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ABSTRACT
We study the kinematics of a local sample of stars, located within a cylinder of 500 pc radius centered on the

Sun, in the RAVE dataset. We find clear asymmetries in thevR-vφ velocity distributions of thin and thick disk
stars: there are more stars moving radially outwards for lowazimuthal velocities and more radially inwards for
high azimuthal velocities. Such asymmetries have been previously reported for the thin disk as being due to
the Galactic bar, but this is the first time that the same type of structures are seen in the thick disk. Our findings
imply that the velocities of thick disk stars should no longer be described by Schwarzschild’s, multivariate
Gaussian or purely axisymmetric distributions. Furthermore, the nature of previously reported substructures
in the thick disk needs to be revisited as these could be associated with dynamical resonances rather than to
accretion events. It is clear that dynamical models of the Galaxy must fit the 3D velocity distributions of the
disks, rather than the projected 1D, if we are to understand the Galaxy fully.
Subject headings: Galaxy: disk — Galaxy: kinematics and dynamics — Galaxy: structure

1. INTRODUCTION

The velocity distribution of stars in the Solar neighborhood
contains key information about the current dynamical stateof
our Galaxy and also about its history. The kinematics of stars
can be used to derive both the mass distribution of the Milky
Way through sophisticated dynamical models, as well as to
identify accretion events.

The velocities of thin disk stars are often described by the
Schwarzschild distribution function, which considers each of
the velocity components separately. However, data from the
Hipparcos mission (Perryman et al. 1997; ESA 1997) and
later from the Geneva-Copenhagen survey (Holmberg et al.
2009) have revealed a more complex distribution with signifi-
cant overdensities and structure ( Dehnen 1998; Famaey et al.
2005; Antoja et al. 2008). Some of the over-densities and
distortions of the velocity distribution appear to be the im-
prints of the non-axisymmetric components of the Milky Way,
namely the spiral arms and Galactic bar (e.g. Dehnen 2000;
De Simone et al. 2004; Sellwood 2010; Antoja et al. 2011;
McMillan 2011). Streams or moving groups are formed by
stars on orbits that are close to resonant with the natural fre-
quencies of the spiral arms and/or the bar. Examples of such
moving groups that are heterogeneous in age and chemical
composition are the Pleiades, Hyades, Sirius, and Hercules
streams (the latter very likely driven by the bar).

⋆
ESA Research Fellow.

On the other hand, the velocity distribution of the thick
disk has been studied in less detail thus far because of lim-
itations in the size of volume complete samples. In prac-
tice, this has implied that Gaussian distributions were used to
fit the kinematics of thick disk stars (see Binney et al. 2014;
Sharma et al. 2014, for a recent discussion on how Gaus-
sian functions poorly fit all velocity components). Further,
substructures have also been reported in the thick disk (e.g.
Gilmore et al. 2002; Navarro et al. 2004; Helmi et al. 2006),
identified through statistical comparisons with Galactic mod-
els or with simple kinematic models such as those discussed
above.

Many of these substructures have been attributed to accre-
tion events, as these typically leave behind streams of stars
with similar velocities that do not necessarily appear to be
spatially coherent near the Sun because of the short mix-
ing timescales in the inner Galaxy. However, recent model-
ing has shown that the impact of spiral arms (Solway et al.
2012; Faure et al. 2014) and the Galactic bar on the kinemat-
ics of stars in the thick disk is non-negligible. For example,
Monari et al. (2013) and Monari (2014) have found in their
simulations that there is as much resonant trapping in the thick
disk as in the thin disk. Another clear signature of the impact
of the bar in their thick disk simulations is a bimodality in the
velocity distribution for stars located near the Outer Lindblad
Resonance, similar to that observed in the thin disk.

Here we explore whether these features are present in local
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samples of thick disk stars, especially now that such samples
have increased in size by large factors, (as in e.g. LAMOST
and SEGUE, Cui et al. 2012 and Yanny et al. 2009, respec-
tively). For example the Geneva-Copenhagen survey con-
tained∼ 17, 000 stars, while∼ 400, 000 stars have now
been measured by the RAdial Velocity Experiment (RAVE)
(Steinmetz et al. 2006). We report on the analysis of thelocal
RAVE dataset, and find indeed clear asymmetries/structures
in the velocity distributions of local thick disk stars, which
can be attributed to the resonant interaction with the Galac-
tic bar. In Section 2 we present the dataset and the selection
of the different populations, in Section 3 the analysis, andwe
conclude in Section 4 with a discussion on the implications of
our findings.

2. OBSERVATIONS AND DATA SELECTION

In this study we use the RAVE Data Release 4 (DR4)
(Kordopatis et al. 2013b). The stellar atmospheric parameters
of the DR4 are computed using two different pipelines, pre-
sented by Kordopatis et al. (2011) and Siebert et al. (2011).
The stellar parallaxes that we use were obtained through the
Bayesian distance-finding method of Binney et al. (2014).

First we select stars with i) signal-to-noise ratio better than
20, ii) the first morphological flag indicating that they are nor-
mal stars (Matijevič et al. 2012), and iii) converged algorithm
of computation of the physical parameters. From these, we
further select those in a cylinder with radius of 500 pc centred
on the Sun’s position. This results in a sample of 162153
stars with 6D phase-space information, of which 76% are
dwarf stars and 24% are giants. The DR4 proper motions
were compiled from several catalogs and here we use UCAC4
(Zacharias et al. 2013).

Following Reid et al. (2014) we assume that the Sun is
at X = −8.34 kpc and take a circular velocity at the Sun
of V0 = 240 km s−1 . For the velocity of the Sun with re-
spect to the Local Standard of Rest we adopt (U⊙,V⊙,W⊙) =
(10, 12, 7) km s−1 (Schönrich et al. 2010). The resulting value
of (V0 + V⊙)/R0 is 30.2 km s−1 kpc−1, which is compati-
ble with that from the reflex motion of the Sgr A* 30.2 ±
0.2 km s−1 kpc−1 (Reid & Brunthaler 2004). With these val-
ues, we compute the stars’ cylindrical velocities:vR (posi-
tive towards the Galactic center, in consonance with the usual
U velocity component) andvφ (towards the direction of rota-
tion).

From the selected sample we consider 4 different subsets
of stars based on their height and their metallicity to maxi-
mize or minimize the number of thin or thick disk stars. The
properties of each subset and relative thin/thick/halo fractions
are listed in Table 1. Two of the subsets are located on the
plane but have metallicities corresponding to thin (1) and to
thick (3) disk components, respectively. The other two are lo-
cated far from the plane and have intermediate (2) and low (4)
metallicities and could be both associated with the thick disk.

For each subset it is important to estimate the fraction of
stars that could belong to a different population than desired.
We have derived two different estimates of these fractions
for each of the samples. The first estimate, which we term
RAVE-fit, is based on an admittedly simplistic three Gaussian
population model (old thin disk, thick disk and halo) fit to
the metallicity distribution to RAVE data by Kordopatis et al.
(2013a, their tables 1 and 2). We use the fits derived forall
stars with galactocentric radius between 7.5 kpc and 8.5 kpc,
to estimate the population fraction for samples (1) and (3).
Since these samples have an additional constraint, namely

|Z| ≤ 0.5 kpc, the fractions of thick disk and halo stars are
probably overestimated. For samples (2) and (4) we use the
RAVE fits derived for stars 1< |Z| < 2 kpc in the same ra-
dial range. In this case, since in our samples we consider all
stars with|Z| > 0.5 kpc, it is likely that the fraction of thin
and thick disk stars is underestimated, while that of the halo
is overestimated. In fact, if we assume that the halo has no
net rotation and that all stars withvφ < 0 belong to the halo,
we can estimate the fraction of halo stars as twice that of stars
with vφ < 0. We find this to be of only 3%, 0.7% and 4% for
samples (2), (3) and (4), respectively, i.e. much smaller than
the fractions obtained through the RAVE-fit.

The second estimate (fit 2) of the contamination in our sub-
sets is based on a simple model with two populations (thin
and thick disk) with specified density and metallicity distri-
butions. We use two exponential disks with vertical scale
heights ofhz,thin = 0.3 kpc andhz,thick = 0.9 kpc and scale
lengths ofhR,thin = 2.6 kpc andhR,thick = 3.6 kpc2, and a local
density normalization of 12%, all as measured by Jurić et al.
(2008)3. We also assume Gaussian metallicity distributions
with means〈 [M/H]thin〉 = −0.1 and〈 [M/H]thick〉 = −0.78
and dispersionsσ [M/H]thin

= 0.2 andσ [M/H]thick
= 0.3 (simi-

lar to the intermediate-old thin and thick disk populationsof
Robin et al. 2003, respectively). We estimate the fraction of
each population by integrating between the given ranges of
metallicities and heights. For samples (2) and (4) we assume
a maximum height of 1.5 kpc.

The population fractions estimated with the two methods
(RAVE-fit and fit 2) indicate that the contamination of thick
disk stars in sample (1) is very low. On the other hand, sam-
ples (2), (3) and (4) are clearly dominated by the thick disk as
desired.

3. STATISTICAL ANALYSIS

In Fig. 1 we show the velocity distributions of the different
samples using scatter plots (left) and a kernel density estima-
tor (right, see caption for details). The velocity distribution of
the thin disk, subset (1), is not homogeneous and depicts over-
densities and asymmetries, as already reported in Antoja etal.
(2012) for RAVE thin disk stars. We see a clear asymmetry:
stars withvφ . 220 km s−1 are shifted to the left part of the
distribution (vR < 0). Interestingly, this asymmetry is visi-
ble in the thick disk subsets for both scatter and density plots
shown in the remaining panels.

To study this in more detail, we use the density field shown
in the right panels of Fig. 1 to compute the difference between
regions with positive and negativevR. In practise, ifσ+ is the
density in a certain pixel (vR, vφ) of the grid (of 2 km s−1 size)
andσ− is the number for the symmetric pixel (−vR, vφ), we
compute∆ = σ+ − σ−. This quantity is plotted in Fig. 2.
Red colors indicate∆ > 0 (more stars withvR > 0), and blue
colors∆ < 0.

The upper left panel in Fig. 2, corresponding to the thin disk
sample, clearly shows that the region withvφ & 240 km s−1

has an excess of stars withvR > 0, while the contrary is true
for vφ . 240 km s−1 . This separation is not at constantvφ for
all vR (i.e horizontal in thevR-vφ diagram) but rather varies
with vR. The other three panels, corresponding to the thick

2 The scale lenghts and density normalization of the disks areuncertain,
see e.g. Bensby et al. 2011).

3 Robin et al. (2003) gives a normalization of 27% for the intermediate-
age to old thin to thick disk. This would yield an even lower thin disk con-
tamination in samples (2) to (4).
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TABLE 1
PROPERTIES OF THE DIFFERENT CUTS.

N eZ edist2d evR evφ evZ e [M/H] RAVE-fit fit 2
kpc kpc km s−1 km s−1 km s−1 dex thin thick halo thin thick

1 [M/H] ≥ −0.1 dex |Z| ≤ 0.5 kpc 47883 0.05 0.05 5.0 4.3 3.3 0.10 96 4 0.599.8 0.2
2 [M/H] < −0.45 dex |Z| > 0.5 kpc 5123 0.38 0.13 15.7 15.1 5.2 0.100.2 88 11 13 87
3 [M/H] < −0.7 dex |Z| ≤ 0.5 kpc 21624 0.06 0.06 6.6 5.0 4.0 0.120.7 78 22 3 97
4 [M/H] < −0.7 dex |Z| > 0.5 kpc 2939 0.40 0.13 17.3 18.0 5.4 0.100.003 68 32 0.7 99.3

NOTE. — The first columns show the cuts, the number of stars N, median errors in vertical positionZ, in horizontal distance in the plane from the Sundist2d ,
in the velocity components (vR, vφ andvZ ), and in the metallicity [M/H]. The last 5 columns show the thin disk, thick disk and halo fraction of stars computed
according to different models (named RAVE-fit and fit 2, see text for caveats with respect to the estimated halo fraction).
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FIG. 1.— Velocities of stars in the different cuts of the RAVE dataset of Table 1. Left column: scatter plots. Right column: density obtained through the
Epanechnikov adaptive kernel density estimator method (Silverman 1986) with an adaptability exponent of 0.1. The density was estimated in a uniform grid of
2 km s−1 . The black contours indicate the following levels in units of the maximum density: 0.005, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.995.
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FIG. 2.— Differences in the density field (depicted in the right panels of Fig. 1) for stars with positive and negativevR for the different subsets. The density was
normalized to the number of stars in each sample and, therefore, the color bars indicate difference in the number of starsin each pixel of the grid (of 2 km s−1 ).
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FIG. 3.— Left: Difference in the number of counts between positive and negativevR , ∆ = (N+ − N−) (black curves) and the same number scaled to the total
number of stars in both bins̃∆ = (N+ − N−)/(N+ + N−) (red curves, right axis) as functionvφ for the different subsets. Right: MeanvR velocity for bins invφ for
the different samples.

disk subsets, depict a similar asymmetry. However, in these
cases, the asymmetry is not as sharp and clear as for the thin
disk set. This is probably due to the larger velocity errors and
to the lower number of stars, especially for samples (2) and
(4). Nevertheless, the asymmetry is very clear for sample (3),
and it is located roughly at the same velocities as for sample
(1). Despite limitations for samples (2) and (4), it is stillclear
that red colors dominate the half upper part of the distribution
while blue colors dominate in the other half4.

The left panel of Fig. 3 is a one-dimensional version of
Fig. 2, where we plot for eachvφ the difference between the
counts forvR > 0 (N+) and those forvR < 0 (N−). We
use the method presented in Scargle et al. (2013) and imple-
mented in VanderPlas et al. (2012) to bin the data invφ. It
is a non-parametric technique that finds the optimal data seg-
ments of variable size that maximize a certain fitness function
in a Bayesian likelihood framework and based on Poissonian
statistics. Although the binning choice is arbitrary, we have
checked that our conclusions do not change if we use bins of
equal size or bins with equal number of stars. For this figure
we plot also in red (right vertical axis) the relative asymmetry
in the counts, i.e.̃∆ = (N+ − N−)/(N+ + N−).

4 Note that a wrong assumption of the peculiar velocity of the Sun U⊙
would also produce an asymmetry in the counts ofvR > 0 with respect to
vR < 0, but this would be positive or negative everywhere and would not
depend onvφ as we see here. Note also that a different assumption of the
values forR0, V⊙ and V0 can not produce the observed asymmetries, only
shifting the positions or the velocityvφ.

This plot shows the trend already highlighted in the two-
dimensional plots of Fig. 2. There is a large asymmetry in the
counts towardsvR > 0 that peaks atvφ ∼ 230− 250 km s−1

and extends fromvφ ∼ 200 to∼ 275 km s−1 . A smaller but
significant (note the small errors) asymmetry∆ < 0 is de-
tected for velocities below∼ 200 km s−1 and at least down to
120− 140 km s−1 . This asymmetry is in a region of the ve-
locity plane with a lower number of stars, and is thus better
seen for the red curves which corresponds to the normalized
counts∆̃.

On the right panel of Fig. 3 we show the meanvR as func-
tion of vφ for all the subsets using the same binning as before.
The shape of these curves are similar to those on the left plot.
This is because an excess of counts for positivevR reflects
in a positive meanvR, and conversely. The change in sign
of the meanvR is significant for all four samples and occurs
at vφ ∼ 200− 220 km s−1 . It is noteworthy that the nega-
tive asymmetry seen both in the counts and in the meanvR
extends well into lowvφ, a region more often thought to be
characteristic of accretion events. For instance, this is where
the Arcturus stream is also located (Navarro et al. 2004).

For the thin disk sample (top panels of Fig. 3) we ob-
serve also other smaller bumps and more detailed features.
In particular, two clear positive peaks are seen both in the
counts∆̃ and in the meanvR. These are due to known kine-
matic over-densities in the Solar Neighborhood. Some hints
of similar bumps (e.g. atvφ ∼ 215− 220 km s−1 and at
vφ ∼ 250−260 km s−1 ) are also seen for the thick disk sample
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(3).
The results presented above are robust to the specific choice

of proper motion catalog, as we have checked that no signif-
icant differences are seen when using other catalogs, namely
UCAC2 and UCAC3 (Zacharias et al. 2010, and references
therein), Tycho-2 (Høg et al. 2000) and PPMXL (Roeser et al.
2010). We also obtained the same results when we scaled
the distances by factors of 0.8 and 1.2, i.e. assuming that the
distances were overestimated and underestimated by 20%, re-
spectively. Furthermore the choice of the volume of the cylin-
der has no effect on our results: stars with the same cuts but
located in a cylindrical ring of radius between 0.5 and 1. kpc
(dominated by giant stars instead of by dwarfs as in our initial
cylinder) show the same asymmetries.

As mentioned in Section 1, the main effect of the bar on the
local velocity distribution is a bimodality in the velocitydis-
tribution near the Outer Lindblad Resonance (Kalnajs 1991;
Dehnen 2000). This produces the Hercules stream, an excess
of stars with negativevR at velocities aroundvφ = 190 km s−1

(heliocentric velocityV ∼ −50 km s−1 ), and the dominant
mode of low-velocity stars centered around the local standard
of rest (vφ = 240 km s−1 ) and with an elongation through pos-
itive vR. We believe that the asymmetries that we observe have
the same origin.

4. DISCUSSION AND CONCLUSIONS

We have found clear asymmetries in thevR-vφ velocity dis-
tributions of thin and thick disk stars near the Sun. In the thin
disk such asymmetries are due to well-known over-densities
such as the Hercules stream, which has been explained by the
resonant effects of the bar near its OLR.

This is the first time that the same type of structures and
asymmetries are seen in the thick disk. The features are sig-
nificant for the three different thick disk samples considered
based on metallicity and height above the plane, which we
have estimated to have low contamination from thin disk and
halo stars. These findings suggest that the Galactic bar leaves
strong imprints on both the thin and thick disk.

It is clear that the observedvφ velocities are highly skewed,
not following a Gaussian distribution. Binney et al. (2014)
also showed that the radial and vertical velocities can not be
fitted by Gaussian functions not only due to moving groups
but also because they peak more sharply than Gaussians. Our
results also imply that the velocities of thick disk stars should
no longer be described by independent Schwarzschild, mul-
tivariate Gaussian or purely axisymmetric distributions:the
reported asymmetry is bothvφ andvR dependent. The RAVE
dataset has also shown peculiar vertical velocity patterns
(Williams et al. 2013) and other studies based on simulations
have found that the non-axisymmetries of the Galaxy can also
influence the vertical velocity distribution (Faure et al. 2014).
It follows that that dynamical models of the Galaxy must fit
the 3D velocity distributions, rather than the projected 1D.

Simulations show that the deformations and over-densities
of the velocity distribution caused by the bar change with po-

sition (both in radius and azimuthal angle) in the thin (e.g.
Dehnen 2000; Antoja et al. 2014) and in the thick disk as well
(Monari et al. 2013). This implies that the asymmetries in the
velocity distribution of the thick disk must change with spa-
tial position. Interestingly, rotational lags and asymmetries
in the thick disk were reported by Humphreys et al. (2011)
and Jayaraman et al. (2013), which may be further evidence
of this. Future modeling of the velocity distributions must
therefore be position dependent. One should notice that the
asymmetry projects differently on line of sight and transverse
velocity, creating different signatures.

This also implies that the nature of previously found sub-
structures in the thick disk needs to be revisited as these could
be associated with dynamical resonances rather than to accre-
tion events. Specifically, the Arcturus stream would seem to
be naturally explained in this way, being an extension towards
lower vφ velocities, which would also be favored given its
chemical abundances (Williams et al. 2009), and hence there
would be no need to invoke any accretion events nor ringing
due to a past merger event (Minchev et al. 2009). Also the
substructure reported by Gilmore et al. (2002) could perhaps
be explained along similar lines, although it was suggested
that this is part of a metal-weak thick disk (Kordopatis et al.
2013c). The role of the bar on the formation of such structures
should thus be investigated.

It is clear that with the advent of larger and more precise
samples of the disk kinematics we are entering a new era
where the classic velocity distribution models are not suffi-
cient and the effects of the non-axisymmetry in the disk have
to be taken into account in the modeling. This is particularly
relevant now given that in approximately two years time the
first Gaia data will be published and we expect to detect these
and perhaps other asymmetries far beyond the Sun.
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