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ABSTRACT 

The origin of spherical-radial calcite bodies – spherulites – in sublacustrine, hyperalkaline 

and saline systems is unclear, and therefore their palaeoenvironmental significance as 

allochems is disputed. Here, we experimentally investigate two hypotheses concerning 

the origin of spherulites. The first is that spherulites precipitate from solutions super-

saturated with respect to magnesium-silicate clays, such as stevensite. The second is that 

spherulite precipitation happens in the presence of dissolved, organic acid molecules. In 

both cases, experiments were performed under sterile conditions using large batches of a 

synthetic and cell-free solution replicating waters found in hyperalkaline, saline lakes 

(such as Mono Lake, California). Our experimental results show that a highly alkaline and 
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highly saline solution supersaturated with respect to calcite (control solution) will 

precipitate euhedral to subhedral rhombic and trigonal bladed calcite crystals. The same 

solution supersaturated with respect to stevensite precipitates sheet-like stevensite 

crystals rather than a gel, and calcite precipitation is reduced by ~50% compared to the 

control solution, producing a mixture of patchy prismatic subhedral to euhedral, and 

minor needle-like, calcite crystals. Enhanced magnesium concentration in solution is the 

likely cause of decreased volumes of calcite precipitation, as this raised equilibrium ion 

activity ratio in the solution. On the other hand, when alginic acid was present then the 

result was widespread development of micron-size calcium carbonate spherulite bodies. 

With further growth time, but falling supersaturation, these spherules fused into 

botryoidal-topped crusts made of micron-size fibro-radial calcite crystals. We conclude 

that the simplest tested mechanism to deposit significant spherical-radial calcite bodies is 

to begin with a strongly supersaturated solution that contains specific but 

environmentally-common organic acids. Furthermore, we found that this morphology is 

not a universal consequence of having organic acids dissolved in the solution, but rather 

spherulite development requires specific binding behaviour. Finally, we found that the 

location of calcite precipitation was altered from the air : water interface to the surface of 

the glassware when organic acids were present, implying that attached calcite 

precipitates reflect precipitation via metal-organic intermediaries, rather than direct 

forcing via gas exchange. 
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INTRODUCTION 

Understanding the timing and growth mechanisms of unusual non-marine carbonate 

precipitates formed in sublacustrine environments is current focus for active 

geobiological and geochemical research (Della Porta, 2015; Wright and Barnett, 2015). A 

prominent feature of some sublacustrine sedimentary deposits are ≤ mm-sized spherulitic 

and radially divergent calcite allochems. These occur in abundance in the economically 

important Lower Cretaceous Pre-Salt basins of Brazil and Angola (Terra et al, 2010; 

Dorobek et al., 2012; Wright and Barnett, 2015), making them key “index allochems” for 

the environments recorded by these systems (Wright and Barnett, 2015). Spherulites are 

well known, and form in a wide range of carbonate environments, including soils (Chafetz 

and Butler, 1980; Verrecchia et al., 1995; Braissant et al., 2003), lakes (McGill et al., 1993; 

Wanas 2012; Bahniuk et a., 2015), hypersaline lagoons (Spadafora et al., 2010; Arp et al., 

2012) and marine tidal-flat settings (Buczynski and Chafetz, 1993). However, a better 

understanding of the specific environmental conditions favourable for their formation can 

be gained through constrained laboratory experimentation.  

In the geological record, spherulitic deposits were initially considered to be microbial 

laminites, forming ‘oncoidal’ to spherulite-rich layers that alternate with smectite layers 

(Luiz Dias, 1998; p.84). More recently focus has been on the possible abiotic catalysing 

role of co-occurring minerals in precipitating spherulitic calcite from solution (Wright and 

Barnett, 2015). Dorobek et al., (2012) suggested that spherical-radial components grew 

by displacive crystal growth mechanisms within previously deposited sediment. Particular 

emphasis has been given to specific substrates composed of hydrated magnesium clays, 

e.g. stevensite (Tosca and Wright, 2015; Wright and Barnett, 2015). These clays are 
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present in many modern lacustrine deposits and are also consistently found associated 

with the spherulites in the deposits of Brazilian Pre-Salt lakes (Luiz Dias, 1998; Terra et al., 

2010; Tosca and Wright, 2015). This supports the suggestion that the paleo-lakes in 

question were both saline and highly alkaline (Calvo et al., 1999; Jones and Deocampo, 

2003; Bristow and Milliken, 2011), as high salinity and high alkalinity (combined with high 

Mg/Si) are the conditions for authigenic precipitation of stevensite-like products (Tosca 

and Masterson, 2014). At the same time, Tosca and Wright (2015) suggested that the 

precipitation of Mg-clays (stevensite) from water would give rise to the formation of a 

poorly crystalline, viscous and extensively hydrated Mg-silicate gel, within which 

spherular carbonate could form. This is an important and novel hypothesis, meaning that 

deposits formed by these allochems are abiotic in origin. However, the tendency of 

stevensite to precipitate as a gel, and the capacity of solutions supersaturated with 

stevensite (as would be required to maintain the gel) to promote voluminous calcite 

precipitation with unusual spherulitic morphologies, both require testing.  

Organic acids as catalysts of spherulite growth? 

The nucleation patterns and crystallization processes of carbonate precipitates, including 

spherulites, are well described in environmental and materials science literature (i.e., 

Buczynski and Chafetz, 1993; Verrecchia et al., 1995; Tracey et al., 1998a,b; Braissant et 

al., 2003; Aloisi et al., 2006; Rodriguez-Navarro et al., 2007; Sánchez-Navas et al., 2009; 

Tourney and Ngwenya, 2009;  Andreassen et al. 2010; Beck and Andreassen, 2010; Ercole 

et al., 2012; Sánchez-Navas et al., 2013). Many additives to aqueous solution have been 

found to promote spherulite formation, and these include oxygen-rich organic acid 

molecules, such as citric or malic acids (Meldrum and Hyde, 2001), or aspartic acid 
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(Braissant et al., 2003; Wolthers et al., 2008). Although some studies have focussed on 

the impact of these substances in the spherulitic growth of metazoan calcitic skeletons 

(Kim et al., 2011), organic acid molecules are known to be a major component of 

microbial extra-cellular polymeric saccarides (EPS) (Dittrich and Sibler, 2010), and so are 

freely available in sites of lacustrine authigenic carbonate formation. Building on 

pioneering work on the role of benthic biofilms in regulating where precipitation occurs 

(Arp et al., 1999; Pedley, 1994), recent studies demonstrate the capability of extracellular 

polymeric substances as active catalysts in the mineralisation process (Rogerson et al., 

2010; Rogerson et al., 2008). Their influence has been shown to be sufficient to help 

overcome otherwise limiting kinetic barriers to precipitation of less favoured components 

like Mg-rich dolomite (Krause et al., 2012) and to provide the first-order control on trace 

element incorporation into low Mg-calcite (Saunders et al., 2014). Micron-size spherical-

radial calcite has been recognised as an apparently universal consequence of 

precipitation within biofilms, demonstrated by controlled laboratory and field 

investigations (Pedley et al., 2009). Consequently, involvement of organic materials 

appears to present a viable counter-hypothesis to stevensite-gel catalysis for the 

formation of calcitic spherulitic grains in alkaline and saline lakes (sensu Tosca and Wright, 

2015).  

Alginic acid provides a documented case study of dissolved organic molecules that alter 

the crystallography of calcite (PerryIV et al., 2006). It is one of the uronic acids, a group 

which make up 20 – 50% of the polysaccharides produced in a wide range of EPS 

(Christensen and Characklis, 1990; Saiz-Jiménez, 1999), generated by marine and 

terrestrial bacteria (Kennedy and Sutherland, 1987). Alginic acid is common polymer 

produced by microbial taxa (e.g. Azotobacter vinelandii and Pseudomonas aeruginosa 
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(Boyd and Chakrabarty, 1995), which are ubiquitous in modern (Hardalo and Edberg, 

1997), and presumably palaeo-lake waters. As a hydrophyllic polyuronic acid it is very 

soluble and has an excellent potential to form colloids (PerryIV et al., 2006).  Most 

importantly here, alginic acid has been shown to actively influence the growth and 

morphology of calcite crystals by selectively binding onto specific crystal planes, primarily 

the         cleavage plane (PerryIV et al., 2006). It has been shown to bind to specific 

calcite crystal step-edges, disrupting the crystal structure and impeding continued growth 

(Orme et al., 2001). This mechanism is widely reported in the materials chemistry 

literature, but the consequences of step-edge binding are dependent on other 

environmental conditions such as pH, ionic strength and solution composition and 

therefore are difficult to predict in nature.  

Experimental study of spherulite nucleation and growth 

Here, we investigate the two hypotheses described above using constrained laboratory 

experiments. Specifically, we investigated 1) whether supersaturation of a lake-like water 

fluid with stevensite influenced calcite precipitation rate; whether this mineral 

precipitated as a gel in these chemical circumstances; and whether calcite precipitated in 

these conditions naturally formed spherulitic grains; 2) whether organic acids impacted 

on precipitation rate and precipitation morphology; and 3) whether alginic acid and other 

environmentally common organic molecules produced similar results. Experiments were 

performed in sterile conditions in order to eliminate metabolic and unknown metabolite 

influences, and control experiments were undertaken using only the ‘lake-like waters’ to 

demonstrate precipitate types and morphologies in the absence of all additives.  
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MATERIAL AND METHODS 

Synthetic experimental solutions designed to be similar to Mono Lake waters in California 

(Connell and Dreiss, 1995), except with high super-saturation with respect to CaCO3 

phases (composition in Table 1), were produced in iterative 1 litre batches.  Calcite 

deposits were grown from aliquots of these solutions in batch experiments with 4 

replicates contained in 100ml conical glass flasks, sealed by air-permeable but microbe-

impermeable foam bungs.  All experiments were performed under complete sterility. To 

achieve this, powdered chemicals and glass wear were heat-sterilised by autoclave at 

160oC for 2 hours. Items that could not be heat-sterilised (plastic pipette tips and tubes) 

were treated with 16% hydrogen peroxide solution overnight. After preparation of 

solution batches, water was passed through sterile 20m filters to remove any biological 

contamination that may have occurred subsequent to autoclaving and also to remove any 

precipitates that occurred during solution preparation. Precipitates were analysed from 

autoclaved, frosted glass slides placed into the flasks before addition of the solution. 

Once the solution had been added and they were sealed, the flasks were agitated by a 

tipping flask shaker to ensure their contents remained well mixed. Experiments were 

maintained for 24 or 45 days at 25oC. 

In addition to control batches (experiments hereafter designated X), four experimental 

treatments were investigated using the same standard solution with the addition of: 1 mg 

L-1 alginic acid (a component of EPS) (experiments hereafter referred to as AY); 1 mg L-1 

stevensite (experiments hereafter referred to as S); 1 mg L-1 sodium carboxymethil 

cellulose (a component of Transparent Extracellular Polymers (experiments hereafter 
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referred to as T); Passow, 2002); 1 mg L-1 alginic acid and 1 mg L-1 stevensite (experiments 

hereafter referred to as SAY). After each experiment terminated, pH was measured, the 

solution was sampled and the frosted slides were autoclaved at 105°C. Within 1 hour the 

slides were carbon coated and observed with a Zeiss EVO60 Scanning Electron 

Microscope (SEM). Friable crystals accumulated in the bottom of the flasks were also 

collected and analysed using the same SEM. Elemental x-ray analyses were also 

performed in this study with an Inca System350 Energy Dispersive X-ray Spectrometer 

(EDX).  

X-ray powder diffraction data were collected from ground samples mounted in stainless 

steel sample holders. A PANAlytical Empyrean diffractometer operating in Bragg-

Brentano geometry with copper Kα1 (λ = 1.540546 Å) and a PIXEL detector was used for 

the data collection. Where samples were attached to the surface of glass slides, these 

slides were mounted directly on the instrument.  

A pure Mg-stevensite composition was used in these experiments to be as close as Tosca 

and Wright (2015) model (the ideal composition being (Ca1/2Na)1/3Mg3Si4O10(OH)2.4H2O)). 

This material was synthesised without the need for hydrothermal conditions using a 

procedure adapted from Sychev et al., (2000). This was as follows. To make 

approximately 10g of stevensite (quantitative yield after drying) were used the following 

masses: 5.08g of fumed silica, 15.25g of urea, 0.83g of Ca(NO3)2.4H2O, 0.60g of NaNO3, 

16.293g of Mg(NO3)2.6H2O. Fumed silica in 200 ml deionized water was boiled under 

reflux for about 1hr. To this were added all of the metal salts dissolved in a further 50 ml 

deionized water. This mixture was then refluxed gently with stirring (~95 °C) for 65 hrs 

prior to addition of urea. This mixture was refluxed for a further 55 hrs and then allowed 
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to cool to room temperature and filtered. The solid product was subsequently dried at 

~95 °C for 24 hours. The X-ray powder diffraction pattern for the resulting stevensite can 

be found in Supplementary Figure 1.  

Mg, Ca and Si in aqueous solution samples were measured using a Perkin Elmer Optima 

5300DV inductively coupled optical emission spectrometer (ICP-OES). The selection of the 

analytical lines used in the results was based on the Perkin Elmer recommendations for 

the Optima 5300DV spectrometer, 393.366 nm for calcium, 280.271 nm for magnesium 

and 251.611 nm for silicon. Calibration standards were prepared using 1000 ppm 

standard stock solutions (99.9% pure or greater, PrimAg, Xtra, Romil, Cambridge) of 

calcium and magnesium. Samples for analysis were diluted with 5% ultrapure HNO3 to 

bring the expected concentrations to within or very near the linear calibration of the 

standards. 

Alkalinity was measured using a Mettler-Toledo T50 digital titrator using a DGi117-water 

pH electrode and a Rondolino autosampler. 

 

EXPERIMENTAL RESULTS 

Crystals precipitated in the control experiment (X) 

Calcite in the control experiment precipitated as subhedral to euhedral crystals (Fig. 1A 

and B). Composite forms include spherulite-like particles constituted by well-defined 

rhombic and trigonal bladed calcite crystals, the edges of which are smooth and tend to 

form imbricated twin clusters up to 20µm in diameter (Fig. 1A asterisk and 1B). Some 

scattered euhedral rhombohedral and prismatic calcite crystals (up to 20µm diameter) 

are also observed (Fig. 1A, top left). Abundant subhedral to euhedral cubic crystals of 

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

10 

 

halite with diameters less than 5µm were recognised (Na in Fig. 1C), along with patches of 

halite crusts developing chevron overgrowth crystals (Fig. 1 D). Calcium concentrations of 

the solution decreased during the experiment (see below), but development of crystals 

on the glass slides was comparatively limited, suggesting that substantial precipitation 

had occurred elsewhere. Visual inspection indicated that this additional precipitation took 

place at the air-water interface in the neck of the flask.  

 

===========  FIGURE 1 HEREABOUT   =============== 

 

Crystals precipitated in the presence of alginates (AY) 

A second batch of flasks was prepared by the addition of 1 mg of alginic acid to aliquots of 

the synthetic “lake water” solution to investigate any catalytic effects of the alginic acid 

on calcite growth. In this experiment, specific crystal morphologies were found after 24, 

37 and 44 days. First, spheroidal clusters of imbricated rhombohedron twins (up to 10µm 

diameter each; Figs. 2A, and 2B) displaying hollow centres (Fig. 2C) were nucleated within 

the first 24 days. The identity of these precipitates has been confirmed as calcite by X-ray 

powder diffraction (Fig. 3), and their clusters seemed to grow by forming dispersed 

spherulitic aggregates (up to 40µm diameter) which then fused together to generate a 

well-defined agglomeration of spherules (spherulitic crusts) as observed after 37 days (Fig. 

2B). Once the first layer of spherules had formed, newer calcium carbonate precipitates 

nucleated above the previous crystals, giving rise to distinctive botryoidal crusts, 
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hundreds of µm in length, which were composed of subhedral to euhedral crystals with 

rhombohedral to prismatic shapes, as seen after 44 days  in Fig. 2D. 

 

===========  FIGURE 2 HEREABOUT   =============== 

===========  FIGURE 3 HEREABOUT   =============== 

 

Crystals precipitated in the presence of sodium carboxymethil cellulose (T) 

Experiments carried out by the addition of 1 mg of sodium carboxymethil cellulose to the 

synthetic “lake water” solution gave rise to the nucleation of distinctive calcium 

carbonate precipitates after 26 days (Fig. 4). Sheets of tiny (5 to 10 µm in length) well-

formed euhedral calcite rhombohedra were formed (Fig. 4A, B). Common inter-grown 

twinning between calcite rhombohedra were observed. In some cases, up to 40 µm-

length thin calcite crusts were attached to the previously formed calcite rhombohedra. 

These crusts were composed of nanometre-thick spheroidal calcite aggregates that 

eventually built up to 10µm diameter hollow spherical coatings of calcite (Fig. 4C). In 

addition, calcite crusts also evolved into numerous individual and slightly elongated 

hollow spheres, each up to 3 µm in diameter. These spheres could form cluster 

aggregates and were found intermingled with calcite rhombohedra (Fig. 4D). 

 

===========  FIGURE 4 HEREABOUT   =============== 
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Crystals precipitated in presence of stevensite (S) 

In an experiment with stevensite added to the synthetic “lake water”, patchy and 

individual prismatic subhedral to euhedral calcium carbonate crystals up to 20 µm length 

were nucleated. Calcite crystals were commonly needle shaped, and sheet-like elongated 

rhombohedral bouquets that were up to 30µm length also formed after 25 days (Cal in Fig. 

5A, B). Calcium carbonate products of this experiment commonly exhibited inter-grown 

twinning (arrow in Fig. 5A). In addition, subhedral to euhedral sheet-like stevensite 

crystals (up to 50µm diameter) precipitated from the solution, and were found 

intermingled with calcite crystals (St in Fig. 5A to C). These stevensite crystals were 

distinct from abundant macroscopic (mm-sized) stevensite crystals that were collected 

from the bottom of the flasks. The latter crystals displayed smoothly curved concentric 

rings through conchoidal faces, and were interpreted as relict grains of the clay added at 

the start of the experiment (Fig. 5D). No evidence for stevensite gel formation was 

observed.  

 

===========  FIGURE 5 HEREABOUT   =============== 

 

Crystals precipitated in the presence of stevensite and alginates (SAY) 

The addition of stevensite and alginates to synthetic “lake water” resulted in calcium 

carbonate precipitates that were scarce and limited to tiny (up to 5 µm diameter) 

anhedral aggregates, and very occasionally, subhedral prismatic forms (up to 10 µm 

length) (Cal in Fig. 6A) after 24 and 37 days incubation. In addition, abundant hydrated 
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Mg-clay crystals nucleated in the form of dispersed and small anhedral aggregates (up to 

15µm diameter; EDX in Fig. 6B and St in Fig. 6C). Subhedral cubic to rhombohedral 

aggregates of sodium chloride crystals with diameters less than 5µm were also produced 

(Na in Fig. 6B and C). As in the “S” experiment described above, abundant mm-sized 

stevensite crystals were also found having accumulated in the bottom of the flasks (Fig. 

6D), yet no evidence for stevensite gel formation was detected.  

 

===========  FIGURE 6 HEREABOUT   =============== 

 

Hydrochemical parameters 

Within the Control (X) and alginate (AY) flasks, more than 90% of the calcium was lost 

from solution during the experiment. In the presence of stevensite, this calcium loss was 

reduced by approximately half after 45 days (Table 1), indicating that a substantially 

reduced mass of precipitate developed.  

 

===========  TABLE 1 HEREABOUT   =============== 

 

Precipitation rate of CaCO3 can be calculated from the mass balance of calcium in solution. 

All experiments showed an inverse power deceleration of precipitation rate, which is 

consistent with the solution consuming its supply of calcium and carbonate and thus 

developing sequentially lower saturation indices. This progressive decrease in dissolved 
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calcium concentrations and lowering of solution calcite saturation limited the length of 

time experiments could be run for, and also means that the last formed crystals were 

potentially formed under different saturation conditions to those that produced the first 

crystals in each batch. Calcium loss from solution was initially similar in the control and 

stevensite experiments, whereas higher rates of Ca loss were found in the presence of 

alginic acid, and lower rates in the stevensite + alginic, and TEP experiments (Fig. 7). 

Precipitation rate rapidly slowed in both experiments where stevensite was present, 

indicating that these flasks approached equilibration earlier, and at a higher calcium 

concentration. This is reflected in the relative lack of total calcite precipitate developed in 

these synthetic environmental conditions. After 24 days, the alginic acid experiment 

reduced its precipitation rate to slightly less than the control experiment, and after 45 

days produced marginally less precipitate.  

The initial synthetic “lake water” solution had 300 mg L-1 of magnesium, but where 

stevensite was added, substantial Mg was gained by the solution during the experiment 

(Fig. 8). That Mg/Si phases were supersaturated in these flasks was demonstrated by new 

precipitates being found on the glass slides (see above). Similarly, additional silicon was 

found in the stevensite-bearing flasks at the end of the experiments (Fig. 9). Where 

stevensite was present, this constituted the primary source of dissolved Si: otherwise, 

silicon addition came from minor dissolution of the glass by the relatively high pH solution 

at the start of the experiment. 

 

===========  FIGURE 7 HEREABOUT   =============== 

===========  FIGURE 8 HEREABOUT   =============== 
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===========  FIGURE 9 HEREABOUT   =============== 

 

DISCUSSION  

The experiments reveal that spherulitic-radial calcite will grow within saline, alkaline 

water in the presence of specific dissolved organic acids. This supports the hypotheses for 

the origins of ancient lacustrine spherulitic grains that invoke microbial activity. We 

emphasise that the experimental system developed here was completely sterile, the 

solution was not sufficiently concentrated to form a gel, and that the analogous organic 

acids will have been present in any solution in which microbes produced extracellular 

polymeric substances. As dissolved organic molecules can move away from the cells 

producing them by diffusion and advection, there is no need for localised microbial 

activity for this mechanism to operate in a lake. Microbial communities are both 

abundant and productive in modern lakes such as Mono Lake, California (Humayoun et al., 

2003), Lake Van, Turkey (Lopez-Garcia et al., 2005), and the Kenyan and Tanzanian Rift 

Valley Lakes (Jones and Renaut, 1995, 1998; Rees et al., 2004; Renaut et al., 2013). It is 

therefore very likely that the simulated conditions will have been satisfied in most if not 

all Phanerozoic  alkaline lakes, making the presence of organic acids in solution arguably 

the simplest means of producing spherulite carbonate deposits in such environments. 

The size of the spherulites grown in the experiment (up to 20 m) is smaller than the size 

of the grains noted in the Pre-Salt lacustrine deposits of the South Atlantic (mm sized, 

Wright and Barnett, 2015). This probably reflects the small volume of solution used in the 
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experiment, limiting the duration the growing allochem was exposed to supersaturated 

water. The saturation index of the water would have fallen rapidly during the experiment, 

from the initial 1.65 (calculation of saturation index done according to (Rogerson et al., 

2014)). These grains were therefore denied the opportunity to grow to larger size, and 

the difference to the Pre-Salt allochems is likely a scaling issue. It should further be noted 

that both in the alginic acid and in the sodium carboxymethil cellulose experiment, 

precipitate morphology changed after 37 and 26 days, respectively (Fig. 2c and Fig. 2d). 

This change in precipitate morphology coincided with falling calcite saturation of the 

solutions, and in the alginic acid experiment this resulted in the development of 

botryoidal crust fabrics. We infer that calcitic botryoidal crust growth may have 

developed under conditions highly analogous to those of the Pre-Salt spherical-radial 

calcite, although with slightly lower calcite supersaturation.   

Comparison of Figures 2 and 4 to Figure 1 show that the coverage of calcite on the frosted 

glass slides was far greater in the presence of both alginic acid and carboxymethil 

cellulose than in the control experiment. We thus infer that the physical location of 

crystallisation was altered by the presence of extracellular polymers, causing calcite 

nucleation to preferentially take place attached to the glass slide, rather than taking place 

in the water column and then settled loosely in the bottom of the flasks (B. Jones Pers. 

Comm., Bonny and Jones, 2003; Jones and Peng, 2014). This has previously been found in 

experiments under karst-like waters in flowing systems (Pedley et al., 2009; Rogerson et 

al., 2008). Confirmation of this earlier finding indicates that this translation of 

mineralisation sites is persistent and related to the presence of the organic acids within 

EPS, and not the proximity of microbial metabolisms here. A key consequence of this 

observation is that although in the control case, mineral formation primarily reflects gas 
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exchange at the air-water interface, this is not the normal case for systems where organic 

acids are involved in mineral formation. Moreover, the sterile conditions used for our 

experiments here demonstrate that this process is independent of metabolic processes 

that take place within benthic biofilms.  

Influence of stevensite (and Mg) on the precipitation of CaCO3 

Supersaturating the solution with respect to stevensite clay did not alter the morphology 

of calcite precipitates, but rather significantly reduced the rate of calcite formation after 

the first 24 days. This experiment does not discount the possibility that carbonate 

spherulites may grow in Mg-Si gels; indeed this is well attested in the chemical 

engineering literature where such gels were exposed to a mixing interface between 

calcium chloride and sodium carbonate solutions (Beck and Andreassen, 2010). However, 

it does call into question whether voluminous spherulitic calcite grains were likely to have 

developed in Phanerozoic alkaline lakes. Firstly, our solution did not form a gel, and the 

controls on gel formation are as yet unclear. Moreover, to achieve the very high rate of 

precipitation typical of spherical-radial crystal growth (Sunagawa, 2005), saturation of the 

solution within the gel would need to be considerably enhanced beyond the condition of 

the solution used in this experiment. The synthetic “lake water” solution we used was 

more saturated than modern Mono Lake water, and therefore at the upper limit of 

supersaturation known in modern natural systems (Rogerson et al., 2014). A spherulite 

producing solution in an ancient setting may have required saturation with mixtures of 

CaCl2(aq) and Na2CO3(aq), as used in chemical engineering systems (Beck and Andreassen, 

2010) but the geological record suggests this is perhaps more unlikely than stevensite 

saturation in the natural world. Further doubts about the requirement for stevensite 
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saturation to produce spherulites are raised by the observation that addition of alginic 

acid to the solution supersaturated with stevensite impeded calcite growth still further, 

and did not result in spherulitic calcite morphologies (Fig. 6).  

The negative impact of stevensite addition to the system probably reflects the inhibitive 

nature of magnesium (enhanced in stevensite-containing experiments; Fig. 10) on calcite 

precipitation. The inhibition of calcite formation in the presence of raised Mg 

concentration is long established (Folk, 1974) and is beginning to be quantified 

empirically (Niedermayr et al., 2013). The result we present is therefore not unexpected, 

but a predictable limitation on the ability of supersaturated Mg-phases to promote calcite 

precipitation. 

Role of organic acids in controlling crystal growth 

Based on the presented empirical evidence, the impact of alginic acid binding onto the 

(     ) surface of the calcite crystal is to promote radial growth, resulting in a tendency 

for alginic acid-bearing solutions to produce calcite with spherical morphologies. Given 

previous findings of similar morphological consequences of organic acid addition to 

calcite-mineralising systems (Braissant et al., 2003), we suggest that high calcite 

supersaturation is also an important condition promoting spherical-radial growth. It is 

probably the scarcity of environments where calcite is precipitated sufficiently rapidly 

that results in these allochems being comparatively rare, rather than any lack of presence 

of organic acids. This behaviour does seem to be specific to organic acids, as it is not 

found in the experiment where carboxymethil cellulose was added. There may well be an 

additional control on spherulite distribution related to the specific organisms producing 

organic acids in any given setting.  
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A secondary, but equally important, empirical finding of this experiment is that far more 

of the fact that calcite was formed in the experiments where organic molecules were 

added, calcite nucleation took place attached to a substrate whereas in experiments 

lacking organic molecules this was not frequent. This was the case for both alginic acid 

and carboxymethil cellulose. Indeed, in some of the control experiments the CaCO3 on 

the frosted slide was so sparse that no XRD record of it could be found, despite the 

solution mass balance showing that these experiments had more precipitation of these 

phases than the organic acid experiments (Fig 7).  This means that the specific mechanism 

of mineral formation is different in the presence of the extracellular polymers than it is 

without. We suggest that the high surface area of the glass slide provided binding sites for 

charged organic acid molecules in solution (uronic acids are known to show strong 

binding with silicon ions (Schwarz, 1973)), which then provided a substrate onto which 

solid CaCO3 formed, in close analogy to the mechanism suggested by Saunders et al., 

(2014). Metal-organic precursors to calcite are well-known to materials chemists (Kim et 

al., 2011) and the CaCO3 has been found to initially form as an amorphous phase. 

Logically, this means that mineralisation in the presence of organic acids is not occurring 

as a direct consequence of gas exchange at the air-water interface. Equally, it means that 

rooted crystals found ubiquitously in nature (B. Jones Pers. Comm., 2015) also do not 

form as a direct consequence of gas exchange. This observation has major consequences 

for our understanding of mineralisation of calcite within natural systems with biofilms, as 

the direct linkage of mineralisation and gas exchange is an underlying assumption in the 

geological interpretation of almost all terrestrial carbonate mineral forming systems 

(Rogerson et al., 2014). 

Implications for environmental interpretation of spherulite facies 
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While our experiments do not disprove that stevensite gels can form spherular-radial 

calcite, they do show that they can be straightforwardly formed by the types of solution 

expected in these alkaline, saline lakes so long as environmentally common organic acids 

are present in solution. This presents a very simple mechanism for the development of 

voluminous spherulite facies, and therefore we recommend that a colloidal organic 

control is considered when geological spherulite deposits are interpreted. The strong 

negative impact of the raised magnesium in solution needed to maintain active 

precipitation of stevensite further emphasises that this mechanism is less likely than an 

organic mechanism. The failure of our solutions to produce gels also indicates that more 

needs to be understood about the clay-catalysis mechanism.  

As spherulites seem likely to be a consequence of organic acid intervention in the crystal 

growth mechanism, and as different organic acids result in different grain morphologies, 

it is logical to conclude that microbial activity provides a major key to the development of 

carbonate spherulitic grains. These facies should be considered microbial-influenced 

facies sensu lato. The lack of direct observation of conventional calcified microbial 

features is compatible with the exclusion of metabolic effects produced by endolithic or 

mat-forming organisms. Lack of entombed microorganisms may simply indicate limited 

microbial activity at the site of deposition. Neither of these conditions limits the 

hypothesis presented here, as the majority of EPS produced in a lacustrine system comes 

from planktonic photosynthetic communities, and settles through the water column to 

the bottom as transparent extracellular polymers (TEP) (Passow et al., 2001; Passow, 

2002a, b; Bhaskar and Bhosle, 2005). Organic acids found in lake-bottom water can 

therefore be a product of planktonic exudation from surface water, regardless of the 

activity of benthic microbial systems. Further work is needed to fully understand the 
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microbial ecology and exudation processes of specific molecules within the system, and 

this promises to be a fruitful direction for future research.   

Recent report of Mg-Si phases growing within biofilm masses (Burne et al., 2014), 

potentially even as precursors to CaCO3 phases, provides a further perspective on the 

relationship of these two minerals. The observation from Lake Clifton that Mg-Si and 

CaCO3 phases are spatially and temporally separate is compatible with our experimental 

finding that the enhanced Mg concentration needed to precipitate minerals like 

stevensite impedes calcite formation. Equally, the conclusion of Burne et al. (2014) that in 

these settings both Mg-Si and carbonate phases must be assumed to be “microbialites” 

appears to be a good basis for further investigation.  

CONCLUSIONS 

Radial-spherular calcite will grow straightforwardly within saline, alkaline waters in the 

presence of specific environmentally-common organic acids (in this case, alginic acid). 

This occurs due to the binding of this molecule onto the step-edge of the growing crystal. 

Despite this being a crystal inhibition process, the rate of precipitation is only marginally 

reduced. The presence of this molecule (and other organic polymers, in this case 

carboxymethil cellulose) also results in an increase in the precipitation at the sediment-

water interface, which is probably a result of the organic molecules binding onto the 

surface, and providing a template for mineral precipitation. This indicates that gas 

exchange does not directly control mineralisation when calcite is produced via metal-

organic intermediaries.  

The same synthetic “lake water” saline, alkaline solution produced crystalline precipitates 

rather than a gel when supersaturated with stevensite. Due to the inhibitory effect of 

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
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raising the magnesium concentration, calcite precipitation rate was reduced by ~50% in 

this experiment and the carbonate mineral products were subhedral calcite crystals 

similar to the control experiment.  

We conclude that spherulitic growth of calcium carbonate is likely to have formed 

extensively at the sediment-water interface in Phanerozoic alkaline lakes that held 

organic acids in solution, while clay-gels are not required to form voluminous deposits of 

spherulitic grains in Phanerozoic lacustrine environments.   
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FIGURE CAPTIONS 

 

TABLE 1. Initial composition of solution used in experiments 

FIGURE 1. Crystals precipitated in the control experiment. (A) Subhedral to euhedral 

calcite crystals (EDX spot analysis on asterisk indicate calcium carbonate composition). (B) 

Detail of A with composite rare spherulites made up of rhombic and trigonal bladed 

calcite imbricated crystals. (C) Abundant subhedral to euhedral halite cubic crystals (Na). 
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(D) Halite crusts developing chevron overgrowth crystals (EDX spot analysis on asterisk 

indicate sodium chloride composition). 

FIGURE 2. Crystals precipitated in the presence of alginates. (A) Calcitic spheroidal 

clusters attached to the glass slide. (B) Spherulitic particles are made up of imbricated 

rhombohedron twins (up to 10µm diameter each). Partial aggregation and fusion of 

spherulitic components is observed (arrow). (C) Broken spheres display hollow centres. (D) 

Distinctive subhedral to mainly euhedral botryoidal crusts (arrow) nucleate above 

previous spherulitic after 44 days. 

 

FIGURE 3. X-ray powder diffraction pattern of spherulitic components. The lower set of 

lines indicates the expected peak positions and approximate intensities for a pure sample 

of calcite. 

FIGURE 4. Crystals precipitated in presence of sodium carboxymethil cellulose. (A) 

Euhedral sheets of well-formed calcite rhombohedrons (EDX spot analysis on asterisk 

indicate calcium carbonate composition). (B) Calcite spherical particles growing 

intertwined with calcite rhombohedrons. (C) Thin calcite crusts (bottom right) formed by 

nanometre-thick spheroidal calcite aggregates give rise to spherical particles up to 10µm 

in diameter. (D) Elongated hollow spheres (up to 3 µm in diameter) forming cluster 

aggregates intermingled with calcite rhombohedrons. 

FIGURE 5. Crystals precipitated in presence of stevensite. (A) Euhedral needle-like calcite 

crystals (Cal) exhibit inter-grown twinning (arrow), and are intermingled with subhedral to 

poorly developed stevensite crystals (St). (B) Detail of the needle to sheet-like elongated 
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rhombohedral calcite bouquets. Some calcite crystals (arrows) show earlier growth stages 

and poorly developed and tiny stevensite crystals (St) appear in the background. (C) 

Subhedral to amorphous stevensite crystals (EDX spot analysis on asterisk indicates 

stevensite composition) intermingled with needle-like subhedral calcite crystals (Cal). (D) 

Macroscopic (mm-sized) stevensite crystals accumulated in the bottom of the flasks (EDX 

spot analysis on asterisk indicates stevensite composition). 

 

FIGURE 6. Crystals precipitated in presence of stevensite and alginates. (A) Tiny, anhedral 

calcite precipitates (Cal) and dispersed and small aggregates of Mg-hydrated magnesium 

clays (St). (B) Abundant stevensite clay patchy crystals (EDX spot analysis on asterisk 

indicate stevensite composition) intermingled with some prismatic and elongated calcite 

precipitates (top right) and small cubic aggregates of sodium chloride crystals (Na). (C) 

Poorly defined, anhedral stevensite crystals (St) surrounded by sub-cubic aggregates of 

sodium chloride crystals (Na). (D) Mm-sized stevensite crystals accumulated in the 

bottom of the flasks (EDX spot analysis on asterisk indicate stevensite composition). 

 

FIGURE 7. Calcium loss from solution during experiments, given in mg day-1. Filled circles 

are 24 days, open circles are 37 days and triangles are 45 days.  

 

FIGURE 8. Magnesium loss from solution during experiments, given in mg day-1. Filled 

circles are 24 days, open circles are 37 days and triangles are 45 days.  Note negative 

values indicate an increase in concentration. 
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FIGURE 9. Silicon loss from solution during experiments, given in mg day-1. Filled circles 

are 24 days, open circles are 37 days and triangles are 45 days.  Note negative values 

indicate an increase in concentration. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Table 1.  
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Highlights 

A sterile solution replicating Mono Lake waters was used in this experimental study 

Spherulitic calcite formed within a saline, alkaline water rich in organic acids 

Calcite precipitation rate increased under the presence of diverse organic molecules 

Calcite precipitation rate decreased when solution was supersaturated in stevensite  

Spherulitic calcite did not form when solution was supersaturated in stevensite 
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