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Abstract: Sand is a particulate material but is treated as a continuum solid in some engineering
analyses. This approach is proven to be acceptable when dealing with geotechnical structures,
provided an adequate factor of safety is applied so that there is no risk of failure. However, the
continuum approach does not account for the effect of interparticle forces on the micro–macro
behaviour of sand. Sand could be modelled as a particulate material using the discrete element
method (DEM), taking into account its discrete nature. This paper shows how the microscopic
contact properties between the idealised sand particles influence the macro-mechanical behaviour,
highlighting the development of the fabric as the soil approaches failure. Thirty DEM biaxial tests
were performed to study the sensitivity of the macro–micro mechanical properties of sand to the
inter-particle properties of an idealised sand particle. The conditions of these simulations were the
same (e.g., particle size distribution, number of particles, porosity after radius enlargement, boundary
conditions, and rate of loading). The sensitivity of the pre-peak, peak, and post-peak behaviour of
these simulations to the inter-particle properties of an idealised sand particle was studied. Two extra
DEM biaxial tests under different confining pressures were performed to verify the cohesionless
nature of the synthetic material used for this study. Since a two-dimensional DEM is used for this
study, a detailed approach to interpret the results assuming either a plane strain or a plane stress
situation was discussed. This study highlighted the critical inter-particle properties and the range
over which these influence macro-mechanical behaviour. The results show that Young’s modulus is
mainly dependent on the normal contact stiffness, and peak stress and the angle of internal friction
are greatly dependent on the inter-particle coefficient of friction, while Poisson’s ratio and volumetric
behaviour of particulate sand are dictated mainly by shear contact stiffness. A set of relationships
were established between inter-particle properties and macro-machinal parameters such as Young’s
modulus, Poisson’s ratio, and angle of internal friction. The elastoplastic parameters obtained from
these tests are qualitatively in agreement with the typical medium and dense sand behaviour.

Keywords: discrete element method; idealised sand; biaxial test; macro-mechanical stress and strain;
inter-particle properties; plane strain; plane stress; fabric anisotropy; coordination number

1. Introduction

The granular soil, such as sand, is consistently used in backfilling technologies, in
particular in hydraulic backfilling, for which its compressibility is determined. The com-
pressibility characteristics of sand are generally obtained from laboratory tests. These
characterisations are then used in continuum models for geotechnical problems such as
analyses of shallow and deep foundations, excavations, retaining walls, and slope sta-
bility. However, these models cannot account for the effect of microscopic inter-particle
properties on the macroscale response of granular materials [1–5]. The bulk behaviour of
sands is different from usual solid materials during shearing and presents a number of
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inter-particle interaction features, including anisotropy, nonlinear elasticity, dilatancy, state
dependency, and non-coaxiality [6,7]. The complexity of the bulk behaviour of particulate
sands mainly originates from their inter-particle properties and interactions of the con-
stituent particles such that their macro-mechanical behaviours, including peak stress, angle
of internal friction, Young’s modulus, and Poisson’s ratio, are inhibited by the interaction of
inter-particle properties [7–9]. Interaction forces that develop during loading because of the
inter-particle properties of individual particles create attributes such as fabric anisotropy.
These critical features cannot be addressed in continuum mechanics [10,11]. Soil behaviour
is stress-dependent [12–14], and ideal granular sand materials that have the same particle
size distribution, density, and boundary conditions but varying inter-particle properties
show different macro–micro behaviours at a certain macro stress level [15–17]. Research
on the impact of inter-particle characteristics on the macro–micro responses of sands can
improve our comprehensive understanding of the physical and mechanical properties
of sands.

Alternatively, DEM can be used to simulate ideal granular systems. This is a proven
and comprehensive method of studying granular soils [18–22]. The DEM model’s response
is based on inter-particle forces and displacements, and the averaging method is used to ob-
tain the average macro-mechanical response (e.g., Poisson’s ratio, Young’s modulus, angle
of friction, peak stress, and others). The influence of inter-particle properties (e.g., normal
and shear stiffness and inter-particle coefficient of friction) on the micro–macro response
of particulate sand can be understood precisely through the DEM approach [23–27]. The
macro-mechanical responses are normally validated against appropriate experimental data.
The accuracy of this validation depends on the ability to replicate the geometric properties
of the sample and choose the appropriate inter-particle properties. The former means creat-
ing a configuration of particles that has the same geometry, including boundary conditions
and particle size distribution as the experimental sample. However, this cannot be achieved
because of the nature of the particles; the number, shape, size, and distribution will be
different between the numerical model and the experimental sample. Therefore, any model
can be similar but not the same as the real sample. The second issue, and fundamentally
more important, is the inter-particle relationship, which is based on a number of variables
including the particle stiffness, particle size, and the inter-particle coefficient of friction,
according to Zhao et al. [28]. It is possible to fit a single experimental curve with a number
of combinations of these variables. However, not all combinations will be valid because
there can be some interdependencies between the parameters, and there are limits to the
range of the parameters.

A sensitivity analysis will identify the critical parameters and the range over which
the parameters impact the mass behaviour. Bulk behaviour is used as the outcome as it
provides a link to the experimental behaviour, which provides information on the macro
mechanical properties. Many problems in geotechnical design assume plane strain [13,29];
therefore, a two-dimensional simulation is considered appropriate. The main objective
of this study is to investigate the effect of these inter-particle parameters on the macro-
mechanical parameters, including Young’s modulus, Poisson’s ratio, angle of internal
friction, and the peak stress, and to identify the range over which the parameters impact
the mass behaviour by performing Thirty DEM-based biaxial simulations. The effects of
inter-particle parameters on the micro–macro parameters were parametrically investigated
earlier (e.g., Mahmood and Iwashita [30]), and other notable parametric studies have been
carried out by Belheine et al. [31] and Yang et al. [32]. They performed a series of 3D DEM
triaxial tests using PFC3D [33] to calibrate their numerical model with experimental data.
In that calibration study, they adjusted the slope of the stress–strain curve by changing
normal contact stiffness values, while the slope of volumetric strain with axial strain was
adjusted by the ratio of shear to normal contact stiffness. The calibration of peak stress was
performed by changing in inter-particle coefficient of friction. A need to carry out sensitivity
analysis is required to identify the critical inter-particle properties and the range over which
these parameters impact the bulk behaviour. The sensitivity of macro–micro-mechanical
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properties of sand to the inter-particle properties are not yet explored comprehensively
in the literature. This paper aims to study this gap using DEM by conducting a general
framework for DEM simulation considering the 2D disk particle shape.

2. Two-Dimensional Simulations in DEM

The three-dimensional solution of a problem in continuum mechanics can be approx-
imated by a two-dimensional solution (i.e., plane strain and plane stress) depending on
the geometry of that problem, meaning the components of stress and strain tensors can be
reduced to three components. To calculate stress and strain tensors within the particulate
soil, an averaging method is used to estimate the average stress and strain tensors. That is,
to compute the stress and strain tensors for a volume of particles within a two-dimensional
DEM model using PFC2D, two in-plane force and displacement components and one in-
plane moment are required. The out-of-plane force components and out-of-plane particle
displacement are not taken into account in the motion equation—i.e., the out-of-plane
forces and displacements which are essential to enforcing a state of plane strain or plane
stress are not present. Therefore, the interpretation of 2D DEM results in terms of either
plane strain or plane stress will be a controversial issue. Figure 1 displays a flowchart on
two-dimensional used in DEM modellings.
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Figure 1. The calculation process in two-dimensional DEM. (a) Initial configuration of the sand
assembly. (b) Detecting particles in contact (c) Calculation of inter-particle contact forces (d) Calcula-
tion of two in-plane contact forces and moment (e) Calculation of particle movement and rotation
(f) Update configuration of the sand assembly.

Section 3 provides a more detailed explanation regarding the out-of-plane force com-
ponent and out-of-plane particle displacement. The two-dimensional assumption, however,
has an advantage. The dynamic response of a particulate system is greatly dependent
on the number of degrees of freedom of each particle within these systems. In 3D DEM
simulations, each idealised particle has six degrees of freedom, while in 2D cases, there are
three degrees of freedom per particle. The computational effort in 2D DEM simulations
will be less than in 3D simulations and, therefore, faster. Furthermore, the number of
documented 2D DEM studies published annually shows that 2D DEM simulations are able
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to capture the key complex mechanical response features of soil medium [34–36]. Table 1
summarises the advantages and limitations of the use of 2D and 3D DEM modelling.

Table 1. Advantages and limitations in the use of 2D and 3D modelling.

Two-Dimensional DEM Model Three-Dimensional DEM Model

Advantages Limitations Advantages Limitations

Less number of particles are
required to be generated to

study a problem

Three degrees of freedom are
used in the calculation cycles
(two in-plane displacements
and one in-plane moment)

Six degrees of freedom are
used in the calculation cycles

Greater numbers of particles
are required to be generated

to study a problem

Cost of calculations is
relatively less

The impact of out-of-plane
forces and moments are not

considered in the
macro–micro responses

The impact of out-of-plane
forces and moments are

considered on the
macro–micro responses

The cost of calculations is
relatively high. Since DEM

tracks each individual particle
and its interactions over time,
an increase in the number of

particles increases the
computational time

Suitable for 2D plane strain
and plane stress problems

The out-of-plane forces, which
are essential to enforcing a

state of the plane strain and
plane stress, are not present.

Produces more realistic
macro–micro responses

The application of 3D DEM to
produce the deformable

boundary conditions
is complicated

Fewer cycles are required for
particulate systems to

reach equilibrium

The application of 2D DEM to
produce the deformable

boundary conditions
is complicated

More cycles are required for
particulate systems to

reach equilibrium

Enabling clear visualisation as
particle motion is restricted to

one plane

Less clear visualisation as
particle motion is restricted to

one plane

More cost-effective for the
models subjected to dynamic

loading due to
computational capabilities

Less cost-effective for the
models subjected to dynamic

loading due to limited
computational capabilities

3. Plane Strain and Plane Stress Behaviour in DEM Simulations

For most geotechnical systems such as tunnels, retaining walls, earth dams, strip
foundations, deep excavation, and slopes, soil behaviour is assumed to be dependent on the
vector displacement field in two dimensions, and the effect of the vector displacement field
in the third dimension is not very evident on the behaviour. This situation in continuum
mechanics is called the plane strain, where a three-dimensional problem is analysed as a
two-dimensional problem where values of the strain tensor components in the out-of-plane
dimension are set to zero (i.e., ε22 = τ21 = τ23 = 0). In some cases, in continuum mechanics,
the stress tensor field is also two-dimensional. In this case, the stress in the out-of-plane
dimension is the intermediate stress. This situation is called plane stress. This does not
apply in DEM analyses because no stress and strain tensor exist in such models. Instead, in
two dimensions, only two in-plane force components and one in-plane moment are present
(see Figure 1d). Section 4.1 presents the set of exemplary calculation formulas to calculate
the two in-plane force components and one in-plane moment. In the averaging method,
the average stress and strain tensors are computed. However, only the in-plane forces and
displacements are used to calculate the average stress and strain tensors. The out-of-plane
forces and displacements are not applied in calculating the average stress and strain tensors.
Therefore, the out-of-plane constraint, which is essential to enforce a state of plane strain or
plane stress, cannot be present. The formulations that describe plane stress and plane strain
conditions will be explained, and the macro parameters (i.e., Elastic modulus, Poisson’s
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ratio, and angle of internal friction) obtained from these two situations are compared in
order to assess the differences between both interpretations.

4. DEM Implementation in PFC2D

DEM is an advanced numerical tool originally proposed by Cundall and Strack [37].
It dynamically simulates and tracks the micro–macro-scale behaviour of granular materials
subjected to quasi-static and dynamic loads. The central explicit finite difference scheme is
used in this method to solve the dynamic equilibrium of each particle at each time step.
In this paper, the DEM simulations are implemented using the software PFC2D 4.1 [38].
The rolling resistance is not adopted in this study. It has been experimentally observed
by O’Sullivan et al. [39] that if the size of a particle is bigger than 0.1 (mm), the size of
particle asperity will be negligible in comparison to the particle inertia. Therefore, the
surface roughness will have a minor effect on the material behaviour in comparison to the
particle inertia.

4.1. Contact Law

The contact force (Fi) applied on a disk particle in PFC2D code is decomposed into
normal force (Fn

i ) and tangential force (Fs
i ). The former is directed toward the particle centre,

and the latter is directed along the tangent to the particle.

Fi = Fn
i + Fs

i (1)

To preserve the geometry of particles during loading, it is assumed in PFC2D that parti-
cles are rigid with soft contact, which means that a contact overlap between
two particles (e.g., a and b) is applied rather than a contact deformation. The magni-
tude of this overlap is computed by a contact law. In the present study, a linear elastic
contact law is applied to calculate the components of contact forces. The normal and
tangential displacements at time step ∆t are calculated as follows:

∆n = [(
.
xb − .

xa
)]n∆t

∆s = {[(
.
xb − .

xa
)]l− (

.
θ

a
|Ra|+

.
θ

b
Rb)}∆t

(2)

where
.
xa,

.
xb,

.
θ

a
, and

.
θ

b
are scalar translational and rotational particle velocities of particles

a and b, respectively. Ra and Rb are the particle radius. n and l are the normal and tangential
unit vectors.

The magnitude of the normal and tangential contact forces is calculated via the following:

(Fn
i )t = (Fn

i )t−1 + (∆Fn
t )t where ∆Fn

t = Kn(∆n)t (3)

(Fs
i )t = (Fs

i )t−1 + (∆Fs
t )t < µ(Fn

i )t where ∆Fs
t = Ks(∆s)t (4)

The total contact shear force is compared to the Coulomb sliding friction or sliding
capacity criterion (i.e., µ

(
Fn

i
)

t) to check whether sliding has occurred. When the resultant
force and torque in the z-direction (calculated by multiplying tangential contact force by
the distance from the particle centre to the contact location) are computed for each particle,
the local damping force Fd

i will be added to them:

F = ∑
[
(Fn

i )tn + (Fs
i )tl
]
+ Fd

i (5)

M =
[
R∑

[
(Fs

i )tl
]
+ Fd

i (6)
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Fd
i = −α|F|sign

( .
x
)
; sign(v) =


+1, i f

.
x > 0

−1, i f
.
x < 0

0, i f
.
x = 0

(7)

where α, |F| and
.
x are damping constant, resultant force on the particle, and particle velocity,

respectively. The computed resultant force and torque acting on the particle are used to
determine the change in particle velocity via Newton’s second law for the next time step.
Once the resultant force is calculated for a particle, a damping force will be added to this at
the end of each time step to reduce the kinetic energy of the particle. The damping force is
calculated by multiplying a damping constant by the resultant force. The direction of the
damping force is opposite to the particle velocity. The source of Equations (1)–(7) is [37,38].

4.2. Soil Fabric

In granular mechanics, soil fabric refers to the size, shape, and arrangement of soil
particles. Fabric quantities include either particle orientation if 2D disk particles are used,
or contact orientation and branch vector orientation for non-circular particles. These fabric
quantities are often presented as an average or graphically (e.g., polar diagram of con-
tacts). Rothenburg et al. [6] proposed a closed-form solution to estimate the polar diagram
of contacts.

E(θ) =
1

2π
[1 + acos2(θ − θa)] (8)

where a represents “fabric anisotropy” in a granular system, depending on the number
and density of unit normal vectors in principles axes. E(θ) shows the deviation between
the geometry of contact force distribution and the isotropic geometrical contact force
distribution. For example, if a = 0, E(θ) will be a circle such that the state of the system
being considered is in an isotropic state. θa is the direction of anisotropy. Parameters,
a and θa are obtained by the following equations:

a =
2sin∆θ

N∆θ

√[
∑ng

g=1 Ngsin((2g− 1)∆θ]
2
+
[
∑ng

g=1 Ngcos((2g− 1)∆θ]
2

(9)

θa =
1
2

tan−1 ∑
ng
g=1 Ngsin((2g− 1)∆θ

∑
ng
g=1 Ngcos((2g− 1)∆θ

(10)

where N is the total number of contact, ∆θ = 360
ng

, ng the number of segments and Ng is the
number of contacts within the gth segment. In fact, the fabric anisotropy parameter shows
the ability of granular systems to create the anisotropy state in normal contact distribution.

One of the key microscopic parameters, which are defined at the particle level, is the
average coordination number which increases with densification [40,41]. This parameter
is the average number of contacts per particle within a specific volume of a particulate
assembly, and consequently, it provides a measure of packing density or packing intensity
of fabric at the particle level. For a volume of particulate assembly with Np particles and
total number of contacts, Nc, the definition of average coordination number Cn is given by
the following:

Cn =
2Nc

Np
(11)

Since each contact is shared between two particles, the actual number of contacts is
multiplied by 2. Rothenburg and Kruyt [10] and Maeda [42] have shown that the average
coordination number should be at least three for idolised disk particles when a granular
system is in quasi-static equilibrium.
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4.3. The Typical Behaviour of Dry Sand

As schematically shown in Figure 2, the general macro–mechanical behaviour of sand
subjected to the static deviatoric loading in a standard triaxial test is characterised by
the following:
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The initial Young’s modulus, E0 (the value of Young’s modulus at very small shear
strains), is an important characteristic of soil deformability and plays an important role in
the dynamic and static response of the soil. This is usually estimated by using laboratory
or field tests that are related to seismic wave propagation and stiffness degradation curves
based on cyclic tests conducted in the laboratory, which are costly, as shown by Okur and
Ansal [43]. Where E0 is not available, E50, the secant modulus at 50% of peak stress, is often
used to predict ground movements, as presented by Holtz et al. [44].

The slope of the volumetric strain vs. axial strain curve at a strain corresponding
to half of the peak stress is used to compute Poisson’s ratio, ν, for both plane strain and
plane stress.

In the case of dense and medium sand, the characteristic point, G, corresponds to
∂εv
∂ε11

= 0, where the dilation of the sample starts. The shear strain corresponding to this
point varies between sands, as presented by Atkinson [14].

Small strains: Within this range, the stress–strain curve is assumed to be linear. In the
case of dense and medium sand, the peak stress ratio or deviatoric stress occurs within
this range.

Large strains: these correspond to strains exhibited when the soil is approaching
failure, and the shear stiffness becomes small.
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4.3.1. Elastic Parameters

In soil mechanics, it is assumed that at the start of a triaxial test, the material is linear
elastic. In the principal stress space, the behaviour is as follows:ε11

ε22
ε33

 =
1
E

 1
−v
−v

−v
1
−v

−v
−v
1

σ11
σ22
σ33

 (12)

In terms of plane strain, the stress–strain relation is as follows:(
ε11
ε33

)
=

1
E

(
1− v2 − v(1 + v)
−v(1 + v) 1− v2

)(
σ11
σ33

)
(13)

In terms of plane stress, the stress–strain relation is as follows:(
ε11
ε33

)
=

1
E

(
1 − v
−v 1

)(
σ11
σ33

)
(14)

The elastic modulus and Poisson’s ratio are important characteristics when predicting
ground movements, as it is often assumed that soil is isotropic and homogenous and
behaves elastically. There are numerous methods available to determine these properties,
but the most common is the triaxial test. In this test, using local strain measurements,
it is possible to measure the stress–strain response of a sample of soil subjected to a
variety of load paths (e.g., Head [45]). The values of stiffness obtained are stress path
dependent and vary with the strain range over which they are measured. Stiffness is also a
function of the confining stress, the particle geometry, and the density of packing. In this
study, only monotonic compressive loading is monitored. Furthermore, the triaxial test is
three-dimensional, whereas the DEM analysis used in this study is two-dimensional.
However, since the soil is assumed to be isotropic and homogenous, the material properties
obtained from the triaxial test can be applied to the two-dimensional analysis. In two-
dimensional studies, it is necessary to consider plane stress or plane strain conditions,
which lead to small differences in values of stiffness.

In plane strain situations, the secant Elastic modulus is as follows:

EPlane−strain =
(

1− υPlane−strain
2
)

EPlane−stress (15)

In a plane stress situation, the Elastic modulus is as follows:

EPlane−stress =
σ11

ε11
(16)

When Poisson’s ratio is zero, the elastic modulus is equal for the plane stress and
plane strain situations. Additionally, when Poisson’s ratio is 0.5, the elastic modulus in the
plane strain is 75% of the elastic modulus in the plane stress [46].

Poisson’s ratio is obtained from the slope of the horizontal strain vs. axial strain curve.
In two-dimensional analysis, the volumetric strain is εv = ε11 + ε33. In the plane stress
condition, Poisson’s ratio is obtained from the following equation:

υPlane−stress = −
ε33

ε11
(17)

where ε33 is the horizontal strain and ε11 is the axial strain. In a plane strain situation, it is
as follows:

υPlane−strain =
υPlane−stress

1 + υPlane−stress
(18)
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4.3.2. Plastic Parameters

Angles of friction, θ, are related to the plastic and failure behaviour of non-cohesive
material. For non-cohesive sand, the following relationship can be used to compute the
angle of friction:

t
s
= Tan2

(
45 +

θ

2

)
(19)

where t is the deviatoric stress and s is the isotropic stress.

4.4. The Methodology of Sensitivity Analysis

Three inter-particle properties, including normal and shear stiffness and inter-particle
coefficient of friction, were considered in this research. Shear contact stiffness is presented
as a ratio to normal stiffness. Values of the inter-particle properties of sand, including
friction, normal, and shear contact stiffness, are listed in Figure 3 and Table 2.
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sented as a ratio to normal stiffness. Values of the inter-particle properties of sand, includ-
ing friction, normal, and shear contact stiffness, are listed in Figure 3 and Table 2.  
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Table 2. The micro-mechanical parameters used for the sensitivity analysis (after Momeni [15]).

kn (N/m)
ks
kn

= 1 ks
kn

= 0.5 Inter-Particle Coefficient of
Frictionks (N/m) ks (N/m)

8.45 × 107 8.45 × 107 4.22 × 107 0.5, 0.9, 1.2

17 × 107 17 × 107 8.50 × 107 0.5, 0.9, 1.2

46 × 107 46 × 107 23 × 107 0.5, 0.9, 1.2

133 × 107 133 × 107 66.5 × 107 0.5, 0.9, 1.2

150 × 107 150 × 107 75 × 107 0.5, 0.9, 1.2

It was necessary to establish a methodology to measure the effect of inter-particle prop-
erties on the micro–macro mechanical behaviour of particulate idealised sand, expressed in
terms of the angle of internal friction and stiffness of the sample. Each of the inter-particle
properties was varied, keeping the others constant to determine the impact on the macro
mechanical properties. The inter-particle properties for each biaxial test are obtained from
Table 2. Table 3 summarises the input data used for this study. Figure 4 presents the particle
size distribution profile used for this study.
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Table 3. The input data for this study.

Porosity after radius enlargement 0.12

Range of Particle Size Distribution PSD (mm) 0.5–3 (refer to Figure 4)

kn (N/m) (Normal contact stiffness) Refer to Table 2

ks (N/m) (Shear contact stiffness) Refer to Table 2

µ (Inter-particle coefficient of friction) Refer to Table 2

α (Damping constant) 0.8

Coefficient friction of particle-platen 0.0

Width (mm) 75

Height (mm) 150
.
ε 2%

min

ρ
(

kg
m3

)
2650
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their size within four enclosed rigid walls. Their radii were then expanded to reach a po-
rosity of 0.12. Next, the rigid boundaries of the biaxial cell were moved based on the ap-
plied strain control to approach the stress at the boundaries at 100 (kPa). Once the sample 
was isotopically consolidated to 100 (kPa), further cycles were needed to reach system 
equilibrium. It is to be noted that the porosity 0.12 mentioned in Table 2 is the porosity 
after radius enlargement. Next, the confining pressure on the vertical rigid boundaries 
was kept constant while the top and bottom rigid boundaries moved towards each other 
to apply deviatoric stress. The strain rate (i.e., 𝜀ሶ) applied for this test was ଶ%୫୧୬, such that 
the incremental acceleration of each particle at each time step is small. All the imposed 
energy generated during the simulation was dissipated through both frictional sliding be-
tween particles and loss of contacts. In the sensitivity analysis, the critical parameters and 
the range over which the parameters impact the macro-mechanical behaviour are investi-
gated. From each combination of normal stiffness, shear stiffness, and inter-particle coef-
ficient of friction (i.e., 𝑘௡, 𝑘௦, and 𝜇 ), the macro-mechanical parameters comprising 
Young’s modulus, Poisson’s ratio, and angle of internal friction were computed. These 
values will then be compared with typical values of elastic modulus, Poisson’s ratio, and 
angle of internal friction of sand obtained from the literature (see Table 4). 

Figure 4. Particle size distribution used for this study.

Thirty biaxial tests in total were conducted to investigate the sensitivity of inter-particle
properties on the micro–macro mechanical behaviour. The initial condition, such as the
initial geometry of the biaxial chamber, particle size distribution, particle shape, contact
model, porosity and isotropic stress state condition, and the lateral boundary condition
for all these tests, were similar. Initially, non-overlapping disk particles in the range of
0.5 and 3 (mm) corresponding to the well grade of sand were randomly placed at half
their size within four enclosed rigid walls. Their radii were then expanded to reach a
porosity of 0.12. Next, the rigid boundaries of the biaxial cell were moved based on the
applied strain control to approach the stress at the boundaries at 100 (kPa). Once the sample
was isotopically consolidated to 100 (kPa), further cycles were needed to reach system
equilibrium. It is to be noted that the porosity 0.12 mentioned in Table 2 is the porosity
after radius enlargement. Next, the confining pressure on the vertical rigid boundaries was
kept constant while the top and bottom rigid boundaries moved towards each other to
apply deviatoric stress. The strain rate (i.e.,

.
ε) applied for this test was 2%

min , such that the
incremental acceleration of each particle at each time step is small. All the imposed energy
generated during the simulation was dissipated through both frictional sliding between
particles and loss of contacts. In the sensitivity analysis, the critical parameters and the
range over which the parameters impact the macro-mechanical behaviour are investigated.
From each combination of normal stiffness, shear stiffness, and inter-particle coefficient of
friction (i.e., kn, ks, and µ), the macro-mechanical parameters comprising Young’s modulus,
Poisson’s ratio, and angle of internal friction were computed. These values will then be
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compared with typical values of elastic modulus, Poisson’s ratio, and angle of internal
friction of sand obtained from the literature (see Table 4).

Table 4. Typical bulk properties of sand.

Strength Parameters Medium Sand Dense Sand

E (MPa) 30~50 [47]
25~50 [48]

50~80 [47]
50~81 [48]

v 0.2~0.35 [48] 0.3~0.4 [48]

Friction angle (◦) 30~36 [47] 36~41 [47]

4.4.1. The Sensitivity of Sand System to the Inter-Particle Coefficient Friction

To investigate the sensitivity of the micro–macro-mechanical behaviour of particulate
sand to the inter-particle coefficient friction, the ratio between normal contact stiffness
and shear contact stiffness is assumed to be unity. By doing this, the number of biaxial
tests required to be implemented was reduced to fifteen tests. The inter-particle properties
used for these tests are listed in Table 5. Figure 5a illustrates the variations of deviatoric
stress with axial strain for different inter-particle coefficients of friction where normal
and shear contact stiffness is 8.45 × 107 (N/m). As seen, for a fixed value of contact
stiffness, the peak stress is profoundly controlled by inter-particle frictions, while the axial
strain corresponding to the peak stress together with the slope of the stress–strain is less
influenced by inter-particle frictions. Figure 5b shows that the contraction behaviour of
particulate sand is less impacted by inter-particle frictions, though the model with bigger
inter-particle coefficient friction (i.e., 1.2) shows slightly more dilative behaviour.

Table 5. The input data for sensitivity of sand system to the inter-particle coefficient of friction.

kn = ks (N/m) Inter-Particle Coefficient of Friction

8.45 × 107 0.5, 0.9, 1.2

17 × 107 0.5, 0.9, 1.2

46 × 107 0.5, 0.9, 1.2

133 × 107 0.5, 0.9, 1.2

150 × 107 0.5, 0.9, 1.2

Figure 6a summarises the sensitivity of peak stress to the various inter-particle coeffi-
cient of friction for all these fifteen tests. As seen for each fixed value of contact stiffness,
peak stress is significantly governed by inter-particle frictions. For example, for a fixed
contact stiffness value of 8.45 × 107 (N/m), changing the inter-particle coefficient of friction
from 0.5 to 0.9 and 1.2 results in an increase in peak stress by 37% and 53%, respectively,
resulting in an increase in the angle of internal friction from 20◦ to 26◦ and 29◦, for the
inter-particle coefficient of friction of 0.5 to 0.9 and 1.2, respectively (see Figure 6b). The
angle of friction between 28◦ and 37◦ is typical for medium and dense sand. Based on the
data provided for this study, a relationship between the inter-particle coefficient of friction
and the angle of friction can be developed as follows:

θ = 15.3µ + 12.5 (20)

where θ and µ are the angle of friction and inter-particle coefficient of friction. Note that
this relationship is developed for inter-particle of coefficient between 0.5 and 1.2. It can
be concluded that inter-particle friction mainly controls the peak stress and internal angle
of friction.
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Figure 6. The sensitivity analysis: (a) inter-particle coefficient of friction vs. peak stress and
(b) inter-particle coefficient of friction vs. peak stress.

Table 6 summarises E50 with an inter-particle coefficient of friction for both plane stress
and plane stress conditions, indicating that Young’s modulus is significantly governed by
contact stiffness rather than the inter-particle coefficient of friction. For instance, changing
the inter-particle coefficient of friction from 0.5 to 0.9 and 1.2 for a fixed contact stiffness
value of 8.45 × 107 (N/m), the plane strain E50 goes up by 8% and 0%, respectively. In the
case of plane stress, E50 goes up by 5% and 0%, where the inter-particle coefficient friction
changed from 0.5 to 0.9 and 1.2. Young’s modulus 25 (MPa) to 80 (MPa) is typical for
medium and dense sand. Therefore, the contact stiffness above 17 × 107 (N/m) produces
unrealistic Young’s modulus values.
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Table 6. The sensitivity analysis: inter-particle coefficient friction vs. E50 for plane strain and plane stress.

Contact Stiffness
(N/m)

Inter-Particle Coefficient of Friction

0.5 0.9 1.2

kn = ks = 8.45 × 107
E50 (plane strain) (MPa) 32 35 35

E50 (plane stress) (MPa) 34 36 36

kn = ks = 17 × 107
E50 (plane strain) (MPa) 61 67 68

E50 (plane stress) (MPa) 64 70 71

kn = ks = 46 × 107
E50 (plane strain) (MPa) 162 173 180

E50 (plane stress) (MPa) 170 181 186

kn = ks = 133 × 107
E50 (plane strain) (MPa) 388 444 478

E50 (plane stress) (MPa) 417 470 500

kn = ks = 150 × 107
E50 (plane strain) (MPa) 463 535 540

E50 (plane stress) (MPa) 494 563 570

Table 7 shows that increasing the inter-particle coefficient of friction leads to an
increase in Poisson’s ratio for both plane strain and plane stress conditions. However,
the calculated Poisson’s ratio for plane stress is slightly greater than that calculated for
plane strain. For instance, for inter-particle coefficient friction of 1.2 where the contact
stiffness is 150 × 107 (N/m), the calculated Poisson’s ratio for plane strain and plane stress
is 0.27 and 0.37, respectively. An increase in inter-particle coefficient friction leads to
growth in both inter-particle sliding capacity and inter-particle forces, meaning the contact
deformations and particle displacements rise. This leads to a rise in the lateral deformation
of the system. The Poisson’s ratio between 0.2 and 0.3 is a typical value for medium and
dense sand.

Table 7. The sensitivity analysis: inter-particle coefficient friction vs. Poisson’s ratio for plane strain
and plane stress.

Contact Stiffness (N/m)
Inter-Particle Coefficient of Friction

0.5 0.9 1.2

kn = ks = 8.45 × 107 v (plane strain) 0.17 0.18 0.21

v (plane stress) 0.20 0.22 0.27

kn = ks = 17 × 107 v (plane strain) 0.18 0.19 0.22

v (plane stress) 0.22 0.23 0.28

kn = ks = 46 × 107 v (plane strain) 0.19 0.2 0.24

v (plane stress) 0.23 0.25 0.32

kn = ks = 133 × 107 v (plane strain) 0.21 0.23 0.25

v (plane stress) 0.27 0.30 0.33

kn = ks = 150 × 107 v (plane strain) 0.21 0.25 0.27

v (plane stress) 0.27 0.33 0.37

The trend of stress–strain behaviour presented in Figure 5a is in good agreement with
average anisotropy with axial strain shown in Figure 7a. Figure 7a shows the average
fabric anisotropy with axial strain to the various inter-particle coefficient of friction when
a fixed value of contact stiffness is applied. The average fabric anisotropy increases until
a maximum at the peak stress and then reduces with further strain for all inter-particle
coefficients of friction. This clearly shows that the inter-particle coefficients of friction
have a significant effect on the results. The maximum average fabric anisotropy, which is
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approximately 0.37, shows how much the contact arrangement drifts from the isotropic state
(i.e., a = 0). This term shows how much the system being loaded can develop anisotropy in
contact networks. It is also a variance term that statistically shows how well the contact
networks are changing during loading. The more average fabric anisotropy there is, the
more shear strength capacity can be attained [6,8]. Figure 7b shows that an increase in the
inter-particle coefficient of friction has little effect on the average coordination number to
peak deviatoric stress up to the axial strain of 1.5%, which is representative of the peak
deviatoric stress (refer to Figure 5a). The coordination number is then slightly increased
though the value depends on the inter-particle coefficient of friction.
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peak deviatoric stress. For instance, an increase in the normal contact stiffness from 8.45 × 
107 (N/m) to 150 x107 (N/m), where a fixed value of the inter-particle coefficient of friction 
0.9 is applied, results in a slight increase to the peak stress by about 2%. Figure 8 shows 
that the particulate sand system with the lower value of contact stiffness (e.g., 8.45 × 107 
(N/m) and 17 × 107 (N/m)) demonstrates more contraction behaviour due to the shearing 
followed by dilation behaviour, which is similar to the normal volumetric bulk behaviour 
of medium and dense sand. In contrast, the model with a higher value of contact stiffness 
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Figure 7. The sensitivity of micro mechanical behaviour of idealised sand to the inter-particle
coefficients of friction when normal and shear stiffnesses are constant: (a) Average fabric anisotropy
with axial strain (b) average coordination number with axial strain.

4.4.2. The Sensitivity of Sand System to Normal Contact Stiffness

A series of 15 biaxial tests were performed to determine the effect of the normal contact
stiffness on the micro–macro properties of the particulate sand samples. The input data
for these 15 tests are listed in Table 5. The ratio between normal contact stiffness and shear
contact stiffness is assumed to be unity, while the inter-particle coefficient of friction varies
between 0.5, 0.9, and 1.2. The sensitivity of combined deviatoric stress and volumetric
strain with axial strain for a wide range of contact stiffness values is presented in Figure 8.
It can be seen that the axial strain corresponding to the peak stress notably becomes
smaller by increasing the contact stiffness, showing the particulate sand system behaves
denser. However, the particulate systems with the lower contact stiffness demonstrate more
softening strain behaviour at post-peak, while the particulate systems with higher contact
stiffness show more hardening strain behaviour up the peak stress. Additionally, the peak
stress for higher values of contact stiffness becomes sharper. Figure 8 also summarises
the sensitivity of peak stress to the various normal contact stiffnesses and inter-particle
coefficients of friction. Increasing the contact stiffness has less impact on the peak deviatoric
stress. For instance, an increase in the normal contact stiffness from 8.45 × 107 (N/m)
to 150 × 107 (N/m), where a fixed value of the inter-particle coefficient of friction 0.9 is
applied, results in a slight increase to the peak stress by about 2%. Figure 8 shows that the
particulate sand system with the lower value of contact stiffness (e.g., 8.45 × 107 (N/m) and
17 × 107 (N/m)) demonstrates more contraction behaviour due to the shearing followed
by dilation behaviour, which is similar to the normal volumetric bulk behaviour of medium
and dense sand. In contrast, the model with a higher value of contact stiffness (e.g., 47 × 107

to 150 × 107 (N/m)) demonstrates notable dilation behaviour with small initial contraction.
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Figure 8. The sensitivity of deviatoric stress, volumetric strain, and peak stress to the normal contact 
stiffness. (a) Macro-mechanical responses to various μ when kn = ks = 8.45 × 107 (N/m). (b) Macro-Figure 8. The sensitivity of deviatoric stress, volumetric strain, and peak stress to the normal contact

stiffness. (a) Macro-mechanical responses to various µ when kn = ks = 8.45 × 107 (N/m). (b) Macro-
mechanical responses to various µ when kn = ks =17 × 107 (N/m). (c) Macro-mechanical responses
to various µ when kn = ks = 46 × 107 (N/m). (d) Macro-mechanical responses to various µ when
kn = ks =133 × 107 (N/m). (e) Macro-mechanical responses to various µ when kn = ks = 150 × 107 (N/m).
(f) The variation of peak stress to various µ and kn where kn/ks = 1.



Geotechnics 2023, 3 431

As highlighted in Figure 8, an increase in contact stiffness results in the slope of
deviatoric stress with axial strain becoming steeper, meaning the bulk stiffness of particulate
sand rises. It is because the increase in contact stiffness value and inter-particle friction leads
to an increase in the sliding capacity of the contacts. That is, the risk of losing the contacts
per particle reduces, and the number of contacts contributing to taking the load is high.
Figure 9 and Table 6 show the plane stress and plane strain secant elastic modulus of the
particulate sand systems for a wide range of contact stiffness and inter-particle coefficient
of friction. A linear relationship can be established for each inter-particle coefficient of
friction. In the case of plane strain,

E = 3× 10−7kn + 13.406 for inter-particle coefficient of friction 0.5

E = 3× 10−7kn + 12.089 for inter-particle coefficient of friction 0.9 (21)

E = 4× 10−7kn + 9.2826 for inter-particle coefficient of friction 1.2
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In the case of plane stress, another set of linear relationships can be established for
each inter-particle coefficient of friction:

E = 3× 10−7kn + 12.776 for inter-particle coefficient of friction 0.5

E = 4× 10−7kn + 11.28 for inter-particle coefficient of friction 0.9 (22)

E = 4× 10−7kn + 8.0763 for inter-particle coefficient of friction 1.2

The values of normal contact stiffness between 8.45 × 107 (N/m) and 17 × 107 (N/m)
lead to values of E50, which fall within the range typical for medium and dense sand,
i.e., between 25 (MPa) and 50 (MPa) and 50 (MPa) and 80 (MPa), respectively.

Figure 10 and Table 7 show that an increase in the normal contact stiffness leads to an
increase in Poisson’s ratio with a ranged value between 0.2 and 0.4. The contact stiffness of
particles between 8.45 × 107 (N/m) and 17 × 107 (N/m) produces typically ranged values
of Poisson’s ratio for medium sand if the inter-particle coefficient of friction is between
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0.9 and 0.5. For the higher value of the inter-particle coefficient of friction (i.e., 1.2), the
interpreted value of Poisson’s ratio is less than typical values. A linear relationship can also
be established between Poisson’s ratio and the inter-particle coefficient of friction (in the
case of plane strain):

v = 3× 10−11kn + 0.2098 for inter-particle coefficient of friction 0.5

v = 3× 10−11kn + 0.1870 for inter-particle coefficient of friction 0.9 (23)

v = 2× 10−11kn + 0.1809 for inter-particle coefficient of friction 1.2
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Figure 11 demonstrates the evolution of contact distribution during the shearing of 
particulate and where a fixed value is applied to the inter-particle properties. At this iso-
tropic state, the average fabric anisotropy is 0.0007, and a circle presents the polar diagram 
distribution of contacts. At this stage, the number of contacts is distributed almost equally 
within each segment. If the polar diagram is entirely circled, it shows that the distribution 
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Figure 10. The sensitivity of Poisson’s ratio to the various particle normal stiffness: (a) plane strain
and (b) plane stress.

A linear relationship can also be established between Poisson’s ratio and the inter-
particle coefficient of friction (in the case of plane stress):

v = 5× 10−11kn + 0.2650 for inter-particle coefficient of friction 0.5

v = 4× 10−11kn + 0.2299 for inter-particle coefficient of friction 0.9 (24)

v = 4× 10−11kn + 0.2205 for inter-particle coefficient of friction 1.2

Figure 11 demonstrates the evolution of contact distribution during the shearing of
particulate and where a fixed value is applied to the inter-particle properties. At this
isotropic state, the average fabric anisotropy is 0.0007, and a circle presents the polar
diagram distribution of contacts. At this stage, the number of contacts is distributed almost
equally within each segment. If the polar diagram is entirely circled, it shows that the
distribution of contacts is in an isotropic state. At the peak bulk deviatoric stress, the
orientation of the contacts will be toward the direction of major stress, indicating the
contacts within the particulate sand are fully mobilised to take the load. The average fabric
anisotropy rises to 0.35. At the post-peak state where ε11= 10%, the orientation of contact
points will be mainly toward the confining stress, and average fabric anisotropy will be
reduced to 0.27, showing the particulate system has collapsed.
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An increase in contact stiffness from 8.45 × 107 (N/m) to 150 × 107 (N/m) leads to an 
increase in average fabric anisotropy (see Figure 12a). Raising the ability of particulate 
systems to develop the fabric anisotropies results in an increase in their shear capacity. 
Comparing Figures 8 and 12a shows that both have a similar trend, and the maximum 
fabric anisotropy takes place around peak deviatoric stress.  

Figure 11. The evolution of contact distribution of particulate sand kn = ks = 8.45 × 107 (N/m) where
ks
kn

= 1, and inter-particle coefficient of friction is 0.9.

An increase in contact stiffness from 8.45 × 107 (N/m) to 150 × 107 (N/m) leads to
an increase in average fabric anisotropy (see Figure 12a). Raising the ability of particulate
systems to develop the fabric anisotropies results in an increase in their shear capacity.
Comparing Figures 8 and 12a shows that both have a similar trend, and the maximum
fabric anisotropy takes place around peak deviatoric stress.

Figure 12b indicates the sensitivity of the average coordination number to the nor-
mal particle stiffness when the inter-particle coefficient of friction is 0.9. The average
coordination number after peak deviatoric stress (see Figure 8) for the models using
kn = 17 × 107 (N/m) to kn = 150 × 107 (N/m) falls below three contacts, which is less than
the value required for static equilibrium. It is because an increase in contact stiffness or
inter-particle friction leads to an increase in the inter-particle contact forces and sliding
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capacity between particles. The developed chain contact forces at each contact during
shearing rise to maintain the particulate sand in a static equilibrium and carry the load.
Therefore, a lower average coordination number is expected to develop for higher contact
stiffness to resist shearing. The average coordination number increases for the lower values
of contact stiffness due to the dilatant behaviour of the particulate sand. For instance, for a
model using kn = ks = 8.45 × 107 (N/m), the system contracts till axial strain of around 0.5%
(see Figure 8), demonstrating that the particulate sand becomes more compacted, and the
tendency of particles to lose their contacts decreases. Therefore, the average coordination
number is still high up to that point. By commencing the dilation behaviour, the tendency
of particles to lose their contacts rises. That means the average coordination number drops
significantly once dilation behaviour begins. By Reducing the dilation behaviour, the ability
of the particulate sand to develop higher average fabric anisotropy in comparison to that
for higher contact stiffness decreases.
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4.4.3. The Sensitivity to the Shear Particle Stiffness

To study the sensitivity of the micro–macro mechanical behaviour of particulate sand
to the shear contact stiffness, an additional fifteen biaxial tests were carried out. The ratio
between normal contact stiffness and shear contact stiffness for these additional tests is
assumed to be 0.5, while the inter-particle coefficient of friction varies between 0.5, 0.9, and
1.2. The input data for these additional fifteen biaxial tests are listed in Table 8.

Table 8. The inter-particle parameters for additional fifteen biaxial tests to investigate the sensitivity
of system to the shear contact stiffness.

kn (N/m)
ks
kn

= 0.5
Inter-Particle Coefficient of Friction

ks (N/m)

8.45 × 107 4.22 × 107 0.5, 0.9, 1.2

17 × 107 8.55 × 107 0.5, 0.9, 1.2

46 × 107 23.0 × 107 0.5, 0.9, 1.2

133 × 107 66.5 × 107 0.5, 0.9, 1.2

150 × 107 75.0 × 107 0.5, 0.9, 1.2
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Figure 13 compares the sensitivity of combined deviatoric stress and volumetric strain
with axial strain to the shear contact stiffness, for a wide range of contact stiffness and
a fixed value of the inter-particle coefficient of friction of 0.9. The ratio of shear contact
stiffness to the normal contact stiffness varies between 1 and 0.5. Changing the shear
contact stiffness to half of the normal contact stiffness has a minor impact on the peak
stress. The peak stress is about 260 (kPa), though the model with a contact stiffness of
150 × 107 (N/m) shows a slightly higher peak stress. For cohesionless particulate systems
that are under the shearing, the number of contacts contributing to taking the load plays a
major role in the magnitude of the peak stress that these systems can achieve. The sliding
capacity of contact is a function of normal contact force and inter-particle coefficient of
friction. The normal contact force is a function of contact stiffness and contact deformation.
The latter can be dictated by the strain rate of loading applied to the sample. The higher
the strain rate, the higher the peak stress that can possibly be gained, as presented by
Yamamuro et al. [49]. As the input data and initial conditions of these tests are similar
(e.g., they are isotopically consolidated to 100 (kPa) and subjected to the same strain rate),
the models with higher combined contact stiffness are stiffer and have a lower number
of losing contacts during loading. That is, the stiffer models demonstrate higher hard-
ening strain behaviour compared to those using ks

kn
= 0.5. It also can be observed from

Figure 12 that shear contact stiffness significantly controls the pre-peak. A change in shear
contact stiffness from ks

kn
= 1 to ks

kn
= 0.5 plays an important role in the slope of the backbone

stress–strain curve and hardening strain behaviour. Chi et al. [50], in their sensitivity study,
showed that the slope of stress–strain behaviour of sand is influenced by shear contact stiff-
ness. This alteration is more evident for the samples with contact stiffness 8.45 × 107 and
17 × 107 (N/m), while for models with higher contact stiffness, this change has less impact
on the slope of the backbone stress–strain curve. This is because the models with ks

kn
= 0.5

are less stiff, and the number of lost contacts can be larger during shearing for them in
compression with the ks

kn
= 1 models. Therefore, the models with ks

kn
= 0.5 experience more

axial displacement than ks
kn

= 1 models under a similar stress level. As seen, the axial strain

corresponding to the peak stress rises for the models with ks
kn

= 0.5. Changing the shear con-
tact stiffness to half of the normal contact stiffness also plays a major role in the post-peak
and softening strain behaviour of particulate sand, such that those models using ks

kn
= 0.5

show more softening strain behaviour post-peak. Reducing the shear contact stiffness to
half of the normal contact stiffness value results in significant changes in the contraction
and dilation volumetric behaviour of sand, in particular for those two models using lower
normal contact stiffness, 8.45 × 107 (N/m) and 17 × 107 (N/m).

Table 9 summarises the values of Young’s modulus for the wide range of inter-particle
coefficients of friction and contact stiffnesses where the shear contact stiffness is half of
the normal contact stiffness. As explained above and from comparing Tables 6 and 9, a
change in the shear contact stiffness from ks

kn
= 1 to ks

kn
= 0.5 results in an alteration in the

value of Young’s modulus for both plane strain and plane stress. For instance, the value of
Young’s modulus at plane strain conditions for the model with ks

kn
= 1 and ks

kn
= 0.5, where

the normal contact stiffness is 8.45 × 107 (N/m), and the inter-particle coefficient of friction
is 1.2, calculated as 35 (MPa) and 29 (MPa), respectively. This is about a 17% reduction
in Young’s modulus. This reduction in Young’s modulus at plane strain conditions for
contact stiffness 17 × 107 (N/m), 46 × 107 (N/m), 133 × 107 (N/m), and 150 × 107 (N/m)
when shear contact stiffness changed from ks

kn
= 1 to ks

kn
= 0.5 is 12%, 21%, 13%, and 17%,

respectively. A similar exercise was carried out to investigate the sensitivity of Young’s
modulus shear contact stiffness where a fixed inter-particle coefficient friction of 0.9 is
applied. The plane strain Young’s modulus value drops by 20%, 12%, 18%, 12%, and 17%
for contact stiffness 8.45 × 107 (N/m), 17 × 107 (N/m), 46 x107 (N/m), 133 × 107 (N/m),
and 150 × 107 (N/m). Changing the shear contact stiffness from ks

kn
= 1 to ks

kn
= 0.5 leads to

an average reduction of 16% in plane strain Young’s modulus for the particulate sand.



Geotechnics 2023, 3 436Geotechnics 2023, 3 436 
 

 

 
(a) (b) 

 
 

(c) (d) 

 
(e) 

Figure 13. Deviatoric stress with axial strain and volumetric strain with axial strain. (a) Macro-me-
chanical responses to ௞ೞ௞೙ = 1.0 and ௞ೞ௞೙ = 0.5 when kn = 8.45 × 107 (N/m) at the fixed μ = 0.9. (b) Macro-
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Figure 13. Deviatoric stress with axial strain and volumetric strain with axial strain. (a) Macro-
mechanical responses to ks

kn
= 1.0 and ks

kn
= 0.5 when kn = 8.45 × 107 (N/m) at the fixed µ = 0.9.

(b) Macro-mechanical responses to ks
kn

= 1.0 and ks
kn

= 0.5 when kn = 17 × 107 (N/m) at the fixed

µ = 0.9. (c) Macro-mechanical responses to ks
kn

= 1.0 and ks
kn

= 0.5 when kn = 46 × 107 (N/m) at the

fixed µ = 0.9. (d) Macro-mechanical responses to ks
kn

= 1.0 and ks
kn

= 0.5 when kn = 133 × 107 (N/m) at

the fixed µ = 0.9. (e) Macro-mechanical responses to ks
kn

= 1.0 and ks
kn

= 0.5 when kn = 150 × 107 (N/m)
at the fixed µ = 0.9.
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Table 9. The sensitivity of E50 for both plane strain and plane stress to the various particle
shear stiffness.

Contact Stiffness (N/m)
Inter-Particle Coefficient of Friction

0.5 0.9 1.2

ks
kn

= 0.5: kn = 8.45 × 107
E50 (plane strain) (MPa) 27 28 29

E50 (plane stress) (MPa) 29 30 31

ks
kn

= 0.5: kn = 17 × 107
E50 (plane strain) (MPa) 56 59 60

E50 (plane stress) (MPa) 60 61 63

ks
kn

= 0.5: kn = 46 × 107
E50 (plane strain) (MPa) 128 141 143

E50 (plane stress) (MPa) 140 151 153

ks
kn

= 0.5: kn = 133 × 107
E50 (plane strain) (MPa) 353 416 417

E50 (plane stress) (MPa) 380 445 450

ks
kn

= 0.5: kn = 150 × 107
E50 (plane strain) (MPa) 380 445 447

E50 (plane stress) (MPa) 420 480 480

Table 10 summarises the values of Poisson‘s ratio where the shear contact stiffness
is half of the normal contact stiffness. To study the sensitivity of bulk Poisson’s ratio to
the shear contact stiffness, the values of Poisson’s ratio summarised in Tables 7 and 9 for
ks
kn

= 1 and ks
kn

= 0.5 models were compared. Comparison between Tables 7 and 10 shows
that a reduction in shear contact stiffness to half of the normal contact stiffness leads to
a notable increase in the value of Poisson’s ratio for both plane strain and plane stress.
Coetzee and Els [51] and Belheine et al. [31] showed in their parametrical study that a
change in the ks

kn
ratio has an influence on the materials’ Poisson’s ratio. This reduction in

Poisson’s ratio at plane strain conditions and fixed inter-particle coefficient friction of 0.9
for contact stiffness 8.45 × 107 (N/m), 17 × 107 (N/m), 46 × 107 (N/m), 133 × 107 (N/m),
and 150 × 107 (N/m) when shear contact stiffness changed from ks

kn
= 1 to ks

kn
= 0.5 is 28%,

26%, 25%, 17%, and 12%, respectively. The impact of this reduction in shear contact stiffness
value to the plane strain Poisson’s ratio was studied where a fixed inter-particle coefficient
friction of 1.2 was used. The plane strain Poisson’s ratio value increases by 14%, 14%,
8%, 8%, and 7% for contact stiffness 8.45 × 107 (N/m), 17 × 107 (N/m), 46 × 107 (N/m),
133 × 107 (N/m), and 150 × 107 (N/m). Comparing the numbers shows that a reduction
in shear contact stiffness to half of the normal contact stiffness has a significant impact on
the models with lower contact stiffness (e.g., 8.75 × 107 (N/m) and 17 × 107 (N/m)).

Table 10. The sensitivity of Poisson’s ratio to the various particle shear stiffness.

Contact Stiffness (N/m)
Inter-Particle Coefficient of Friction

0.5 0.9 1.2

ks
kn

= 0.5: kn = 8.45 × 107
v (plane strain) 0.22 0.23 0.24

v (plane stress) 0.28 0.30 0.32

ks
kn

= 0.5: kn = 17 × 107
v (plane strain) 0.23 0.24 0.25

v (plane stress) 0.30 0.32 0.33

ks
kn

= 0.5: kn = 46 × 107
v (plane strain) 0.25 0.25 0.26

v (plane stress) 0.33 0.33 0.35

ks
kn

= 0.5: kn = 133 × 107
v (plane strain) 0.26 0.27 0.27

v (plane stress) 0.35 0.37 0.37

ks
kn

= 0.5: kn = 150 × 107
v (plane strain) 0.27 0.28 0.29

v (plane stress) 0.37 0.39 0.41
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As highlighted above, an increase in ks
kn

from 0.5 to 1 has a small impact on the peak
deviatoric stress. Using Equation (19), the value of the angle of internal friction can be
calculated from peak stress and the applied confining pressure. The peak stress for the
models using ks

kn
= 0.5 and ks

kn
= 1 is taken from Figures 8 and 13, respectively. Table 11

compares the angle of internal friction for ks
kn

= 0.5 and ks
kn

= 1. As seen, an increase in ks
kn

from 0.5 to 1 plays a minor role in the angle of internal friction. For instance, the angle of
friction for the model with contact stiffness 17× 107 (N/m) and the inter-particle coefficient
of friction of 0.9, where shear contact stiffness is reduced to half of the normal contact
stiffness, changed from 27◦ to 26◦.

Table 11. The sensitivity of angle of friction to the various particle shear stiffness.

Normal Contact
Stiffness (N/m)

ks
kn

Inter-Particle Coefficient
of Friction

0.5 0.9 1.2

8.45 × 107
ks
kn

= 1.0 Angle of internal friction 19 27 30

ks
kn

= 0.5 Angle of internal friction 18 26 28

17 × 107
ks
kn

= 1.0 Angle of internal friction 20 27 30

ks
kn

= 0.5 Angle of internal friction 18 26 28

46 × 107
ks
kn

= 1.0 Angle of internal friction 20 27 30

ks
kn

= 0.5 Angle of internal friction 18 26 28

133 × 107
ks
kn

= 1.0 Angle of internal friction 20 27 30

ks
kn

= 0.5 Angle of internal friction 20 26 29

150 × 107
ks
kn

= 1.0 Angle of internal friction 20 28 32

ks
kn

= 0.5 Angle of internal friction 20 27 31

The polar diagram of contact distribution during the shearing for the model with a
contact stiffness of 8.45× 107 (N/m), where ks

kn
= 0.5 and a fixed value of 0.9 is applied to the

inter-particle coefficient friction, is presented in Figure 14. Comparing Figures 11 and 14
show that at peak stress, the diameter of the polar diagram in the major direction, repre-
senting the number of contacts per segment, reduced from around 3400 to about 3200. This
reduction in the number of contacts results in the particulate system becoming less stiff
and taking less load. Additionally, the average fabric anisotropy drops from 0.35 to 0.33,
indicating the ability of the system with ks

kn
= 0.5 to generate the number of contacts to take

more load reduces. The orientation of contacts at the post-peak is also toward the confining
stress, with average fabric anisotropy reduced to 0.26.

This reduction in the number of contacts is observed in Figure 15, where the sensitivity
of the average coordination number to a reduction in shear contact stiffness from ks

kn
= 1

and ks
kn

= 0.5 for two sets of contact stiffness (i.e., 8.75 × 107 (N/m) and 17 × 107 (N/m))
is compared. At ε11 = 0.0, the average coordination number for models with the lower
shear contact stiffness value is approximately similar to that obtained from the model
with higher shear contact stiffness. From ε11 = 0.0 to the axial strain corresponds to the
peak stress (see Figure 14), and the average coordination number for all models reduces.
However, the models with lower shear contact stiffness experience a higher reduction in
average coordination number. At post-peak, the average coordination number significantly
decreases for the model with lower shear contact stiffness.
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= 0.5
and inter-particle coefficient of friction is 0.9.
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4.4.4. Verification of the Cohesionless Nature of the Synthetic Material Used for
Particulate Sand

To verify the cohesionless nature of the synthetic material used for this study,
three biaxial tests with different confining pressure values were implemented. Table 12
presents the inter-particle properties along with the size of the sample, initial porosity,
PSD, number of particles, and confining pressures used for this study. These samples were
isotopically consolidated under different confining pressures before being subjected to
shearing under a strain-control approach, as explained in Section 4.4.

Table 12. The input properties used for sensitivity analysis of sand to the different confining pressures.

Test No. kn (N/m) ks (N/m) µ Width (cm) Height
(cm) n Range of

PSD (mm)
Confining

Pressure (kPa)

1 8.45 × 107 8.45 × 107 0.9 7.5 15.0 0.12 0.5–3 100

2 8.45 × 107 8.45 × 107 0.9 7.5 15.0 0.12 0.5–3 200

3 8.45 × 107 8.45 × 107 0.9 7.5 15.0 0.12 0.5–3 300

Figure 16a shows the variation of deviatoric stress with axial strain. As expected, an
increase in confining pressure leads to an increase in the peak stress. The ratio of peak stress
for confining pressure of 300 (kPa) to that of 100 (kPa) is about 3, the ratio of peak stress for
confining pressure 300 (kPa) to that of 200 (kPa) is almost 1.5, and the ratio of peak stress
for confining pressure of 200 (kPa) to that or 100 (kPa) is approximately 1.0. This shows that
these ratios are in good agreement with the ratio 300 (kPa)/100 (kPa), 300 (kPa)/200 (kPa),
and 200 (kPa)/100 (kPa), respectively. The Mohr circle of each test, together with the
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Mohr-Coulomb failure envelope of these three tests, are presented in Figure 16b. The angle
of internal friction extracted from the Mohr-Coulomb failure envelope (i.e., 27◦) is similar
to the angle of internal friction reported in Table 10 for the model using the contact stiffness
of 8.45 × 107 (N/m) and the inter-particle coefficient of friction of 0.9. It can be seen that
the nature of the synthetic material used for this study is cohesionless.
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5. Conclusions

In this paper, thirty-three biaxial DEM tests with rigid walls were implemented to
study the critical inter-particle properties and the range over which these properties impact
the micro–macro mechanical behaviour. The modelling results show that the elastic param-
eter, Young’s modulus, with particle diameters varying between 0.5 (mm) and 3.0 (mm), is
greatly dependent on the normal contact stiffness, while the angle of friction is strongly
dependent on the inter-particle coefficient of friction. It was observed that the inter-particle
coefficient of friction between 0.9 and 1.2 produced an angle of internal friction between
27◦ and 32◦ such that the relationship between them seems to be linear. These values are
compatible with typical ranges of the angle of friction of medium sand. That is, to produce
the angle of friction for dense sand, a higher inter-particle coefficient friction (i.e., more than
1.2) should be applied. The angle of internal friction obtained from inter-particle coefficient
of friction 0.5 is between 18◦ and 20◦, which is not within the angle of friction of sand. The
values of normal contact stiffness between 8.45 × 107 and 17 × 107 with ratios ks

kn
= 1 and

ks
kn

= 0.5 results in producing a range of Young’s modulus values of medium sand. However,

Young’s modulus produced based on ks
kn

= 0.5 are about 15% less than that estimated from

the models applied ks
kn

= 1. The higher normal contact stiffness (e.g., 46 × 107 (N/m) and
150 × 107 (N/m)) produces an unrealistic Young’s modulus for sand. It was observed
that Young’s modulus computed from plane stress conditions is about 5% bigger than that
calculated from plane strain conditions. Reduction in the value of shear contact stiffness to
half of the value of normal contact stiffness led to a decrease in the total number of contacts
in load bearing as the particulate system sheared. This indicates the particulate system
became less stiff. This change in shear contact stiffness plays a major role in the volumetric
behaviour of these systems, including contraction and dilation, meaning Poisson’s ratio
is mainly governed by shear contact stiffness. The results show reducing shear contact
stiffness resulting in an increase in Poisson’s ratio values for both plane strain and plane
stress conditions. The values of Poisson’s ratio for plane strain conditions obtained for those
particulate systems applying the normal contact stiffness between 8.45 × 107 and 17 × 107
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and ks
kn

= 1 and ks
kn

= 0.5 are within the typical values of Poisson’s ratio of medium sand.

That is, to produce Poisson’s ratio values within the typical range of dense sand, the ratio ks
kn

should be less than 0.5. The macro-mechanical behaviour of particulate sand is dictated by
inter-particle properties such that a change in one of these parameters results in a significant
change in the macro-mechanical behaviour, such as stress–strain and volumetric behaviour.
A set of relationships was established between inter-particle properties (including normal
contact stiffness and inter-particle coefficient of friction) and macro-machinal parameters
such as Young’s modulus, Poisson’s ratio, and angle of internal friction. Reviewing the
polar diagram of contact distribution shows that the peak stress and hardening strain
behaviour for a particulate system are a function of the number of contacts developed
in the major stress direction. The ability of a system to develop the number of contacts
is tied to its fabric anisotropy. It was seen that the models use the higher inter-particle
coefficient of friction value to develop higher fabric anisotropy and subsequently produce
higher peaks and angles of internal friction. This paper only covers three components of
ideal disk inter-particle properties, e.g., normal contact stiffness, shear contact stiffness,
and particle friction. The impact of other particle-scale parameters, such as particle shape,
rolling resistance, and lateral boundary conditions on the macro-mechanical properties, are
not covered in this study. This study presents a set of relationships between a wide range of
inter-particle properties and elastoplastic parameters for medium and dense sands. These
relationships can be used to estimate the inter-particle properties values from lab test data
of sands, including elastoplastic parameters for DEM modelling of geotechnical problems.
For instance, the first author of this paper applied these relationships to estimate the input
data of inter-particle properties of seabed sand from lab test data to simulate the lateral
behaviour of the Gravity Base Foundation of an offshore windfarm turbine using PFC2D

for an industrial project.
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Nomenclature

.
x Translational particle velocity
.
θ Rotational particle velocity
λ Stability index of particle
θa Rotation of E(θ)
∆n Normal contact deformation
a Fabric anisotropy
∆t Time step
∆s Shear contact deformation
θ Angle of contact force from x-axis and angle friction
α Damping constant
.
ε Strain rate
Ks Tangential contact stiffness
Kn Normal contact stiffness
Fn

i Total normal contact force
Fs

i Total tangential contact force
ρ Particle density



Geotechnics 2023, 3 443

.
ε Strain rate
py Contact pressure
I Density scaling factor
σ3 Confining pressure
Fi Contact force
µ Inter-particle coefficient of friction particles
F Resultant force
Fd

i Local damping force
M Torque
v Poisson’s ratio
R Particle radius
n and l Unite vector
t Deviatoric stress
s Isotropic stress
E0 Initial Young’s modulus
ε11 Major Strain tensor component in axial direction
ε22 Strain tensor component in out-plane lateral direction
ε33 Minor Strain tensor component
εv Volumetric strain
G Characteristic point
τ21 Shear strain component in out-off direction
τ23 Shear strain component in out-off direction
σ11 Major Stress tensor component in axial direction
σ22 Stress tensor component in out-plane lateral direction
σ33 Minor Stress tensor component
E50 Secant Young’s modulus at 50% of peak stress
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