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ABSTRACT

We study measure-valued solutions of the inhomogeneous continuity
equation Op; + div (vp;) = gp; where the coefficients v and g are of
low regularity. A new superposition principle is proven for positive
measure solutions and coefficients for which the recently-introduced
dynamic Hellinger-Kantorovich energy is finite. This principle gives a
decomposition of the solution into curves t— h(t)d, that satisfy the
characteristic system 7(t) = v(t, y(t)), h(t) = g(t,y(t))h(t) in an appro-
priate sense. In particular, it provides a generalization of existing
superposition principles to the low-regularity case of g where charac-
teristics are not unique with respect to h. Two applications of this prin-
ciple are presented. First, uniqueness of minimal total-variation
solutions for the inhomogeneous continuity equation is obtained if
characteristics are unique up to their possible vanishing time. Second,
the extremal points of dynamic Hellinger—Kantorovich-type regular-
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izers are characterized. Such regularizers arise, for example, in the con-
text of dynamic inverse problems and dynamic optimal transport.

1. Introduction

The main objective of this article is to present a new superposition principle for positive
measure solutions to the linear inhomogeneous continuity equation, assuming natural
regularity on the velocity field and on the source term. Such assumptions are substan-
tially weaker than what is currently available in the literature, as we will discuss below.

To be more precise, given Q C RY the closure of an open bounded domain, we consider
narrowly continuous curves of positive measures ¢+ p, in M™(Q) solving

Op, + div(vp,) = gp, in (0,1) x Q (1)

in the sense of distributions, where v : (0,1) x Q — R? is a velocity field satisfying no
flux boundary conditions on JQ and g:(0,1) x Q — R is a source term encoding the
inhomogeneity of the equation. We assume that the coefficients v and g are
Hellinger-Kantorovich-regular, namely, they are Borel measurable and satisfy the bound
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1
j jg|v<t,x>|2+ g(t ) dpy(x) di < ox. 2)
0

In the following we will clarify the role of (2) in connection to recent advancements
in the theory of Unbalanced Optimal Transport. Our task is to provide a superposition
principle for (1) that allows to represent any positive solution t+— p, as a superposition
of elementary solutions, that is, curves of measures of the form t»—>h(t)5v(,>, where the
trajectories y : [0,1] — Q and the weights 4 : [0,1] — [0,00) solve, in an appropriate
sense, the system of characteristics for (1):

(i) (1) = v(ty(r)) (i) h(r) = g(t.p(1))h(z) in (0,1). (3)

Notice that (i) describes all possible elementary trajectories which follow the flow
given by v, while (ii) encodes the lack of mass preservation for solutions to (1), due to
the inhomogeneity. The precise statement of such superposition principle is given in
Theorem 1.1 below. Subsequently we provide two applications of the superposition
principle for (1). First we prove uniqueness for minimal norm solutions to (1) under
the assumption of uniqueness for solutions to (3) up to their possible vanishing time
(see Theorem 1.2); Second, we characterize extremal points of regularizers closely
related to the energy at (2), and apply such result to sparsity for dynamic inverse prob-
lems regularized via unbalanced optimal transport (see Theorem 1.3).

Concerning relevant literature, we mention that the superposition principle for nar-
rowly continuous curves of probability measures t+— p, solving the homogeneous con-
tinuity equation

Op, + div(vp,) =0 in (0,1) x Q 4)

is by now classical. It was first introduced in the Euclidean setting by Ambrosio in [1],
where it was employed to investigate uniqueness and stability of Lagrangian flows in
the context of DiPerna-Lions Theory [2]. Since then it has been applied to different
tasks [3-7] and extended to various settings [8-11]. In [12] the velocity field v is
assumed to satisfy

1
J j |v(t,x)|2 dp,(x) dt < oo. (5)
0Ja

An elementary solution to (4) is of the form t+ §,,) where 7 : [0,1] — Q is an abso-
lutely continuous curve solving the characteristic equation (i) in (3). Due to the lack of
regularity of v, solutions to the initial value problem associated to (i) are not unique.
Such non-uniqueness is reflected in the superposition formula, which in this case is
achieved by constructing a probability measure ¢ on the set I' := C([0,1];Q). To be
more precise, it can be shown that if p, € M (Q) is a narrowly continuous solution to
(4) and v satisfies (5), then there exists a measure ¢ € M™(I") concentrated on abso-
lutely continuous curves satisfying (i), with the property that p, can be represented by
the pushforward of ¢ via the evaluation map e,(y) := y(t), that is,

jg<p<x> dpt<x>=Jrq><v<r>> do(y) forall peC@), te0l. ()
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We refer the reader to [12, Theorem 8.2.1] for a proof of (6) with Q = R? and to
[13, Theorem 7] for the case of Q being the closure of a bounded domain.

A generalization of (14) for positive measure solutions to the inhomogeneous con-
tinuity Equation (1) in Q = R? is presented in [10]. Specifically, the following is proven
in [10, Theorem 4.1]: suppose that p, € M™(Q) is a narrowly continuous solution to
(1), that v satisfies (5) and g is bounded; then there exists a representing measure ¢ €
MT(T x Q), concentrated on pairs (7,x) with y absolutely continuous curve solving (i)
in (3) with the initial condition y(0) = x, and such that p, is represented via the impli-
cit formula

[ o) dot = | o0 dotrn) + |

0

t

(LL(P%» da ()g(s ) dps<x>) ds,

(7)
for all ¢ € C(Q), where for fixed ¢, the family {67}, is the disintegration of ¢ with
respect to (&;)z0 € M™*(Q), with &:(y,x) := y(t). There are two main drawbacks with
the superposition principle from [10]: First, the representation formula (7) is implicit;
Second, the source term g is required to be bounded. Such assumption on g is substan-
tial, as it implies uniqueness of solutions to (i) in (3) along any trajectory. This fact
essentially allows the author of [10] to construct the measure ¢ in (7) in the same way
as the one in (6). Another limitation of [10] is that it is not possible to provide a repre-
sentation via (7) for solutions with mass that is vanishing or generating from zero dur-
ing the evolution (for an example, see Remark 4.6).

The main focus of this article is to obtain a superposition principle for (1) which
overcomes the above mentioned limitations of [10]. Indeed we obtain an explicit repre-
sentation formula for (1) that resembles (6). In addition, we remove the boundedness
assumption on g, and we replace it by the growth condition (2). Removing such
assumption on g is far from straightforward, as it requires a new functional analytic
framework for constructing a representation measure o. In fact, the low regularity of g
implies non-uniqueness for the initial value problem associated with (i) in (3). This
suggests that a measure ¢ representing a solution t— p, to (15) has to account for non-
uniqueness both for the trajectories y and the weights h. Therefore, ¢ cannot just be a
measure on I, but rather on a space of pairs (y,h), as discussed in Theorem 1.1 below.

We now discuss the coupling of the continuity equation at (1) with the energy at (2),
which is at the center of recent important developments in the theory of Unbalanced
Optimal Transport. The classical theory of Optimal Transport, in its Monge-
Kantorovich formulation [16-18], concerns the problem of transporting mass from a
probability measure into a target one, while minimizing a given cost. Benamou and
Brenier [19] made the crucial observation that the classical formulation of optimal
transport has a dynamic counterpart, which links the continuity Equation (4) with the
energy at (5). More precisely they observed that it is possible to compute the optimal
transport between two probability measures p, and p; by minimizing the dissipation at
(5) among all the curves of probability measures ¢ +— p, and velocity fields v solving the
continuity Equation (4) with initial and final conditions given by p, and p; respectively.
Such dynamic formulation makes possible to endow the space of probability measures
with a differentiable structure [12], bringing to light deep connections between optimal
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transport and functional analytic issues, such as the characterization of differential equa-
tions as gradient flows in spaces of measures [12, 20-25] or the derivation of sharp
inequalities [15, 26-30]. Particularly in connection to applications, the assumption of
mass preservation during the evolution is quite restrictive. Overcoming this limitation is
at the core of the so-called unbalanced optimal transport theory. Among the various
formulations, we highlight the one introduced in [31-33]. There, transporting a positive
measure p, into a target one p; corresponds to minimize a weighted version of (2)
among all curves of positive measures ¢+ p, and fields v, g satisfying the inhomogen-
eous continuity Equation (1) with initial and final conditions given by p, and p;,
respectively. The quantity at (2) takes the name of Wasserstein-Fisher-Rao or
Hellinger-Kantorovich energy in the literature. Such an approach has been successfully
employed in applications where mass preservation is violated [34-37]. In particular in
[33] it is shown that the above minimization procedure induces a distance which is
compatible with a differentiable structure on the space M™(Q). This distance can also
be derived from the dynamic formulation of the Logarithmic-Entropy Optimal
Transport problem [33] or can be regarded as dissipation energy for a certain class of
scalar reaction-diffusion equations [36].

We conclude this introduction by discussing in more details the superposition prin-
ciple we propose for (1), as well as the applications provided in this article. The rest of
the manuscript is organized as follows. In Section 2 we introduce basic notations, as
well as presenting some results on continuity equations and optimal transport energies.
In Section 3 we set the functional analytic framework needed in order to prove our
superposition  principle. In  particular we investigate properties of the
Hellinger—Kantorovich energy (2) when restricted to elementary solutions to (1). In
Section 4 we provide a proof for the main result of this article, that is, the superposition
principle in Theorem 1.1 below. Finally, in Sections 5, 6 we detail applications of the
superposition principle to uniqueness for solutions to (1) and to sparsity for dynamic
inverse problems with Hellinger-Kantorovich-type regularizers.

1.1. Main result

To obtain a superposition principle for (1) under the energy bound (2) we construct a
positive measure g on the set Y of narrowly continuous curves t+— p, with values in
Cq:={hé, e M(Q) : h>0,y€ Q}. We endow % with the flat distance of meas-
ures and .%o with the respective supremum distance. In this way o becomes a separ-
able metric space. Notice that Sq plays the role of the set of continuous curves I' in
(6). As we will see, c.f. Remark 3.2, the construction of %q closely resembles the cone
space introduced in [33, 36] to study absolutely continuous curves with respect to the
Hellinger-Kantorovich distance. It is immediate to check that elements of % can be
represented by p, = h(t)d,), for some non-negative weight i € C[0,1] and curve y €
C({h > 0};Q), where we set {h >0} := {t €[0,1] : h(t) > 0}. Thus, the mass of the
elements of ¥q is varying continuously in time and is allowed to vanish, reflecting the
behavior of solutions to (1). The measure o we construct is concentrated on elements
p; = h(t)o,s € Sa, with h and y solving the system of ODEs:
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() 9(t) = v(t:9(t) ae in {h>0} (i) h(t) = g(t.y()h(t)  ace. in (0,1).
(8)

Notice that, in comparison to the system of characteristics at (3), we are restricting
the first ODE to the set {h > 0}. Indeed, if h(f) = 0, then p, = 0 and thus we lose any
information on the trajectories for that time instant. The above observations are formal-
ized in the following theorem, which is the main result of our article (c.f. Theorem 4.3).

Theorem 1.1. Let Q C RY be the closure of an open bounded domain. Let p, : [0,1] —
MF(Q) be a narrowly continuous solution to (1) for some Borel measurable v :
(0,1) x Q = RY, g: (0,1) x Q — R satisfying (2) and such that v has no flux on OQ.
Then there exists a measure € M*(Sq) concentrated on curves of measures p, =
h(t)o, ) with h,y solving (8) and such that

J o(x) dp,(x) =J h(t)o(y(t)) da(y,h)  forall @€ C(Q), t€][0,1]. (9)
Q Sa
Conversely, assume that ¢ € M™*(Sq) is concentrated on solutions to (8) and satisfies

1
| ] B0+ el + leeotol) datrnh) di < . (10

o
Then (9) defines a narrowly continuous curve of positive measures solving (1).

Notice that the growth condition (10) is natural, in the sense that if a measure ¢ rep-
resents p, and (2) holds, then automatically o satisfies (10). We refer the reader to
Remark 4.4 below for more details. We also remark that the set Q in Theorem 1.1 is
required to be bounded. Indeed it would be interesting to extend our result to
unbounded domains, in the spirit of [10, 12] where Q = R? is considered. However, it
seems that a different proof strategy or stronger assumptions are required, see Remark
4.7 below for details. Moreover, similarly to [10, 12], it should be possible to prove a
version of Theorem 1.1 in which (2) is replaced by an Lf bound for 1 < p < co. Such
analysis falls outside the scope of our article.

The proof of Theorem 1.1 is presented in Section 4. It is based on a similar smooth-
ing strategy as the one employed in [1] to prove (6). However in this case there are two
main differences: first one needs to establish compactness properties for a coercive ver-
sion of the Hellinger-Kantorovich energy when restricted to elements of %q, see
Proposition 3.10; second the smoothing needs to take into account the possibility of the
measure p, vanishing at some time instance, as detailed in Remark 4.6 below.

1.2. Uniqueness of solutions to the continuity equation

In Section 5 we present the first application of the superposition principle of
Theorem 1.1. Our aim is to show that uniqueness of solutions for the system of
ODE:s at (3), up to their possible vanishing time, implies uniqueness for measure sol-
utions to the inhomogeneous continuity equation (1) satisfying the bound (2) and
with minimal total variation. The key ingredient of the proof is formula (9), which
allows to decompose any solution of (1) satisfying the bound (2) into a superposition
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of elementary curves ¢+ h(t)d, such that (y,h) are solutions to (8). Such represen-
tation allows to link uniqueness for (3) with the one for (1). The main difference
between our result and the classical one for the homogeneous continuity equation
(14, Theorem 9] lies in the fact that elementary solutions p, = h(t)d,(,) are allowed to
vanish in time. In this case uniqueness for (3) is not enough to ensure uniqueness of
solutions to the inhomogeneous continuity equation. Indeed, when the mass of a solu-
tion vanishes at a given time instant ¢ € (0,1), the uniqueness assumption for (3) is
not providing any information on the behavior of the solutions for ¢ >t : this is
because the measure ¢ is concentrated on solutions to (8) where i) is only valid in
the set {h > 0}. Therefore, in order to recover uniqueness for (1), we impose an extra
constraint on the total variation of its solutions. More precisely, we show that solu-
tions to (1) with minimal mass can be represented, invoking Theorem 1.1, by a meas-
ure ¢ concentrated on curves ¢+ h(t)d, such that (,h) solves (8) and h is strictly
positive in an interval [0,7) N[0, 1] for some 7 € R. Such observation allows to employ
uniqueness for the system of characteristics at (3), up to their possible vanishing time,
to infer uniqueness for measure solutions to (1) with minimal total variation. We
obtain the following theorem, c.f. Theorem 5.1.

Theorem 1.2. Let v: (0,1) x Q — R% g: (0,1) x Q — R be Borel measurable functions
and A C Q be a Borel measurable set. Suppose that:

(Hyp) For each x € A the solution of the system of ODEs (8) with initial value (x,1) is
unique in [0,7) for every t € (0,1) such that [0,7) C {h > 0}.

Then, for any initial datum p, € M™(Q) concentrated on A, the inhomogeneous con-
tinuity equation (1) admits at most one positive narrowly continuous solution t— p, sat-
isfying (2), with initial datum po, and such that ||p||, < ||p||\, for every t— p, positive
narrowly continuous solution to (1) satisfying (2), and such that p, = p,.

1.3. Extremal points of the Hellinger-Kantorovich energy

In the context of inverse problems, the knowledge of the structure of extremal points of
the regularizer allows to numerically reconstruct sparse solutions, that is, solutions given
by the superposition of finitely many extremal points [38,39]. It has been recently pro-
posed [34] to regularize dynamic inverse problems via an energy related to the one at
(2). To be more specific, the energy at (2) can be recast into a convex functional B;

over the space M := M((0,1) x Q)%™ defined by

L[ |dm]?
Bs(p,m, ) ::EJ JQ ?
0

A +90
if p>0, mpu<p, and set to oo otherwise, where 6 > 0 is a parameter (c.f. Section
2.2). The regularizer studied in [34] consists in the energy at (11) to which the total
variation of p is added, while enforcing the continuity equation constraint J;p +
div m = u. An analysis of the extremal points of such energy is currently missing in
the literature: Therefore, in this article, we employ the superposition principle of
Theorem 1.1 to characterize the extremal points of the set

A ={(p,m ) : Op +div m=p, PBBs(p,m, 1) +allpl|y < 1}, (12)

2

4 dp (11)

dp
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where o, f > 0 are parameters. Notice that we do not impose boundary conditions in
the continuity equation at (12). Moreover the total variation of p is added to the func-
tional Bs, in order to enforce coercivity, and thus compactness of 4. We prove the fol-
lowing result (c.f. Theorem 6.3).

Theorem 1.3. The extremal points of the set defined in (12) are exactly given by the zero
measure (0, 0, 0) and the triples of measures (p, m, i) such that p = h(t) dt ® 0., m =

7(t)ps = h(t) dt ® o, with the following properties:

(@) h, Vhe AC0,1], y € C({h > 0};Q) and Vhy € AC([0,1];RY),
(b) the set {h > 0} is connected,
(c)  the energy satisfies PBs(p, m, ) + af|p|| = 1.

In the above we denote by AC? the set of absolutely continuous functions with a.e.
derivative in L* (see [12, Section 1.1] for a precise definition).

Theorem 1.3 is a generalization of the results obtained in [13], where the Benamou-
Brenier energy with homogeneous continuity equation constraint is considered. In
Section 6.2 we apply Theorem 1.3 to understand the structure of sparse solutions for
dynamic inverse problems with unbalanced optimal transport regularization. In particu-
lar, we consider the inverse problem proposed in [34], where the minimization of the
energy at (12) is coupled with a fidelity term penalizing the distance between p and
some fixed observation. Applying recent results on sparsity [40,41] we show that the
minimization problem in [34] admits a solution which is a finite linear combination of
extremal points of %, that is, of curves as described in Theorem 1.3.

2. Preliminaries

For measure theory notations and definitions we follow [42]. Given a metric space Y we
denote by M(Y), M(Y;R?), M*(Y) the spaces of bounded Borel measures, bounded
vector Borel measures, bounded positive Borel measures on Y, respectively. Throughout
the article, whenever we say that a set or a function is measurable, we always intend
Borel measurable, that is, measurability with respect to the Borel g-algebra. For a meas-
ure u we denote its total variation measure by |u|. We say that a sequence of measures
{m,}, on Y converges narrowly to u if [,o(y) du,(y) — [,0(y) du(y) for all ¢ €
Cy(Y), where Cy(Y) denotes the set of real valued continuous and bounded functions
on Y.

Let Q C R? be the closure of a bounded domain, with d € N, d > 1, and define the
time-space domain X := (0,1) x Q. We say that p € M(Xq) disintegrates with respect
to time if there exists a Borel family of measures {p,}, o C M(Q) such that
Jx, o dp = Iy Jo@(t,x) dp,(x) dt for all ¢ € L,(Xa). The disintegration is denoted by
p = dt ® p,. Further, a curve of measures t € [0,1]— p, € M(Q) is narrowly continu-
ous if the map t+— [,¢(x) dp,(x) is continuous for each fixed ¢ € C(Q). The family of

narrowly continuous curves is denoted by C,([0,1]; M(Q)). Notice that if ¢+ p, is nar-
rowly continuous, by the principle of uniform boundedness, it follows that p := dt ® p,
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belongs to M(Xq). We also introduce C,([0, 1]; M™*(Q)) as the family of narrowly con-
tinuous curves with values into M™(Q). The above definitions extend verbatim to the
case Q = R%,

2.1. Continuity equation

Set Mg := M(Xa) x M(Xq;R?) x M(Xq). We say that the triple (p, m, i) € Mg sol-
ves the continuity equation

Op+divm=pu in Xg, (13)
whenever (13) holds in the sense of distributions, that is,
J O dp—l—J qu-dm+J @ du=0 foral ¢eC’Xa). (14)
Xo Xo Xa

Here, p represents a density, m a momentum field advecting p, while p is a source
term accounting for mass change. The above definition also holds for unbounded spatial
domains, for example., Q = RY. Moreover the time interval (0, 1) can be replaced by
(0, T) with T> 0. We remark that (14) includes no flux boundary conditions for m on
0Q, and no initial conditions for p are prescribed. Moreover (14) can be equivalently
tested with maps in C!(Xq) [12, Remark 8.1.1]. The following lemma provides some
properties of solutions to (14) which will be needed in the coming analysis. The state-
ment holds both in bounded domains as well as in R?. For a proof in bounded domains
see, for example, Propositions 2.2, 2.4 in [34], which can be easily generalized to RA.

Lemma 2.1. Assume that (p,m,u) € Mq satisfies (14) with p € M (Xq). Then
p =dt ® p,, where p, € M*(Q) for a.e. t in (0, 1). Moreover the map t+— p,(Q) belongs
to BV(0, 1), with distributional derivative given by myu, where m : Xq — (0,1) is the pro-
jection on the time coordinate. If in addition m = vp, u = gp for some measurable v :
XQHRd,g:XQHRWith

L jgw, ) + lg(6)] dp,(x) dt < oo,

then there exists a unique curve t— p, in Cy([0,1]; MT(Q)) such that p, = p, a.e. in
(0, 1).

In the rest of the article we will identify p, with its narrowly continuous representa-
tive p,, whenever the assumptions of Lemma 2.1 hold.

2.2, Optimal transport energy

We now introduce the Wasserstein-Fisher-Rao energy, also known as the
Hellinger-Kantorovich energy, as originally done in [31-33]. To this end, let 6 > 0 be a
fixed parameter. Define the convex, one-homogeneous and lower semi-continuous map
W5 : R x RY x R — [0,00] by setting
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2 2.5
0
M% if £>0,
Ps(bxy) =9 g if t=|x=y=0, (15)
00 otherwise,

where 0oy? = oo for y # 0 and ooy? = 0 for y=0. The Wasserstein-Fisher-Rao energy
is given by the map B; : Mg — [0, 0c] defined by

dp dm d,u>
B. > > = lIl 5> T 140 14 d/’{o
(P 1) LQ f’(d;b 4.

where 4 € M™(Xg) is an arbitrary measure such that p,m, u < A. Definition (16) does
not depend on the choice of 4, as W¥s is one-homogeneous. Properties of the energy B;
which are relevant in the following analysis are summarized in Lemma A.4 (for a proof
see [34, Proposition 2.6]). We now introduce a coercive version of Bs : Set

(16)

Dq :={(p.m, ) € Mq : Op+div m=p in the sense of (14)},
and define the functional J, 3 5 : Mq — [0,00] as

‘ — J BBs(psm, i) + ol pll pyx if (p,m,p) € Do,

Joup.6(ps s 1) = {oo otherwise, (17)
where o > 0 and f§ > 0 are fixed constants. We remark that adding the total variation
of p to B; enforces the balls of J, g 5 to be compact in the weak™ topology of Mgq. Such
property, together with others, is the object of Lemma A.5. The content of Lemma A.5
is based on results proven in [34, Lemmas 4.5, 4.6].

2.3. Characteristics theory for the continuity equation

We start by recalling a classical result on the theory of ordinary differential equations in
R? [12, Lemma 8.1.4].

Proposition 2.2. Let v : [0,1] x R — R? be measurable and such that
1
J sup|v(t,x)| + Lip(v(t,-),RY) dt < 0. (18)
0 xeR?
Then for each x € R? the ODE
X (t) = v(t, X, (t)) forae.te(0,1), X.(0) = x, (19)

admits a unique absolutely continuous solution t — X,(t) defined for all t € [0, 1].

Next we provide a representation formula for measure solutions of the continuity
equation (13). This is the analogue of [12, Lemma 8.1.6] for the inhomogeneous con-
tinuity equation, and a generalization of [10, Proposition 3.6] to the case of
g unbounded.

Proposition 2.3. Let v:[0,1] x R? = R% g:[0,1] x RY - R be measurable. Assume
that
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1
J sup ‘g(t, x)| + Lip(g(t, ~),Rd) dt < oo (20)

0 xeR¢

and (18) hold. Let p, € MT(R?) and denote by t— X,(t) the unique solution to (19)
defined for all t € [0,1] and x € RY. Then, the map

o5, X (9))dk
s py = (X ()5 (py b8 200%) e
is a narrowly continuous solution to the continuity equation O;p, + div (vp,) = gp, in

(0,1) X R? in the sense of (14), where the push-forward in (21) is with respect to the
space variable.

Proof. Narrow continuity of ¢+ p, follows immediately from (20), dominated conver-
gence and the continuity of t— X,(t) for each x. Let now ¢ € C!((0,1) x R?). Then

for po-a.e. x in RY, the map t— ¢(t,X,(t)) is absolutely continuous in (0, 1), with a.e.
derivative given by

2 (0 X0) = 006, X:(0) + Vplt, Xa(0) - v X,(0), @

thanks to Proposition 2.2. By (20) we also have that t — ¢(t, Xx(t))ejo 8l XN ¢ abso-
lutely continuous in (0, 1), and for a.e. t € (0,1) it holds

%((p(t,Xx(t))eJ:)tg(S,Xx(S))dS) _ <% (6 Xu(0)) + (6, X.(1)) g(t)Xx(t)))eﬂg(s,Xx(s))ds.

(23)

In particular, it is immediate to check that
1 d ( J-t X
ot Xx(t))eh 8 *(S”ds)
|, . | Cotexutone

where M, := J"Ol Sup, g |v(t,x)| dt, My := J"Ol sup, g« |g(t,x)| dt, which are finite by
(18, 20). Therefore, we can apply Fubini’s theorem and (21-23), to compute

dpo(x) dt < [l@]lc po(R?) e (1+ M, + My),

! d ' S. S S
JX (Op+Vo-v+og) dp= J J 7 ((p(t,Xx(t))eJ:] gl Xl W) dt dpy(x),

d
R RTJo

where p = dt ® p,. Now notice that the above right-hand side vanishes since ¢ is
compactly supported, concluding the proof. O

The next proposition states that, under some regularity assumptions, every solution
of (14) can be represented as in (21).

Proposition 2.4. Assume that p, : [0,1] — M*(Rd) is a narrowly continuous solution to
the continuity equation d,p, + div (vp,) = gp, in (0,1) x R? in the sense of (14), for
some Borel maps v : [0,1] x R — R, g :[0,1] x R? — R satisfying (18, 20) and
1
|| | eol+ g0 dputa) de < oc, @
R

0
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Then for po-a.e. x € RY the ODE (19) admits a solution X,(t) for t € [0,1], and

t

pr = (X(t)# (Po el g(S’X<')<S))dS> for each  t€[0,1],

where the push-forward is with respect to the space variable.

Proof. Define the map t+— p, := (X(,)(t))#(po eJ;g(S’X(‘)(SWS). Proposition 2.3 implies
that g, is a narrowly continuous solution to the continuity equation in (0,1) x R?
Moreover p, = p, by construction. It is immediate to check that u, — p, and p, — 1,
satisfy (121). As u, — p, and p, — p, both satisty the continuity equation, we can apply
(twice) the comparison principle in Proposition A.6 to deduce that u, =p, for
every t € [0,1]. O

3. Functional analytic setting

In this section we discuss the functional analytic setting that is instrumental in proving
the superposition principle in Theorem 1.1. Throughout the section, V will be the clos-
ure of a bounded domain of R with d € N, d > 1. We recall the notations Xy :=
(0,1) x V and My := M(Xy) x M(Xy;RY) x M(Xy).

3.1. Curves in cones of measures
We start by introducing the set
@y :={hd,e M(V) : h>0, yeV} (25)
and the space of narrowly continuous curves with values in %y, that is,
Py = {(t—p,) € Cy([0,1; MT(V)) : p, €y forall te[0,1]}. (26)

Notice that if t+— p, belongs to <y, then p := dt ® p, belongs to M(Xy). With a lit-
tle abuse of notation, in what follows, we will denote by p both the curve t+— p, and
the measure dt ® p,.

Remark 3.1. If p € &y, then p, = h(t)d,) for h:[0,1] — [0,00) and y:[0,1] — V,
where 7 is uniquely determined in the set {h > 0}.
We endow the set %y with the flat distance on M(V), that is, for p' € @y we set

o) = sup{ | o dl' =) o), ol <1, eV <1} @)

We then define a distance over %y, by setting

d(p',p?) := sup dr(p;,p7). (28)
€0, 1]

Remark 3.2. In [33, 36] the authors introduced the cone space over V given by Cy :=
(V x[0,00))/ ~, where~is the equivalence relationship such that the pairs (y,,h;)
and (7y,, hy) are identified if and only if y; =7y, and h; = h,, or if h; = h, = 0. Notice
that Cy is in one-to-one correspondence with &y. However in [33, 36] the cone space
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is equipped with the cone distance

H2(p', p?) = hi + hy — 23/ hihy cos ([y; — 7,]) if |p—nl<m
’ ’ hy + hy + 2V/hihy otherwise,

for all p!, p* € €y. By elementary calculations, and employing (29) below, it is possible
to show that H* and dy induce equivalent topologies on %y, for example, there exists a
constant C >0 such that

1
SHA(p'p7) < de(p’s p*) < CV/ (1 + B B2 (1, p?).

The following characterization for dr holds.

Lemma 3.3. For p', p* € €y we have

12y J I = ha| + min(hy, by |y — 7, it [y =7l <2,
dr(p’, p%) = {hl + hy otherwise. (29)

Proof. By definition it follows that

dr(p',p%) = sup {hcr —hcy = Jaillea] <1, Jer — o < lyp = al}-

¢, €ER
By symmetry we can assume h; > h,. For all ¢j,¢c; € R such that |¢],|c;| <1 and
le1 — 2| < |y, — .|, we estimate

h1C1 — ]’1262 S |h1C1 — th]l + |I’12C1 — h262| S “’l] — ”12| + mil’l(hl,hz)h)l — '})2|

The thesis follows since the supremum is achieved by (1,1 — |y, — 7,|) if |y, — 75| <
2 and by (1, — 1) otherwise. O

We will now show that the metric space (v, d) can be identified with C([0, 1]; v ),
where @y is equipped with dr and C([0, 1]; @) inherits the relative topology as a subset
of C([0, 1]; Mg (V)), Mga(V) being the space M(V) equipped with the flat norm. In
order to achieve that, we need a preliminary lemma.

Lemma 3.4. Let p, : [0,1] — @y. Then the following statements are equivalent:

(i)  p: is narrowly continuous,
(i)  p, = h(t)d,q) with h € C[0,1] and y € C({h > 0};R?).

Proof. Assume (i), so that the map ¢+ h(t)@(y(t)) is continuous for each ¢ € C(V). By
choosing ¢ =1 we conclude that h is continuous. If we pick ¢(x) :=x; coordinate
function, for all i =1,...,d, we also infer continuity for hy, so that y is continuous in
{h > 0}. Conversely, assume (ii). Let ¢ € C(V) and t € [0,1]. If h(¢) = 0, we conclude
continuity of ¢+ h(t)p(y(t)) at ¢ by boundedness of ¢ and continuity of h, while if
h(t) > 0, we conclude by (ii). O

Proposition 3.5. Assume that p,:[0,1] — €y. Then the following statements
are equivalent:
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(i)  p; is narrowly continuous,
(ii)  p¢ is continuous with respect to dp.

In particular, we have that (¥y,d) is a metric space that can be identified

Proof. Assume (i), so that h € C[0,1] and y € C({h > 0};RY) by Lemma 3.4. Fix t €
[0,1] and t, — t. If h(t) = 0, by continuity of h and (29) we infer dr(p, ,p,) = h(t,) —
0. If instead h(f) > 0, by continuity of y in ¢, it holds that |y(t,) — y(¢)| < 2 for n suffi-
ciently large. By continuity of h we conclude (ii). Conversely, assume (ii). In order to
show (i), we prove that h € C[0,1] and y € C({h > 0};R?) (Lemma 3.4). From (29) we
have |h(t;) — h(t;)| < dr(p,,p,,) for all t;,t; € [0,1], so that h is continuous by (ii). Let
us now fix t € {h > 0} and t, — t. Since h(f) > 0, it is immediate to check by contra-
diction that |y(t,) — 7(¢)| < 2 eventually, and hence

A (ta) = h(£)] + min(h(t,), h(£))[7(ta) — 7(6)] = de(pr,> p1)s (30)

for sufficiently large n. By continuity of A, (ii), and the assumption h(t) > 0, we con-
clude continuity for 7y, and hence (i). The final part of the statement follows from the
first part and from the definition of d.

For the space (¥y,d) the following holds. O
Proposition 3.6. We have that (¥v,d) is a complete separable metric space.

The above statement is somewhat classical. However, due to the lack of a reference,
we provide a proof in Section A.4. We conclude this section with a useful lemma that

provides sufficient conditions for continuity and measurability for scalar maps
on (Ly,d).

Lemma 3.7. Let ¢ : V x [0,00) — R be such that ¢(x,0) =0 for all x € V. For t € [0, 1]
define the map W¥;: Sv — R by Wi(p) := @(y(t),h(t)), where p, = h(t)S,u. If ¢ is
measurable (resp. continuous), then ¥, is measurable (resp. continuous) with respect to d.

Proof. Notice that the condition ¢(x,0) =0 for all x € V implies that ¥, is well
defined. Suppose first that ¢ is continuous and assume that d(p”, p) — 0 as n — co. By
(29) we have |h,(t) — h(t)| < de(p}, p;), so that h,(t) — h(t). If h(t) = 0, then p, =0
and W,(p) = 0. By continuity of ¢ and compactness of V we infer that W¥,(p") — 0. If
h(t) > 0, the usual argument by contradiction implies that |y, (¢) — y(¢)| < 2 for n suffi-
ciently large. Thus by (29) and the convergences min(h,(t),h(t)) — h(t) >0 and
dr(p}, p;) — 0, we have that y,(tf) — y(¢). By continuity of ¢ we conclude ¥,(p") —
W:(p). Suppose now that ¢ is measurable. Define the evaluation map ¢, : ¥y — €y by
e:(p) := p, and the projection  : €y — V x [0,00) by

n(hd;) == (1h) Zei0,01 () + (2, 0) 210,00 (1> h),

where p € V is arbitrary but fixed. Notice that by construction e, is continuous from
(Zv,d) into (¥v,dr). Additionally the map ho, — (y,h) is continuous in €y \ {(0,0)}
by repeating the above arguments. Hence m is measurable, being sum of measurable
functions. Noting that ¥; = ¢ o o ¢;, we see that ¥, is measurable. O
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3.2. Properties of the Hellinger-Kantorovich energy over %y

In this section we investigate some properties of the coercive version of the
Hellinger—Kantorovich energy at (17) when restricted to measures belonging to &y. To
be more precise, we consider the functional Z : &y — [0, 0] defined by

F(p) := inf{J, p,5(p, m, 1) : (m, 1) € M(Xv;RY) x M(Xy)}, (31)
where J, 4 5 is defined at (17) and o, f,0 > 0. We start by introducing the subset of &y

Hy = {pt—h( Jo,0 € Sy b VheAC, 1], Viy € AC(0,1:R).  (32)

As already mentioned in the introduction, we denote by AC? the set of absolutely
continuous functions with a.e. derivative in L* (see [12, Section 1.1] for a pre-
cise definition).

Lemma 3.8. Let p; = h(t)d,) € Hy, b € C'(V). Then h(b o y) € AC*[0, 1] with
(h(Db(())) = h(Db((£)) + h()Vb((1)) - 3(t) a.e.in (0,1). (33)

Proof. By definition of Hy, it follows that hy € AC?([0,1]; R?). For every 0 <t < s < 1

[h(£)b(1()) — h(s)b(y(s))] < Lip(b) h(t)[y(s) —y(1)] +|bll.c[h(s) —h(1)]
< Lip(b) [h(s)y(s) = h(8)y()] + 7]l Lip() [h(s) = h(£)] + [[bl|c|h(s) — h(2)].
Hence h(boy) € AC*0,1]. From the regularity assumed, we immediately infer the
product rule at (33) for ae. t&{h>0}. Moreover, using that h(boy) e
AC3([0,1); R?), we have (h(t)b(y(t)))" = 0 almost everywhere in {h = 0} ([43, Theorem
4.4]), so that (33) follows. O

Proposition 3.9. Let p, = h(t)6,) € Sv and (m,p) € M(Xy;RY) x M(Xy) be such
that ], g,s(p, m, i) < co. Then the followmg properties hold:

(i) There exist v:Xy — RY g: Xy — R measurable maps such that m =

vp, 1= gp,
(i)  9(t) = v(t,9(t)) for ae. t € {h > 0} and h(t) = g(t,y(t))h(t) for a.e. t € (0,1),
(iii)  The curve t— p, belongs to Hy.

Moreover the energy ], p s can be computed by

52 [h(t)’
h(t)

Conversely, let p, = h(t)o,;) € Hy and set m:=h(t)p(t) dt @y, u:= h(t)

dt ® 0,). Then (p,m, u) belongs to My and solves the continuity equation (14) in Xy,
Moreover ], g s(p,m, 1) < oo and (34) holds.

alom = | B OPR + Foh(t) i G)

Proof. Assume p, = h(t)d,) € v, (m, 1) € M(Xy;RY) x M(Xy) and J,, 5,5(p, m, ) <
00. In particular, by def1n1t10n of J, 5,5, we have that (p,m, u) solves (14). By Lemma
A4 we deduce (i). We now show that the second ODE in (ii) holds. By Lemma 2.1 we
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have h € BV(0,1), with distributional derivative given by mg(gp), where m: Xy —
(0,1) is the projection on the time coordinate. Thus, for all ¢ € C(0,1),

re(gn)(o) = |

0

1 1

J @(t)g(t,x) dp,(x) dt :J @(t)g(t,7(t))h(t) dt.
14 0

Since J,, g 5(p,m, 1) < 00, by (119) and continuity of h, we conclude that h(t) =
g(t,y(t))h(t) almost everywhere and h € AC*[0,1]. We will now show that the first
ODE in (ii) holds. By testing (14) against ¢(t,x) := a(t)b(x) with a € C}(0,1), b €
C'(V), we obtain

%va(x) dp,(x) = JV(Vb(x) v(t,x) + b(x)g(t,x)) dp,(x), for ae te(0,1),

since the right-hand side belongs to L?(0,1), thanks to Jensen’s inequality, (119) and
the assumption J, g s5(p,m, 1) < co. In particular, choosing b as the coordinate func-
tions, we deduce that hy € AC2([0, 1];R?) with (hy)'(t) = h(£)[v(t, y(t)) + y(£)g(t y(1))].
In particular y € AC2({h > c};RY) for every ¢ >0, given that V is bounded. Consider
now the test function ¢ € C1(({h >0} N(0,1)) x V). Using that h(t) = g(t,7(t))h(t)
almost everywhere, it is easy to check that the equation 0;p, 4+ div (vp,) = gp, can be
rewritten as
1

J:%M(tm(t,v(t))) dt+J Vo(t,y(t)) - (v(t,p(t)) = §(t)) h(t) dt = 0. (35)

0

Notice that the first integral in (35) vanishes, as ¢ is compactly supported. Set
o(t,x) == a(t)x; with a € C}({h > 0} N (0,1)) and x; coordinate function. Testing (35)
against ¢ yields (7). By (ii), Lemma A.4, and the energy bound, we also see that (34)
holds. We are left to show (iii). First we claim that v/hy € AC?([0,1]; R?). Indeed, for

¢>0and ¢ € C*(0,1), an integration by parts yields

! 1 _ (h(t)y(1)"  h(&)y(D)h(D)
Jh(t)y(t) dt = J{h>o}[ ht)+e  2(h(t) +¢)*?

. Wd’(t) o(t) dt,  (36)
where we used that hy € AC*([0,1];RY), (hy) =0 ae. in {h=0} (see, eg, [43,
Theorem 4.4]) and (hy)’ = hy + hy a.e. in {h > 0}. By (34), continuity of &, bounded-
ness of V, we can invoke dominated convergence and pass to the limit as ¢ — 0 in (36),
thus concluding that vhy € AC?([0,1]; RY) with derivative given by 2! x{h>0}fly/ Vh+
Vhj. A similar argument shows that /A € AC?[0,1] with derivative given by
271 X{h>0}f1 /v/h, concluding the proof of (iii) and of the direct implication.

Conversely, assume that p, = h(t)d,) € Hy and set m := h(t)j(t) dt ® 6,4, p:=
h(t) dt ® Oyp)- It is clear that (p,m, ) € My, as a consequence of the regularity on h
and . We claim that (p, m, i) solves (14) in Xy, Fix b € C!(V). By Lemma 3.8 we have
that h(b o y) € AC*[0, 1] and (33) holds. Thus, for all a € C}(0, 1),

JX a(t)b(x) dp,(x) dt = —J a(t)b(x) d,u—J a(t)Vb(x) - dm.

Xy Xy
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Therefore, by employing a standard density argument, (p,m,u) solves (14) in Xy,
Finally, by the regularity of h, y and (119), we conclude that J, ﬂ,g(p, m, 1) < oo and
(34) holds. O

Proposition 3.10. Let F : (¥y,d) — [0,00| be the functional defined at (31). The
domain of F is given by Hy, where we have

B B |h(t)[?
{h>0}5 /(t)l h(t)+7 h(t)

Moreover F is lower semi-continuous and its sublevel sets are compact.

Fp) =7 = |

+ ah(t) dt. (37)

Proof. We start by showing that the domain of % is given by Hy and that (37) holds.
Assume first that p* € &y and Z (p*) < co. We claim that exists a pair (m*,u*) €
M(Xy;RY) x M(Xy) such that

F(p*) = Jups(p" m*, 1*). (38)

Indeed the functional (m,p)— J, ps(p,m, ) is weak™ lower semi-continuous by
Lemma A.5. Invoking (120) and the direct method, we conclude that the infimum at
(31) is achieved, showing (38). Hence we can apply the direct implication of
Proposition 3.9 to (p*,m*, u*) to obtain that p* € Hy and that (37) holds. Conversely,
assume that p; = h(t)d,,) € Hy and set m:=7jp*, u:= (h/h)p*. By the converse
implication of Proposition 3.9 we know that (p*,m, u) € My and J, g s(p*, m, u) < oo,
from which we infer % (p*) < oo. Thus there exists a pair (m*, u*) € M(Xy;R?) x
M(Xy) such that (38) holds. An application of the direct implication of Proposition 3.9
to (p*, m*, 1*) yields (37).

We now prove that % is lower semi-continuous with respect to d. To this end,
assume that d(p”,p) — 0 as n — co. We claim that dt ® p! —*dt ® p, weakly* in
M(Xy). By density, it is sufficient to prove convergence for test functions ¢(t,x) =
a(t)b(x) with a € C.(0,1),b € C(V). Moreover, it is not restrictive to assume that
6], < 1. For a fixed ¢ > 0 there exists ¢ € C'(V) such that ||c||,, <1 and ||[b—¢| <
¢. For t € [0, 1] we have

| b dtor — o

<16 = clloo ot atvy + loellpavy) + “VC(x) d(pi = py)
< &(d(p",0) +d(p,0)) + Lip(c) d(p",p) < C+ Lip(c) d(p",p)

where the first term in the first line was estimated by (29), and the second one by (27).
Since the estimate does not depend on t, and ¢ is arbitrary, we conclude that dt ®
pl —*dt ® p,. We now claim that # is weak™ lower semi-continuous in ¥y consid-
ered as a subset of M(Xy) : Indeed assume that p" —* p in M(Xy). Without loss of
generality we can assume that sup, Z (p,) < oo along a subsequence, so that there exist
(m", 1") € M(Xy;R%) x M(Xy) such that, up to subsequences, Z(p")=
Jup,5(p", m", 1"). By (120) we infer the existence of a pair (m, u) such that, up to subse-
quences, m" —*m, " —* u. We can now invoke weak* lower semi-continuity of J, g,
(Lemma A.5) to conclude weak™® lower semi-continuity of %. Since dt ® p!! —* dt ® p,
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in M(Xy) whenever d(p",p) — 0, we infer lower semi-continuity of % with respect
to d.

Finally, we show that the sublevel sets of % are compact with respect to d. As # >
0 and is positively one-homogeneous, it is enough to show that Sz :={p € ¥y :
F (p) < 1} is compact. Let p, = h(t)d,) € Sz, so that, in particular, p € Hy. In order
to show compactness of Sz we first prov1de some preliminary estimates for the maps h
and hy. By (37) we immediately infer that ||h||; < 1/a. Let 0 < # < t, < 1. There holds

t

h(ty) — h(t gJ hsds_J h(s)|ds = J
(2) (1) t]| ()| (tl,tz)ﬁ{h>0}| ()| (t, )N{h>0} \/

L N2, 12 \ s
inGs) : e
(J{h>o} h(s) ds) <L h(s)ds) < 55 (L h(s)ds) ,

where we used that i = 0 almost everywhere in {h = 0} ([43, Theorem 4.4]), Holder’s
inequality, and the fact that # (p) < 1 in conjunction with (37). Since h > 0, choosing
1 € arg minh in the above estimate yields

(39)

IN

Calml <c Il < CR (40)

h h
| IIm_ﬂéz 1] <

where R:=max{|p| : pe V}, C:=2/(f6*\/a) +1/o. Recall that R < oo as V is
bounded. Thus, by (39) and (40),

" 1/2
|h(ty) — h(ty)| < <J h(s)ds) <Clh—8)"* foral 0<H<H<1 (41
31
Moreover, by (39)-(40) we can estimate
153

- - 1/2
J |B(s)y(s)|ds < RJ |h(s)|ds < R(J h(s)ds) < CR|t; — t2|1/2.
t t t

and also

t t 2 /4 1/2
Lmo<n¢<<£mwﬂ (wa%w&) <%ﬂa—mw

where we used Holder’s inequality, (37, 41), and % (p) < 1. By Lemma 3.8 and the
above estimates we thus infer

t . %)
|h(t1)y(0) — h(t2)y(t2)| < J |h(s)y(s)|ds +J |h(s)7(s)lds < C(R+287")|ts — to]"/?
f f
(42)
for every 0 <t; <t, <1. Hence, considering a sequence {p"}, in Sy with p! =
h,(t)0, (1)» by (40)-(42) we have that h, and h,y, are equibounded and equicontinuous.
Therefore Ascoli-Arzeld’s theorem implies that, up to subsequences, h, — h and

yphn — f uniformly, where h € C[0,1, >0 and f <€ C([0,1];R?). Define y(t):=
f(t)/h(t) if h(t) > 0. By the uniform convergence h, — h we have that y(t) € V for t €
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{h > 0}. Therefore, by setting p, := h(t)d,), Lemma 3.4 implies that p € &y. Since

h, — h pointwise and y, — 7 pointwise in {h > 0}, and since ||h,||,, < C, by domi-

nated convergence one immediately concludes that dt ® p)! —=*dt ® p, in M(Xy). We

can then invoke the weak* lower semi-continuity of # to conclude that p € Sz. We

are left to prove that p” — p with respect to d. Fix ¢ > 0. By the uniform convergences

h, — h and h,y, — hy, there exists N(¢) € N such that

€
|ha(t) —h(t)| < R’ | (), (t) — h(t)y(t)] <e  for all n>N(eg), te]0,1].

(43)

Let t € {h > ¢} and n > N(¢). Using the above condition we infer

1) = 10 = P10 =10 + O 1] < o R <2
Set m,(t) := min( t),h(t)). Then, by (29),
dr(pfspd) <4 +mn £) [7a(8) = »(8)|

< E‘i‘ |yn(t)| |mn(t) - hn(t)‘ + |]’ln(t)yn(t) — h(t)y(t)| + |’})(t)| |mn(t) _ h(t)|
< §+ 2R| By (t) — h(E)] 4 |Ba(£)7,(£) — R(£)p(£)] < (R7! 4 3)e.

Let now t € {h < ¢}. By triangle inequality and (29, 43)
dr(p?, p,) < hu(t) + h(t) < |ha(t) — ()] + 2h(t) < e(R7' +2).

In total we infer d(p", p) < Ce for n > N(¢), concluding the proof. O

4, The main decomposition theorem

In this section we will prove the decomposition result in Theorem 1.1 anticipated in the
introduction. Specifically, the proof is presented in Sections 4.1, 4.3, while Section 4.2
contains auxiliary results which are instrumental to the proof.

For reader’s convenience we will recall a few notations and the statement of Theorem
1.1. Let deN,d>1 and V C R? be the closure of a bounded domain of RY. We
denote the time-space cylinder by Xy := (0,1) x V. We also recall the definitions of
%y and ¥y at (25)-(26). The set €y is equipped with the flat metric dr defined at
(27), while ¥y is equipped with the supremum distance d defined at (28). We remind
the reader that (%y,d) is a complete metric space (Proposition 3.6). Moreover we will
also consider the set Hy introduced at (32). Let v: Xy — RY, g: Xy — R be given
measurable maps and consider the system of ODEs

7(t) =v(t,y(t)) ae. in {h>0}, (01
h(t) = g(t,p(t))h(t) ae. in (0,1). (02)
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For v and g as above, we define the following subset of Hy :
Hy* = {p, = h(t)d, € Hy = (hy) satisfy (O1)—(02)}.
Also define the subset of ¥y
Hy == {(hy) € Lv: |h]|, = 1}. (45)
Finally, define the subset of M™(¥y) :
M (Fy) = {a eEM™(Fy) : J ||| do(y,h) < oo},
»¢V

where the notation do(y,h) is a shorthand for expressing that the integral is computed
on all curves p, = h(t)d,; € Sy.

Definition 4.1. For a measure ¢ € M™ (%) we define the set function p? as
pr(E) = | ho) 7u0(0) dotrnh) (40

for all Borel sets EC V and t € [0, 1].

Remark 4.2. The map (y,h) — h(t)yg(y(t)) at (46) is measurable in (%y,d) by Lemma
3.7; therefore the integral is well defined, possibly unbounded. Assume in addition that
0 € M{(Zv). It is easy to check that p? at (46) belongs to M™ (V) for all ¢ € [0,1].
Moreover, if ¢ € Lll)f(V) for some fixed t € [0,1], then the map (y,h)— h(t)p(y(t))
belongs to LL(<v) and

| ot dop) = | hie) (o0 dotm. @)

Sy

This fact can be shown by mimicking the proof of [44, Theorem 3.6.1], in conjunc-
tion with Lemma 3.7. Similarly, if ¢ : V — RU{*o0} is measurable and the map
(v, h) = h(t)e(y(t)) belongs to Ly (Sy), then @ € L,,(V) and (47) holds.

We are now ready to state the main decomposition result of the article.

Theorem 4.3. Assume that Q CR? is the closure of a bounded domain, with
deN,d> 1. Let p, € Cy([0,1]; MT(Q)) be a measure solution of the continuity equa-
tion Oyp, + div(vp,) = gp, in Xq in the sense of (14), for some measurable maps v :
Xo — RY, g Xq — R satisfying

1
J J lv(t,%)|* + |g(t,%))* dp,(x) dt < oc. (48)
0Jo

Then there exists a measure 6 € M (Sq) concentrated on Hy,* N'Hgy, and such that
p; = p? for all t € [0, 1], where p? is defined at (46), that is,

|, 0@ do) = | mool) dotr)  orall pec@. o)
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Conversely, assume that 6 € M™(Sq) is concentrated on H,® and satisfies the bound

1
| ] B+ e o)1+ lgte o)) dotonn) ar < . (50
0JSq

Then o belongs to M| (%q) and p? defined by (46) belongs to Cy([0,1]; M (Q)) and
satisfies Oyp¢ + div(vp?) = gp? in Xq.

Remark 4.4. Condition (50) is natural in the following sense. If p, satisfies the assump-
tions of Theorem 4.3, then in particular the map ¢@(t,x):= 1+ |v(t,x)| + |g(t, x)]
belongs to L});,(Q) for a.e. t € (0,1), thanks to (48, 49) and narrow continuity of p,.

Therefore, by applying Remark 4.2, we see that the measure ¢ representing p, satis-
fies (50).

4.1. Proof of the converse implication of Theorem 4.3

We now prove the converse statement in Theorem 4.3. To this end, assume that ¢ €
M*(Fq) is concentrated on H® and (50) holds. Let us first show that ¢ € M} (¥q).
Let p, = h(t)é,) € Yo and t* € arg min h, which exists by continuity of h (see
Lemma 3.4). Using the definition of H,¥ we can estimate

h(t) = h(t") —{—J h(1) dr < J h(t) dt —I—J g(t,y(1))h(r) dt o —ae. in g,

t* 0 t*

for all ¢t € [0, 1]. In particular,
1
[hll < J h()(1+ |g(t,y(t)]) dt o —ae. in Lq, (51)
0

concluding that ¢ € M (¥q), thanks to (50). We now show that the curve t+ p?
defined by (46) belongs to C,([0,1]; M*(Q)). First, Remark 4.2 implies that p¢ €
MT(Q) for all t € [0,1]. For the narrow continuity, fix ¢ € C(Q) and notice that by
definition the map ¢+ h(t)@(y(t)) is continuous for all p, = h(t)d,) € Sa. Since o €
M[(#q) we can apply dominated convergence and conclude that also
t— [o@(x) dpf(x) is continuous. We are left to show that p” solves the continuity
equation 9;p7 + div (vp?) = gp? in Xq. To this end, fix b € C'(Q). By Lemma 3.8 the
map t+— h(t)b(y(t)) is differentiable almost everywhere and (33) holds. Therefore, for
all 0 <s <t <1 the following holds

4 o __ ti
J =] b =] [ Smu6@) dr orn)

S

=, Jth(f)b(v(r))+h(r)vz;(y<f)) “i(2) dr do(yh)
- L h(7) [b(7(2)g(z,7(7)) + Vb(3(7)) - v(z,7(x))] da(y,h) d,

Js
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where in the last equality we used that ¢ is concentrated on Hg,® and applied Fubini’s
Theorem, which we are allowed to do as the integrand is absolutely integrable by (50),
triangle inequality, and the fact that b€ C'(Q). In particular, the map
t— Job(x) dp?(x) is absolutely continuous with almost everywhere derivative given by

%Lzb(x) dpf(x) = L h(t) [b(y(£)g(t,7(t)) + Vb(p(t)) - v(t,9(t))] da(p,h)

= Lb(x)g(t, x) + Vb(x) - v(t,x) dp](x).

(52)

The second equality in (52) follows because v and g are measurable and hence W (¢, x) :=
b(x)g(t,x) + Vb(x) - v(t,x) is measurable in Q for a.e. t fixed. From (50) we have that
(p,h) — h(£)P(t,y(t)) belongs to L. (Fq) for a.e. t, and hence by Remark 4.2 we can apply
(47) to '¥(t, -) and obtain the second equality in (52). Identity (52) implies that p{ solves the
continuity equation in Xq in the sense of (14), for all ¢ € C!(Xq) of the form ¢(t,x) =
a(t)b(x) fora € CL(0,1),b € C'(Q), and hence, by density, for all the elements of C! (Xq).

4.2. Regularized solutions of the continuity equation

Before starting the proof of the direct statement in Theorem 4.3, we provide some
smoothing arguments which will be employed to construct the measure ¢. To this end,

let QCR% deN,d>1 be the closure of a bounded domain. Let v:Xg — R% g
Xo — R be given measurable maps, and p, € Cy([0,1]; M*(Q)) be such that 9,p, +
div(vp,) = gp, in Xq in the sense of (14). We extend v, g to zero to the space (0,1) x
R?. Similarly extend p, to zero so that p, € MT(R?). Notice that the extensions
(p,v,g) satisfy the continuity equation in (0,1) x R? due to the no-flux boundary con-
ditions. For x € RY% r>0 let B,(x) :={x € R? : |x| < r} and let £ € C*°(R?) be such
that £ > 0, supp ¢ C By(0) and [;«& dx = 1. For every 0 <& < 1 and x € RY set &,(x) :
= ¢ 9¢(xe™"). Note that supp &, C B,(0). Let R >0 be such that

{x e R?: dist(x,Q) <2} C V, V := Bg(0), (53)

and define

(54)

£ t T

& (tht) * fé g ., (gtpt) * és
T) g - L >

pri=(pex &)+ Ni=Eqys V= :
Pt
where v/ and g# are set to be zero in the region where pi(x) = 0, i.e., in (0,1) x (R?\
V). Here, with a little abuse of notation, we denote v, =v(t,-), vi =v(t,-),
& =g(t) & = g(t).

Lemma 4.5. Let p, € Cy([0,1]; MT(Q)) and v: Xq — RY, g : Xqg — R? be measurable.
Suppose that Oip, + div (vp,) = gp, in Xq in the sense of (14) and that (48) holds. Let
(pi,v5,g)) be defined as in (54). Then (pi dx,vi,g’) is a solution to 0O,p% dx +
div(vip? dx) = g'p? dx in (0,1) x R and p? dx — p, narrowly in M(V) as ¢ — 0, for all
t € [0,1]. Moreover v and g* satisfy (18) and (20), respectively. Finally, for every t € [0, 1]
there holds
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| 0 pitn) dx < | el doyto,
R Q (55)

| g0 pico) e < | 0P dpo
R Q

Proof. By the interplay between weak differentiation and mollification, it is immediate
to check that (pf dx,v},g’) solves the continuity equation in (0,1) x R? for all 0 < & <
1. The fact that p? dx — p, narrowly is an immediate consequence of the properties of
convolutions and of the convergence 7, — 0 as ¢ — 0. We now prove that v* satisfies
(18). Notice that by definition vi(x) =0 in R?\ (Q+ B,(0)) for every t € [0,1].
Moreover pi > ¢ in V for all t. Therefore

1

1 1! 1
[ sup v o<t | s (o) atol ar <

0 xeRd 0 xeQ+B, (0) 0

| ulani) di < oo
R

by (48). By direct calculation Vvé = [((vip,) * VE)p% — ((vip,) * &) (p, * VE)]/ (p°),
so that

(V] < e (vipy) * V| + 72 (vipy) # )l * V&
< [ IVE N+ Ve )] | 0] (o).

As t—p,(Q) is continuous, the quantity C(p) := max|p,(Q)| is well defined.
Therefore
1

J Lip(v*(t,-), RY) dt = J sup |Vvi(x)|dt < C(a)C(p)J

0 0 xeR? 0

J ve(x)dp,(x)dt < oo,
Q

where the last term is finite by (48). By similar computations and by (48), one can eas-
ily show that g* satisfies (20). We now prove the first estimate in (55). Fix t € [0,1]. If
p; = 0, there is nothing to prove. Otherwise we have

2 2
J |V8(t,x)|2 p‘;(x) dx = J |(prt) * éc| dx < J |(tht) * ésl dx
R? Q+B,(0) Pr* €t Q+B,0)  Pr* &

2
= | BR[| P dpyo)
R? R?
where in the last inequality we used Proposition A.7. Since v(t,-) vanishes in RY\ Q,

pr &,
we conclude the first estimate in (55). A similar argument yields the second estimate
in (55). 0

Remark 4.6. Notice that there exist nontrivial p, € Cy([0, 1]; M™(Q)) which solve the con-
tinuity equation (14) for v and g that satisfy the bound (48), but such that p, = 0 on an

open interval in [0,1]. For example, consider Q:=[0,1]% v(t,x) := (0,0), g(t,x) :=
(= 1/2) g0y (8 7(8) 5= (1/2,1/2), h() = exp (2= 2(1 — 26) )0y (8). Tt s
easy to check that p, := h(t)d, () belongs to Ct([0, 1]; M (Q)), solves (14) and (48) holds.
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The above is the reason why we add 5, to the definition of p} in (54), since other-
wise, we could have p, *x ¢ =0 for some ¢, independently on the chosen mollifier. We
remark that the addition of 7, is the main difference to the smoothing results [12,
Lemma 8.1.9] and [10, Lemma 3.10], where narrowly continuous measure solutions p,
to (14) are smoothed via p, * £ with ¢ being a mollifier.

4.3. Proof of the direct implication of Theorem 4.3

We divide the proof of the direct implication of Theorem 4.3 into two steps: First we con-
struct a measure 0 € M"(FLq) satisfying (49); Then we prove that ¢ is concentrated
on Hgt.

Step 1 - Construction of the measure a.

Let V := Bg(0), with R>0 as in (53). For each 0 < ¢ < 1 define p?, v}, g’ according
to (54). By Lemma 4.5 the triple (p} dx,v{,g) solves O0;p} dx + div (vip; dx) = g/p} dx
in (0,1) x R? and satisfies the bounds (18, 20, 55). As (48) holds, we can then apply
Proposition 2.4 and obtain the representation

& £ & & ¢ ‘g 5, X% (s))ds
pi dx = (X{,(0)g Ry () x|, Ri(1) = pi(x) eh 86X (56)

where X! and R’ are the unique solutions to the ODEs system

X.(0) = v(£.X:(1), Ry(1) = g (6, Xi(1)) Ri(1), (57)
X(0) =x R;(0) = pj(x),

for all t € [0,1]. We define ¢° by duality as

; ,_ . R . .
quo(%h) do*(y,h) == va (XX, &) dt) (L Ri(t) dt) dx, (58)

for all ¢ € C,(Fv). Here we adopted the notation ¢(y,h) to denote that ¢ is evaluated
on the curve t— h(t)d,). We claim that ¢° € M™(&y). First, we show that o, is well-
defined. Indeed, notice that pf > ¢ in V by construction. Hence by (56) and (20) we
estimate

1 1 t .
J Ri(t) dt = pg(x)J elgeXio g > C(e)ph(x) > C(e)e > 0, (59)
0 0

for all x € V, where C(¢) > 0 is a constant depending only on &. Also, by construction,

V(t,x) = 0 for x € RY\ Q+ B,(0) and t € [0,1]. Therefore from (57) we deduce that
X:(t) € V for each initial datum x € V and 0 < ¢ < 1. Thanks to Lemma 3.4, we then

obtain that the curve t»—>(f01 Ri(s) ds)_lRfC(t)éxi(t) belongs to &y for all x€ V.
Moreover the map

-1
1
x| t— (J Ri(s) ds) RE(t)0x: (1)

0
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is continuous from RY to (y,d), which is a consequence of the stability of solutions
to (57) with respect to the initial datum x € R, and of the fact that uniform conver-
gence of weights and curves implies d-convergence of measures in &y, thanks to (29).
This proves that the definition at (58) is well posed. We now estimate the total variation
of ¢°. By (54) and standard properties of convolutions we have that [|p; dx| ) <
[0l i) +&l V] for all t€[0,1], £ € (0,1). Hence, by testing ¢ against ¢ =1 and
using (56) we infer

1 1
lo*ll vy < JV L Ri(t) dt dx = JO 108 dxl| sy At < 1ol i) + VI (60)

Moreover ¢ > 0 by (59), showing that g, € M"(¥y). We also remark that ¢° is
concentrated on Hy, given that the curve t— (fol Ri(s) ds)flRfc(t)(SX;(t) belongs to Hy

for each x € V, thanks to the regularity of solutions to (57).
We now show that the family ¢° is tight as 0 < ¢ < 1, by proving that

sup J F (p,h) da*(p,h) < oo, (61)
0<e<1 Sy

where 7 : (¥y,d) — [0,00] is the functional defined at (31): Indeed assume that (61)
holds; by Proposition 3.10 we know that % is d-measurable and its sublevels are com-
pact. Moreover (%y,d) is a complete separable metric space (see Proposition 3.6). Thus
we can apply Proposition A.1 to conclude tightness for ¢°. Let us proceed with the
proof of (61). First notice that (58) can be tested against #, as ¢° > 0 and # is lower
semi-continuous with respect to the metric d (Proposition 3.10). Since ¢° is concen-
trated on Hy, by formula (37) and one-homogeneity of # with respect to h we have

[, 7om aron=[ | 3 uoro+ 5E

+ ah(t) dt do®(y,h).
(62)

By (56, 57) and (55) we estimate

1

| [oomso aar | [ wor mo a e

0

[ e xconP ) ax ar

1

_ Jl JRd|vS(t,x)|2 pi(x) dx dt < J

0 0

jwmwfwmwm
Q

and, in a similar fashion,

=&

/ 2 2
J J BOF 4 o :J J ROF 4, dx:J J 1956 XE(E)P RE(E) dx dt
7m0y h(2) vi)nsoy Ri(2) >0y dv

=LhJ%@@@Vﬁ@MMmSJ
>

0

1

kwuwfmm@dt
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Finally, by (60),
1 1
| ] ey de dor = | | R) de dx < ol +olV1 (63)
S v vV Jo

From the above estimates, and (48, 62), we conclude (61), proving that {¢°}, is tight.
Since {0}, is uniformly bounded by (60), we can apply the compactness result [44,
Theorem 8.6.2] to infer the existence of ¢ € M™(¥y) such that ¢, — ¢ narrowly as
¢ — 0. In particular, as & is d-lower semi-continuous, # > 0 and (61) holds, we can
apply (115) in Proposition A.2 to infer I%,g;(y’ h) do(y,h) < co. From the latter, we
see that o is concentrated on the domain of %, that is, on the set Hy
(Proposition 3.10).

We now prove that ¢ satisfies the representation formula (49). To this end, let ¢ €
C. (XV) and define the map (), h) := fo (t)) dt for p = hd, € Sv. We claim
that ¢° according to (58) can be tested agamst ‘I’ : indeed, first notice that ¥ is d-con-
tinuous. This is because the map (y,h)+— h(t)p(t,y(t)) is continuous for ¢ fixed, by
Lemma 3.7; if d(p”",p) — 0, then ||h, — k|, < d(p",p) by (29), so that {h,}, is uni-
formly bounded; thus by dominated convergence we conclude continuity for ¥, since
¢ is bounded, and since ¢(t,7,(t)) — ¢@(t,7(t)) when h(t) > 0. Moreover, thanks to
(63), we can estimate

e RjC ! &
j;P(X jR—d> (L’W dt> dx < lol(lplyy VD, (60

showing that the right-hand side of (58) tested against || is finite. The fact that ¢° can
be tested against ¥ follows immediately. By (58), the latter yields

[, wom aotum = | [ otexconro a ax= |

0

1

J o(t,x) pi(x) dx dt, (65)
v

where in the last equality we used (56). We want to pass to the limit as ¢ — 0 in (65).
Notice that the right-hand side passes to the limit since dt® p? dx —"dt ® p, in
M(Xy) : Indeed p! dx — p, narrowly in M(V) for all t (Lemma 4.5) and p? dx is uni-
formly bounded in M(V), as previously shown. Concerning the left-hand side of (65),
we first claim that the map |¥| is uniformly integrable with respect to ¢° according to
definition (116). To this end, for k>0 define Ay := {(y,h) € ¥v : [¥(p,h)| > k}. By
the definition of ¢° and by (63) we get

2 1
JI‘P(M)I do* (7, h) slj W )P dot(,h) s“””ooj jRi(t) dt dx
A k </V ko )vlo

||90||
< el s +1VD

concluding uniform integrability for |'V'|. Therefore we can invoke (117) and pass to the
limit as ¢ — 0 in the left-hand side of (65). After one application of Fubini’'s Theorem
we obtain
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1

| [ Horo.0) dotrn) ai— |

0 0

J o(t,x) dp,(x) dt, for all ¢ € C.(Xy).
v
(66)

We claim that (49) descends from (66). In order to show it, we first derive a
pointwise in time version of (66). We start by showing that O(t):=
vah(t)¢(t,y(t)) da(y,h) is continuous for all ¢ € C.(Xy) fixed. Indeed, the map
t—h(t)p(t,y(t)) is continuous for each fixed (y,h) € &y, by Lemma 3.4. Moreover,

by recalling that ¢° is concentrated on solutions of (57), and by arguing as in the proof
of (51), we can show that for all ¢ it holds that

j R(t)(1+ (6 7(8))]) dt do*(y,h).

0

j Ikl do*(y,h) sj
Sy

,
Py

Therefore, by employing (55, 56, 58, 63), and setting C := || p|| v(x,) + | V], we obtain

1
0

vanw d(nh) <C+ | j R (0 X:0)] de ds = C+ | | lgem)] i) d

1/2

. 1/2
<ct <j 0§ dxll g, dt) (] g )P pix) d di)

. 1/2
<cton (J |ttt do, ) dr) ,
oJv

and the last term is bounded by assumption (48). Finally, the map (y,h) € &y — ||h|
is d-continuous and non-negative, therefore by the narrow convergence ¢° — ¢ and
(115) we infer jk(/,VHhHOC da(y,h) < co. By dominated convergence we then conclude
continuity of ®. As a byproduct of this argument, we have additionally shown that ¢ €
M (Sv). Notice that also the map t— [, ¢(t,x) dp,(x) is continuous, as a conse-

quence of the narrow continuity of ¢+ p,. Testing (66) against ¢(t,x) := a(t)b(x) for
a € C0,1), be C(V), yields

L (b)) do(yh) = va(x) dp,(x), forall  beC(V), telo]. (67)

Fix t € [0,1] and b € C(V) such that b=0 in Q and b>0 in V \ Q. Recalling that p,
is concentrated on Q, from (67) we obtain a set E, C %y such that ¢(%y \ E;) = 0 and
h(t)b(y(t)) = 0 for all (y,h) € E;. In particular, by definition of b,

p(t)eQ if  h(t) >0, (68)

for all (y,h) € E;. Let Q C [0,1] be a dense countable subset and define E := N;cqE;, so
that (v \ E) = 0 and (68) holds for all (y,h) € E, t € Q, thatis, p({h >0} N Q) C Q
for g-a.e. (y,h) € &y. By density of Q and continuity of h,y we deduce y({h > 0}) C
Q for g-ae. (y,h) € ¥y, from which we conclude concentration of ¢ on Fq. Since we
already showed that ¢ is concentrated on Hy we also infer that ¢ is concentrated on
Hq. It is immediate to check that ¥q is d-closed in %y, and hence d-measurable.
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Therefore we can restrict ¢ to Sq to obtain a measure in M (¥q) satisfying (49),
as claimed.

Step 2 - o is concentrated on Hg?®.

So far we have constructed a measure o € M () concentrated on Hg and satisfying
(49). We now prove that ¢ is concentrated on Hgg , ie., that the ODEs (O1)-(02) hold
for o-a.e. (y,h) in Hq. This claim follows from two preliminary estimates, whose proof
we postpone for a moment: For ¥ € C.(Xq;RY),g € C.(Xq) and any ¢ € C'(0,1), there
exists a constant C > 0 depending only on ¢ and on the radius of V, such that

L.

j B (E) - ' (6) + Wy g (10 ) - o(t) dt

0

[ 090+ o) gter0)0(0) at) do < c[ g gl doi a9

0 Xo

dagcj 17— v+ 1g gl dp, d,

Xo

L.,
(70)

where Wy ¢ (t,7,h) := h(t)p(t) g(t,y(t)) + h(t) v(t,7(t)). We start by showing (O2). By
the energy bound (48) and Holder’s inequality, we can find two sequences {v,}, in
C.(Xo;RY) and {g,}, in C.(Xq) converging to v and g in L, (Xq), respectively. By (49)
and Remark 4.2 we get

L.

Hence by (69) with g := g,, (71), and triangle inequality we get

L,

as n — oo, for every test function ¢ € C!(Xg). Therefore

j BB (g6 (1)) — (6700 (1) dt\ do < ||qo||ooj g0 —gl dp, di. (71)

0 Xa

|| 100 + nogte )00 dt\ dr<c| Ig,~gl dp, di—0,

0

Jl h(t)o'(t) + h(t)g(t,y(t))p(t) dt=0 for all  (p,h) € E,, (72)

0
where o(¥q \ E,) = 0 and E,, depends on ¢. Let D C C}(0, 1) be a dense countable set and
E := NyepEy, so that ¢(Lq \ E) = 0 and (72) holds for all ¢ € D and (7, h) € E. Consider
@(t,x) == 1+ |v(t,x)| +[g(t,x)| and notice that ¢(t,) € L, (Q) for ae. te€(0,1),
thanks to (48) and narrow continuity of p,. Hence, by Remark 4.2 applied to ¢, we conclude
that o satisfies (50). Therefore there exists a set F with (%q \ F) = 0 and such that

L h(e)(1+ [v(57(2))] + [g(67(2))]) dt < o0 (73)

for all (y,h) € F. Consider now ¢ € C!(0,1) and ¢, € D such that ¢, — ¢ in C}(0,1).
As a consequence of (72), for any (y,h) in ENF we have

j h(0)¢/ () + h(t)g(t, (1)) (1) dt\ < pn — ol j h(t)(1 + lg(t,7(8))]) dt — 0,

0
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as n — oo, so that (72) holds for all ¢ € C!(0,1) and (y,h) € ENF. Therefore
h = g(t,7(t))h(t) (74)

in the sense of distributions for g-a.e. (y,h) € Sq. Since ¢ is concentrated on Hg, the
distributional formulation of (74) coincides with the a.e. one, so that (O2) holds. We
now prove (O1), which follows by similar arguments. First, by (49) and Remark 4.2, we

estimate
J La

snwmﬁmﬂLRﬂ'wn—w+mh—mdmdu

Xa

1
JomgUmm—Twmmm»Mﬂﬂda

0

where R is as in (53). By applying (70) to v := v,, g := g, and by triangle inequality we
infer

L,

as n — oo, for all ¢ € C}((0,1);R?). By reasoning as above, we can find a countable
dense subset D of C'((0,1); R?) and a set E with ¢(¥q \ E) = 0 such that

[H030 - 0) 4 ¥003) - 910

0

dGSCJ Vo — v+ |gn — g| dp, dt — 0,

Xo

10300 - 00) + ¥ 03) - 000 =0 o5)

0
for all ¢ € D, (y,h) € E. By (75) and (73), we conclude that
(h(t)y(8)) = h(t)y()g(t, (1)) + h(t)v(t, (1))
in the sense of distributions for all (y,h) € E N F. Recall that (74) holds in the sense of
distributions in EN F. Moreover ¢ is concentrated on Hq, whose elements satisfy hy €

AC?([0,1];R?) and the product rule holds (see Lemma 3.8). Hence we can find a set F
such that 6(%q \ F) = 0, and that (O2) and

h(t)y(t) = h(t)v(t,p(t)) forae. te(0,1),

hold for g-a.e. (y,h) € Hq. This establishes (O1).
We are left to show (69)-(70). We start by proving (69). First notice that the map

¢wmw=‘medw+wummﬂ0wu>m 76)

in the left-hand side of (69) is d-continuous: indeed, if d(p", p) — 0, from (29) we have
|hn — k||, < d(p",p), so that h, is uniformly bounded; by Lemma 3.7 it follows that
(y,h)— h(t)¢'(t) + h(t)g(t,p(t))@(t) is d-continuous for every t; thus continuity of ¢
follows by dominated convergence. Extend g to zero outside of Q and set g°:=
[(gp,) * &/ pi, with &, as in (54). As ¢ is continuous, we can test (58) against ¢, inte-
grate by parts, and use (56)-(57) to get
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[[ 00 )-+ h0g0050)00) ] do.0)

0

L.

(77)
< ||¢||OOJX g —g| ot dx dt < ||eo||wjx & — |+ g | o dx dt.
v Vv

We then estimate each term separately. First, recalling (54),

[t vaea |
Xy

1

0

|, ie-mmraldvar<| lg-gl ap a9
Q+B;(0) Xo

by standard estimates on convolutions of measures. Second,

Jx 18" =8l pi dx dt = [ |(gp,) * & — g(p, * & +¢)| dx dt
< Jx, 18pe) * & — g(py * &)| dx dt + e[y |g| dx dt.

The second term in (79) converges to zero as ¢ — 0. Moreover, by the uniform con-

(79)

tinuity of g, for each { > 0 there exists { > 0 such that |g(t,y) — g(t,x)| < { whenever
|x —y| <, t €[0,1]. Therefore, for all ¢ < { and x € V we have

@pe) * e — 8+ &)l(x) < L ( )|§(f>)’) —&(t,%)|¢(x —y) dp,(y) < T (pr + &) (%),
from which we infer

L @) * & — glpyx &) dx di < cj pox &, dx dt < Cllplyo

Xy

As ( is arbitrary, by (79) we conclude that [, |g° —g| p{ dx dt — 0. Thus, from (77)
to (78)

limsup J
e—0 Ly

As ¢° — ¢ narrowly, ¢ is concentrated on g, ¢ at (76) is continuous and non-
negative, by (115) we conclude (69). We now show (70). First notice that the function
in the left integral of (70) is d-continuous, a fact that can be proven similarly to (76).
Set C:= (R+1)|¢||, with R as in (53). Similarly to the above proof of (69), we can
integrate by parts and make use of (56)-(58), and estimate

Jyv

j h(0)¢/ () + h(Dg (8, (1)) (1) dr\ dot (3, h) < ||<p||ocjx g — gl dp, dt.

0

j B(E(E) - 0/ (1) + Wy g (b h) - (t) dt

0

do (7, h)

< CJX R(1) [|gs(t,X§(t)) —g(BXE0)| + (e x(0) - D(t,Xi(t))u dt dx  (80)

—c[ gl +lv =5l o dxdrc| lg—gl+lv=5l o dx dr o)
Xy Xv
where in the last inequality we employed (78) and the convergence jXV lg¢ —
g| pi dx dt — 0 to estimate the first term, and similar estimates involving v for the
second, and where o(1) — 0 as ¢ — 0. By passing to the limes superior in (80) and by
recalling that ¢° — ¢ narrowly, we can invoke (115) and obtain (70).
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Step 3 - g is concentrated on Hy,.

We are left to prove that ¢ is concentrated on Hg = {(h,7) € ¥q :||h]|, = 1}. By
definition, the measure o¢ € M (%) introduced at (58) is concentrated on H{, =
{(h,y) € Sv :||h||; = 1}, where V is as in (53). Also recall that we have proven ¢° —
o narrowly. Moreover note that the set H}, is closed in %y, as an immediate conse-
quence of (29). Hence, by (115), we get o(%v \ H},) < lim inf, o 0*(¥y \ H},) =0,
showing that ¢ is concentrated on H{,. As o is concentrated on %q, we conclude. This
ends the proof of Theorem 4.3.

Remark 4.7. As mentioned in the introduction, it would be interesting to extend
Theorem 4.3 to the case of Q = R“. Notice however that our construction of the meas-
ure ¢ is heavily reliant on the boundedness of Q: first, such assumption is needed in
proving compactness of the sublevels of the functional # (see (40) and estimates after),
which in turn allows to show tightness for the family ¢° (see (61) and argument imme-
diately after); second, boundedness of Q is employed to provide the uniform bound
(60) on the norm of ¢°. These arguments are crucial to obtain compactness for ¢° and,
consequently, the representing measure ¢ as their limit.

5. Uniqueness of characteristics and uniqueness for the PDE

The aim of this section is to apply Theorem 4.3 to relate uniqueness of the characteristics
with uniqueness of solutions for the continuity equation with given initial data and minimal

total variation. Throughout the section Q C R? with d > 1 is the closure of a bounded
domain. We denote Xg := (0,1) x Q. Moreover ¥ denotes the set defined at (26),
equipped with the distance d at (28). We remind the reader that (%y,d) is a complete met-
ric space (Proposition 3.6). Let v : Xo — R? and g : Xo — R be measurable maps and recall
the definition of H® at (44), that is, the set of regular characteristics of the ODEs system
(01)-(02). Also recall the definition of Hb at (45) Finally, we define the following set

Dyg:={(t—p,) €Cu([0,1;MT(Q)) : (ppvig) satisty dip,+div (vp,) =gp, and (48) }.

We will prove the following result:

Theorem 5.1. Let A C Q be a measurable set. Suppose that:

(Hyp) For each x € A the solution (y,h) € Hg® to (01)-(02) with initial value (x,1)
is unique in [0,7) for every T € (0,1) such that [0,7) C {h > 0}, ie., if (y, ), (72, h2) €
HGE solve (01)-(02) in [0,1) with initial data (x,1) and hy > 0, hy > 0 in [0,7), then h,
= hy and y, =y, in [0,7).

Then, for any initial data p, € M™(Q) concentrated on A, the continuity equation 0yp, +
div (vp,) = gp; admits at most one solution p € D, , with initial data p, and such that

Pl pmixg) S 1Plaexg)  for all p €Dy such that py = po. (81)

In the next section we provide several auxiliary lemmas and definitions, which will be
instrumental in proving Theorem 5.1. The proof of Theorem 5.1 will be carried out in
Section 5.2.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 2053

5.1. Auxiliary results

Define the following subset of ¥ :
Fo={(ph) € Fo:{h>0}=10,1]N(—00,7) for some 7 € R}. (82)

The first step is to prove that condition (81) implies that the measure ¢ obtained by
Theorem 4.3 is concentrated on .#,. To this aim, we define a cutoff operator on the
space Sq.

Definition 5.2 (Cutoff operator). Define the vanishing time map t : ¥ — [0, 00| as
(O, h) = {arg min {t €[0,1] : h(t)=0} if {re[0,1] : h(t)=0} #0,

00 otherwise,
and the cutoff operator G : Yo — S as G(),h) = (7, h 1j0,(n,y)))-

Lemma 5.3. Let T and G be as in in Definition 5.2. Then t is lower semi-continuous and G
is measurable. Moreover, G(¥q) C &, G(Ha®) C Het, and the set S, is measurable.

Proof. We start by proving that 7 is lower semi-continuous. Assume that d(p”, p) — 0
as n — o0. Set 1, := 1(p"), 7 := 1(p). Without loss of generality we can suppose that
° := lim,_ 7, = lim inf, ., 7, < co. Thus, by definition, we have that h,(z,) = 0 for
n sufficiently large. Therefore

(") < [h(2") = h(za)| + h(Tn) = Ba(Ta)]. (83)

Notice that ||k, — k||, — 0 by (29) and d(p", p) — 0. Hence the second term in (83)
converges to zero as n — 0o. Thanks to the continuity of h and the convergence 7, —
7 also the first term in (83) is infinitesimal, concluding that h(t*) = 0. Thus 7 < 7* by
minimality, from which lower semi-continuity follows.

We now show that G is measurable by constructing measurable maps G, : Yq —
Sq such that G,(p) — G(p) for all p € Fq. Indeed this immediately implies measur-
ability of G (see, e.g., [44, Corollary 6.2.6]). To this end, define the continuous maps
¢, : R — [0, 1] by setting

(pn(t) = X(foo,fl/n](t) —nt X(71/n,o)(t)-

Introduce T, : [0, 00] — C([0,1];[0,1]) by T,(s)(t) := @,(t —s) for all s € [0,00],t €
[0,1]. Tt is straightforward to check that T, is continuous. Thus the map

p= ((Tho1)(p)p) (84)

from g into C([0,1];]0,1]) X Fq is measurable, given that t lower semi-continuous,
and hence measurable. Moreover

(@, p) — @p (85)

from C([0,1];[0,1]) x Sq into Fq is continuous, since by triangle inequality and (29)
we can readily check that for all p' = h;6,, € Y, ¢; € C([0,1];[0,1]), i=1, 2, it holds

d(@1p", 020%) < (@19 020") + d(020" 020%) = [0 — P2l o1l + |02l (0" P7).

We now define G, : Yo — Yo by composing the maps at (84)-(85), that is,
Ga(p) = (Tuot)(p) p=(»h Tu(z(p))), for pé€ Fq.
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In view of the above, G, is measurable for all n € N. We now claim that G, — G
pointwise in %q. Indeed, by (29), we see that
Gl Glp)) = st Ot (6)— 0nlt ~ (o) for sl p=ho, € Fa (89
te[0,1
Fix p = ho, € Sq. If 1(p) = oo it is immediate to check that T,(z(p)) =1 in [0,1],
so that d(G,(p),G(p)) =0 for all n€N by (86). Similarly, if 7(p) =0, then
T.(t(p)) =0 in [0,1] and again d(G,(p),G(p)) = 0 for all n € N. Finally, assume that
0 < 7(p) < 0o and fix ¢ > 0. By continuity of h there exists ny € N such that 7(p) —
1/ny > 0 and

h(t) <e forall te€[t(p)—1/ny, t(p)]. (87)
For all n > ny we can compute

h(t)|710,2(0)) (8) — @, (t = 2(p))| =0, if t€[0,7(p) —1/n]Uz(p), 1],
h(E)| 110, (o)) (£) — @u(t — T(p))| = h(B)[1 + n(t — 2(p))| < h(t), if t€[t(p) —1/n1(p)).

Recalling (86)-(87) we then obtain d(G,(p),G(p)) < & for n > ny, and the proof of
the measurability of G is concluded.

The inclusion G(¥q) C ¥, is immediate from the definition of .. For the inclu-
sion G(HG®) C HG®, consider (p,h) € H® and notice that if t(y,h) = oo, then
G(y,h) = (y,h) and the thesis is immediate. On the other hand, if z(y,h) € [0,1], then
for every ¢ € C.(0,1) there holds
(. h)

h(t)p(t) dt

w(uh)
= - h(t)p(t) dt +h(z(y,h))e(z(y,h))

J h(t)X[O,r(;f,h))(t)(p(t) dt :J

0 0

= — | h(t)xpo, <51 ()1 (1), ) p(2) dt,

Jo
implying that hyg ., »)) € AC*[0,1] and (hyg ¢, n) (£) = Zjo, <5, 1) ()&(2(£), t)h(t) for
a.e. t€(0,1). Noticing that /hyp () = \/EX[O,r(y,h))’ by a similar argument we

obtain that /Ay +(,n) € AC?[0,1] and 1/h;{[o’fw,h))yGACZ[O, 1]. This shows that

(7 htpo, <5, 1)) € Hg?¥, concluding the claimed inclusion. We finally show that %7 is
measurable. Consider the map G:%q— Pox Lo defined as Gy, h):=
((y,h),G(y,h)), where Sq x Sq is equipped with the Borel o-algebra of the product
space. As g is a separable metric space (Proposition 3.6) and G is measurable, we
deduce that also G is measurable. Define the diagonal D := {((y,h),(y,h)) : (y,h) €
S}, which is clearly closed. As the set Fix(G) := {(y,h) € Yq : G(y,h) = (y,h)} coin-
cides with &5, we obtain that & = G~'(D), implying that ¥, is measurable. |
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Lemma 5.4. Let (t+— p,) € Cy([0,1]; M™(Q)) be in D,z and o0 € M| (Fq) be concen-
trated on H,®. Suppose that (49) and (81) hold. Then o is concentrated on ¥§,.

Proof. Suppose by contradiction that 6(%q \ /) > 0. Let 7 and G be as in Definition
52. As G is measurable (Lemma 5.3), we can consider the measure ¢ := Gyo €
Mt (Fq). By the inclusion G(¥q) C ¥ in Lemma 5.3, we have that ¢ is concen-
trated on ¥5,. Using that ¢ is concentrated on H® and the inclusion G(Hg®) C Hg®
(Lemma 5.3), we also deduce that ¢ is concentrated on Hg,*. By Remark 4.4 and by def-
inition of &, we get that ¢ satisfies (50) with respect to v and g. Therefore we can apply
Theorem 4.3 to ¢ and obtain a curve ¢+ p, in Cy ([0, 1]; M™(Q)) such that (49) hold
and 0;p, + div (vp,) = gp, in Xq. Additionally, using Remark 4.2, (49), and the defin-
ition of ¢, we obtain that

j j v(t,0) P+ lg (60 dpy() d < j j (6, 0)F + lg(6 ) dpy(x) dt < oo,
0JQ 0JQ

implying that (t— p,) € D,,. Moreover p, = p,, by (49) at time t=0 and definition
of . Finally, using again (49), we estimate
1 t(h,7)

L,Qh(t) do(y,h) dt = LJ h(t) dt do(y,h)

1/ =j 0

0

] (88)

<ol = [ | wo) at dot),
Fa\S g J1(hy)
Thanks to the continuity of h for every (y,h) € ¥q and the definition of ¢, we
know that Ll(h)v) h(t) dt > 0 for all (y,h) € Yo\ . Hence, as a(Fq \ Fg) > 0, from
(88) we conclude that ||p|| v x,) < llPl|pxq) contradicting (81). O

Next we show that we can disintegrate any measure obtained by the application of
Theorem 4.3 into a family of Borel measures parametrized by x € Q and concentrated
on the set

E.:={(ph) e HENFENHg + 9(0) = x}. (89)

Notice that E, is measurable for every x € Q. Indeed, by employing similar argu-
ments to the ones in Lemma 3.7, one can show that the map 7 : %5 \ {0} — Q defined
as n(y,h) :=7(0) is continuous. Therefore, as S5 NHey C g\ {0}, we can write
E. =1 (x) N Hg¥ N'Hg. Thus E, is measurable, given that Hy, is closed and Hg® is
measurable by Lemma 5.3.

Lemma 5.5. Let v:Xqo — R% g:Xq — R be measurable. Let p€D,, and o€
M (Fq) be such that (49) holds. Then there exists a Borel family of measures
{6*}1cq C MF(FLq) such that for every f € LL(Sq) we have
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| 50 dothr) = | | 7uh) do* ) dpyfn) (90)
HG NHENS & Q

E,

where E, is defined as in (89). Moreover ¢* is concentrated on E, for py-a.e. x € Q.

Proof. Set H := Hg® N'Hgp N S, and notice that it is measurable thanks to Lemma 5.3.
Consider the map n:%q — Q defined by n(y,h) :=7(0) xy(»,h) +2 xoon(y.h)
where z € Q is arbitrary, but fixed. Notice that, as h(0) > 0 for every (y,h) € H, the
map 7 is well-defined and measurable in ¥ using similar arguments as in Lemma 3.7.
Define then ¢ := oLH. We aim to show that 46 < p,. To this end, consider a Borel
set B C Q such that py(B) = 0. Define B = {(y,h) € H : 7(0) € B} and notice that B is

measurable as B = n~'(B) N’H. Then
B)= | h01(0) do > [ 10)a(0) do = | o) do,
implying that a( ) =0, since h(0) > 0 for all (y,h) € H. By direct calculation we have

(n46)(B) = ¢(B), and thus (146)(B) = 0, concluding that 746 < p,. Hence, as Lq is
a complete separable metric space by Proposition 3.6, we can apply Theorem A.3 to
6 € M (¥q), and obtain a Borel family of measures {0}, C M"(¥q) satisfying
the thesis. O

5.2. Proof of Theorem 5.1

Assume that t+ p, belongs to D, ,. Moreover suppose that p, is concentrated on
A C Q and that (81) holds. By Theorem 4.3, there exists ¢ € M (%q) concentrated
on Hg’g O’H}2 that represents p;, that is, (49) holds. Using Lemma 5.4, we infer that
o is concentrated on H := H,® NH4y N L. Thanks to Lemma 5.5 we can disinte-
grate ¢ into a Borel family {¢*},.o C M"(¥q) such that (90) holds, with ¢* concen-
trated on E, for py-ae. x € Q. We claim that assumption (Hyp) implies that E,
contains at most one point for all x € A. Indeed, suppose that (y],h}), (5, h3) € Ex.
As (YL hY) € 5 N'H, there exist t; € R such that {h; >0} =[0,1] N (—o0,7;) and
|||, = 1. Assume 1; < 15. As (Y5, hY) € HgS, we have that (%, h7) solves (01)-(02)
in [0,71). Now notice that by linearity of (02) and assumption (Hyp), we have that
yi(t) = y5(t) and hj(t) = h5(t)h}(0)/h5(0) for all t € [0,71). As ||hf||, =1, we then
infer (y},h}) = (y5,h5) in [0,7;) and by the continuity of h; we also obtain that
hj(t1) = h5(12) = 0. By definition of t7; we conclude that 7, =71, =71, so that
(y,hY) = (v5,h5) in [0,7). Since hj(t) = h3(t) =0 for all t+ > 1, we conclude that E,
contains at most one point. Thus, for py-a.e. x €E, E:={x€Q : E, # 0}, we have
0% = O,y With o i=[[0%]| pg(ep)> (75 1) € Ex. We claim that ¢, = 1/h*(0).
Indeed, by definition of E,, we have y*(0) = x. Using (49, 90), and ¢(¥q \ H) =0,
we then obtain

j 0(x) dpo(x) —j ch (0)p(x) dpo(x),
Q E
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for all ¢ € C(Q), showing that ¢,h*(0) = 1 for py-a.e. x € E. Again by (49) and (90) we
get

J, o) an) = | 00 dmu(a),

for every ¢ € C(Q), where we also used that ¢* = h%(o)é(yx)hx) for po-a.e. x € E. Thus p;
depends only on the initial data p,, ending the proof.

6. Extremal points of the Wasserstein-Fisher-Rao energy

Let Q Cc R? with d > 1 be the closure of a bounded domain of R. Let o, >0, 6 €
(0,00] and define # to be the unit ball of the functional J, g 5 defined at (17), that is,

B :={(p.mup) € Ma : Jyps(p,mpu) <1}

The aim of this section is to characterize the extremal points Ext %#. Notice that
Jup0c corresponds to the coercive version of the Benamou-Brenier energy, whose
extremal points were characterized in [13]. Hence here we focus on the case § < oc.
After the characterization of Ext 4 is obtained, we will show how this information can
be applied to the analysis of dynamic inverse problems which are regularized via the
optimal transport energy J, s s [34]. In particular we will obtain a sparse representation
formula for regularized solutions to the dynamic problem.

Before stating the characterization theorem we remind the reader the notations
%a, S a, Hq introduced at (25, 26, 32). In the following ¥q is equipped with the dis-
tance d at (28), making it a complete metric space (Proposition 3.6). We now define the
set of characteristics of (14) with energy J, g5 = 1, which will play a role in the charac-
terization of Ext 4.

Definition 6.1 (Characteristics). Define the set C of all the triples (p, m, u) € Mg of the
form p = h(t) dt ® 6,4, m = 7(t)p, u = h(t) dt ® O, that satisfy the follow-
ing properties:

(i)t~ h(t)d,) belongs to Ha,
(i) the set {h >0} :={tr € [0,1] : h(t) > 0} is connected,
(iii) ~ the energy satisfies ], 5 5(p,m, u) = 1.

The above definition is well-posed since (p, m, 1) belongs to Mg and solves the con-
tinuity equation (14) in Xq (by the converse of Proposition 3.9 with V = Q). Hence
(iii) is compatible with the definition of J, 4 s.

Remark 6.2. If (p,m,pn) € Mq with p € Hq, then an application of Proposition 3.9
(with V = Q) yields the representation
, & h(t)
s = psh) = | Dowopor + 55 M v an @ o
h>0} 2 2 h(t)
{r>0}
In particular J, g s is d-measurable, as a consequence of Proposition 3.10. For a meas-
urable set E C [0, 1] we define the localized energy
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Bo* h(t)?
2 h(b)

Fapsstomi) = B hwlioP + +oh(t) d.

En{h>0}

We are now ready to state the characterization theorem.

Theorem 6.3. For parameters o, 5,0 > 0 we have Ext B = C U {0}, where 0 denotes the
null triple in Mg.

The proof of Theorem 6.3 will be carried out in the next section, while in Section 6.2
we will detail the application of Theorem 6.3 to dynamic inverse problems.

6.1. Proof of Theorem 6.3

In order to simplify notations, we will denote J :=J, g5 and Jg := J, 5,5 for any E C
[0, 1] measurable.

Step 1. CU{0} C Ext# : Assume first that (p,m,u) =0, and that there exists a
decomposition

(0,0,0) = A(p"sm', u') + (1 = 2)(p?, m*, 41%) (92)
with (p/,m/, W) € % and A € (0,1). In particular by Lemma A.4 point (i) we have p/ >
0 and m/, ¢ < p/. Therefore (92) immediately implies that (p/,n, /) = 0, showing
that 0 € Ext 4.

Assume now that (p,m, u) € C, according to Definition 6.1. In particular the set

{h > 0} is non-empty, since J(p,m, ) = 1. Assume that (p',m', ul), (p>, m* 1*) € 4
are such that

(psm, ) = A(p",m', 1) + (1 = 2) (0%, m?, 11%), (93)
for some 4 € (0,1). We need to show that (p,m, u) = (p/,m/, /). By (93), convexity of
J (see Lemma A.5), and the fact that J(p/,nd, W) <1, J(p,m,u) =1, we have that
J(p/,m/, 1#) = 1. Thus, by Lemmas 2.1, A4 we infer p/ = dt®pi with t»—>p§ in
Cw ([0, 1]; MT(Q)). Set hy(t) := Pi(Q) and notice that h; is continuous by narrow con-
tinuity of p/. From the decomposition (93) and the uniqueness of the disintegration, we
thus obtain p’t = h;j(t)0,+) € Y, and in particular

h(t) = 2hi(t) + (1 — A)hy(t)  for every te€[0,1]. (94)
We will now show that there exists ¢ >0 such that
hy(t) =c hy(¢t) for all te€ {h>0}. (95)

We start by defining the sets E:= {h; > 0} N{hy > 0}, Z; := {h; > 0} N {h, =0}
and Z, := {h; =0} N {h, > 0}. These sets are pairwise disjoint, and by (94) we have
{h>0} =EUZ UZ,, where we recall that {h > 0} # () is connected by assumption.
We claim that E # (). Indeed, assume by contradiction that E = (), so that in particular
Z1 UZ, = {h > 0}. Notice that Z,, Z, are relatively closed in {h > 0} since they can be
written as Z; = {h > 0} N {h, =0}, Z, = {h > 0} N {h; =0}, due to (94). As {h > 0}
is connected, we deduce that either Z, =0 or Z, = 0. If Z, = (), then we would have
hy =0, which in turn would imply p' = 0. Hence by Lemma A.4 point (i) we would
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obtain J(p',m', ') =0, contradicting J(p',m!, u!) = 1. Similarly Z, = () leads to the
contradiction J(p?, m?, i) = 0. We therefore conclude E # {).

Claim: hy /h, is constant in each connected component of E.

Proof of Claim: Since J(p/,m/, 1) < oo, by Proposition 3.9, we have that p/ € Hg and
there exist v/ : Xq — RY, g : Xo — R measurable such that m/ = vip/, 1/ = g/p/ and

hi(t) = &t y(1)hi(t) forae. te(0,1), (96)
7(t) = v (t,9(t)) ae. in {h; > 0}. (97)

Moreover J(p/,m/, 1) = J(hj,7) can be computed via (91). By direct calculation, and
using (93) and (91) we have

Je(p> my ) = Je(hyy) = Je(Ahy 4 (1 — A)hy,y) ) .

| (B po* [ (A + (1 = Dhy)?

— L(/Jﬂ + (1= 2)hy) <§ + oc) dt +TJE h + = /1.)?2 )
QJ U+ (0= Wh) Gl e g
E

dt

7

= UE(th) + (1 - ;U)]E(hb V) +

2 hy + (1 = A)h, hy h,
so that
Je(psm, 1) = AJg(p',m', i)+ (1 —ﬂgglﬁ(pz,m2>u2) b i’ o8
B ’“)L G+ (1= Do)y
By proceeding as above, one can check that
Jz(pym, i) = 2z (pm, 1) s Tz (pom, ) = (1 — W)z, (0% m?, 12), (99)
where we used (93, 94), definition of Z; and [43, Theorem 4.4]. Moreover by definition
J(p'sm', 1) = Jz, (p', m's 1) + Je(p's ', 1t), (100)
J(p*m?, 1) = Jz,(p% m*, 1?) + Jp(p?, m?, 11?). (101)
By combining (98)-(101), we obtain
J(p,m, ) = A (p', m', 1)+ (1 —g»zl(pz,mz,uz) e
- ;°)L (;Jql(+1 (= ;bl)hzz))hlh2 ar

Now we can make use of the fact that J(p,m, i) = J(p/,mi, ) =1 to infer h hy =
hih, a.e. in E. In particular (h; /h;)’ = 0 a.e. in E, and hence the claim follows.

We are now ready to show (95). For an arbitrary C>0 and t € {h > 0} define the
map

hy (t

f(t) := min <hz8c> Lim>or T c Z{hy =0}

Notice that f is continuous and, since E # (), f is not identically zero. Moreover, as
(h1/hy)" = 0 ae. in E, the image f({h > 0}) is at most countable. Assume by contradic-
tion that Z, # (), and notice that f vanishes on Z,. Therefore f assumes at least two
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different values on {h > 0}, which is a contradiction, as f({h > 0}) is connected and,
consequently, uncountable. Hence Z, = () and {h > 0} = EU Z;. By interchanging the
roles of h; and h,, we can repeat the same argument and conclude that Z; = (), so that
E={h > 0}. As {h > 0} is connected, we thus deduce (95) directly from the fact that
(h/hy) =0 ae. in E.

We are now ready to conclude. Indeed, note that, as p’t = h;(t)d,), condition (95)
implies that p> = cp' and {h; > 0} = {h > 0}. In particular (97) yields v/(t,7(t)) = 7(¢)
ae. in {h >0}, showing that m* =c m'. Finally from (96) we infer g'(t,y(¢)) =
g2 (t,7(t)) ae. in (0, 1), from which we conclude p>=c p!. In total we have
(p%,m*, pi*) = c (p',m', 1it), and by J(p/,n?, 1#) = 1 and one-homogeneity of ] we con-
clude that ¢ = 1. Therefore (93) yields extremality of (p, m, u).

Step 2. Ext # C CU{0} : Let (p,m, u) € Ext 4. We can assume that (p,m, u) # 0, so
that J(p, m, ) > 0. By extremality of (p,m, ), convexity and 1-homogeneity of J, we
conclude that J(p,m,u) = 1. In particular by Lemma A.4 we obtain p >0 and m =
vp, it = gp for some measurable maps v : Xo — RY, g : Xq — R satisfying

1 [ B
Tomw =| | <5|v<t,x>|2 + B gt P +a> dp,(x) dt = 1. (102)

0JQ

By definition of J, we then have that 9,p, + div (vp,) = gp, in Xq. Thanks to Lemma
2.1 we also have p =dt® p, with t— p, in Cy([0,1; MT(Q)). Set h:= p,(Q), and
recall that /i is continuous. We first prove the following claim.

Claim: supp p, is a singleton for every t € {h > 0}.

Proof of Claim: Assume by contradiction that there exists ¢ € {h > 0} such that
supp p; is not a singleton. Then there exist disjoint Borel sets E;, E, C Q such that E; U
E, =Q and p;(E;) > 0 for i=1, 2. Invoking Theorem 4.3, there exists a measure ¢ €
M (¥q) concentrated on ‘Hy,® which represents p,, that is, (49) holds. Define the sets

A;:={(p,h) € Lo :y(t) € E, h(t) >0}, Z:={(y,h) € Lo : h(t) = 0},

and notice that A;, A,, Z are pairwise disjoint and g = A; UA, U Z. Also Z is d-meas-

urable, being d-closed, as it is readily seen by (29). We claim that also A; is d-measur-

able. To this end define the maps e : Yo — %o with e(p) :=p, and 7:%q — R?

where  7(y,h) =7 Jgo\ 101 (1 ) + Proy (1, h),  with p e R?\ Q arbitrary but fixed.

Notice that by construction e, is continuous from (¥q,d) into (%q,dr). Moreover 7 is

measurable since the map (y,h)+—y is dg-continuous in %q\ {0}. Since A; =
(moe;) " (E;), we have that A; is measurable. By applying (49), we get

0< pi(B) = | Wbz (@) dotonh) = | hii) dotu), (103)

7 Q i

which implies o(A;) > 0. Hence setting X, := A, X, := A, UZ we obtain a measurable

partition of %o with ¢(Z;) > 0. Notice now that the map W(t,x) := f|v(t,x)|*/2 +

po*|g(t,x)|*/2 + « belongs to L, (Q) for ae. t € (0,1), thanks to (102). Moreover ] is

non-negative and d-measurable by Remark 6.2. Since ¢ is concentrated on Hg;®, we can
apply Remark 4.2 to ¥ and obtain
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1

LQ](%M do(p,h) = J’%J h(t)¥W(t,y(t)) dt da(y, h) :J

0 0

1

J Y(t,x) dp,(x) dt =1,
Q

(104)

where in the last equality we again used (102). Define the coefficients 4;:=
IZ,-](V’ h) do(y,h). From (104) we infer 0 < 4,4, <1 and 4; + 4, = 1. We claim that
4i > 0. Indeed, the map fi(t) := [ h(t) do(y,h) for t €[0,1] is continuous by domi-
nated convergence and the fact that h[%||h||oO do(y,h) < oo, as 0 € M| (¥q). Notice
that by construction f;(t) > 0. Therefore by definition of J and continuity of f; we have

o= [ ) oty > |

%

Jl h(t) dt da(y,h) = Jlf,-(t) dt >0,

0

as claimed. The measure o|y satisfies the hypothesis of the converse in Theorem 4.3,

given that (104) holds and o is concentrated on H,*. Hence, the curve t— p} defined
by

|, 0t doiw) = | mpr0) dotuh),  foran g e (@ (105)

Zi
belongs to Cy ([0, 1]; M*(Q)) and solves the continuity equation with v and g. We can
now define (p',m’, ;') € M by setting p' := dt @ p!, m' := vp', i’ := gp’. Note that by
(49) and (105) we have that p! < p, for every t € [0, 1]. Hence
1 52 )
[ ] (Gt + B teo +2) dplte) de <1,
Q

0

by (102). Given that the above holds, by repeating the same arguments used to prove
(104), but applied to p! and oLy, we have that J(p',m', i) = ;. Consider the decom-
position

, 1 1
(psm, 1) = Z(Pl,mljﬂl) + Z(Pz,mz,llz), (106)

and notice that 4; ' (p',m', i) € # thanks to the condition J(p',m', i) = J; and to the
one-homogeneity of J. We assert that

1 1
l_l(pl’ ml):ul) 7é /12 /l_z(pz) m2>,u2)' (107)

Indeed we have that 4, 'p' # A, 'p? : If they were equal then by narrow continuity
we would have )uflpi‘l =/, lp?z. However by (103) it is immediate to check that
pt'(Ey) = p;(Ey) > 0 and pt(E;) =0, yielding a contradiction. Thus (107) holds and
(106) gives a non-trivial convex decomposition of (p,m, i), contradicting extremality.
This proves the claim.

In particular, we have shown that p, = h(t)d,() for some y:[0,1] — Q, h > 0. Thus

t— p, belongs to Lq, being narrowly continuous. Hence 7 € C({h > 0};RY) thanks to
Lemma 3.4. Moreover, as a consequence of (102) and Proposition 3.9, we have that

t— p, belongs to Ho, m = jp, = h(t) dt @ 8, and
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Bo* h(t)?
2 h(b)

p

ShOl 0P +
{h>0}

T(pymy 1) = J b oh(t) di = 1. (108)

In order to prove that (p,m,u) € C we are left to show that the set {h > 0} is con-
nected. To this end, assume by contradiction that {h > 0} = E; UE, with E;, E, rela-
tively open, non-empty and disjoint. For t € [0,1] set p} := h(t)yg (t)d,(). Note that as
{h > 0} is relatively open we have that 9" E; = 9% UE; N {h > 0} where we denote
by 9* the relative boundary with respect to the set A. Hence as 0% E; = () we deduce
that h(t) = 0 for every t € O*VE;. In particular the map ¢+ h(t)y; () is continuous in
[0,1]. Moreover y € C({hyg, > 0}; R?), hence Lemma 3.4 ensures that the curve t— p!
belongs to #q. We claim that ¢t p! belongs to Hg. In order to show this, we make
use of the information (¢t p,) € Hq. Notice that the set E; is relatively open in [0, 1],
given that {h > 0} is open. Thus E; = U°,I,, where {I,}, are pairwise disjoint inter-
vals in [0, 1]. By dominated convergence

|| B0z 000 de = fjj WOP(e) di = - fjj 00() di = [ 0z (00(0) a

for every ¢ € C!(0,1), where we used that h=0 on 9V, given that 9/*'I, C
OOUE;. Since h € AC*0,1], we infer that hyg, € AC*[0,1], with derivative h AE,-
Noticing that \/hyg, = Vhyg, by similar arguments we also deduce that vh € AC?[0,1]
and Vhyy € AC*([0,1];RY), thus concluding (¢ p!) € Haq. Set

o= g (OB dt @By, =0 i = 1 (O 3,
Thanks to Proposition 3.9 we have that (p’, m’, i') belongs to Mg and

B h(t)

2 h(t)

10!, mi, 1) = JE gh(t)|j;(t)|2 + oh(t) dt < oo.

Set 4; := J(p',m', i) and notice that 0 < /; < 1, 4; + 4, = 1 thanks to (108) and def-
inition of E;. By construction we have yp + yp, = 1 in {h > 0}. By recalling that h=0
ae. in {h >0}, we have that a decomposition of the form (106) holds. As
AN (ph,mt 1) # 2y (0% m?, ) and A7 (pf, mi, i) € 4, this contradicts the extremal-
ity of (p,m,p). Thus we conclude that the set {h > 0} must be connected, ending
the proof.

6.2. Sparsity for dynamic inverse problems with optimal transport regularization

In this section we analyze the problem of reconstructing a family of time-dependent
Radon measures given a finite number of observations. More precisely, let H be a finite
dimensional Hilbert space and K : Cy([0, 1]; M(Q)) — H be a linear operator which is
continuous in the following sense: given a sequence {(t— p/)}, in Cy([0,1]; M(Q)),
we require that

n
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p} — p, narrowly in M(Q) forall te€(0,1] implies Kp" — Kp in H.
(109)

For a given datum y € H, we aim at finding a solution p € Cy([0,1]; M(Q)) to the
ill-posed inverse problem

Kp =y. (110)

We regularize (110) via the Hellinger-Kantorovich-type energy J, s s defined at (17),
following the approach in [34]. To this end, introduce the space

Maq = Cy([0, 1; M(Q)) x M(Xo; R?) x M(Xq; R),
and define the Tikhonov functional G : Mg — R U {co} by
G(p, m, p) == F(Kp) + Ju, p,5(p> m, ), (111)

where F: H — R is a fidelity functional assumed to be convex, lower semi-continuous
and bounded from below. We then replace (110) by
min  G(p, m, ). (112)
(o> my W)EM @y

Note that G is proper, since J,, 3 5(0,0,0) = 0. Moreover under the assumptions on K
and F, problem (112) admits a solution: This is indeed an immediate consequence of
the direct method and of Lemma A.5.

It is well-known that the finite-dimensionality of the data space H promotes sparsity
in the reconstruction of solutions to (110), in the sense that there exists a minimizer to
(112) which is finite linear combination of extremal points of the ball of the regularizer.
This observation was recently made rigorous in the works [40,41] (see also [45,46]).
Since in Theorem 6.3 we characterized the extremal points of the ball of ], 3 5, we can
specialize the representation results in [40,41] to our setting, and obtain the following
statement for sparse minimizers to (112).

Theorem 6.4. There exists a solution (p, i, jt) € Mg to (112) which is of the form
p
(p,m, 1) = Zci (p',m', '), (113)
i=1

where p < dim(H), ¢; > 0, Y0, ¢ci = Jup.5(p, i, t) and (p',m', i) € C, with C is as in
Definition 6.1.

In order to prove the above theorem, it is sufficient to apply Theorem 6.3 and check
validity for the assumptions of Corollary 2 in [40]. The proof is a straightforward adap-
tation of the one of Theorem 10 in [13] (which deals with the case 6 = 00) and is hence
omitted.

We now present an application of Theorem 6.4 to dynamic inverse problems, in a
simplified case of the framework introduced in [34]. To be more specific, let #; < ... <
ty be a finite discretization of the time interval [0, 1]. The aim is to reconstruct an elem-
ent of Cy([0,1]; M(Q)) by only making observations at the time instants ¢, Hence let
H; be a family of finite-dimensional Hilbert spaces and set H = x¥  H;, normed by

yllz == on, ] y,»||f{[. Let K; : M(Q) — H; be linear and weak™ continuous operators.
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For a given observation y € H, consider the problem of finding p € C([0,1]; M(Q))
such that

Kip,, =y; foreach i=1,..,N.

Following [34], we regularize the above problem by

min —
2

(psmy H)EM i

1
1Koy, = yillf, + T .0 (s s ). (114)
=1
To recast (114) into the form (112), define the linear operator K:
Cw([0,1]; M(Q)) — H as Kp := (Kyp;,, ..., Kyp,,) and note that K is continuous in the
sense of (109). Moreover define the fidelity term F: H — R by F(x) :=1||x — y| .
which is convex, lower semi-continuous and bounded from below. In this way (114) is
a particular case of (112) and Theorem 6.4 applies, thus showing the existence and
characterizing the structure of sparse solutions to the discrete reconstruction problem
regularized via the Hellinger-Kantorovich energy.
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Appendix A

[A.1.] Properties of narrow convergence

We give some results about narrow convergence of measures. These results are classical and are
stated for probability measures in the literature: here we adapt them to positive measures. For a
complete separable metric space Y, we say that a family of measures A C M(Y) is tight if for
every ¢ > 0 there exists a compact set K, C Y such that |u|(Y \ K,) < ¢ for all 4 € A. The next
proposition provides a tightness criterion for positive measures. The proof follows as in [12,
Remark 5.1.5], and is hence omitted.

Proposition A.l. Let Y be a complete separable metric space and A C M™(Y). Suppose that
there exists a measurable function & : Y — [0,00] such that {y € Y : F(y) < ¢} is compact for
each ¢ > 0 and sup . 4 [ 7 (y) du(y) < oc. Then A is tight.

Finally, we provide a result which clarifies the behavior of narrowly convergent sequences of
positive measures when tested against lower semi-continuous, or continuous unbounded inte-
grands. The proof easily follows by combining [12, Lemma 5.1.7] with a scaling argument.

Proposition A.2. Let Y be a complete separable metric space. Assume that {p,},. p belong to
MT(Y) and p, — u narrowly as n — oo. If g : Y — [0, 00] is lower semi-continuous then

| g0 duty) < timint | ¢0) din). (115)

Iff: Y — R is continuous with |f| uniformly integrable with respect to {u,,},, that is,

O dua(y) = 0, (116)

lim supJ
k=00 el Jyevif(y) =k}

then it holds

tim | 707 duy0) = [ 10 o) (117)

[A.2] Disintegration of measures

In this section we state and prove the disintegration theorem employed in Section 5. This result
is a straightforward consequence of [12, Theorem 5.3.1].

Theorem A.3. Let Z, X be Radon separable metric spaces and let p € M*(Z), v € M*(X) be
given. Let m:Z — X a measurable map such that ngp < v. Then there exists a Borel family of
measures {1} ..y C M™(Z) such that

(i) w(Z\ 7 '(x)) =0 for v-ae x €X,
(ii)  for every function f € LL (Z) there holds

| f@ dute) = | [ 162) aiete) avto), 119)
Z xJz
(iii)  if p is concentrated on E C Z, then y* is concentrated on n~'(x) NE for v-a.e. x € X.

Proof. Without loss of generality we can suppose that 1 # 0. By a rescaling argument we can
assume that |[p[|,z =1 as well. Thanks to [12, Theorem 5.3.1] there exists a Borel family of

measures {ii*}, .y C M (Z) such that i*(Z\ n~!(x)) =0 for (mgu)-ae. x €X, and that (118)
holds with p* and v replaced by fi* and mgu, respectively, for every Borel function f:Z —
Omyp)

[0,00]. For all x € X set p* := —— (x) [i*. We immediately obtain that y* € M™(Z) is a family
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of Borel measures satisfying (i). Moreover, it is easy to check that u* satisfies (118) for every
Borel function f : Z — [0,00]. If f € L,(Z), by (118) we get f € L,.(Z) for v-ae. x € X, yielding
(ii). Finally, (iii) is implied by (ii). O

[A.3.] Properties of B; and J,, B, 6

In this section we gather some of the properties of the functionals Bs and J, g s introduced in
Section 2.2. The interested reader can find the proofs of such results in Proposition 2.6 and
Lemmas 4.5, 4.6 in [34].

Lemma A.4 (Properties of Bs). The functional Bs defined in (16) is non-negative, convex, one-
homogeneous and sequentially lower semi-continuous with respect to the weak™* topology on Maq.
Moreover it satisfies the following properties:

(i) if Bs(p,m,p) < oo, then p >0 and m,u < p, that is, there exist measurable maps v :
XQ—>Rd,g:XQ—>Rsuch that m = vp, u = gp,
(i) if p>0and m = vp,u=gp for some measurable v: Xq — RY, g : Xo — R, then

1
Bs(p,m, u) = J Y5(1,v,g) dp = EJ (|v)* + 6%*¢%) dp. (119)

Xo Xa

Lemma A.5 (Properties of J, g 5). Let o, f,0 > 0. The functional ], g s is non-negative, convex,
one-homogeneous and sequentially lower semi-continuous with respect to the weak™ topology on
Maq. For (p,m, i) € Mg such that J, g s(p, m, i) < oo we have that

max{a[|pl| i) Clmllppeamey Clal s} < Joup.o(psms ) (120)

where C := min{2a, fmin{1,%}}. If in addition the sequence {(p",m" ")}, in Mq is such that
sup, Ju, p,s (0", m", ") < oo, then p" =dt ® p" for some (t— pt) € Cy([0,1]; M*(Q)) and there
exists (p,m, ) in Do with p = dt ® p,, (t+— p,) € Cy([0,1]; M (Q)), such that, up to subsequen-
ces, (p",m", ") —*(p, m, ) weakly* in Mgq and p" — p, narrowly in M(Q) for every t € [0,1].

[A.4.] Proof of Proposition 3.6

Remember that %y = C([0,1]; %v) by Proposition 3.5. Therefore, in order to prove that (<v,d)
is complete and separable, it is sufficient to show that (%y,dr) is complete and separable (see
Theorem 4.19 in [47]). Let us first prove that (%y,ds) is complete. Hence, let p" = h,d, € Gy
be a Cauchy sequence. By (29) we have |h, — h,,| < dg(p", p™) for all m,n € N. Therefore h, —
h for some h > 0. If h=0, by (29) we have dg(p",0) = h, — 0, showing that p" converges to
0 € €y. Assume now that h> 0. Notice that |y, — 7,,| < 2 for sufficiently large m, n, otherwise
we could extract a subsequence (not relabelled) such that dp(p", p") = hy + hm — 2h >0 as
m,n — oo, which contradicts p” being Cauchy. By (29) and the facts that h, — h > 0 and that
p" is Cauchy, we get that y, is Cauchy, so that y, — y € V. An application of (29) shows that
p" — p := ho, with respect to dr, concluding completeness. The fact that (%y,d) is separable is

immediate: indeed the countable set % := {héy : he[0,00)NQ, ye VN Qd} C %y is

dp-dense in €y, since V is the closure of a domain.

[A.5.] Comparison principle

In this section we recall a comparison principle for signed measure solutions of the continu-
ity equation.
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Proposition A.6 (Comparison principle). Let p, : [0,1] — M(R?) be narrowly continuous and
v:(0,1) x R - R% g:(0,1) x R? = R be measurable. Suppose that ,p, +div (vp,) = gp,
holds in (0,1) x R? in the sense of (14). Assume that p, < 0, as well as (18, 20) and

[, L vte0+ lste.0)) dlolo) de < . (121)

Then p, <0 for all t € [0,1].
A proof of the above proposition can be found in [10, Lemma 3.5]. We just point out that in
[10, Lemma 3.5] it is assumed that the narrowly continuous curve t— p, € M(RY) satisfies

jol |p,|(B) dt < oo for all BC R? compact. However this condition is always fulfilled, since p,
automatically satisfies sup,(q, 1) [[0¢[| pqre) < 00, as shown in [34, Proposition A.3]. Moreover the

statement of [10, Lemma 3.5] also requires that g is bounded: after carefully inspecting the proof,
we noticed that such assumption is not needed.

[A.6.] Property of convolutions
Here we recall a result on convolution of measures, which can be found in [10, Lemma 3.9].

Proposition A.7. Let p>1, p € M"(RY), E€ M(RY,R™) and ¢ be a convolution kernel on
R?. Suppose that E is absolutely continuous with respect to p. Then,

J Ex¢ dE|f
Rri|p* &

P
(p+0) dxgj dp,

R4

dp
where dE/dp is the Radon-Nikodym derivative of E with respect to p.
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