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A B S T R A C T

Asymptotic forms are a useful way of representing the state of stress at a contact edge, allowing us to
characterise the region in which cracks nucleate. The asymptotes must match the behaviour implied by the
local geometry. In this paper, we study the behaviour of a flat contact with a circular arced edge (i.e. a
flat and rounded contact); a geometry that has extensive applications. We show explicitly how the very
convenient closed-form solution for this problem, derived from half-plane theory, may be collocated into
the more realistic three-quarter plane far field solution, obtained from Williams’ solution. This provides a
closed-form representation of the edge, correctly geared to the far-field solution, for the first time.
1. Introduction

Our high-level goal is to produce a rigorous match between pro-
totypical problems suffering from fretting fatigue and the conditions
present in laboratory experiments measuring fretting strength, with
the intention of applying the idea to a wide range of applications.
Cracks invariably start at or very near the contact edge [1]. The general
philosophy is to match by using a set of asymptotic forms to describe
the hinterland, a method which we have developed here over several
years [2–4], and which has also been independently developed [5–7],
in a slightly different form. We restrict ourselves to problems in which
the contact is convex in form, and hence incomplete in character. This
means that very close to the edge of the contact, and regardless of
whether or not the contact overall may be described using half-plane
theory, local surface tractions and corresponding displacements will
be related by Flamant (half-plane) theory. Hence the contact pressure,
𝑝(𝑥), and shear traction, 𝑞(𝑥) may always be approximated by a single
term, square root bounded in form, defined by a multiplier, 𝐿𝐼 and 𝐿𝐼𝐼
respectively so that

𝑝(𝑥) = 𝐿𝐼
√

𝑥 + 𝑂(𝑥3∕2) as 𝑥 → 0, (1)

𝑞(𝑥) = 𝐿𝐼𝐼
√

𝑥 + 𝑂(𝑥3∕2) as 𝑥 → 0, (2)

where 𝑥 measures distance from the left-hand contact edge, as depicted
schematically in Fig. 1. In practice, this single term may only apply over
a very small distance from the contact edge and it is the goal of this
paper to both categorise this and offer a possible remedy.
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Later in this paper, we will investigate the different formulations
of the problem for both pure mode I and II loading, as in [8]. Mode
I loading is when the stress is orthogonal, and mode II when the
stress is parallel, to the bisector of the three-quarter plane. Fig. 1 is
a schematic representation of the incomplete contact between a semi-
infinite flat and rounded punch (Body 1) and a half-plane (Body 2).
𝐾𝐼[1∕2] and 𝐾𝐼𝐼[1∕2], displayed in Fig. 1, are the square-root singular
multipliers on modes I and II loading which emerge from the half-plane
formulation. For an observation point remote from the contact edge, the
edge radius becomes insignificant, and, if there is no remote slip, the
domain can resemble a three-quarter plane (i.e. a large wedge of angle
3𝜋∕2). 𝐾𝐼[3∕4] and 𝐾𝐼𝐼[3∕4], also labelled in Fig. 1, are the generalised
stress intensity factors, acting as multipliers on Williams’ modes I and II
eigensolutions, in a wedge sense (cf. [9,10] for an extensive discussion
of the Williams’ solution).

Irreversibilities occur in the ‘process zone’. The approach outlined
hinges on the process zone being contained wholly within a hinterland
in which the (𝐿𝐼 , 𝐾𝐼𝐼 ) fields dominate the character of the (elastic)
state of stress. We have recently looked at the properties of series
expansions of the near-edge fields, beyond the first term [11]. Here we
will just repeat, briefly the results of a representation of the singular
shear traction:

𝑞local(𝑥) =
𝐾±

𝐼𝐼
√

𝑥
+ 𝐿±

𝐼𝐼

√

𝑥 +𝑀±
𝐼𝐼 (𝑥)

3∕2 + 𝑂
(

𝑥5∕2
)

as 𝑥 → 0, (3)

where the multipliers are given in [11] and show that the first term
alone captures the state of stress well for a significant fraction of the
contact size in a Hertzian contact.
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Fig. 1. Here, 𝑥 denotes distance from the left-hand edge of the contact region, 𝑑 denotes the length of the curved section in the contact, 𝑅 the radius of curvature of the rounded
part of the punch. 𝐾𝐼[3∕4], 𝐾𝐼𝐼[3∕4] and 𝐾𝐼[1∕2], 𝐾𝐼𝐼[1∕2] are the generalised stress intensity factors acting as multipliers for modes I and II, for a three-quarter plane and half-plane
formulation, respectively. Illustrative profiles of the contact pressure 𝑝(𝑥) and shear tractions 𝑞(𝑥) are indicated for reference.
Many of the early tests on fretting fatigue strength, when our under-
standing of its mechanics was in its infancy, used the Hertzian contact.
However, a great many practical contacts have a central flat form, say
of half-length 𝑏, and end radii, 𝑅, such as the finite punch displayed
schematically in Fig. 2(a). Applications include contacts found in the
root of gas turbine fan blade dovetails [12], or in the locking segments
of riser-seabed connectors. Analysing these problems introduces several
new features. The first is the question of how well the asymptotic
expansion near the contact edge models the contact pressure. Assump-
tions include that, in this region, the contact is well represented by
half-plane theory, which is treated in the next section. Secondly, a
deeper question then surfaces of how interior properties of the contact,
where half-plane theory does not apply, control the overall properties
of the contact. In particular, what happens at the contact edge? This
aspect is treated comprehensively in subsequent sections.

2. Asymptotic representation of the state of stress

One method to improve the fidelity of the solitary term, Eq. (1),
is to employ an asymptotic expansion, including higher-order terms in
the asymptotic approximation. Considering 𝑑, the contact length in the
curved section, and 2𝑏, the flat length of the contact, permits us to have
solutions for three different types of contacts:

• Hertzian contacts, 𝑏∕𝑑 → 0;
• finite contacts, 𝑏∕𝑑 is finite;
• semi-infinite contacts, 𝑏∕𝑑 → ∞.

We discuss these in turn.
2

2.1. Hertz (𝑏∕𝑑 → 0)

The exact solution for the normal contact pressure in the Hertz
case [10] can be written as

𝑝(𝑥) = −
2𝑃

√

𝑑2 − (𝑥 − 𝑑)2

𝜋𝑑2
, (4)

where P is the constant downward normal force from the contact (see,
for example, [10]). For the Hertz problem, we note that the entire
contact length is curved: thus, 𝑑 is also considered the half-length of
the entire contact.

As seen in [13], the multiplier 𝐿𝐼 may be shown to be

𝐿𝐼 = 𝐸*
𝑅

√

𝑑
2
, (5)

where 𝐸∗ is the plane strain modulus. In general, the normal force may
be related to the contact half-width 𝑑 via

−𝑃 (𝑑) = 𝜋𝐸*𝑑2
4𝑅

. (6)

As the normal force is uniform in the present analysis, i.e. 𝑃 (𝑑) = 𝑃 ,
we can rewrite (4) to be in terms of 𝐿𝐼 ,

𝑝(𝑥) =
𝐿𝐼

√

𝑑
√

2

√

1 −
(𝑥 − 𝑑

𝑑

)2
. (7)

Hence, to find the asymptotic form of (7), we can assume 𝑥∕𝑑 is
small and take the Taylor expansion for 𝑥∕𝑑 ≪ 1,

𝑝(𝑥) = 𝐿𝐼
√

𝑥
(

1 − 𝑥
4𝑑

− 𝑥2

32𝑑2
+ 𝑂(𝑥3)

)

, (8)

so we readily obtain the next two terms in the approximation (as
discussed previously in [11]).
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2.2. Finite (𝑏∕𝑑 finite)

For the finite contact case, the exact solution is non-trivial and
requires solving an integral equation, which can be found in [11] (see
Eq. (20) therein). The expressions for the coefficients of the first three
terms in the asymptotic expansion may also be found in [11] as Eqs. (4)
and (21)–(23), respectively. We note here that, in [11], ‘𝑥’ is defined
as the coordinate measured from the centre of the contact, rather than
the left contact edge. In this paper, we will continue to define ‘𝑥’ as the
coordinate measured from the left contact edge for consistency with the
semi-infinite case.

2.3. Semi-infinite (𝑏∕𝑑 → ∞)

Finally, for the semi-infinite case, when a normal load is applied,
the exact solution for the contact pressure induced is given in [14]

𝑝(𝑥) =
𝐿𝐼

4
√

𝑑

[

2
√

𝑑𝑥 + (𝑥 − 𝑑) ln
|

|

|

|

|

|

1 −
√

𝑥∕𝑑

1 +
√

𝑥∕𝑑

|

|

|

|

|

|

]

𝑥 > 0. (9)

Taking a Taylor series expansion of the full solution, we can write the
asymptotic pressure distribution in the form

𝑝(𝑥) = 𝐿𝐼
√

𝑥
(

1 − 𝑥
3𝑑

− 𝑥2

15𝑑2
+ 𝑂(𝑥3)

)

as 𝑥∕𝑑 → 0 (10)

Here, the coefficients scale only with 𝐿1 and the contact size of the
rounded section of the punch, 𝑑.

2.4. Validity of the asymptotic series expansion

In order to investigate the integrity of these asymptotic expansions
in the vicinity of the contact edge, we may re-scale 𝑥 by 𝑑 and the
asymptotic form of the pressure by 𝐿𝐼

√

𝑑 to facilitate straightforward
comparisons with the exact solution. We show these comparisons for
the first three terms of the asymptotic expansions in Fig. 2.

We are interested in finding an accurate representation of the
internal stress state as far as the slip region extends into the geometry.
In practice, slip regions in Hertzian contacts will typically extend to
just a small fraction of the contact half-width (here, 𝑑). On the other
hand, in problems incorporating a flat, it is common for the slip region
to extend to a significant fraction of the length 𝑑 (and, in principle,
it might extend beyond the curved region). Therefore, for flat and
rounded problems, we may require an accurate representation of the
internal stress state as far as 𝑥∕𝑑 = 1 in from the contact edge.

For the Hertzian contact (Fig. 2, top), even the two-term solution
looks like a decent approximation of the exact solution; when 𝑥∕𝑑 = 1,
the error of the two-term approximation is only 6.7%. Increasing the
number of terms to three or more, improves the approximation even
further; for the Hertzian contact, when 𝑥∕𝑑 = 1, the error of the
three-term approximation is only 1.7%

Unfortunately, this behaviour does not translate to the finite (Fig. 2,
middle) and semi-infinite (Fig. 2, bottom) contacts. When using three
terms, the finite case approximation is slightly more accurate than the
semi-infinite case, however, this is marginal: the errors of the three-
term approximations at 𝑥∕𝑑 = 1 are 17.5% (for a given finite ratio
𝑏∕𝑑 = 0.515) and 20.0%, respectively. To consider a solution appro-
priate, we may look for errors < 5% throughout the extent of the slip
zone. Therefore, even when using three-term solutions, the asymptotic
approximations of finite and semi-infinite contacts are not valid as far
as 𝑥∕𝑑 = 1 in from the contact edge; asymptotic representations of flat
and rounded contacts are poor in this region.

These findings encourage us to consider alternative approaches to
inding asymptotic approximations of the exact contact pressure and
hear tractions that allow for greater scope and flexibility in problems
ontaining geometries with both flat and rounded parts.
3

3. Semi-infinite flat punches with rounded edges

An alternative method to using an asymptotic expansion, alluded to
in the previous section, is to consider an elastic contact between a half-
plane and a semi-infinite indenter with a flat front face and rounded
edge. This is attractive as it provides a possible vehicle for encapsu-
lating rounded contact edge behaviour within a lifing procedure. We
have made two attempts to find a solution to a contacting pair of this
form. The first, [15], used a formulation based on uncoupled half-plane
theory. The second, [8], employed a finite element analysis based on a
three-quarter plane formulation with a rounded corner for the indenter
radii. Before looking at these approaches and showing how they may
be employed in tandem, some aspects of the half-plane solution and its
attributes merit consideration.

3.1. Half-plane formulation

In a half-plane analysis, the surface tractions and surface normal
displacement are related by the following integral equation of the
second kind, which stems from Flamant’s solution,
𝑑𝑔
𝑑𝑥

= 2
𝜋𝐸∗ ∫𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑝 (𝜉) 𝑑𝜉
𝑥 − 𝜉

− 𝛽𝑞(𝑥), (11)

here 𝑝(𝑥) is the contact pressure, 𝑞(𝑥) is the shear traction present,
nd 𝑔(𝑥) is the relative surface profile. In this equation, the composite
lane strain modulus, 𝐸∗, is given by

1
𝐸∗ =

1 − 𝜈21
𝐸1

+
1 − 𝜈22
𝐸2

(12)

where 𝐸𝑖, 𝜈𝑖 are, respectively, the Young’s modulus and Poisson’s ratio
of body 𝑖, and 𝛽, Dundurs’ second constant, is given in [13] by

𝛽 = 𝐸∗

2

[
(

1 + 𝜈1
) (

1 − 2𝜈1
)

𝐸1
−

(

1 + 𝜈2
) (

1 − 2𝜈2
)

𝐸2

]

. (13)

The solution to the contact problem, therefore, depends on the compos-
ite modulus. The mix of stiffness between the two bodies is unimportant
in the first (integral) term in Eq. (11), but it is relevant in the second
term. This second term physically represents the effect of shear traction
on the solution.

We have already alluded to the concept of ‘coupling’, where the
presence of shear tractions causes a change in the relative normal
displacement of the contacting surfaces, and, consequently, the contact
pressure. To derive a solution from half-plane theory, we are implicitly
assuming the contact is ‘uncoupled’. For this assumption to be valid,
we must agree with two important criteria:

(a) both bodies can be appropriately represented by half-plane do-
main shapes,

(b) and, the second term in the integral Eq. (11) vanishes.

or the flat and rounded geometry, criteria (a) is only satisfied very
lose to the contact edge. For this analysis, criteria (b) can only be
atisfied by setting 𝛽 = 0 as we require a moderate coefficient of friction
etween the contacting bodies to avoid slip, 𝑞(𝑥) ≠ 0.

To conclude the discussion of ‘coupling’, in this paper we are only
nterested in the case were both bodies are elastically similar1 (𝐸1 = 𝐸2,
1 = 𝜈2 ⟹ 𝛽 = 0); the solution derived from half-plane theory
ill be valid, but only when the observation point is very close to the

1 For a different area of study, if the contact-defining body was rigid,
ts shape outside the contact patch would not figure in the solution; the
olution would be the same whether the contact-defining body was a half-plane
ith a small rounded corner step, or a semi-infinite flat and rounded punch.
herefore, for the unique case where body 1 in Fig. 1 is rigid (𝜈 = 0) and

body 2 is incompressible (𝜈 = 0.5): we could bypass criteria (a), and criteria
(b) would be satisfied as 𝛽 = 0; the uncoupled half-plane formulation would

be valid for the entirety of the contact.
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Fig. 2. Contact pressure asymptotic expansion plots for three different types of contacts: Hertzian (𝑏∕𝑑 → 0, top), finite (𝑏∕𝑑 = 0.515, middle) and semi-infinite (𝑏∕𝑑 → ∞, bottom).
contact edge, where both domains can be appropriately represented by
a half-plane.

As a means of analysing, in practical terms, how far the uncou-
pled solution deviates from the true coupled solution for the flat and
rounded geometry, we will now derive the uncoupled solution from
half-plane theory, for a semi-infinite flat punch with a rounded edge,
pressed into an elastically similar half-plane. The uncoupled nature of
the solution means that a normal load will induce a contact pressure
alone, given in Eq. (9), which takes the asymptotic forms

𝑝(𝑥) =
𝐿𝐼𝑑

3
√

𝑥
≡

𝐾𝐼[1∕2]
√

𝑥
𝑥 ≫ 𝑑, (14)

𝑝(𝑥) = 𝐿𝐼
√

𝑥 𝑥 ≪ 𝑑, (15)

and where the contact law is given by
𝜋𝑅𝐿𝐼
2𝐸∗ =

√

𝑑, (16)

or
𝑑
𝑅

= 𝜋2

4
𝐿𝐼

2
(17)

where 𝐿𝐼 = 𝑅𝐿𝐼∕𝐸∗.
In addition, the solution derived in the half-plane formulation has

the desirable property of being closed-form with a number of useful
attributes, such as a contact law, Eqs. (16), (17). For example, it is
straightforward to show that the maximum contact pressure is given
by

𝑝0 ≃ 3

√

1.24 𝜋4
𝐿

2
. (18)
4

𝐸∗ 144 𝐼
Moreover, due to the uncoupled nature of the solution, the above
also applies for a shear load inducing an alone shear traction,

𝑞(𝑥) =
𝐿𝐼𝐼

4
√

𝑑

[

2
√

𝑑𝑥 + (𝑥 − 𝑑) ln
|

|

|

|

|

|

1 −
√

𝑥∕𝑑

1 +
√

𝑥∕𝑑

|

|

|

|

|

|

]

𝑥 > 0. (19)

where equations replace 𝑝(𝑥) with 𝑞(𝑥), and 𝐿𝐼 with 𝐿𝐼𝐼 , respectively.
As expected, the asymptotic approximation given by Eq. (1) takes

the correct form when close to the contact edge, 𝑥 ≪ 𝑑, where
the contact problem is appropriately represented by half-plane theory.
However, the difficulty in using this solution is when the observation
point is remote from the edge. As we see from Eq. (14), the contact
pressure is seen to decay in an inverse square-root fashion. If we con-
sider the geometry in Fig. 1, where both bodies are elastically similar,
far from the edge of the contact, the geometry looks like a wedge of
angle 3𝜋∕2 radianss, not two half-planes. Therefore, we would expect
the actual contact pressure decay along the interface to correlate with
that found in the classical Williams’ solution [9], which is not inverse
square-root bounded. Here, the half-plane solution breaks down, away
from the contact edge. In summary, the pressure distribution displayed
in this section is considered valid when the observation point is near the
contact edge, i.e. we can be confident that Eq. (9) accurately represents
the contact pressure between a pair of contacting elastically similar
bodies for small values of 𝑥∕𝑑. However, the solution falls apart as the
observation point moves away from the contact edge; the decay rate is
not what we would expect from consideration of Fig. 1 if the interface
has remotely adhered due to the introduction of coupling.

As a result, it is justified to compare the half-plane formulation with
an alternative formulation that is bounded by Williams’ solution far
from the contact edge to analyse the extent to which they diverge.
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3.2. Three-quarter plane formulation

To overcome the problem that arises far from the contact edge,
we must define the domain shape of the rounded edge body more
rigorously.

Referring to Fig. 1, looking from an observation point well away
from the contact edge, the pair of bodies behave like a square-edged
quarter plane pressing onto an elastically similar half-plane. To permit
the domain to be thought of as a three-quarter plane, — a bonded
half-plane and quarter plane, or a wedge of angle 3𝜋∕2, we must make
he following assumptions: the bodies are both elastic and made from
he same material (elastically similar), and the coefficient of friction is
ufficiently large for the interface to be stuck away from the contact
dge [2,16]. The eigenvector to Williams’ solution dictates the ratio
f shear to direct traction; the contact will be stuck provided the
oefficient of friction is at least as big as this ratio. The ratio for a wedge
f angle 3𝜋∕2 radians is 0.543, and it is assumed, in the analysis, that
he coefficient of friction is at least as big as this.2

When these considerations apply, the solution far from the contact
dge should, instead of displaying a square root decay, follow Williams’
olution [9,10]; for example, for the pure mode 1 loading case – relative
o the bisector line – we should find 𝑝 ∼ 𝑥𝜆𝐼−1, where 𝜆𝐼 = 0.445.

We constructed a finite element three-quarter plane model with a
ounded corner for the indenter, following the assumptions outlined
bove, based on the approach in [8,17]. In the finite element model,
e apply displacement boundary conditions from Williams’ solution,

or a wedge of angle 3𝜋∕2 radians, far from the contact edge [13].

.3. Pure mode I loading

As a first step in understanding how the two solutions compare, we
xcite pure mode I loading only, in the wedge sense. We denote the
orresponding stress intensity factor by 𝐾𝐼[3∕4], seen in Fig. 1.

Looking near the contact edge, as we change the normal loading and
hear loading in proportion, the contact edge moves slightly due to the
rowth in contact size, and a bounded shear traction results. Therefore,
hen 𝑥∕𝑑 ≪ 1, we see each traction is described well by the following

quare root bounded asymptotes

(𝑥) = 𝐿𝐼
√

𝑥, (20)

𝑞(𝑥) = 𝐿𝐼𝐼
√

𝑥. (21)

he calibrations for the asymptote coefficients 𝐿𝐼 and 𝐿𝐼𝐼 are given
n [17] (see Eqs. (3) and (8) therein), viz.

𝐼 =
(−0.93𝐾𝐼[3∕4]

𝐸*𝑅1−𝜆𝐼

)1∕3
𝐸*
√

𝑅
, (22)

𝐼𝐼 =
(−0.04𝐾𝐼[3∕4]

𝐸*𝑅1−𝜆𝐼

)1∕3
𝐸*
√

𝑅
, (23)

here we have set 𝐾𝐼𝐼[3∕4] = 0 as we are considering pure mode I
oading, and the mode I eigenvalue, 𝜆𝐼 = 0.5445, for the case of a 3𝜋∕2
adians wedge [8].

These curves plotted in Fig. 3, coloured blue (broken) for pressure
nd orange (broken) for shear, are the point of commonality between
he rounded three-quarter plane solution and the half-plane solution.

ith the multipliers, 𝐿𝐼 and 𝐿𝐼𝐼 , fixed at the contact edge, the traction
istributions may be plotted from the closed-form equation for a half-
lane Eqs. (9), (19). These are the smooth solid lines coloured blue
contact pressure) and orange (shear traction).

2 At the outset, it is not clear that this condition will also maintain stick at
he contact edge where the theory does not apply; but, in anticipation of results
ound later, we state that if the friction is sufficiently high to ensure stick in
he interior it will also ensure stick at the edge under proportional loading
onditions; other load paths are outside the scope of the current analysis.
5

t

Theoretically, the half-plane formulation should only be valid when
𝑥∕𝑑 ≪ 1. However, as may be seen over the interval of Fig. 3,

< 𝑥∕𝑑 < 4, these lines are almost coincident with those from the
umerical three-quarter plane analysis. This gives us confidence that
e now have, for practical purposes, solutions for the tractions at the

ontact edge in closed form; the only multipliers on the solution are
umerically determined for pure mode I loading, 𝐿𝐼 and 𝐿𝐼𝐼 .

Now, looking away from the contact edge, we must first check the
wo formulations fall to their asymptotic forms, and then analyse the
xtent to which the two solutions diverge from each other along the
nterface.

If we multiply the stress intensity factor, 𝐾𝐼[3∕4], by its correspond-
ing eigenvector, we can easily find the tractions appearing along the
interface. When 𝑥∕𝑑 ≫ 1 these solutions will apply. Fig. 4 shows these
asymptotes by a dotted purple line (contact pressure) and a dotted
yellow line (shear traction). The actual traction distributions along the
interface in the rounded three-quarter plane analysis, extracted from
the finite element simulations, are coloured solid purple (contact pres-
sure) and solid yellow line (shear traction). In the same figure, we show
the tractions from the half-plane analysis as given by Eqs. (9), (19):
solid blue line (contact pressure) and solid orange line (shear tractions),
are also plotted together with their square-root decay forms: dotted
blue line (contact pressure) and dotted orange line (shear tractions) in
Fig. 4.

We can infer two important points from Fig. 4. Firstly, we may be
reassured that the distributions go to the correct asymptotic forms when
𝑥∕𝑑 ≫ 1, i.e. the tractions for both the half-plane and the finite element
formulation approach their corresponding asymptotic forms as 𝑥∕𝑑 →

∞. Secondly, and more importantly, it is clear that the asymptotes
for the half-plane formulation are quite distinct from those implied by
the three-quarter plane analysis, particularly in the case of the shear
tractions. For example, at the arbitrary far distance of 𝑥∕𝑑 = 1500
rom the contact edge, the magnitude of the error of the half-plane
ormulation compared to the three-quarter plane (Williams’) solution,
s 8.23% and 40.8% for the normal and shear tractions, respectively.
he large errors here again illustrate the limitations of relying solely
n half-plane theory in our approximations.

.4. Pure mode II loading

This section provides an equivalent commentary to that given pre-
iously for pure mode II loading. Here, we reworked the finite-element
odel used in [8] for pure mode II loading only, in the wedge sense.
he corresponding stress intensity factor is denoted by 𝐾𝐼𝐼[3∕4], seen in
ig. 1.

To begin with, we will study the tractions resulting near the edge
f the contact. As mentioned previously, proportional loading of the
ontact results in a bounded shear traction at the contact edge; when
∕𝑑 ≪ 1, the tractions are well described by the square root bounded
symptotes, Eqs. (20), (21). For pure mode II loading, 𝐾𝐼[3∕4] = 0, the
alibrations from [17] can be written in the form

𝐼 =
(0.981𝐾𝐼𝐼[3∕4]

𝐸*𝑅1−𝜆𝐼𝐼

)1∕3
𝐸*
√

𝑅
(24)

𝐿𝐼𝐼 =
(0.04𝐾𝐼𝐼[3∕4]

𝐸*𝑅1−𝜆𝐼𝐼

)1∕3
𝐸*
√

𝑅
, (25)

where 𝜆𝐼𝐼 = 0.9082 is the mode II eigenvalue for the case of a 3𝜋∕2
adians wedge [8].

As for pure mode I loading, Eqs. (20), (21), are the point of common-
lity between the rounded three-quarter plane solution and the half-
lane solution. Fig. 5 displays these near-edge asymptotes, coloured
lue (broken) for pressure and orange (broken) for shear. With the
ultipliers fixed at the contact edge, the normal and equivalent shear

ractions are plotted from the closed-form half-plane solution, Eqs. (9),
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Fig. 3. Pure mode 1 normal and shear tractions calculated using a three-quarter plane (FE result), and half-plane (analytical half-plane solution) formulations. These tractions are
plotted alongside their near (broken line) and far (dotted line) asymptotes.
Fig. 4. Normal (left) and shear (right) tractions (solid lines) plotted against the half-plane and three-quarter plane decay asymptotes (dotted lines), far from the contact edge.
b
(
t
m
s

19). These are shown in Fig. 5 by the smooth solid blue (contact pres-
ure) and orange (shear traction) lines, alongside the tractions which
merge from the rounded three-quarter plane formulation, plotted in
olid purple (contact pressure) and yellow (shear traction).

Theoretically, the half-plane formulation should only be valid when
∕𝑑 ≪ 1. However, as seen in Fig. 5, the half-plane solution is, again,
lmost coincident with the distributions obtained from the numerical
hree-quarter plane analysis for 0 < 𝑥∕𝑑 < 4. This is very encouraging,
or practical purposes; it implies that we now have closed-form solu-
ions for the tractions at the contact edge, with only the multipliers
umerically determined, for both pure mode I and II loading.

As before, looking away from the contact edge (i.e. for 𝑥∕𝑑 ≫ 1),
e must study two key areas: (1) that the two formulations fall to their

orresponding asymptotic forms, and (2) the extent to which the two
ormulations diverge from each other. We address this in Fig. 6. For
∕𝑑 ≫ 1, the tractions along the interface for the half-plane formula-
6

ion, are inverse square-root bounded, Eq. (14) and these are illustrated
y the blue dotted line (contact pressure) and the orange dotted line
shear traction). However, the tractions far from the contact edge, along
he interface, can be correctly described by Williams’ solution. In pure
ode II loading, this asymptotic decay can be found by multiplying the

tress intensity factor, 𝐾𝐼𝐼[3∕4], by its corresponding eigenvector. These
decay asymptotes are plotted in Fig. 6 by a dotted purple line (contact
pressure) and dotted yellow line (shear traction).

As encountered for pure mode I loading, we can use Fig. 6 to infer
two key points. First of all, Fig. 6 provides clear evidence that, for
each case, the exact solutions (solid lines) approach their expected
asymptotic forms (dotted lines) when 𝑥∕𝑑 ≫ 1. Moreover, we can
see that the tractions arising along the interface when using a half-
plane formulation are significantly different to those implied by a
three-quarter plane analysis. This difference is even starker than the
previous example: in pure mode II loading, the difference is distinct

for both normal and shear tractions; at the arbitrary far distance of
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Fig. 5. Pure mode 2 normal and shear tractions calculated using a three-quarter plane (FE result), and half-plane (analytical half-plane solution) formulations. These tractions are
plotted alongside their near (broken line) and far (dotted line) asymptotes.
Fig. 6. Normal (left) and shear (right) tractions (solid lines) plotted against the half-plane and three-quarter plane decay asymptotes (dotted lines), far from the contact edge.
l

∕𝑑 = 1500 from the contact edge, the magnitude of the error of the
alf-plane formulation compared to the three-quarter plane solution
s 84.8% and 76.1% for the normal and shear tractions, respectively.
hese results highlight the deficiency of relying, exclusively, on the
alf-plane formulation when observing the contact tractions far from
he contact edge.

. Conclusion

In this analysis, we have demonstrated the limitations of using an
symptotic representation of the state of stress for flat and rounded
ontacts. In such contacts, the regions of interest – typically slip zones
may extend a significant distance from the edge of the contact, well
eyond the range of validity of such asymptotic approximations.

Aiming to solve this problem, we first turned to a half-plane for-
ulation, aware that using the half-plane model in isolation may be
7

n

poor due to the misleading representation of the contact-defining body.
We noted that the decay of the state of stress implied by this solution,
at remote points, was not of the correct form. This meant that we
could not collocate the solution into any finite, slightly rounded contact
problem.

We then looked at an FE solution to the geometrically exact slightly
rounded three-quarter plane problem. We matched the very near-edge
solution with that derived from half-plane theory, mentioned in the
previous paragraph. The results from this analysis are very promising;
the closed-form solution lies very close to the exact solution up to
approximately 𝑥∕𝑑 = 5 for both pure mode I and II loading. However,
the poor assumptions implicit in the half-plane model become an issue
when 𝑥∕𝑑 ≫ 1, as the model diverges from the exact solution in both
oading case, as expected.

The formulation developed in this paper sets up the framework for a
umber of strands of investigation of the properties of slightly rounded
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contacts — here limited to those in which the contact-defining body has
a free surface normal to the contacting surface. We can now describe
near-contact edge behaviour analytically, using Eqs. (9), (19), where
the multipliers, 𝐿𝐼 and 𝐿𝐼𝐼 are rigorously, if numerically, related to
he remote fields, Eqs. (22)–(25).

At the moment the remote fields have been chosen to be pure
ode I and pure mode II only; the extension of the solution to other

ombinations or remote loading trajectories will form the next step.
his extension has been foreshadowed in [18], but at that time, our un-
erstanding of the behaviour of incomplete frictional contact behaviour
nder varying normal loads was less well advanced. In particular, for
uch cases, we anticipate the closed-form half-plane solution will form
n accurate asymptote for the mixed-mode finite element solution. This
ill permit us to find clean solutions for edge partial slip for this
omain. Practical applications of these findings include fan blade dove-
ails in the root of a gas turbine and locking segments of riser-seabed
onnectors.
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