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Abstract

Background: The evaluation of the clinical effects of Tacrine has shown efficacy in delaying the deterioration of the
symptoms of Alzheimer’s disease, while confirming the adverse events consisting mainly in the elevated liver
transaminase levels. The study of tacrine analogs presents a continuous interest, and for this reason we establish
Quantitative Structure-Activity Relationships on their Acetylcholinesterase inhibitory activity.

Results: Ten groups of new developed Tacrine-related inhibitors are explored, which have been experimentally
measured in different biochemical conditions and AChE sources. The number of included descriptors in the
structure-activity relationship is characterized by ‘Rule of Thumb’. The 1502 applied molecular descriptors could
provide the best linear models for the selected Alzheimer’s data base and the best QSAR model is reported for the
considered data sets.

Conclusion: The QSAR models developed in this work have a satisfactory predictive ability, and are obtained by
selecting the most representative molecular descriptors of the chemical structure, represented through more than a
thousand of constitutional, topological, geometrical, quantum-mechanical and electronic descriptor types.
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Background
Alzheimer’s Disease (AD) is a neurodegenerative process
characterized by a progressive memory loss, decline in lan-
guage skills and other cognitive abilities [1]. It is common
among the elderly, affecting around 7% of the population
above 65 years old [2]. Currently, this is an incurable dis-
ease without an effective therapeutic approach [3]. How-
ever, there exists a palliative strategy which enhances
cholinergic transmission, as defined by the cholinergic hy-
pothesis [4,5]. Patients with AD experience a selective loss
of cholinergic neurons in the brain and decreasing levels
of Acetylcholine, a neurotransmitter [6]. The Acetylcholin-
esterase enzyme (AChE) is responsible for terminating im-
pulse signaling at cholinergic synapses by catalyzing the
hydrolysis of Acetylcholine [7].
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Tacrine (Additional file 1, compound 1) is an example
of Acetylcholinesterase inhibitor (AChEI). It has been
synthesized more than forty years ago, and in 1993, it
has become the first drug to be approved by the US
Food and Drug Administration as a form of treatment
for AD [8]. Although Tacrine is the oldest palliative drug
designed based on the cholinergic hypothesis, new Tac-
rine derivatives are still being designed to treat AD. It
has been experimentally demonstrated that bis-Tacrine
congeners display enhanced inhibitory activity towards
AChE compared to Tacrine [9-11].
Quantitative Structure-Activity Relationships (QSAR)

are mathematical frameworks which link molecular
structures of compounds to their biological activities in
a quantitative manner [12-14]. Although these tend to
be statistical models rather than deterministic ones
based on fundamental physical laws, the QSAR approach
highlights parallelisms between structure and potency.
Such knowledge allows researchers to pick out the most
promising structures from a much larger pool of poten-
tial compounds, making drug design more rational by
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reducing the number of expensive, time consuming
experiments.
Among the QSAR research carried out on Tacrine deriv-

atives, in 2006 Akula et al. [15] have published 3D-QSAR
studies on bis-tacrine compounds by using molecular
docking scores, in addition to Comparative Molecular
Field Analysis (CoMFA). The Sybyl [16] and Mopac [17]
programs are both used in the optimization of structures
and molecular alignment. The docking scores are used as
molecular descriptors along with the steric and electro-
static field values obtained from CoMFA, and 16 mole-
cules are set aside in the training set. The structure-activity
model is validated on a test set having 3 molecules. The
proposed models provide insights into the inhibitory
mechanism and could help designing new inhibitors. In
another study of the same year, Fernández et al. [18]
have applied Bayesian-Regularized Genetic Neural Net-
works (BRGNNs) to 136 Tacrine analogues. Here, the
Bayesian-regularization avoids overtraining, while the
Genetic Algorithm (GA) approach allows exploring an
ample pool of 3D-descriptors generated by the Dragon
software [19]. The resulting model is evaluated by aver-
aging multiple validation sets generated as members of
diverse-training set Neural Network Ensembles (NNEs).
When considering 40 assembled members, the NNE
provides reliable statistics.
In 2007, Jung et al. [20] have built QSAR models using

variable selections based on Multivariable Linear Regres-
sion (MLR) approaches: Genetic Algorithms (GA) and
Simulated Annealing (SA). The authors compile a set of
80 structurally heterogeneous compounds composed of
11H-indeno-[1,2-b]-quinolin-10-ylamine derivatives, thio-
pyranoquinolines, pyranoquinolines and benzonaphthyri-
dines, tacrine-E2020 hybrids, bis-tacrine congeners, and
tacrine-hurprine heterodimers, placing 68 Tacrine deriva-
tives in the training set and leaving 12 in the test set. The
molecules are geometrically optimized using the Titan Pro
software [21], and their molecular descriptors are calcu-
lated using PreADME on the web [22] and BioMedCAChe
[23]. The best model is obtained by SA-MLR with greater
explanatory and prediction capability. The authors suggest
important roles for hydrophobic and electrostatic interac-
tions on increasing the structure’s AChE activity. They
also argue opposite effects for hydrophilic and topological
features of molecules.
Saracoglu et al. [24] have performed in 2008 QSAR ana-

lyses of AChEIs related to Tacrine and 11 H-Indeno-[1,2-
b]-quinolin-10-ylamine tetracyclic Tacrine analogues. The
Electron-Topological Method (ETM) is applied with
the ETM software [25] on a training set of 44 compounds,
which we consider it as a valuable QSAR tool as this
technique takes into account both geometrical and
electronic characteristics of the molecules. Based on phar-
macophores and anti-pharmacophores calculated as sub-
matrices containing spatial and quantum chemistry char-
acteristics, a system for the activity prognostication is de-
veloped. Some molecular fragments specific for active and
inactive compounds are also revealed.
In a recent work of 2012, Chen et al. [26] have studied

multi-target-directed AChEIs of Tacrine-Nimodipine
dihydropyridines. They establish 3D-QSAR models using
CoMFA and Comparative Molecular Similarity Index
Analysis (CoMSIA) methods. The compounds employed
are very potent and selective AChEIs, and show an ex-
cellent neuroprotective profile and a moderate Ca2+

channel blockage effect. A training set of 60 compounds
is used, and the resulting models are validated on a test
set of 12 compounds. The structures of the investigated
ligands are built and optimized using Sybyl [16], while
the lowest energy structures are used during the align-
ment. The partial atomic charges required to estimate
the electrostatic interaction are computed by semi-
empirical molecular orbital methods using Mopac [17]
with an AM1 Hamiltonian. For the CoMSIA approach,
descriptors of five physicochemical field properties are
used to correlate with changes of ligands affinities, which
explicitly define hydrophobic, hydrogen-bond donor and
acceptor descriptors (in addition to the steric and elec-
trostatic fields used in CoMFA).
It is notable that most published QSAR studies that

analyze a higher number of Tacrine compounds involve
inhibitory activities measured on AChE samples ex-
tracted from different sources [18,20]. In this work, we
complement the research performed previously by con-
sidering quantitative structure-activity relationships for
ten homogeneous classes of new developed Tacrine
compounds, each class measured under different bio-
chemical conditions and extracted from a different
AChE source. Therefore, present QSAR study is specific
for each data set. In such a situation of having a scarce
amount of experimental data for each AChEI group, the
combination of the MLR technique and the ‘Rule of
Thumb’ [27] has proven to be appropriate for developing
predictive multi-parametric QSAR models [28-31].

Methods
Experimental AChE inhibitory activity
The ten classes of new synthesized Tacrine-like inhibi-
tors have been measured by varying the temperature, in-
cubation time and number of tested concentrations, and
using different sources of AChE. AChE inhibitory activ-
ity is spectrophotometrically evaluated by the Ellman
method [32], using AChE from bovine (bAChE) or
human erythrocytes (hAChE) and Acetylthiocholine iod-
ide (0.53 or 0.13 mM for bAChE and hAChE, respectively)
as substrate. AChE activity in Electrophorus electricus
(EeAChE) is measured following the spectrophotometric
Rappaport method [33] using purified AChE from Electric
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eel ( E. electricus) and Acetylcholine chloride (29.5 mM)
as substrate. The inhibitory activity is presented as half
of the maximal inhibitory concentration in molar units
(log10(IC50)).
The data sets of Additional file 1 are composed as

follows: Data set A includes 7 pyrano[2,3-b]quinolines,
6 benzonaphtyridines and Tacrine, as in reference [34],
with measured values of bAChE (Additional file 2:
Table S1-S7). Data set B includes 2 hydrochlorides of
6-chlorotacrine and tricyclic esters, Propidium iodide, 10
dihydrochlorides of the pyrano[3,2-c]quinoline-6-chloro-
tacrine and 6-chlorotacrine, with values of bAChE and
hAChE (Additional file 2: Table S2) [35]. Data set C con-
sists on 17 Tacrine-dihydropyridine hybrids, Tacrine and
Propidium, presenting measured values of EeAChE and
hAChE (Additional file 2: Table S3) [36]. Data set D is
composed of 8 donepezil-Tacrine hybrid related deriva-
tives, Tacrine and Donepezil, having measured values
of bAChE (Additional file 2: Table S4) [37]. Data set E
consists on 12 Tacrine-based dimers, bis(7)-Tacrine and
Tacrine, presenting hAChE measured values (Additional
file 2: Table S5) [38]. Data set F includes 12 Tacrine ana-
logs from highly substituted 2-aminopyridine-3-carboni-
triles and Tacrine, having measured values of bAChE
and EeAChE (Additional file 2: Table S6) [39]. Data set
G contains 18 Tacrine-based dual binding site Acetyl-
cholinesterase inhibitors, Tacrine, 6-chloroTacrine, Propi-
dium iodide and Donepezil, with known values of hAChE
(Additional file 2: Table S7) [40].

Molecular descriptors
The molecular structures are drawn with the aid of
the “Add Hydrogen and Model Build” modulus of
HyperChem 6.03 for Windows [41]. The compounds
are firstly pre-optimized with the Molecular Mechanics
Force Field (MM+) procedure included in HyperChem,
and the resulting geometries are further refined by
means of the Semiempirical Method PM3 (Parametric
Method-3) using the Polak-Ribiere algorithm and a
gradient norm limit of 0.01 kcal.Å−1. We keep the
R-configuration for all the molecules having a chiral Car-
bon atom when such configuration detail is not specified
in the original data.
All the molecular descriptors are computed using the

software Dragon [19]. This well-known descriptors data-
base includes descriptor families such as: 0D-descriptors:
constitutional indices; 1D-descriptors: functional group
counts, atom-centred fragments, empirical descriptors,
molecular properties; 2D-descriptors: topological indices,
walk and path counts, connectivity indices, information
indices, 2D-autocorrelations, Burden eigenvalues, Galvez
topological charge indices; and 3D-descriptors: aromaticity
indices, Randic molecular profiles, geometrical indices, ra-
dial distribution functions, 3D-MoRSE (3D-Molecular
Representation of Structure based on Electron diffraction)
descriptors, WHIM (Weighted Holistic Invariant Molecu-
lar) descriptors, GETAWAY (Geometry, Topology and
Atoms-Weighted AssemblY) descriptors and charge indi-
ces [42]. Finally, five quantum-chemical descriptors not
provided by the Dragon program are added to the pool:
molecular dipole moment, total energy, homo-lumo en-
ergy, and homo-lumo gap (Δhomo-lumo). The resulting pool
consists on D = 1502 structural descriptors.

Linear model search
In past years, the MLR technique has proved to be a
multidisciplinary technique of valuable applicability for
establishing predictive QSAR models by different re-
search groups, by performing an exhaustive analysis of a
pool containing a great number of structural descriptors
[19,43]. Linear models are more general and can trans-
parently reveal the effect on the activity being modeled
when including/excluding molecular descriptors in the
equation, thus making it possible to suggest cause/effect
relationships by means of simple parallelisms. The main
advantage of developing linear regression models, when
compared to non-linear models, is the fact that linear
models suffer in a lesser extend from the over-fitting
(over-training) problem [44,45] because the MLR tech-
nique does not involve too many optimization parame-
ters during the model building, just the regression
coefficient for each molecular descriptor. Therefore, the
MLR is considered as the best choice of descriptor selec-
tion method when few experimental activity values are
available, as it is the case in present study: few data are
available for each data set A-G.
It is our purpose to search the set D having D descrip-

tors, for an optimal subset d of d < <D ones with mini-
mum standard deviation (S), by means of the MLR
technique. More precisely, we want to obtain the global
minimum of S(d) where d is a point in a space of D!/(D-
d)!d! ones. Each point is a possible model of d descrip-
tors as discussed below. Taking into account that a Full
Search (FS) of optimal variables is impractical because it
requires D!/(D-d)!d! linear regressions, some time ago
we have proposed the Replacement Method (RM)
[46-51] that produces linear regression QSAR models
that are quite close to the FS ones with much less com-
putational work. The RM approaches the minimum of S
by judiciously taking into account the relative errors of
the coefficients of the least-squares model given by a set
of d descriptors d = {X1, X2,…, Xd}.
The procedure of the RM technique is as follows:

choose d descriptors {X1, X2,…, Xd} at random and do a
linear regression. Choose one of the descriptors of this
set, say Xi, and replace it by each of the D descriptors of
the pool (except itself ) keeping the best resulting set.
Since one can start replacing any of the d descriptors in
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the initial model, then a regression equation with d vari-
ables has d possible paths to achieve the final result; for
example, the choice above will develop into path i. Next,
choose the variable with greatest relative error in its
coefficient (except the one replaced in the previous step)
and replace it with all the D descriptors (except
itself ) keeping again the best set. Replace all the
remaining variables in the same way by passing those re-
placed in previous steps. When finishing, start again
with the variable having greatest relative error in the co-
efficient and repeat the whole process. Repeat this
process as many times as necessary until the set of de-
scriptors remains unchanged. At the end, we have the
best model for the path i. Proceed in exactly the same
way for all possible paths i = 1, 2,…, d, compare the
resulting models, and keep the best one. Our numerical
experiments show that in this way one obtains a model
almost as good as the best one with much less than D!/
(D-d)!d! linear regressions when this combinatorial num-
ber is large. The RM gives models with better statistical
parameters than the Forward Stepwise Regression pro-
cedure [52] and variants of the more elaborated Genetic
Algorithms [53].
Model validation
The design of a properly validated model constitutes the
most important step for every QSAR analysis, in order to
generate predictive models that involve general applicabil-
ity and that are not limited to only function correlatively.
The Cross-Validation technique of Leave-One-Out (loo) is
practiced [54]. The parameters R2

loo and Sloo (square of the
correlation coefficient and standard deviation of Leave-
One-Out) measure the stability of the model upon exclu-
sion of molecules. According to the literature, R2

loo should
be greater than 0.5 for a validated model.
The Y-Randomization procedure [55] is also applied in

order to verify that the model is robust. This technique
consists on scrambling the experimental property values
in such a way that they do not correspond to the re-
spective compounds. After analyzing 1000 cases of Y-
Randomization, the standard deviation obtained (Srand)
has to be a poorer value than the one found by consider-
ing the true calibration (S).
Finally, we also apply the standard practice that con-

sists on omitting from the complete molecular set some
compounds which constitute the ‘test set’, denoted here
as ‘test’. The main purpose of performing such a split-
ting is to assess whether the QSAR found have predict-
ive capability for estimating the activity values on the
independent test set compounds, that are not involved
during the model fitting using the ‘training set’ com-
pounds (denoted as ‘train’). We select the molecules
composing the training and test series as a previous step
to the model search, and this is done in such a way that
both sets share similar qualitative structure–property
characteristics.

Results and discussion
The application of the RM variable subset selection
method on the total pool with D = 1502 molecular de-
scriptors leads to the best linear models for the Alzhei-
mer’s data sets. In order to determine the number of
descriptors to be included in the structure-activity rela-
tionship, we consider the ‘Rule of Thumb’, which states
that at least 5 or 6 training set molecules (N) should be
present for each fitting parameter. In the following we
present the best QSAR found for data sets A-G.
Data set A (bAChE):

log10IC50 ¼ 1:345 �2ð Þ−1:051 �0:3ð Þ⋅Mor06v−44:823 �10ð Þ⋅G1u
N ¼ 12; range ¼ −6:886;−4:678½ �; R ¼ 0:90; S ¼ 0:29;

F ¼ 18:36; p < 10‐4; Rmax
ij ¼ 0:43; o > 2:Sð Þ ¼ 0; Rloo ¼ 0:84;

Sloo ¼ 0:39; Srand ¼ 0:31

ð1Þ
Data set B (bAChE):

log10IC50 ¼ −7:244 �0:4ð Þ þ 6:741 �0:4ð Þ⋅GATS2e−4:476 �0:4ð Þ⋅R5e
N ¼ 12; range ¼ −8:242;−5:000½ �; R ¼ 0:98; S ¼ 0:23;

F ¼ 143:01; p < 10‐4; Rmax
ij ¼ 0:46; o > 2:Sð Þ ¼ 0;

Rloo ¼ 0:96; Sloo ¼ 0:37; Srand ¼ 0:30

ð2Þ
Data set B (hAChE):

log10IC50 ¼ −18:159 �0:8ð Þ þ 101:916 �6ð Þ⋅Qmean

þ35:567 �6ð Þ⋅R3mþ

N ¼ 11; range ¼ −8:153;−4:491½ �; R ¼ 0:99; S ¼ 0:22;

F ¼ 170:55; p < 10‐4; Rmax
ij ¼ 0:61; o > 2:Sð Þ ¼ 0; Rloo ¼ 0:98;

Sloo ¼ 0:27; Srand ¼ 0:27

ð3Þ

Data set C (EeAChE):

log10IC50 ¼ −2:611 �0:3ð Þ−83:235 �8ð Þ⋅R5eþ
−1:592 �0:1ð Þ⋅nNHR

N ¼ 16; range ¼ −7:284;−4:155½ �; R ¼ 0:97; S ¼ 0:24;

F ¼ 109:06; p < 10‐4; Rmax
ij ¼ 0:25; o > 2:Sð Þ ¼ 0; Rloo ¼ 0:95;

Sloo ¼ 0:32; Srand ¼ 0:50

ð4Þ
Data set C (hAChE):

log10IC50 ¼ 16:021 �4ð Þ−52:448 �10ð Þ⋅X1A
N ¼ 9; range ¼ −6:959;−5:553½ �; R ¼ 0:90; S ¼ 0:24;

F ¼ 28:44; p < 10‐4; Rmax
ij ¼ 0; o > 2:Sð Þ ¼ 0; Rloo ¼ 0:84;

Sloo ¼ 0:30; Srand ¼ 0:25

ð5Þ
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Data set D (bAChE):

log10IC50 ¼ −5:510 �0:1ð Þ−1:263 �0:1ð Þ⋅Mor09u

−32:160 �2:0ð Þ⋅R2mþ

N ¼ 9; range ¼ −8:553;−5:522½ �; R ¼ 0:98; S ¼ 0:18;

F ¼ 98:81; p < 10‐4; Rmax
ij ¼ 0:30; o > 2:Sð Þ ¼ 0;

Rloo ¼ 0:95; Sloo ¼ 0:33; Srand ¼ 0:26

ð6Þ
Data set E (hAChE):

log10IC50 ¼ 5:385 �2ð Þ−6:669 �1ð Þ⋅BELm2−2:697 �0:3ð Þ⋅Mor27e
N ¼ 12; range ¼ −9:092;−6:342½ �; R ¼ 0:96; S ¼ 0:29;

F ¼ 51:70; p < 10‐4;Rmax
ij ¼ 0:046; o > 2:Sð Þ ¼ 0; Rloo ¼ 0:92;

Sloo ¼ 0:39; Srand ¼ 0:46

ð7Þ
Data set F (bAChE):

log10IC50 ¼ −17:546 �2ð Þ þ 1:510 �0:2ð Þ⋅AMW

þ0:247 �0:2ð Þ⋅MEcc

N ¼ 11; range ¼ −7:000;−4:000½ �; R ¼ 0:98; S ¼ 0:25;

F ¼ 21:33; p < 10‐4; Rmax
ij ¼ 0:13; o > 2:Sð Þ ¼ 0;

Rloo ¼ 0:96; Sloo ¼ 0:36; Srand ¼ 0:39

ð8Þ
Data set F (EeAChE):

log10IC50 ¼ −15:372 �1ð Þ þ 13:386 �2ð Þ⋅E2u
þ18:306 �1ð Þ⋅HATS6m

N ¼ 11; range ¼ −7:854;−4:523½ �; R ¼ 0:99; S ¼ 0:19;

F ¼ 150:88; p < 10‐4;Rmax
ij ¼ 0:66; o > 2:Sð Þ ¼ 0;

Rloo ¼ 0:97; Sloo ¼ 0:28; Srand ¼ 0:34

ð9Þ
Data set G (hAChE):

log10IC50 ¼ 66:887 �6ð Þ þ 0:014 �0:0009ð Þ⋅MPC09

−78:669 �6ð Þ⋅MATS1m−6:087 �0:3ð Þ⋅RDF020m
N ¼ 19; range ¼ −9:569;−5:000½ �; R ¼ 0:98; S ¼ 0:21;

F ¼ 131:81; p < 10‐4;Rmax
ij ¼ 0:65; o > 2:Sð Þ ¼ 3;

Rloo ¼ 0:97; Sloo ¼ 0:29; Srand ¼ 0:53

ð10Þ
In these equations, range stands for the range of ex-

perimental activity of the training set, R is the correl-
ation coefficient, S is the standard deviation of the
model, F is the Fisher parameter, p is the significance of
the model, Rmax

ij denotes the maximum intercorrelation

coefficient between descriptors, o(>2.S) indicates the
number of outlier molecules having a residual greater
than two times the standard deviation, and Rloo and Sloo
are the correlation coefficient and standard deviation ob-
tained with the loo technique, respectively.
In most cases, it is appreciated that a single descriptor

does not achieve enough accuracy for predicting the
AD activities, while models based on two- or three- de-
scriptors are acceptable for the number of training
molecules involved. When we plot the QSAR predicted
log10IC50 inhibitory activities as function of experimental
values for each data set (A-G) in Additional file 3, a
straight line trend is observed. It is also appreciated that
Eqs. 1–10 predict reasonably well the experimental ac-
tivities of the molecules that are members of the test set,
and thus the models established tend to behave as pre-
dictive. In addition, both parameters Rloo and Sloo meas-
ure the stability of the developed QSAR upon inclusion/
exclusion of compounds, and according to the special-
ized literature, R2

loo must be greater than 0.50 for obtain-
ing a validated model [54].
Dispersion plots of residuals (residuals as function of

predicted activities) for each QSAR are provided in
Additional file 4: Figure S1A up to S1G with the purpose
of demonstrating the validity of these MLR equations.
Although some outliers are detected in some plots, hav-
ing residuals exceeding the 2.S value, we decide to derive
general models having applicability to any biomolecule
without restrictions, and so we do not remove such mol-
ecules from the training set.
The molecular descriptors appearing in Eqs. 1–10 are

of different types and are briefly described in Table 1.
We provide their numerical values in Additional file 2:
Tables S1-S7. Constitutional descriptors are 0D-descriptors,
independent from the molecular connectivity and conform-
ation; they are the most simple and commonly used de-
scriptors, reflecting the molecular composition of a
compound. The topological indices derived from the
Chemical Graph Theory [56] are obtained with a graph
representation of the molecule, that is to say, its planar
image, and provide only information on the structural
composition and connectivity but nothing about its
three dimensional or stereochemical aspects. In a molecu-
lar graph, the vertices are atoms weighted with different
physicochemical properties such as mass, polarity, electro-
negativity, charge, etc. The 3D-MoRSE (3D-Molecule Rep-
resentation of Structure based on Electron diffraction)
descriptors [57] provide 3D-information from the molecu-
lar structure using a molecular transform derived from an
equation used in electron diffraction studies. Several
atomic properties can be taken into account, thus giving
high flexibility to this representation of a molecule.
WHIM (Weighted Holistic Invariant Molecular De-

scriptors) descriptors are based on statistical indices cal-
culated on the projections of atoms along principal axes
[58]. The aim is to capture 3D-information regarding
size, shape, symmetry and atom distributions with re-
spect to invariant reference frames. In order to calculate
them, a weighted covariance matrix is obtained from dif-
ferent weighting schemes for the atoms. The different
structural variables introduced by Broto, Moreau, and
Geary [59] account for bi-dimensional autocorrelations
between atoms pairs in the molecule, and are defined in



Table 1 Notation and brief description of the molecular descriptors involved in the QSAR models for AD

Molecular descriptor Type Description

Mor06v 3D-MoRSE 3D-MoRSE - signal 06/weighted by atomic van der Waals volumes

Mor09u 3D-MoRSE - signal 09/unweighted

Mor27e 3D-MoRSE - signal 27/weighted by atomic Sanderson electronegativities

G1u WHIM 1st component symmetry directional WHIM index/unweighted

Eu2 2nd component accessibility directional WHIM index/unweighted

GATS2e 2D- Autocorrelations Geary autocorrelation of lag 2/weighted by atomic Sanderson electronegativities

MATS1m Moran autocorrelation of lag 1/weighted by atomic masses

R5e GETAWAY R autocorrelation of lag 5/weighted by atomic Sanderson electronegativities

HATS6m leverage-weighted autocorrelation of lag 6/weighted by atomic masses

R3m+ R maximal autocorrelation of lag 3/weighted by atomic masses

R2m+ R maximal autocorrelation of lag 2/weighted by atomic masses

R5e+ R maximal autocorrelation of lag 5/weighted by atomic Sanderson electronegativities

nNHR Constitutional number of secondary amines (aliphatic)

AMW average molecular weight

X1A Topological average connectivity index chi-1

MPC09 molecular path count of order 09

Qmean Charge mean absolute charge (charge polarization)

BELm2 BCUT lowest eigenvalue number 2 of Burden matrix/weighted by atomic masses

MEcc Geometrical molecular eccentricity

RDF020m RDF Radial Distribution Function - 2.0/weighted by atomic masses
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order to reflect the contribution of a considered atomic
property to the experimental observations under investi-
gation. These indices can be readily calculated, i.e.: by
summing products of atomic weights (employing atomic
properties such as atomic polarizabilities, molecular vol-
umes, etc.) of the terminal atoms of all the paths of a
prescribed length.
The GETAWAY (GEometry, Topology, and Atom-

Weights AssemblY) type of descriptors [60] have been
designed with the main purpose of matching the 3D-
molecular geometry. These numerical variables are de-
rived from the elements hij of the Molecular Influence
matrix (H), obtained through the values of atomic Carte-
sian coordinates. The diagonal elements of H (hii) are
called leverages, and are considered to represent the influ-
ence of each atom on the whole shape of the molecule.
For instance, the mantle atoms always have higher hii
values than atoms near the molecule center, while each
off-diagonal element hij represents the degree of accessi-
bility of the jth atom to interactions with the ith one.
Charge descriptors are electronic descriptors defined in
terms of atomic charges and used to describe electronic
aspects both of the whole molecule and of particular re-
gions, such as atoms, bonds, and molecular fragments.
Charge descriptors can be considered among quantum
chemical descriptors [61]. Electrical charges in the molecule
are the driving force of electrostatic interactions, and it is
well known that local electron densities or charges play a
fundamental role in many chemical reactions, physico-
chemical properties and receptor-ligand binding affinity.
BCUT descriptors are the eigenvalues of a modified

connectivity matrix, the Burden matrix (B) [62]. The or-
dered sequence of the n smallest eigenvalues of B has
been proposed as a molecular descriptor based on the
assumption that the lowest eigenvalues contain contri-
butions from all the atoms and thus reflect the molecu-
lar topology. The BCUT descriptors are an extension of
the Burden eigenvalues and consider three classes of
matrices, whose diagonal elements account for atomic
charge related values, atomic polarizability related values
and atomic H bond abilities. Geometrical descriptors are
a different kind of conformationally dependent parame-
ters based on the molecular geometry. Reliable values
are obtained if reliable conformations are previously cal-
culated [42]. A Radial Distribution Function (RDF) [60]
of an ensemble of atoms can be interpreted as the prob-
ability distribution of finding an atom in a spherical
volume of certain radius, also incorporating different
atomic properties, in order to differentiate the contribu-
tion of each atom to the property under study.
The QSAR models presented in Eqs. 1–10 for data sets

A-G result specific to each group of Tacrine derivatives
used and to each AChE source. An attempt to model the
complete set of molecules (combining data sets A-G)
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with a single model would result in a deteriorated statis-
tics. Furthermore, this attempt of increasing the number
of experimental observations is not completely justified,
as different biochemical conditions are employed for
measuring the inhibitory potency. We believe that the
QSAR obtained here should acceptably work in an ap-
plicability domain defined by the range of descriptor var-
iations for each model, and would be valid for predicting
structures whose experimental activities lay close to the
experimental range of the training set.

Conclusions
In this work, we present ten useful structure-activity
models to analyze the activity of Acetylcholinesterase
inhibitors. The proposed QSAR models highlight paral-
lelisms between the molecular structure and the AD in-
hibitory activity. The importance of this study relies on
the fact that new Tacrine related inhibitors are used,
which have been measured under different experimental
conditions and using different AChE sources. Despite of
this limitation, such models show appropriate predictive
capability, and the scarce amount of observations avail-
able on each data set is successfully analyzed by means
of the linear methodology of the Replacement Method
approach. Nevertheless, whenever newer experimental
information on Tacrine-like compounds are available,
further QSAR studies are encouraged on larger data sets.
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