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We consider the role of gravity in solute transport when a thin droplet evaporates.
Under the physically relevant assumptions that the contact line is pinned and the solutal
Péclet number, Pe, is large, we identify two asymptotic regimes that depend on the
size of the Bond number, Bo. When Bo = O(1) as Pe → ∞, the asymptotic structure
of solute transport follows directly from the surface-tension-dominated regime, whereby
advection drives solute towards the contact line, only to be countered by local diffusive
effects, leading to the formation of the famous ‘coffee ring.’ In the distinguished limit in
which Bo = O(Pe4/3) as Pe → ∞, this interplay between advection and diffusion takes
place alongside that between surface tension and gravity. In each regime, we perform
a systematic asymptotic analysis of the solute transport and compare our predictions
to numerical simulations. We identify the effect of gravity on the nascent coffee ring,
providing quantitative predictions of the size, location and shape of the solute mass profile.
In particular, for a fixed Péclet number, as the effect of gravity increases, the coffee
ring is diminished in height and situated further from the contact line. Furthermore, for
certain values of Bo, Pe and the evaporation time, a secondary peak may exist inside the
classical coffee ring. The onset of this secondary peak is linked to the change in type of
the critical point in the solute mass profile at the droplet centre. Both the onset and the
peak characteristics are shown to be independent of Pe.

Key words: drops, capillary flows, condensation/evaporation

1. Introduction

The evaporation of sessile droplets has received significant attention in recent years, being
the subject of several major reviews (Cazabat & Guena 2010; Lohse & Zhang 2015;
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Brutin & Starov 2018; Wilson & D’Ambrosio 2023) due to its ubiquity in theoretical,
experimental and industrial settings. A particular phenomenon of interest is the so-called
‘coffee-ring effect’, in which a solute in such an evaporating droplet ends up preferentially
accumulated at the contact line (Deegan et al. 1997, 2000). This effect is very robust,
occurring even in situations where the solute is initially uniformly dispersed throughout
the droplet, and where the evaporative flux is not preferentially localized at the contact line
(Boulogne, Ingremeau & Stone 2016).

Motivated by typical physical parameters, models of such systems generally assume that
the Péclet number is sufficiently large that diffusive effects can be neglected, and so the
dynamics of the solute inside the droplet are governed purely by advection (Deegan et al.
1997; Wray et al. 2021). This unphysical assumption leads to a variety of undesirable side
effects, in particular, that the mass is swept into a ring of infinitesimal width at the contact
line (Deegan et al. 2000).

A variety of attempts have been made to resolve this problem phenomenologically,
including via the incorporation of jamming effects (Popov 2005; Kaplan & Mahadevan
2015). However, jamming effects only become significant close to the particle packing
fraction, and the assumptions underpinning the model fail long before this point. In
particular, the assumption that diffusive effects can be ignored breaks down in a diffusive
boundary layer close to the contact line (Moore, Vella & Oliver 2021), as might be
anticipated from the singular accumulation in the naïve, advection-only model. This
boundary layer and its growth and dynamics have been analysed and understood via
matched asymptotics and careful numerics in situations where droplets are small and, thus,
exist at quasi-static equilibrium due to surface tension (Moore et al. 2021; Moore, Vella
& Oliver 2022), but little is known for larger droplets where the effects of gravity are
important.

Investigations of larger droplets have a long history, dating back to numerical integration
of the appropriate Laplace equations by Padday (1971) and Boucher & Evans (1975),
with a variety of studies via asymptotics of their shape (Rienstra 1990; O’Brien 1991;
Allen 2003) and stability (Pozrikidis 2012) in the intervening time. The effect of gravity
on droplets, and especially their internal flows, has experienced a recent resurgence of
interest, primarily due to applications to droplets on an incline or in binary droplets of more
complex fluids, such as printer inks or commercial alcohols. For droplets on an incline,
gravity may break the symmetry of an evaporating sessile droplet by, for example, altering
the evaporation rate (Timm et al. 2019; Tredenick et al. 2021) or pinning time (Charitatos,
Pham & Kumar 2021) compared with a sessile droplet on a flat substrate. These effects
may also play a role in the coffee-ring phenomenon, leading to non-uniform ring-like
stains (see, for example, Du & Deegan 2015; Issakhani et al. 2023), more complex patterns
after droplet depinning (Charitatos et al. 2021), or in extreme cases where the droplet
is pendant, the formation of a cone-like ‘coffee eye’ (Mondal et al. 2018). Meanwhile,
the recent upsurge in interest in binary droplets has been driven by, for example, the
experiments of Edwards et al. (2018), which showed that the dynamics of binary droplets
can be sensitively dependent on both the component liquids (as well as droplet inclination),
and hence, gravity. This has since received extensive investigation both experimentally and
numerically (Pradhan & Panigrahi 2017; Li et al. 2019).

For sessile droplets, however, it is notable that, despite the original experiments of
Deegan et al. (1997) involving large droplets, there have been relatively few investigations
of particle transport inside them, with those available being principally experimental
(Sandu & Fleaca 2011; Hampton et al. 2012; Devlin, Loehr & Harris 2016). This is
perhaps because of the robustness of the coffee-stain effect: asymptotic and numerical
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investigations (Barash et al. 2009; Kolegov & Lobanov 2014) confirm the experimental
results that the ring stain is preserved unless additional physics is incorporated, such as
continuous particle deposition (Devlin et al. 2016). However, this neglects much of the
transient dynamics of evaporation-driven solute transport, including the dynamics of the
residue over the course of the lifetime of the droplets: a critical omission in continuous
particle deposition in particular.

In this analysis, we seek to rectify this deficiency and explore the role that gravity
may play in solute transport in an evaporating sessile droplet. In particular, we seek
to determine how gravitational influences change from moderate Bond number, where
we anticipate an asymptotic structure akin to that of surface-tension-dominated droplets
discussed extensively in Moore et al. (2021, 2022), to large Bond numbers, where the
localized interplay of the effects of surface tension and solutal diffusion at the pinned
contact line lead to a change in the size of the nascent coffee ring. In the former case, we
show that gravity acts to weaken the coffee-ring effect, leading to shallower, wider ring
profiles, potentially lengthening the validity of the dilute regime before solute jamming
takes place (Moore et al. 2021, 2022), while simultaneously promoting the importance
of effects such as free surface capture (Kang et al. 2016), which may otherwise play
a secondary role for thin droplets. For large Bond numbers, we demonstrate that the
properties of the ring are governed by a completely different set of scalings, and we
investigate the transition between the two regimes in detail. Moreover, in both regimes,
we demonstrate that the solute transport dynamics is actually quite subtle and complex
compared with the zero-gravity problem, including the possibility of a secondary peak in
the solute mass, and so certainly merits a detailed investigation.

The structure of this paper is therefore as follows. In § 2, we describe the equations
governing the fluid flow and solute transport for the problem of a thin droplet evaporating
in a diffusion-dominated regime, in particular highlighting the effect of gravity in the
model. We non-dimensionalize the model and introduce the three key dimensionless
numbers in the model: the capillary, Bond and Péclet numbers. In § 3, we solve for the
liquid flow in the limit in which the solute is dilute, so that the flow and solute transport
problems decouple. We discuss pertinent features of the resulting fluid velocity and droplet
shape, and, in particular, how these features vary with the Bond number. The bulk of
the analysis in this paper concerns the influence of gravity on solute transport within the
droplet, which we analyse in the physically relevant large-Péclet number limit in § 4. We
find that there are two distinct regimes depending on the relative sizes of the Bond and
Péclet numbers. In the first, where the Bond number is moderate, we extend the asymptotic
analysis of Moore et al. (2021) to include the effect of gravity in § 4.1. However, when
the Bond number is also large, a more complex asymptotic analysis is necessary, which
is presented in detail in § 4.2. In each asymptotic regime, we derive predictions for the
distribution of the solute mass within the droplet. We compare these predictions to results
from numerical simulations in § 5. In particular, we explore the effect of gravity on the
classical coffee ring in each of the above regimes, while also highlighting the emergent
phenomenon of a secondary peak in the solute distribution for a band of Bond numbers.
Finally, in § 6, we summarize our findings and discuss implications to various applications,
as well as avenues for future study.

2. Problem configuration

We consider the configuration depicted in figure 1, in which an axisymmetric droplet
of initial volume V∗

0 evaporates from a solid substrate. Here and hereafter, an asterisk
denotes a dimensional variable. We let (r∗, θ, z∗) be cylindrical polar coordinates centred
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E∗(r∗) z∗

2R∗

z∗ = h∗(r∗, t∗)

r∗

Figure 1. A side-on view of a solute-laden droplet evaporating under an evaporative flux E∗(r∗) from a solid
substrate that lies in the plane z∗ = 0. The droplet is axisymmetric and the contact line is assumed to be pinned
on the substrate at r∗ = R∗. The droplet free surface is denoted by h∗(r∗, t∗). The solute is assumed to be inert
and sufficiently dilute that the flow of liquid in the droplet is decoupled from the solute transport.

along the line of symmetry of the droplet with the substrate lying in the plane z∗ = 0:
by axisymmetry, we shall assume that all the variables are independent of θ . The droplet
contact line is thus circular and we assume that it is pinned throughout the drying process,
which is observed in practice for a wide range of liquids for the majority of the drying
time (Deegan et al. 1997; Hu & Larson 2002; Kajiya, Kaneko & Doi 2008; Howard et al.
2023). We let r∗ = R∗ be the radius of the contact line. Throughout this analysis, we shall
assume that the droplet is thin, which reduces to the assumption that

0 < δ = V∗
0

R∗3 � 1. (2.1)

As we discuss presently, the thin-droplet assumption allows us to greatly simplify the
flow and solute transport models; the assumption has been extensively validated and has
shown to be reasonable even for droplets that should realistically fall outside of this regime
(Larsson & Kumar 2022).

The droplet consists of a liquid of constant density and viscosity denoted by ρ∗ and
μ∗, respectively. The droplet free surface is denoted by z∗ = h(r∗, t∗) and the air–water
surface tension coefficient, σ ∗, is assumed to be constant.

The liquid evaporates into the surrounding gas and we assume that the evaporative
process is quasi-steady, which is a reasonable assumption for a wide range of
liquid–substrate configurations (Hu & Larson 2002). We denote the evaporative flux by
E∗(r∗). The exact form of the flux will depend upon the dominant evaporative processes,
which can change significantly with the properties of the droplet, ambient gas and
substrate. Although it is not the goal of the present study to determine the correct form
for E∗(r∗), the differences do merit further discussion, which we pursue shortly in § 2.2.

The droplet contains an inert solute of initially uniform concentration φ∗
0 . The solute is

assumed to be sufficiently dilute that the flow and transport problems completely decouple.
We shall discuss the validity of the dilute assumption further in § 6.

2.1. Flow model
The droplet is assumed to be sufficiently thin and the evaporation-induced flow sufficiently
slow that the flow is governed by the lubrication equations

∂h∗

∂t∗
+ 1

r∗
∂

∂r∗ (r
∗h∗u∗) = −E∗

ρ∗ , (2.2)
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u∗ = − h∗2

3μ∗
∂p∗

∂r∗ , (2.3)

p∗ = p∗
atm − ρ∗g∗(z∗ − h∗)− σ ∗ 1

r∗
∂

∂r∗

(
r∗ ∂h∗

∂r∗

)
, (2.4)

for 0 < r∗ < R∗, t∗ > 0, where u∗(r∗, t∗) is the depth-averaged radial fluid velocity,
p∗(r∗, z∗, t∗) is the liquid pressure and p∗

atm denotes atmospheric pressure (Hocking 1983;
Deegan et al. 2000; Oliver et al. 2015).

We note here that we assume throughout the analysis that the lubrication equations
(2.2)–(2.4) remain applicable in the regions of interest, most notably in the region close to
the contact line where solutal diffusion becomes important. This will introduce restrictions
on the size of δ in cases where the effect of gravity dominates over surface tension, as we
discuss in detail in § 3.

Equations (2.2)–(2.4) must be solved subject to the symmetry conditions

r∗h∗u∗ = ∂h∗

∂r∗ = 0 at r∗ = 0, (2.5a,b)

and the fact that the free surface touches down at, and we require no-flux of liquid through,
the pinned contact line, that is,

h∗ = r∗h∗u∗ = 0 at r∗ = R∗. (2.6a,b)

We close the problem by specifying the initial droplet profile, that is,

h∗(r∗, 0) = h∗
0(r

∗) for 0 < r∗ < R∗. (2.7)

It is worth noting at this stage that, while this initial condition is needed to fully
specify the mathematical problem, in our analysis we do not explicitly use (2.7). In what
follows, it is assumed that the rate of evaporation is sufficiently slow that the droplet
quickly relaxes under capillary action to the quasi-steady profile found in § 3 (see, for
example, Lacey 1982; De Gennes 1985; Oliver et al. 2015). Thus, we shall, for simplicity,
assume that h∗

0(r
∗) is of the same functional form of the free surface we find in § 3.

While this assumption is reasonable for a wide range of applications, for extremely rapid
evaporation (for example, laser-induced evaporation, Volkov & Strizhak 2019), a more
careful consideration of the evolution after deposition would be needed.

2.2. Evaporation model
As alluded to above, there are a number of different viable evaporation models depending
on the physical and chemical characteristics of the problem (see, for example, Hu & Larson
2002; Shahidzadeh-Bonn et al. 2006; Kelly-Zion et al. 2011; Murisic & Kondic 2011, and
references therein). We shall outline a few of the more common cases.

A common evaporation model for small droplets (typically up to around a millimetre)
with a pinned contact line is a diffusion-limited model, in which evaporation is limited by
how quickly vapour is transported away from the droplet surface by diffusion and exhibits
a singular flux at the contact line. Such a model has been shown to accurately predict
both the total evaporation rate (Hu & Larson 2002) and the pointwise evaporative flux
(see, for example, Sáenz et al. 2017; Wray & Moore 2023) for a range of different droplet
geometries.

When the ambient gas consists solely of vapour or when the diffusion of vapour is
rapid, evaporation may instead be limited by kinetic effects at the liquid–vapour interface
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(see, for example, Murisic & Kondic 2011; Jambon-Puillet et al. 2018). These effects are
governed by the Hertz–Knudsen relation and may be shown for thin droplets to give an
approximately constant evaporative flux. A constant flux may also be shown to be relevant
in situations where a droplet evaporates above a hydrogel bath (Boulogne et al. 2016).

For larger droplets evaporating into a mixture of the liquid vapour and another gas,
natural convection may be shown to play an important role in the evaporation rate for both
pinned (Dollet & Boulogne 2017) and non-pinned (see, for example, Shahidzadeh-Bonn
et al. 2006; Kelly-Zion et al. 2011) droplets, although its role is greatly diminished when
the density difference between the vapour and ambient gas is small (Radhakrishnan,
Anand & Bakshi 2019). The relative importance of natural convection to vapour diffusion
is measured by the Grashof number,

Gr =
∣∣∣∣(ρ∗

s − ρ∗∞)
ρ∗∞

∣∣∣∣ g∗R∗3

ν∗
air

, (2.8)

where ρ∗
s is the vapour saturation density at the droplet free surface, ρ∗∞ is the ambient

vapour density and ν∗
air is the kinematic viscosity of air (Kelly-Zion et al. 2011; Dollet &

Boulogne 2017). When Gr � 1, diffusion dominates the evaporation, while for moderate
and large Gr, convection effects are non-negligible and often dominant.

For the particular example of a large (R∗ ≥ 4 mm) circular disk of water evaporating
into ambient air, Dollet & Boulogne (2017) show that the total evaporative flux F∗ =
2π
∫ R∗

0 r∗E∗(r∗) dr∗ may be approximated by the form

F∗ ≈ 2πD∗R∗(c∗
s − c∗

∞)
[
a1Grβ + a2

]
, (2.9)

where D∗ is the vapour diffusion coefficient, c∗
s is the saturation concentration at the

droplet free surface and c∗∞ is the ambient vapour concentration. The first term in the
brackets corresponds to the importance of convection, while the second term is akin to
the importance of diffusion. The exponent β is estimated analytically to be 1/5, which is
shown to be very close to experimental data, where β ≈ 0.18 with a1 ≈ 0.31 and a2 ≈
0.48. They show that for Gr ≈ 20 – corresponding to a droplet radius of R∗ ≈ 5 mm –
the contribution of convection is around 50 % larger than diffusion. The difference grows
wider as R∗ is increased further. Kelly-Zion et al. (2011) find a similar scaling law,
although with slightly different coefficients, for a range of different evaporating liquids.

Once convection is significant, it becomes prohibitively difficult to find explicit
expressions of the evaporative flux valid for all r∗. One can make scaling arguments based
on boundary layer theory for large Grashof numbers, but these are unable to capture the
flux near the droplet edge or at the centre of the droplet where a plume of vapour rises
(Dollet & Boulogne 2017). Since these regions respectively play a crucial role in both the
early time evolution of the coffee-ring (Moore et al. 2021, 2022) and the late time ‘fadeout’
profile of the ring (Witten 2009), this severely hinders any prospect of analytic progress
in studying solute transport in such regimes, and such approaches would necessarily be
numerical.

It is not the goal of the present study to determine the correct model for evaporation
for a given configuration and nor do we seek to cover the manifold possible models
herein. Instead, our aim is to concentrate on the interplay between gravity, surface
tension, solutal advection and solutal diffusion in solute transport, so here we shall choose
an illustrative model for evaporation to use throughout the analysis, namely diffusive
evaporation. Our choice is partly due to its predominance for smaller droplets (Hu &
Larson 2002) and for droplets evaporating in an ambient gas whose density is close to
the vapour density (Radhakrishnan et al. 2019), but also due to access to an explicit form
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of the evaporative flux, as discussed shortly. While we recognize that there are regimes
where this evaporation model will be lacking, the principles of the asymptotic analysis
we pursue will be similar for a given flux – provided that we are in a regime where a
coffee ring forms – but the sizes of the different regions may change, as is seen in the
surface-tension-dominated regime discussed in Moore et al. (2021, 2022) wherein both
a diffusive and a kinetic evaporative flux are considered in detail. We shall return to this
discussion further in § 6.

2.2.1. Diffusive evaporation
In a diffusive evaporation model, the vapour concentration c∗(r∗, z∗) is determined by
solving

∇2c∗ = 0 in the gas phase, (2.10)

subject to

c∗ = c∗
s on the droplet free surface,

∂c∗

∂z∗ = 0 on the solid substrate, (2.11)

and such that
c∗ → c∗

∞ as r∗2 + z∗2 → ∞. (2.12)

In the limit in which the droplet is thin, this boundary value problem may be linearized
onto z∗ = 0 and is thus equivalent to the classical problem for finding the electrostatic
potential outside of a charged disk of radius R∗. The evaporative flux E∗(r∗)may be shown
to be given by

E∗(r∗) = −D∗M∗



∂c∗

∂z∗

∣∣∣∣
z∗=0

= 2D∗M∗

 (c

∗
s − c∗∞)

π
√

R∗2 − r∗2
, (2.13)

where M∗

 is the molar mass of the liquid vapour (see, for example, Sneddon 1966).

Assuming the contact line is pinned, the volume of the droplet V∗(t∗) is given by

V∗(t∗) = 2π

∫ R∗

0
r∗h∗(r∗, t∗) dr∗, V∗(0) = V∗

0 . (2.14)

The total mass loss due to evaporation F∗ is given by

F∗ = 2π

∫ R∗

0
r∗E∗(r∗) dr∗ = 4D∗M∗


 (c
∗
s − c∗

∞)R
∗. (2.15)

Thus, conservation of mass in the liquid phase is

dV∗

dt∗
= −F∗

ρ∗ = −4D∗M∗

 (c

∗
s − c∗∞)R∗

ρ∗ (2.16)

so that

V∗(t∗) = V∗
0 − 4D∗M∗


 (c
∗
s − c∗∞)R∗t∗

ρ∗ . (2.17)

In particular, the dryout time, that is the time when the drop has fully evaporated, is

t∗f = ρ∗V∗
0

4D∗M∗

 (c

∗
s − c∗∞)R∗ . (2.18)
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2.3. Solute model
The droplet is assumed to be sufficiently thin that the transport of the solute is governed
by the depth-averaged advection–diffusion equation

∂

∂t∗
(
h∗φ∗)+ 1

r∗
∂

∂r∗

[
r∗
(

h∗u∗φ∗ − D∗
φh∗ ∂φ∗

∂r∗

)]
= 0 (2.19)

for 0 < r∗ < R∗, 0 < t∗ < t∗f , where φ∗(r∗, t∗) is the depth-averaged solute concentration
and D∗

φ is the solutal diffusion coefficient (Wray et al. 2014; Pham & Kumar 2017; Moore
et al. 2021).

While there is an acknowledged effect of the solute particles eventually being trapped at
and transported along the free surface (Maki & Kumar 2011; Kang et al. 2016; D’Ambrosio
2022), this effect is less pronounced for thin droplets, where the capture tends to occur
closer to the contact line due to the stronger outward radial flow, and for droplets where
Marangoni effects may be neglected. Thus, we shall neglect its effects here, as our study
concerns the interplay between gravity, surface tension and solutal advection/diffusion.
A more focused analysis on the final deposit profile would certainly need to account for
such effects.

Equation (2.19) must be solved subject to the symmetry condition

∂φ∗

∂r∗ = 0 at r∗ = 0, (2.20)

and the condition that there can be no flux of solute particles through the pinned contact
line,

r∗
(

h∗u∗φ∗ − D∗
φh∗ ∂φ∗

∂r∗

)
= 0 at r∗ = R∗. (2.21)

Finally, we impose an initially uniform distribution of solute throughout the droplet, so
that

φ∗(r∗, 0) = φ∗
0 for 0 < r∗ < R∗. (2.22)

2.4. Non-dimensionalization
We assume that the fluid velocity is driven by evaporation and, for now, we retain both
gravity and surface tension, so that the pertinent scalings are

(r∗, z∗) = R∗(r, δz), u∗ = D∗M∗

 (c

∗
s − c∗∞)

δρ∗R∗ u, t∗ = t∗f t, φ∗ = φ∗
0φ,

(h∗, h∗
0) = δR∗(h, h0), p∗ = p∗

atm + μ∗D∗M∗

 (c

∗
s − c∗∞)

δ3ρ∗R∗2 p, V∗ = V∗
0 V.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.23)

Note, in particular, that the choice of time scale fixes the dimensionless dryout time to be
t = 1.
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Upon substituting the scalings (2.23) into (2.2)–(2.4), we see that

∂h
∂t

+ 1
4r
∂

∂r
(rhu) = − 1

2π
√

1 − r2
, (2.24)

u = h2

3Ca
∂

∂r

[
−Boh + 1

r
∂

∂r

(
r
∂h
∂r

)]
, (2.25)

for 0 < r, t < 1, where the Capillary and Bond numbers are defined by

Ca = μ∗D∗M∗

 (c

∗
s − c∗∞)

δ4ρ∗R∗σ ∗ and Bo = ρ∗g∗R∗2

σ ∗ , (2.26)

respectively.
Under scalings (2.23), the symmetry conditions (2.5) become

rhu = ∂h
∂r

= 0 at r = 0, (2.27a,b)

while the contact line conditions (2.6) are

h = rhu = 0 at r = 1. (2.28a,b)

The initial condition (2.7) becomes

h(r, 0) = h0(r) for 0 < r < 1. (2.29)

Finally, the dimensionless form of the conservation of liquid volume conditions (2.14) and
(2.17) is

1 − t = 2π

∫ 1

0
rh(r, t) dr. (2.30)

After scaling, the solute transport equation (2.19) becomes

∂

∂t
(hφ)+ 1

4r
∂

∂r

[
r
(

huφ − h
Pe
∂φ

∂r

)]
= 0 (2.31)

for 0 < r, t < 1, where the solutal Péclet number is

Pe = D∗M∗

 (c

∗
s − c∗∞)

δρ∗D∗
φ

. (2.32)

The symmetry (2.20) and boundary (2.21) conditions become

∂φ

∂r
= 0 at r = 0 (2.33)

and

r
(

huφ − h
Pe
∂φ

∂r

)
= 0 at r = 1, (2.34)

respectively. Finally, the initial condition (2.22) becomes

φ(r, 0) = 1 for 0 < r < 1. (2.35)
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2.5. Integrated mass variable formulation
The assumption that the solute is dilute decouples the flow and solute transport problems,
so that we may solve for h and u from (2.24)–(2.30) independently of the solute
concentration, φ. We shall discuss the resulting flow solution shortly in § 3.

First, however, we present a reformulation of the solute transport problem (2.31)–(2.35),
which will greatly aid us in our asymptotic and numerical investigations. In this, we follow
Moore et al. (2021, 2022) by introducing the integrated mass variable

M(r, t) =
∫ r

0
sh(s, t)φ(s, t) ds. (2.36)

By integrating the advection–diffusion equation (2.31) from 0 to r and applying the
symmetry conditions (2.27a), (2.33), we find that

∂M
∂t

+
[

u
4

+ 1
4Pe

(
1
r

+ 1
h
∂h
∂r

)]
∂M
∂r

− 1
4Pe

∂2M
∂r2 = 0 for 0 < r, t < 1. (2.37)

This must be solved subject to the boundary conditions

M(0, t) = 0, M(1, t) = 1
2π

for t > 0, (2.38a,b)

where the latter condition dictates that mass is conserved along a radial ray, which replaces
the no-flux condition (2.34). The initial condition (2.35) becomes

M(r, 0) =
∫ r

0
sh(s, 0) ds for 0 < r < 1. (2.39)

Finally, we note that, once we have determined the integrated mass variable from
(2.37)–(2.39), the solute mass m = φh can then be retrieved from

m = 1
r
∂M
∂r

. (2.40)

2.6. Summary
In summary, for a thin droplet with a pinned contact line evaporating into the
surrounding atmosphere in a diffusion-limited regime with evaporative flux (2.13), the
droplet height h(r, t) and depth-averaged radial velocity u(r, t) satisfy the lubrication
equations (2.24)–(2.25) subject to the symmetry conditions (2.27), touchdown and no-flux
conditions (2.28), the initial condition (2.29) and conservation of liquid volume constraint
(2.30). As the solute is assumed to be dilute, these may be determined independently of
the solute transport.

The inert solute has a depth-averaged concentration φ(r, t) that satisfies the
advection–diffusion equation (2.31), subject to the symmetry (2.33) and the no-flux
boundary condition (2.34), and is initially uniformly distributed within the liquid (2.35).

The solute transport problem may be reformulated in terms of the integrated mass
variable M(r, t) defined by (2.36), which satisfies the advection–diffusion equation (2.37)
with the symmetry and no-flux boundary conditions replaced by (2.38), and the initial
condition (2.39). We will favour this formulation in the numerical methodology.
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Figure 2. (a) The quasi-steady droplet free surface, (b) the fluid velocity and (c) the divergence of the velocity
displayed for Bo = 0.1 (black), 1 (dark purple), 10 (blue), 20 (cyan), 50 (green) and 100 (yellow). Notably, we
see the transition from the spherical cap to the ‘pancake’ droplet profile as the effect of gravity increases. The
divergence of the fluid velocity also shows a transition from a monotonic to a non-monotonic profile as the
Bond number increases.

3. Flow solution in the small-Ca limit

We now suppose that surface tension dominates viscosity in the flow problem, that is,
Ca � 1. Importantly, this means that the problems for the free surface profile and the flow
velocity decouple, an assumption that is valid for a wide range of different liquids and
evaporation models in practice (Moore et al. 2021, 2022). Unlike these previous studies,
however, we shall retain gravity in (2.25) to investigate what role it plays in the formation
of the nascent coffee ring.

To this end, we neglect the left-hand side of (2.25), so that upon integrating and applying
the symmetry condition (2.27b), the contact line condition (2.28a) and the conservation
of liquid volume condition (2.30), we deduce that

h(r, t) = (1 − t)
π

I0(
√

Bo)

I2(
√

Bo)

(
1 − I0(

√
Bo r)

I0(
√

Bo)

)
, (3.1)

where Iν(z) is the modified Bessel function of the first kind of order ν. We note that
this result has been reported previously for non-evaporating sessile drops by, for example,
Allen (2003).

With the free surface found, the velocity is determined immediately from (2.24) and the
no-flux condition (2.28b) to be

u(r, t) = 1
rh

[
2
π

√
1 − r2 + 4I0(

√
Bo)

πI2(
√

Bo)

(
r2 − 1

2

+ 1√
BoI0(

√
Bo)

(I1(
√

Bo)− rI1(
√

Bo r))
)]
. (3.2)

Notably, as in the surface-tension-dominated regime where Bo → 0, time is separable in
both the free surface and fluid velocity profiles, and so merely acts to scale the functional
form. In particular, this means that the streamlines and pathlines coincide, which we shall
exploit when considering the regime in which solutal diffusion is negligible in § 5.3.

We display the scaled forms of the free surface and fluid velocity for various values of
the Bond number in figure 2(a,b). For the droplet free surface profile, we see the expected
transition from the spherical cap as Bo → 0 (Deegan et al. 2000) to the flat ‘pancake’
(or ‘puddle’) droplet as Bo → ∞ (Rienstra 1990). For each Bond number, the velocity is
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singular at the contact line – as expected for a diffusive evaporative flux (as discussed in
§ 2.2). We see that as the effect of gravity increases, the sharp increase in u occurs closer
to the contact line, corresponding to the progressively smaller region in which surface
tension effects are important.

Finally, since this will be important in our discussions of the secondary peaks seen in
the solute mass profile in § 5.3, we show the divergence of the fluid velocity in figure 2(c).
For small Bond numbers, the divergence is monotonically increasing with r and, as with
the velocity, singular at the contact line. However, for moderate and large Bond numbers
� 15, we see a clear change of behaviour, with a region of non-monotonic behaviour in
the droplet interior. This behaviour is accentuated as Bo → ∞.

For future reference, the asymptotic behaviours of the free surface and fluid velocity as
r → 1− for Bo = O(1) are given by

h = θc(t; Bo)(1 − r)+ O((1 − r)2), (3.3)

u = 2χ
θc(t; Bo)

(1 − r)−1/2 + O((1 − r)1/2), (3.4)

where

θc(t; Bo) = − lim
r→1−

∂h
∂r

= (1 − t)ψ(Bo), ψ(Bo) =
√

BoI1(
√

Bo)

πI2(
√

Bo)
(3.5)

is the leading-order contact angle in the thin-droplet limit – again, as reported by Allen
(2003) – and

χ =
√

2
π

(3.6)

is the dimensionless coefficient of the inverse square root singularity at the contact
line in the evaporative flux (2.13). Note that we have chosen this notation to highlight
the similarities with the previous analysis of Moore et al. (2022), who consider a
surface-tension-dominated droplet of arbitrary contact set.

On the other hand, if we take 1 − r = O(1) and consider the large-Bo limit of (3.1),
(3.2), we find that

h = h0(t)+ Bo−1/2h1(t)+ O(Bo−1), (3.7)

u = u0(r, t)+ Bo−1/2u1(r, t)+ O(Bo−1), (3.8)

as Bo → ∞, where

h0(t) = (1 − t)
π

, h1(t) = 2(1 − t)
π

, (3.9a,b)

and

u0(r, t) = 2
√

1 − r2

r(1 − t)
(1 −

√
1 − r2), u1(r, t) = 4

r(1 − t)
(1 −

√
1 − r2). (3.10a,b)

Notably, in the droplet bulk, the droplet free surface h is flat to all orders: the
aforementioned characteristic of ‘pancake’ droplets associated with large Bond numbers
(Rienstra 1990). These expansions break down close to the contact line where surface
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tension effects become important. We find that for 1 − r = Bo−1/2r̄, we have

h = h̄0(r̄, t)+ Bo−1/2h̄1(r̄, t)+ O(Bo−1), (3.11)

u = Bo−1/4
[
ū0(r̄, t)+ Bo−1/4ū1(r̄, t)+ Bo−1/2ū2(r̄, t)+ O(Bo−3/4)

]
(3.12)

as Bo → ∞, where

h̄0(r̄, t) = (1 − t)
π

(1 − e−r̄), (3.13)

h̄1(r̄, t) = (1 − t)
2π

(4(1 − e−r̄)− r̄e−r̄), (3.14)

and

ū0(r̄, t) = 2
√

2r̄
(1 − t)(1 − e−r̄)

, (3.15)

ū1(r̄, t) = 4
(1 − t)

(
1 − r̄

(1 − e−r̄)

)
, (3.16)

ū2(r̄, t) =
√

r̄√
2(1 − t)(1 − e−r̄)

(
3r̄ − 8 + 2r̄e−r̄

(1 − e−r̄)

)
. (3.17)

We note here that as r̄ → 0, we retrieve the expected inverse square root singularity in the
fluid velocity.

It is worth stressing here that the above expansions when the Bond number is large
assume that we remain in a regime where the lubrication approximation (2.24)–(2.25) is
still valid. Notably, this requires the restriction that variations in the free surface are small
when 1 − r = Bo−1/2r̄, which holds provided

Bo � 1
δ2 . (3.18)

Throughout our analysis, we shall assume that δ is sufficiently small that (3.18) holds.
In problems where Bo = O(δ−2), we would need to reformulate the analysis to include
vertical variation in the Stokes equations close to the contact line, which is likely to
significantly change the resulting behaviours in the large-Bo asymptotic regime. This is
beyond the scope of the present study, so we do not pursue this further here.

4. Solute transport in the large-Pe limit

Having fully determined the leading-order flow, we now seek to understand the transport
of solute within the drop and to make predictions about the early stages of coffee-ring
formation. We follow the analyses of Moore et al. (2021, 2022) by considering the
physically relevant regime in which Pe 
 1. In this regime, in the bulk of the droplet,
advection dominates solutal diffusion, with the latter only being relevant close to the
contact line.

Previous studies of this problem have concentrated on surface-tension-dominated drops
(i.e. Bo → 0) and have shown how the competition between solutal advection and
diffusion near the contact line leads to the early stages of coffee-ring formation in drying
droplets. In this analysis, we wish to investigate how this behaviour changes as we allow
Bo to vary, which we pursue using a hybrid asymptotic-numerical approach.
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There are two main asymptotic regimes depending on the relative sizes of Bo and Pe:

(i) moderate Bond number, Bo = O(1) as Pe → ∞, where the asymptotic structure of
the solute transport depends solely on the large Péclet number;

(ii) large Bond number, Bo = O(Pe4/3) as Pe → ∞, where the asymptotic structure of
the solute transport now depends on the relative sizes of Bo and Pe.

Note that there are further possibilities when the Bond number is large, namely, 1 � Bo �
Pe4/3 or Bo 
 Pe4/3 as Pe → ∞. These may be approached by taking the appropriate limit
in the second regime, as we shall see presently.

In the first regime where Bo = O(1) as Pe → ∞, the asymptotic structure of the flow is a
natural extension of the surface-tension-dominated case considered in Moore et al. (2021).
In the droplet bulk where 1 − r = O(1), solute advection dominates diffusion. However,
close to the contact line, a balance between solutal advection and diffusion occurs when

rhuφ ∼ rh
Pe
∂φ

∂r
=⇒ 1 − r = O(Pe−2). (4.1)

We discuss the asymptotic solution for this regime in § 4.1.
In the second regime, the relative sizes of the boundary layer where surface tension

enters the flow profile and the solutal diffusion boundary layer are comparable. As detailed
in § 3, for a large Bond number the free surface is flat in the bulk of the droplet, with the
effect of surface tension restricted to a boundary layer at the contact line of size 1 − r =
O(Bo−1/2), where h = O(1) and u = O(Bo−1/4). Turning to the solute transport equation
(2.31), since h is order unity and u is square root bounded in this region, advection and
diffusion are comparable when

1 − r = O(Pe−2/3). (4.2)

Hence, the size of the two boundary layers are comparable when Bo = O(Pe4/3) as
Pe → ∞. We introduce the parameter

α = Bo−1/2Pe2/3, (4.3)

and note that α = O(1) as Pe → ∞ in this regime. The asymptotic analysis in this regime
is somewhat more involved and is presented in § 4.2.

4.1. Asymptotic solution when Bo = O(1) as Pe → ∞
In this section, we present the asymptotic solution of the solute transport problem when
Bo = O(1) as Pe → ∞. The analysis herein is a natural extension of Moore et al.
(2021). For the purposes of this section, we shall use the concentration form of the
advection–diffusion equation (2.31)–(2.35) and, in particular, find the solution in terms
of the solute mass m = φh, where h is given by (3.1).

4.1.1. Outer region
In the droplet bulk away from the contact line, we seek a solution of the form m = m0 +
O(Pe−1) as Pe → ∞. Substituting into (2.31), (2.35), we find that

∂m0

∂t
+ 1

4r
∂

∂r
(rm0u) = 0 for 0 < r, t < 1, (4.4)
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where u is given by (3.2), subject to m0(r, 0) = h(r, 0). This is the usual advection
equation, with solution given by

m0(r, t) = h(R, 0)
J(R, t)

, (4.5)

where R is the initial location of the point that is at r at time t and J(R, t) is the Jacobian
of the Eulerian–Lagrangian transformation, which satisfies Euler’s identity,

D
Dt
(log J) = 1

4r
∂

∂r
(ru), J(R, 0) = 1, (4.6)

where D/Dt is the convective derivative (see, for example, Moore et al. 2022).
A straightforward asymptotic analysis of (4.4) reveals that

u
∂m0

∂r
∼ m0

r
∂

∂r
(ru) (4.7)

as r → 1−, so that m0 = O(
√

1 − r) as r → 1−, and hence, the concentration φ0 is
square root singular. This sharp local concentration increase necessitates the inclusion
of a diffusive boundary layer.

4.1.2. Inner region
Close to the contact line, we set

r = 1 − Pe−2r̂, h = Pe−2ĥ, u = Peû, m = Pe2m̂, (4.8)

where the last scaling on the mass comes from global conservation of solute considerations
(Moore et al. 2021). We seek an asymptotic solution of the form m̂ = m̂0 + O(Pe−1) as
Pe → ∞ and find to leading order

∂

∂ r̂

[(
2χ

θc(t; Bo)
√

r̂
− 1

r̂

)
m̂0 + ∂m̂0

∂ r̂

]
= 0 in r̂ > 0, 0 < t < 1, (4.9)

such that (
2χ

θc(t; Bo)
√

r̂
− 1

r̂

)
m̂0 + ∂m̂0

∂ r̂
= 0 on r̂ = 0. (4.10)

It is straightforward to show that the solution to (4.9)–(4.10) is given by

m̂0(r̂, t) = C(t; Bo)r̂ exp
(

− 4χ
θc(t; Bo)

√
r̂
)
, (4.11)

where, by pursuing a similar matching process to Moore et al. (2022), we find that the
coefficient C(t; Bo) is given by

C(t; Bo) = 64χ4

3θc(t; Bo)4
N (t; Bo), (4.12)

where N (t; Bo) is the leading-order accumulated mass advected into the contact line
region up to time t, viz.

N (t; Bo) = 1
4

∫ t

0
m0(1−, τ )u(1−, τ ) dτ. (4.13)

It is worth noting that this solution follows directly from the Bo = 0 regime discussed in
Moore et al. (2021, 2022), with the alterations due to gravity entering into the accumulated
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Figure 3. (a) The accumulated mass flux, N (t; Bo), as defined by (4.13) and (b) the leading-order local contact
angle θc(t; Bo) as defined by (3.5), for Bo = 10−2 (purple), Bo = 10−1 (purple) (dark blue), Bo = 1 (light blue),
Bo = 10 (green) and Bo = 102 (yellow).

mass flux into the contact line and the leading-order contact angle. In particular, we note
that in the limit Bo → 0, since ψ = 4/π + O(Bo), this yields the expected form found
in the surface-tension-dominated problem in Moore et al. (2022) (see § 3.7.2 therein). We
display the accumulated mass flux and the local contact angle for a wide range of Bond
numbers in figure 3. We see that as the influence of gravity increases, the accumulated
mass flux into the contact line at a fixed percentage of the evaporation time is reduced
from the surface-tension-dominated regime. On the other hand, the local contact angle
increases, commensurate with the droplet profile transitioning from a spherical cap to a
‘pancake’ droplet. We note that this combined behaviour leads to C(t; Bo) decreasing as
Bo increases. We discuss how these findings impact coffee-ring formation in more detail
in § 5.2.1.

4.1.3. Composite solution
We may use van Dyke’s rule (Van Dyke 1964) to formulate a leading-order composite
solution for the solute mass that is valid throughout the drop by combining the
leading-order-outer solution (4.5) and the leading-order-inner solution (4.11), finding

mcomp(r, t) = m0(r, t)+ Pe2m̂0

(
Pe2(1 − r), t

)
. (4.14)

4.2. Asymptotic solution when Bo = O(Pe4/3) as Pe → ∞
In this section, we present the asymptotic solution of the solute transport problem in the
limit in which Bo = O(Pe4/3) as Pe → ∞ so that α defined by (4.3) is order unity. For
convenience, we choose to use Pe−2/3 as our small parameter in the asymptotic expansions.
Moreover, it transpires that it is easier to analyse the integrated mass variable formulation
of the problem (2.37)–(2.40).

4.2.1. Outer region
In the droplet bulk, we recall from (3.9) that the droplet free surface h is flat to all orders
and that the velocity is given by (3.10). Upon substituting these expressions into (2.37) and
(2.39), and then expanding M = M0 + Pe−2/3M1 + O(Pe−4/3) as Pe → ∞, we find to
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leading order

∂M0

∂t
+ u0

4
∂M0

∂r
= 0 for 0 < r, t < 1, M0(r, 0) = r2

2π
for 0 < r < 1. (4.15a,b)

This may be solved using the method of characteristics, yielding

M0(r, t) = (1 − t)r2

2π
+

√
1 − t(1 − √

1 − t)
π

(1 −
√

1 − r2). (4.16)

We see that this solution automatically satisfies the boundary condition (2.38a).
At O(Pe−2/3), the problem for M1(r, t) is given by

∂M1

∂t
+ u0

4
∂M1

∂r
= −αu1

4
∂M0

∂r
for 0 < r, t < 1, M1(r, 0) = αr2

π
for 0 < r < 1.

(4.17a,b)

This may be solved in a similar manner, yielding

M1(r, t) = 2ακ(r, t)
π

(1 − κ(r, t)) log

(√
1 − t − κ(r, t)
1 − κ(r, t)

)
+ α

π
(1 − (1 − κ(r, t))2),

(4.18)

where κ(r, t) = √
1 − t(1 − √

1 − r2).
Expanding the leading-order solution (4.16) as we approach the contact line, we have

M0(r, t) ∼
√

1 − t
π

− (1 − t)
2π

−
√

2(1 − t)
π

(1 − √
1 − t)

√
1 − r

− (1 − t)
π

(1 − r)+ O((1 − r)3/2) (4.19)

as r → 1−. A similar expansion of (4.18), yields

M1(r, t) ∼ α
√

1 − t(1 − √
1 − t)

π
log(1 − r)

+ α
√

1 − t(1 − √
1 − t)

π
log

(
2(1 − t)

(1 − √
1 − t)2

)

+ α

π
(1 − (1 − √

1 − t)2)+ O(
√

1 − r log(1 − r)) (4.20)

as r → 1−. We can clearly see this will necessitate an inner expansion that contains
logarithmic terms; a similar behaviour is displayed for surface-tension-dominated drops
under different evaporative fluxes (Moore et al. 2021).

Finally, if we expand the solute mass m = m0 + O(Pe−2/3) as Pe → ∞ in (2.40), we
find that

m0(r, t) =
√

1 − t

π
√

1 − r2

[
1 − √

1 − t(1 −
√

1 − r2)
]
. (4.21)

Notably, this means that the leading-order-outer solute mass m0 is singular at the contact
line, which gives a strong indication of the importance of diffusive effects local to the edge
of the droplet. This is in stark contrast to the Bo = O(1) solution, where the outer solute
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mass was square root bounded as r → 1−. Lastly, we note that whilst we could proceed to
O(Pe−2/3) in the solute mass expansion in the outer region, we shall not require this when
constructing a composite profile that is valid to O(1) throughout the droplet, so we do not
present this here.

4.2.2. Inner region
Recalling (3.11)–(3.12), (4.2) and (4.3), in order to retain a balance between the advective
and diffusive effects in (2.37) close to the contact line, we set

r = 1 − Pe−2/3r̃, u = Pe−1/3ũ, h = h̃, M = M̃, m = Pe2/3m̃ (4.22)

in (2.37)–(2.40). Note that we therefore have

h̃ = h̃0 + Pe−2/3h̃1 + O(Pe−4/3), ũ = ũ0 + Pe−1/3ũ1 + Pe−2/3ũ2 + O(Pe−1) (4.23)

as Pe → ∞ where

h̃0(r̃, t) = h̄0(r̃/α, t), h̃1(r̃, t) = αh̄1(r̃/α, t) (4.24)

and h̄0, h̄1 are given by (3.13)–(3.14), and

ũ0(r̃, t) = √
αū0(r̃/α, t), ũ1(r̃, t) = αū1(r̃/α, t), ũ2(r̃, t) = α3/2u2(r̃/α, t) (4.25)

and ū0, ū1, ū2 are given by (3.15)–(3.17).
Seeking an asymptotic expansion of the integrated mass of the form M̃ = M̃0 +

Pe−1/3M̃1 + Pe−2/3 log Pe−2/3M̃2 + Pe−2/3M̃3 + o(Pe−2/3) as Pe → ∞, we find that
the leading-order-inner problem is given by

∂2M̃0

∂ r̃2 +
(

ũ0 − 1

h̃0

∂ h̃0

∂ r̃

)
∂M̃0

∂r
= 0 for r̃ > 0, 0 < t < 1, (4.26)

subject to the boundary condition M̃0(0, t) = 1/2π for 0 < t < 1 and, in order to match
with the local expansion of the leading-order-outer solution at the contact line (4.19), we
must have

M̃0 →
√

1 − t
π

− (1 − t)
2π

as r̃ → ∞. (4.27)

Defining the integrating factor

I(r̃, t) =
(

1
1 − e−r̃/α

)
exp

(
2
√

2
(1 − t)

∫ r̃

0

√
ξ

1 − e−ξ/α dξ

)
, (4.28)

we find that the solution is given by

M̃0(r̃, t) = 1
2π

+ B0(t)
∫ r̃

0

1
I(s, t)

ds, (4.29)

where

B0(t) = − 1
π

(
1 − √

1 − t − t
2

)(∫ ∞

0

1
I(s, t)

ds
)−1

. (4.30)
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Gravitational effects on coffee-ring formation

We note here that the first term on the right-hand side of B0(t) is simply the leading-order
accumulated mass at the contact line as a function of time, N (t), that is,

N (t) = 1
4

∫ t

0
(m0u0)(1−, τ ) dτ = 1

π

(
1 − √

1 − t − t
2

)
. (4.31)

It is worth noting the similarities between (4.31) and the equivalent expression
for a surface-tension-dominated drop evaporating under a constant evaporative flux
(Freed-Brown 2015; Moore et al. 2021).

At O(Pe−1/3), we have

∂2M̃1

∂ r̃2 +
(

ũ0 − 1

h̃0

∂ h̃0

∂ r̃

)
∂M̃1

∂r
= 4

∂M̃0

∂t
− ũ1

∂M̃0

∂ r̃
for r̃ > 0, 0 < t < 1, (4.32)

subject to M̃1(0, t) = 0 for 0 < t < 1 and the far-field matching condition

M̃1 → −
√

2(1 − t)
π

(1 − √
1 − t)

√
r̃ as r̃ → ∞. (4.33)

While in practice it may be easier to find M̃1(r̃, t) from (4.32)–(4.33) numerically, for
posterity, we state that this boundary value problem has the solution

M̃1(r̃, t) =
∫ r̃

0

1
I(s, t)

(∫ s

0

(
4
∂M̃0

∂t
− ũ1

∂M̃0

∂ r̃

)
I(σ, t) dσ

)
ds + B1(t)

∫ r̃

0

1
I(s, t)

ds,

(4.34)
where

B1(t) = −
(∫ ∞

0

{
1

I(s, t)

(∫ s

0

(
4∂M̃0

∂t
− ũ1

∂M̃0

∂ r̃

)
I(σ, t) dσ

)
−

√
2(1 − t)

∂M̃0

∂t
1√
s

}
ds

)

×
(∫ ∞

0

1
I(s, t)

ds
)−1

(4.35)

is chosen to remove the O(1) term in the far-field expansion of M̃1(r̃, t).
The O(Pe−2/3 log Pe−2/3) problem is given by

∂2M̃2

∂ r̃2 +
(

ũ0 − 1

h̃0

∂ h̃0

∂ r̃

)
∂M̃2

∂r
= 0 for r̃ > 0, 0 < t < 1, (4.36)

subject to M̃2(0, t) = 0 for 0 < t < 1 and the far-field matching condition

M̃2 → α
√

1 − t(1 − √
1 − t)

π
as r̃ → ∞. (4.37)

The solution may be found in a similar manner to the leading-order problem, yielding

M̃2(r̃, t) = B2(t)
∫ r̃

0

1
I(s, t)

ds, (4.38)

where

B2(t) = α
√

1 − t(1 − √
1 − t)

π

(∫ ∞

0

1
I(s, t)

ds
)−1

. (4.39)
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Lastly, at O(Pe−2/3), we have

∂2M̃3

∂ r̃2 +
(

ũ0 − 1

h̃0

∂ h̃0

∂ r̃

)
∂M̃3

∂r
= 4

∂M̃1

∂t
− ũ1

∂M̃1

∂ r̃
− ũ2

∂M̃0

∂ r̃

− 1

h̃0

(
h̃1

h̃0

∂ h̃0

∂ r̃
− ∂ h̃1

∂ r̃

)
∂M̃0

∂ r̃
− ∂M̃0

∂ r̃
=: V(r̃, t) (4.40)

for r̃ > 0, 0 < t < 1, subject to M̃3(0, t) = 0 for 0 < t < 1 and the far-field condition

M̃3 → −(1 − t)
π

r̃ +
(
α
√

1 − t(1 − √
1 − t)

π

)(
log r̃ + log

(
2(1 − t)

(1 − √
1 − t)2

))

+ α

π
(1 − (1 − √

1 − t)2) as r̃ → ∞. (4.41)

The solution is given by

M̃3(r̃, t) =
∫ r̃

0

1
I(s, t)

(∫ s

0
V(σ, t)I(σ, t) dσ

)
ds + B3(t)

∫ r̃

0

1
I(s, t)

ds, (4.42)

where

B3(t) =
[
−
∫ ∞

1

{
1

I(s, t)

(∫ s

0
V(σ, t)I(σ, t) dσ

)
+ (1 − t)

π
− α

√
1 − t(1 − √

1 − t)
πs

}
ds

−
∫ 1

0

1
I(s, t)

(∫ s

0
V(σ, t)I(σ, t) dσ

)
ds − (1 − t)

π
+ α

π
(1 − (1 − √

1 − t)2)

+ α
√

1 − t(1 − √
1 − t)

π
log

(
2(1 − t)

(1 − √
1 − t)2

)](∫ ∞

0

1
I(s, t)

ds
)−1

(4.43)

has been chosen to give the correct far-field behaviour.
We are now in a position to find the inner solution for the solute mass. By substituting

the scalings (4.22) into (2.40), we see that

m̃ = − 1
1 − Pe−2/3r̃

∂M̃
∂ r̃

, (4.44)

so that expanding m̃ = m̃0 + Pe−1/3m̃1 + Pe−2/3 log Pe−2/3m̃2 + Pe−2/3m̃3 +
O(Pe−1 log Pe−2/3) as Pe → ∞, we have

m̃0 = −∂M̃0

∂ r̃
, m̃1 = −∂M̃1

∂ r̃
, m̃2 = −∂M̃2

∂ r̃
, m̃3 = −∂M̃3

∂ r̃
− r̃

∂M̃0

∂ r̃
.

(4.45a–d)

4.2.3. Composite solutions
We now have all of the necessary components needed to construct (additive) composite
solutions for comparison to the numerical results. To construct a composite solution for
the integrated mass variable, we combine the first two outer solutions (4.16) and (4.18), the
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Gravitational effects on coffee-ring formation

first four inner solutions (4.29), (4.34), (4.38) and (4.42), and the overlap terms given by
(4.19)–(4.20) using van Dyke’s matching rule (Van Dyke 1964), which yields

Mcomp(r, t) = M0(r, t)+ Pe−2/3M1(r, t)

+ M̃0(Pe2/3(1 − r), t)+ Pe−1/3M̃1(Pe2/3(1 − r), t)

+ Pe−2/3 log Pe−2/3M̃2(Pe2/3(1 − r), t)+ Pe−2/3M̃3(Pe2/3(1 − r), t)

−
[√

1 − t
π

− (1 − t)
2π

−
√

2(1 − t)
π

(1 − √
1 − t)

√
1 − r − (1 − t)

π
(1 − r)

+ Pe−2/3

(
α

π
(1 − (1 − √

1 − t)2)+ α
√

1 − t(1 − √
1 − t)

π

×
(

log(1 − r)+ log
(

2(1 − t)

(1 − √
1 − t)2

)))]
. (4.46)

This composite solution is valid up to and including O(Pe−2/3) throughout the whole of
the droplet.

Similarly, for the solute mass, the equivalent composite profile is compiled by taking the
first outer solution (4.21) as well as the first four inner solutions given by (4.45), so that,
accounting for the overlap contributions,

mcomp(r, t) = m0(r, t)+ Pe2/3m̃0(Pe2/3(1 − r), t)+ Pe1/3m̃1(Pe2/3(1 − r), t)

+ log Pe−2/3m̃2(Pe2/3(1 − r), t)+ m̃3(Pe2/3(1 − r), t)

−
√
(1 − t)(1 − √

1 − t)√
2π

√
1 − r

− (1 − t)
π

. (4.47)

We note that this composite solution is valid up to and including O(1) throughout the
droplet.

5. Results

In this section, we shall compare the results of our large-Pe asymptotic analysis to
numerical solutions of the advection–diffusion problem for the solute transport. We begin
by demonstrating the veracity of the asymptotic predictions in § 5.1. We then utilize the
asymptotic analysis to characterize the growth of the nascent coffee ring in each of the two
regimes depending on the size of the Bond number in § 5.2. We conclude by discussing
a novel phenomenon for moderate Bond numbers: the emergence of a second peak in the
solute mass profile, which we discuss in detail in § 5.3.

5.1. Comparisons between the numerical and asymptotic results
Our asymptotic predictions are compared with numerical simulations of the
advection–diffusion problem for the integrated mass variable given by (2.37)–(2.39). The
integrated mass variable formulation is chosen for the numerical simulations over the
solute mass m or the concentration φ since it is better behaved close to the contact line.
The numerical procedure requires careful consideration of the thin diffusive boundary
layer and we follow a similar approach to that described for the surface-tension-dominated
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Figure 4. Profiles of the solute mass when an axisymmetric droplet evaporates under a diffusive evaporative
flux for (a,b) Pe = 102 and Bo = 1, (c,d) Pe = 102 and Bo = 30. In each figure, the bold black curve represents
the initial mass profile, which corresponds to the droplet free surface profile (3.1). We also display plots at time
intervals of 0.1 up to t = 0.9 in which solid blue curves represent the results from the numerical solution of
(2.37)–(2.39) and the dashed red curves show the leading-order composite mass profile, given by (4.14). The
right-hand figures display a close-up of the profiles near the contact line. In (c) the inset shows a close up of
the mass profile in the droplet interior at t = 0.9 where we see a clear formation of a secondary peak.

problem by Moore et al. (2021). We give a summary of the methodology in
Appendix A.

We begin by comparing the asymptotic predictions of the solute mass profiles to
numerical solutions in the regime where Bo = O(1) as Pe → ∞. In figure 4, we display
asymptotic (red dashed line) and numerical (solid blue line) curves at 10 % intervals of
the total drying time for Pe = 102, Bo = 1 (a,b) and Pe = 102, Bo = 30 (c,d). In each
figure, we see excellent agreement between the simulations of the full system and the
leading-order composite solution (4.14). There is a clear formation of the expected coffee
ring in the region near the contact line, where solutal diffusion and advection interact. We
see that increasing the Bond number in this regime leads to a slight reduction of the size
of the coffee ring.

This behaviour is reminiscent of the Bo = 0 regime considered previously by Moore
et al. (2021). However, in the later stages of the Pe = 102, Bo = 30 example, we see
evidence of a qualitative difference in behaviour, with the formation of another peak in
the mass profile in the droplet interior (see inset in figure 4c). Henceforth, we shall refer to
the classical coffee ring as the primary peak and this new feature as the secondary peak.
The presence of the secondary peak depends on the Bond number, as there is no secondary
peak in any of the profiles when Bo = 1, but it also depends on the drying time, as the peak
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Figure 5. Profiles of the solute mass when an axisymmetric droplet evaporates under a diffusive evaporative
flux for (a,b) Pe = 102 and Bo = 105 (α ≈ 0.07), (c,d) Pe = 103 and Bo = 104 (α = 1). In each figure, the
bold black curve represents the initial mass profile (2.39). We also display plots at time intervals of 0.1 up to
t = 0.9 in which solid blue curves represent the results from the numerical solution of (2.37)–(2.39) and the
dashed red curves show the composite mass profile given by (4.47). Note that in (c,d) we can clearly see the
development of the secondary peak behind the primary peak.

only develops in the later stages of evaporation when Bo = 30 (between 60–70 % of the
drying time). Noticeably, the secondary peak is significantly smaller in magnitude than the
primary peak.

For larger Bond numbers, we compare the numerical results to the asymptotic
predictions in § 4.2. In figure 5, we display results for Pe = 102,Bo = 105 (α ≈ 0.07) (a,b)
and Pe = 103 and Bo = 104 (α = 1) (c,d). In each case, we display the composite profile
for the solute mass given by (4.47). In each figure, we see that after an initial transient the
asymptotic predictions and numerical results are again in excellent agreement. Moreover,
we see further evidence of the existence of a secondary peak for Pe = 103,Bo = 104,
where the peak appears much earlier and is noticeably larger than that in the previous
example (cf. figure 4(c), where Pe = 102, Bo = 30). However, we also note again the
strong dependence of the secondary peak on Bo and, possibly, Pe, as there is no evidence
of such an interior peak when Pe = 102, Bo = 105.

These findings prompt us to investigate this new feature more closely, alongside a
discussion of how the characteristics of the primary peak – and, hence, the classical coffee
ring – depend on the Bond number.
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Figure 6. The similarity profile (5.2) of the leading-order-inner solute mass profile for Bo = 10−2 (purple),
Bo = 10−1 (purple) (dark blue), Bo = 1 (light blue), Bo = 10 (green) and Bo = 102 (yellow).

5.2. The influence of gravity on the classical coffee ring
We shall begin by discussing the effect of the Bond number on the primary peak. As in
previous studies of the surface-tension-dominated regime, the formation of the primary
peak is driven by the competing diffusive and advective solute fluxes (Moore et al.
2021, 2022) and is always present in the large-Pe regime. Furthermore, since all of the
features of interest are well within the solutal diffusion boundary layer, we will use the
inner solution – as discussed in § 4.1.2 in the Bo = O(1) regime and § 4.2.2 in the large-Bo
regime – to do this.

5.2.1. The Bo = O(1) as Pe → ∞ regime
When the Bond number is order unity, the analysis is a natural extension of that in
Moore et al. (2021, 2022). The local solute profile is dominated by the leading-order-inner
solution (4.11). Introducing the time-dependent Péclet number

Pet = Pe
1 − t

, (5.1)

the nascent coffee-ring profile may be seen to have the similarity form

m̂0(R, t)

Pe2
t N (t; Bo)

= 2χ
3ψ(Bo)

f
(√

R, 3,
4χ

ψ(Bo)

)
, R = Pe2

t (1 − r), (5.2)

where ψ and χ retain their definitions from (3.5) and (3.6) as the initial local contact
angle and the coefficient of the evaporative flux singularity, respectively, and f (x, k, l) =
lkxk−1e−lx/Γ (k) is the probability density function of a gamma distribution. It is this
functional form that describes the characteristic narrow, sharp peak of the coffee ring.

Since the definition of R only depends on the time-dependent Péclet number, we can
clearly illustrate the effect of gravity by plotting the similarity profile (5.2) for a range
of Bond numbers in figure 6. We see that, as the effect of gravity increases, the height
of the primary peak decreases, and the peak moves further from the pinned contact line.
Moreover, the shape of the primary peak tends towards a shallower, wider profile. Notably,
this behaviour is driven purely by changes in ψ(Bo); as we see in (5.2), the accumulated
mass flux N (t; Bo) acts to scale the resulting profile. In particular, as shown in figure 3(a),
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the accumulated mass flux into the contact line decreases with the Bond number, so that
clearly it acts to accentuate the reduction of height of the nascent coffee ring.

We can expand upon these results by finding the leading-order asymptotic prediction of
the primary peak height and location, which are given by

mpeak,I(t; Bo) = 16Pe2
t N (t; Bo)χ2

3e2ψ(Bo)2
, rpeak,I(t; Bo) = 1 − ψ(Bo)2

4Pe2
t χ

2
, (5.3a,b)

respectively. Notably, while gravity only influences the location of the primary peak
through the initial local contact angle, ψ(Bo), the height depends on gravity through both
the contact angle and the accumulated mass flux, N (t; Bo). In particular, referring back to
figure 3, this means that gravity has a stronger effect on the peak height than its location.

For reference, we note that, if the Bond number is small, the location and height of the
nascent coffee ring are given by

mpeak,I = Pe2
t

[
1

3πe2 (1 − (1 − t)3/4)4/3

+ Bo
(

2N1(t)
3e2 − 1

36π
(1 − (1 − t)3/4)4/3

)
+ O(Bo2)

]
, (5.4)

rpeak,I = 1 − 1
Pe2

t

(
2 + Bo

6
+ O(Bo2)

)
(5.5)

as Bo → 0, respectively, where N1(t) is the O(Bo) correction to the accumulated mass flux
as Bo → 0, which typically must be found numerically. Furthermore – and for comparison
to the large-Bond-number regime – we note that

mpeak,I = Pe2
t

[
32

3e2π

(
1 − √

1 − t − t
2

) 1
Bo

+ O(Bo−3/2)

]
, (5.6)

rpeak,I = 1 − 1
Pe2

t

(
Bo
8

+ 3
√

Bo
8

+ 3
4

+ O(Bo−1/2)

)
(5.7)

as Bo → ∞.
We illustrate the veracity of the asymptotic predictions (5.3) by comparing them to the

corresponding numerical results for Pe = 102 and a range of Bond numbers in figure 7. As
anticipated from the comparisons of the solute mass profiles, we see excellent agreement
between the asymptotic predictions and the numerical results. In particular, in figure 7(a),
we note that as the influence of gravity increases (i.e. Bo increases), the coffee-ring effect
is inhibited: although a peak clearly still forms, it is lower for a large Bond number at a
similar stage of the drying process. This effect varies nonlinearly with time (cf. figure 3a).
For example, considering the cases Bo = 1/2 and Bo = 30, after 50 % of the drying time,
the peak height is reduced by a factor of ≈ 3.97, while at 60 % of the drying time, the
reduction is a factor of ≈ 3.85 and at 90 % of the drying time, it is ≈ 3.63.

Similarly, in figure 7(b), we see that as the Bond number increases, the location of the
primary peak moves further from the contact line and that this significantly increases as the
Bond number gets larger. For Bo = 1/10, 1/2, 1, the location is almost indistinguishable
from the zero-Bond-number solution – where Pe2

t (1 − r) = 2 (Moore et al. 2022) – but
for Bo = 30, this has increased to ≈ 6.79.
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Figure 7. Numerical (circles) and asymptotic predictions (solid lines) of (a) the height of the primary peak,
mpeak,I(t)/Pe2

t , and (b) its location Pe2
t (1 − rpeak,I(t)) in the Bo = O(1) regime as given by (5.3). For each

curve, Pe = 102, while the Bond number varies according to Bo = 1/10 (dark purple), Bo = 1/2 (blue), Bo = 1
(green) and Bo = 30 (yellow).

It is worth noting that in all this analysis, the Péclet number simply acts to scale the
above findings. For a larger Péclet number, the height of the primary peak increases, while
it is located closer to the contact line. This is precisely what is seen for the Bo = 0 regime
(Moore et al. 2021).

5.2.2. The Bo = O(Pe4/3) as Pe → ∞ regime
In the large-Bo regime, given the size of the primary peak, we anticipate that the
leading-order-inner solution M̃0(r̃, t) as given by (4.29) should reasonably capture the
features of the nascent coffee ring. However, unlike its moderate-Bo counterpart, there is
no simple similarity form for the solution in this regime, so that we proceed more carefully.

We denote the height and location of the primary peak by

mpeak,I(t) = Pe2/3MI(t), rpeak,I(t) = 1 − Pe−2/3ηI(t), (5.8a,b)

respectively. By (4.45a), the location of the maximum ηI(t) satisfies

0 = ∂2M̃0

∂ r̃2 (ηI(t), t). (5.9)

Utilizing (4.26), we find that

∂2M̃0

∂ r̃2 (ηI(t), t) = −
(

ũ0 − 1

h̃0

∂ h̃0

∂ r̃

)
∂M̃0

∂ r̃

∣∣∣∣∣
(ηI(t),t)

= 0. (5.10)

Since ∂M̃0/∂ r̃ < 0 for r̃ > 0, we conclude that

ũ0(ηI(t), t)− 1

h̃0(ηI(t), t)

∂ h̃0

∂ r̃
(ηI(t), t) = 0 (5.11)

so that

ηI(t) = α

2
W0

(
(1 − t)2

4α3

)
, (5.12)

where W0(x) is the Lambert-W function (i.e. the solution to wew = x).
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With ηI(t) in hand, the corresponding height of the ring at the peak is then given by

MI(t) =
( −B0(t)

I(ηI(t), t)

)
=
[

N (t)
I(ηI(t), t)

(∫ ∞

0

1
I(s, t)

ds
)−1

]
, (5.13)

where I(r, t) is given by (4.28) and N (t) is the leading-order accumulated mass flux into
the boundary layer (4.31). Note that, in this regime N (t) is independent of α and, hence,
the Bond number, but the function I(r, t) does change with α.

For comparison with moderate Bond numbers, we note that, as α → ∞, we find that

mpeak,I(t) = Pe2/3
[

1
π

(
1 − √

1 − t − t
2

) 32α2

3(1 − t)2e2 + O(α3)

]

∼ Pe2
t

(
32

3πe2

(
1 − √

1 − t − t
2

) 1
Bo

)
, (5.14)

rpeak,I(t) = 1 − Pe−2/3
[
(1 − t)2

8α2 + O
(

1
α5

)]

∼ 1 − Pe−2
t

(
Bo
8

)
, (5.15)

which overlap with the large-Bond-number expansions of the previous regime given
by (5.6)–(5.7), so that the transition between the two regimes is regular in this sense
(and, moreover, indicating that the two asymptotic regimes we identified in § 4 are the
appropriate ones). Furthermore, for posterity, we note that as α → 0, so that Bo 
 Pe4/3,
we find that

mpeak,I(t) = Pe2/3
[

22/331/3

πΓ (2/3)
(1 − t)−2/3

(
1 − √

1 − t − t
2

)
+ O(α logα)

]
, (5.16)

rpeak,I(t) = 1 − Bo−1/2
[

log
(

1 − t
2α3/2

)
− log log

(
1 − t
2α3/2

)
+ o(1)

]
. (5.17)

Notably, we see that the effect of increasing the Bond number further plays a much
diminished role in the peak height compared with the peak location.

In figure 8, we plot the asymptotic predictions of the location and height of the primary
peak against the simulation results for a range of different Péclet and Bond numbers (and,
correspondingly, α). There are several discernible features. After an initial transient, the
location of the peak is captured extremely well by the asymptotic prediction (5.12) for
each case presented. This initial transient is primarily due to the lack of a distinct peak
at early stages of the drying process; a period of time is necessary for sufficient solute
to be advected to the contact line. This process takes longer for smaller Péclet numbers,
i.e. when diffusion is relatively stronger. The height of the primary peak is captured quite
well by the asymptotic prediction (5.13), particularly for larger Péclet numbers and as time
increases. It is worth noting that the error in the approximation of the height is O(Pe1/3), so
for an improved estimation of the primary peak height, it would be necessary to consider
the first two inner solutions M̃0(r̃, t) and M̃1(r̃, t). While this is possible, the results do
not have a simple analytic form, so are not practical to work with. We also note that, as the
droplet evaporates, the primary peak both increases in size and moves closer to the contact
line, i.e. MI(t) increases and ηI(t) decreases as t increases.

967 A26-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

49
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.493


M.R. Moore and A.W. Wray

10–6

10–4

10–2

100

M
I(

t)

η
I(

t)

102

104

106

10–6

10–5

10–4

10–3

10–2

10–1

100

0 0.2 0.4 0.6

Increasing α

Increasing α

t
0.8 1.0 0 0.2 0.4 0.6

t
0.8 1.0

Pe = 102, Bo = 103

Pe = 103, Bo = 104

Pe = 104, Bo = 105

Pe = 105, Bo = 105

(b)(a)

Figure 8. Numerical (circles) and asymptotic predictions (solid lines) of (a) the height of the primary peak,
MI(t) = mpeak,I(t)/Pe2/3, and (b) its location ηI(t) = Pe2/3(1 − rpeak,I(t)) as given by (5.12)–(5.13). Results are
presented for Pe = 102,Bo = 103 (α ≈ 0.68, yellow), Pe = 103,Bo = 104 (α = 1, green), Pe = 104,Bo = 105

(α ≈ 1.47, blue) and Pe = 105,Bo = 105 (α ≈ 6.81, dark purple).
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Figure 9. (a) Peak height and (b) location of the nascent coffee ring at 90 % of the drying time for a droplet
with Pe = 102 and a range of Bond numbers. The numerical values of these properties are denoted by the solid
blue curves, while the asymptotic predictions in the Bo = O(1) as Pe → ∞ regime (5.3) are given by the red
dashed circle curve and the asymptotic predictions in the Bo = O(Pe4/3) as Pe → ∞ regime (5.12)–(5.13) are
depicted by the black dashed square curve.

5.2.3. Summary of the effects of gravity on the nascent coffee ring
A further point to note in figure 8 is the behaviour as α → ∞ as indicated by the arrows.
In particular, we see that the peak height increases, while the peak location moves closer
to the contact line. This is consistent with the transition back towards the moderate-Bo
regime as indicated by the expansions (5.14)–(5.15).

We can explore this behaviour further by considering the variation with Bond number
of the nascent coffee-ring height and location while the Péclet number remains fixed. As
an illustrative example, we consider these properties for a droplet with Pe = 102 at 90 %
of the drying time in figure 9. In the figure, the numerical prediction of the coffee-ring
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Gravitational effects on coffee-ring formation

peak height and location are represented by the solid blue curves, while the asymptotic
predictions are depicted by the red dashed circle curve (Bo = O(1) as Pe → ∞) and
black dashed square curve (Bo = O(Pe4/3) as Pe → ∞). We can clearly see the transition
between the two asymptotic regimes and, in particular, the change in the ring size, from a
height of O(Pe2) and distance from the contact line of O(Pe−2) when the Bond number is
moderate, to a height of O(Pe2/3) and distance from the contact line of O(Pe−2/3) when
the Bond number is large. For the peak height (location), the reduction (growth) is linear
in the Bond number, corroborating the expansions (5.6)–(5.7) and (5.14)–(5.15).

In practice, for a given solute-liquid-substrate configuration, it may be challenging to
change the Bond number while keeping the Péclet number fixed, but the results presented
may be used to make appropriate predictions of the nascent coffee-ring properties in
a given regime and, in particular, show the necessity of considering the two distinct
asymptotic regimes depending on the relative importance of gravity.

5.3. The secondary peak
As evidenced by the solute mass profiles, the behaviour of the secondary peak – and
indeed, even its presence – is more complex than that of the primary peak, which always
forms in the large-Pe regime. We have seen, for example, in figure 4 in the Bo = O(1)
regime, that the presence of the peak varies with both Bo and drying time, while when
Bo 
 1, we have also seen variation with Pe (and, hence, α); see, for example, figure 5.
This gives a clear indication that we need to treat this feature more carefully.

To begin, we will consider whether or not the secondary peak is present. We shall
first fix the Péclet number and use the numerical results to produce a regime diagram
in (Bo, t)-parameter space indicating whether one or two peaks are present in the solute
mass profile. We note here that these are the only options that we have been able to find –
we have found no instances of more than two peaks appearing.

We show the results for Pe = 102 in figure 10(a). In the figure, solute profiles with
one peak (usually the classical coffee ring, although at very early evaporation times and
large Bond numbers, the secondary peak may exist without the coffee ring) are denoted
by blue circles, while solute profiles exhibiting two peaks are denoted by red circles. We
see a strong nonlinear dependence on both Bond number and dryout time. In particular,
there is a band of Bond numbers between around Bo ≈ 10 and Bo ≈ 30 000 that may lead
to secondary peak formation, although the existence of a peak also depends strongly on
t for a fixed Bond number. We note that for Bo � 10, there is only one peak for any t,
in agreement with the classical Bo = 0 regime. Moreover, for very large Bond number
Bo � 30 000, again we see that there is only one peak.

We illustrate the effect of the Péclet number by plotting the equivalent regime diagram
for Pe = 103 in figure 10(b). Remarkably, the onset of the secondary peak appears to be
unaffected by the increase of the Péclet number, although the band of Bond numbers for
which we see two peaks is significantly widened into larger Bo. Notably, however, the
shape of the curve delineating between two peaks/one peak for large Bond number appears
to be independent of Pe, only its location has shifted.

5.3.1. Onset of the secondary peak
In this section, we seek to investigate some of the phenomena around the onset of the
secondary peak in more detail. We saw that for a fixed Péclet number, there was a distinct
switch from one to two peaks for Bond number Bo ≈ 10 and that this switch appears to
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Figure 10. (Bo, t)-regime diagram illustrating the presence of either one (blue circles) or two (red circles)
peaks in the solute mass profile for (a) Pe = 102 and (b) Pe = 103. The data are extracted from the numerical
simulations and demonstrate a clear band of Bond numbers for which two peaks may exist in the profile. In
each figure, the black curve denotes the asymptotic prediction of when the centre of the droplet changes from
a maximum to a minimum as given by (5.29).

be independent of Pe. This suggests that secondary peak formation is not a result of the
interplay between solutal advection and diffusion that drives the classical coffee ring.

In order to investigate the reasons behind the presence (or lack) of a secondary peak, in
figure 11, we plot numerical results for the solute profiles in a droplet with Pe = 102,Bo =
20 at 25 %, 35 % and 75 % of the drying time. In the figure the primary and secondary
peaks are indicated by the red and black circles, respectively. We clearly see in figure 11(a)
that at 25 % of the drying time there is only one peak, but by 35 % of the drying time the
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Figure 11. Solute profiles for an evaporating droplet with Pe = 102 and Bo = 20. The deposit profile is
displayed on a doubly logarithmic plot at 25 % (a), 35 % (b) and 75 % (c) of the drying time in order to catch
the emergence of the secondary peak. In plots (a–c) the primary peak is indicated by a red circle, while the
secondary peak is indicated by a black circle (when it exists).

secondary peak has emerged close to the droplet centre. As the droplet evaporates further
to 75 % of the drying time, the secondary peak has moved further towards the droplet
contact line.

This particular example gives us a strong indication that the secondary peak initially
arises from the centre of the drop and, in particular, appears to be linked with a transition
from the centre being a maximum in the solute mass profile – as it is for the classical
coffee ring of Deegan et al. (1997, 2000) – to a minimum.

To investigate this postulate, we consider the behaviour close to the droplet centre.
To simplify things, since the initial emergence of the secondary peak appears to be
independent of the Péclet number, we neglect solutal diffusion completely, taking Pe = ∞,
so that the solute mass m satisfies the first-order equation

∂m
∂t

+ 1
4r
∂

∂r
(rmu) = 0, m(r, 0) = h(r, 0), (5.18)

where, since the emergence appears to be rooted in the region where Bo ≈ 10, we consider
the moderate-Bond-number regime and retain the full expressions for the droplet free
surface h and fluid velocity u given by (3.1)–(3.2).

We seek an asymptotic solution of (5.18) as r → 0. First, we note that for small
arguments, the free surface and velocity have the asymptotic expansions

h(r, t) ∼ (1 − t)
[
H0(Bo)+ H1(Bo)r2 + o(r2)

]
, (5.19)

u(r, t) ∼ 1
(1 − t)

[
U0(Bo)r + U1(Bo)r3 + o(r3)

]
(5.20)

as r → 0, where

H0(Bo) = (I0(
√

Bo)− 1)

πI2(
√

Bo)
, (5.21)

H1(Bo) = − Bo

4πI2(
√

Bo)
, (5.22)
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U0(Bo) = 2
√

Bo − √
BoI0(

√
Bo)− 2I1(

√
Bo)√

Bo(1 − I0(
√

Bo))
, (5.23)

U1(Bo) = −
(Bo3/2 − √

BoI0(
√

Bo)+ √
BoI0(

√
Bo)2

+ 2I1(
√

Bo)− 2BoI1(
√

Bo)− 2I0(
√

Bo)I1(
√

Bo))

4
√

Bo(1 − I0(
√

Bo))2
. (5.24)

Now, by the symmetry of the problem, the droplet centre must be a critical point, so we
seek a solution of the form m = m0(t)+ m1(t)r2 + o(r2) as r → 0. Upon substituting this
ansatz and the above forms for h and u into (5.18), a straightforward calculation yields

m0(t) = H0(1 − t)U0/2, (5.25)

m1(t) =
(

2U1H0

U0
+ H1

)
(1 − t)U0 − 2U1H0

U0
(1 − t)U0/2. (5.26)

Hence, given that initially the droplet has a maximum at its centre for any Bo, we deduce
that the maximum becomes a minimum at the critical time tc such that

m1(tc) = 0. (5.27)

Since 2U1H0/U0 + H1 < 0, H0 > 0 and U0 > 0 for all Bo, (5.27) only has solutions for
Bo > Boc where

U1(Boc) = 0 =⇒ Boc ≈ 15.21. (5.28)

When Bo > Boc, we may solve (5.27) explicitly to find

tc(Bo) = 1 −
(

2U1(Bo)H0(Bo)
2U1(Bo)H0(Bo)+ H1(Bo)U0(Bo)

)2/U0(Bo)

. (5.29)

This critical curve in figure 10 is displayed as the solid black curve and we see that
there is excellent agreement between this prediction and the transition from one to two
peaks. But, what is causing the transition? Since the phenomenon is independent of the
Péclet number, it is purely a result of the droplet geometry and the evaporation-driven flow.
In particular, we note that the critical Bond number Boc given by (5.28) is linked to the
change in sign of U1, which is equivalent to requiring that (1 − t)∇ · (uer) is decreasing
near r = 0. This correlates with the profiles of the divergence of u displayed in figure 2(c),
where we see this change in sign clearly as the Bond number increases.

Notably, considering the curve displayed in figure 10, we see that for Bo close to Boc,
the secondary peak only emerges very late in the dryout process, but as the Bond number
increases, it appears almost instantaneously. Hence, from this analysis alone we might
expect there to always be two peaks for Bo > Boc, but clearly this is not the case. We now
investigate why in more detail.

5.3.2. Loss of the secondary peak
Given its clear variation with each of t, Bo and Pe, it is perhaps unsurprising that it is
more challenging to determine an analytical expression for the location of the right-hand
boundary between two peaks and one peak in figure 10, and unfortunately we have been
unable to do so. However, it is relatively straightforward to illustrate why the transition
occurs by considering a specific example.

In figure 12, we plot solute mass profiles for Pe = 102 and Bo = 103 at 5 %, 20 %, 50 %
and 90 % of the drying time indicating the primary and secondary peaks by red and black
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Figure 12. Solute profiles for an evaporating droplet with Pe = 102 and Bo = 103 displayed on a doubly
logarithmic plot at 5 % (a), 20 % (b), 50 % (c) and 90 % (d) of the drying time. In each figure the primary
peak is indicated by a red circle, while the secondary peak is indicated by a black circle when either exists.

circles where appropriate. Note that, for such a large Bond number, the critical time at
which we would expect a secondary peak to be present may be found from (5.29) to be
tc ≈ 2.8 × 10−10. We see in figure 12(a) that, indeed, after 5 % of the drying time, the
secondary peak has emerged and is visible close to the droplet centre – moreover, at this
stage, the primary peak associated with the coffee ring has yet to fully develop (so that
the ‘one peak’ at this stage in figure 10(a) is in fact the secondary peak!). However, by the
time we reach 20 % of the drying time, both peaks are clearly visible, with the primary
peak now approximately 50 % larger than the secondary peak.

Increasing time further, we see that the primary peak continues to grow rapidly so that,
by 50 % of the drying time, it is so large that it has subsumed the secondary peak into its
upstream tail. That is, the secondary peak is still present according to the Pe = ∞ theory,
but due to the fact that Pe is actually finite and the corresponding presence of the classical
coffee ring, we do not see the secondary peak.

If we then increase t even further, we see that by 90 % of the drying time, the secondary
peak has re-emerged from the lee of the primary peak. By this stage of the evaporation
process, the primary peak has moved significantly closer to the contact line – here 1 −
r ≈ 1.4 × 10−4, while the secondary peak is located at 1 − r ≈ 4.8 × 10−2, so that it is
sufficiently far behind the primary peak to be visible.

Thus, the loss of the secondary peak appears to be intrinsically tied to both the location,
size and shape of the primary peak. Given that this behaviour largely occurs in the regime
in which Bo 
 1, these properties of the primary peak are given by (5.12), (5.13) and the
derivative of (4.29), respectively. Clearly, therefore, the behaviour is strongly dependent
on t, Bo and Pe (cf. figure 8 for example).
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Figure 13. Numerical predictions of (a) the height of the secondary peak, mpeak,II(t), and (b) its location
rpeak,II(t) for different values of Pe, Bo. The symbols denote different Péclet numbers: Pe = 100 (circles),
Pe = 1000 (squares); while the colours denote different Bond numbers: Bo = 20 (purple), Bo = 50 (dark blue),
Bo = 100 (light blue), Bo = 1000 (green).

5.3.3. Properties of the secondary peak
Given its dependence on the various parameters of the model, discerning the properties
of the secondary peak analytically is challenging, particularly in the Bo = O(1) regime
since, in this case, the peak tends to be situated in the droplet bulk, so that we are unable
to use the simpler forms of the inner solution described in § 4.1.2.

Hence, we utilize the numerical results to track the height mpeak,II(t) and location
rpeak,II(t) of the secondary peak when it exists and we display the results for several
different values of Pe, Bo in figure 13. In the figure, results for Pe = 102 and Pe = 103

are denoted by circles and squares, respectively. The Bond number is represented by the
colour, with results for Bo = 20 (purple), 50 (dark blue), 100 (light blue) and 1000 (green).
It is evident that for each of the Bond numbers represented, increasing the Péclet number
appears to have negligible effect on both the size and location of the secondary peak.
However, both properties do vary with the Bond number. In particular, as the Bond number
increases, the secondary peak is situated closer to the contact line at the same stage of the
drying process, and similarly, for a fixed Bond number, the peak gets closer to the contact
line as the droplet evaporates. On the other hand, variations of the secondary peak height
with Bo are less trivial, although for all of the displayed results, we see that the height
of the secondary peak decreases as the droplet evaporates. This is in stark contrast to
the primary peak, which always grows as more solute is transported to the contact line.
Moreover, for later drying times, the peak height increases with Bond number.

Thus, we conclude that the secondary peak is predominantly driven by the Bond number.
Indeed, it is only for sufficiently large Bond numbers that we find a second peak at all, and
the properties of that peak then depend strongly on the size of Bo. The only role played
by the Péclet number appears to be in the disappearance of the secondary peak when it is
subsumed by the primary peak, which is typically orders of magnitude larger and always
closer to the contact line.
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6. Summary and discussion

In this paper, we have performed a detailed asymptotic and numerical analysis into the
effect of gravity on the famous coffee-ring phenomenon observed in solute-laden droplets.
For droplets evaporating in a diffusion-limited evaporation regime, in the physically
relevant limit of small droplet capillary number, Ca � 1, and large solutal Péclet number,
Pe 
 1, we identified two asymptotic regimes based on the size of the Bond number, Bo:

(i) a moderate-Bond-number regime, where Bo = O(1) as Pe → ∞;
(ii) a large-Bond-number regime, Bo = O(Pe4/3) as Pe → ∞.

In the first of these regimes, gravity acts to flatten the droplet profile from the
spherical cap of the zero-gravity problem, while reducing the liquid velocity. Moreover,
the asymptotic structure of the solute transport follows exactly that presented by Moore
et al. (2021) for surface-tension-dominated droplets, with advection dominating in the
droplet bulk, while the competition between advection and diffusion in a boundary layer
of width of O(Pe−2) near the pinned contact line drives the nascent coffee ring. Gravity
acts to modify the surface-tension-dominated solution both through the accumulated mass
flux of solute into the contact line and a parameter dependent on the local contact angle. In
particular, as the Bond number increases, the height of the nascent coffee ring is reduced –
which is consistent with the reduced flow velocity as Bo is increased. Moreover, the peak
is situated further from the contact line.

To categorize the role of gravity more explicitly, we derived an approximate similarity
profile, m̂0, for the nascent coffee-ring profile, given by

m̂0(R, t)

Pe2
t N (t; Bo)

= 2χ
3ψ(Bo)

f
(√

R, 3,
4χ

ψ(Bo)

)
, R = Pe2

t (1 − r), (6.1)

where Pet = Pe/(1 − t) is the time-dependent Péclet number, N (t; Bo) is the accumulated
mass flux of solute at the contact line from the droplet bulk, χ is the coefficient of the
inverse square root singularity in the evaporative flux at the contact line; ψ(Bo) is the
leading-order initial local contact angle and f (x, k, l) = lkxk−1e−lx/Γ (k) is the probability
density function of a gamma distribution. Clearly, the Bond number acts to scale the
coffee-ring profile through the accumulated mass flux, while it acts to change the shape
of the profile through the initial contact angle ψ(Bo). The nascent coffee ring has a peak
height that scales with Pe2

t and peak location that is situated a distance from the contact
line that scales with Pe−2

t .
In the second regime, the Bond number is large, so that the droplet is approximately flat,

with surface tension confined to a narrow region near the pinned contact line – a ‘pancake’
droplet. Thus, the asymptotic analysis discussed above is no longer valid, since there are
two competing boundary layers near the edge of the droplet – the diffusion boundary layer
in the solute transport and the surface tension boundary layer in the droplet free surface
profile (and, hence, the liquid velocity). We derived the resulting solute distribution in the
most general regime in which the two boundary layers are comparable, which reduces
to the assumption that α = Bo−1/2Pe2/3 = O(1) as Pe → ∞. Under this assumption,
diffusion and advection balance in a region of size Pe−2/3 near the contact line, noticeably
larger than in the moderate gravity regime. This is a further indication of gravity acting to
shift the coffee ring further from the contact line and, moreover, tends to cause shallower
solute profiles in the boundary layer region.

The asymptotic analysis in the large-Bond-number regime is more challenging than
that in the moderate-Bond-number regime and, in particular, the nascent coffee ring no
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longer collapses onto an approximate similarity profile. However, we were able to derive
expressions for the location (5.12) and height (5.13) of the peak, demonstrating that it still
strongly depends on the accumulated mass flux of solute into the contact line alongside
the parameter α. In particular, the peak height scales with Pe2/3 and peak location scales
with Pe−2/3 when α = O(1). Moreover, increasing α leads to higher coffee rings that are
located closer to the contact line. This latter behaviour is indicative of the overlap between
the two regimes when 1 � Bo � Pe4/3, which we demonstrated explicitly in § 5.2. In
particular, for a fixed Péclet number, the transition between the regimes occurs linearly
in Bo.

In each regime, we demonstrated that our asymptotic predictions were in excellent
agreement with numerical simulations of the advection–diffusion problem for the solute
mass distribution.

Alongside the anticipated nascent coffee ring driven by the competition between
advection and diffusion of the solute, our asymptotic and numerical analysis also revealed
a novel phenomenon: that the solute profile may have a secondary peak. The secondary
peak was characterized by being situated upstream of and significantly smaller than the
primary coffee ring. Moreover, the presence of this peak strongly depends on the Bond
number, Péclet number and evaporation time.

Further investigation revealed that, for a fixed Péclet number, there exists a band in
(Bo, t) space at which two peaks are present in the profile. We demonstrated that the onset
of this band is independent of the Péclet number and is caused by the critical point at the
centre of the droplet changing in type from a maximum (as in the spherical cap droplet in
the Bo = 0 regime) to a minimum. When the critical point at the droplet centre changes
type, an internal maximum forms downstream of the centre and it is this that corresponds
to the secondary peak. This behaviour only occurs above a critical Bond number, Boc ≈
15.21, and then only after a given drying time, given by

tc(Bo) = 1 −
(

2U1(Bo)H0(Bo)
2U1(Bo)H0(Bo)+ H1(Bo)U0(Bo)

)2/U0(Bo)

. (6.2)

In particular, as Bo increases, tc decreases, so the secondary peak emerges earlier in the
evaporative process. These predictions were shown to be in excellent agreement with the
numerical results and, remarkably, are independent of the Péclet number.

However, the above analysis suggests that, for all Bo > Boc and t > tc, a secondary peak
exists – something that we did not find in our analysis. The reason for this discrepancy was
shown to be due to the presence of the primary peak. In particular, as time increases, the
secondary peak is located further from the droplet centre so that it may get subsumed in
the tail of the primary peak. For a fixed Bond number, this possibility was shown to depend
strongly on both the Péclet number and the evaporation time; this is due to the fact that
the size of the primary peak increases with both t and Pe, while the size of the secondary
peak only varies with t.

Beyond this subsuming effect, however, we were able to demonstrate that the Péclet
number plays a negligible role in the size and location of the secondary peak for a
range of Bond numbers, suggesting that this feature may be reliably controlled simply
by altering Bo.

In previous studies of coffee-ring formation (e.g. Deegan et al. 2000; Popov 2005;
Moore et al. 2021), gravity has frequently been neglected under the assumption of small
Bond number, which is a reasonable assumption for sufficiently small droplets. However,
given that the Bond number may be increased in an experimental or industrial setting
by steadily increasing the droplet radius, the influence of gravity may be of fundamental

967 A26-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

49
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.493


Gravitational effects on coffee-ring formation

interest in applications that utilize droplet drying to adaptively control the shape of the
residual deposit, such as colloidal patterning (Harris et al. 2007; Choi et al. 2010) and
fabrication techniques using inkjet printing (Layani et al. 2009). Our analysis thus plays a
dual role in the field. First, we have presented the first formal categorization of the role of
gravity in the early stages of coffee-ring formation and given a quantitative prediction of
the resulting features of the solute profile. The emergence of two distinct regimes based on
the size of the Bond number leading to different scalings for the size of the nascent ring is
a key finding of our analysis. Second, we have found a novel phenomenon – the secondary
peak – which may also be exploited in such processes, particularly when the size of the
primary peak can be carefully controlled or in analysing a post-jamming regime, when
finite particle size effects become important (Popov 2005; Kaplan & Mahadevan 2015).
This is particularly relevant given that the secondary peak emerges at a moderate critical
Bond number.

There are, naturally, limitations to our analysis. Throughout, we have assumed that
the contact line remains pinned as the droplet evaporates. This has been shown to be
a reasonable assumption for many configurations (see, for example, the experiments in
Deegan et al. 2000; Kajiya et al. 2008; Howard et al. 2023) and may further be enhanced
by solute aggregation near the edge of the droplet (Orejon, Sefiane & Shanahan 2011;
Weon & Je 2013; Larson 2014). However, at late stages of the evaporation, the contact line
may depin and become mobile, moving inwards towards the droplet centre. The contact
line may then become pinned at a new location and the process may repeat. This behaviour
is known as ‘stick-slip’ evaporation and represents an important class within the field that
is beyond the scope of the present study, but may represent an interesting future direction
in terms of the effect of gravity, particularly with the presence of the secondary peak and
its associated increased solute mass, which may promote re-pinning.

As discussed previously, in this analysis, we have presented results for a diffusive
evaporative flux, neglecting any effects of convection in the vapour transport. Depending
on the configuration, this assumption may be invalid for larger droplets, so that the
functional form of the evaporative flux changes. Similarly, there are other situations where
different evaporative models may be appropriate. Examples include water evaporating
on glass, which may more appropriately be modelled using a kinetic evaporative model
(Murisic & Kondic 2011), droplets evaporating above a bath of the same liquid, where
the evaporation is effectively constant (Boulogne et al. 2016) and situations where a
mask is used to control the evaporative flux so that it is stronger towards the centre
(Vodolazskaya et al. 2017). In each case, provided that the evaporation-driven flow is
predominantly outwards for the majority of the drying time, we would still expect a
coffee ring to form. However, the sizes of the asymptotic regimes will likely differ
from the diffusive evaporative problem (see, for example, the differences between kinetic
and diffusive evaporative fluxes for surface-tension-dominated droplets in Moore et al.
2021); nevertheless, the over-arching methodology will extend in a natural way, with the
interaction between solutal advection and diffusion driving the formation of the ring.

Another effect that we have neglected in the present analysis is the possibility of
solute becoming trapped at the free surface of the droplet. If this occurs, the solute is
then transported to the contact line along the free surface, and has been suggested as
an alternative mechanism for coffee-ring formation (Kang et al. 2016). This behaviour
has been demonstrated to occur for a wide variety of droplets but is more pronounced
for droplets with large contact angles (Kang et al. 2016) or when vertical diffusion
happens over a longer time scale than evaporation (D’Ambrosio 2022). Since we deal
with the opposite case of a thin droplet with fast vertical diffusion (i.e. so that the solute
concentration may be assumed to be uniform across the droplet to leading order), we have
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not considered this phenomenon here. It would be interesting to see how such behaviour
impacted the solute profile in the current case, although it should be noted that the
aforementioned studies neglect gravity entirely.

A further aspect that would form the basis of an exciting future study surrounds the
assumption that the solute is dilute in the droplet. Naturally, the build up of the solute
in the coffee ring means that the concentration rapidly approaches levels where finite
particle size effects can no longer be ignored. This has been analysed in detail for
surface-tension-dominated droplets in Moore et al. (2021, 2022) and a similar analysis
would follow here with the inclusion of gravity. Indeed, the reduction of the peak height
with increasing gravity is likely to extend the validity of the dilute assumption for larger
droplets. Moreover, a further possible aspect that would differentiate droplets where
gravity is included is in the vicinity of the secondary peak. It is an interesting open question
as to whether the dilute assumption may also break down in the vicinity of the secondary
peak as well as the primary. Once finite particle size effects become important, there are
a number of different approaches that can be followed to continue the analysis, such as a
sharp transition between a dilute and jammed region (Popov 2005), using a viscosity and
solute diffusivity that vary with concentration (Kaplan & Mahadevan 2015) or through
more complicated two-phase suspension models (see, for example, Guazzelli & Pouliquen
2018).

A future direction of interest would be to extend the analysis herein to
non-axisymmetric droplets. Such droplets occur widely in applications, particularly in
printing OLED/AMOLED screens (see, for example, Mai & Richerzhagen 2007; Huo
et al. 2020). It is well known that droplet geometry plays a strong role in the behaviour of
the evaporative flux (Sáenz et al. 2017; Wray & Moore 2023) and the transient and final
deposit profiles (Freed-Brown 2015; Sáenz et al. 2017; Moore et al. 2022). It would be
of significant theoretical and practical interest to explore the influence of gravity in such
problems as well.

Finally, we note that another context in which gravity may play an important role is
that of binary/multi-component droplets, particularly in situations where the different
fluids have different densities. Multi-component droplets occur widely, from commercial
alcohols such as whiskey and ouzo (Tan et al. 2019; Carrithers et al. 2020) to various
inks (Shargaieva et al. 2020). While it would be certainly of interest to extend the analysis
presented here to such droplets, a careful treatment of the internal flow would be needed,
as the multi-component nature of the droplet significantly complicates the dynamics (Li
et al. 2019).
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Appendix A. Numerical solution of the solute transport problem

In this section, we outline the numerical scheme for solving the advection–diffusion
problem (2.37)–(2.39) for the integrated mass variable M(r, t). As discussed previously,
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the integrated mass variable formulation is advantageous when solving numerically, since
it is mass preserving and has simple-to-implement Dirichlet boundary conditions.

Our numerical method is an adaptation of that discussed in Moore et al. (2021) for
the Bo = 0 regime. We utilize central differences with grid points clustered close to the
contact line, where there are rapid changes in behaviour associated with the coffee ring.
We choose a uniform grid in the variable ζ ∈ [0, 1], where

r = 1 − 
ζ

1 − 

, (A1)

and 
 is taken to coincide with the smallest of the two boundary layers; that is,

 = κ(1 − tc), where κ = min{Bo−1/2,Pe−2/3} and tc is the final computation time. Note
that these boundary layers are in the context of a large Bond number; when Bo = O(1),
we have both increased the number of nodes in the discretization and chosen 
 = Pe−2 to
ensure we capture the diffusive boundary layer in this regime.

Even when it is present, the secondary peak does not exhibit such extreme behaviour,
with a much shallower profile than the primary peak, so provided that the discretization is
chosen suitably small, the secondary peak is captured well without special considerations.
The resulting system is solved using ode15s in MATLAB and incorporates complex
step differentiation to compute the Jacobian (Shampine 2007). The veracity of the
simulations has been confirmed with stringent convergent checks alongside the excellent
comparisons to the asymptotic results in both the order-unity-Bond-number regime and
the large-Bond-number regime (cf. figures 4 and 5).
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