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Abstract: To date, one of the main challenges in the wave energy field is to achieve energy-maximizing
control in order to reduce the levelized cost of energy (LCOE). This paper presents a model predictive
velocity tracking control method based on a hierarchical structure for a Wavestar-like deivce in the
WEC-SIM benchmark. The first part of the system structure aims to estimate the wave excitation
moment (WEM) by using a Kalman filter. Then, an extended Kalman filter (EKF) is chosen to
obtain the amplitude and angular frequency of the WEM in order to compute the reference velocity.
Following this, a low-level model predictive control (MPC) method is designed to ensure the wave
energy converter (WEC) tracks the optimal reference velocity for maximum energy extraction from
irregular waves. Two Gaussian Process (GP) models are considered to predict the future wave
excitation moment and future reference velocity, which are needed in MPC design. The proposed
strategy can give a new vision for energy-maximizing tracking control based on MPC.

Keywords: Kalman filter; extended Kalman filter; Gaussian Process (GP) model; velocity tracking;
model predictive control

1. Introduction

To date, climate changes have become a significant problem and are manifested in
different ways. People are starting to realize the emergence of a fossil fuel crisis and the
disadvantages of using traditional fossil fuels. Hence, the concept of exploring sustainable
and renewable energy has been enhanced. Wave energy shows great potential [1,2] to fulfill
the growing energy demand worldwide compared with other renewable resources (wind,
solar energy, etc).

Although wave energy takes the needs of commercial promotion and actual deploy-
ment into consideration, the technologies involved are still immature and lead to a high
levelized cost of energy (LCOE) [3] compared with the other marine renewable energy
sources, e.g., compared with wind energy. Hence, lowering the LCOE has been a primary
task in the wave energy field. Excluding the reduction of operation and maintenance
costs [4] to reduce LCOE, the other elegant way is to achieve energy maximization through
a WEC device, attempting to harvest energy from the ocean waves and convert the absorbed
mechanical energy into electrical energy [5] using a control system.

For the research target, the point absorber wave energy converter (PAWEC) type
of device is popular as it has has a relatively simple structure and can be arranged into
an array [6] of suitable size to absorb as much power as possible. For example, there
have been numbers of related works in the literature based on a special form of point
absorber device known as the Wavestar-prototype WEC [7–10]. This was selected in an
open competition [11] to compare different WEC control systems on a standard benchmark,
the WEC-SIM software and experimental tests. This paper focuses on the use of a wavestar-
like system to perform energy-maximizing control design [12] based on a very good
WEC-SIM numerical model.
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For the purpose of energy maximization, a considerable number of control strategies
can be found in the literature, such as reactive control [13], model predictive control
(MPC) [14], moment-matching based control [15], Spectral/Pseudospectral-based (MPC-
like type) control [16], LTI (LiTe-Con) controller [17], etc. The most well known of these is
reactive control [18], based on linear resonance theory, and it has been discussed and tested
in many references. It is usually necessary to amplify the WEC motion to capture as much
wave energy as possible. At first glance, this seems to be because the use of a “complex
conjugate” method may violate the WEC linear model assumption of the hydrodynamics,
involving many power fluctuations (both positive and negative), and can be limited to
application for regular wave conditions, due to its frequency-dependent characteristic. The
other choice is MPC [14,16,19], which selects the average absorbed mechanical power as
an objective function and maximizes the power by solving an optimization problem. The
MPC can reach the optimal solution for energy extraction and deal with system constraints
elegantly. This is why the MPC approach has a significant research following. Additionally,
an alternative choice of energy-maximizing design is based on a hierarchical structure [20]
with a low-level controller, e.g., a robust controller, for optimal reference velocity tracking.
This tracking system idea can achieve a near-resonance operation to bring acceptable results
for energy maximization production.

On the basis of MPC and the hierarchical structure strategies, this paper combines them
and produces a model predictive velocity tracking control approach for maximum energy
extraction. As for the second or high level part of the hierarchical structure, the WEM is
estimated by a Kalman filter, and reference velocity profile calculation is set in it. On the
other hand, the reference velocity computation requires the instantaneous amplitude
and frequency of the WEM, which are estimated by the EKF in this paper. Theoretically,
the WEM is assumed to be a narrow-band harmonic process and modeled as a single cyclical
component based on Harvey’s structural model [21]. Following this, on-line estimation
can be performed to obtain the angular amplitude and frequency of WEM by the designed
EKF in order to compute the reference velocity. Next, model predictive tracking control
is placed in the low-level part of the whole designed structure. The objective function
comprises the velocity error signal and control input and is transferred into a quadratic
index to reach its minimum with input constraint. However, the future excitation moment
and future reference velocity information are required to be predicted and used in the
MPC objective function. Usually, an autoregressive model is used for the prediction of the
WEM [22]. However, for the real-time forecasting requirement, the AR model needs to be
updated, which will increase the prediction time. Here, two GP models are chosen instead
to provide the short-term forecasting [23]. The hyperparameters can be preselected before
the training process to reduce the prediction time with no need for them to be updated
during real-time forecasting. Besides this, since the GP is a kernel-based and nonparametric
learning method, it has the advantages of modeling flexibility, as well as prediction with
learning smoothness and the use of noise parameters based on a training set.

The remainder of this paper is organized as follows. Section 2 describes the Wavestar-
prototype WEC modeling and the overall hierarchical tracking system structure. Section 3
presents the design of a Kalman filter for the WEM estimation and EKF for reference
velocity computation. Section 4 shows the design of the model predictive velocity tracking
control with GP model for short-term forecasting. Section 5 gives the simulation results
and discussions. Finally, Section 6 presents the concluding discussion.

2. Modeling and the Whole System Scheme

This section presents the description of the dynamics of a Wavestar-like device (the
scaled 1:20 benchmark) based on the well-known Cummins equation and the expression of
the hierarchical tracking control structure. The parameters of the WEC dynamics [19] are
provided by Wavestar experiments and a hydrodynamic database (WAMIT computation).
The numerical simulation model has been developed on the WEC-SIM simulator and
verified in [24].
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As for the hierarchical tracking control structure, this was first proposed by [20] and
adopted for energy-maximizing controller design. This paper focuses on this strategy and
gives a new version of velocity tracking design based on MPC to reach a near resonance
condition. The control input constraint can be handled in MPC, which shows an advantage
compared with some other control methods.

2.1. WEC Dynamics

The scaled Wavestar-prototype device is a kind of wave-activated body WEC, as
shown in Figure 1. A hemispherical float is mechanically connected to an arm that can
rotate around a fixed hinge point A [11], which has three independent motions (surge,
heave and pitch). At the other side of the arm, a linear motor (power take-off system) is
attached on the rotating arm to provide the power take-off force, and it only has one degree
of freedom.

(a) The sketch model. (b) The physical model in laboratory.
Figure 1. The scaled Wavestar-prototype WEC device [25].

In order to reduce the design complexity for estimation and control, the hydrodynamic
response of the float-arm can be equivalent to pitch moment only around the fixed hinge
point. This means that the linear position and force measurements can be converted to
the rotational displacement and moment. Then, the float rotational dynamics at the hinge
point A [19] can be treated as the equivalent pitch moment:

(J + J∞)θ̈(t) = −Khsθ(t)− Kv θ̇(t) + Mex(t)−Mra(t)−MPTO(t)

ṙa(t) = Arara(t) + Bra θ̇(t) (1)

Mra(t) = Crara(t) + Dra θ̇(t)

where J is the inertia of the float and arm, J∞ is the added inertia, θ̈ is the rotational angular
acceleration of the float, Khs and Kv are the hydrostatic stiffness coefficient and linear damp-
ing coefficient respectively, and Mra, Mex and MPTO are the equivalent radiation moment,
the equivalent wave excitation moment and power take-off moment around the hinge point.
The radiation moment Mra =

∫ t
0 hr(t− l)θ̇(l)dl is a convolution integral term, which can

dramatically increase computational burden and bring difficulties in estimation and control
work design. To overcome these problems, the convolution term can be converted into
an order-two linear state space model by using system identification according to Prony’s
method according to the realization theory. The internal variable ra(t) in the identified
order-two state space model does not have physical meaning. (Ara; Bra; Cra; Dra) are the
state space identified matrices of the convolution term of Mra.
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Theoretically, the equivalent wave excitation moment around the hinge point based
on [19] can be computed as

Mex = −Fex,xsin(θ0 + θ)larm − Fex,zcos(θ0 + θ)larm + Mex,θ (2)

where θ0 is the initial angular displacement of the float when it is located at the equilibrium
point, larm is the length of the arm, and Fex,x, Fex,z, Mex,θ are the surge, heave and pitch
direction components of the wave excitation force acting on the float.

The state space model of the WEC system can be expressed as

ẋ = Ax + Bu + BMex

y = Cx (3)

where A =


0 1 01×2

−Khs
Jt

−Kv + Dra

Jt
−Cra

Jt
02×1 Bra Ara

, x =

 θ
θ̇
ra

, B =


0
1
Jt

02×1

, u = −MPTO,

C =

[
1 0 01×2
0 1 01×2

]
.

The state variables θ and θ̇ are the angular displacement and velocity of the float. ra is
the internal variable of the identified state space model in Equation (1). Concerning the
model parameters, Jt = J + J∞ is the total inertia, where 0p×q represents a zero matrix with
r rows and q columns.

The electrical energy Ee absorbed by the grid [14] can be defined as

Ee(t) = −
∫ t+T

t
Pe(r)dr = −

∫ t+T

t
Γ(r)Pm(r)dr (4)

where Pm is the absorbed mechanical power by the PTO system, Γ is the conversion
efficiency, Pe is the extracted electrical power, and r is the integration variable.

The relationship between Pe and Pm is given below:

Pe(t) = Γ(t)Pm(t) = Γ(t)MPTO(t)θ̇(t),
{

Γ(t) = µgen i f Pm(t) ≥ 0
Γ(t) = µmot i f Pm(t) < 0

(5)

where µgen is the efficiency when the PTO system is assumed to be working in generator
mode and µmot is the motor mode efficiency.

2.2. The Overall Hierarchical Control Structure

For model predictive velocity tracking control design, the proposed hierarchical struc-
ture is based on previous work [20] as shown in Figure 2.

The high-level part of the system structure consists of WEM estimation and reference
angular velocity generation. The Kalman filter is selected to estimate the WEM, and an
EKF is chosen to estimate the instantaneous amplitude and frequency of the WEM. From
this, the velocity reference θ̇re f can be calculated.

The low-level part of the control design is based on the MPC, which aims to force the
scaled Wavestar-prototype device to track the optimal angular velocity trajectory for the
power maximization purpose. Two Gaussian process models are adopted to predict both
the future WEM and the future reference velocity, respectively, which are needed in the
MPC tracking design.
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Figure 2. Overall estimation and tracking control structure.

3. Wave Excitation Moment Estimation and Reference Velocity Computation

For the Wavestar-prototype device, the wave excitation information is a physically
unmeasurable quantity, although it is required for optimal control or energy-maximizing
control design. The equivalent Mex around the hinge point is an external term (unknown
input) of the WEC system and can be estimated by using a Kalman filter. According to the
reference velocity calculation, the WEM instantaneous amplitude Âex and frequency ω̂ are
required, and they are computed using an EKF.

3.1. Kalman Filter with Random Walk

The discretized system of Equation (3) has the following form:

x(k + 1) = Adx(k) + Bdu(k) + Bd Mex(k) + εx(k)

y(k) = Cdx(k) + µ(k) (6)

where εx(k) denotes the unmodeled dynamics and µ(k) is the measurement noise. Mex(k)
is considered as an external moment term acting on the WEC float, and it can be treated as
an unknown input term of System (6). Then, the discrete time dynamics of the WEM [26]
can be considered as

Mex(k + 1) = Mex(k) + εm(k) (7)

where εm(k) is a Gaussian distributed random variable. It means that the next value of
WEM will conduct a random step away from the present value after a sampling time,
and all moving steps are considered independent. Mex(k) can be estimated by a Kalman
filter when it is being considered as one of the system states. Hence, the augmented system
for estimating the WEM is

x̄(k + 1) = Āx̄(k) + B̄u(k) + ε(k)

y(k) = C̄x̄(k) + µ(k)
(8)

where Ā =

[
Ad Bd

01×4 1

]
, x̄ =

[
x

Mex

]
, B̄ =

[
Bd
0

]
, C̄ =

[
Cd 02×1

]
, ε(k) =

[
εx(k)
εm(k)

]
.

The dimensions of system matrices are Ā ∈ R5×5, B̄ ∈ R5×1, C̄ ∈ R2×5. ε(k) and µ(k)
are uncorrelated zero-mean white noise sequences with covariance matrices Q f and R f .



J. Mar. Sci. Eng. 2023, 11, 1289 6 of 16

Then, the Kalman filter prediction update equation [26] is

ˆ̄x(k|k− 1) = Ā ˆ̄x(k− 1|k− 1) + B̄u(k− 1)

Pf (k|k− 1) = ĀPf (k− 1|k− 1)ĀT + Q f

The Kalman filter correction update equation [26] becomes

K f (k) = Pf (k|k− 1)C̄T(C̄Pf (k|k− 1)C̄T + R f )
−1

ˆ̄x(k|k) = ˆ̄x(k|k− 1) + K f (k)(y(k)− C̄ ˆ̄x(k|k− 1))

Pf (k|k) = (I − K f (k)C̄)Pf (k|k− 1)

Hence, the estimated M̂ex can be obtained from the optimal estimation of state vector
ˆ̄x. Note the following:

ˆ̄x(k|k− 1) is a predicted prior state estimate given the observations at time k−1.
Pf (k|k− 1) is a predicted priori covariance matrix given the observations at time k−1.
ˆ̄x(k|k) is an updated posteriori state estimate given the observations at time k.
Pf (k|k) is an updated posteriori covariance matrix given the observations at time k.

3.2. Extended Kalman Filter

On the basis of the high-level part of the hierarchical strategy in Figure 2, the in-
stantaneous amplitude and frequency of WEM must be obtained in order to compute the
reference velocity θ̇re f . Hence, an efficient EKF method for the recursive estimation is
required. Additionally, it is assumed that the WEM signal is a narrow-band process, and its
harmonic model can be expressed as

Mex(t) = Aex(t)cos(ω(t) · t + β(t)) (9)

where Aex(t), ω(t) and β(t) are the time-varying amplitude, angular frequency and phase
of the WEM signal, respectively. Based on Harvey’s structural model presented in [21],
the WEM can be modeled as a single cyclical component: ψ(k + 1)

ψ∗(k + 1)
ω(k + 1)

 =

 cos(ω(k)Ts) sin(ω(k)Ts) 0
−sin(ω(k)Ts) cos(ω(k)Ts) 0

0 0 1


 ψ(k)

ψ∗(k)
ω(k)

+

 ς(k)
ς∗(k)
κ(k)


Mex(k) = ψ(k) + ζ(k)

(10)

where de(k) = [ς(k) ς∗(k) κ(k)]T and ζ(k) are random process and measurement noise,
and ψ(k) and ψ∗(k) are related states of the WEM amplitude and phase. The state vec-
tor xe(k) =

[
xe,1(k) xe,2(k) xe,3(k)

]T
=
[

ψ(k) ψ∗(k) ω(k)
]T and xe(k) ∈ R3×1,

corresponding to the sampling time Ts.
The non-linear time-varying Model (10) can be formulated as follows:

xe(k) = f (xe(k− 1), de(k− 1))

ze(k) = h(xe(k), ζ(k)) (11)

where the estimated excitation moment M̂ex is treated as the actual measurement ze(k).
Based on the above definition and without knowing the noise information, the a priori state
and measurement from time k− 1 are

x̂e(k|k− 1) = f (x̂e(k− 1|k− 1), 0)

ẑe(k|k− 1) = h(x̂e(k|k− 1), 0) (12)

where x̂e(k|k− 1) is the estimate of xe(k) and ẑe(k|k− 1) is the estimate of ze(k) based on
measurements from time k− 1.
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On application of a first-order Taylor series expansion of Equation (12), the linearized
system time-varying Jacobian matrix F(k) [27] is obtained as

F(k) =
∂ f
∂xe

∣∣∣∣x̂e(k− 1|k− 1)

=

 cos(ω(k)Ts) sin(ω(k)Ts) Ts(−sin(ω(k)Ts)ψ(k) + cos(ω(k)Ts)ψ′(k))
−sin(ω(k)Ts) cos(ω(k)Ts) Ts(−cos(ω(k)Ts)ψ(k)− sin(ω(k)Ts)ψ′(k))

0 0 1


The observed Jacobian matrix is

H(k) =
∂h
∂xe

∣∣∣∣x̂e(k|k− 1) , [1 0 0]

Thus, the EKF time-update equations are

x̂e(k|k− 1) = f (x̂e(k− 1|k− 1), 0)

Pe(k|k− 1) = F(k)Pe(k− 1|k− 1)FT(k) + Qe

The use of Jacobian matrices F(k) and H(k) to perform the model and measurement
updates leads to

Ke(k) = Pe(k|k− 1)HT(k)(H(k)Pe(k|k− 1)HT(k) + Re)
−1

x̂e(k|k) = x̂e(k|k− 1) + Ke(k)(ze(k)− h(x̂e(k|k− 1), 0))

Pe(k|k) = (I − Ke(k)H(k))Pe(k|k− 1)

where Qe and Re are suitably chosen variance process and measurement noise matrices.
After the on-line estimation, the estimated angular amplitude and frequency [21] are

Âex(k|k) =
√

x̂e,1(k|k)2 + x̂e,2(k|k)2

ω̂(k|k) = x̂e,3(k|k)
(13)

Next, consider the forcing of the float to reach a near resonance condition. The reference
velocity [20] can then be described as

θ̇re f (t) =
1

T(t)
M̂ex(t) (14)

where
1

T(t)
=


1

2B(ω) + 2K0
v

, i f
ω̂θlim

Âex
>

1

2B(ω) + 2K(0)
v

ω̂θlim

Âex
, otherwise

(15)

B(ω) is the radiation damping coefficient, and K0
v is the extra viscous damping co-

efficient. θlim is the maximum angular displacement within the allowable range. Hence,
the reference velocity can be calculated from Equations (14) and (15) since the instantaneous
amplitude Âex and frequency ω̂ of the WEM signal have been obtained using the EKF.

4. Model Predictive Tracking Control with Short-Term Forecasting

In general, MPC is often used as an optimal strategy for the purpose of energy-
maximizing by setting the average mechanical power as its objective function with control
input and physical position constraints [16]. This paper tests the value of MPC in another
way by a hierarchical velocity tracking structure based on the scheme in Figure 2. The veloc-
ity error signal is considered in the quadratic objective function for the purpose of tracking.
In addition, the future WEM and future reference velocity are predicted in the short term by
two separate Gaussian Process models. Furthermore, it is desirable to adopt the short-term
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forecasting of Mex and θ̇re f using uncorrelated Gaussian Process models. The forecasting
time needs to be considered carefully, based on a trade-off between prediction accuracy
and computation complexity.

4.1. Model Predictive Control

By defining v = θ̇ and with Cv = [0 1 0 0], and by considering the angular
velocity as the WEC system output, this leads to a discrete-time state space model:

x(k + 1) = Adx(k) + Bdu(k) + Bd M̂ex(k)

v(k) = Cvx(k)
(16)

After iterating Model (16) with the prediction horizon N, a prediction model will have
the following form:

VN = Savx(k) + SbvuN + Sbv Mex,N (17)

with VN =


v(k + 1)
v(k + 2)
· · ·

v(k + N)

, Sav =


Cv Ad
Cv A2

d
· · ·

Cv AN
d

, uN =


u(k)

u(k + 1)
· · ·

u(k + N − 1)

,

Mex,N =


M̂ex(k)

M̂ex(k + 1)
· · ·

M̂ex(k + N)

, Sbv =


CvBd 0 0 · · · 0

Cv AdBd CvBd 0 · · · 0
...

...
...

. . .
...

Cv AN−1
d Bd Cv AN−2

d Bd · · · Cv AdBd CvBd

.

Note that these stacked predictions are used in the objective function of the next
optimization problem.

By defining vre f = θ̇re f , the constrained discrete time optimization problem can be
considered as follows:

min
VN ,uN
MeN

N

∑
i=1

[v(k + i)− vre f (k + i)]TQm[v(k + i)− vre f (k + i)] +
N−1

∑
i=0

[u(k + i)]T Rmu(k + i) (18)

subject to |u(k + i)| ≤ umax (19)

According to Equations (17) and (18), the MPC objective function is selected as

Jm =
1
2

VT
N Q̄VN − vT

re f ,NQ̄VN +
1
2

vT
re f ,NQ̄vre f ,N +

1
2

uT
N R̄uN (20)

where Q̄ =

 Qm 0 0

0
. . . 0

0 0 Qm

, R̄ =

 Rm 0 0

0
. . . 0

0 0 Rm

, vre f ,N =

 vre f (k + 1)
...

vre f (k + N)

.

By substituting Equations (17) into (20), the objective function is transformed into

Jm =
1
2
(Savx(k) + SbvuN + Sbv Mex,N)TQ̄(Savx(k) + SbvuN + Sbv Mex,N) +

1
2

uT
N R̄uN

− vT
re f ,N Q̄Savx(k)− vT

re f ,N Q̄SbvuN − vT
re f ,N Q̄Sbv Mex,N +

1
2

vT
re f ,N Q̄vre f ,N

(21)

Considering the velocity tracking and dropping some bias terms, the objective function
Jm can be converted into its quadratic form:

Jm =
1
2

uT
N HmuN + f T

muN (22)

where Hm = ST
bvQ̄Sbv + R̄, f T

m = xT(k)ST
avQ̄Sbv + MT

ex,NST
bvQ̄Sbv − vT

re f ,NQ̄vre f ,N .
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Thereby, the velocity tracking problem is transformed into a Quadratic Programming
(QP) optimization problem, and the energy-maximizing generation can be achieved when
the scaled Wavestar-like device can track the reference angular velocity θ̇re f . The qpOASES
QP solver [28] is utilized to solve the QP optimization. It is particularly well suited for
MPC applications that need fast QP solving rates with high reliability. As for the sequences
Mex,N and vre f ,N , these can be obtained from the GP model to obtain short-term forecasting.

4.2. Gaussian Process Model

To specify the a priori expression of a GP model [29], the mean function m(a) and
covariance function k(a, a∗) are defined as follows:

f (a) ∼ GP(m(a), k(a, a∗))

m(a) = E[ f (a)] (23)

k(a, a∗) = cov( f (a), f (a∗))

where a ∈ <D is a vector of the dynamics input with dimension D, and f (a) and f (a∗) are
arbitrary Gaussian scalar variables indexed by a and a∗.

Next, define a training set D = (a, z), where the matrix a = [a1, a2, · · · , an] contains
all input vectors, and z = [z1, z2, · · · , zn] is a corresponding vector with all scalar outputs.
Then, a GP posterior model can be determined as

zi = f (ai) + εi εi ∼ N (0, σ2) (24)

where z is the observed output values, f (a) is the GP model values, and ε is a zero mean
white Gaussian noise.

Here, a spectral mixture (SM) kernel is chosen as the covariance function for excitation
moment and reference velocity forecasting. The form is given by [30] as

kSM(τ) =
S

∑
s=1

wscos(2πτTµs)
O

∏
o=1

exp(−2π2τ2
o v(o)s ) (25)

Regarding the one-dimensional input O = 1, S is a selected number of the wave fre-
quency components, and τ is the distance between two arbitrary points ai and aj. According
to the view of wave reconstruction, the parameters of the SM kernel hyperparameter vector
Θ = (µs, ws, vs)T can denote the the amplitude, period and evolutionary-scale of each wave
component. This means that this SM kernel [23] can be applied as the covariance function
of a GP model for wave forecasting directly owing to its automatic discovery capability.

The hyperparameters of Θ in the SM kernel can be calculated by optimizing the
marginal likelihood function [29] as

logp(z|a, Θ) = −1
2

log|K + σ2 I| − 1
2

zT(K + σ2 I)−1z− n
2

log(2π) (26)

Note that the choice of highly suitable initial hyperparameters before the training
process can promote the convergence rate of optimization and avoid reaching an unsat-
isfactory local optimum. After the training process, the posterior joint distribution of the
prediction f ∗ with given input vector a has the following form:[

f ∗

z

]
∼
([

m(a∗)
m(a)

]
,
[

k(a∗, a∗) k(a∗, a)
k(a, a∗) K + σ2 I

])
(27)
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with k(a∗, a) = k(a, a∗) = [k(a1, a∗), · · · , k(aN , a∗)]. Then, based on the Joint Gaussian
Distribution Theorem, the predicted result about f ∗ can be described as

µ( f ∗) = m(a∗) + k(a∗, a)[K + σ2 I]−1(z−m(a))

σ( f ∗) = k(a∗, a∗)− k(a∗, a)[K + σ2 I]−1k(a, a∗)
(28)

The Gaussian Process for Machine Learning (GPML) package [29] is applied to design
the GP model and perform the training and test prediction work.

5. Results and Discussion

The simulation works are conducted using the open-source software WEC-Sim, de-
veloped in Matlab/Simulink using the multi-body dynamics solver Simscape Multibody—
refer to WEC-Sim documentation [31] and applications [32–36]. The main contribution
focuses on a Kalman filter approach to WEM estimation; in addition to optimal reference
computation based on EKF, GP modeling is used for short-term forecasting and velocity
tracking through MPC and tested on a WEC-Sim model of the 1:20 scaled Wavestar device
in WEC-Sim. The simulation parameters are listed in Table 1. A fixed-step size ode8
(Dormand-Prince) solver is selected to conduct the simulation works for the WEC-Sim
numerical model in Matlab/Simulink software.

Table 1. The simulation parameters.

Parameters Values

Simulation sampling time Ts 0.05 s
Inertia of float and arm J 1.0 kg m2

Added inertia J∞ 0.4805 kg m2

Hydrostatic coefficient Khs 92.33 Nm rad−1

Linear damping coefficient Kv 1.8 Nm rad−1s−1

Length of the arm larm 0.54875 m
Efficiency of generator mode µgen 0.7

Efficiency of motor mode µgen 0.7−1

KF coefficient Q f diag(0.01 0.1 0.01 0.01 200)
KF coefficient R f diag(0.01; 0.01)

EKF initial state xe [1, 1, 5]T

EKF coefficient Qe diag(0.2, 0.2, 0.001)
EKF coefficient Re 0.1

Angular displacement limit θlim 0.4 rad
Control limit umax ±12 Nm

GP coefficient S 12

The matrices for the approximation of radiation moment are Ara =

[
−13.59 −13.35

8.0 0

]
,

Bra =

[
8.0
0

]
, Cra = [4.739 0.5], Dra = −0.1586.

The JONSWAP (JS) wave Spectrum is adopted to generate three irregular waves:
Seastate1, Seastate2 and Seastate3. The significant wave height Hm0 and peak wave period
Tp of irregular waves, MPC prediction horizon Np and MPC coefficients Qm, Rm are shown
in Table 2. The wave peak enhancement factor κ = 1.

Table 2. The irregular wave information and MPC coefficients.

Case Hm0 Tp Np Qm Rm

Seastate1 0.0208 0.988 20 0.5 2× 10−3

Seastate2 0.0625 1.412 30 0.5 5× 10−4

Seastate3 0.1042 1.836 40 0.5 2× 10−4
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Figure 3 presents the estimated M̂ex from the KF over the time interval 50–75 s. It can
be seen that some biases arise in the crests of the estimated WEM due to the WEC-Sim
numerical model having some additional static moments and the offset between the center
of bouyancy (CoB) and center of gravity (CoG). Additionally, a small lag of about 0.05 s
occurs between the estimated M̂ex and the calculated Mex. The reason for this lag is that
a relatively large sampling time has to be utilized for the requirement of the QP solving
time in MPC due to its computational complexity. The sampling time is 0.05 s, which is
larger than the most frequently used sampling rate (0.001 s). This means that the KF will
not produce the most accurate estimation performance with zero lag, but the estimation
performance is acceptable.
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Figure 3. The estimated M̂ex under three irregular waves by KF.

The estimated instantaneous amplitude Âex is shown in Figure 4 along with the
estimated excitation moment M̂ex. The estimated instantaneous frequency ω̂ is given in
Figure 5. The EKF convergence time is usually long, and the initial values need to be chosen
reasonably close to the expected values to avoid a long convergence time.
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Figure 4. The amplitude Âex of M̂ex under three irregular waves by EKF.
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Figure 5. The frequency ω̂ of M̂ex under three irregular waves by EKF.
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Two GP models are employed to provide the future WEM and velocity information
for MPC tracking design. In other words, the predicted future WEM sequence and future
reference velocity sequence are used in the MPC objective function. It is clear that, most of
the time, the predicted WEM based on the GP model is matched well with the calculated
ideal WEM in Figure 6. The GP modeling method shows good learning smoothness and
accuracy for WEM prediction. The suitable hyperparameters of the GP model can be
preselected before the training process to reduce the prediction time and promote the
convergence rate of optimization. There is no need to update the hyperparameters during
the real-time forecasting. From Equations (14) and (15), the wave excitation moment M̂ex
and reference angular velocity θ̇re f share the same phase but a different amplitude when
the tracking control is achieved for the WEC system. Hence, the predicted future reference
velocity shows similar trends to the predicted future WEM in Figure 7.
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Figure 6. The predicted WEM by GP model under three irregular waves.
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Figure 7. The predicted reference angular velocity by GP model under three irregular waves.

The MPC angular velocity tracking result is shown in Figure 8. To start from the
MPC standpoint, the overall tracking performance is good, even if the float velocity shows
occasional amplitude differences with the reference velocity. However, the tracking errors
between the reference velocity and float velocity are small and acceptable. Most of the
time, they share the same phase. The primary role of the reference velocity is to capture the
same phase with the estimated M̂ex so as to reach a near resonance condition for energy-
maximizing purposes. This means that the WEC system is forced to follow the incident
waves by MPC when the tracking mission is obtained. In total, the MPC method lacks
some robustness to a certain extent, which is unlike the other robust methods, which can
result in very small tracking errors for the WEC system doing the tracking work. However,
the MPC has a good advantage in terms of input constraint handling.
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Figure 8. The float angular velocity θ̇ based on tracking control under three irregular waves.

The generated instantaneous power and extracted energy through the power take-off
system are shown in Figures 9 and 10. It is clear that the proposed MPC tracking approach
only causes very few negative power excursions, which is a benefit for the PTO system
solving the large bidirectional flow problem and reducing the energy loss during the
motor mode.
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Figure 9. The generated instantaneous power from three irregular waves.
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Figure 10. The extracted energy from three irregular waves.

The PTO moment control input is given in Figure 11. The red lines represent the
input maximum limits of ±12 Nm, showing that the MPC control input satisfies the
input constraint conditions. The MPC tracking performance can be improved if the MPC
coefficient Rm is decreased, but this can bring a large PTO moment in the control input.
Conversely, if a large Rm is adopted and the control input can be small, the MPC tracking
performance will certainly decline.
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Figure 11. The PTO moment under three irregular waves.

6. Conclusions

This paper concentrates on model predictive velocity tracking control design based on
a hierarchical structure to reach energy-maximizing generation for a Wavestar-like device
in the WEC-SIM benchmark. The high-level part of the overall structure includes a KF for
WEM estimation and an EKF for providing the instantaneous amplitude and frequency
of WEM to calculate the optimal reference velocity. Two Gaussian Process models are
selected to provide the future information, multiple steps ahead of the reference velocity
and wave excitation moment for MPC design with accurate prediction accuracy and good
smoothness. The low-level model predictive controller shows good tracking performance
with small errors and pushes the WEC system into a near-resonance condition for power
maximization extraction. Furthermore, it is shown that the MPC tracking system approach
can take the input constraint into consideration as well and generate a low level of negative
power, which is beneficial for the PTO system to avoid large bidirectional energy flow.
Considering that the KF and MPC still lack robustness to a certain extent, future work
may focus on how to design a robust controller under a large sampling time and how to
improve the robustness of the designed MPC.
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