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Multi-agent reinforcement learning control of a
hydrostatic wind turbine-based farm

Yubo Huang, Shuyue Lin, and Xiaowei Zhao

Abstract—This paper leverages multi-agent reinforcement
learning (MARL) to develop an efficient control system for
a wind farm comprising a new type of wind turbines with
hydrostatic transmission. The primary motivation for hydrostatic
wind turbines (HWT) is increased reliability, and reduced man-
ufacturing, operating, and maintaining costs by removing trou-
blesome components and reducing nacelle weight. Nevertheless,
the high system complexity of HWT and the wake effect pose
significant challenges for the control of HWT-based wind farms.
We therefore propose a MARL algorithm named multi-agent
policy optimization (MAPO), which allows agents (turbines) to
gradually improve their control policies by repeatedly interacting
with the environment to learn an optimal operation curve for
wind farms. Simulation results based on a wind farm simulator,
FAST.Farm, show that MAPO outperforms the greedy policy and
a popular learning-based method, multi-agent deep deterministic
policy gradient (MADDPG), in terms of power generation.

Index Terms—Wind farm control, hydrostatic wind turbines,
multi-agent reinforcement learning, power generation.

I. INTRODUCTION

Developing renewable energy to substitute traditional fossil

energy is one of the most promising ways to reduce envi-

ronmental pollution. In Europe, wind energy accounts for the

highest share of clean energy generation and is also the fastest-

growing electricity source in the market [1]. Nonetheless, there

is an intractable drawback for offshore wind farms comprising

of gearbox-based wind turbines—their maintenance is costly.

Hydrostatic wind turbines (HWT) can help tackle this prob-

lem [2] because the hydrostatic transmission system is more

robust than the gearbox-based transmission and can offer a

longer life cycle. In addition, HWT allows to shift the heavy

motor and generator to the platform (Fig. 1), and therefore

the mass of the nacelle can be significantly reduced, which

vastly facilitates ease of installation and maintenance of wind

turbines. Furthermore, the frequency/inertial response exhib-

ited by HWTs is of clear value to large-scale power systems

because they are installed with synchronous generators. These

economical advantages motivate us to study the HWT-based

wind farm. We focus on its control in this paper.

Like the case for the traditional wind turbines/farms, the

control method for a single HWT is not suitable for a HWT-

based wind farm due to the wake effect. Specifically, the

optimal control policy for an isolated HWT is maximum
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Fig. 1. The substructures of a hydrostatic wind turbine.

power point tracking (MPPT [3], see Fig. 2): when the wind

speed is below rated, the objective is to control the generator

torque to maximize its power output. When the wind speed

is sufficient to drive the full-power operation of HWTs, the

goal becomes to maintain the output at the rated level to

alleviate the structural load via the joint control of blade pitch

and generator torque. In wind farms, turbines are normally

installed in arrays, and thus the actions of upstream turbines

affect the environmental state of their downstream counterparts

through the wake effect. Although MPPT can achieve optimal

solutions for upstream turbines, the power outputs of HWTs

within the wake planes of upstream turbines are reduced

greatly, causing a decline in power generation of the entire

wind farm. Therefore, how to design a control policy for wind

farms which can overcome the wake effect is an ongoing issue.

For the farm-level control, the model-free methods may

offer more benefits than the model-based methods due to

the high system complexity and environmental uncertainty of

wind farms. Firstly, model-based control methods (e.g. Model

Predictive Control) require an accurate wind farm model,

but the high environmental uncertainty of wind farms will

inevitably introduce considerable modelling errors. Control

policies designed based on the model with modelling errors are

likely to be sub-optimal. Additionally, the algorithm complex-

ity of model-based methods is usually higher than the model-

free methods, which can cause greater computational cost. For

example, when the task has a long horizon like the wind farm

control case, it might be difficult for model predictive control
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Fig. 2. The optimal operation curve of an individual wind turbine—MPPT [4].

to achieve real-time control because of the expensive com-
putation cost. Thus many studies have recently attempted to
leverage model-free data-driven methods to approach a better
wind farm control policy, including dynamic programming [5],
genetic algorithm [6], and swarm optimization [7].

Among multitudinous model-free methods, model-free re-
inforcement learning (RL) has its exclusive advantages in
solving the wind farm control task. For example, dynamic
programming is impractical for large-scale wind farm control
since it has high memory expenditure when the state space is
large. As for the genetic algorithm and swarm optimization,
they cannot guarantee the convergence or stability of the
control policy during the optimization process. Model-free
RL [8] can effectively tackle these challenges with the
assistance of deep neural networks and has achieved excellent
results in wind farm control. Dong et al. integrated deep
deterministic policy gradient (DDPG) and the high-fidelity
wind farm model to learn the control policy [9]. Zhao et al.
used the knowledge-assisted DDPG to optimize the control
policy as well as ensuring safety during training [10]. Bay et al.
introduced a distributed RL-based method to wind farm power
capture maximization using yaw control [11]. These works
demonstrated that model-free RL can be applied smoothly
to wind farm control and achieve better results than many
selected data-driven methods.

Almost all existing model-free RL control methods for wind
farms (which consist of multiple turbines) regard the wind
farm as a single agent, but using multi-agent RL (MARL) to
train wind farm control policy is obviously more rational than
using single-agent RL (SARL). There are some limitations
encountered in applications of SARL:
• SARL is not scalable since the dimensions of the joint

action space will grow exponentially with the increase in
the number of HWTs in a wind farm.

• In execution, each HWT demands to acquire the states
of their teammates to generate its action based on the
control policy. This high degree of communication can
not be satisfied in the real-world scenarios.

Both limitations can be addressed by introducing the cen-
tralized training with decentralized execution (CTDE) princi-
ple [12] in MARL. This implies that the concatenation of the

states of all HWTs is inputted to the value network to estimate
the future return (power) of each HWT during training, but
each HWT only uses their private state to sample its action
(low dimension) rather than the joint action based on the
individual policy in execution (communication-free).

On the other hand, there are also several challenges in de-
signing the control system of a HWT-based wind farm within
the MARL framework. Firstly, to bridge the simulation to
reality gap, in the construction of the wind farm simulator, we
should not only consider the aerodynamics of the wind farm
but also the dynamics of multifarious substructures of HWTs,
which are typically ignored in the existing wind farm control
research. Moreover, there are significant differences in the
RL-based control designs between wind farms consisting of
gearbox-based wind turbines and the ones consisting of HTWs.
For example, to standardize the control task as a complete
MDP (Markov decision process, a compulsory condition for
RL design), the former only includes the rotor speed in the
state space because gearbox-based wind turbines have constant
gearbox ratios between the rotors and generators. However,
the latter must consider the dynamics of the hydrostatic
transmission of each HWT besides the rotor speed. Last but not
least, the developed MARL algorithm need effectively enhance
the coordination between HWTs to overcome the wake effect.
This paper makes the following contributions to address the
aforementioned issues:
• Developed a HWT-based wind farm model based on

FAST.FARM [13], where the gearbox transmission of the
wind turbine is replaced by the hydrostatic transmission.
This model includes both the aerodynamics of large-scale
wind farms and the mechanical dynamics of substructures
of a HWT. Then, the FAST.Farm driven by the proposed
model is integrated with Python to build a high-fidelity
HWT-based wind farm simulator used for training MARL
algorithms.

• Proposed a novel CTDE-based MARL algorithm named
multi-agent policy optimization (MAPO) to learn the
wind farm control policy. MAPO balances the collective
return and the individual return by a dynamical weight,
which induces agents to explore new policies in the
initial training and exploit the explored information to
subsequently maximize the group return. By encouraging
agents to maximize the collective return, MAPO can
efficaciously promote the coordination between HWTs
and further minimize the negative effect of wakes on the
power generation.

• Simulation results show that the control policy trained
by MAPO achieves high performance in different wind
farm power layout and fluctuating environments. The
structural dynamic analysis shows that MAPO does not
cause unusual vibrations of the main sub-structures.

II. CONSTRUCTING A HWT-BASED WIND FARM
SIMULATOR FOR MARL

Before we train control policies for HWTs by using the
MARL algorithms, a high-fidelity simulator should be devel-
oped. This simulator includes the models of the aerodynamics
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Fig. 3. Sub-model hierarchy of the HWT-based farm simulator for MARL.
Note that we only illustrate one turbine in this figure for convenience. In fact,
this simulator can include multiple turbines during operation.

of the wind farm and the elastic-servo dynamics of HWT.
Different from the traditional control methods that use the
HWT-based wind farm model to design the control policy,
MARL aims to teach each agent (turbine) to learn the control
policy through interacting with the simulator. Please refer
subsection III-A for details. Below, we will introduce the used
hydraulic wind turbine models and its control modules.

A. Modeling the dynamics of hydrostatic wind turbines

At the farm level, the aerodynamic torque T ir
1 of the rotor

and the thrust force F ithrust
2 exerted by the turbine i can be

described through a quasi-static model [14]:

T ir =
1

2
ρπR3vi

2
Cp(λ

i, βi)

F ithrust =
1

2
ρπR2vi

2
CT (λi, βi)

(1)

where i = 1, 2, · · · , n and n is the number of HWTs in a farm;
ρ,R, ωir, β

i are the air density, blade length, rotor speed, and
pitch angle of turbine i, respectively; vi is the wind speed at
the i-th turbine. λi = ωirR/v

i is the tip speed ratio; Cp and
CT are the the power coefficient and the disk-based thrust
coefficient [15], respectively.

FAST.Farm uses a gearbox-based turbine model to simulate
the operation of a wind farm. The main task in this subsection
is to embed the HWT model into the farm-level aerodynamics
model introduced in subsection II-A to construct a complete
HWT-based wind farm simulator.

1All variables in this paper are in the International System of Units.
2In this paper, the superscript i denotes the i-th turbine (HWT).

For the i-th HWT, the dynamics of its rotor speed is
proportional to the difference between T ir obtained from Eq. 1
and T ip (the torque of pump):

ω̇ir =
1

J ir + J ip
(T ir − T ip) (2)

where J ir and J ip are the rotational mass moments of inertia
of the rotor and pump, respectively.

A hydrostatic drivetrain transmits the mechanical power on
the low-speed rotor side to the high-speed generator side for
electricity generation. As shown in Fig. 1, this hydrostatic
drivetrain comprises a hydraulic pump, high-pressure and low-
pressure lines, and a hydraulic motor. First, the rotation of the
low-speed shaft with the rotor-pump assembly can pump the
hydraulic oil from the low-pressure transmission line to the
high-pressure line and the pump torque is [16]:

T ip = DpP
i
p +Bpω

i
r + CfpDpP

i
p (3)

where Dp is the pump displacement, meaning the volume
of fluid pumped per revolution, P ip represents the pressure
difference across the pump, Bp is the viscous damping, and
Cfp is the Coulomb friction coefficient of the pump. The net
volumetric flow of the pump Qip is computed by:

Qip = Dpω
i
r − CspP ip (4)

where Csp is the laminar leakage coefficient of the pump.
Then, we use a dissipative model to interpret the dynamics

of transmission lines [17]. Specifically, this model describes
how changes in the net volumetric flows of the pump Qip and
motor Qim cause the state transform of hydraulic lines (Eq.
5), and further result in the variation of pressure difference
in pump and motor (Eq. 6), where P im denotes the pressure
difference across the motor.

ẋi = Axi +
[
B1,B2

] [Qip
Qim

]
(5)

[
P ip
P im

]
=

[
C1

C2

]
xi (6)

The presented model uses the form of state space to represent
the dynamics of fluid in a hydrostatic drivetrain. Here, A,
B = [B1,B2], and C = [C1;C2] are the state matrix,
input matrix, and output matrix, respectively, and their values
are determined by the length L and inner diameter r of
transmission lines, and the density ρ, kinematic viscosity ν,
and effective bulk modulus E of the hydraulic oil (please
see [18] for specific calculations). xi is the state vector,
Qi = [Qip, Q

i
m]T is the input vector and P i = [P ip, P

i
m]T

is the output vector.
Similar to the pump, the motor can also be characterized

by its volumetric displacement Di
m, but the function of the

motor is to convert hydraulic power into mechanical power.
Thus, for the hydraulic motor, we only reverse the sign of the
leakage flow and friction torques in the pump model [16]. The
net volumetric flow Qim and torque T im of the pump are:

Qim = Di
mω

i
m + CsmP

i
m

T im = Di
mP

i
m −Bmωm + CfmDmP

i
m

(7)
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where ωim is the motor speed, Csm is the laminar leakage
coefficient of the motor, Bm is the viscous damping, and Cfm
is the Coulomb friction coefficient of the motor.

In a hydrostatic transmission system, we can control the
motor torque by changing its displacement Dm (Eq. 7). The
response of motor displacement is characterized via a time
constant tm = 0.5 and a displacement reference D̂i

m:

Ḋi
m =

1

tm
(D̂i

m −Di
m) (8)

And the power produced by the generator is:

P ig = ηT imω
i
m (9)

where η is the generator efficiency.
At this point, we have integrated the aerodynamic model

of the wind farm and the hydrostatic transmission model of
the turbine. Next we will implement them in FAST.Farm.
We replace the gearbox-based drivetrain with the hydrostatic
drivetrain by modifying the ServoDyn module in FAST.Farm3.
Firstly, the drivetrain rotational-flexibility DOF is closed in the
ElastoDyn input file (.dat) and the GBRatio is set to 1. Then,
we regard the generator in gearbox-based wind turbines as the
hydraulic pump in HWTs and modify its inertial in the FAST
input file (.fst). The transmission dynamics (Eqs. 5-6) of the
hydraulic system in HWTs is modeled as a function in the
ServoDyn module and it will be called before the state update
of the servo system. Finally, in the UserVSCont KP.f90 file,
we provide an interface to write the trained MARL control
policy and the MARL training samples can be collected in
the .out files. Now the HWT-based wind farm simulator is
constructed and can perform its core function shown in Fig. 3.

B. The control framework of an individual HWT

Above we have constructed a simulator of the HWT-based
wind farm. Then we will introduce the torque control and
blade pitch control regimes of HWTs in the simulator.

1) Torque control: For a single variable-speed HWT, its
operation curve (MPPT: maximal power point tracking, also
called the greedy policy) can be divided into three regions
shown in Fig. 2. In region 2, below the rated wind speed, the
wind is not sufficient to drive the turbine to operate at its full-
power point. The blade pitch angle will keep at its minimum
to capture wind energy as much as possible. The primary
task in region 2 is to control the motor torque to make the
HWT run on its optimal torque curve (Fig. 2), maximizing the
output power. Considering the motor displacement actuator,
the closed-loop torque control system is shown in Fig. 4.
It is worth mentioning that we find the respond of motor
displacement control is obviously swift than that of the pump
in pre-experiments since the pump affects the generator torque
by changing the pressure and flow rate of the hydraulic oil but
the motor can directly determine the input mechanical torque
of generator.

3the source code of FAST.Farm: https://github.com/OpenFAST/openfast
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Fig. 4. The torque control system of HWTs. In the simulator, the AeroDyn
module can compute the load of HWT according to the inflow wind. The
ElasticDyn module determines the kinematics of each substructure of a
wind turbine. The ServoDyn module describes the dynamics of the servo
system, and the control system is also embedded in this module. D̂m is the
displacement command of the hydraulic motor.

2) Blade pitch control: According to MPPT, in region 3
(see Fig. 2), the output power of a HWT should be kept at its
nominal value via the blade pitch control [2]. The dynamics of
pitch actuator can be represented by a first-order differential
equation:

β̇ =
1

tβ
(β̂ − β) (10)

where β and β̂ are the real-time pitch angle and its reference
determined by MPPT and the pitch controller, respectively,
and tβ = 0.1 is the time constant of the blade pitch actuator.

From the above introduction, for a single wind turbine, the
torque and pitch references are calculated by MPPT during its
operation. This coordination-free control policy is optimal for
an isolated turbine but is unsuitable for a wind farm due to
the wake effect. For instance, if all upstream wind turbines
adopted this greedy control strategy4, although they could
maximize their power output, within their wake plane, the
downstream wind speed would experience a rapid drop and the
power generation of turbines situated at this area will plummet.
As a result, the power production of the entire wind farm
would keep at a relatively low level. To tackle this problem,
in the next section, a novel MARL method will be proposed
to train a collaborative control policy for all the HWTs in
a wind farm to overcome the wake effect. Then, the real-
time references of torque and pitch angle of HWTS will be
generated by the trained policy.

4In this paper, MPPT is also known as the greedy control strategy.

https://github.com/OpenFAST/openfast
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Fig. 5. The reward functions in the wind farm control task.

III. MULTI-AGENT REINFORCEMENT LEARNING CONTROL
OF A HWT-BASED WIND FARM

In Section II-B, we have introduced the greedy control pol-
icy (MPPT) that uses the optimal operation curve to calculate
the control references of a single HWT. For wind farm control,
however, there is no one-size-fits-all optimal operation curve,
but the policy network in RL can approximate it through
interacting with the simulator. In this section, we propose
the Multi-Agent Policy Optimization (MAPO) algorithm to
control the wind farm. And we also illustrate how MAPO
trains a collaborative control policy for a HWT-based wind
farm by using the simulator introduced in Section II, and how
the control policy guides the actions of HWTs to alleviate
the wake effect and further boost the power generation of the
whole wind farm.

A. Modeling the HWT-based wind farm control task as a
Markov decision process

In MAPO, we regard each HWT in the wind farm as
an agent which has an independent policy network/function
πi and agent value network/function V i, ∀i ∈ [1, 2, · · · , n].
Overall, there is a group value network/function V gru used
for estimating the future return of the wind farm based on its
state st. The policy network πi outputs the action ait (control
reference signals) for turbine i given its observation oit and the
agent value network V i estimates the future return of turbine
i (Eq. 12). The concrete simulator state, agent action, and
reward are defined as follows:
• State: the observation oi of turbine i includes not only

its external information (e.g. the wind speed on the
rotor, the turbine location) but also its internal status—
the rotor speed ωir, and the pump and motor pressure
differences (P ip and P im). The group (farm) state s is the
concatenation of observations of all agents (Eq. 11).

• Action: the action ai is the control reference signals
(torque reference and pitch reference) that the corre-
sponding substructure of wind turbine i should track to
maximize the output power.

• Reward: the reward ri should be proportional to the
power generated by turbine i. Hence the reward function
is designed as Fig 5. We expect all turbines can work in

their rated state, so the reward of turbine i is maximal at
its rated point. When the power exceeds its rated value,
the reward is set to 0 to punish the agent. The group
reward r is the sum of all agent rewards (Eq. 11).

And they satisfy that:

st = o1t ⊕ o2t ⊕ · · · ⊕ ont
at = a1t ⊕ a2t ⊕ · · · ⊕ ant
rt = r1t + r2t + · · ·+ rnt

st+1 = o1t+1 ⊕ o2t+1 ⊕ · · · ⊕ ont+1

(11)

where ⊕ is the operator of concat and n is the number of
turbines in the simulator.

Based on these concepts, the agent state value function
Vπi(oit) under policy πi and the group state value function
Vπ(st) under policy π can be defined as (Hereinafter, Vπi(oit)
and Vπ(st) are abbreviated as V it and Vt, respectively):

Vπi(ot) = E

{ ∞∑
l=0

γlri(oit+l)

}
= ri(oit) + γVπi(ot+1)

Vπ(st) = E

{ ∞∑
l=0

γlr(st+l)

}
= r(st) + γVπ(st+1)

(12)

where γ is the discount coefficient.
The interaction between the RL agents and the HWT-

based wind farm simulator can be standardized as a Partially
Observable MDP. Initially, the weights of all policy networks
are randomly initialized and thus the corresponding farm
control policy is of low quality. At each discrete time t, as
shown in Fig. 6, the agent i (turbine) observes its private status
oit ∈ Oi from the simulator. The concatenation of observations
of all agents is the group state st ∈ S (Eq. 11). Based on the
observation oit, the policy network πi of agent i will sample
an action ait (control reference signal) for different turbine
substructures (Oi → Ai). Then all turbines will take their
actions (e.g. torque reference), and the simulator will feed
back a reward ri ∈ R to each agent while jumping to the
next state st+1 (refer to Fig 3). The sample (st, at, rt, st+1)
will be collected to train the policy and value network (see
the next subsection for details) to improve the performance of
the control policy, and then this interaction will continue. At
each iteration, the quality of the policy πi, ∀i ∈ [1, 2, · · ·n]
can be evaluated by the expected return (power generated by
the wind farm):

L(πi) = E(oit,a
i
t)∼ρ(s0),πi,P

{ ∞∑
t=0

γtri(oit, a
i
t)

}
(13)

where s0 is the start state of the simulator and ρ is its
probability distribution.

After this process is iterated enough times, the original
random control policy will converge to a superior solution
that can be deployed to real-world machines. Additionally,
as illustrated in Fig. 6, we input the private observation oi

and the group state s to the value network V i(oi) and V (s)
to estimate the future return of agent i and the group future
return, respectively. However, in the policy network πi, only
the private observation oi is leveraged to sample the action
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Fig. 6. The MAPO-based control system for wind farms

references. This setting is to satisfy the principle of CTDE,
which can avoid the communication and environment non-
stationary issues in MARL.

In the HWT-based wind farm control task, if all turbines
aim to maximize their own return, the ultimate control policy
will probably fall into a locally optimal solution. Otherwise,
if the objective of all agents is always to maximize the group
return throughout the training, in the initial stage, agents tend
to exploit the explored information to increase the collective
return rather than discovering new states. It will limit the
exploration of each agent and thus the learning speed is
extremely slow at this stage. We expect the agent to focus
on increasing their own return at the beginning of the training
but dedicate to accumulating the group return in the latter stage
to find the best collaborative control policy. We can leverage a
dynamical parameter η, whose value gradually grows from 0
at the beginning to 1 after the training, to Eq. 13 to achieve this
purpose. Now the objective of the policy network πi changes
from Eq. 13 to:

L(πi) = (1− η)E(oit,a
i
t)∼ρ(s0),πi,p

{ ∞∑
t=0

γtri(oit, a
i
t)

}

+ ηE(st,at)∼ρ(s0),πi,p

{ ∞∑
t=0

γtr(st, at)

} (14)

Whereupon, for the i-th agent, under the policy πi, the

advantage of action ai over other actions is:

Advπi(oit, a
i
t) = (1− η)[ri(oit, a

i
t) + γV (oit+1)− V (oit)]

+ η[(r(st, at) + γV (st+1))− V (st)]
(15)

To enhance the stability and facilitate the performance of
RL algorithms, in this paper, we use the general advantage
estimator (GAE) [19], [20] to calculate the advantage:

AGi(ait, o
i
t) =

∞∑
k=0

(γλ)kAdvπi(oit+k, a
i
t+k) (16)

where λ is a constant less than 1.

B. Training the multi-agent RL functional networks

In this subsection, we present the training method of func-
tional networks in MAPO. During the interaction between
agents and the simulator, the operation trajectoryD of the wind
farm (include the trajectory Di of turbine i, ∀ i = 1, 2, · · · , n)
can be collected for training. The sample structures of these
trajectories are (st, at, rt, st+1) ∈ D used to train the group
value network and (oit, a

i
t, r

i
t, o

i
t+1) ∈ Di used to train the

policy and value network of agent i.
At the k-th iteration, the weight matrix of agent i’s policy

network πik is θik. The objective of πik is to maximize Eq. 14.
However, in practical, it is impossible that using Eq. 14
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to optimize πik directly. Instead, [21] proposed a surrogate
objective to update it based on the collected samples Di

k:

θik+1 = arg max
θi

1

|DikT |
∑
τ i∈Di

k

T∑
t=0

min

(
πi(ait, o

i
t)

πik(ait, o
i
t)
AGi(ot, at), g(ε, AGi(ot, at))

)
(17)

where T is the total time steps of an episode τ , AGi is the
advantage function calculated by Eq. 16 and g(ε, AGi) is the
clip function:

g(ε, AGi) =

{
(1 + ε)AGi, AGi ≥ 0
(1− ε)AGi, AGi < 0

(18)

The update rule of agent i’s value network V i (φik denotes
the weight matrix of network V i at the k-th iteration) is:

φik+1 = arg min
φi

1

|DikT |
∑
τ i∈Di

k

T∑
t=0

(V i(oit)−Rit)2 (19)

where Rit is the discounted return of agent i at time t:

Rit = rit + γrit+1 + γ2rit+2 + · · · (20)

After all agents’ value and policy networks are updated,
we can train the group value network V gru (φgruk denotes the
weight matrix of network V gru at the k-th iteration) by:

φgruk+1 = arg min
φgru

1

|DkT |
∑
τ i∈Dk

T∑
t=0

(V gru(st)−Rgrut )2 (21)

where Rgrut is the discounted return of the wind farm at time
t.

Rgrut = rt + γrt+1 + γ2rt+2 + · · · (22)

The complete training process of MAPO is showed in
Algorithm 1.

IV. RESULTS

In our simulations, the observation oi of turbine i includes
its rotor speed ωir, pump and motor pressure differences (P ip
and P im). The group state s is formed by concatenating all
agents’ observations. In the training curves, the solid line
represents the average episode return of 5 trials started from
random time seeds, and the standard deviation of the episode
return of the 5 trials bounds the shaded region of a curve.
There are two criteria for evaluating the performance of RL
algorithms in wind farm control tasks: cumulative return (the
solid line) and stability (the shaded region). High returns
show that the tested control policy is effective in wind farm
power generation, and the small shaded region signifies the
corresponding agents can achieve similar performance under
fluctuating initial conditions and vice versa. To reproduce
the results, we provide the parameters used in the HWT-
based farm simulator and the hyper-parameters of MAPO in
Table I - Table III, respectively. The pseudo-code of MAPO
is shown in Algorithm 1. In addition, we employ two useful

Fig. 7. Layouts of the tested three wind farms.

techniques, namely policy smoothing regularization and dual
value network, to reduce the variance of results during training.

During training and testing, the time step in Fast.Farm is
set to 0.00625s. The total simulation time of one episode
(the period from turbines launch to stop) in final testing is
3600s, while this number is 250s in training. The inflow
surface (left) of the wind field follows a normal distribution
of: Vx = N (10, 4), Vy = N (0, 5), Vz = N (0, 1)(m/s), where
N denotes the normal distribution. Prior to calculating the
wake dynamics, the ambient wind is generated by the inflow
module in FAST.Farm at the beginning of each episode. The
parameters of the NREL 5-MW reference wind turbine used
in our simulations are listed in Table I.

A. Comparative evaluations

Fig. 8 compares the training curves of MAPO traced by
the cumulative returns in 200 episodes, with the benchmark
results of MADDPG and the greedy control policy (MPPT).
We conclude that MAPO can forcefully raise the wind farm
power generation, which suggests the agents have learned how
to cope with the wake effect in turbine arrays. As shown
in Fig. 9, the RL agents’ strategy involves slightly reducing
the power output of the upstream turbine (WT1) to weaken
its wake effect on downstream turbines. During the training
process, upstream turbines aim to seek an equilibrium that
can maximize the power output of their downstream turbines
while minimizing their losses.

In both Fig. 8 and Fig. 9, the variance (shaded region) of
MAPO is relatively large in the initial training stage because
we encourage agents to explore new states and policies at this
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Fig. 8. Comparison of MAPO with MADDPG and the greedy control policy. Left: results of the wind farm composed of three hydrostatic wind turbines;
Middle: results of the wind farm composed of six hydrostatic wind turbines. Right: results of the wind farm composed of nine hydrostatic wind turbines.
Please see Fig. 7 for the layouts of the three wind farms.

Fig. 9. Training curves of each HWT in a wind farm consisting of three HWTs. The sequence of them is: WT1, WT2 and WT3.

TABLE I
PARAMETERS OF THE WIND FARM AND WIND TURBINE

Wind farm parameters Unit Value

Size m3 1000 ∗ 3000 ∗ 1000
Timestep s 0.00625
Radial increment m 5.0
Number of Radii / 40
Number of wake Planes / 136
Air density Kg/m3 1.29
Speed of sound m/s 331
Atmospheric pressure Pa 101,325

Wind turbine parameters Unit Value

Rating power W 5e6
Rotor, Hub Diameter m 126, 3
Hub Height m 90
Rotor Mass kg 110,000
Nacelle Mass kg 240,000
Tower Mass kg 347,460
Number of blade stations / 49
Airfoil / NACA64 A17

stage. Afterward, all agents focus on maximizing the group re-
turn, implying that the objectives of agents are consistent now
(coordination). As a result, the variance gradually diminishes
to a low level. In contrast, the variance of MADDPG remains
high even at the end of training. Thus the policy learned
by MAPO is more stable than MADDPG for deployment

TABLE II
PARAMETERS OF THE HYDRAULIC TRANSMISSION SYSTEM

Name Sign Unit Value

High pressure oil line length L m 100
Oil pipe line internal diameter r m 0.25
Density of mineral oil ρ kg ·m3 917
Kinematic viscosity of oil ν m2/s 4−5

Effective bulk modulus of oil E Pa 1.039
Pump displacement Dp L/rev 626
Motor displacement Dm L/rev 4.9
Viscous damping of pump Bp N ·m · s 5e4
Viscous damping of motor Bm N ·m · s 2.5
Pump Coulomb friction coefficient Cfp - 0.02
Motor Coulomb friction coefficient Cfm - 0.02
Pump laminar leakage coefficients Csp m3/s/Pa 7.1e−11
Motor laminar leakage coefficients Csm m3/s/Pa 7.0e−11

TABLE III
HYPER-PARAMETERS OF MAPO

Name Value Name Value

Learning rate 1e-4 Clip range ε 0.2
Discounter coefficient 0.99 λ return 0.95
Activation function tanh Layer units [64, 64]
Episodes 200 Batch size 1024
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Algorithm 1 Multi-Agent policy optimization for a wind farm
with n HWTs

For all i = 1, 2, · · · , n, initialize the weight vectors φgru0 , φi0
and θi0 of V gru0 , V i0 and πi0, respectively.
for k = 0, 1, 2, · · · do

Collect set of trajectories Dk which includes Dik =
{τ ij |j = 1, 2, · · · , J}, ∀i = 1, 2, · · · , n by running policy
πk in the simulator;
Compute rewards-to-go Rtolt and [R1

t , R
2
t , · · · , Rnt ];

for each agent i = 1, 2, · · · , n do
Compute advantage estimates AGit based on Eq. (16);

θik+1: Update the policy πik+1 by maximizing the clip
objective - Eq. (17);
φik+1: Fit the value function V ik+1 by regression on
mean-squared error - Eq. (19);

end for
φtolk+1: Fit the group value function V gruk+1 by regression
on mean-squared error: Eq. (21).

end for

in real-world HWT-based wind farms. The curves of MAPO
and MADDPG have both converged after being sufficiently
trained by samples collected from FAST.Farm. Notably, the
convergence value of MAPO is significantly greater than that
of MADDPG, indicating that MAPO can increase the power
generation of HWT-based wind farms more than MADDPG.

To illustrate how MAPO captures wind changes and maxi-
mizes the power output of the wind farm, we generated heat
maps during the training process. Fig. 10a shows the wake
effect of upstream wind turbines on downstream turbines,
indicating that without additional control, the turbines located
in the wake planes would experience a significant decrease
in the wind energy captured. In contrast, Fig. 10b shows
the learned strategy that controls turbines to avoid wakes
during the training process under the similar state, where the
wind direction is mainly along the x-axis. In this strategy,
each turbine selects a suitable yaw angle to minimize the
impact of its wake on the surrounding turbines. Figs. 10c-d
demonstrate the control strategies learned by the turbines to
adapt to changes in the wind direction along the y-axis. As
observed, all turbines have adjusted their yaw angles to align
with the direction of the inflow wind, thereby maximizing
wind speed on their rotational planes. Moreover, they have
also been rotated to an optimal angle, directing their wakes
towards a direction that has minimal effect on surrounding
turbines.

We also test the final trained MAPO control policy via
embedding it into wind farms and Table IV lists the test
results. In this table, the mean column shows the average
power output of the wind farm over five episodes, each
lasting 3600 seconds. This data directly reflects the amount
of power generated by wind farms. The std column indicates
the standard deviation of the mean power output across the
five episodes, which helps to evaluate the effect of different
initial conditions on the performance of the controllers. The
max and min columns respectively represent the highest and

TABLE IV
TEST RESULTS OF THREE CONTROLLERS IN FOUR WIND FARMS, UNIT (W)

Farm Method mean std max min

1*3
MPPT 7.9767e6 2.1635e6 1.0413e7 5.8736e6

Wake Steering 8.5399e6 1.8913e6 1.0868e7 6.6319e6
MAPO 1.0097e7 1.2692e6 1.1823e7 9.7644e6

2*3
MPPT 1.5940e7 3.1723e6 1.9271e7 1.1834e7

Wake Steering 1.6414e7 2.0236e6 1.9021e7 1.4130e7
MAPO 1.9593e7 1.9280e6 2.1302e7 1.8206e7

3*3
MPPT 2.5057e7 2.5458e6 2.2675e7 2.9152e7

Wake Steering 2.6155e7 3.3494e6 3.0546e7 1.9254e7
MAPO 2.8620e7 1.3961e6 3.0235e7 2.5837e7

4*8
MPPT 7.7148e7 8.1264e6 6.3488e7 9.7482e7

Wake Steering 9.0032e7 1.1331e7 7.5314e7 1.2136e8
MAPO 9.9584e7 3.7853e6 9.1420e7 1.1527e8

lowest power output values during the five episodes, and the
difference between them, |max −min|, measures the power
fluctuations. Based on the results presented in this table, it can
be concluded that the MAPO controller is the most effective at
driving wind turbines to generate power, and it demonstrates
greater stability across the different episodes compared to the
other controllers. Additionally, the wind turbine controlled by
the MAPO controller exhibits less power output fluctuation,
indicating higher power quality. Fig. 11 shows the variations
in power output of the nine-turbine wind farm. Compared with
the greedy control policy and wake steering-a fine industrial
method derived from a relatively low-fidelity wind farm model
named FLORIS [22], the wind farm manipulated by MAPO
generated more power, which is consistent with the training
curves. What’s more, the power output by the MAPO-driven
wind farm is more stable thanks to a fourth-order filter being
used to smooth the control actions.

Since our HWT-based wind farm model, adapted from
FAST.Farm, includes the sub-structural dynamics of HWTs,
which is an advantage over other wind farm models, we
analyzed the flapwise tip deflection of one blade and the fore-
aft displacement of the tower of the front-left HWT in a six-
turbine farm layout under MAPO, MADDPG, and the greedy
control policy (Fig. 12). The results show that none of these
three control strategies cause unusual vibrations of the blade
and tower, and other HWTs have similar results. This implies
that HWTs operate within safe structural limits under these
three controllers.

Furthermore, MAPO has an advantage: when additional
turbines are installed in the wind farm, we can transfer the
weights of the value and policy networks to new turbines as the
pre-trained model. It can greatly facilitate the sample efficiency
of the algorithm.

B. Parameter analysis

In MAPO, we use a group value network with the input
of the group state s to estimate the future wind farm return,
and an individual value network for each agent with the input
of its observation o to estimate its future return. Without
violating the principle of CTDE, the input of individual value
networks can also be the group state s, which is referred to as
MAPO-v2. Intuitively, MAPO-v2 can predict the agent return
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Fig. 10. The yaw control policy of MAPO for overcoming the wake effect.

Fig. 11. Power output of the nine-turbine wind farm.

more precisely and faster as the network acquires more state
information about the wind farm. However, Fig. 13 shows that,
in terms of variance or cumulative return evaluation criteria,
the performance of MAPO-v2 is distinctly worse than that of
MAPO. Based on this result, we think that the observations
of other HWTs are not conducive to the estimation of the
target agent and even become noisy. Therefore, using the
local information to estimate the individual return is more
appropriate in the RL agent training.

Fig. 12. Displacements of the Blade 1 and tower of the front-left HWT in the
6-turbine wind farm, under different control policies. Top: Blade 1 flapwise
tip deflections. Bottom: Tower fore-aft displacements.

The core idea of MAPO is to utilize a dynamical parameter
η to balance the agent return and the group return. There are
two additional options: 1) Fixed weight - η in Eq. 14 is set
to a fixed value. 2) Agent weight - η in Eq. 14 is set to 0.
The fixed weight method assigns equivalent weights to agents
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Fig. 13. Results of using local state or global state to estimate the agent
return

exploring their own policies and boosting the group return.
This results in a large variance being maintained throughout
the training process (Fig. 14). The objective of the agent
weight method remains unchanged, causing low variances of
results. However, the learned control policy eventually falls
into a locally optimal solution (Fig. 14). In conclusion, the
dynamical weight method exhibits its superiority thanks to a
proper balance of the exploration-exploitation dilemma.

Fig. 14. Results of using different methods to balance the individual agent
return and group return. Dyn: η = num epoch/200; Fix: η = 0.5; Agent:
η = 0.

V. CONCLUSION

In this paper, we developed a HWT-based wind farm model
by adapting FAST.Farm. HWTs have the potential to reduce
the the maintenance cost of wind farms. We also proposed
MAPO (multi-agent policy optimization) to optimize the wind
farm control policy to boost the power generation of HWT-
based farms. Our simulation results show that MAPO is
of high performance in different wind farm layout cases
and fluctuating environments. In addition, the control policy
trained by MAPO has not caused any unusual vibrations in the
substructures of HWTs, indicating it does not affect the safe
operation of turbines. Moreover, the CTDE paradigm utilized
in MAPO is beneficial for real-world deployment as it avoids
the real-time communication issue between turbines within a
wind farm.
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