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Abstract: Robotic agents are now ubiquitous in both home and work environments; moreover, the
degree of task complexity they can undertake is also increasing exponentially. Now that advanced
robotic agents are commonplace, the question for utilisation becomes how to enable collaboration
of these agents, and indeed, many have considered this over the last decade. If we can leverage the
heterogeneous capabilities of multiple agents, not only can we achieve more complex tasks, but we
can better position the agents in more chaotic environments and compensate for lacking systems in
less sophisticated agents. Environments such as search and rescue, agriculture, autonomous vehicles,
and robotic maintenance are just a few examples of complex domains that can leverage collaborative
robotics. If the use of a robotic agent is fruitful, the question should be: How can we provide a world
state and environment mapping, combined with a communication method, that will allow these
robotic agents to freely communicate? Moreover, how can this be decentralised such that agents can be
introduced to new and existing environments already understood by other agents? The key problem
that is faced is the communication method; however, when looking deeper we also need to consider
how the change of an environment is mapped while considering that there are multiple differing
sensors. To this end, we present the voxel grid approach for use in a decentralised robotic colony. To
validate this, results are presented to show how the single-agent and multiagent systems compare.

Keywords: SLAM; robotic colony; robotic communication; decentralised robotic communication;
heterogeneous robotic vision; voxel grid; environment mapping

1. Introduction

Modern robotics is a complex field that now permeates almost all areas of work,
our home life, and certainly the research community. Indeed, homes contain robotic
vacuums, smart cameras that can scan packages or people at the front door, and even fridges
that can determine the contents and optimise the temperature setting [1–6]. Of course,
this is complemented through industry, from manufacturing, often thought to be the
most common place for robotics; however, offerings now come from the municipality to
agriculture, military to humanitarian aid. With this growing prevalence in robotics, there is
an opportunity to explore how the already ubiquitous set of robotic agents can be combined
within a domain. Moreover, proper utilisation of already existing agents would forgo the
need to invest time in new agents. For example, in a domestic setting, there may be a robotic
vacuum in the house; the movement and vacuum function of the agent is unique, but if
there is already a CCTV (closed-circuit television) unit in the house, could this not be used
to help navigate the vacuum agent? Furthermore, if the vacuum agent has inbuilt LiDAR
(light detection and ranging), would it not be good to pass this more detailed floor plan
layout to the CCTV, in order to complete its understanding of the environment? Obviously,
this is not an unsolvable problem, as much research is published on just this topic; however,
if the agents are not manufactured by the same company or are not connected to the same
central server, it could be impractical to take this simple problem to a real conclusion.
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A similar narrative can be found in humanitarian efforts. Imagine a dynamic, ever-
changing environment too dangerous for humans to navigate or assess. This scenario
could arise from various natural disasters, such as an earthquake resulting in a collapsed
building. In such situations, a robotic agent could be employed to map the area, identify
objects or crucial points within, monitor changes over time, and, ultimately, interact with
the environment to offer assistance.

However, can we realistically expect a single agent to be specifically designed for such
a rare occurrence? Moreover, even if multiple agents are deployed, the environment may
not remain static or offer easily identifiable reference points. Additionally, in this critical
scenario, should we assume the presence of a pre-established centralised coordinator or
server infrastructure? It becomes evident that these impractical expectations in a complex
environment are neither feasible nor realistic.

Thus, the challenge lies in advancing collaborative robotics to capitalise on the signif-
icant progress already achieved in the field. In this paper, an approach is presented that
utilises a voxel representation of the environment, and multiple agents utilising that voxel
grid in order to better estimate the agent’s pose and understand the environment.

The main contribution of this paper is the design of a voxel grid that incorporates
environmental information, making it suitable for multi-agent systems. The key aspects of
the design are as follows:

1. Voxel grid that shows persistent probability over time—this is a 3D representation of an
environment where each voxel corresponds to a small volume in space. The grid
is used to model the occupancy probability of each voxel over time, indicating the
likelihood of a particular voxel being occupied by an object or obstacle. The persistent
probability over time refers to the ability of the grid to maintain the occupancy
probabilities of voxels over a period, even as new observations or data are added.
This means that the grid can be updated with new information, allowing it to adapt
to changes in the environment.

2. Voxel grid that preserves information over time and contains detailed information—this is a
grid that preserves detailed information about the environment and tracks changes in
that environment over time. The voxel grid can store information such as occupancy
probabilities, surface normals, color, and texture, allowing for a more accurate repre-
sentation of the environment. Additionally, the voxel grid can be updated with new
information over time, allowing it to adapt to changes in the environment.

3. A voxel grid that can be integrated into a multiagent swarm—this is a 3D representation
of the environment that can be used by multiple agents in a coordinated manner.
The ability to integrate a voxel grid into a multiagent swarm is useful in a wide range
of applications, such as in robotics, where multiple agents may be required to work
together to accomplish a task.

4. A voxel grid that can accommodate multiple sensor types—this is a 3D representation of
the environment that can be constructed by integrating data from multiple sensors.
The key benefit of this approach is that by utilising a voxel grid, the information can
be represented in a uniform manner regardless of the sensor type.

In this paper, a solution to these issues is proposed through a framework to utilise a
decentralised robotic colony for environment mapping.

This paper is set out as follows: Section 2 considers the state of the art; Section 3 closely
examines the proposed solution; and Section 4, finally, includes results and discussion.

2. Materials and Methods
2.1. The Problem and Why We Need Framework

Multiagent systems are most effective in diverse, dynamic, or even chaotic environ-
ments. A successful example is [2], but a more rigid communication architecture would
require complex setup and adjustment of the communication method when introducing a
new type of agent.
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Consider a scenario involving a rescue robot capable of removing rubble and a drone
surveying the environment to find survivors and provide a path for the other agent.
This real-world problem highlights the benefits of multiagent systems and the challenges
encountered with traditional SLAM (simultaneous localisation and mapping) methods.
The issues identified in the previous section are informative in this context.

The first problem arises when the drone maps a “safe” path for the ground agent but
the latter cannot locate the same landmarks due to object obfuscation, sensor noise, or bad
orientation. The dynamic and chaotic nature of the environment exacerbates this issue,
as the ground agent may not observe the landmark correctly, or the landmark may no
longer exist.

This problem is further compounded by the fact that the state space in SLAM is
fully correlated to robot pose and environment landmarks [7], leading to issues with
full observability

To the best of our knowledge, there has not been a direct comparison of our approach
presented in this paper with existing methods. Therefore, to provide a fair evaluation of
our contribution, we include a summary. The summary is of recent work to identify areas
where our approach offers novelty and improvement. Table 1 lists recent contributions in
the relevant fields and the challenges they faced.

Table 1. Summary of recent work in the field with key findings and challenges.

Title Methodology Key Findings Challenges

A Versatile and Efficient
Stereo Visual Inertial SLAM

System [8]

Stereo visual-inertial SLAM
system

Outperformed state-of-the-art
SLAM systems on several

datasets while being
computationally efficient.

Difficulty in handling
featureless environments and

robustness to
lighting changes.

ORB-SLAM3: An Accurate
Open-Source Library for
Visual, Visual–Inertial,

and Multi-Map SLAM [9]

Visual–inertial,
and multi-map SLAM system.

Achieved state-of-the-art
performance on several
datasets and provided a

unified SLAM framework.

Difficulty in handling
large-scale environments and

varying
camera configurations.

Real-time LiDAR Odometry
and Mapping on Variable

Terrain using Surface Normal
Voxel Representation [10]

LiDAR odometry and
mapping using surface

normal voxel representation.

Improved accuracy of LiDAR
odometry and mapping on

variable terrain compared to
traditional approaches.

Difficulty in handling
dynamic environments and

varying
LiDAR configurations.

A Hierarchical Point Cloud
Registration Method Based on

Coarse-to-Fine
Voxelisation [11]

Hierarchical voxel-based
point cloud registration

method.

Improved accuracy and
robustness of point cloud
registration compared to

existing methods.

Limited scalability to
large-scale point clouds and

difficulty in handling
featureless areas.

Voxel Map for Visual
SLAM [12]

Voxel hashing-based
monocular visual-inertial

SLAM system.

Achieved state-of-the-art
performance on several
datasets and improved

robustness to camera motion
and occlusions.

Difficulty in handling
large-scale environments and
varying lighting conditions.

Voxel-Based Representation
Learning for Place

Recognition Based on 3D
Point Cloud [13]

Place recognition based on
voxel grid.

The proposed voxel-based
representation learning

method is effective for place
recognition using 3D point

clouds. The method
outperforms state-of-the art

methods in terms of accuracy
and robustness to changes in

viewpoint and lighting
conditions. The method can be
trained end-to-end using only
raw 3D point clouds without

the need for additional
preprocessing steps.

Limited to place recognition
tasks and may not be suitable

for other applications that
require a more detailed

understanding of the 3D
environment, such as object

recognition or scene
reconstruction.
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2.2. SLAM

SLAM [14], originally developed by Hugh Durrant-Whyte and John J. Leonard, based
on earlier work by Smith, Self, and Cheeseman [15,16] and the first paper to declare the
complete process of SLAM, is the method by which an agent maps an environment whilst
understanding its position within the newly mapped environment. The importance of
this is obvious within the context of a robotic colony mapping an environment. This
methodology is so robust and ubiquitous in modern robotics that it is a natural backbone
for the robotic agents used within this thesis. The basic idea behind SLAM is broken down
into these simplified steps:

• Gather sensor data from the agent;
• Collect sensor data into a map of the environment;
• Track agent movement at time T via the use of onboard odometry;
• Detect features/landmarks within the environment;
• Track features/landmarks at time T;
• Move agent;
• Update predicted position based on odometry;
• Update position based on features/landmarks accounting for uncertainty in both

odometry and sensor readings.

This paper considers multiagent SLAM. A good review can be seen in [17]. A more
recent overview of the state of the art still separates the problem into single and multiagent
SLAM. The evaluation is of particular interest, with the difference between traditional
landmark-based SLAM, the graph method, and the Monte Carlo.

There are examples of multiagent SLAM [4,18,19] that look toward solving the mul-
tiagent problem. Although these examples are proven to work, the identified gap in this
paper is in decentralised communication between agents; furthermore, multiagent SLAM
remains to be generalised between heterogeneous agents. With multiagent SLAM, the pose
of the agent, the feature detection, and the use of odometry are rigid. This should not
present an issue; however, with the voxel grid approach proposed in this paper, certain
advantages can be conferred. Firstly, the choice of feature detection will be taken out of
the equation and moved to the specific agents. In this paper, the use of SURF (Speeded Up
Robust Features) and frame-to-frame alignment will be explored; however, this is not core
to the philosophy of the voxel grid approach—more pertinent is that the environment is
aligned and there is a closed loop described in 3D space.

While abstracting the feature detection, changes will need to be recorded in the
environment over time. This is key to agents’ collaboration in dynamic environments.
It should be stated that it is not that this is impossible in multiagent SLAM, more that it is
seldom considered.

2.3. The Voxel Grid and the Approach to Capture Data

Navigating unknown environments poses a significant challenge in robotics, given
the complexity, dynamics, and diversity of real-world spaces [20,21]. To overcome this
challenge, agents need a more universal view of the world to comprehend and represent
the data they perceive, allowing for a common ground for information sharing and rep-
resentation of surroundings in a simple and relatable manner. This approach has been
explored in previous research, demonstrating the benefits of shared understanding of the
environment for multiagent systems [13,22].

To enable agents to comprehend and represent the environment, various techniques
have been developed, such as voxel-based representation learning [13,23] and semantic
RGB-D SLAM [21]. Other studies have investigated deep loop closure detection and point
cloud registration for LiDAR SLAM [24], fast and compact loop closure detection using
3D point clouds for indoor mobile mapping [25], and a lightweight LiDAR–inertial SLAM
system with loop closing [26]. These techniques enable agents to represent the environment
more accurately and efficiently, leading to better navigation and mapping performance.
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Navigating unknown environments is a challenging problem in robotics, but various
techniques have been developed to provide agents with a more universal view of the world,
enabling them to comprehend and represent the data they perceive.

To reconcile the various approaches described above, this paper proposes an approach
that aims to standardise environmental representations. To achieve this goal, it is neces-
sary to adopt a standard form for representing complex environmental data, such as an
occupancy grid. Occupancy grids offer a representation of the world as evenly spaced
fields of probabilities. Initially set to zero, these probabilities are typically instantiated upon
observation, allowing any unexplored location to be sampled and referenced relative to
other grid locations.

In a traditional occupancy grid approach, the grid represents the probability of observ-
ing an object. To generalise this concept, the proposed approach transforms the variable z,
a measurement observation, into a set of measurements z = set and applies Bayesian infer-
ence to reason with this set. This approach levels the playing field for all heterogeneous
agents, given that there is an agreed-upon set of descriptions (coordinates) to commonly
address the environment. However, for our purposes, a 2D or 3D coordinate system
does not sufficiently capture the complex nature of the data that needs to be represented.
As an alternative, we propose using a 3D voxel grid, which contains the measurement
and observation data inside each voxel. This voxel grid offers a rich representation of the
environment, allowing agents to reason about the occupancy of different regions and the
likelihood of objects existing within them.

This approach has been used in previous research, such as in voxel-based repre-
sentation learning for place recognition [13] and semantic RGB-D SLAM for rescue robot
navigation [21] These studies demonstrate the effectiveness of using voxel grids to represent
complex environmental data and the benefits of doing so.

The world can be perceived as a set of probabilities that remain fixed, such as the
likelihood of a region being occupied or containing a particular object. As time passes,
this set of probabilities is updated, and information is stored together with a timestamp.
Consequently, every voxel in the grid represents a collection of past observations regarding
the environment. This approach enables agents to reason about different areas’ occupancy
and the likelihood of objects being present, even if the objects are in motion. By capturing
data over time within a fixed space, the probability of an object’s location becomes more
certain as agents explore, while still retaining the data’s validity despite dynamic and
moving objects.

To convert from the image frame to the voxel, start with the agent’s coordinate, which
is assumed to be (0, 0, 0) if no prior information is available. Using the X, Y, Z coordinates
of the pixel in the image and the pixel’s depth (from the 3D depth sensor), the agent can
project the pixel onto the world space grid, this can be seen in Figure 1. The information
from the pixel will then be assigned to one of the neighbouring voxels. If there is already
information present in the voxel for the current timestamp, the new and existing values
will be combined and averaged. If the pixel is the first to be assigned to the voxel, all of its
information will be added to the voxel for the current timestamp.

The processes that an agent undertakes in this paper are described in Algorithm 1.
with details of these processes found in the constituent parts of Section 2.

Static definitions needed for agent loops
w = Camera Width
h = Camera Height
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Algorithm 1: Agent loop

1 for For each time step T do
Sync with Communication Server
Record data from sensors
Read odometer
for Generate point cloud. for each X, Y in image frame do

depth data d
horizontal FOV f = horizontal FOV * (180.0 / π);
tan(x) = tan(horizontal FOV * 0.5);
Aspect Ratio a = h / h;
vertical FOV v = 2 ∗ arctan(tan( f ∗ 0.5) ∗ AR);
Focal length x f = 0.5 * w * (1 / tan(0.5 ∗ f ));
Focal length y f = 0.5 * h * (1 / tan(0.5 ∗ f ));
Centre point for X xc = w / 2;
Centre point for Y yc = h / 2;
Run Image Segmentation Run Image Feature Detection Run Image Object
Detection

Translate based on odometer reading
for For each time step X, Y with Rotation r docosr −sinr 0

sinr cosr 0
0 0 1


Local alignment of image or sensor fame at T − 1
Convert results to voxel grid
Global alignment of voxel grid position
Alignment with Other agents
Add voxel grid to world grid

Figure 1. Figure illustrating an object overlaid with a voxel grid in 2D. (A) displays the object within
its environment, while (B) depicts the voxel grid layered on top of the environment. (C) shows the
voxels associated with the object displayed within the voxel grid.

2.4. Creating the Voxel Grid

The voxel grid is the key aspect to building the world up with vivid information,
whilst still capturing growth as a probability over time.

If the agent has no prior understanding or mapping of the environment, then that
agent’s world can be started at any arbitrary point and defined as origin (0, 0, 0). This is
likely to change as the agent updates its information and communications with other agents.
If it is now assumed that a data file was obtained with the current frame of vision from the
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agent described in X, Y, Z Cartesian space, the origin point in the data file now becomes
the origin point in the world view of that agent, and, furthermore, the populated voxel
grid world now will use that point as the starting point to fill the world with unexplored
voxel probabilities. Where the world space origin is not important (any point in a space
can be defined as the originally defined point), it is clear that what is most significant is the
constituency of the data aligned to that point, this being achieved with the aforementioned
alignment techniques.

Now that the origin is defined, the voxel generation process should be considered
and the information contained within. First, the most basic information—positioning—can
be inspected. After the alignment of one frame to another, the agent can simply take
the point in 3D space and update the world space. However, this method would be too
fine in resolution and we would rather combine information from close neighbours to
generate a more generalised view of the information. For this, a region of interest can be
simply defined and information can be captured from any point inside that ROI. This is not
dissimilar to downsizing, but, rather than an average of the points’ locations, it is the mode
of where more points fall in the world space voxel grid.

Using the above methods, the agent has a system in which to recreate an SLAM system
using frame-to-frame alignment. However, as stated at the start of this paper, the world is
already a fixed grid of voxels; understanding the relationship between the perceived sensor
data and that voxel grid links these data points together. The agent must now update that
world space coordinate with the information it can gain.

One might look at this approach and ponder on the differences between the
SLAM system, or, indeed, other mapping systems that align 3D point clouds of data.
The response is that with the voxel grid system, the world state does not move with new
alignments; that is to say that when an agent revisits an area and the coordinate is perceived
as different, the map the agent has generated is not moved or aligned, but, rather, the
information is fed into the voxel at the new coordinate. An example of this is shown in
Figure 2

First, a more transitional way of aligning and registering mapping data will be exam-
ined. For simplicity, the example will be limited to 2D.

Figure 2. The figure shows the origin can be set arbitrarily when the agent first starts recording a
new environment. .
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As can be seen in the above Figure 3, as the data from the agent become misaligned,
the data are reconciled to the new location relative to the first frame. This, in effect,
relocalises the environment to the new frame, and the information about the “incorrect”
data is lost.

Figure 3. Figure illustrating an agent initializing two different sets of voxels based on the position of
the environment.

In Figure 4, we can see that the data are still being realigned; however, the information
about the previous records is kept, and over time, this will provide a greater probability for
a given voxel to contain the ground truth information.

Figure 4. Figure showing object overlay increasing the probability of a voxel containing an object.
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The voxel— A voxel is a unit of graphic information that defines a point in three-
dimensional space. For use in this paper, the information contained inside is extended
from just a simple X,Y, Z, and colour, to the storage of information that will help define the
world’s complex nature. The agent should store information pertaining to its observation
of the environment, for example, heat or sound data. Figure 5 shows this in more detail.
In this paper, some assumptions are made about the data that are recorded and stored
inside the voxel; however, there is no necessity to limit the recorded information. The
below shows the definition of the voxel grid utilized in this paper.

Figure 5. Figure showing how data of a single voxel are an array based on time.

w = The size of the world
Time t is an arbitrary, but consistent, timestep that is defined by the agent.
g = { v1, . . . , vw }
v = { x,y,z,d }
where { X, Y, Z} ∈ R
and represents the position of an arbitrary point in Cartesian space.
d = { h1 . . . ht}
d = { e, r, b, j }
j = { o1 . . . os } Where s is the number of objects discovered in any given frame
o = { i, p }
p = The probability of a given object being in that voxel at time t
e = Agent Experience
r = Reliability of agents
b = Agent Bias

Object detection from a recognised set—A key aspect identified in the hypothesis is that
of object recognition under occlusion. That is, it is difficult to identify objects that are
partially obscured, by either other items within the environment or perhaps poor viewing
angles. The voxel grid can address these issues by allowing the object being identified to be
reconciled with a template for the given object to be found, over multiple orientations and
scales. The voxel grid also provides wider net data points, as, rather than captured visual
data being points x,y,z in a space with no determined size, they fall into a discrete grid of
voxels with a defined size. This in turn means that when an agent is scanning for an object
it has an increased probability of catching a feature, an example of this is shown in Figure 6



Appl. Sci. 2023, 13, 5065 10 of 24

with the real data comparison shown in Figure 7. It should be noted, however, that this
comes at the cost of the resolution of the visual data.

Figure 6. Figure showing the voxel approach to collecting data points.

Figure 7. Figure showing point cloud and voxel grid.

2.5. Loop Closure and Object Probability over Time

The closed-loop problem that is often present in SLAM is not realised in the same way as
traditional methods. As the voxel grid method is already a fixed set of states, or voxels, then
there is as such no loop to close; however, the same issue, in principle, can be seen, whereby
the voxels that contain object information will drift in a direction overtime and voxels will
not link together to create complete environments. In fact, it could be argued that this drift in
object detection would be significantly more of an issue as the objects would appear to be
dynamic in nature, due to the recording of drift in the voxel information over time.

In the example of a car driving a set distance, then the problem can be explained in
more simple terms. In this example, the car has instructions to drive 10 metres, then turn
180 degrees over another 20 metres, and, finally, repeat. This creates a “loop” whereby the
car returns to the position it started in, this is shown in Figure 8. In the first image, this can
be seen in effect. The image shows the car with perfect odometry and therefore returns
to the same starting position. However, in the second image, we can see that the car has
an error on the internal distance and rotation reading and, therefore, even though the car
believes it is back to the same position it started at, the ground truth shows a different story
and, in fact, the car has not returned to the starting position, leaving an “open” loop circuit.
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Figure 8. Figure showing the perfect closed-loop system.

Below, it can be seen what happens when a small error is applied to the reading.
The error propagates throughout the processes and the misalignment becomes significantly
worse over time.

With the voxel grid approach described in this paper, there is not a closed-loop
detection, as such. When the agent returns to a position it could consider repeated or
closed, the mapping data are not aligned, shown in Figure 9.

Figure 9. Figure showing the imperfect closed-loop system.

2.6. Centre Point of Object, Clustering

Object centroid—To utilize the known objects in the world for aligning and scaling the
voxel grid, a fixed center point is required for each object. This center point serves as a ref-
erence point for applying transformations, assuming that we have at least two identifiable
objects. The process of generating identifiable objects is an area of ongoing development
and will be explored in future work for more effective methodologies. Figure 10 shows an
image of the concept. Figures 11 and 12 shows a real data and graphical plot respectively.
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Clustering—To determine the center point, the object data is clustered based on the
voxels containing each object. This helps to identify the center of the voxel cluster belonging
to each object. We use a simple K-means clustering algorithm, with K equal to the number
of objects present in the environment. Any voxels identified as outliers are disregarded
during the clustering process.

The below defines the clustering of objects within the agent’s voxel grid.

arg, min
S

k

∑
i=1

∑
x∈si

d(x, µi) (1)

where
S is a set of voxels within the voxel grid;
k is the number of unique objects within the environment the agents has mapped;
x is an observation data point;
µi is the mean of points in Si
d(x, µi) is some arbitrary function that measures the distance between points in any given
unit.

In this case, the Euclidean distance function will be used, given by

arg, min
S

k

∑
i=1

∑
x∈si

|x− µi|2 (2)

Figure 10. Figure showing centre point of a detected object.

Figure 11. Figure showing centre point of a detected object with real data.
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The below images show data taken from a single frame with all voxels removed that
did not contain an object. The data show a frame containing two objects.

Figure 12. Plot of K-means clustered data of two separate objects.

2.7. The Frame-to-Frame Alignment

To align from two frames, the agent considers two key aspects of information. The first
is the internal odometer and the second is the holographic difference between the two frames.
The odometer would, in principle, be the only information required, as by considering how
much the agent has moved in the x, y, and z plane, while also considering the rotation,
an updated position of the agent could be determined in the global world space. However,
outside of the simulation, there is no perfect odometer information and an error will also occur.
This error will have a cumulative effort on the perceived position of the agent, and unless the
error is near-perfect Gaussian, it will lead to an open-loop mapping. In SLAM, this problem
is solved using an extended Kalman filter, and in the proposed approach, that is also what is
being utilised, where the frame-to-frame alignment is a prediction based on the odometric
reading and the discrepancy of features detected in the frame.

O = [X, Y, Z, Rotation, Scale] (3)

Each time the agent moves, the odometer of the agent is merged with the frame
alignment process. Note that this fusion could be complemented with other forms of
localisation such as GPS. This will be further covered in the section relating to heterogeneous
agent design.

Let us break down the frame alignment technique into steps and walk through the pro-
cesses. Figure 13 defines the scenario for the subsequent explanation of frame-to-frame
alignment.

Step 1—is to find all image features; these are our key points to connect between one
frame and another. ft = x | x SURF Feature. This can be seen in Figure 14.

Step 2—The agent moves; this movement can be in any form of translation or rotation,
but for this example, the movement will be limited to a linear transform in the X plane.
This can be seen in Figure 15.
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Figure 13. Figure showing key for agent alignment images.

Figure 14. Figure showing features detected in frame.

Figure 15. Figure showing features detected from agent’s view.
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Step 3—Compare the difference between the original image frame and the agent’s new
location image frame with respect to the matched features detected. h : ft−1 − ft. This can
be seen in Figure 16.

Step 4—Compare the agent’s odometric translation with respect to the matched fea-
tures. o : ft−1 + CurrentOdometerreading. This can be seen in Figure 17 and further ex-
plained in Figure 18.

Step 5—Take a final weighted value from the two comparison figures. This can be seen
in Figure 19 with the full algrothem broken down in Algorithm 2.

Figure 16. Figure showing the adjustment as the agent moves.

Figure 17. Figure showing the agent has moved and the view of the object has been updated.

Figure 18. Figure showing the feature matching to determine local adjustments.
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Figure 19. Figure showing measurement of differences in where object features are in the world vs.
the prediction based on the agent’s odometer.

From here, the agent has defined the image frame in relation to where it is in the
environment. This is still a local reading to the agent and not a global understanding of
where the frame is until such time that the data from the image frame are placed into voxel
form and on the environment voxel grid. These are the next setup steps to be considered.

Algorithm 2: Frame-to-frame alignment

Locate the image at t −1
Gather the current image at t
Find features in images

1 for For each image pixel (x,y) in Image_t and image_t −1 do
Detect key points in image or LiDAR reading
Calculate the movement of key points based on odometer reading
Read the difference between key points from predicted to actual
Translate agent position based on updated prediction

Match local features and measure differences
2 for For each set of features (x,y) in Image_t and image_t −1 do

Detect key points in image or LiDAR reading
Calculate the movement of key points based on odometer reading
Read the difference between key points from predicted to actual
Translate agent position based on updated prediction

2.8. Any Local Object to Global Map Alignment

Global map alignment—The global alignment step is where we closer align to the prin-
ciples of SLAM. The frame-to-frame alignment should offset any issues with combining
volumetric mapping data; however, errors still need to be addressed in the agent’s position
relative to the world. For this alignment, landmarks in the voxel grid are used and mea-
surements are taken at any given timestamp to locate and adjust the agents’ position in
the world. This process of global map alignment is broken down in Algorithm 3.
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Algorithm 3: Global alignment

Cluster objects in voxel grid at time T
Remove outliers from object data
Alingment

1 for For each time step T do
Cluster image voxel gets for different objects Define centroid for objects
Measure the Euclidean distance from the agent position to the centroid
Measure the Euclidean distance from the agent perspective to any visible
centroids Communicate with other local agents if that agent can view the
position of the current agent.2 for For each agent A do

Cluster image voxel gets for different objects Define centroid for objects
Measure the Euclidean distance from the agent position to the centroids
available Measure the Euclidean distance from the agent’s A’s of all
objects and the original agent Calculate difference Adjust to minimise the
error

Calculate difference Adjust to minimise the error

2.9. Multiagent Alignment of Maps

Multiagent environment mapping—Multiagent environment mapping is a critical area
of research in robotics that focuses on utilising multiple robotic agents to collaboratively
map, assess, and interact with dynamic and complex environments. This approach is
particularly valuable in situations where human intervention is risky or impractical, such
as during disaster response or exploration missions. Key aspects of multiagent mapping
include effective communication among agents, decentralised data fusion, and consensus
algorithms. A good example can be found at [27]. The overarching goal is to create a
comprehensive and accurate representation of an environment, leveraging the strengths of
each agent while overcoming individual limitations.

The centralised communication method, utilising a server or broker, offers several
benefits, including improved coordination among agents, simplified data package manage-
ment, and a clear focus on specific goals for the agents.

However, these advantages come with trade-offs in three primary areas:

• Agents must be predefined and registered with the central coordinator before joining
the colony or domain.

• Errors occurring within the system may propagate throughout the entire colony.
• As the number of agents increases, the centralised system must manage vast amounts

of data to maintain coordination among the expanding agent population.

Contemporary efforts by [28] propose a hash-graph-based framework for common
knowledge. Although there is a recognised need for a common knowledge base in the
research space, no consensus has been reached on the ideal solution. Referring back to [28],
an early consideration was the use of blockchain for a common knowledge base. One iden-
tified weakness of this idea revolved around the “majority attack”, in which a single entity
controls 50 percent of the network and, consequently, dictates the entire blockchain. This
issue undermines a crucial aspect of transitioning to decentralised communication. While
the proposed approach in this paper addresses this problem, the transition-based approach
overlooks the potential to examine all the data in the environment. By only recording data
deemed useful or necessary to share, it misses opportunities to identify trends in areas
where no change has occurred. In contrast, the voxel grid approach presented in this paper
offers a more generalised solution, enabling agents to observe trends even in areas with no
observable changes. This is achieved by storing historical information inside each voxel
that builds over time.

The Algorithm 4 shows the communication approach used in this paper.
The Algorithm 5 shows how the agents combine their mapping data.
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Algorithm 4: Message sync

1 for For each time step T do
Sync with Communication Server
Check for pending messages about the environment in the Environment Buffer
The communication server registers the agent environment and simulates close

agents for communication
The communication servers check for messages from other agents in the buffer
The communication server passes other agents’ messages to the asking agent
Mapping data is compared and aligned by asking agent
Changes to voxel grid sent back to communication server and held in
environment buffer;

Algorithm 5: Combine agents’ maps

Agent sends mapping data for the local environment to another agent
if at least 2 common object exists then

minimise the distance between all object centers1 for For each agent A do
Cluster image voxel gets for different objects Define centroid for objects
Measure the Euclidean distance from the agent position to the centroids
available

Measure the Euclidean distance from the agent’s A’s of all objects and the
original agent

Calculate difference
Adjust to minimise the error

Object centre point—Now that there is a defined centre point for objects, or landmarks,
within the environment data, the agent can utilise this to align the agent’s pose and
location, this is shown in Figure 20 The agents should also be able to use the mapped-out
understanding of the environment in order to localise. This is much more in the order of
traditional SLAM; however, with further work in this topic, there is an intent to use an
ontology overlaid onto the topology, and this could play a significant part in the detection
of features within the image.

Figure 20. Figure objects being used for global alignment of the agent.
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This paper provides an example of aligning LiDAR and 3D data, shown in Figure 21,
demonstrating how this can be achieved. However, it is worth noting that the paper
assumes that objects are successfully detected when gating perceptual data. Although this
assumption may raise some concerns, it should be considered in the context of the numerous
object detection methods available for both LiDAR and 3D depth data. Nevertheless, further
research is necessary to explore this topic in more detail and improve the accuracy and
reliability of object detection in complex and cluttered environments.

Figure 21. Figure for alignment between 2D and 3D agents.

3. Results and Discussion

The results written below are simulated in the WebBotes virtual environment. This
software is a physically based simulation environment that can be used to run scenarios
from a number of robotic agents in custom-built environments. In this instance, a Pioneer
3D-X was replicated.

The Pioneer 3D-X is a mobile robot platform designed for autonomous navigation and
mapping tasks in indoor environments. It is equipped with a range of sensors, including a
2D laser scanner, a stereo vision camera system, and an inertial measurement unit, which
enable it to accurately perceive its surroundings and generate a 3D map of the environment.
The robot is powered by a high-performance computing system that enables it to perform
real-time data processing and decision making, and it is capable of navigating through
complex environments with obstacles and dynamic changes.

The following results are categorised into three sets, each measuring the pose estimation
of a single agent. An initial image is provided below to establish the ground truth of the
measured agent and to provide a measurable baseline. All agents employ the approach
outlined in this paper. The first set of results shows a single agent using a 3D depth camera.
The second set presents the results of a single agent using LiDAR. Finally, the third set of results
showcases the same LiDAR agent, but this time utilising the 3D data from the other agent.

Figure 22 shows the ground truth of the measured agent.
Figures 23 and 24 are showing the single 3D agent.
Based on Figure 25, it is evident that the error in the pose estimate escalated rapidly

and almost exponentially. Although this error curve may decrease slightly over time, it
does not align with our expectations. This single agent is operating in a simulated and
relatively sparse environment, which makes it challenging to localise accurately.
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Figure 22. Data of ground truth of the measured agent
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Figure 23. Data of 3D agents position estimation.
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Figure 24. Data showing error over time for 3D Agent.
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Figure 25. Figure with arrow indicating the high growth rate of the error in a single agent pose estimation.

Firgures 26 and 27 show a single LiDAR agent.
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Figure 26. Data of 2D agents position estimation.
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Figure 27. Data showing error over time for 2D agent.

Figure 28 and 29 is the final set with the combined effort.
The results shown in Figure 30 is a comparison of the three result sets, demonstrating

how the multiagent voxel map generated improved results compared to single agents.
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Figure 28. Data showing combined effort of the agents.
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Figure 29. Data showing error over time.
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Figure 30. Data showing error over time for all sets of errors.
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Then, we examine the error when another agent is sharing environment information.
Figure 31 clearly shows the error starting to rise; however, after reaching a quick peak,
communication with another local agent is made and the pose error drops significantly.
From this point on, the error does not grow beyond a concerning value.

Figure 31. Image indicating the sharp rise and fall in the error with a multiagent configuration.

4. Conclusions

In conclusion, this paper proposes a method for decentralised robotic agents to map
their environment using a voxel grid. This approach enables the recording of data over
time in a fixed space, improving the certainty of an object’s location as the agents explore,
without being invalidated by dynamic or moving objects. However, it is important to note
that this method does not replace SLAM, as it still relies on landmark discovery and agent
pose alignment.

While the benefits of this approach have not been fully evaluated, it provides a solid
foundation for future work. For instance, further research can investigate the impact of
chaotic landmarks on the performance of the proposed method. Additionally, the data
stored in the voxel grid can be leveraged across multiple environments and robotic colonies.
Overall, this method shows promising results and offers exciting opportunities for future
developments in this area.
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