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A B S T R A C T 

Recently, global pulsar timing arrays have released results from searching for a nano-Hertz gra vitational wa ve background 

signal. Although there has not been any definite evidence of the presence of such a signal in residuals of pulsar timing data 
yet, with more and impro v ed data in future, a statistically significant detection is expected to be made. Stochastic algorithms 
are used to sample a very large parameter space to infer results from data. In this paper, we attempt to rule out effects arising 

from the stochasticity of the sampler in the inference process. We compare different configurations of nested samplers and the 
more commonly used markov chain monte carlo method to sample the pulsar timing array parameter space and account for 
times taken by the different samplers on same data. Although we obtain consistent results on parameters from different sampling 

algorithms, we propose two different samplers for robustness checks on data in the future to account for cross-checks between 

sampling methods as well as realistic run-times. 

Key w ords: gravitational w aves – methods: data analysis – pulsars: general. 
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 I N T RO D U C T I O N  

ulsars Timing Arrays (PTAs) (Detweiler 1979 ; Hellings & Downs
983 ; Jenet et al. 2009 ; Ferdman et al. 2010 ; Hobbs et al. 2010 ;
anchester et al. 2013 ) aim to detect the stochastic Gravitational
ave Background (GWB). A GWB signal is likely created by

he superposition of gravitational waves emitted by Super Massive
lack Hole Binaries (SMBHBs) (Rosado, Sesana & Gair 2015 ), but

here could be other sources like a relic from inflation (Grishchuk
005 ) or cosmic strings (Vilenkin 1981 ; Vilenkin & Shellard 2000 ).
hile increasingly constraining upper limits have been placed on

he amplitude of the GWB, there has been no detection of this
ignature yet. Ho we ver all operational PTAs are currently detecting a
ommon but spatially uncorrelated red noise process (Arzoumanian
 E-mail: anuradha.samajdar@uni-potsdam.de (AS); 
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Pub
t al. 2020 ;Chen et al. 2021 ; Goncharov et al. 2021 ; Antoniadis et al.
022 ). This might indicate that the GWB signal will be detected with
tatistical significance in the near future. In this paper, we look at
onsistencies between a variety of stochastic samplers used to sample
 large parameter space, where the latter is of paramount importance
o inferring properties of the GWB signal. 

The size of pulsar timing models necessitates the use of a hybrid
requentist and Bayesian analysis, where the pulsar timing model
arameters are first obtained using iterative least square fitting
ith tools such as TEMPO2 (Edwards, Hobbs & Manchester 2006 ;
obbs, Edwards & Manchester 2006 ; Hobbs et al. 2009 ) or PINT

Luo et al. 2021 ) to obtain a set of timing residuals. These timing
esiduals are then modelled to remo v e e xcess delays due to red
oise processes as well as fluctuations from the variations in the
onized interstellar medium (IISM) codified as dispersion-measure

odels using Bayesian analysis, while analytically marginalizing
 v er the timing model parameters. This is typically called single
ulsar noise analysis (SPNA). Even with this simplification, the
© 2022 The Author(s) 
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Figure 1. Timing residuals for the 6 pulsars from (Chen et al. 2021 ). Colours 
denote the different data recording systems (or backends) used and the labels 
are described in the text. 
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stimation of the red noise and dispersion-measure model parameters 
emains computationally e xpensiv e. Further, in the final stage, when 
earching for the GWB, all pulsar models must be simultaneously 
tted for, along with a model for the correlated signal from the
WB as well as any other correlated or uncorrelated common noise 
rocesses. Even when the search is optimized for the smallest number 
f pulsars, this can lead to final dimensions of the order of hundreds
f parameters. Further, for the individual pulsar models as well as
he final GWB search, it is desirable to carry out model selection
Raftery 1996 ; Jeffreys 1998 ) – a method which is particularly well
uited for Bayesian analysis. 

This mixed approach implies inherent uncertainties in the com- 
arison of the algorithms themselves as well as any difference in the
btained results. We attempt to address this issue by adapting the 
ost commonly used PTA analysis package, ENTERPRISE (Ellis 

t al. 2020 ), to utilize a number of nested sampling algorithms. We
erform single pulsar noise analyses for a set of six pulsars, first
tilized for the recent limits presented by the European Pulsar timing 
rray (EPTA) (Chen et al. 2021 ). Using the most performant nested

ampling algorithm as determined from the SPNA analysis, we then 
earch for the GWB using both the pulsar data set as well as the
econd International Pulsar Timing Array (IPTA) second mock data 
hallenge (MDC) (Hazboun, Mingarelli & Lee 2018 ). 

In Section 2 , we briefly summarize the data we have used for our
nference process. Section 3 serves as an introduction to Bayesian 
nference with focus on noise models used in this paper and pulsar
iming data in general. Some technical details to algorithms we use 
re also included. We give a summary of our results in Section 4 and
onclude in Section 5 . 

 DATA  

e have used data recently utilized by the EPTA collaboration 
Chen et al. 2021 ) and focused on six pulsars – PSRs J0613-0200,
1012 + 5307, J1600-3053, J1713 + 0747, J1744-1134, and J1909- 
744. The times of arri v al (TOAs) of these pulsars are fitted using the
EMPO2 software to pulsar timing models describing the pulsars as- 

rometric, intrinsic, and environmental properties, along with simple 
olynomial models for the variations of IISM along the line of sight
o these pulsars. The resulting ‘timing residuals’ are shown in Fig. 1 ,
here we highlight the large number of observing systems used for

ach pulsar data set by different colours. We refer the interested 
eader to (Chen et al. 2021 ) and forthcoming EPTA publications 
or more details on the individual observing systems but list the 
ames here. The abbreviations correspond to the Pulsar Machine 
P1, P2, and PuMaI/II) instruments at the Westerbork Synthesis 
adio Telescope (WSRT), the Reconfigurable Open Architecture 
omputing Hardware (R OA CH) and the Digital Filter Bank (DFB)
ased devices at the Jodrell Bank Observatory (JBO), the Berkeley- 
rleans-Nan c ¸ay (BON) and the Nancay Ultimate Pulsar Processign 

nstrument (NUPPI) at the Nan c ¸ay Radio Observatory, and the 
SRIX instrument (labelled P217, P200, S110, and asterix) at the 
ffelsberg radio telescope. The residuals of Fig. 1 encode within 

hem the signatures of contributions from pulsar specific low and 
igh frequency processes as well as common astrophysical signals, 
uch as perturbations due to Solar system bodies (Champion et al. 
010 ; Caballero et al. 2018 ), time-variable delays due to density
uctuations in the IISM along the line of sight to the pulsar or the
patially correlated GWB. 

In addition to real data, to test different samplers, we have also
sed simulated timing data, generated by the IPTA collaboration 
Verbiest et al. 2016 ) and used in the second MDC (Hazboun et al.
018 ). From the MDC, we choose a data set containing a GWB
ignal. The data set consists of 33 pulsars, and in addition to the
WB, each individual pulsar is characterized by its own spin noise
r red noise. The data also contains white noise characterizing the
bserving telescopes. The simulated data set spans a timeline of 15 yr
nd is observed at a central frequency of 1440 MHz. The TOAs are
niformly distributed with observations taken every 30 d. 
The extraction of the GWB signal is a complicated process due to

he need to transform radio pulsar observations into reference times at
hich a group of photons from each pulsar in the PTA arrive at Earth
r Solar system Barycentre. While the observed data are the TOAs,
he data analysis is done on timing residuals. For this the TOAs are
rst converted into residuals, obtained after subtracting the predicted 

iming model from the observed TOAs. If the predicted model fits the
bservations perfectly, the residuals will be identically 0. In addition 
o the presence of a GWB, additional non-gra vitational-wa ve related
oise sources may alter the TOAs, some of these noise models are
escribed in Section 3 . 

 BAYESI AN  ANALYSI S  A N D  PA R A M E T E R  

STIMATION  SETUP  

e perform Bayesian inference on the pulsar timing data and 
ample o v er parameters corresponding to noise models describing the
ariations in the residuals as described below. We sample o v er single
ulsars (henceforth, SPNA analysis) as well as the full pulsar timing
rray (henceforth, PTA analysis) and use different samplers to test 
he consistency of the inferred noise models. Since nested sampling 
rovides direct access to the marginal likelihood (Buchner 2021a ), 
ypothesis-testing may be done naturally from a nested sampling 
nalysis, and PTA analysis could in turn quantify the support for
he imprint of the quadrupolar versus non-quadrupolar correlations 
n data. Ho we v er, analyses such as those from the P arkes PTA
MNRAS 517, 1460–1468 (2022) 
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PPTA) or NANOGRAV typically utilize the Parallel Tempering
arkov Chain Monte Carlo ( PTMCMC ) (Ellis & van Haasteren

017 ) method due to the lower computational cost. Since PTMCMC
oes provide direct access to the marginal likelihoods, methods such
s the Savage–Dickey approximation and hypermodel sampling are
mployed for model comparison. Even though the EPTA and IPTA
esults have been presented in the literature, which utilize efficient
ulti-ellipsoidal nested sampling algorithms such as MULTINEST and
OLYCHORD for SPNA, the final search for the GWB still utilizes
TMCMC or similar Markov Chain Monte Carlo (MCMC) based
ethods. 

.1 Bayesian inference 

e provide a very brief summary of Bayesian inference to make our
tudy self-contained. We point the reader to detailed resources like
Gregory 2005 ; Sivia & Skilling 2006 ) for further reading. Bayesian
nalysis estimates parameters from probability distribution functions
PDFs). The posterior PDF is obtained by providing the initial prior
DF and using that in combination with the likelihood , containing

nformation about the data. The Bayes’ theorem can be written down
s 

 

(
� θ | d 

)
= 

P 

(
d| � θ

)
P ( θ ) 

P ( d) 
, (1) 

here � θ refers to a multidimensional parameter set, d is the data,
nd the notation P ( � θ | d) refers to information on θ given d . Details
f the likelihood calculation in case of analysis of pulsar timing data
ay be found in (Arzoumanian et al. 2015 ) and references therein.

n addition to estimating parameters by using prior knowledge as
ell as knowledge from observed data, Bayesian analysis allows us

o perform model selection . With the data remaining the same, this
eans performing an analysis each time with a different model. In

hat case, equation ( 1 ) may be rewritten as 

 ( H| d) = 

P ( d| H) P ( H) 

P ( d) 
. (2) 

 represents a hypothesis, and in case of pulsar analysis, H may be
ssuming that the timing data contains a GWB signal, H GWB or only
 common red noise signal (CRN), H CRN , but not a GWB. From
quation ( 2 ), if we then compute the ratio of probabilities P ( H GWB )
nd P ( H CRN ), we get a quantitative measure of which model is more
referred by the data. 

.2 Noise models 

hen analysing single pulsar data, we focus only on individual
ulsars’ intrinsic red noise (RN), the noise from dispersion measure
rising from the interstellar medium (DM), and white noise (WN),
nherent to the observing telescopes. In addition, when sampling
 v er the parameter space of a PTA analysis, we include a CRN.
hen the common process includes spatial correlations, we search

or a common GWB. We briefly describe each of the noise processes
elow: 

.2.1 White noise 

he white noise itself can be divided into two parts: (i) a multi-
licative factor of the estimated error bar on the observed TOAs, the
FAC, and (ii) an additional noise adding in quadrature to the error
ars, the EQUAD. Both these components vary across the different
NRAS 517, 1460–1468 (2022) 
bserving telescopes even if they all observe the same pulsar. The
otal error on a TOA, σ can be written as 

= 

√ 

( σEFAC ) 2 + EQUAD 

2 . (3) 

FAC represents possible uncertainty on the TOA error estimation
uring the cross-correlation of the pulsar profile with the standard
emplate (Taylor 1992 ), and EQUAD may arise from physical effects
ike pulsar jitter noise and give rise to additional scatter of the TOAs
EKERS & MOFFET 1968 ). 

.2.2 Red noise 

ed noise is intrinsic to each pulsar, and also commonly referred
o as spin-noise. This arises primarily as a result of irregularities in
ulsar-spin (Cordes & Downs 1985 ; D’Alessandro et al. 1995 ). The
mprint on the pulsar residuals from the intrinsic noise is also a red
rocess, like the GWB, and the power spectrum may be described as
 power-law 

RN = 

A 

2 
RN 

12 π2 

(
1 

1 yr 

)−3 
f −γRN 

T 
, (4) 

here A RN and γ RN are the amplitude and spectral index of the red
oise process respectively, and T is the total timespan between latest
nd earliest TOA. 

.2.3 Dispersion measure noise 

s the pulses from a pulsar travel through the interstellar medium,
he imprint of the interstellar medium is also encoded on the TOAs.
ispersion measure is time-varying and defined as the integrated

olumn density of free electrons in the pulsar’s line of sight (You et al.
007 ). Unlike intrinsic red noise, this noise is frequency-dependent
nd follows a ν−2 dependence, ν being the radio frequency. This
ource may be further described by an additional power-law spectrum
f the form 

DM 

= A 

2 
DM 

(
1 

1 yr 

)−3 
f −γDM 

T 

(
1400 MHz 

ν

)2 

, (5) 

here A DM 

and γ DM 

are the amplitude and spectral index of the
ispersion noise, respectively. 

.3 Samplers 

s described abo v e, the parameter space of ev en a single pulsar is
ultidimensional, and we use techniques of stochastic sampling to

nfer the noise properties of pulsars. To compare among different
amplers, we use nested sampling (Skilling 2006 ) as well as MCMC
ethods, where the latter is also conventionally used in inference

rom pulsar timing data (Ellis & van Haasteren 2017 ). We have made
se of the modular nature of the analysis code ENTERPRISE and
ncorporated different nested samplers to be used with the Likelihood
unction available within the code. We also use the native PTMCMC
ampler, both with and without message-passing-interface (MPI)
Message Passing Interface Forum 2021 ), making a thorough study
f performances from different kinds of samplers. We briefly describe
he individual samplers used in this paper below. 

.3.1 PTMCMC 

CMC (Raftery 1996 ; Gamerman & Lopes 2006 ) is one of the
ommonest methods to stochastically sample a parameter space.
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Table 1. Prior ranges used; for SPNA runs, the RN and DM related 
parameters are being varied for each pulsar whereas the additional GWB- 
related parameters are varied in case of the PTA analysis. 

Parameter Prior range 

log A RN [ −18, −10] 
γ RN [0,7] 
log A DM 

[ −18, −10] 
γ DM 

[0,7] 
log A GWB [ −18, −10] 
γ GWB [0,7] 
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urthermore, Parallel Tempering (Swendsen & Wang 1986 ; Geyer 
991 ) is incorporated to explore the parameter space at different 
emperatures , thereby enabling a denser sampling. PTMCMC is 
atively used in the pulsar timing software ENTERPRISE . MCMC 

irectly samples the posterior distribution and after the initial stage, 
alled burn-in , gathers samples which are the representative posterior 
amples. In this paper, we have used in addition to PTMCMC , also its
PI-enabled version (henceforth, PTMCMC-MPI), and we notice a 

peedup of around a factor of two in most cases when run using the
ame machine. Details of the number of cores used are given at the
nd of Section 4.1 . 

.3.2 PyMultiNest 

onventionally, the nested sampling method samples the prior by 
istributing live points and exploring the parameter space by finding 
igher regions of likelihood. Each live point forms a contour on the
ik elihood surf ace which gets updated as live points corresponding to
ower likelihood values get replaced by ones associated with higher 
ikelihood values. Ref. (Feroz, Hobson & Bridges 2009 ) updated this

ethod by forming regions on the lik elihood surf ace and associating
hem to multiple multidimensional ellipsoids. Furthermore, this has 
een made more user-friendly by introducing a PYTHON interface 
n (Buchner et al. 2014 ) called PYMULTINEST . In this paper, we
se the parallelized version of the same by interfacing it with the
PI protocol. 

.3.3 Dynesty 

he nested sampling method described abo v e is known as Static
ested Sampling . In addition, the Dynesty sampler (Speagle 2020 ) 
lso includes Dynamic Nested Sampling . Throughout our paper, 
e have ho we ver used the Static sampler from within DYNESTY .
he configuration we have when using DYNESTY relies on 
onstructing the ellipsoids as implemented in MULTINEST and 
s such differs only in the use of the parallelization through MPI as
e now parallelize sampling the prior. In addition, the decision of
hen to construct multiple bounds differs in Dynesty as opposed 

o MULTINEST . Further information may be found also in the 
ocumentation. 1 Our implementation follows the call to DYNESTY 

s in (Smith et al. 2020 ), and we have adopted the approach of
arallelization as in the publicly available PBILBY code. 

.3.4 UltraNest 

LTRANEST (Buchner 2021b ) is a newly introduced nested 
ampling algorithm. It is designed to ensure accurate sampling of 
he parameter space, especially in the cases of widely separated 

inima or tightly correlated parameter density distribution for 
hich multi-ellipsoidal algorithms such as MULTINEST have been 

hown to fail. ULTRANEST utilizes the Radfriends (Buchner 
016 ) algorithm along with flexible penalization schemes which are 
ynamically reconfigured to allow resampling of previously sampled 
e gions. We hav e utilized the Reactiv e nested sampling algorithm of
LTRANEST for our test, as we found no discernible benefits 

rom using the static version in our initial testing. It should be
oted that the hybrid frequentist and Bayesian approach of standard 
TA analysis means this article presents a restrictive comparison for 
 ht tps://dynest y.readthedocs.io/en/latest /faq.html 

a  

t  

p  
LTRANEST as this algorithm is expected to perform better with 
ery large numbers of model parameters. 

 RESULTS  

e present the results from the SPNA analyses on the 6 pulsars
rom the EPTA and present results from the full PTA analyses from
he simulated data set. For the SPNA analyses, we have recorded
he time taken by each sampler. For the PTA analysis, we focus
nly on the fastest of the nested samplers and use PTMCMC for
omparison between two types of samplers. The intrinsic parameters 
eing sampled o v er and their respectiv e prior ranges are given in
able 1 . 

.1 SPNA 

e present results only on RN and DM as these directly affect the
OAs and are intrinsic to the pulsars. Fig. 2 shows the amplitude and
pectral index of the RN noise models inferred from the respective
 EPTA pulsars. The models are presented in the form of posterior
DFs. Fig. 3 shows the same for the DM noise models. In each case,
e show results obtained from different samplers; we show results 

rom PTMCMC , PTMCMC-MPI, PYMULTINEST , DYNESTY , 
nd ULTRANEST . In case of the nested samplers, we have used
096 live points and have used 2 × 10 6 posterior samples for the
TMCMC -based runs for each pulsar. It is, ho we ver, to be noted

hat the final number of posterior samples for the nested samplers is
uch larger than the number of live points because of the scaling

rom parallelization and is comparable to the MCMC runs. Since we
ave used the samplers each time in combination with the generic
ackage ENTERPRISE , the likelihood model therefore remains the 
ame and the results show the robustness of the sampling as the PDFs
re very consistent with each other. In Tables 2 and 3 , we show the
edians of the RN and DM parameters, respectively, by quoting the
edian values and the 5 per cent and 95 per cent quantiles obtained

rom the PDFs in Figs 2 and 3 . The values, along with the widths
f the credible intervals show the consistency of the results obtained
rom each sampler. 

We quantify the differences in PDFs by giving the values of
olmo goro v–Smirno v (KS) statistic (Kolmogorov 1933 ; Smirnov 
948 ) in Table. 4 . If the cumulative distributions corresponding
o two posterior distributions p 1 ( x ) and p 2 ( x ) are P 1 ( x ) and P 2 ( x ),
espectively, the KS statistic is the largest difference: 

S = sup x | P 1 ( x) − P 2 ( x) | , (6) 

here sup x is the supremum function, defined as the smallest element
reater than or equal to all numbers of both distributions. From the
bo v e definition, the KS value al w ays lies between 0 and 1. If we find
he values to be closer to 0, we may consider the underlying PDFs
 1 ( x ) and p 2 ( x ) to be very close to each other. A source of differences
MNRAS 517, 1460–1468 (2022) 
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M

Figure 2. Posterior PDFs across different samplers representing inferred red 
noise models from SPNA on each of the 6 pulsars from EPTA-DR2. We do 
not show the results from PYMULTINEST on J1713 + 0747 and J1012 + 5307 
and UltraNest results on J1744-1134 and J1012 + 5307. These did not finish 
after several months. 

Figure 3. Posterior PDFs across different samplers representing inferred 
dispersion measure noise models from SPNA on each of the 6 pulsars 
from EPTA-DR2. We do not show the results from PYMULTINEST on 
J1713 + 0747 and J1012 + 5307 and UltraNest results on J1744-1134 and 
J1012 + 5307. These did not finish after several months. 
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n PDFs is ho we ver the stochasticity of the algorithm itself; this is in
ddition to inherent differences between the PDFs being compared.
o quantify for this and establish a threshold from the stochasticity

tself, for each parameter of each pulsar and for each sampler, we
enerated 20 sets of resampled posterior samples and computed the
S statistic values between all combinations of these 20 data sets.
he maximum KS statistic arising from this study for all parameters
nd sampler for each pulsar is al w ays ∼10 −3 , the highest values
 v erall being for J1744-1134, and the log A DM 

parameter, ∼0.007.
o, from Table 4 , we take values > 10 −3 to signify a difference in the
DF arising inherently. From Table 4 , the highest KS value is ∼0.3
etween PTMCMC and PYMULTINEST for J0613-0200 as well as
1744-1134. 

Based only on these values, the PDFs are not quantifiably close
o one another. The results of the PDFs quantified in Tables 2 and
 , ho we ver do confirm that the PDFs give consistent results. This
pparent discrepancy is due to the nature of the KS statistic and
ts inherent dependence on the number of final posterior samples,

10 6 in our case. As the number of samples increase, the statistic
ecomes more and more sensitive to inherent differences in sampling.
aving obtained consistent results, ho we ver, we may conclude that

he visual differences in the PDFs are likely due to a combination
f the stochasticity of the algorithms and the difference in the
ndividual samplers. We notice PTMCMC combined with MPI
ives a speedup in all cases, and while that is a significant gain
n runtimes, we note that the algorithm, when coupled with MPI,
s different from the native PTMCMC . PTMCMC , when used in a
ingle core, does not do parallel tempering (the name is a misnomer
n this case). It is only when coupled with MPI, that there is
 single temperature per thread and the parallel tempering kicks
n 2 . Moreo v er, from Figs 2 and 3 , we note that PTMCMC-MPI
esults are closer to those obtained with parallel nested samplers.
his is likely because the multiple chains running with different

emperatures in case of PTMCMC-MPI, allow a more e xhaustiv e
xploration of the parameter space, making the final posterior PDFs
loser to those obtained using nested samplers. We also note that,
mong nested samplers, ULTRANEST and DYNESTY show
xcellent agreement, whereas PYMULTINEST distributions tend
o be slightly different. While all the nested samplers that we have
sed in this work rely on the underlying algorithm MULTINEST ,
here are subtle differences among PYMULTINEST, DYNESTY ,
nd ULTRANEST . ULTRANEST and DYNESTY have slight
mpro v ements o v er MULTINEST (and therefore PYMULTINEST )
nd our results suggest that MULTINEST in itself is probably not
ood enough to sample the complex and high dimensional parameter
pace of the pulsars except in the simplest cases. It may be worth
rying to do PYMULTINEST analyses with finer settings, ho we ver
hat would not be a one-to-one comparison among samplers as is
ur goal here. In this analysis, we have only changed the sampler. A
obust check of the likelihood function would be to keep the sampler
he same and change the likelihood definition. The existing software
EMPONEST (Lentati et al. 2014 ) is independent of ENTERPRISE
nd defines the likelihood function independently. It inherently uses
he MULTINEST sampler, a check of the likelihood function may be
o repeat an analysis with TEMPONEST and ENTERPRISE coupled
ith PYMULTINEST . This will be studied in a future publication. 
Finally, in Table 5 we note the walltime in hours taken by

ach sampler on the same data. We also note the number of
imensions, N dim 

, and number of TOAs, N TOAs for each pulsar.
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Table 2. Red noise parameters obtained from PDFs shown in Fig. 2 . The v alues sho wn are the medians, the subscript, and 
superscipt values indicate the 5% and 95% quantiles obtained from the distributions of the individual PDFs. 

Pulsar Parameter PTMCMC PTMCMC-MPI PyMultiNest Dynesty UltraNest 

J0613-0200 γ RN 5 . 27 6 . 62 
3 . 54 4 . 90 6 . 72 

3 . 01 4 . 87 6 . 73 
2 . 40 4 . 98 6 . 67 

3 . 14 4 . 99 6 . 75 
3 . 02 

log A RN −15 . 02 −14 . 07 
−15 . 87 −14 . 81 −13 . 81 

−15 . 90 −14 . 79 −13 . 57 
−16 . 01 −14 . 86 −13 . 88 

−15 . 86 −14 . 86 −13 . 82 
−15 . 92 

J1909-3744 γ RN 3 . 26 5 . 74 
2 . 21 3 . 29 5 . 81 

2 . 21 3 . 67 6 . 43 
2 . 00 3 . 32 5 . 71 

2 . 23 3 . 26 5 . 79 
2 . 22 

log A RN −14 . 06 −13 . 70 
−15 . 09 −14 . 08 −13 . 70 

−15 . 11 −14 . 11 −13 . 55 
−15 . 32 −14 . 10 −13 . 70 

−15 . 08 −14 . 06 −13 . 70 
−15 . 11 

J1600-3053 γ RN 2 . 48 4 . 57 
1 . 36 2 . 64 5 . 18 

1 . 39 2 . 92 6 . 30 
0 . 97 2 . 60 4 . 86 

1 . 41 2 . 65 5 . 17 
1 . 40 

log A RN −13 . 66 −13 . 34 
−14 . 44 −13 . 70 −13 . 33 

−14 . 75 −13 . 87 −13 . 25 
−16 . 51 −13 . 69 −13 . 33 

−14 . 58 −13 . 71 −13 . 33 
−14 . 72 

J1012 + 5307 γ RN 1 . 49 2 . 07 
0 . 87 1 . 53 2 . 11 

0 . 90 – 1 . 53 2 . 11 
0 . 94 –

log A RN −13 . 09 −12 . 94 
−13 . 22 −13 . 09 −12 . 95 

−13 . 23 – −13 . 09 −12 . 96 
−13 . 22 –

J1713 + 0747 γ RN 3 . 48 4 . 35 
2 . 75 3 . 55 4 . 64 

2 . 70 – 3 . 54 4 . 55 
2 . 70 3 . 54 4 . 63 

2 . 66 

log A RN −14 . 25 −13 . 96 
−14 . 60 −14 . 27 −13 . 94 

−14 . 71 – −14 . 27 −13 . 95 
−14 . 68 −14 . 27 −13 . 93 

−14 . 71 

J1744-1134 γ RN 0 . 84 5 . 42 
0 . 07 1 . 04 6 . 16 

0 . 11 1 . 65 6 . 22 
0 . 13 1 . 12 6 . 13 

0 . 14 –

log A RN −13 . 41 −13 . 22 
−15 . 73 −13 . 44 −13 . 22 

−15 . 84 −13 . 61 −13 . 22 
−16 . 80 −13 . 45 −13 . 23 

−15 . 77 –

Table 3. Dispersion measure parameters obtained from PDFs shown in Fig. 3 . The values shown are the medians, the subscript, 
and superscipt values indicate the 5% and 95% quantiles obtained from the distributions of the individual PDFs. 

Pulsar Parameter PTMCMC PTMCMC-MPI PyMultiNest Dynesty UltraNest 

J0613-0200 γ DM 

2 . 62 3 . 66 
1 . 80 2 . 80 4 . 42 

1 . 80 3 . 06 6 . 04 
1 . 57 2 . 80 4 . 08 

1 . 83 2 . 81 4 . 35 
1 . 78 

log A DM 

−13 . 66 −13 . 38 
−14 . 07 −13 . 73 −13 . 39 

−14 . 43 −13 . 83 −13 . 32 
−15 . 36 −13 . 73 −13 . 40 

−14 . 25 −13 . 73 −13 . 38 
−14 . 39 

J1909-3744 γ DM 

2 . 79 6 . 71 
1 . 86 2 . 79 6 . 66 

1 . 85 3 . 55 6 . 69 
1 . 54 2 . 70 6 . 58 

1 . 84 2 . 83 6 . 69 
1 . 86 

log A DM 

−13 . 89 −13 . 63 
−15 . 86 −13 . 89 −13 . 63 

−15 . 85 −14 . 21 −13 . 55 
−16 . 06 −13 . 87 −13 . 63 

−15 . 81 −13 . 91 −13 . 64 
−15 . 87 

J1600-3053 γ DM 

2 . 89 3 . 66 
2 . 44 2 . 87 3 . 79 

2 . 43 3 . 00 5 . 32 
2 . 22 2 . 87 3 . 70 

2 . 43 2 . 87 3 . 77 
2 . 42 

log A DM 

−13 . 31 −13 . 17 
−13 . 59 −13 . 30 −13 . 17 

−13 . 65 −13 . 31 −13 . 03 
−14 . 01 −13 . 31 −13 . 17 

−13 . 61 −13 . 30 −13 . 17 
−13 . 64 

J1012 + 5307 γ DM 

2 . 00 2 . 67 
1 . 40 2 . 01 2 . 81 

1 . 37 – 1 . 96 2 . 63 
1 . 37 –

log A DM 

−13 . 64 −13 . 46 
−13 . 86 −13 . 64 −13 . 45 

−13 . 91 – −13 . 63 −13 . 45 
−13 . 85 –

J1713 + 0747 γ DM 

1 . 10 1 . 64 
0 . 56 1 . 04 1 . 67 

0 . 42 – 1 . 05 1 . 64 
0 . 47 1 . 04 1 . 68 

0 . 43 

log A DM 

−13 . 37 −13 . 24 
−13 . 49 −13 . 36 −13 . 22 

−13 . 49 – −13 . 36 −13 . 23 
−13 . 49 −13 . 36 −13 . 23 

−13 . 49 

J1744-1134 γ DM 

4 . 14 5 . 83 
1 . 48 3 . 97 6 . 05 

1 . 15 3 . 84 6 . 15 
1 . 11 3 . 89 5 . 93 

1 . 10 –

log A DM 

−14 . 41 −13 . 38 
−15 . 31 −14 . 33 −13 . 29 

−15 . 44 −14 . 24 −13 . 21 
−15 . 52 −14 . 29 −13 . 28 

−15 . 37 –

Table 4. Results on KS statistics on 6 pulsars from SPNA results from different samplers. The runs which ended up being unfinished after months 
do not have KS statistics’ values associated with them and are given as ‘-’. The values are shown differently for the red noise and dispersion measure 
models, and for the two parameters, the amplitude and spectral index separately. The p-value in all cases is however, < 10 −3 , this is likely due to the 
large number of posterior samples we compare, ∼10 5 for each PDF. 

PTMCMC versus 
PTMCMC-MPI 

PTMCMC versus 
PyMultiNest 

PTMCMC versus 
Dynesty 

PTMCMC versus 
UltraNest 

Pulsar Parameter Red Noise DM Noise Red Noise DM Noise Red Noise DM Noise Red Noise DM Noise 

J0613-0200 γ 0.154 0.141 0.172 0.291 0.119 0.13 0.132 0.145 
log A 0.151 0.137 0.173 0.291 0.116 0.127 0.129 0.137 

J1909-3744 γ 0.01 0.009 0.094 0.117 0.023 0.041 0.012 0.016 
log A 0.009 0.006 0.074 0.120 0.020 0.043 0.012 0.018 

J1600-3053 γ 0.079 0.038 0.196 0.185 0.062 0.035 0.086 0.037 
log A 0.074 0.03 0.251 0.119 0.055 0.017 0.08 0.026 

J1012 + 5307 γ 0.042 0.042 – – 0.042 0.050 – –
log A 0.017 0.037 – – 0.034 0.042 – –

J1713 + 0747 γ 0.073 0.095 – – 0.062 0.077 0.072 0.088 
log A 0.073 0.057 – – 0.064 0.036 0.072 0.049 

J1744-1134 γ 0.129 0.114 0.291 0.153 0.154 0.154 – –
log A 0.113 0.112 0.295 0.166 0.136 0.150 – –
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M

Table 5. Walltime in hours for the SPNA runs with each sampler, for each pulsar the number of dimensions and 
number of TOAs are also given as N dim 

and N TOAs , respectively. The unfinished runs’ times are shown as ‘-’. 
From this table, we note that only PTMCMC and DYNESTY are expected to finish within a feasible time-scale. 
Furthermore, when used with MPI, runtimes with PTMCMC can be scaled up. For some pulsars, the speedup 
obtained is up to a factor of 2. 

Pulsar Sampler 
Name N dim 

N TOAs PTMCMC PTMCMC-MPI PyMultiNest Dynesty UltraNest 

J0613-0200 50 3022 9.91 8.82 745.69 6.83 42.25 
J1909-3744 18 2817 13.61 5.60 3.40 1.68 2.11 
J1600-3053 30 3345 19.06 7.16 16.27 3.5 220 
J1012 + 5307 56 5837 28.80 13.94 – 11.92 –
J1713 + 0747 58 5052 29.11 14.82 – 15.95 141.32 
J1744-1134 38 1980 19.66 6.49 321 4.5 –
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Figure 4. Posterior PDF of the log of GWB amplitude from analysing MDC2 
data; the injected value is shown with the red vertical line and is log A GWB = 

−14.89. The dashed vertical lines refer to the 5 per cent and 95 per cent 
quantiles, respectively, we note the injected value al w ays f alls within this 
limit. The spectral index γ is kept fixed to 4.33 and for comparison two 
samplers PTMCMC (orange) and DYNESTY (blue) are being run, showing 
good agreement. For each sampler, the respective values of quantiles (shown 
in orange for PTMCMC and in blue for DYNESTY ) also lie very close to 
each other. 
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e have used the same machine for all SPNA runs to have a fair
omparison of walltimes. A reason for D YNESTY ’ s speedup is also
he parallelization of the prior-sampling, as mentioned in (Smith et al.
020 ). Specifically, for the pulsars J1713 + 0747 and J1012 + 5307,
e were unable to get the sampler to converge after these runs took

t least 80 d and we do not present their results. From Table 5 , we
ote that PYMULTINEST becomes unusable for most pulsars; while
his is mostly likely due to the increased dimensionality; indeed the

issing pulsars for PyMultiNest have N dim 

= 56 and N dim 

= 58, this
s likely also a combination of the high N dim 

and the large N TOAs .
n Figs 2 and 3 , all nested samplers and PTMCMC-MPI were run
n parallel using 47 cores of a single CPU, where each CPU has
he specification of Intel(R) Xeon(R) Gold 6252N CPU
 2.30GHz 35.75 MB with 192 GB memory and 48 cores in

otal. PTMCMC in itself was run using a single core. 

.2 PTA 

n this section, we choose the two fastest samplers from Table 5 .
n addition to being the fastest, we also use one nested sampler
 DYNESTY ) and one MCMC sampler ( PTMCMC ) for consistency
hecks between two different methods of sampling. Since we do an
nalysis on all 33 pulsars together which form the pulsar timing array
n the IPTA-MDC2, we fix the WN parameters to their TEMPO2 fit
alues to make the analysis computationally feasible. We analyse
imulated data where a GWB has been injected as mentioned in
ection 2 . The injected value of the GWB amplitude is picked up
y the resulting PDFs of the GWB amplitude by both samplers as
hown in Fig. 4 . The figure shows the results when the analysis is
one by keeping the spectral index of the GWB power spectrum
xed to 4.33. In addition, we repeated the analysis by varying both

he spectral index and the GWB amplitude. This is shown in Fig. 5 .
he upper panel shows the results of the GWB amplitude when γ is
aried and kept fixed. In the lower panel, the amplitude for the varying
case is plotted by choosing the amplitude values corresponding to

hose of γ lying between 4.3 and 4.4 and the resulting PDF looks
ery similar to the case when γ is kept fixed to 4.33. 

In addition, we perform model selection between a GWB and a
RN, using both samplers. With PTMCMC , we use the hypermodel
pproach, available within ENTERPRISE to extract a Bayes’ factor
n fa v our of one of the two models. The model selection remains
nconclusive from the values of Bayes’ factors obtained with either
ampler. Recently, (Chalumeau et al. 2021 ) also used these two
amplers to get model selection results. The values obtained from
oth samplers are given in Table 6 . This shows that we are unable
o assign a model to the data even when the data is ideally
NRAS 517, 1460–1468 (2022) 
imulated, contains no DM noise, and contains a GWB signal of
onsiderable amplitude A GWB = 1.3 × 10 −15 . This problem of
odel selection will therefore become even more important in real

ata which will additionally contain unmodelled noise. Further, we
ote the uncertainties in Table 6 and the slightly higher uncertainty
alues associated with the DYNESTY runs. While for hypermodel
ampling, one run suffices to assign a value of Bayes’ factor to a
odel, with the nested sampling approach, we have to resort to

eparate runs for each model to get a Bayes’ factor. The error is
herefore added in quadrature and adds up in the case of the runs
one with DYNESTY . In Section 5 , we suggest a method to be able
o assign a threshold value of Bayes’ factor to claim a detection from
eal data. 

 C O N C L U S I O N S  

e have compared different algorithms to sample the parameter
pace of the pulsar likelihood. We have used samplers to infer models
rom six single pulsars as well as a PTA comprised of thirty three
ulsars. In each case, we note generally good qualitative agreement
etween different sampling algorithms and from estimates of run-
ime as well as to maintain a balance between different ways of

art/stac2810_f4.eps
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Figure 5. Comparison between varying and fixing the spectral index γ . The 
top panel shows the 1D posterior PDFs of the log of the GWB amplitude, 
log A GWB . The three posteriors correspond to when the spectral index, γ is 
varying in the sampling (black), when the spectral index is fixed to 13/3 in 
the run (dashed, red) and when the log A GWB is restricted to the indices of γ
corresponding to a narrow range of [4.3, 4.4] (blue) in the varying- γ run. The 
injected value of log A GWB = −14.89 is shown as a green vertical line. The 
bottom panel shows the two-dimensional plot of γ versus log A GWB when γ
is being varied in the inference run; the γ range of [4.3, 4.4] corresponding 
to the blue PDF in the upper panel is shown in blue horizontal lines. We 
show only the results from DYNESTY here as Fig. 4 already shows good 
agreement between PTMCMC and DYNESTY . 

Table 6. Model selection results: Bayes’ factors between models GWB and 
CRN compared with samplers PTMCMC and DYNESTY . 

B 

GWB 
CRN B 

Fix γ
Vary γ

Dynesty 0.534 ± 1.148 0.945 ± 1.147 
PTMCMC 1.279 ± 0.018 0.955 ± 0.011 
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ampling, propose the use of PTMCMC and DYNESTY as preferred 
ethods for future inference from pulsar timing data. 
In future, we will generate data with randomized sky positions for

he pulsars, commonly referred to as sky-scrambling (Taylor et al. 
017 ), to resemble a realistic realization of measured data and will
onstruct a distribution of Bayes’ factors to build a ‘background’. 
urthermore, we will inject GWB signals and infer their properties 
nd compare the resulting Bayes’ factors distribution. This will likely 
ive us an idea of the threshold Bayes’ factor to claim a detection of
 GWB, if present in data for those number of pulsars that we search
 v er and hence their specific locations in the sky. In addition, this
ill also be a function of the o v erall timing precision and stability,
eaning we have to repeat this experiment when adding new pulsars

r for new data sets with upgraded instruments. This work is in
rogress and will be published separately. 
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