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Abstract

This article presents flexible online adaptation strategies for the performance-index weights

to constitute a variable structure Linear-Quadratic-Integral (LQI) controller for an under-

actuated rotary pendulum system. The proposed control procedure undertakes to improve

the controller’s adaptability, allowing it to flexibly manipulate the control stiffness which aids

in efficiently rejecting the bounded exogenous disturbances while preserving the system’s

closed-loop stability and economizing the overall control energy expenditure. The proposed

scheme is realized by augmenting the ubiquitous LQI controller with an innovative online

weight adaptation law that adaptively modulates the state-weighting factors of the internal

performance index. The weight adaptation law is formulated as a pre-calibrated function of

dissipative terms, anti-dissipative terms, and model-reference tracking terms to achieve the

desired flexibility in the controller design. The adjusted state weighting factors are used by

the Riccati equation to yield the time-varying state-compensator gains.

1. Introduction

The idea of devising agile control procedures to regulate the behavior of under-actuated

mechanical systems has garnered a lot of attraction among researchers owing to its

immense applications in the fields of aircraft stabilization, marine-vessel stabilization,

robotic manipulator tracking control, attitude control of satellites, and control of structural

vibrations, etc [1]. By definition, under-actuated systems are identified as systems that pos-

sess a lesser number of control inputs as compared to the number of state-variables to be

stabilized [2]. Having a lesser number of actuators is preferable because it minimizes the

system’s energy expenditure, cost, and weight [3]. However, this configuration in conjunc-

tion with nonlinear system dynamics, complex coupling effects, and open-loop kinematic

instability pose a complex control engineering problem [4]. Such systems demand a robust-

optimal control law that can achieve the desired performance objectives even under the

influence of exogenous disturbances [5].
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1.1. Literature review

The Proportional-Integral-Derivative (PID) controller and its variants are simple to construct

but they have the propensity to collapse under nonlinear disturbances [6]. The sliding-mode

controllers offer a reliable and robust control yield; however, it comes at the cost of highly dis-

continuous control activity which unavoidably introduces chattering in the state response [7].

The ubiquitous neural and fuzzy control schemes are quite well-known for their flexibility to

respond to and to reject bounded disturbances [8]. However, they rely upon empirically-

defined rules or large sets of training data which are not only hard to acquire but also put an

excessive computational expense on the embedded processor [9]. The Linear-Quadratic-Regu-

lator (LQR) is a state-space controller that minimizes a quadratic performance index of the

system’s state-variations and control-input to deliver the optimal control decisions [10].

Despite its benefits, the LQR is incapable to address identification errors, model variations,

and environmental indeterminacies [11, 12]. The LQR can be retrofitted with auxiliary integral

controllers to improve its robustness against uncertainties and load disturbances [13]. How-

ever, this augmentation slows down the system’s transient recovery behavior [14].

The aforementioned drawbacks of the LQR, and its variant(s), can be addressed by aug-

menting it with auxiliary online adaptation systems [12]. The dynamic adjustment of state-

compensator gains offers a pragmatic approach to redesign the control law (after every sam-

pling interval) to reject the transient disturbances in minimum time and attenuate the ensuing

position-regulation fluctuations with minimal control energy expenditure while maintaining

the controller’s stability throughout the operating regime [15]. The aforesaid objectives can be

achieved via the state-dependent-Riccati-equation approach to formulate a nonlinear-qua-

dratic-regulator for under-actuated systems. It uses well-identified State-Dependent-Coeffi-

cients (SDC) matrices to solve the Riccati equation, which eventually yields a time-varying

state-feedback gain vector [16]. However, the nonlinear dynamics and complex geometry of

the system make it very difficult to accurately identify the SDC matrices.

Recently, an innovative scheme to realize variable-structure (adaptive) LQRs has garnered a

lot of attention [17]. This scheme is implemented by adaptively modulating the weighting

matrices linked with the inner performance index. The state-weighting factors in the perfor-

mance index are directly responsible for the manipulation of the corresponding state-variables

[18]. Hence, the said scheme exploits this one-to-one correspondence by dynamically adjust-

ing the state-weighting factors as a nonlinear function of state-error variables. Several well-

postulated rule-based strategies that are formulated by pre-calibrated nonlinear hyperbolic

scaling functions have thus been proposed in the scientific literature. E.g. the research reported

in [19] strives to robustify the said variable-structure LQR design by proposing a flexible

online weight-adjustment strategy that undertakes to increase the controller’s adaptability and

Degree-Of-Freedom (DOF).

1.2. Proposed methodology

The novelty of the present research is to formulate a self-adaptive state-space controller for the

under-actuated systems that use an innovative online adaptation mechanism for the weighting

factors of the Quadratic-Performance-Index (QPI) to dynamically redesign the controller’s

structure as the error conditions vary. The proposed control law employs a pre-calibrated Lin-

ear-Quadratic-Integral-Controller (LQIC) as the baseline controller that is retrofitted with the

online adaptation law. The adaptation law uses state-error-dependent nonlinear functions to

adjust the derivatives of the state weights. The derivatives are numerically integrated after

every sampling interval. The updated weights are directly plugged into the Riccati equation for
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further computations that lead to online modification of the state-compensator gains. The

main contributions of the present research work are as follows:

• Formulating a baseline adaptation scheme to adaptively modulate the state-weighting factors

of the LQIC’s QPI via pre-calibrated nonlinear functions that are driven by dissipative terms

and state-error-dependent anti-dissipative terms.

• Systematically restructuring the aforementioned nonlinear scaling functions to include aux-

iliary model-reference tracking terms in the baseline adaptation scheme as well.

The QNET rotary pendulum system is used as the benchmark platform to characterize and

validate the performance of the proposed control scheme by conducting real-time hardware

experiments [20].

The proposed adaptive control scheme offers several benefits. Firstly, the LQIC with fixed

state-weighting factors cannot always deliver the best corrective action when the error condi-

tions and system parameters are constantly changing over time. Hence, the proposed adaptive

system obviates the necessity to affix the state-weighting factors offline which subsequently

increases the controller’s adaptability to flexibly manipulate the control trajectory. Secondly,

the adaptation scheme varies the state-weighting factors within the pre-defined limits which

guarantee the asymptotic stability of the control law. This also prevents actuator saturation

which may lead to wind-up or system collapse.

Thirdly, the proposed nonlinear adaptation law uses pre-calibrated dissipative terms, anti-

dissipative terms, and model-reference tracking terms to improve the system’s flexibility to

adaptively modulate the state-weighting factors. The acquisition of the information regarding

the system as well as gain dynamics allows the controller to accurately realize the extent of deg-

radation in the system’s time-domain response at any given instant. This knowledge, in turn,

enables the adaptation law to demonstrate better self-reasoning, which subsequently leads to

improved self-tuning of the weighting factors. The controller maintains a well-calibrated struc-

ture after every sampling instant, which simultaneously improves its response speed, damping

against disturbances, and control efficiency. Finally, the proposed adaptation law can be easily

programmed and solved using modern digital computers without putting an excessive recur-

sive computational burden. The proposed variable structure LQIC design, using dissipative,

anti-dissipative, and model-reference tracking terms to online adapt the state-weighting fac-

tors, has not been addressed earlier as per the knowledge of the authors. Hence, the key idea

behind the research presented in this article is novel.

The remaining paper is organized as follows: The mathematical model and the baseline

LQIC design for the RIP system is described in Section 2. The variable structure LQIC design

is explained in Section 3. The two online adaptation schemes are systematically formulated in

Section 4. The experimental results are presented and discussed in Section 5. Finally, the

research is concluded in Section 6.

2. System description

The Rotary-Inverted-Pendulum (RIP) system contains a vertical apparatus-rod connected to a

horizontal rotating arm that is actuated by a DC-geared servo motor, as shown in Fig 1. The

system requires a closed-loop feedback controller to stabilize the pendulum vertically while

effectively tracking the reference position of the arm. The system’s model is derived using the

Euler-Lagrange technique which uses the electrical and mechanical quantities involved in the

system’s construction. The proposed feedback controller generates a variable input voltage sig-

nal to control the angular displacement of the DC motor. Correspondingly, the DC motor

rotates the horizontal arm pivoted at its shaft. The arm rotations tend to displace the apparatus
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rod and provide the necessary energy to swing up and balance it vertically. As illustrated in Fig

1, the arm’s angular displacement is denoted as α, whereas the apparatus rod’s rotations about

its pivot is denoted as θ. The aforesaid angular positions are acquired by dedicated rotary

encoders that are commissioned with the motor’s shaft as well as the rod’s pivot respectively.

2.1. Mathematical model

The generalized angular position coordinates α and θ are used by the Lagrangian to model the

system [21]. First of all, the system’s Lagrangian (L) is computed as the difference between the

system’s total potential energy (EP) and potential energy (EP), as shown in (1).

L ¼ EK � EP ð1Þ

where; EP ¼ MplpgðcosyÞ;

and; EK ¼ 1

2
Jeð _aÞ

2
þ 1

2
Mpðr _a � lp _yðcosyÞÞ2 þ 1

2
Mpð� lp _yðsinyÞÞ2 þ 1

2
Jpð _yÞ

2

The parameter details are mentioned in Table 1. The expression of the Lagrangian is com-

puted as follows [22].

L ¼
1

2
Je þMpr

2

� �
_a2 þ

2

3
Mplp

2
þ

1

2
Jp

� �

_y2 � Mplpr _a _y cos y � Mplpg cos y ð2Þ

The nonlinear equations of motion are formulated using (3) [19].

d

dt
dL
d _a

� �

�
dL
da
¼ t � bv _a;

d

dt
dL
d _y

� �

�
dL
dy
¼ 0 ð3Þ

where, τ is the DC motor control torque, and bv represents the viscous friction in the DC

Fig 1. Schematic of a standard RIP system.

https://doi.org/10.1371/journal.pone.0283079.g001
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motor, which is neglected in the model formulation owing to its negligible contribution. The

DC motor torque is expressed as follows.

t ¼
KtðVm � Km _aÞ

Rm
ð4Þ

The torque is a function of the DC motor’s input voltage Vm. Using (4) in simplified form,

the following set of nonlinear equation are obtained.

€a ¼
� rM2

p l
2
pgðcosyÞy � JpMpr2cosysinyð _aÞ2 � ðJp þMpl2pÞt
ðMpr2ðsin2yÞ � Je � Mpr2ÞJp � Mpl2pJe

ð5Þ

€y ¼
� MplpððMpr2gðsin2 yÞ � Jeg � Mpr2gÞyþ rJe sin yð _aÞ

2
� r t cos yÞ

ðMpr2ðsin2yÞ � Je � Mpr2ÞJp � Mpl2pJe
ð6Þ

The system’s model is linearized about the vertical position; where, α = π rad., θ = 0,

_a ¼ 0; _y ¼ 0. The small angular displacements are dealt with by using the approximations;

sin θ�θ and cos θ�1. These approximations yield the linearized state Eqs (7–8).

€aðtÞ ¼
1

H
rM2

p l
2

pgyðtÞ �
ðJp þMpl2pÞKtKm

Rm
_aðtÞ þ

ðJp þMpl2pÞKt
Rm

Vm

� �

ð7Þ

€y tð Þ ¼
1

H
Mplpg Je þMpr

2

� �
yðtÞ �

rMplpKtKm
Rm

_aðtÞ þ
rMplpKt
Rm

Vm

� �

ð8Þ

such that; H ¼ JeJp þMpr2Jp þMpl2pJe
The state-space representation of linear dynamical systems is expressed as (9).

_xðtÞ ¼ AxðtÞ þ BuðtÞ; yðtÞ ¼ CxðtÞ þ DuðtÞ ð9Þ

where, x(t) is the state-vector, y(t) is the output-vector, u(t) is the control input signal, A is the

system matrix, B is the input matrix, C is the output matrix, and D is the feed-forward matrix.

Table 1. Model parameters of QNET rotary pendulum.

Parameter Description Identified value Unit

Mp Mass of pendulum 0.027 kg

lp Pendulum center of mass 0.153 m

Lp Length of pendulum rod 0.191 M

r Length of horizontal arm 0.083 M

Marm Mass of arm 0.028 Kg

g Gravitational acceleration 9.810 m/s2

Je Moment about motor shaft 1.23×10−4 kgm2

Jp Moment about pendulum 1.10×10−4 kgm2

Rm Motor armature resistance 3.30 O

Lm Motor armature inductance 47.0 mH

Kt Motor torque constant 0.028 Nm

Km Back e.m.f. constant 0.028 V/(rad/s)

Tm Maximum torque 0.14 Nm

https://doi.org/10.1371/journal.pone.0283079.t001
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The system’s state-vector and input-vector are given in (10).

xðtÞ ¼ ½aðtÞ yðtÞ _aðtÞ _yðtÞ�T; uðtÞ ¼ Vm ð10Þ

The nominal linear state-space model of the RIP is given in (11) [20].

A ¼

0 0 1 0

0 0 0 1

0 a1 a2 0

0 a3 a4 0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; B ¼

0

0

b1

b2

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; C ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; D ¼

0

0

0

0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð11Þ

where; a1 ¼
rM2

p l
2
pg

JpJe þ Jel2pMp þ JpMpr2
; a2 ¼

� KtKmðJp þMpl2pÞ
ðJpJe þ Jel2pMp þ JpMpr2ÞRm

;

a3 ¼
MplpgðJe þMpr2Þ

JpJe þ Jel2pMp þ JpMpr2
; a4 ¼

� rMplpKtKm
ðJpJe þ Jel2pMp þ JpMpr2ÞRm

;

b1 ¼
KtðJp þMpl2pÞ

ðJpJe þ Jel2pMp þ JpMpr2ÞRm
; b2 ¼

rMplpKt
ðJpJe þ Jel2pMp þ JpMpr2ÞRm

The RIP’s model parameters are listed in Table 1 [23].

2.2. Linear quadratic integral controller design

The LQR uses the system’s linear state-space model and minimizes a QPI, expressed below,

that considers the state and control input variations [24].

Jlq ¼
1

2

Z 1

0

ðxðtÞTQxðtÞ þ uðtÞTRuðtÞÞdt ð12Þ

where, Q2R4×4 is a positive semi-definite state weighting matrix that penalizes the system

state’s deviation from the equilibrium, and R2R is a positive-definite input weighting matrix

that penalizes the system’s control input. Here, Q and R matrices are denoted as follows.

Q ¼ diagðq�
a
q�
y
q�_a q�_yÞ; R ¼ r ð13Þ

where, q�x and ρ are real-numbered optimal coefficients of the Q and R matrices respectively.

The allocation of a smaller ρ prompts the control law to apply unnecessarily large control

energy under every operating condition, rendering it wasteful in such conditions. Similarly, a

larger ρ yields insufficient control resources under every operating condition. Hence, to

achieve a favorable balance between the system’s control economy and position-regulation

capability, the value of ρ is selected as unity in this article. The state-compensator gains,

acquired by using specific Q and R matrices, do not always guarantee an accurate reference-

tracking and time-optimal behavior. Hence, in this research, the coefficient of Q matrix are

tuned by minimizing the objective function (14) that considers the system’s classical state-

error magnitude and its control-input energy [25].

Jc ¼
Z 1

0

ðjeaðtÞj
2
þ jeyðtÞj

2
þ juðtÞj2Þdt ð14Þ

such that; eaðtÞ ¼ að0Þ � aðtÞ; eyðtÞ ¼ p � yðtÞ
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where, eα(t) and eθ(t) represent the position-regulation error of the arm and rod, respec-

tively. The function Jc assigns equal weights to the control and state-error minimization crite-

ria. The search space of the state-weighting factors is bounded within the limit [0, 100]. The

tuning process begins with Q ¼ diagð1 1 1 1Þ and an exhaustive search is conducted in the

direction of descending gradient of Jc. In every trial, the pendulum is balanced for 5.0 seconds

and the resulting cost is logged. The iterative tuning is terminated only when the minimum

cost is achieved. The coefficients of Q and R matrices in this research are given in (15).

Q ¼ diagð32:8 52:2 6:1 2:5Þ; R ¼ 1 ð15Þ

The attuned set of Q and R matrices is used by the matrix Riccati Eq (16) to evaluate the

solution P offline.

ATP þ PA � PBR� 1BTP þ Q ¼ 0 ð16Þ

where, P2R4×4 is a symmetric positive-definite matrix. It is to be noted that the solution of

matrix Riccati equation delivers an asymptotically stable control behavior as long as the

weighting matrices are selected such that Q = QT�0 and R = RT>0. The state-compensator

gain vector K is evaluated as,

K ¼ R� 1BTP ð17Þ

where, K ¼ ½ka ky k _a k _y �. The gain vector is computed as

K ¼ ½� 6:21 130:56 � 4:22 17:83�. The LQR law is expressed as,

uðtÞ ¼ � KxðtÞ ð18Þ

The LQR law is also retrofitted with the state-error-integral variables given in (19).

εφ ¼
Z t

0

eφðtÞdt; εy ¼
Z t

0

eyðtÞdt ð19Þ

The integral control tend to improve the pendulum’s position-regulation accuracy and

robustness against state fluctuations [26]. The integral control law is expressed as,

uiðtÞ ¼ K iεðtÞ ¼ ½Kiφ Kiy�
εφ
εy

" #

ð20Þ

The integral-gain vector Ki is optimized by minimizing the objective-function, Jc, to damp

the steady-state fluctuations. The integral gains are explored within the range [–5, 0]. The opti-

mized integral gains are given as K i ¼ ½� 2:06 � 7:47� 10� 6�. The modified linear control

law expressed in (21), is formulated by linearly combining the conventional LQIC law with the

aforementioned integral control law.

uðtÞ ¼ � KxðtÞ þ K iεðtÞ ð21Þ

3. Variable structure LQIC design

The weighting factors are selected such that, qx�0 and ρ>0. The rank of R is lesser than the

system’s DOFs which validates the under-actuation property of the RIP system [17, 18]. Thus,

it is hard to correlate and track the errors in all state variables using a single control input.

However, the control-input dynamics can be used to manipulate the control-weighting factor.

On the other hand, the state-weighting factors(qx) hold a one-to-one correspondence with the

state variables. Hence, in this research, the control-weighting factor is fixed at unity while the

state-weighting factors are chosen as the configurable objects. The state-weighting factors are
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dynamically adjusted using an online adjustment law to flexibly manipulate the control-input

trajectory delivered by the LQIC. The online weight adjustment law is constituted via pre-cali-

brated nonlinear scaling functions that depends on the magnitude of classical state errors as

well as their derivatives. The inclusion of aforesaid state-error variables in the weight adjust-

ment law integrates the system DOFs into the weighting matrix, which helps in suppressing

the detrimental effects of dynamics coupling. The time-varying state-weighting matrix is

expressed as follows.

�Q ¼ diagðsatðqaðtÞÞ satðqyðtÞÞ satðq _aðtÞÞ satðq _yðtÞÞÞ ð22Þ

where, sat(.) represents the saturation function of the following form.

satðqxðtÞÞ ¼

ð1þ 0:01MÞq�x; qxðtÞ � ð1þ 0:01MÞq�x
qxðtÞ; ð1 � 0:01PÞq�x < qxðtÞ < ð1þ 0:01MÞq�x
ð1 � 0:01MÞq�x; qxðtÞ � ð1 � 0:01MÞq�x

ð23Þ

8
><

>:

The saturation function is used to limit the unprecedented variations in the weighting-fac-

tors within ±M% of their nominal value q�x; wherein, q�
a

= 32.8, q�
y

= 52.2, q�_a = 6.1, and q�_y = 2.5.

This restriction prevents the generation of discontinuous control activity and peak servo con-

trol signals which alleviates chattering and large state fluctuations in the response. Moreover,

an unbounded enlargement in qx(t) leads to actuator saturation and wind-up; whereas, an

unbounded reduction in it may eventually make qx(t)<0, which would render the control law

unstable. In this research, the value of P is tuned by minimizing the objective function Jc, and

is thus set atM = 70.0. The updated �Q matrix is used to solve the Riccati Eq, shown in (24),

after every sampling interval to update the symmetric positive definite matrix �P.

AT �P þ �PA � �PBR� 1BT �P þ �Q ¼ 0 ð24Þ

To maintain an economical control activity, the value of R is taken as unity. Finally, the

modified matrix �P is usedto dynamically adjust the state-compensator gain vector K(t), as

shown in (25).

KðtÞ ¼ R� 1BT �P ð25Þ

The adaptive optimal control law is redefined as shown in (26).

uðtÞ ¼ � KðtÞxðtÞ þ K iεðtÞ ð26Þ

It is to be noted that the proposed weight-adjustment strategy only targets and adapts the

state-weighting factors, which leads to the online adjustment of K(t). Hence, the coefficients of

Ki are kept constant throughout at their prescribed values.

Proof of stability

The closed-loop stability of the proposed adaptive control law is proved using the Lyapunov

function shown in (27) [24].

VðtÞ ¼ xðtÞTPðtÞxðtÞ > 0; for xðtÞ 6¼ 0 ð27Þ

The first derivative of this Lyapunov function is expressed as follows.

_V ðtÞ ¼ 2xðtÞTP _xðtÞ ð28Þ

¼ 2xðtÞTPðA � BKðtÞÞxðtÞ
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¼ 2xðtÞTPðA � BR� 1BT �PÞxðtÞ

¼ xðtÞTð�PAþ AT �PÞxðtÞ � 2xðtÞTð�PBR� 1BT �PÞxðtÞ

By substituting Eq (24) in the above expression, the _V ðtÞ is simplified as shown in (29).

_V ðtÞ ¼ � xðtÞT �QxðtÞ � xðtÞTð�PBR� 1BT �PÞxðtÞ < 0 ð29Þ

The expression of _V ðtÞ is negative semi-definite as long as �Q ¼ �QT � 0 and R = RT>0,

which verifies the asymptotic convergence of the proposed controller. The online weight adap-

tation law is designed such that the coefficients of matrix �Q are always kept positive semi-defi-

nite. The consequent (bounded) variations in �Q are used to re-compute the Riccati Equation

solution, after every sampling interval, which will yield a symmetric positive definite matrix �P
under every operating condition.

4. Online weight adaptation strategy

This section presents the constitution of the online weight adaptation strategy for the state-

weighting factors. The arrangement is aimed at introducing flexible self-adaptability that

enhances the response speed and strengthens the damping control effort against exogenous

disturbances as well as intrinsic nonlinearities (such as, friction, backlash, cogging forces, air

resistance, etc) while reducing the system’s large control input requirements. Two unique

online weight-adaptation strategies have been investigated in this research.

4.1. Baseline weight-adjustment law

The LQI controller is augmented with a superior regulator that adaptively modulates the state-

weighting factors as a function of state-error variations. The baseline weight-adaptation

scheme used in this research is inspired by the Fisher’s gain-adjustment law due to its reason-

able flexibility and good tracking capability [27]. The proposed adaptation scheme uses pre-

configured dissipative and anti-dissipative functions. The weight-adjusting functions are for-

mulated as first-order differential Eqs (30–33).

_qaðtÞ ¼ � saqaðtÞ þ bae
2

a
ðtÞ ð30Þ

_qyðtÞ ¼ � syqyðtÞ þ bye
2

y
ðtÞ ð31Þ

_q _a ðtÞ ¼ � s _aq _aðtÞ þ b _aeaðtÞ _eaðtÞ ð32Þ

_q _y ðtÞ ¼ � s _yq _yðtÞ þ b _yeyðtÞ _eyðtÞ ð33Þ

where, σx and βx respectively represent the predetermined positive decay rates and adaptation

rates associated with each weight-adjusting function. These parameters are heuristically tuned

offline by minimizing Jc to yield the best position-regulation behavior without imposing large

control input requirements. The search spaces of σx and βx are bounded within the limits [0, 1]

and [0, 10], respectively. The tuning process begins at random values of these parameters and

an exhaustive search is conducted in the direction of descending gradient of Jc. In every trial,
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the pendulum is balanced for 5.0 seconds and the resulting cost is logged. The iterative tuning

is terminated only when the minimum cost is achieved. The tuned values are σα = 0.016, σθ =

0.025, s _a = 0.010, s _y = 0.018, βα = 0.46, βθ = 0.61, b _a = 6.05, and b _y = 8.18. Each function is

composed of the following dissipative and an anti-dissipative term.

Dissipative term

� saqaðtÞ

� syqyðtÞ

� s_aq_aðtÞ

� s_yq_yðtÞ

Anti� dissipative term

bae2
a
ðtÞ

bye2
y
ðtÞ

b_aeaðtÞe_aðtÞ

b_yeyðtÞ_eyðtÞ

8
>>>>>>><

>>>>>>>:

8
>>>>>>><

>>>>>>>:

The contribution of the dissipative and anti-dissipative terms is described below:

1. The anti-dissipative term increases the rate-of-change of the proportional state-weighting

factors (qα(t) and qθ(t)) as the magnitude of state errors increases.

2. The anti-dissipative term increases the rate-of-change of the differential state-weighting fac-

tors (q _aðtÞ and q _yðtÞ) as the response diverges from the reference position, and vice versa.

3. The dissipative term ‘exponentially’ reduces the rate-of-change of each state-weighting fac-

tor when the system is either approaching (and settling at) the reference position or when

the anti-dissipative term is small.

The rationale described above dynamically modifies the state-weighting factors by consid-

ering their rate of inflation or depression. This arrangement dynamically redesigns the control

law after every sampling interval, which yields a tight control effort to quickly realize and com-

pensate for the exogenous disturbances and a soft control effort to improve position-regulation

accuracy in the vertical (dynamic) equilibrium state [28]. This arrangement significantly

increases the controller’s self-reasoning capability thus subsequently ensuring flexible manipu-

lation of the applied control stiffness across the entire range of operating conditions.

The aforesaid scheme does not require any prior knowledge of the system’s geometry. The

weight adjustment is initiated from the preset values of the state-weighting factors; such that,

qxð0Þ ¼ q�x. The weighting factors are updated once after every sampling instant by solving the

first-order differential equation as described in (34). Consider the following general expression

representing the aforesaid weight-adjusting function.

_qxðtÞ ¼ � sxqxðtÞ þ bxzðtÞ ð34Þ

where, z(t) is the error-dependent function e2
a
ðtÞ; e2

y
ðtÞ, or eaðtÞ _eaðtÞ. The solution of this first-

order differential equation is computed as shown in (35).

qxðtÞ ¼ expð� sxtÞqxð0Þ þ
Z t

0

ðexpð� sxðt � pÞÞbxzðpÞÞdp ð35Þ

where exp(.) represents the exponential function. These computations can be easily handled by

modern digital computers without putting an excessive recursive expense on them. After every

sampling interval, the adjusted values of qx are fed to the saturation function given in (23), to

limit the variations within ±70.0% of the nominal value. This is done to comply with the stabil-

ity requirements of LQI controller expressed in (29). The resulting saturated weights sat(qx(t))
are used to re-compute the solution of Riccati equation which serves to modify the state-
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compensator gains online. This control procedure is referred as Baseline-Variable-Structure

LQIC (BVS-LQIC) in this article. The block diagram of the proposed BVS-LQIC procedure is

shown in Fig 2.

4.2. Improved weight-adjustment law

The aforementioned online adaptation law is augmented with auxiliary components to further

increase its flexibility and DOF [28]. This permits the adaptation strategy to improve the

adaptability, self-learning, and self-regulation capability of the closed-loop control system. The

said modification is incorporated by retrofitting the baseline adaptation law with an additional

model-reference tracking term of the form gxðqxðtÞ � q�xÞ, apart from the already existing dissi-

pative and anti-dissipative term. Under medium state error conditions, the adaptation law

attempts to imitate the nominal control law expressed in (18), with weights q�x to apply a mild

control effort to avoid peak servo demands, prevent chattering, and suppress post-disturbance

oscillations or overshoots. The inclusion of the model-reference tracking error regulator in the

adaptation law allows the controller to precisely realize the extent of disturbance in the system

at any given instant and then efficiently apply the necessary control action to compensate the

bounded disturbances. The weight-adjustment law is synthesized as per the flow chart depicted

in Fig 3.

The adaptation law traverses among the aforementioned phases of the state-error profile by

employing a state-error-driven hyperbolic scant function μS,x(ex), which approaches unity

Fig 2. Baseline variable–structure LQIC procedure.

https://doi.org/10.1371/journal.pone.0283079.g002
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under small error conditions and zero under large error conditions. The hyperbolic secant

functions formulated in (36), are used to apply weight and alter the contribution of each term

in the adaptation law with the variation in error conditions.

mS;aðeaÞ ¼ sechðoaeaÞ; mS;yðeaÞ ¼ sechðoyeyÞ;

mL;aðeaÞ ¼ 1 � mS;aðeaÞ; mL;yðeyÞ ¼ 1 � mS;yðeyÞ;

mM;aðeaÞ ¼ mS;aðeaÞ � mL;aðeaÞ; mM;yðeyÞ ¼ mS;yðeyÞ � mL;yðeyÞ: ð36Þ

where, μS,x(.) steers the adaptation law under small error conditions, μL,x(.) governs the law

under large error conditions, and μM,x(.) drives the law under medium error conditions. The

parameter ωx represents the variance of the hyperbolic secant function sech(.). To comply with

the aforementioned rules, the dissipative terms are weighted with μS,x(ex), the anti-dissipative

terms are weighted with μL,x(ex), and the model-referencetracking terms are weighted with μM,

x(ex). The modified weight-adjustment functions are expressed in (37–40).

_qa tð Þ ¼
1

1þ mM;aðeaÞ
ðbamL;aðeaÞe

2

a
ðtÞ � gamM;aðeaÞðqaðtÞ � q

�

a
Þ � samS;aðeaÞqaðtÞÞ ð37Þ

_qy tð Þ ¼
1

1þ mM;yðeyÞ
ðbymL;yðeyÞe

2

y
ðtÞ � gymM;yðeyÞðqyðtÞ � q

�

y
Þ � symS;yðeyÞqyðtÞÞ ð38Þ

_q _a tð Þ ¼
1

1þ mM;aðeaÞ
ðb _amL;aðeaÞeaðtÞ _eaðtÞ � g _amM;aðeaÞðq _aðtÞ � q

�
_a
Þ � s _amS;aðeaÞq _aðtÞÞ ð39Þ

_q _y tð Þ ¼
1

1þ mM;yðeyÞ
ðb _ymL;yðeyÞeyðtÞ _eyðtÞ � g _ymM;yðeyÞðq _yðtÞ � q

�
_y
Þ � s _ymS;yðeyÞq _yðtÞÞ ð40Þ

The parameters βx and σx represent the adaptation rates and decay rates, respectively. Their

values are prescribed in the sub-section 5.1. The nominal (reference) weights q�x have also been

prescribed already in Section 4. The parameter γx represents the predefined positive model-

reference tracking rates associated with each function. The parameters γx and ωx are empiri-

cally tuned offline by minimizing Jc to optimize the RIP’s position-regulation behavior and dis-

turbance-compensation capability. The search spaces of γx and ωx are restricted within the

Fig 3. Flow chart for the improved weight–adjustment law.

https://doi.org/10.1371/journal.pone.0283079.g003
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limits [0, 1]. The tuning process begins at random values of these parameters and an exhaustive

search is conducted in the direction of descending gradient of Jc. In every trial, the pendulum is

balanced for 5.0 seconds and the resulting cost is recorded. The iterative tuning is terminated

when the minimum cost is acquired. The selected values are γα = 0.22, γθ = 0.35, g _a = 0.15, g _y =

0.18, ωα = 0.88, and ωθ = 0.95. Each revised function comprises of the following three terms.

Dissipative term

� ramS;aðeaÞqaðtÞ

� rymS;yðeyÞqyðtÞ

� r _amS;aðeaÞq _aðtÞ

� r _ymS;yðeyÞq _yðtÞ

8
>>>><

>>>>:

Anti� dissipative term

damL;aðeaÞq�ae
2
a
ðtÞ

dymL;yðeyÞq�ye
2
y
ðtÞ

d _amL;aðeaÞq�_aeaðtÞ _eaðtÞ

d _ymL;yðeyÞq�_yeyðtÞ _eyðtÞ

8
>>>><

>>>>:

Model� reference tracking term

� gamM;aðeaÞðqaðtÞ � q�aÞ

� gymM;yðeyÞðqyðtÞ � q�yÞ

� g _amM;aðeaÞðq _aðtÞ � q�_aÞ

� g _ymM;yðeyÞðq _yðtÞ � q�_yÞ

8
>>>><

>>>>:

The anti-dissipative terms tend to amplify the state-weighting factors to deliver a stiff control

effort to alleviate large errors and disturbances and vice-versa. The dissipative term exponen-

tially attenuates the rate-of-change in state-weighting factors during equilibrium conditions or

when the anti-dissipative terms are small. The idea is to apply a softer control effort to prevent

disrupted control activity, minimize the steady-state fluctuations in the state responses, and sup-

press the chances of plausible actuator saturation due to the anti-dissipative action. The model-

reference tracking term pushes the adaptation law to generate state-weighting factors that are

adequately close to the nominal weights q�x. This term contributes to reasonable performance in

every condition by mimicking the nominal controller. It offers a smooth transition between dis-

sipative and anti-dissipative action and thus prevents the controller from demonstrating unde-

sired response in case of situations involving either large error or small error. The mild control

effort offered by the model-reference tracking term helps in economizing the overall control

activity as the response recovers from a transient state and finally converges to reference. Alto-

gether, these three terms increase the controller’s adaptability to flexibly reconfigure the stiffness

of damping control effort while preserving the system’s closed-loop stability. Consequently, the

system acquires the capability to effectively re-modulate the damping strength and response

speed of the control law against random disturbances.

The online adaptation starts from the nominal values of the state-weighting factors that are

systematically updated online via the above-formulated algebraic functions. These differential

equations are solved once after every sampling interval via numerical integration. To satisfy

the LQIC’s stability requirements, the updated state-weighting factors are subjected to the sat-

uration as shown in (23), which restricts them within ±70.0% of the nominal value. The satu-

rated state weights are used by Riccati equation to update its solution and yield a time-varying

LQIC gain vector. This control procedure is termed as Improved-Variable-Structure LQIC

(IVS-LQIC) in this research. Its block diagram is illustrated in Fig 4.
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5. Experimental evaluation and discussions

This section comprehensively discusses the experimental procedures used to emulate the real-

world disturbance scenarios for the sake of analyzing each designed controller’s performance

in the physical environment. To better characterize the performance of the proposed control

law, the IVS-LQIC scheme is compared with the BVS-LQIC, LQIC, and the robust Sliding-

Mode-Control (SMC) law proposed in [29]. The SMC scheme for this research work is imple-

mented by using Gao’s power-rate law. It is formulated as follows [29].

uðtÞ ¼ � ðFTBÞ� 1
ðFTAxðtÞ þmjsðtÞjgsgnðsðtÞÞÞ ð41Þ

where,m = 4.07, γ =0.45, and FT ¼ ½� 3:16 73:48 � 3:02 9:25�.

5.1. Experimental setup

The efficacy of each control strategy is investigated in real-time using reliable hardware-in-

the-loop experiments conducted on the QNET RIP setup. The snapshot of the hardware setup

is illustrated in Fig 5.

The angular position of the arm and the apparatus rod is measured by the optical rotary

encoders that are coupled with the motor shaft and the rod’s pivot. The angular measurements

are acquired at a sampling frequency of 1.0kHz. The encoder data is filtered, digitized, and

Fig 4. The improved variable–structure LQIC procedure.

https://doi.org/10.1371/journal.pone.0283079.g004
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then serially fed at 9600 bps to the LabVIEW-based control software application that is run-

ning on a 64-bit, 2.1 GHz, 6.0 GB RAM embedded computer. The customized control applica-

tion is implemented in the back end by using the LabVIEW’s "Block Diagram" tool. The front

end of the control application acts as a Graphical-User-Interface (GUI) to display the real-time

changes in θ(t), α(t), Vm(t), and K(t). The GUI is shown in Fig 6.

The updated values of the system’s state error variations are used by the proposed control

law to adjust the state-weighting factors, re-compute the state-compensator gains, and gener-

ate the modified control input signal. This process occurs after every sampling interval by

using the embedded computer’s real-time clock. The updated modified control signals are

then serially transmitted to the onboard motor driver circuit, which modulates and amplifies

the control signals to actuate the motor. The motor driver is capable of safely handling the dis-

rupted and peak control requirements of the system.

5.2. Tests and results

To test the robustness of the proposed control laws, each control law is tasked to maintain the

pendulum rod upright while regulating the arm’s position at the desired reference, even under

the influence of bounded disturbances or model variations. The performance objectives are

examined using the following test cases.

Fig 5. QNET Rotary Inverted Pendulum setup.

https://doi.org/10.1371/journal.pone.0283079.g005
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A. Position-regulation and station-keeping. This is a preliminary test case that is used to

examine the vertical position-regulation capability of the rod and the station-keeping capabil-

ity of the arm. No external perturbation is applied to the hardware in this case. The corre-

sponding variations in θ(t), α(t), Vm(t), and K(t) for all the control schemes, are shown in

Fig 7.

B. Impulsive disturbance-rejection. The external disturbance-rejection capability of each

control law is characterized by applying an impulse signal to the control input. This test case

emulates the occurrence of abrupt random faults caused by environmental indeterminacies in

the practical engineering systems. The response is perturbed by applying a pulse of -5.0 V and

100.0 ms duration, every time the arm approaches a local maximum. The corresponding

responses of θ(t), α(t), Vm(t), and K(t) for each tested control scheme, are depicted in Fig 8.

C. Step disturbance-rejection. This test examines the resilience of the designed control-

lers against disturbances caused by external torques or abrupt but constant exogenous forces.

This test case emulates the application of turbulence and wind gusts on aerospace vehicles or

the application of tidal forces on marine vessels. The pendulum system is disturbed by inject-

ing a -5.0 V step signal in the control input at t� 5.0 s. The resulting responses of θ(t), α(t),

Vm(t), and K(t) are illustrated in Fig 9.

D. Noise attenuation. This test case analyzes the position-regulation accuracy of pendu-

lum’s rod and the arm under the influence of the sinusoidal disturbances. This disturbance is

used to emulate the measurement noise of the sensors, mechanical vibrations, and the chatter-

ing caused by the hysteresis of the parasitic impedances in electronic circuits. The noise-atten-

uation capability of the pendulum is examined by applying a high-frequency signal with a low-

amplitude having the form, d(t) = sin(20πt). The corresponding variations in θ(t), α(t), Vm(t),

and K(t) are shown in Fig 10.

Fig 6. GUI of the LabVIEW control application.

https://doi.org/10.1371/journal.pone.0283079.g006
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E. Modelling-error compensation. The insensitivity of the devised controllers against

model variations or identification errors is demonstrated by attaching a mass of 0.05 kg

beneath the pendulum rod as shown in Fig 5. This hardware modification introduces an error

between the actual and the reference state-space models of the system. This test case emulates

the occurrence of parametric uncertainties caused by un-modeled intrinsic nonlinearities in

real-world engineering systems. The corresponding perturbations in θ(t), α(t), Vm(t), and K(t)

are shown in Fig 11.

Fig 7. Pendulum’s response under normal conditions.

https://doi.org/10.1371/journal.pone.0283079.g007
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Fig 8. Pendulum’s response under impulsive disturbances.

https://doi.org/10.1371/journal.pone.0283079.g008

1. ex_RMS : Root-mean-squared value of error in pendulum’s rod and arm.

2. MSVm : Mean-squared value of motor control voltage.

3. |Mp,θ| : Magnitude of the peak overshoot in the rod after disturbance is applied.

4. ts,θ(s) : Time taken by the rod to recover from a transient disturbance.

5. αoff : The offset in the arm’s position after disturbance is applied.

6. αp-p : The peak-to-peak amplitude of post-disturbance oscillations in the arm.

7. Vp : Magnitude of peak voltage after disturbance.

https://doi.org/10.1371/journal.pone.0283079.t002
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5.3. Discussions

The performance of each controller, under the aforementioned test cases, is characterized by

recording the following seven Critical-Performance-Indicators (CPIs).

The qualitative analysis of the experimental results obtained by each controller for the

aforementioned tests is summarized in Table 2. A quick comparison validates the enhanced

robustness of the IVS-LQIC under the influence of exogenous disturbances. The qualitative

analysis of the said experimental outcomes is discussed below.

In Test A (results shown in Fig 7), the LQIC shows a mediocre time-domain performance.

The SMC exhibits relatively position-regulation behavior at the cost of large control energy

Fig 9. Pendulum’s response under step disturbance.

https://doi.org/10.1371/journal.pone.0283079.g009
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expenditure. The BVS-LQIC demonstrates considerable improvement in position-regulation

and control input activity as compared to LQIC. The IVS-LQIC exhibits a faster convergence

rate after the initial start-up and effectively attenuates the position-regulation error

throughout.

In Test B (results shown in Fig 8), the LQIC severely suffers from the disturbance. The

SMC and BVS-LQIC systematically improve the disturbance-rejection ability, but also yield an

expensive control behavior. The IVS-LQIC exhibits relatively faster transient recovery and

stronger damping against overshoots (and undershoots) while minimizing the overall control

energy expense by suppressing the peak servo requirements in the presence of disturbances.

Fig 10. Pendulum’s response under sinusoidal disturbance.

https://doi.org/10.1371/journal.pone.0283079.g010
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In Test C (results shown in Fig 9), the LQIC lacks the robustness to effectively compensate

for the disturbances and introduces a large offset in the arm’s position with substantial oscilla-

tions. The SMC yields robust effort to reject disturbances while contributing a highly discon-

tinuous control activity. The BVS-LQIC exhibits reasonable improvement in disturbance

compensation at the cost of a highly disrupted control activity. The IVS-LQIC offers relatively

much stronger attenuation to minimize the post-disturbance offset as well as the amplitude of

oscillations in the arm without requiring large actuator torques.

In Test D (results shown in Fig 10), the SMC demonstrates the weakest immunity against

sinusoidal disturbances. The LQIC and BVS-LQIC manifest relatively better resilience against

Fig 11. Pendulum’s response under model variation.

https://doi.org/10.1371/journal.pone.0283079.g011
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sinusoidal disturbance. The IVS-LQIC surpasses the aforesaid LQIC variants by demonstrat-

ing a drastic improvement in the noise suppression capability of the closed-loop system while

relaxing constraints in terms of the control input requirements.

In Test E (results shown in Fig 11), the LQIC underperforms in compensating for the

model variations as compared to other controllers. The SMC suppresses the perturbations in

arm angle response while yielding a highly disrupted control activity. The BVS-LQIC robustly

handles the model variations and rejects the post-disturbance perturbations in the responses.

The IVS-LQIC delivers significantly better response speeds and damping against fluctuations

and the control-input efficiency (cost) as compared to the LQIC and BVS-LQIC.

As listed in Table 2, the IVS-LQIC demonstrates better position-regulation error in the rod

and arm, improved disturbance-rejection behavior, and lesser control energy expense in every

test case as compared to the fixed-gain LQIC and the BVS-LQIC. The SMC demonstrates

highly discontinuous control activity and relatively higher chattering content in the angular

responses in every test case. The performance improvements observed in the IVS-LQIC are

attributed to the enhanced self-regulating weight-adjustment law augmented with its structure,

which improves the controller’s sensitivity to quickly realize the nonlinear disturbances. More-

over, it also enhances the controller’s flexibility and self-adaptability to efficiently manipulate

the control profile for disturbance rejection.

6. Conclusion

This research formulates and experimentally validatesthe efficacy of an innovative variable

structure LQIC design for the under-actuated electro-mechanical systems. The adaptive con-

trol procedure is realized by systematically constituting a self-tuning law that adapts the state-

Table 2. Summary of experimental results.

Test CPI Controllers

LQIC SMC BVS-LQIC IVS-LQIC

A eθ_RMS (degrees) 0.62 0.54 0.48 0.35

eα_RMS (degrees) 13.34 12.03 9.78 8.52

MSVm (V2) 8.13 11.87 7.55 7.06

B eθ_RMS (degrees) 0.67 0.84 0.57 0.35

|Mp,θ| (degrees) 2.70 2.52 2.01 1.68

ts,θ(s) 0.71 0.69 0.52 0.46

eα_RMS (degrees) 11.44 10.78 9.50 8.74

MSVm (V2) 10.07 17.41 9.63 7.74

Vp (V) -10.14 -15.62 -12.33 -9.55

C eθ_RMS (degrees) 1.22 1.16 0.84 0.59

eα_RMS (degrees) 31.43 30.15 21.60 16.62

αoff (degrees) -37.02 -36.53 -22.09 -19.08

αp-p (degrees) 27.52 23.77 25.79 20.70

MSVm (V2) 24.94 26.35 23.47 22.76

Vp (V) -11.25 -18.01 -12.84 -11.22

D eθ_RMS (degrees) 0.42 0.50 0.31 0.27

eα_RMS (degrees) 10.14 11.78 7.55 5.58

MSVm (V2) 12.86 16.65 11.98 9.59

E eθ_RMS (degrees) 1.14 1.31 0.85 0.63

eα_RMS (degrees) 16.86 13.19 11.88 9.56

MSVm (V2) 13.17 17.76 11.72 11.04

https://doi.org/10.1371/journal.pone.0283079.t003
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weighting factors of LQIC’s QPI in an online fashion. The self-adjusting weights tend to

dynamically modify the LQIC gains, which leads to the online restructuring of the state-feed-

back control law after every sampling interval. The proposed adaptation law is formulated by

using state-error-driven anti-dissipative terms, dissipative terms, and model-reference tacking

terms. Altogether, the aforementioned three constituent terms of each weight-adjusting func-

tion increase the controller’s DOF and flexibility to yield a robust, time-optimal, and energy-

efficient control effort while upholding the system’s asymptotic stability. The proposed self-

tuning algorithm uses the knowledge of the past weights, the state-error variations, and

model-reference tracking error in conjunction with its better self-reasoning capability to adap-

tively modulate the state-weighting factors online. Despite its dependence on several variables,

the proposed scheme does not put an excessive computational expense on the embedded pro-

cessor, and thus can be easily handled by modern digital computers. The experimental out-

comes justify the aforementioned claims by yielding faster transient recovery behavior and

strong damping effort to reject the nonlinear disturbances while preserving the system’s

closed-loop stability and relaxing constraints in terms of the control input requirements of the

actuator. In the future, the proposed adaptation mechanism can be extended and applied to

other nonlinear complex dynamical systems. Moreover, the flexibility, control yield, and

computational complexity of state-of-the-art soft-computing techniques (such as fuzzy systems

and artificial neural networks) can also be investigated and compared with the proposed

weight adaptation scheme for similar control applications.
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