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Abstract—This article presents a noninvasive method of
classifying gait patterns associated with various movement
disorders and/or neurological conditions, utilizing unob-
trusive, instrumented socks and a deep-learning network.
Seamless instrumented socks were fabricated using three
accelerometer-embeddedyarns, positioned at the toe (hallux),
above the heel, and on the lateral malleolus. Human trials were
conducted on 12 able-bodied participants, an instrumented
sock was worn on each foot. Participants were asked to
complete seven trials consisting of their typical gait and six
different gait types that mimicked the typical movement pat-
terns associated with various movement disorders and neu-
rological conditions. Four neural networks and an SVM were
tested to ascertain the most effective method of automatic
data classification. The bi-long short-term memory (LSTM)
generated the most accurate results and illustrates that the
use of three accelerometers per foot increased classification
accuracy compared to a single accelerometer per foot by
11.4%. When only a single accelerometer was utilized for
classification, the ankle accelerometer generated the most accurate results in comparison to the other two. The network
was able to correctly classify five different gait types: stomp (100%), shuffle (66.8%), diplegic (66.6%), hemiplegic (66.6%),
and “normal walking” (58.0%). The network was incapable of correctly differentiating foot slap (21.2%) and steppage gait
(4.8%). This work demonstrates that instrumented textile socks incorporating three accelerometer yarns were capable
of generating sufficient data to allow a neural network to distinguish between specific gait patterns. This may enable
clinicians and therapists to remotely classify gait alterations and observe changes in gait during rehabilitation.

Index Terms— Biomedical equipment, electronic textiles (E-textiles), gait monitoring, long short-term memory (LSTM),
machine learning, sensors, smart textiles, wearable sensors.
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I. INTRODUCTION

THE ability for wearable textile devices to be worn
comfortably, in close proximity to the human body,

makes them potent candidates for continuous monitoring of
physiological parameters [1], [2], [3], [4]. For this reason,
numerous wearable electronic textile (E-textile) sensors have
been generated and used to monitor various parameters,
including temperature [5], sweat production [6], heart rate [7],
and strain [8], [9], [10]. The capacity of this type of data
collection to facilitate the diagnosis and monitoring of different
medical conditions provides opportunities to improve patient
care and rehabilitation outcomes [11], [12], [13], [14], [15].
Since the primary method of human locomotion is walking,
it is one of the most studied human movements [16], [17],
[18], [19], [20], and it can be used as a predictor of morbidity
and mortality [19], [20], as well as having implications on
activities of daily living. In particular, rehabilitation of gait
in individuals with Parkinson’s disease, stroke, head injury,
diabetic neuropathy, multiple sclerosis, cerebral palsy, brain
lesions, and spinal cord injuries can be a determinant of an
individual’s capacity to return to an independent life [21], [22],
[23], [24], [25], [26], [27], [28].
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To create effective personalized gait rehabilitation inter-
ventions, clinicians and therapists must have evidence-based
methods of analyzing gait [29]. The current “gold standard”
for gait analysis takes place in a laboratory setting, often
within a constrained room or space [30]. A popular method
of analyzing and recognizing gait abnormalities uses 3-D
motion capture camera systems [31], [32], [33], [34], [35],
[36]. Additional technologies utilized include force plates,
instrumented walkways, instrumented treadmills, EMG sys-
tems, and movable footplates, all of which can be integrated
with motion capture technology [13], [37], [38], [39], [40],
[41]. Typically, the use of these systems limits the user’s
movements to a certain area. Furthermore, these systems
are often used in combination adding to the distress of the
patient and complicating the data-processing procedures for
the clinician [42]. The use of these combined systems is
extremely costly and requires a trained operator. This type of
monitoring also limits the capacity of the clinician to monitor
gait over a prolonged period, limiting the opportunity to view
the impacts of fatigue [43].

A proposed solution to the aforementioned problems is to
use a wearable device to continuously monitor gait. Numerous
wearable devices have been created for this purpose [44],
[45]. The capacity of such sensors to collect continuous
data without requiring expensive laboratory equipment and
dedicated laboratories has led to a boom in the development
of such equipment [15]. While many wearable systems have
been developed, there are still limitations. In some systems, the
electronics can obstruct the free movement of the user, leading
to adverse effects on movement quality, negatively impacting
the ability to record the individual’s typical movement patterns,
resulting in deleterious consequences for rehabilitation [46],
[47]. Shoes, socks, and insoles have been the preferred
wearable options for gait analysis due to their unobtrusive
nature [37], [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61], [62], [63]. Of these devices most
have utilized pressure sensors to monitor gait [37], [48], [49],
[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [63].
In general, pressure sensors can be affected by hysteresis
leading to poor reliability [64]. Fiber-optic-based pressure-
sensing systems are less prone to hysteresis; however, these
can be easily damaged when walking [64]. As an alternative,
some researchers have utilized accelerometers [50], [60], [62]
and inertial measurement units [49], [61] for gait analysis. The
majority of these devices are large/bulky and have not been
seamlessly integrated into the wearable garment, adversely
impacting the comfort of the wearer and impeding move-
ment [60], [61], [62]. The use of IMUs and accelerometers
has typically only generated data from a single point located
on the foot (based on a single sensor), which may not provide
sufficient data to classify gait alterations [61], [62].

E-textile-based “smart socks” are one such product that has
been developed to track gait outside of the laboratory [53],
[54], [55], [56], [57], [58], [59], [60], [63]. Numerous versions
have been designed using pressure sensors, either attached
to the surface of the sock [58], [59], [60], [63] or that
utilize textile-based pressure sensors [53], [54], [55], [56],

[57]. Surface-based sensors on the socks are likely to be
affected by abrasion, whereas textile-based pressure sensors
are characteristically adversely affected by hysteresis [64],
[65], [66], [67]. The majority of sock systems still use pres-
sure sensors and have focused on identifying heel strike and
toe-off, allowing easy identification of temporal–spatial gait
parameters but limiting their ability to distinguish between
gait types. Alternative devices have been developed that can
distinguish between the gait patterns of different individuals
and identify various human activities such as running, leaping,
and sliding [63]. Each of these activities generates a signif-
icantly different movement pattern from each of the others.
Consequently, the ability of this type of device to capture
subtle changes in motion, such as differences in gait patterns,
has not been assessed.

Each of these approaches, especially when used to contin-
uously monitor gait over a prolonged period, generates vast
amounts of data. This alone makes the already challenging
task of analyzing movement even more difficult. The use of
machine learning to automate the processing and analysis of
large volumes of gait data has become more common in
recent years. Researchers have classified gait abnormalities
using shallow machine-learning tools such as random for-
est, K nearest neighbor, and support vector machine-learning
tools [42], [50], deep neural networks such as long short-term
memory (LSTM) networks [52], [68] and convolutional neural
networks (CNN) [69]. The use of these tools to identify gait
features has typically been more successful with multisensor
and even multimodality data collection [42]. These data have
generally been collected using wearables that were not based
on smart textiles [50], [52], [70]. For some of these devices, the
electronics have not been seamlessly integrated into wearable
systems.

To overcome the limitations identified in the literature,
a pair of socks was instrumented with six yarn-embedded
triaxial accelerometers (three per sock). By embedding the
electronics within the structure of a yarn (creating an electronic
yarn or E-yarn), the esthetics and feel of the garment were
maintained. The core technology to create E-yarns has previ-
ously been used to generate temperature sensing [71], [72],
acoustic sensing [73], and solar energy harvesting yarns [74].
Accelerometry-based E-yarns have been used within vibration
sensing gloves [75]. The aim of the current work was to
use a deep-learning neural network to automatically classify
gait differences noninvasively, based on multisensor data from
a pair of instrumented smart socks created using E-textiles.
The dataset used in this work was distinctive to this research
and represents the first time data collected from a wearable
system has been utilized to classify seven different gait
patterns associated with various movement disorders and/or
neurological conditions. The data from the instrumented sock
was analyzed using three types of neural networks and a
support vector machine (SVM) classifier in order to identify
the best-performing neural network. It was hypothesized that:
1) the multisensor data (provided by three sensors for each
foot) would generate a better classification accuracy than a
single accelerometer per foot and 2) that the neural network
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Fig. 1. Instrumented smart sock and the electronic yarn fabrication process. (a) ADXL337 accelerometer soldered onto the flexible Litz wires.
(b) Polymer resin micropod around the soldered accelerometer and supporting yarns. (c) Accelerometer-embedded electronic yarn: encapsulated
accelerometer, Litz wires, and supporting yarns. (d) Accelerometer locations on the instrumented sock, lateral malleolus, posterior calcaneus, and
medial to the hallux. (e) Ability of the sock to undergo textile deformations. (f) Inside of the sock demonstrating lack of visible E-yarns.

would be able to accurately classify each of the gait profiles
generated in the data collected based on distinctive time-series
data.

II. MATERIALS AND METHODS
A. Fabrication of the Instrumented Smart Sock

The accelerometer-embedded E-yarns were constructed in
three stages. Initially, a triaxial, analog accelerometer with
a sensitivity of 300 mV/g (microelectrochemical systems,
ADXL337, Analog Devices, Norwood, MA, USA) was sol-
dered onto five flexible Litz wires. Each Litz wire consisted of
seven enameled copper strands, covered in a nylon sheath with
a diameter of 254 µm (BXL2001, OSCO Ltd., Milton Keynes,
U.K.). This created five solder discrete joints corresponding
to the axis outputs (x-axis, y-axis, and z-axis), the voltage
input, and the ground [see Fig. 1(a)]. The soldered accelerom-
eter was then encapsulated within a resin micropod (Dymax
9001-E-V3.7; Dymax, Corporation, Torrington, CT, USA).
The micropod included eight textured, multifilament, polyester
yarns, 36 filaments/167 dtex (Ashworth and Sons, Cheshire,
U.K.) that ran parallel to the copper wires and provided
additional mechanical support to the yarns [see Fig. 1(b)]. The
final accelerometer-embedded E-yarn was created by inserting
the encapsulated accelerometer, Litz wires, and supporting
fibers into a suture braider (RU1/24-80; Herzog GmbH, Old-
enburg, Germany). The covering braided structure consisted
of 24 carriers with polyester yarns, 36 filaments/167 dtex

(Ashworth and Sons, Cheshire, U.K.) and a lay length of 5 was
used [see Fig. 1(c)].

A seamless knit sock was subsequently produced using a
Stoll ADF 3 flatbed knitting machine. The sock was knit
with integrated channels for the insertion of the accelerometer
yarns and a pocket to accommodate the interface electronics.
The sock comprised of three types of yarns, a single cover
lycra 16/SCY/090 with a nylon 6.6 covering (Stretchline,
Long Eaton, U.K.), a two yarn 20/DCY/003 nylon 6.6, and
a 1/78/68 Nylon 6.6 yarn (ContiFibre, Casaloldo, Italy). Once
fabricated, three accelerometer yarns were inserted into the
sock and stitched in place. These yarns were positioned
approximately over the lateral malleolus, posterior to the
calcaneus, and medially to the hallux [see Fig. 1(d)]. The
integrated electronics did not impact on the textile’s flex-
ibility or deformability [see Fig. 1(e)]. To ensure that the
electronics would not lead to skin damage in participants
and patients, the sock was designed to ensure no presence
of the electronics was evident inside the sock as evidenced
in Fig. 1(f). The interface electronics used to capture the
data and power the accelerometers consisted of a Teensy LC
(PJRC, Oregon, USA) microcontroller wired to the analog
input of each accelerometer. The ensemble was housed within
a 3-D printed thermoplastic polyurethane casing. This was
inserted into the knit pocket of the sock. The Teensy boards
were connected to a computer using USB cables throughout
the experiments, however, the hardware solution could be
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made wireless in future iterations. Python (Python Software
Foundation, Delaware, USA) was utilized to capture the data
from the two microcontrollers.

B. Testing the Instrumented Smart Sock
1) Participants: 12 able-bodied injury-free individuals: five

males and seven females, aged 22–42 years, mass 58–97 kg,
U.K. shoe size 4–8.5, were recruited for this study. Ethical
approval was granted by the noninvasive ethics committee for
the School of Science and Technology at Nottingham Trent
University (approval number 1540613). All participants gave
written informed consent before testing.

2) Protocol: Participants were asked to walk around a
figure of eight walkways (30.6 ± 0.12 m in length) for
180 s per trial wearing a pair of the instrumented smart
socks. The seven experimental conditions consisted of dis-
tinct gait features associated with specific neurological and
physical conditions. Table I presents the gait features of each
experimental condition and its associated medical condition.
All participants were provided with a pair of instrumented
smart socks to wear and were instructed on how to wear the
socks to ensure the accelerometers were positioned in the cor-
rect locations. Before each experimental walking condition, the
participant was shown the walking pattern they were required
to mimic and was given time to practice the pattern ensuring
they could replicate the appropriate movement characteristics.
When data capture was ready to begin, the participants were
given simple instructions; on the command “Go,” they would
walk around the figure of eight track (marked out on the
laboratory floor), using the specific gait pattern they had been
shown until they were told to stop by the researcher. After
each trial was complete, the participant was given time to
rest if needed and the next gait pattern was demonstrated.
Once the participant had experienced sufficient rest (minimum
of 2 min) they were asked to practice the new gait pattern
before data collection. This process was repeated until all
experimental conditions were complete. The order in which
each participant was asked to complete the walking trials was
randomized to remove the impact of fatigue when walking
using an unfamiliar gait pattern.

Once the data were recorded, each file was labeled and
assigned to a specific folder based on the gait pattern being
mimicked. Triaxial acceleration data were recorded at 87.5 Hz
generating 1 41 687 data points per foot, per trial. The vectors
generated were combined into 2-s data instances consisting of
data from all three accelerometers from both socks. Approx-
imately 75% of the data captured was provided to the neural
networks for training purposes and the remaining 25% of the
data was split evenly between the testing and validation sets.
This split represents the entirety of nine participants’ data
being used for training, and the remaining three participants
(5, 6, 7) data being used for testing and validation. The process
of restricting 25% of the data for testing enables evaluation
of each neural network trained using unseen data, providing
information about the capacity of each network to classify new
data (not used in the training process). As well as accuracy
measures, precision, recall, and specificity were calculated
for each neural network as well as time performance. Each

TABLE I
DIFFERENT GAIT TYPES EVALUATED USING THE SOCK

instance of data was generated with a 50-time-step gap (sam-
pled at 87.5 Hz) between itself and its predecessor to ensure
comprehensive sampling of the data without introducing pro-
hibitive time costs for the training of the neural networks. The
neural networks were optimized using the adaptive moment
estimation optimizer with a minibatch size of 128. The training
was automatically stopped after the validation set showed
20 consecutive steps with lower accuracy than the current best.
At this point, the current best network was returned and the
training stopped. The network was then evaluated using the
test data.

C. Neural Network Structures Utilized for Classification
of the Data

LSTMs are a type of recurrent neural network [80] which
have shown significant promise in the classification of time
series data in a range of fields [52], [68], [81] and have
been applied in the medical industry to better understand
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Fig. 2. Confusion matrices illustrating the results for the most accurate network for each of the single accelerometers when classifying the various
gait types. (a) Ankle located accelerometer (overall accuracy 43.8%). (b) Heel located accelerometer (overall accuracy 20.6%). (c) Toe located
accelerometer (overall accuracy 33.3%).

movements in a variety of contexts. LSTMs can learn features
and representations within data over both long and short
periods of time. Bi-LSTMs, which were used in this work,
are a particular type of LSTM where the input flows in both
directions rather than unidirectionally within the LSTM. This
has resulted in better performance for a range of tasks [52],
[82]. The Bi-LSTMs used in this work contained 200 cells
that were shaped according to seven layers: sequence input,
Bi-LSTM, dropout, RELU layer fully connected, SoftMax,
and classification layers. The information depicting this can
be seen in Table II.

To ascertain the suitability of the Bi-LSTM in the context of
this work, the data was applied to three other neutral network
architectures and an SVM classifier. The three architectures
were a CNN, a Bi-LSTM CNN (Bi-LSTM-CNN), and an

TABLE II
ILLUSTRATION OF THE BI-LSTM MODELS, DEPICTING THE INDIVIDUAL

LAYERS, USED TO CLASSIFY THE DATA IN THIS WORK

LSTM network. All of the networks and the SVM were
trained using the same data as the Bi-LSTM in this work.
Broadly, the Bi-LSTM was found to outperform the three
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other three networks tested, with the Bi-LSTM CNN and
LSTM marginally behind. The CNN and the SVM performed
markedly worse and were generally unable to learn the fea-
tures within the data. The full results of these experiments,
along with the topologies of the networks, can be found
in Table III in the Appendix.

III. RESULTS AND DISCUSSION

Four neural networks and an SVM classifier were tested
to identify the most appropriate method for use with the
dataset generated by the smart socks, the results of which
can be found in Fig. 4 in the Appendix. The CNN was only
able to achieve a classification percentage just above random
(100/7 classes = 14.2%). Similarly, the SVM produced a clas-
sifier similar to random choice. The Bi-LSTM-CNN performed
well, achieving a 53.4% accuracy, which was slightly worse
than the Bi-LSTM, however, short shuffling gait and diplegic
gait were both correctly classified more than 70% of the time,
whereas no other gait type was classified correctly more than
60% of the time. Finally, the LSTM produced a classification
of 52.7%, although no trials were classified as high stepping
gait (even in error) and slap foot gait was never correctly
classified and a total of ten normal gait trials were misclassified
as slap foot by the network. It is worth noting that due to
the shape of the input data, it was only possible to generate
convolutions of small size; in experiments with “bigger data,”
it is possible that the CNNs would present a more promising
result. Consequently, the Bi-LSTM is presented in most detail
within the method section, as it performed best out of all the
networks trialed.

The primary aim of this work was to combine an instru-
mented smart sock and a neural network to classify different
gait profiles. It was hypothesized that the multisensor data
(provided by three sensors for each foot) would generate
a better classification accuracy than a single accelerometer
per foot. The results obtained when a single accelerometer
yarn was used for the classification of gait are presented in
Fig. 2(a)–(c). The accelerometer located on the ankle produced
the highest overall accuracy compared to the other two loca-
tions. An accuracy of 43.5% [see Fig. 2(a)] was observed for
the accelerometer located on the ankle. The Bi-LSTM was able
to classify stomp gait 99.0% of the time when only the ankle
accelerometer was used. Nonetheless, this gait was overclassi-
fied by the network and only 40.8% of the total data identified
as stomp gait was actually data corresponding to this gait.
As shown in Fig. 2(b), the lowest overall accuracy of 20.6%
was demonstrated when only data from the heel accelerometer
was used. The heel accelerometer correctly identified steppage
gait 66.2% of the time. Data from the toe accelerometer pro-
duced an overall accuracy of 33.3% as illustrated in Fig. 2(c).
Although it generated a low overall classification accuracy,
shuffling gait showcased a classification accuracy of 100%.
The overall classification accuracy for the smart sock with all
accelerometry data provided for the Bi-LSTM was 54.9% (see
Fig. 3). Previous work has suggested that data from multiple
sensors increases the capacity for neural networks to correctly
classify gait features [42]. The data presented here concurs
with this statement, showing that the use of multiple sets of

Fig. 3. Confusion matrix presenting output and classification accuracy
for the best-performing network based on data from all three accelerom-
eters from each sock. Overall classification accuracy for the network
was 54.9%.

sensor data improved the classification accuracy of the network
by over 11%.

The second hypothesis was that the Bi-LSTM would be able
to accurately classify each of the gait profiles. The Bi-LSTM
in combination with the instrumented smart socks allowed
for the correct classification of five of the seven gait profiles
(see Fig. 3). The results demonstrate that stomping gait was
correctly classified 100% of the time. However, the network
also misclassified other gaits as stomping gait. It can be
observed that 57.3% of the time, other gait types were mis-
classified as stomp gait. This was plausible because stomping
generated the highest acceleration values through the rapid
change of acceleration in the vertical and anterior–posterior
directions associated with large ground impacts [26]. Since
other gait types also had phases of high acceleration, this
may have limited the network’s capacity to classify the gait
type based on feature differences. The short shuffling gait
was identified with the next best accuracy of 66.8% closely
followed by the diplegic and hemiplegic gait classifications
(66.6%). Although both the short shuffling and diplegic gait
profiles were correctly classified over 66% of the time, they
were both misclassified as each other, more than as any
other gait type. This was most likely due to the short shuf-
fling gait generating minimal acceleration compared to the
other gait profiles as the foot only leaves the floor by a small
distance [78]. During diplegic gait, most participants walked
very slowly due to it being a difficult gait to perform, this may
have resulted in the acceleration profiles of both shuffling and
diplegic gait being quite similar.

Hemiplegic and normal gait were also misclassified as
each other, even though they were correctly classified by the
network most of the time, 66.6% and 58.0%, respectively.
Hemiplegic gait has an asymmetrical profile where one of
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TABLE III
ILLUSTRATIONS OF THE BI-LSTM CONVOLUTIONAL NEURAL NETWORK, CONVOLUTIONAL NEURAL NETWORK, AND LSTM NETWORK, DEPICTING

THE INDIVIDUAL LAYERS, USED TO CLASSIFY THE DATA IN THIS WORK

the legs performs the expected “normal” movement, while
the other leg circumducts to compensate for the inability
to flex the knee [76]. Although there is an asymmetrical
distribution of the gait parameters, the change in acceleration
may not have been sufficient to identify it as asymmetrical.
Additionally, there is still a heel strike and controlled shift of
weight from one leg to the other. Moreover, this condition was
easier for participants to replicate than most of the other gait
profiles, allowing them to walk at a more natural speed which
again may have been a factor associated with the Bi-LSTM
confusing hemiplegic gait and normal walking.

Both the foot slap and steppage gait were misclassified more
often than they were correctly identified by the Bi-LSTM
(21.2% and 4.8%, respectively). These two gaits were most
often misclassified as stomping gait (60.1% foot slap gait data
and 58.7% steppage gait data). In foot slap gait, the high
acceleration recorded by the toe accelerometer as the forefoot
rapidly drops to the ground may have confused the network
into classifying it as stomping gait [79]. Steppage gait requires
the foot to be lifted higher, and this exaggerated foot move-
ment might have caused an increase in acceleration, causing
the algorithm to misclassify it as stomping gait [27], [77].
Foot slap gait was incorrectly classified as steppage gait 11.9%
(114 times out of a possible 938 instances). However, steppage
gait was never misclassified as foot slap gait. This suggests
that the Bi-LSTM was able to distinguish steppage gait from
foot slap gait even though it was incapable of distinguishing
it from the other gait conditions. This is probably due to
the foot slap gait generating a heel initial contact rather than
mid- or forefoot initial contact [27], [77], [79]. With regard
to steppage gait, beyond lifting the legs higher, there are few
differences in the gait profile to distinguish this from the other
profiles [27], [77].

The current instrumented smart sock system could be
improved leading to greater accuracy and the capacity to
classify additional gait profiles. One option may be to include
accelerometer data from a sensor close to the sacrum [45],
which may assist when distinguishing gaits where hip move-
ment is prominent such as is the case with diplegic and
hemiplegic gaits. Another option to improve classification
accuracy would potentially be to incorporate other types of
sensors into the smart socks such as inertial measurement
units (IMUs). The addition of data from multiple modalities

has been demonstrated to enable greater gait classification
accuracy [42]. The challenge associated with this would be
the incorporation of such a sensor into the sock with minimal
impact on the sock profile and the user’s comfort experience.

One strength of this work is that the Bi-LSTM network
was able to correctly classify the majority of the gait profiles
for participants that were not part of the training data. This
suggests that data overfitting was not a significant problem for
the network and that the network generally used appropriate
elements of the available data to make its classifications. It can,
therefore, be suggested that the training dataset used was
sufficient to limit overfitting and ensure the generalizability of
the data during testing [83]. Based on this principle, it should
be possible to use the current smart socks and Bi-LSTM
network to collect data from clinical populations in order to
test the capacity of the network to classify differences in gait
between individuals with medical impairments that have led
to their altered gait profiles.

IV. CONCLUSION

The instrumented smart sock presented in this article com-
bined with a Bi-LSTM was capable of classifying five of seven
different gait profiles. The deep-learning architectures used to
interpret the data were revealed to be accurate, capable of dis-
tinguishing between different gait profiles, and robust enough
to cope with data from different participants. Furthermore, this
work indicates that the incorporation of three accelerometers
has a significant advantage when compared to measuring the
acceleration from a single point on the foot. In addition, the
results suggest that if only one accelerometer is used, it should
be positioned at the ankle rather than the toe or heel. This
work has demonstrated a proof of concept and shows that
different movement patterns can be identified by a trained
Bi-LSTM using simple unprocessed accelerometry data and
minimal interpretation by a clinician/researcher. The next step
in the process of developing a product that could be used to
assist in gait rehabilitation and real-time gait monitoring is to
collect data from clinical populations who may present subtle
differences in their movement profiles that cannot be replicated
by able-bodied individuals.

APPENDIX

See Table III and Fig. 4.
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Fig. 4. Results from the confusion matrices when classifying the various gait types utilizing three neural networks and an SVM classifier. Data
captured by all three accelerometers from each sock was used for the classification. (a) Convolution neural network (overall accuracy 15.6%).
(b) Bi-LSTM-convolution neural network (overall accuracy 53.4%). (c) LSTM neural network (overall accuracy 52.7%). (d) Support vector network
(overall accuracy 14.3%).
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