43)
A process ¢ : [0,7) X @ — X, written £(t), t < 7, is said to be admissible if and only
if
(1) &au(r) : u(r) = X is Fr-measurable for any t > 0, i.e. £ is adapted,
(ii) for almost all w € Q, [0,7(w)) 2 t — {(t,w) € X is continuous.

Stochastic Integration in M-type 2 Banach Spaces
The following definition is fundamental for our work.

Definition 2.4.4 A Banach space X is called M-type 2 if and only if there exists
a constant C(X) > 0 such that for any X-valued martingale { My} the following
inequality holds

supE | M P<CX)SE| My — My 2. (2.4.44)
k

For the definition of a Banach space valued Martingale see [Me,82]. Using the
properties of the conditional expectation, see [DP/Z,92], one can prove that any
Hilbert space is M-type 2. Furthermore for 2 < p < 0o, LP(O,R?) are M-type 2,
see [Br,95], and using this fact one can show that for 2 < p < o0 and 6 € (0,1) the
spaces W9?(0O,RY) are also M-type 2, see [Br/El,98].

The theory of stochastic integration in infinite dimensional Hilbert spaces has
been developed and is well understood, see [DP/Z,92] and [Ic,83] for a summary of
this theory. It is known that for general separable Banach spaces there are difficulties
even in the finite-dimensional case. In an unpublished thesis by Neidhardt, [Ne,78],
a theory of stochastic integration was developed for a certain class of Banach spaces
known as 2-uniformly smooth Banach spaces, which are Banach spaces which satisfy

lz+y P+ |-y ’<lz P +A |y ]’, for z,y € X (2.4.45)

for some constant A > 0. Similar work was carried out independently by Dettweiler,
see [De,91] and references therein. It is known, see [Pi,76], that a Banach space is
2-uniformly smooth if and only if it is M-type 2. What we present here is taken from
[Br/EL,98]. Some results in [Br/E1,98], which have been proved using the inequality
(2.4.44) instead of (2.4.45), are stronger than those in [Ne,78].



Chapter 2 15

Definition 2.4.5 For separable Hilbert and Banach spaces H and X we set
M(H,X):={T:H—>X:Te€L(HX) andT is y-radonifying} (2.4.46)

By ~y-radonifying we mean the image T'(yy) of the canonical finitely additive Gaus-
sian measure vy on H is o-additive on the algebra of cylindrical sets in X.

Remark 2.4.6 The algebra of cylindrical sets in X generates the Borel o-algebra,
B(X) on X, see [Kuo,75]. Thus T'(vn) extends to a Borel measure on B(X) which
we denote by vr. In particular, vr is a Gaussian measure on B(X), i.e. the image
measure A(vr) is a Gaussian measure on B(R) for each A € X*, the dual of X. If
A(vr) has mean value 0 for each A € X*, then vr is called a centered/symmetric
Gaussian measure. $

For T € M(H, X) we put

| T o xy= /x |z |? dvr(z). (2.4.47)

As vr is Gaussian, then by the Fernique-Landau-Shepp Theorem, see [Kuo,75],
| T |ma,x) is finite. Furthermore, see [Ne,78], M(H, X) is a separable Banach space
endowed with the norm (2.4.47).

Definition 2.4.7 Let E be a separable Banach space. We say that i : H — E is
an Abstract Wiener Space, AWS, if and only if ¢ is a linear, one-to-one map and
1€ M(H,E). Ifi: H— E is an AWS, then the Gaussian measure v; on I will be
denoted by p and called the canonical Gaussian measure on E.

Remark 2.4.8 The notion of an AWS was introduced by Gross, [Gr,65], who named
it thus since the classical Wiener space is the most familiar example. There is a vast
literature on the theory of AWS’s, yet the above definition will suffice for our needs.
We refer the interested reader to [Kuo,75] and [R5,93] for more details and references.
We point out that many authors require :(H) to be dense in E in the definition of
an AWS, in alignment with the work of Gross. This is an unnecessary restriction for
us. Indeed, Sato, [Sa,69], proved that given a separable Banach space with Gaussian
measure p, then there always exists a Hilbert subspace H C F such thati: H — F
is an AWS, with u = v;, where 1 is the inclusion mapping. ¢

Remark 2.4.9 The Hilbert space H appearing in the above definition is often re-
ferred to as the reproducing kernel Hilbert space, RKHS, of (E, p).

As an example relevant to our work, let O be an interval and H'?(O,R?) be the
Hilbert space of functions f such that f and its weak derivative D f both belong to
L*}(0, IR") Then, see [Br,96], i : H**(O,R?) < W??(O,R?) is an AWS, where
0 €(0,1), p > 2. Here H"*(O,R?) is the Hilbert space of functions u € L*(O,R?)
whose weak derivative u’ also belongs to L?(O,R%). Moreover, the range of
HY“2(O,RY) is dense in W??(O,R?). Another example is given by

H2(0,2m;RY) — WEP(0,2m; RY),

per per

with 6 as above, where

HY2(0,2m;R?) = {u € H'(0,2m;R) 1 u(0) = u(27)}

per
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and
War(0,2m;RY) = {u € WO?(0,2m; R?Y) : u(0) = u(27)}.

per
¢

Suppose that a triple (2, F,P) is a complete probability space and let 7 : ] < f2
be an AWS. Let w(t), ¢ > 0, denote the canonical E-valued Wiener process, i.e. a
continuous process on E such that

(i) w(0) = 0 a.s.;
(i) the law of the random function t~3w(t) : Q — E equals k, for any t > 0;

(iii) if 7, is the o-algebra generated by w(r), r € [0, s}, then w(t) — w(s) is indepen-
dent of F, for any t > s > 0.

Remark 2.4.10 We explain what we mean by canonical Wiener process. Given
any separable Banach space E with Gaussian measure x4 then there may exist a
variety of Wiener processes related to p. Due to the result of Sato, there exists £/
and ¢ such that ¢ : H < E is an AWS. Let {ei}t>1 be an orthonormal basis of JI and
{/Bk(t)}kZI a sequence of independent, identically distributed real-valued Brownian
motions. For each t > 0, the series

o0}

W(t) =D Be(t)i(ex) (2.4.48)

k
converges almost surely in £ and is an E-valued Wiener process, as described above,
We refer to this Wiener process as the canonical Wiener process, Although we will

not make use of the representation (2.4.48), we will always make this canonical
choice of Wiener process. ¢

Let S be a Banach space and T' € (0, 00]. Let A'(0,T; S) be the space of (equivalence
classes of) functions £ : [0,T) x © — S which are progressively measurable, i.e,

[O,t] x5 (s,w) — {(S,w) €S

is By, x F; measurable for each t € [0,T), where By 4 is the class of Borel subsets
of [0,¢]. Let Nyep(0,T; S) be the space of all £ € M(0,T;S) for which there exists
a partition 0 = o < &1 < ... <1, = T such that {(t) = {(ts) for t € [ty, t,,,),
0<k<n-1,keN.
For p € [1, 00) we define
T

MP(0,T; 8) := {6 e N(0,T;S) :| & |mw:= IE/o | €(s) IP ds < oo}- (2.4.49)
M?(0,T; S) is a closed subspace of LP([0,T] x ©}; 5) and is thus a Banach space. Set
ME,.,(0,T;8) := MP N Nyyep. For £ € MP(0,T; L(E, X)) define a measurable map

step

I(¢): @ — X by B
I(€) = Y E(te) (w(terr) — w(te)). (2.4.50)

1=1
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Lemma 2.4.11 Suppose i : H — E is an AWS with canonical E-valued Wiener
process w(t), t > 0, X is an M-type 2 Banach space and T € (0,00]. Then for
£ € M., (0,T; L(E, X)), 1(§) € L* (4 X), EI(§) = 0 and

T
BIIEO GSC [ BIEW) 0 By dt. (2.4.51)

The proof of Lemma 2.4.11 uses the M-type 2 property defined earlier. Furthermore
it uses the fact that if i € M(H,E) and A € L(E, X) then Aoi € M(I1, X) with
| Ao: |M(H,X) < C I A IL(E,X), see [BI’/EI,QS].

The fundamental property of the map I is that it extends uniquely to a bounded
linear map from M?(0,T; M(H, X)) into L*(©; X). This is a consequence of (2.4.51)
and the fact, proven in [Ne,78], that M},.(0,7"; L(E, X)) is dense in

MP(0,T; M(H,X)). For £ € MP(0,T; M(H, X)), the value of this extension will be
denoted by [T £(s)dw(s).

Let 7 be a finite stopping time with respect to the filtration {#;}, i.e. 7 < 00 a.s..
For ¢ € M?(0,00; M(H, X)) we define

[ edwis) = [ 10m¢(s)dus) (2.4.52)

where 1(g,) is the characteristic function of the stochastic interval [0, 7). We have,
see [Br,97] and [Br/El98),

Theorem 2.4.12 Suppose i : H — E is an AWS with canonical E-valued Wiener
process w(t), t > 0, and X is an M-type 2 Banach space. Assume that

€ € M(0,00;L(E, X)) and let I(t) = [{€(s)du(s) for t > 0. Then, I(t) is o
continuous X -valued martingale and for any p € (1,00) there ezists a constant
C, > 0 such that, for any finite stopping time 7 > 0,

<3
2

2 sup | 15) (k< Gy { [ 2160) By do} (2.4.53)

0<s<r 0
The inequality (2.4.53) is the Burkholder inequality. The case p = 2 was proved in
[Ne,78] and later, using the M-type 2 inequality, (2.4.44), was proved in [De,91] for
p22.

Remark 2.4.13 In the above we may replace M(H, X) by L(E, X). In particular,
Jr €(s)dw(s) exists for any £ € M?(0,T; L(E, X)) and satisfies

B

 sup | [ e(r)du(r) s G { [ B 1605) Bigmny ds) (24.51)

0<s<r
%

Henceforth we will work with processes £ € M*(0,T; L(E, X)). The following lo-
calization property of the It integral, defined in (2.4.52), will be of some importance.
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Theorem 2.4.14 Supposei : H — E is an AWS with canonical E-valued Wiener
process w(t), t > 0, and X is an M-type 2 Banach space. For k =1,2, let

& € M?(0,00; L(E, X)). Assume that we have a stopping time T and Qo € F, such
that P(F) > 0 and 7 > 0 on Q. Suppose further that, for each t > 0,

£1(1) = &(t) a.s. on {w € Nyt < T(w)}.
Then, for any stopping time o, satisfying o < 1 a.s. on Qy, it follows

/ &1(s)dw(s / &2(s)dw(s) a.s. on Qg . (2.4.55)

Before we state the Itd formula we need to introduce some additional notation.
By L,(FE; X) we denote the space of bounded bilinear maps, A : E x I2 — X. Let
i: H — FE be an AWS. We define the map tr: Ly(E; X) — X by

trA :=/EA(e,e)d,u(e), (2.4.56)

where g is the canonical Gaussian measure on E. In view of the Fernique-Landau-
Shepp Theorem, tr is a bounded linear map. Note also that the ¢{r map depends on
the choice of AWS.

Theorem 2.4.15 (Ito Formula) Suppose i : H — E is an AWS with canonical
E-valued Wiener process w(t), t 2 0, and X and Y are M-type 2 Banach spaces.

Assume that a function f :[0,T)x X —= Y is of C'?-class, i.e. 5{, 5-1 and ——l erist

and are continuous on [0,T) x X with values in the appropriate space. Suppose we
have a process £(t), t € [0,T], given by

£(t) 0)+/ ds+/ (2.4.57)
where a € M*(0,T;X) and b € M*(0,T; L(E,X)). Then, for all t € [0,T), the
Y -valued process f(t,£(t)) is given by

16 - 10,60) = [ Fis,enas+ [ 2o, e(e))ate)as

+/t-g—[s £(s))b(s)dw(s)
YRR b OO TIUON'S)) FAREYES

The following Theorem and Proposition will be needed. The author does not know
of any proofs in the literature which cover the M-type 2 Banach space case and so
we present them here. The proofs are not dissimilar to the Hilbert space case, see
[Cu/Pr,78], but we present them for completeness.

Theorem 2.4.16 (Stochastic Fubini Theorem) Supposei: H — E is an AWS
with canonical E-valued Wiener process w(t), t 2 0, and X is an M-type 2 Banach
space. Let T € (0, 00]. Suppose

he L(0,T) x [0,T) x 0 L(B, X))
is such that, for almost all t € [0,T), h(-,t) € M*(0,T;L(E,X)). Then, for all

20 t gt
-/ot /0' h(s,r)dw(s)dr=/0 /0 h(s,r)drdw(s) a.s.. (2.4.59)
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Proof : Let h € L*([0,T) x [0,T) x ©; (E X)) such that, for almost all, a.a
tE [OvT) h( ) step(o T L(E ))

/ot /Ot h(s’r)dw(s)dr — /ot (E h(tk, (w tk+1) — w(tk))>

— ( h(tg,7) ) (w(tes1) — w(ti))
= /O/Oh(s,r)drdw(s) a.s.. (2.4.60)

Let h € L*([0,T) x [0,T) x Q; L(E, X)) such that a.a. ¢t € [0,7),
h(-,t) € M*(0,T; L(E, X)). There exists a sequence

{hn}new € LA([0,T) x [0,T) x ©; L(E, X))
which are step functions in the first variable and
t rt
IE/ / | ha(s, 1) = (s, 7) ,3( dsdr — 0, as n — 00, (2.4.61)

see [Ne,78]. Using (2.4.60), the Hélder and Burkholder inequalities, we have the
following sequence of inequalities

n«;|/ / (s,r)dw(s)dr / / (s,r)drdw(s) |%

<m|// $,7) = ha(s,7)duw(s)dr [%
8] [ [ ha(srr) = (s, r)drdus) I
]E/ |/ h(s,r) = ha(s, 7)dw(s) % dr
+CE [ | [ hals,r) = hs,r)dr 3 ds

<C(t E//]h(sr n(s,7) |% dsdr
+COE [ [ I haerr) = his, ) [ drds.

Let n tend to infinity, then (2.4.61) and the standard Fubini Theorem imply (2.4.59).

A

Proposition 2.4.17 Suppose i : H — E is an AWS with canonical E-vyalyeq
Wiener process w(t), t 2 0, and X is an M-type 2 Banach space. Let T ¢ (0, o0).
Suppose h € M?*(0,T; L(E, D(A)) where D(A) is the domain of a closed densely
defined linear operator A on X. Then for eacht 20

/0 h(s)dw(s) € D(A) a.s. (2.4.62)

and

A [ He)du(s) = [[ Ab)duls) es. (2.4.63)

0
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Proof : Note that M2,,(0,T; L(E, D(A))) is dense in M?(0,T; L(E, D(A))) where
t

D(A) is endowed with the graph norm. For h € M?(0,T; L(E, D(A))) there exists
a sequence

{hn},ex € M?(0,T; L(E, D(A)))
such that for each t > 0

m/|h ) — h(s |de+m/ | Ahn(s) — Ah(s) |% ds — 0, (2.4.64)
as n — oo. It is straightforward to show that for each ¢t > 0 and n € N,
A/th()d() /’Ah()d() (2.4.65)
n = a(s)dw(s) a.s.. 4.
o S wis o
Denote
t
z(t) = / h(s)dw(s), zn(t / hn(s)dw(s) and y(t / Ah(s)dw(s).
0

Note that as A € L(D(A), X) then Ak € M*(0,T; L(E, X)) and so y is well defined.
Moreover the definition of the stochastic integral for Ah € M?*(0,T;L(E,X) is
independent of the approximating sequence. As {Ah,} approximates Ah, we have,
for each t > 0,

lim Az,(t) = y(t) in L%(Q, X), (2.4.66)

n— oo

It then follows that, for each ¢t > 0,

lim (z,(t), Azn(t)) = (z(2),y(2)) in L2(Q, X x X). (2.4.67)

n—o0

(2.4.67) then implies that there exists a subsequence of {(z,(t), Az4(t))}, denoted
{(zna(t), Az4(t))} again, such that

(za(t), Aza(t)) — (z(t),y(t)) a.s. in Q, t > 0. (2.4.68)
(2.4.62) and (2.4.63) now follow from the closedness of A.

o

Stratonovich Integrals
The following two definitions are taken from {Br/El],98].

Definition 2.4.18 Suppose it : H — FE is an AWS with canonical E-valued Wiener
process w(t), t > 0, and X is an M-type 2 Banach space. Let T € (0,00)] and &(t),
t € [0,T] be a stochastic process such that for any t > 0

£(t) = €(0) +/ s)ds +/ s)dw(s) a.s. (2.4.69)

where a € MY(0,T; X) and b€ M?*(0,T; L(E, X)). Then for a C* map
h:X — L(E,X) we define the Stratonovich Integral of h(£(t)) as

[ he) o duls) = [ BENdu(s) + 5 [ wrEHNs.  @470)
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Definition 2.4.19 Supposei: H — E is an AWS with canonical E-valued Wiener
process w(t), t > 0, and X is an M-type 2 Banach space. Let T € (0,00]. Let h be
as above and let f: X — X be a continuous function. We say that a process

£(t), t € [0,T], is a solution to the Stratonovich equation

dé(t) = f(&(t))dt + h(E(t)) o dw(t) (2.4.71)
if and only if it is a solution to the It6 equation
d(t) = {f(f(t)) + %tr{h'(ﬁ(t))h(f(t))}} dt + h(£(1))dw(?). (2.4.72)

Thus £(t) is a solution to (2.4.71) if and only if it satisfies for eacht >0
€0 =€0) + [ JE(s)) + 5tr{R(E(s)hE))ds

+/ 8))dw(s) a.s.. (2.4.73)

2.5 Some Inequalities

Lemma 2.5.1 (Gronwall Inequality) Let u : [0,a] — R be continuous and non-
negative. suppose C > 0, K > 0 are such that

uW(t) S C+K /; u(s)ds

forallt € [0,a). Then ]
u(t) < Ceft (2.5.74)
for all t € [0,q].

Lemma 2.5.2 (Young Inequality) Assume p, ¢ and r € [1, 00] satisfy

1 1 1
LT (2.5.75)
r p 9
If f € LP(R%,R) and g € LY(R%, R), the convolution f * g, given by
(f*9)(@) = [ f(z = v)gv)dy, (2.5.76)

exists almost everywhere, belongs to L™(R% R) and satisfies

| fgler<| fleel g lLe. (2.5.77)

If p and q are conjugate exponents then f * g is bounded and uniformly continuous
on RY,

v
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The Stochastic Nonlinear Heat
Equation

3.1 The Stochastic Nonlinear Heat Equation

Let M be a smooth compact m-dimensional Riemannian manifold with metric g
and let S* be the unit circle. Let w; be an E-valued Wiener process defined on some
complete probability space (£, F,P), where F is a suitable Banach space of loops on
R™, ie. n: S = R™. For u:[0,00) x ST x 8 — M, we will consider the following
stochastic partial differential equation, SPDE,

duy(0) = Au,(o)dt + v(uyo))dt + h(u(0)) 0 dw(a), t >0, o0 € §',  (3.1.1)

where we write u,(0) := u(t,0) and we have suppressed the dependence on w € .
We explain the notation used in (3.1.1).

(i) ve C=(M,TM) i.e. vis asmooth vector field on M.

(ii) h € C=(M, L(R™,TM)) i.e. h is a smooth section of a bundle F over M, whose
fibres are F, = L(R™, T, M),z € M.

(iii) odw, denotes the Stratonovich differential.

(iv) A is the nonlinear Laplacian, i.e. for a C* map u : N — M, where N is a
smooth manifold, Au is the trace of the second derlvatlve of u. For our case, i.e.
N = S§', as S! is one dimensional, Au is just the second derivative of u.

Let 0 € S' and (U, ) be a chart covering the point u(c) € M, i.e. U is an open
set in M with u(o) € U and ¢ : U — R™ is a diffeomorphism onto some open set
in R™, The local expression for Au(o) € Ty(,)M with respect to this chart, where
Ty(o)M is the tangent space of M at the point u(o), is given by

Au(o) = {d’u ) + Z I ( )(Z‘; (0)} ’ (3.1.2)

see [Ha,75). For i,j,k = 1,...,m, T§ : U — R are the Christoffel symbols on M,
corresponding to the metrlc g. In the case of M = R? with g taken as the usual
Euclidean metric, the Christoffel symbols vanish and we are left with the standard
Laplacian.

22
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The following discussion will motivate a satisfactory definition of a solution to
(3.1.1). Given (M,g) we may imbed M smoothly into some Euclidean space R?.
Furthermore the metric on M can be extended to a metric on R? which we denote
by g again. Thus M is an imbedded submanifold of (R¢g). Moreover as (R g)
is covered by a single chart, then for a C? function u : S? — R? the nonlinear
Laplacian of u takes the form

Au = —Au+ F(u), (3.1.3)

where —A = % and for o € S!

d ul w d
Fu)o):= 3 {rg(u(a))‘i—a(a)‘i—a(a)} . (3.1.4)

f,7=1 k=1

For 2,7,k =1,...,d, Fk R? — R are now the Christoffel symbols relating to the
metric ¢ on IR" Note that these functions need not vanish, as in the case of the
Euclidean metric. If we extend v and & to © and A, which are defined on the whole
of RY then we may then consider the SPDE (3.1.1) as an SPDE in the Euclidean
space R?, i.e. for u: [0,00) X S x Q@ — R,

2 d
du(0) = —(o)dt + {Z T ( d“ )‘Z (a)} dt
ti=1 k=1

+ o(u(0))dt + h(uo)) o dw, (o). (3.1.5)

We may reformulate (3.1.5) as a stochastic evolution equation, (SEE), on a suitable
function space, i.e.

du(t) + Au(t)dt = F(u(t))dt + V(u(t))dt + H(u(t)) o dw(t). (3.1.6)

Here F(u) has the same meaning as in (3.1.4). V and H are the Nemytski maps
corresponding to ¥ and &, i.e. for a map u : S = R% V and H act through the
following formulas

V(u)(o) = v(u(0)), (3.1.7)

H(u)(o) = h(u(o)), (3.1.8)
where o € S'. If, for each o € S?, u(o) € M, we have

V(u)(o) = v(u(o)), (3.1.9)

H(u)(0) = h(u(c)). (3.1.10)

By a solution to (3.1.6) we would ideally want a D(A)-valued process u(t), where
D(A) is the domain of the operator A, satisfying the following integral equation

u(t) + /Ot Au(s)ds = u(0)+ /ot (F(u(s)) + V(u(s)))ds
+/0' H(u(s)) o dw(s). (3.1.11)

Such a solution is often referred to as a strict solution. To prove the existence of such
a solution is nontrivial to say the least. The difficulty lies in the fact that A is an
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unbounded operator. It is known that —A is the generator of an analytic semigroup,
{ —M}oo , on LP(S*, R%) with domain D(—A) = W2?(5',RY). Furthermore, see

[Ic,83], for example, if a strict solution exists then the solution also satisfies a mild
version of (3.1.11), i.e

w(t) = e u0)+ [ e OIAP(u() + V(u() ds
+/0 e'("’)AH(u(s))odw(s). (3.1.12)

To prove existence of a process satisfying (3.1.12) is easier because, for each t > 0,
e is a bounded linear operator. Such a solution is called a mild solution. After
the statement of our Theorem we discuss the possibility of a mild solution also being
a strict solution.

The function spaces we will be working in will be the Sobolev-Slobodetski spaces,
Wer(St RY), ¢ > 0, p > 1, whose precise definition we will give later. We define for
s> %, p>1,

W*P(S', M) := {u € W**(5',R") 1 u(0) € M, Vo€ 5'}. (3.1.13)

By the Sobolev Imbedding Theorem, W*?(S',R?) — C(S,RY), for s > i, where

C(S5',R?) is the space of continuous functions, and so (3.1.13) does make sense. We
are now in a position to define what we mean by a solution to problem (3.1.1).

Definition 3.1.1 Let w(t), t > 0, be an E-valued Wiener process defined on a
complete probability space (0, F,P), where E is a Banach space of loops on R™, i.e,
n: S = R™. Let {Fi},59 C F be a right continuous filtration such that w(t) is
adapted to this filtration and the increment w(t) — w(s) is independent of F, for
each t,s > 0.

A stochastic process u(t) defined on (0, F,P) is a mild solution to (3.1.1) if

(i) for some s > 1+ %, p>1,u(t),t 20, is a continuous progressively measurable
W#P(S, M)-valued process, on [0,T), for each T > 0, and

(ii) for each t € [0,T], u(t) satisfies the following mild stochastic integral equation

u(t) = < u(0)+ [ Lo =04 (F(u(s)) + V(u(s))) ds
+ /0' e=t=D4 F(u(s)) 0 dw(s) a.s., (3.1.14)
where F, V and H are defined as in (3.1.4), (3.1.7) and (3.1.8).

Remark 3.1.2 The requirement that s > 1 + % is to guarantee that the term

involving the nonlinear map F, given by (3.1.4), makes sense classically. Indeed if
s > 1+ 7 then by the Sobolev Imbedding Theorem, W*?(S,R?) — C'(S',R),

where C(S?,R?) is the space of continuously differentiable functions from S! to R

¢
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Before we state our result we first explain how to extend the metric g from M to
R%. We follow Hamilton’s construction, see [Ha,75]. We first imbed M smoothly
into some Euclidean space R?. In doing so, we identify M with its image, which we
denote by M again, and the tangent spaces T,M, p € M, with lincar subspaces of
T,R? which we denote T, M again. Let U be the tubular neighbourhood of M in
R% As M is compact, there exists € > 0 such that M C U, C U where

U, = {xEIRd:d(x,M)<E}- (3.1.15)

Here d is the distance function on R% It is worth noting that if 0 < ¢, < ¢ then
defining U,,, as in (3.1.15), we have M C U, C U,. Morcover U, and U,, are also
tubular neighbourhoods of M. As M is compact then there exists 2 > 0 such that
U C B(0, R), where B(0, R) is a ball of radius R in R?.

From the definition and properties of a tubular neighbourhood there exists a
smooth map 7 : RY — R? which vanishes outside the ball B(0, R), maps U, to itsclf
and 72 = identity on U,. This also holds when we replace U, with U., for any
0 < &, < €. Furthermore 7 satisfies

ilm)=mé& me M. (3.1.16)

We wish to obtain a metric on R? so that i becomes an isometry on U,. The metric
g on M can be extended smoothly to U, giving a map ¢' : U, — LYHR%R). Now
define g% : U, — L3(R? R) by averaging the metric g' under 1, i.e.

gﬁ(U, v) = ';_ {g,l,(u, ’U) + gtl(p)(ll(p)u, i,(p)v)}

where p € U,. In particular, this makes i : U, — U, an isometry and indeed
t: U, — U, an isometry for any 0 < &1 < &. Now extend g? to the whole of rR? 5o
that outside the ball B(0, R) it coincides with the usual Euclidean metric. This new
metric on R? we denote by g again and we consider R? as a Riemmanian manifold
with this metric. By construction, the metric induced on M as a submanifold of r?
coincides with the original metric on M. For this reason, along with the isometric
properties of ¢ : U, — U,, we have the following results, whoose proofs can be found

in [Ha,75]:

Proposition 3.1.3 Suppose that u : §* — M C B(0,R) is of C? class. Then
Au may be calculated in two ways. We may calculate the nonlinear Laplacian of u
treating u as a map into B(0, R), where we consider B(0, R) with the metric g we
have just constructed. This we denote L gu. Or, treating u as a map into M, we

may calculate &, u. It follows that
Bgu= By (3.1.17)

)

Proposition 3.1.4 Suppose that u : [0,00) x S' — U, is a solution to the deter-
ministic nonlinear heat equation

Ou,(o
"'a'if_) = Au,(0), $>0, o€ 8, (3.1.18)
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uo(0) = v(a), v e C=(S,U.), (3.1.19)
where we have denoted u,(:) := u(s,:) and we consider U, with the constructed

metric g. Then iowu is also a solution to (3.1.18) with initial value i o v. Moreover
we have the following identity

i'(u)Au = A(i o u). (3.1.20)
Finally, note that as g coincides with the Euclidean metric outside the ball B(0, R),
then the Christoffel symbols appearing in (3.1.4) will vanish outside B(0, R). Thus

we may deduce that these functions are of compact support.
We now give a statement of our main Theorem.

Theorem 3.1.5 Let w(t) be a WOP(S, R?)-valued Wiener process, where 0 € (,l), L,
p > 2. Let ug € LN, Fo; W*P(S', M)) where the numbers q and s satisfy ¢ > p
and % - 3 >s3>1+4 %. Then there erists a continuous, progressively measurable
W*P(S!, M)-valued process, u(t), t > 0, with u(0) = uo, such that u is the unique
mild solution to (3.1.1) with initial value ug. In particular, for each t > 0, u(t)
satisfies

u(t) = eu(0) + /Ote"("")A(F(u(s))+V(u(.s)))ds

t
+ / e~0=DA [ (u(s)) 0 dw(s) a.s.. (3.1.21)
0
Remark 3.1.6 We can choose ug € LP(§2, Fo; W*?(S*, M)). Note though that
3 2 1
=—=>14-%&p>6,
2 p p P

i.e. we have a solution only if p > 6, see Chapter 4.

Remark 3.1.7 The above Theorem gives the existence of a mild W*?(S!, RY)-
valued solution, s > 1 + %. We do not say whether this process takes values in
D(A) := W??(5!,R?) or not. It will become clear from the proof of our Theo-
rem that the low regularity of the space variable of u(t) is due to the choice of
Wiener process. We have chosen w(t) as a Wiener process in the space W%?(S? RY),
% < 6§ < }, which guarantees only that for each t > 0, w(t) € C(S*,RY). If w(t)
were W+1.7(S1 R?)-valued, then it turns out, using a simplification (!) of our
methods, that the mild solution, denoted (t), would be a W*+1?(S1 M)-valued
solution, with s as above. In particular, i(t) € D(A) and so, see [Br,95] or [Ic,83],
@(t) would satisfy

a(t) = u(0 +/ ~Au(s) + F(i ds+/
+/ a(s)) o duw(s). (3.1.22)

Furthermoreas s+1 > 2+ ;‘_;, then 4(t) : S* = M is C? class for each ¢t > 0. (3.1.3),
(3.1.17) and (3.1.22) then imply

i(t) = +/Au ds+/ (s))ds

+ /0 H(a(s)) o dw(s). (3.1.23)
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This observation reinforces Definition 3.1.1 as a satisfactory definition of a mild

solution to (3.1.1). &

©

3.2 The Extensions of v and A

Before proceeding with constructing the extensions of v and h, we need to look more
closely at how the map i : RY — R? is constructed. There exists a diffeomorphism
w:V — U, where V is an open set in NM, the normal bundle of M, and U is the
tubular neighbourhood of M. We define 7: V — V by

T(v):=—v, veV. (3.2.24)

7 corresponds to multiplication by —1 in the fibres T,M*, p € M. Note that 7 is
an involution, i.e. 72(v) = v, for each v € V. Furthermore there exists a smooth
map 1 : R? — R, such that 0 <4 < 1, withp =1 on U, and ¥ = 0 on U, where
€ > 0 is chosen as in (3.1.15). The map i : R? — R? is then defined as

i(p) :=¥(p){poTop ' (p)}, pER® (3.2.25)

Using the canonical projection map my : NM — M, define the smooth map
n:U— M, by
ni=ryog L (3.2.26)

Lemma 3.2.1 On U, we have

n(i(p)) = n(p) =1(n(p)), p € U.. (3.2.27)

Proof : The second equality is trivial as i(m) = m & m € M. For the first
equality, note that if n(i(p)) # n(p) then by the definition (3.2.26), there exists
r,s € M, r # s such that

¢7'(i(p)) € T,M* and ¢7'(p) € T.M*.
Using (3.2.25) and the fact that p € UL, then
7' (i(p) = opoTop i (p) = Top T (p) € TLM*,
As T is an involution,
rorop™(p) =97 (p) € M # T, M*,
which is a contradiction. It follows that n(i(p)) = n(p).
A

For a, b € U, let P* : T,R* = T,R? be parallel translation with respect to the
constructed metric g. (Note that we need to specify the choice of curve, but we
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simply take the straight line from a to b). Then as 7 is an isometry on U,, we have
for p, g € U, ,

i'(p) o P? = PN 0i'(q). (3.2.28)
Finally, see [Ha,75], we have for m € M,

‘(mv=v & veT,M. (3.2.29)

We are now in a position to define our extension . For p € R%, define

(p) {PZ,y 0 v(n(p)}. (3.2.30)

¥ is a well-defined smooth vector field on R?% It is an extension of v and it is of
compact support. Furthermore it has the following property:

Lemma 3.2.2 For each p € U,

7(p)(8(p)) = 5(i(p))- (3.2.31)

Proof : Let p € U,. Then, using the definition (3.2.30), and the properties (3.2.27),
(3.2.28) and (3.2.29), we have

‘(p)i(p) = i(p)P, 0 v(n(p))
= R((':()p)) o ¢'(n(p))v(n(p))
= Pyl o i'(n(p))v(n(p))
= P, nEp()p)) v(n(p))
= éﬁf’()p)) o v(n(i(p)))
= i(i(p)).
[ )

Similarly, we define the extension k of & by

k(p) = ¥(p) { PZ,y 0 h(n(p))}, p € RY. (3.2.32)

h is well defined, smooth and has compact support. Furthermore for each p € U,

i'(p)(h(p)(e)) = h(i(p))(e), €€ R™ (3.2.33)

This is proved in an identical manner to Lemma 3.2.2. The extensions of v and A
are complete. Before considering their corresponding Nemytski maps, we will give
a precise definition of the Sobolev-Slobodetski spaces of loops on R

3.3 Sobolev-Slobodetski Spaces Of Loops

The Spaces W?*(S!,R)
Throughout this section we will write LP(S?) for LP($*,R) and L?(0,2r) for
L*(0,27;R), with analogous abbreviations for the spaces We?(S!, R).



Chapter 3 29

Let S! be the unit circle and [g .do the integral with respect to llaar measure on
S!. In particular, using the map

[0,27) 3t e € ST, (3.3.34)

we may write \
Lo
/51 u(o)do = zﬂ/o u(et)dt. (3.3.35)

The space LP(S'), p > 2, is defined in an obvious manner, i.e. as the space of
measurable functions u : S* — R such that

/51 | u(o) P do < oo. (3.3.36)

The Sobolev spaces W*?(S!), k € N, are then defined as the space of loops on R
whose weak derivatives up to and including order k¥ € N belong to L?(S").

Define the operator U, acting on functions g : [0,27) — R, through the following
formula

Ug)(e") = g(t), €' € S (3.3.37)

By direct calculation, one can show that:

(i)Y : LP(0,27) — LP(S) is an isomorphism,
(i) U : Wp(0,27) — WP(S) is an isomorphism,

where
Wir(0,27) = {u € W'?(0,27) : u(0) = u(27)}. (3.3.38)

Note that the latter is well defined because by the Sobolev Imbedding Theorem,
every u € W'?(0,2r) has a representative which is a continuous function on [0, 2r].
In what follows, we restrict ourselves to choosing 6 € (%,1), p 2 2. Using real
interpolation, the properties (i) and (i1) imply that

u: (17(0,27), W,}J(O,?w))ayp = (27(8"), Wn(sY) (3.3.39)

8.0’

is an isomorphism, where (:,:)g, are real interpolation spaces. It is known, see
[Tr,78],

(£7(0,27), WE(0, 27r)) = WI2(0,2r), (3.3.40)
where

We2(0,27) = {u € WP(0,27) : u(0) = u(2r)}. (3.3.41)
Denoting

Wor(S) := {u € LP(8Y): / ; | u(01) = woa) I doydo; < oo} (3.3.42)

[ o1 — 07 1407
see Chapter 2, one can show that

U:Woir,2r) — wor(s?), (3.3.43)

per

is an isomorphism. We deduce that

Wo,p(Sl) (LP(SI) wh p(Sl)) ) (3.3.44)
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One can easily extend the above ideas to cover the case when 8 € (1,00) \ N. The
starting point is showing that

U:WEP(0,21) - WHP(SY), keN, (3.3.45)

per

is an isomorphism. Here, W£?P(0,27) is the space of functions u € W*?(0,27) such
that
u™(0) = ulM(27r), foreach 0<n<k—1, n €N, (3.3.46)

where u(® denotes the nt* weak derivative of u.

The Contraction Semigroup On L?(S',R)
Let @ := j‘-’:—, be the Laplacian acting on functions u € W2?(0,2r). Then, see Chap-

per
ter 2, @ generates a contraction analytic semigroup {R;},,, on L?(0,27). Define a

family of operators {T%},5
T,: L*(S") — LP(SY), t>0, (3.3.47)
by
Tau= (Uo R oU™)u, ue L(S?). (3.3.48)
One can show, see [Tr,78],
(i) {Tt}50 is a contraction analytic semigroup on LP(S?).

(1) If B is the generator of {T}},5,, then

D(B) = {u e L7(S") : U 'u € D(Q) = WZP(0,27)} = W?P(S"),  (3.3.49)

per

with Bu = UQU'u for u € D(B).

(iii) Bu = D%u, where D? denotes the second weak derivative, i.e. the Laplacian
acting on functions u € W2P(S?).

Remark 3.3.1 In the case of real-valued loops, i.e. u : §' — R, we henceforth
denote B by A.

Remark 3.3.2 In a similar fashion, one can show that ~A4 := i—z,, where ;d;; is the
Laplacian acting on functions u € W??(S',R?), is the generator of a contraction
analytic semigroup on LP(S!,R%), which we henceforth denote {e’“‘}»o.

Y

3.4 The Regularity Properties of the Nemytski
Maps

We now construct the Nemytski maps corresponding to 9 and k as maps on the
Sobolev-Slobodetski spaces We?(S',R%), ¢ > 7, p 2 2. Note first that, for 0 € (323
p>2,i: H'?(S,RY) — WOP(S!,R?) is an abstract Wiener space, see [Br/El,98].
We thus have a canonical W??(S?,R%)-valued Wiener process, denoted w(t), t > 0,
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corresponding to this AWS. We choose 8 € (%, 1), p > 2 as this guarantees that
WOr(S1 RY) — C(SY,RY), and, as a result, for each o € S, w(0) := w(t)(o) is a
R%valued Brownian motion.

The Nemytski maps corresponding to # and A are defined as follows

V(u)(o) := 9(u(0)), u€ Wer(S,RY), o€ S, (3.4.50)

H(u)(n)(o) := h(u(o))n(e), u,n € WeP(S,RY), o€ S". (3.4.51)

Recall that © and & are smooth with compact support. The proof of the following
result, which can be found in [Br/El 98], relies heavily on the characterisation of the
spaces WeP(S! RY), see 3.3.42 and Chapter 2.

Proposition 3.4.1 V and H are smooth maps satisfying

V:Wer(SLRY) — Wer(S',RrY
H:Wer(SY RY) — L(Wer(S, RY), WeP(St RY)).

for any o > % and p 2 2. They and all their derivatives are Lipschitz continuous on
each ball in We?(S',R?). Furthermore V and H are both of linear growth.

We now consider the nonlinear term F given by (3.1.4). We first quote a result that
we need and which can be found in [Am,91]:

Proposition 3.4.2 Let § : R? x R? — R? be given by Bu,v) = (urvy,...,ugvy).
Now if p € (1,00) and s € (0,00) are such that s > 3 1 then the bilinear mapping
B Wer(S RY) x WP(S1,RY) — W*P(S1,RY) given by

Blu,v) := Bo(u,v)
is continuous and hence smooth.
The next proposition is fundamental in our work.

Proposition 3.4.3 The nonlinear map F is a smooth locally Lipschitz map from
Wetlr(Sl rY) to Wer(S',RY), for any o > %, p>2.

Remark 3.4.4 As g > 1 then Wett?(S1 RY) s C1(S',R?) and so F(u) makes
sense classically for u € W‘”""’. ¢

Proof : Throughout this proof we will denote WeP(S!, R?) by Wer,
Recall that the norm on We*1? o € (0,1), is given by

Vu(oy) =V p »
|u|o+1,p=lu|1,p+{/susl| u(e1) - Vuloy) | daldag} . (3.4.52)

I o1 — 0g |1+0P

Using (3.4.52) it is straightforward to show that the map V : Wetltr _ Wer

given by Vu := (‘g‘l, ,%“;—) is linear and bounded. For ¢ = 1,...,d, the map

T, Wa,p — WP given by Ti(u) := (u', .,u') is linear and bounded. For
i .,d, define V; = T; 0 V Then V; is a bounded linear map from We+l»

A

ot v

e R, e, YN
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to WeP given by V;(u) := (d“' @_‘)

dor 0 do

Using B, as given in Proposition 3.4.2, we define, for 7,5 = 1,...,d,

Vi Wetl? o Wer by Vii(u) := f(Viu, Viu). Note that each V,; is smooth as a

composition of smooth maps. Moreover for u € Wet1? and o € S!
Viu(o) = Bo (Viu, Viv)(o) = B(Viu(a),Vv(0))

(Z_f(a)id";(a), . ..,‘;—‘:(a)j—‘:(a)) .

Using Proposition 3.4.2 we now show that V;; is locally Lipschitz. For u,v € Wetl»
with | U o410 | U |o41,< R, we have

| Viju = Vijvlop = | B(Viu, Viu) = B(Viv,Vv) |op
= | B(Viu — Vv, Viu) — B(Viv, Vv — Viu) |op
< | B(Viu=Viv,V5u) |op + | B(Viv, Vv = Vu) |
< K| Vulepl Viu =V |4
+ K | Viv |op| Viv—Vu o,
< Kr(|Viu=V |pp + | Vo= Viul,,)
< CRlu_v|0+1,P'

Thus V,; : Wetl? —, We? is Lipschitz on each ball in Wett»,
We now turn to the functions I'Y; : R* = R, 7,5,k = 1,...,d. DefineT';; : R* - R? by

L= {I‘}j, vy I’;’j}, fori,j=1,...,d. Each I';; is smooth and of compact support
as its component functions are. Thus the Nemytski map I';; associated with I';; is a
smooth map T; : WP — WeP, which is locally Lipschitz and of linear growth, see
Proposition 3.1.7. Now define Fy; : Wetl» o Wer by Fii(u) := j (T‘_,-j(u),V,-j(u)),
le. for each o € S!

Ful)(0) i= (THlo) S o) 2 (0), ... T o)) ) S

dut  du? du', du’
do ’

F; is smooth as 8, Ty; and V,; are. We now show that it is locally Lipschitz on
Wetlr As above we have for | u |p410, | ¥ |o+1,< R

' Fij(“) - Fij(v) |o.p < K| rt’j(“) ool viju - V-'Ji’ lo‘p
+ K | Viju {opl Tij(u) = Tii(v) 1o -

Using the local Lipschitz properties of Ty; and V;; gives
| Fij(u) = Fij(v) lepS Cr U = v o410

Thus for each pair (,5), 1,7 = 1,...,d, F;; is a locally Lipschitz map from We+l»
to WP, Qur proof is therefore complete once we notice that F' = 3°¢._| Fi;.

iyj=1
o

It is clear that our map F need not be of linear growth. We do though have the
following estimate which will be crucial in our work:
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Corollary 3.4.5 For u € Wetl?(S1 RY), o > %, p > 2, we have the following
estimate

| F(u) lL’,PS C(pa d) {l u |z+1,P + I u |3+1,p} (3453)
where C(p,d) is a constant independent of u.

Proof: Using the notation from the proof of Proposition 3.4.3, we have

| Pw)lep < Clp,d) 30 1 B(Tis(w), Vii(w) lop

< C(p,d) |rij(“) |e.p| V,-,-(u) le.p

i il=

-
b
1

—

M=

< Clpd) 20 (1 [ulong) [u g,

1J

I u |§+1,p + ‘ u |2+l,p)7

1
-

~~ ..

< C(p,d)
where the third inequality follows from the linear growth property of T;;.

o

3.5 SNHE As A Stochastic Evolution Equation

We are thus in a position to reformulate the SPDE (3.1.1) as the following stochastic
evolution equation,

du(t) + Au(t)dt = F(u(t))dt + V(u(t))dt + H(u(t)) o dw(t) (3.5.54)

Note that (3.5.54) is a Stratonovich equation and so, see Chapter 2, u(t) is a solution
to (3.5.54) if and only if u(t) is a solution to the following It6 SEE:

du(t) + Au(t)dt = V(u(®))dt + F(u(t))dt+ H(u(t))dw(t)
+ %tr{H’(u(t))H(u(t))}dt. (3.5.55)

The addition of the correction term does not pose more difficulty. In fact as with
the other Nemytski maps this correction term tr(H'H) is a locally Lipschitz map
from Wer(S' R?) to itself and is of linear growth, as we will now show.

Proposition 3.5.1 Leti: H*?(S,RY) — W9P(S! R?) be our AWS with 8 € (lp, 1),
p>2 and H: W?(S',R?) — L(WOP(S?,R?), WOP(S! R?)) be as above. Then the
map tr(H'H) is a well defined smooth map from W#P(S' RY) to itself, where

tr(H'H)(u) := tr{H'(u)H(v)}, u € WPP(S',R?).
Furthermore tr(H'H) is locally Lipschitz and of linear growth.

Proof : As in the proof of Proposition 3.4.3 we denote W%?(S!,R?) by We»,
Recall that with respect to i , the map tr : Loy(W??; W??) — W? is a bounded
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linear map. Recall also that H and its derivative H’ are locally Lipschitz and of
linear growth. For u € W9 we have

H(u) € L(W*? , W9) and H'(u) € L(W?, L(W?? W?))
and so
H'(u)H(u) € L(WO, L(WP? WPP)) ~ Ly(WOP, Woe).

Thus tr(H'H) is well defined and moreover it is smooth as tr and I are. To prove
the local Lipschitz property let | u |gp, | v [6,< R. Let | - |1,, || - || and | - |, denote
the norms on L(W?®?, Wo?) L(W®», L(WO? WOP)) and Ly(W?P; W??) respectively.
It then follows that, for some generic constant K
| tr(H'H)(u) — tr(H'H)(v) o, < |tr|| H'(u)H(u) — H'(v)H(v) |1,
< K| H'(u)[H(u) - H(v)]

= [H'(v) = H'(w)] 1 (v) |1,
KAl ' (u) ||| H(u) = H(v) |p,
+ K || H'(v) = H'(u) (|| H(v) |z,
< Crlu—vgp.

IA

Finally for the linear growth condition, note first that
|tr(H'H)(u) lop < K| H'(w)H(u) |,
= K sup | H'(u)H(u)(z)(y) lop

fel=lyl=1
where z, y € W??, The term
H'(w)H(u)(z)(y) € Wo* (3.5.56)
acts through the following formula
(H'(w)H(u)(@)()) (o) = (K (u(o)){h(u(0))z(a)})y(0), o€ S'.  (3.5.57)
Clearly the LP(S',R?) norm of (3.5.56) is bounded by a constant. We need to

consider the following term, where we write u,, for u(o,), similarly for z and y,

{/ | B () {P(401) %01 Y90, — 110, ) {R(105) 0, }yo, |P
Six st

[ o1 — o |1Her

1

daldaz}P . (3.5.58)

For oy, 0, € S* we denote

H(o1,02) :=| B'(ua, ) {1(to, ) %o, Yoy — B (ta) {R(o;)203 } Yo, | -
Using the fact that h and A’ are of compact support and that sup,ee | z, |< 1 and
SUP,es | Yo |< 1 we infer that
H(UHUZ) < I h’(uvl){h(udl)xﬂ}yﬂ - h'(uﬂz){h(uﬂz)xvz}yﬂ |
+ | B (ua ) {h(uos)202} (Yo, — ¥os) |

< | h,(uax)h(uvn)mvx - h'(u,,)h(u,,)xaa L] Yo, |
+ | h'(ug, )h(uo, )Ta, 2] Yoy — Yo |
< |z01_m02 l+|y01 = Yo, l
< 4 (3.5.59)
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where | - |, denotes the norm on L(R¢, R?). It follows that tr(F'H) is bounded in
W%? and so in particular, it is of linear growth.

[ )

3.6 Summary

To summarise, we consider the following problem
du(t) + Au(t)dt = F(u(t))dt + V{(u(t))dt + H(u(t)) o dw(t), (3.6.60)
u(0) = o, (3.6.61)

where ug is some initial value, w(t), t > 0, is a Wo?(S!, R?)-valued Wiener process,
0 e (-:;, %), p > 2. The Stratonovich differential appearing in (3.6.60) takes the form

H(u(t)) o dw(t) = H(u(t))dw(t) + %tr{H’(u(t))]I(u(t))}dt, (3.6.62)

where the tr map relates to the AWS ¢ : H'?(S',R?) — W9?(S! R?). Assuming
that up € LI(Q, Fo, W*?(S?,R?)), where ¢ and s are numbers satisfying ¢ > p > 2
and %—% >8> 1+:7, we first will show existence of a mazimal solution taking values

in the Banach space W*?(S',R%). This is done in Chapter 4. Chapter 5 is dedicated
to proving that our maximal solution lies on the loop manifold M = W*?(S', M),
which is a closed submanifold of W*?(S!,R?), see [Br,99]. For this we need to
assume that the initial value ug belongs to L¢(Q, Fo, W*?(S!, M)), where q and s
are as above. Finally, in Chapter 6 we prove that our maximal solution is in fact a
global solution.

We end this chapter with some important observations. Henceforth we will write
L? for LP(S',R?%) and WeP for WeP(S! R?). For 0 € (%, 1), p > 2, we fix the AWS
i: HY2(S!' RY) < WP and denote X := L?, E := W%, and H := H'?. Let
—-A = ;‘% and let {e-m}:go denote the semigroup it generates. {e“"‘}lzo is a
contraction analytic semigroup on X. Thus, in particular, D(A) = W??, Recall,
see 3.3.44 and Chapter 2, that for o € (0,1)

(X, D(A))ep = (LP, W?P),p = WP,

In terms of our ‘abstract’ notation the Nemytski maps appearing in (3.6.60) and
(3.6.62) are locally Lipschitz maps as follows

v, %tr(H'H) . (X, D(A))yp — X
F i (X, D(A))yp — X
H : (X,D(A))yy — L(E,E)

for some suitable v > 0.

Remark 3.6.1 Let Y, := Wo? p € (0,2).Then since Y, C X one can define a
family of operators, {e"‘“v}tm, on the space Y, by restriction i.e

e ey = e My for u €Y, (3.6.63)
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One can show that {e“AP}»o is an analytic semigroup on Y,, whose generator — A4,

satisfies
Apu = Au, for u € D(A,):={u€ D(A): AueY,}. (3.6.64)
In particular, we have

2
D(A,) = { ew: Tt ¢ w} = Wter, (3.6.65)

Furthermore, as for each t > 0, e7*4 € L(X) and e~*4 € L(D(A)), with
| €= |L(p(ay< 1, then using the interpolation property, see Chapter 2, we deduce
that

e~ L=l e vy < M, (3.6.66)

for some constant M > 1. Hence {e""“}»o is an uniformly bounded analytic

semigroup on Y,. Moreover, its resolvent satisfies

M
|+ 407 legrgS 55 A >0, (3.6.67)

Thus, in particular, A, is nonnegative. Furthermore, noting that D(A?%) = W4P
using the Reiteration Theorem and the identity

(X, D(A))up = (X, D(A*)) g p,
see Chapter 2, one can show that for v € (0,1)
()/07D(A0))V,P = (X')D(A))u-f-g,pa (3668)

with equivalent norms. For details of the above statements, see [Br,95] and [Tr,78].
For E := W%?, where E belongs to the AWS i : H «— E, we will denote Ay := Ag
and the semigroup {e—ms}po by {e—tAE}t>0, In particular, we have for v € (0,1)

(Ea D(AE))V.P = (X,D(A))H_%‘p, (3669)
with equivalent norms. ¢

Remark 3.6.2 The above abstract notation will be fixed throughout Chapter 4.

v



Chapter 4

Existence Of A Maximal Solution
To The Stochastic Nonlinear Heat
Equation

4.1 The General Assumptions
In this chapter we consider the following problem:
du(t) + Au(t)dt = F(u(t))dt + H(u(t))dw(t) (4.1.1)

u(0) = uo, (4.1.2)
where F and H are Nemytski maps as in Chapter 3.
Let X be a Banach space and {e*};50 a Cy-semigroup on X. It will be stated
when we use the following additional assumptions.

(A1) X is an M-type 2 Banach space.

(Al%) E is an M-type 2 Banach space. Moreover £ C X, where X is as in (Al)
and C denotes continuous imbedding.

(A2) i:H — Eis an AWS, where H is a separable Hilbert space and E is a
separable Banach space. The canonical E-valued Wiener process, defined on some
complete probability space (2, F, {F:},P), is denoted by w(t), t > 0.

(A3) —A is the generator of a contraction analytic semigroup {e~*4};5 on X.
Furthermore A satisfies

1
A+ A7 < 5 A>0,

i.e. Ais a nonnegative operator on X. Recall that L(X) := L(X, X) is the space of
bounded linear operators on X.

A3x —Ag is the generator of an uniformly bounded analytic semigrou
g group
{C_ME}QO on E. Furthermore, for some M > 1, the resolvent of Ag satisfies

M
| (A + Ag)™ ;S 55 A>0.
A

37



Chapter 4 38

Remark 4.1.1 The above assumptions relate to the set-up described at the end
of Chapter 3, i.e. X = L?(S,RY), E = W??(S',RY), 6 € (3,3), p > 2, H =
H'?(S' r%) and so on. We remark that, whenever we refer to p > 2 it is the

corresponding p from L? and W9, &

Remark 4.1.2 For a positive operator A on X one may define the fractional powers
A~ and A, for v € (0,1). Suppose A satisfies (A3), in particular, A is nonnegative.
Then for each > 0, 7 + A is positive and so we may define its fractional powers,
(n+ A) and (n + A)™Y, v € (0,1). The spaces D((n + A)*) := R((n + A)™) are
independent with mutually equivalent norms. One sets D(A”) := D((n + A)"), and
we denote the norm on this space by | - |,. Moreover for > 0, —(7 + A) generates
the analytic semigroup {e~"'e¢~*4};>¢ and we have for v € (0,1),

| (n+ A)e™ |Lx)< C(X)t™ve™ (4.1.3)

where C(X) is a constant depending on the space X only. Similarly for n > 0,
—(n + AE) generates the analytic semigroup {e‘"‘e"AE},Zo and we have for v €
(07 1)’

| (n + Ag) e |yg)< C(E)t™ e™ (4.1.4)

where C(E) is a constant depending on the space E only. For proofs of the above
assertions see [Paz,83] and [He,81]. ¢

Q

4.2 Regularity Properties Of The Generalised S-
tochastic Convolution Process

For A > 0 and a suitable process ¢ we define the generalised stochastic convolution
process x(t) by

t
zA(t) = / e~ e=(-94¢(5)dw(s). (4.2.5)
0
For ¢ > 1 and a Banach space Y we set M]]_(0,00;Y) to be the space of all progres-
sively measurable processes £ : [0,00) x  — Y which satisfy

T
IE/ | €(s) |} ds < o0, foreach T > 0.
0

Assume (A3) holds. If £ € M]_(0,00; L(E, X)), ¢ 2 2, then the integrand in (4.2.5)

loc
is progressively measurable on Q x [0,t), for each ¢ > 0, and we have

t t
E| /0 e e (4¢(s) |1 p.x)S Ce—'\t“':/o | €(s) IL(z.x) ds.

It follows that e—tAe-—(t—-)AE(.) € M?*0,t; L(E, X)), t 2 0. Thus, along with the
assumptions (Al) and (A2), z,(t) is well defined. (Note that the above is true for a
general Co-semigroup, {e"*4}:50, on X.)
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Remark 4.2.1 Suppose that we have a stronger assumption on ¢, i.e.
£ € M .(0,00; L(E)), (4.2.6)
where E is as in (A1%). Then for e € E, {(s)e € E and so
et (5)(e) = e~ eI (a) ).

It then follows that the convolution process z,(t), given by (4.2.5), may also be
written

z)(t) = /Ot e Pe =D 4E ¢ (5)dw(s). (4.2.7)
¢

To study the regularity properties of this process we use the so-called DaPrato-
Kwapien-Zabczyk Factorisation Method, which is based on the following classical
formula

/t(t —5)* s —r)dr =T(a)[(a—-1), r<s<t, a€e(0,1), (4.2.8)

where I'(a) = [;°t*"1e~!dt is the Euler Gamma function.

This method was first described in [DP/K/Z,87] in a Hilbert space framework
and was then later generalised to the Banach space setup in [Br,97]. In both pa-
pers though only the process zo(t) was considered. We will generalise the results in
[Br,97] to deal with our process z,(t), A > 0.

We begin with introducing the operator R}, which we call the generalised factorisa-
tion operator. Let a € (0,1], ¢ € (1,00) be fixed. For any f € L9(0, 00; X) define,
for A >0,

(R;\{f)(t) _ '/Ot(t _ 3)"'1e'("')'\e'("’)Af(s)ds. (429)

It is a straightforward consequence of the Young inequality that, for A > 0, R is a
bounded linear map from L9(0, 0o0; X) to itself. Under the assumption (A3) then a
stronger result is true.

Theorem 4.2.2 Assume (A3), @ € (0,1], ¢ > 1 and A > 0. If B € [0,a), then
R) is a bounded linear map from L9(0,00; X) to L?(0,00; D(A?)). If 6 € [0, — %)
then R} is a bounded linear map from L9(0,00; X) to C(0,00; D(A®)). Moreover the
Jollowing inequality holds

= q
sup | (BX)(®) [5 +/ NE) lpdt < C'C(/\)/0 L f(0) % dt  (4.2.10)
where C is independent of f and X and k(X)) — 0 as A — oo.

Remark 4.2.3 The above result was first proved in a Hilbert space setting, see
[DP/K/Z,87] and [Sei,93]. For the Banach space case, see [Br,97]. In these papers
only the case A = 0 was considered and as a result they were restricted to finite
intervals [0,T], T > 0. Our proof is a generalisation of those in the above cited
papers. $
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Proof : For the first assertion note that for an analytic semigroup on X, e~z ¢
D(A%), v € [0,1]. Thus in particular for t > 0, (R$f)(¢) € D(A*), v € [0,1]. Tor
A > 0 fixed, choose n > O such that A > 7 > 0. Then, using (4.1.3), a straightforward
calculation gives

o0 [ee] t
/(; | ( :f)(t) IZ} di < C_/o (/0 (t _ s)a—l—ﬁe—(t-s)(z\—n) If(s) |X ds)th
= C l h1 * hg I%‘I(O,oo;m)

where hy * hy(t) = f§ h1(t — $)ha(s)ds with hy(s) = s*~1=Pe=(A=n) h; € L(0, o0; R)
and hy(s) =| f(s) |x, k2 € L9(0,00;R). Note also that the constant C is independent
of t. By an application of the Young inequality

LIEmNOBd<Clb bl b b Ca) [T 170 5 d (4211)

where we have denoted &,(A) =| by |p1om)= J5° 5@~ 1-Be=3(A-mds The first assertion
now follows as x1(A) < co. The integrand in «,(}) tends to zero pointwise as A tends
to infinity. With an application of the Lebesgue Dominated Convergence Theorem,
(LDC), in mind, we note that for sufficiently large A

a1-8 if 5 € [0,1)
a=1-3_—3(A-n) S if s € [0,
$ ¢ = { e if s € [1,00).

Thus by LDC &(A) — 0 as A — oo.
For the second assertion we begin with proving the following estimate

sup | (RO 1§ < Cra) [ 1 1) Iy (1212)

where C is independent of f and A and k3()A) — 0 as A — oo. As in the proof of
the first assertion, for t >0, A > > 0,

t q
(RO 1§ <0 ([[(t= 915690 | 1) | ds)
Applying the Holder inequality gives, for t > 0,
|(EENW 1§ < O (t= ) tmetalntggyet | g,
= Cra()" | £ 1Ly (4:2.13)

where | - |1« denotes the norm on L%(0, 00; X) and
Kz(A) _ /oo(t _ s)(a—l-—ﬁ)a—i—l‘e—(t-a)(/\—ﬂ);&ds'
0
The integrand in x2()) converges pointwise to zero. Noting that for sufficiently large

am1-8)—L- .
se=1=85Zy = (A-ngdy < S s e(0,1)
— e if s € [1,00)

then, by LDC, &,(}) tends to zero as A tends to infinty. Note that as C and &,(A)
are independent of ¢, then (4.2.12) follows from (4.2.13). The estimate (4.2.10) now
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follows from (4.2.11) and (4.2.12).

To prove Rf € C(0,00; D(A%)), suppose first that f € C§°(0,00; X). Then by
a direct calculation one can show that RSf is differentiable, as a D(A®)-valued
function, with derivative

CHIOE| CsolemAnged 1y _ )ds.

In particular RS f is continuous. The density of C§°(0,00; X) in L9(0, 00; X), the
closedness of C(0, c0; D(A?)) in L®(0, 0o; D(A®)) and the estimate (4.2.12) together
imply the result for f € L9(0,00; X).

[ )
Using (A3+*) instead of (A3) we deduce the following:

Corollary 4.2.4 Assume (A3%), a € (0,1], ¢ > 1 and A > 0. If B € [0,a), then
R) is a bounded linear map from L(0,00; E) to L3(0,00; D(AR)). If 6 € [0,a — %)
then R) is a bounded linear map from L(0,00; E) to C(0,00; D(A%)). Moreover
the following inequality holds

sup | (RXf)(%) [Es +/0°° F(RF)() |Epdt < cn(A)/o“’ [F(t) 1% dt (4.2.14)

where C is independent of f and X and k(A) = 0 as A = oco. | - |gs denotes the
norm on D(AL) and | - |5 denotes the norm on D(AZL).

Remark 4.2.5 In the Appendix we prove that the generalised factorisation oper-
ator R% is the fractional power (A + A)™%, where A is a certain abstract parabolic
operator. .

The following theorem was proved in [Br,97] for the process zo. We extend the proof
to include the process zy, A > 0. Let Y be a Banach space. For A > 0, we define

M}(0,00;Y) := {f e M, : IE/OOO | e"ME(t) L dt < oo} .

Theorem 4.2.6 Assume (Al), (A2), (A3), (Alx) and (A3%) all hold. Let q>p >

2, (e (515,% - %) and v € [0,3). Furthermore assume that the stochastic process

€ is such that ¢ € MJ(0,00; L(E)) for A > 0. Let x5, A > 0, be the generalised
stochastic convolution process (4.2.5). Then there exists a modification &,(t) of the
process xx(t), i.e. a process satisfying A(t) = Z1(t) a.s. for each t > 0, such that

Ix € Zooyg 1= M?(0,00; (X, D(A))y,) N L*(Q; C(0, 00; (X, D(A))¢.5))-

Moreover the following estimate holds
Beup | (1) [, +E [~ |50 11, &t S Ox0) [ 10 lm dt (1:215)
>0

where C = C(q, E, X) is independent of { and A, and k(}) tends to 0 as X tends to
00.
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Proof : The process

ya(t) = I‘—(l—l—-—a) /Ot(t —8) e e (N AE ¢ (5)dw(s) (4.2.16)

is well defined for ¢ € M].(0,00; L(E)), ¢ > 2, provided a € (0,3). Applying the
Burkholder inequality gives

t
E | uat) [5< Cle, EYBL [ (¢ = 8)22e720=00e=2 | ¢(s) [3 1y ds} .

It then follows by an application of the Young inequality, as in the previous proof,

that -
m/o | ua(t) |‘}5dtSC(q,E)n3(/\)IE/O | e (1) 1% 5 dt (4.2.17)

where x3(A) = [° s %e"2(Nds. As k3(A) < oo then [§° | ya(t) % dt < oo as..
Note also that x3()) tends to zero as A tends to infinity.

We now define our modification &, for A > 0. For each w € Q such that y,(-,w) €
L9(0,00; E) define Zx(-,w) := RM(yr(,w)). In view of the definition of R}, see
(4.2.9), then a.s., Z) : [0,00) — D(A}%) is a continuous mapping, for any v € [0,1].
Moreover %) is adapted and so is a progressively measurable D(A%)-valued process.
Suppose that a, o and § are nonnegative numbers that satisfy

1 1
o+ - <a<2,

and < a < —;—,
then in view of the Corollary 4.2.4 we deduce that

#x(*) € C(0, 00; D(AE)) N L9(0, 00; D(AL)) a.s
with the following inequality holding a.s.

wp | 53(1) b, + [ 183(0) I &t S C@. X0nN) [ Ina() [p dt. - (4:218)

Using the fact that, for p < v and p > 1, D(A%) — (E, D(AE)),,», we deduce that,
for any v € (0,3 — 7) and p € [0, 3),

Z(-) € C(0,00;(E, D(AE))v ) N LU0, 00; (E, D(AE))up) a.s.
with the following inequality holding a.s.

sup | £3(0) [Bp + [ 183(0) [5p &t S Ca, X0 [ 132(0) 5 b (4219)

where | - |, denotes the norm on (E, D(Ag)).p and | - |5, denotes the norm on
(E,D(AE))up. Recall from Chapter 3 that, for ¢ € (0,1),

(B D(AB)er = (X, DAy D€ (5.5, (4.2.20)

with equivalent norms. Thus, denoting ¢ := v + % and y:=p + % it follows that
£\(-) € C(0,00; (X, D(A))¢p) N L7(0, 005 (X, D(A))+;) a.s. (4.2.21)
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with the following inequality holding a.s.
sup | 22(0) I, + [T 180, d < cax)eM [~ 1n@ b (@222

We deduce that £y € Zu ¢ Moreover taking expectations in (4.2.22) and using
(4.2.17) we obtain the estimate (4.2.13). To complete the proof of Theorem 4.2.6
we need to show that Z, is a modification of z,. For t > 0 fixed we have

1 t -1 _—(t-s —(t—s
——-F(a)/o(t—s)“ le=(t=s)Ap—(t )Ay,\(s)ds

B F(E)_F(ll_—_a_) =96 = ryeemtentnerydugrds
- F(Fr(llTa‘) L[ =976 = 1) eem e g ) dsdu(r)
= /ote—t'\e—(t_r)Af(r)dw(r) as.

where we have used both the Stochastic Fubini Theorem and (4.2.8).

o

Za(t)

We introduce some new notation. Fix 0 < T'< oo and let 7 :  — [0,7] be a
stopping time. Define the process a: [0,T] x @ — {0,1} by

a(s,w) = { (1) :iz ;E:; (4.2.23)

a is the characteristic function of the stochastic interval [0,7). Note that « is a
right continuous adapted process. In particular, a has a progressively measurable
modification.

Theorem 4.2.7 Assume (Al), (A2), (A3), (Alx) and (A3x) all hold. Let ¢ > p >
2, ( € (-5;,2 - -) and v € |0, ) Let 0 < T < oo be fized but arbitrary. Let
£€ M0,T, L(E')) and  be the stochastic convolution process

z(t) = /t e~ 4¢ (5)dw(s).
0
Then, there exists a modification ¥ of z such that
§ € Zr i= M*(0,T; (X, D(A))y) N LR C(0,T; (X, D(A))¢.p))-

Moreover, for any stopping time o : §} — [0, 00] we have

E sup |E(tAo)|],< C(T)/ Elﬂs)fs)lL(E)<C IE/ £(s) |L(m) ds,

0<t<T
(4.2.24)
where B is the characteristic function of [0,0) and C(T) is a constant independent

of £ and o.
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Proof: We only need to prove the estimate (4.2.24). Recall how Z is defined. First
define y by

y(t) = F(l_l—zifot(t = 8)7"eT MY (s)du(s), t € [0, T).

There exists a set of full measure Q such that y(-,w) € L9(0,T; E). For w € { we
set

I(t,w) = ﬁ /Ot(t —8)* Ye My (s, W)ds, t €(0,T).

Let w € () be fixed. From the proof of Theorem 4.2.6, see (4.2.22), we have for each
t€[0,T]

t
| #(t,w) 18,< Cr [ |y(s,w) [ ds,

where Cr is a constant independent of y (and hence w). In particular, for each
t € [0,T A o(w)] we have

. TAo(w) T
|#(tw) 1,SCr [ 1y(s,w) [l ds.

It follows that

TAo(w)
sup | #(t,w) |¢,< Cr / | y(s,w) |% ds. (4.2.25)
0<t<T Ao (w) 0

Indeed (4.2.25) holds for all w € ) with the same constant Cr. Noting that
tA E(t) |7,
A M

it follows that

onT
sup |Z(tA o) |7,< CT/ | y(s) | ds as..
0<t<T

Taking expectations gives

B sup | 5(tA0) [E,< ch/ y(s) |% ds. (4.2.26)
Note that
T
E / | y(s) % ds = E / s) [% ds = /0 E|B(s)y(s) b ds.  (4.2.27)

Define the process

yo(s) = mli‘a“) [ s = nmeee50)e ) du(r).

yp is well defined and for s € [0,7]

st ={ ¥ 2= (1229
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Thus

E|B(s)y(s) |z = -/{ﬁ(s)=1} | B(s,w)y(s,w) % dP(w)
S [ VB0 @)+ [ ale) 1 de(w)
= E|ys(s) | -

Thus

T T T
| B 8Gs)w) I ds < [ 1ya(s) 15 ds < Or [ ] B(s)6(s) [y s

The inequality follows from the proof of Theorem (4.2.6), see (4.2.17). As

T TAo
E/O | B()¢(s) |1(z) ds < E/o | £(s) |1 5y ds,

we have r re
/0 E|B(s)y(s) g ds < CTIE/O | €(s) |25 ds. (4.2.29)

The estimate (4.2.24) follows now from (4.2.26), (4.2.27) and (4.2.29). This com-
pletes the proof.

A

Corollary 4.2.8 Under the assumptions of Theorem 4.2.7, let

t t
(1) = [ e CIMe(s)du(s) and zo(t) = [ eI B(s)e(s)du(s), L€ [0,7],
0
where (3 is the characteristic function of [0,0). Then

E sup |z(tAo)—zs(tAo)l¢,=0. (4.2.30)
0<t<T

Proof: Let
£(t) = () = a(t) = [ (1= B))E()dus), t € [0,

By Theorem 4.2.7 z has a continuous modification Z which satisfies
1 <C e 1 1 md
F(t A < / - :
EOE?SPT | 2(tA o) |¢,< CTE A (L= B())é(s) |3k ds

Noting that for s € [0,T A o(w)), 1 — B(s,w) = 0, we deduce that

E sup |Z(tAo)|¢,=0.
0<t<T

This completes the proof.
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Corollary 4.2.9 Assume (Al), (A ) (A3), (Alx) and (A3%) all hold. Let ¢ >

p >2, (¢ (2p’4_ - ;) and v € [0,2). Let 0 < T < oo be fized but arbitrary and

: 0 — [0,T] be a stopping time. Furthermore assume that &(t), t < T is an
admissablc L(E)-valued process with

E/O | €(s) 11E) ds < oo

Let o be the characteristic function of the interval [0,7) and set

t

2a(t) = / e~ =D (5)¢(s)dw(s).

0

Then, there exists a modification 3, of zo such that
Za € Zrpy¢ 1= MU(0,T;(X, D(A))y,) N LI C(0, T (X, D(A))¢ p))-
Moreover, for each t € [0,T)],
t
B sup | Zals AT)IE, S C(T)/0 E | a(s)é(s) [%z, ds, (4.2.31)

where C(T) is independent of £ and 7.
Proof : Define the process 5 : [0,T] x Q@ — L(E) by

n(s,w) = a(s,w){(s,w).

As { is admissable and « is right continuous and adapted, then 5 right continuous and
adapted. In particular, 5 has a progressively measurable modification. Moreover, as

T
IE/ [ 7(s) |1k ds-IE/ £(s) |1 (g ds < oo,
then n € M9(0,T; L(E)). It follows, by Theorem 4.2.7, that the process z, is well
defined and has a continuous modification %, with %, € Zr.,¢. Furthermore, for
each t € [0,T),
tAT
E sup | Zu(s A7) [1,< C(T)E / | a(8)é(s) 1%z, ds, (4.2.32)
0<a<t 0
where C(T) is independent of ¢ and 7. Note that
tAT t
IE/ $) L) ds = / E | a(s)é(s) gy ds
Thus for each t € [0,T)

Esup |%(s A7) [L,S C(T) [ Bla(o)e(s) gy ds. (4.2:33)

0<s<t

This completes the proof.
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4.3 The Existence Theorems

We now turn to existence of solutions to the problem (4.1.1)-(4.1.2). We first define
what we mean by a solution to (4.1.1)-(4.1.2).

Definition 4.3.1 An aedmissible (X, D(A)) p-valued process u(t), t > 0, ¢ € (0,1),
is called a mild solution to (4.1.1)-(4.1.2) if and only if there exists numbers g,
p € (2,00), with ¢ > p, and 1 > v > ( such that for each T > 0,

u € Zry¢ i= M?(0,T; (X, D(A))y,p) 0 L*(Q; C(0, T; (X, D(A))c5))

and u(t) satisfies the following mild integral equation
¢ t A
u(t):e-"‘uo+/ e'("’)AF(u(s))ds-i-/ e~ DA (u(s))dw(s) (4.3.34)
0 0

a.s. for each t > 0.

A theory for stochastic evolution equations, SEEs, on M-type 2 Banach spaces has
been developed in [Br,97], see also [Br,95], and this is applicable to our set-up. Al-
though spaces defined via the complex interpolation method were used in [Br,97],
only minor changes are necessary to obtain results for the real interpolation spaces
we are dealing with. In spite of this, what we present here does differ from [Br,97]
and [Br, 95]. As in [Br,97], we first prove existence of a unique solution in the
linear case. The estimates (4.2.10) and (4.2.15) give us stronger estimates on the
solution. The effort needed to obtain these estimates is paid off in the subsequent
sections. Under the assumption that the coefficients ' and H are Lipschitz we use
the Banach Fixed Point Theorem, (BFP) to prove existence of a global solution.
In [Br,97] and [Br,95], using the BFP Theorem they show existence of a solution
on some small time interval. To obtain a solution on any finite time interval they
use a gluing procedure to extend their original solution. Such a technique is well
known, see [DP/Z,92]. Our estimates (4.2.10) and (4.2.15), in conjunction with the
BFP Theorem, give us a unique process, defined on the half line [0, 00), such that
when restricted to any finite time interval [0, T}, is the unique solution to (4.1.1)-
(4.1.2) on [0, T]. This avoids using the technical gluing procedure and is similar to
approaches by [Sei,93] and [Ic,83]. They worked in Hilbert space settings. Further-
more they use the norm sup,5oE | u(t) | whereas we prove results in the stronger
norm Esup,y, | u(t) |- )

Finally given locally Lipschitz coefficients we construct approximate coefficients
which are globally Lipschitz. The global solutions to the equations with the ap-
proximated coefficients are then used to construct a local solution. The proof of this
theorem is similar to those in [Br,97] and [Sei,93].

Theorem 4.3.2 ( The Linear Equation Theorem) Assume that (Al), (A2),
(A3), (Alx) and (A3%) hold. Letq 2 p > 2 ¢ € (55-, 7€ (3. If
h € M;(0,00; L(E)), f € M{(0,00; X) and ug € L¥(, Fo; (X, D(A))¢p) then there
erists a unique mild solution to the problem

du(t) + Au(t)dt = h(t)dw(t) + f(t)dt

u(0) = wug
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i.e. for any T >0, u € Zr~¢ and u(t) satisfies the following mild integral equation

t t
u(t) = =g + / e~ f(5)ds + / e~ (=R (5)duw(s)
0 0
a.s., for each t > 0. Moreover for A > 0 the following estimate holds:
E “a(t) |2 E / T ey dt
stlé}g | e *u(t) e, + A |e (t) 2 P

< CRE [T {1 e h(0) lipy + | () )t
1
+C (1 + X) E|uol, (4.3.35)

where C = C(q, E, X) is a constant independent of f, h, ug, A and k(A) tends to

zero as A tends to infinity.

Proof : The proof is carried out in a number of steps.

Step 1 : Define the process u;(t) := fy e~#=24h(s)dw(s). Then z,(t) = e~ u;(t)
and in view of Theorem 4.2.6, for A > 0, there exists a modification Z,(t) of zx(t)
satisfying &y € Zyq¢. For w € Q, set 7, (-, w) = e*zx(-,w). Then 7, is a modifi-
cation of u, satisfying e=*@; € Zeo¢. Thus for any T > 0, u; € Z7,, with the
following estimate holding

E t) E dt
sl ml, + 5f e

< C(g, E)s(ME /0 | e=A(t) I dt (4.3.36)
where C(q,E) is independent of h and A, and «()\) tends to zero as A tends to
infinity,

Step 2 : Given f € M{(0,00;X) then e=*f(-,w) € L9(0, 00; X) for w € Q, where
P(Qy) = 1. Define the process @, by

ot ,w) = /ote'("’)"f(s,w)ds for w € Qy

Note that %, is a continuous (X, D(A)),p-valued process, p € (0, 1), which is adapted
and thus progressively measurable. Consider

t
e"’\ﬁg(t)=/ et e=(t=0)de=a) £(5) g,
0
As e~ f(-) € LI(0,00; X) a.s., then in view of Theorem 4.2.2, for A > 0, we may

deduce that, in particular, e=*%; € Zooy¢. So for any T > 0, T3 € Z7.,¢ and for
any A > 0 we have

O (1) 10 T e tmy(t) |2, dt
Bwp | m) [, + B[ 1 mO I,
< Cr(NE /0 Tlett ) 1% )dt (43.37)

where C = C(q, X) is a constant independent of f, h, ug, A and x(A) tends to zero
as A tends to infinity.
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Step 3 : Define the process @s(t) = e **up. Note that ug is adapted and thus so is
U3. It is straightforward to show that U3 is a (X, D(A)),p-valued continuous process,

for any p € (0,1). One uses the strong continuity of the semigroup {C—M}DO and
the following characterisation of the space (X, D(A)),p, see Chapter 2, -

er

2 € (X, D(A))ep &| 2 I7,= /0 TP Ae A [ dr < oo
It follows that %3 is progressively measurable and for A > 0 we have

o 1
Esup | e~ 73(2) ¢ +IE/0 | e=as(t) 1pdt < (1 + X) Eluol{,. (4.3.38)

1>0

As a result for any T > 0, Tz € Zry

Step 4 : We now define our mild solution. Set u = @; + %, + %s. Then u is clearly
unique and it satisfies the required regularity conditions. The desired estimate
(4.3.35) follows from (4.3.36), (4.3.37) and (4.3.38).This completes the proof.

)

We now consider the problem (4.1.1)-(4.1.2), under the assumption that F' and I/
satisfy a global Lipschitz condition.

Theorem 4.3.3 (The Global Existence Theorem): Assume (Al), (A2), (A3),
(Al%) and (A3%) hold. Let ¢ 2 p > 2, ¢ € (£,2-1) and v € [C,%). Let

2p’z q
up € LI(Q, Fo;(X,D(A))¢p). Assume that H and F are Lipschitz maps from
(X,D(A))y, to L(E) and X respectively, in the following sense: there exists a
constant K > 0 such that for u, v € (X, D(A))»

| Hu) = H) gy £ Klu—vle,
| Fu)= F(v) Ix < Klu—-vl,

Then, there exzists a unigue process u such that for each T >0, u € Zry ¢ and u is
the unique solution to the problem (4.1.1)-(4.1.2) on [0,T).
Note that the above Lipschitz conditions imply the following linear growth conditions:

| H(u) lyey < C(1+ | w lep)
| Fu)[x £ C(1+]ulcs)

where C = max(K,| F(0) |x,| H(0) |(g))-

Proof : For A > 0 and a Banach space Y we introduce the space C3(0,00;Y) as
the space of continuous Y-valued functions which satisfy

| u |x:=sup | e Pu(t) |y < oo.
>0

Cx(0,00;Y) is a Banach space with norm | u |5. Define now

Zoorg = M3(0,00; (X, D(A))s,) N L(; C2(0,00; (X, D(A))c ).
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We endow Z2 _ . with the norm
- ,\ —tA
|u|m”_]E/ t dt+]Esup|e'u(t)l3,p.
which is the norm inherited from the Banach space

Lo e = L(Q; L3(0, 003 (X, D(A)),5)) N L7 (Q; CA(0, 00; (X, D(A))¢.p))-

It can be shown that Z2 _ . is a closed subspace of LY, . and is thus a Banach

space. We now define a map J2 : Z2 v ooq( by

v=J2(u) ifandonlyif as. foreacht >0

o(t) = e uo+ [ MNP ((e)d(s) + [ O (u(s))du(s).

We will show that, for A > 0, J2 is a contraction mapping from Z2 ¢ to itself
and then the BFP Theorem infers the existence of a unique u € Z2 o such that
u = J%(u). For each T > 0, u restricted to [0,7] is the unique solution to the
problem (4.1.1)-(4.1.2) on [0,T].

Step 1 : We show that J2 does actually map Z}, ., . to itself.

¢ Define the map ¥, on Z" e by

VL)) = [ eI H (u(s))dus).
To show that ¥2 maps Zc;\o;y,( to itself it is enough to show that
H(u(")) € M}(0, 00; L(E)).

This is because if H(u(-)) € M{(0,00; L(E)) then by applying Theorem 4.3.2 with
f =0, u =0 and h() = H(u()) we have, by (4.3.36), that ¥} (u) € Z2 .
Note that II is a continuous mapping independent of (t,w). If u € ZO‘”(, then
u is progressively measurable and hence so is H(u). As II is of linear growth and

(X, D(A))yp — (X, D(A))¢p» then

IA

B[ 1P Huls) limds < ClamO [ e (1 | u(s) I3,)ds
1
C(g,7,¢T) {X+ | u ILg(o.oo;(x.D(A))a,p)}

which is finite and so H(u) € M} (0, 00; L(E)).

® In a similar fashion we can show that the map @2 , defined by

240 = [[ e IMF ),

IA

maps Z}, _ . to itself.

¢ The map I') where I') (u) = e (=94u maps L%(Q, Fo; (X, D(A)) ) to ZX,, . as
was shown in Theorem 4.3.2, which completes Step 1.

Step 2 : We now show that the map J2 is Lipschitz.
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o Consider the map V) : Z2 ., — Z2 Let h(:) = H(u(:)) — H(v(-)). Using

00,7,{ 00,(*
the linear growth of H one can show that for u, v € Z;‘omc
E / T e | h(s) [z ds < K? [u—v]L ( (4.3.39)
4] 00,

Thus h(-) € M}(0,00; L(E)). Applying Theorem 432, with f = 0, uo = 0, the
estimates (4.3.36) and (4.3.39) imply

T —s) q
< Ola, X)n(VE [~ 1e™h(s) I}z,
Clqg, K, X)k(X) | u — v |} . (4.3.40)

| U5 (u) = W5 (v) 122

00,7,

IA

where C' is a constant independent of u, v, A. It is important(!) to note that
K(/\)—>0as)\—>0,

® Using the same argument as above we can prove that ®? is Lipschitz from Z2
to itself with the following estimate holding

| @4 (x) = 84 (0) Iz, < Cla, K, X)(N) [u— vl (4.3.41)

where C is a constant independent of u, v, A. Again it is important(!) to note that
£(A) — 0 as A — 0. This completes Step 2.

Step 3 : From Step 1 and Step 2 we may deduce that for each A > 0, JX maps
Z3 ¢ to itself and from (4.3.40) and (4.3.41) we have, for u, v € Z}

i€

| () = JA0) [z < C(a. K, X)e(N) [u=vlz

where £(A) — 0 as A — oo. Thus for large enough A the map J2 is a contraction
and so there is a unique fixed point which is the unique solution to our problem.

o

The proof of the following Corollary follows along the lines of similar results in
[Br,95] and [Ic,83].

Corollary 4.83.4 Letu be the unique mild solution of Theorem 4.3.3. Then, for each
K > 0, the process u*(t) := p(p + A)"'u(t) belongs to the space M?(0,T; D(A)) N
L(Q; C(0,T; D(A))) for each T > 0. Moreover for each t > 0, it satisfies

u*(t) + /; Aut(t)dt = u*(0) + /: F,(u(s))ds + /()t H,(u(s))dw(s) a.s. (4.3.42)

where ut(0) = p(p + A)'u(0), Fy:= p(u+ A)7'F and H, = p(p+ A)'H.

Proof : As (u + A)! : X — D(A) is a bounded linear map, then all we need
to prove is that u*(t) satisfies (4.3.42). u is a mild solution satisfying (4.3.34).
Applying the bounded linear operator u(u + A)™! to both sides of (4.3.34), noting
that (x + A)~! and e~*4 commute, we have for each t > 0

t t
ub(t) = e"“‘u6‘+/ e'("’)AFu(u(.s))ds-l-/0 e"t")AH,,(u(s))dw(s) a.s..
0
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For each s > 0, e=(*=94F,(u(s)) € D(A) a.s. and

T gt
/ / | Ae=U=4F, (u(s)) |x dsdt < oo ass..
o Jo

For each e € E, e~(t=94 H (u(s))(e) € D(A) a.s. for s > 0 and

T 1t
/ / | Ae" (=41 (u(s)) |L(e.x) dsdt < o0 as..
o Jo

It then follows, by the Fubini Theorem, that

t pr t pt
/0/0 Ae‘(”’)AFy(u(s))dsdr=/o/sAe'("’)AFu(u(s))drds. (4.3.43)

Furthermore, by the Stochastic Fubini Theorem

L[ et (u(s)du(s)dr = [ [ A H, (u(s))drduw(s).  (43.44)
Note that, as u*(s) € D(A) a.s., for s > 0,
Aur(s) = Ap(ps + A)Mu(s) = pus) — ulu + A)u(s) as.
so that Au*(s) is integrable. It now follows from (4.3.43), (4.3.44) and the identity

/t Ae~CMgdr = g — (=04
see Chapter 2, that
t t t L]
M — —8A, u —(r—8)A d
/0 Aub(s)ds = /0 Ae~*Aur(0)ds + /0 /0 ¢ F.(u(s))dsdr
t ]
-(r-8)A
+ /0 /0 Ae H(u(s))dw(s)dr
t
= u*(0) - et (0) + /o Fu(u(s)) — e"U=94F, (u(s)) ds

+ [ Hy(u(s)) = I, (u(s)) dun(s),

which completes the proof.

o

We have a stronger version of Theorem 4.3.3, where we relax the global Lipschitz
condition to that of a local Lipschitz condition. These are precisely the conditions
we have on the Nemytski maps from Chapter 3. We first define a local solution
which is a solution defined up to a stopping time.

Definition 4.3.5 Assume (A1), (A2), (A3), (Al%) and (A3+) hold. Let t be an
accessible stopping time and let u(t),t < T be an admissible (X, D(A))¢p-valued
process, for some p > 2 and { € (0,1). Then u(t),t < 7 is a local solution to the
problem (4.1.1)-(4.1.2) if and only if there exists an increasing sequence of stopping
times, {T,}n>1, satisfying 7, < T and 7, — 7 a.s., such that for eny t € [0,00) and
n € N the following integral equation holds, a.s.

tATn A
u(tA ) =e Ay, 4 G (EATS) + /0 e~ (A=A F(u(s))ds. (4.3.45)
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The term §,,, appearing in (4.3.45) is the continuous modification of the process y,,,,
defined by

Yan(t) = /0 t e~ =M () H (u(s))dw(s),

where a,, is the characteristic function of the interval [0, T,).
Furthermore, we require that, for some ¢ > p > 2

m/ p +E sup | u(s) [1,< oo,

0<t<™n

for each n € N.

Remark 4.3.6 The term §,, appearing in (4.3.45) may be considered informally
as

y T = A=A B () du(s)'. (4.3.46)

Although the stochastic convolution

/0 L= F (u(s))duw(s)

does make sense (for suitable H and u), the integrand appearing in (4.3.46) is not
necessarily progressively measurable. As a result (4.3.46) does not make sense. The
term §,,(t A 7,) does make sense though. In Chapters 5 and 6, when writing the
equation (4.3.45), we will always write

e (o))
0

with the understanding that it is to be interpreted as ‘§a, (t A 7,)%, as given in the
above definition.

The proof of the following theorem is analogous to those in [Br,97], and [Sei,93].

Theorem 4.3.7 (The Local Existence Theorem) Assume (Al), (A2), (A3),
(Al%) and (A3«) hold. Let ¢ > p > 2, ¢ € (-2-1;,% - ;) and v € [¢,3). Let
Uo € LY(Q, Fo; (X, D(A))¢,p). Assume that H and F are local Lipschitz maps from
(X, D(A)),, to L(E) and X respectively, in the following sense: For each R > 0,
there exists a constant Kp > 0 such that for u, v € B(0, R) = {z € (X, D(A))¢p 0

T ¢ p< R}
I H(U) — H(v) IL(E) < I&’R | u-—-v IC.P

| Flu)= F(v) |x £ Krlu—-v]cp

Then there exists a (X, D(A))¢p-valued process u(t),t < r, which is a local solution
to (4.1.1)-(4.1.2), where 7 is an accessible stopping time.

For the proof of Theorem 4.3.7 we need the following lemma.

Lemma 4.3.8 (Local Uniqueness Lemma) Assume (Al), (A2), (A3), (Alx)
and (A3%) hold. Letq>p > 2,( € (2—,; - —) and vy € [(,3). Fori=1,2, let
Uo,i € LU(Q, Fo; (X, D(A))¢,») and let H; and F be maps from (X, D(A))+, to L(E)
and X respectively. Suppose that on some open subset U of (X, D(A))., we have
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o i and H; are uniformly Lipschitz.
i F1=F2 andH1 =H2.
¢ There exists a measurable set (g of positive measure, such that
Up,1 = Up,2 € U a.s. on Qo.

Suppose that fori = 1,2, u;(t), t € [0,T], 0 < T < oo, are solutions to the problem

du;(t) + Aui(t)dt = Fi(u(t))dt + H;(u;)dw(t),

u,~(0) = Ug,;.

Let 7;:= inf{t € [0,T) : ui(t) ¢ U}. Then it follows that 1, = 7, a.s. on Qg and

sup | u1(t) —ua(t) [¢p=0 a.s. on Q.
OStS‘rl

Proof : For simplicity let us assume that F} and F, are equal to zero. We may
further assume that ) = Q since we can normalize P on §), such that P(€) = 1.
Similarly we can assume that a.s.

ul(O) = U2(0) eEU.
Let 0 = 7, A 7. Consider z: [0,T) x @ = (X, D(A))¢, given by

#(1) = ua(t) = ua(t) = [[ ¢ (1 (11(9)) = Ha(ua(s))) do(s).
Let £(s) = Hy(uy(s)) — Ha(us(s)), then € € M"(O,T;L(E)]). By Theorem 4.2.7, 2

has a continuous modification 7 such that for each t € [0, T

e sup | £(tA o)< O(T)2 L7 166) sy s
Since H, and Hj coincide on ¢ and are also uniformly Lipschitz, we have

B sup | 5(tA0) 2,5 C(0) [ BI B(s)ur(s) = wals)) IE, ds,

0<s<t

where A is the characteristic function of [0, 7). Noting that

IEos<up | B(s)(ua(s) —uz(s)) [I,ds < E sup | (wi(s A o) —us(sAo)) i, ds

= E sup | 2(tAa) g,
0<agt

we deduce, that for each t € [0,T],
B sup | A(s)(wa(s) = ua(s)) £ do < O(T) [ 21 B(6)(ua(s) = uale)) I, .

By the Gronwall inequality
E sup | B(s)(ur(s) —ua(s)) ¢, ds =0, t €[0,T].

0<s<t
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As a result, for each t € [0, T]
uy(t) = uz(t) as. on {t <o}.

The continuity of the processes u; and u; implies, that for a.a. w
us(y ) = ual+,w) on [0,0(w)).

We may further deduce, that for a.a. w
ui(+,w) = ua(",w) on [0,0(w)],

using the continuity of the paths again. It follows that

E sup |ui(s)—ua(s) [¢,=0.
0<s<o
Finally, as 0 = 7 A 7, then u;(0(w),w) = uz(0(w),w) ¢ U. By definition of 7, and
T2, it follows that 7, = 7, a.s.. This completes the proof.

)

Proof (of Theorem 4.3.7) : Let 0 < T < oo be fixed but arbitrary. For each
n € N define F,, and H, so that they are uniformly Lipschitz continuous and they
coincide with F and H respectively on the set

{u€(X,D(A))p | v [¢p<S n}

Define

_ _ J wo(w) if |uo(w) [¢p<n
Un(0,w) = { 0 otherwise., (4.3.47)

For each n € N there exists a unique process u, € Zr,¢ which satisfies (4.3.34), with
o, ' and H replaced with @,(0), F, and H, respectively. Moreover there exists a
set of full measure Q) such that each u, is continuous on . For each n € N define
the stopping time 7,(w) := inf{t € [0,T) :| un(t,w) |¢p> n}, with the convention
inf@ = T. Using Lemma4.3.8 one can show that {,}a>1 is a nondecreasing sequence
of stopping times. Define r := SUP,ex Tn = liMpeo Tn, then 7 is an accessible
stopping time. For each n, define A, := {w € Q:| uo |¢p< n}. Then {A,}, ., is an
increasing sequence of sets whose union ¥, is a set of full measure. Using Lemma
4.3.8, one can show that, for w € A,

Un(t,w) = un(t,w) for 0 <t < mm(w) and m > n.
For each w € N we define a process u by
u(t,w) = up(t,w), 0t < Tm(w), m2n, we A,

As each u,, is continuous then so is u. Moreover as ug is adapted and each u, is F,-
measurable on Q4(7,) = {w € 0 :t < 7,(w)}, then it follows that u is F;-measurable
on (r)={weN:t<r(w)},ie uisadapted. Thus u(t),t < 7 is a well-defined
admissible (X, D(A))¢-valued process. For u(t), t < 7, to be a local solution we
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need to show that it satisfies (4.3.45) for each ¢t € [0,T) and n € N. Fix n € N.
Then, for each t € [0, 7]

un(t) = e, (0) + /Ot e AN (un(s))dw(s) + /Ot e (AF (un(s))ds as..

Let Z, be the continuous modification of z,, where

t
2a(t) = | €A (ua(s))du(s).
For each t € [0,T] we have

Un(t) = €™ 4au(0) + Ea(t) + [ e DAL (un(s))ds as..

In particular,

tATn
Un(t A ) = €N (0) 4 ot AT + [ e IR (u(5))ds s,
Note that, by construction,
Un(0,w) = u(0,w), un(s,w)=u(s,w) and Fyp(un(s,w)) = F(u(s,w)),

for 0 < s < 7,(w), w € A,.. It follows, that for each t € [0, T]

tATy
u(t Ar) = e " Au(0) + Za(t A Ty) +/0 e~ tAm=DA R (y(s))ds a.s. on A,.

We aim to show
Zo(t ATp) = Jan(t A7) as. on A,.

Corollary 4.2.8 implies

E sup | Ea(tATa) — Zan(tATa) [{,=0, (4.3.48)
0<t<T

where

Ton(8) = /Ot e~ =0 (8)Ho(un(s))dw(s)

and e, is the characteristic function of the interval [0, 1',,)
As Hp(ua(r)) = H(u(r)), r € s < Ta(w), w € Ag, then, it follows that for a.a. w

Tap (1) = Jan(,w) on [0,70(w)).
Using (4.3.48) and the continuity of the processes , and §a, we deduce that
ZFa("yw) = Jan(+,w) on [0, 7).
In particular, for each ¢ € [0, 7]
En(t ATn) = Jan(t ATa) as. on A

It follows, that for each ¢ € [0, T

tATh
u(t A1) = e 4u(0) + Jon (t A7) + /0 e~ (A=A P (4(5))ds a.s. on A,.
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Note that if w ¢ A,, then 7,(w) = 0. In particular, the integral equation holds
trivially. So, for each t € [0, T

tATh
w(t A1) = e 4u(0) + Jau(EA T,) + / e~ A=A Py (5))ds as..
0

The proof is complete once we note that the above argument will hold for any n € N.

o

The following Corollary will be used in a later chapter. It’s proof relies on the above
proof of Theorem 4.3.7.

Corollary 4.3.9 Let u(t), t < 7, be our local solution. Then for each pu > 0
the process u#(t) := p(p + A)~'u(t), t < 7, is an admissible D(A)-valued process
satisfying, for each t € [0,00) and k € N,

w(tAn) + | Y Aut(t)dt = ut(0) 4+ /OW“ Fu(u(s))ds
+/OM" Ho(u(s))dw(s) a.s..  (4.3.49)

Proof : Corollary 4.3.4 implies that the approximate solutions u, satisfy (4.3.42).
To show that the constructed local solution satisfies (4.3.49) one just repeats the
arguments in the proof to Theorem 4.3.7.

o

We now give the definition of a mazimal solution.

Definition 4.3.10 Let 7 be an accessible stopping time. A local solution u(t),t <
1 said to be mazimal if for any other accessible stopping time 7, such that u(t),
t <7 s also alocal solution, then ¥ < 71, a.s..

We need the following Lemma, see [E1,82].

Lemma 4.3.11 (The Amalgamation Lemma) Let A be a family of accessible
stopping times with values in [0, 00]. Assume that for eacha € A, I, : [0,a) x Q —
(X, D(A))¢p is an admissible process and that for anyt < o0, @, 8 € A, I (t) = I4(t)
a.s. on {t < a A B}. Then, there ezists an admissible process I : [0,7) x Q —
(X, D(A))¢,p, where T := sup{a: o € A}, such that

I(t) = L,(t) a.s. on {t <a}. (4.3.50)

Moreover, if 1 [0,7) x Q — (X, D(A))s,p is any other admissible process satisfying
(4.3.50), then I(t,w) = [(t,w) a.s. on {w:t < 7(w)}. Furthermore, T can be chosen
as the limit of some increasing sequence {an }n>1, where a, € A for each n € N,

The following Theorem and proof is taken from [Br,97], see also [Br/El98].

Theorem 4.3.12 Under the assumptions of Theorem 4.3.7, there exists a mazimal
solution u(t),t < 7 to the problem (4.1.1)-(4.1.2)
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Proof : Let
LS :={(u,7):u(t),t <7, isalocal solution to (4.1.1)-(4.1.2) }.

By Theorem 4.3.7, £LS is nonempty. By the Amalgamation Lemma, there e)'(ists a
unique admissible (X, D(A))¢ ,-valued process @ and an accessible stopping time 7,
such that, for every stopping time 7 with (u,7) € LS, () = u(t) a.s. on {t < T},
t € (0,T]. Moreover, u satisfies (4.3.45), which is proved as in Theorem 4.3.7, noting
that 7 can be taken as the limit of an increasing sequence of stopping times {7, }n>1,
where for each n, (u,,7,) € £LS. Thus (&,7) € LS. By Definition 4.3.10, a(t),
t < 7, is maximal.

)

We turn now to the question of uniqueness of maximal solutions. (Henceforth we
assume that the assumptions of Theorem 4.3.7 are satisfied ). We need the following
lemma, see [Br/El,98].

Lemma 4.3.13 Let u(t), t < 7 be a mazimal solution to the the problem (4.1.1)-
(4.1.2). Then

JP{T < T and limsup | u(t) [¢p< oo} = 0. (4.3.51)
t—T

Remark 4.3.14 Let u(t), t < 7 be a maximal solution to (4.1.1)-(4.1.2), with
{7n},>, the corresponding sequence of stopping times with 7, < 7 and 7, — . For
each n € N, define
on = inf {t € [0,7) :] u(t) [¢p> n}.
By Lemma 4.3.13, o, is a well defined stopping time. Furthermore, Lemma 4.3.13
also implies that
Ta ANOp — T as..

Theorem 4.3.15 (Uniqueness of Maximal Solutions) Suppose that u(t), t < 7

and v(t), t < # are marimal solutions to the problem (4.1.1) with the same initial
value ug € LI(Q, Fo; (X, D(A))¢p). Then

E sup |u(s)—uv(s)l|¢,=0. (4.3.52)

0<s<TAF

Proof: From the definition of a local (maximal) solution, there exist sequences of
stopping times {7.},5, and {#.},5; such that 7, — 7 and 7, — ¥. Define the
stopping times o, and &, by

o, =inf {t € [0,7) :| u(t) |¢p= N} A Tn,

G, = inf {t € [0,7) :| v(t) |¢p= R} A Fa.

Using the maximality of u and v, we have o, — T and &, — 7. Set k, = 0, A G,
and & = 1 A 7, then &, — «.
Consider the process z(t), t < & given by

2(t) = u(t) -~ v(t), t < k.
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For each ¢t € [0,T] and n € N we have

2(tAKn) = u(tAKn)—v(tAKy)
= 95, Akn) = G5, (LA Kn),

where §§ and jj are the continuous modifications of

G = [ B H) )
o= [ M) H () dus),

with 3, denoting the characteristic function of [0, k,) Thus

2t Awa) = [ €I (5) (H(u(s) = H(0(s))) dus).

Corollary 4.2.9 implies

B sup | 2(s A xa) I2,S C(T)E [ als) | (H(u(s)) = H((s))) lucsy ds.

0<s<t

H is Lipschitz on B(0,n) C (X, D(A))¢, and so

E sup |z(s/\nn)lcp<C’nTIE/ Bu(s) | (u(s) = v(s)) |egy ds.

0<s<t

Observing that
E sup | Bn(s)2(s) |{,< E sup | 2(s A &y) ]g_p,
0<s<t 0<s<t
we have

B sup | £a(s) (u(s) = v(s)) 4,5 Clm T [ Bals) | (u(5) = () ey ds.

0<s<t

The Gronwall inequality then implies, that for each ¢ € [0, T

E sup. | Ba(s) (u(s) = v(s)) [{ =0,

0<s<

i.e. for each t € (0, T)
u(t) = v(t) on {t < k.}.

By the continuity of u and v, for a.a. w we have
u(-,w) = v(-,w) on [0, £, (w)).

This holds for each n € N. In particular, if we let n — oo then for a.a. w
u(+,w) = v(-,w) on [0, k(w)).

This completes the proof.
o
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Corollary 4.3.16 (Uniqueness of Global Solutions) Let 0 < T < co. Let u(t)
and v(t), t € [0,T) be global solutions to the problem (4.1.1) with the same initial
condition ug € LY(Q, Fo; (X, D(A))¢p)- Then

E sup |u(t)—o(t)[{,=0.
0<t<T

Proof: As u and v are global solutions, then u(t), t < T and v(t), t < T are both
maximal solutions to the problem (4.1.1)-(4.1.2). Theorem 4.3.15 implies that

E sup |u(t)—uo(t)|i,=0.
0<t<T

As u and v are both defined and continuous on the interval [0, T'] then we can deduce
that

E sup |u(t)—v(t) I?.p= 0.
0<t<T

This completes the proof.
)

4.3.1 Existence Of A Maximal Solution To The SNHE
We consider now the stochastic nonlinear heat equation, SNIIE. Our problem is
du(t) + Au(t)dt = V(u(t))dt + F(u(t))dt + H(u(t)) o dw(?) (4.3.53)
u(0) = uo (4.3.54)
where the term involving the Stratonovich differential may be written
H(u(t)) o duw(t) = H(u(t))dw(t) + %tr{H'(u(t))H(u(t))}dt. (4.3.55)

The coefficients appearing in (4.3.53) and (4.3.55) are locally Lipschitz maps with

Vv, -;-tr(H'H) L (X, D(A))ap — X
. (X, D(A))yp — X
¢ (X,D(A))yp — L(E,E)

for any y > 1 141 5> P > 2. Note that v is chosen as such to guarantee that F'(u)
makes sense classxcally for u € (X, D(A)),, see Chapter 3. In terms of the Sobolev-
Slobodetski spaces, the maps satisfy

V,%tr(H'H) . Wer(s!,rY) — IP(SY,RY)
F . werla(sh Y — LP(S',RY)
H : Wer(S',RY) — L(WP?(S',RY), WhP(S', RY)

forany 0> 6,6 € (L,1),p>2.
The following Theorem is a consequence of Theorem 4.3.12 above.



Chapter 4 61

Theorem 4.3.17 Existence of a Maximal Solution: Let w(t), t > 0, be a
WOr(S! RY)-valued Wiener process, 0 € (:—,,%), p > 2, relating to the AWS i :
HY (S RY) — WOP(SY RY). Let ug € LI(Q, Fo; W*?(S',RY)), where ¢ > p and
%—% > s> 141, Then, there exists an accessible stopping time T and an admissible
WeP(S1, RY)- valued processu(t), t < T, which is the mazimal solution to the problem

(4.3.53)-(4.3.54).
Proof : Let o, g and s be as stated. Note that
WeP(S', &) = (LP(S*,R%), W??(S',R%))1 , = (X, D(A))¢ s

where ( := £ € (1 + ;—p,% - %) Thus uo € LI(Q, Fo; (X, D(A))¢,») and since the
Nemytski maps V, F, H and %tr(H’H) satisfy the requirements of Theorem 4.3.12

the result follows.

o
Remark 4.3.18 Suppose we take our initial value uq satisfying
Ug € LP(Q’fO; W”p(Sla IRd))v

then we would need s € (1 + -,% - %) Note that

1
r
3 2 1
——=>14-&p>6.
2 p p

Thus if ug € LP(Q, Fo; WHP(S, IR")) then our results give a solution only in the case
p> 6.
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Existence of a Maximal Solution
on the Loop Manifold M

5.1 Properties of the Nemytski Map [

In this chapter we are concerned with proving that our maximal solution u(¢), ¢t < 7,
lies on the loop manifold M = W*?(S', M), s > 1+ %, p > 2, where

Wer(S', M) = {u € W**(§",R%) : u(0) € M,Yo € S'}.
The assumption we need to impose is, for ¢ > p, as chosen in Chapter 4,
uo € LI(Q; W*P(S1, M)).

We first recall the involution map i : R* — R? and its properties, see Chapter 3. 1 is
a smooth map with compact support, that satisfies

i(m)=m & me M. (5.1.1)

Moreover i : U — U, where U is the tubular neighbourhood of the manifold M.
There exist £ > 0 such that M C U, C U, where

Ue:={z e r?: d(z, M) < €} (5.1.2)

Furthermore, € can be chosen small enough so that the following properties hold:
#'(p)3(p) = 5(i(p)), p € UL, (5.1.3)
#(p)h(p) = h(i(p)), p € UL, (5.1.4)

where ¥ : R - R? and k& : RY — L(R%R?) are the smooth maps constructed in
Chapter 3. Henceforth we assume that ¢ > 0 is chosen small enough so that the
properties (5.1.3) and (5.1.4) hold for p € U..

For the open set U C R? we define W*?(5?,U) as

W*?(51,U) == {u € W**(S",R%) : u(0) € U,Vo € s'},

with an analogous definition for W*?P(S*,U,). As U is open it is straightforward
to show that W*?P(S!,U) is an open subset of W*?(S' R¢). We now define the
Nemytski map I of i by

I(u):=tou. (5.1.5)

We have the following important Proposition.

62
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Proposition 5.1.1 Let I be the Nemytski map of i as defined in (5.1.5). Then I
is @ smooth map I : W*P(§',R%) — W*P(S§',RY), which is locally Lipschitz and of
linear growth. Furthermore, I satisfies the following properties:
(i) For u € W*?(S', RY),
I(u) = u & ue WS, M). (5.1.6)

(it) I maps W*?(S',U) to itself. Similarly, I maps W*?(S',U,) to itself.
(iti) For uw € W*?(S',U,),

I'(vw)V(u) = V(I(u)), (5.1.7)

I'(u)H(u) = H(I(u)), (5.1.8)
where V and H are the Nemytski maps corresponding to © and h respectively, see
Chapter 3, and I' is the derivative of I.
(iv) For u € C>=(81,U,),

I'(u)A(u) = AI(u), (5.1.9)
where A is the nonlinear Laplacian.
Proof : For the first statement, see Proposition 3.4.1. (i) follows from (5.1.1). (ii)
follows in a similar fashion as i maps U to itself and U, to itself. (iii) follows directly
from (5.1.3) and (5.1.4). The proof of (iv) is a little more intricate. By Proposition
3.14, any f:[0,00) — C(S",U,), which is a solution of the heat equation, satisfies
(5.1.9). Moreover, see [Ee/Sa,64] or [Ot,84], given any u € C*(S?, U,), there exists a
unique f : [0, 00) — C*=(S*, R?%) which is the solution to the nonlinear heat equation

with f(0) = u. By continuity, for some small ¢t > 0, f(s) € C®(S',U,), s € (0,1),
and so

I'(f(s))Af(s) = DI(f(s)), s € (0,1). (5.1.10)
Thus, by continuity, (5.1.10) will hold for f(0) = u which proves the result.
o

Remark 5.1.2 As I is smooth, then so is its first derivative I’, where
I': Wer(S'RY) — L(W*P(S*,RY), W*P(S1,RY)).
Furthermore, I’ acts through the following formula
I'(u)(v)(o) = i'(u(0))(v(a)), u,v € W*P(S',RY),0 € S, (5.1.11)
%

We briefly descibe the contents of this chapter. To show that u(t),t < r,is an M-
valued process we follow the idea used in [[a,75]. Given our maximal mild solution
u(t), t < 7, we show, using Proposition 5.1.1, that, for some stopping time ¥ < 7,
the process v(t) := I(u(t)), t < 7, is a weak solution to our problem . We then
show that our maximal solution is also a weak solution. In particular, under the
assumption that ug € M a.s., we have, by (5.1.6), that v(0) = I(u(0)) = u(0). So v
and u are both weak solutions to the same problem, up to the stopping time 7. Using
a well known result that if the coefficients are locally lipschitz and u is a unique mild
solution, then it is also a unique weak solution, we deduce that v(t) = u(t) for t < 7.
This then implies, by (5.1.6), that u(t) € M for t < 7. It is then straightforward to
show that ¥ = T, a.8..

©
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5.2 The Approximating Processes

Recall that our unique maximal solution is an admissible W*P (S, R9)-valued pro-
cess, where s > 1 + -1’;. Furthermore, for t € [0,00) and k € N, u satisfies

u(t Aoy = () + [ eI (P (u(s)) + Viu(s))} ds

+ /Mak e~ a4 11 (y(s)) 0 dw(s) as.,
0

where {ot}xen is a sequence of increasing stopping times such that oy < 7, for each
k € N, and o, — 7. We have written the mild equation in the Stratonovich form
but we may also write it in Ité form as:

Wihoy) = emiu) 4 [" e 0 (F(u(s)) + Viu(s)) ds
+ /otAak e’(”\”“_s)AH(U(s))dw(s)
+ %AtAok e_(“\ak—a)Atr{}I,(u(S))fI(u(s))}d_g, (52'12)

The maps V and H satisfy the properties (5.1.7) and (5.1.8), whereas this need not
be true for the map F. We do have condition (5.1.9) and A involves the map F.
A problem arises, in that, to make use of (5.1.9), we need our maximal solution
to be We+1#(S R?)-valued, which then implies that it is C*(S!,R%)-valued. wu
is only W*P(S1,RY)-valued and as a result only satisfies a mild integral equation.
This problem may be overcome if we approximate our maximal solution with a
sequence of processes, defined up to the stopping time 7, which are of a higher
regularity in the space variable than our solution. As a result, they will satisfy a
strict integral equation and we may apply condition (5.1.9). We begin with defining
the approximations. For simplicity of notation only, we leave out the term V.
Recall that the operator (n + A)~}, n € N, may be considered as a map

(n+ A)~1: WP(S',RY) — WoHEP(St R,

It is linear, bounded and it commutes with e~*4, r > 0. For each n € N define the
process u™(t), t < r, by

u"(t) = n(n+ A)Tu(t), t< 7.

It follows that u”(t), ¢ < 7, is an admissible W**+?2(S1, R?)-valued process and, in
particular, it is also C?(S*, R?)-valued.

Remark 5.2.1 Clearly, by the definition of u* and the continuity of u, we have
that 4 — u as n — oo, pointwise on [0, 7(w)), for almost all w € . Using the
boundedness of n(n + A)~! and the Lebesgue Dominated Convergence Theorem,
(LDC), we have, for each k € N and t € [0,00), ¢ > p,

Elu(tAoy)—u™(tAok) 1,0 as n— oo,
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where | - |, , is the norm on W*?(S*,R?). | - |L» will denote the norm on LP(S?,R9).
As I is continuous, then I(u™) — I(u) pointwise on [0, 7(w)), for almost all w € .
In fact, as u™ — u in LI(Q; LP(S*,RY)), then the following inequality

| 1(u) < C lu s, u € WP(S,RY),

(where C is a constant independent of u), and the LDC Theorem imply that for
each k € N, t € [0, 00)

Iu™(tAor)) = I(u(tAok)) in  L9(Q; LP(S',RY).
¢

For each n € N, we apply n(n + A)™! to both sides of (5.2.12). We then have, for
t € [0,00) and k € N, the following mild integral equation holding a.s.

tAc
Wt Aoy) = e-—(t/\ak)Aun(O) + f Ak e—(tAak-a)An(n + A) 1 F(u(s))ds
0
+/tA0k e_(t/\ak—a)An(n+ A)'l_[](u(s))dw(s)
0
tAc
+ %/0 " e n(n 4 A)ir (I (u(s)) H (u(s)) }ds.

Henceforth, we write Fy, = n(n+A)~'F, H, = n(n+ A)"'H and tr, = n(n+A)"'tr.
Recall that u™(t) is W*P(S!,R?)-valued and so u™(t) € D(A) a.s.. As a result, see
Corollary 4.3.9, for t € [0,00) and k € N the following strict integral equation holds
a.s. in LP(S, R?)

tAc tAo
w(tne) = w0~ [ Au(s)ds+ [ " Fu(u(s))ds
tAoy 1

+ A H,(u(s))dw(s) + 3 /oth tro{H'(u(s))H(u(s))}ds.
We may rewrite this as

u(tAop) = u™(0) - /OM” Au"(s) — F(u"(s))ds
4 [ Fufu(s)) = Fn(s))ds

tAok

+ [ Hau(e)duls) + 5 [ tral I () H(u(s))ds.
As a result we have
w(tAoy) = u(0)+ /OW" bu(s)ds + [ 7 Fau(s)) - F(u(s))ds
+ [ Hau(s)du(s)
+ % / T e {H (u(s)) H (u(s))} ds. (5.2.13)

Remark 5.2.2 For any sequence of stopping times {74 }ken, such that 7, < 7 and
Tk — T, the above integral equations will hold with oy replaced by 7y, see [Br/E1,98].

¢
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5.3 The Weak Solution I(u(t)), t < 7.
We first introduce the notion of a weak solution to the problem
du(t) + Au(t)dt = F(u(t))dt + H(u(t)) o dw(t) (5.3.14)
u(0) = ug. (5.3.15)
We use the following notation: for u, v € L*(S!,RY) we set
< u,v >rai= /51 < u(o),v(o) > do,
where < -,+ > is the inner product on R%.

Definition 5.3.1 (Weak Solution) An admissible W*P(S', R%)-valued process
u(t), t < 7, is a weak solution to the problem (5.3.14)-(5.3.15), if for each

¢ € C(S',R?) the following weak integral equation holds, for each k € N and
t € [0, 00)

utAok),$>p = <u(0)é>u+ [ < Vu(s),Vé > ds
+/ < F(u(s)), ¢ >p12 ds
< /Om H(u(s)) odw(s), ¢ >z a.s.,, (5.3.16)

where {0} are a sequence of increasing bounded stopping times with o, < T and
O — T,

We will later show that our maximal mild solution is also a weak solution in the
above sense. We will first prove the following result which is more difficult. Before
stating the Theorem we define the stopping time 7. Let € > 0 be sufficiently small
so that properties (5.1.7) and (5.1.8) hold for any u € W*?(S',U,). Define now

7i={te[0,7]: u(t) ¢ WS, U)}. (5.3.17)

7 < 7 is a well-defined stopping time since the process u(t) is continuous and the
set W*?(S5,U,) is open.

Theorem 5.3.2 Let u(t), t < 7, be our W*?(S*,R?)-valued mazimal solution. The
process v(t) := I(u(t)), t < 7, is an admissible W*P(S*,R?)-valued process which
satisfies the following weak integral equation: for each k € N, t € [0,00) and ¢ €
C>(S',R?) we have
AT
<v(tAT), > = <v(0),¢ > +/0 * < Vu(s),V¢ >z ds
AT,
+/0 " < F(v(s)), 6 >1a ds
tAT
+< /0 "H(v(s) o dw(s), 6 >2 as.  (53.18)

where 1, := 7 A oy.
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Proof : We first apply the Itd6 formula with the map I to the integral equation
(5.2.13). Thus for each t € [0,00) and k € N the following equation holds a.s.

It A7) ) + / s)ds
+ /M’“ r u(s)) = F(w(s))) ds
2‘/"”" ) Girad 1 () H(u(3))}) ds
+/ u(s))) du(s)
5 [ () (Haa(5)), Hn ()} s
(5.3.19)
Denote
mm:=/wﬁxwmnwm—mwmma
) = g [ TR (ra{ B (u(s)) H(u(s))}) ds
mm==ﬁwﬁwwummmwmm
B) = 5 [t {0 (6) (Ha(u(s)), Ha(u(s))} ds.
(5.3.19) may then be written
Iw'tAn)) = IO / 8))[=Au™(s) + F(u(s)))ds
+ I"(tk) +I2(t) + ]3(tk) + I7(t). (5.3.20)

For any ¢ € C=(S*, %) it follows, using (5.3.20), that
<IW*(tATm)), 6> = <I(u™(0),¢ >
- /o < PWM$))(Au(s)), ¢ S ds
+ [ < P FE ), 6 > 10 ds

+ < IT(te) + I7(tk), ¢ >12
+ < I3(tk) + I (t), 6 >12 - (5.3.21)

In view of Remark 5.2.1,
I(Ww"(t A7) = I(u(t A 1x))
in L3(Q; LP(S*,R?)). Now if ¢ € C*(S*,R?), then ¢ is bounded. It follows that
E<I(u"(t A7) — I(u(tAmi)), ¢ >e< B T(u(EA 7)) = T(u(t Ami)) |10, (5.3.22)

which implies
<I(u"(tA 7)) ¢ >pa—< T(u(t Amr)), é > 12
in LY(Q,R).
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Remark 5.3.3 For a sequence of processes {Z,(t)} and Z(t), to prove
< Zp(t), ¢ >r2—< Z(1), ¢ >12

in L9(€, R), it suffices to prove, by (5.3.22), that
E|Zy(t) - Z(t) |L-— 0. ¢

We wish to calculate an integral expression for < I(u), ¢ >r2. We may not simply
take limits as n — oo in (5.3.21). This is due to the fact that u(t) ¢ D(A), a.s. and
so the term ” < I'(u(s))(Au(s)), ¢ >12” would not make sense. To over come this
problem we have the following Lemma.

Lemma 5.3.4 For u € W??(5',RY),
— < I'(u)(Au), ¢ >p2= /S < Vu(o), VA(u(0))$(0) > do (5.3.23)

for some smooth map X : R* — L(R?,RY),

Remark 5.3.5 Note that the RHS of (5.3.23) now does make sense for
u € W*?(5', RY) where 2 > s >1+i;. 0]
Proof : Using (5.1.11) we have

2

- < I'(u)(Au), ¢ >2= /sl < i'(u(a))%ﬁ(a),:ﬁ(a) > do. (5.3.24)

Recall that i’ : R — L(R%R?) and so for z € RY, #'(z) € L(R%R?). Thus for y,
z € R? it follows that
<i(2)y,z >=<y,[{'(z)]"2 >

where [¢/(z)]* € L(R? R?) is the adjoint of i'(z). Define the map A : R — L(R% RY)
by A(z) := ['(z)]*. Then A = * o', where by * we mean the operation of taking
adjoints of elements of L(R?% R?). * is linear and continuous and hence smooth.
Moreover, as ¢’ is smooth then so is A. We rewrite (5.3.24) as

- < I'w)(4au),¢ >0= [ < d¢72 Mu(o))é(e) > do.
(5.3.23) now follows using integration by parts.
[

Denoting u(s, o) by u,(c), we will show that for any ¢ € C=(S*,R?),

IW(tA ) b Sp2 — /0 o /S < Vu,(0), VA(us(0))d(0) > dods
+ < B(t A Tk)v ¢ >,
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as n — oo, in L(f),R), where the process B(t), t < 7, is given by

BltAr) = I(u(0) +/ I'(u(s)) F(u(s))ds
+3 / I'(u(s)) (tr{H'(u(s)) H (u(s))}) ds
+ / u(s)) (H(u(s))) dw(s)
+ / tr {I"(u(s)) (I (u(s)), H (u(s)))} ds.

By uniqueness of limits we will then have, for ¢ € C>®(S',R%), t € [0,00) and k € N,
tAT)
< It AT)), ¢ >0 = /0 /S < Vuy(0), VA(us(0)), (o) > dods
+ < B(t A Tk),d) >r2,

where equality holds a.s.. This would be the first step in proving our Theorem.
Before we formulate the next Lemma let us introduce the following notation

tAT]
() 1= / ’ [ < Vu}(0), VA(w3(0))#(0) > dods.
0
Lemma 5.3.6 With the above notation: for each t € [0,00) and k € N,
tATE
" (1) — / /S < Vu,(0), VA(us(0))d(0) > dods (5.3.25)
0

as n — oo, in LI(Q, LP(S!,R%)).

Proof : For s € [0,t A7), u™(s) — u(s) pointwise in W*?(S*,R?) a.s.. Moreover,
for each o € §*, we have

< Vui(0), VA(ui(0)) (o) >—=< Vu,(0), VA(us(a))d(a) > . (5.3.26)

With an application of the LDC Theorem in mind, we wish to find integrable bounds
for the terms | 4"(#x) |. Note that as ¢ is of compact support, then there exists
some constant C such that

sup | Mz) |= sup | [i'(2)]" |=sup | '(2) [< C,

where the supremum is taken over z € R%. Moreover, | ¢ |12< C}, for some constant
C1, and so

f < Vu0), VM@ )60) > do = [ < T8 (0) Al (0))élo) > do
< C; | Au™(s) |12
< Cs|u(s)|ee -

The last inequality follows from

| Au™ || Au™ e <| U™ |2p<| u 1o .
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In particular, we have

tATK

L [ < 936,00, VAW s, 0))6(0) > dods < Ca [ u(s) s ds.

Since E (f“”“ | u(s) |» ds)q < 00, the result follows by LDC.
)

Of the remaining terms the difficult term is

tATE
L) = [ 1w (s) (Fa(u(s) = F(u™(s)) ds.
We first prove the following
Lemma 5.3.7 For each t € [0,00) and k € N

B [ | 1) {Fa(u(s) = F@(s)} [1s ds = 0

as n — oo.
Proof : We will first prove that, for u € W*?(S',RY),

| I'(w™) {Fa(u) — F(u™)} [3o— 0,

where u" :=n(n + A)"'u and F, =n(n+ A)"'F, n €N.
Using (5.1.11) and the fact that ¢ : R¢ — R? is smooth with compact support, then,
for u € W*P(SY RY), v € LP(S',RY),

[Tl = [ 17(u@)(o) P do
< sup|i(@) P [ 19(0) P do
< CIUle

for some constant C independent of u. (In the second step, we have taken the
supremum over z € R%) If v € C*(S',R?) approximates u € W*P(S!,R%) then
v" = n(n + A)"'v € C*(S?,R?) approximates u® € W*?(S', R%). This can be seen
from the inequality

"

Iun_v 3|PS|U_U'S|P'

Moreover, by the continuity of F, given € > 0, then
| F(u) = F(v") |lr + | F(u) = F(v) [e< €.
for u, v sufficiently close. For such u, v it follows that
| '(u®) {Fa(u) = F(u")} r £ | Fa(u) = F(u") 1o
| Fa(u) = Fa(v) loe + | Fu(v) = F(v) |10
| F(v) = F(") | + | F(v") = F(u") |Ls
€ + | Fu(v) = F(v) [»
+ | F(v) = F(v™) |Ls,

IN 4+ IAIA
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where the last inequality follows as | n(n + A)™! |r,r)< 1. Letting n tend to
infinity we have

limsup | I'(u™) {Fn(u) = F(u™)} |zr < €for any ¢ > 0.
We deduce that
Jim | F(u) {Fa(u) = F(&™)) s = 0.
In particular, for s € [0,¢ A 7;), t € [0,00) and k € N, it follows that

Jim | I'(u™(s)) {Fa(u(s)) — F(u"(s))} [2» =0 ass..

With the LDC Theorem in mind we need to find an integrable bound. Now, by
Corollary 3.4.5, we have

| Fo(u) = F(u™) [3, < | Fa(w) 5 + | F(u™) L
< | Fu) B + | F(u™) [
< Cpd) (lul?, +1ul,)

+Cp,d) (1w 2, + |u" 2,)

Clo,d) (1u 2, + 1ul3,).

Recall that our maximal solution satisfies, for some ¢ > p > 2,

IA

tAT,
IE/ | u(s) |7, ds < oo.
0

If ¢ > 3 then we may apply the LDC Theorem and this will complete the proof of
Lemma 5.3.7. If p > 3, then clearly ¢ > 3. If though p € (2,3) then, see Theorem
4.3.17, ¢ is automatically chosen so that ¢ > 4p(p —2)~!, in particular ¢ > 3. Thus
for any p > 2, q always satisfies ¢ > 3 and hence we can apply the LDC Theorem
to obtain our result.

o

In view of Remark 5.3.3 we deduce that, for ¢ € [0,00) and k € N, < I}(tx), ¢ >12— 0
as n — oo in L(Q,R).

Using the same line of proof along with the Lipschitz properties of F, I and I/,
and the continuity of I, I’ and I one can prove

/otATk I'(u™(s))(F(u"(s)))ds — /(,Wk I'(u(s))(F(u(s)))ds

B =5 [ I(s) (r{ () H(u(s))) ds

B = 3 [ tr {17(u(s)) (T (u(o)), ()} s

where the convergence is in LI(Q, LP(S*,R?)). The term involving the stochastic
integral possesses no difficulties. One needs to apply the Burkholder inequality and
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then, again following along the lines of the proof of Lemma 5.3.7 above, one may

deduce that in L(€; L?(S,RY))
)~ [ Tuls)) (H(u(s)) du(s).

Consequently, see Remark 5.3.3, it will follow that for each ¢ € C(S", R?)

tATE

- /!Afk (F(a"(s)))ds, ¢>L2—’<_/ I'(u(8))(F(u(s)))ds, ¢ >12,

IATK

<wa¢¢>mq%</' I'(u(s)) (tr H'(u(s)) H (u(5))) ds, & >12,

0

<I5(t), 6 > [ T (o)) (Hu(s)) du(s), & i,

1 tAT ”
<L), ¢ >0 5 < [t {17(u(s) (H(u(s)), H(u(s))} ds, & >0 -
The fact that < I(u™(0)),¢ >r2—< I(u(0)),$ >2 follows from Remarks 5.2.1 and

5.3.3. Thus, in view of the discussion earlier, uniqueness of limits implies that, for
k € N,t € [0,00), the following weak integral equation holds a.s.

<I(u(tAm)),é > = <I(u(0)),6 >
+/o ’ /Sl < Vu,(a), VA(u(0))(8(a)) > dods

+< [ P F((u()ds, 6 >10
+%<h@&¢>u
+< [T s)) () duo(s), 6 1
+ % < Li(te), ¢ > 12, (5.3.27)
where we have denoted
o) = [ F((s) r{H (u(s) H(u(s)))) ds
L) = [ r {I7(u(s)) (H(uls)), H(u(s))} ds.
The following Lemma is crucial. We continue to use the notation of Lemma 5.3.4.

Lemma 5.3.8 For u € W*?(S*,U,) the following equality holds, for any ¢ €
Coc(sl’md)_.
[, < VU TANIA > dr + < TP, 41
= < VI'(U),Vd) >
+ < F(I(u)),¢>12. (5.3.28)
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Proof : Let u € C*°(S!,U,). Then, using (5.1.9), we have, for any ¢ € C®(S? RY),
< I'(u)Au, ¢ >pe=< AI(u), ¢ >z . (5.3.29)
Consider the RHS of (5.3.29). We have the following equalities

< é](u),d) > = — < AI(U),¢ >+ < F(I(u)),d) >
= <VIu),Vé>p+< F(I(w),é¢>. (5.3.30)

Considering now the LHS of (5.3.29):
<I'(u)Au,¢ > = — < I'(u)Au,¢>p2 + < I'(u)F(u), ¢ >p2

= /S1 < Vu(o), VA(u(o))é(a) > do
+ < I'(u)F(u), ¢ >12, (5.3.31)
where the last equality follows from (5.3.23). Putting (5.3.30) and (5.3.31) together
gives us (5.3.28) for any u € C*=(S*,U,). To extend this to functions in W*?(S?, U,),
note first that (5.3.28) does actually make sense for functions in W*?(S?, U,). Fur-

thermore, all the terms in the expression are continuous and so using the density of

C=(S',U,) in W**(5,U,) gives us our result.
[ )

As a consequence of Lemma 5.3.8, (5.3.27) now reads
<I@EAn)), > = <I@(®),é>m - < [ T I(u(8))ds, Vé > s
+< [T PUu(s)ds, 8 >0
0
+ % < Iy(tk), ¢ >12
< [ ) (H () d(s), 6 515
+ ‘]; < I4(tk), ¢ >, (5332)

2

where we recall
tATK , ,
h(t) = [ I'(u(s) (tr{H'(u(s) H(u(s))}) ds
tATK
L(ty) = /0 tr {I"(u(s)) (H(u(s)), H(u(s)))} ds.
As our Wiener process is W%?(S!,R%)-valued we consider H as a map
H: Wo»(S', RY) — L(WP(5',RY), WP(S', R?)),
see Chapter 3. Furthermore, I is a smooth map satisfying

I:Wor(S',RY) - Wh(S,RY)
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and so its derivative I’ satisfies
I': WoP(S', RY) — L(WOP(ST, RY), WOP(ST RY)).
Define a map J : Wo(S!,RY) — L(W??(S!,RY), WOr(S!, RY)) by
J(w) := I'(u)H(uw).
J is a well-defined smooth map. An application of the chain rule gives
J'(@)() = I"(w)(VH(u) + I'(W)H'(u)(-), ue W*P(S'RrY). (5.3.33)
If u € W*?(S1,U,) then J(u) = H(I(u)), using (5.1.8), and so in this case we have
J'(u)(-) = H'(I(w))I'(w)(-). (5.3.34)
It then follows from (5.3.33) and (5.3.34) that
tr {1"(w)(H (u)) H(u) + I'(u) H' (u)(H (u))} = tr {H'(1(u))]'(u)(H ()} .
Using (5.1.8) again we get
tr {I"(u)(H(u))H (u) + I'(w) H'(w)(H(u))} . = tr {H'(I(w))H(I(w))}. (5.3.35)

Finally, from the definition of the map ¢r and the fact that I'(u), u € W*?(S!, RY),
is a bounded linear map, we have

I'(w)tr {H'(u)H(u)} = tr {I'(u)H'(u)H(u)}. (5.3.36)

Using (5.3.32), (5.3.35) and (5.3.36), we have, for k € N, t € [0,00) and ¢ €
C=(S?,rY), the following integral equation holding a.s.

tAT,
<Iu(tAm)),é > = <I(u(0),é > — < /0 * VI(u(s))ds, Vb > 1
tATK
+< / F(I(u(s))ds, ¢ > 12
a
tATE
+< /0 H(I(u(s)))dw(s), ¢ > 12
1 tATE ,
< [ () HUI ()} ds, ¢ >1a
0
Writing this in Stratonovich form gives
<I@(EAT))é > = <I@O)¢>m+< [ F(I(u(s))ds, 6 >0
+< / H(I(u(s))) 0 dw(s), ¢ >1s,
which is the required weak integral equation (5.3.18). This concludes the proof of

Theorem 5.3.2.
'
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5.4 Existence Of An M-valued Solution

The following Theorem states that u(t), t < 7, is a weak solution to the problem
(5.3.14), (5.3.15). We only give a sketch proof, as this proof is similar and simpler
to that of Theorem 5.3.2.

Theorem 5.4.1 u(t), t < 7, is a weak solution to the problem (5.3.14), (5.3.15).

Proof : As in the previous proof one first shows that, for each ¢ € C*(S!,RY),
t€[0,00) and k €N,

u(tAok),d >pp—=<u(tAok),¢ >z in L'(Q,R).

Then using the fact that the approximations satisfy a strict integral equation we
may write, for each k € N, t € [0, o),

tAo
W(EAR) > = <u(0),é > — < /0  Vun(s)ds, Vo >1a
tAoy n
+ </0 F(u™(s))ds, ¢ > 12

+< /0 T Fa(u(s)) = F(u™(s))}ds, ¢ >12

tAo

+ < A H,(u(s))dw(s), d > e
+ %< L () Hu(5)) s, 6 >
S o<u(0), ¢ —< [ Vu(s)ds, Ve >

+</ (us)ds¢>L2

+ </o H(u(s))dw(s), ¢ >1s

sk [ ) H ()} 6 >0

The proof of the above is straightforward as we do not have to concern ourselves
with the map I and so the results of Lemmas 5.3.4, 5.3.6 and 5.3.8 do not apply in
this case. Note that the above convergence is in L!'(Q2;R) and so by uniqueness of
limits we may infer that u(t), t < 7, satisfies the required weak integral equation,
see (5.3.16), and hence is a weak solution.

o

Corollary 5.4.2 Ifuy € L9(Q; W*?(S', M)) then the mazimal solution u(t), t < r,
is an admissible M-valued process.

Proof : Due to the conditions imposed on u(0) = uo we have v(0) = I(u(0)) = u(0),
see Proposition 5.1.1. Theorems 5.3.2 and 5.4.1 imply that, on [0, ), u and v satisfy
the same weak integral equation with the same initial condition. As u is the unique
mild maximal solution, then, see [Kr/Ro,79], it is also the unique weak solution.
Thus we must have u = v = I(u) on [0, 7). This holds if and only if u € M on [0, 7).
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It is straightforward to show that ¥ = 7. Indeed, suppose P(7 < 7) > 0. Then, for
w € {f < 7}, u((w)) is well-defined and by the continuity of u, u(¥) € W*(5",Us),
which lies strictly inside the set W*?(S!, U,), see (5.1.2). This, though, contradicts
the definition of 7, see (5.3.17). So we must have P( < 1) =0 ie. P(f=7)=1.
We may therefore conclude that our maximal solution u(t), t < 7, is an M-valued
process.

)
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Existence of a Global Solution on
the Loop Manifold M

6.1 Introduction

We are now concerned with proving that our maximal M-valued solution is in fact
a global solution. As previously mentioned, general results on global existence re-
quire the coefficients to satisfy both local Lipschitz and linear growth conditions,
see [Br,97], for example. Recall that the term F is not of linear growth. As in
the case of deterministic PDEs one needs to consider different methods depending
on the particular problem studied. For example, in [Br/Ga,98], where they con-
sider stochastic reaction-diffusion equations on Banach spaces, they prove globality
of solution by using certain dissipativity properties of the drift term. As another
example, see [Ca/Cu,91], [F1/Ga,95], where they consider stochastic Navier-Stokes
equations, they use the fact that the drift term satisfies some orthogonality condi-
tion to prove global existence of a solution.

The method we employ is motivated (again!) by the works of Eells and Sampson.
We calculate certain energy estimates for our maximal solution. These estimates
play the réle of the linear growth condition for F' and ensure that the norm of our
solution does not ’explode’, i.e. the solution is global.

Notation : Throughout we adopt the following notation. We? := Wer(S! R?) and
we denote the norm on this space by | - |,,. We denote the norm on LP(S?,R%) by
| - |22 and that on LP(S%,R) by | - |z». For a map u on S* we will sometimes write

U :=u(co) and V,u := (Vu)(c),forc € S*. &
v

6.2 Some Fundamental Lemmas

First we recall how F is defined: for suitable u : S* — R% and ¢ € S?

d u' w ut ud
POE) = 3 (TN I ) Gr(o). . T (o) 5 0) 5(0)).

=1

We have the following fundamental Lemma.

77 :
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Lemma 6.2.1 Forue W*? withs > 1+ %,

| F(u) [5,< C(p,d) | Vu % (6:2.1)

L

for some constant C(p,d) independent of u.

Proof : Ass > 1+ 1 then Vu € C(S',R?) and so in particular Vu € L%(S', R9).

On R¢ we use the norm | z |= ¥4, | 2; | for z = (z),...,z4). For o0 € S* we have
du du’
| Flu) a)l—:;l'gf o) (o) (o) |

Fori,j,k=1,...,d, I‘fj : RY — R, are smooth with compact support and so

sup | T5 (u(0)) 1< sup, | T5(2) IS Mz < C

where C' = max{M;;; : 4,7,k =1,...,d} and is independent of u. Thus

d du
@) < 0@ 3 |5 Il 5o
d
_ z(z| )|—()|

C(d) | Vu(o IZI—-G)I— C(d) | Vu(o) |*.

Thus for some constant C(p, d) independent of u we have
P 2
o |F)(@) I do < C(p.d) [, | Vu(o) | do.

[

Definition 6.2.2 The energy density of a function u : St e of Cl-class, is a
real valued function e(u) : St — R defined by

e(u)(o) = %g(u(a))(V,u,V,u), ce S, (6.2.2)

where g is the metric on R? as constructed in Chapter 3.

The following inequality gives us the estimate we require for our term F" and the
result is particular to our metric.

Corollary 6.2.3 Forue W*?, s> 1+ %,
| F(u) |2< C(p,d, R) | e(u) |z» (6.2.3)

where C(p, d, R) is a constant independent of u. R > 0 depends on the manifold M.
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Proof: Recall that our metric g is a smooth function which coincides with the
Euclidean metric outside some closed ball, B(0, R) C R?, of radius 12, which contains
both the manifold M and its tubular neighbourhood U. It follows that

g(2)(€,€) =< &€ >, £ €RY, z € B(O,R)". (6.2.4)
Now as g is smooth it attains its minimum on the ball B(0, R), i.e. there exists
y € B(0, R) such that

9(v)(€,€) < g(2)(£,€), = € B(0,R), £€Rr’, (6.2.5)

As g is a metric on R? and y depends on R, there exists a constant C(d, R) > 0 such
that

|£ 1< C(d, R)g(2)(€,€), = € B(O,R), ¢ ere. (6.2.6)
Putting (6.2.4), (6.2.5) and (6.2.6) together, we deduce that
| € < C(d, R)g(a)(€,€), =,€ € B, (6.2.7)
Using (6.2.7) we have
| Vou 'S C(d, R)g(u(0))(Vou, Vo). (6.238)
The result now follows from (6.2.8), (6.2.2) and (6.2.1).
)

The following result will play an important réle.
Corollary 6.2.4 Foru e W*?(S', M), s> 1+ %,

| u 3%, < C(pd,R) (14 | e(u) [3,) (6.2.9)
where C(p,d, R) is a constant independent of u. R > 0 depends on the manifold M
and | - |12, is the norm on the space W12?,

Proof : Note first that | u |2, = |u |, + | Vu |%,. As W*?(S?, M), then the

L L
range of u is contained in M. It follows that

| u | < C(p,R),

where C(p, R) is a constant independent of u and depends on the manifold M. The
result now follows as in Corollary 6.2.3.

[ )
The estimates (6.2.3) and (6.2.9) will be essential in proving the following result:

¢ For the energy process e(u(t)), t < 7, where u(t), t < 7, is our maximal
solution, we have, for each t € [0,T) and k € N, the following estimate

E|e(u(tAoi)) i< Cp,d,T) {IE | e(u(0)) 'zp(sx'm) +l} e€®4T)  (6.2.10)

where the constant C(p,d,T) is independent of k and u and {04} is an in-
creasing sequence of bounded stopping times with o, < 7 and oy — 7.

This is the fundamental inequality needed to prove global existence of our solution.
The proof of the estimate is quite lengthy and technical. So as not to lose sight of
our goal, i.e. that of global existence, we first assume the above estimate and show
how to use it to obtain our result. The estimate is then proved in section 4 of this
chapter.

Y
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6.3 Existence Of A Global Solution

Theorem 6.3.1 Given any T > 0, fized but arbitrary, then our mazimal solution
is defined on [0,T], i.e. our solution is a global solution.

Proof : To prove the Theorem we just need to show that 7 = T a.s.. We follow
the method used in [Br/EL,98] where in place of their linear growth condition we use
the energy estimate above. To ease notation we will ignore constants unless they
depend on t or k. C will denote a generic constant. We begin with quoting the
following result from [Br/El,98]:

Proposition 6.3.2 Suppose that a.s on a measurable set O C Fo, 7 < T and
limsup, », | u(t) |,p< oo then P() = 0.

o

For each k € N define 7 := inf{t < 7 :| u(t) |sp> k}, where | - |5, is the norm on
WP Proposition 6.3.2 implies 7% is a well-defined stopping time. Moreover, in view
of Remark 5.2.2, our maximal solution satisfies the following It6 integral equation:

u(thAm) = ) + [ eI (F(u(s) + V(u(s)) ds
4 [ e () du(s)
+ -;-/:Mk e~ A=A L I (u(s)) H (u(s))}ds

for each t € [0,T) and k € N, a.s.. Henceforth we omit the terms V and Jir(H'H)
to ease notation. Using the triangle inequality, we may write

Elu(tAn) [}, < CE| e'(MT")Au(O) 5,
tAT,
+ CE | /o ke'(”""”)AF(u(s))ds p

$p °

tAT,
+ CE| / *emUA=OA T (u(s))dw(s) P, . (6.3.11)
0
Using the estimate of Theorem 4.3.2 and (6.2.3) we have
tAT) tATy
| [ et P u(s)ds B, < Cr [ F(u(s)) Ing ds

< Or [ e(u(s) fpds. (63.12)

Recall that the semigroup {e—m}»o may be viewed as a semigroup on W*P, sce
Chapter 3. In particular for any ¢t € [0,7) and k €N

|e~(tAmAy o < C(T) lu b, ue W, (6.3.13)

s,p?

Applying (6.3.13) and (6.3.12) to (6.3.11), followed by the Burkholder inequality and
the linear growth property of H, we obtain the following sequence of inequalities,
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which hold for t € [0,T) and k € N,

Blu(tAn) [, < CTIE|u() Byt O [ | efu(s)) 1 ds
+C(T)T"- 21E/ | H(u(s)) [}, ds

CTIE|w(0) [, + CTIE [ | e(uls Ami)) £ ds
+ C(T)Tl-fmfow“ 1+ | u(s) 2, ds

CTIE ] u(0) , + CT)E [ | e(uls Ama)) [ ds

+C(T) + C(T)Tl-fmjo' | u(s A ) 7, ds.

IA

IA

Using the estimate (6.2.10) it then follows that
Elu(tAn) [, <C(T)+ C(T)/ E|u(s A7) [?, ds

where C(T) = C(T){E | e(u(0)) [}, +1}eST). So by Gronwall we have, for each
t€[0,T) and k €N, )
Efu(tAn) |5, < C(T)etD), (6.3.14)

Note that for fixed ¢t € [0,T)

E|u(tAm) = /{M} | u(r) 2, P+ | u(t) |2, dp.

{t<n}

This implies k?P(t > 7;) < E | u(t A7) |55, which in conjunction with (6.3.14) gives

G(T)ec®

(t > Tk) s

Note though that as 7, < 7 a.s. for each k then {t > 7} C {t > 7}. So we have for
each k € N .
C(T)efT)

kp '
This implies, by letting k — oo, P{¢t > 7} = 0 and so ¢ < 7 a.s.. This holds for any
t € [0,T) and so we deduce that * = T a.s.. This completes the proof.

h

P(t>71) <

It thus follows from Theorem 6.3.1 that on any time interval [0,T], T < oo there
exists a unique mild solution to the Stochastic Nonlinear Heat Equation, (SNHE),
with our solution belonging to the loop manifold M = W*?(S§%, M), s > 1+ 1.

0
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6.4 Calculation Of The Energy Estimates

We are left with proving the following theorem.

Theorem 6.4.1 For the energy process e(u(t)), t < 7, where u(t), t < 7, is our
mazimal solution, we have, for each t € [0,T) and k € N, the following estimate

E|e(u(tAok)) [f» < C(pd,T){E] e(u(0)) 7, +1} P4 (6.4.15)
where the constant C(p,d,T) is independent of k and u.

Proof : We briefly explain the idea behind the proof. We need to somehow

calculate, using It6 formula, an expression for the process e(u(t)), ¢ < 7 and then
prove that the estimate (6.4.15) holds. The problem is that our maximal solution
only satisfies a mild integral equation which involves the semigroup operators e~*4,
t > 0 and this is very restrictive for calculating the estimate (6.4.15). To overcome
this difficulty, we approximate our maximal solution with a sequence of processes,
{un(t)}n>1, t < 7, which are of a higher regularity in the space variable. These
approximation processes satisfy a strict integral equation. We calculate the energy
of these processes using the Ité formula. As they are strict solutions the integral
equations they satisfy do not involve the semigroup operators. We then calculate
estimates for the energy of the approximation processes, using results of Eells and
Sampson. These estimates are similar to the estimate (6.4.15) above. (6.4.15) follows
by taking limits as n — oo. The proof will consist of a number of steps.
Step 1: We use the same approximation processes as in Chapter 5, i.e. for each
n € N, u*(t) = n(n + A)"'u(t), t < 7. For each n, u™(t), t < 7, is an admissible
Wst2#.valued process. In particular, as u™(t) € D(A) a.s., then for t € [0,T) and
k € N, u™ satisfies

W(tAoy) = ut(0)— /0””“ Au™(s)ds + /O'A”"Fn(u(s))ds
+f " H(u(s))dw(s) as.,

where F,, = n(n + A)"'F and H, = n(n+ A)~'H.

Step 2: We now wish to obtain integral equations satisfied by the sequence of
energy processes e(u™(t)), t < 7. In the subsequent, we will let u, v and w will
denote elements of W*?,

The metric g on R? is a smooth map ¢ : RY — L3(R% R). The Nemytski map G of
9, defined by G(u) := g o u, is a smooth map satisfying

G: W*P — W*P(SY, L3(R% R)),

where L3 is the space of bilinear symmetric maps. The first and second derivatives,
G’ and G", act through the following formulas:

G'(u)(v)(e) = ¢'(u(2))(v(a))(s-)s (6.4.16)

G"(u)(v,w)(o) = g"(u(a))(v(e),w(a))(-s*) + 29" (w(a))(v(a))(-,")
+2¢'(u(0))(w(a)(+5 ) + 29(u(a)) (), (6.4.17)
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where u, v and w € W*? and o € S'. Note that for each ¢ € S, G'(u)(v)(0)
and G"(u)(v,w)(o) belong to L3(R?% R). We omit the proofs of (6.4.16) and (6.4.17)
which are quite lengthy, referring the reader to [Br/EL98] where calculations of a
similar nature are carried out. Define the map 1 on W*? through the formula

D(u)(e) = e(u)(o) = %g(u(a))(V,u,V,u), ce S (6.4.18)

The following Lemma will be needed. It is important as it gives us explicit formulae
for the first and second derivates of .

Lemma 6.4.2 Fors > 1+ %, Y is a smooth map
¢ . W’vp N Ws—lvp(sl,m).
Moreover its derivatives, 1’ and ¥", act through the following formulas

¥ (u)(v)(0) = ¢'(us)(vs))(Vor, Vou) + 2¢(us )(Vou, Vov), (6.4.19)

P (u)(v,w)(0) = ¢"(ue)(ve,ws)(Vou, Vou) + 2¢'(us)(ve)(Vow, V,ou)
+ 29" (uo)(wo)(Vorv, Vou) + 29(u, )(Vov, Vow), (6.4.20)

where u, v and w € W*? and o € S'.

Proof : V : W*? — W* 17 is a bounded linear map, see Chapter 3. As G is
smooth it follows that the map

A: WP — WS, LH(RER)) x W*TIP x Wol?,
given by A(u) = (}G(u), Vu, Vu), is smooth. Define the trilinear map
T WP(SY, L3(RYR)) x WHP x WelP o We-tP(§1 R)

by
I(L,z,y)(o) = L(c) (z(0),y(a)), for o € S (6.4.21)

Ass—1> % then, see [Am,91], I is bounded and hence smooth. Finally note that
¥ =T o0 A and so 1 is smooth. The first and second derivatives of 1) satisfy

'l,b' : Wa,p — L(ws.p; W"—l‘p(sl,ﬂk)),
,¢)u: Wa,p —_ ACQ(W"F;W’_LP(SI,]R)).

We now prove (6.4.19). Using the chain rule we have
' (u)v = I'(A(u)) A'(w)(v).
Recalling that V is linear and bounded then A'(u)(v) = (G'(u)(v), Vv, Vv). More-

over as I is a bounded trilinear map we have, see [Ca,71],

V'(u)(v) = I(G(u), Vo, Vu) + I(G(u), Vu, Vo) + T(G'(u)(v), Vu, Vu). (6.4.22)
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Now (6.4.22), (6.4.21) and (6.4.16) together give us (6.4.19). The proof of (6.4.20)
follows in an identical manner.

[ )
For each n € N, define the process en(t), t < 7, by

en(t) = P(u™(t)), t <. (6.4.23)

From Lemma 6.4.2, with s replaced by s + 2, we deduce that e,(t), ¢ < 7, is an
admissible W**t!P.valued process. Moreover, by applying the Ité formula we have
for each k € Nand t € [0,T),

en(t Aoy) = +/ ) [Ful(u(s)) — Au™(s)]ds
+ /W* () Halu(s))du(s)
N .2_/(;Mak tr{¢"(u™(s)) (Hn(u(s)), Ha(u(s)))}ds. (6.4.24)

We aim to obtain an estimate for E | e,(¢t A o%) |7»,. The difficulty lies with the
integrand o' (u"(s))[Fn(u(s)) — Au™(s)}], where for u € W*?, with «™ = n(n + A)~!

P'(u™)[Fa(u) — Au™] = ¢'(w")[n(n + A) 7 F(u) — An(n + A) " u).
This may be rewritten as
Y(u")[Fa(u) = Au®] = ¢'(u")[Fa(u) - F(u")]
+ '(u™)[F (u") — Au™). (6.4.25)

In view of the fact that we will be taking limits as n — oo we leave the first term
on the RHS for the moment. To deal with the second term we have the following
crucial Lemma, which relies on a result from [Ee/Sa,64], see also [Ot,84]. We first
state this result.

Theorem 6.4.3 For each u € C*(S*,R?) there exists a unique solution
f:10,00) x S* — R? to the deterministic nonlinear heat equation

8f,

S (0) = Afi(o) (6.4.26)

with fo = u, where we have denoted f,(-) := f(s,-), s = 0. Moreover the following
equality holds

9lL) ) = Aef)(o)- | AL P (6.4.27)
fors>0,0€ 8.

Remark 6.4.4 In Theorem 6.4.3, A denotes the Laplacian acting on real-valued
loops, i.e. y : S! — R, see Chapter 3.

Lemma 6.4.5 Foru€ W™, 7 >3+1

P'()(0)[(-A+ F)w)](0) = Ae(u)(o)- | Au(o) |*, o € 57, (6.4.28)



Chapter 6 85

Remark 6.4.6 Note that the terms on both sides of the equality (6.4.28) belong
at least to W7=3? and hence, as n > 3 + %, are continuous. It thus makes sense to

talk about equality holding for all o € S1. &

Proof : Let v € C*(S?,R?) be given and let f, be the solution to (6.4.26) with
initial value fo = v. For s > 0

D W) _ ) O g p)as = wUN-A+ PG (6429
Using (6.4.27) and (6.4.29) we have for ¢ € S! and s > 0
() (@) (=A+ F)(f))(0) = Ae(f)(0)— | Afu(o) I* . (6.4.30)

Now as f is a continuous function in time then all the terms in (6.4.30) are. So by
continuity (6.4.30) will hold for s = 0. So, recalling that fo = v, we have

¢ (u)(@)(=A+ F)(W)(o) = De(u) (o)~ | Au(o) [*.
As C*=(S5,R?) is dense in W"P, then (6.4.28) holds for all u € W™»,

o

Before proceeding we note that e,(t) is a W*+1?(S!, R)-valued process and so in
particular e,(t) is a D(A)-valued process where A is the Laplacian on L?(S!,R)
with D(A) = W*P(S§Y,R). Thus Ae,(t) is well-defined and moreover, for n > 2,
A WrP(SYR) — W"=%P(S1R) is linear and bounded. As a result the process
QAen(t), t < 7, is pathwise continuous and thus pathwise integrable. Using (6.4.25)
and (6.4.28), (6.4.24) may be written

en(t Aoy) = en(0) + /OMAen(s)ds
+ [ W) - Far(s)ds
+ / {'(u" ()|~ Au™(s) + F(u"(s))] = Dea(s)} ds
[ () Halu(s))dus)
+ /0‘ "ltr{,p"(un(s))(ﬂ( (), Ha(w(s)))} ds.

As un(t) € W*+22($, RY) we may apply Lemma 6.4.5 to obtain

en(t A ox) = e,(0) / Aeq(s)ds
+ [ W EDFuls)) - F(s)ds
- [T 1w [ ds+ [ W 6) Huus))du(s)
[ S (6) (o)), Hafuls))} s, (6.4.81)
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To simplify notation we define for u € W*?

Ki(u) = ¢'(u")[Fa(u) = F(u)],
KXNu) = ¢'(u™)Ha(u),

K}(u) = %trz/)"(u") (Hn(u), Hy(u)).
A is the generator of an analytic semigroup {T}},5, on LP(S!,R), which in fact is a
contraction semigroup, with domain D(A) = W%?(S!,R), see Chapter 3. Moreover,

(6.4.31) can be considered as a linear equation in e,(s) and so it may be written as
an equation in mild form, i.e.

tAoy
en(tAor) = Tinoyen(0) + /0 Tinor-s K7 (u(s))ds
tAoy n tAok on
+ /0 Tinonms K2 (u(s))duw(s) + /0 Tinonms K3 (u(s))ds

tAOk
- /0 Tinon-s | Du"(s) | ds. (6.4.32)

Step 3: We are now in a position to calculate estimates for E | e.(t A o) [5.. We
have the following Proposition:

Proposition 6.4.7 The following estimate holds for each k, n € N and for each
te[0,T), '

tAc
0

BletAo) o S CaT){Eleal0) B 4142 [ eluls) o d)
tAoy
+C(p,d,1)E /0 An(u(s))ds (6.4.33)
where C(p, d, T) is a constant independent of n and k and
Anw) = {l e(w) Bp + 4 P, } | Fal) = F@) [, u€ W™ (6.4.31)

Proof : The proof of this proposition will be carried out in a number of lemmas.
Recall that our base space is L?(S!,R?). Now fix t € [0,T) and k € N and denote

n tACk o o
V(tAGR) = Tinmen(0)+ [ (Tinoums KT (u(5)) + Tinayos 3 () }ds
tAoy 2
_ /0 Tinos-s | Du™(s) |? ds.

In the following Lemma we find estimates for the terms E | V*(t Aay) |55, As earlier
We ignore constants unless they depend on n, k and ¢.

Lemma 6.4.8 For k, n € N and t € [0,T) the following estimate holds

n » 1-1 tAog n P
E|VtAo) [, < Elen(0)[L+ T ’IE/O | Ki'(u(s)) [7» ds

- L tAoy o P
+ T HE /0 | K2(u(s)) 2, ds. (6.4.35)
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Proof : Note that if u(c) > 0, o € S then (Tyu) (o) > 0 for all ¢ > 0. Thus we have
for each o € S, (Tt | Au |2) (6) 2 0, t > 0. Moreover, as our maximal solution
is W*?-valued and has, almost surely, continuous paths, then it follows that, al-
most surely, the processes K7 (u(s)) and K7 (u(s)) defined above, are W*=1?(S5! R)-
valued, at least, with continuous paths. Working pathwise we may then deduce that
for each, o € 51,

([ Kr(us)ds) 0) = [ Kp(u(s))(0)ds as.

Similarly for the integral involving K3. It follows that, for o € S,

V(EAG)©) S Tianeal®) @)+ [ Tinope s K (o)) (0)ds
+ /oth (Tenor—-s K5 (u(s))) (0)ds aus..

Using the Holder inequality followed by the Fubini Theorem gives

Julva(@) P do < [ ] (Tinsen(0) (o) P do
A7 [ [ (Tinorms K3 0(9) (0) P dods
_1 [Nk - P dods
#7735 [ [ (Tenare s K3 ((3)) (@) P dods,

which holds a.s.. (6.4.35) now follows by taking expectations and noting that {T'},5,
1s a contraction semigroup.

o

Using the triangle inequality and (6.4.35), it follows from (6.4.32) that for ¢t € [0, T)
and k € N,

tAok ,
Ele(tAok) 2 < E|en(0) 25 +E | fo Tinor-s K5 (u(s))dws |7,
l—l tAok n ? n p
#7758 [ K7 (u(s)) [ + | K3 (u(s)) [0) ds.
An application of the Burkholder inequality and using the contraction property of
{Tt}tzo then gives
¢
0

tAo) rn
+ 13 [ (1 K (o) B + | K5 () 1) ds

» 1-2 Aok n 2
Elea(tAon) [} < Elea(0) i +T" 52 [ | Kp(u(s)) I ds

where || - || is the norm on L(W??, L?(5*,R)).

We need now to calculate estimates for the terms involving | K7 (u(s)) |rs,

| K3(u(s)) |z» and || K2(u(s)) || . For this we need the formulae (6.4.19) and (6.4.20)
for the first and second derivatives of 1, see Lemma 6.4.2, and the following Lemma,
which again is particular to the extension of our metric.
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Lemma 6.4.9 The metric g satisfies the following estimates: for anya, b, x, y and
z€R?

g9(z)(a,0) S C | bl c], (6.4.36)
g()y)a,b) < Clyllallb], (6.4.37)
9'(z)(y,2)(a,0) S Clyll 2zl all b}, (6.4.38)

where C(d, R) is independent a, b, z, y and z € R%, and R depends on the manifold
M.

Proof : Recall that

g:R* — LyR%R)
g :RY o L(H&d; L;(le;IR))
¢ :R? — Lg(IRd; E;(IR"; R))

are all smooth maps and so on the closed ball B(0,R) (see the proof of Corollary
6.2.3) we have

sup {]g(a) ey +19'(2) L +16"(2) I} S C (6.4.39)
z€B(0,R)

where | « |zs, | - |z and | - |z, are the norms on L3(R%R), L(R% L3(R% R)) and
Ly(R% L£35(R% R)) respectively. Furthermore g coincides with the Euclidean metric
outside B(0, R), i.e. for z € B(0, R)®

9(z)(v,w) =< v,w >, v,w € RY, (6.4.40)

which implies that ¢’ and ¢” vanish outside the ball B(0, R). This observation along
with (6.4.39) and (6.4.40) imply the estimates (6.4.36), (6.4.37) and (6.4.38). This
completes the proof.

o
We begin with estimating | K(u) |zs, for u € W*P(S?, M), where we recall

K7 (v) = ¢'(u")[Fa(u) — F(u")]
with u™ = n(n + A)~'u and F, = n(n + A)"F.

Lemma 6.4.10 Foru € W*?(S', M), s> 1+ %, the following estimate holds
| K7 (u) [2,< C(p,d, R) (1+ | e(u) [Ls +An(u)) (6.4.41)
where C(p,d, R) is independent of u and n and A, is given by (6.4.34).

Proof : Using (6.4.19), (6.4.36) and (6.4.37) we have

KW B < [ g ) (Falue) = F(VuZ, Vu3)Y do
+/ {g(u™)(Vul, V Fo(u,) = VF(u2)) do



Chapter 6 89

IA

[ VBao) = FG) PI 903 [ do
+ [ 1 Va3 P VE(w) = VF(@) I do

< sup | Fa(ue) = F(ug) || Vu” |L2p
0€S?

+ sup | Vug |P| V(Fa(u) — F(u")) |7»
o€S? e

< {Ive i + 1w B R - P I,
The result follows by noting that
l Yu |2};p S I n |l 2p S l u |1 2p (6442)

and then applying (6.2.9).
[ )

We now turn to estimating | K3(u) |}, for u € W*?(S?, M), where we recall

1 n n

K3 (u) = 5tr{y"(v”) (Ha(u), Ha(u))}-
Note also that " (u") (Ha(u), Ha(u)) € Ly(WP»; LP(S',R)) and for
(z,y) € WO x W9 we have

" (u") (Ha(u), Ha(w)) (2,y) = ¥"(u") (Ha(u)z, Ha(u)y).

Lemma 6.4.11 Foru e W*P(S',M), s> 1+ ;—,, we have the following estimate

| K3 (u) |2< C(p,d, R) (1+ | e(u) |Le), (6.4.43)
where C(p,d, R) is a constant independent of n and u.
Proof : Recalling that tr : Loy(W%?; L?(§,R)) — L?(S*,R)) is linear and bounded,

then we have, again ignoring constants depending on p only,

n 1 e, n
| K3(u) s < || §¢I (u™) (Hn(u), Ha(u)) “'[,,,(Wﬂm;u(sl,m))

= s | o (e (Ha(w)z, Ha(u)y) e

zlo p=lylop=1 2

= sup | w"(u")(H( )z, Ha(u)y) (o) |P do.

lzlo.p=lvle.p=1

Denoting X := H,(u)z and Y := H,,(u)y, then using (6.4.20), (6.4.36), (6.4.37) and
(6.4.38), we have

| K3(u) 12 < sup [ (120(u3)(VY, VXo)

l=l=lv|=1
+2¢'(ug)(X0)(VYs, Vug)
+2¢'(u3) (Y6 )(VXe, Vug)
+9"(ug)(Xo, Yo ) (Vug, Vug) |7) do

< suwp [ {2] VX, VY, P

lzl=lyl=1
+2| X(0) PI VY, PP Vug [P
+2|Y(0) PI VX, [P Vug [P
+1X, PIYs P Vup [} do. (6.4.44)
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To complete the proof we need the following:

Lemma 6.4.12 Foru € W*?, s > 1+ 3, 2,y € WO with | z |o,=|y lo,= 1, there
exist constants Cy(p) and Ca(p) independent of z,y,u and n such that for all o € S'

| X(o) | + | VX(0) |< Ci(p) (6.4.45)

and

|Y(0) | + | VY(0) IS Calp). (6.4.46)

Proof : It is enough to prove the estimate (6.4.45). Thus note that in particular

X € W?? and so VX is continuous with the following sequence of incqualitics
holding

| Xs |+ VX, |< sup (X |+ VX N} S Cpo| X |2 (6.4.47)
oc€S

Note that
| X 12,< Cp | Hu)z |1p .

Recall that H is the Nemytski map corresponding to b which is smooth with compact
support. As | z |g,= 1, we have

| Hwz < [, 1 hu(@))alo) Pdo < Gy [, 12(o) P do < C,.
This along with (6.4.47) proves (6.4.45).

o

Using (6.4.45) and (6.4.46) our estimate (6.4.44) for | K2(u) |7, now reads, for some
constant C(p) depending on p only:

| K3(u) [}, < C(p)/Sl {1V 7 +| Vul P +1} do.

Note that, for all z € R, z} <1+ z, and so
| Vul P< 14 | Vul |7, (6.4.48)
Using the estimate (6.4.42) then gives us the estimate (6.4.43).
| Vu* (7o < C(pydy R) {1+ | e(u) 75} - (6.4.49)
[

In a similar manner we obtain the estimate for

Il K5 (u) l|=1 ' (u") Ha () |oowos,Le) -

Lemma 6.4.13 Foru ¢ WweP(S', M), s> 1+ %, the following estimate holds
Il K7 (w) I< C(p,d, R) {1+ | e(u) |70} (6.4.50)

where C(p,d, R) is a constant independent of u and n.
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Proof: It follows from (6.4.19), (6.4.36), (6.4.37), (6.4.45) and (6.4.48) that

| K3(u(s) II” = sup {Ig(u WX ) (Vug, Vuy)

1‘|9P=l
+ 2g(u;)(Vuy,VX,) P do}
¢ p>/sl | Vuy | + | Vuj P do

C(p) [, {1+ 13 7} dor

Now applying (6.4.42) and (6.2.9) gives us the result.
[

IA

IN

The estimates (6.4.41), (6.4.43) and (6.4.50) imply
Ele(tAor) |l < C(p,d, T)E{1+ | €a(0) |72}
+C(p,d,T ra/m* | e(u(s)) 2, ds
+C(p,d,T) m/ An(u(s))ds

This completes the proof of Proposition 1.

o

Step 4: We now prove the estimate (6.4.15) for the energy pro
We first prove the following: gy process e(u(t)), 1 < 7.

Lemma 6.4.14 For eacht € [0,T) and k €N

E|ea(t Aok) —e(u(tAok)) [~ 0  asn— oo, (6.4.51)

Proof : Recall that e,(-) = ¥(u"(")) and e(u(-)) = ¥(u(-)). As ¢ is continuous and

u" = n{n+ A)~'u = u, as n — 00, then we have, for each t € [0,T) and k € N, a.s

| ea(t A o) — e(u(t A ox)) [7»— 0 asn — co.

Furthermore, noting that

< C) lenlt Aow) By + | e(ult A o)) I
< Cp) | e(ult Aow)) o, Dl

then as E | e(u(t A o)) [L»< oo we may apply the LDC Theorem to obtain our
result.
[

The proof of the following Lemma follows in exactly the same manne i
r
5.3.7 and so is omitted. ' as in Lemma

| en(t Aow) = e(u(t A ok)) |1
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Lemma 6.4.15 For each t € [0,T) and k € N,
tAcgy
]E/O An(u(s))ds —»  as n — oo (6.4.52)
where A, (u) is given by (6.4.34), i.e
Aulw) = {l () oo + 1w By} | Faw) = F@) 7, we woe
A
Recall the estimate (6.4.33) for E [en(t Aoy) [F,:
Blentha) o < ClpdT){E]en®) By 4148 [ | c(ufey) I, ds}
tAoy °
+C(p,d, T)E /0 An(u(s))ds,
Then, in view of (6.4.51) and (6.4.52), we let n — oo and deduce that
2| e(u(t Aow)) 1< C(pd, T) {E | e(u(0)) [3, +1 + £ L7 ety ds
Note the following
tACk tAoy
B, ) Brds = B [ eluls nn)) 7, as
< IE/] (u(s A o)) |3 ds
= /0 E|e(u(sAay)) |2, ds.

It then follows that for each t € [0,7’) and k € N,

Ele(u(tAow)) s < Clp,d,T){E|e(u(0)) 2, +1)
+C.A,T) [Be(u(s Aow)) I, ds.

By applying the Gronwall Lemma to the function
p(t) =E | e(u(t Aow)) 3,
we have for ¢t € [0,T) and k €N,
E| e(u(tAow)) [ < Clp,d, T) {E | e(u(0)) [}, +1) eClo)

This completes the proof of Theorem 2.
)

This concludes our work on this particular problem.
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6.5 Further Work

There are still avenues left open for further research. The line of work the au-
thor wishes to continue in would involve investigating the qualitative behaviour
and ergodic properties of the solution to the SNHE. This should proceed along the
following lines of thought; solution flows, Lyapunov exponents, attractors a.n‘d/()r
invariant measures. In particular, suppose u € M and u(t), t > 0 is our solution
starting at u. Define the transition operator F; by

(Pf)(u) = E[f(u()], fe Cu(X), (6.5.53)

where Cy(X) is the space of real-valued bounded continuous functions defined on
X := W*?(S',R%. The family {P:}¢50 is the transition semigroup corresponding to
u(t), t > 0. We would be interested in studying Feller and strong Feller properties,
as well as irreducibility of this transition semigroup, see [DP/Z,96] and references
therein. Existence and uniqueness of invariant measures for {P};>o would be a
challenging problem. Indeed existing theory does not meet our criteria since our
process takes values in the loop manifold M. For example, uniqueness of invariant
measures needs to be stated properly as M is not a connected manifold.

It would also be of interest consider the SNHE and similar problems in the case when
the starting manifold S! is replaced with a higher dimensional compact manifold,
possibly with boundary. One of the motivations for this comes from Quantum Field
Theory, see [Br/Le,99] and references therein. In this paper, they are concerned with
diffusion processes over spaces of maps u : N — M, where N is two dimensional

manifold with boundary.

©
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An Approximation Result on
Stratonovich Integrals

7.1 Introduction

In this chapter we prove an approximation result of the Wong-Zakai type for S-
tratonovich integrals in M-type 2 Banach spaces. In particular, consider a process

z:[0,T) x @ = X, T < o0, given by

(1) = 2(0) + [ Bz (s)) o du(s) (1.1.1)

where w(t), t 20 is a Banach space valued Wiener process, h is a suitable function
of C! class and the integral in (7.1.1) is the Stratonovich integral, as defined in
Chapter 2. By considering piecewise linear approximations of w(t), we prove that
1 is the almost sure limit of solutions to certain ordinary differential equations in
C(0,T; X), the space of X-valued continuous functions on [0,7]. The first result of
this type was proved in [Wo/ Za,] in finite dimensions. Since then there has been
considerable work done in this area relating to stochastic ordinary and partial d-
ifferential equations, both in finite and infinite dimensions, see [Ma,84], [Mo,88],
[Tw,92], [Br/Fl,95], for example, and references therein. Our result is a generalisa-
tion of a result in [Dow,80], where they treat the Hilbert space case. Before ending
this subsection we recall certain facts about abstract Wiener spaces, AWSs, and
M-type 2 Banach spaces.

Let i : J—E be an AWS and {w(t)}:50 the canonical E-valued Wiener process
defined on some complete probability space (2, F,P). Let {F;}i>0 be the standard
filtration induced by {w(t)}i>0. Note that the law of the random function

(t__s)—%(w(t)—-w(s)) : Q._’ E equals g where g is the canonical Gaussian probability
measure on E. It is straightforward to show that for p > 0,

w(t) — w(s)
(t - s)%
Furthermore by the Fernique-Landau-Shepp Theorem, see [Kuo,75], m, < oo for

each p > 0. Let X be an M-type 2 Banach space. Recall that, under this assumption,
we have the following Burkholder inequalities, see [De,91):

myi=E | b= [ 121 du(e). (1.1.2)

94
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e For any X-valued martingale {M,}.ex and p € [2,00) we have

Esup | My [3< Clp, X)E{Y. | M — Mocy [%)5, (7.1.3)

where C(p, X) is independent of n.

e ['or any progressively measurable process ¢ taking values in L(E, X) with
T 2 )
Efy 1€Q) [L (g x) dt < 0o we have

t ~ T
Eo?tlspT | A £(s)dw(s) < C(P:X)IE[/O | €(s) l%(E,X) ds]‘f, (7_1.4)

where C(p, X) is independent of T and ¢.

©

7.2 The Approximation Result

Suppose f: X — X a Lipschitz map which is bounded. Let 4 : X — L(E,X) be a
C! map , i.e. h is differentiable with continuous derivative k' : X — L(X,L(E, X)).
Assume that h and A’ are Lipschitz in X and that they are bounded, As a con-
sequence the map tr(h'h) : X — X is Lipschitz and bounded where ir(h'h)(z) =
tr{h'(z)h(z)}, z € X. Here tr : Ly(E;X) — X is a bounded linear map relating
to the AWS ¢ : H — E, see Chapter 2. For each T < oo, fixed but arbitrary, there
exists a unique continuous progressively measurable process z : 0,7] x 0 — x

satisfying, for t € [0, 7],
t i
2(t) = 2(0)+ [ Sla(s)ds + [ h(a(s))du(s)
+3 [ r{EEEDAEE))ds, as, (1:2.5)
where z(0) = 7o € LP(0, X) and p > 2, see [Ne,78]. In particular z is a solution to

the Stratonovich equation

dz(t) = f(z(t)) + h(z(t)) 0 dw(t) (7.2.6)

and r may be written as
() =2(0)+ [ S(a(Dds + [ h(a(s) o du(s) (121

where the last integral on the RHS is a Stratonovich integral.
Using the Burkholder inequality (7.1.4) and the boundedness of the maps f, p

and tr(k'h) one may show directly that for s,t € [0, T]
E|z(t) - 2(s) [xS Cp, T, X) [t =s |

Thus z is E-1dlder continuous considered as a map z: (0,T] — LA, X). ,
2 : . . . N
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For n € N, let 7, be a partition of [0, 7], i.e.
0=t0<t1<t2<...<tN(n)=T.

We assume the partition satisfies

* — Cl
meshr, := ngrgnl\il()r(l)-l | tipr — & |< — (7.2.8)
N(n) < Cyn, (7.2.9)

where C) and C; are constants independent of n. For a fixed partition 7 = Tn, We
consider the following piecewise linear approximation of w(t):

-— t'.
liy1 =t

we(t) = w(ts) + (w(tinr) —w(t), t€ [titip).

For each partition, 7 = m,, of [0,T], let 2, : [0,T] x @ — X be the solutions to the
family of ODEs, indexed by w € §2,

d:C,r(t) dww(t
20— hen 22 4 a0, (7.2.10)

where z,(0) = zo and 0 < ¢ < T In particular, for ¢ € (t;,2,41), ., takes the form

(w(tm) = w(t;)

tiy1 — 1

%m=mmw-3wﬁn )@+£ﬂumw& (7.2.11)

t

Theorem 7.2.1 Forp>2andn €N

E Y-z, (1) |5 <Cn%,

oégngr() Zra(t) [¥ < Cn (7.2.12)
Furthermore .

Tr, () = () in C(0,T; X), as. (7.2.13)

asn — oo. Here C(0,T;X) is the space of X valued continuous functions on the
interval [0, T).

Remark 7.2.2 The constant C' appearing in (7.2.12) depends on the space X, p,
T, m, and the bounds and Lipschitz constants of f, &, A" and tr. ¢

Remark 7.2.3 This theorem is an extension of a result proved in [Dow,80]. There,
the case p = 2 with X being a Hilbert space was treated. Most of the proof presented
in [Dow,80], which itself is a generalisation of a similar result in [McS,74], carries
over with no difficulty to the case where p 2 2 and X is an M-type 2 Banach space.
The Burkholder inequality (7.1.4) is the main tool we use here. Even so, there are
still problems that arise which require more work. Although Dowell was familiar
with stochastic integration in 2-uniformly smo'oth Banach spaces and the inequality
(7.1.4) (for p = 2) he was not able to 'deal Wlt%l the Banach space case because of
the term involving the {r map. There is a consxdera}ble level of difficulty in dealing
with the ¢r map in Banach spaces as opposed to Hllbeft spaces. To deal with this
we make use of the M-type 2 property of our space, in particular, the inequality

(7.1.3). | , o
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Proof: Fix a partition 7 = 7, = {0 < tg < t1... < tnw) = T'} and denote z, by
Y. Set T; = x(tj)’ Yy = y(t ) = .CL',Y( ) A 1= tJ+1 —'t and A W = 'LU(tJ.H) (t)
To simplify notation we put f 1dent1cally zero. This w1ll not dffect the result owing
to the conditions put on f. Moreover, C will denote a generic constant depending
only on the space X, p, T, m, the bounds and Lipschitz constants of h, b’ and tr.
For each t € [0,T], let k be the largest integer such that t € [ty, tx41). Moreover, for
r>t,r€(0,T),set R(n) = max{m :t, < r}. Then, using the triangle inequality,
we have

E sup |2(t)—y(t) [x < CEsup {|a(t)—2(l) [x +|y(ts) —y(t) %)

0<tLr 0<t<r

+ CE te) — P
osup 12t =yt Ik - (7.2.14)

Suppose, for the time being, we have the following estimates

B sup {| 2(t) = 2(t) [ + [y(t) = v() [k} < Cn(=), (7.2.15)
B, sup | z(te) — y(t) x< n(m) + C /0 "E(v(s))ds, (7.2.16)

where
) = spp, 1o~y [ (7.2.17)

and n(r) is independent of k and satisfies
n(r) < Cn73,

(Note, for example, that (mesh7r)2 is a term of the form g(7).) From (7.2.14),
(7.2.15), (7.2.16) and (7.2. 17) we may deduce that for all r € [0,T) :

Ey(r) = E sup | z(t) — y(t) [x< Cn(m) + C /0 " B((s))ds.

0<Lt<r

An application of Gronwall’s Lemma implies that
E(y(T)) < Cn(m)exp®®

ie.
B sup | 2(t) - y(t) [x< O,
0<t<T

To complete the proof of Theorem 7.2.1 we need to prove the estimates (7.2.15) and
(7.2.16). We begin with (7.2.15).

Lemma 7.2.4 With the above notation
E sup {] z(t) = o(te) [k + 1 y(te) = y(t) [x} < C(meshr)3. (7.2.18)

0<t&r
Proof: Note first that from (7.2.5) and the boundedness of the maps h and tr(h'h)

we have

E sup | z(t) — z(t) k< C(meshr)? + CE sup I/ h(z(s) )dw( ) 1%

ogtgr . 0<t<
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It then follows using the Burkholder inequality and the boundedness of A that
E sup |z(t) — z(ty) [ < CT% (meshr)%.
0<t<r

Recall Taylor’s formula in integral form, see [Ca,71]:

1
y(a) — y(b) = /0 (a = b)y'(b+r(a - b))dr. (7.2.19)
For some 0 < s < 1 we have, using (7.2.19), (7.2.10) and the boundedness of h,
ly() —y(te) 5 = [y(te+sOit) = y(ti) [%

- /0 Ly (b + (5880 (sARt)dr %
|/’ Y (tk + rAgt)(Axt)dr %

= |/ y(te + rBet))(Agw)dr %
< Claw g, (7.2.20)

Using (7.1.2) we infer that
E sup | y(t) — y(te) [ < C(meshm)?.

0<t<r
This completes the proof of Lemma 7.2.4.
o

Fix an interval [t,~,t,~+1] in the partition 7. We quote another form of Taylor’s
formula, see [Ca,71]:

0 y(t) = (a— B (B) + [ (1= 50+ s(a—B)(a~ ba—Bds.  (7.221)
Using (7.2.21), the chain rule and (7.2.10) we obtain
y(ti) —y(t) = Bi ity'(t +/ (1 —s)y"(t; + sA;t)(Ajt, Ajt)ds
= h(y;)Ajw
b [0 MLt + AR + 58,0)(A 0, Asu)lds,

It then follows, denoting s; := t; + sA;t, that

y(tk) — y(to) = ;)(yj+1 - ;)
= S b+ M) A0, Arw)

k-1 .1
+ Z/o (1 = s)h'(y(s;))h(y(s;:))(Djw, Ajw)ds

k-1 41 , ‘
- z /0 (1= s)h (y,-)h(yj)(w, Ajw)ds.
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Recalling that
20)+ [ he(@)duls) + 5 [ tr (K (a()ha()ds,
we may write
1< 1., 1
y(tk) —z(ty) = Ax+ Be + '2-Ck + Dy + —Q-Lk + .2_]Pk’

where

k-1 .1
tr = 3 [0 SHF D) = K)o, Anulds

By = Z(h y] J)AJw
o, = i(h'(y»h(y»—h'(m)h(ccj))(Ajw,Ajw)

k-1 ty
Di = 3 bz - | ha(s))du(s)
E, = Z{h'(m, (z;)(Ajw, Ajw) — tr{h'(z;)h(z;)} At}

F, = \;trh' z;)h(z; At—-/o tr{K(2(t))h(z(2))} dt.

7=0
We begin with proving:
Lemma 7.2.5 Using the above notation we have

E sup | Ak + Dx+ Ex + Fi [%< C(meshr)t.
1<k<R(n)

Proof: Consider the term Ay = Y525 T, where

=/0 (1 = ){ (y(si)h(y(s:))(Ajw, Ajw) = K'(y;)h(y;)(A;w, Ajw)}ds.

The boundedness and Lipschitz properties of A’ and A, along with (7.2.20) imply
that

Tl € [ HF0) = R hl(s)(w, Au) | ds

+ [ 1R (blo(s3)) = b)) Ay, Ajue) x ds
< Clajwlzly(s) -yl
< Clawlg. (7.2.22)
Using (7.2.22) and Holder’s inequality for sums we have

N(n)~1

E . sup lAk|§:<CN )’ME > lAw]

©1gkgN(@n) o=
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Applying (7.1.2) (with p replaced by 3p) gives us

N(n)-1
E s A X< CN(n)P? 11 ¥
1<keN(n) |41 e CN ) f\:: At
It then follows, using (7.2.8) and (7.2.9), that
E sup | Ak %< On?(meshr)¥Fn < C(meshr)%. (7.2.23)

1<k<N(n)
Consider the term Dy = ¥52) h(z;)A;w — fi* h(z(s))dw(s). Define

s ) h(zj) for t; <s<tjyy
h(s)‘{o if s> 1 '

ﬁ(s) is well-defined, adapted to the filtration {F:},50 and moreover, 5 ﬁ(s)dw(s)
makes sense for all ¢ € [0,7]. We may write -

Di = [*1h(s) = hz(s)ldu(s).

Using the Burkholder inequality, the Lipschitz property of & and the properties
(7.2.8) and (7.2.9), it follows that

t .
Dl < E h(s) =/ z
IEIS:EE(”) | Dk ¥ < o?:lgr | A [A(s) — h(z(s))]dw(s) [%

< CB([| 1h(s) = h(z(5)) }o,x) ds)

R(n)-1

= C( L [ 1he) = ha(s) o, do)'

1=0 t
R(n)-1

ey [ laials) f ds)?

1=0 ]
< CEsup [z(t) —=(t) [%
0<t<r

IN

where [ is such that ¢ € [t;,¢;41). Using Lemma 7.2.4 we deduce that

E Dy [% < Cmeshr?, ,
15:?:12(71), k[ Cmeshr (7:2.24)

Consider the term Fi. Then

(Felx = 3 [ iR s} = ek (2()h(a(0))) )t |

< Z/ | tr{(z5)h(z) — K (=(0)h(a()} |x de
< c"z [ IR @) = K )(0) Lo
< OF [ {1 Kahas) = K b)) Lo

+ | B(z;)h(z(t)) ~ B'(2(t))h(z(2)) ILQ(E;,,\?)} dt.
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Using the boundedness and Lipschitz properties of g and h’, we deduce that

41

k-1
| Fi |[x < CZ/ | z; — 2(t) |x dt
5=0"4

< CT sup | a(t) —2(8) |x dt,

- 0<t<r

where [ is such that ¢ € [t1,ti41). Again, using Lemma 7.2.4, we conclude that

E sup |F|%< Cmeshrs, (7.2.25)

1<k<R(n)
Finally, we deal with the term Ej and we will prove

E sup | Ex %< Cmeshr?, (7.2.26)
1<k<R(n)

This part of the proof differs considerably from [Dow,80]. Dowell proves (7.2.26)
using the properties of the inner product on a Hilbert space and the proof is quite
straightforward. We do not have an inner product to work with and instead we
make use of the M-type 2 property of our space X. Let Ej = Zf;é A; where

A; = B(z;)h(z;)(B5w, Ajw) = tr(h'(z;)h(z;)) At (7.2.27)

We first show that Ey isan X -valued martingale with respect to the discrete filtration
{Fihickgriny - For 0<j<k—-1,2;: Q- X and w(tjy) —w(t;) : @ — E are
Fi,,, measurable. Using the continuity of the maps h, h' and tr(h'R) it follows that
each A; is Fi,,, measurable. We deduce that Ej is J;, measurable. To prove E} is
a martingale we are left with showing that E(Ex | Fi,_,) = Ex-1. For this it suffices
to prove that E(Ak-1 | Ft._,) =0.

Denote

Uiy := A (@) iz ) (Dkrw, D).
Then
E(Upar | Fier) = ER (zpor) R(zra1)(Bkmrw, Bpoqw) | F,
= EM (zk-1)h(zk-1)(Dkorw, Dgoqw)]
= (o= thr) [ W (@r0)h(@ren)(e,e)di(e)
= (Dert)tr{k (zo-1)h(zr-1))
= E[(Agat)tr{h(zi-1)h(zs-1)} | Fpy]- (7.2.28)

As zp-1 18 Fupy measurable, then so is tr{h'(zi-1)h(zx-1)}, which explains the
final step. Thus (7.2.27) and (7.2.28) imply that B(Ax-1 | F,_,) = 0. We con-
clude that {Ek},}i’;) is an X-valued martingale with respect to the dicrete filtration

{Fu.}i<k<riny * Since X is an M-type 2 Banach space it {ollows that
R(n)-1

E sup | Ex XS CE{ Y | Ej—Ejq [})5.

18k<R(n) j=1
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Thus R

sup 345 s CEL Y, | As- [5}E

1<k<R(n) j=0
Applying the Hélder inequality for sums gives

R(n)
sup §:A K < CRMEFTEY. | A %
=1

1<k<R(n) i=0

N(n)
< CN()F' Y E[Aj i (7.2.29)
=1
Note that
E|A; % E{(| h'(z;)h(z;)(Ajw, Ajw) |x + | tr{k'(z;)h(z;)}(Ajt) |x}

CE{| Ajw [§ + | Azt 7}
C(Ajt)". (7.2.30)

IA A IA

It follows from (7.2.29) and (7.2.30) that

N(n)
E sup |Exly € CON@)E' S (/)

1<k<R(n) =
. N(n)
CN(n)z™! >~ (meshr)?
=1
CN(n)%(meshr)?
Cmeshr?. (7.2.31)

IA

<
<

Lemma 7.2.5 now follows from (7.2.23), (7.2.24), (7.2.25) and (7.2.31).
A

Lemma 7.2.6 For a constant C independent of k and r

E Be+Tili<C [ E
15:212(1;)! et Culks _/0 7(s)ds (7.2.32)

Proof: As in the proof of Lemma 7.2.5, define

y(s) = h(y;) — h(z;) ift; <s <tjp, where0<j<k~1
10 if s > ty.

Y (s) is well-defined, adapted to the filtration {Fs},50 and f§ Y(s)dw(s) makes sense
for all ¢ € [0,T). Moreover, =

p t
| Be b=l [ ¥(s)du(s) &
Usirng the Burkholder inequality and the Lipschitz properties of h, it follows that

E su Bk = Esu d P
lsksg(n)‘ x <tI<)r' Y(s)duls) %
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IA

CE([ 1Y(5) fimx) ds)'
R("’)—l t41
= Cu L [ 1h(w) - b) Figex) ds)'t

Jj=0 ty

R(n)-1 e
< CE( Y lyi—zi [k Ajt)

Jj=0

R{n)-1

< CK E v(t)7 Ajt)?

Applying the Holder inequality for sums gives

R(n)-1
E sup |Bilx < CR(n)? -IIE Z () (A; t)
1<k<R(n) i=
R(n)-1
< CN(n)i(meshm)i™ 3~ E(y(t;)A)
J=0

< ¢ [ Ba(s))ds,

which constitutes the first in proving Lemma 7.2.6. Consider the final term Cj.
Then

k-1
ICklx = | D (K'(y)h(y;) — ¥ (zi)h(z;))(Ajw, Ajw) |x

j_O

< Z {1 (A'"(y5) = b'(z;))h(z;)(Ajw, Ajw) |x
+ 1 A (y5)(R(y;) = h(25))(Ajw, Ajw) |x}
k-1
< C’;)Ixj-yj x| Ajw [%

Applying the Hélder inequality gives
| Tk P< CN () IZm vi [kl Agw 3.

On taking supremum over k and then expectations we get

R(n)-1
E sup |Ci xS CN(n)™ Z E|z;—uy; [k Ajw [

1<k<R(n) =0

Since both z; and y; are Fi,-measurable and A;w is independent of F;, then using
the properties of condltlonal expectation and (7 1.2) we have

E(| z; — y; I%| Ajw 'Eo) = EE(| &5 —y; %] Ajw |F 7| 7))

El| zj —y; [% B Ajw [F] Fy)]

= Bl z; —y; [% B Ajw 7))

S ClAitP K| 2 —y; [%). o (1.2.39)
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It then follows using (7.2.33), (7.2.8) and (7.2.9) that

R(n)-1
E sup |[Cilx < CN@P > Elzj—vy; %At
1<k<R(n) 7=0
R(n)-1
< CN(n)P"!(meshr)?! Y. (At)E sup | z(r) —y(r) %
7=0 0<rst,

R(n)-1

< C X E(()An).
37=0
Since 4(s) is nondecreasing we can conclude that

B sup | Tk [x<C [ B(y(s))ds,
1<k<R(n) 0

which concludes the proof of Lemma 7.2.6. The proof of Theorem 7.2.1 is now
complete.

)




Chapter 8

Appendix: A Result On Fractional
Powers

Introduction

tl‘he aim of .this Appendix is to prove that the generalised factorisation operator
introduced in Chapter 4, is the fractional power of a certain abstract parabolié
operator.

Let Y be a Banach space and A a positive operator on Y, i.e. (A+ A)™! is bounded
for A > 0 and for some C' > 1 we have

- C
A 1 —
[ (A+A)7 oS Y Az (8.0.1)

One may then define the fractional powers A%, z € C, of A, through the formula

[ I F(m) *° z4+n~1 A m=-n
Ao = [(z+n)I'(m-n-2) /o A ATTHA+ A)TedA, (8.0.2)

where z € Y, m, n € Nog with —n < Rez < m —n and I is the Euler Gamma
function, see Chapter 4. As A is positive, then A is a bounded linear operator. In

géjzjlcﬁ;azhzcﬁ:ﬁutll;at “'“("M) = F(a)l}(l—a)’ the fractional power A%, a € (0,1), is
i
Aoy = sin{ma) [, _, -1
L= —-7-—/0 AN+ A)'ed), zeEY (8.0.3)

Let X be a Banach space. Fix0 < T < oo and p € [1,00). Consider the operator
Ar defined on a subspace of L*(0,T; X) (whose norm we denote | - |1») through the

formula
(Aru)(t) = (Aru)(t) + (Bru)(t) = Au(t) + u'(t), a.e. t €[0,T],

where —A is the generator of an analytic semigroup on X and u' denotes the weak
derivative of u € LP(0,T;X). We aim to prove that for A > 0, o € (0,1) and
ueE LP(()’ T; X) , |

| —ay, 1 pa
()\+AT)’ u= gl (8.0.4)

105
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where R is the factorisation operator, given by
t
(RAu)(t) = /o (t = 5)*te~UmMe=(t=)Ay (g, (8.0.5)

To prove (8.0.4), we first show that A generates a semigroup {M,} >0 on LP(0,T; X)
and then we will use the representation

A+A)1= /w e~ M,ds.
0

Given this, we show that A7 is positive and then we apply the formula (8.0.3) above.

Remark 8.0.7 This result was essentially proven in [Br,97]. We collect together
here the relevant background material and results needed to prove (8.0.4), which
were not explicitly stated in [Br,97]. Although most of the results given here are
considered well known, we often provide proofs which could not be found in the
literature.

Throughout this Appendix we assume that —A generates a Co-semigroup
{e—tA}tZO on X. It will be stated when we use the following additional assumptions:

(al) A is a positive operator, i.e. (A+ A)! is bounded for all A > 0. In particular
there exists M > 1 such that
M

[ (A +A)™ |.<_m, A20.

(a2) For all s € R, A" is bounded and there exists K 2 1 and 0 < v < % such that
| A |< Kevhl,

Remark 8.0.8 (a2) will only ever be used in conjunction with (al), so that the
imaginary powers appearing in (a2) will make sense. Furthermore, (al) and (a2)
together imply that —A is the generator of a uniformly bounded analytic semigroup
on X, see [Pr/S0,90]. ¢

The Operator Ar

Forp € [l,00), T € (0, c0) define a linear operator Ar on LP := L?(0,T; X) through

the formula
(Aru)(t) = Au(t), ae. t€(0,T],u € D(A7), (8.0.6)

where
D(AT) = {u € LP(0,T; X) : _/OT | Au(t) P dt < oo}, (8.0.7)

 We endow D(Ar) with the graph norm. Note that as A is closed then D(A) is
a Banach space endowed with the graph norm and hence L?(0,T; D(A)) is also a
Banach space. Noting that D(A7) = LP(0,T; D(A)) with equivalent norms then
D(Ar) is also a Banach space and therefore A7 is closed.

We now define a Co-semigroup {P.};50 on LP(0,T; X)) which acts through the for-

mula |

[P = (u(r), aere(0,T]ue (0,1 X). (8.0.8)
{Ph2o iSA a Co-'semigrqup on L? (0,T; X), which is a simple consequence of the fact
that {e”* ‘}tZO is Cq-gemxgroup on X. Moreover we have the following 8
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Proposition 8.0.9 —Ar is the generator of the Co-semigroup {P,}i>o.

Proof: Let C be the generator of {P,};>0. We need to show that D(—Ar) = D(C)
and —Aru = Cu for u € D(—Ar) = D(C). Let f € D(—Ar) and consider

Pf - , T —tA — f(s
| ft Ly s o= [ 1° (f(st)) 1) | as(s) I ds.
Since f € D(—Ar), then f(s) € D(A) ae. s € [0,T]. Thus as —A generates

{e7*4},50 the above integrand tends to zero a.e. as ¢t — 0. Using the followi
g following

inequality
| e (2) =z [x< K(p, T)" | Az [k, = € D(4),

where K (p,T) is a constant, see Chapter 2, we have, a.e.,

e-tA s)) — S
e t)) T) 4 Af(s) o< Ko, T) 1 AS(S) T

The RHS is independent of ¢t and is integrable since f € D(Ar). The Lebesgue

Dominating Convergence Theorem then implies

|Ptf—f
t

ie. D(._AT) c D(C) and for feD(-Ar),-Arf=Cf.

+ Arf [Lre— 0 as t — 0,

For the converse let u € D(C). Then for any A >0, u € R((A — C)™') and so there
exists a unique f € LP(0,T; X) such that

w=(0\-C)lf = /0°° e~ MP, fdt.

Assume that f is continuous and so, in particular, (A = C)~1f is continuous. Thus
u has a continuous representative in L*(0,T; X). It follows that for each s € [0, 7]

o) = [ RSN = TR = 0+ AT, (509
Moreover for each s € [0,T], u(s) € D(A) with the following equality holding

Au(s) = A+ A)(J(8)) = f(s) = AMA+ A)7 f(s). (8.0.10)

The RHS of this equality defines a function belonging to L?(0,7"; X) and so

ST | Aus) [ ds < o0, i€ w € D(—Ar). ,
Now consider the case where u = (A= C)'f with f € LP(0,T; X). Let {fn}n>1 C
C(0,T; X) with fo — fin L7(0,T; X). By what we have just proved )

up = (A= C)7' fa € D(Ar).
As (A — C)~! is bounded then

| u—tn |Lp— 0 as n — oo

Using (8.0.10) we deduce that

!'ATun""ATum ’LP"’"O as n,m - 00,
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i.e. {Arun}tn>1is Cauchy in LP(0,T; X) and so has a limit, y, say. Thus (u,, Aru,) —
(u,y) and so by the closedness of Ar we deduce that u € D(Ar). It follows that

D(C) € D(Ar), which completes the proof.

A
(8.0.9) and (8.0.10) imply the following equalities for f € L?(0,T; X)
(A + A7) f(s) = (A + A)THS(s) ae. (8.0.11)
Ar(A+ A7) f(s) = A+ A)TH(f(s)) ae. (8.0.12)

Remark 8.0.10 (al) = (Arl) and (a2) = (Ar2) where (Arl) and (Ar2) are the
same assumptions just with A replaced by Ar. Moreover constants M, K and v
appearing in (al) and (a2) are the same for (Arl) and (A72). To see this just
note that (al) = (Arl) follows from Proposition 8.0.9 and (8.0.11). (a2) = (Ar2)
follows from (8.0.12) and the general formula for fractional powers, see (8.0.2). ¢

Remark 8.0.11 The two conditions (Arl) and (Ar2) together imply that the semi-
group {P:}i>o0 generated by —Ar is a uniformly bounded analytic Co-semigroup, see

Remark 8.0.8. ¢

The Operator Br

For p € [1,00) and T € (0,00) fixed, let Br be the linear unbounded operator in
L?(0,T; X) defined by

Br = 4 wue€ D(Br), (8.0.13)
where D(Br) = {u€ W'(0,T;X) : u(0) = 0}. (8.0.14)

Recall that u' is the weak derivative of u.

It is well known, see [G/G/K,90] for example, that the operator — By generates a
C,-semigroup of contractions on the Banach space LP(0,T; X) and this semigroup
denoted by {Si}:0, acts through the formula ’

_Ju(r=t) 0Lty
[Sea(r) = { 0 otherwise (8.0.15)

for a.e. 7 € [0,T), u € LP(0,T; X)
It follows that —Br is a densely defined, closed, linear operator. In fact even more
is true from the following result, see [Do/Ve,87]:

(BTI) By is positive i.e. for A 2 0, (A+ Br)~! is bounded and there exists M; such
that '

|(A+Br)7H | < 1+A,A>0 (8.0.16)

(]1’3T:)01f X is an UMD Banach space, then for s € R, B}’ is bounded and for some

K, |

| | BY IS Ka(1 + sP)efbl. . (8.0.17)
Q _ ' ; ,
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The Semigroup {M;}:i>o

The two semigroups {S:}:>0 and {P.};>0 enjoy the property that they are commuting
semigroups, i.e. for s, ¢ 2 0,

S.P, = P,S,. (8.0.18)

To see this, let f be continuous and so for all r € [0,T] we have

[S(P))(r) =

otherwise

{(P,f)(r—t) fo<t<r
0

Il

otherwise

{ e Af(r—t) f0<t<r

e *4[(Sef)(r)]
[P:(S: )))(r).

The case of a general f € LP(0,T;X) follows by the standard limit argument.
There are two important consequences of this fact. The first follows directly from
the Fubini Theorem and property (8.0.18). The second is a consequence of (8.0.18)
and the semigroup properties of {P;}+>0 and {S;}:0.

il

Lemma 8.0.12 — A7 and —Br are resolvent commuting, i.e. for all \, p >0

(A+ AT)—I(N + BT)"I = (p+ BT)'I(,\ + -AT)-I

('
Proposition 8.0.13 Set M = RS, = SP, t 2 0. Then {M}i30 is a Co-
semigroup on LP(0,T; X).

3

Remark 8.0.14 Under the assumptions (al) and (a2) then, see Remark 8.0.11,
{Pi}i>0 18 uniformly bounded, i.e.

dM; > 1 such that | P |< M,, Vt>0
As {S:}i>0 is a contraction semigroup on LP(0,T; X) we then have
| M, || S]] P < My

i.e. {M,}:>0 is a uniformly bounded Co-semigroup with the same uniform bound as

{P}tz0r €
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The Parabolic Operator Ar

Define the linear operator Az on L?(0,T; X) by

Ar := Br+ Ar, (8.0.19)
D(Ar) = D(Br)Nn D(Ar). (8.0.20)

Assuming A is injective and hence also Az, we endow D(Ar) with the graph norm
| u VL))(AT)'—'I Aru IZP + | Bru |7 .

Since By! is bounded then D(Ar) is complete with respect to this norm.

We first show that the operator —Ar is the generator of the semigroup {M;};>0.
The proof of the following Theorem relies on the closedness of the operator Ar.
Although A7 is the sum of two closed operators Ar and Br, in the case of general
Banach spaces, it does not necessarily follow that their sum is closed. Dore and Venni
first considered the problem of the closedness of the operator Ar, see [Do/Ve,87).
They showed that one needs to impose conditions on both the Banach space X and
the operators Ar and Br to guarantee closedness of A7. The conditions imposed
on the operators are: positivity, see (Arl) and (Brl); resolvent commutativity, see
Lemma 8.0.12; boundedness of the imaginary powers, see (Ar2) and (Br2). For
the Banach space we need to impose the so-called UMD condition, or equivalently
the (-convexity condition, see [Bu,86] and references therein. This property relates,
in some sense, to the geometry of the Banach space. A necessary and sufficient
condition for a Banach space X to be UMD is that the Hilbert transform is a
continuous operator from L?(R, X) to itself. Any Hilbert space is UMD. Moreover
the interpolation spaces of UMD spaces are again UMD. Finally, if X is UMD, then
so is L?(0,T; X), p 2 1.

For a discussion on the motivations for the conditions sufficient for the closedness
of Az, see [Do/Ve,87) and references therein.

Theorem 8.0.15 (Dore-Venni) Let X be an UMD Banach space and assume (al)
and (a2) hold. Then At is a densely defined, closed, nonnegative operator with A}‘-’
bounded. In particular for each f € LP(0,T; X) there erists a unique u € D(A7)

with Aru = f and
| Azulze + | Brulp SC | Arulps (8.0.21)

where C = C(p,v, K, T, X) is a constant independent of f.
The following Theorem is fundamental in what we aim to eventually prove.

Theorem 8.0.16 Assume that X is an UMD Banach space, (al) and (a2). Then
—Arp is the generator of the Co-semigroup { My} 0.

Proof : Let Q be the generator of {M;}i50. We first show that D(Ar) C D(Q) and
“Arf = Qf for f € D(Ar). Let f € D(Ar) then we have

1 f— S.Pf —
!Mtft I anf]| = |.L-*Jt’--—f-+ATfl
< (BRI ysanf | +) Anf - Siaf |
S —
+|‘—t—f'r'j'+BTf|

— Oast—-to
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since {S:}:>0 is strongly continuous and bounded and —Ar, —Br generate {P;}¢>0
and {S;}:»0 respectively. )

For the converse, note that @ (being the generator) is closed and Ar is closed by
Theorem 8.0.15. Thus there exists A > 0 such that (A — Q)" and (A + A7)~} are
both everywhere defined bounded linear operators, see [Yo,69]. Let f € D(Q) and
so (A — Q)f € X. There exists g € D(Ar) such that

(A+Ar)g=(A-Q)f.
In particular, as D(Ar) C D(Q) then (A + Az)g = (A — Q)g. We deduce that
f=0=-Q7'A-Q)f=(-Q) (A= Q)g =g € D(Ar),
which implies D(Q) C D(A7). This completes the proof of Theorem 8.0.10.
A

We can say even more about our operator Ar:
Corollary 8.0.17 Assume that X is an UMD Banach space, (al) and (a2). Then
A is positive and for p >0, f € L?(0,T; X), we have

t
[(u+ Ar)Hf1(t) = /O eH= = (=94 () gy gee.. (8.0.22)
Proof: Since —Ar generates {M;}:>o then for x4 > 0 we have
(4 + A7)t f = /0 e~ MM, fdt. (8.0.23)

Let f € C(0,T; X), then (u+Ar)~ f is continuous. Using (8.0.23) and the defintion
of M,, one may show by calculation that for each s € [0,T]]

[(n+Ar) " fl(s) = /; e~ e=(=uA £ (y) dy,

Using the boundedness of (1 + A7)™", (8.0.22) follows for general f € L?(0,T; X)
by the standard limit argument. To prove positivity, recall that, by Theorem 8.0.15,
(1 + Ar)~! is bounded for g 2 0. We are thus left with proving the inequality of
the form (8.0.1). Using (8.0.22) and the Young inequality we have for 4 > 0

. T s
[+ Ar) B < TN ([0 | f(w) |y dupds

< C(p,T M)u—-]z’f-.
- ) y 1+,1

As A}l is bounded then we can deduce that 3 C; > 1 such that
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The Fractional Powers Ar®

We will now prove that R2 is actually the fractional power A7* of the operator Ay,
modulo the constant I'(c). |

Theorem 8.0.18 Assume that X is an UMD Banach space and that (al) and (a2)
hold. Then for a € (0,1), A 20 and f € L?(0,T; X)

1
A+ AP of = A
( + T) f F(Q)Raf’
where RAf is given by (8.0.5).
Proof : Since —Ar generates {M;};>0 then for any A > 0, —A} := —(A + A7)

generates {e"**M;}150. Thus for 4 > 0 we have for f€C(0,T; X)

b ad 0 = ([ B gas) () = [ eteiretas - s)as,

Usin(go(éi.)O.B), the Fubini Theorem and noting that £2e) = r(a)rl(l—a)’ we have, for
o E Y 1

il

(AN = Farama o A [ e e s)dsdu

-—._..___.__._1_.._._____t-—,\a-sA oo_a_
= sara= L e e da,
Making the substitution u = ut, then
[Tt =7t [Tt = 5T ~ ),

It then follows

(4 ADI = g e e = a)ds

o 1 /t(t — Y=l ~(t=s)A ~(t-s)A
- P(a) o 3) € € f(s)ds
= Ryf(t).
The case of general f € L?(0,T; X) follows by the standard limit argument.

L

Remark 8.0.19 The results of this chapter rely essentially on the Dore-Venni The-
orem. The assumptions necessary to apply this result are quite strong. In particular
one needs to assume that both Ar and By are invertible with bounded inverse. Ir;
the paper [Pr/S0,90], Priiss-Sohr were able to prove the same result (i.e. Theorem
8.0.15 ) under the weaker assumption that Ar is only nonnegative. This reduces to
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assuming that the operator A is nonegative, i.e. we may replace (al) with
(a1*) (A + A)~!is bounded VA > 0 and there exists M > 1 such that

(A + A)! |gf‘;—, A>0.

The assumption (a2) is still needed. For a nonnegative operator, one may still define
the fractional powers, see [Kom,66], but the formulas for them are more involved
than the formula (8.0.2). On inspection of our proof though, we do not explicity use
the representation (8.0.2) for the imaginary powers A*, we only need to know they
are bounded. Thus our result holds also in the case where our operator A satisfies
(a1*) and (a2). In particular, see [Se,71], the operator —A := f;; on LP(S' rY)
used in the problem of the stochastic nonlinear heat equation satisfies the required
assumptions.
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