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Abstract (250 words) 

Faults and fractures within the well-exposed Lower Jurassic Cleveland Ironstone and 

Whitby Mudstone formations may provide insights into the tectonic history of gas-

prospective, Mississippian shale in northern England. Sub-vertical opening mode fractures 

occur throughout the Cleveland Basin. Bed-parallel fractures, some of which contain 

blocky calcite fills, occur preferentially within well-bedded, clay-rich mudstones of the 

Cleveland Ironstone and Whitby Mudstone formations at Jet Wyke and Port Mulgrave. 

Sub-vertical fractures display abutting or curving-parallel relationships with under- and 

overlying bed-parallel fractures. Together, these observations suggest that bed-parallel 

fractures, at times, acted as free surfaces. Some bed-parallel fractures curve towards and 

branch from calcite-filled fault slip surfaces, indicating that bed-parallel fracturing and 

normal faulting were synchronous, occurring within a regional stress field with vertical 

maximum principal stress. This apparent paradox can be explained by normal compaction, 

followed by cementation and coupling between pore pressure and minimum horizontal 

stress driven by poroelastic deformation or incipient slip along critically stressed normal 

faults, causing elevation of horizontal stress in excess of the vertical stress within clay-rich 

units. Propagation of bed-parallel fractures was enhanced by dilatational strains adjacent 

to normal fault planes. Bed-parallel fractures have not been observed within more SiO2-

rich units at the top of the Whitby Mudstone Formation at Whitby East Cliff, or within well-

bedded, clay-rich shale at Saltwick Nab. This observation is consistent with the lack of 

normal faulting at Saltwick Nab, and the Whitby Mudstone Formation having been drained 

by structural and/or stratigraphical juxtaposition against permeable Middle Jurassic 

sandstones at both these localities.  

 



Introduction 

Shale gas exploration in the UK is in its infancy. The British Geological Survey has 

recently produced a resource estimate for the Carboniferous (Mississippian) Bowland-

Hodder shale unit in northern England, with total gas-in-place estimates of 822 (P90), 

1329 (P50) and 2281 (P10) trillion cubic feet (Andrews, 2013). However, there are 

insufficient data to yet estimate the recovery factor or potential reserves. 

US experience has shown that natural fractures are important for producing shale gas. 

Natural fractures, bedding planes and minor faults may reopen or reactivate during 

hydraulic stimulation, so understanding the geometry of natural fracture systems, and the 

relationship between natural fractures and minor faults, is important for efficient design of 

hydraulic fracture treatments and optimising recovery (e.g. Gale et al., 2007; Thiercelin 

and Makkhyu, 2007; Warpinski et al., 2009; Zoback et al., 2012). 

Fault and fracture data from the Bowland-Hodder shale unit are limited within the 

prospective area covered by the Andrews (2013) assessment, owing to the low density of 

wells, limited availability of 3D seismic reflection data, and generally poor exposure where 

the Bowland-Hodder shale unit occurs at outcrop. The aim of this study is to investigate 

the nature and distribution of burial-related natural fractures within the better-exposed 

Lower Jurassic Cleveland Ironstone (Pliensbachian) and Whitby Mudstone (Toarcian) 

formations of the Cleveland Basin, NE England (Figs 1, 2 and 3). Part of the Cleveland 

Basin overlies a Carboniferous (Mississippian) depocentre (Fraser and Gawthorpe, 2003), 

which locally contains > 3000 m of Bowland-Hodder shale unit (fig. 18 of Andrews, 2013). 

Structural studies of the Cleveland Ironstone and Whitby Mudstone formations may 

provide insight into the processes that controlled the post-Triassic tectonic history and 

fracturing of the Bowland-Hodder shale unit in NE England. Our specific objectives are to 

evaluate the controls of (1) lithostratigraphic variability, (2) regional variations in burial, 

diagenetic and tectonic histories, and (3) the occurrence of minor faults on natural fracture 



development within the Cleveland Basin. This study draws extensively upon an existing 

body of research into naturally fractured black shales in US shale gas basins (e.g. Lash 

and Engelder, 2005; Gale et al., 2007; Engelder et al., 2009; Pashin et al., 2012). 

The Cleveland Ironstone and Whitby Mudstone formations are well exposed in cliff 

sections and on clean, wave-washed platforms along the North Yorkshire coast (Fig. 1; 

Rawson and Wright, 2000). Importantly, a litho- and chronostratigraphic framework in 

which to understand fault and fracture evolution has already been established (Howarth, 

1955, 1962; Powell, 1984; Rawson and Wright, 1996; Cox et al., 1999; Powell, 2010). The 

Whitby Mudstone Formation includes the “Jet rock” (an informal, lithostratigraphic division; 

Fig. 3), with total organic carbon (TOC) content that locally exceeds 18 % (e.g. McArthur et 

al., 2008). The Cleveland Ironstone and Whitby Mudstone formations also contain leaner 

intervals characterised by variable quartz, carbonate and clay contents. Prior to 

exhumation, the Whitby Mudstone Formation and, by inference, the underlying Cleveland 

Ironstone Formation was buried to the early oil window (Williams, 1986; Sælen et al., 2000; 

Kemp et al., 2005; French et al., 2014). The Cleveland Ironstone and Whitby Mudstone 

formations may therefore provide useful analogues to help understand structural 

processes operating within prospective self-sourced shale reservoirs elsewhere in the UK, 

including the Bowland-Hodder shale unit in northern England (Andrews, 2013), and the 

Lower Jurassic (Liassic) shale of the Weald Basin, SE England (Department of Trade and 

Industry, 2003, p. 42). 

We start by defining key terms and summarising the geological history of the Cleveland 

Basin. We then describe the lithostratigraphy of the Cleveland Ironstone and Whitby 

Mudstone formations, and present observations of faults and fractures within the 

Cleveland Ironstone Formation at Jet Wyke, and the Whitby Mudstone Formation at Port 

Mulgrave, Whitby East Cliff and Saltwick Nab. Together, these localities lie along a 

discontinuous, ca. 15 km long coastal transect (Fig. 1). By way of comparison, UK 



Petroleum Exploration and Development Licence (PEDL) 165, which includes part of the 

prospective Bowland-Hodder shale unit resource in northern England, covers an area of 

ca. 30 x 40 km (Department of Energy and Climate Change, 2014). Our findings suggest 

that fracture patterns in UK shale basins are likely to be heterogeneous over distances < 

15 km, i.e. on a scale smaller than some existing UK shale gas exploration licences. We 

suggest that these spatial and stratigraphic variations are effectively unpredictable in the 

absence of detailed knowledge of the lithostratigraphy, and burial, diagenetic and tectonic 

histories across the license area. 

 

Definitions and approach 

Throughout this study, we take “fracture” to mean a vein or joint, i.e. an opening-mode 

discontinuity with or without mineral fill. “Shear fracture” denotes a structure characterised 

by measurable shear displacement across its boundaries, but lacking well-developed fault 

rock. A “fault” is defined as a structure with measurable shear displacement across its 

boundaries, which contains fault rock. Where possible, we establish the relative ages of 

different fracture sets based on observed abutting and cross-cutting relationships (Dyer, 

1988; Engelder, 1993). At the Whitby East Cliff locality, we are able to place broad limits 

on the absolute timing of fracture growth by analyzing the cross-cutting relationships 

between the dominant fracture sets and the region-wide Middle Jurassic (Aalenian) 

unconformity (see below). However, recognizing the difficulty in correlating fracture sets on 

a regional basis (see discussion in Engelder, 1993, p. 53-56), we further attempt to use 

cross-cutting and/or branching relationships to define the relative ages of fracture sets with 

respect to minor faults observed at Jet Wyke, Port Mulgrave and Whitby East Cliff. 

Underlying this approach is the assumption that the minor faults formed during 

recognisable tectonic events and the type of faulting (i.e. normal, reverse, strike-slip) 

reflects the orientation of the principal stresses at the time of slip (Anderson, 1951, cf. 



Addis et al., 1996). Other terms used within this paper are listed and defined in Table 1. 

 

Geological Setting of the Cleveland Basin 

Burial and tectonic subsidence 

The Cleveland Basin was an important Jurassic depocentre linked via the Sole Pit Basin to 

the North Sea Basin (Ziegler, 1982). It was bounded to the south by the Market Weighton 

High, and to the north and west by the Mid North Sea and Pennine Highs, respectively. 

Eroded remnants of this Jurassic depocentre crop out in NE England (Fig. 2a). 

Fraser and Gawthorpe (2003) recognised a phase of Mississippian rifting in northern 

England. Backstripped (water loaded) tectonic subsidence curves derived from onshore 

borehole data from across the Cleveland Basin (Fig. 2b; Dixon, 1989) display < 800 m 

rapid tectonic subsidence during latest Permian to earliest Triassic times, followed by 

decreasing rates of tectonic subsidence throughout the Mesozoic. Dixon (1989) argued 

that these tectonic subsidence curves are consistent with major, late Permian to earliest 

Triassic rifting, followed by thermal subsidence. The shape of the curves is consistent with 

a stretching factor (β) between 1.2 and 1.25, assuming instantaneous, uniform stretching 

(Dixon, 1989).  

Despite the generally decreasing rate of tectonic subsidence throughout the Mesozoic, 

data obtained from the Fordon 1 and Staithes 4 boreholes highlight three periods of more 

rapid subsidence (< 300 m) that took place during the Early Jurassic, Late Jurassic and 

Cretaceous (arrows, Fig. 2b). These periods may have been associated with active 

faulting within and along the margins of the Cleveland Basin. Nevertheless, average burial 

rates remained low (< 20 m Myr-1) throughout Late Jurassic to Palaeogene times (e.g. see 

fig. 12 of Williams, 1986).  

Local tectonic activity, including movements on N-S to NNW-SSE striking normal faults 



(Runswick Bay fault, Whitby Harbour fault, Peak fault; Fig. 2a) in the vicinity of our study 

area took place during Early, Middle and Late Jurassic to Early Cretaceous times (Milsom 

and Rawson, 1989). Field relationships (Howarth, 1962; Alexander, 1986; Alexander and 

Gawthorpe, 1993) and interpretations of seismic reflection profiles (Milsom and Rawson, 

1989) demonstrate that changes in sediment thickness and/or facies take place across 

these faults within the Lower Jurassic Whitby Mudstone and Middle Jurassic Saltwick 

formations. These observations suggest that movements on the Runswick Bay, Whitby 

Harbour and Peak faults were, at least in part, syn-sedimentary and led to subtle, localised 

topographic expressions during the Early and Middle Jurassic epochs. It is not clear 

whether these syn-sedimentary normal faults are thin-skinned, or the upward continuation 

of Carboniferous “basement” or Late Permian faults (cf. Fraser and Gawthorpe, 2003). For 

example, seismic reflection profiles presented by Milsom and Rawson (1989) suggest that 

the Peak fault – the largest Jurassic syn-sedimentary fault exposed within the Cleveland 

Basin – detaches on the underlying Triassic shales and Zechstein (Permian) evaporites. 

In summary, we infer tectonic subsidence during deposition of the Lower Jurassic 

Cleveland Ironstone and Whitby Mudstone formations was primarily controlled by thermal 

re-equilibration following late Palaeozoic to early Triassic rifting, locally modified by 

displacements along N-S to NNW-SSE striking syn-sedimentary normal faults. Such a 

tectonic environment is likely to have been characterised, at least on a regional scale, by 

vertical maximum principal stress, i.e. Sv = σ1 (Table 1). 

 

Exhumation and inversion 

The Jurassic succession within the Cleveland Basin is cut by a number of unconformities. 

The key unconformity surface for the purposes of this study is that which separates the 

Lower Jurassic Whitby Mudstone Formation from the Middle Jurassic (Aalenian) Dogger 



and Saltwick formations (Fig. 3). The Lower Jurassic succession is thickest in the east (i.e. 

along the coast) and thins regionally southward onto the Market Weighton block, a long-

lived paleo-high in the footwall of the Flamborough fault zone (Figs 2a, c). The Lower 

Jurassic also thins locally along the coast, between Whitby and Ravenscar (Fig. 2c). This 

local thinning can, at least in part, be attributed to ca. 60 m uplift and erosion of the (then) 

still poorly lithified sediments comprising the uppermost Whitby Mudstone Formation 

during latest Toarcian to earliest Aalenian times (Powell, 2010). At the same time, uplift in 

the western part of the basin led to exhumation of deeper stratigraphic levels within the 

Whitby Mudstone Formation (Grey Shale Member). This variability in intra-Jurassic burial 

and exhumation histories has implications for understanding natural fracture development 

across the Cleveland Basin, as discussed below. 

The Jurassic rocks within the Cleveland Basin reached their maximum burial depth during 

latest Cretaceous to earliest Paleogene (Williams, 1986; Green, 1989; Bray et al., 1992) or 

Oligo-Miocene (Holliday, 1999) times. The presence of mixed layer clays, which contain 90% 

illite within Lower Jurassic mudstones, suggests a maximum burial depth of ca. 4 km 

(Kemp et al., 2005). The basin was subsequently inverted, producing the broadly E-W 

trending Cleveland anticline, and associated minor fold structures (Hemingway and Riddler, 

1982; Fig. 2a). The precise timing of inversion is uncertain, but occurred sometime 

between the latest Cretaceous to Neogene (Powell, 2010). Tectonic inversion is likely to 

have been characterised, at least on a regional scale, by vertical minimum principal stress, 

i.e. Sv = σ3 (Table 1). 

 

Lithostratigraphy of the Cleveland Ironstone and Whitby Mudstone 

Formations 

The Pliensbachian Cleveland Ironstone Formation is ca. 25 m thick (Powell 2010) and 



crops out on the coast between Staithes and Brackenberry Wyke (Fig. 1; 0.7876°W, 

54.5593°N to 0.7739°W, 54.5537°N (decimal longitude and latitude, WGS84)). According 

to Macquaker and Taylor (1996), the Cleveland Ironstone Formation comprises four 

distinct lithofacies: clay-rich mudstones, silt-rich mudstones, sand-rich mudstones and 

concretionary carbonates (the latter include the eponymous sideritic ironstone horizons). 

These lithological units stack to form small-scale upward-coarsening packages (0.1 to 1 m 

thick). Upward-coarsening and upward-fining packages are also recognised on a larger (1 

to 3 m) scale (Macquaker and Taylor, 1996; Fig. 3, inset). The mean ratio of 

(silt+sand+carbonate+shell fragments) to (silt+sand+carbonate+shell fragments+clay) is 

3.9%, 13%, 31% and 76% in clay-rich, silt-rich and sand-rich mudstone, and concretionary 

carbonate, respectively (Macquaker and Taylor, 1996; Fig. 3, inset). By contrast, total 

organic carbon (TOC) is uniformly low, with mean values of 0.7%, 0.91% and 0.75% in the 

clay-rich, silt-rich and sand-rich mudstones, respectively (Taylor and Macquaker, 2000; Fig. 

3). 

The Toarcian Whitby Mudstone Formation is ca. 70 m thick (< ca. 105 m thick in the 

hanging wall of the syn-sedimentary Peak fault; Fig. 2a) and crops out along the coast 

between Blackenberry Wyke and Sandsend (-0.7739°W, 54.5537°N to 0.6719°W, 

54.5050°N), and Whitby East Cliff to White Stone Hole (0.6105°W, 54.4917°N to 

0.5346°W, 54.4567°N). For our purposes, it is useful to divide the Whitby Mudstone 

Formation into 6 informal lithostratigraphic units, based on Howarth’s (1962) detailed 

lithostratigraphic and palaeontological analysis (oldest to youngest; Fig. 3): Grey shale 

(corresponding to the Grey Shale Member of the Whitby Mudstone Formation; Fig. 3), Jet 

rock and Bituminous shale (corresponding to the Mulgrave Shale Member of the Whitby 

Mudstone Formation), and Hard shale, Main Alum shale and Cement shale (corresponding 

to the Alum Shale Member of the Whitby Mudstone Formation). We focus on the Jet rock, 

Bituminous shale and Cement shale intervals. 



The Jet rock (ca. 7.5 m thick) and overlying Bituminous shale (ca. 23 m thick) comprise 

thinly-bedded mudstone and siltstone layers (beds typically < 2 cm thick). These layers 

define small-scale fining upward sequences (< 5 cm thick), with evidence for scouring at 

the base of silty layers. The Jet rock contains abundant diagenetic carbonate concretions 

(e.g. Raiswell, 1976, 1982; Raiswell and White, 1978) and is capped by a laterally 

continuous carbonate bed with abundant coccoliths (Sælen et al., 2000; “Top Jet dogger”; 

Fig. 3) ( “dogger” is an historical ironstone mining term that refers to hard carbonate beds 

or concretions). Bedding planes appear to bend around individual concretions, an 

observation which suggests that the concretions formed prior to lithification of the Jet rock, 

probably within 3 m of the palaeo-sea floor (Raiswell, 1976). Other evidence for early 

cementation and breaks in sedimentation within the Jet rock include the presence of 

mineralised biofilms (< 0.5 cm thick) and authigenic dolomite rhombs (Pye and Krinsley, 

1986). Early-formed carbonate concretions are also present in the Bituminous shale, but 

are smaller and less abundant than in the Jet rock (Fig. 3). 

The Jet rock has a mean TOC of 6.5%, reaching a maximum of 18.2% within beds 35-36 

(McArthur et al., 2008, following Howarth’s, 1962 bed numbering scheme; Fig. 3). By 

contrast, SiO2, Al2O3 and K2O all decrease to minima of 32 weight (wt) %, 11 wt% and 2 

wt%, respectively, within this stratigraphic interval (Pye and Krinsley, 1986; Fig. 3). These 

minima reflect the relatively high concentration of organic material, and correspondingly 

lower concentrations of detrital quartz and clay. The SiO2/Al2O3 ratio, however, reaches a 

local maximum (2.9) within the Jet rock (Pye and Krinsley 1986; Fig. 3). The increase in 

the SiO2/Al2O3 ratio could be caused by enhanced input of either biogenic silica or 

terrigenous quartz, or decreased input of clay. Zr is associated with the heavy mineral 

zircon, and is a proxy for silt-sized terrestrial input into the basin (Ratcliffe et al., 2012). 

There is a positive correlation between SiO2 and Zr (n = 21, r = 0.758) within the Whitby 

Mudstone Formation (Fig. 3), implying that the increase in SiO2/Al2O3 ratio is consistent 



with increased input of detrital quartz during deposition of the Jet rock. This interpretation 

is consistent with the lack of petrographic evidence for biogenic silica within this interval. 

The abundance of CaO is high, but variable (4.1 wt% to 7.4 wt%; Fig. 3).  

The Bituminous shale has a mean TOC of 3.1%, with the highest value (4.6%) recorded in 

the interval directly above the Jet rock (McArthur, et al. 2008; Fig. 3). SiO2, Al2O3 and K2O 

are typically higher in the Bituminous shale than in the Jet rock, and have mean values of 

47 wt%, 21 wt% and 3.2 wt%, respectively. CaO has a mean abundance of 3.1 wt%. The 

SiO2/Al2O3 ratio has a maximum value of nearly 2.5 directly above the Top Jet dogger, but 

decreases upwards, reaching a near-constant value of ca. 2.1 (Pye and Krinsley, 1986; 

Fig. 3). This observation suggests that clastic input during deposition of the Bituminous 

shale may have been dominated by clay minerals, rather than quartz. 

Based on quantitative mineralogical data presented by Kemp et al. (2005) and Jeans 

(2006), the ratio of (quartz+carbonate) to (quartz+carbonate+clay) within the Jet rock and 

Bituminous shale varies from 27% to 33% (Fig. 3). According to Gad et al. (1968), the 

proportions of sand (> 50 μm), silt (2 to 50 μm) and clay (< 2 μm) particles in the Jet rock 

are 0.01%, 48.0% and 52.0%, respectively. The corresponding proportions within the 

Bituminous shale are 0.1%, 44.7% and 55.2%, respectively.  

Kemp et al. (2011) presented high-resolution organic carbon, sulphur and carbonate 

concentration data for two intervals (beds 21 to 34 and 41 to 43; Fig. 3) within the Grey 

Shale, Jet rock and Bituminous shale. These authors conducted spectral analysis and 

identified regular cyclicity in CaCO3, TOC and S (sulphur) with a wavelength of ca. 60 cm 

within the lowermost part of the Bituminous shale (corresponding approximately to 

Howarth’s (1962) beds 41 to 43; Fig. 3). An additional spectral peak is also present in 

CaCO3 and S with a wavelength of ca. 112 cm. Kemp et al. (2005, 2011) argued that the 

observed cyclicity was controlled by astronomical forcing (e.g. obliquity or precession). As 

such, the cyclicity observed in CaCO3, TOC and S may reflect cyclic changes in the 



broader mineralogy and sedimentology of the Bituminous shale, a point we return to below. 

Outside the Peak Trough (a NNW-SSE striking graben bounded by the syn-sedimentary 

Peak fault; Milsom and Rawson, 1989), the Cement shale (ca. 6 m thick) marks the top of 

the Whitby Mudstone Formation and lies directly below the unconformable Middle Jurassic 

(Aalenian) Dogger and Saltwick formations. In contrast to the Jet rock and Bituminous 

shale, bedding within the Cement shale is poorly defined, possibly as a result of 

bioturbation. Macroscopic trace fossils are observed from Bed 53 of the Main Alum shale 

upwards, and pyritized burrows are common in the Cement shale. The Cement shale 

contains numerous diagenetic carbonate concretions (Fig. 3) that occur within irregular 

layers, and dispersed throughout the rock matrix. The Cement shale has a mean TOC of 

1.2 % (McArthur et al., 2008) and mean values of SiO2, Al2O3, K2O and CaO of 54 wt %, 

22 wt %, 3.1 wt % and 0.42 wt %, respectively. The mean SiO2/Al2O3 ratio is 2.4 (Pye and 

Krinsley, 1986; Fig. 3), suggesting greater input of quartz and lower input of clay minerals 

into the basin during deposition of the Cement shale, compared with the underlying 

Bituminous shale. Quantitative mineralogical data for the Cement shale are limited, but the 

ratio of (quartz+carbonate) to (quartz+carbonate+clay) is around 32 % (Kemp et al., 2005; 

Fig. 3). According to Gad et al. (1968), the proportions of sand (> 50 μm), silt (2 to 50 μm) 

and clay (< 2 μm) particles in the Cement shale are 1.5 %, 45.0 % and 53.5 %, 

respectively. 

 

Summary of basin history and lithostratigraphy 

This review of the lithostratigraphy and burial, inversion and exhumation histories 

highlights three points. First, the variable abundances of quartz, carbonate, clay and TOC 

suggest that the elastic properties of the Cleveland Ironstone and Whitby Mudstone 

formations are unlikely to be homogeneous (cf. Rickman et al., 2008; Aoudia et al., 2010). 



Second, the well-developed bedding in the Cleveland Ironstone Formation, Jet rock and 

Bituminous shale, but not the Cement shale, suggests that the former, but not the latter, 

are likely to display anisotropic tensile strength. Third, the regional differences in burial, 

exhumation and diagenetic histories suggest that otherwise similar lithostratigraphic units 

may have followed different stress paths in different parts of the basin (e.g. Mayne and 

Kulhawy, 1982; Jones, 1994; Goulty, 2003). All these factors are likely to influence the 

style and abundance of natural fractures.  

Ideally, we would follow a quasi-experimental approach to investigate how each factor (e.g. 

development of bedding) in turn influences the style of deformation, with all other factors 

(e.g. SiO2/Al2O3 ratio, etc.) being constant. Unfortunately, the available outcrop means we 

are restricted in the number of possible comparisons, and can only draw qualitative 

inferences on the importance of each factor in controlling faulting and fracturing. A further 

limitation is that we focus on natural fractures that we can reasonably infer to have 

developed during burial, prior to exhumation. Excluding possible inversion-related 

structures obviously ignores an important part of the structural evolution, but removes 

uncertainty that could impede generic understanding of processes that may have 

controlled fracture development in the Cleveland Basin. The studied outcrops, and their 

key lithological, geochemical and structural characteristics are summarised in Figure 1 and 

Table 2. 

 

Faults and Fractures in the Cleveland Basin 

Cleveland Ironstone Formation at Jet Wyke 

We focus on faults and fractures within the interval between the Osmotherley and Raisdale 

(ironstone) seams (Fig. 3), the upper part of which was studied in detail by Macquaker and 

Taylor (1996). At Jet Wyke, the Cleveland Ironstone Formation dips gently towards the 



east, and is cut by segmented, N-S to NNW-SSE striking faults. These faults display 

apparent normal separations, with throws typically in the range 1 m to 5 m (Fig. 4a). The 

largest faults dip towards the W at 40° to 60°, and are associated with zones of shale 

gouge and breccia, up to 1 m thick. Where present, slickenlines (grooves) on slip surfaces 

at the edge of gouge zones consistently plunge down-dip. We infer that normal faulting 

probably occurred during basin subsidence, at a time when the regional stress field was 

characterised by Sv = σ1. However, there is no evidence at Jet Wyke for across-fault 

changes in sediment thickness or facies, indicating that the faults exposed on the 

foreshore initiated after deposition of the Cleveland Ironstone Formation. 

Two swarms of bed-parallel veins, with blocky calcite fills, give rise to distinct erosive 

notches in cliff sections (white arrows in Fig. 4a). These notches can be traced for ca. 400 

m around Jet Wyke, and maintain near-constant stratigraphic height – ca. 2.7 m and 1.2 m 

below the base of the Avicula Ironstone Seam and Raisdale seam (Fig. 3), respectively –  

within each fault-bounded block. Comparison with Macquaker’s and Taylor’s (1996) 

detailed lithostratigraphic data shows that the bed-parallel veins beneath the Raisdale 

seam occur where the (sand+silt) to clay ratio < 0.2 (Fig. 3, inset), i.e. within clay-rich parts 

of the succession. Mineralogical ratios are not available for the interval between the 

Osmotherley seam and Avicula Ironstone Seam, but it is apparent from field observations 

and the published lithological log of the Cleveland Ironstone Formation (Rawson and 

Wright, 2000; Fig. 3) that the bed-parallel veins beneath the Avicula Ironstone Seam also 

occur within a clay-rich interval. 

In detail, notches contain single or multiple (Fig. 4b) bed-parallel veins. The continuity of 

individual bed-parallel veins is variable, and individual veins locally display low-angle 

discordance to bedding (Fig. 4b). Narrow (< 1 cm thick), laterally discontinuous bands of 

brecciated shale are occasionally seen along the upper margins of bed-parallel veins. 

More commonly, irregularities in the vein wall can be matched directly across bed-parallel 



vein fills (Fig. 4c), so we infer an opening mode origin with possible minor shear 

reactivation. The presence of calcite-filled, bed-parallel fractures is consistent with the pore 

fluid pressure (Pp) having been equal to the overburden stress (Sv) at the time of fracture 

opening. This observation appears to contradict our inference that, regionally, Sv = σ1, and 

is discussed further below (Analysis).  

Sub-vertical fractures, with or without thin calcite fills, abut downwards onto bed-parallel 

veins (Fig. 4a). Sub-vertical fractures below the Avicula Ironstone Seam are regularly 

spaced at ca. 1 m intervals, whilst sub-vertical fractures within the Avicula Ironstone Seam 

itself are more closely, albeit regularly spaced. Fracture surfaces display well-developed 

plumose markings and elliptical arrest lines, which are consistent with tensile (Mode 1) 

opening (e.g. Bahat and Engelder, 1984; Fig. 4d). The abutment relationship suggests that 

the sub-vertical fractures formed whilst the bed-parallel veins remained open.  

 

Jet Rock and Bituminous Shale (Whitby Mudstone Formation) at Port Mulgrave 

The exposures at Port Mulgrave lie in the hanging wall of the syn-sedimentary Runswick 

Bay fault (Fig. 2a), which crops out ca. 900 m to the east of the studied localities, but was 

poorly exposed at the time of writing. The pattern of faulting is complex (see plate 26 of 

Howarth, 1962), and appears to comprise two main sets: (1) N-S to NNW-SSE striking 

faults, parallel or sub-parallel to the Runswick Bay fault; and (2) WNW-ESE striking faults. 

The WNW-ESE striking faults dip moderately towards the SW or NE (35° to 55°) and are 

associated with gently pitching calcite slickenfibres (Fig. 5a). The geometries of sigmoidal 

veins, viewed in surfaces approximately parallel to the slickenfibres and which contain the 

pole to the fault plane, are consistent with dextral-oblique slip along these WNW-ESE 

faults. Such dextral-oblique movement can explain the reverse separation (ca. 50 cm) of 

the Top Jet dogger (bed 39 on Fig. 3) across a prominent WNW-ESE striking fault at 



0.7684°W, 54.5462°N. 

A ca. 5 m wide fault zone, bounded by two NNW-SSE striking faults is exposed at 

0.7673°W, 54.5458°N. The bounding faults dip moderately to steeply (52° to 84°) towards 

the east or west, and are associated with gently to moderately (8° to 46°) SSE-plunging 

slickenlines (Fig. 5a). Rotation of beds within the fault zone is consistent with sinistral-

oblique slip across the entire zone. Together, the dextral- and sinistral-oblique slip faults 

appear to form a conjugate set that presumably developed at a time when Sv = σ2. We 

infer that these faults were active during latest Cretaceous to Neogene basin inversion; 

these postulated inversion-related faults and associated minor structures are not 

considered further here.  

The majority of faults at Port Mulgrave strike NNW-SSE and dip moderately (26° to 64°) 

towards the W or E (Fig. 5b). The faults typically contain poorly consolidated shale gouge 

(< 1 m thick; Fig. 5c), containing variable abundances of calcite veins. Slip surfaces along 

the margins of shale gouge layers contain down-dip to steeply pitching grooves or calcite 

slickenfibres, indicative of dip-slip displacement. Drag of beds adjacent to slip surfaces 

(Fig. 5c), the presence of calcite- and/or bitumen-stained dilatational jogs along slip 

surfaces (Fig. 5d), the sense of rotation of carbonate concretions caught up within fault 

zones (Fig. 5c), and dip separation (ca. 1 m) of distinctive marker beds (e.g. bed 35, Fig. 3; 

Zijp et al., 2014) are all consistent with normal movement. We therefore infer that such 

faults developed at a time when Sv = σ1, most likely during basin subsidence. There is no 

evidence for across-fault changes in sediment thickness or facies within the Whitby 

Mudstone Formation at Port Mulgrave, which suggests that these normal faults initiated 

after deposition of the Jet rock and Bituminous shale sequence. 

Fracture patterns within the Jet rock and Bituminous shale at Port Mulgrave are 

qualitatively similar to those observed within the Cleveland Ironstone Formation at Jet 

Wyke. The rock volumes surrounding the normal faults contain arrays of bed-parallel and 



sub-vertical fractures (Figs 6a, b) with absent to well-developed calcite infills. Bed-parallel 

fractures appear to be particularly common within the Bituminous shale (Fig. 6c).  

It is difficult to correlate bed-parallel fractures across normal faults (similar to Jet Wyke), 

despite the small, metre to sub-metre scale fault displacements. This observation suggests 

that bed-parallel fractures did not behave as passive markers and, taken in their entirety, 

do not pre-date normal faulting. Many individual bed-parallel fractures terminate abruptly 

against fault slip surfaces, indicating they pre-date the final slip increment. However, 

calcite-filled bed-parallel fractures in the hanging wall of an ENE-dipping normal fault 

(0.7682°W, 54.5465°N) curve towards (in a concave-up sense) and merge with the calcite-

lined principal slip surface (Fig. 6d). Together, these relationships suggest that the bed-

parallel fractures probably formed during the same geological event as the normal faults, 

i.e. within a regional stress system in which Sv = σ1. This apparent contradiction is 

discussed further below. 

Within the clay-rich Bituminous shale, bed-parallel fractures are regularly spaced between 

70 and 150 cm (Fig. 6c). This range of fracture spacings is comparable to the dominant 

wavelengths of cyclicity in CaCO3, S (sulphur) and TOC (ca. 60 cm and 112 cm) recorded 

within the lower part of the Bituminous shale (Kemp et al., 2011). Some gently-dipping 

fractures are locally discordant to bedding and in places appear to merge with gently-

dipping, gouge-lined slip surfaces (Fig. 6c). This observation suggests that at least some 

bed-parallel fractures have accommodated bed-parallel shear. Nevertheless, many bed-

parallel fractures contain blocky, inward-coarsening calcite fills (Fig. 6e; cf. syntaxial veins 

defined by Bons et al., 2012) with no evidence for shear displacement even where veins 

are locally discordant to bedding. These textures suggest that many bed-parallel fractures 

originated as opening mode structures that were held open for sufficient time to allow 

crystallisation into void spaces.  

Sub-vertical fractures abut downwards and upwards onto bed-parallel fractures, an 



observation which is consistent with the bed-parallel fractures having provided a free 

surface, and supports the contention that these fractures were, at times, open. Elsewhere 

in the same outcrop, sub-vertical fractures curve, in a concave-up sense, as they approach 

and merge with underlying bed-parallel fractures (Fig. 6f). This curvature could either 

result from a component of shear stress acting along a (closed) bed-parallel fracture, or 

from propagation of an initially sub-vertical joint towards an open bed-parallel fracture, 

assuming the effective crack-parallel stress was compressive, and the effective crack-

normal stress (Sv) was tensile (Dyer, 1988). Together, our observations likely suggest that 

the bed-parallel fractures were at times open (acting as free surfaces) and at other times 

closed (supporting a shear stress), possibly during minor shear reactivation. The presence 

of open, bed-parallel fractures is consistent with the pore fluid pressure (Pp) having been 

equal to the overburden stress (Sv). 

 

Cement Shale (Whitby Mudstone Formation) at Whitby East Cliff 

The exposures of Cement shale at Whitby East Cliff (Fig. 2a) lie directly below the 

uppermost Toarcian to lowermost Aalenian unconformity. The Cement shale is intensely 

faulted and fractured, and is cut by two main sets of structures: NNW-SSE striking faults 

and NNW-SSE striking, sub-vertical fractures (Figs 7a, b). Bed-parallel fractures similar to 

those observed at Jet Wyke and Port Mulgrave have not been observed. 

The NNW-SSE striking faults dip between 5° and 62° towards the WSW, and strike parallel 

to the Whitby Harbour fault (e.g. see fig. 2 of Alexander and Gawthorpe, 1993). Fault 

traces observed in the vertical cliff section form a linked network (Fig. 7b). The faults 

contain lenses of brecciated shale (< 2 cm thick) and – locally (see below) – calcite infills. 

Slickenlines or slickenfibres have not been observed, but faults consistently display normal 

separations (< 5 cm) where they cut carbonate concretions (Fig. 7b). Nevertheless, layers 

of carbonate concretions maintain fairly constant heights across the outcrop, which 



suggests the overall displacement across the entire fault network (which occupies a zone 

< 30 m wide) is small. We have not observed any across-fault changes in sediment 

thickness or facies, which suggests that the faults initiated after deposition of the exposed 

Cement shale. Similar to Jet Wyke and Port Mulgrave, we infer that normal faulting 

occurred at a time when the regional stress system was characterised by Sv = σ1, 

presumably during basin subsidence. 

Sub-vertical fractures contain intensely weathered, yellowish calcite fills and comprise two 

distinct groups. The first are short, irregular fractures (< 2 m) that branch upwards and 

downwards from fault surfaces (Fig. 7b). These fractures are ubiquitous throughout the 

outcrop. Less commonly observed are vertically continuous, albeit segmented fractures 

(Fig. 7c) that continue across the uppermost Toarcian to lowermost Aalenian unconformity 

to cut Middle Jurassic sediments of the Dogger and Saltwick formations. This observation 

suggests that the vertically continuous, sub-vertical fractures post-date deposition of the 

Saltwick Formation. Shear displacements have not been observed across sub-vertical 

fractures, which we infer to be opening mode in origin. 

In places, the fractures are segmented where they intersect fault surfaces (Fig. 7c). 

Individual segments terminate against the fault, and calcite mineralisation occurs along 

fault surfaces less than 10 cm from the intersection. Elsewhere, faults appear to terminate 

against vertically continuous, sub-vertical fractures. Fault terminations are marked by wide 

(< 10 cm thick) zones of shale breccia that become narrower away from the point of 

intersection. We infer that the breccia zones accommodate increased displacement 

gradients on fault surfaces, as they approach through-going fractures. Together, these 

relationships suggest that the faults and vertically continuous fractures formed during the 

same geological event, after deposition of the Middle Jurassic Dogger and Saltwick 

formations.  

 



Jet Rock and Bituminous Shale (Whitby Mudstone Formation) at Saltwick Nab 

The Bituminous shale and uppermost Jet rock are exposed in cliffs and platforms at 

Saltwick Nab (Fig. 2a). The Whitby Mudstone Formation at Saltwick Nab is not cut by 

faults, and is situated ca. 1500 m to the east of the west-dipping Whitby Harbour fault (i.e. 

within the footwall). 

The Bituminous shale is cut by sub-vertical NNW-SSE and WNW-ESE striking fractures 

and (rare) shear fractures (Figs 8a, b). Some fractures contain thin calcite fills. Plumose 

markings and elliptical arrest lines are preserved on the surfaces of NNW-SSE and WNW-

ESE fractures (Fig. 8c), which suggests that both sets originated as opening mode 

fractures. In contrast to Jet Wyke and Port Mulgrave, we have not observed bed-parallel 

fractures or veins at Saltwick Nab (Fig. 8b). NNW-SSE striking fractures abut WNW-ESE 

striking structures, and vice versa (Fig. 8d). In places, the two sets of fractures display 

crossing (“X”) intersections (Fig. 8d), indicating that one of the fractures was closed at the 

time the other propagated. Quantitative analysis of abutting and cross-cutting relationships 

suggests that the WNW-ESE fractures more commonly abut NNW-SSE fractures than the 

opposite relationship (Daniels et al., pers. comm., May 2014). Together, these 

observations suggest that the NNW-SSE striking fractures developed first, presumably 

within a stress field characterised by ENE-WSW minimum horizontal stress. Subsequent 

development of the WNW-ESE striking fractures may have taken place due to 

anticlockwise rotation of the minimum horizontal stress direction, giving rise to minor shear 

reactivation and renewed opening-mode propagation of the NNW-SSE fracture set. The 

timing of fracture development at Saltwick Nab is not well constrained. However, the 

similarity in inferred extension directions suggests that the NNW-SSE fractures at Saltwick 

Nab may have initiated at the same time as slip along the NNW-SSE striking faults and 

fractures at Whitby East Cliff, i.e. following deposition of the Middle Jurassic Dogger and 

Saltwick formations. 



 

Analysis 

Observations of faults and fractures in the Cleveland Ironstone and Whitby Mudstone 

formations show that: (1) Sub-vertical fractures and veins occur throughout the Cleveland 

Basin at Jet Wyke, Port Mulgrave, Whitby East Cliff and Saltwick Nab. (2) Bed-parallel 

fractures and veins occur preferentially within clay-rich lithologies at Jet Wyke and Port 

Mulgrave. These bed-parallel structures appear to have developed synchronously with 

normal faulting. The timing of normal faulting at the studied localities is not constrained 

precisely, but probably post-dates deposition of the Cleveland Ironstone and Whitby 

Mudstone formations and, at Whitby East Cliff, deposition of the Middle Jurassic Dogger 

and Saltwick formations. (3) Bed-parallel fractures are not observed within the Bituminous 

shale at Saltwick Nab, despite the well-developed bedding planes and clay-rich lithology. 

A key problem, therefore, concerns the development of sub-horizontal, bed-parallel 

fractures at a time when the regional stress field was likely characterised by Sv = σ1 (Lash 

and Engelder, 2005). The absence of bed-parallel fractures at Saltwick Nab suggests that 

the presence of well-developed bedding planes – which might suggest a marked, layer-

perpendicular strength anisotropy – was not the primary control on bed-parallel fracturing. 

To address this problem, we start by evaluating the possible causes of fluid overpressure 

during burial of the Cleveland Ironstone and Whitby Mudstone formations. Next, we 

consider the relationship between clay content and bed-parallel fracturing, following 

previous work by Lash and Engelder (2005). We then investigate the possible impact of 

pre-lithification exhumation of the Whitby Mudstone Formation on the local, latest Toarcian 

to earliest Aalenian stress field at Saltwick Nab. We conclude that clay content of the host 

rock and perturbation of the stress field due to normal faulting may have been the main 

factors that controlled the development and distribution of bed-parallel fractures in the 

Cleveland Basin. 



 

Overpressure generation within the Cleveland Basin 

Bed-parallel fracturing in horizontally-bedded rocks requires that Pp > Sv. Loading during 

burial can generate overpressure due to disequilibrium compaction, particularly during the 

rapid subsidence of low permeability, e.g. clay-rich sediments (Osborne and Swarbrick, 

1997). However, the slow burial rate during the Early Jurassic and subsequently suggests 

that disequilibrium compaction is unlikely to have been the primary cause of overpressure 

within the Cleveland Basin. 

Conversion of kerogen to hydrocarbon was a possible source of overpressure in the 

Cleveland Basin, consistent with burial of the Whitby Mudstone Formation into the early oil 

window (French et al., 2014). Sælen et al. (2000) noted the presence of oil in the 

chambers of ammonites preserved in the Jet rock. We have observed minor oil seeps from 

vugs along sub-vertical, calcite-filled fractures, and hydrocarbon staining within calcite-

filled dilatational jogs along normal faults that cut the Jet rock at Port Mulgrave. Given the 

maturity of the Whitby Mudstone Formation, any overpressure due to hydrocarbon 

maturation is likely to have been generated at or close to the maximum burial depth, a 

scenario consistent with overpressure generation under conditions of (approximately) 

constant vertical stress. 

Kemp et al. (2005) demonstrated that the Whitby Mudstone Formation contains illite-

smectite (I-S) mixed layer clays comprising 90 % illite. They suggested detrital smectite 

was transformed to I-S during burial. We infer that detrital smectite is likely to have been 

most abundant in clay-rich lithologies (i.e. clay-rich mudstone lithofacies of the Cleveland 

Ironstone Formation, lowermost Jet rock and the Bituminous shale). Release of 

structurally-bound water and/or dissolution of load-bearing grains due to conversion of 

smectite to illite could have contributed to overpressure generation during diagenesis 

(Osborne and Swarbrick, 1997; Lahann and Swarbrick, 2011). Depending on its 



composition, discrete smectite is likely to have disappeared at temperatures > 70 °C 

(Boles and Franks, 1979), which suggests that any contribution to overpressure caused by 

smectite to illite conversion may have initiated prior to or synchronous with oil generation 

in the Cleveland Basin. 

 

Bed-parallel fracturing in clay-rich units 

Lash and Engelder (2005) presented a detailed study of bed-parallel microfractures within 

the Upper Devonian Dunkirk Shale Member, New York State. They hypothesised that the 

local stress state within clay-rich layers may have favoured propagation of horizontal 

microfractures during burial, i.e. locally Sh > Sv. According to Lash and Engelder (2005), 

propagation of either horizontal or vertical opening mode fractures depends on the local 

uniaxial stress ratio, R (R = Sh / Sv), at the time of cementation, and the subsequent stress 

path, κ (κ = ΔSh / ΔPp), followed by the rock in Sh versus Pp space after cementation 

(Table 1). Propagation of vertical fractures is favoured when the stress path intersects the 

Sh = Pp line and R < 1 (i.e. Sh < Sv). Propagation of horizontal fractures is favoured when 

the stress path intersects the λ = 1 line (λ = Pp / Sv) and R > 1 (i.e. Sh > Sv) (Fig. 9). In 

general, drained compaction of clay-rich sediment will yield higher R values compared to 

drained compaction of sandy sediment (Lash and Engelder, 2005). In all cases, 

disequilibrium compaction will yield higher stress ratios than drained compaction (Fig. 9). 

Thus, depending on the slope of the stress path, κ, horizontal fractures are more likely to 

propagate within overpressured clay-rich lithologies subjected to disequilibrium 

compaction, than in sand-rich lithologies subjected to drained compaction (Lash and 

Engelder, 2005; Fig. 9). 

Lash and Engelder (2005) assumed that: (1) vertical stress was constant during pore 

pressure build-up within lithified Dunkirk Shale Member; (2) Dunkirk Shale Member 

underwent drained or undrained compaction prior to cementation; and (3) Sh and Pp were 



coupled after lithification, due to poroelastic deformation. Under these circumstances, Pp-

driven changes in Sh follow a stress path, κ, given by: 

  
   

   
  

    

   
  (Lash and Engelder, 2005)       (1) 

where α is the Biot coefficient and ν is Poisson’s ratio. We now consider the extent to 

which these assumptions were met during burial within the Cleveland Basin. 

Overpressure is likely to have developed when the Cleveland Ironstone and Whitby 

Mudstone formations approached their maximum burial depths. Of course, we cannot rule 

out a contribution to overpressure due to diagenesis and/or maturation of the underlying, 

more deeply buried Redcar Mudstone Formation (Sinemurian to Pliensbachian) (TOC 0.4% 

to 1.4%; van Buchem et al., 1995). Nevertheless, the low burial rate within the Cleveland 

Basin suggests that the assumption of (approximately) constant Sv during fracturing is not 

unreasonable. 

Normal compaction occurs when horizontally-bedded sediment undergoes purely vertical 

reduction in thickness. The horizontal stresses are isotropic during normal compaction, 

and the ratio of horizontal effective stress to vertical effective stress is known as the 

coefficient of earth pressure at rest, (Ko), defined as: 

   
     

     
  (e.g. Mayne and Kulhawy, 1982; Goulty, 2003).     (2) 

Normal faulting at Jet Wyke and Port Mulgrave initiated after deposition of the Cleveland 

Ironstone and Whitby Mudstone formations. At Whitby East Cliff, faulting post-dates 

deposition of the Middle Jurassic Dogger and Saltwick formations. Normal compaction of 

sediment could therefore have occurred at these localities during burial during 

Pliensbachian to Toarcian times, prior to faulting. 

According to Jones (1994), Ko depends on lithology, with typical values Ko > 0.7 for clays, 

0.3 ≤ Ko ≤ 0.4 for sands, and intermediate values for silts. The stress ratio, R, for 



consolidated sediment can be calculated from Ko:  
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  (Lash and Engelder, 2005).     (3)  

During normal compaction this variability in Ko means that clay-rich sediment – such as the 

Bituminous shale and clay-rich mudstone units of the Cleveland Ironstone Formation (see 

Fig. 3) – are characterised by a higher horizontal to vertical stress ratio (R) than sediment 

with lower clay content – such as the Cement shale and sand-rich mudstone and 

concretionary carbonate units of the Cleveland Ironstone Formation (Fig. 3) – assuming 

the same pore pressure gradient. 

Finally, we consider the likelihood that Pp and Sh were coupled due to poroelastic 

deformation following cementation of the Cleveland Ironstone and Whitby Mudstone 

formations. Poroelastic deformation assumes uniaxial strain, an assumption that may be 

valid for Saltwick Nab, which has not been affected by faulting. However, the Cleveland 

Ironstone and Whitby Mudstone formations at Jet Wyke, Port Mulgrave and Whitby East 

Cliff carry the effects of normal faulting. Here, Sh may have been controlled by the 

coefficient of sliding friction on adjacent faults rather than by poroelastic deformation 

during purely passive subsidence. Assuming plane strain conditions and that the faults 

were critically-stressed, cohesionless and optimally oriented for slip according to the 

Coulomb failure criterion, Sh is given by: 
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, in which case Sh acts parallel to the dip direction of the fault; or  
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, in which case Sh acts parallel to fault strike, where φ is the friction angle and 

other parameters are as given above (Addis et al., 1996). 



Under these circumstances, Pp-driven changes in Sh follow a stress path, κf, given by: 
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, and assuming constant Sv. 

Figure 10 shows the hypothetical stress paths, κf , for plausible friction angles and 

Poisson’s ratios. Shallower stress paths, which favour propagation of vertical fractures, 

result from moderate to high Poisson's ratio and low friction angles. In this case, higher 

Poisson's ratios cause Sh to act parallel to the dip direction of the fault, a necessary 

condition for propagation of vertical fractures whose strike is parallel to that of the 

controlling fault. Steeper stress paths, which favour propagation of horizontal (bed-parallel) 

fractures may result from a range of friction angles and Poisson's ratios. These results 

support the hypothesis that changes in Sh driven by changes in Pp within normally-faulted 

basins can lead to propagation of horizontal fractures in overpressured, clay-rich 

sedimentary rocks (Fig. 10b). We postulate that such conditions existed within clay-rich 

mudstone units of the Cleveland Ironstone Formation at Jet Wyke and the Bituminous 

shale at Port Mulgrave. 

The sub-vertical fractures within the Cement shale at Whitby East Cliff probably developed 

as a result of the lower clay content within this unit. Additionally, the Cement shale lies 

directly below the uppermost Toarcian to lowermost Aalenian unconformity, and is 

juxtaposed against the sandy, more permeable Middle Jurassic Saltwick Formation in the 

hanging wall of the adjacent Whitby Harbour fault (Alexander and Gawthorpe, 1993). The 

Cement shale could therefore have been drained, resulting in reduced Pp. The proximity to 

the Whitby Harbour fault may also have resulted in elevated differential stress at this 



locality, giving rise to the network of small-scale normal faults. 

 

Exhumation and reburial at Saltwick Nab 

The foregoing analysis can explain the occurrence of bed-parallel fractures at Jet Wyke 

and Port Mulgrave, but does not explain why these structures are absent from the – 

presumably – clay-rich Bituminous shale at Saltwick Nab. It is possible that lateral facies 

variations gave rise to lower clay content within the Bituminous shale at Saltwick Nab, but 

this hypothesis remains untested. The sediments at Saltwick Nab (and Whitby East Cliff) 

did, however, experience up to 60 m exhumation during latest Toarcian to earliest 

Aalenian times, prior to lithification and cementation (Powell, 2010). During exhumation 

and subsequent re-burial, laboratory data (Mayne and Kulhawy, 1982) indicate that Ko is a 

function of friction angle (φ) and the over-consolidation ratio (OCR), where: 

    
(     )       
(     )       

.          (6) 

We have used an empirical relationship between Ko and OCR (equation 18 of Mayne and 

Kulhawy, 1982) to estimate the change in stress ratio, R, caused by latest Toarcian to 

earliest Aalenian exhumation and re-burial of the then-unlithified sediments at Whitby East 

Cliff and Saltwick Nab (Fig. 11). Assuming: (1) a friction angle of 23° (which yields a stress 

ratio R = 0.79 during initial burial, taken from the stress ratio for silty clay in the Dunkirk 

Shale Member; Lash and Engelder, 2005); (2) exhumation of 60 m (Powell, 2010); and (3) 

hydrostatic pore pressure as well as lithostatic and hydrostatic gradients cited by Lash and 

Engelder (2005), then R > 1 for exhumation to within < 15 m of the surface. During re-

burial, R decreases rapidly within the first 10 m of burial before approaching a near-

constant value, in this case slightly below the stress ratio for initial burial (Fig. 11). These 

relationships suggest that the stress ratio (R) at Saltwick Nab (and Whitby East Cliff) could 

have exceeded the stress ratios at Jet Wyke and Port Mulgrave (Fig. 9), assuming 



cementation occurred within 10 m of the surface during reburial. Such elevated stress 

ratios would have increased the likelihood of horizontal fracture propagation within the 

clay-rich Bituminous shale, which is inconsistent with our observations from Saltwick Nab. 

It is more likely that the lack of bed-parallel fractures at Saltwick Nab means that pore fluid 

pressures in these deposits never exceeded Sv (Fig. 9), perhaps as a consequence of the 

relatively deep exhumation of this region and the ensuing stratigraphic proximity of the 

Bituminous shale to the overlying, more permeable (Alexander and Gawthorpe, 1993) and 

potentially drained sandstones of the Middle Jurassic Saltwick Formation. 

 

Normal faulting at Jet Wyke and Port Mulgrave 

The association between bed-parallel fractures and normal faults at Jet Wyke and Port 

Mulgrave, and the lack of both types of structure at Saltwick Nab, suggests there may be a 

causal relationship between normal faulting and bed-parallel fracturing. We test this 

hypothesis using an elastic dislocation model to estimate the stresses and predicted 

orientation and distribution of tensile fractures in the foot- and hanging walls of an 

idealised, normal fault embedded in an isotropic, elastic half space (Healy et al., 2004; 

Dee et al., 2007; Fig. 12). 

In elastic dislocation theory, faults are modelled as surfaces across which there is a 

discontinuity in the elastic displacement field. The surrounding volume is assumed to have 

zero displacement at an infinite distance from the fault. In our model, the maximum fault 

slip is assumed to be < 5 m on a planar, elliptical fault surface with a length of ca. 2 km. 

The point of maximum slip lies at the centre of the fault plane and slip decreases elliptically 

towards the fault tip line (Fig. 12). This configuration yields a slip to length ratio of ca. 10-3, 

which is at the upper limit of elastic deformation within the Earth’s crust. The fault dips at 

69° and the shallowest point on its tip line is buried 500 m below the free surface. 

Poisson's ratio of the elastic medium is 0.32. The model predicts tensile fractures will 



occur within the upper part of the fault hanging wall above the point of maximum slip, 

presumably as a result of dilatational strains necessary to accommodate the displacement 

gradient on the fault surface (see fig. 1c of Barnett et al., 1987). This zone of fracturing 

extends outwards from the fault plane into the hanging wall to a distance of ca. 10% of the 

fault length. Tensile fractures adjacent to the fault tip line dip at ca. 45° in a direction 

approximately parallel to fault strike. Towards the centre of the fault, the dip of fractures 

decreases (to ca. 3°) and the dip direction of the fractures becomes parallel to the fault dip 

direction (Fig. 12). A less-well developed zone of gently-dipping tensile fractures is also 

predicted in the lower part of the footwall (i.e. behind the fault plane shown in Fig. 12).  

These gently-dipping tensile fractures in the foot- and hanging walls of the modelled fault 

plane are reminiscent of the bed-parallel fractures we observed at Jet Wyke and Port 

Mulgrave. We propose that the propensity for bed-parallel fracturing within clay-rich units 

at these localities – characterised by elevated Pp and Sh > Sv – was further enhanced by 

the local stress perturbations within the upper parts of the hanging walls, or lower parts of 

the footwalls, of adjacent normal faults.  

 

Discussion 

Our results are consistent with the hypothesis that horizontal fractures are more likely to 

develop in clay-rich sedimentary rocks (Lash and Engelder, 2005). This conclusion 

depends upon the maintenance of fluid overpressure within clay-rich units, and the 

proximity to an active fault. A pertinent question is why did the presence of open, bed-

parallel fractures not drain Pp? One possibility is that the bed-parallel fractures were only 

partially open at any given moment. It is also possible that these fractures are limited in 

their areal extent. If, as seems to be the case, individual bed-parallel fractures are limited 

to fault-bounded blocks, lateral drainage may have been prevented if the faults acted as 



seals. Contrary to this suggestion is our observation of vuggy calcite- and bitumen-filled 

veins along fault slip surfaces, which implies that at times, faults acted as conduits for fluid 

flow. However, the length scale of fluid transport within faults is unclear. 

Another outstanding problem relates to the apparently regular spacing of bed-parallel 

fractures in the Bituminous shale. Overall, the Bituminous shale is clay-rich (Fig. 3) – but 

what controls the distribution of bed-parallel fractures within this unit? Detailed lithofacies 

descriptions for the thinly-bedded Bituminous shale are not yet available. However, the 

similarity between spacings of bed-parallel fractures and the 60 cm and 112 cm 

wavelengths in cyclicity in CaCO3 and TOC (Kemp et al., 2011) lead us to speculate that 

subtle, cyclic variations in mineralogy – and, more specifically, clay content – may control 

the fracture distribution. 

More generally, our results highlight the likely structural complexity of prospective UK 

shale basins and concur with many previous studies that emphasise the need to integrate 

structural, stratigraphic, diagenetic and burial histories for successful fracture 

characterisation (e.g. Laubach et al., 2010). Even ignoring the inversion-related structures, 

the Cleveland Basin displays a range of fractures whose prediction depends on a detailed 

knowledge of the burial, exhumation, cementation and faulting histories across the basin, 

in addition to variations in clay content within mudstone-dominated sequences. 

Paradoxically, some of the structural complexity may have arisen because the Cleveland 

Basin was characterized by gentle subsidence and slow burial rates throughout much of 

the Early and Middle Jurassic. As a result, localised uplift events resulted in erosion and 

exhumation of the Whitby Mudstone Formation, leading to variations in fluid pressure 

gradients and overpressure development. 

Finally, it is worth emphasising that the Whitby Mudstone Formation is marginally mature 

for oil, but the prospective Bowland-Hodder shale unit in northern England is mature for 

gas. Gas cracking (e.g. Osborne and Swarbrick, 1997) may have resulted in greater 



overpressures within the Bowland-Hodder shale unit compared to the Whitby Mudstone 

Formation, leading to more widespread development of bed-parallel fractures within the 

former unit. However, there is unlikely to be a direct correspondence between structures 

observed within the Cleveland Ironstone and Whitby Mudstone formations and the 

Bowland-Hodder shale unit. For example, the Bowland Shale Formation in NE England 

underlies a sequence of Permian evaporites that, at least in part, detaches the Jurassic 

cover from the Carboniferous “basement”. Furthermore, the Carboniferous is cut by mainly 

E-W, rather than NNW-SSE striking faults, which suggests that the structural response to 

Jurassic extension and latest Cretaceous to Neogene inversion may have been very 

different in the Carboniferous and Jurassic successions. Nevertheless, our study highlights 

the likely sensitivity of natural fracture development within the Bowland-Hodder shale unit 

to variations in fluid pressure gradients and local stress ratios. 

 

Conclusions 

1. The Cleveland Basin overlies a Mississippian depocentre that locally contains > 

3000 m of Bowland-Hodder shale unit in NE England. As such, faults and fractures within 

the Lower Jurassic Cleveland Ironstone (Pliensbachian) and Whitby Mudstone (Toarcian) 

formations may provide insights into the post-Triassic tectonic history of the poorly-

exposed Bowland-Hodder shale unit. We present field observations of faults and fractures 

within the Cleveland Ironstone and Whitby Mudstone formations at four, well-exposed 

coastal localities in North Yorkshire: Jet Wyke, Port Mulgrave, Whitby East Cliff and 

Saltwick Nab. 

2. The Cleveland Ironstone and Whitby Mudstone formations were deposited in the 

Cleveland Basin. Average burial rates were low (< 20 m Myr-1) throughout the Early 

Jurassic, and tectonic subsidence was mainly a response to thermal re-equilibration of the 



lithosphere following latest Permian to earliest Triassic rifting. Previous authors have 

recognised syn-sedimentary normal faults throughout the Cleveland Basin (Runswick Bay, 

Whitby Harbour and Peak faults), which were active during the Early, Middle and Late 

Jurassic. However, minor normal faults at Jet Wyke, Port Mulgrave and Whitby East Cliff 

all initiated after the Cleveland Ironstone and Whitby Mudstone Formation sediments were 

deposited. Normal faults have not been observed at Saltwick Nab. 

3. Sets of opening-mode bed-parallel fractures, some of which contain blocky calcite 

fills, cut clay-rich units within the Cleveland Ironstone and Whitby Mudstone formations at 

Jet Wyke and Port Mulgrave, respectively. Cutting and branching relationships suggest 

that the bed-parallel fractures developed synchronously with normal faulting at these 

localities, i.e. within a regional stress field in which Sv = σ1. Propagation of bed-parallel 

fractures requires that Pp > Sv and a local stress field within clay-rich units in which Sh > Sv. 

Bed-parallel fractures have not been observed within bioturbated, clay-poor Cement shale 

(Whitby Mudstone Formation) at Whitby East Cliff, or within well-bedded, clay-rich 

Bituminous shale (Whitby Mudstone Formation) at Saltwick Nab. 

4. Sets of sub-vertical fractures, some of which contain thin calcite fills, occur within 

the Cleveland Ironstone Formation at Jet Wyke and within the Whitby Mudstone Formation 

at Port Mulgrave, Whitby East Cliff and Saltwick Nab. The surfaces of these fractures carry 

plumose markings and concentric arrest lines, consistent with an opening mode origin. At 

Jet Wyke and Port Mulgrave, the sub-vertical fractures display curving-parallel and 

curving-perpendicular relationships with the bed-parallel fractures, which suggests that the 

bed-parallel fractures were, at times, open and acting as free surfaces. At Whitby East Cliff, 

the sub-vertical fractures cross-cut the overlying, uppermost Toarcian to lowermost 

Aalenian unconformity, and also link with minor normal faults (cm-scale displacements) 

within the Cement shale (Whitby Mudstone Formation) in the footwall of the adjacent, syn-

sedimentary Whitby Harbour fault. At Saltwick Nab, two sets of sub-vertical fractures 



display an apparently conjugate pattern in map view. However, analysis of crossing and 

abutting relationships suggests that the NNW-SSE striking fractures formed first, followed 

by WNW-ESE striking fractures that probably developed in response to an anticlockwise 

rotation of Sh. In all cases, propagation of sub-vertical fractures requires that Pp = Sh. 

5. According to Lash and Engelder (2005), normal compaction can lead to higher 

uniaxial stress ratios (Sh / Sv) in clay-rich sediment compared to sand-rich sediment. 

Following cementation, coupling between Pp and Sh may have been driven by poroelastic 

deformation or incipient slip along critically stressed normal faults, causing local elevation 

of the in situ horizontal stress in excess of the vertical stress, allowing bed-parallel 

fractures to propagate within clay-rich units within the Cleveland Ironstone and Whitby 

Mudstone formations at Jet Wyke and Port Mulgrave. Dilatational strains adjacent to 

normal faults may have further enhanced the likelihood of bed-parallel fracturing within 

faulted, clay-rich units. 

6. The local absence of normal faulting may, in part, explain the lack of bed-parallel 

fractures at Saltwick Nab, despite the well-developed bedding plane anisotropy. In addition, 

partial exhumation of the Whitby Mudstone Formation along the uppermost Toarcian to 

lowermost Aalenian unconformity led to deposition of permeable, potentially drained 

Middle Jurassic Saltwick Formation sandstones immediately above the Whitby Mudstone 

Formation at Saltwick Nab and Whitby East Cliff. The bioturbated Cement shale (Whitby 

Mudstone Formation) at Whitby East Cliff is also juxtaposed against Saltwick Formation 

sandstones in the hanging wall of the adjacent Whitby Harbour fault. The structural and 

stratigraphical proximity of Saltwick Formation sandstone at Saltwick Nab and Whitby East 

Cliff may have drained the Whitby Mudstone Formation, preventing the development of 

large fluid overpressures (Pp = Sv) required for bed-parallel fracturing. 

7. Our findings suggest that fracture patterns in UK shale basins are likely to be 

heterogeneous over distances < 15 km, which is on a scale smaller than some existing UK 



Petroleum Exploration and Development Licenses within Bowland-Hodder shale unit 

resource area. This heterogeneity arises from stratigraphical variations in mineralogy (e.g. 

clay content), bedding plane anisotropy, the distribution of faults and differential 

exhumation across the basin. We emphasise the necessity that fracture characterization 

studies integrate structural geology with analyses of the stratigraphic, diagenetic and burial 

histories of prospective sedimentary basins. 
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Figure Captions 

1. Map showing the geographical location of the coastal study areas, roads and 

settlements, Cleveland Basin, NE England. The traces of syn-sedimentary faults 

discussed in the text are shown for reference (WHF = Whitby Harbour fault; RBF = 

Runswick Bay fault). The study areas (arrowed), from north to south, are Jet Wyke, Port 

Mulgrave, Whitby East Cliff and Saltwick Nab. Locations of the studied outcrops are Jet 

Wyke [0.7870°W, 54.5580°N to 0.7764°W, 54.5571°N], Port Mulgrave [0.7669°W, 

54.5498°N to 0.7639°W, 54.5448°N], Whitby East Cliff [0.5999°W, 54.4903°N to 0.6073°W, 

54.4904°N] and Saltwick Nab [0.5921°W, 54.4879°N to 0.5883°W, 54.4866°N]. Map based 

on a Transverse Mercator projection. The inset shows the location of the coastal section 

(arrowed box) within Great Britain. 

 

2. Diagrams summarising the geological setting of the Cleveland Basin. 

a. Simplified geological map showing the Jurassic strata and principal structural 

elements of the Cleveland Basin (modified from Powell, 2010). Faults at outcrop are bold 

solid lines; faults below the Cretaceous chalk are bold dashed lines. Jurassic syn-

sedimentary faults identified by Alexander (1986) are highlighted: Peak fault (PF); Whitby 

Harbour fault (WHF) and Runswick Bay fault (RBF). Other major structures include 

Flamborough fault zone (FFZ), Vale of Pickering fault zone (VPFZ), Market Weighton High 

(MWH), and the axial trace of the Cleveland anticline (CA). Dots – Triassic rocks at 

outcrop; brickwork – Cretaceous rocks at outcrop; grey – Jurassic at outcrop. The 

locations of onshore boreholes in (b) are starred: Staithes 4 (S); Robin Hood's Bay 1 (R); 

Fordon 1 (F).  

b. Backstripped, tectonic subsidence curves for the Staithes 4, Robin Hood's Bay 1 

and Fordon 1 boreholes (borehole locations are given in (a)). The curves are characterised 



by rapid tectonic subsidence in the latest Permian to early Triassic, followed by 

progressively decreasing rates of subsidence throughout the Mesozoic and Cenozoic. Low 

magnitude, short-lived tectonic subsidence events during the Mesozoic are highlighted by 

arrows. Data compiled from Dixon (1989). 

c. Thickness map for the Lower Jurassic of the Cleveland Basin. Contours show the 

thickness of the Lower Jurassic in metres. Map shows Market Weighton High (MWH), Jet 

Wyke (JW), Port Mulgrave (PM), Whitby East Cliff (W) and Saltwick Nab (SN). Note 

relatively thin Lower Jurassic at Whitby East Cliff and Saltwick Nab, compared with Jet 

Wyke and Port Mulgrave. After Powell (2010). 

 

3. Stratigraphy, chemostratigraphy and mineralogy of the Cleveland Ironstone and 

Whitby Mudstone formations. From left to right, columns show: ammonite biozones (after 

Powell, 2010), formations, members and informal lithostratigraphic subdivisions (after Cox 

et al. 1999), generalised lithology (after Rawson and Wright 1996; key to lithologies is at 

the bottom of the figure), bed numbers and informal bed names (after Howarth 1962; note 

the break in bed numbering sequence at the base of the Whitby Mudstone Formation), % 

TOC (total organic carbon; after McArthur et al. 2008), weight % SiO2, wt % Al2O3, wt % 

CaO, wt % K2O and the ratio of SiO2 to Al2O3 (all after, or derived from, Pye and Krinsley 

1986), and the ratio of % quartz plus carbonate minerals to % quartz plus carbonate plus 

clay minerals (derived from Kemp et al. 2005; the width of the grey lines shows the 

minimum and maximum values of this ratio throughout the Whitby Mudstone Formation). 

Inset (bottom left) shows the mudstone lithofacies identified between the Avicula and 

Raisdale seams by Macquaker and Taylor (1996). Inset (bottom right) is a cross-plot of 

SiO2 vs. Zr (zirconium) for the Whitby Mudstone Formation (data compiled from Pye and 

Krinsley, 1986).  

 



4. Faults and fractures within the Cleveland Ironstone Formation at Jet Wyke. 

a. Looking S along the strike of W-dipping normal fault within the Cleveland Ironstone 

Formation. Note normal separation of the Avicula Ironstone Seam (A). Small arrows 

highlight the locations of erosive notches marking the positions of bed-parallel fractures in 

the foot- and hanging walls of the fault. 

b. Swarms of bed-parallel fractures with calcite infill within and erosive notch in bed 33 

of the Cleveland Ironstone Formation (Fig. 3). 

c. Detailed view of a bed-parallel fracture shown in (b). Note the blocky calcite fill. 

Irregularities in the vein margin (arrowed) can be matched directly across the vein fill, 

indicating an opening-mode origin. 

d. Surface of a sub-vertical fracture showing plumose markings and concentric arrest 

lines (e.g. at the upper left hand corner of the notebook). 

 

5. Faults within the Jet rock and Bituminous shale at Port Mulgrave. 

a. Lower hemisphere, equal area stereoplot showing the orientations of postulated 

inversion-related, oblique-slip fault surfaces (great circles, n = 15) and associated 

slickenline lineations (points). 

b. Lower hemisphere, equal area stereoplot showing the orientations of postulated 

burial-related normal fault surfaces (great circles, n = 5) and associated slickenline 

lineations (points). 

c. View south (along strike) of a W-dipping normal fault zone cutting the Jet rock. Half-

arrows highlight the sense of displacement across the fault; hanging wall is to the right. 

Note shale gouge ill, including rotated a carbonate concretion (bottom left) and drag of the 

relict bedding planes within the fault zone (dashed line). 



d. Dilatational jog along a fault slip surface. The slip surface and jog (beneath tip of 

pencil) contain calcite and bitumen fills. View towards SSE. 

 

6. Natural fractures in the Whitby Mudstone Formation at Port Mulgrave. 

a. Lower hemisphere, equal area stereoplot showing bed-parallel fractures within 

Bituminous shale (n = 7). 

b. Lower hemisphere, equal area stereoplot showing sub-vertical fractures within the 

Jet rock and Bituminous shale (n = 64). 

c. Photograph showing the Bituminous shale cut by at least two bed-parallel fractures 

(at the bottom and upper-centre part of the image) and multiple sub-vertical fractures. The 

exposure is also cut by a gently-dipping shear surface (arrowed). View towards SSW; 

notebook (short dimension 12 cm) for scale. 

d. Curve-in of bed-parallel fracture with calcite infill, towards an ENE-dipping normal 

fault (fault slip surface 170/47E with calcite slickenfibres 08/164). Dashed line lies 

immediately below the curving bedding-parallel fracture. Half arrows highlight sense of 

displacement across the fault, which itself contains calcite fills in dilatational jogs (e.g. 

between half arrows). Fault cuts Bituminous shale. View towards SSE. Pencil for scale. 

e. Blocky calcite fill within a gently NW-dipping bed-parallel fracture. View towards 

SSW. Pencil for scale. 

f. Curving-parallel relationship between two calcite-filled, sub-vertical fractures 

(fracture traces highlighted by arrows) and an underlying, calcite-filled, bed-parallel 

fracture (above tip of pencil) within Bituminous shale. View towards WSW.  

 

7. Faults and fractures within the Cement shale at Whitby east cliff.  



a. Lower hemisphere, equal area stereoplot showing minor W-dipping faults (great 

circles; n = 16) and through-going, sub-vertical fractures (poles to planes; n = 8). 

b. Cliff section showing carbonate concretion displaced in a normal sense by a W-

dipping fault. Half-arrows highlight sense of displacement on fault. Note lenses of 

brecciated shale locally preserved within the narrow fault zone. Faults are linked by short, 

sub-vertical fractures containing poorly-preserved cacite fills (arrowed). View towards S. 

Pencil (on top of faulted carbonate concretion) for scale. 

c. Cliff section showing intersection between calcite filled, segmented, sub-vertical 

opening-mode fracture (two segments are highlighted by arrows) and an array of W-

dipping normal faults. View towards SSW. Pencil for scale. 

 

8. Fractures within Bituminous shale at Saltwick Nab. 

a. Lower hemisphere, equal area stereoplot showing the two principal sets of NNW-

SSE (n = 1095) WNW-ESE (n = 278) -striking fractures (great circles). 

b. Photograph showing dominant NNW-SSE striking sub-vertical fractures that cut 

Bituminous shale at Saltwick Nab. View towards W. Note the absence of bed-parallel veins 

at this locality. Person (ca. 1.7 m tall) for scale. 

c. View onto the surface of a NNW-SSE striking fracture showing concentric arrest 

lines and faint plumose markings that radiate outwards from the centre.  

d. Oblique photograph of the platform exposure at Saltwick Nab showing crossing (X) 

and abutting relationships between NNW-SSE and WNW-ESE striking fractures. W is 

towards the right. Compass-clinometer (long dimension 22 cm) for scale. 

 

9. Schematic graph showing stress paths, κ, for sand- and clay-rich sedimentary rocks, 



due to pore pressure increase (after compaction and lithification) under conditions of 

constant vertical stress. Stress paths assume poroelastic coupling between Sh and Pp. R = 

Sh / Sv; λ = Pp / Sv. Initial stress ratios (R = 0.79 for silty clay; R = 0.70 for sandstone) 

result from normal compaction. Arrow illustrates the effect of disequilibrium compaction on 

a silty clay. Bold dashed lines separate fields of no propagation, vertical propagation and 

horizontal fracture propagation. After Lash and Engelder (2005). 

 

10. Schematic graph showing stress paths, κf, for sand- and clay-rich sedimentary rocks, 

due to pore pressure increase under conditions of constant vertical stress in a basin 

undergoing fault-controlled subsidence (see text for details). R = Sh / Sv; λ = Pp / Sv. Bold 

dashed lines separate fields of no propagation, vertical propagation and horizontal fracture 

propagation. Dashed lines are stress paths for which Sh acts parallel to the dip direction of 

the faults; solid lines are stress paths for which Sh acts parallel to fault strike. (a) Initial 

stress ratio (R) is 0.70, representing the behaviour of sandstone; (b) Initial stress ratio (R) 

is 0.79, representing the behaviour of silty clay. Combinations of friction angle (φ) and 

Poissson’s ratio (ν) in (a) labelled A-F correspond to A-F in (b). 

 

11. Graph showing the change in stress ratio, R (R = Sh / Sv) during initial burial, 

exhumation and re-burial of clay-rich sediment, assuming 60 m exhumation, hydrostatic 

pore pressure and a friction angle (φ) of 23°. Curves calculated according to the empirical 

relationship between Ko, friction angle (φ) and over-consolidation ratio determined by 

Mayne and Kulhawy (1982, their equation 18) equation 18. See text for details. 

 

12. Oblique view into the hanging wall onto an idealised elliptical normal fault surface 

(coloured for dip separation; red = large dip separation; dip separation is zero at the tip line 



(black)). Tensile fractures predicted by an elastic dislocation model are shown in purple. 

Major semi-axis of the fault surface is 1075 m; minor semi-axis is 500 m. The maximum 

dip separation (red) is 4.65 m and lies at the centre of the fault plane. Fault dips at 69° in 

the direction shown by the single arrow. Double arrow is parallel to fault strike. The fault is 

embedded in an elastic half-space (not shown) (see text for discussion). 

  



Table 1. Definition of symbols. 

 

Symbol Definition 
Sh Minimum horizontal stress 
Sv Vertical stress 
σ1 Maximum principal stress 
σ2 Intermediate principal stress 
σ3 Minimum principal stress 
Pp Pore fluid pressure 
ν Poisson’s ratio 
ϕ Friction angle 
R Ratio of minimum horizontal stress to vertical stress (Sh/Sv) 
λ Ratio of pore fluid pressure to vertical stress (Pp/Sv) 
K0 Coefficient of earth pressure at rest ((Sh-Pp)/(Sv-Pp)) 
OCR Over-consolidation ratio (Mayne and Kulhawy, 1982) 
  
  
 

  



Table 2. Summary of localities.  

 

Locality Location (longitude, 
latitude, WGS84) 

Lithology Structural setting 

Jet Wyke 0.7870°W, 54.5580°N to 
0.7764°W, 54.5571°N 

Cleveland Ironstone 
Formation, including well-
bedded clay-, silt- and sand-
rich, but TOC-poor 
mudstones 

Cut by normal faults that 
post-date deposition of the 
Cleveland Ironstone 
Formation. Bed-parallel and 
sub-vertical fractures 
commonly observed. 

Port 
Mulgrave 

0.7669°W, 54.5498°N to 
0.7639°W, 54.5448°N 

Whitby Mudstone Formation 
(Jet rock and Bituminous 
shale), well-bedded clay-, 
silt- and TOC-rich mudstones  

Cut by normal and oblique-
slip faults that post-date 
deposition of the Whitby 
Mudstone Formation (Jet 
rock and Bituminous shale). 
Bed-parallel and sub-
vertical fractures commonly 
observed. 

Whitby 
East Cliff 

0.5999°W, 54.4903°N to 
0.6073°W, 54.4904°N 

Whitby Mudstone Formation 
(Cement shale) poorly-
bedded, bioturbated 
mudstones 

In the footwall of the 
Whitby Harbour fault. 
Minor normal faults and 
sub-vertical fractures 
commonly observed. These 
structures post-date 
deposition of the Whitby 
Mudstone Formation 
(Cement shale) 

Saltwick 
Nab 

0.5921°W, 54.4879°N to 
0.5883°W, 54.4866°N 

Whitby Mudstone Formation 
(Jet rock and Bituminous 
shale), well-bedded clay-, 
silt- and TOC-rich mudstones 

Whitby Mudstone 
Formation was exhumed < 
60 m prior to lithification, 
during latest Toarcian to 
earliest Aalenian times. 
Whitby Mudstone 
Formation (Jet rock and 
Bituminous shale) cut by 
two dominant sets of sub-
vertical fractures. 

 

  



 



 

 

 

 

 

 

 



 



 



 



 

 

 

 



 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 




