
Future of Jobs in China under the Impact of Artificial Intelligence 1

Chengzhang Wanga, Min Zhengb,†, Xiaoming Baic, Youwei Lid, Wei Shena

a School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China

b China Institute for Actuarial Science, Central University of Finance and Economics, Beijing 100081, China

c School of Management and Engineering, Capital University of Economics and Business, Beijing 100070, China

d Hull University Business School, University of Hull, Hull, UK

Abstract

This study presents a new task-based quantification method for constructing Chinese oc-

cupational dataset based on the features of US jobs. Furthermore, we estimate the impact

of artificial intelligence (AI) on jobs in China by determining substitution probability using

a LightGBM-based prediction model. The results show that 54% of jobs in China would

be substituted by AI in the following decades. Relatively speaking, unit heads are the

safest jobs in China, whereas jobs intensive in perceptive and manipulative tasks are highly

susceptible to substitution.

Keywords: Artificial intelligence; labor markets; task-based quantification; substitution

probability; LightGBM

1This work is supported by Beijing Municipal Social Science Foundation (No. 21JJB018) and
2022 Project of the Central University of Finance and Economics Education Reform Fund (No.
011450722001/036).

†Corresponding author at: China Institute for Actuarial Science, Central University of Finance and Eco-
nomics, Beijing 100081, China.

Email: mzheng@cufe.edu.cn (M. Zheng).



1. Introduction

AI as a new technological revolution (Aghion et al., 2018) is experiencing a rapid ad-

vance in recent decades, and the impact of AI on employment has aroused widespread

interest (Goos et al., 2009; David, 2017; Oschinski and Wyonch, 2017; Acemoglu et al.,

2022). All these studies focus on the impact of AI on developed countries, such as Europe,

Japan, Canada, and the US. Although these studies explore the substitutive and creative

effects of new technologies on jobs across different countries, AI influences distinct labor

markets differently. For example, only 1.7% of employment is at a high risk of automation

in Canadian labor market; by contrast, the proportion of total occupations vulnerable to

computerization is up to 47% in the US and 55% in Japan. Therefore, the results are not

fully transposable.

Few studies have been conducted for developing countries because there are few quanti-

fied features of jobs in these countries. One example is Zhou et al. (2020), who exploit the

results of Frey and Osborne (2017) directly by matching the occupational codes between

China and the US to examine the influence of AI in China without using the quantified

features of Chinese jobs. Because China is a developing country with the largest popula-

tion, the impact of AI on Chinese labor market deserves more attention, especially from the

viewpoint of quantified features.

This study contributes to the literature in two ways. First, we develop a task-based

quantification method for constructing a relationship between Chinese and US job features

not based on occupational codes. Thus, the first Chinese occupational dataset with quanti-

fied features is created. To analyze the impact of AI, the linkage between quantified features

and substitution probability is another important factor. Therefore, the second contribution
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of our study is that a novel machine learning method, a LightGBM2-based prediction model,

is developed to improve the timeliness and accuracy of the substitution probability of jobs.

According to our estimation, 54% of jobs in China are at a high risk of being substituted.

Particularly, jobs with perception- and manipulation-intensive tasks are highly susceptive

to substitution.

2. Models

2.1. Task-based quantification model

The quantified features of jobs are the basis of the substitution evaluation. Some coun-

tries have quantified job features, but some do not. For example, the US has O*NET, an

online service developed for the US Department of Labor, but China does not have a similar

service. Therefore, it is necessary to use the known quantified features of jobs to describe

unknown ones. Two close jobs in different countries may have different names; however,

they share the same key features. We propose a task-based quantification model to obtain

the quantified features of jobs without them using the known quantified features of the

associated jobs in other countries.

Suppose there is a similarity matrix Λ = (λij)N1×N2 between jobs in a labor market

L(un) without quantified features and those in a labor market L with them, where λi,j

represents the similarity between Job i in L(un) and Job j in L, and N1 and N2 are the

respective numbers of jobs in L(un) and L. For Job j in L, its key features are known as

oj = (vj,1, · · · , vj,M), where M denotes the number of features in L. Then the feature matrix

2LightGBM is the abbreviation of Light Gradient Boosting Machine.
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of jobs in L is

Ov = (o1, · · · ,oN2)
T
N2×M .

For jobs in L(un), the quantified features can be obtained by

O(un)
v = Λ · Ov.

There are several methods to establish the similarity matrix Λ; for example, by expert

scoring or assigning corresponding occupational codes, such as the Standard Occupational

Classifications. However, these methods depend heavily on either expert experience or forced

pairing. In fact, job descriptions contain information about tasks performed on the job. For

example, the job description for a dishwasher includes task descriptors such as “wash dishes”

and “place clean dishes.” In this study, we employ task descriptors as a mediator to establish

the matrix Λ.

Suppose that all task descriptors of L constitute the task set {tj}m
j=1 and those of L(un)

constitute {t(un)
i }n

i=1, where m and n are the respective number of tasks in L and L(un).

We denote an indicator coefficient vector of tasks for Job l in L as ∆l = (δl,1, · · · , δl,m),

where δl,k(l = 1, · · · , N2) equals 1 if tk is a task of Job l, otherwise 0. The coefficient matrix

of tasks in L is ∆ = (∆1, · · · ,∆N2)
T
N2×m. Similarly, the coefficient matrix of tasks in L(un)

is ∆(un) =
(
∆

(un)
1 , · · · ,∆

(un)
N1

)T

N1×n
. We identify the similarity coefficient matrix of tasks as

S = (si,j)n×m ,

where si,j represents the similarity of pairwise tasks t
(un)
i and tj. Then, we define Γ =

∆(un) · S · ∆T = (γi,j)N1×N2 , which is responsible for transferring the quantified features of
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jobs in L to those in L(un) with S as an intermediate variable. However, Γ includes the

features of all jobs in L for a job in L(un). To focus on the key jobs, we first identify the

closest jobs in L to a job in L(un), that is3, I(Γ) ,
(
Imax{γi,·}(γi,j)

)
. Usually, the jobs that

are the closest to the job in L(un) are not unique, and the final result corresponding to the

job in L(un) takes the mean of the closest jobs in L. Therefore, we normalize the associated

closest jobs in L; that is, normalize each row of the matrix I(Γ), defined by4 N (I(Γ)).

Hence, the similarity matrix of jobs Λ is obtained using the nonlinear mapping G = N ◦ I

with S as an intermediate variable; that is,

Λ = G(Γ) = G
(
∆(un) · S · ∆T

)
.

The following is a simplified example of using the known quantified features of four tasks

of two jobs in the US to quantify the features of two jobs with three tasks in China. Suppose

∆(chn) =

 1 0 1

1 1 0

 , ∆(us) =

 1 1 1 0

1 0 1 1

 ,

and

S(chn,us) =


1 0 1 0

0 1 0 0

0 0 0 1

 .

Intuitively, Job 1 in China, which includes Tasks 1 and 3 of China should be matched with

a job that includes Tasks 1, 3, and 4 of the US, that is, Job 2 in the US, because by S, Task

3Imax{γi,·}(γi,j) equals 1 if and only if γi,j = max {γi,·}, otherwise 0.
4N (A) denotes the normalization of the rows in A, which means replacing ai,j by the quotient of ai,j

and
∑

j ai,j , where A = (ai,j)N1×N2 .
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1 of China is the closest to Tasks 1 and 3 of the US, and Task 3 of China is the closest to

Task 4 of the US. Similarly, Job 2 in China, which includes Tasks 1 and 2 of China should

be matched with Job 1, which includes Tasks 1, 2, and 3 of the US.

Using our task-based quantification method, the similarity matrix Λ between China and

the US labor markets is

Λ = G
(
∆(chn) · S(chn,us) · ∆(us)T

)
=

 0 1

1 0

 .

Suppose that each job in the US is equipped with 3 O*NET variables:

O(us)
v =

(
o

(us)
1 , o

(us)
2

)T

2×3
=

 v1,1 v1,2 v1,3

v2,1 v2,2 v2,3

 .

Then, the quantified features of jobs in China are

O(chn)
v =

(
o

(chn)
1 , o

(chn)
2

)T

2×3
= Λ · O(us)

v =

 v2,1 v2,2 v2,3

v1,1 v1,2 v1,3

 =
(
o

(us)
2 , o

(us)
1

)T

2×3
.

This implies that o
(chn)
1 (o

(chn)
2 ) shares the variable values of o

(us)
2 (o

(us)
1 ), which is consistent

with the intuitive results. Therefore, the method developed in this study is valid.

2.2. Prediction model

To calculate the substitution probability of jobs, a prediction model is required to connect

the quantified features of jobs with the latent variable using binary values, taking 1 if a job is

substituted and otherwise 0. Considering the problem with the binary dependent variable,

logistic regression and random forests are usually used in applied economics; for example,
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Frey and Osborne (2017) and David (2017). In this study, we adopt LightGBM proposed

by Ke et al. (2017), using boosting strategy to achieve ensemble learning. Additionally,

K-fold cross validation and hyperparameter optimization based on grid search are exploited

to promote the accuracy and generalization ability of the prediction model.

Table 1: Performance of the prediction model
Prediction models AUC? Accuracy
LightGBM-based 0.986 0.922
Logistic regression 0.939 0.889
Random forests 0.961 0.911
Näıve Bayes 0.938 0.867

? AUC denotes the area under the receiver operating characteristics curve, which is a
model performance evaluation index. The performance of the model is better as AUC
approaches 1.

Table 1 lists the performances of our LightGBM-based prediction model, compared with

logistic regression, random forests and näıve Bayes under the same conditions. The results

show that the LightGBM-based prediction model exhibits the best performance compared

to its rivals.

3. Data and empirical results

3.1. Data

The data on Chinese and US jobs are obtained from the China’s Seventh National Pop-

ulation Census across six major categories and O*NET, respectively. Frey and Osborne

(2017) propose that AI technology is confined by three strong engineering bottlenecks. Fur-

ther, they identify nine key O*NET variables as proxies for describing the attributes of the

three bottlenecks5. As jobs change over time, we update the data of these nine variables

based on O*NET and expand the dataset from 70 to 91 occupations. Through the task-

5More details on the three bottlenecks and nine O*NET variables and their relationships see Columns 1
and 2 of Table 3.
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Figure 1: Employment affected by AI

based quantification model described in Section 2.1, we use the US occupations, with nine

O*NET variable values for each occupation, to construct Chinese occupational dataset with

quantified characteristics. Then the substitution probabilities of jobs are estimated using

the LightGBM-based prediction model.

3.2. Empirical results

The empirical results show the properties of substitution probability based on the two

aspects of job characteristics and O*NET variables.

First, jobs are divided into three groups by thresholding at probabilities of 0.3 and 0.7,

according to our estimation, as illustrated in Figure 1.

In the short-term future, 54% of jobs in China are at a high risk of being substituted

with AI, and they are mainly related to the engineering bottlenecks that are easy to over-

come, such as routine, auxiliary, or processing works. Figure 1 shows that most workers in
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Table 2: Examples of jobs in each category
Risk Levels Categories Jobs

High
(p > 0.7)

6 Down and feather processing
and product manufacturing personnel

3 Administrative business
handling personnel

4 Road transport service personnel

Medium
(0.7 > p > 0.3)

2 Music conductor and actor
2 Gardening technicians
6 Civil aviation equipment operators

Low
(p < 0.3)

3 Chief executive of public institutions
2 Legal counsel
2 Public health and health physician

production and transport equipment operations and related workers (e.g., down and feather

processing and product manufacturing personnel), together with the bulk of business service

personnel (e.g., road transport service personnel), are highly susceptible to substitution.

As bottlenecks are broken through, jobs at medium risk, which are usually specialized

operating and research works, will begin to be substituted. This type of jobs accounts

for only 8% of Chinese jobs and is mainly professional technical personnel such as music

conductors, actors, and gardening technicians.

The 38% of jobs that will be substituted last are at a low-risk level and are characterized

by heuristics, professional technology, and social interactions. For example, unit heads that

are typically engaged in management are in the low-risk interval. These types of jobs require

a high degree of social intelligence and are very difficult to substitute. In addition, some

highly professional types of technical personnel, such as legal counsel and health physician,

are low-risk jobs that require creative and social intelligence. More jobs in each group are

listed in Table 2.

Second, for every O*NET variable, the variable scores of the jobs across different risk

levels were measured using means and standard deviation, as presented in Table 3.
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Table 3: Variable distributions
Bottlenecks O*NET Variables High Medium Low

Perception and
manipulation

Finger dexterity 50.04 47.10 37.64
(13.71) (13.62) (14.60)

Manual dexterity 50.21 41.97 30.32
(18.10) (18.57) (19.54)

Cramped work space,
awkward positions

32.81 34.27 22.19
(19.05) (23.09) (14.67)

Creative
intelligence

Fine arts 5.57 10.67 9.50
(10.11) (20.60) (13.82)

Originality 34.22 47.67 54.67
(9.06) (8.48) (7.76)

Social
intelligence

Social perceptiveness 46.10 50.80 61.94
(5.74) (5.44) (11.10)

Persuasion 35.11 42.73 51.45
(9.51) (8.59) (8.65)

Negotiation 31.85 40.67 49.95
(8.87) (8.42) (11.46)

Assisting and caring
for others

40.12 42.87 46.42
(10.25) (12.13) (19.67)

Manual and finger dexterity variables representing bottleneck attributes of perception

and manipulation have the highest scores at the high-risk level. This implies that jobs that

require manipulation of objects are the most susceptible to AI substitution. As AI develops,

industrial robots with enhanced senses and dexterity may penetrate more industries to fulfill

a wider range of nonroutine manual tasks.

However, cramped work space and awkward positions belonging to perception and ma-

nipulation bottleneck and fine arts belonging to creative intelligence have the highest scores

at the medium-risk level. This indicates that jobs that require knowledge of art theory

and/or special working environment will be substituted in the long run.

Except for originality, which belongs to creative intelligence, the remaining O*NET vari-

ables belong to the bottleneck of social intelligence. They have the highest scores at the

low-risk level. This means that most jobs with social intelligence and some with creative

intelligence, such as unit heads, health physicians, and legal counsels, are not easy to sub-
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Table 4: Comparison of risk levels between the US and China
Risk Ratio Bottlenecks (O*NET Variables)
Level US China Commons Differences

High 47% 54%
Perception and manipulation (Finger

-
dexterity, Manual dexterity)

Medium 19% 8%
Perception and manipulation (Cramped China: Creative intel-

work space, awkward positions) ligence (Fine arts)

Low 33% 38%

Creative intelligence (Originality);
Social intelligence (Persuasion, US: Creative intel-

Negotiation, Social perceptiveness, ligence (Fine arts)
Assisting and caring for others)

stitute.

Compared with the ratios of jobs at different risk levels in the US given by Frey and

Osborne (2017), the ratios of jobs at the high- and low-risk levels in China are larger, while

the ratio of jobs at the medium-risk level is smaller. As to the related bottlenecks, the

biggest difference between China and the US is the creative intelligence of fine arts which is

at the medium-risk level in China and at the low-risk level in the US. The result differences

could rely on the differences in labor market structure, number of jobs and task composition

in different countries. However, this is beyond the scope of this study, so we will leave it for

future research.

4. Conclusions

This study considers the task similarity between jobs to construct Chinese occupational

dataset based on O*NET variables for the US and estimates the substitution probability

of jobs by AI in China based on the LightGBM-based prediction model, which provides

new evidence for developing countries. The results show that 54% of jobs in China are at

a high risk of substitution. In particular, production and transport equipment operators

and related workers are most susceptible, whereas unit heads are the safest jobs in China,
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with the lowest substitutional probability. Additionally, jobs that require perception and

manipulation are in danger because they have the largest substitution probability, whereas

those that require social intelligence will be substituted relatively late. Therefore, the de-

velopment in AI will put a large number of jobs at risk in the next few years. As jobs evolve

alongside the development of AI, workers will need to adapt to activities that require more

creativity and social intelligence. Policymakers will need to provide more midcareer job

training and income support for workers caught in the flood of AI to fulfill job transition.

References

Acemoglu, D., Autor, D., Hazell, J., Pascual, R., 2022. Artificial intelligence and jobs:

Evidence from online vacancies. J. Labor. Econ. 40(S1), 293-340.

Aghion, P., Jones, B.F., Jones, C.I., 2018. Artificial intelligence and economic growth. NBER

Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 237-282.

David, B., 2017. Computer technology and probable job destructions in Japan: An evalua-

tion. J. Jpn Int. Econ. 43, 77-87.

Frey, C.B., Osborne, M.A., 2017. The future of employment: How susceptible are jobs to

computerisation? Technol. Forecast. Soc. 114, 254-280.

Goos, M., Manning, A., Salomons, A., 2009. Job polarization in Europe. Am. Econ. Rev.

99(2), 58-63.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017.

LightGBM: A highly efficient gradient boosting decision tree. Proceedings of the 31st

International Conference on Neural Information Processing Systems, 3149-3157.

12



Oschinski, M., Wyonch, R., 2017. Future shock? The impact of automation on

Canada’s labour market. C.D. Howe Institute Commentary No. 472. Available at

http://dx.doi.org/10.2139/ssrn.2934610

Zhou, G., Chu, G., Li, L., Meng, L., 2020. The effect of artificial intelligence on China’s

labor market. China Economic Journal. 13(1), 24-41.

13


