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Abstract We study the higher gradient integrability of distributional solutions u to the equa-
tion div(σ∇u) = 0 in dimension two, in the case when the essential range of σ consists of
only two elliptic matrices, i.e., σ ∈ {σ1, σ2} a.e. in �. In Nesi et al. (Ann Inst H Poincaré Anal
Non Linéaire 31(3):615–638, 2014), for every pair of elliptic matrices σ1 and σ2, exponents
pσ1,σ2 ∈ (2,+∞) and qσ1,σ2 ∈ (1, 2) have been found so that if u ∈ W 1,qσ1,σ2 (�) is solution
to the elliptic equation then ∇u ∈ L

pσ1,σ2
weak (�) and the optimality of the upper exponent pσ1,σ2

has been proved. In this paper we complement the above result by proving the optimality of
the lower exponent qσ1,σ2 . Precisely, we show that for every arbitrarily small δ, one can find
a particular microgeometry, i.e., an arrangement of the sets σ−1(σ1) and σ−1(σ2), for which
there exists a solution u to the corresponding elliptic equation such that ∇u ∈ Lqσ1,σ2 −δ ,
but ∇u /∈ Lqσ1,σ2 . The existence of such optimal microgeometries is achieved by convex
integration methods, adapting to the present setting the geometric constructions provided in
Astala et al. (Ann Scuola Norm Sup Pisa Cl Sci 5(7):1–50, 2008) for the isotropic case.
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1 Introduction

Let � ⊂ R
2 be a bounded open domain and let σ ∈ L∞(�; R

2×2) be uniformly elliptic,
i.e.,

σξ · ξ ≥ λ|ξ |2 for every ξ ∈ R
2 and for a.e. x ∈ �,

for some λ > 0. We study the gradient integrability of distributional solutions u ∈ W 1,1(�)

to
div(σ (x)∇u(x)) = 0 in �, (1.1)

in the case when the essential range of σ consists of only two matrices, say σ1 and σ2. It is
well-known from Astala’s work [1] that there exist exponents q and p, with 1 < q < 2 < p,
such that if u ∈ W 1,q(�; R) is solution to (1.1), then ∇u ∈ L p

weak(�; R). In [9] the optimal
exponents p and q have been characterised for every pair of elliptic matrices σ1 and σ2.
Denoting by pσ1,σ2 and qσ1,σ2 such exponents, whose precise formulas are recalled in Sect. 2,
we summarise the result of [9] in the following theorem.

Theorem 1.1 [9, Theorem 1.4 and Proposition 4.2] Let σ1, σ2 ∈ R
2×2 be elliptic.

(i) If σ ∈ L∞(�; {σ1, σ2}) and u ∈ W 1,qσ1,σ2 (�) solves (1.1), then ∇u ∈ L
pσ1,σ2
weak (�; R

2).
(ii) There exists σ̄ ∈ L∞(�; {σ1, σ2}) and a weak solution ū ∈ W 1,2(�) to (1.1) with

σ = σ̄ , satisfying affine boundary conditions and such that ∇ū /∈ L pσ1,σ2 (�; R
2).

Theorem 1.1 proves the optimality of the upper exponent pσ1,σ2 . The objective of this
paper is to complement this result by proving the optimality of the lower exponent qσ1,σ2 . As
shown in [9] (and recalled in Sect. 2), there is no loss of generality in assuming that

σ1 = diag(1/K , 1/S1), σ2 = diag(K , S2), (1.2)

with

K > 1 and
1

K
≤ S j ≤ K , j = 1, 2. (1.3)

Thus it suffices to show optimality for this class of coefficients, for which the exponents
pσ1,σ2 and qσ1,σ2 read as

qσ1,σ2 = 2K

K + 1
, pσ1,σ2 = 2K

K − 1
. (1.4)

Our main result is the following

Theorem 1.2 Let σ1, σ2 be defined by (1.2) for some K > 1 and S1, S2 ∈ [1/K , K ].
There exist coefficients σn ∈ L∞(�, {σ1; σ2}), exponents pn ∈

[
1, 2K

K+1

]
, functions un ∈

W 1,1(�; R) such that
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{
div(σn(x)∇un(x)) = 0 in �,

un(x) = x1 on ∂�,
(1.5)

∇un ∈ L pn
weak

(
�; R

2) , pn → 2K

K + 1
, (1.6)

∇un /∈ L
2K
K+1
(
�; R

2) . (1.7)

In particular un ∈ W 1,q(�; R) for every q < pn, but
∫
�

|∇un | 2K
K+1 dx = ∞.

Theorem 1.2 was proved in [2] in the case of isotropic coefficients, namely for σ1 =
1
K I and σ2 = K I . More precisely, in [2] the authors obtain a slightly stronger result by
constructing a single coefficient σ ∈ {K I, 1

K I } and a single function u that satisfies the

associated elliptic equation and is such that ∇u ∈ L
2K
K+1
weak, but ∇u /∈ L

2K
K+1 . We follow the

method developed in [2], which relies on convex integration as used in [8], and provides
an explicit construction of the sequence un . The adaptation of such method to the present
context turns out to be non-trivial due to the anisotropy of the coefficients (see Remark 5.8).
It is not clear how to modify the construction in order to get a stronger result as in [2].

2 Connection with the Beltrami equation and explicit formulas for the
optimal exponents

For the reader’s convenience we recall in this section how to reduce to the case (1.2) starting
from any pair σ1, σ2. We will also give the explicit formulas for pσ1,σ2 and qσ1,σ2 .

It is well-known that a solution u ∈ W 1,q
loc , q ≥ 1, to the elliptic equation (1.1) can be

regarded as the real part of a complex map f : � 	→ C which is a W 1,q
loc solution to a Beltrami

equation. Precisely, if v is such that

RT
π
2
∇v = σ∇u, R π

2
:=
(

0 −1
1 0

)
, (2.1)

then f := u + iv solves the equation

fz̄ = μ fz + ν fz a.e. in �, (2.2)

where the so called complex dilatations μ and ν, both belonging to L∞(�; C), are given by

μ = σ22 − σ11 − i(σ12 + σ21)

1 + Tr σ + det σ
, ν = 1 − det σ + i(σ12 − σ21)

1 + Tr σ + det σ
, (2.3)

and satisfy the ellipticity condition

‖|μ| + |ν|‖L∞ < 1. (2.4)

The ellipticity (2.4) is often expressed in a different form. Indeed, it implies that there exists
0 ≤ k < 1 such that ‖|μ| + |ν|‖L∞ ≤ k < 1 or equivalently that

‖|μ| + |ν|‖L∞ ≤ K − 1

K + 1
, (2.5)

for some K > 1. Let us recall that weak solutions to (2.2), (2.5) are called K -quasiregular
mappings. Furthermore, we can express σ as a function of μ, ν inverting the algebraic system
(2.3),
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σ =
⎛
⎝

|1−μ|2−|ν|2
|1+ν|2−|μ|2

2�(ν−μ)

|1+ν|2−|μ|2
−2�(ν+μ)

|1+ν|2−|μ|2
|1+μ|2−|ν|2
|1+ν|2−|μ|2

⎞
⎠ . (2.6)

Conversely, if f solves (2.2) with μ, ν ∈ L∞(�, C) satisfying (2.4), then its real part is
solution to the elliptic equation (1.1) with σ defined by (2.6). Notice that ∇ f and ∇u enjoy
the same integrability properties. Assume now that σ : � → {σ1, σ2} is a two-phase elliptic
coefficient and f is solution to (2.2)–(2.3). Abusing notation, we identify � with a subset of
R

2 and f = u + iv with the real mapping f = (u, v) : � → R
2. Then, as shown in [9],

one can find matrices A, B ∈ SL(2) (with SL(2) denoting the set of invertible matrices with
determinant equal to one) depending only on σ1 and σ2, such that, setting

f̃ (x) := A−1 f (Bx), (2.7)

one has that the function f̃ solves the new Beltrami equation

f̃ z̄ = μ̃ fz + ν̃ f̃z a.e. in B−1(�),

and the corresponding σ̃ : B(�) → {σ̃1, σ̃2} defined by (2.6) is of the form (1.2):

σ̃1 = diag(1/K , 1/S1), σ̃2 = diag(K , S2), K > 1, S1, S2 ∈ [1/K , K ].

The results in [1,12] imply that if f̃ ∈ W 1,q , with q ≥ 2K
K+1 , then ∇ f̃ ∈ L

2K
K−1
weak; in particular,

f̃ ∈ W 1,p for each p < 2K
K−1 . Clearly ∇ f̃ enjoys the same integrability properties as ∇ f

and ∇u.
Finally, we recall the formula for K which will yield the optimal exponents. Denote by

d1 and d2 the determinant of the symmetric part of σ1 and σ2 respectively,

di := det
(σi + σ T

i

2

)
, i = 1, 2,

and by (σi ) jk the jk-entry of σi . Set

m : = 1√
d1d2

[
(σ2)11(σ1)22 + (σ1)11(σ2)22 − 1

2

(
(σ2)12 + (σ2)21

)(
(σ1)12 + (σ1)21

)]
,

n : = 1√
d1d2

[
det σ1 + det σ2 − 1

2

(
(σ1)21 − (σ1)12

)(
(σ2)21 − (σ2)12

)]
.

Then

K =
(
m + √

m2 − 4

2

) 1
2
(

n + √
n2 − 4

2

) 1
2

. (2.8)

Thus, for any pair of elliptic matrices σ1, σ2 ∈ R
2×2, the explicit formula for the optimal

exponents pσ1,σ2 and qσ1,σ2 are obtained by plugging (2.8) into (1.4).
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3 Preliminaries

3.1 Conformal coordinates

For every real matrix A ∈ R
2×2,

A =
(
a11 a12

a21 a22

)
,

we write A = (a+, a−), where a+, a− ∈ C denote its conformal coordinates. By identifying
any vector v = (x, y) ∈ R

2 with the complex number v = x + iy, conformal coordinates
are defined by the identity

Av = a+v + a−v. (3.1)

Here v denotes the complex conjugation. From (3.1) we have relations

a+ = a11 + a22

2
+ i

a21 − a12

2
, a− = a11 − a22

2
+ i

a21 + a12

2
, (3.2)

and, conversely,
a11 = 
a+ + 
a−, a12 = −�a+ + �a−,

a21 = �a+ + �a−, a22 = 
a+ − 
a−.
(3.3)

Here 
z and �z denote the real and imaginary part of z ∈ C respectively. We recall that

AB = (a+b+ + a−b−, a+b− + a−b+
)
, (3.4)

and Tr A = 2
a+. Moreover

det(A) = |a+|2 − |a−|2 ,

|A|2 =2 |a+|2 + 2 |a−|2 ,

‖A‖ = |a+| + |a−| ,
(3.5)

where |A| and ‖A‖ denote the Hilbert–Schmidt and the operator norm, respectively.
We also define the second complex dilatation of the map A as

μA := a−
a+

, (3.6)

and the distortion

K (A) :=
∣∣∣∣
1 + |μA|
1 − |μA|

∣∣∣∣ =
‖A‖2

|det(A)| . (3.7)

The last two quantities measure how far A is from being conformal. Following the notation
introduced in [2], we define

E
 := {A = (a, μ a) : a ∈ C, μ ∈ 
} (3.8)

for a set 
 ⊂ C∪{∞}; namely, E
 is the set of matrices with the second complex dilatation
belonging to 
. In particular E0 and E∞ denote the set of conformal and anti-conformal
matrices respectively. From (3.4) we have that E
 is invariant under precomposition by
conformal matrices, that is

E
 = E
A for every A ∈ E0�{0}. (3.9)
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3.2 Convex integration tools

We denote by M(R2×2) the set of signed Radon measures on R
2×2 having finite mass. By

the Riesz’s representation theorem we can identify M(R2×2) with the dual of the space
C0(R

m×n). Given ν ∈ M(R2×2) we define its barycenter as

ν :=
∫

R2×2
A dν(A).

We say that a map f ∈ C(�; R
2) is piecewise affine if there exists a countable family of

pairwise disjoint open subsets �i ⊂ � with |∂�i | = 0 and
∣∣∣∣∣��

∞⋃
i=1

�i

∣∣∣∣∣ = 0,

such that f is affine on each �i . Two matrices A, B ∈ R
2×2 such that rank(B − A) = 1 are

said to be rank-one connected and the measure λδA + (1−λ)δB ∈ M(R2×2) with λ ∈ [0, 1]
is called a laminate of first order (see also [7,8,11]).

Definition 3.1 The family of laminates of finite order L(R2×2) is the smallest family of
probability measures in M(R2×2) satisfying the following conditions:

(i) δA ∈ L(R2×2) for every A ∈ R
2×2 ;

(ii) assume that
∑N

i=1 λiδAi ∈ L(R2×2) and A1 = λB + (1 − λ)C with λ ∈ [0, 1] and
rank(B − C) = 1. Then the probability measure

λ1(λδB + (1 − λ)δC ) +
N∑
i=2

λiδAi

is also contained in L(R2×2).

The process of obtaining new measures via (ii) is called splitting. The following propo-
sition provides a fundamental tool to solve differential inclusions by means of convex
integration (see e.g., [2, Proposition 2.3] or [8, Lemma 3.2] for a proof).

Proposition 3.2 Let ν =∑N
i=1 αiδAi ∈ L(R2×2) be a laminate of finite order with barycen-

ter ν = A, that is A = ∑N
i=1 αi Ai with

∑N
i=1 αi = 1. Let � ⊂ R

2 be a bounded open set,
α ∈ (0, 1) and 0 < δ < min

∣∣Ai − A j
∣∣ /2. Then there exists a piecewise affine Lipschitz

map f : � → R
2 such that

(i) f (x) = Ax on ∂�,
(ii) [ f − A]Cα(�) < δ,

(iii) |{x ∈ � : |∇ f (x) − Ai | < δ}| = αi |�|,
(iv) dist(∇ f (x), spt ν) < δ a.e. in �.

3.3 Weak L p spaces

We recall the definition of weak L p spaces. Let f : � → R
2 be a Lebesgue measurable

function. Define the distribution function of f as

λ f : (0,∞) → [0,∞] with λ f (t) := |{x ∈ � : | f (x)| > t}| .
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Let 1 ≤ p < ∞, then the following formula holds
∫

�

| f (x)|p dx = p
∫ ∞

0
t p−1λ f (t) dt. (3.10)

Define the quantity

[ f ]p :=
(

sup
t>0

t pλ f (t)

)1/p

and the weak L p space as

L p
weak

(
�; R

2) := { f : � → R
2 : f measurable, [ f ]p < ∞} .

L p
weak is a topological vector space and by Chebyshev’s inequality we have [ f ]p ≤ ‖ f ‖L p .

In particular this implies L p ⊂ L p
weak. Moreover L p

weak ⊂ Lq for every q < p.

4 Proof of Theorem 1.2

For the rest of this paper, σ1 and σ2 are as in (1.2)–(1.3). We start by rewriting (1.1) as a
differential inclusion. To this end, define the sets

T1 :=
{(

x −y
S−1

1 y K−1 x

)
: x, y ∈ R

}
, T2 :=

{(
x −y

S2 y K x

)
: x, y ∈ R

}
. (4.1)

Let σ ∈ L∞(�; {σ1, σ2}). It is easy to check (see for example [2, Lemma 3.2]) that u solves
(1.1) if and only if f solves the differential inclusion

∇ f (x) ∈ T1 ∪ T2 a.e. in �, (4.2)

where f := (u, v) and v is the stream function of u, which is defined, up to an addictive
constant, by (2.1).

In order to solve the differential inclusion (4.2), it is convenient to use (3.2) and write our
target sets in conformal coordinates:

T1 = {(a, d1(a)) : a ∈ C} , T2 = {(a,−d2(a)) : a ∈ C} , (4.3)

where the operators d j : C → C are defined as

d j (a) := k 
a + i s j �a, with k := K − 1

K + 1
and s j := S j − 1

S j + 1
. (4.4)

Conditions (1.3) imply

0 < k < 1 and − k ≤ s j ≤ k for j = 1, 2. (4.5)

Introduce the quantities

s := s1 + s2

2
= S1S2 − 1

(1 + S1)(1 + S2)
(4.6)

S := 1 + s

1 − s
= S1 + S2 + 2S1S2

2 + S1 + S2
. (4.7)
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By (4.5) we have

− k ≤ s ≤ k and
1

K
≤ S ≤ K . (4.8)

We distinguish three cases.
1. Case s > 0 (corresponding to S > 1). We study this case in Sect. 5, where we generalise
the methods used in [2, Section 3.2]. Observe that this case includes the one studied in [2].
Indeed, for s = k one has that s1 = s2 = k and the target sets (4.3) become

T1 = Ek = {(a, ka) : a ∈ C} , T2 = E−k = {(a,−ka) : a ∈ C} ,

where E±k are defined in (3.8). We remark that, in this particular case, the construction
provided in Section 5 coincides with the one given in [2, Section 3.2].
2. Case s < 0 (corresponding to S < 1). This case can be reduced to the previous one. Indeed,
if we introduce ŝ j := −s j , ŝ := (ŝ1 + ŝ2)/2 > 0 and the operators d̂ j (a) := k 
a + i ŝ j �a
then the target sets (4.3) read as

T1 = {(a, d̂1(a)) : a ∈ C}, T2 = {(a,−d̂2(a)) : a ∈ C}.
This is the same as the previous case, since the absence of the conjugation does not affect
the geometric properties relevant to the constructions of Sect. 5.

We notice that this case includes s = −k for which the target sets become

T1 = {(a, ka) : a ∈ C} , T2 = {(a,−ka) : a ∈ C} .

We remark that in this case, (4.2) coincides with the classical Beltrami equation (see also [2,
Remark 3.21]).
3. Case s = 0 (corresponding to s1 = −s2, S1 = 1/S2) This is a degenerate case, in the sense
that the constructions provided in Section 5 for s > 0 are not well defined. Nonetheless,
Theorem 1.2 still holds true. In fact, as already pointed out in [9, Section A.3], by an affine
change of variables, the existence of a solution can be deduced by [2, Lemma 4.1, Theo-
rem 4.14], where the authors prove the optimality of the lower critical exponent 2K

K+1 for
the solution of a system in non-divergence form. We remark that in this case Theorem 1.2
actually holds in the stronger sense of exact solutions, namely, there exists u ∈ W 1,1(�; R)

solution to (1.5) and such that

∇u ∈ L
2K
K+1
weak

(
�; R

2) , ∇u /∈ L
2K
K+1
(
�; R

2) .

5 The case s > 0

In the present section we prove Theorem 1.2 under the hypothesis that the average s is
positive, namely that

0 < k < 1 and − s2 < s1 ≤ s2, with 0 < s2 ≤ k, or

0 < k < 1 and − s1 < s2 ≤ s1, with 0 < s1 ≤ k.
(5.1)

From (5.1), recalling definitions (4.4), (4.6), (4.7), we have

0 < s ≤ k, 1 < S ≤ K , (5.2)

1/S2 < S1 ≤ S2, 1 < S2 ≤ K , or 1/S1 < S2 ≤ S1, 1 < S1 ≤ K . (5.3)

In order to prove Theorem 1.2, we will solve the differential inclusion (4.2) by adapting the
convex integration program developed in [2, Section 3.2] to the present context. As already
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pointed out in the Introduction, the anisotropy of the coefficients σ1, σ2 poses some technical
difficulties in the construction of the so-called staircase laminate, needed to obtain the desired
approximate solutions. In fact, the anisotropy of σ1, σ2 translates into the lack of conformal
invariance (in the sense of (3.9)) of the target sets (4.3), while the constructions provided in
[2] heavily rely on the conformal invariance of the target set E{−k,k}. We point out that the
lack of conformal invariance was a source of difficulty in [9] as well, for the proof of the
optimality of the upper exponent.

This section is divided as follows. In Sect. 5.1 we establish some geometrical properties
of rank-one lines in R

2×2, that will be used in Sect. 5.2 for the construction of the staircase
laminate. For every sufficiently small δ > 0, such laminate allows us to define (in Proposition
5.9) a piecewise affine map f that solves the differential inclusion (4.2) up to an arbitrarily
small L∞ error. Moreover f will have the desired integrability properties (see (5.59), that
is,

∇ f ∈ L p
weak(�; R

2×2), p ∈
(

2K

K + 1
− δ,

2K

K + 1

]
, ∇ f /∈ L

2K
K+1
(
�; R

2×2) .

Finally, in Theorem 5.10, we remove the L∞ error introduced in Proposition 5.9, by means
of a standard argument (see, e.g., [9, Theorem A.2]).

Throughout this section cK > 1 will denote various constants depending on K , S1 and S2,
whose precise value may change from place to place. The complex conjugation is denoted
by J := (0, 1) in conformal coordinates, i.e., J z = z for z ∈ C. Moreover, Rθ := (eiθ , 0) ∈
SO(2) denotes the counter clockwise rotation of angle θ ∈ (−π, π]. Define the the argument
function

arg z := θ, where z = |z|eiθ , with θ ∈ (−π, π].
Abusing notation we write arg Rθ = θ . For A = (a, b) ∈ R

2×2\{0} we set

θA := − arg(b − d1(a)). (5.4)

5.1 Properties of rank-one lines

In this Section we will establish some geometrical properties of rank-one lines in R
2×2.

Lemmas 5.2, 5.3 are generalizations of [2, Lemmas 3.14, 3.15] to our target sets (4.3). In
Lemmas 5.4, 5.5 we will study certain rank-one lines connecting T to E∞, that will be used
in Sect. 5.2 to construct the staircase laminate.

Lemma 5.1 Let Q ∈ Tj with j ∈ {1, 2} and Tj as in (4.3). Then

det Q > 0 for Q �= 0, (5.5)∣∣s j
∣∣ ≤ ∣∣μQ

∣∣ ≤ k, (5.6)

max{S j , 1/S j } ≤ K (Q) ≤ K . (5.7)

Proof Let Q = (q, d1(q)) ∈ T1. By (4.5) we have |s1||q| ≤ |d1(q)| ≤ k|q| which readily
implies (5.6) and

(1 − k2) |q|2 ≤ det(Q) ≤ (1 − s2
1 ) |q|2 .

The last inequality implies (5.5). Finally K (Q) is increasing with respect to |μQ | ∈ (0, 1),
therefore (5.7) follows from (5.6). The proof is analogous if Q ∈ T2. ��
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Lemma 5.2 Let A, B ∈ R
2×2 with det B �= 0 and det(B − A) = 0, then

|B| ≤ √
2 K (B) |A| . (5.8)

In particular, if A ∈ R
2×2 and Q ∈ Tj , j ∈ {1, 2}, are such that det(A − Q) = 0, then

dist(A, Tj ) ≤ |A − Q| ≤ (1 + √
2K ) dist(A, Tj ).

Proof The first part of the statement is exactly like in [2, Lemma 3.14]. For the second part,
one can easily adapt the proof of [2, Lemma 3.14] to the present context taking into account
(5.5) and (5.7). For the reader’s convenience we recall the argument. Let A ∈ R

2×2, Q ∈ T1

and Q0 ∈ T1 such that dist(A, T1) = |A − Q0|. By (5.5), we can apply the first part of the
lemma to A − Q0 and Q − Q0 to get

|Q − Q0| ≤ √
2K (Q − Q0)|A − Q0| ≤ √

2K |A − Q0|,
where the last inequality follows from (5.7), since Q − Q0 ∈ T1. Therefore

|A − Q| ≤ |A − Q0| + |Q − Q0| ≤ (1 + √
2K )|A − Q0| = (1 + √

2K ) dist(A, T1).

The proof for T2 is analogous. ��
Lemma 5.3 Every A = (a, b) ∈ R

2×2
�{0} lies on a rank-one segment connecting T1 and

E∞. Precisely, there exist matrices Q ∈ T1�{0} and P ∈ E∞�{0}, with det(P − Q) = 0,
such that A ∈ [Q, P]. We have P = t J RθA for some t > 0 and θA as in (5.4). Moreover,
there exists a constant cK > 1, depending only on K , S1, S2, such that

1

cK
|A| ≤ |P − Q| , |P| , |Q| ≤ cK |A| . (5.9)

Proof The proof can be deduced straightforwardly from the one of [2, Lemma 3.15]. We
decompose any A = (a, b) as

A = (a, d1(a)) + 1

t
(0, tb − td1(a)) = Q + 1

t
Pt ,

with Q ∈ T1 and Pt ∈ E∞. The matrices Q and Pt are rank-one connected if and only if
|a| = |d1(a) + t (b − d1(a))|. Since det Q > 0 for Q �= 0, it is easy to see that there exists
only one t0 > 0 such that the last identity is satisfied. We then set ρ := 1 + 1/t0 so that

A = 1

ρ
(ρ Q) + 1

t0ρ
(ρ Pt0).

The latter is the desired decomposition, since ρ Q ∈ T1, ρPt0 ∈ E∞ are rank-one connected,
ρ > 0 and ρ−1 + (t0ρ)−1 = 1. Also notice that ρPt0 = ρt0|b − d1(a)|J RθA as stated.

Finally let us prove (5.9). Remark that

dist(A, T1) + dist(A, E∞) ≤ |A − P| + |A − Q| = |P − Q|.
By the linear independence of T1 and E∞, we get

1

cK
|A| ≤ |P − Q|.

Using Lemma 5.2, (5.5) and (5.7) we obtain

|P| ≤ cK |A|, |Q| ≤ cK |A|, |Q| ≤ cK |P|, |P| ≤ cK |Q|.
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By the triangle inequality,

|P − Q| ≤ |P| + |Q| ≤ (1 + cK ) min(|P|, |Q|),
and (5.9) follows. ��

We now turn our attention to the study of rank-one connections between the target set T
and E∞.

Lemma 5.4 Let R = (r, 0) with |r | = 1 and a ∈ C�{0}. For j ∈ {1, 2} define
Q1(a) := λ1(a, d1(a)) ∈ T1, Q2(a) := λ2(−a, d2(a)) ∈ T2,

λ j (a) := 1√
B2
j (a) + A j (a) + Bj (a)

, (5.10)

{
A j (a) := det(a, d j (a)) = |a|2 − ∣∣d j (a)

∣∣2 ,

Bj (a) := 
 (r d j (a)).
(5.11)

Then λ j > 0, A j > 0 and det(Q j − J R) = 0. Moreover there exists a constant cK > 1
depending only on K , S1, S2 such that

1

cK
≤ ∣∣Q j (a)

∣∣ ≤ cK , (5.12)

for every a ∈ C�{0} and R ∈ SO(2).

Proof Condition det(Q j − J R) = 0 is equivalent to |λ j a| = |λ j d j (a) − r |, that is

A j (a)λ2
j + 2Bj (a)λ j − 1 = 0 (5.13)

with A j , Bj defined by (5.11). Notice that A j > 0 by (5.5). Therefore λ j defined in (5.10)
solves (5.13) and satisfies λ j > 0.

We will now prove (5.12). Since a �= 0, we can write a = tω for some t > 0 and ω ∈ C,
with |ω| = 1. We have A j (a) = t2A j (ω) and Bj (a) = t B j (ω) so that λ j (a) = λ j (ω)/t .
Hence

Q1(a) = λ1(ω)(ω, d1(ω)), Q2(a) = λ2(ω)(−ω, d2(ω)). (5.14)

Since λ j is continuous and positive in (C�{0}) × SO(2), (5.12) follows from (5.14). ��
Notation. Let θ ∈ (−π, π]. For Rθ = (eiθ , 0) ∈ SO(2), define x := cos θ, y := sin θ and

a(Rθ ) := x

k
+ i

y

s
, (5.15)

where s is defined in (4.6). Identifying SO(2) with the interval (−π, π], for j = 1, 2, we
introduce the function

λ j : (−π, π] → (0,+∞) defined by λ j (Rθ ) := λ j (a(Rθ )) (5.16)

with λ j (a(Rθ )) as in (5.10). Furthermore, for n ∈ N set

Mj (Rθ ) := λ j

λ1 + λ2

2
− λ1λ2

, l(Rθ ) := M1 + M2

2
− 1, m := min

θ∈(−π,π ]
M2

2 − M2

L(Rθ ) :=1 + l

1 − l
, βn(Rθ ) := 1 − 1 + l

n
, p(Rθ ) := 2L

L + 1
.

(5.17)
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Lemma 5.5 For j = 1, 2, the functions

λ j : (−π, π] →
[

s

1 + s j
,

k

1 + k

]
, l : (−π, π] → [s, k],

L : (−π, π] → [S, K ] , p : (−π, π] →
[

2S

S + 1
,

2K

K + 1

]
,

are even, surjective and their periodic extension is C1. Furthermore, they are strictly decreas-
ing in (0, π/2) and strictly increasing in (π/2, π), with maximum at θ = 0, π and minimum
at θ = π/2. Finally

0 < Mj < 2, m > 0, (5.18)
n∏
j=1

β j (Rθ ) = 1

n p(Rθ )
+ O

(
1

n

)
, (5.19)

where O(1/n) → 0 as n → ∞ uniformly for θ ∈ (−π, π].

Proof Let us consider λ j first. By definitions (5.11), (5.15) and by recalling that x2 + y2 = 1,
we may regard A j , Bj and λ j as functions of x ∈ [−1, 1]. In particular,

A j (x) =
(

1 − k2

k2 − 1 − s2
j

s2

)
x2 + 1 − s2

j

s2 , Bj (x) =
(

1 − s j
s

)
x2 + s j

s
. (5.20)

By symmetry we can restrict to x ∈ [0, 1]. We have three cases:
1. Case s1 = s2. Since s1 = s2 = s, from (5.20) we compute

λ1(x) = λ2(x) =
(

1 +
√(

1

k2 − 1

s2

)
x2 + 1

s2

)−1

.

By (5.1),(5.2) this is a strictly increasing function in [0, 1], and the rest of the thesis for λ j

readily follows.
2. Case s1 < s2. By (5.1) we have

− s2 < s1 < s and 0 < s < s2. (5.21)

Relations (5.20) and (5.21) imply that

A′
j (0) = 0, A′

j (x) < 0, for x ∈ (0, 1], (5.22)

B ′
1(0) = 0, B ′

1(x) > 0, for x ∈ (0, 1], (5.23)

B ′
2(0) = 0, B ′

2(x) < 0, for x ∈ (0, 1]. (5.24)

We claim that
λ′
j (0) = 0, λ′

j (x) > 0, for x ∈ (0, 1]. (5.25)

Before proving (5.25), notice that λ j (0) = s

1 + s j
and λ j (1) = k

1 + k
, therefore the surjec-

tivity of λ j will follow from (5.25). Let us now prove (5.25). For j = 2 condition (5.25) is
an immediate consequence of the definition of λ2 and (5.22), (5.24). For j = 1 we have
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λ′
1(x) = − 1

λ2
1

⎛
⎝ A′

1 + 2B1B ′
1

2
√
B2

1 + A1

+ B ′
1

⎞
⎠ (5.26)

and we immediately see that λ′
1(0) = 0 by (5.22) and (5.23). Assume now that x ∈ (0, 1].

By (5.23) and (5.26), the claim (5.25) is equivalent to

A′
1

2 + 4A′
1B1B

′
1 − 4A1B

′
1

2
> 0, for x ∈ (0, 1].

After simplifications, the above inequality is equivalent to

4 f (s1, s2)

k4(s1 + s2)
4 x2 > 0, for x ∈ (0, 1], (5.27)

where f (s1, s2) = abcd , with

a = −2k + (1 + k)s1 + (1 − k)s2, b = 2k + (1 + k)s1 + (1 − k)s2,

c = −2k − (1 − k)s1 − (1 + k)s2, d = 2k − (1 − k)s1 − (1 + k)s2.

We have that a, c < 0 since s1 < s2 and b, d > 0 since s1 > −s2. Hence (5.27) follows.
3. Case s2 < s1. In particular we have

− s1 < s2 < s and 0 < s < s1. (5.28)

This is similar to the previous case. Indeed (5.22) is still true, but for Bj we have

B ′
1(0) = 0, B ′

1(x) < 0, for x ∈ (0, 1], (5.29)

B ′
2(0) = 0, B ′

2(x) > 0, for x ∈ (0, 1]. (5.30)

This implies (5.25) with j = 1. Similarly to the previous case, we can see that (5.25) for
j = 2 is equivalent to

4 f (s2, s1)

k4(s1 + s2)
4 x2 > 0, for x ∈ (0, 1]. (5.31)

Notice that f is symmetric, therefore (5.31) is a consequence of (5.27).
We will now turn our attention to the function l. Notice that

l = 1

1 − H
− 1, where H := 2λ1λ2

λ1 + λ2
= 2

(
1

λ1
+ 1

λ2

)−1

(5.32)

is the harmonic mean of λ1 and λ2. Therefore H is differentiable and even. By direct com-
putation we have

H ′ = 2
λ′

1λ
2
2 + λ2

1λ
′
2

(λ1 + λ2)
2 .

Since λ j > 0, by (5.25) we have

H ′(0) = 0, H ′(x) > 0, for x ∈ (0, 1]. (5.33)

Moreover H(0) = s

1 + s
and H(1) = k

1 + k
. Then from (5.32) we deduce l(0) = s, l(1) = k

and the rest of the statement for l.
The statements for L and p follow directly from the properties of l and from the fact that

t → 1 + t

1 − t
, t → 2t

t + 1
are C1 and strictly increasing for 0 < t < 1 and t > 1, respectively.
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Next we prove (5.18). By (5.1) and the properties of λ j , we have in particular

0 < λ j <
1

2
, 0 < H <

1

2
, (5.34)

where H is defined in (5.32). Since λ j > 0, the inequality Mj > 0 is equivalent to H < 1,
which holds by (5.34). The inequality M2 < 2 is instead equivalent to λ1(1 − 2λ2) > 0,
which is again true by (5.34). The case M1 < 2 is similar. Finally m > 0 follows from
0 < M2 < 2 and the continuity of λ j .

Finally we prove (5.19). By definition we have 1 + l = 2L

L + 1
= p. By taking the

logarithm of
∏n

j=1 β j (Rθ ), we see that there exists a constant c > 0, depending only on
K , S1, S2, such that

∣∣∣∣∣∣
log

⎛
⎝

n∏
j=1

β j (Rθ )

⎞
⎠+ p(Rθ ) log n

∣∣∣∣∣∣
< c, for every θ ∈ (−π, π]. (5.35)

Estimate (5.35) is uniform because β j and p are π -periodic and uniformly continuous. ��
5.2 Weak staircase laminate

We are now ready to construct a staircase laminate in the same fashion as [2, Lemma 3.17].
We remark that the construction of this type of laminates, first introduced in [5], has also been
used in [3,4] in connection with the problem of regularity for rank-one convex functions and
in [6,10] for constructing Sobolev homeomorphisms with gradients of law rank.

The steps of our staircase will be the sets

Sn := nJ SO(2) =
{(

0, neiθ
)

: θ ∈ (−π, π]
}

, n ≥ 1.

For 0 < δ < π/2 we introduce the set

Eδ∞ := {(0, z) ∈ E∞ : | arg z| < δ}, Sδ
n := Sn ∩ Eδ∞.

Lemma 5.6 Let 0 < δ < π/4 and 0 < ρ < min{m, 1
2 }, with m > 0 defined in (5.17). There

exists a constant cK > 1 depending only on K , S1, S2, such that for every A = (a, b) ∈ R
2×2

satisfying

dist(A,Sn) < ρ, (5.36)

there exists a laminate of third order νA, such that:

(i) νA = A,
(ii) spt νA ⊂ T ∪ Sn+1,

(iii) spt νA ⊂ {ξ ∈ R
2×2 : c−1

K n < |ξ | < cK n},
(iv) spt νA ∩ Sn+1 = {(n + 1)J R}, with R = RθA as in (5.4).

Moreover
(

1 − cK
ρ

n

)
βn(R) ≤ νA(Sn+1) ≤

(
1 + cK

ρ

n

)
βn+2(R), (5.37)

where βn is defined in (5.17). If in addition n ≥ 2 and

dist
(
A,Sδ

n

)
< ρ, (5.38)
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Fig. 1 Weak staircase laminate E∞

E0

T1

T2

A

Q

tJRθA

Q1

Q2

P̃
(n+ 1)JRθA

then
| arg R| = |θA| < δ + ρ. (5.39)

In particular spt νA ⊂ T ∪ Sδ+ρ
n+1 .

Proof Let us start by defining νA. From Lemma 5.3 there exist cK > 1 and non zero matrices
Q ∈ T1, P ∈ E∞, such that det(P − Q) = 0,

A = μ1Q + (1 − μ1)P, for some μ1 ∈ [0, 1], (5.40)
1

cK
|A| ≤ |P − Q| , |P| , |Q| ≤ cK |A| . (5.41)

Moreover P = t J R with R = RθA = (r, 0) as in (5.4) and t > 0. We will estimate t . By
(5.36), there exists R̃ ∈ SO(2) such that |A− nJ R̃| < ρ. Applying Lemma 5.2 to A− nJ R̃
and P − nJ R̃ yields

|P − nJ R̃| <
√

2ρ, (5.42)

since P − nJ R̃ ∈ E∞. Hence from (5.42) we get

|t − n| < ρ, (5.43)

since |J R| = |J R̃| = √
2. We also have

μ1 = |A − Q|
|P − Q| ≥ 1 − |P − A|

|P − Q| ≥ 1 − cK
ρ

n
, (5.44)

since |P − A| < 3ρ and |P − Q| > n/cK , by (5.38), (5.41), (5.42).
Next we split P in order to “climb” one step of the staircase (see Fig. 1). Define x :=

cos θA, y := sin θA and

a := x

k
+ i

y

s
,
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as in (5.15). Moreover set

Q1 := λ1(a, d1(a)), Q2 := λ2(−a, d2(a)).

Here λ1, λ2 are chosen as in (5.10), so that Q j ∈ Tj and, by Lemma 5.4, det(Q j − J R) = 0.
Furthermore, set ⎧

⎪⎪⎨
⎪⎪⎩

μ2 := M2 − (t − n)M2

2n + M2 + (t − n)(2 − M2)
,

μ3 := M1 − (t − n)M1

2(n + 1)
,

(5.45)

with Mj as in (5.17). With the above choices we have
{
t J R = μ2t Q1 + (1 − μ2)P̃,

P̃ = μ3(n + 1)Q2 + (1 − μ3)(n + 1)J R,
(5.46)

and μ2, μ3 ∈ [0, 1] by (5.18). In order to check (5.46), we solve the first equation in P̃ to
get

γ2t J R + (1 − γ2)t Q1 = γ3(n + 1)Q2 + (1 − γ3)(n + 1)J R, (5.47)

with μ2 = 1 − 1/γ2 and μ3 = γ3. Equating the first conformal coordinate of both sides of
(5.47) yields

γ2 = 1 + γ3
n + 1

t

λ2

λ1
. (5.48)

Substituting (5.48) in the second component of (5.47) gives us

γ3
(
λ1 + λ2 − λ1λ2 (d1(a) + d2(a)) r−1) = 1 − (t − n)

n + 1
λ1. (5.49)

By (5.15), d1(a) + d2(a) = 2r and equation (5.49) yields

γ3 = 1 − (t − n)

n + 1

λ1

λ1 + λ2 − 2λ1λ2
= 1 − (t − n)

2(n + 1)
M1. (5.50)

Equations (5.48) and (5.50) give us (5.45). Therefore, by (5.40) and (5.46), the measure

νA := μ1δQ + (1 − μ1)
(
μ2δt Q1 + (1 − μ2)

(
μ3δ(n+1)Q2 + (1 − μ3)δ(n+1)J R

))

defines a laminate of third order with barycenter A, supported in T1 ∪ T2 ∪ Sn+1 and such
that spt νA ∩ Sn+1 = {(n + 1)J R} with R = RθA . Moreover

spt νA ⊂ {ξ ∈ R
2×2 : c−1

K n < |ξ | < cK n},
since c−1

K n < |Q| < cK n by (5.36), (5.41) and

c−1
K n < |t Q1|, |(n + 1)Q2| < cK n

by (5.43), (5.12). Next we prove (5.37) by estimating

νA(Sn+1) = μ1(1 − μ2)(1 − μ3). (5.51)

Notice that νA(Sn+1) depends on R. For small ρ, we have

μ2 = M2

2n
+ ρ O

(
1

n

)
, μ3 = M1

2n
+ ρ O

(
1

n

)
,
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so that

(1 − μ2)(1 − μ3) = 1 − M1 + M2

2n
+ ρ O

(
1

n2

)
= 1 − 1 + l

n
+ ρ O

(
1

n2

)
,

with l as in (5.17). Although this gives the right asymptotic, we will need to estimate (5.51)
for every n ∈ N. By direct calculation

(1 − μ2)(1 − μ3) = n + (t − n)

n + 1

2n + 2 − M1 + (t − n)M1

2n + M2 + (t − n)(2 − M2)
,

so that

(1 − μ2)(1 − μ3) =
(

1 + t − n

n

)(
1 − 1

n + 1

)(
1 − 2l (1 − (t − n))

2n + M2 + (t − n)(2 − M2)

)
.

(5.52)

Let us bound (5.52) from above. Recall that t − n < ρ < 1 and 2 − M2 > 0, by (5.18), so
the denominator of the third factor in (5.52) is bounded from above by 2(n + 1) and

(1 − μ2)(1 − μ3) ≤
(

1 + ρ

n

)(
1 − 1

n + 1

)(
1 − l

n + 1
+ l

ρ

n + 1

)

≤
(

1 + cK
ρ

n

)(
1 − 1

n + 1

)(
1 − l

n + 1

)
,

(5.53)

where cK > 1 is such that

l
ρ

n + 1

(
1 + ρ

n

)
≤ (cK − 1)

ρ

n

(
1 − l

n + 1

)
.

Moreover
(

1 − 1

n + 1

)(
1 − l

n + 1

)
= 1 − 1 + l

n + 1
+ l

(n + 1)2 ≤ 1 − 1 + l

n + 2
= βn+2(R).

(5.54)

The upper bound in (5.37) follows from (5.53) and (5.54).
Let us now bound (5.52) from below. We can estimate from below the denominator in the

third factor of (5.52) with 2n, since t − n > −ρ by (5.43) and the assumption that ρ < m
with m as in (5.17). Therefore

(1 − μ2)(1 − μ3) ≥
(

1 − ρ

n

)(
1 − 1

n + 1

)(
1 − l

n
− l

ρ

n

)

≥
(

1 − cK
ρ

n

)(
1 − 1

n + 1

)(
1 − l

n

)
,

(5.55)

if we choose cK > 1 such that
(

1 − ρ

n

)
l ≤ (cK − 1)

(
1 − l

n

)
.

Finally (
1 − 1

n + 1

)(
1 − l

n

)
≥ 1 − 1 + l

n
= βn(R). (5.56)

The lower bound in (5.37) follows from (5.55) and (5.56).
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Finally, the last part of the statement follows from a simple geometrical argument, recalling
that arg R = θA = − arg(b − d1(a)) and using hypothesis (5.38). ��
Remark 5.7 By iteratively applying Lemma 5.6, one can obtain, for every Rθ ∈ SO(2),
a sequence of laminates of finite order νn ∈ L(R2×2) that satisfies νn = J Rθ , spt νn ⊂
T1 ∪ T2 ∪ Sn+1, and

lim
n→∞

∫

R2×2
|λ|p(Rθ ) dνn(λ) = ∞, (5.57)

where p(Rθ ) ∈
[

2S
S+1 , 2K

K+1

]
is the function defined in (5.17). Indeed, setting A = J Rθ

and iterating the construction of Lemma 5.6, yields νn ∈ L(R2×2) such that νn = J Rθ and
spt νn ⊂ T1 ∪ T2 ∪ Sn+1. Notice that νn contains the term

∏n
j=1(1 − μ

j
2)(1 − μ

j
3)δ(n+1)J Rθ

,

with μ
j
2, μ

j
3 as defined in (5.45). Therefore, using (5.19) and (5.37) (with ρ = 0), we obtain

n∏
j=1

(
1 − μ

j
2

) (
1 − μ

j
3

)
≈

n∏
j=1

β j (Rθ ) ≈ 1

n p(Rθ )
(5.58)

which implies (5.57).

Remark 5.8 In the isotropic case S = K , the laminate νA provided by Lemma 5.6 coincides
with the one in [2, Lemma 3.16]. In particular, the growth condition (5.37) is independent of
the initial point A, and it reads as

(
1 − cK

ρ

n

)
βn(I ) ≤ νA(Sn+1) ≤

(
1 + cK

ρ

n

)
βn+2(I ), βn(I ) = 1 − 1 + k

n
.

Moreover, by Remark 5.7, for every Rθ ∈ SO(2), J Rθ is the center of mass of a sequence of
laminates of finite order such that (5.57) holds with p(Rθ ) ≡ 2K

K+1 , which gives the desired
growth rate.

In contrast, in the anisotropic case 1 < S < K , the growth rate of the laminates explicitly
depends on the argument of the barycenter J Rθ . The desired growth rate corresponds to
θ = 0, that is, the center of mass has to be J .

In constructing approximate solutions with the desired integrability properties, it is then
crucial to be able to select rotations whose angle lies in an arbitrarily small neighbourhood
of θ = 0.

We now proceed to show the existence of a piecewise affine map f that solves the differ-
ential inclusion (4.2) up to an arbitrarily small L∞ error. Such map will have the integrability
properties given by (5.59).

Proposition 5.9 Let � ⊂ R
2 be an open bounded domain. Let K > 1, α ∈ (0, 1), ε > 0,

0 < δ0 < 2K
K+1 − 2S

S+1 , γ > 0. There exist a constant cK ,δ0 > 1, depending only on

K , S1, S2, δ0, and a piecewise affine map f ∈ W 1,1(�; R
2) ∩ Cα(�; R

2), such that

(i) f (x) = J x on ∂�,
(ii) [ f − J x]Cα(�) < ε,

(iii) dist(∇ f (x), T ) < γ a.e. in �.

Moreover
1

cK ,δ0

t−
2K
K+1 <

| {x ∈ � : |∇ f (x)| > t} |
|�| < cK ,δ0 t

−p, (5.59)
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where p ∈
(

2K
K+1 − δ0,

2K
K+1

]
. That is, ∇ f ∈ L p

weak

(
�; R

2×2
)
and ∇ f /∈ L

2K
K+1
(
�; R

2×2
)
.

In particular f ∈ W 1,q(�; R
2) for every q < p, but

∫
�

|∇ f (x)| 2K
K+1 dx = ∞.

Proof By Lemma 5.5 the function p : (−π, π] →
[

2S
S+1 , 2K

K+1

]
is uniformly continuous. Let

α : [0,∞] → [0,∞] be its modulus of continuity. Fix 0 < δ < π/4 such that

α(δ) < δ0. (5.60)

Let {ρn} be a strictly decreasing positive sequence satisfying

ρ1 <
1

4
min{m, c−1

K , dist(S1, T ), γ }, ρn <
δ

4
2−n, (5.61)

where m > 0 and cK > 1 are the constants from Lemma 5.6. Define {δn} as

δ1 := 0 and δn :=
n−1∑
j=1

ρn for n ≥ 2. (5.62)

In particular from (5.61),(5.62) it follows that

δn <
δ

2
, for every n ∈ N. (5.63)

Step 1. Similarly to the proof of [2, Proposition 3.17], by repeatedly combining Lemma 5.6
and Proposition 3.2, we will prove the following statement:
Claim.There exist sequences of piecewise constant functions τn : � → (0,∞) and piecewise
affine Lipschitz mappings fn : � → R

2, such that

(a) fn(x) = J x on ∂�,
(b) [ fn − J x]Cα(�) < (1 − 2−n)ε,

(c) dist(∇ fn(x), T ∪ Sδn
n ) < τn(x) a.e. in �,

(d) τn(x) = ρn in �n ,

where

�n := {x ∈ � : dist(∇ fn(x), T ) ≥ ρn}.
Moreover

n−1∏
j=1

(
1 − cK

ρ j

j

)
β j (R0) ≤ |�n |

|�| ≤
n−1∏
j=1

(
1 + cK

ρ j

j

)
β j+2(Rδ). (5.64)

Proof of the claim. We proceed by induction. Set f1(x) := J x and τ1(x) := ρ1 for every
x ∈ �. Since J ∈ S0

1 , then f1 satisfies (a)-(c). Also, ρ1 < dist(T,S1)/4 by (5.61), so
�1 = � and (d), (5.64) follow.

Assume now that fn and τn satisfy the inductive hypothesis. We will first define fn+1 by
modifying fn on the set �n . Since fn is piecewise affine we have a decomposition of �n into
pairwise disjoint open subsets �n,i such that

∣∣∣∣∣�n�

∞⋃
i=1

�n,i

∣∣∣∣∣ = 0, (5.65)

with fn(x) = Ai x + bi in �n,i , for some Ai ∈ R
2×2 and bi ∈ R

2. Moreover

dist
(
Ai ,Sδn

n

)
< ρn (5.66)
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by (c) and (d). Since (5.66) and (5.61) hold, we can invoke Lemma 5.6 to obtain a laminate
νAi and a rotation Ri = RθAi

satisfying, in particular, νAi = Ai ,

| arg Ri | = |θAi | < δn+1, (5.67)

spt νAi ⊂ T ∪ Sδn+1
n+1 , (5.68)

since δn+1 = δn+ρn by (5.62). By applying Proposition 3.2 to νAi and by taking into account
(5.68), we obtain a piecewise affine Lipschitz mapping gi : �n,i → R

2, such that

(e) gi (x) = Ai x + bi on ∂�n,i ,
(f) [gi − fn]Cα(�n,i )

< 2−(n+1+i)ε,

(g) c−1
K n < |∇gi (x)| < cK n a.e. in �n,i ,

(h) dist(∇gi (x), T ∪ Sδn+1
n+1 ) < ρn+1 a.e. in �n,i .

Moreover (
1 − cK

ρn

n

)
βn

(
Ri
)

≤ |ωn,i |
|�n,i | ≤

(
1 + cK

ρn

n

)
βn+2

(
Ri
)

, (5.69)

with

ωn,i :=
∣∣∣
{
x ∈ �n,i : dist

(
∇gi (x),Sδn+1

n+1

)
< ρn+1

}∣∣∣ .
Set

fn+1(x) :=
{
fn(x) if x ∈ ���n,

gi (x) if x ∈ �n,i .

Since �n+1 is well defined, we can also introduce

τn+1(x) :=
{

τn(x) for x ∈ ���n+1,

ρn+1 for x ∈ �n+1,

so that (d) holds. From (e) we have fn+1(x) = J x on ∂�. From (f) we get [ fn+1− fn]Cα(�) <

2−(n+1)ε so that (b) follows. (c) is a direct consequence of (d), (h), and the fact that ρn is
strictly decreasing. Finally let us prove (5.64). First notice that the sets ωn,i are pairwise
disjoint. By (5.61), in particular we have ρn+1 < dist(T,S1)/4, so that

∣∣∣∣∣�n+1�

∞⋃
i=1

ωn,i

∣∣∣∣∣ = 0. (5.70)

By (5.67) and (5.63) we have | arg Ri | < δ. Then by the properties of βn (see Lemma 5.5),

βn(R
i ) ≥ βn(R0) and βn+2(R

i ) ≤ βn+2(Rδ). (5.71)

Using (5.71), (5.65), (5.70) in (5.64) yields

|�n |
(

1 − cK
ρn

n

)
β j (R0) ≤ |�n+1| ≤ |�n |

(
1 + cK

ρn

n

)
β j+2(Rδ),

and (5.64) follows.

Step 2.Notice that on ���n we have that ∇ fn+1 = ∇ fn almost everywhere, so �n+1 ⊂ �n .
Therefore { fn} is obtained by modification on a nested sequence of open sets, satisfying

n−1∏
j=1

(
1 − cK

ρ j

j

)
β j (R0) ≤ |�n |

|�| ≤
n−1∏
j=1

(
1 + cK

ρ j

j

)
β j+2(Rδ).
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By (5.61) we have ρn < min{2−n δ, c−1
K }/4, so that

∞∏
j=1

(
1 − cK

ρ j

j

)
= c1,

∞∏
j=1

(
1 + cK

ρ j

j

)
= c2,

with 0 < c1 < c2 < ∞, depending only on K , S1, S2, δ (and hence from δ0, by (5.60)).
Moreover, from Lemma 5.5,

n∏
j=1

β j (Rθ ) = n−p(Rθ ) + O

(
1

n

)
, uniformly in (−π, π].

Therefore, there exists a constant cK ,δ0 > 1 depending only on K , S1, S2, δ0, such that

1

cK ,δ0

n− 2K
K+1 ≤ |�n | ≤ cK ,δ0 n

−pδ0 , (5.72)

since p(R0) = 2K

K + 1
. Here pδ0 := p(Rδ). Notice that, by (5.60), pδ0 ∈

(
2K
K+1 − δ0,

2K
K+1

]
,

since p is strictly decreasing in [0, π/2].
From (5.72), in particular we deduce |�n | → 0. Therefore fn → f almost everywhere

in �, with f piecewise affine. Furthermore f satisfies (i)-(iii) by construction.
We are left to estimate the distribution function of ∇ f . By (g) we have that

|∇ f (x)| >
n

cK ,δ0

in �n and |∇ f (x)| < cK ,δ0 n in ���n .

For a fixed t > cK ,δ0 , let n1 := [cK ,δ0 t] and n2 := [c−1
K ,δ0

t], where [·] denotes the integer
part function. Therefore

�n1+1 ⊂ {x ∈ � : |∇ f (x)| > t} ⊂ �n2

and (5.59) follows from (5.72), with p = pδ0 . Lastly, (5.59) implies that ∇ fn is uniformly
bounded in L1, so that f ∈ W 1,1(�; R

2) by dominated convergence. ��
We remark that the constant cK ,δ0 in (5.59) is monotonically increasing as a function of

δ0, that is cK ,δ1 ≤ cK ,δ2 if δ1 ≤ δ2.
We now proceed with the construction of exact solutions to (4.2). We will follow a standard

argument (see, e.g., [5, Remark 6.3], [9, Thoerem A.2]).

Theorem 5.10 Let σ1, σ2 be defined by (1.2) for some K , S1, S2 as in (5.3) and S as in

(4.7). There exist coefficients σn ∈ L∞(�; {σ1, σ2}), exponents pn ∈
[

2S
S+1 , 2K

K+1

]
, functions

un ∈ W 1,1(�; R), such that
{

div(σn(x)∇un(x)) = 0 in �,

un(x) = x1 on ∂�,
(5.73)

∇un ∈ L pn
weak(�; R

2), pn → 2K

K + 1
, (5.74)

∇un /∈ L
2K
K+1 (�; R

2). (5.75)

In particular un ∈ W 1,q(�; R) for every q < pn, but
∫
�

|∇un | 2K
K+1 dx = ∞.
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Proof By Proposition 5.9 there exist sequences fn ∈ W 1,1(�; R
2) ∩ Cα(�; R

2), γn ↘ 0,

pn ∈
[

2S
S+1 , 2K

K+1

]
, such that, fn(x) = J x on ∂�,

dist(∇ fn(x), T1 ∪ T2) < γn a.e. in �, (5.76)

∇ fn ∈ L pn
weak

(
�; R

2×2) , pn → 2K

K + 1
, ∇ fn /∈ L

2K
K+1
(
�; R

2×2) . (5.77)

In euclidean coordinates, condition (5.76) implies that
(∇ f 1

n (x)
∇ f 2

n (x)

)
=
(

En(x)
R π

2
σn(x)En(x)

)
+
(
an(x)
bn(x)

)
a.e. in � (5.78)

with fn = ( f 1
n , f 2

n ), σn := σ1χ{∇ f ∈T1} + σ2χ{∇ f ∈T2}, En : � → R
2, R π

2
=
(

0 −1
1 0

)
and

an, bn → 0 in L∞(�; R
2). (5.79)

The boundary condition fn = J x reads f 1
n = x1 and f 2

n = −x2. We set un := f 1
n + vn ,

where vn ∈ H1
0 (�, R) is the unique solution to

div(σn∇v) = − div(σnan − RT
π
2
bn).

Notice that vn is uniformly bounded in H1 by (5.79). Since (5.78) holds, it is immediate
to check that div(σn∇un) = div(RT

π
2
∇ f 2

n ) = 0, so that un is a solution of (5.73). Finally,

the regularity thesis (5.74), (5.75), follows from the definition of un and the fact that vn ∈
H1

0 (�; R) and f 1
n satisfies (5.77) with 1 < pn < 2. ��
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