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Abstract

Scientific interest in pacing goes back >100 years. Contemporary interest, both as a feature of
athletic competition and as a window into understanding fatigue, goes back >30 years. Pacing
represents the pattern of energy use, designed to produce a competitive result while managing
homeostatic disturbances and perceived fatigue. Pacing has been studied both against-the-clock
and during head-to-head competition. Several models have been used to explain pacing including
the teleoanticipation model, the central governor model, the anticipatory-feedback-RPE model,
the concept of a learned template, the affordance concept, the integrative governor theory and as
an explanation for “falling behind”. Early studies, mostly using time trial exercise focused on
the need to manage homeostatic disturbance. More recent studies, based on head-to-head
competition have focused on an improved understanding of how psychophysiology, beyond the
gestalt concept of RPE, can be understood as a mediator of pacing and as an explanation for
falling behind. More recent approaches to pacing have focused on the elements of decision-
making during sport and have expanded the role of psychophysiological concepts including
sensory-discriminatory, affective-motivational and cognitive-evaluative dimensions. These
approaches have improved understanding of variations in pacing, particularly during head-to-
head competition.

Index terms: pacing, homeostasis, fatigue
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Introduction

The concept of pacing, i.e distributing energetic resources over the duration of a task, is not new.
Historical examples remind us of the necessity for pacing, ranging from Aesop’s fable of the
tortoise and the hare; Emil Zatopek asking Jim Peters (1952 Olympic marathon) in mid-race if
“they were running fast enough”; Vladimir Kuts (1956 Olympic 5 & 10-km) using an interval
pacing patten to defeat WR holder Gordon Pirie; Kipchoge Keino using a “go out fast” strategy
in the altitude of Mexico City to defeat WR holder Jim Ryun (1968 Olympic 1500m); David
Wottle, coming from 20-m behind after the first 200-m to win (1972 Olympic 800-m); to WR
holder Steven Jones (European Championships marathon,1986), 2-min ahead of the field at 20-
miles, who faded and finished 13" place. In all these cases, pacing (good or bad) helped define
the competitive result.

Pacing is the process of using the resources available at the start, in an anticipatory manner based
on experience !, or in response to internal and external stimuli 2, to achieve the desired result.
Often the goal is to finish as quickly as possible, particularly against-the-clock rather than head-
to-head. Pacing represents the balance between energy availability, technique, and fatigue.
Energy availability depends on energy producing systems, which depend on physiologic capacity
and the duration and mode of the event. Technique depends on neuromuscular performance,
which is of modest importance in running, but crucial in other activities (skating, cycling, cross-
country skiing, rowing, swimming), and may deteriorate with fatigue. For example, in cycling
and skating athletes are able to continue to glide or roll toward the finish even after considerable
losses of power output, whereas in running and swimming there is a rapid deceleration with loss
of power output. Fatigue, which has become better understood **, depends upon either the
depletion of substrates (adenosine triphosphate, creatine phosphate, glucose, glycogen), the
accumulation of metabolites (inorganic phosphate and hydrogen ions) and heat, and functioning
as control processes via afferent nerves, as well as the interpretation of what these changes mean.

Historical Evidence of Interest in Pacing

The concept of pacing is not new. The first report was by Tripplet in 1898.7 He evaluated why
drafting improved performance. While describing performance improvements when following a
pacer, he reported distance-velocity relationships which anticipated the critical speed
(CS)/critical power (CP) concept.® He also developed theories (suction, shelter, encouragement,
hypnotic suggestion) anticipating concepts of reduced wind resistance ° and the ergogenic effect
of a competitor riding just a little faster than an athletes personal best.'® Other studies by
Kennelly !! and Hill 2, performed a century ago, described the distance-velocity relationship
for running, walking, cycling and skating. The classical study of Robinson et al.'®, perhaps the
first experimental study of pacing, showed that VO,, O deficit and [blood lactate] favored an
even pace. Thus, by ~65 years ago we knew that: 1) there was a regular distance-velocity
relationship that anticipated the CS/CP concept, 2) there were differences in the absolute
dimensions related to the mode of ambulation, 3) drafting was advantageous and 4) for tasks of
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longer than ~3 minutes, there was an advantage to even pacing. Today we are better at
explaining the science behind pacing, but early concepts have endured.

The Concept of Pacing Strategy Emerges

The first contemporary studies of pacing emerged from groups in the Netherlands and the
USA.'"*1” These studies demonstrated that: 1) there was a range of advantageous pacing
strategies in cycling events of 1000-4000-m (or even longer), 2) an all-out strategy was better in
shorter events, 3) longer events favored a brief high intensity start which was then “dialed back”
after ~10-15s, and, 4) more even, or U shaped, pacing patterns were seen in longer events. These
studies, particularly the frequent observation of an end-spurt, also established the concept that
high speed at the finish was essentially wasted kinetic energy that might have been better used to
go faster earlier and arrive at the finish sooner. Trying to improve performance (particularly in
events <4 min required an athlete to take a “calculated risk” of starting faster than normal, in
order to achieve a performance that they had never previously achieved.?

Teleoanticipation Model

By the mid-1990’s the first conceptual model of pacing emerged. Ulmer' suggested that energy
output was governed by central control mechanisms designed to: 1) avoid early fatigue, 2) not
waste time with a slow start, 3) use learned behavior as a template for current activity and 4)
anticipate the time required to finish. Thus, the teleoanticipation model was conceptualized as a
closed-loop, feedback dependent, anticipatory regulation of energetic output. About this same
time, evidence emerged of a replicable pattern of pacing strategy and that elite athletes used the
same pacing as recreational athletes.?! Beyond single efforts, there was evidence of pacing in the
Grand Tours of cycling, in which General Classification competitors would only exert
themselves heavily on the days when significant time gains were possible.?? On other days,
teammates would keep them near the front of the peloton. These findings reinforced Ulmer’s
concept of anticipating stresses across an entire event. Less than a decade later, evidence
emerged of a consistent pattern in the pacing of races where the goal was to defeat other
competitors head-to-head,.>** It also became evident that pacing displayed a consistent pattern,
evolving toward less of the fast-slow-slower-fast pattern observed in early 20" century. 23->* The
concept also emerged that the pacing strategy, in attempts to improve best performance, was
consistent over time.?> Supporting Ulmer’s concept, there was evidence that different events had
unique pacing patterns, suggesting that the anticipation of muscular power output was very
strongly grounded.?*?’

Pacing Versus Fatigue (Central Governor Model)

Early concepts of fatigue were grounded on observations of the progressive reduction in
force/power output (to near zero values) in isolated skeletal muscle despite supramaximal
stimulation.>® It was thought that muscle failure was related to factors including level of
stimulation, blood flow, availability of O> and the ability to buffer changes in pH. Observations
by Noakes et al. 3! that humans rarely exercise to the point of total muscular failure suggested
that fatigue was not solely related to absolute levels of muscular substrates or metabolites. While
there is evidence that homeostatic disturbances are profound during severe exercise, and that
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exercise end-points occurred at similar levels of homeostatic disturbance regardless of the task 3%
33, complete muscle, cardiac or organ system failure rarely occurred. This evolved to the
understanding that fatigue acts to prevent cellular damage related to severe homeostatic
disturbance.*® Even demanding tasks such as the Wingate test (normally 30-s in duration), can be
extended to as long as 3-min, with the power output only falling as low as the CP.3” These data
suggested the presence of bidirectional signaling between the efferent neural output and afferent
signals from peripheral receptors, rather than unidirectional unresponsiveness by the muscle.
Noakes, St Clair Gibson and Lambert **-#° called this bidirectional signaling the central governor
model. This concept was expanded by St Clair Gibson and Foster *! suggesting that pacing
involved competition between the psychological drive to perform a task and managing
homeostatic disturbances. Thus, although catastrophic collapses of ambulatory ability are
possible, they are comparatively rare.*> Studies of exercise in the presence of afferent blockade **
supported the role of afferent signaling as an obligatory feature in pacing. Evidence in support of
bidirectional signaling was provided by studies where warm-up was manipulated to induce
fatigue before a time trial.** The lesson from the Central Governor model was that pacing, far
from being an epiphemenon of athletic competition, was a window into how fatigue was
experienced and managed.

Patterns of Pacing Strategy

Much of the early pacing research was dominated by observations during athletic competitions.
Abbiss and Laursen *° identified basic pacing strategy variants. Subsequent work from a number
of laboratories '419-21:22272945-72 jdentified physiological responses during variations in pacing
strategy. These studies demonstrated that pacing could be understood in terms of the power
balance model of van Ingen Schenau et al.'®!°, with power production depending on the
summation of aerobic and anaerobic energy provision and power losses related to summated
resistive forces. The first clear evidence that pacing was related to homeostatic disturbances,
primarily related to substrate (creatine phosphate *** and glycogen*®-*®) depletion, and/or
metabolite accumulation 3> and hyperthermia ! appeared during this time period.

Pacing strategy follows general rules related to the distance/time taken to complete a task, and
displays differences related to the nature of the task, particularly the retarding medium.> There is
evidence of “reserve” built into pacing strategy>>~* that can be disrupted by deception regarding
distance feedback and influenced by another competitor (or avatar) that is slightly faster than an
athletes previous performances®*-®*, but hindered if the other competitor is too much faster.5>-%
These findings suggest that the reserve during exercise tasks can be manipulated, either by
time/distance deception or the meaningfulness of the competition (club race vs Olympic final).
Further, the most predictable strategy to improve performance is a faster than normal start.
However, only about 50-80% of fast start experiences will lead to improved performance.®>-
69.713.73.76 Head-to-head racing against a much superior opponent can lead to both an
inappropriately rapid increase in Rating of Perceived Exertion (RPE), and a negative affect and
loss of self-efficacy during the race, leading to reductions in speed/power output (i.e. letting go
of the leading competitors).”>”>
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The structure of the pacing pattern (Figure 1), at least against-the-clock has been conceptualized
as a “landscape” where the interaction of race distance and percent of the race completed define
momentary power output, regardless of whether power output is attributable to aerobic or
anaerobic energetic sources.””’

Insert Figure 1 About Here
Rating of Perceived Exertion

Several studies have shown that RPE grows in a systematic manner in relation to the percent of a
task completed.?*2%2%7-% This suggests a scaling of RPE to the overall level of homeostatic
disturbance, regardless of the precise nature of the disturbance. The rate of RPE growth during
an event appears to be tightly regulated, as blinded changes in inspired [O2] cause a rapid change
in muscular power output while the rate of RPE growth barely changes.®®%-! Similarly, while
changes in pre-exercise muscle glycogen exert a consequential influence on power output, the
growth of RPE normalized to endurance time hardly changes.”?

The overriding importance of RPE as a way to express the sensation of both intensity and
progressive fatigue is so powerful that the third major conceptual model of pacing, the
anticipatory-feedback-RPE model °>°* proposes that power output is regulated based on prior
experience, anticipated completion time and rate of growth of RPE. If the rate of growth of RPE
is discordant with that anticipated, then power output is either up- or down-regulated to return
RPE to the anticipated growth curve (Figure 2). This concept has been supported in studies
where power output was increased by mid-race tactical decisions 8! or deception regarding the
distance remaining.®%-%*

Insert Figure 2 About Here

The growth of RPE relative to the percent of an event remaining has been combined into a
derived variable called the Hazard Score (momentary RPE x fractional distance remaining)
which seems to be able to inform athletes when to change power output during an event, 32849596
An extension of this technique, the summated Hazard Score, has been shown to allow
appreciation of how taxing an event feels.”®

For as important at the RPE has been to understanding pacing, it has been recognized that RPE is
a gestalt of a number of sensory inputs which reflect how a given power output, progress through
an event and homeostatic disturbance is interpreted. As such, RPE has been criticized as a less
than ideal psychophysiologic marker, with other measures being regarded a potentially more
discriminatory. Do Carmo et al.%® and Renfree et al.*”® have demonstrated that another
psychophysiological construct, the affect (or valence) toward a task (degree to which momentary
effort is viewed as pleasant or unpleasant) is more explanatory of when an athlete is having a
good or bad performance, despite identical RPE growth. Thus, affect appears superior to RPE in
the heuristic type of decision-making processes which athletes often use. Given the importance
of head-to-head competition in augmenting performance %719 the ability of athletes to solve
the performance challenges raised by their own physiology, the capacity and tactics of their
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opponents and challenges presented by the course and environment requires a more granular
psychophysiological tool that RPE.

Venhorst, Micklewright and Noakes’*”> have shown that affect (valence) and RPE grow
differently during head-to-head competition and reflect of the degree to which an athlete is
“winning” or “losing” a competition. In particular, changes in affect (valence) reflect the point
in a competition when athletes first begin to fall behind and then “disengage” from their
competitors (action crisis).”>”* They suggest that psychophysiological regulation of exercise
behavior can be viewed in three dimensions. The first is perceived physical and mental strain,
reflecting sensory-discriminatory processes akin to homeostatic disturbances. The second is
affect and arousal reflecting the interpretation of effort as pleasant-unpleasant, and the
momentary level of arousal. This can be viewed as interpreting whether increasing effort is
worth additional effort. The third is a cognitive-evaluative process, what they term as an “action
crisis” or “letting go” of their opponent in mid-race. Their model accounts for traditional
homeostatic challenges provided by a task, how pleasant or unpleasant the task is, and how
willing they are to continue to compete.

The Pacing Template (self-regulation model)

One striking element of pacing is how difficult it is to disrupt freely chosen patterns. Monetary
incentives to improve performance by going out faster have little effect.'”’ Conscious pre-race
decisions to select different strategies have small effects on the actual pacing pattern used, at
least in against-the-clock events.’!”! Pairing with a faster opponent can improve performance,
but only when the opponent/avatar is seen as a realistic “rival” and “within reach” of the best
current performance.®®7> Otherwise, the riders “let the superior rider go”. This corresponds to the
action crisis described by Venhorst et al.”>7*> Apparently, the magnitude of “reserve” within
pacing strategy can be revised by changing the focus from anticipatory-internal monitoring
(against-the-clock) to relative positional-external monitoring (head-to-head) so long as
homeostatic changes are not ignored.

Within race experimental manipulations, such as exposing participant to sudden onset episodes
of hypoxia and hyperoxia, can rapidly change the pattern of power output.?3580-890-102 However,
blinded exposure to simulated altitude in the minutes immediately before the start of an event
does little to change the early pattern of power output.’**° Even exposure to simulated altitude
during the warm-up period, sufficient to result in increases in heart rate, blood [lactate] and RPE,
does little to influence power output during the opening segment of time trials (Figure 3).
Beyond this initial phase, with opportunity for afferent feedback to express itself, there is a large
negative effect consistent with that expected in hypoxia.!?? There is a large negative effect of
pre-race glycogen depletion in events ranging from 1500m (~2 min) to 4000m (~5 min)'*?
(Figure 3) to 1-hour.*® Power output in the early stages of a time trial is only modestly affected
by glycogen depletion (Figure 4). During warm-up, there is an increased heart rate, decreased
blood [lactate] and increased RPE, expected with glycogen depletion. Similarly, strategies
designed to increase muscle glycogen content, resulting in improved performance, do not exert
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an effect until later within an event.***’ Evidence supports the presence of a pre-exercise
template, which is a learned behavior, specific to competitive circumstances.'!®® Learning may
take several trials, and typically evolves as a faster early pace (e.g. less “reserve”). In time trial
events, this learned strategy seems very hard to override, despite conditions in the warm-up that
might be expected to reset the template.!?” In head-to-head competitions it is possible to reset the
template. This supports data regarding the development of pacing strategies in youth athletes of
the need for experience to develop self-regulating strategies.'%>!0

Insert Figure 3-4 About Here

In fit people, with minimal time trial experience, there is evidence of modifications in the
template with repeated time trials'®, that may take > 6 trials. In athletes attempting to improve
their best performance, the pacing pattern is more or less similar, with the exception that the
opening segment is slightly faster, suggesting that improved performance is more attributable to
improved physiologic capacity than to pacing.> Empirical evidence suggests that competitive
performance may improve when novel pacing strategies are employed during practice or less

important competitions, in order to “reset the template”.'¢

Specific attempts to influence the pacing strategy, such as by mid-race “break away” efforts®!!

support the concept of a template, in that upward speed departures from a normal template in 10-
20 km time trials are marked by a subsequent reduction of power output until homeostatic
disturbances (heart rate, blood [lactate], RPE, muscle O, saturation) return toward normal, at
which time the template is resumed (Figure 5). Similarly, attempts to force starting ~5% faster
or slower over the first 30% of a time trial show a rapid return to the “best race” template as soon
as the experimental constraints are removed.”®

Insert Figure S About Here
Pacing Strategy vs Racing Strategy

Early research on pacing was mostly conducted on events where performance was against the
clock, the competitive pattern in pursuit cycling, one-hour cycling, metric style speed skating and
swimming. Many events where pacing might be important are decided on the basis of relative
placing rather than absolute time, leading to a more stochastic pacing pattern.!?-!1* These events
demonstrate evidence of variations in starting strategy and of an end-spurt. Additionally, they
display evidence of intentional variations in speed or power output. Within a single elite athlete,
WR or best performances are often characterized by small variations in momentary speed (e.g.
low coefficient of variation). Championship races are often characterized by frequent, potentially
pre-planned, variations in momentary speed and high speed during the end-spurt, high coefficient
of variation. Variations in pacing seem designed to drop weaker competitors from the leading
group and reduce the number of competitors in contention before the end-spurt occurs.!?7!13
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Hettinga et al.%® discussed the role of opponents in pacing, using ecological principles and the

affordance hypothesis. They explored mechanisms of interactive behavior, proposing a pacing
framework to understand head-to-head competition in which both internal (e.g. fatigue) and
external (e.g. opponent) factors interact. Support for this model was obtained through a series of
lab and field studies®”-%® pacing behaviors of other exercisers® and different competitive
circumstances. In addition to a preplanned template, interactions with competitors and other
environmental aspects play roles that have been described as the affordance concept, wherein
the actions of the opponents afford the athlete with a range of possibilities to modify pre-planned
strategies.”6%76

St Clair Gibson, Swart and Tucker!!'* proposed the integrative governor theory proposing a
continuous oscillation between psychological drives (e.g. competitive goals) and homeostatic
disturbances that serves to regulate momentary power output. Both of these concepts highlight
the complexity of the processes regulating momentary power output, and highlights that the
meaningfulness of competition and actions of opponents are drivers of competitive strategy.
Additionally, since slower starting strategies reduce feelings of effort during competition®®, there
is a tendency in head-to-head competition to start slower than the best performance strategy,
insert competitive “surges”, and recovery sections, and rely on the end-spurt to win the race. This
is true unless the athlete perceives that their own end-spurt might be inadequate to match other
competitors, whereupon higher intensity segments might be inserted to neutralize the end-spurt
of other athletes, or to force them to drop off mid-race. This is an example of the concept of
affordances. Head-to-head races use best performance strategy, until the actions or perceived
capabilities of opponents afford the opportunity to use stochastic pacing. This is particularly true
in aerodynamic (cycling, speed skating) or hydrodynamic (rowing, swimming) events where the
cost of locomotion can be influenced by pacing, or where the pacing of teammates (cycling, pack
style skating or team pursuit skating) or adversaries (Grand Tours, open water swimming) can
influence energy cost. It is even possible that an athlete may go to the front, with the intention of
slowing the pace, if they perceive that they cannot effectively complete the pace their opponents
have adopted. In other words, starting with the best performance strategy as a default, pacing in
head-to-head competitive events can be modified almost infinitely depending on the real or
potential behavior of competitors. However, the overriding need to limit the magnitude of
homeostatic disturbances remains, causing competitors to change from the externally monitored
competitive strategy back to the internally monitored best performance (e.g. survival) strategy.
Opponents have thus been called social placebo’s, influencing expectations regarding successful
pacing and performance.''®

Critical Speed and Pacing

Critical Speed (CS) or Power (CP) is the speed/power associated with highest sustainable
metabolic rate.® This is derived from the asymptote for the hyperbolic speed-time or power-time
relationship, recognized for nearly 60 years "%, and anticipated before the turn of the 20"
century.!! Although not exactly the same, CS/CP approximates the physiological intensity of the
maximal lactate steady state (MLSS), the 2" ventilatory threshold (VT2) or the 2™ lactate
threshold (LT2).%!1® CS/CP is at least as explanatory of endurance performance as VO>max and
VT. If the CS/CP explains the upper limit of sustainable aerobic power, the concept of D’ (or
W) representing the curvature constant of the speed-time or power-time relationship, accounts
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for additional non-oxidative energetic capacity during exercise above CS/CP. The momentary
balance of W’/D’ can explain the likelihood of needing to decrease power output during severe
exercise or the ability to increase power output in service of competitive goals.!!”!!8 This
“anaerobic” energy can be used as needed to sustain metabolic rates in excess of CS/CP in
shorter events (<15 min), to make mid-race surges, or during the end-spurt. Using direct
measurement of anaerobically attributable energy supply, there is evidence’®!2%!2! that, within an
individual, the magnitude of anaerobically attributable energy (e.g. D’), after adjustment for
changes in gross efficiency, may be more or less constant.®’ There is evidence supporting the
concept that the D’/W’ may be reconstituted if, during the middle of an event, the speed/power
output decreases below CS/CP.!'7!'® Examining the pacing of elite runners during 10-km
competitions, it is evident that WR performances are performed close to CS, whereas important
races (Olympic finals) are contested with an average speed <CS, but with tactical bursts above
CS (Figure 6).1°7121 Examining pacing in groups of runners (first 3, middle 3 and last 3) in an
Olympic final, it is evident that better runners run much of the early part of the event <CS,
preserving D’ for the end-spurt, whereas less good runners run the early part of the event > CS in
order to stay with the early pace, thus limiting energetic reserve (D) to contest the last laps (Fig
7). This concept has been called the D’ balance!'®. On this basis, it would be expected that the D’
balance would fall to very low values near the end of a race. Recent evidence from WR 1-mile
races (entirely >CS) and high level 800-m swimming races 212! supports this expectation
(Figure 8). Additional evidence from the 2008 Olympic men’s 10-km race indicates that the
CS/D’ balance could predict how high-level races unfolded, including evidence that the 80% of
athletes falling out of contention before the end-spurt do so, often by mid race, when D’ reaches
critically low levels and that D’ often increases during the remainder of the race as they are
running <CS (e.g. survival mode). However, in the 20% remaining in contention until the last
400-m, the magnitude of D’ falls to very low values only at the end of the race (Figure 8).'*!
Recent evidence suggests that the magnitude the end-spurt was related to how well runners were
able to preserve D’ until the last 400-m and that superior athletes might win or lose competitions
based on good or poor management of D”.!1°

Insert Figure 6 About Here
Insert Figure 7 About Here
Insert Figure 8 About Here

The CS/CP and D’/W’ seem to be as definitional of performance level and pacing strategy as
were prior candidates such as VO,max, LT/VT and the Oz cost of running'®!?>1?*> While these
metrics are still powerful predictors of the ability to move at a certain pace, the concept of an
anaerobic capacity'?*, and how it is deployed during the course of an event, represented by the
concept of D’ is useful for analysis of performance, for explaining why some athletes drop off
the leading group during mid-race, and why some athletes have particularly effective end-
spurts.'1

The CS/CP may also explain, at least in part, athletes’ predisposition to use a fast start strategy
during shorter, high-intensity events. There is evidence that such an approach speeds VO2
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kinetics, leading to a greater aerobic contribution in the early phase of exercise, thereby sparing
D’/W’. This effect of a fast start strategy on VO kinetics also increases CP compared to that
established using constant-work-rate protocols. The pattern of D’/W " use during short-duration
exhaustive exercise, where W’ starts at 100% and finishes near 0 %, will also be altered by a U-
shaped (relatively fast start and finish) compared to more even pacing. The regularly-adopted U-
shaped pacing strategy may be a behavioral evolution not only because is it likely to be
performance enhancing, but also because it would result in a higher W'/D” over a large fraction
of the mid-race, potentially making the exercise feel more tolerable.

Additional Factors

Since the paper by Paavolainen et al.!?, it is well-accepted that “muscle power factors”
contribute to performance. The contribution of neuromuscular factors to pacing in endurance
events has been scarcely addressed. Damasceno et al.'?® documented that improvements in
strength influenced the last 2.8-km of 10-km races. This finding agrees with cross-sectional
studies reporting positive influences of diverse neuromuscular performances on pacing in
endurance athletes. Intervention studies have suggested potentiation effects of strength exercises
during warming up on the first laps of short time trials in runners'?’13°, cyclists 13! and rowers
132 without improving overall performance. Conversely, impaired neuromuscular function after
static stretching'®® reduced the starting speed of 3-km running trials without affecting the final
time. Therefore, limited evidence suggests that neuromuscular function and post-activation
performance enhancement would allow optimal pacing behaviors while counteracting the effects
of fatigue.!3*

One of the most consistent and striking findings in the pacing literature is the near universal
presence of the end-spurt in events of >2-3 min duration, particularly in head-to-head
competition. Presumably this evidence of “reserve” in the pattern of energetic expenditure is
hard-wired into exercise patterns by virtue of evolutionary history as hunter-gatherers, who
needed to preserve reserve until “closing in for the kill”.!3 It can be argued that the interaction of
muscle fiber type, lactate accumulation, preservation of anaerobic reserve (D) can act to define
pacing. Athletes with a higher %Type II motor units are predisposed to have more top-end power
or speed.!*137 However, since higher % Type II motor units have a lower muscle respiratory
capacity and lactate threshold (a surrogate of CS '*®), it is likely that the consistent pattern of
runners with a higher %Type I fibers attempt to “burn off” lesser runners '°7 is representative of
the need to remove the inherently better sprinters before the competitively critical moment of the
race. Certainly, the best evidence is that the athletes winning in the final sprint are those who
have best preserved their anaerobic capacity (D”).'' Thus, the essential pacing decision within an
event is whether natural sprinters (high %Type II motor units, high D’) can remain in contact
with more endurance-oriented athletes (high % Type I motor units, high muscle respiratory
capacity, high CS).

Conclusion
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Pacing strategies have been of interest to exercise physiologists for at least the last 30-years.
Several models have emerged through the years attempting to predict the optimal pattern to
finish an event without excess fatigue or excess remaining energy at the finish. These models
have shown that pacing reflects a complex relationship between environmental stressors,
physiological feedback, and psychological drive with a default pattern of a relatively “even”
pacing strategy with a brief “fast start” to optimize time-centric vs head-to-head competition.
These templates are robust even in the face of conditions that predictably would change them
(hypoxia, glycogen depletion, etc.). Athletes revert to the baseline template unless there is
conscious effort to change for tactical reasons. However, templates may have progressive
modifications through repeated performances. Once an “ideal” pacing template is achieved, the
athlete may use the “concept of affordances” to modify pacing based on events occurring within
an event. Although progressive growth of RPE is characteristic of pacing, more subtle
psychodynamic factors such as affect (valence) appear to be more discriminatory than RPE on
whether an athlete remains with competitors or “lets go” part way through an event.

Practical Applications

Pacing, the way an athlete expends energy during a competition, depends on several factors.
Although the term pacing strategy is widely used, the term is probably too broad, as “strategy”
encompasses the overall race plan, the tactics used to accomplish the strategy, and the highly
responsive pattern of energy expenditure, all designed to achieve competitive outcome. The first
is the competitive result (best performance vs defeating competitors). This will lead to whether
the pattern of energetic output is smooth and based on the time-distance characteristics of the
event or stochastic, where energetic output is focused on “dropping” competitors or preserving
energy for the end-spurt. To accomplish these goals, an athlete needs to have a sense of their
own capacity and be able to interpret internal feedback indicating the magnitude of homeostatic
disturbances. They also need to have a good sense of their competitor’s capabilities and be able
to interpret signals from their competitors, in order to vary their tactics. Thus, while pacing
strategy is not likely to discriminate between athletes of widely varying ability, it may be critical
to achieving a desired competitive result.
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Captions for Figures

Figure 1: Schematic of relative PO vs total distance and relative percent of a time trial
completed. The data resemble a “landscape” and show that in almost all distances that there is
an initial peak in PO at the start, and a terminal end-spurt in all but the shortest distances.?>””-’8

Figure 2: Schematic of the growth of RPE in relation to the percent of a task completed. Data
included are for ambulatory tasks such as walking, running and cycling, as well as for lifting
weights to failure with different levels of resistance.?!:2%-28:51:53.34.64.72.80.88.93-96

Figure 3: Schematic responses of the degree to which changes in PO are used to regulate the
growth of RPE during heavy exercise. In one trial (upper panels) the subjects completed a 5-km
cycle time trial, either breathing room air throughout, or breathing a hypoxic mixture between 2-
4 km.”8, During hypoxia, the PO is rapidly reduced and then returns to normal when normoxia is
restored. However, the growth of RPE across the duration of the time trial is barely affected. In
another trial (lower panels) the subjects competed a 4-km time trial in either a control condition
or following an exercise/diet manipulation calculated to cause muscle glycogen depletion. In the
depleted condition there were profound decreases in PO, after the opening 400-m segment, but
only modest increases in RPE.”

Figure 4: Schematic of the effect of glycogen depletion during time trials of 1.5 and 4.0-km. In
concert with the effect of a pre-exercise template there is no effect on PO at the beginning of the
time trial, but there is a rapid and progressive decrease in PO throughout the course of the
glycogen depleted time trial.®’

Figure 5: Schematic responses of 10-km (upper panels) ’ and 20-km (lower panels) *® cycle
time trials where one or more bursts, as if the rider were trying to “break away from the peloton”
were inserted. In both cases, during the burst the RPE grew at a higher rate than in the control
(self-paced) trial, and slowly recovered after the burst, consequent to a reduction in PO. The
data demonstrate that the rate of growth of RPE is tightly controlled and that PO is adjusted to

maintain the expected rate of growth of RPE.

Figure 6: Speed profiles of Kenesa Bekele (ETH) during world record 5-km and 10-km races
and during Olympic gold medal races in the 2007-2008 time period. Note that the variation in
pace during the championship events is much larger (CV~3x greater). For reference, the Critical
Speed (dashed line), calculated from public record performances, approximates the velocity of
the 10 km world record.

Figure 7: Speed profiles of the first 3, middle 3 and last 3 runners in the men’s 5-km and 10-km
Olympic finals (Beijing 2008). The data are normalized to the individual values for Critical
Speed, which emphasizes that the first 3 runners are running at a physiologically easier pace
during the early part of the race. This may serve to preserve D’ and allow them to run at a
relatively higher percentage of their already higher CS during the closing stages of the race. A
better preserved D’ also increase the likelihood of producing a more effective end-spurt.!'!*
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Figure 8: Progressive depletion of D’, to essentially zero values, during the course of World
Record performances in the 1-mile run, based on historical data since ~1920. The CS was
subtracted from the observed speed during each 402-m lap, and the remaining distance was
subtracted from the D’ (both CS and D’ were computed based on published historical races for
that athlete).!?’
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