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Abstract

Purpose — This study aims to examine the ability of clean energy stocks to provide cover for investors against
market risks related to climate change and disturbances in the oil market.
Design/methodology/approach — The study adopts the feasible quasi generalized least squares
technique to estimate a predictive model based on Westerlund and Narayan’s (2015) approach to
evaluating the hedging effectiveness of clean energy stocks. The out-of-sample forecast evaluations of the
oil risk-based and climate risk-based clean energy predictive models are explored using Clark and West’s
model (2007) and a modified Diebold & Mariano forecast evaluation test for nested and non-nested models,
respectively.

Findings — The study finds ample evidence that clean energy stocks may hedge against oil market risks. This
result is robust to alternative measures of oil risk and holds when applied to data from the COVID-19 pandemic.
In contrast, the hedging effectiveness of clean energy against climate risks is limited to 4 of the 6 clean energy
indices and restricted to climate risk measured with climate policy uncertainty.

Originality/value — The study contributes to the literature by providing extensive analysis of hedging
effectiveness of several clean energy indices (global, the United States (US), Europe and Asia) and sectoral clean
energy indices (solar and wind) against oil market and climate risks using various measures of oil risk (WTI
(West Texas intermediate) and Brent volatility) and climate risk (climate policy uncertainty and energy and
environmental regulation) as predictors. It also conducts forecast evaluations of the clean energy predictive
models for nested and non-nested models.
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1. Introduction

The effects of global warming and climate change have become more apparent over the past
decade. Floods, heat waves and wildfires are rising in Europe (especially France, Spain, Greece,
Portugal and Spain), Asia and North Africa (Bohringer Cantner, Costard, Kramkowski, Gatzen,
& Pietsch, 2020; Meier, Elliott, & Strobl, 2023). Researchers have been able to attribute the rise in
natural disasters to global warming and climate change (see Wang, Jiang, & Lang, 2017 and
relevant papers cited therein). Therefore, it is imperative to engage market-based approaches
such as investments in green assets as well as pursuance of green growth policies. These efforts
aim to ensure that a large portion of the energy demand is met through renewable sources to
reduce greenhouse gas emissions and ultimately address climate change challenges (Sinha,
Sengupta, & Alvarado, 2020; Bohringer ef al, 2020). Besides, the international financial
environment is increasingly facing higher market risks especially due to several factors
including crude oil price fluctuations, policy uncertainties and the COVID-19 pandemic, among
others (see Salisu, Ogbonna, Oloko, & Adediran, 2021; Boubaker, Goodell, Pandey, & Kumari,
2022; Boungou & Yatié, 2022; Salisu, Tchankam, & Adediran, 2022 and relevant papers cited
therein). For example, the oil shock of April 2020, which occurred during the height of the
COVID-19 pandemic, may have contributed to instability in the oil market, which has become
more volatile, particularly with respect to price (see Salisu, Oloko, & Adediran, 2021). We look at
oil price volatility more closely in this paper. This study, therefore, highlights the need to search
for investments to protect investors against market risks, which has become increasingly
heightened, especially in the COVID-19 era, coupled with the need to maintain responsible
investments that promote a green economy. Hence, this study explores whether clean energy
stocks can function as hedges against identified financial risks.

This paper explores if clean energy stocks, as relevant proxies for green investment, possess
hedging and diversification potentials that can benefit investors in financial markets (which
range from stock markets, bond markets, currency markets and commodity markets) against oil
market specific risks and market risks that relate to regulations regarding global warming and
climate change. In other words, we demonstrate how clean energy stocks could effectively hedge
oil market and climate risks. This is motivated by evidence of recurring impacts of oil price
shocks on global financial investors (Apergis & Miller, 2009; Salisu & Adediran, 2020) as well as
the impact of regulatory policy framework against greenhouse emissions and climate change
(Reboredo, 2018). The present study is therefore motivated to demonstrate that clean energy
stock markets may be an attractive, emerging alternative class of assets for environmentally
responsible investors seeking to decarbonize their investments (Dutta, Jana, & Das, 2020; Braga,
Semmler, & Grass, 2021; Cepni, Demirer, & Rognone, 2022).

Both climate and crude oil market risks are related to the environment (Saeed, Bouri, & Vo,
2020; Kabir, Rahman, Rahman, & Anwar, 2021), hence, they are relevant to the global drive for
promotion of green technology and sustainable development goals (Kocaarslan & Soytas, 2021).
Crude oil is a major fossil fuel, taken with other hydrocarbons, contribute more than 70% of
global carbon emissions (Balcilar, Demirer, Hommoudeh, & Nguyen, 2015), hence, responsible
investment focused on decarbonization and combating climate change favour an analysis of this
nature that could show clean energy stocks as viable investment options for portfolio
diversification, in the midst of rising oil market risks and against climate risks faced by investors.

This study contributes to the literature in two ways. First, our analysis of hedging
effectiveness of clean stocks is based on aggregate clean energy indices (global, the
United States (US), Europe and Asian markets) and sectoral clean energy indices (Wind &
Solar) in order to cover various international markets and asset classes (Table 1). Second,
we conduct an impact analysis for the hedging effectiveness as well as the forecast
evaluation analysis. We further analyse the hedging effectiveness across the full sample
and COVID-19 sample period, given the motivation around the pandemic as a source
of financial market risk (see Salisu, Ogbonna, et al, 2021). Our study differs from



Description Sample Frequency

Clean energy assets

Global Wilder Hill new energy global (NEX) 7/9/2012 - 7/11/2022 Daily
Europe  NQ OMX clean energy Europe 11/29/2010 - 7/11/2022  Daily
US NQ OMX clean energy US 11/29/2010 - 7/11/2022  Daily
Asia NQ OMX clean energy Asia 11/29/2010 - 7/11/2022 ~ Daily
Solar NASDAQ OMX solar (GRNSOLAR) 10/15/2010 - 7/11/2022  Daily
Wind ISE global wind energy TR (GWETR) 2/7/2017 - 7/11/2022 Daily
Ol risks

WTI West Texas intermediate oil price realised volatility 10/15/2010 - 7/11/2022  Daily
Brent Brent crude oil price realized volatility 10/15/2010 - 7/11/2022  Daily

Climate visks
CPU Climate policy uncertainty (Gavriilidis, 2021) 10/1/2010 - 12/1/2021 Monthly
EER Energy and environmental regulation (Baker et al,, 2020)  10/1/2010 - 12/1/2021 Monthly

Source(s): Table by authors
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Table 1.
Data description

Kuang (2021), which examines the safe haven property of clean energy stocks compared
to “dirty” energy stocks and shows that clean energy stocks may provide diversification
benefits. Our study differs from Kuang (2021) in that the latter considers the hedging
potentials of the clean energy stocks in the face of specific market risks [1]. Further, our
disaggregated analysis of the hedging effectiveness of sectoral clean energy stocks
makes it different from Pham (2019), which is limited to the nexus between oil prices and
clean energy stocks.

We take the predictability analysis further to explore the out-of-sample forecasting of the
clean energy stock returns based on the measures of climate and oil risks as the predictor
series. We adopt a method that fits the behaviours of the variables in the model in terms of
persistent regressor series, endogeneity bias due to the bivariate model and conditional
heteroscedasticity in the series (see Sharma, 2021 for step-by-step application of the
Westerlund and Narayan (2012, 2015) method). We obtain robust results that indicate the
potential of clean energy stocks in shielding against oil market risks. Our results also show
that clean energy stocks are limited to hedging against climate risks. Hence, we show that
promoting these types of assets may help combat climate change while also being a
financially-smart investment choice.

We present a brief literature review in Section 2 followed by the detailed methodology for
the predictability and forecast evaluations in Section 3. Section 4 discusses some preliminary
results and the main findings, while Section 5 completes the study and provides a conclusion.

2. Literature review

This study is rooted in the modern theory of optimal asset selection put forward by
Markowitz (1952) where the expected returns and risks of assets are the key components
of portfolio selection; hence, risk management is at the core of portfolio management. The
theory of portfolio choice for which Harry Markowitz received the 1990 Nobel Prize in
Economic Sciences can be used to explain how households allocate their financial assets
to reduce risk in times of uncertainty [2]. Financial assets can serve as hedges, safe havens
or diversifiers (Baur & Lucey, 2010). A hedge is defined as an asset that is uncorrelated or
negatively correlated with another asset or portfolio over time. A diversifier is positively
correlated with other assets or portfolios while safe havens are assets that function as
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hedge assets during market crises. The distinction between hedges and safe havens is
that the latter can help investors manage extreme market turmoil, that is, they can
provide diversification benefits for investors against systemic risks that cut across most
financial markets such as the Global Financial Crisis of 2007-2008 or the COVID-19
pandemic. The former category, which we address in this study, can help provide cover
for investors with their ability to deliver positive returns in the face of specific market
risks (in our case, oil and climate risks). In other words, if the clean energy stocks are able
to perform a hedging role, they would, by implication, be negatively correlated with
traditional assets.

Empirical analysis of the hedging ability of different assets is not new, for example,
precious metals have been considered (Yaya, Tumala, & Udomboso, 2016; Kumar, 2017,
Salisu, Vo, & Lawal, 2021), as well as agricultural commodities (Hernandez, Shahzad, Uddin,
& Kang, 2018) and stocks (Lin, Zhou, Jiang, & Ou, 2021; Zivkov, Mani¢, Buraskovié, & Gajic-
Glamoclija, 2022). Hedging roles of some assets have been conducted against oil shocks due to
the latter’s high volatility (Maitra, Guhathakurta, & Kang, 2021). The bulk of the relevant
literature has been limited to the analysis of the nexus between oil market fundamentals and
clean energy stocks (see, for example, Henriques & Sardosky, 2008; Managi & Okimoto, 2013;
Reboredo & Ugolini, 2018) without recourse to the hedging role of the latter. The studies of
Sardosky (2012), Dutta (2017), Ahmad, Sardosky, and Sharma (2018), and Dutta, Bouri, Das,
and Roubaud (2021) examine the volatility spillovers between clean energy stocks and some
other assets, including oil. The studies report some significant relationships on which the
present study can stand to check if the clean stocks can hedge oil risk.

Climate risk has also become popular in the finance literature since climate change has
been found to affect financial markets (Oloko, Adediran, & Fadiya, 2022). Another dimension
to the importance of climate risk is the significant impact of climate policy uncertainty on
investment (Ren, Shi, & Jin, 2022; Bouri, Igbal, & Klein, 2022). This study contributes to a
growing body of research on the diversification potential of green investments. It situates
among studies examining whether green assets offer protection against specific or general
market risks (see Dutta ef al, 2020; Reboredo & Ugolini, 2020). The important gap the present
study fills is to put forward evidence on the possible hedging benefits of clean energy assets
against climate change and oil market risks. This idea is important in the current times when
the call for decarbonization, green growth and investment inform policy direction under
international agreements such as the United Nations Framework Convention on Climate
Change.

3. Methodology and data

This study uses a predictive model to identify if clean energy assets (each considered
individually as predict and) provide any hedging benefit against market specific risks
associated with climate change or the crude oil market (whose proxies are also considered
individually as the predictor). The modelling framework follows the specification developed
in Westerlund and Narayan (2012, 2015) to simultaneously account for any conditional
heteroskedasticity, persistence (unit root properties) and endogeneity bias the clean energy
indices may have (see Sharma, 2021). The empirical models are as follows:

clean; = a’m + ﬁ*dmdm;_l + ¢clm (Clmt N pd’”clmt_l) + ‘C’l?lm (1)
dlean; = o' + "ol + ¢" ol — p"oil-1) + €' ©

where clean; represents the clean energy stock returns of the six alternative clean energy
indices (global, Europe, US, Asia and sectoral (solar and wind)); the models are defined for the



regressors such that: chn represents the climate risk based model and oi/ is the oil risk based
model; @ and a”" are the constant terms of the respective models, " and g* are the bias-
adjusted beta (slope) coefficients of the respective models that indicate the hedging effectiveness
of the clean energy assets, and £/ and &” are the error terms of the two classes of models.

Since the clean energy returns series exhibit conditional heteroscedasticity (given that
they are high frequency financial series), the error terms, therefore, mirror the autoregressive
conditional heteroscedasticity (ARCH) model:

cm § e ¢ (clm)2
Lrlm t wl‘ + wl f—i (Sa)
il i1 (oil)2
ooy = @) + E wllel (3b)

The bias-adjusted generalized least squares estimator is suitable. We checked this by pre-
weighting the series with the quantity: 1 / \/0%;. The bias-adjusted Beta (subsequently
referred to as the Beta-adjusted coefficient) is derived from the following formula:

ﬂ*clm _ /}dm _ ¢clm (ﬂdm _ 1) (43)
ﬂ*azl ﬂall d)ml( oil 1) (4b)

To demonstrate the hedging effectiveness of the clean energy assets, we specify two criteria
as follows: (1) no hedge (8™ <0 and f*" <0) and (2) hedge (B*™ > 0 and g > 0) (see
Arnold & Auer, 2015; Salisu & Adediran, 2020). “No hedge” is obtained when the Beta-
adjusted coefficient is less than zero (or negative) in which case the returns of the clean energy
assets fall with the risk levels examined. On the other hand, clean energy stocks would
possess hedging potential when the coefficient is greater than zero (i.e., positive). In the case of
“hedge,” the clean energy returns increase in the face of higher climate and oil market risks.
In addition, we explore the out-of-sample forecast evaluation of the clean energy asset
models. The forecast evaluation exercise is extensive where we compare the forecast
accuracies of nested models and non-nested models. For the nested models, the historical
average (HA) is the benchmark, which serves as the basis for comparing the oil risk and
climate risk predictive based models. Our model uses the technique for forecast evaluation set
forth by Clark and West (2007) to test the difference between the HA and the risk-based
predictive models. The rejection of the null hypothesis of Clark and West test indicates the
better performance of the preferred models (climate risk-based models and oil risk-based
models). The Clark and West test statistic is obtained from the following estimations:

~clm
th _ Cdm + Cdm (53)
:};Hh _ Co;l + é»azl (Sb)

Where the out-of-sample forecasts are defined as: f h —MSE;w (MgEm — adjay),

f = MSEha (MSEM —adj,;), the quantities with subscript /a are observed from the
HA model, /2 is the out-of-sample forecast horizon, the mean squared errors of the respectlve
predictive models are defined as follows: MSE;M =P Z(uHh —Upg Hh) MSE( =

P~ Z Utyh — uclm,Hh) y MSEm'l =P Z(uHh - MmZ‘,Hh) ’ ad]dm =P Z(u}m1t+}1 - uclm.Hh)Z,

adjpy = P (Upapsn — ﬁgg>t+;1)2, and P represents the number of predictions for computing the
average sum of squares. For the forecast evaluation using the Clark and West test, the
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coefficients of Eq. 5a and 5b (¢*"& ¢*) are statistically significant. The statistical significance of
the coefficients indicates the better performance of the “favored” climate- and oil risk-based
models.

For the non-nested models where we compare the two oil risk-based models and the two
climate risk-based models, we examine the out-of-sample forecast analysis using the modified
Diebold and Mariano forecast evaluation test (see Harvey, Leybourne, & Newbold, 1997). The test
works by comparing the forecast errors of the competing models in the following specification:

MDM = <\/T+1—2h+ T-lh(h—1)/T>DM ©)

Where MDM is the modified Diebold and Mariano test statistic (Harvey et al, 1997) and DM
is the conventional Diebold and Mariano test statistic (Diebold & Mariano, 1995) defined as:

DM = diff* / \JV(diff) ) T~N(0,1) @

where 7T'is the sample size, diff = I(€pent) — (1) [OF Aff = l(€pmr) — {(€cpr )] (Etrent) s the loss
function of the model with Brent price realized volatility as the predictor, /(& ) is the loss function
of the model with West Texas intermediate (WTT) price realized volatility as the predictor, /(ezzz)
is the loss function of the model with the energy and environmental regulation (EER) index as the
predictor, /(ecpy) is the loss function of the model with climate policy uncertainty as the predictor,
and diff " and V (diff) are the mean and variance of the loss differentials, respectively.

The null hypothesis for the MDM test is E(diff) = 0, which contrasts with the alternative,
E(diff) < 0 which suggests that the models with WTI (CPU (climate policy uncertainty))
outperform those with Brent (EER). The reverse becomes the case if E(diff) > 0, whereas
there is no difference in the forecast performance if £(diff) = 01s obtained. We conduct the
out-of-sample forecast evaluation for the daily data frequency (involving oil risk) using a
75:25 data split and produce 10-, 30-, 60- and 120-day forecasts. For the monthly data
frequency involving climate risks, we also conduct the forecast evaluation using a 75:25 data
split and produce forecasts monthly for the next 4 months.

The study, therefore, analyses both daily and monthly data; the analysis of climate risk is
conducted with monthly data frequency, while that of oil risk is conducted with daily data
frequency to preserve the data generating process [3]. This is a way to circumvent the limitation
of monthly climate risk data. We obtain daily prices of clean energy stock indices from
Bloomberg terminals and compute the return series as follows: 7, = 100 * (log p, —log p;_1);
where 7, is the return series calculated as the log differences in the price series (p;).

The climate risk is principally measured with climate policy uncertainty data (Gavriilidis,
2021) [4], and for robustness, we alternatively measure the climate risk with the equity market
volatility tracker: EER dataset (Baker, Bloom, Davis, & Terry, 2020) [5]. Both of these climate
risk data are only available on a monthly basis. We also measure oil market risk in two ways
to obtain robust findings using two crude oil price benchmarks, the daily Brent and West
Texas Intermediate crude oil indices. Hence, we measure oil market risk by obtaining the
realized volatility from the indexes using;:

22
RVoly = \| Y 72 ®
i=1

where RV, is the realized volatility series, and 77 is the squared returns summed across 22
trading days in a month. The oil prices for computing the oil market realized volatility are
obtained in daily frequency from the US energy information administration [6].



4. Discussion of findings

4.1 Preliminaries

We explore the behaviour of the series used for this study using graphical representations
and various statistical tools to reveal more information about the possible association
between the regressors and regressands. The movements of the proxies used for climate risks
and oil market risks are represented by Figure 1, while Figures 2 and 3 present the line graphs
of clean energy assets and the proxies of oil market and climate risks, respectively. Figure 1
(shown on the left) shows that the climate risk proxies behave in a similar but not identical
fashion. The graph reveals that the two indexes started with perfect co-movement in 2010,
however, the energy and environmental index had its highest value (risk level) recorded in
mid-2013 while that the highest recorded CPU value was in 2018. This might be because the
instruments used to measure the two are different, which will be an advantage when it comes
to checking the robustness of our results. The oil market risks, WTT and Brent volatilities, on
the other hand, perfectly co-move with each other, Figure 1 (shown on the right) shows no
significant difference in the movement of Brent and WTT oil volatility which would mean that
these two proxies should lead to similar results in the model estimation stage.

The graphs in Figure 2 show that though clean energy returns revolve around a mean of
zero, there is a notable higher volatility in the return series at the points where oil risks are
very high (especially during the COVID-19 pandemic period). This shows that there might be
a significant relationship between oil risk and the clean energy returns. Figure 3 presents the
trends of the clean energy returns against climate policy uncertainty and the energy and
environmental policy index. These graphical analyses fail to show any clear insights on the
direction of relationship to expect between the variables. However, the correlation analyses
conducted in the second panel of Table 2 are much clearer and suggest that the clean energy
stock returns are positively related to the oil risk measures and climate policy uncertainty but
appear to be negatively associated with EER index. We subject these to further scrutiny in
the main analysis.

To complement the graphical representations of the series, additional statistics for point
estimates are used. The point estimates include mean, standard deviation, skewness and
kurtosis. The series was further analysed to check for persistence, conditional
heteroscedasticity and endogeneity. The results are presented in Tables 2 and 3 for the
regressor and regressand series, respectively. Results in Table 2 compares the CPU index
(average, 134) with that of EER index (average, 0.327) with the former also having larger
standard deviation (95) (higher volatility) than the latter (0.267). Although the graphs did not
reveal the difference between the Brent and WTTI volatility series, the results in Table 2 show
that WTT oil risk has a slightly greater average (4.39) compared to Brent crude (4.06) and the
standard deviation also affirms that WTT is more volatile (4.267) than Brent crude (3.699). The
skewness for both the climate and oil risks indexes are positive reflecting a possible long right
tail and the kurtosis shows that they are leptokurtic. Furthermore, the table reveals that the
climate policy uncertainty index is persistent while the energy and environmental policy index
is not, however, both oil risk proxies show evidence of persistence. The oil risk proxies exhibit
an ARCH effect across lags 1, 5 and 10 while the climate risk proxies display no ARCH effect.

Table 3 reveals the averages of the clean energy returns and, as expected, the global clean
energy returns have the highest mean of 0.04 among the markets and Asia index record the
lowest average returns (0.006). The global index also displays the lowest standard deviation
figures (1.33) while Asia has the highest (1.46). When it comes to the two energy sources, the
solar index has a higher mean (0.051) and standard deviation (2.119) compared with the wind
index (mean, 0.037 and standard deviation, 1.217). Negative skewness is recorded for all the
clean energy return series, which indicates a possible long left tail with a kurtosis value
greater than 3, which would mean the series does not follow a normal distribution. Finally, the
null hypotheses of no persistence, no conditional heteroscedasticity and no endogeneity bias
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Figure 1.
Trends in climate and
oil market risks

Climate risks

700 2.8

600 | 2.4
m
=
bl o
_% 500 - 20 <
+ Q
[} >
o o
€ 400 | 116 o
S =}
) :
g 300 1.2 §
[0} @
= =
£ 200 Log 2
o I
=
100 | 104 =

oo v--_rtr--rr+- 00

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Date
— Climate risk 1 —— Climate risk 2
Oil market risks

50 50

40 | L 40

30 4 L 30
g =

[}

& 4

20 | L 20

L 10

0 0

1"

12

13

15 16 17 18 19 20 21
Date
—— brent —— wii

Note(s): The figure on the left shows two measures of climate risk data, CPU (climate risk 1)
and EER (climate risk 2). The figure on the right is the graphical plot of the two measures of
oil risk data; Brent crude oil price volatility and WTI crude oil price volatility
Source(s): Figure by authors
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Figure 2.
Clean energy returns
and oil market risks
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Figure 2

Trends in solar clean energy retums and ofl market fisk Trends in solar clean energy retums and oil market fisk
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Source(s): Figure by authors

are all rejected for the clean energy returns series. These checks demonstrate that the
Westerlund and Narayan (2012, 2015) model is suitable when used in this context.

4.2 Main results

This section focuses on the contributions of our paper, which studied the hedging potentials
of aggregate and sectoral clean energy stocks against climate and oil market risks; and the
use of alternative approaches to analyse the out-of-sample forecasting evaluation of the clean
energy predictive models for nested and non-nested models. The preliminary analysis of the
clean energy stock indices (the regressands) and the measures of climate & oil risks (the
predictor series) validate our predictive model, which was based on Westerlund and Narayan
(2012, 2015) but also included a feasible quasi generalized least squares (FQGLS) technique.
The FQGLS technique of analysis which is designed for return predictability is the most
appropriate model to use since the dependent variable (clean energy stocks) was presented in
terms of returns (see Salisu, Adediran, Omoke, & Tchankam, 2023). Further corroborating
evidences are shown in the preliminary results in Tables 2 and 3 which confirm the presence
of persistence and conditional heteroscedasticity in the series as well as possible endogeneity
bias in the relationship being examined.
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Note(s): The figures here present the graphical plots of each of the clean energy price returns
and climate risks. The plots of clean energy returns and CPU index are on the left column
while the plots of clean energy returns and EER index are on the right column. The rows are
arranged for the ‘Global’, ‘Europe’, ‘US’, Asia’, ‘Solar’, and ‘Wind’ clean energy indices
respectively

Source(s): Figure by authors

First, we explored the hedging role and effectiveness of clean investments across different
markets (global index, Europe index, US index and Asia index) and across renewable energy
sources (solar and wind energy indices). We presented the results in Table 4. The upper panel
of Table 4 details the results of the hedging effectiveness of clean energy assets where oil
market risks (Brent and WTI crude price volatilities) are the predictors. The lower panel of
Table 4 documents the results when the climate risk measures (EER and CPU) are the
predictors[7]. Recall that the hedging effectiveness of the clean assets is explored on the basis
of the following criteria: (1) no hedge (%™ <0 and p*" <0) and (2) hedge (6*™ > 0 and
A< > ) (see Arnold & Auer, 2015; Salisu & Adediran, 2020).

The results extensively show widespread evidence (11 out of 12 cases) [8] of hedging
against oil market risks for all the classes of clean energy assets. This aligns with Saeed et al’s
(2020) finding that clean energy assets are more effective as hedges compared to dirty energy
assets. Moreover, the Beta-adjusted coefficients are positive and statistically different from
zero, indicating that investment in clean energy stocks could benefit financial investors who
wish to mitigate oil market risks. Further results conducted using data from the COVID-19
pandemic period (2020 - 2022) are presented in Table 5. They reveal positive and significant
Beta-adjusted coefficients across the board, thereby indicating that clean energy stocks
possess hedging powers even during times of economic and world turbulence such as the



Hedging

Statistic Climate risk (1) Climate risk (2) Oil risk (1) Oil risk (2) .
potentials of
Mean 133.520 0.327 4.056 4.392 green
Std. Dev 94.766 0.261 3.699 4.267 :
Skewness 1.830 2224 6,563 6.382 mvestments
Kurtosis 8.099 11.945 57.246 51.922
Persistence 0.576%#* 0.075 0.99717%#* 0.992%#*
0.072) (0.088) (0.003) (0.002)
ARCH(1) 0.358 0.003 71566.70%** 85591.69*#*
[0.551] [0.956] [0.000] [0.000]
ARCH(5) 0.129 0.076 16711.60%* 18781.21%*
[0.985] [0.996] [0.000] [0.000]
ARCH(10) 0.557 0.101 872371 9626.31%**
[0.845] [0.999] [0.000] [0.000]
Correlation analysis
Global 0.1758 —0.0745 0.0213 0.0255
Europe 0.1101 —0.1276 0.0143 0.0145
Us 0.1241 —0.2016 0.0199 0.0227
Asia 0.1242 —0.1230 0.0107 0.0098
Solar 0.1783 —0.1252 0.0183 0.0168
Wind 0.1448 —0.0968 0.0151 0.0208
Note(s): Climate risk 1 (CPU) is climate policy uncertainty (Gavriilidis, 2021), Climate risk 2 (EER) is equity
market volatility: EER (Baker ef al, 2020), Oil risk 1 is the realized volatility from the Brent crude oil price, Oil
risk 2 is the realized volatility from the WTI crude oil price. ARCH is the test for conditional heteroscedasticity
conducted with ten (10) lags. The null hypotheses for persistence and ARCH tests are no persistence and no
ARCH effects, respectively. "***” indicates statistical significance at the 1% significance level. Values in “()” are Table 2.
standard errors while those in “[]” are probability values Further preliminary
Source(s): Table by authors analysis
Statistics Global Europe Us Asia Solar Wind
Mean 0.040 0.017 0.036 0.006 0.051 0.037
Std. Dev 1.331 1.375 1.343 1.461 2.119 1.217
Skewness —0.595 —0.715 —0.488 —0.220 —0.442 —0.949
Kurtosis 11.449 10.333 12.109 6.875 8.695 18937
Persistence 0.189%#* 0.043%* —0.095%k 0.148%#* 0.012 0,099k
0.019) (0.018) 0.019) (0.018) 0.018) 0.027)
ARCH(1) 0.019%k* 57.209%#% 796.93*% 74.35%#* 183.35%* 88.205%*
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
ARCH(5) 123.33%#* 83.688#* 297 79 61.129%#* 171.26%** 96.543#*
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
ARCH(10) 67.991%+* 56.229% 185.01%** 39.181 93.055%*#* 51.934%%
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Endogeneity —0.258# —0.265%#* —0.201 %k —(0.257%#* —0.452%#% —0.256%#*
(0.049) (0.051) (0.049) (0.054) 0.078) 0.047)
Note(s): The regressand series are the ‘Global’, ‘Europe’, ‘US, Asia’, ‘Solar’ and ‘Wind’ clean energy indices,
respectively. ARCH is the test for conditional heteroscedasticity conducted with ten (10) lags. The null
hypotheses for persistence, ARCH and endogeneity tests are “no persistence”, “no ARCH effects” and “no
endogeneity bias” respectively. “**” and "***” indicates statistical significance at the 5% and 1% significance Table 3.

levels. Values in “()” are standard errors while those in “[]” are probability values
Source(s): Table by authors

Preliminary analysis
[Regressand series]
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Global Europe US Asia Solar Wind
Oil market risks (WTI)
! 0.1147%%* —0.001 0.020* 0.037* 0.206%* 0.050%#*
0.017) (0.015) 0.011) (0.005) 0.019) (0.005)
gt 0.015%#* 0.016%*+* 0.013##* 0.008*** 0.006%#* 0.017%%*
(0.003) 0.002) 0.004) (0.0009) (0.003) (0.0009)
Hedging role? Hedge Hedge Hedge Hedge Hedge Hedge
Oil market risks (Brent)
ot 0.127 7% —0.012%* 0.033** 0.038** 0.146%* 0.04 3%
(0.006) 0.002) 0.016) (0.003) (0.020) (0.004)
gt 0.010%#* 0014 0.009%* 0.008** 0.017%#%% 0.009%#*
(0.001) (0.0003) 0.004) (0.0005) (0.006) (0.0004)
Hedging role? Hedge Hedge Hedge Hedge Hedge Hedge

Note(s): This table presents the predictability results that indicate the hedging effectiveness of disaggregated
clean energy assets against oil and climate risks. a*' and g*"" are the constant and Beta-adjusted coefficient of
the models with oil market risk series (realized volatility of WTI and Brent prices) as the predictors. a®” and
™ are the constant and Beta-adjusted coefficient of the models where the two climate risk series (climate
policy uncertainty and EER) are the regressors. The hedging role is informed by the Beta-adjusted coefficients.
B* <0Oindicates ‘no hedge’, #* > Oindicates ‘hedge’. “**” and “***” indicates statistical significance at the 5%
and 1% significance levels. The analysis is limited to oil risk given that the monthly data for climate risks is too
small (about 25 observations)

Source(s): Table by authors
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Table 5.
COVID-19 analysis

COVID pandemic. This appears, without a doubt, to prove the hedging effectiveness of the
assets and, as such, investors can rest assured that these environmentally responsible
investments serve as an effective risk management strategy.

On the other hand, the results of the analysis of hedging effectiveness when it comes to
climate risk are not as prevalent as that of the results of oil risks. These results align with the
findings of Pham (2019) but differ from what Cepni et al (2022) found given that our study,
unlike Cepni et al (2022), considers more heterogeneous global indices. In all six indices
considered, the clean energies fail to hedge against climate risks when the latter is measured by
EER index. This is indicated by the results of the predictive models with EER as the predictor
where the Beta-adjusted coefficients are negative and strongly statistically significant at 1%
significance level. Our results indicate that the major clean energy indices of Europe, the US
and Asia (and solar index) provide refuge for investors against climate risks. In these cases, the
adjusted Beta coefficients are positive and statistically significant at the 1% significant level.
The two other cases (global clean energy index and wind index) where we report “no hedge”
still exhibit positive but statistically insignificant coefficients. Thus, the evidence shows clean
energy stocks have a high potential of hedging against oil risks and climate risks.

We evaluate the forecasting powers of the four predictors (Brent price volatility, WTI
price volatility, EER and CPU) across the various models for clean energy stocks. We conduct
the out-of-sample forecast evaluation for two categories of models — nested and non-nested
models — and therefore adopt two model evaluation tests, (1) the Clark and West test and (2)
the modified Diebold & Mariano (MDM) test [9]. The evaluation of nested models involved
comparing the HA model with each of the oil risk-based and climate risk-based predictive
models (HA versus Brent, HA versus WTI, HA versus EER and HA versus CPU). The
evaluation of non-nested models included a comparison between the two oil risk-based
models (Brent versus WTI) and a comparison between the two climate risk-based models
(EER versus CPU). The criteria for evaluating the performance of the models is the statistical
significance of the Clark and West (CW) statistic. In our model, this statistic indicated that the
preferred model was superior. Meanwhile, the negative and MDM statistics were negative
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Table 6.
Out-of-sample forecast
evaluation of oil risk

and statistically significant, which further supports the use of WTI volatility and CPU as
better proxies of oil price risk and climate risk, respectively (see Narayan & Sharma, 2015;
Salisu, Ogbonna, & Adediran, 2020; Sharma, 2021; Salisu, Vo, & Lawal, 2021; Salisu,
Ogbonna et al., 2021; Salisu, Gupta, & Pierdzioch, 2022; Salisu, Tchankam et al., 2022).

The results in the upper part of Table 6 appear to suggest equality in the forecast
performances of the HA model and the Brent volatility based models. This is adjudged
principally by the statistical insignificance of the CW tests. On the other hand, a sizeable
number of the CW statistics in the lower panel of Table 6 are statistically significant, which
suggests that the predictive models including WTI volatility outperform the HA model.

Historical average (HA) versus Brent
Global Europe Us Asia Solar Wind
RMSE HA Brent HA Brent HA Brent HA Bremt HA Brent HA  Brent

h=10 0919 0919 1278 1278 1147 1147 1297 1297 1760 1760 1187 1175
h=30 0921 0921 1275 1274 1146 1146 1295 1294 1757 1758 1186 1174
h=60 1048 1042 1270 1270 1143 1143 12890 1288 1757 1758 1191 1.180
h=120 1114 1104 1258 1257 1134 1134 1280 1279 1751 1751 1180 1.169

cw HA Brent HA Brent HA Brent HA Brent HA Brent HA  Brent

h =10 0.001 0.003 —0.001 0.004 0.002 0.039%#*
0.002) (0.002) (0.001) (0.003) (0.004) (0.014)

h =230 0.001 0.003 —0.001 0.004 0.002 0,039+
(0.001) 0.002) (0.001) (0.003) (0.004) (0.013)

h =60 0.014 0.004 —0.001 0.004 0.002 0.038*#*
(0.009) 0.002) (0.001) 0.002) (0.004) (0.013)

h =120 0.033##* 0.003 —0.001 0.004 0.001 0.036%+*
0.012) (0.002) (0.001) 0.002) (0.004) 0.012)

Historical average (HA) versus WTI
Global Europe Us Asia Solar Wind
RMSE HA WITI HA WITI HA WITI HA WITI HA WTI HA WTI

h=10 0919 0917 1278 1276 1147 1145 1297 1296 1760 1.759 1187 1.166
h=30 0921 0919 1275 1272 1146 1144 12905 1293 1757 1756 1186 1.166
h=60 1048 1037 1270 1268 1143 1141 1289 1287 1757 1757 1191 1172
h=120 1114 1100 1258 1255 1134 1132 1280 1278 1751 1.750 1180 1162

cw HA WII HA WITI HA WITI HA WITI HA WII HA WITI

h=10 0.006** 0.009%* 0.006** 0.007** 0.009 0.070%+*
(0.003) (0.004) (0.002) (0.003) 0.007) 0.024)

h =30 0.006** 0.010%* 0.006* 0.007#* 0.010 0.0697+*
(0.003) (0.004) (0.002) (0.003) (0.007) (0.024)

h =60 0.026* 0.010%* 0.005%* 0.007* 0.009 0.067+*
(0.014) (0.004) (0.002) (0.003) (0.007) (0.023)

h =120 0.046%#* 0.010%* 0.005%* 0.007#* 0.009 0.063%+*
0.017) (0.004) (0.002) (0.003) (0.007) 0.022)

Note(s): This table presents the results for the forecast evaluation of the oil risk based models where either the
realized volatility of WTI or Brent price serve as the predictor. The forecast evaluation analysis compares the
oil risk-based models with the HA model given that we are dealing with the return series of the clean energy
prices. The oil risk-based models and HA model are “nested” since the latter can be seen as a subset of the
former, hence the choice of Clark and West as the forecast evaluation test. The rejection of the null hypothesis of
the Clark and West test indicates the better performance of the preferred models. “*”, “**” and “***” indicates
statistical significance at the 10%, 5% and 1% significance levels

models [Nested models] Source(s): Table by authors
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An implication of this finding is that the inclusion of WTI improves the predictability of the
various clean energy stocks and that WTT may be a better proxy for the global crude oil price.
This finding is in line with a group of other studies such as Narayan (2020), Azimli (2020), and
Adediran, Yinusa, and Lakhani (2021) that have argued that the West Texas intermediate is a
better proxy of crude oil price for studies related to hedging.

Similar conclusions can be obtained from Table 7 where the model containing EER fail to
outperform the HA benchmark model in any of the cases whereas the forecast evaluation results
show some cases where the CPU-based models beat the benchmark model. The foregoing results
obtained from out-of-sample forecast evaluations strengthen the in-sample predictability results.
In addition to evaluating the hedging effectiveness, we submit that CPU is the better measure of
climate risk than EER. These conclusions are also partly corroborated by the results of the model
evaluations of non-nested models in Table 8 where we compare Brent versus WTI and EER
versus CPU. Given that the models with WTI and CPU are the “preferred” models of the analysis,
the largely negative (although scantily statistically significant) MDM statistics also suggest that
WTI price realized volatility (as measure of oil market risk) predict clean energy stocks better
than the Brent price realized volatility.

5. Conclusion

This study examines the ability of clean energy stocks to hedge oil market and climate risks.
This study demonstrates that green assets not only support decarbonization projects and
combat climate change, they can also be an attractive diversification option for investors.
Among the contributions of this study to the growing literature is the analysis of global and
regional clean energy indices (global, US, Europe and Asia) and sectoral indices (solar and
wind) for robust results. We also conduct forecasting analysis of the clean energy stocks with
various measures of oil risks (WTI and Brent crude volatility) and climate risks (CPU and
EER) as predictors. The pre-test analyses conducted on the variables justify the choice of
Westerlund and Narayan (2012, 2015) method to analyse the nexus between clean energy
indices and either of oil risk and climate risk. In addition to the foregoing impact analyses, we
conduct forecasting analyses with alternative forecast evaluation techniques.

The outcome shows that clean energy stocks can effectively hedge oil market risk, as 11
out of 12 cases in our study demonstrate. The only exception is the US where hedging against
oil risk does not occur These results are corroborated with additional results obtained from
the COVID-19 sample period where all the clean energy stocks demonstrate significant
hedging power against oil market risks. This could mean that investing in clean energy
stocks can help investors reduce the risks from the oil market. However, the results associated
with climate risks reveal that clean energy assets cannot entirely hedge climate risk given
that one of the climate risk proxies, EER, could not be hedged with any of the clean energy
assets from any of the markets included in this study. The results improved with the
consideration of climate policy uncertainty as shown by the results where the clean energy
indices of Europe, US, Asia as well as the solar index are shown to be capable of protecting
investors against climate risk. Further analysis carried out to test the forecasting ability of
the predictors shows that WTI performs better than Brent as a global crude price proxy. Also,
CPU is found to be a better climate risk proxy compared to EER.

Since the results of this study suggests the hedging ability of clean energy stocks for oil
market risk, we therefore recommend that global financial investors should further tap into
this opportunity which will not only mitigate the oil market financial risks to their portfolios
but also reduce the devastating effects of excessive use of crude oil on the environment.
Investors can shift attention to the clean energy indices considered in this study not only as a
profitable investment choice for evading market risks but also as an environmentally
responsible investment for promoting decarbonization which can combat climate change.
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The limited ability of clean energy assets to successfully hedge climate risk proxies call for
more comprehensive climate regulatory policies across countries to reduce the risks
associated with dealing with green technology and clean investments. Future researchers
could build on this study by evaluating the economic significance of the findings of the nexus
between clean energy assets and climate and oil risks. Other prospective researchers could
make relevant contributions by developing a text-based climate risk index with a daily
frequency to circumvent the data limitation encountered by the present study in terms of the
available monthly climate risk measures.

Notes

1. The literature review makes clear distinction between hedging and safe haven properties vis-a-vis
diversification benefits of assets.

2. See details on the Nobel Prize in Economic Sciences for the year 1990 here: https://www.nobelprize.
org/prizes/economic-sciences/1990/press-release/.

The details of the data are provided in Table 1.

See https://www.policyuncertainty.com/climate_uncertainty.html.
See https:/fred.stlouisfed.org/seriess EMVENRGYENVREG

See https://www.eia.gov/dnav/pet/pet_pri_spt_sl_d.htm

NS 9w

In addition to the CPU & EER indices, we also use the temperature anomaly data published by the
National Aeronautics and Space Administration (https:/data.giss.nasa.gov/gistemp/) (see Oloko
et al., 2022 for justification for its use as a measure of risk associated with climate change). The
results are presented in the appendix of this paper (see Tables Al and A2) and are similar to those of
the EER.

8. The only exception where the various clean investments fail to provide cover against one of the oil
risks is the US clean energy index against Brent volatility where the coefficient is positive but not
statistically significant.

9. We also report the root mean square errors (RMSE) for the estimated models. The rule of thumb for
evaluating the statistic is that the lower the RMSE, the better the model performance.
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FREP

Table Al.

Hedging role of clean
energy assets against
temperature anomaly

Appendix

Global Europe UsS Asia Solar Wind
am 5.0216%** 4.2175%* —2.1038*#* 3.3167%%% 2.3219%* 42501
(0.4430) (1.8169) (0.3395) (0.0891) (1.0308) (2.6122)
pretm —4.2793*%* —4.2177%* 4.6775%+* —3.2976%%* 0.5319 —4.2796
(0.6975) (1.9095) (0.5248) (0.1609) (1.1828) (2.9614)
Hedging role? No hedge No hedge Hedge No hedge No hedge No hedge

Note(s): The table presents the predictability results that indicate the hedging effectiveness of disaggregated
clean energy assets against climate risk measured with risk associated with climate change (temperature
anomaly). a”’ and *" are the constant and Beta-adjusted coefficient of the models with temperature anomaly
as the predictor. The hedging role is informed by the Beta-adjusted coefficients. f* <0 indicates ‘no hedge’,
B* > 0indicates ‘hedge’. “**” and “***” indicates statistical significance at 5% and 1% significance levels
Source(s): Table by authors
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Table A2.

Out-of-sample forecast
evaluation temperature

anomaly [Temp]
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