
Abstract—This letter formulates a fuzzy-immune adaptive 

system for the online adjustment of the Degree-of-Stability (DoS) 

of Linear-Quadratic-Regulator (LQR) procedure to strengthen 

the disturbance attenuation capacity of a self-balancing 

mechatronic system. The fuzzy-immune adaptive system uses 

pre-configured control input-based rules to alter the DoS 

parameter of LQR for dynamically relocating the closed-loop 

system’s eigenvalues in the complex plane’s left half. The 

corresponding changes in the eigenvalues are conveyed to the 

Riccati equation, which eventually yields the self-adjusting LQR 

gains. This arrangement allows for the flexible manipulation of 

the applied control effort and the response speed as the error 

conditions change. The efficacies of the self-tuning LQR scheme 

are verified by performing custom-designed hardware-in-the-

loop experiments on the Quanser rotary inverted pendulum 

system. As compared to the DoS-LQR, the proposed controller 

improves the pendulum's transient recovery time, overshoots, 

input demands, and offsets by 32.3%, 50.5%, 33.9%, and 33.3%, 

respectively, under disturbances. These experimental outcomes 

verify that the proposed self-tuning LQR law considerably 

improves the system’s disturbance attenuation capability. 

I. INTRODUCTION

Formulating control procedures for self-balancing robotic 

mechanisms has recently garnered a lot of attention [1]. Some 

of the notable real-world self-balancing control problems 

include the posture stabilization of bipedal exoskeletons [2], 

walking robots [3], two-wheeled transporters [4], etc. These 

systems rely upon the stabilization control principle of the 

inverted pendulum [5]. The Single-link Rotary-Inverted-

Pendulum (SRIP) is a self-stabilizing robotic mechanism that 

is widely used to examine control algorithms for such systems 

[6]. It is an inherently under-actuated system with nonlinear 

dynamics and kinematic instability [7]. The SRIP balancing 

control problem becomes quite difficult to handle when the 

system is influenced by parametric uncertainties [8]. 

A plethora of agile control laws that deal with the aforesaid 

problem are proposed in the literature [9]. The proportional-

integral-derivative controllers are reliable and simple, but, 

they lack the flexibility to robustly compensate for exogenous 

disturbances [10]. The fuzzy and neural controllers rely upon 

well-postulated logical rules and substantial training data to 

yield agile control effort, respectively [11, 12]. Despite their 

innate robustness, the sliding-mode-controllers repetitively 

switch between the sliding manifolds, which leads to 

disrupted control behavior and increases the chattering in the 

response [13, 14]. The Linear-Quadratic-Regulator (LQR) 
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delivers optimal control effort [15]. However, it cannot 

robustly compensate for model variations, identification 

errors, and parametric uncertainties [16].  

The prescribed Degree-of-Stability (DoS) LQR design 

robustifies the system’s performance by reorganizing its 

closed-loop poles on the left side of the user-specified line 

𝑠 = −𝛽 in the complex s-plane; where, "𝑠" is the Laplace 

operator and 𝛽 ≥ 0 is a preset parameter that dictates the 

controller’s DoS [17]. As compared to the conventional LQR, 

this augmentation reasonably improves the regulator’s phase 

margin and aids in directing the applied control yield to 

improve the controller’s robustness [18]. Unfortunately, this 

augmentation also makes the procedure sub-optimal by 

making a compromise between the disturbance-rejection 

capability and control input economy [19]. Due to design 

limitations, the fixed-gain DoS-LQR design is found to be 

inefficient in optimizing the control resource allocation as the 

error conditions change, especially under disturbances [20].  

This letter contributes to addressing the aforesaid problem 

by developing a novel fuzzy-immune-regulated adaptive 

DoS-LQR for a self-balancing robotic system. The said 

control law is realized by employing the ubiquitous LQR with 

prescribed DoS as the baseline state compensator. The DoS-

LQR is retrofitted with an auxiliary online adaptation law that 

modulates the parameter 𝛽, which in turn alters the solution 

of the Riccati equation to deliver self-tuning LQR gains. The 

salient contributions of this letter are presented as follows: 

• Formulation of the novel self-adaptive DoS-LQR law.

• Synthesis of a bio-inspired self-tuning scheme that online

adapts the DoS parameter 𝛽 in LQR by using a pre-

configured fuzzy immune system (FIS).

• Experimental validation of the proposed control law by

performing customized hardware-in-the-loop (HIL)

experiments on the Quanser SRIP platform [6].

The FIS is a bio-inspired computational paradigm that

mimics the autonomous self-regulation behavior of the 

vertebrate immune system to alter the applied control stiffness 

to effectively reject the exogenous disturbances [21, 22]. It is 

realized by using a pre-calibrated two-input fuzzy inference 

system. Unlike other soft computing techniques (such as deep 

reinforcement learning [23]), the FIS requires relatively lesser 

computational resources while displaying good adaptability. 

The design and HIL realization of an FIS-regulated DoS-LQR 

law has never been discussed in the literature. Thus, this novel 

idea is the focal point of this letter. 
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The remaining letter is structured as follows: the 

mathematical model and the predetermined DoS-LQR design 

for the SRIP are presented in Section II. The proposed FIS-

based adaptive DoS-LQR law is formulated in Section III. 

The HIL experiments and the corresponding results are 

analyzed in Section IV. The letter is concluded in Section V.  

II. SYSTEM DESCRIPTION 

The SRIP platform is used to investigate the properties of 

the proposed control law. The schematic of an SRIP system is 

shown in Fig. 1. It is constructed by connecting the apparatus 

rod to a horizontal arm link that is rotated by a DC servo 

motor. The closed-loop feedback controller uses the system’s 

states to generate appropriate control signals that are 

modulated to actuate the motor. The motor drives the 

horizontal arm to energize the rod and erect it. Once the rod 

erects itself, the balancing control law stabilizes it vertically. 

The rotary encoder attached to the motor’s shaft measures the 

arm’s angular position, denoted as 𝛼. The rotary encoder 

connected to the rod’s pivoted end measures the rod’s angular 

position, denoted as 𝜃. 

A. Mathematical Model 

The Euler-Lagrange technique is used to formulate the 

system’s dynamic model [24]. The system’s Lagrangian is 

computed, as shown in (1), in terms of 𝛼, 𝜃, �̇�, and �̇�. 

𝐿 = 𝐸𝐾 − 𝐸𝑃                                        (1) 
where, 𝐸𝐾  and 𝐸𝑃 are the system’s kinetic and potential 

energies, respectively. The Lagrangian is given in (2), [24]. 

𝐿 =
1

2
(𝐽𝑒 +𝑀𝑝𝑟

2)(�̇�)2 +
1

2
(𝑀𝑝𝑙𝑝

2 + 𝐽𝑝)(�̇�)
2

−𝑀𝑝𝑙𝑝𝑟(cos 𝜃)�̇��̇� − 𝑀𝑝𝑙𝑝𝑔(cos 𝜃)     (2) 

The Lagrangian is simplified by assuming that 𝜃 is always 

close to 𝜋 rad. Without this assumption, the expression would 

include additional terms, in particular with 𝐽𝑝. The model 

parameters mentioned in (2) are listed in Table I [25]. The 

SRIP’s equations of motion are derived as follows [24]. 
𝛿

𝛿𝑡
(
𝛿𝐿

𝛿�̇�
) −

𝛿𝐿

𝛿𝛼
= 𝜏 − 𝑏𝑣�̇�,

𝛿

𝛿𝑡
(
𝛿𝐿

𝛿�̇�
) −

𝛿𝐿

𝛿𝜃
= 0      (3) 

where, 𝜏 is the motor’s applied torque and 𝑏𝑣 is the viscous 

friction in the DC motor. The friction is neglected in the 

model formulation. The torque is expressed in (4). 

 

 
Fig. 1.  Schematic representation of an SRIP system. 

 

TABLE I 
MODEL PARAMETERS OF THE QUANSER SRIP [25] 

Symbol Description Value Unit 

Mp Rod’s mass 0.027 kg 

lp Rod’s center of mass 0.153 m 

Lp Rod’s length 0.191 m 

r Arm’s length 0.083 m 

Marm Arm’s mass 0.028 kg 

g Gravitational acceleration 9.810 m/s2 

Je Moment about shaft 1.23×10-4 kgm2 

Jp Moment about rod 1.10×10-4 kgm2 

Rm Motor’s resistance 3.30 Ω 

Lm Motor’s inductance 47.0 mH 

Kt Motor torque constant 0.028 Nm/A 

Km Back EMF constant 0.028 Vs/rad 

Tm Maximum torque 0.14 Nm 

 

𝜏 =
𝐾𝑡(𝑉𝑚 − 𝐾𝑚�̇�)

𝑅𝑚
                                 (4) 

The torque is a function of the motor's input voltage 𝑉𝑚. 

The nonlinear equations, delivered by (3), are linearized about 

the vertical position; where, 𝜃 = 𝜋 rad., 𝛼 = 0, �̇� = 0, �̇� =
0. The linearized state equations are expressed in (5) and (6). 

�̈� =
1

𝐻
(𝑟𝑀𝑝

2𝑙𝑝
2𝑔𝜃 −

(𝐽𝑝 +𝑀𝑝𝑙𝑝
2)𝐾𝑡𝐾𝑚

𝑅𝑚
�̇� +

(𝐽𝑝 +𝑀𝑝𝑙𝑝
2)𝐾𝑡

𝑅𝑚
𝑉𝑚)   (5) 

�̈� =
1

𝐻
(𝑀𝑝𝑙𝑝𝑔(𝐽𝑒 +𝑀𝑝𝑟

2)𝜃 −
𝑟𝑀𝑝𝑙𝑝𝐾𝑡𝐾𝑚

𝑅𝑚
�̇� +

𝑟𝑀𝑝𝑙𝑝𝐾𝑡

𝑅𝑚
𝑉𝑚)    (6) 

such that, 𝐻 = 𝐽𝑒𝐽𝑝 +𝑀𝑝𝑟
2𝐽𝑝 +𝑀𝑝𝑙𝑝

2𝐽𝑒 

A linear system is represented in state space as, 

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡), 𝑦(𝑡) = 𝑪𝑥(𝑡) + 𝑫𝑢(𝑡)    (7) 
where, 𝑨 is the system matrix, 𝑩 is the input matrix, 𝑪 is 

the output matrix, 𝑫 is the feed-forward matrix, and 𝑦(𝑡) is 

the output vector. The control vector 𝑢(𝑡) and state vector 

𝑥(𝑡) of the SRIP system considered in this research are 

provided in (8), [6, 25]. 

𝑢(𝑡) = 𝑉𝑚(𝑡),    𝑥(𝑡) = [𝛼(𝑡) 𝜃(𝑡) �̇�(𝑡) �̇�(𝑡)]𝑇   (8) 

As per the equations in (5) and (6), the SRIP system is 

represented in the state space as given by Eq. 9, [25].  

𝑨 = [

0 0 1   0
0 0 0   1
0
0

𝑎1
𝑎3

𝑎2 0
𝑎4 0

] , 𝑩 = [

0
0
𝑏1
𝑏2

], 

  𝑪 = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] , 𝑫 = [

0
0
0
0

]                    (9) 

where, 𝑎1 =
𝑟𝑀𝑝

2𝑙𝑝
2𝑔

𝐻
, 𝑎2 =

−𝐾𝑡𝐾𝑚(𝐽𝑝 +𝑀𝑝𝑙𝑝
2)

𝐻𝑅𝑚
, 𝑎3 =

𝑀𝑝𝑙𝑝𝑔(𝐽𝑒 +𝑀𝑝𝑟
2)

𝐻
,  

𝑎4 =
−𝑟𝑀𝑝𝑙𝑝𝐾𝑡𝐾𝑚

𝐻𝑅𝑚
, 𝑏1 =

𝐾𝑡(𝐽𝑝 +𝑀𝑝𝑙𝑝
2)

𝐻𝑅𝑚
, 𝑏2 =

𝑟𝑀𝑝𝑙𝑝𝐾𝑡
𝐻𝑅𝑚

. 

B. Predetermined Degree-of-Stability LQR Design 

To realize the DoS-LQR, the LQR’s conventional 

Quadratic-Cost-Function (QCF) is restructured to reposition 

the eigenvalues of the system matrix 𝑨 on the left side of the 

line prescribed as 𝑠 = −𝛽 in the s-plane, where 𝛽 is a 

predetermined positive parameter [26]. The relocation of the 

system’s eigenvalues on the left side of 𝑠 = −𝛽 ensures that 

the poles are always restricted within the complex plane’s left 



 

 

 

half. This arrangement guarantees the closed-loop stability of 

the control law. To realize the DoS-LQR, the conventional 

QCF is altered by assigning an exponential variable, 𝑒2𝛽𝑡, to 

it. The altered QCF is expressed below [17].  

𝐽𝑑𝑜𝑠 =
1

2
∫ 𝑒2𝛽𝑡[𝑥(𝑡)𝑇𝑸𝑥(𝑡) + 𝑢(𝑡)𝑇𝑹𝑢(𝑡)]
∞

0

𝑑𝑡     (10) 

where, 𝑸 ∈ ℝ4×4 and 𝑹 ∈ ℝ are the state and control 

weighting matrices, respectively. They are selected such that 

𝑸 = 𝑸𝑇 ≥ 0 and 𝑹 = 𝑹𝑇 > 0. The policy employed to tune 

the matrices 𝑸 and 𝑹 is discussed in the next subsection. The 

QCF 𝐽𝑑𝑜𝑠 can be simplified as shown in (11).  

𝐽𝑑𝑜𝑠 =
1

2
∫ [𝑝(𝑡)𝑇𝑸𝑝(𝑡) + 𝑐(𝑡)𝑇𝑹𝑐(𝑡)]
∞

0

𝑑𝑡         (11) 

where, 𝑝(𝑡) = 𝑒𝛽𝑡𝑥(𝑡), 𝑐(𝑡) = 𝑒𝛽𝑡𝑢(𝑡) 
where, 𝑝(𝑡) is the altered state vector and 𝑐(𝑡) is the altered 

input vector. The derivative of 𝑝(𝑡) is expressed in (12). 

�̇�(𝑡) = 𝑒𝛽𝑡�̇�(𝑡) + 𝛽𝑒𝛽𝑡𝑥(𝑡)                         (12) 
By replacing �̇�(𝑡) with its expression mentioned in Eq. 7, 

along with other suitable substitutions, the system’s altered 

state equation, �̇�(𝑡), is expressed below [17].  

�̇�(𝑡) = (𝑨 + 𝛽𝑰)𝑝(𝑡) + 𝑩𝑐(𝑡)                      (13) 
where, 𝐼 represents an identity matrix of order 4×4. The 

updated system matrix modifies the Riccati equation’s 

expression as shown in (14). 

(𝑨 + 𝛽𝑰)𝑇𝑷 + 𝑷(𝑨 + 𝛽𝑰) − 𝑷𝑩𝑹−1𝑩𝑇𝑷 +𝑸 = 0    (14) 
The symmetric positive-definite matrix 𝑷 ∈ ℝ4×4 is the 

Riccati equation’s solution. Retrofitting the QCF with 𝑒2𝛽𝑡 
mutates the original system matrix 𝑨 into 𝑨 + 𝛽𝑰, which 

changes the position of the system’s eigenvalues depending 

on the prescribed value of 𝛽. Hence, the matrix 𝑷 depends on 

the prescribed value of 𝛽. This solution is utilized to compute 

the LQR gain vector 𝑲, as shown in (15). 

𝑲 = 𝑹−1𝑩𝑇𝑷                                    (15) 
The gain vector 𝑲 is also indirectly influenced by 𝛽. The 

DoS-LQR is realized by introducing the offset 𝛽𝑰 in the 

original matrix 𝑨. The DoS-LQR law is expressed below. 

𝑢𝑑𝑜𝑠(𝑡) = −𝑲𝑥(𝑡)                               (16) 
The stability of the DoS-LQR is proven via the following 

Lyapunov function. 

𝑉(𝑡) = 𝑝(𝑡)𝑇𝑷(𝑡)𝑝(𝑡) > 0,     for 𝑝(𝑡) ≠ 0        (17) 
The first derivative of 𝑉(𝑡) is derived as follows [16]. 

 �̇�(𝑡) = 2𝑝(𝑡)𝑇𝑷�̇�(𝑡)                                                       (18) 

= 𝑝(𝑡)𝑇((𝑨 + 𝛽𝑰)𝑇𝑷 + 𝑷(𝑨 + 𝛽𝑰))𝑝(𝑡)

− 2𝑝(𝑡)𝑇(𝑷𝑩𝑹−𝟏𝑩𝑻𝑷)𝑝(𝑡) 

By substituting equation (14) in (18), �̇�(𝑡) is simplified as 

shown in below.  

�̇�(𝑡) = −𝑝(𝑡)𝑇𝑸𝑝(𝑡) − 𝑝(𝑡)𝑇(𝑷𝑩𝑹−1𝑩𝑇𝑷)𝑝(𝑡)    (19) 

The expression of �̇�(𝑡) < 0 if 𝛽 ≥ 0, 𝑸 = 𝑸𝑇 ≥ 0, and 

𝑹 = 𝑹𝑇 > 0. These specifications ensure the closed-loop 

convergence of the DoS-LQR scheme.  

C. Controller Parameter Tuning 

The controller parameters are optimized offline by 

minimizing the cost function expressed in (20). 

𝐽𝑒 = ∫ |𝜀𝛼(𝑡)|
2 + |𝜀𝜃(𝑡)|

2 + |𝑢(𝑡)|2𝑑𝑡
T

0

            (20) 

where, 𝜀𝛼(𝑡) and 𝜀𝜃(𝑡) represent the state error variables. 

They are evaluated as 𝜀𝛼(𝑡) = 𝛼(0) − 𝛼(𝑡) and 𝜀𝜃(𝑡) = 𝜋 −
𝜃(𝑡). The function 𝐽𝑒 asserts an equal weight upon the error 

and input minimization criteria for an optimal control yield 

[27]. The weighting coefficients are selected from the range 

[0, 100] and 𝛽 is selected from the range [0, 10]. The flow 

chart of the parameter tuning algorithm is depicted in Fig. 2. 

The tuning is begun with 𝑸 = 𝑑𝑖𝑎𝑔(1 1 1 1), 𝑹 = 1, 

and 𝛽 = 0.01. The experimental trials for parameter tuning 

are conducted via the procedure discussed in Section IV. In 

every trial, the parameters are updated appropriately, the 

SRIP’s rod is manually erected, and balanced for 10.0 sec. to 

compute the resulting cost 𝐽𝑒,𝑘; where, 𝑘 is the trial number. 

The algorithm explores the search space in the direction of the 

gradient-descent of 𝐽𝑒 to ensure that the cost is decreasing as 

the exploration progresses. If the present cost (𝐽𝑒,𝑘) is lesser 

than the cost of the previous trial (𝐽𝑒,𝑘−1), the local minimum-

cost variable 𝐽𝑒,𝑚𝑖𝑛 is updated. The search is terminated if 

either 𝐽𝑒,𝑚𝑖𝑛  achieves the user-specified threshold value or the 

maximum number of trials 𝑘𝑚𝑎𝑥 are completed. In this work, 

the user-specified threshold for 𝐽𝑒,𝑚𝑖𝑛  is set at 1.0×104 and 

𝑘𝑚𝑎𝑥 = 30. These settings are decided as per the expert’s 

experience. The tuned parameters are 𝑸 =
𝑑𝑖𝑎𝑔(38.2 52.6 5.3 2.1), 𝑹 = 1.02, and 𝛽 = 0.516. 

The LQR gains are computed as 𝑲 =
[−8.79 158.16 −5.51 21.73].  

III. PROPOSED CONTROL METHODOLOGY 

The parameter 𝛽 is adaptively tuned to formulate the 

proposed adaptive DoS-LQR [18, 20].  

A. Adaptive DoS-based LQR Law  

The online adaptation of 𝛽 repositions the eigenvalues on 

the left side of the self-adjusting line 𝑠 = −𝛽(𝑡). The cost 

function in (10) is incorporated with 𝛽(𝑡) instead of fixed 𝛽. 

Correspondingly, the Riccati equation in (14) is also modified 

by replacing 𝛽 with 𝛽(𝑡) [26]. The updated solution 𝑷(𝑡) then 

delivers the self-adjusting LQR gains as shown in (21).  

𝑲(𝑡) = 𝑹−1𝑩𝑇𝑷(𝑡)                              (21) 
The adaptive DoS-LQR law is expressed below [20]. 

𝑢′(𝑡) = −𝑲(𝑡)𝑥(𝑡)                              (22) 
The online adaptation of 𝛽 is done via FIS. The proposed 

FIS-regulated adaptive DoS-LQR law is shown in Fig. 3.  
 

 
Fig. 2.  Flow diagram of the parameter tuning algorithm 



 

 

 

 
Fig. 3.  Proposed adaptive DoS-LQR procedure 

B. Fuzzy-Immune Self-Adaptation Law 

The FIS is an intelligent information processing system that 

self-regulates the system’s immune response to enhance its 

adaptability and response speed to effectively reject the 

disturbance [28]. The biological immune system contains 

antibody molecules and lymphocytes [29]. Altogether, the 

helper T cells (𝑇𝐻  cells), the suppressor T cells (𝑇𝑆 cells), and 

the B cells contribute to reproducing the lymphocytes. The B 

cells estimate the extent of the foreign attacking antigens. 

Upon determination, the B-cells activate an appropriate 

concentration of 𝑇𝐻  cells to produce plasma cells, which in 

turn produce antibodies to reciprocate the attack. As the 

antigen assault becomes weak, the 𝑇𝑆 cells are triggered to 

inhibit the creation of antibodies. The successive activation 

and inhibition of the antibody-production process is 

adaptively regulated by the 𝑇𝑆 and 𝑇𝐻  cells working together. 

This self-regulatory behavior flexibly modulates the system’s 

damping against foreign attacks and ensures a fast transient 

response. The total concentration of B cells generated in this 

cycle is computed as shown below [21]. 

𝑣(𝑛) = 𝑇𝐻(𝑛) − 𝑇𝑆(𝑛)                             (23) 
where,   𝑇𝐻(𝑛) = 𝜌 𝑑(𝑛), 𝑇𝑆(𝑛) = 𝜌 λ 𝑚(𝑣(𝑛), �̇�(𝑛))𝑑(𝑛) 

such that, 𝑣(𝑛) is B cell stimulus (or concentration) at 𝑛𝑡ℎ 

generation, 𝑇𝐻(𝑛) is the 𝑇𝐻  cells concentration, 𝑇𝑆(𝑛) is the 

𝑇𝑆 cells concentration, 𝑑(𝑛) is the antigen concentration, 

𝑚(. ) is a nonlinear stimulus-suppression function that 

adaptively modulates the suppression rate of antibody 

production, 𝜌 is the preset positive stimulation factor, and λ is 

the preset positive suppression factor. The B cell stimulus is 

expressed in (24), [22, 29]. 

𝑣(𝑛) = 𝜌 (1 − λ 𝑚(𝑣(𝑛), �̇�(𝑛))) 𝑑(𝑛)            (24) 

Similar to biological systems, the physical systems also get 

degraded by random disturbances. Hence, in this work, an FIS 

is formulated to effectively manipulates the applied 

stimulation. The following map presents one-to-one 

correspondence between a biological and SRIP system [22]. 
 

Biological system  Physical system 

Immune system → SRIP system 

Antibody generation, 𝑛 → Sampling interval, 𝑡 
Antigen concentration, 𝑑(𝑛) → Error variable, 𝑒(𝑡) 
B-cell stimulation, 𝑣(𝑛) → Control input, 𝑢(𝑡) 

 

This map yields the immune feedback control law in (25). 

𝑢(𝑡) = 𝑓(𝑡)𝑒(𝑡)                                    (25) 
This control law depends on the classical error 𝑒(𝑡) and an 

artificial-immune gain-adaptation law expressed as 𝑓(𝑡) =

𝜌(1 − λ 𝑚(𝑢, �̇�)). In this work, the stimulus-suppression 

function 𝑚(. ) is implemented via the FIS [29]. The variables 

𝑢(𝑡) and �̇�(𝑡) are treated as the inputs, whereas, 𝑚(𝑢, �̇�) is 

the output of the FIS. Seven linguistic variables, designated 

as Negative-Big (NB), Negative-Medium (NM), Negative-

Small (NS), Zero (Z), Positive-Small (PS), Positive-Medium 

(PM), and Positive-Big (PB) are used to define the inputs and 

output variables. The input and the output variables are 

normalized within the range [-1, 1] a priori. Table II 

represents the fuzzy rules to construct the function 𝑚(. ). The 

fuzzy implication is done via the Mamdani inference (max-

min) method as shown in (26). 

𝜇𝑖𝑗 = 𝑚𝑖𝑛 (ℎ𝑖1(𝑢), ℎ𝑗2(�̇�))                     (26) 

where, 𝜇 is the Membership Function’s (MF’s) degree and 

ℎ𝑖𝑗(. ) is the triangular-shaped MF of the following form. 

ℎ𝑖𝑗(𝑔) =

{
 
 

 
 1 +

𝑔 − 𝑐𝑖𝑗

𝑏𝑖,𝑗
− ,        −𝑏𝑖𝑗

− ≤ 𝑔 − 𝑐𝑖𝑗 ≤ 0

1 −
𝑔 − 𝑐𝑖𝑗

𝑏𝑖𝑗
+ ,            0 ≤ 𝑔 − 𝑐𝑖𝑗 ≤ 𝑏𝑖𝑗

+

0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (27) 

where, 𝑔 is the normalized input 𝑢 or �̇�, and 𝑏𝑖𝑗
+

, 𝑐𝑖𝑗 , and 

𝑏𝑖𝑗
−

are the right-half width, centroid, and left-half width of 

the 𝑗𝑡ℎ input MF of the 𝑖𝑡ℎ input, respectively. Apart from 

being computationally simple to implement and having an 

intuitive interpretation, the usage of asymmetrical triangular 

MFs increases the controller’s design flexibility. The input 

and output MF waveforms are shown in Fig. 4. The decisions 

are de-fuzzified via the center-of-gravity method to evaluate 

the crisp output 𝑚(𝑢, �̇�) as shown in (28).  

𝑚(𝑢, �̇�) =  
∑ ∑ (𝜇𝑖𝑗 × 𝑤𝑖𝑗)

7
𝑗=1

7
𝑖=1

∑ ∑ 𝜇𝑖𝑗
7
𝑗=1

7
𝑖=1

                   (28) 

where, 𝑤 is the centroid of the output MF. The updated 

values of function 𝑚(𝑢, �̇�) are used to compute 𝛽(𝑡). The 

formulation of the adaptive DoS 𝛽(𝑡) is expressed in (29). 

𝛽(𝑡) = 𝜌(1 − λ 𝑚(𝑢, �̇�))                          (29) 

The parameters λ and 𝜌 are selected from the range [0, 10] 

via the tuning procedure prescribed in Section II (C). The 

selected parameter values are λ = 0.645 and 𝜌 = 0.812. The 

updated values of 𝛽 yielded by (29) modify 𝑷(𝑡) to deliver 

the self-tuning vector 𝑲(𝑡) as shown in (21), (See Fig. 3). 
 

TABLE II 
RULE BASE TO CONSTRUCT THE STIMULUS SUPPRESSION FUNCTION 

𝑚(𝑢, �̇�) �̇� 

𝑢 NB NM NS Z PS PM PB 

NB PB PB PM PM PS PS Z 

NM PB PM PM PS PS Z NS 

NS PM PM PS PS Z NS NS 

Z PM PS PS Z NS NS NM 

PS PS PS Z NS NS NM NM 

PM PS Z NS NS NM NM NB 

PB Z NS NS NM NM NB NB 



 

 

 

 

 
Fig. 4.  (a) Input MFs of the FIS, (b) Output MFs of the FIS. 

 

The parameter settings in (29) ensure 𝛽(𝑡) ≥ 0 to maintain 

the controller’s asymptotic stability. The FIS uses control 

input-driven immune adaptation rules to increase 𝛽 under 

large error (disturbance) conditions to yield a stiff control 

effort. Conversely, it reduces 𝛽 under small error 

(equilibrium) conditions to apply a mild control effort. Hence, 

this way, the robustness and adaptability of the LQR method 

are improved to efficiently reject the disturbances while 

economizing the overall control energy expenditure. The 

Immune-adaptive DoS-LQR is referred to as “IDoS-LQR”. 

IV. RESULTS AND DISCUSSIONS 

The HIL experiments used to analyze the performance of 

the DoS-LQR and IDoS-LQR are presented below. 

A. Experimental Setup 

The HIL experiments are performed on the Quanser SRIP 

setup shown in Fig. 5. The encoder measurements are 

acquired at a sampling rate of 1.0 kHz by the NI-ELVIS DAQ 

board. This data is serially communicated to the control 

software at 9600 bps. The customized control application is 

developed by using the LabVIEW software, which is operated 

on an embedded computer with a 2.1 GHz, 64-bit 

microprocessor, and 8.0 GB RAM. The application’s front 

end serves to graphically display the state and control 

variations in real time. The control software bounds the 

computed control signals within ±18.0 V (motor’s rated 

voltage) via a saturation function to prevent the actuator from 

overheating (See Fig. 3). The resulting control signals are 

serially communicated to the onboard motor driver circuit that 

amplifies them to drive the motor and stabilize the SRIP.  

B. HIL Experiments and Results 

The efficacy of each controller is characterized by 

conducting the following experiments. In each experiment, 

the rod is erected and allowed to balance vertically while the 

arm tracks the reference station. To facilitate the data 

visualization, the graph plots are displayed in degrees. 

 
Fig. 5.  Quanser SRIP setup. 

 

1. Position regulation: This experiment assesses the 

reference-tracking capability of the arm while stabilizing 

the rod in the vertical position under disturbance-free 

conditions. The responses of 𝛼(𝑡), 𝜃(𝑡), 𝑉𝑚(𝑡), 𝛽(𝑡) and 

𝑲(𝑡) are depicted in Fig. 6. 

2. Impulse disturbance attenuation: This experiment 

investigates the controller’s resilience against impulsive 

forces by administering a pulse signal of -5.0 V peak and 

100 msec. duration in 𝑉𝑚(𝑡) at discrete intervals. The 

variations in 𝛼(𝑡), 𝜃(𝑡), 𝑉𝑚(𝑡), 𝛽(𝑡) and 𝑲(𝑡) are 

illustrated in Fig. 7. 

3. Step disturbance rejection: This experiment analyzes the 

controller’s immunity against load-torque changes by 

injecting a simulated step signal of -5.0 V in the control 

signal at t ≈ 7.5 sec. The responses of 𝛼(𝑡), 𝜃(𝑡), 𝑉𝑚(𝑡), 
𝛽(𝑡) and 𝑲(𝑡) are shown in Fig. 8. 

4. High frequency disturbance suppression: This experiment 

analyzes the controller’s robustness against mechanical 

and sensor noise by introducing a simulated sinusoidal 

signal, d(t) = sin(20πt), in 𝑉𝑚. The variations in 𝛼(𝑡), 
𝜃(𝑡), 𝑉𝑚(𝑡), 𝛽(𝑡) and 𝑲(𝑡) are shown in Fig. 9. 

5. Low frequency disturbance suppression: This experiment 

analyzes the controller’s robustness against low frequency 

disturbances by injecting a simulated sinusoidal signal, 

d(t) = sin(2πt), in 𝑉𝑚. The variations in 𝛼(𝑡), 𝜃(𝑡), 
𝑉𝑚(𝑡), 𝛽(𝑡) and 𝑲(𝑡) are shown in Fig. 10. 

6. Model variation compensation: This experiment analyzes 

the controller’s resilience against the model variations by 

attaching a 0.1 kg mass underneath the pendulum’s rod-

arm assembly, at t ≈ 4.0 sec, as shown in Fig. 4. The 

consequent alteration in the system’s model leads to state 

deviations. The variations in 𝛼(𝑡), 𝜃(𝑡), 𝑉𝑚(𝑡), 𝛽(𝑡) and 

𝑲(𝑡) are shown in Fig. 11. 

 



 

 

 

 
Fig. 6.  SRIP’s behavior under normal conditions. 

 

 
Fig. 7.  SRIP’s behavior under impulse disturbances. 

 

 
Fig. 8.  SRIP’s behavior under step disturbance. 

 

 
Fig. 9.  SRIP’s behavior under high frequency sinusoidal disturbance. 

 



 

 

 

 
Fig. 10.  SRIP’s behavior under low frequency sinusoidal disturbance. 

 

 
Fig. 11.  SRIP’s behavior under model variation. 

 

C. Comparative Analysis and Discussions 

The experimental outcomes are assessed as per the 

following Performance Metrics (PMs): the root-mean-square-

error (ex_RMS) in the SRIP states, the rod’s duration of recovery 

(ts,θ) after a transient disturbance, the absolute peak of 

disturbance-induced overshoot (|Mp,x|) in the rod, the post-

disturbance offset (αoff) in the arm's position, the peak-to-peak 

amplitude (αp-p) of post-disturbance oscillations in the arm., 

the mean-squared value of motor voltage (MSVm), the peak 

motor voltage (Vp) under disturbance conditions [30]. These 

PMs are used to compare IDoS-LQR with DoS-LQR. The 

experimental results are quantified in Table III, along with the 

relative performance improvement contributed by IDoS-LQR 

as compared to DoS-LQR. In Experiment 1, the IDoS-LQR 

surpasses DoS-LQR by yielding optimum position regulation 

behavior and control input economy. In Experiment 2, the 

IDoS-LQR exhibits a relatively faster transit speed than DoS-

LQR with strong damping against the overshoots while 

curbing the control energy demands. In Experiment 3, the 

IDoS-LQR outperforms DoS-LQR by effectively minimizing 

αoff and αp-p while preserving the input economy. In 

Experiments 4 and 5, the IDoS-LQR effectively attenuates 

the sinusoidal disturbances by minimizing the position 

regulation errors, chattering content, and control energy 

demands. In Experiment 6, the IDoS-LQR attenuates the 

fluctuations while ensuring an economical control activity. 

The rapid variations in 𝛽(𝑡) and the IDoS-LQR gains improve 

the controller’s robustness to reject the disturbances. The 

analysis authenticates the enhanced adaptability of the IDoS-

LQR scheme against disturbances as compared to DoS-LQR. 

Unlike the schemes presented in [28-30], the IDoS-LQR 

adjusts a single parameter 𝛽 to modify the LQR gains, which 

simplifies its realization while upholding its robustness. 

 
TABLE III 

SUMMARY OF EXPERIMENTAL RESULTS 

Experiment 

PM Control Law 
Improvement 

(%) Symbol Units 
DoS-

LQR 

IDoS-

LQR 

1 

eθ_RMS deg. 0.42 0.29 30.95 

eα_RMS deg. 12.24 9.28 24.18 

MSVm V2 9.10 7.08 22.20 

2 

eθ_RMS deg. 0.63 0.37 41.27 

|Mp,θ| deg. 2.97 1.47 50.51 

ts,θ sec. 0.68 0.46 32.35 

eα_RMS deg. 11.75 8.92 24.08 

MSVm V2 10.78 6.31 41.47 

Vp V -12.30 -8.13 33.90 

3 

eθ_RMS deg. 0.57 0.45 21.05 

eα_RMS deg. 28.07 17.43 37.07 

αoff deg. -34.50 -23.00 33.33 

αp-p deg. 24.55 18.65 24.03 

MSVm V2 29.12 18.10 37.84 

Vp V -12.98 -12.28 5.39 

4 

eθ_RMS deg. 0.43 0.29 32.56 

eα_RMS deg. 9.90 6.85 30.80 

MSVm V2 12.99 9.07 30.18 

5 

eθ_RMS deg. 0.82 0.49 40.24 

eα_RMS deg. 10.45 6.68 36.07 

MSVm V2 9.11 5.77 30.66 

6 

eθ_RMS deg. 0.93 0.75 19.35 

eα_RMS deg. 14.80 9.94 32.84 

MSVm V2 12.88 8.49 34.08 



 

 

 

V. CONCLUSION 

This article uses FIS to formulate an innovative self-tuning 

DoS-LQR method to strengthen the disturbance rejection 

capacity of self-balancing robotic systems. The FIS bridges 

the gap between immunology and engineering by 

mathematically modeling the immune system. It uses the 

system’s input variations to enhance the controller’s 

adaptability. The results validate that the IDoS-LQR offers 

superior robustness, economical control activity, and closed-

loop stability. The IDoS-LQR procedure can be extended to 

other systems if the state-space model and the customized 

𝛽(𝑡) function of the new system are available a priori. 

However, the proposed scheme will not perform as effectively 

as desired if the customized 𝛽(𝑡) function is ill-calibrated or 

if the system’s state-space model contains modeling and 

identification errors. In the future, the implications of 

reinforcement learning can be analyzed to self-adjust 𝛽. 

Furthermore, the IDoS-LQR can be compared with other self-

tuning LQR methods to assess its potential shortcomings. 
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