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Abstract

Precision agricultural techniques try to prevent either an excessive or inadequate applica-

tion of agrochemicals during pesticide application. In recent years, it has become popular to

combine traditional agricultural practices with artificial intelligence algorithms. This research

presents a case study of variable-rate targeted spraying using deep learning for tobacco

plant recognition and identification in a real tobacco field. An extensive comparison of the

detection performance of six YOLO-based models for the tobacco crop has been performed

based on experimentation in tobacco fields. An F1-score of 87.2% and a frame per second

rate of 67 were achieved using the YOLOv5n model trained on actual field data. Additionally,

a novel disturbance-based pressure and flow control method has been introduced to

address the issue of unwanted pressure fluctuations that are typically associated with bang-

bang control. The quality of spray achieved by attenuation of these disturbances has been

evaluated both qualitatively and quantitatively using three different spraying case studies:

broadcast, and selective spraying at 20 psi pressure; and variable-rate spraying at pressure

varying from 15-120 psi. As compared to the broadcast spraying, the selective and variable

rate spray methods have achieved up to 60% reduction of agrochemicals.

Introduction

Precision agriculture has the ability to increase production per acre while also increasing the

automation and environmental friendliness of farming operations. Agricultural robotics and

automation have been among the core technologies enabling the fourth industrial revolution.

They are often regarded as enabling instruments for achieving the United Nations’ Sustainable

Development Goals (SDGs) such as no poverty, no hunger, protecting the planet, and life on

land. As underpinned in a report published in 2019 by the United Nation Population Division

[1], the world population is expected to reach a mark of 9 billion by the end of 2050. These
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population projections foreshadow rising food insecurity and scarcity issues, particularly in

developing countries including Pakistan.

Moreover, several countries have reported alarming residues of agricultural chemicals

in soil beds, agricultural products, and even in human blood and adipose tissue [2, 3]. The

ongoing study of the exposure of humans to pesticides on a low level is carried out by the

Agricultural Health Study [4]. Also, in a developing country like Pakistan, most farmers use

conventional broadcast sprayers that spray the entire field including the non-target species.

Despite the fact that crops are planted at set distances in a row, the traditional practice of uni-

form spraying is used, resulting in pesticide overuse. Similar spraying techniques have been

used for weeds that often grow in uneven spots. This increases the price, boosts the possibility

of agricultural loss, contaminates food, pollutes the environment, and leads to insect resistance

to the chemicals applied. Therefore, it is vital to develop smart solutions to lessen the reliance

on traditional spraying techniques and manage the risks involved.

Keeping in view the issues face globally, the agricultural sector has now adopted the artifi-

cial intelligence (AI) based solutions and have brought a substantial shift in the conventional

agricultural practices in the modern world. In the area of spraying technologies, the AI applica-

tions are now emerging at high pace with improving learning and analyzing the different con-

dition of crops in real-time. This area leads to the precision spraying techniques that combines

the emerging disciplines of robotics, computer vision and artificial intelligence. The integra-

tion of these areas make the spraying methods the ability to identify the and differentiate

between the crop and weed and apply the desire amount of chemical on the correct plant loca-

tion. Therefore, agricultural methods that are proactive and more efficient must be employed

to ensure an optimal yield by managing crops input in order to prevent a potential food short-

age. These input include materials used or added during agricultural production and include

agrochemicals like pesticides and herbicides.

This paper addresses the above mentioned issues and provide the solution for developing a

vision-guided mobile robot platform in real tobacco fields. A comparative study is also carried

out between the deep learning-based YOLO frameworks in terms of robustness, accuracy, and

computational speed. Tobacco is grown in more than 100 countries around the world and in

Pakistan, it is considered as an important crop as it generates considerable revenue.

Our robotics platform is one step ahead in providing a low cost precision agricultural-based

solution for problems encounter in a traditional spraying approaches. Our research study con-

tributes multifaceted aspects, addressing the major technical innovations that include.

1. Design and development of Differential-Drive Mobile Robot (DDMR) for selective-spray-

ing of the row-crops fields. It uses computer vision techniques to replace the conventional

manual/broadcast spraying methods with the selective spraying approach implemented by

detecting the tobacco plant as a case study. The robotics platform can apply pesticides on 5

rows at a time.

2. Development of the tobacco plant data-set with 6500 tobacco images and 2000 weeds

images capture in manifold ambient conditions from local field and can be accessed at

https://github.com/Fazalnasirkhan/ARAL-tobacco.

3. Design and development of novel technique for pressure control system where the qualita-

tive and quantitative study is carried for the robot spraying system.

4. An extensive comparative study is carried out for the robot vision system techniques in

terms of its accuracy, robustness, and computational speed. Deep learning-based 5 versions

of YOLO models are implemented.
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State of the art

Extensive research work about the autonomous robotic platforms developed for weed control

has been reviewed by Slaughter et al., [5] and Meshram et al., [6]. In [7, 8], authors have stud-

ied the detection of weeds using various sensors and techniques of machine vision, remote

sensing, spectral analysis, and thermal images. Khan et al., [9] has developed a GPS guidance-

based autonomous agricultural robot. Haar feature-based cascade classifiers have been used to

detect three commonly occurring weed types in a maize field. In [10], with the help of a Sup-

port Vector Machine (SVM) classifier and features extracted from image histograms, authors

have created a crop perception system that determines the leaf density for the quantity of spray

required on the plant. The accuracy score of the leaf density classifier varies from 80% to 85%.

A number of studies exist in literature on vision and AI based site-specific agricultural

spraying. The work reported in [11] presents treatment based on the plant density and foliage

shape. For autonomous spraying systems in greenhouses, the work published in [12] has

employed a 270-degree laser scanning sensor to find targets with complicated shapes. In [13],

a human-robot collaborative strategy was developed for target-specific spraying using a robotic

platform in a complex environment. The proposed method reduces the amount of sprayed

material by 50%. Likewise, in [14] a semi-autonomous agricultural sprayer robot has been

developed with particular emphasis on human-robot interaction. The human operator has to

manually select targets, e.g., grape clusters, using an input device such as a mouse, Wiimote, or

digital pen to be sent to the teleoperated spraying robot. Adamides et.al., 2017 [15] have also

developed a teleoperated agricultural robotic system that uses different versions of human-

machine-interfaces (HMI). For a set of dedicated inputs (keyboard vs. gamepad), various out-

put devices (screen vs. head-mounted display), and single view feedback vs. multiple views,

several methodologies have been used and comparisons have been made. Target (grape clus-

ters) detection and identification under varying lighting circumstances, however, has been left

as a future work. Research advancements and innovation in the field of agricultural robots

were examined by Bechar and Vigneault in [16]. In order to complete tasks in complicated

environment, the work demands the use of intelligent systems. Another thorough review

in [17] highlights site-specific weed management strategies used in agriculture. The study

identifies knowledge gaps and suggests spraying techniques that can adjust pesticide mixture

depending on the weed species present in the field. For weed control, they have also stated a

great need for open-access annotated image data.

A detailed discussion of the integration of sensor technologies like 3D camera and multi-

spectral imaging with artificial intelligence-based decision algorithms were made in [18].

Technical and economic assessments are presented, and the control level of various spraying

techniques is investigated. This analysis also shows the economic aspects of the sprayer robot

platform in terms of materials and labor savings. The general categories of the sprayer system

include: on-off nozzles sprayers, air-blast sprayers, and canopy optimized distribution spray-

ers. In [19], an optimized flow rate value of the sprayer was achieved using a machine learn-

ing-based vision system. The size of the plant and its matching canopy size are computed once

the crops and weeds are classified. The authors experimented using several combinations of

image features, including Hu moments (to measure shape), edge-oriented histogram (to detect

the edges of the plants), and Haralick features (to quantify texture), and color historgram (to

measure the distribution of colors). The Random Forest machine learning algorithm was

found to be capable of identifying plants from weeds with 95% accuracy. A frame rate of 17.4

has been achieved which is suitable for spraying applications. Similarly, Cheng et. al., [20] have

implemented a feature-based learning method that detects and differentiates weeds from rice

plants. The target plant’s leaf tip, or the point of interest, is found using a Harris Corner
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detection technique. Around 24 features (belonging to the colour and texture categories) of

the surrounding area were then extracted and fed to the machine learning algorithm, specifi-

cally decision trees, support vector machines, and naive Bayes. An unsupervised method (den-

sity-based spatial clustering of applications with noise) was also used on identify clusters in

large spatial data and to remove the false positive Harris points.

Moreover, in a site-specific crop management procedures that uses the different sources of

information like Near-infrared (NIR) spectroscopy, the residual neural network (Resnet) are

used for tobacco classification and the quantitative analysis of the contents of the tobacco

leaves are perform using the Long Short-Term Memory (LSTM) network in [21–23]. These

analysis provide the bases and provide on time decision making process for the site-specific

selective spraying.

Since the breakthrough work in 2012 [24] in which deep learning was demonstrated to out-

perform the cutting-edge computer vision approaches for object detection, deep learning has

fundamentally changed the field of artificial intelligence.

System description and hardware organization

The five main modules of the work are introduced in this section. The first two sections cover

the hardware of the system. This is followed by the visual perception module, which employs a

deep learning approach to recognize and classify plants in real time, and also locates them in

World coordinates based on the camera model. A vision-based navigation system, as well as a

novel pressure and flow control system, are then presented.

Field robot subsystems overview

The current big trend in precision agriculture is the deployment of robots and electric vehicles

that are powered by renewable energy. They provide best tools and practices to address issues

faced by the agricultural industry, including population expansion, rising fuel prices and their

impact on the environment, labour shortages, and climate change. Additionally, a fully electric

and digital system must always be present in the agricultural field in order to put industry 4.0

technologies, such as 4G/5G connectivity, artificial intelligence, blockchain, and the Internet

of Things (IoT), into operation. The fundamental prerequisites to progressing towards smart

farming and Agriculture 5.0 are provided by robotic platforms and solar-powered electric

vehicles.

Advantages offered by electric sprayers as compared to traditional methods have been sum-

marized in [10]. As mentioned, despite their existing limitations such as limited battery power

and the challenge of achieving a sufficient level of ingress protection for field conditions, elec-

tric vehicles supplemented by solar energy harvesting will revolutionize the field of precision

agriculture in the near future.

An autonomous agricultural field robot has been developed at the Advanced Robotics and

Automation Laboratory (ARAL) [25], a lab that is a part of the National Center of Robotics

and Automation (NCRA) [26], in Pakistan, to test the effectiveness of the developed deep

learning based spraying system. The effective features of the robot designed at ARAL are men-

tioned in Table 1. The robot navigates autonomously between crop rows in the field, classifies

crops and weeds in real-time, and sprays pesticides accordingly. The real-field performance of

the robotic platform was evaluated by conducting several experiments at Mardan Tobacco

Research Station, Khyber-Pakhtunkhwa, Pakistan (Coordinates 34˚, 120, 1.9800, 72˚, 00, 4.63300

East), with special permission granted by the secretary Pakistan Tobacco Board, Hayatabad,

Peshawar 25000, Khyber-Pakhtunkhwa, Pakistan.
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To keep the design modules, three subsystems have been developed: (1) the Perception Sys-

tem uses images acquired by a camera to recognize the object of interest using a deep learning

algorithm, (2) the Navigation System allows the robot to navigate autonomously or semi-

autonomously (using remote controlled) to follow the crop rows, and (3) to spray insecticides

in a targeted manner, the Spraying System employs a set of nozzles with adjustable spacing

between them.

The sprayer robot’s system architecture is shown in Fig 1. An extendable pole (1.5m to

2.10m) from ground level, is fixed on the front of the vehicle that holds cameras. The camera is

a Logitech C922 Pro HD camera that can record video up to 1080p at 30fps with a 78-degree

field of view. It is used to feed the visual information from field to the AI model running on

the onboard PC. The PC used for this experiment has specifications listed in Table 2.

Table 1. Agricultural sprayer robot specifications.

Features Descriptions

Length, Width, Height 60, 32, adjustable height 26-38 inches

Weight(unloaded) 60 kg

Spraying boom width Adjustable width 56-130 inches

Chemical storage capacity 90 liters

Numbers of rows coverage 5 rows with adjustable width 12-36 inches

Travel speed upto 2.2 ms−1

Drive system Differential drive 24V DC brush motors

Pressure control system Closed-loop cascaded control system

Vision system Deep-learning based YOLOv5

Wheels dimensions Diameter 14 inches

Power source 12V DC lead-acid battery

https://doi.org/10.1371/journal.pone.0283801.t001

Fig 1. System architecture of precision agricultural spraying robot.

https://doi.org/10.1371/journal.pone.0283801.g001
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The spraying system comprises of a telescopic boom with five normally closed solenoid

valve nozzles fixed along its length. The distance between the solenoid nozzles valve can be

adjusted by sliding the boom links along its lengths (inward or outward). Preemptive spraying

(of insecticides/herbicides) is achievable with the help of the developed low-cost smart preci-

sion solar-powered robot equipped with embedded AI. Since each solenoid nozzle valve can

be independently controlled, the spraying process can be more effectively controlled using the

output from the deep learning model that accurately detects and classifies crops and weeds in

real-time and subsequently sprays precisely on the desired target plant only.

Crop perception system

The crop perception subsystem acquires images in real-time and uses a trained deep learning

model to detect the crop (tobacco plant). Once the desired plant has been detected, it needs to

be localized in the image plane. The corresponding world coordinates of the plant’s centroid

are then extracted using the camera model. The output information is then sent to the Spray

control subsystem which activates the relevant solenoid.

The most crucial part of any deep learning based visual recognition system is the dataset. It

has to be rich enough to be used for training. Different lighting conditions, different growth

stages of plants, and different views are all important factors that need to be considered while

generating a dataset. A custom dataset of tobacco plants was created for the work discussed

here, and it has been made publicly available [27] for the benefit of the research community.

Crop detection and classification. Object detection is a widely used computer vision

approach for identifying, locating, and labeling individual items in an image or video. The

important decision in designing objection recognition system using machine learning tech-

niques is whether to use the traditional machine learning algorithms (e.g., Support Vector

Machines, Naive Bayes, k-means clustering, or decision trees) or use modern deep learning

algorithms. The former approach involves the feature engineering step which may or may

not produce satisfactory results for the object at hand. Previously, the authors have published

results where different features and algorithm combinations were tried to reach at the best per-

forming option. Interested readers are invited to see the reference [19].

One of the main problems encountered with traditional machine learning approach has

been locating multiple objects in the same image. The popular sliding window approach is

generally used to perform classification at large number of locations and scales. However,

doing so is computationally expensive, and the cost increases as the resolution and window

count fed into the classifier grow. In fact, applications like pest detection and counting fall

within this category. As an alternate option, Convolutional Neural Networks (CNN) are good

at both localization and detection and have shown promising results for spatially structured

data including images. By combining operations such as convolution, pooling and fully con-

nected layers, CNNs can classify local regions in an image at multiple scales and locations.

One popular CNN is You Only Look Once (YOLO) which has been experimentally found

to be robust and well-suited for the problem at hand due to its global approach (as compared

Table 2. Computer specifications.

Features Descriptions

CPU Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz (64-bit)

RAM 16GB

GPU NVIDIA GeForce RTX 2070 8GB

Operating System Microsoft Windows 10 (64-bit)

https://doi.org/10.1371/journal.pone.0283801.t002

PLOS ONE Deep learning in Agriculture

PLOS ONE | https://doi.org/10.1371/journal.pone.0283801 March 31, 2023 6 / 22

https://doi.org/10.1371/journal.pone.0283801.t002
https://doi.org/10.1371/journal.pone.0283801


to sliding window), high accuracy and better speed. These advantages makes them perfect for

real-time deployment as it is a single stage, proposal-free object detector. Overview of the

YOLO architecture of version 3,4 and 5 is shown in Fig 2.

YOLO, unlike other previously developed object detection algorithms, addresses object

detection as a single regression problem, circumventing the region proposal, classification,

and duplicate elimination pipeline [28]. Although YOLO can be deployed in a variety of

frameworks, Darknet is the most preferred one for YOLOv3 and YOLOv4 version, while

YOLOv5 version is deployed in pytorch framework. Images are downsized to a reduced reso-

lution in YOLO algorithms, and then a single CNN is run on the images, yielding detection

results based on the model’s confidence threshold. The sum of square error was reduced in the

first version of YOLO (loss function). This optimization improves detection speed but reduces

accuracy compared to current object detection models [28]. On-line data augmentation is

used in YOLO to improve model robustness in object detection in various contexts by increas-

ing the unpredictability of the input data. YOLO models have been used in a variety of applica-

tions where quick detection is required, including pedestrian detection [29], license plate

detection [30], and automatic fabric defect detection [30]. Fruit detection [31–34], crop disease

diagnosis [35], and weed and pest detection [36] are all examples of YOLO applications in

agriculture. Since 2016, multiple versions of YOLO have been released, demonstrating that the

algorithm is always improving. Furthermore, each primary version was offered as a full model

as well as miniature variants, which had fewer layers and were faster than the full version.

In YOLOv3 Darkent-53 used as feature extractor to extract key features from input image

using Convolution layers. It used Featured pyramid netword(FPN) as a neck. The role of neck

in YOLO is to give proportionally sized feature maps at multiple levels, in a fully convolutional

fashion and the head is composed of Yolo layer which composed of a vector containing bound-

ing box coordinates: width, height, class label, and class probability as shown in Fig 2.

In April 2020, YOLOv4 was launched, with numerous improvements over YOLOv3. CSP

Darknet-53 was used to create YOLOv4. The input features are divided into two categories

using cross-stage partial connections (CSP): One group is processed by the convolutional

layer, while the other bypasses it and is included in the input for the next layer [37]. In the

mosaic, an augmented image is generated by combing four input images in a specific ratio. In

cutmix, a new image is created using parts of input images. YOLOv4 has more layers com-

pared to the previous versions. The YOLOv4 models use a Complete-IoU loss function to opti-

mise overlap area, centre point distance, and aspect ratio of predicted bounding boxes [38].

The number of layers is reduced in YOLOv4-tiny, and only two YOLO classifiers are employed

(both with three anchor boxes).

YOLOv5 was released in May 2020 from Ultralytics LLC (Los Angeles, CA—USA) and and

it has been widely embraced by the deep learning community [39]. The key advantage of

YOLOv5 is that it is written in Python rather than C language. PyTorch is YOLOv5’s native

Fig 2. Architecture of YOLO-based object detection model.

https://doi.org/10.1371/journal.pone.0283801.g002
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framework, which enables for quicker training. YOLOv5 offers speedy detection with the

same accuracy as YOLOv4 [40] in terms of performance measures. Similar to earlier versions,

YOLOv5 was released in various sizes (s, m, l, and x) with varying detection accuracy and

speed.

YOLO model predictions for each image are encoded as S × S × (5B + C) tensor. Here S is

the number grid cells, B is the number of anchor boxes and C is the number of classes. For this

study, we have used 13 × 13 grid as our target object (tobacco) is a medium-sized object and

13 is an optimal value for the number of grids. Increasing this number further makes the

model computationally expensive while a small value reduces the model accuracy. The number

of anchor boxes (B) is three as it controls the number of objects detected in each grid cells. The

model detects a single class (i.e., tobacco), therefore, C = 1. In summary, the trained model pre-

dictions for tobacco class are encoded as a 13 × 13 × 16 tensor.

Crop localization and zone formation

After detecting and locating the object in the image frame, its position in image frame is trans-

formed to the global coordinate frame. The central camera is used to observe the imagery

information of the crops area covered by boom width. The inverse pinhole model was used to

locate the position of the region of interest. The extrinsic and intrinsic parameters of the cam-

era are determined to validate the camera model. These parameters are given in Table 3.

The camera is mounted on the front pole at a height, hc from the ground level and makes

an angle φ with the vertical axis as shown in Fig 3. Using the camera model [41] the coordi-

nates of the image frame (xc, yc) are translated in global frame, (xG, yG).

Table 3. Intrinsic and extrinsic parameters of camera.

Intrinsic Parameters Extrinsic Parameters

Focal Length, f 3.3mm Height, hc 2m

Pixels Size, ρx,ρy μm Forward Angle, φ 18˚

https://doi.org/10.1371/journal.pone.0283801.t003

Fig 3. Object coordinates transformation from camera frame to world frame.

https://doi.org/10.1371/journal.pone.0283801.g003
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Corresponding to a world point, ~P ¼ ½X;Y;Z; 1�T , a point in the image-plane, ~p ¼ ½~u; ~v; ~w�T ,

can be represented as,

~p ¼ M~P ð1Þ

where M is the camera matrix, given as

M ¼

f =rx 0 u0

0 f =ry v0

0 0 1

2

6
6
6
4

3

7
7
7
5

1 0 0 0

0 1 0 0

0 0 1 0
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3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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ðTG
C Þ
� 1

|fflfflffl{zfflfflffl}
extrinsic

ð2Þ

The intrinsic part includes parameters such as focal length f, pixel sizes (in micro meters),

(ρx, ρy), are the horizontal and vertical physical dimensions of the CCD sensor, respectively,

and the principal point (u0, v0). The extrinsic part comprises of a homogeneous transformation

matrix, TG
C , that relates the camera frame C to the world frame G and is given as,

TG
C ¼

RG
C tGC

0 0 0 1
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6
6
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4

3

7
7
7
7
7
7
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5

4�4

ð3Þ

where

RG
C ¼

1 0 0

0 cosðφþ 180Þ � sinðφþ 180Þ
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5
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tGC ¼

0

� hCtanφ

hC

2
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6
6
4

3

7
7
7
5

ð5Þ

The schematics view of robot and its boom sprayer is shown in Fig 4. The field of view of

camera that covers the boom length divides the spraying area into five spraying control zones.

The origin of the world frame is at the middle of the boom length along the x-axis. Based

on the position of each plant patch along the x-axis, the nearest zone of the solenoid-valve is

assigned for spraying as explained in below section.

Distance-based spraying. In this study, a distance-based spraying method is employed to

apply pesticides for targeted spraying while synchronizing the image acquisition, processing,

and nozzle actuation task. Each identified plant that fills the image frame has its own unique

local x and y coordinates. The global position is determined using the camera model and trans-

formation matrix described in the preceding section.

The camera Field of View (FOV) is divided into 10 zones (2 rows and 5 columns) as shown

in Fig 4. The upper row has five detection zones each covers 20 × 42 inches of land area. As the

vehicle moves forward, the plant first appears in the detection zones. The plant’s address, Pj, n
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and size in terms of its longitudinal length in forward direction, Lj, n are measured. Where, the

subscript n and j represent the nth plant in jth crop row, respectively. Each crop row is covered

by one of five nozzles on the boom (Fig 4). The width of each row (Xi, min< xG< Xi, max, with

Xi, min, Xi, max being the lower and upper limits of the global xG coordinate) is decided based

on the number of nozzles mounted on the sprayer.

At time the plant crosses the detection zone, the crop’s row address, Pj, n and a distance

from boom, dj, n are registered to the spraying database. This distance is measured from the

reference point (yG = 0) in the global frame to the corresponding nozzle on boom. The dis-

tance, dj, n is measured in real-time using the encoders mounted on both wheels. The spray

nozzle is triggered by satisfying the condition given in Eq (6).

zj ¼
ON; if dj;n <¼

Lj;n

2

OFF; if dj;n >
Lj;n

2

8
>>><

>>>:

ð6Þ

Where, zj = 1, 2, . . .5 is the nozzle assigned to the jth crop row for spraying the Pj, n plant. This

nozzle will remain open for the amount of time given by the Eq (7).

Tj;n ¼
Lj;n

v
ð7Þ

The amount of spray-time, Tj, n depends on the longitudinal length, Lj, n of the plant and the

forward speed, v of the robot.

Fig 4. Robot camera field of view with spraying zones formation.

https://doi.org/10.1371/journal.pone.0283801.g004

PLOS ONE Deep learning in Agriculture

PLOS ONE | https://doi.org/10.1371/journal.pone.0283801 March 31, 2023 10 / 22

https://doi.org/10.1371/journal.pone.0283801.g004
https://doi.org/10.1371/journal.pone.0283801


Spraying control system

Pesticides were applied to crops using hollow cone brass nozzles to perform post-emergence

selective spraying. It has a flow rate of 0.3 Gallons Per Minute (GPM) and a cone angle range

of 43–120 degrees. To spray the targeted plants, a two-way normally closed type of solenoid

valve is used in direct-acting mode. These solenoid valves use a 12V DC power source and can

sustain pressures of up to 290 psi. The spraying liquid is transported from a 90-liter chemical

tank to the solenoid valves using a 12V, 8A DC diaphragm pump. The pump has a 1.6 GPM

flow rate and a 120 psi pressure capacity. The onboard embedded controller adjusts the pump

input voltage using a 12V 43A motor driver. The implemented cascaded control system uses

the boom pressure and rate of changes in pressure as a feedback to control the PWM signal of

the motor driver.

Pressure-based control systems are typically used in agricultural spraying to maintain a

steady pressure in the spray boom. The change in pressure during spraying applications is

undesirable because it would lead to an unequal distribution of insecticides across the area.

Drift occurs during the spraying process as a result of fluctuations in droplet size caused by

pressure changes.

Pressure and flow control system design. The major purpose of the cascaded control

technique is to reject the effect of disturbances on the system’s response. Our solution uses a

cascaded Proportional–integral-derivative (PID) controller to regulate the boom sprayer.

Although solenoid valves are used to open and close the flow of chemicals, the pressure in the

system acts as the control variable.

The main control loop, known as the outer loop, regulates the primary variable, or pressure

in the boom system. The system’s pressure is used as feedback and serves as a reference point

for the inner loop. The inner loop’s secondary controller regulates how quickly pressure

changes occur. In cascaded controllers, the inner loop responds more quickly than the outer

loop and is located nearer the disturbance’s source. This enables the inner loop to respond

quickly in order to regulate the rate at which pressure fluctuations caused by SV opening or

closure are occurring. The Eq (9) gives control law of the outer loop.

uo ¼ CpðPref � PÞ ð8Þ

Where, P is the actual boom pressure measured and Pref is the reference operating pressure

set by the user. The Cp and uo are the gain and control signal (set point for secondary control-

ler) of the main controller respectively. The inner loop uses the rate of change of the pressure

as feedback and uo as a reference point to develop a set point for the secondary proportional

controller with a proportional gain Cv. The inner loop governing equation is given by Eq (9)

and the accumulative control action is calculated as a PWM signal and is given by Eq (10).

ui ¼ Cvðuo �
_PÞ ð9Þ

u ¼ CvðCpðPref � PÞ � _PÞ þ Ci

Z

ðPref � PÞdt ð10Þ

In addition to the cascade controller’s ability to reject disturbances up to a point, the distur-

bance attenuation function is designed to strengthen the pressure control system’s ability to

reject disturbances and more effectively achieve the desired pressure in the system.

Pressure changes abruptly when the direct-acting type solenoid in the boom sprayer is acti-

vated. These disruptions have a significant impact on spray quality and uniformity in pres-

sure-based control systems like agricultural sprayers, where fluid system’s response time is

often slower. As a result, they must be avoided. This can be observed in Fig 5 which plots the
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absolute and percent decrease in pressure values versus the number of open solenoid valves

when the pump is running at full duty-cycle.

The input of the disturbance model is the numbers of active solenoid valves, Nn = 1, 2, 3 . . .

5 while the output is the corresponding signal, dn fed to the controller actuating signal, u.

The magnitude of the five actuating signals measured in a steady state region of a close-loop

pressure response when operated independently, i.e. without disturbance model. These mea-

sured values is then used to construct the disturbance function’s outputs. The number of active

SVs, Nn operated in different combination are mentioned in Table 4. For each combination,

the reference pressure was set to 20 psi and the corresponding steady state pressure, flow

rate and the actuating signal as a PWM value were recorded. The disturbance function maps

the strength of each actuation signal, Nn, to the corresponding active number of solenoid

valves, producing the output dn that is fed forward and added to the control variable. This

Fig 5. Pressure response with varying numbers of active SVs.

https://doi.org/10.1371/journal.pone.0283801.g005

Table 4. Pressure-flow response for open solenoid-valves.

Total Open SVs SVs States: 1 = Open, 0 = Close PWM (max = 255) Flow Rate (l/m) Pressure (psi)

n1 n2 n3 n4 n5

1 0 0 1 0 0 113 0.856 20.22

2 1 0 0 0 1 164 1.548 20.93

3 1 0 1 1 0 194 2.489 20.43

4 0 1 1 1 1 224 3.501 20.79

5 1 1 1 1 1 250 4.161 19.89

https://doi.org/10.1371/journal.pone.0283801.t004
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feedforward term generates an early control action before the main controller plays its role

using the feedback information. As a result, the pressure disturbance can be lowered more

quickly than if the cascaded controller’s control signal, u, was used alone. The complete control

scheme of cascaded controller combined with the disturbance attenuation function can be

seen in Fig 6.

The response of disturbance attenuation function, dn is added to the control action of the

cascaded controller, u, the resultant control action, is expressed by the Eq (11).

u ¼ f ðPref ;NnÞ þ CvðCpðPref � PÞ � _PÞ þ Ci

Z

ðPref � PÞdt ð11Þ

The effective demonstration of the proposed controller can be seen in result section, where

the sprayer pressure control system, helped by the disturbance attenuation function, responds

and settles more quickly (to the reference pressure).

There may occur an offset error in the steady-state response as these early action values are

fixed feedforwarded values provided by the disturbance attenuation function. This offset value

is then eliminated by the cascaded controller using the actual pressure, rate of change of pres-

sure as feedback information, and the integrator action for eliminating the steady-state error.

Experimental tests and procedure

Before evaluating the spraying performance in outdoor real agricultural fields, preliminary

tests were conducted in an indoor laboratory setting to test performance of the vision and

spraying systems. First, different indoor trials were executed on synthetic plants under the

same lighting conditions. While moving the robot in straight line following the middle row,

the sprayed locations relative to the desired spraying location were recorded. Fig 7 depicts

these as blue plus-signs and black circles, respectively. The average offset errors in positions of

each plant are plotted as shown in Fig 8.

These inaccuracies are primarily caused by robot’s deviation from the middle row during

navigation which was controlled remotely. Additionally, any unintentional adjustments to the

camera’s orientation would result in proportional errors in the world frame along the xw and

yw coordinates positions. The row following technique was used to address this issue and

Fig 6. Block diagram of cascaded controller for pressure control system.

https://doi.org/10.1371/journal.pone.0283801.g006
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enable autonomous navigation on the robot. The application will eventually be made robust

and adaptable to any farm layout or size using a Real Time Kinematics (RTK) GPS receiver

aboard the robot with at least 1cm positional accuracy.

In the final testing stage, the system performance is validated by conducting the real time

experiments in the outdoor tobacco field Fig 9. As the weather conditions and the growth level

Fig 7. Approximate actual sprayed positions (plus sign) of the desired position (circle sign).

https://doi.org/10.1371/journal.pone.0283801.g007

Fig 8. Average spray position error.

https://doi.org/10.1371/journal.pone.0283801.g008
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of the tobacco seedling are the crucial parameters for the performance of the vision subsystem,

we conducted our experiments at the most suitable time and field conditions.

Results and discussion

The effectiveness of the object (tobacco) detection model can be assessed using a number of

metrics. In this study, F1 score Eq (12), Precision Eq (13), and Recall Eq (14) were used. The F1

score, as proposed by Dice [42], represents the harmonic mean of precision and recall values.

The Mean Average Precision (mAP) was also used as a performance metric as a measure of the

average detection precision. It represents the area under the precision-recall curve at a defined

value of IoU (e.g., mAP@50 represents the area under the precision-recall curve with a grade

of overlapping bounding boxes of 50%). Both the test and validation datasets’ performance

metrics were computed.

F1 ¼
2RprecisionRrecall

Rprecision þ Rrecall
ð12Þ

Rprecision ¼
Tpositive

Tpositive þ Fpositive
ð13Þ

Fig 9. Field testing for selective spraying application.

https://doi.org/10.1371/journal.pone.0283801.g009
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Rrecall ¼
Tpositive

Tpositive þ Fnegative
ð14Þ

Here, the rates of precision and recall are denoted by Rprecision and Rrecall, respectively, while

the scores for true positives, false positives, and false negatives are denoted by Tpositive, Fpositive,
and Fnegative, respectively.

Accuracy assessment on the validation dataset. A variety of trained deep learning mod-

els were used to classify the validation dataset, which consisted of 100 images of tobacco plant

acquired under real field conditions. Comparisons were made using mAP@50 and the F1

score. In order to determine whether previously trained models could be used for real-time

detection in the given application, each model’s detection speed was also assessed in frames

per second (FPS). The F1-score and mAP@50 comparison results for objects (tobacco) in the

pictures dataset are summarized in Table 5. Experimental results showed that YOLOv5n per-

formed better than other models, as seen by the mAP%50 (91%), F1 (87.2%), and FPS (67)

scores. With an FPS of 36, YOLOv5s is comparable but substantially slower in terms of pro-

cessing speed.

The results that compare the inference time are also shown in Table 5. As shown, the

average detection speed in FPS is 226, 30, 222, 29, 67 and 36 for YOLOv3-tiny, YOLOv3,

YOLOv4-tiny, YOLOv4,YOLOv5n and YOLOv5s, respectively. For robots performing tar-

geted spraying in agricultural fields at speeds between 2 and 10 kph, FPS values of 67 or above

are sufficient. The results of tobacco crop detection in actual field conditions are shown in

Fig 10.

The constant angle tests were conducted for verifying the qualitative nature of spraying

under the constant pressure at 20 psi. Each image shown in Fig 11 presents a hollow cone

Table 5. YOLO algorithms performance for tobacco crop detection.

Model mAP@0.50 Recall F1-score FPS

YOLOv3-tiny 40.72% 24% 30% 226

YOLOv3 65.5% 65% 65.25% 30

YOLOv4-tiny 32.09% 40% 42% 222

YOLOv4 76.43% 60% 72% 29

YOLOv5n 91% 87.3% 87.2% 67

YOLOv5s 91.8% 88.3% 88.64% 36

https://doi.org/10.1371/journal.pone.0283801.t005

Fig 10. Detection of tobacco plant using YOLOv5n model.

https://doi.org/10.1371/journal.pone.0283801.g010
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nozzles making a hollow cone spray pattern with ring-shaped impact area. The angle of one

solenoid-valve was measured under three different cases. In each case, under the close-loop

pressure control system, the number of active solenoid-valves varied as Nn = 5, 4, 3 giving the

same spraying angle of 80 degrees. This demonstrates how a spraying boom under constant

pressure would deliver a consistent flow rate and droplet size at each nozzle.

As shown in Fig 12a, the pressure reaches to steady state of 20 psi when all the 5 solenoid-

valves were held open. The steady state pressure response was disturbed by instantaneously

closing different numbers of solenoid-valves. In three different experiments, where 3 valves, 2

valves and 1 valve were closed at time 2 seconds, causing the corresponding pressure rises in

the boom. Similar to this, the pressure decreased in the same manner when the same quantity

of SVs were closed at time 5 seconds.

Similar response curves for cascaded and cascaded controllers assisted by the disturbance

attenuation function are plotted in Fig 12b. It is evident that the cascaded controller reaches

the steady state later than the cascaded controller when supported with disturbance attenua-

tion function and exhibits a significant rise in transient state response. Additionally, it damp-

ened the oscillations that were caused by the closure of two of the five solenoid valves at the 2

second mark in reaching the reference pressure. When the solenoid-valves open again at time

5, the amount of the perturbation is less than it would be with a cascaded controller working

alone.

A low-pass filter is used to reduce noise in pressure measurements. The generated signal

from the pressure measurement is converged using a low-pass filter, as illustrated in Fig 13

and the calculated Signal to Noise Ratio (SNR) is 11.4 db.

The efficiency of the pressure control system is estimated by exposing the system to distur-

bances and observing its reaction under these abnormal conditions using system’s perfor-

mance indices or objective functions. The the tuning of the controller is performed using

Ziegler and Nichols method and with the desired control performance parameters of no over-

shoot and less settling and rise time.

Table 6 summarizes the comparison in term of energy consumption between the cascaded

controller and disturbance attenuation based cascaded controller (Cascaded Controller assis-

ted with Disturbance Attenuation Function i-e D.F. assisted Cascaded controller). These per-

formances are expressed in terms of objective functions such as Integrated Squared Error

Fig 11. Constant spray angle achieved under different number of active solenoid valves at constant pressure.

https://doi.org/10.1371/journal.pone.0283801.g011
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(ISE), Integrated Absolute Error (IAE), Integrated Time Squared Error, and Integrated Time

Absolute Error (IATE).

Where as, Table 7 shows the pressure control system stability performance parameters for

both the cascaded controller and disturbance attenuation based cascaded controller. The sta-

bility analysis are performed with the ISE objective function and their corresponding energies

are determined. The performance efficiency of the cascaded controller assisted with distur-

bance attenuation function is higher than the standalone cascaded controller in terms of dis-

turbance rejection and less energy consumption.

Fig 12. (a) Spray boom pressure response based on cascaded controller. (b) Cascaded vs cascaded assisted by

disturbance attenuation function.

https://doi.org/10.1371/journal.pone.0283801.g012
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Fig 13. Filtered pressure signal using low-pass filter.

https://doi.org/10.1371/journal.pone.0283801.g013

Table 6. Objective function for pressure control system.

Controller ISE IAE ITSE IATE

Cascaded Controller 13386.85 1386.03 9645.45 2199.08

D.F. assisted Cascaded Controller 8927.57 1014.52 9704.20 1765.91

https://doi.org/10.1371/journal.pone.0283801.t006

Table 7. Stability analysis of pressure system with ISE objective function.

Controller Rise time (s) Settling time (s) % Overshoot ISE

Cascaded Controller 0.26 0.37 0.2 13386.85

D.F. assisted Cascaded Controller 0.1 0.2 0 8927.57

https://doi.org/10.1371/journal.pone.0283801.t007
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Conclusion

This paper describes the development of a deep learning-based robotic solution for targeted

spraying in precision agriculture. Two key contributions have been made based on real field

experimentation: (1) an experimental comparison and performance assessment of YOLO-

based deep learning models for detecting tobacco crop; and (2) a cascaded pressure control

method to achieve the ideal dose of pesticide application during selective spraying. Using dis-

tance measurements from the wheel position encoders, the robotic solution additionally syn-

chronizes image acquisition, object detection, and spraying in real time. The experiments

concluded that the results generated by YOLO5n model were more convincing than its other

four versions in terms of its 87% F1-score and 67 FPS rate. Moreover, a closed-loop control

system is designed to keep the pressure constant in the sprayer’s fluid circuit. The pressure

control system performance was further improved by assisting the close-loop system with a

disturbance attenuation function. The targeted application of fertilizers [43], herbicides (to kill

weeds), and insecticides are the planned future extensions of this work.
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